

by Andrie de Vries and
Joris Meys

R

2nd Edition

R For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015941928

ISBN 978‐1‐119‐05580‐8 (pbk); ISBN 978‐1‐119‐05583‐9 (epub); 978‐1‐119‐05585‐3 (epdf)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents
Introduction ... 1

About This Book .. 1
Changes in the Second Edition .. 2
Conventions Used in This Book ... 3
What You’re Not to Read .. 4
Foolish Assumptions ... 4
How This Book Is Organized .. 5

Part I: Getting Started with R Programming 5
Part II: Getting Down to Work in R ... 5
Part III: Coding in R .. 5
Part IV: Making the Data Talk ... 5
Part V: Working with Graphics ... 6
Part VI: The Part of Tens ... 6

Icons Used in This Book ... 6
Beyond the Book ... 7
Where to Go from Here ... 7

Part I: Getting Started with R Programming 9

Chapter 1: Introducing R: The Big Picture .11
Recognizing the Benefits of Using R .. 12

It comes as free, open‐source code ... 12
It runs anywhere .. 13
It supports extensions ... 13
It provides an engaged community ... 13
It connects with other languages ... 14

Looking At Some of the Unique Features of R .. 15
Performing multiple calculations with vectors 15
Processing more than just statistics ... 16
Running code without a compiler.. 16

Chapter 2: Exploring R .19
Working with a Code Editor ... 20

Exploring RGui.. 21
Dressing up with RStudio.. 23

Starting Your First R Session ... 25
Saying hello to the world .. 25
Doing simple math ... 26
Using vectors .. 26

iv R For Dummies

Storing and calculating values ... 27
Talking back to the user.. 28

Sourcing a Script .. 29
Echoing your work ... 30

Navigating the Environment ... 32
Manipulating the content of the environment 32
Saving your work ... 33
Retrieving your work ... 34

Chapter 3: The Fundamentals of R . .35
Using the Full Power of Functions ... 35

Vectorizing your functions ... 36
Putting the argument in a function .. 37
Making history.. 39

Keeping Your Code Readable .. 40
Following naming conventions .. 40
Structuring your code ... 43
Adding comments .. 45

Getting from Base R to More .. 45
Finding packages .. 45
Installing packages... 46
Loading and unloading packages ... 46

Part II: Getting Down to Work in R 49

Chapter 4: Getting Started with Arithmetic .51
Working with Numbers, Infinity, and Missing Values 51

Doing basic arithmetic .. 52
Using mathematical functions .. 54
Calculating whole vectors .. 57
To infinity and beyond .. 58

Organizing Data in Vectors ... 60
Discovering the properties of vectors .. 61
Creating vectors ... 63
Combining vectors ... 64
Repeating vectors .. 64

Getting Values in and out of Vectors .. 65
Understanding indexing in R .. 65
Extracting values from a vector ... 66
Changing values in a vector.. 67

Working with Logical Vectors .. 68
Comparing values .. 69
Using logical vectors as indices ... 70

v Table of Contents

Combining logical statements .. 71
Summarizing logical vectors .. 72

Powering Up Your Math ... 73
Using arithmetic vector operations... 73
Recycling arguments ... 76

Chapter 5: Getting Started with Reading and Writing79
Using Character Vectors for Text Data ... 79

Assigning a value to a character vector .. 80
Creating a character vector with more than one element 80
Extracting a subset of a vector .. 81
Naming the values in your vectors .. 82

Manipulating Text .. 84
String theory: Combining and splitting strings 84
Sorting text ... 88
Finding text inside text .. 89
Substituting text ... 91
Revving up with regular expressions .. 92

Factoring in Factors .. 94
Creating a factor... 95
Converting a factor .. 96
Looking at levels .. 98
Distinguishing data types ... 99
Working with ordered factors .. 100

Chapter 6: Going on a Date with R .103
Working with Dates ... 104
Presenting Dates in Different Formats .. 106
Adding Time Information to Dates .. 107
Formatting Dates and Times .. 109
Performing Operations on Dates and Times .. 109

Addition and subtraction .. 109
Comparison of dates ... 110
Extraction.. 111

Chapter 7: Working in More Dimensions . .113
Adding a Second Dimension ... 113

Discovering a new dimension .. 114
Combining vectors into a matrix ... 117

Using the Indices ... 118
Extracting values from a matrix ... 118
Replacing values in a matrix ... 120

Naming Matrix Rows and Columns ... 121
Changing the row and column names ... 122
Using names as indices ... 123

vi R For Dummies

Calculating with Matrices ... 123
Using standard operations with matrices 124
Calculating row and column summaries... 125
Doing matrix arithmetic .. 126

Adding More Dimensions ... 127
Creating an array ... 128
Using dimensions to extract values... 129

Combining Different Types of Values in a Data Frame 130
Creating a data frame from a matrix ... 130
Creating a data frame from scratch ... 132
Naming variables and observations .. 133

Manipulating Values in a Data Frame .. 134
Extracting variables, observations, and values 135
Adding observations to a data frame .. 136
Adding variables to a data frame ... 139

Combining Different Objects in a List ... 140
Creating a list.. 141
Extracting components from lists ... 142
Changing the components in lists ... 144
Reading the output of str() for lists .. 146
Seeing the forest through the trees ... 148

Part III: Coding in R ... 149

Chapter 8: Putting the Fun in Functions .151
Moving from Scripts to Functions ... 151

Making the script ... 152
Transforming the script .. 153
Using the function .. 154
Reducing the number of lines .. 155

Using Arguments the Smart Way ... 157
Adding more arguments ... 157
Conjuring tricks with dots .. 159
Using functions as arguments .. 161

Coping with Scoping .. 163
Crossing the borders ... 164

Dispatching to a Method .. 165
Finding the methods behind the function 166
Doing it yourself ... 168

Chapter 9: Controlling the Logical Flow . .171
Making Choices with if Statements ... 172
Doing Something Else with an if. . .else Statement 174

vii Table of Contents

Vectorizing Choices .. 176
Looking at the problem ... 176
Choosing based on a logical vector ... 176

Making Multiple Choices .. 178
Chaining if. . .else statements ... 178
Switching between possibilities ... 180

Looping Through Values .. 181
Constructing a for loop ... 181
Calculating values in a for loop .. 182

Looping without Loops: Meeting the Apply Family 184
Looking at the family features .. 185
Meeting three of the members ... 185
Applying functions on rows and columns 186
Applying functions to listlike objects .. 188

Chapter 10: Debugging Your Code . .193
Knowing What to Look For ... 193
Reading Errors and Warnings .. 194

Reading error messages .. 194
Caring about warnings (or not) ... 195

Going Bug Hunting ... 197
Calculating the logit ... 197
Knowing where an error comes from .. 197
Looking inside a function .. 198

Generating Your Own Messages .. 202
Creating errors ... 203
Creating warnings .. 203

Recognizing the Mistakes You’re Sure to Make 204
Starting with the wrong data .. 204
Having your data in the wrong format .. 205

Chapter 11: Getting Help .209
Finding Information in the R Help Files .. 209

When you know exactly what you’re looking for........................... 210
When you don’t know exactly what you’re looking for 211

Searching the Web for Help with R ... 212
Getting Involved in the R Community ... 213

Discussing R on Stack Overflow and Stack Exchange 213
Using the R mailing lists .. 214
Tweeting about R ... 215

Making a Minimal Reproducible Example .. 215
Creating sample data with random values 215
Producing minimal code ... 217
Providing the necessary information .. 217

viii R For Dummies

Part IV: Making the Data Talk 219

Chapter 12: Getting Data into and out of R . .221
Getting Data into R .. 221

Entering data in the R text editor .. 222
Using the Clipboard to copy and paste... 223
Reading data in CSV files... 225
Reading data from Excel ... 229
Working with other data types .. 230

Getting Your Data out of R ... 232
Working with Files and Folders ... 233

Understanding the working directory ... 233
Manipulating files ... 234

Chapter 13: Manipulating and Processing Data239
Deciding on the Most Appropriate Data Structure 239
Creating Subsets of Your Data ... 241

Understanding the three subset operators 241
Understanding the five ways of specifying the subset 242
Subsetting data frames .. 242

Adding Calculated Fields to Data .. 247
Doing arithmetic on columns of a data frame 247
Using with and transform to improve code readability 248
Creating subgroups or bins of data ... 249

Combining and Merging Data Sets .. 251
Creating sample data to illustrate merging 252
Using the merge() function .. 253
Working with lookup tables .. 255

Sorting and Ordering Data .. 257
Sorting vectors ... 257
Sorting data frames.. 258

Traversing Your Data with the Apply Functions 260
Using the apply() function to summarize arrays 261
Using lapply() and sapply() to traverse a list

or data frame .. 263
Using tapply() to create tabular summaries 264

Getting to Know the Formula Interface ... 266
Whipping Your Data into Shape .. 268

Understanding data in long and wide formats 269
Getting started with the reshape2 package 270
Melting data to long format .. 270
Casting data to wide format ... 271

ix Table of Contents

Chapter 14: Summarizing Data . .275
Starting with the Right Data ... 275

Using factors or numeric data .. 276
Counting unique values... 277
Preparing the data ... 277

Describing Continuous Variables .. 278
Talking about the center of your data... 278
Describing the variation.. 279
Checking the quantiles .. 279

Describing Categories ... 281
Counting appearances... 281
Calculating proportions .. 282
Finding the center .. 282

Describing Distributions ... 283
Plotting histograms ... 283
Using frequencies or densities ... 285

Describing Multiple Variables .. 287
Summarizing a complete dataset ... 287
Plotting quantiles for subgroups ... 288
Tracking correlations .. 290

Working with Tables ... 293
Creating a two‐way table ... 294
Converting tables to a data frame ... 295
Looking at margins and proportions ... 296

Chapter 15: Testing Differences and Relations 299
Taking a Closer Look at Distributions .. 300

Observing beavers ... 300
Testing normality graphically .. 301
Using quantile plots ... 302
Testing normality in a formal way ... 304

Comparing Two Samples .. 305
Testing differences .. 305
Comparing paired data ... 308

Testing Counts and Proportions ... 309
Checking out proportions ... 309
Analyzing tables ... 310
Extracting test results ... 312

Working with Models .. 313
Analyzing variances ... 313
Evaluating the differences .. 315
Modeling linear relations .. 318
Evaluating linear models ... 320
Predicting new values ... 323

x R For Dummies

Part V: Working with Graphics 325

Chapter 16: Using Base Graphics .327
Creating Different Types of Plots .. 327

Getting an overview of plot .. 328
Adding points and lines to a plot ... 329
Different plot types .. 332

Controlling Plot Options and Arguments ... 334
Adding titles and axis labels ... 335
Changing plot options ... 335
Putting multiple plots on a single page ... 339

Saving Graphics to Image Files .. 340

Chapter 17: Creating Faceted Graphics with Lattice343
Creating a Lattice Plot ... 344

Loading the lattice package .. 345
Making a lattice scatterplot .. 345
Adding trend lines ... 346

Changing Plot Options .. 348
Adding titles and labels ... 348
Changing the font size of titles and labels 349
Using themes to modify plot options .. 350

Plotting Different Types .. 351
Making a bar chart ... 352
Making a box‐and‐whisker plot .. 353

Plotting Data in Groups ... 354
Using data in tall format .. 354
Creating a chart with groups .. 356
Adding a key ... 356

Printing and Saving a Lattice Plot .. 357
Assigning a lattice plot to an object .. 358
Printing a lattice plot in a script .. 358
Saving a lattice plot to file... 358

Chapter 18: Looking At ggplot 2 Graphics . .361
Installing and Loading ggplot2 ... 361
Looking At Layers .. 362
Using Geoms and Stats ... 363

Defining what data to use ... 364
Mapping data to plot aesthetics .. 364
Getting geoms ... 365

Sussing Stats ... 369
Adding Facets, Scales, and Options .. 371

Adding facets .. 371
Changing options ... 372

Getting More Information ... 374

xi Table of Contents

Part VI: The Part of Tens ... 375

Chapter 19: Ten Things You Can Do in R That You
Would’ve Done in Microsoft Excel .377

Adding Row and Column Totals .. 377
Formatting Numbers ... 378
Sorting Data .. 380
Making Choices with If .. 380
Calculating Conditional Totals ... 381
Transposing Columns or Rows .. 382
Finding Unique or Duplicated Values ... 383
Working with Lookup Tables ... 383
Working with Pivot Tables ... 384
Using the Goal Seek and Solver ... 385

Chapter 20: Ten Tips on Working with Packages 387
Poking Around the Nooks and Crannies of CRAN 387
Finding Interesting Packages ... 388
Installing Packages .. 389
Loading Packages .. 389
Reading the Package Manual and Vignette .. 390
Updating Packages .. 390
Forging Ahead with R‐Forge ... 391
Getting packages from github .. 392
Conducting Installations from BioConductor .. 392
Reading the R Manual ... 393

Appendix A: Installing R and RStudio .395
Installing and Configuring R ... 395

Installing R .. 395
Configuring R .. 396

Installing and Configuring RStudio .. 398
Installing RStudio ... 398
Configuring RStudio ... 398

Appendix B: The r fordummies Package .401
Using rfordummies .. 401

Index ... 403

xii R For Dummies

Introduction

W
elcome to R For Dummies, the book that helps you learn the statistical
programming language R quickly and easily.

We can’t guarantee that you’ll be a guru if you read this book, but you should
be able to

 ✓ Perform data analysis by using a variety of powerful tools.

 ✓ Use the power of R to do statistical analysis and data‐processing tasks.

 ✓ Appreciate the beauty of using vector‐based operations (rather than
loops) to do speedy calculations.

 ✓ Appreciate the meaning of the following line of code:

knowledge <- apply(theory, 1, sum)

 ✓ Know how to find, download, and use code that has been contributed to
R by its very active community of developers.

 ✓ Know where to find extra help and resources to take your R coding skills
to the next level.

 ✓ Create beautiful graphs and visualizations of your data.

About This Book
R For Dummies is an introduction to the statistical programming language
known as R. We start by introducing the interface and work our way from
the very basic concepts of the language through more sophisticated data
 manipulation and analysis.

We illustrate every step with easy‐to‐follow examples. This book contains
numerous code snippets, several write‐it‐yourself functions you can use later
on, and complete analysis scripts. All these are for you to try out yourself.

We don’t attempt to give a technical description of how R is programmed
internally, but we do focus as much on the why as on the how. R has many
features that may seem surprising at first, so we believe it’s important to
explain both how you should talk to R, and how the R engine interprets what

2 R For Dummies

you say. After reading this book, you should be able to manipulate your data
in the form you want and understand how to use functions we didn’t cover in
the book (as well as the ones we do cover).

This book is a reference. You don’t have to read it from beginning to end.
Instead, you can use the table of contents and index to find the informa-
tion you need. We cross‐reference other chapters where you can find more
 information.

Changes in the Second Edition
Since the publication of the first edition, R has kept evolving and improving.
To keep the book accurate, we updated the code to reflect any changes in the
latest version of R (version 3.2.0). With the feedback from readers, students,
and colleagues we could rework some sections to clarify issues and correct
inaccuracies. For example, we modified the code to use double quotes
instead of single quotes when using text strings. We also refer to the funda-
mental units of lists as components, rather than elements.

The new rfordummies package contains code examples in the book. Read
all about it in Appendix B.

R and RStudio
R For Dummies can be used with any operating
system that R runs on. Whether you use Mac,
Linux, or Windows, this book will get you on
your way with R.

R is more a programming language than
an application. When you download R, you
automatically download a console application
that’s suitable for your operating system.
However, this application has only basic
functionality, and it differs to some extent from
one operating system to the next.

RStudio is a cross‐platform application,
also known as an Integrated Development
Environment (IDE) with some very neat features
to support R. In this book, we don’t assume
you use any specific console application.
However, RStudio provides a common user
interface across the major operating systems.
For this reason, we use RStudio to demonstrate
some of the concepts rather than any specific
operating‐system version of R.

3 Introduction

Conventions Used in This Book
Code snippets appear like this example, where we simulate 1 million throws
of two six‐sided dice:

> set.seed(42)
> throws <- 1e6
> dice <- replicate(2,
+ sample(1:6, throws, replace = TRUE)
+)
> table(rowSums(dice))

 2 3 4 5 6 7 8
 28007 55443 83382 110359 138801 167130 138808
 9 10 11 12
110920 83389 55816 27945

Each line of R code in this example is preceded by one of two symbols:

 ✓ >: The prompt symbol, >, is not part of your code, and you should not
type this when you try the code yourself.

 ✓ +: The continuation symbol, +, indicates that this line of code still
belongs to the previous line of code. In fact, you don’t have to break a
line of code into two, but we do this frequently, because it improves the
readability of code and helps it fit into the pages of a book.

Lines that start without either the prompt or the continuation symbol are
output produced by R. In this case, you get the total number of throws where
the dice added up to the numbers 2 through 12. For example, out of 1 million
throws of the dice, on 28,007 occasions the numbers on the dice added to 2.

You can copy these code snippets and run them in R, but you have to type
them exactly as shown. There are only three exceptions:

 ✓ Don’t type the prompt symbol, >.

 ✓ Don’t type the continuation symbol, +.

 ✓ Where you put spaces or tabs isn’t critical, as long as it isn’t in the
middle of a keyword. Pay attention to new lines, though.

Instructions to type code into the R console has the > symbol to the left:

> print("Hello world!")

4 R For Dummies

If you type this into a console and press Enter, R responds with:

[1] "Hello world!"

For convenience, we collapse these two events into a single block, like this:

> print("Hello world!")
[1] "Hello world!"

Functions, arguments, and other R keywords appear in monofont. For
example, to create a plot, you use the plot() function. Function names are
followed by parentheses — for example, plot(). We don’t add arguments to
the function names mentioned in the text, unless it’s really important.

On some occasions we talk about menu commands, such as File➪Save. This
just means that you open the File menu and choose the Save option.

What You’re Not to Read
You can use this book however works best for you, but if you’re pressed for
time (or just not interested in the nitty‐gritty details), you can safely skip any-
thing marked with a Technical Stuff icon. You also can skip sidebars (text in
gray boxes); they contain interesting information, but nothing critical to your
understanding of the subject at hand.

Foolish Assumptions
This book makes the following assumptions about you and your computer:

 ✓ You know your way around a computer. You know how to download
and install software. You know how to find information on the Internet
and you have Internet access.

 ✓ You’re not necessarily a programmer. If you are a programmer, and
you’re used to coding in other languages, you may want to read the
notes marked by the Technical Stuff icon — there, we fill you in on how
R is similar to, or different from, other common languages.

 ✓ You’re not a statistician, but you understand the very basics of
 statistics. R For Dummies isn’t a statistics book, although we do show
you how to do some basic statistics using R. If you want to understand
the statistical stuff in more depth, we recommend Statistics For Dummies,
2nd Edition, by Deborah J. Rumsey, PhD (Wiley).

 ✓ You want to explore new stuff. You like to solve problems and aren’t
afraid of trying things out in the R console.

5 Introduction

How This Book Is Organized
The book is organized in six parts. Here’s what each of the six parts covers.

Part I: Getting Started
with R Programming
In this part, you write your first script. You use the powerful concept of
 vectors to make simultaneous calculations on many variables at once.
You work with the R workspace (in other words, how to create, modify, or
remove variables). You find out how to save your work and retrieve and
modify script files that you wrote in previous sessions. We also introduce
some funda mentals of R (for example, how to install packages).

Part II: Getting Down to Work in R
In this part, we fill you in on the three R’s: reading, ’riting, and ’rithmetic — in
other words, working with text and numbers (and dates for good measure).
You also get to use the very important data structures of lists and data frames.

Part III: Coding in R
R is a programming language, so you need to know how to write and under-
stand functions. In this part, we show you how to do this, as well as how to
control the logic flow of your scripts by making choices using if statements,
as well as looping through your code to perform repetitive actions. We explain
how to make sense of and deal with warnings and errors that you may experi-
ence in your code. Finally, we show you some tools to debug any issues that
you may experience.

Part IV: Making the Data Talk
In this part, we introduce the different data structures that you can use in R,
such as lists and data frames. You find out how to get your data in and out
of R (for example, by reading data from files or the Clipboard). You also see
how to interact with other applications, such as Microsoft Excel.

Then you discover how easy it is to do some advanced data reshaping and
manipulation in R. We show you how to select a subset of your data and how
to sort and order it. We explain how to merge different datasets based on

6 R For Dummies

columns they may have in common. Finally, we show you a very powerful
generic strategy of splitting and combining data and applying functions over
subsets of your data. When you understand this strategy, you can use it over
and over again to do sophisticated data analyses in only a few small steps.

After reading this part, you’ll know how to describe and summarize your vari-
ables and data using R. You’ll be able to do some classical tests (for example,
calculating a t‐test). And you’ll know how to use random numbers to simulate
some distributions.

Finally, we show you some of the basics of using linear models (for example,
linear regression and analysis of variance). We also show you how to use R to
predict the values of new data using models that you’ve fitted to your data.

Part V: Working with Graphics
They say that a picture is worth a thousand words. This is certainly the case
when you want to share your results with other people. In this part, you
discover how to create basic and more sophisticated plots to visualize your
data. We move on from bar charts and line charts, and show you how to
 present cuts of your data using facets.

Part VI: The Part of Tens
In this part, we show you how to do ten things in R that you probably use
Microsoft Excel for at the moment (for example, how to do the equivalent of
pivot tables and lookup tables). We also give you ten tips for working with
packages that are not part of base R.

Icons Used in This Book
As you read this book, you’ll find little pictures in the margins. These
 pictures, or icons, mark certain types of text:

When you see the Tip icon, you can be sure to find a way to do something
more easily or quickly.

You don’t have to memorize this book, but the Remember icon points out
some useful things that you really should remember. Usually this indicates a
design pattern or idiom that you’ll encounter in more than one chapter.

7 Introduction

When you see the Warning icon, listen up. It points out something you
 definitely don’t want to do. Although it’s really unlikely that using R will
cause something disastrous to happen, we use the Warning icon to alert you
if something is bound to lead to confusion.

The Technical Stuff icon indicates technical information you can merrily skip
over. We do our best to make this information as interesting and relevant
as possible, but if you’re short on time or you just want the information you
absolutely need to know, you can move on by.

Beyond the Book
R For Dummies includes the following goodies online for easy download:

 ✓ Cheat Sheet: You can find the Cheat Sheet for this book here:

www.dummies.com/cheatsheet/r

 ✓ Extras: We provide a few extra articles here:

www.dummies.com/extras/r

 ✓ Example code: We provide the example code for the book here:

www.dummies.com/extras/r

If we have updates to the content of the book, look here for it:

www.dummies.com/extras/r

Where to Go from Here
There’s only one way to learn R: Use it! In this book, we try to make you
 familiar with the usage of R, but you’ll have to sit down at your PC and start
playing around with it yourself. Crack the book open so the pages don’t flip
by themselves, and start hitting the keyboard!

C:/Users/Pat/AppData/Local/Temp/www.dummies.com/cheatsheet/nosql
C:/Users/Pat/AppData/Local/Temp/www.dummies.com/extras/nosql
http://www.dummies.com/cheatsheet/r
http://www.dummies.com/extras/r
http://www.dummies.com/extras/r

8 R For Dummies

Part I
Getting Started with

R Programming

Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Introducing R programming concepts.

 ✓ Creating your first script.

 ✓ Making clear, legible code.

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com

Introducing R: The Big Picture
In This Chapter

 ▶ Discovering the benefits of R

 ▶ Identifying some programming concepts that make R special

W
ith an estimated worldwide user base of more than 2 million people,
the R language has rapidly grown and extended since its origin as an

academic demonstration language in the 1990s.

Some people would argue — and we think they’re right — that R is much
more than a statistical programming language. It’s also

 ✓ A very powerful tool for all kinds of data processing and manipulation

 ✓ A community of programmers, users, academics, and practitioners

 ✓ A tool that makes all kinds of publication‐quality graphics and data
 visualizations

 ✓ A collection of freely distributed add‐on packages

 ✓ A versatile toolbox for extensive automation of your work

In this chapter, we fill you in on the benefits of R, as well as its unique
 features and quirks.

You can download R at www.r‐project.org. This website also provides
more information on R and links to the online manuals, mailing lists,
 conferences, and publications.

Chapter 1

http://www.r-project.org/

12 Part I: Getting Started with R Programming

Tracing the history of R
Ross Ihaka and Robert Gentleman developed
R as a free software environment for their
teaching classes when they were colleagues
at the University of Auckland in New Zealand.
Because they were both familiar with S, a
programming language for statistics, it seemed
natural to use similar syntax in their own work.
After Ihaka and Gentleman announced their
software on the S‐news mailing list, several
people became interested and started to
collaborate with them, notably Martin Mächler.

Currently, a group of 21 people has rights to
modify the central archive of source code
(http://www.r‐project.org/
contributors.html). This group is
referred to as the R Core Team. In addition,
many other people have contributed new code
and bug fixes to the project.

Here are some milestone dates in the
development of R:

 ✓ Early 1990s: The development of R began.

 ✓ August 1993: The software was announced
on the S‐news mailing list. Since then, a set
of active R mailing lists has been created.
The web page at www.r‐project.
org/mail.html provides descriptions

of these lists and instructions for
 subscribing. (For more information, turn to
“It provides an engaged community,” later
in this chapter.)

 ✓ June 1995: After some persuasive
 arguments by Martin Mächler (among
others) to make the code available as “free
software,” the code was made available
under the Free Software Foundation’s GNU
General Public License (GPL), Version 2.

 ✓ Mid‐1997: The initial R Development Core
Team was formed (although, at the time, it
was simply known as the core group).

 ✓ February 2000: The first version of R, version
1.0.0, was released.

 ✓ October 2004: Release of R version 2.0.0.

 ✓ April 2013: Release of R version 3.0.0.

 ✓ April 2015: Release of R‐3.2.0 (the version
used in this book).

Ross Ihaka wrote a comprehensive overview of
the development of R. The web page http://
cran.r‐project.org/doc/html/
interface98‐paper/paper.html
provides a fascinating history.

Recognizing the Benefits of Using R
Of the many attractive benefits of R, a few stand out: It’s actively maintained,
it has good connectivity to various types of data and other systems, and it’s
versatile enough to solve problems in many domains. Possibly best of all, it’s
available for free, in more than one sense of the word.

It comes as free, open‐source code
R is available under an open‐source license, which means that anyone can
download and modify the code. This freedom is often referred to as “free as

http://www.r-project.org/contributors.html
http://www.r-project.org/contributors.html
http://www.r-project.org/mail.html
http://www.r-project.org/mail.html
http://cran.r-project.org/doc/html/interface98-paper/paper.html
http://cran.r-project.org/doc/html/interface98-paper/paper.html
http://cran.r-project.org/doc/html/interface98-paper/paper.html

13 Chapter 1: Introducing R: The Big Picture

in speech.” R is also available free of charge — a second kind of freedom,
sometimes referred to as “free as in beer.” In practical terms, this means that
you can download and use R free of charge.

As a result of this freedom, many excellent programmers have contributed
improvements and fixes to the R code. For this reason, R is very stable and
reliable.

Any freedom also has associated obligations. In the case of R, these obliga-
tions are described in the conditions of the license under which it is released:
GNU General Public License (GPL), Version 2. The full text of the license is
available at www.r‐project.org/COPYING. It’s important to stress that the
GPL does not pertain to your usage of R. There are no obligations for using
the software — the obligations just apply to redistribution. In short, if you
change and redistribute the R source code, you have to make those changes
available for anybody else to use.

It runs anywhere
The R Core Team has put a lot of effort into making R available for different
types of hardware and software. This means that R is available for Windows,
Unix systems (such as Linux), and the Mac.

It supports extensions
R itself is a powerful language that performs a wide variety of functions,
such as data manipulation, statistical modeling, and graphics. One really big
advantage of R, however, is its extensibility. Developers can easily write their
own software and distribute it in the form of add‐on packages. Because of
the relative ease of creating and using these packages, literally thousands of
packages exist. In fact, many new (and not‐so‐new) statistical methods are
published with an R package attached.

It provides an engaged community
The R user base keeps growing. Many people who use R eventually start
 helping new users and advocating the use of R in their workplaces and
 professional circles. Sometimes they also become active on

 ✓ The R mailing lists (http://www.r‐project.org/mail.html

 ✓ Question‐and‐answer (Q&A) websites, such as

• StackOverflow, a programming Q&A website
(www.stackoverflow.com/questions/tagged/r)

http://www.r-project.org/COPYING
http://www.r-project.org/mail.html
http://www.stackoverflow.com/questions/tagged/r

14 Part I: Getting Started with R Programming

• CrossValidated, a statistics Q&A website (http://stats.
stackexchange.com/questions/tagged/r)

In addition to these mailing lists and Q&A websites, R users may

 ✓ Blog actively (www.r‐bloggers.com).

 ✓ Participate in social networks such as Twitter (www.twitter.com/
search/rstats).

 ✓ Attend regional and international R conferences.

See Chapter 11 for more information on R communities.

It connects with other languages
As more and more people moved to R for their analyses, they started trying
to incorporate R in their previous workflows. This led to a whole set of pack-
ages for linking R to file systems, databases, and other applications. Many of
these packages have since been incorporated into the base installation of R.

For example, the R package foreign (http://cran.r‐project.org/
web/packages/foreign/index.html) forms part of the recommended
 packages of R and enables you to read data from the statistical packages
SPSS, SAS, Stata, and others (see Chapter 12).

Several add‐on packages exist to connect R to database systems, such as

 ✓ RODBC, to read from databases using the Open Database Connectivity
protocol (ODBC) (http://cran.r‐project.org/web/packages/
RODBC/index.html)

 ✓ ROracle, to read Oracle data bases (http://cran.r‐project.org/
web/packages/ROracle/index.html).

Initially, most of R was based on Fortran and C. Code from these two lan-
guages easily could be called from within R. As the community grew, C++,
Java, Python, and other popular programming languages got more and more
connected with R.

As more data analysts started using R, the developers of commercial data
software no longer could ignore the new kid on the block. Many of the big
commercial packages have add‐ons to connect with R. Notably, both IBM’s

http://stats.stackexchange.com/questions/tagged/r
http://stats.stackexchange.com/questions/tagged/r
http://www.r-bloggers.com/
http://www.twitter.com/search/rstats
http://www.twitter.com/search/rstats
http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/RODBC/index.html
http://cran.r-project.org/web/packages/RODBC/index.html
http://cran.r-project.org/web/packages/ROracle/index.html
http://cran.r-project.org/web/packages/ROracle/index.html

15 Chapter 1: Introducing R: The Big Picture

SPSS and SAS Institute’s SAS allow you to move data and graphics between
the two packages, and also call R functions directly from within these
 packages.

Other third‐party developers also have contributed to better connectivity
between different data analysis tools. For example, Statconn developed RExcel,
an Excel add‐on that allows users to work with R from within Excel (http://
www.statconn.com/products.html).

Looking At Some of the Unique
Features of R

R is more than just a domain‐specific programming language aimed at data
analysis. It has some unique features that make it very powerful, the most
important one arguably being the notion of vectors. These vectors allow
you to perform sometimes complex operations on a set of values in a single
 command.

Performing multiple calculations
with vectors
R is a vector‐based language. You can think of a vector as a row or column of
numbers or text. The list of numbers {1,2,3,4,5}, for example, could be
a vector. Unlike most other programming languages, R allows you to apply
functions to the whole vector in a single operation without the need for an
explicit loop.

It is time to illustrate vectors with some real R code. First, assign the values
1:5 to a vector called x:

> x <- 1:5
> x
[1] 1 2 3 4 5

Next, add the value 2 to each element in the vector x:

> x + 2
[1] 3 4 5 6 7

http://www.statconn.com/products.html
http://www.statconn.com/products.html

16 Part I: Getting Started with R Programming

You can also add one vector to another. To add the values 6:10 element‐
wise to x, you do the following:

> x + 6:10
[1] 7 9 11 13 15

To do this in most other programming language would require an explicit
loop to run through each value of x. However, R is designed to perform many
operations in a single step. This functionality is one of the features that make
R so useful — and powerful — for data analysis.

We introduce the concept of vectors in Chapter 2 and expand on vectors and
vectorization in much more depth in Chapter 4.

Processing more than just statistics
R was developed by statisticians to make statistical data analysis easier. This
heritage continues, making R a very powerful tool for performing virtually
any statistical computation.

As R started to expand away from its origins in statistics, many people who
would describe themselves as programmers rather than statisticians have
become involved with R. The result is that R is now eminently suitable for
a wide variety of nonstatistical tasks, including data processing, graphical
visualization, and analysis of all sorts. R is being used in the fields of finance,
natural language processing, genetics, biology, and market research, to name
just a few.

R is Turing complete, which means that you can use R alone to program any-
thing you want. (Not every task is easy to program in R, though.)

In this book, we assume that you want to find out about R programming, not
statistics, although we provide an introduction to statistics with R in Part IV.

Running code without a compiler
R is an interpreted language, which means that — contrary to compiled
 langu ages like C and Java — you don’t need a compiler to first create a pro-
gram from your code before you can use it. R interprets the code you provide
directly and converts it into lower‐level calls to pre‐compiled code/functions.

In practice, it means that you simply write your code and send it to R,
and the code runs, which makes the development cycle easy. This ease of

17 Chapter 1: Introducing R: The Big Picture

 development comes at the cost of speed of code execution, however. The
downside of an interpreted language is that the code usually runs slower than
the equivalent compiled code.

If you have experience in other languages, be aware that R is not C or
Java. Although you can use R as a procedural language such as C or an
object‐ oriented language such as Java, R is mostly based on the functional
 programming paradigm. As we discuss later in this book, especially in
Part III, this characteristic requires a bit of a different mindset. Forget what
you know about other languages, and prepare for something completely
 different.

18 Part I: Getting Started with R Programming

Exploring R
In This Chapter

 ▶ Looking at your R editing options

 ▶ Starting R

 ▶ Writing your first R script

 ▶ Finding your way around the R environment

I
n order to start working in R, you need two things. First, you need a tool
to easily write and edit code (an editor). You also need an interface, so you

can send that code to R. Which tools you use depend to some extent on your
operating system. The basic R install gives you these options:

 ✓ Windows: A basic user interface called RGui.

 ✓ Mac OS X: A basic user interface called R.app.

 ✓ Linux: There is no specific interface on Linux, but you can use any code
editor (like Vim or Emacs) to edit your R code. R itself opens by default
in a terminal window.

At a practical level, this difference between operating systems and interfaces
doesn’t matter very much. R is a programming language, and you can be sure
that R interprets your code identically across operating systems.

Still, we want to show you how to use a standard R interface, so in this
 chapter we briefly illustrate how to use R with the Windows RGui. Our
advice also works on the Mac R.app.

Fortunately, there is an alternative, third‐party interface called RStudio that
provides a consistent user interface regardless of operating system. RStudio
increasingly is the standard editing tool for R, so we also illustrate how to use
RStudio.

Chapter 2

20 Part I: Getting Started with R Programming

In this chapter, after opening an R console, you flex your R muscles and write
some scripts. You do some calculations, create some numeric and text objects,
take a look at the built‐in help, and save your work.

Working with a Code Editor
R is many things: a programming language, a statistical processing environ-
ment, a way to solve problems, and a collection of helpful tools to make your
life easier. The one thing that R is not is an application, which means that you
have the freedom of selecting your own editing tools to interact with R.

In this section we discuss the Windows R interface, RGui (short for R graphi-
cal user interface). This interface also includes a very basic editor for your
code. Since this standard editor is so, well, basic, we also introduce you to
RStudio. RStudio offers a richer editing environment than RGui and many
handy shortcuts for common tasks in R.

Alternatives to the standard R editors
Among the many freedoms that R offers you is
the freedom to choose your own code editor
and development environment, so you don’t
have to use the standard R editors or RStudio.

These are powerful full‐featured editors and
development environments:

 ✓ Eclipse StatET (www.walware.de/
goto/statet): Eclipse, another pow-
erful integrated development environ-
ment, has an R add‐in called StatET. If
you’ve done software development on
large projects, you may find Eclipse useful.
Eclipse requires you to install Java on your
computer.

 ✓ Emacs Speaks Statistics (http://
ess.r‐project.org): Emacs, a pow-
erful text and code editor, is widely used
in the Linux world and also is available for
Windows. It has a statistics add‐in called
Emacs Speaks Statistics (ESS), which is
famous for having keyboard shortcuts for
just about everything you could possibly do

and for its very loyal fan base. If you’re a
programmer coming from the Linux world,
this editor may be a good choice for you.

 ✓ Tinn‐R (http://nbcgib.uesc.
br/lec/software/editores/
tinn‐r/en): This editor, developed spe-
cifically for working with R, is available only
for Windows. It has some nice features for
setting up collections of R scripts in projects.
Tinn‐R is easier to install and use than either
Eclipse or Emacs, but it isn’t as fully featured.

A couple of interfaces are designed as tools for
special purposes:

 ✓ Rcommander (h t t p : / / w w w .
rcommander.com/): Rcommander
provides a simple GUI for data analysis in
R and contains a variety of plugins for dif-
ferent tasks.

 ✓ Rattle (http://rattle.togaware.
com/): Rattle is a GUI designed for typical
data mining tasks.

http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
http://ess.r-project.org/
http://ess.r-project.org/
http://www.rcommander.com/
http://www.rcommander.com/
http://nbcgib.uesc.br/lec/software/editores/tinn%E2%80%90r/en
http://rattle.togaware.com

21 Chapter 2: Exploring R

Exploring RGui
As part of the process of downloading and installing R, you get the standard
graphical user interface (GUI), called RGui. RGui gives you some tools to
manage your R environment — most important, a console window. The console
is where you type instructions and generally get R to do useful things for you.

Seeing the naked R console
The standard installation process creates useful menu shortcuts (although
this may not be true if you use Linux, because there is no standard GUI inter-
face for Linux). In the menu system, look for a folder called R, and then find
an icon called R followed by a version number (for example, R 3.2.0, as shown
in Figure 2-1).

When you open RGui for the first time, you see the R Console screen (shown
in Figure 2-2), which lists some basic information such as your version of R
and the licensing conditions.

Below all this information is the R prompt, denoted by a > symbol. The
prompt indicates where you type your commands to R; you see a blinking
cursor to the right of the prompt.

We explore the R console in more depth in “Navigating the Environment,”
later in this chapter.

Figure 2-1:
Shortcut
icons for

RGui (R x64)
and RStudio.

22 Part I: Getting Started with R Programming

Issuing a simple command
Use the console to issue a very simple command to R. Type the following to
calculate the sum of some numbers, directly after the prompt:

> 24 + 7 + 11

R responds immediately to your command, calculates and displays the total
in the console:

> 24 + 7 + 11
[1] 42

The answer is 42. R gives you one other piece of information: The [1] pre-
ceding 42 indicates that the value 42 is the first element in your answer. It is,
in fact, the only element in your answer! One of the clever things about R is
that it can deal with calculating many values at the same time, which is called
vector operations. We talk about vectors later in this chapter — for now, all
you need to know is that R can handle more than one value at a time.

Closing the console
To quit your R session, type the following code in the console, after the
 command prompt (>):

> quit()

Figure 2-2:
A brand‐

new session
in RGui.

23 Chapter 2: Exploring R

R asks you a question to make sure that you meant to quit, as shown in
Figure 2-3. Click No, because you have nothing to save. This action closes
your R session (as well as RGui, if you’ve been using RGui as your code
editor). In fact, saving a workspace image rarely is useful.

Dressing up with RStudio
RStudio is a code editor and development environment with some very nice
features that make code development in R easy and fun:

 ✓ Code highlighting that gives different colors to keywords and variables,
making it easier to read

 ✓ Automatic bracket and parenthesis matching

 ✓ Code completion, so you don’t have to type out all commands
in full

 ✓ Easy access to R Help, with some nice features for exploring functions
and parameters of functions

 ✓ Easy exploration of variables and values

Because RStudio is available free of charge for Linux, Windows, and Apple OS
X, we think it’s a good option to use with R. In fact, we like RStudio so much
that we use it to illustrate the examples in this book. Throughout the book,
you find some tips and tricks on how things can be done in RStudio. If you
decide to use a different code editor, you can still use all the code examples
and you’ll get identical results.

To open RStudio, click the RStudio icon in your menu system or on your
desktop. (You can find installation instructions in this book’s appendix.)

Once RStudio starts, choose File➪New➪R Script to open a new script file.

Figure 2-3:
R asks you

a simple
question.

24 Part I: Getting Started with R Programming

Your screen should look like Figure 2-4. You have four work areas (also called
panes):

 ✓ Source: The top‐left corner of the screen contains a text editor that lets
you work with source script files. Here, you can enter multiple lines
of code, save your script file to disk, and perform other tasks on your
script. This code editor works a bit like every other text editor you’ve
ever seen, but it’s smart. It recognizes and highlights various elements
of your code, for example (using different colors for different elements),
and it also helps you find matching brackets in your scripts.

 ✓ Console: In the bottom‐left corner, you find the console. The console
in RStudio can be used in the same way as the console in RGui (refer to
“Seeing the naked R console,” earlier in this chapter). This is where you
do all the interactive work with R.

 ✓ Environment and History: The top‐right corner is a handy overview of
your environment, where you can inspect the variables you created in
your session, as well as their values. (We discuss the environment in
more detail later in this chapter.) This is also the area where you can
see a history of the commands you’ve issued in R.

Figure 2-4:
RStudio’s
four work

areas
(panes).

25 Chapter 2: Exploring R

 ✓ Files, plots, package, help, and viewer: In the bottom‐right corner, you
have access to several tools:

• Files: This is where you can browse the folders and files on your
computer.

• Plots: This is where R displays your plots (charts or graphs). We
discuss plots in Part V.

• Packages: You can view a list of all installed packages.

 A package is a self‐contained set of code that adds functionality
to R, similar to the way that add‐ins add functionality to Microsoft
Excel.

• Help: This is where you can browse R’s built‐in Help system.

• Viewer: This is where RStudio displays previews of some
advanced features, such as dynamic web pages and presentations
that you can create with R and add‐on packages.

Starting Your First R Session
By now, you probably are itching to get started on some real code. In this
section, you get to do exactly that. Get ready to get your hands dirty!

Saying hello to the world
Programming books typically start with a very simple program. Often, this
first program creates the message "Hello world!". In R, hello world pro-
gram consists of one line of code.

Start a new R session, type the following in your console, and press Enter:

> print("Hello world!")

R responds immediately with this output:

[1] "Hello world!"

As we explain in the introduction to this book, we collapse input and output
into a single block of code, like this:

> print("Hello world!")
[1] "Hello world!"

26 Part I: Getting Started with R Programming

Doing simple math
Type the following in your console to calculate the sum of five numbers:

> 1 + 2 + 3 + 4 + 5
[1] 15

The answer is 15, which you can easily verify for yourself. You may think that
there’s an easier way to calculate this value, though — and you’d be right.
We explain how in the following section.

Using vectors
A vector is the simplest type of data structure in R. The R manual defines a
vector as “a single entity consisting of a collection of things”. A collection of
numbers, for example, is a numeric vector — the first five integer numbers
form a numeric vector of length 5.

To construct a vector, type into the console:

> c(1, 2, 3, 4, 5)
[1] 1 2 3 4 5

In constructing your vector, you have successfully used a function in R. In
programming language, a function is a piece of code that takes some inputs
and does something specific with them. In constructing a vector, you tell the
c() function to construct a vector with the first five integers. The entries
inside the parentheses are referred to as arguments.

You also can construct a vector by using operators. An operator is a symbol
you stick between two values to make a calculation. The symbols +, ‐, *, and
/ are all operators, and they have the same meaning they do in mathematics.
Thus, 1+2 in R returns the value 3, just as you’d expect.

One very handy operator is called sequence, and it looks like a colon (:).
Type the following in your console:

> 1:5
[1] 1 2 3 4 5

That’s more like it. With three keystrokes, you’ve generated a vector with the
values 1 through 5. To calculate the sum of this vector, type into your console:

> sum(1:5)
[1] 15

27 Chapter 2: Exploring R

While quite basic, this example shows you that using vectors allows you to
do complex operations with a small amount of code. As vectors are the small-
est possible unit of data in R, you get to work with vectors extensively in later
chapters.

Storing and calculating values
Using R as a calculator is very interesting but perhaps not all that useful. A
much more useful capability is storing values and then doing calculations on
these stored values. Try this:

> x <- 1:5
> x
[1] 1 2 3 4 5

In these two lines of code, you first assign the sequence 1:5 to an object
called x. Then you ask R to print the value of x by typing x in the console and
pressing Enter.

In R, the assignment operator is <‐, which you type in the console by using
two keystrokes: the less‐than symbol (<) followed by a hyphen (‐). The com-
bination of these two symbols represents assignment. It’s good practice to
always surround the <‐ with spaces. This makes your code much easier to
read and understand.

In addition to retrieving the value of a variable, you can do calculations on
that value. Create a second variable called y, and assign it the value 10. Then
add the values of x and y, as follows:

> y <- 10
> x + y
[1] 11 12 13 14 15

The values of the two variables themselves don’t change unless you assign a
new value to either of them. You can check this by typing the following:

> x
[1] 1 2 3 4 5
> y
[1] 10

Now create a new variable z, assign it the value of x + y, and print its value:

> z <- x + y
> z
[1] 11 12 13 14 15

28 Part I: Getting Started with R Programming

Variables also can take on text values. You can assign the value "Hello" to
a variable called h, for example, by presenting the text to R inside quotation
marks, like this:

> h <- "Hello"
> h
[1] "Hello"

You must enter text or character values to R inside quotation marks —
either single or double. R accepts both. So both h <‐ "Hello" and h <‐
'Hello' are examples of valid R syntax. For consistency, we use double
quotes throughout this book.

In “Using vectors,” earlier in this chapter, you use the c() function to com-
bine numeric values into vectors. This technique also works for text:

> hw <- c("Hello", "world!")
> hw
[1] "Hello" "world!"

You use the paste() function to concatenate multiple text elements. By
default, paste() puts a space between the different elements, like this:

> paste("Hello", "world!")
[1] "Hello world!"

Talking back to the user
You can write R scripts that have some interaction with a user. To ask the
user questions, you can use the readline() function. In the following code
snippet, you read a value from the keyboard and assign it to the variable
yourname:

> h <- "Hello"
> yourname <- readline("What is your name? ")
What is your name? Andrie
> paste(h, yourname)
[1] "Hello Andrie"

This code seems to be a bit cumbersome, however. Clearly, it would be much
better to send these three lines of code simultaneously to R and get them
evaluated in one go. In the next section, we show you how.

29 Chapter 2: Exploring R

Sourcing a Script
Until now, you’ve worked directly in the R console and issued individual com-
mands in an interactive style of coding. In other words, you issue a command,
R responds, you issue the next command, R responds, and so on.

In this section, you kick it up a notch and tell R to perform several commands
one after the other without waiting for additional instructions. Because the R
function to run an entire script is source(), R users refer to this process as
sourcing a script.

To prepare your script to be sourced, you first write the entire script in an
editor window. In RStudio, for example, the editor window is in the top‐left
corner of the screen (refer to Figure 2-4). Whenever you press Enter in the
editor window, the cursor moves to the next line, as in any text editor.

To create a new script in RStudio, begin by opening the editor window
(choose File ➪ New File ➪ R script to open the editor window). Type the
 following lines of code in the editor window. Notice that the last line contains
a small addition to the code you saw earlier: the print() function.

h <- "Hello"
yourname <- readline("What is your name?")
print(paste(h, yourname))

Remember to type the print() function as part of your script. Sourced
scripts behave differently from interactive code in printing results. In inter-
active mode, a result is printed without needing to use a print() function.
But when you source a script, output is by default printed only if you have an
explicit print() function.

You can type multiple lines of code into the source editor without having
each line evaluated by R. Then, when you’re ready, you can send the
 instructions to R — in other words, source the script.

When you use RGui or RStudio, you can do this in one of three ways:

 ✓ Send an individual line of code from the editor to the console. Click
the line of code you want to run, and then press Ctrl+R in RGui. In
RStudio, you can press Ctrl+Enter or click the Run button.

 ✓ Send a block of highlighted code to the console. Select the block of
code you want to run, and then press Ctrl+R (in RGui) or Ctrl+Enter
(in RStudio).

 ✓ Send the entire script to the console (which is called sourcing a
script). In RGui, click anywhere in your script window, and then choose
Edit ➪ Run all. In RStudio, click anywhere in the source editor, and press
Ctrl+Shift+S or click the Source button.

30 Part I: Getting Started with R Programming

These keyboard shortcuts are defined only in RGui or RStudio. If you use a
different source editor, you may have different options.

Now you can send the entire script to the R console. To do this, click the
Source button in the top‐right corner of the editor window or choose
Edit➪Source. The script starts, reaches the point where it asks for input, and
then waits for you to enter your name in the console window. Your screen
should now look like Figure 2-5. Notice that the Environment pane now lists
the two objects you created: h and yourname.

When you click the Source button, source('~/.active‐rstudio‐
document') appears in the console. What RStudio actually does here is save
your script in a temporary file and then use the R function source() to call
that script in the console. Remember this function; you’ll meet it again.

Echoing your work
If you click on the little arrow next to the Source button in RStudio, you see
two different source options, as shown in Figure 2-6. By clicking the Source
button before, you used the option without echo. This means that R will run
the complete script at once, but won’t send any output to the console.

Figure 2-5:
Sending a

script to the
console in

RStudio.

31 Chapter 2: Exploring R

If you click on the second option, R runs again the complete script in one
go, but this time it will show every individual line in the console. So both
options differ only in the output you see. You can safely try out both options
to compare.

You can use the echo option also outside RStudio by using the source()
function with the argument echo set to TRUE. We explain functions and argu-
ments in Chapter 3, and far more detailed again in Chapter 8.

Whether you source with or without echo doesn’t make any difference
regarding the results of your code. You can use the echo option if you
want to source a long script and keep track of which part of the script R is
currently carrying out.

Figure 2-6:
Sourcing

your code
with or

 without
echo in
RStudio

Finding help on functions
We discuss R’s built‐in help system in
Chapter 11, but for now, to get help on any
function, type ? in the console. To get help with
the paste() function, for example, type the
following:

> ?paste

This code opens a Help window. In RStudio,
this Help window is in the bottom‐right corner

of your screen by default. In other editors, the
Help window sometimes appears as a local
web page in your default web browser.

You also can type help, but remember to use
parentheses around your search term:

> help(paste)

32 Part I: Getting Started with R Programming

Navigating the Environment
So far in this chapter, you’ve created several variables. These form part of
what R calls the global environment. The global environment refers to all the
variables and functions (collectively called objects) that you create during the
session, as well as any packages that are loaded.

Often, you want to remind yourself of all the variables you’ve created in
the environment. To do this, use the ls() function to list the objects in the
 environment. In the console, type the following:

> ls()
[1] "h" "hw" "x" "y" "yourname" "z"

R tells you the names of all the variables that you created.

One very nice feature of RStudio lets you examine the contents of the envi-
ronment at any time without typing any R commands. By default, the top‐
right window in RStudio has two tabs: Environment and History. Click the
Environment tab to see the variables in your global environment, as well as
their values. For example, in Figure 2-5 you see that the global environment
contains one object called h that contains the value "hello".

Manipulating the content
of the environment
If you decide that you don’t need some variables anymore, you can remove
them. Suppose that the object z is simply the sum of two other variables
and no longer needed. To remove it permanently, use the rm() function and
then use the ls() function to display the contents of the environment, as
 follows:

> rm(z)
> ls()
[1] "h" "hw" "x" "y" "yourname"

Notice that the object z is no longer there.

33 Chapter 2: Exploring R

Saving your work
You have several options for saving your work:

 ✓ You can save individual variables with the save() function.

 ✓ You can save the entire environment with the save.image() function.

 ✓ You can save your R script file, using the appropriate save menu
 command in your code editor.

Suppose you want to save the value of yourname. To do that, follow these
steps:

1. Find out which working directory R will use to save your file by
typing the following:

> getwd()
[1] "c:/users/andrie"

The default working directory should be your user folder. The exact
name and path of this folder depend on your operating system. (In
Chapter 12, you get more familiar with the working directory.)

If you use the Windows operating system, the path is displayed with
slashes instead of backslashes. In R, similar to many other programming
languages, the backslash character has a special meaning. The back-
slash indicates an escape sequence, indicating that the character follow-
ing the backslash means something special. For example, \t indicates a
tab, rather than the letter t. (You can read more about escape sequences
in Chapter 12.) Rest assured that, although the working directory is
 displayed differently from what you’re used to, R is smart enough to
translate it when you save or load files. Conversely, when you type a file
path, you have to use slashes, not backslashes.

2. Type the following code in your console, using a filename like
 yourname.rda, and then press Enter.

> save(yourname, file = "yourname.rda")

R silently saves the file in the working directory. If the operation is
 successful, you don’t get any confirmation message.

3. To make sure that the operation was successful, use your file browser
to navigate to the working directory, and see whether the new file
is there.

You have a file browser in the lower-right panel of RStudio.

34 Part I: Getting Started with R Programming

Retrieving your work
To retrieve saved data, you use the load() function. Say you want to
retrieve the value of yourname that you saved previously.

First, remove the variable yourname, so you can see the effect of the load
process:

> rm(yourname)

If you’re using RStudio, you may notice that yourname is no longer displayed
in the Environment pane.

Next, use load to retrieve your variable. Type load followed by the filename
you used to save the value earlier:

> load("yourname.rda")

Notice that yourname reappears in the Environment pane of RStudio.

The Fundamentals of R
In This Chapter

 ▶ Using functions and arguments

 ▶ Making code clear and legible

 ▶ Extending R with user packages

B
efore you start discovering the different ways you can use R on your
data, you need to know a few more fundamental things about R.

In Chapter 2, we show you how to use the command line and work with the
global environment, so if you read that chapter, you can write a simple script
and use the print(), paste(), and readline() functions — at least in
the most basic way. But functions in R are more complex than that, so in this
chapter we tell you how to get the most out of your functions.

As you add more arguments to your functions and more functions to your
scripts, those scripts can become pretty complex. To keep your code clear —
and yourself sane — you can follow the basic organizational principles we
cover in this chapter.

Finally, much of R allows you to use other people’s code very easily. You can
extend R with packages that have been contributed to the R community by
hundreds of developers. In this chapter, we tell you where you can find these
packages and how you can use them in R.

Using the Full Power of Functions
Functions form the core of R; everything you do in R uses a function in one
way or another. More importantly, the way functions work in R allows you
to carry out multiple complex operations in one step or a few simple steps.
In this section, we show you how you can use functions the smart way. First,
you learn about the key property of functions that makes R so different

Chapter 3

36 Part I: Getting Started with R Programming

from other programming languages. Then we tell you how you can reach a
whole set of functionalities in R functions with arguments. Finally, we tell you
how you can save the history of all the commands you’ve used in a session
with — you guessed it! — a function.

Vectorizing your functions
Vectorized functions are a very useful feature of R, but programmers who are
used to other languages often have trouble with this concept at first. A vector-
ized function works not just on a single value, but on a whole vector of values
at the same time. Your natural reflex as a programmer may be to loop over all
values of the vector and apply the function on every element, but vectoriza-
tion makes that unnecessary. Trust us: When you start using vectorization
in R, it’ll help simplify your code.

To try vectorized functions, you have to make a vector. You do this by using
the c() function, which stands for combine. The actual values are separated
by commas.

Here’s an example: Suppose that Granny plays basketball with her friend
Geraldine, and you keep a score of Granny’s number of baskets in each game.
After six games, you want to know how many baskets Granny has made so far
this season. You can combine these numbers into a vector, like this:

> baskets.of.Granny <- c(12, 4, 4, 6, 9, 3)
> baskets.of.Granny
[1] 12 4 4 6 9 3

To find the total number of baskets Granny made, you just type the following:

> sum(baskets.of.Granny)
[1] 38

You could get the same result by going over the vector number by number,
adding each new number to the sum of the previous numbers. But that
method would require you to write more code and it would take longer to
calculate. You won’t notice it on just six numbers, but the difference will be
obvious when you have to sum a few thousand of them.

Actually, this kind of vectorization occurs in many programming languages.
Functions that work this way summarize the data in a vector; they take all
values in the vector and calculate a single result.

R also can carry out functions along vectors. This type of vectorization is
pretty unique, and forms the core of R’s incredible power. Quite a few people

37 Chapter 3: The Fundamentals of R

have difficulties grasping that behavior in the beginning, but it’s easy to
understand when you see it happen.

To see how it works, try using the paste() function. First, you construct two
vectors (for example, a vector with first names and a vector with last names).
To create a vector with the full names from the original vectors, you can
simply use the paste() function, like this:

> firstnames <- c("Andrie", "Joris")
> lastnames <- c("de Vries", "Meys")
> paste(firstnames, lastnames)
[1] "Andrie de Vries" "Joris Meys"

R automatically loops over the values of each vector, and concatenates
(pastes) them together, element by element. So the first value of the vector
firstnames is pasted to the first value of lastnames, the second value of
firstnames to the second of lastnames, and so forth. That’s how vector-
ization works.

What happens if both vectors don’t have the same amount of values? If you
make a vector with the first names of the members of your family, paste()
can add the last name to all of them with one command, as in the following
example:

> firstnames <- c("Joris", "Carolien", "Koen")
> lastname <- "Meys"
> paste(firstnames,lastname)
[1] "Joris Meys" "Carolien Meys" "Koen Meys"

R takes the vector firstnames and then pastes the lastname into each
value. How cool is that? Actually, R again combines two vectors. The second
vector — in this case, lastname — is only one value long. That value gets
recycled by the paste() function as long as necessary (for more on recy-
cling, turn to Chapter 4).

So to process multiple values in R, you don’t need complicated code. All you
have to do is make the vectors and put them in the function. In Chapter 5,
you can find more information about the power of paste().

Putting the argument in a function
Most functions in R have arguments that allow you to specify exactly what
you want the function to do. All these arguments also have a name. For exam-
ple, the first argument of the print() function is called x. You can check
this yourself by looking at the help file of the function using ?print.

38 Part I: Getting Started with R Programming

By specifying an argument, in other words passing a value to that argument,
you tell the function what you want to do. So if you use print("Hello
world!"), you actually pass the value "Hello world!" to the argument x
of the print() function. The print() function tells R that you want to print
something, and the value for the argument x tells R what exactly you want to
print.

In R, you have two general types of arguments:

 ✓ Arguments with default values

 ✓ Arguments without default values

If an argument has no default value, the value may be optional or required.
In general, the first argument is almost always required. Try entering the
 following:

> print()

R tells you that it needs the argument x specified:

Error in .Internal(print.default(x, digits, quote, na.print, print.gap, : 'x'
is missing

You can pass a value to an argument using the = sign like this:

> print(x = "Isn't this fun?")

Sure it is. But wait — when you entered the print("Hello world!") com-
mand in Chapter 2, you didn’t add the name of the argument, and the func-
tion worked. That’s because R knows the names of the arguments and just
assumes that you pass them in exactly the same order as they’re shown in
the usage line of the Help page for that function. (For more information on
reading the Help pages, turn to Chapter 11.)

If you type the values for the arguments in Help‐page order, you don’t have
to specify the argument names. You can list the arguments in any order you
want, as long as you specify their names.

Try entering the following example:

> print(digits = 4, x = 11/7)
[1] 1.571

You may wonder where the digits argument comes from, because it’s not
explained in the Help page for print(). That’s because it isn’t an argument
of the print() function itself, but of the function print.default(). Take a
look again at the error you got if you typed print(). R mentions the print.
default() function instead of the print() function.

39 Chapter 3: The Fundamentals of R

In fact, print() is called a generic function. It determines the type of the
object that’s passed as an argument and then looks for a function that can
deal with this type of object. That function is called the method for the
specific object type. In case there is no specific function, R calls the default
method. This is the function that works on all object types that have no
specific method. In this case, that’s the print.default() function. Keep
in mind that a default method doesn’t always exist. We explain this in more
detail in Chapter 8. For now, just remember that arguments for a function can
be shown on the Help pages of different methods.

If you forget which arguments to use, you can find that information in the
Help files. Don’t forget to look at the arguments of specific methods as well.
You often find a link to those specific methods at the bottom of the Help
page. For example, to read the help for the paste() function, type ?paste
into your R console.

Making history
By default, R keeps track of all the commands you use in a session. This
tracking can come in handy if you need to reuse a command you used earlier
or want to keep track of the work you did before. These previously used com-
mands are kept in the history.

You can browse the history from the command line by pressing the up‐arrow
and down‐arrow keys. When you press the up‐arrow key, you get the com-
mands you typed earlier at the command line. You can press Enter at any
time to run the command that is currently displayed.

Saving the history is done using the savehistory() function. By default, R
saves the history in a file called .Rhistory in your current working direc-
tory. This file is automatically loaded again the next time you start R, so you
have the history of your previous session available.

If you want to use another filename, use the argument file like this:

> savehistory(file = "Chapter3.Rhistory")

Be sure to add the quotation marks around the filename.

You can open a file explorer window and take a look at the history by open-
ing the file in any text editor, like Notepad.

You don’t need to use the file extension .Rhistory — R doesn’t care about
extensions that much. But using .Rhistory as a file extension will make it
easier to recognize as a history file.

40 Part I: Getting Started with R Programming

If you want to load a history file you saved earlier, you can use the load-
history() function. This will replace the history with the one saved in the
.Rhistory file in the current working directory. If you want to load the his-
tory from a specific file, you use the file argument again, like this:

> loadhistory("Chapter3.Rhistory")

Keeping Your Code Readable
You may wonder why you should bother about reading code. You wrote the
code yourself, so you should know what it does, right? You do now, but will
you remember what you did if you have to redo that analysis six months
from now on new data? Besides, you may have to share your scripts with
other people, and what seems obvious to you may be far less obvious for
them.

Some of the rules you’re about to see aren’t that strict. In fact, you can get
away with almost anything in R, but that doesn’t mean it’s a good idea. In this
section, we explain why you should avoid some constructs even though they
aren’t strictly wrong.

Following naming conventions
R is very liberal when it comes to names for objects and functions. This
freedom is a great blessing and a great burden at the same time. Nobody is
obliged to follow strict rules, so everybody who programs something in R can
basically do as he or she pleases.

Choosing a correct name
Although almost anything is allowed when giving names to objects, there are
still a few rules in R that you can’t ignore:

 ✓ Names must start with a letter or a dot. If you start a name with a dot,
the second character can’t be a digit.

 ✓ Names should contain only letters, numbers, underscore characters
(_), and dots (.). Although you can force R to accept other characters
in names, you shouldn’t, because these characters often have a special
meaning in R.

 ✓ You can’t use the following special keywords as names:

• break

• else

41 Chapter 3: The Fundamentals of R

• FALSE

• for

• function

• if

• Inf

• NA

• NaN

• next

• NULL

• repeat

• return

• TRUE

• while

R is case sensitive, which means that, for R, lastname and Lastname are two
different objects. If R tells you it can’t find an object or function and you’re
sure it should be there, check to make sure you used the right case.

Choosing a clear name
When you start writing code, it’s tempting to use short, generic names like x.
There’s nothing wrong with that, as long as it is clear what each object rep-
resents. But that might become difficult when all your objects have a single
letter name. Likewise, calling your datasets data1, data2, and so forth may
be a bit confusing for the person who has to read your code later on, even
if it makes all kinds of sense to you now. Remember: You could be the one
who, in three months, is trying to figure out exactly what you were trying to
achieve. Using descriptive names will allow you to keep your code readable.

Although you can name an object almost whatever you want, some names
will cause less trouble than others. You may have noticed that none of the
functions we’ve used until now are mentioned as being off‐limits (see the pre-
ceding section). That’s right: If you want to call an object paste, you’re free
to do so:

> paste <- paste("This gets","confusing")
> paste
[1] "This gets confusing"
> paste("Don't","you","think?")
[1] "Don't you think?"

42 Part I: Getting Started with R Programming

R almost always will know perfectly well when you want the vector paste
and when you need the function paste(). That doesn’t mean it’s a good idea
to use the same name for both items, though. In some cases, doing so can
cause unexpected errors. So if you can avoid giving the name of a function to
an object, you should.

One situation in which you can really get into trouble is when you use capital
F or T as an object name. You can do it, but you’re likely to break code at
some point. Although it’s a very bad idea, T and F are all too often used as
abbreviations for TRUE and FALSE, respectively. But T and F are not reserved
keywords. So, if you change them, R will first look for the object T and only
then try to replace T with TRUE. And any code that still expects T to mean
TRUE will fail from this point on. Never use F or T, not as an object name and
not as an abbreviation.

Choosing a naming style
If you have experience in programming, you’ve probably heard of camel case
before. Camel case is a way of giving longer names to objects and functions.
You capitalize every first letter of a word that is part of the name to improve
the readability. So, you can have a veryLongVariableName and still be able
to read it.

Unlike many other languages, R doesn’t use the dot (.) as an operator, so the
dot can be used in names for objects as well. This style is called dotted style,
where you write everything in lowercase and separate words or terms in a
name with a dot. In fact, in R, many function names use dotted style. You’ve
met a function like this earlier in the chapter: print.default(). Some
package authors also use an underscore instead of a dot.

print.default() is the default method for the print() function. You can
find Information on the arguments of the Help page for print.default().

You’re not obligated to use dotted style; you can use whatever style you
want. We use dotted style throughout this book for objects, and camel case
for functions. R uses dotted style for many base functions and objects, but
because some parts of the internal mechanisms of R rely on that dot, you’re
safer using camel case for functions. Whenever you see a dot, though, you
don’t have to wonder what it does — it’s just part of the name.

The whole naming issue reveals one of the downsides of using open‐source
software: It’s written by very intelligent and unselfish people with very strong
opinions, so the naming of functions in R is far from standardized.

43 Chapter 3: The Fundamentals of R

Structuring your code
Names aren’t the only things that can influence the readability of your code.
When you start nesting functions or perform complex calculations, your code
can turn into a big mess of text and symbols rather quickly. Luckily, you have
some tricks to clear up your code so you can still decipher what you did
three months down the road.

Nesting functions and doing complex calculations can lead to very long lines
of code. If you want to make a vector with the names of your three most
beloved song titles, for example, you’re already in for trouble. Luckily, R lets
you break a line of code over multiple lines in your script, so you don’t have
to scroll to the right the whole time.

You don’t even have to use a special notation or character. R will know that
the line isn’t finished as long as you give it some hint. Generally speaking,
you have to make sure the command is undoubtedly incomplete. There are
several ways to do that:

 ✓ You can use a quotation mark to start a string. R will take all the fol-
lowing input — including the line breaks — as part of the string, until it
meets the matching second quotation mark.

 ✓ You can end the incomplete line with an operator (like +, /, <‐, and
so on). R will know that something else must follow. This lets you create
structure in longer calculations.

 ✓ You can open a parenthesis for a function. R will read all the input it
gets as one line until it meets the matching parenthesis. This allows you
to line up arguments below a function, for example.

Consistent inconsistency
You would expect the function to be
called save.history(), but it’s called
savehistory() without the dot. Likewise,
you might expect a function R.version(),
but instead it’s R.Version() . (R.
Version() gives you all the information on
the version of R you’re running, including the
platform you’re running it on.) Sometimes, the

people writing R use camel case: If you want
to get only the version number of R, you have
to use the function getRversion(). Some
package authors choose to use underscores
(_) instead of dots for separation of the words;
this style is used often within some packages
we discuss later in this book (for example, the
ggplot2 package in Chapter 18).

44 Part I: Getting Started with R Programming

The following little script shows all these techniques:

baskets.of.Geraldine <-
 c(5, 3, 2, 2, 12, 9)

Intro <- "It is amazing! The All Star Grannies scored
a total of"
Outro <- "baskets in the last six games!"

Total.baskets <- baskets.of.Granny +
 baskets.of.Geraldine

Text <- paste(Intro,
 sum(Total.baskets),
 Outro)
cat(Text)

You can copy this code into a script file and run it in the console. If you run
this little snippet of code, you see the following output in the console:

It is amazing! The All Star Grannies scored
a total of 71 baskets in the last six games!

This immediately shows what the cat() function does. It prints whatever
you pass as an argument directly to the console. It also interprets special
characters like line breaks and tabs. If you look at the vector Text, you will
see this:

> Text
[1] "It is amazing! The All Star Grannies scored \na total of 71 baskets in the

last six games!"

The \n represents the line break. Even though it’s pasted to the a, R will rec-
ognize \n as a separate character. (You can find more information on special
characters in Chapter 12.)

All this also works at the command line. If you type an unfinished command,
R will change the prompt to a + sign, indicating that you can continue to type
your command:

> cat("If you doubt whether it works,
+ just try it out.")
If you doubt whether it works,
just try it out.

RStudio automatically adds a line break at the end of a cat() statement if
there is none, but R doesn’t do that. So, if you don’t use RStudio, remember
to add a line break (or the symbol \n) at the end of your string.

45 Chapter 3: The Fundamentals of R

Adding comments
Often, you want to add a bit of extra information to a script file. You may
want to tell who wrote it and when. You may want to explain what the code
does and what all the variable names mean.

You can do this by typing that information after the # symbol (usually called
hash or pound). R ignores everything that appears after the hash symbol.
You can use the hash symbol at the beginning of a line or somewhere in the
middle. Run the following script, and see what happens:

The All Star Grannies do it again!
baskets.of.Granny <- c(12,4,4,6,9,3) # Granny rules
sum(baskets.of.Granny) # total number of baskets

R has no specific construct to spread a comment over multiple lines. You’ll
have to precede every line of the comment block with a hash symbol (#). In
RStudio, you can easily comment or uncomment several lines together by
selecting them and pressing Ctrl+Shift+C. Other editors often have similar
shortcuts.

Getting from Base R to More
Until now, you’ve used only functions that are available in the basic installa-
tion of R. But the real power of R lies in the fact that anyone can write their
own functions and share them with other R users in an organized manner.
Many knowledgeable people have written convenient functions with R, and
often a new statistical method is published together with R code. Most of
these authors distribute their code as R packages (collections of R code, Help
files, datasets, and so on that can be incorporated easily into R itself). In this
section, we tell you how to find and add packages to your R installation.

Finding packages
Several websites, called repositories, offer a collection of R packages. The
most important repository is the Comprehensive R Archive Network (CRAN;
http://cran.r‐project.org), which you can access easily from within R.

In addition to housing the installation files for R itself (see Appendix A) and a
set of manuals for R, CRAN contains a collection of package files and the ref-
erence manuals for all packages. For some packages, a vignette (which gives
you a short introduction to the use of the functions in the package) is also

http://cran.r-project.org/

46 Part I: Getting Started with R Programming

available. Finally, CRAN lets you check whether a package is still maintained
and see an overview of the changes made in the package. CRAN is definitely
worth checking out!

Installing packages
You install a package in R with the function — wait for it — install.
packages(). Who could’ve guessed? So, to install the fortunes package,
for example, you simply pass the name of the package as a string to the
install.packages() function.

The fortunes package contains a whole set of humorous and thought‐
provoking quotes from mailing lists and help sites. You install the package
like this:

> install.packages("fortunes")

R may ask you to specify a CRAN mirror. Because everyone in the whole world
has to access the same servers, CRAN is mirrored on more than 80 registered
servers, often located at universities. Pick one that’s close to your location,
and R will connect to that server to download the package files. In RStudio,
you can set the mirror by choosing Tools➪Global Options➪Packages.

Next, R gives you some information on the installation of the package:

Installing package(s) into 'D:/R/library'(as 'lib' is unspecified)
....
opened URL
downloaded 165 Kb

package 'fortunes' successfully unpacked and MD5 sums checked
....

It tells you which directory (called a library) the package files are installed
in, and it tells you whether the package was installed successfully. Granted,
it does so in a rather technical way, but the word successfully tells you every-
thing is okay.

Loading and unloading packages
After a while, you can end up with a collection of many packages. If R loaded
all of them at the beginning of each session, that would take a lot of memory
and time. So, before you can use a package, you have to load it into R by
using the library() function.

47 Chapter 3: The Fundamentals of R

You load the fortunes package like this:

> library("fortunes")

You don’t have to put quotation marks around the package name when using
library(), but it is wise to do so.

Now you can use the functions from this package at the command line, like
this:

> fortune("This is R")

The library is the directory where the packages are installed. Never, ever call
a package a library. That’s a mortal sin in the R community. Take a look at
the following, and never forget it again:

> fortune(161)

You can use the fortune() function without arguments to get a random
selection of the fortunes available in the package. It’s a nice read.

If you want to unload a package, you’ll have to use some R magic. The
detach() function will let you do this, but you have to specify that it’s a
package you’re detaching and that you want to unload it, like this:

> detach(package:fortunes, unload=TRUE)

Actually, even this line of code doesn’t always unload a package. For example,
if a package is used by another package that’s still loaded, that code won’t
work. If you’ve been toying around in R for a while and tried to load and
unload many packages, save your work, close R, and start a fresh session.

A package is as good as its author
Many people contribute in one way or another
to R. As in any open‐source community, there
are people with very strong coding skills
and people with especially heartwarming
enthusiasm. R itself is tested thoroughly, and
packages available on CRAN are checked for
safety and functionality. This means that you
can safely download and use those packages

without fear of breaking your R installation
or — even worse — your computer.

It doesn’t mean, however, that the packages
always do what they claim to do. After all,
even programmers are human, and they make
mistakes. Before you use a new package, you
may want to test it out using an example where
you know what the outcome should be.

(continued)

48 Part I: Getting Started with R Programming

But the fact that many people use R is an
advantage. Whereas reporting errors to a
huge company can be a proverbial pain in
the lower regions, you can reach the authors
of packages by email. Users report bugs
and errors all the time, and package authors
continue to update and improve their packages.
Overall, the quality of the packages is at least
as good as, if not better than, the quality of
commercial applications. After all, the source

code of every package is readily available for
anyone to check and correct. In this way, both
R and the packages improve with contributions
from users.

So, in fact, we could have titled this sidebar
“A package is as good as the community that
uses it.” The R community is simply fantastic —
and you should know. By buying this book, you
officially became a member.

(continued)

Visit www.dummies.com/extras/r for great Dummies content online.

Getting Down to Work in R
Part II

http://www.dummies.com/extras/r

In this part . . .

 ✓ Applying the building blocks.

 ✓ Representing your data.

 ✓ Applying important operators.

 ✓ Visit www.dummies.com/extras/r for great Dummies
content online.

http://www.dummies.com/extras/r

Getting Started with Arithmetic
In This Chapter

 ▶ Using R as a fancy calculator

 ▶ Constructing and working with vectors

 ▶ Vectorizing your calculations

S
tatistics isn’t called applied mathematics just for the fun of it. Every
 statistical analysis involves a lot of calculations, and calculation is what

R is designed for — the work that R does best.

R goes far beyond employing the classic arithmetic operators. It also con
tains sets of operators and functions that work on complete vectors at the
same time. If you’ve read Chapter 3, you’ve gotten a first glimpse into the
power of vectorized functions. In this chapter, you discover the full power of
vectorization, using it to speed up calculations and perform complex tasks
with very little code.

We can’t possibly cover all of R’s mathematical functions in one chapter — or
even in one book — so we encourage you to browse the Help files and other
sources when you’re done with this chapter. You can find search tips and a
list of interesting sources in Chapter 11.

Working with Numbers, Infinity,
and Missing Values

In many low‐level computer languages, numerical operators are limited to
performing standard arithmetic operations and some convenient functions
like sum() and sqrt(). For R, the story is a bit different. R has four different
groups of mathematical operators and functions:

 ✓ Basic arithmetic operators: These operators are used in just about
every programming language. We discuss some of them in Chapter 2.

Chapter 4

52 Part II: Getting Down to Work in R

 ✓ Mathematical functions: You can find these advanced functions on a
technical calculator.

 ✓ Vector operations: Vector operations are functions that make calcu
lations on a complete vector, like sum(). Each result depends on more
than one value of the vector.

 ✓ Matrix operations: These functions are used for operations and calcu
lations on matrices.

In the following sections, you get familiar with basic arithmetic operators,
mathematical functions, and vector operations. We cover matrix operations
in Chapter 7.

Doing basic arithmetic
R has a rather complete set of arithmetic operators, so you can use R as a
fancy calculator, as you see in this section.

Using arithmetic operators
Table 41 lists some basic arithmetic operators. Most of them are very
 familiar to programmers (and anybody else who studied math in school).

All these operators are vectorized. Chapter 3 shows the use of a vectorized
function with the paste() function, and the process works exactly the
same way with operators. By using vectorized operators, you can carry out
complex calculations with minimal code.

Table 4-1 Basic Arithmetic Operators
Operator Description Example
x + y y added to x 2 + 3 = 5

x – y y subtracted from x 8 – 2 = 6

x * y x multiplied by y 3 * 2 = 6

x / y x divided by y 10 / 5 = 2

x ^ y x raised to the power y 2 ^ 5 = 32

x %% y remainder of x divided by y (x mod y) 7 %% 3 = 1

x %/% y x divided by y but rounded down
(integer divide)

7 %/% 3 = 2

53 Chapter 4: Getting Started with Arithmetic

To see how this works, consider these two vectors, which we first discuss
in the All‐Star Grannies example in Chapter 3. One vector represents the
number of baskets Granny made during the six games of the basketball
season, and the other one represents the number of baskets her friend
Geraldine made:

> baskets.of.Granny <- c(12, 4, 4, 6, 9, 3)
> baskets.of.Geraldine <- c(5, 3, 2, 2, 12, 9)

Suppose that Granny and Geraldine decide to raise money for the Make‐A‐Wish
Foundation and asked people to make a donation for every basket they made.
Granny requested $120 per basket, and Geraldine asked for $145 per basket.
How do you calculate the total donations that they collected for each game?

R makes the calculation easy. First, calculate how much each lady earned per
game, as follows:

> Granny.money <- baskets.of.Granny * 120
> Geraldine.money <- baskets.of.Geraldine * 145

In this example, every value in the vector is multiplied by the amount of
money. Check for yourself by taking a look at the values in Granny.money
and Geraldine.money.

To get the total money these ladies earned in each game, you simply do this:

> Granny.money + Geraldine.money
[1] 2165 915 770 1010 2820 1665

You also could do this whole calculation in a single line, as follows:

> baskets.of.Granny * 120 + baskets.of.Geraldine * 145
[1] 2165 915 770 1010 2820 1665

Controlling the order of the operations
In the previous example, you used both a multiplication and an addition
operator. As you see from the result, R correctly multiplies all numbers
before adding them together. For all arithmetic operators, the classic
rules for the order of operations apply. Calculations are carried out in the
 following order:

1. Exponentiation

2. Multiplication and division in the order in which the operators are
presented

3. Addition and subtraction in the order in which the operators are
 presented

54 Part II: Getting Down to Work in R

The mod operator (%%) and the integer division operator (%/%) have the
same priority as the normal division operator (/) in calculations.

You can change the order of the operations by using parentheses, like this:

>4 + 2 * 3
[1] 10
> (4 + 2)* 3
[1] 18

Everything that’s put between parentheses is carried out first.

You also can use basic operators on complex numbers. The complex()
 function, for example, allows you to construct a whole set of complex num
bers based on a vector with real parts and a vector with imaginary parts. For
more information, see the Help page for ?complex.

Using mathematical functions
In R, of course, you want to use more than just basic operators. R comes with
a whole set of mathematical functions you’d find on a technical calculator
as well, and then some more. Table 42 lists the ones that we think you’ll use
most often, but feel free to go on a voyage of discovery for others. All these
functions are vectorized, so you can use them on complete vectors.

The possibilities of R go far beyond this small list of functions, however. We
cover some of the special cases in the following sections.

Table 4-2 Useful Mathematical Functions in R
Function What It Does
abs(x) Takes the absolute value of x
log(x, base = y) Takes the logarithm of x with base y; if base is not

specified, returns the natural logarithm

exp(x) Returns the exponential of x
sqrt(x) Returns the square root of x
factorial(x) Returns the factorial of x (x!)

choose(x, y) Returns the number of possible combinations when
drawing y elements at a time from x possibilities

55 Chapter 4: Getting Started with Arithmetic

Calculating logarithms and exponentials
In R, you can take the logarithm of the numbers from 1 to 3 like this:

> log(1:3)
[1] 0.0000000 0.6931472 1.0986123

Whenever you use one of these functions, R calculates the natural logarithm
if you don’t specify any base.

You calculate the logarithm of these numbers with base 6 like this:

> log(1:3, base = 6)
[1] 0.0000000 0.3868528 0.6131472

For the logarithms with bases 2 and 10, you can use the convenience
 functions log2() and log10().

You carry out the inverse operation of log() by using exp(). This last
 function raises e to the power mentioned between parentheses, like this:

> x <- log(1:3)
> exp(x)

Again, you can add a vector as an argument, because the log() function is
also vectorized.

Putting the science in scientific notation
If you raise numbers to a power, the result will quickly become a very large
number. For example, if you raise 1000 to the power of 2, you get a million. If
you try that in R, you see the following:

> 1000^2
[1] 1e+06

This may look a bit weird if you aren’t familiar with the scientific notation of
numbers. Scientific notation allows you to represent a very large or very small
number in a convenient way. The number is presented as a decimal and an
exponent, separated by e. You get the number by multiplying the decimal by
10 to the power of the exponent. The number 13,300, for example, also can be
written as 1.33 × 10^4, which is 1.33e4 in R:

> 1.33e4
[1] 13300

56 Part II: Getting Down to Work in R

Likewise, 0.0412 can be written as 4.12 × 10^–2 , which is 4.12e‐2 in R:

> 4.12e-2
[1] 0.0412

R doesn’t use scientific notation just to represent very large or very small
numbers; it also understands scientific notation when you write it. You
can use numbers written in scientific notation as though they were regular
 numbers, like so:

> 1.2e6 / 2e3
[1] 600

R automatically decides whether to print a number in scientific notation. Its
decision to use scientific notation doesn’t change the number itself, nor the
accuracy of the calculation; it just saves some space.

Rounding numbers
Although R can calculate accurately to up to 16 digits, you don’t always want
to use that many digits. In this case, you can use a couple functions in R to
round numbers. To round a number to two digits after the decimal point, for
example, use the round() function as follows:

> round(123.456, digits = 2)
[1] 123.46

You also can use the round() function to round numbers to multiples of
10, 100, and so on. For that, you just add a negative number as the digits
argument:

> round(-123.456, digits = -2)
[1] -100

If you want to specify the number of significant digits to be retained, regard
less of the size of the number, you use the signif() function instead:

> signif(-123.456, digits = 4)
[1] -123.5

Both round() and signif() round numbers to the nearest possibility. So, if
the first digit that’s dropped is smaller than 5, the number is rounded down.
If it’s bigger than 5, the number is rounded up.

If the first digit that is dropped is exactly 5, R uses a rule that’s common
in programming languages: Always round to the nearest even number.
round(1.5) and round(2.5) both return 2, for example, and round(‐4.5)
returns ‐4.

57 Chapter 4: Getting Started with Arithmetic

Contrary to round(), three other functions always round in the same
 direction:

 ✓ floor(x) rounds to the nearest integer that’s smaller than x. So
floor(123.45) becomes 123 and floor(‐123.45) becomes –124.

 ✓ ceiling(x) rounds to the nearest integer that’s larger than x. This
means ceiling(123.45) becomes 124 and ceiling(‐123.45)
becomes –123.

 ✓ trunc(x) rounds to the nearest integer in the direction of 0. So
trunc(123.65) becomes 123 and trunc(‐123.65) becomes –123.

Using trigonometric functions
All trigonometric functions are available in R: the sine, cosine, and tangent
functions and their inverse functions. You can find them on the Help page
you reach by typing ?Trig.

You may want to try to calculate the cosine of an angle of 120 degrees like
this:

> cos(120)
[1] 0.814181

This code doesn’t give you the correct result, however, because R always
works with angles in radians, not in degrees. Pay attention to this fact; if you
forget, the resulting bugs may bite you hard in the, er, leg.

Instead, use a special constant called pi. This constant has the value of —
you guessed it — π (3.141592653589 . . .).

The correct way to calculate the cosine of an angle of 120 degrees, then,
is this:

> cos(120 * pi / 180)
[1] -0.5

Calculating whole vectors
Sometimes the result of a calculation is dependent on multiple values in a
vector. One example is the sum of a vector; when any value changes in the
vector, the outcome is different. We call this complete set of functions and
operators the vector operations. In “Powering Up Your Math,” later in this
chapter, you calculate cumulative sums and calculate differences between
adjacent values in a vector with arithmetic vector functions. We discuss
other vector operations in Chapter 7.

58 Part II: Getting Down to Work in R

Actually, operators are also functions. But it’s useful to draw a distinction
between functions and operators, because operators are used differently
from other functions. It helps to know, though, that operators can, in all
cases, be treated just like any other function if you put the operator between
backticks and add the arguments between parentheses, like this:

> '+'(2, 3)
[1] 5

This may be useful later on when you want to apply a function over rows,
 columns, or subsets of your data, as discussed in Chapters 9 and 13.

To infinity and beyond
In some cases, you don’t have real values to calculate with. In most real‐life
data sets, in fact, at least a few values are missing. Also, some calculations
have infinity as a result (such as dividing by zero) or can’t be carried out at
all (such as taking the logarithm of a negative value). Luckily, R can deal with
all these situations.

Using infinity
To start exploring infinity in R, see what happens when you try to divide
by zero:

> 2 / 0
[1] Inf

R correctly tells you the result is Inf, or infinity. Negative infinity is shown
as ‐Inf. You can use Inf just as you use a real number in calculations:

> 4 - Inf
[1] -Inf

To check whether a value is finite, use the functions is.finite() and is.
infinite(). The first function returns TRUE if the number is finite; the
second one returns TRUE if the number is infinite. (We discuss the logical
values TRUE and FALSE in the next section.)

R considers everything larger than the largest number a computer can hold
to be infinity — on most machines, that’s approximately 1.8 × 10308. This defi
nition of infinity can lead to unexpected results, as shown in the following
example:

> is.finite(10^(305:310))
[1] TRUE TRUE TRUE TRUE FALSE FALSE

59 Chapter 4: Getting Started with Arithmetic

What does this line of code mean now? See whether you understand the
 nesting and vectorization in this example. If you break up the line starting
from the inner parentheses, it becomes comprehensible:

 ✓ You know already that 305:310 gives you a vector, containing the
 integers from 305 to 310.

 ✓ All operators are vectorized, so 10^(305:310) gives you a vector with
the results of 10 to the power of 305, 306, 307, 308, 309, and 310.

 ✓ That vector is given as an argument to is.finite(). This function tells
you that the two last results — 10^309 and 10^310 — are infinite for R.

Dealing with undefined outcomes
Your math teacher probably explained that if you divide any real number by
infinity, you get zero. But what if you divide infinity by infinity?

> Inf / Inf
[1] NaN

Well, R tells you that the outcome is NaN. That result simply means Not a
Number. This is R’s way of telling you that the outcome of that calculation is
not defined.

The funny thing is that R actually considers NaN to be numeric, so you can
use NaN in calculations. The outcome of those calculations is always NaN,
though, as you see here:

> NaN + 4
[1] NaN

You can test whether a calculation results in NaN by using the is.nan()
function. Note that both is.finite() and is.infinite() return FALSE
when you’re testing on a NaN value.

Dealing with missing values
As we mention earlier in this chapter, one of the most common problems
in statistics is incomplete data sets. To deal with missing values, R uses the
reserved keyword NA, which stands for Not Available. You can use NA as a
valid value, so you can assign it as a value as well:

> x <- NA

60 Part II: Getting Down to Work in R

You have to take into account, however, that calculations with a value of NA
also generally return NA as a result:

> x + 4
[1] NA
> log(x)
[1] NA

If you want to test whether a value is NA, you can use the is.na() function,
as follows:

> is.na(x)
[1] TRUE

Note that the is.na() function also returns TRUE if the value is NaN. The
functions is.finite(), is.infinite(), and is.nan() return FALSE for
NA values.

Calculating infinite, undefined, and missing values
Table 43 provides an overview of results from the functions described in the
preceding sections. You are unlikely to use any of these except for is.na(),
which you may use quite a lot!

Organizing Data in Vectors
Vectors are the most powerful features of R, and in this section, you see why
and how you use them.

A vector is a one‐dimensional set of values, all the same type. It’s the smallest
unit you can work with in R. A single value is technically a vector as well — a
vector with only one element. In mathematics vectors are almost always used
with numerical values, but in R they also can include other types of data, like
character strings (see Chapter 5).

Table 4-3 Results of Infinite, NaN, and Missing Values
Function Inf –Inf NaN NA
is.finite() FALSE FALSE FALSE FALSE

is.infinite() TRUE TRUE FALSE FALSE

is.nan() FALSE FALSE TRUE FALSE

is.na() FALSE FALSE TRUE TRUE

61 Chapter 4: Getting Started with Arithmetic

Discovering the properties of vectors
Vectors have a structure and a type, and R is a bit sensitive about both.
Feeding R the wrong type of vector is like trying to make your cat eat dog
food: Something will happen, and chances are that it won’t be what you
hoped for. So, you’d better know what type of vector you have.

Looking at the structure of a vector
R gives you an easy way to look at the structure of any object. This method
comes in handy whenever you doubt the form of the result of a function or a
script you wrote. To take a peek inside R objects, use the str() function.

The str() function gives you the type and structure of the object.

Take a look at the vector baskets.of.Granny:

> str(baskets.of.Granny)
 num [1:6] 12 4 5 6 9 3

R tells you a few things here:

 ✓ First, it tells you that this is a num (numeric) type of vector.

 ✓ Next to the vector type, R gives you the dimensions of the vector. This
example has only one dimension, and that dimension has indices rang
ing from 1 to 6.

 ✓ Finally, R gives you the first few values of the vector. In this example, the
vector has only six values, so you see all of them.

If you want to know only how long a vector is, you can simply use the
length() function, as follows:

> length(baskets.of.Granny)
[1] 6

Vectors in R can have other types as well. If you look at the vector authors,
for example (refer to Chapter 3), you see a small difference:

> authors <- c("Andrie", "Joris")
> str(authors)
 chr [1:2] "Andrie" "Joris"

Again, you get the dimensions, the range of the indices, and the values. But
this time, R tells you the type of vector is chr (character).

62 Part II: Getting Down to Work in R

In this book, we discuss the following types of vectors:

 ✓ Numeric vectors, containing all kinds of numbers.

 ✓ Integer vectors, containing integer values. (An integer vector is a special
kind of numeric vector.)

 ✓ Logical vectors, containing logical values (TRUE and/or FALSE).

 ✓ Character vectors, containing text.

 ✓ Datetime vectors, containing dates and times in different formats.

 ✓ Factors, a special type of vector to work with categories.

All of the listed types of vectors may have missing values (NA).

We discuss the first three types in this chapter. You learn about character
vectors and factors in Chapter 5, and about datetime vectors in Chapter 6.

R makes clear distinctions among these types of vectors, partly for reasons of
logic. Multiplying two words, for example, doesn’t make sense.

Testing vector types
Apart from the str() function, R contains a set of functions that allow you to
test for the type of a vector. All these functions have the same syntax: is, a
dot, and then the name of the type.

You can test whether a vector is of type foo by using the is.foo() function.
This test works for every type of vector; just replace foo with the type you
want to check.

To test whether baskets.of.Granny is a numeric vector, for example, use
the following code:

> is.numeric(baskets.of.Granny)
[1] TRUE

You may think that baskets.of.Granny is a vector of integers, so check it,
as follows:

> is.integer(baskets.of.Granny)
[1] FALSE

R disagrees with the math teacher here. Integer has a different meaning for
R than it has for us. The result of is.integer() isn’t about the value but
about the way the value is stored in memory.

63 Chapter 4: Getting Started with Arithmetic

R has two main modes for storing numbers. The standard mode is double. In
this mode, every number uses 64 bits of memory. The number also is stored
in three parts. One bit indicates the sign of the number, 52 bits represent the
decimal part of the number, and the remaining bits represent the exponent.
This way, you can store numbers as big as 1.8 × 10308 in only 64 bits. The
integer mode takes only 32 bits of memory, and the numbers are repre
sented as binary integers in the memory. So, the largest integer is about 2.1
billion, or, more exactly, 231 – 1. That’s 31 bits to represent the number itself,
1 bit to represent the sign of the number, and –1 because you start at 0.

You should use integers if you want to do exact integer calculations on small
integers or if you want to save memory. Otherwise, the mode double works
just fine. One of the nice things about R is that you hardly ever need to worry
about whether something is stored as an integer or a double!

You force R to store a number as an integer by adding L after it, as in the
 following example:

> x <- c(4L, 6L)
> is.integer(x)
[1] TRUE

Whatever mode is used to store the value, is.numeric() returns TRUE in
both cases.

Creating vectors
To create a vector from a simple sequence of integers, for example, you use
the colon operator (:). The code 3:7 gives you a vector with the numbers 3
to 7, and 4:‐3 creates a vector with the numbers 4 to –3, both in steps of 1.
To make bigger or smaller steps in a sequence, use the seq() function. This
function’s by argument allows you to specify the amount by which the num
bers should increase or decrease. For a vector with the numbers 4.5 to 2.5 in
steps of ‐0.5, for example, you use the following code:

> seq(from = 4.5, to = 2.5, by = -0.5)
[1] 4.5 4.0 3.5 3.0 2.5

Alternatively, you can specify the length of the sequence by using the argu
ment length.out. R calculates the step size itself. You make a vector of
nine values going from –2.7 to 1.3 like this:

> seq(from = -2.7, to = 1.3, length.out = 9)
[1] -2.7 -2.2 -1.7 -1.2 -0.7 -0.2 0.3 0.8 1.3

64 Part II: Getting Down to Work in R

You don’t have to write out the argument names if you give the values for
the arguments in the correct order. The code seq(4.5, 2.5, ‐0.5) does
exactly the same things as seq(from = 4.5, to = 2.5, by = ‐0.5).
But if you use the argument length.out, you always have to spell it out.

Combining vectors
To dive a bit deeper into how you can use vectors, let’s get back to our All‐
Star Grannies example (refer to “Using arithmetic operators,” earlier in this
chapter). You created two vectors that contain the number of baskets that
Granny and her friend Geraldine scored in the six games of this basketball
season:

> baskets.of.Granny <- c(12, 4, 4, 6, 9, 3)
> baskets.of.Geraldine <- c(5, 3, 2, 2, 12, 9)

The c() function stands for combine. It doesn’t create vectors — it just
 combines them.

In the preceding examples, you give six values as arguments to the c()
 function and get one combined vector in return. As you know, R considers
each value a vector with one element. You also can use the c() function to
combine vectors with more than one value, as in the following example:

> all.baskets <-c(baskets.of.Granny, baskets.of.Geraldine)
> all.baskets
 [1] 12 4 4 6 9 3 5 3 2 2 12 9

The result of this code is a vector with all 12 values.

In this code, the c() function maintains the order of the numbers. This exam
ple illustrates a second important feature of vectors: Vectors have an order.
This order turns out to be very useful when you need to manipulate the indi
vidual values in the vector, as you do in “Getting Values in and out of Vectors,”
later in this chapter.

Repeating vectors
You can combine a vector with itself if you want to repeat it, but if you want
to repeat the values in a vector many times, using the c() function becomes
a bit impractical. R makes life easier by offering you a function for repeating a
vector: rep().

65 Chapter 4: Getting Started with Arithmetic

You can use the rep() function in several ways. If you want to repeat the
complete vector a set number of times, for example, you specify the argu
ment times. To repeat the vector c(0, 0, 7) three times, use this code:

> rep(c(0, 0, 7), times = 3)
[1] 0 0 7 0 0 7 0 0 7

You also can repeat every value by specifying the argument each, like this:

> rep(c(2, 4, 2), each = 3)
[1] 2 2 2 4 4 4 2 2 2

R has a little trick up its sleeve. You can tell R for each value how often it has
to be repeated. To take advantage of that magic, tell R how often to repeat
each value in a vector by using the times argument:

> rep(c(0, 7), times = c(4, 2))
[1] 0 0 0 0 7 7

And you can, like in seq, use the argument length.out to tell R how long
you want it to be. R will repeat the vector until it reaches that length, even if
the last repetition is incomplete, like so:

> rep(1:3, length.out = 7)
[1] 1 2 3 1 2 3 1

Getting Values in and out of Vectors
Vectors would be pretty impractical if you couldn’t look up and manipulate
individual values. You can perform these tasks easily by using R’s advanced,
powerful indexing system.

Understanding indexing in R
Every time R shows you a vector, it displays a number such as [1] in front
of the output. In this example, [1] tells you where the first position in
your vector is. This number is called the index of that value. If you make a
longer vector — say, with the numbers from 1 to 30 — you see more indices.
Consider this example:

> numbers <- 30:1
> numbers
 [1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
[18] 13 12 11 10 9 8 7 6 5 4 3 2 1

66 Part II: Getting Down to Work in R

Here, you see that R counts 13 as the 18th value in the vector. At the begin
ning of every line, R tells you the index of the first value in that line.

If you try this example on your computer, you may see a different index at
the beginning of the line, depending on the width of your console.

Extracting values from a vector
Those brackets ([]) illustrate another strong point of R. Square brackets
represent a function that you can use to extract a value from that vector. You
can get the fifth value of the preceding number vector like this:

> numbers[5]
[1] 26

Okay, this example isn’t too impressive, but the bracket function takes
 vectors as arguments. If you want to select more than one number, you can
simply provide a vector of indices as an argument inside the brackets, like so:

> numbers[c(5, 11, 3)]
[1] 26 20 28

R returns a vector with the numbers in the order you asked for. So, you can
use the indices to order the values the way you want.

You also can store the indices you want to retrieve in another vector and
give that vector as an argument, as in the following example:

> indices <- c(5, 11, 3)
> numbers[indices]
[1] 26 20 28

You can use indices to drop values from a vector as well. If you want all the
numbers except for the third value, you can do that with the following code:

> numbers[-3]
 [1] 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13
[18] 12 11 10 9 8 7 6 5 4 3 2 1

Here, too, you can use a complete vector of indices. If you want to expel the
first 20 numbers, use this code:

> numbers[-(1:20)]
 [1] 10 9 8 7 6 5 4 3 2 1

67 Chapter 4: Getting Started with Arithmetic

Be careful to add parentheses around the sequence. If you don’t, R will
 interpret that as meaning the sequence from –1 to 20, which isn’t what you
want here. If you try that code, you get the following error message:

> numbers[-1:20]
Error in numbers[-1:20] : only 0's may be mixed with negative subscripts

This message makes you wonder what the index 0 is. Well, it’s literally noth
ing. If it’s the only value in the index vector, you get an empty, or zero‐length,
vector back, whatever sign you give it; otherwise, it won’t have any effect.

You can’t mix positive and negative index values, so either select a number of
values or drop them.

You can do a lot more with indices — they help you write concise and fast
code, as we show you in the following sections and chapters.

Changing values in a vector
Let’s get back to the All‐Star Grannies. In the previous sections, you created
two vectors containing the number of baskets that Granny and Geraldine
made in six basketball games.

But suppose that Granny tells you that you made a mistake: In the third
game, she made five baskets, not four. You can easily correct this mistake by
using indices, as follows:

> baskets.of.Granny[3] <- 5
> baskets.of.Granny
[1] 12 4 5 6 9 3

The assignment to a specific index is actually a function as well. It’s differ
ent, however, from the brackets function (refer to “Extracting values from
a vector,” earlier in this chapter), because you also give the replacement
values as an argument. Boring technical stuff, you say? Not if you realize that
because the index assignment is a vectorized function, you can use recycling!

Imagine that you made two mistakes in the number of baskets that Granny’s
friend Geraldine scored: She actually scored four times in the second and
fourth games. To correct the baskets for Geraldine, you can use the following
code:

> baskets.of.Geraldine[c(2, 4)] <- 4
> baskets.of.Geraldine
[1] 5 4 2 4 12 9

68 Part II: Getting Down to Work in R

How cool is that? You have to be careful, though. R doesn’t tell you when it’s
recycling values, so a typo may give you unexpected results. Later in this
chapter, you find out more about how recycling actually works.

R doesn’t have an Undo button, so when you change a vector, there’s no
going back. You can prevent disasters by first making a copy of your object
and then changing the values in the copy, as shown in the following example.
First, make a copy by assigning the vector baskets.of.Granny to the
object Granny.copy:

> Granny.copy <- baskets.of.Granny

You can check what’s in both objects by typing the name on the com
mand line and pressing Enter. Now you can change the vector baskets.
of.Granny:

> baskets.of.Granny[4] <- 11
> baskets.of.Granny
[1] 12 4 5 11 9 3

If you make a mistake, simply assign the vector Granny.copy back to the
object baskets.of.Granny, like this:

> baskets.of.Granny <- Granny.copy
> baskets.of.Granny
[1] 12 4 5 6 9 3

Working with Logical Vectors
Up to now, we haven’t really discussed the values TRUE and FALSE. For
some reason, the developers of R decided to call these values logical values.
In other programming languages, TRUE and FALSE are known as Boolean
values. As Shakespeare would ask, what’s in a name? Whatever name they go
by, these values come in handy when you start controlling the flow of your
scripts, as we discuss in Chapter 9.

You can do a lot more with these values, however, because you can con
struct vectors that contain only logical values — the logical vectors that we
mention in “Looking at the structure of a vector,” earlier in this chapter. You
can use these vectors as an argument for the index functions, which makes
for a powerful tool.

69 Chapter 4: Getting Started with Arithmetic

Comparing values
To build logical vectors, you’d better know how to compare values, and R
contains a set of operators that you can use for this purpose (see Table 44).

All these operators are, again, vectorized. You can compare two vectors in a
single line of code. Or, since R recycles the arguments in this case, you can
compare a complete vector with a single value in one line. In the continuing
All‐Star Grannies example, to find out which games Granny scored more than
five baskets in, try:

> baskets.of.Granny > 5
[1] TRUE FALSE FALSE TRUE TRUE FALSE

You can see that the result is the first, fourth, and fifth games. This example
works well for small vectors like this one, but if you have a very long vector,
counting the number of games would be a hassle. For that purpose, R offers
the delightful which() function. To find out which games Granny scored
more than five baskets in, try:

> which(baskets.of.Granny > 5)
[1] 1 4 5

With this one line of code, you actually do two different things: First, you
make a logical vector by checking every value in the vector to see whether
it’s greater than five. Then you pass that vector to the which() function,
which returns the indices in which the value is TRUE.

Table 4-4 Comparing Values in R
Operator Result
x == y Returns TRUE if x exactly equals y
x != y Returns TRUE if x differs from y
x > y Returns TRUE if x is larger than y
x >= y Returns TRUE if x is larger than or exactly equal to y
x < y Returns TRUE if x is smaller than y
x <= y Returns TRUE if x is smaller than or exactly equal to y
x & y Returns the result of x and y
x | y Returns the result of x or y
! x Returns not x
xor(x, y) Returns the result of x xor y (x or y but not x and y)

70 Part II: Getting Down to Work in R

The which() function takes a logical vector as argument. Hence, you can save
the outcome of a logical vector in an object and pass that to the which()
function, as in the next example. You also can use all these operators to
compare vectors value by value. You can easily find out the games in which
Geraldine scored fewer baskets than Granny like this:

> the.best <- baskets.of.Geraldine < baskets.of.Granny
> which(the.best)
[1] 1 3 4

Always put spaces around the less than (<) and greater than (>) operators.
Otherwise, R may mistake x < ‐3 for the assignment x <‐ 3. The difference
may seem small, but it has a huge effect on the result. Technically, you also
can use the equal sign (=) as an assignment to prevent this problem, but =
also is used to assign values to arguments in functions. In general, <‐ is the
preferred way to assign a value to an object (although some R programmers
disagree). So, it’s up to you. We use <‐ in this book.

Using logical vectors as indices
The index function doesn’t take only numerical vectors as arguments; it also
works with logical vectors. You can use these logical vectors very efficiently
to select some values from a vector. If you use a logical vector to index, R
returns a vector with only the values for which the logical vector is TRUE.

In the preceding section, a logical vector, the.best, tells you the games
in which Granny scored more than Geraldine did. If you want to know how
many baskets Granny scored in those games, you can use this code:

> baskets.of.Granny[the.best]
[1] 12 5 6

You might think this is overkill. After all, you can just use the logical vector to
select these values. But there’s a catch, as shown in the next example. If you
want to keep only the values larger than 2 in a vector x, you could do that
with the following code:

> x <- c(3, 6, 1, NA, 2)
> x[x > 2]
[1] 3 6 NA

Wait — what is that NA value doing there? Take a step back, and look at the
result of x > 2:

> x > 2
[1] TRUE TRUE FALSE NA FALSE

71 Chapter 4: Getting Started with Arithmetic

If you have a missing value in your vector, any comparison returns NA for
that value (refer to “Dealing with missing values,” earlier in this chapter).

It may seem that this NA is translated into TRUE, but that isn’t the case. If
you give NA as a value for the index, R puts NA in that place as well. So, in
this case, R keeps the first and second values of x, drops the third, adds one
 missing value, and drops the last value of x as well.

Combining logical statements
Life would be boring if you couldn’t combine logical statements. If you want
to test whether a number lies within a certain interval, for example, you want
to check whether it’s greater than the lowest value and less than the top
value. Maybe you want to know the games in which Granny scored the fewest
or the most baskets. For that purpose, R has a set of logical operators that —
you guessed it — are nicely vectorized (refer to Table 44).

To illustrate, using the knowledge you have now, try to find out the games in
which Granny scored the fewest baskets and the games in which she scored
the most baskets:

1. Create two logical vectors, as follows:

> min.baskets <- baskets.of.Granny == min(baskets.of.Granny)
> max.baskets <- baskets.of.Granny == max(baskets.of.Granny)

min.baskets tells you whether the value is equal to the minimum, and
max.baskets tells you whether the value is equal to the maximum.

2. Combine both vectors with the OR operator (|), as follows:

> min.baskets | max.baskets
[1] TRUE FALSE FALSE FALSE FALSE TRUE

This method actually isn’t the most efficient way to find those values. You
see how to do things like this more efficiently with the match() function in
Chapter 13. But this example clearly shows you how vectorization works for
logical operators.

The NOT operator (!) is another example of the great power of vectoriza
tion. The NA values in the vector x have caused some trouble already, so
you might want to get rid of them. You know from “Dealing with undefined
outcomes,” earlier in this chapter, that you have to check whether a value
is missing by using the is.na() function. But you need the values that
are not missing values, so invert the logical vector by preceding it with

72 Part II: Getting Down to Work in R

the ! operator. To drop the missing values in the vector x, for example,
use the following code:

> x[!is.na(x)]
[1] 3 6 2 1

Logical operators deal with NA values in the same way that arithmetic opera
tors do: If an NA value is compared to anything, the result always is NA. It is a
common mistake to try testing missing values with a command like this:

> x == NA

That won’t work — you need to use is.na().

Summarizing logical vectors
You also can use logical values in arithmetic operations as well. In that case,
R sees TRUE as 1 and FALSE as 0. This allows for some pretty interesting
constructs.

Suppose that you’re not really interested in finding out the games in which
Granny scored more than Geraldine did, but you want to know how often that
happened. You can use the numerical translation of a logical vector for that
purpose in the sum() function, as follows:

> sum(the.best)
[1] 3

In addition, you have an easy way to figure out whether any value in a logi
cal vector is TRUE. Very conveniently, the function that performs that task
is called any(). To ask R whether Granny was better than Geraldine in any
game, use this code:

> any(the.best)
[1] TRUE

This result is a bit unfair for Geraldine, so you may want to check whether
Granny was better than Geraldine in all the games. The R function you use
for this purpose is called — surprise, surprise — all(). To find out whether
Granny was always better than Geraldine, use the following code:

> all(the.best)
[1] FALSE

73 Chapter 4: Getting Started with Arithmetic

Powering Up Your Math
As we suggest throughout this chapter, vectorization is the Holy Grail for every
R programmer. Most beginners struggle a bit with that concept because vectori
zation isn’t one little trick, but a way of coding. Using the indices and vectorized
operators, however, can save you a lot of coding and calculation time — and
then you can call a gang of powerful functions to quickly perform more complex
mathematical operations.

Why are these functions so helpful? Maybe you’re like us: We’re lazy and
impatient enough to try to translate our code into “something with vectors”
as often as possible. We don’t like to type too much, and we definitely don’t
like to wait for the results. If you can relate, read on.

Using arithmetic vector operations
A third set of arithmetic functions consists of functions in which the outcome
is dependent on more than one value in the vector. Often, the idea behind
these operations requires some form of looping over the different values in
a vector. Summing all values in a vector with the sum() function is such an
operation. You find an overview of the most important functions in Table 45.

Table 4-5 Vector Operations
Function What It Does
sum(x) Calculates the sum of all values in x
prod(x) Calculates the product of all values in x
min(x) Gives the minimum of all values in x
max(x) Gives the maximum of all values in x
cumsum(x) Gives the cumulative sum of all values in x
cumprod(x) Gives the cumulative product of all values in x
cummin(x) Gives the minimum for all values in x from the start

of the vector until the position of that value

cummax(x) Gives the maximum for all values in x from the start
of the vector until the position of that value

diff(x) Gives for every value the difference between that
value and the next value in the vector

74 Part II: Getting Down to Work in R

Summarizing a vector
You can tell quite a few things about a set of values with one number. If you
want to know the minimum and maximum number of baskets Granny made,
for example, you use the functions min() and max():

> min(baskets.of.Granny)
[1] 3
> max(baskets.of.Granny)
[1] 12

To calculate the sum and the product of all values in the vector, use the
 functions sum() and prod(), respectively.

These functions also accept multiple vectors as input, separated by a
comma. For example, to calculate the sum of all the baskets made by Granny
and Geraldine, try:

> sum(baskets.of.Granny, baskets.of.Geraldine)
[1] 75

The same works for the other vector operations in this section.

As we discuss in “Dealing with missing values,” earlier in this chapter, calcu
lations with missing values always return NA as a result. The same is true for
vector operations as well. R, however, gives you a way to simply discard the
missing values by setting the argument na.rm to TRUE. Take a look at the
 following example:

> x <- c(3, 6, 2, NA, 1)
> sum(x)
[1] NA
> sum(x, na.rm = TRUE)
[1] 12

This argument works in sum(), prod(), min(), and max().

If you have a vector that contains only missing values and you set the argu
ment na.rm to TRUE, the outcome of these functions is set in such a way
that it doesn’t have any effect on further calculations. The sum of missing
values is 0, the product is 1, the minimum is Inf, and the maximum is ‐Inf.
R won’t always generate a warning in such a case, though. Only in the case of
min() and max() does R tell you that there were no non‐missing arguments.

Cumulating operations
Suppose that after every game, you want to update the total number of bas
kets that Granny made during the season. After the second game, that’s the

75 Chapter 4: Getting Started with Arithmetic

total of the first two games; after the third game, it’s the total of the first
three games; and so on. In other words, you want to calculate the cumulative
sum of the baskets Granny scored. You can make this calculation easily by
using the function cumsum() as in the following example:

> cumsum(baskets.of.Granny)
[1] 12 16 21 27 36 39

In a similar way, cumprod() gives you the cumulative product. You also
can get the cumulative minimum and maximum with the related functions
cummin() and cummax(). To find the maximum number of baskets Geraldine
scored up to any given game, you can use the following code:

> cummax(baskets.of.Geraldine)
[1] 5 5 5 5 12 12

These functions don’t have an extra argument to remove missing values.
Missing values are propagated through the vector, as shown in the following
example:

> cummin(x)
[1] 3 3 2 NA NA

Calculating differences
The last function we’ll discuss in this section calculates differences between
adjacent values in a vector. You can calculate the difference in the number
of baskets between every two games Granny played by using the following
code:

> diff(baskets.of.Granny)
[1] -8 1 1 3 -6

You get five numbers back. The first one is the difference between the first
and the second game, the second is the difference between the second and
the third game, and so on.

The vector returned by diff() is always one element shorter than the
 original vector you gave as an argument.

The rule about missing values applies here, too. When your vector contains a
missing value, the result from that calculation will be NA. So, if you calculate
the difference with the vector x, you get the following result:

> diff(x)
[1] 3 -4 NA NA

76 Part II: Getting Down to Work in R

Because the fourth element of x is NA, the difference between the third and
fourth element and between the fourth and fifth element will be NA as well.
Just like the cumulative functions, the diff() function doesn’t have an
 argument to eliminate the missing values.

Recycling arguments
In Chapter 3 and earlier in this chapter, we mention recycling arguments.
Take a look again at how you calculate the total amount of money Granny
and Geraldine raised (see “Using arithmetic operators,” earlier in this chap
ter) or how you combine the first names and last names of three siblings
(see Chapter 3). Each time, you combine a vector with multiple values and
one with a single value in a function. R applies the function, using that single
value for every value in the vector. But recycling goes far beyond these
examples.

Any time you give two vectors with unequal lengths to a recycling function,
R repeats the shortest vector as often as necessary to carry out the task you
asked it to perform. In the earlier examples, the shortest vector is only one
value long.

Suppose you split up the number of baskets Granny made into two‐pointers
and three‐pointers:

> Granny.pointers <- c(10, 2, 4, 0, 4, 1, 4, 2, 7, 2, 1, 2)

You arrange the numbers in such a way that for every game, first the number
of two‐pointers is given, followed by the number of three‐pointers.

Now Granny wants to know how many points she’s actually scored this
season. You can calculate that easily with the help of recycling:

> points <- Granny.pointers * c(2, 3)
> points
 [1] 20 6 8 0 8 3 8 6 14 6 2 6
> sum(points)
[1] 87

Now, what did you do here?

1. You made a vector with the number of points for each basket:

c(2, 3)

2. You told R to multiply that vector by the vector Granny.pointers.

R multiplied the first number in Granny.pointers by 2, the second by
3, the third by 2 again, and so on.

77 Chapter 4: Getting Started with Arithmetic

3. You put the result in the variable points.

4. You summed all the numbers in points to get the total number of
points scored.

In fact, you can just leave out Step 3. The nesting of functions allows you to
do this in one line of code:

> sum(Granny.pointers * c(2, 3))

Recycling can be a bit tricky. If the length of the longer vector isn’t exactly a
multiple of the length of the shorter vector, you can get unexpected results.

Now Granny wants to know how much she improved every game. Being lazy,
you have a cunning plan. With diff(), you calculate how many more or
fewer baskets Granny made than she made in the game before. Then you use
the vectorized division to divide these differences by the number of baskets
in the game. To top it off, you multiply by 100 and round the whole vector. All
these calculations take one line of code:

> round(diff(baskets.of.Granny) / baskets.of.Granny * 100)
 1st 2nd 3rd 4th 5th 6th
 -67 25 20 50 -67 -267

That last value doesn’t look right, because it’s impossible to score more than
100 percent fewer baskets. R doesn’t just give you that weird result; it also
warns you that the length of diff(baskets.of.Granny) doesn’t fit the
length of baskets.of.Granny:

Warning message:
In diff(baskets.of.Granny) / baskets.of.Granny :
 longer object length is not a multiple of shorter object length

The vector baskets.of.Granny is six values long, but the outcome of
diff(baskets.of.Granny) is only five values long. So the decrease of
267 percent is, in fact, the last value of baskets.of.Granny divided by the
first value of diff(baskets.of.Granny). In this example, the shortest
vector, diff(baskets.of.Granny), gets recycled by the division operator.

That result wasn’t what you intended. To prevent that outcome, you should
use only the first five values of baskets.of.Granny, so the length of both
vectors match:

> round(diff(baskets.of.Granny) / baskets.of.Granny[1:5] * 100)
2nd 3rd 4th 5th 6th
-67 25 20 50 -67

And all that is vectorization.

78 Part II: Getting Down to Work in R

Getting Started with Reading
and Writing

In This Chapter
 ▶ Representing textual data with character vectors

 ▶ Working with text

 ▶ Creating, converting, and working with factors

I
t’s not for no reason that reading and writing are considered to be two of
the three Rs in elementary education (reading, ’riting, and ’rithmetic). In

this chapter, you get to work with words in R.

You assign text to variables. You manipulate these variables in many dif-
ferent ways, including finding text within text and concatenating different
pieces of text into a single vector. You also use R functions to sort text and
to find words in text with some powerful pattern search functions, called
regular expressions. Finally, you work with factors, the R way of representing
 categories (or categorical data, as statisticians call it).

Using Character Vectors for Text Data
Text in R is represented by character vectors. A character vector is — you
guessed it! — a vector consisting of strings of characters. In Figure 5-1, you
can see that each element of a character vector is a bit of text.

In the world of computer programming, text often is referred to as a string.
In this chapter, we use the word text to refer to a single element of a vector,
but you should be aware that the R Help files sometimes refer to strings and
sometimes to text. These terms mean the same thing.

Chapter 5

80 Part II: Getting Down to Work in R

In this section, you take a look at how R uses character vectors to represent
text. You assign some text to a character vector and get it to extract subsets
of that data. You also get familiar with the very powerful concept of named
vectors, vectors in which each element has a name. This is useful because
you can then refer to the elements by name as well as position.

Assigning a value to a character vector
You assign a value to a character vector by using the assignment operator
(<‐), the same way you do for all other variables. You test whether a variable
is of class character, for example, by using the is.character() function
as follows:

> x <- "Hello world!"
> is.character(x)
TRUE

Notice that x is a character vector of length 1. To find out how many
 characters are in the text, use nchar():

> length(x)
[1] 1
> nchar(x)
[1] 12

The results tell you that x has length 1 and that the single element in x has
12 characters.

Creating a character vector with more
than one element
To create a character vector with more than one element, use the combine
function, c():

Figure 5-1:
Each

 element of
a character

vector is a
bit of text,

also known
as a string.

81 Chapter 5: Getting Started with Reading and Writing

x <- c("Hello", "world!")
> length(x)
[1] 2
> nchar(x)
[1] 5 6

Notice that this time, R tells you that your vector has length 2 and that the
first element has five characters and the second element has six characters.

Extracting a subset of a vector
You use the same indexing rules for character vectors that you use for
numeric vectors (or for vectors of any type). The process of referring to a
subset of a vector through indexing its elements is also called subsetting. In
other words, subsetting is the process of extracting a subset of a vector.

To illustrate how to work with vectors, and specifically how to create sub-
sets, we use the built‐in datasets letters and LETTERS. Both are character
vectors consisting of the letters of the alphabet, in lowercase (letters) and
uppercase (LETTERS). Try it:

> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"
[12] "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v"
[23] "w" "x" "y" "z"

> LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K"
[12] "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V"
[23] "W" "X" "Y" "Z"

Aside from being useful to illustrate the use of subsets in this chapter, you
can use these built‐in vectors whenever you need to make lists of things.

Let’s return to the topic of creating subsets. To extract a specific element
from a vector, use square brackets. To get the tenth element of letters, for
example, use the following:

> letters[10]
[1] "j"

To get the last three elements of LETTERS, use:

> LETTERS[24:26]
[1] "X" "Y" "Z"

82 Part II: Getting Down to Work in R

The colon operator (:) in R is a handy way of creating sequences, so 24:26
results in 25, 25, 26. When this appears inside the square brackets, R
returns elements 24 through 26.

In our last example, it was easy to extract the last three letters of LETTERS,
because you know that the alphabet contains 26 letters. Quite often, you
don’t know the length of a vector. You can use the tail() function to
display the trailing elements of a vector. To get the last five elements of
LETTERS, try:

> tail(LETTERS, 5)
[1] "V" "W" "X" "Y" "Z"

Similarly, you can use the head() function to get the first element of a vari-
able. By default, both head() and tail() returns six elements, but you can
tell it to return any specific number of elements in the second argument. Try
extracting the first ten letters:

> head(letters, 10)
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

Naming the values in your vectors
Until this point in the book, we’ve referred to the elements of vectors by
their positions — that is, x[5] refers to the fifth element in vector x. One
very powerful feature in R, however, gives names to the elements of a vector,
which allows you to refer to the elements by name.

You can use these named vectors in R to associate text values (names) with
any other type of value. Then you can refer to these values by name in addi-
tion to position in the list. This format has a wide range of applications — for
example, named vectors make it easy to create lookup tables.

Looking at how named vectors work
To illustrate named vectors, take a look at the built‐in dataset islands, a
named vector that contains the surface area of the world’s 48 largest land
masses (continents and large islands). You can investigate its structure with
str(), as follows:

> str(islands)
Named num [1:48] 11506 5500 16988 2968 16...
 ‐ attr(*, "names")= chr [1:48] "Africa" "Antarctica" "Asia" "Australia"...

R reports the structure of islands as a named vector with 48 elements.
In the first line of the results of str(), you see the values of the first few

83 Chapter 5: Getting Started with Reading and Writing

 elements of islands. On the second line, R reports that the named vector
has an attribute containing names and reports that the first few elements of
this attribute are "Africa", "Antarctica", "Asia", and "Australia".

Because each element in the vector has a value as well as a name, now you
can subset the vector by name. To retrieve the sizes of Asia, Africa, and
Antarctica, use the following:

> islands[c("Asia", "Africa", "Antarctica")]

 Asia Africa Antarctica
 16988 11506 5500

You use the names() function to retrieve the names of a named vector:

> names(islands)[1:9]
[1] "Africa" "Antarctica" "Asia"
[4] "Australia" "Axel Heiberg" "Baffin"
[7] "Banks" "Borneo" "Britain"

This function allows you to do all kinds of interesting things. Imagine you
wanted to know the names of the six largest islands. To do this, you would
retrieve the names of islands after sorting it in decreasing order:

> names(sort(islands, decreasing = TRUE)[1:6])
[1] "Asia" "Africa" "North America"
[4] "South America" "Antarctica" "Europe"

Creating and assigning named vectors
You use the assignment operator (<‐) to assign names to vectors in much
the same way that you assign values to character vectors (see “Assigning a
value to a character vector,” earlier in this chapter).

Imagine you want to create a named vector with the number of days in each
month. First, create a numeric vector containing the number of days in each
month. Then use the built‐in dataset month.name for the month names, as
follows:

> month.days <- c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
> names(month.days) <- month.name
> month.days
 January February March April
 31 28 31 30
 May June July August
 31 30 31 31
September October November December
 30 31 30 31

84 Part II: Getting Down to Work in R

Now you can use this vector to find the names of the months with 31 days:

> names(month.days[month.days == 31])

[1] "January" "March" "May"
[4] "July" "August" "October"
[7] "December"

This technique works because you subset month.days to return only those
values for which month.days equals 31, and then you retrieve the names of
the resulting vector.

The double equal sign (==) indicates a test for equality (see Chapter 4). Make
sure not to use the single equal sign (=) for equality testing. Not only will
a single equal sign not work, but it can have strange side effects because R
interprets a single equal sign as an assignment. In other words, the operator =
in many cases is the same as <‐.

Manipulating Text
When you have text, you need to be able to manipulate it, for example by
splitting or combining words. You also may want to analyze your text to find
out whether it contains certain keywords or patterns.

In this section, you work with the string splitting and concatenation functions
of R. Concatenating (combining) strings is something that programmers do
very frequently. For example, when you create a report of your results, it’s
customary to combine descriptive text with the actual results of your analy-
sis so that the reader of your results can easily digest it.

Finally, you start to work with finding words and patterns inside text, and you
meet regular expressions, a powerful way of doing a wildcard search of text.

String theory: Combining
and splitting strings
A collection of combined letters and words is called a string. Whenever
you work with text, you need to be able to concatenate words (string them
together) and split them apart. In R, you use the paste() function to con-
catenate and the strsplit() function to split. In this section, we show you
how to use both functions.

85 Chapter 5: Getting Started with Reading and Writing

Splitting text
First, create a character vector called pangram, and assign it the value "The
quick brown fox jumps over the lazy dog", as follows:

> pangram <- "The quick brown fox jumps over the lazy dog"
> pangram
[1] "The quick brown fox jumps over the lazy dog"

To split this text at the word boundaries (spaces), you can use strsplit()
as follows:

> strsplit(pangram, " ")
[[1]]
[1] "The" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"

Notice that the unusual first line of strsplit()’s output consists of [[1]].
Similar to the way that R displays vectors, [[1]] means that R is showing
the first component of a list. Lists are extremely important concepts in R;
they allow you to combine all kinds of variables. You can read more about
lists in Chapter 7.

In the preceding example, this list has only a single component. Yes, that’s
right: The list has one component, but that component is a vector.

To extract a component from a list, you have to use double square brackets.
Split your pangram into words, and assign the first component to a new
 variable called words, using double‐square‐brackets ([[]]) subsetting,
as follows:

> words <- strsplit(pangram, " ")[[1]]
> words
[1] "The" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"

To find the unique elements of a vector, including a vector of text, you use
the unique() function. In the words object, "the" appears twice: once in
lowercase and once with the first letter capitalized. To get a list of unique
words, first convert words to lowercase and then use unique():

> unique(tolower(words))
[1] "the" "quick" "brown" "fox" "jumps" "over" "lazy"
[8] "dog"

Concatenating text
Now that you’ve split text, you can concatenate these components so that
they again form a single text string.

86 Part II: Getting Down to Work in R

To concatenate text, use the paste() function:

> paste("The", "quick", "brown", "fox")
[1] "The quick brown fox"

By default, paste() uses a blank space to concatenate the vectors. In other
words, you separate components with spaces. This is because paste()
takes an argument that specifies the separator. The default for the sep argu-
ment is a space (" ") — it defaults to separating components with a blank
space, unless you tell it otherwise.

When you use paste(), or any function that accepts multiple arguments,
make sure that you pass arguments in the correct format. Take a look at this
example, but notice that this time there is a c() function in the code:

> paste(c("The", "quick", "brown", "fox"))
[1] "The" "quick" "brown" "fox"

What’s happening here? Why doesn’t paste() paste the words together?
The reason is that, by using c(), you passed a vector as a single argument
to paste(). The c() function combines objects into a vector (or list). By
default, paste() concatenates separate vectors — it doesn’t collapse ele-
ments of a vector.

For the same reason, paste(words) results in the following:

[1] "The" "quick" "brown" "FOX" "jumps" "over" "the" "lazy" "DOG"

The paste() function takes two optional arguments. The separator
(sep) argument controls how different vectors get concatenated, and the
collapse argument controls how a vector gets collapsed into itself,
so to speak.

When you want to concatenate the elements of a vector by using paste(),
you use the collapse argument, as follows:

> paste(words, collapse = " ")
[1] "The quick brown FOX jumps over the lazy DOG"

Changing text case
To change some elements of words to
uppercase, use the toupper() function:

> toupper(words[c(4, 9)])
[1] "FOX" "DOG"

To change text to lowercase, use tolower():

> tolower("Some TEXT in Mixed CASE")
[1] "some text in mixed case"

87 Chapter 5: Getting Started with Reading and Writing

The collapse argument of paste() can take any character value. If you
want to paste together text by using an underscore, use the following:

> paste(words, collapse = "_")
[1] "The_quick_brown_FOX_jumps_over_the_lazy_DOG"

The paste() function takes vectors as input and joins them together. If one
vector is shorter than the other, R recycles (repeats) the shorter vector to
match the length of the longer one — a powerful feature.

Suppose that you have five objects, and you want to label them "Sample
1", "Sample 2", and so on. You can do this by passing a short vector with
the value Sample and a long vector with the values 1:5 to paste(). In this
example, the shorter vector is repeated five times:

> paste("Sample", 1:5)
[1] "Sample 1" "Sample 2" "Sample 3" "Sample 4" "Sample 5"

You can use sep and collapse in the same paste call. In this case, the vec-
tors are first pasted with sep and then collapsed with collapse. Try this:

> paste(LETTERS[1:5], 1:5, sep = "_", collapse = "---")
[1] "A_1---B_2---C_3---D_4---E_5"

What happens here is that you first concatenate the elements of each vector
with an underscore (that is, A_1, B_2, and so on), and then you collapse the
results into a single string with ‐‐‐ between each element.

Recycling character vectors
When you perform operations on vectors of
different lengths, R automatically adjusts the
length of the shorter vector to match the longer
one. This is called recycling, since R recycles
the element of the shorter vector to create
a new vector that matches the original long
vector.

This feature is very powerful but can lead to
confusion if you aren’t aware of it.

The rules for recycling character vectors are
exactly the same as for numeric vectors (see
Chapter 4).

Here are a few examples of vector recycling
using paste:

> paste(c("A", "B"), c(1, 2, 3, 4),
sep = "-")

[1] "A-1" "B-2" "A-3" "B-4"

> paste(c("A"), c(1, 2, 3, 4, 5),
sep = "-")

[1] "A-1" "A-2" "A-3" "A-4" "A-5"

See how in the first example A and B get
recycled to match the vector of length four.
In the second example, the single A also gets
recycled — in this case, five times.

88 Part II: Getting Down to Work in R

Sorting text
What do league tables, telephone directories, dictionaries, and the index
pages of a book have in common? They present data in some ordered
manner. Data can be sorted alphabetically or numerically, in ascending
or descending order. Like any programming language, R makes it easy to
 compile lists of sorted and ordered data.

Because text in R is represented as character vectors, you can sort these
 vectors using the same functions as you use with numeric data. For example,
to get R to sort the alphabet in reverse, use the sort() function:

> sort(letters, decreasing = TRUE)
 [1] "z" "y" "x" "w" "v" "u" "t" "s" "r" "q" "p"
[12] "o" "n" "m" "l" "k" "j" "i" "h" "g" "f" "e"
[23] "d" "c" "b" "a"

Here you used the decreasing argument of sort().

The sort() function sorts a vector. It doesn’t sort the characters of each
element of the vector. In other words, sort() doesn’t mangle the word itself.
You can still read each of the words in words.

Try it on your vector words that you created in the previous paragraph:

> sort(words)
[1] "brown" "DOG" "FOX" "jumps" "lazy"
[6] "over" "quick" "the" "The"

R performs lexicographic sorting, as opposed to, for example, the C language,
which sorts in ASCII order. This means that the sort order will depend on
the locale of the machine the code runs on. In other words, the sort order
may be different if the machine running R is configured to use Danish than it
will if the machine is configured to use English. The R help file contains this
description:

Beware of making any assumptions about the collation order: e.g., in
Estonian, Z comes between S and T, and collation is not necessarily
 character‐by‐character — in Danish aa sorts as a single letter, after z.

In most cases, lexicographic sorting simply means that the sort order is
 independent of whether the string is in lowercase or uppercase. For more
details, read the help text in ?sort as well as ?Comparison.

You can get help on any function by typing a question mark followed by
the function name into the console. For other ways of getting help, refer to
Chapter 11.

89 Chapter 5: Getting Started with Reading and Writing

Finding text inside text
When you’re working with text, often you can solve problems if you’re able
to find words or patterns inside text. Imagine you have a list of the states in
the United States, and you want to find out which of these states contains
the word New. Or, say you want to find out which state names consist of two
words.

To solve the first problem, you need to search for individual words (in this
case, the word New). And to solve the second problem, you need to search
for multiple words. In this section, you solve both types of problem.

Searching for individual words
To investigate this problem, use the built‐in dataset state.name, which
 contains — you guessed it — the names of the states of the United States:

> head(state.name)
[1] "Alabama" "Alaska" "Arizona"
[4] "Arkansas" "California" "Colorado"

Broadly speaking, you can find substrings in text in two ways:

 ✓ By position: For example, you can tell R to get three letters starting at
position 5.

 ✓ By pattern: For example, you can tell R to get substrings that match a
specific word or pattern.

A pattern works a bit like a wildcard. In some card games, you may use
the Joker card to represent any other card. Similarly, a pattern in R can
contain words or certain symbols with special meanings.

Searching by position
If you know the exact position of a subtext inside a text string, you use the
substr() function to return the value. To extract the subtext that starts at
the third position and stops at the sixth position of state.name, use:

> head(substr(state.name, start = 3, stop = 6))
[1] "abam" "aska" "izon" "kans" "lifo" "lora"

Searching by pattern
To find substrings, you can use the grep() function, which takes two essen-
tial arguments:

 ✓ pattern: The pattern you want to find.

 ✓ x: The character vector you want to search.

90 Part II: Getting Down to Work in R

Suppose you want to find all the states that contain the pattern New. Do it like
this:

> grep("New", state.name)
[1] 29 30 31 32

The result of grep() is a numeric vector with the positions of each of the
components that contain the matching pattern. In other words, the 29th
 component of state.name contains the word New.

> state.name[29]
New Hampshire

Phew, that worked! But typing in the position of each matching text is going
to be a lot of work. Fortunately, you can use the results of grep() directly to
subset the original vector. You can do this by adding the argument value =
TRUE. Try this:

> grep("New", state.name, value = TRUE)
[1] "New Hampshire" "New Jersey"
[3] "New Mexico" "New York"

The grep() function is case sensitive — it only matches text in the same
case (uppercase or lowercase) as your search pattern. If you search for the
pattern “new” in lowercase, your search results are empty:

> grep("new", state.name, value = TRUE)
character(0)

Getting a grip on grep
The name of the grep() function originated
in the Unix world. It’s an acronym for Global
Regular Expression Print. Regular expressions
are a very powerful way of expressing patterns
of matching text, usually in a very formal
language. Whole books have been written
about regular expressions. We give a very
short introduction in “Revving up with regular
expressions,” later in this chapter.

The function name grep() appears in many
programming languages that deal with text
and reporting. Perl, for example, is famous
for its extensive grep functionality. For more
information, check out Perl For Dummies,
4th Edition, by Paul Hoffman (Wiley).

91 Chapter 5: Getting Started with Reading and Writing

Searching for multiple words
So, how do you find the names of all the states with more than one word?
This is easy when you realize that you can frame the question by finding all
those states that contain a space:

> state.name[grep(" ", state.name)]
 [1] "New Hampshire" "New Jersey"
 [3] "New Mexico" "New York"
 [5] "North Carolina" "North Dakota"
 [7] "Rhode Island" "South Carolina"
 [9] "South Dakota" "West Virginia"

The results include all the states that have two‐word names, such as New
Jersey, New York, North Carolina, South Dakota, and West Virginia.

You can see from this list that there are no state names that contain East.
You can confirm this by doing another find:

> state.name[grep("East", state.name)]
character(0)

When the result of a character operation is an empty vector (that is, there is
nothing in it), R represents it as character(0). Similarly, an empty, or zero‐
length, numeric vector is represented with integer(0) or numeric(0)
(see Chapter 4).

R makes a distinction between NULL and an empty vector. NULL usually
means something is undefined. This is subtly different from something that is
empty. For example, a character vector that happens to have no elements is
still a character vector, represented by character(0).

Substituting text
The sub() function (short for substitute) searches for a pattern in text and
replaces this pattern with replacement text. You use sub() to substitute
text for text, and you use its cousin gsub() to substitute all occurrences of a
 pattern. (The g in gsub() stands for global.)

Suppose you have the sentence A wolf in cheap clothing, which is clearly
a mistake. You can fix it with a gsub() substitution. The gsub() function
takes three arguments: the pattern to find, the replacement pattern, and the
text to modify:

> gsub("cheap", "sheep's", "A wolf in cheap clothing")
[1] "A wolf in sheep's clothing"

92 Part II: Getting Down to Work in R

Another common type of problem that can be solved with text substitution is
removing substrings. Removing substrings is the same as replacing the sub-
string with empty text (that is, nothing at all).

Imagine a situation in which you have three file names in a vector: file_a.
csv, file_b.csv, and file_c.csv. Your task is to extract a, b, and c from
those file names. You can do this in two steps: First, replace the pattern
"file_" with nothing, and then replace the ".csv" with nothing. You get
your desired vector:

> x <- c("file_a.csv", "file_b.csv", "file_c.csv")
> y <- gsub("file_", "", x)
> y
[1] "a.csv" "b.csv" "c.csv"
> gsub("\\.csv", "", y)
[1] "a" "b" "c"

A dot (.) is a wildcard in a regular expression. It indicates “any character.”
If you want to refer to a point, you have to escape it with two backslashes.
You can find more information on special characters in the section “Revving
up with regular expressions” later in this chapter, as well as the Help for
?regex.

Revving up with regular expressions
Until this point, you’ve worked mostly with fixed expressions to find or sub-
stitute text. This is useful but also limited. R supports the concept of regular
expressions, which allows you to search for patterns inside text. (Strictly
speaking, you already encountered \\. — also a regular expression.)

You may never have heard of regular expressions, but you’re probably
 familiar with similar concepts. For example, if you’ve ever used an * or a ?
to indicate any letter in a word, then you’ve used a form of wildcard search.
Regular expressions support the idea of wildcards and much more.

Regular expressions allow three ways of making a search pattern more gen-
eral than a single, fixed expression:

 ✓ Alternatives: You can search for instances of one pattern or another,
indicated by the | symbol. For example beach|beech matches both
beach and beech.

On English and American English keyboards, you can usually find the |
on the same key as backslash (\).

93 Chapter 5: Getting Started with Reading and Writing

 ✓ Grouping: You group patterns together using parentheses (). For
example you write be(a|e)ch to find both beach and beech.

 ✓ Quantifiers: You specify whether a component in the pattern must be
repeated or not by adding * (occurs zero or many times) or + (occurs
one or many times). For example, to find either bach or beech (zero or
more of a and e but not both), you use b(e*|a*)ch.

Extending text functionality with stringr
After this quick tour through the text manipulation
functions of R, you probably wonder why all
these functions have such unmemorable names
and seemingly diverse syntax. If so, you’re
not alone. In fact, Hadley Wickham wrote a
package available from CRAN that simplifies
and standardizes working with text in R. This
package is called stringr, and you can install
it by using the R console or by choosing Tools ➪
Install Packages. . . in RStudio (see Chapter 3).

Remember: Although you have to install a
package only once, you have to load it into the
workspace using the library() function
every time you start a new R session and plan
to use the functions in that package.

> install.packages("stringr")
> library("stringr")

Here are some of the advantages of using
stringr rather than the standard R functions:

 ✓ Function names and arguments are consis-
tent and more descriptive. For example, all
stringr functions have names starting
with str_ (such as str_detect() and
str_replace()).

 ✓ stringr has a more consistent way of
dealing with cases with missing data or
empty values.

 ✓ stringr has a more consistent way of
ensuring that input and output data are of
the same type.

The stringr equivalent for grep() is str_
detect(), and the equivalent for gsub() is
str_replace_all().

As a starting point to explore stringr, you
may find some of these functions useful:

 ✓ str_detect(): Detects the presence or
absence of a pattern in a string

 ✓ str_extract(): Extracts the first piece
of a string that matches a pattern

 ✓ str_length(): Returns the length of a
string (in characters)

 ✓ str_locate(): Locates the position of
the first occurrence of a pattern in a string

 ✓ str_match(): Extracts the first matched
group from a string

 ✓ str_replace(): Replaces the first
occurrence of a matched pattern in a string

 ✓ str_split(): Splits up a string into a
variable number of pieces

 ✓ str_sub(): Extracts substrings from a
character vector

 ✓ str_trim(): Trims white space from the
start and end of string

 ✓ str_wrap(): Wraps strings into nicely
formatted paragraphs

94 Part II: Getting Down to Work in R

Try the following examples. First, create a new variable with five words:

> rwords <- c("bach", "back", "beech", "beach", "black")

Find either beach or beech using alternative matching:

> grep("beach|beech", rwords)
[1] 3 4

This means the search string was found in components 3 and 4 of rwords. To
extract the actual components, you can use subsetting with square brackets:

> rwords[grep("beach|beech", rwords)]
[1] "beech" "beach"

Now use the grouping rule to extract the same words:

> rwords[grep("be(a|e)ch", rwords)]
[1] "beech" "beach"

Lastly, use the quantifier modification to extract bach and beech but not
beach:

rwords[grep("b(e*|a*)ch", rwords)]
[1] "bach" "beech"

To find more help in R about regular expressions, look at the Help page
?regex. Some other great resources for learning more about regular
expressions are Wikipedia (http://en.wikipedia.org/wiki/Regular_
expression) and www.regular‐expressions.info, where you can find
a quick‐start guide and tutorials.

Factoring in Factors
In real‐world problems, you often encounter data that can be described using
words rather than numerical values. For example, cars can be red, green, or
blue (or any other color); people can be left‐handed or right‐handed, male or
female; energy can be derived from coal, nuclear, wind, or wave power. You
can use the term categorical data to describe these examples — or anything
else that can be classified in categories.

R has a special data structure for categorical data, called factors. Factors are
closely related to characters because any character vector can be repre-
sented by a factor.

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

95 Chapter 5: Getting Started with Reading and Writing

Factors are special types of objects in R. They’re neither character vectors
nor numeric vectors, although they have some attributes of both. Factors
behave a little bit like character vectors in the sense that the unique catego-
ries are often text. Factors also behave a little bit like integer vectors because
R encodes the levels as integers.

Creating a factor
To create a factor in R, you use the factor() function. The first three
 arguments of factor() warrant some exploration:

 ✓ x: The input vector that you want to turn into a factor.

 ✓ levels: An optional vector of the values that x might have taken. The
default is lexicographically sorted, unique values of x.

 ✓ labels: Another optional vector that, by default, takes the same values
as levels. You can use this argument to rename your levels, as we
explain in the next paragraph.

The fact that you can supply both levels and labels to factor() can lead to
confusion. Just remember that levels refers to the input values of x, while
labels refers to the output values of the new factor.

Consider the following example of a vector consisting of compass directions:

> directions <- c("North", "East", "South", "South")

Notice that this vector contains the value "South" twice and lacks the value
"West". First, convert directions to a factor:

> factor(directions)
[1] North East South South
Levels: East North South

Notice that the levels of your new factor does not contain the value "West",
which is as expected. In practice, however, it makes sense to have all the
 possible compass directions as levels of your factor. To add the missing
level, you specify the levels arguments of factor():

> factor(directions, levels= c("North", "East", "South", "West"))
[1] North East South South
Levels: North East South West

As you can see, the values are still the same but this time the levels also
 contain "West".

96 Part II: Getting Down to Work in R

Now imagine that you actually prefer to have abbreviated names for the
levels. To do this, you make use of the labels argument:

> factor(directions,
 levels = c("North", "East", "South", "West"),
 labels = c("N", "E", "S", "W"))
[1] N E S S
Levels: N E S W

Converting a factor
Sometimes you need to explicitly convert factors to either text or numbers.
To do this, you use the functions as.character() or as.numeric().

First, convert your directions vector into a factor called directions.
factor (as you saw earlier):

> directions <- factor(c("North", "East", "South", "South"))
> directions
[1] North East South South
Levels: East North South

Use as.character() to convert a factor to a character vector:

> as.character(directions)
[1] "North" "East" "South" "South"

Use as.numeric() to convert a factor to a numeric vector. Note that this
will return the numeric codes that correspond to the factor levels. For exam-
ple, "East" corresponds to 1, "North" corresponds to 2, and so forth:

> as.numeric(directions)
[1] 2 1 3 3

Be very careful when you convert factors with numeric levels to a numeric
vector. The results may not be what you expect.

For example, imagine you have a vector that indicates some test score results
with the values c(9, 8, 10, 8, 9), which you convert to a factor:

> numbers <- factor(c(9, 8, 10, 8, 9))

To look at the internal representation of numbers, use str():

> str(numbers)
 Factor w/ 3 levels "8","9","10": 2 1 3 1 2

97 Chapter 5: Getting Started with Reading and Writing

This indicates that R stores the values as c(2, 1, 3, 1, 2) with
 associated levels of c("8", "9", "10"). Figure 5-2 gives a graphi-
cal representation of this difference between the levels and the internal
 representation.

If you want to convert numbers to a character vector, the results are pretty
much as you would expect:

> as.character(numbers)
[1] "9" "8" "10" "8" "9"

However, if you simply use as.numeric(), your result is a vector of the
internal level representations of your factor and not the original values:

> as.numeric(numbers)
[1] 2 1 3 1 2

The Help at ?factor describes a solution to this problem. The solution is to
first transform the factor to a character vector, and then to a numeric vector,
like this:

> as.numeric(as.character(numbers))
[1] 9 8 10 8 9

This is an example of nested functions in R, in which you pass the results of
one function to a second function. Nested functions are a bit like the Russian
nesting dolls, where each toy is inside the next:

 ✓ The inner function, as.character(numbers), contains the text
c("8", "9", "10").

 ✓ The outer function, as.numeric(...), does the final conversion to
c(9, 8, 10, 8, 9).

Figure 5-2:
A visual

comparison
between

a numeric
vector and a

factor.

98 Part II: Getting Down to Work in R

Looking at levels
To look a little bit under the hood of the structure of a factor, use the str()
function:

> str(state.region)
 Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2...

R reports the structure of state.region as a factor with four levels. You
can see that the first two levels are "Northeast" and "South", but these
levels are represented as integers 1, 2, 3, and 4.

Factors are a convenient way to describe categorical data. Internally a factor
is stored as a numeric value associated with each level. This means you can
set and investigate the levels of a factor separately from the values of the
factor.

To look at the levels of a factor, you use the levels() function. For example,
to extract the factor levels of state.region, use the following:

> levels(state.region)
[1] "Northeast" "South" "North Central" "West"

Because the values of the factor are linked to the levels, when you change
the levels, you also indirectly change the values themselves. To make this
clear, change the levels of state.region to the values "NE", "S", "NC",
and "W":

> levels(state.region) <- c("NE", "S", "NC", "W")
> head(state.region)
[1] S W W S W W
Levels: NE S NC W

Sometimes it’s useful to know the number of levels of a factor. The conve-
nience function nlevels() extracts the number of levels from a factor:

> nlevels(state.region)
[1] 4

Because the levels of a factor are internally stored by R as a vector, you also
can extract the number of levels using length:

> length(levels(state.region))
[1] 4

99 Chapter 5: Getting Started with Reading and Writing

For the very same reason, you can index the levels of a factor using standard
vector subsetting rules. For example, to extract the second and third factor
levels, use the following:

> levels(state.region)[2:3]
[1] "S" "NC"

Distinguishing data types
In the field of statistics, being able to distinguish between variables of differ-
ent types is very important. The type of data very often determines the type
of analysis that can be performed. As a result, R offers the ability to explicitly
classify data as follows:

 ✓ Nominal data: This type of data, which you represent in R using factors,
distinguishes between different categories, but there is no implied order
between categories. Examples of nominal data are colors (red, green,
blue), gender (male, female), and nationality (British, French, Japanese).

 ✓ Ordinal data: Ordinal data is distinguished by the fact that there is
some kind of natural order between elements but no indication of the
relative size difference. Any kind of data that is possible to rank in order
but not give exact values to is ordinal. For example, low < medium < high
describes data that is ordered with three levels.

In market research, it’s very common to use a five‐point scale to meas-
ure perceptions: strongly disagree < disagree < neutral < agree < strongly
agree. This is also an example of ordinal data.

Another example is the use of the names of colors to indicate order,
such as red < amber < green to indicate project status.

In R, you use ordered factors to describe ordinal data. For more on
ordered factors, see the “Working with ordered factors” section, later in
this chapter.

 ✓ Numeric data: You have numeric data when you can describe your data
with numbers (for example, length, weight, or count). Numeric data has
two subcategories.

• Interval scaled data: You have interval scaled data when the
interval between adjacent units of measurement is the same, but
the zero point is arbitrary. An everyday example of interval scaled
data is our calendar system. Each year has the same length, but
the zero point is arbitrary. In other words, time didn’t start in the
year zero — we simply use a convenient year to start counting.
This means you can add and subtract dates (and all other types
of interval scaled data), but you can’t meaningfully divide dates.
Other examples include temperature, as well as anything else
where there can be disagreement about where the starting point is.

100 Part II: Getting Down to Work in R

 Other examples of interval scaled data can be found in social
 science research such as market research.

 In R you can use integer or numeric objects to represent interval
scaled data.

• Ratio scaled data: This is data where all kinds of mathematical
operations are allowed, in particular the ability to multiply and
divide (in other words, take ratios). Most data in physical sciences
are ratio scaled — for example, length, mass, and speed. In R, you
use numeric objects to represent ratio scaled data.

Working with ordered factors
Sometimes data has some kind of natural order in which some elements are
in some sense “better” or “worse” than other elements, but at the same time
it’s impossible to ascribe a meaningful value to these. An example is any situ-
ation where project status is described as low, medium, or high. A similar
example is a traffic light that can be red, yellow, or green.

The name for this type of data, where rank ordering is important, is ordinal
data. In R, there is a special data type for ordinal data. This type is called
ordered factors and is an extension of factors that you’re already familiar with.

To create an ordered factor in R, you have two options:

 ✓ Use the factor() function with the argument ordered=TRUE.

 ✓ Use the ordered() function.

Summarizing categorical data
In most practical cases where you have
categorized data, some values are repeated.
As a practical example, consider the states of
the United States. Each state is in one of four
regions: Northeast, South, North Central, or
West (at least according to R). Have a look at
the built‐in dataset state.region:

> head(state.region)
[1] South West West South West West
Levels: Northeast South North Central West

You can use the handy table() function to
get a tabular summary of the values of a factor:

> table(state.region)
state.region
 Northeast South North Central West
 9 16 12 13

This tells you that the Northeast region has
9 states, the South region has 16 states, and
so on.

The table() function works by counting the
number of occurrences of each factor level.
You can learn more about table() in the
Help page at ?table.

101 Chapter 5: Getting Started with Reading and Writing

Say you want to represent the status of five projects. Each project has a
status of low, medium, or high:

> status <- c("Lo", "Hi", "Med", "Med", "Hi")

Now create an ordered factor with this status data:

> ordered.status <- factor(status,
+ levels = c("Lo", "Med", "Hi"),
+ ordered = TRUE)
> ordered.status
[1] Lo Hi Med Med Hi
Levels: Lo < Med < Hi

You can tell an ordered factor from an ordinary factor by the presence of
directional signs (< or >) in the levels.

In R, there is a really big practical advantage to using ordered factors. A great
many R functions recognize and treat ordered factors differently by print-
ing results in the order that you expect. For example, compare the results of
table(status) with table(ordered.status):

> table(status)
status
 Hi Lo Med
 2 1 2

Notice that the results are ordered alphabetically. However, the results of
performing the same function on the ordered factor yields results that are
easier to interpret because they’re now sorted in the order Lo, Med, Hi:

> table(ordered.status)
ordered.status
 Lo Med Hi
 1 2 2

R preserves the ordering information inherent in ordered factors. In Part V,
you see how this becomes an essential tool to gain control over the appear-
ance of bar charts.

Also, in statistical modeling, R applies the appropriate statistical transforma-
tion (or contrasts) when you have factors or ordered factors in your model.
In Chapter 15, you do some statistical modeling with categorical variables.

102 Part II: Getting Down to Work in R

Going on a Date with R
In This Chapter

 ▶ Working with dates in R

 ▶ Understanding the different ways of representing dates

 ▶ Throwing time into the mix

 ▶ Formatting dates and times for pretty printing

 ▶ Operating on dates and times

A
ll kinds of real‐world data are associated with a specific date or instant
in time. Companies report results each quarter. Stock markets report

closing prices daily. Network analysts measure traffic by the hour (if not by
the minute). And of course, scientists measure air temperature, sometimes
by the minute, sometimes by the day, and have done so for decades.

Dealing with dates accurately can be a complicated task. You have to
account for time‐zone differences, leap years, and regional differences in
holidays. In addition, people report data differently in different places. For
example, what an American would write as “May 12, 2010” or “05‐12‐10”
would be written by someone from the United Kingdom as “12 May 2010”
or “12‐05‐10.” Working with a time instant on a specific day isn’t any easier.
The same time may be written as 9:25 p.m., 21:25, or 21h25 — not to mention
time zones!

In this chapter, you look at the different ways of representing dates and
times using R. You take control of the format of dates and time for pretty
printing. Then you do some math with dates — addition and subtraction.
Finally, you use some tricks to extract specific components, such as the
month, from a date.

Chapter 6

104 Part II: Getting Down to Work in R

Working with Dates
R has a range of functions that allow you to work with dates and times. The
easiest way of creating a date is to use the as.Date() function. For example,
you write the opening day of the 2016 Rio Olympic Games as:

> xd <- as.Date("2016-08-05")
> xd
[1] "2016-08-05"
> str(xd)
 Date[1:1], format: "2016-08-05"

This works because the default format for dates in as.Date() is YYYY‐MM‐
DD — four digits for year, and two digits for month and day, separated by a
hyphen. In the next section, you get to specify dates in different formats.

To find out what day of the week this is, use weekdays():

 > weekdays(xd)
[1] "Friday"

You can add or subtract numbers from dates to create new dates. For exam-
ple, to calculate the date that is seven days in the future, use the following:

> xd + 7
[1] "2016-08-12"

In the same way as with numbers or text, you can put multiple dates into a
vector. To create a vector of seven days starting on July 27, add 0:6 to the
starting date. (Remember: The colon operator generates integer sequences.)

> xd + 0:6
[1] "2016-08-05" "2016-08-06" "2016-08-07" "2016-08-08"
[5] "2016-08-09" "2016-08-10" "2016-08-11"

Because the weekdays() function takes vector input, it returns the days of
the week for this sequence:

> weekdays(xd + 0:6)
[1] "Friday" "Saturday" "Sunday" "Monday"
[5] "Tuesday" "Wednesday" "Thursday"

You can use the seq() function to create sequences of dates in a far more
flexible way. As with numeric vectors, you have to specify at least three of the
arguments (from, to, by, and length.out). However, in the case of Date
objects, the by argument is very flexible. You specify by as a string consisting

105 Chapter 6: Going on a Date with R

of a number followed by days, weeks, or months. Imagine you want to create
a sequence of every second month of 2016, starting at January 1:

> startDate <- as.Date("2016-01-01")
> xm <- seq(startDate, by = "2 months", length.out = 6)
> xm
[1] "2016-01-01" "2016-03-01" "2016-05-01" "2016-07-01"
[5] "2016-09-01" "2016-11-01"

In addition to weekdays(), you also can get R to report on months() and
quarters():

> months(xm)
[1] "January" "March" "May" "July"
[5] "September" "November"

> quarters(xm)
[1] "Q1" "Q1" "Q2" "Q3" "Q3" "Q4"

The results of many date functions, including weekdays() and months()
depends on the locale of the machine you’re working on. The locale
describes elements of international customization on a specific installation of
R. This includes date formats, language settings, and currency settings. To find
out some of the locale settings on your machine, use Sys.localeconv().
R sets the value of these variables at install time by interrogating the operat-
ing system for details. You can change these settings at runtime or during the
 session with Sys.setlocale().

To view the locale settings on your machine, try the following:

> Sys.localeconv()

Table 6-1 summarizes some useful functions for working with dates.

Table 6-1 Useful Functions with Dates
Function Description
as.Date() Converts character string to Date

weekdays() Full weekday name in the current locale (for example,
Sunday, Monday, Tuesday)

months() Full month name in the current locale (for example, January,
February, March)

quarters() Quarter numbers (Q1, Q2, Q3, or Q4)

seq() Generates dates sequences if you pass it a Date object as
its first argument

106 Part II: Getting Down to Work in R

Presenting Dates in Different Formats
You’ve probably noticed that as.Date() is fairly prescriptive in its defaults:
It expects the date to be formatted in the order of year, month, and day.
Fortunately, R allows you flexibility in specifying the date format.

By using the format argument of as.Date(), you can convert any date
format into a Date object. For example, to convert “5 Aug 2016” into a date,
use the following:

> as.Date("5 Aug 2016", format = "%d %b %Y")
[1] "2016-08-05"

This rather cryptic line of code indicates that the date format consists of the
day (%d), abbreviated month name (%b), and the year with century (%Y), with
spaces between each component.

Table 6-2 lists some of the many date format codes that you can use to spec-
ify dates. You can access the full list by typing ?strptime in your R console.

Table 6-2 Some Format Codes for Dates (For Use
 with as.Date, POSXct, POSIXlt, and strptime)
Format Description
%Y Year with century.

%y Year without century (00–99). Values 00 to 68 are prefixed by 20, and
values 69 to 99 are prefixed by 19.

%m Month as decimal number (01–12).

%B Full month name in the current locale. (Also matches abbreviated name
on input.)

%b Abbreviated month name in the current locale. (Also matches full name
on input.)

%d Day of the month as a decimal number (01–31). You don’t need to add
the leading zero when converting text to Date, but when you format a
Date as text, R adds the leading zero.

%A Full weekday name in the current locale. (Also matches abbreviated
name on input.)

%a Abbreviated weekday name in the current locale. (Also matches full
name on input.)

%w Weekday as decimal number (0–6, with Sunday being 0).

107 Chapter 6: Going on a Date with R

Try the formatting codes with another common date format, “05/8/2016”
(that is, day, month, and year separated by a slash):

> as.Date("05/8/2016", format = "%d/%m/%Y")
[1] "2016-08-05"

Adding Time Information to Dates
Often, referring only to dates isn’t enough. You also need to indicate a spe-
cific time in hours and minutes.

To specify time information in addition to dates, you can choose between
two functions in R: as.POSIXct() and as.POSIXlt(). These two datetime
functions differ in the way that they store date information internally, as
well as in the way that you can extract date and time elements. (For more on
these two functions, see the nearby sidebar, “The two datetime functions.”)

POSIX is the name of a set of standards that refers to the UNIX operating
system. In R, you find two types of date‐time objects that use this set of stand-
ards. These types are called POSIXct and POSIXlt, and you can create and
change them using functions with the same name. POSIXct refers to a time
that is internally stored as the number of seconds since the start of 1970, by
default. (You can modify the origin year by setting the origin argument to
POSIXct().) POSIXlt refers to a date stored as a named list of vectors for
the year, month, day, hours, and minutes.

According to Wikipedia, the time of the Apollo 11 moon landing was July 20,
1969, at 20:17:39 UTC. (UTC is the acronym for Coordinated Universal Time. It’s
how the world’s clocks are regulated.) To express this date and time in R, try:

> apollo <- "July 20, 1969, 20:17:39"
> apollo.fmt <- "%B %d, %Y, %H:%M:%S"
> xct <- as.POSIXct(apollo, format = apollo.fmt, tz = "UTC")
> xct
[1] "1969-07-20 20:17:39 UTC"

As you can see, as.POSIXct() takes similar arguments to as.Date(), but
you need to specify the date format as well as the time zone.

Table 6-3 lists additional formatting codes that are useful when working with
time information in dates.

108 Part II: Getting Down to Work in R

The POSIXct format allows fractional second resolution. This means you can
work with time stamps in fractions of a second, such as millisecond, in your
date objects.

Table 6-3 Formatting Codes for the Time Element
 of POSIXct and POSIXlt Datetimes
Format Description
%H Hours as a decimal number (00–23)

%I Hours as a decimal number (01–12)

%M Minutes as a decimal number (00–59)

%S Seconds as a decimal number (00–61)

%p AM/PM indicator

The two datetime functions
In most computer languages and systems,
dates are represented by numeric values
that indicate the number of seconds since
a specific instant in time (known as the
epoch).

In R, you can use two functions to work
with datetime objects: POSIXct() and
POSIXlt(). These functions create
objects of class POSIXct and POSIXlt,
respectively:

 ✓ POSIXct objects represent the (signed)
number of seconds since the beginning of

1970 (in the UTC time zone) as a numeric
vector.

 ✓ POSIXlt objects are named lists of vec-
tors representing nine elements of a date-
time (sec, min, hour, and so on).

Because POSIXct are numbers, and
POSIXlt objects are lists, POSIXct objects
require less memory.

The following table summarizes the main
differences between the different datetime
classes in R.

Class Description Useful Functions

Date Calendar date as.Date()

POSIXct The number of seconds since the beginning of 1970
(in the UTC time zone) as a numeric vector

as.POSIXct()

POSIXlt A named list of vectors representing nine elements
(sec, min, hour, and so on)

as.POSIXlt()

109 Chapter 6: Going on a Date with R

Formatting Dates and Times
To format a date for pretty printing, you use format(), which takes a
POSIXct or POSIXlt datetime as input, together with a formatting string.
You have already encountered a formatting string when creating a date.

Continuing with the example where the object xct is the day and time of the
Apollo landing, you can format this date and time in many different ways. For
example, to format it as DD/MM/YY, try:

> format(xct, "%d/%m/%y")
[1] "20/07/69"

In addition to the formatting codes, you can use any other character. If you
want to format the xct datetime as a sentence, try the following:

> format(xct, "%M minutes past %I %p, on %d %B %Y")
[1] "17 minutes past 08 PM, on 20 July 1969"

You can find the formatting codes in Table 6-2 and Table 6-3, as well as at the
Help page ?strptime.

Performing Operations
on Dates and Times

Because R stores datetime objects as numbers, you can do various opera-
tions on dates, including addition, subtraction, comparison, and extraction.

Addition and subtraction
R stores objects of class POSIXct as the number of seconds since the epoch
(usually the start of 1970), so you can do addition and subtraction by adding
or subtracting seconds. It’s more common to add or subtract days from
dates, so it’s useful to know that each day has 86,400 seconds.

To add seven days to the Apollo landing date, use addition, just remember to
multiply the number of days by the number of seconds per day:

> xct + 7*86400
[1] "1969-07-27 20:17:39 UTC"

110 Part II: Getting Down to Work in R

Once you know that you can convert any duration to seconds, you can add or
subtract any value to a datetime object. For example, add three hours to the
time of the Apollo moon landing:

> xct + 3*60*60
[1] "1969-07-20 23:17:39 UTC"

Similarly, to get a date seven days earlier, use subtraction:

> xct - 7*86400
[1] "1969-07-13 20:17:39 UTC"

There is an important difference between Date objects and POSIXct or
POSIXlt objects. If you use a Date object, you add and subtract days; with
POSIXct and POSIXlt, the operations add or subtract only seconds.

Try that yourself, first converting xct to a Date object, then subtracting 7:

> as.Date(xct) - 7
[1] "1969-07-13"

Comparison of dates
Similar to the way that you can add or subtract dates you can also compare
dates with the comparison operators, such as less than (<) or greater than
(>), covered in Chapter 4.

Say you want to compare the current time with any fixed time. In R, you use
the Sys.time() function to get the current system time:

> Sys.time()
[1] "2015-01-16 14:19:56 GMT"

Now you know the exact time when we wrote this sentence. Clearly when you
try the same command you will get a different result!

Now you can compare your current system time with the time of the Apollo
landing:

> Sys.time() < xct
[1] FALSE

If your system clock is accurate, then obviously you would expect the result
to be false, because the moon landing happened more than 40 years ago.

As we cover in Chapter 4, the comparison operators are vectorized, so you
can compare an entire vector of dates with the moon landing date. Try to use

111 Chapter 6: Going on a Date with R

all your knowledge of dates, sequences of dates, and comparison operators
to compare the start of several decades to the moon landing date.

Start by creating a POSIXct object containing the first day of 1950. Then use
seq() to create a sequence with intervals of ten years:

> dec.start <- as.POSIXct("1950-01-01")
> dec <- seq(dec.start, by = "10 years", length.out = 4)
> dec
[1] "1950-01-01 GMT" "1960-01-01 GMT" "1970-01-01 GMT"
[4] "1980-01-01 GMT"

Finally, you can compare your new vector dec with the moon landing date:

> dec > xct
[1] FALSE FALSE TRUE TRUE

As you can see, the first two results (comparing the date of the moon landing
to 1950 and 1960) are FALSE, and the last two values (comparing the date of
the moon landing to 1970 and 1980) are TRUE.

Extraction
Another thing you may want to do is to extract specific elements of the date,
such as the day, month, or year. For example, scientists may want to com-
pare the weather in a specific month (say, January) for many different years.
To do this, they first have to determine the month, by extracting the months
from the datetime object.

An easy way to achieve this is to work with dates in the POSIXlt class,
because this type of data is stored internally as a named list, which enables
you to extract components by name. To do this, first convert the Date class:

> xlt <- as.POSIXlt(xct)
> xlt
[1] "1969-07-20 20:17:39 UTC"

Next, use the $ operator to extract the different components. For example, to
get the year, use the following:

> xlt$year
[1] 69

And to get the month, use the following:

> xlt$mon
[1] 6

112 Part II: Getting Down to Work in R

More date and time fun(ctionality)
In this chapter, we barely scratch the surface
of how to handle dates and times in R. You
may want to explore additional functionality
available in R and add‐on packages by looking
at the following:

 ✓ chron: In addition to all the data classes
that we cover in this chapter, R has the sim-
pler chron class for datetime objects that
don’t have a time zone. To investigate this
class, first load the chron package with
library("chron") and then read the
Help file ?chron.

 ✓ lubridate: You can download the add‐
on package lubridate from CRAN.
This package provides many functions
to make it easier to work with dates. You
can download and find more informa-
tion at http://cran.r‐project.
org/web/ packages/lubridate/
index.html.

R also has very good support for objects that
represent time series data. Time series data
usually refers to information that was recorded
at fixed intervals, such as days, months, or
years:

 ✓ ts: In R, you use the ts() function to
create time series objects. These are
vector or matrix objects that contain infor-
mation about the observations, together
with information about the start, frequency,
and end of each observation period. With
ts class data you can use powerful R func-
tions to do modeling and forecasting — for
example, arima() is a general model for
time series data.

 ✓ zoo and xts: The add‐on package zoo
extends time series objects by allowing
observations that don’t have such strictly
fixed intervals. You can download it from
CRAN at http://cran.r‐project.
org/web/packages/zoo/index.
html. The add‐on package xts provides
additional extensions to time series data
and builds on the functionality of ts as
well as zoo objects. You can download
xts from CRAN: http://cran.r‐ -
project.org/web/packages/
xts/index.html.

Now you have all the information to go on a
date with R and enjoy the experience!

You might be surprised to find out that R considers July to be the sixth
month of the year. POSIXlt is based on an old Unix format, and that format
starts to count from 0 instead of 1. In other words, 0 represents January.
Get more information on the exact coding of all values on the help page
?POSIXlt.

You can use the unclass() function to expose the internal structure of
POSIXlt objects.

> unclass(xlt)

If you run this line of code, you’ll see that POSIXlt objects are really just
named lists. You get to work with lists in much more detail in Chapter 7.

http://cran.r-project.org/web/packages/lubridate/index.html
http://cran.r-project.org/web/packages/lubridate/index.html
http://cran.r-project.org/web/packages/lubridate/index.html
http://cran.r-project.org/web/packages/zoo/index.html
http://cran.r-project.org/web/packages/zoo/index.html
http://cran.r-project.org/web/packages/zoo/index.html
http://cran.r-project.org/web/packages/xts/index.html
http://cran.r-project.org/web/packages/xts/index.html
http://cran.r-project.org/web/packages/xts/index.html

Working in More Dimensions
In This Chapter

 ▶ Creating matrices

 ▶ Getting values in and out of a matrix

 ▶ Using row and column names in a matrix

 ▶ Performing matrix calculations

 ▶ Working with multidimensional arrays

 ▶ Putting your data in a data frame

 ▶ Getting data in and out of a data frame

 ▶ Working with lists

I
n the previous chapters, you worked with one‐dimensional vectors. The
data could be represented by a single row or column in a Microsoft Excel

spreadsheet. But often you need more than one dimension. Many calcula-
tions in statistics are based on matrices, so you need to be able to represent
matrices and perform matrix calculations. Many datasets contain values of
different types for multiple variables and observations, so you need a two‐
dimensional table to represent this data. In Excel, you would do that in a
spreadsheet; in R, you use a specific object called a data frame for the task.

Adding a Second Dimension
In the previous chapters, you constructed vectors to hold data in a one‐
dimensional structure. In addition to vectors, R can represent matrices as an
object you work and calculate with. In fact, R really shines when it comes to
matrix calculations and operations. In this section, we take a closer look at
the magic you can do with them.

Chapter 7

114 Part II: Getting Down to Work in R

Discovering a new dimension
Vectors are closely related to a bigger class of objects, arrays. Arrays have
two very important features:

 ✓ They contain only a single type of value.

 ✓ They have dimensions.

The dimensions of an array determine the type of the array. You know
already that a vector has only one dimension. An array with two dimensions
is a matrix. Anything with more than two dimensions is simply called an
array. You find a graphical representation of this in Figure 7-1.

Technically, a vector has no dimensions at all in R. R returns NULL as a result
if you use the functions dim(), nrow(), or ncol() (mentioned in the section
“Looking at the properties” later in this chapter) with a vector as argument.

Creating your first matrix
Creating a matrix is almost as easy as writing the word: You simply use the
matrix() function. You do have to give R a little bit more information,
though. R needs to know which values you want to put in the matrix and how
you want to put them in. The matrix() function has several arguments for
this:

 ✓ data is a vector of values you want in the matrix.

 ✓ ncol takes a single number that tells R how many columns you want.

 ✓ nrow takes a single number that tells R how many rows you want.

 ✓ byrow takes a logical value that tells R whether you want to fill the
matrix row‐wise (TRUE) or column‐wise (FALSE). Column‐wise is the
default.

Figure 7-1:
A vector, a
matrix, and

an array.

115 Chapter 7: Working in More Dimensions

So, the following code results in a matrix with the numbers 1 through 12, in
four columns and three rows.

> first.matrix <- matrix(1:12, ncol = 4)
> first.matrix
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

You don’t have to specify both ncol and nrow. If you specify one, R will
know automatically what the other needs to be.

Alternatively, if you want to fill the matrix row by row, try:

> matrix(1:12, ncol = 4, byrow = TRUE)
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Looking at the properties
You can look at the structure of an object using the str() function. If you do
that for your first matrix, you get the following result:

> str(first.matrix)
 int [1:3, 1:4] 1 2 3 4 5 6 7 8 9 10 ...

This looks remarkably similar to the output for a vector, with the difference
that R displays both the indices for the rows and for the columns. If you want
the number of rows and columns without looking at the structure, you can
use the dim() function.

> dim(first.matrix)
[1] 3 4

To get only the number of rows, you use the nrow() function. The ncol()
function gives you the number of columns of a matrix.

You can find the total number of values in a matrix exactly the same way as
you do with a vector, using the length() function:

> length(first.matrix)
[1] 12

116 Part II: Getting Down to Work in R

Actually, if you look at the output of the str() function, that matrix looks
very much like a vector. That’s because, internally, it’s a vector with a small
extra piece of information that tells R the dimensions (see the nearby side-
bar, “Playing with attributes”). You can use this property of matrices in
 calculations, as you’ll see further in this chapter.

Playing with attributes
Both the names and the dimensions of matrices
and arrays are stored in R as attributes of the
object. These attributes can be seen as labeled
values you can attach to any object. They form
one of the mechanisms R uses to define specific
object types like dates, time series, and so on.
They can include any kind of information, and
you can use them yourself to add information
to any object.

To illustrate, re-create my.array and
baskets.team (created in the later sections
“Adding more dimensions” and “Combining
vectors into a matrix”).

> my.array <- array(1:24, dim =
c(3, 4, 2))

> baskets.team <- rbind(
+ baskets.of.Granny =

c(12, 4, 5, 6, 9, 3),
+ baskets.of.Geraldine =

c(5, 4, 2, 4, 12, 9)
+)

To see all the attributes of an object, use the
attributes() function. To see all the
attributes of my.array, try:

> attributes(my.array)
$dim
[1] 3 4 2

This function returns a named list, where
each item in the list is an attribute. Each

attribute can, itself, be a list again. For
example, the attribute dimnames is
actually a list containing the row and
column names of a matrix. You can check
that for yourself by checking the output of
attributes(baskets.team). You can
also set all attributes as a named list — find
examples in the Help file ?attributes.

To get or set a single attribute, use the attr()
function. This function takes two important
arguments. The first argument is the object you
want to examine, and the second argument is
the name of the attribute you want to see or
change. If the attribute you ask for doesn’t exist,
R simply returns NULL.

Imagine you want to add which season Granny
and Geraldine scored the baskets mentioned in
baskets.team. You can do this with:

> attr(baskets.team, "season")
<- "2010-2011"

To get the value of this attribute returned, use:

> attr(baskets.team, "season")
[1] "2010-2011"

You can remove attributes by setting their value
to NULL:

> attr(baskets.team, "season") <- NULL

117 Chapter 7: Working in More Dimensions

Combining vectors into a matrix
In Chapter 4, you create two vectors that contain the number of baskets
Granny and Geraldine made in the six games of this basketball season. It
would be nicer, though, if the number of baskets for the whole team were
contained in one object. With matrices, this becomes possible. You can com-
bine both vectors as two rows of a matrix with the rbind() function:

> baskets.of.Granny <- c(12, 4, 5, 6, 9, 3)
> baskets.of.Geraldine <- c(5, 4, 2, 4, 12, 9)
> baskets.team <- rbind(baskets.of.Granny, baskets.of.Geraldine)

The object baskets.team is a matrix, and the rows take the names of the
original vectors. You work with these names in the next section.

> baskets.team
 [,1] [,2] [,3] [,4] [,5] [,6]
baskets.of.Granny 12 4 5 6 9 3
baskets.of.Geraldine 5 4 2 4 12 9

The cbind() function does something similar. It binds the vectors as
 columns of a matrix:

> cbind(1:3, 4:6, matrix(7:12, ncol = 2))
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Here you bind together three different nameless objects:

 ✓ A vector with the values 1 to 3 (1:3)

 ✓ A vector with the values 4 to 6 (4:6)

 ✓ A matrix with two columns and three rows, filled column‐wise with the
values 7 through 12 (matrix(7:12, ncol = 2))

This example shows some other properties of cbind() and rbind() that
can be very useful:

 ✓ The functions work with both vectors and matrices. They also work on
other objects, as shown in the “Manipulating Values in a Data Frame”
section, later in this chapter.

 ✓ You can give more than two arguments to either function. The objects
are combined in the order you specify them in the arguments.

 ✓ You can combine different types of objects, as long as the dimensions
fit. Here you combine vectors and matrices in one function call.

118 Part II: Getting Down to Work in R

Using the Indices
If you look at the output of the code in the previous section, you’ll probably
notice the brackets you used in the previous chapters for accessing values in
vectors through the indices. But this time, these indices look a bit different.
Whereas a vector has only one dimension that can be indexed, a matrix has two.
You separate the indices for both dimensions by a comma — you give the index
for the row before the comma, and the index for the column after the comma.

Extracting values from a matrix
You can use these indices the same way you use vectors in Chapter 4. You
can assign and extract values, use numerical or logical indices, drop values
by using a minus sign, and so forth.

Using numeric indices
For example, to extract the values in the first two rows and the last two
 columns, try:

> first.matrix[1:2, 2:3]
 [,1] [,2]
[1,] 4 7
[2,] 5 8

R returns a matrix. Pay attention to the indices of this new matrix — they’re
not the indices of the original matrix anymore.

R gives you an easy way to extract complete rows and columns from a matrix.
You simply don’t specify the other dimension. For example, to get the second
and third rows from your first matrix, try:

> first.matrix[2:3,]
 [,1] [,2] [,3] [,4]
[1,] 2 5 8 11
[2,] 3 6 9 12

Dropping values using negative indices
In Chapter 4, you drop values in a vector by using a negative value for the
index. This little trick works perfectly well with matrices, too. So, to get all
the values except the second row and third column of first.matrix, try:

> first.matrix[-2, -3]
 [,1] [,2] [,3]
[1,] 1 4 10
[2,] 3 6 12

119 Chapter 7: Working in More Dimensions

With matrices, a negative index always means: “Drop the complete row or
column.” If you want to drop only the element at the second row and the
third column, you have to treat the matrix like a vector. So, in this case, you
drop the second element in the third column like this:

> nr <- nrow(first.matrix)
> id <- nr * 2 + 2
> first.matrix[-id]
 [1] 1 2 3 4 5 6 7 9 10 11 12

This returns a vector, because the 11 remaining elements don’t fit into a
matrix anymore. Now what happened here exactly? Remember that matrices
are read column‐wise. To get the second element in the third column, you
need to do the following:

1. Count the number of rows, using nrow(), and store that in a
 variable — for example nr.

You don’t have to do this, but it makes the code easier to read.

2. Count two columns and then add 2 to get the second element in
the third column.

Again store this result in a variable (for example, id).

3. Use the one‐dimensional vector extraction [] to drop this value,
as shown in Chapter 4.

You can do this in one line, like this:

> first.matrix[-(2 * nrow(first.matrix) + 2)]
 [1] 1 2 3 4 5 6 7 9 10 11 12

This is just one example of how you can work with indices while treating a
matrix like a vector. It requires a bit of thinking at first, but tricks like these
can offer very neat solutions to more complex problems as well, especially if
you need your code to run as fast as possible.

Juggling dimensions
As with vectors, you can combine multiple numbers in the indices. If you
want to drop the first and third rows of the matrix, you can do so like this:

> first.matrix[-c(1, 3),]
[1] 2 5 8 11

Wait a minute. . . . There’s only one index. R doesn’t return a matrix here — it
returns a vector!

120 Part II: Getting Down to Work in R

By default, R always tries to simplify the objects to the smallest number
of dimensions possible when you use the brackets to extract values from
an array. So, if you ask for only one column or row, R returns a vector by
 dropping a dimension.

You can force R to keep all dimensions by using the extra argument drop
from the indexing function. To get the second row returned as a matrix, you
do the following:

> first.matrix[2, , drop = FALSE]
 [,1] [,2] [,3] [,4]
[1,] 2 5 8 11

This seems like utter magic, but it’s not that difficult. You supply three
 argu ments between the brackets, separated by commas. The first argument
is the row index. The second argument is the column index. But then what?

Actually, the square brackets work like a function, and the row index and
column index are arguments for the square brackets. Now you add an extra
argument drop with the value FALSE. As you do with any other function, you
separate the arguments by commas. Put all this together, and you have the
code shown here.

The default dropping of dimensions of R can be handy, but it’s famous for
being overlooked. It can cause serious mishap if you aren’t aware of it.
Particularly in code where you take a subset of a matrix, you can easily forget
about the case where only one row or column is selected.

Replacing values in a matrix
Replacing values in a matrix is done in a very similar way to replacing values
in a vector. To replace the value in the second row and third column of
first.matrix with 4, try:

> first.matrix[3, 2] <- 4
> first.matrix
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 4 9 12

121 Chapter 7: Working in More Dimensions

You can change an entire row or column of values by not specifying the other
dimension. Note that values are recycled, so to change the second row to the
sequence 1, 3, 1, 3, try:

> first.matrix[2,] <- c(1, 3)
> first.matrix
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 1 3 1 3
[3,] 3 4 9 12

You can replace a subset of values within the matrix by another matrix. You
don’t even have to specify the values as a matrix — a vector will do. Try:

> first.matrix[1:2, 3:4] <- c(8, 4, 2, 1)
> first.matrix
 [,1] [,2] [,3] [,4]
[1,] 1 4 8 2
[2,] 1 3 4 1
[3,] 3 4 9 12

Here you change the values in the first two rows and the last two columns to
the numbers 8, 4, 2, and 1.

R reads and writes matrices column‐wise by default. So, if you put a vector in
a matrix or a subset of a matrix, the values will be added column‐wise regard-
less of the method. If you want to do this row‐wise, you first have to con-
struct a matrix with the values using the argument byrow=TRUE. Then you
use this matrix instead of the original vector to insert the values.

Naming Matrix Rows and Columns
The rbind() function conveniently added the names of the vectors
 baskets.of.Granny and baskets.of.Geraldine to the rows of the
matrix baskets.team in the previous section. You name the values in a
vector in Chapter 5, and you can do something very similar with rows and
columns in a matrix.

For that, you have the functions rownames() and colnames(). Guess which
one does what? Both functions work much like the names() function you use
when naming vector values.

122 Part II: Getting Down to Work in R

Changing the row and column names
The matrix baskets.team from the previous section already has some row
names. It would be better if the names of the rows would just read "Granny"
and "Geraldine". You can easily change these row names like this:

> rownames(baskets.team) <- c("Granny", "Geraldine")

You can look at the matrix to check if this did what it’s supposed to do, or
you can take a look at the row names itself like this:

> rownames(baskets.team)
[1] "Granny" "Geraldine"

The colnames() function works exactly the same. You can, for example, add
the number of the game as a column name using the following code:

> colnames(baskets.team) <- c("1st", "2nd", "3th", "4th", "5th", "6th")

This gives you the following matrix:

> baskets.team
 1st 2nd 3th 4th 5th 6th
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9

This is almost like you want it, but the third column name contains an annoy-
ing writing mistake. No problem there, R allows you to easily correct that
mistake. Just as the with names() function, you can use indices to extract or
to change a specific row or column name. You can correct the mistake in the
column names like this:

> colnames(baskets.team)[3] <- "3rd"

If you want to get rid of either column names or row names, the only thing
you need to do is set their value to NULL. This also works for vector names,
by the way. You can try that out yourself on a copy of the matrix baskets.
team like this:

> baskets.copy <- baskets.team
> colnames(baskets.copy) <- NULL
> baskets.copy
 [,1] [,2] [,3] [,4] [,5] [,6]
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9

123 Chapter 7: Working in More Dimensions

R stores the row and column names in an attribute called dimnames. Use the
dimnames() function to extract or set those values. (See the “Playing with
attributes” sidebar, earlier in this chapter, for more information.)

Using names as indices
These row and column names can be used just like you use names for values
in a vector, as explained in Chapter 5. You can use these names instead of the
index number to select values from a vector. This works for matrices as well,
using the row and column names.

Say you want to select the second and the fifth game for both ladies, try:

> baskets.team[, c("2nd", "5th")]
 2nd 5th
Granny 4 9
Geraldine 4 12

Exactly as before, you get all rows if you don’t specify which ones you want.
Alternatively, you can extract all the results for Granny like this:

> baskets.team["Granny",]
1st 2nd 3rd 4th 5th 6th
 12 4 5 6 9 3

That’s the result, indeed, but the row name is gone now. As explained in the
“Juggling dimensions” section, earlier in this chapter, R tries to simplify the
matrix to a vector, if that’s possible. In this case, a single row is returned so,
by default, this result is transformed to a vector.

If a one‐row matrix is simplified to a vector, the column names are used as
names for the values. If a one‐column matrix is simplified to a vector, the row
names are used as names for the vector. If you want to keep all names, you
must set the argument drop to FALSE to avoid conversion to a vector.

Calculating with Matrices
Probably the strongest feature of R is the ease of dealing with matrix
 operations in an easy and optimized way. Because much of statistics boils
down to matrix operations, it’s only natural that R loves to crunch those
numbers.

124 Part II: Getting Down to Work in R

Using standard operations with matrices
When talking about operations on matrices, you can treat either the elements
of the matrix or the whole matrix as the value you operate on. That difference
is pretty clear when you compare, for example, transposing a matrix and
adding a single number (or scalar) to a matrix. When transposing, you work
with the whole matrix. When adding a scalar to a matrix, you add that scalar
to every element of the matrix.

You add a scalar to a matrix simply by using the addition operator, +, like
this:

> first.matrix + 4
 [,1] [,2] [,3] [,4]
[1,] 5 8 12 6
[2,] 5 7 8 5
[3,] 7 8 13 16

You can use all other arithmetic operators in exactly the same way to
 perform an operation on all elements of a matrix.

The difference between operations on matrices and elements becomes less
clear if you talk about adding matrices together. In fact, the addition of two
matrices is the addition of their corresponding elements. So, you need to
make sure both matrices have the same dimensions.

Look at another example: Say you want to add 1 to the first row, 2 to the
second row, and 3 to the third row of the matrix first.matrix. You can
do this by constructing a matrix second.matrix that has four columns and
three rows and that has 1, 2, and 3 as values in the first, second, and third
rows, respectively. Using the recycling of the first argument by the matrix
function (see Chapter 4), you can try:

> second.matrix <- matrix(1:3, nrow = 3, ncol = 4)

With the addition operator, you can add both matrices together, like this:

> first.matrix + second.matrix
 [,1] [,2] [,3] [,4]
[1,] 2 5 9 3
[2,] 3 5 6 3
[3,] 6 7 12 15

This is the solution your math teacher would approve of if she asked you to
do the matrix addition of the first and second matrix. And even more, if the

125 Chapter 7: Working in More Dimensions

dimensions of both matrices are not the same, R will complain and refuse to
carry out the operation, as you can see:

> first.matrix + second.matrix[, 1:3]
Error in first.matrix + second.matrix[, 1:3] : non-conformable arrays

But what would happen if instead of adding a matrix, we added a vector?
Try this:

> first.matrix + 1:3
 [,1] [,2] [,3] [,4]
[1,] 2 5 9 3
[2,] 3 5 6 3
[3,] 6 7 12 15

R does not complain about the dimensions, and recycles the vector over the
values of the matrices! In fact, R treats the matrix as a vector by simply ignor-
ing the dimensions. So, in this case, you don’t use matrix addition but simple
(vectorized) addition (see Chapter 4).

By default, R fills matrices column‐wise. Whenever R reads a matrix, it also
reads it column‐wise. This has important implications for the work with
matrices. If you don’t stay aware of this, R can bite you in the leg nastily.

Calculating row and column summaries
In Chapter 4, you summarize vectors using functions like sum() and prod().
All these functions work on matrices as well, because a matrix is simply a
vector with dimensions attached to it. You also can summarize the rows or
columns of a matrix using some specialized functions.

In the previous section, you created a matrix baskets.team with the
number of baskets that both Granny and Geraldine made in the previous
 basketball season. To get the total number each woman made during the last
six games, use the function rowSums():

> rowSums(baskets.team)
 Granny Geraldine
 39 36

The rowSums() function returns a named vector with the sums of each row.

You can get the means of each row with rowMeans(), and the respective
sums and means of each column with colSums() and colMeans().

126 Part II: Getting Down to Work in R

Doing matrix arithmetic
Apart from the classical arithmetic operators, R contains a large set of opera-
tors and functions to perform a wide set of matrix operations. Many of these
operations are used in advanced mathematics, so you may never need them.
Some of them can come in pretty handy, though, if you need to flip around
data or you want to calculate some statistics yourself.

Transposing a matrix
Flipping around a matrix so the rows become columns and vice versa is very
easy in R. Use the t() function (which stands for transpose):

> t(first.matrix)
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

You can also try this with a vector. Since matrices are read and filled column‐
wise, it shouldn’t come as a surprise that the t() function sees a vector as a
one‐column matrix. Thus the transpose of a vector is a single‐row matrix:

> t(1:10)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10

You can tell this is a matrix by the dimensions. This seems trivial, but imag-
ine you’re selecting only one row from a matrix and transposing it. Unlike
what you may expect, you get a row instead of a column:

> t(first.matrix[2,])
 [,1] [,2] [,3] [,4]
[1,] 2 5 8 11

Inverting a matrix
Contrary to your intuition, inverting a matrix is not done by raising it to the
power of –1. As explained in Chapter 6, R normally applies the arithmetic
operators element‐wise on the matrix. So, the command first.matrix^(‐1)
doesn’t give you the inverse of the matrix; instead, it gives you the inverse of
the elements. To invert a matrix, you use the solve() function, like this:

> square.matrix <- matrix(c(1, 0, 3, 2, 2, 4, 3, 2, 1), ncol = 3)
> solve(square.matrix)
 [,1] [,2] [,3]
[1,] 0.5 -0.8333333 0.1666667
[2,] -0.5 0.6666667 0.1666667
[3,] 0.5 -0.1666667 -0.1666667

127 Chapter 7: Working in More Dimensions

Be careful inverting a matrix like this because of the risk of round‐off errors.
R computes most statistics based on decompositions like the QR decomposi-
tion, single‐value decomposition, and Cholesky decomposition. You can do
that yourself using the functions qr(), svd(), and chol(), respectively.
Check the respective Help pages for more information.

Multiplying two matrices
The multiplication operator (*) works element‐wise on matrices. To calculate
the inner product of two matrices, you use the special operator %*%:

> first.matrix %*% t(second.matrix)
 [,1] [,2] [,3]
[1,] 22 44 66
[2,] 26 52 78
[3,] 30 60 90

You have to transpose the second.matrix first; otherwise, both matrices
have non‐conformable dimensions. Multiplying a matrix with a vector is a bit
of a special case; as long as the dimensions fit, R automatically converts the
vector to either a row or a column matrix, whatever is applicable in that case.
You can check for yourself in the following example:

> first.matrix %*% 1:4
 [,1]
[1,] 70
[2,] 80
[3,] 90
> 1:3 %*% first.matrix
 [,1] [,2] [,3] [,4]
[1,] 14 32 50 68

Adding More Dimensions
Matrices are special cases of a more general type of object, arrays. All arrays
can be seen as a vector with an extra dimension attribute, and the number of
dimensions is completely arbitrary. This also means that you can construct
an array with only one dimension. Although technically this is not the same
as a vector, in most cases it will behave exactly the same.

Although arrays with more than two dimensions are not often used in R, it’s
good to know of their existence. They can be useful in certain cases, like
when you want to represent two‐dimensional data in a time series or store
multi‐way tables in R.

128 Part II: Getting Down to Work in R

Creating an array
You have two different options for constructing matrices or arrays. Either
you use the creator functions matrix() and array(), or you simply change
the dimensions using the dim() function.

Using the creator functions
You can create an array easily with the array() function, where you give
the data as the first argument and a vector with the sizes of the dimensions
as the second argument. The number of dimension sizes in that argument
gives you the number of dimensions. For example, you make an array with
four columns, three rows, and two “slices” like this:

> my.array <- array(1:24, dim = c(3, 4, 2))
> my.array
, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2

 [,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

This array has three dimensions. Notice that, although the rows are given as
the first dimension, the slices are filled column‐wise. So, for arrays, R fills the
columns, then the rows, and then the rest.

Changing the dimensions of a vector
Alternatively, you could just add the dimensions using the dim() function.
This is a little hack that goes a bit faster than using the array() function; it’s
especially useful if you have your data already in a vector. (This little trick
also works for creating matrices, by the way, because a matrix is nothing
more than an array with only two dimensions.)

Say you already have a vector with the numbers 1 through 24, like this:

> my.vector <- 1:24

129 Chapter 7: Working in More Dimensions

You can easily convert that vector to an array exactly like my.array simply
by assigning the dimensions, like this:

> dim(my.vector) <- c(3, 4, 2)

If you check how my.vector looks like now, you see there is no difference
from the array my.array that you created before.

You can check whether two objects are identical by using the identical()
function. To check whether my.vector and my.array are identical, try:

> identical(my.array, my.vector)
[1] TRUE

Using dimensions to extract values
Extracting values from an array with any number of dimensions is completely
equivalent to extracting values from a matrix. You separate the dimension
indices you want to retrieve with commas, and if necessary you can use the
drop argument exactly as you do with matrices. For example, to get the value
from the second row and third column of the first slice of my.array, try:

> my.array[2, 3, 1]
[1] 8

If you want the third column of the second slice as an array, use:

> my.array[, 3, 2, drop = FALSE]
, , 1

 [,1]
[1,] 19
[2,] 20
[3,] 21

If you don’t specify the drop=FALSE argument, R will try to simplify the
object as much as possible. This also means that if the result has only two
dimensions, R will make it a matrix. To return a matrix that consists of the
second row of each slice, use:

> my.array[2, ,]
 [,1] [,2]
[1,] 2 14
[2,] 5 17
[3,] 8 20
[4,] 11 23

130 Part II: Getting Down to Work in R

This reduction doesn’t mean, however, that rows stay rows. In this case, R
made the rows columns. This is due to the fact that R first selects the values,
and then adds the dimensions necessary to represent the data correctly.
In this case R needs two dimensions with four indices (the number of col-
umns) and two indices (the number of slices), respectively. As R fills a matrix
column‐wise, the original rows now turned into columns.

Combining Different Types of
Values in a Data Frame

Until this point in the book, you combine values of the same type into either
a vector or a matrix. But datasets are, in general, built up from different data
types. You can have, for example, the names of your employees, their sala-
ries, and the date they started at your company all in the same dataset. But
you can’t combine all this data in one matrix without converting the data to
character data. So, you need a new data structure to keep all this information
together in R. That data structure is a data frame.

Creating a data frame from a matrix
Take a look again at the number of baskets scored by Granny and her friend
Geraldine. In the “Adding a second dimension” section, earlier in this chap-
ter, you created a matrix baskets.team with the number of baskets for both
ladies. It makes sense to make this matrix a data frame with two variables:
one for Granny’s baskets and one for Geraldine’s baskets.

Using the function as.data.frame
To convert the matrix baskets.team into a data frame, you use the function
as.data.frame():

> baskets.df <- as.data.frame(t(baskets.team))

You don’t have to use the transpose function, t(), to create a data frame,
but in our example we want each player to be a separate variable. With data
frames, each variable is a column, but in the original matrix, the rows repre-
sent the baskets for a single player. So, in order to get the desired result, you
first have to transpose the matrix with t() before converting the matrix to a
data frame with as.data.frame().

131 Chapter 7: Working in More Dimensions

Looking at the structure of a data frame
If you take a look at the object, it looks exactly the same as the transposed
matrix t(baskets.team):

> baskets.df
 Granny Geraldine
1st 12 5
2nd 4 4
3rd 5 2
4th 6 4
5th 9 12
6th 3 9

But there is a very important difference between the two: baskets.df is a
data frame. This becomes clear if you take a look at the internal structure of
the object, using the str() function:

> str(baskets.df)
'data.frame': 6 obs. of 2 variables:
 $ Granny : num 12 4 5 6 9 3
 $ Geraldine: num 5 4 2 4 12 9

Now this starts looking more like a real dataset. You can see in the output
that you have six observations and two variables. The variables are called
Granny and Geraldine. It’s important to realize that each variable in itself
is a vector; hence, it has one of the types you learn about in Chapters 4, 5,
and 6. In this case, the output tells you that both variables are numeric.

Counting values and variables
To know how many observations a data frame has, you can use the nrow()
function as you would with a matrix, like this:

> nrow(baskets.df)
[1] 6

Likewise, the ncol() function gives you the number of variables. But you
can also use the length() function to get the number of variables for a data
frame:

> length(baskets.df)
[1] 2

132 Part II: Getting Down to Work in R

Creating a data frame from scratch
The conversion from a matrix to a data frame can’t be used to construct a
data frame with different types of values. If you combine both numeric and
character data in a matrix, for example, everything will be converted to char-
acter. You can construct a data frame from scratch, though, using the data.
frame() function.

Making a data frame from vectors
So, let’s make a little data frame with the names, salaries, and starting dates
of a few imaginary co‐workers. First, you create three vectors that contain
the necessary information like this:

> employee <- c("John Doe", "Peter Gynn", "Jolie Hope")
> salary <- c(21000, 23400, 26800)
> startdate <- as.Date(c("2010-11-1", "2008-3-25", "2007-3-14"))

Now you have three different vectors in your workspace:

 ✓ A character vector called employee, containing the names

 ✓ A numeric vector called salary, containing the yearly salaries

 ✓ A date vector called startdate, containing the dates on which the
 contracts started

Next, you combine the three vectors into a data frame:

> employ.data <- data.frame(employee, salary, startdate)

The result is a data frame, employ.data, with the following structure:

> str(employ.data)
'data.frame': 3 obs. of 3 variables:
 $ employee : Factor w/ 3 levels "John Doe","Jolie Hope",..: 1 3 2
 $ salary : num 21000 23400 26800
 $ startdate: Date, format: "2010‐11‐01" "2008‐03‐25" ...

To combine a number of vectors into a data frame, you simple add all vectors
as arguments to the data.frame() function, separated by commas. R will
create a data frame with variables that are named the same as the vectors
used. Keep in mind that these vectors must have the same length.

Keeping characters as characters
You may have noticed something odd when looking at the structure of
employ.data. Whereas the vector employee is a character vector, R made
the variable employee in the data frame a factor.

133 Chapter 7: Working in More Dimensions

R does this by default, but you have an extra argument to the data.frame()
function that can avoid this — namely, the argument stringsAsFactors. In
the employ.data example, you can prevent the transformation to a factor of
the employee variable by using the following code:

> employ.data <- data.frame(employee, salary, startdate,
+ stringsAsFactors = FALSE)

If you look at the structure of the data frame now, you see that the variable
employee is a character vector, as shown in the following output:

> str(employ.data)
'data.frame': 3 obs. of 3 variables:
 $ employee : chr "John Doe" "Peter Gynn" "Jolie Hope"
 $ salary : num 21000 23400 26800
 $ startdate: Date, format: "2010‐11‐01" "2008‐03‐25" ...

By default, R always transforms character vectors to factors when creating a
data frame with character vectors or converting a character matrix to a data
frame. This can be a nasty cause of errors. If you make it a habit to always
specify the stringsAsFactors argument, you can always deduce from your
code whether or not the conversion to factors happened.

Naming variables and observations
If you look at the data frame baskets.df you created in the preceding section,
you see something similar to the column and row names of a matrix. R allows
you to name both the variables and the observations in a dataset. You can
actually use these names in the same way as you use row and column names in
a matrix, but there are a few differences as well. We discuss these next.

Working with variable names
Variables in a data frame always have a name. Even if you didn’t specify them
yourself, R will always try to give variables a sensible name. To access the
variable names, you can again treat a data frame like a matrix and use the
function colnames() like this:

> colnames(employ.data)
[1] "employee" "salary" "startdate"

But, in fact, this is taking the long way around. In case of a data frame, the
colnames() function lets the hard work be done internally by another
 function, the names() function. So, to get the variable names, you can just
use that function directly like this:

> names(employ.data)
[1] "employee" "salary" "startdate"

134 Part II: Getting Down to Work in R

You can use that same function to assign new names to the variables as well.
For example, to rename the variable startdate to firstday, you can use
the following code:

> names(employ.data)[3] <- "firstday"
> names(employ.data)
[1] "employee" "salary" "firstday"

Naming observations
One important difference between a matrix and a data frame is that data
frames always have named observations. Whereas the rownames() function
returns NULL if you didn’t specify the row names of a matrix, it will always
give a result in the case of a data frame.

Check the outcome of the following code:

> rownames(employ.data)
[1] "1" "2" "3"

By default, the row names — or observation names — of a data frame are
simply the row numbers in character format. You can’t get rid of them, even
if you try to delete them by assigning the NULL value (as you can do with
matrices).

You shouldn’t try to get rid of them either, because your data frame won’t be
displayed correctly any more if you do.

You can, however, change the row names exactly as you do with matrices,
simply by assigning the values via the rownames() function, like this:

> rownames(employ.data) <- c("Chef", "BigChef", "BiggerChef")
> employ.data
 employee salary firstday
Chef John Doe 21000 2010-11-01
BigChef Peter Gynn 23400 2008-03-25
BiggerChef Jolie Hope 26800 2007-03-14

Don’t be fooled, though: Row names can look like another variable, but you
can’t access them the way you access the variables.

Manipulating Values in a Data Frame
Creating a data frame is nice, but data frames would be pretty useless if you
couldn’t change the values or add data to them. Luckily, data frames have a
very nice feature: When it comes to manipulating the values, almost all tricks

135 Chapter 7: Working in More Dimensions

you use on matrices also can be used on data frames. You can also use some
methods that are designed specifically for data frames. In this next section,
we explain these methods. We use the data frame baskets.df that you
 created in the “Creating a data frame from a matrix” section, earlier in this
chapter.

Extracting variables, observations,
and values
In many cases, you can extract values from a data frame by pretending that
it’s a matrix. But although data frames may look like matrices, they definitely
are not. Unlike matrices and arrays, data frames are not internally stored as
vectors but as lists of vectors. You start with lists in the “Combining different
objects in a list” section, later in this chapter.

Pretending it’s a matrix
If you want to extract values from a data frame, you can just pretend it’s a
matrix and start from there. You can use index numbers, names, or logical
vectors for selection, like you would with matrices. For example, you can get
the number of baskets scored by Geraldine in the third game like this:

> baskets.df["3rd", "Geraldine"]
[1] 2

Likewise, you can get all the baskets that Granny scored using the column
index, like this:

> baskets.df[, 1]
[1] 12 4 5 6 9 3

Or, if you want this to be a data frame, you can use the argument
drop=FALSE exactly as you do with matrices:

> str(baskets.df[, 1, drop = FALSE])
'data.frame': 6 obs. of 1 variable:
 $ Granny: num 12 4 5 6 9 3

Note that, unlike with matrices, the row names are dropped if you don’t
 specify the drop=FALSE argument.

Putting your dollar where your data is
As a careful reader, you noticed already that every variable is preceded by
a dollar sign ($) in the output from str(). R isn’t necessarily pimping your

136 Part II: Getting Down to Work in R

data here — the dollar sign is simply a specific way for accessing variables.
To access the variable Granny, you can use the dollar sign like this:

> baskets.df$Granny
[1] 12 4 5 6 9 3

So you specify the data frame, followed by a dollar sign and then the name
of the variable. You don’t have to surround the variable name by quotation
marks (as you would when you use the indices). R will return a vector with
all the values contained in that variable. Note again that the row names are
dropped here.

With this dollar‐sign method, you can access only one variable at a time. If
you want to access multiple variables at once using their names, you need to
use the square brackets, as in the preceding section.

Adding observations to a data frame
As time goes by, new data may appear and needs to be added to the dataset.
Just like matrices, data frames can be appended using the rbind() function.

Adding a single observation
Say that Granny and Geraldine played another game with their team, and you
want to add the number of baskets they made. The rbind() function lets
you do that easily:

> result <- rbind(baskets.df, c(7, 4))
> result
 Granny Geraldine
1st 12 5
2nd 4 4
3rd 5 2
4th 6 4
5th 9 12
6th 3 9
7 7 4

The data frame result now has an extra observation compared to baskets.
df. As explained in the earlier section “Combining vectors into a matrix,”
rbind() can take multiple arguments, as long as they’re compatible. In this
case, you bind a vector c(7, 4) at the bottom of the data frame.

Note that R, by default, sets the row number as the row name for the added
rows. You use the rownames() function to adjust this, or you can immedi-
ately specify the row name between quotes in the rbind() function:

> baskets.df <- rbind(baskets.df, "7th" = c(7, 4))

137 Chapter 7: Working in More Dimensions

Note that you must use quotation marks around 7th, because it starts with
a number. Without quotation marks, R doesn’t recognize it as a name. If you
check the object baskets.df now, you see the extra observation at the
bottom with the correct row name:

> baskets.df
 Granny Geraldine
1st 12 5
2nd 4 4
3rd 5 2
4th 6 4
5th 9 12
6th 3 9
7th 7 4

Alternatively, you can use indexing to add an extra observation. You see how
in the next section.

Adding a series of new observations using rbind
If you need to add multiple new observations to a data frame, doing it one‐
by‐one is not entirely practical. Luckily, you can use rbind() to attach a
matrix or a data frame with new observations to the original data frame. The
matching of the columns is done by name, so you need to make sure that the
 columns in the matrix or the variables in the data frame with new observa-
tions match the variable names in the original data frame.

Let’s add another two game results to the data frame baskets.df. First, you
construct a new data frame with the number of baskets Granny and Geraldine
scored, like this:

> new.baskets <- data.frame(Granny = c(3, 8), Geraldine = c(9, 4))

If you use the data.frame() function to construct a new data frame, you
can immediately set the variable names by specifying them in the function
call, as in the preceding example. That code creates a data frame with the
variables Granny and Geraldine where each variable contains the vector
given after the equal sign.

To be able to bind the data frame new.baskets to the original baskets.df,
you have to make sure that the variable names match exactly, including the
case.

Next, you add the optional row names and the necessary column names with
the following code:

> rownames(new.baskets) <- c("8th", "9th")

138 Part II: Getting Down to Work in R

To add the matrix to the data frame, you simply do the following:

> baskets.df <- rbind(baskets.df, new.baskets)

You can try yourself to do the same thing using a data frame instead of a
matrix. In Chapter 13, you use more advanced techniques for combining data
from different data frames.

Adding a series of values using indices
You also can use the indices to add a set of new observations at one time.
You get exactly the same result if you change all the previous code by this
simple line:

> baskets.df[c("8th", "9th"),] <- matrix(c(3, 8, 9, 4), ncol = 2)

With this code, you do the following:

 ✓ Create a matrix with two columns.

 ✓ Create a vector with the row names 8th and 9th.

 ✓ Use this vector as row indices for the data frame baskets.df.

 ✓ Assign the values in the matrix to the rows with names 8th and 9th.
Because these rows don’t exist yet, R creates them automatically.

Actually, you don’t need to construct the matrix first; you can just use a
vector instead. Exactly as with matrices, data frames are filled column-wise.
So, the following code gives you exactly the same result:

> baskets.df[c("8th", "9th"),] <- c(3, 8, 9, 4)

This process works only for data frames, though. If you try to do the same
thing with matrices, you get an error. In the case of matrices, you can only
use indices that exist already in the original object.

You have multiple equally valid options for adding observations to a data
frame. Which option you choose depends on your personal choice and the
situation. If you have a matrix or data frame with extra observations, you can
use rbind(). If you have a vector with row names and a set of values, using
the indices may be easier.

139 Chapter 7: Working in More Dimensions

Adding variables to a data frame
A data frame also can be extended with new variables. You may, for example,
get data from another player on Granny’s team. Or you may want to calculate
a new variable from the other variables in the dataset, like the total sum of
baskets made in each game (see also Chapter 13).

Adding a single variable
There are three main ways of adding a variable. Similar to the case of adding
observations, you can use either the cbind() function or the indices. We
illustrate both methods later in this section.

You also can use the dollar sign to add an extra variable. Imagine that Granny
asked you to add the number of baskets of her friend Gabrielle to the data
frame. First, you would create a vector with that data like this:

> baskets.of.Gabrielle <- c(11, 5, 6, 7, 3, 12, 4, 5, 9)

To create an extra variable named Gabrielle with that data, you simply do
the following:

> baskets.df$Gabrielle <- baskets.of.Gabrielle

If you want to check whether this worked, but you don’t want to display the
complete data frame, you could use the head() function. This function takes
two arguments: the object you want to display and the number of rows you
want to see. To see the first four rows of the new data frame, baskets.df,
use the following code:

> head(baskets.df, 4)
 Granny Geraldine Gabrielle
1st 12 5 11
2nd 4 4 5
3rd 5 2 6
4th 6 4 7

Adding multiple variables using cbind
As we mention earlier, you can pretend your data frame is a matrix and use
the cbind() function to do this. Unlike when you use rbind() on data

140 Part II: Getting Down to Work in R

frames, you don’t even need to worry about the row or column names. Let’s
create a new data frame with the goals for Gertrude and Guinevere. To
 combine both into a data frame, try:

> new.df <- data.frame(
+ Gertrude = c(3, 5, 2, 1, NA, 3, 1, 1, 4),
+ Guinevere = c(6, 9, 7, 3, 3, 6, 2, 10, 6)
+)

Although the row names of the data frames new.df and baskets.df differ,
R will ignore this and just use the row names of the first data frame in the
cbind() function, as you can see from the output of the following code:

> head(cbind(baskets.df, new.df), 4)
 Granny Geraldine Gabrielle Gertrude Guinevere
1st 12 5 11 3 6
2nd 4 4 5 5 9
3rd 5 2 6 2 7
4th 6 4 7 1 3

When using a data frame or a matrix with column names, R will use those
as the names of the variables. If you use cbind() to add a vector to a data
frame, R will use the vector’s name as a variable name unless you specify one
yourself, as you did with rbind().

If you bind a matrix without column names to the data frame, R automatically
uses the column numbers as names. That will cause a bit of trouble though,
because plain numbers are invalid object names and, hence, more difficult to
use as variable names. In this case, you’d better use the indices.

Whenever you want to use a data frame and don’t want to continuously
have to type its name followed by $, you can use the functions with() and
within(), as explained in Chapter 13. With the within() function, you also
can easily add variables to a data frame.

Combining Different Objects in a List
In the previous sections, you discover how much data frames and matri-
ces are treated alike by many R functions. But contrary to what you would
expect, data frames are not a special case of matrices but a special case of
lists. A list is a very general and flexible type of object in R. Many statistical
functions you use in Chapters 14 and 15 give a list as output. Lists also can be
very helpful to group different types of objects, or to carry out operations on
a complete set of different objects. You do the latter in Chapter 9.

141 Chapter 7: Working in More Dimensions

Creating a list
It shouldn’t come as a surprise that you create a list with the list()
 function. You can use the list() function in two ways: to create an
unnamed list or to create a named list. The difference is small; in both cases,
think of a list as a big box filled with a set of bags containing all kinds of
 different stuff. If these bags are labeled instead of numbered, you have a
named list.

Creating an unnamed list
Creating an unnamed list is as easy as using the list() function and putting
all the objects you want in that list between the (). In the previous sections,
you worked with the matrix baskets.team, containing the number of bas-
kets Granny and Geraldine scored this basketball season. If you want to com-
bine this matrix with a character vector indicating which season we’re talking
about here, try:

> baskets.list <- list(baskets.team, "2010-2011")

If you look at the object baskets.list, you see the following output:

> baskets.list
[[1]]
 1st 2nd 3rd 4th 5th 6th
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9
[[2]]
[1] "2010-2011"

The object baskets.list contains two components: the matrix and the
season. The numbers between the [[]] indicate the “bag number” of each
component.

Creating a named list
In order to create a labeled, or named, list, you simply add the labels before
the values between the () of the list() function, like this:

> baskets.nlist <- list(scores = baskets.team, season = "2010-2011")

This is exactly the same thing you do with data frames in the “Manipulating
Values in a Data Frame” section, earlier in this chapter. And that shouldn’t
surprise you, because data frames are, in fact, a special kind of named list.

142 Part II: Getting Down to Work in R

If you look at the named list baskets.nlist, you see the following output:

> baskets.nlist
$scores
 1st 2nd 3rd 4th 5th 6th
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9

$season
[1] "2010-2011"

Now the [[]] moved out and made a place for the $ followed by the name
of the component. In fact, this begins to look a bit like a data frame.

Data frames are nothing but a special type of named list, so all the tricks in
the following sections can be applied to data frames as well. We repeat: All
the tricks in the following sections — really, all of them — can also be used on
data frames.

Playing with the names of components
Just as with data frames, you access the the names of a list using the
names() function, like this:

> names(baskets.nlist)
[1] "scores" "season"

This means that you also can use the names() function to add names to the
components or change the names of the components in the list in much the
same way you do with data frames.

Getting the number of components
Data frames are lists, so it’s pretty obvious that the number of components in
a list is considered the length of that list. So, to know how many components
you have in baskets.list, you simply do the following:

> length(baskets.list)
[1] 2

Extracting components from lists
The display of both the unnamed list baskets.list and the named list
baskets.nlist show already that the way to access components in a list
differs from the methods you’ve used until now.

143 Chapter 7: Working in More Dimensions

That’s not completely true, though. In the case of a named list, you can
access the components using the $, as you do with data frames. For both
named and unnamed lists, you can use two other methods to access compo-
nents in a list:

 ✓ Using [[]] gives you the component itself.

 ✓ Using [] gives you a list with the selected components.

Using [[]]
If you need only a single component and you want the component itself, you
can use [[]], like this:

> baskets.list[[1]]
 1st 2nd 3rd 4th 5th 6th
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9

If you have a named list, you also can use the name of the component as an
index, like this:

> baskets.nlist[["scores"]]
 1st 2nd 3rd 4th 5th 6th
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9

In each case, you get the component itself returned. Both methods give you
the original matrix baskets.team.

You can’t use logical vectors or negative numbers as indices when using
[[]]. You can use only a single value — either a (positive) number or a
component name.

Using []
You can use [] to extract either a single component or multiple compo-
nents from a list, but in this case the outcome is always a list. [] is more
flexible than [[]], because you can use all the tricks you also use with
vector and matrix indices. [] can work with logical vectors and negative
indices as well.

So, if you want all components of the list baskets.list except for the first
one, you can use the following code:

> baskets.list[-1]
[[1]]
[1] "season 2010-2011"

144 Part II: Getting Down to Work in R

Or if you want all components of baskets.nlist where the name contains
"season", you can use the following code:

> baskets.nlist[grepl("season", names(baskets.nlist))]
$season
[1] "2010-2011"

Note that, in both cases, the returned value is a list, even if it contains only
one component. R simplifies arrays by default, but the same doesn’t count
for lists.

Changing the components in lists
Much like all other objects we cover up to this point, lists aren’t static
objects. You can change components, add components, and remove compo-
nents from them in a pretty straightforward manner.

Changing the value of components
Assigning a new value to an component in a list is pretty straightforward. You
use either the $ or the [[]] to access that component, and simply assign a
new value. If you want to replace the scores in the list baskets.nlist with
the data frame baskets.df, for example, you can use any of the following
options:

> baskets.nlist[[1]] <- baskets.df
> baskets.nlist[["scores"]] <- baskets.df
> baskets.nlist$scores <- baskets.df

If you use [], the story is a bit different. You can change components using
[] as well, but you have to assign a list of components. So, to do the same
as the preceding options using [], you need to use following code:

> baskets.nlist[1] <- list(baskets.df)

All these options have exactly the same result, so you may wonder why you
would ever use the last option. Simple: Using [] allows you to change more
than one component at once. You can change both the season and the scores
in baskets.list with the following line of code:

> baskets.list[1:2] <- list(baskets.df, "2009-2010")

This line replaces the first component in baskets.list with the value
of baskets.df, and the second component of baskets.list with the
 character value "2009‐2010".

145 Chapter 7: Working in More Dimensions

Removing components
Removing components is even simpler: Just assign the NULL value to the
component. In most cases, the component is simply removed. To remove the
first component from baskets.nlist, you can use any of these (and more)
options:

> baskets.nlist[[1]] <- NULL
> baskets.nlist$scores <- NULL
> baskets.nlist["scores"] <- NULL

Using single brackets, you again have the possibility of deleting more than
one component at once. Note that, in this case, you don’t have to create a list
with the value NULL first. To the contrary, if you were to do so, you would
give the component the value NULL instead of removing it, as shown in the
following example:

> baskets.nlist <- list(scores = baskets.df, season = "2010-2011")
> baskets.nlist["scores"] <- list(NULL)
> baskets.nlist
$scores
NULL

$season
[1] "2010-2011"

Adding extra components using indices
In the section “Adding variables to a data frame,” earlier in this chapter, you
use either the $ or indices to add extra variables. Lists work the same way; to
add an component called players to the list baskets.nlist, you can use
any of the following options:

> baskets.nlist$players <- c("Granny", "Geraldine")
> baskets.nlist[["players"]] <- c("Granny", "Geraldine")
> baskets.nlist["players"] <- list(c("Granny", "Geraldine"))

Likewise, to add the same information as a third component to the list
 baskets.list, you can use any of the following options:

> baskets.list[[3]] <- c("Granny", "Geraldine")
> baskets.list[3] <- list(c("Granny", "Geraldine"))

These last options require you to know exactly how many components a
list has before adding an extra component. If baskets.list contained
three components already, you would overwrite that one instead of adding a
new one.

146 Part II: Getting Down to Work in R

Combining lists
If you wanted to add components to a list, it would be nice if you could do so
without having to worry about the indices at all. For that, the only thing you
need is a function you use extensively in all the previous chapters, the c()
function.

That’s right, the c() function — which is short for concatenate — does a lot
more than just creating vectors from a set of values. The c() function can
combine different types of objects and, thus, can be used to combine lists
into a new list as well.

In order to be able to add the information about the players, you have to create
a list first. To make sure you have the same output, you have to rebuild the
original baskets.list as well. You can do both using the following code:

> baskets.list <- list(baskets.team, "2010-2011")
> players <- list(rownames(baskets.team))

Then you can combine this players list with the list goal.list like this:

> c(baskets.list, players)
[[1]]
 1st 2nd 3rd 4th 5th 6th
Granny 12 4 5 6 9 3
Geraldine 5 4 2 4 12 9

[[2]]
[1] "2010-2011"

[[3]]
[1] "Granny" "Geraldine"

If any of the lists contains names, these names are preserved in the new
object as well.

Reading the output of str() for lists
Many people who start with R get confused by lists in the beginning. There’s
really no need for that — a list has only two important parts: the components
and the names. And in the case of unnamed lists, you don’t even have to

147 Chapter 7: Working in More Dimensions

worry about the latter. But if you look at the structure of baskets.list in
the following output, you can see why people often shy away from lists.

> str(baskets.list)
List of 2
 $: num [1:2, 1:6] 12 5 4 4 5 2 6 4 9 12 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:2] "Granny" "Geraldine"
 $: chr [1:6] "1st" "2nd" "3rd" "4th" ...
 $: chr "2010-2011"

This really looks like some obscure code used by the secret intelligence ser-
vices during World War II. Still, when you know how to read it, it’s pretty easy
to read. So let’s split up the output to see what’s going on here:

 ✓ The first line simply tells you that baskets.list is a list with two
components.

 ✓ The second line contains a $, which indicates the start of the first com-
ponent. The rest of that line you should be able to read now: It tells you
that this first component is a numeric matrix with two rows and six col-
umns (see the previous sections on matrices).

 ✓ The third line is preceded by .., indicating that this line also belongs to
the first component. If you look at the output of str(baskets.team)
you see this line and the following two as well. R keeps the row and
column names of a matrix in an attribute called dimnames. In the sidebar
“Playing with attributes,” earlier in this chapter, you manipulate those
yourself. For now, you have to remember only that an attribute is an
extra bit of information that can be attached to almost any object in R.

The dimnames attribute is by itself again a list.

 ✓ The fourth and fifth lines tell you that this list contains two components:
a character vector of length 2 and one of length 6. R uses the .. only as
a placeholder, so you can read from the indentation which lines belong
to which component.

 ✓ Finally, the sixth line starts again with a $ and gives you the structure of
the second component — in this case, a character vector with only one
value.

If you look at the output of the str(baskets.nlist), you get essentially
the same thing. The only difference is that R now puts the name of each
 component right after the $.

148 Part II: Getting Down to Work in R

In many cases, looking at the structure of the output from a function can give
you a lot of insight into which information is contained in that object. Often,
these objects are lists, and the piece of information you’re looking for is
buried somewhere in that list.

Seeing the forest through the trees
Working with lists in R is not difficult when you’re used to it, and lists offer
many advantages. You can keep related data neatly together, avoiding an
overload of different objects in your workspace. You have access to power-
ful functions to apply a certain algorithm on a whole set of objects at once.
Above all, lists allow you to write flexible and efficient code in R.

Yet, many beginning programmers shy away from lists because they’re
overwhelmed by the possibilities. R allows you to manipulate lists in many
 different ways, but often it isn’t clear what the best way to perform a certain
task is.

Very likely, you’ll get into trouble at some point by missing important details,
but don’t let that scare you. There are a few simple rules that can prevent
much of the pain:

 ✓ If you can name the components in a list, do so. Working with names
always makes life easier, because you don’t have to remember the order
of the components in the list.

 ✓ If you need to work on a single component, always use either [[]]
or $.

 ✓ If you need to select different components in a list, always use [].
Having named components can definitely help in this case.

 ✓ If you need a list as a result of a command, always use [].

 ✓ If the components in your list have names, use them!

 ✓ If in doubt, consult the Help files.

Part III
Coding in R

 Visit www.dummies.com/extras/r for great Dummies content online.

http://www.dummies.com/extras/r

In this part . . .
 ✓ Forming repeating tasks into functions.

 ✓ Creating loops.

 ✓ Squashing bugs.

 ✓ Finding help.

 ✓ Visit www.dummies.com/extras/r for great Dummies
content online.

http://www.dummies.com/extras/r

Putting the Fun in Functions
In This Chapter

 ▶ Automating your work with functions

 ▶ Playing with arguments

 ▶ Finding objects within the functions

 ▶ Working with methods

A
utomating your work is probably the number one reason why you
use a programming language. You can get pretty far with the built‐in

 functions of R in combination with scripts, but scripts aren’t very flexible
when dealing with variable input. Luckily, R allows you to write your own
custom functions (for example, to automate the cleaning of your data, to
apply a series of analyses with one command, or to construct custom plots).

The functions that you write yourself are essentially the same as many of the
built‐in functions — they are first‐class citizens. In this chapter, you discover
how to write and work with functions in R.

Moving from Scripts to Functions
Going from a script to a function doesn’t take much effort at all. A function is
essentially a piece of code that is executed consecutively and without inter-
ruption. In that way, a function doesn’t differ that much from a script run
using the source() function, as we explain in Chapter 2.

However, a function has two very nice advantages over scripts:

 ✓ Functions can work with variable input, so you use it with different data.

 ✓ Functions return the output as an object, so you can work with the
result of that function.

Chapter 8

152 Part III: Coding in R

The best way to learn to swim is by jumping in the deep end, so next you
write a function to see how easy this is in R.

Making the script
Suppose you want to present fractional numbers (for example, 1/2) as per-
centages, nicely rounded to one decimal digit. Here’s how to achieve that:

1. Multiply the fractional numbers by 100.

2. Round the result to one decimal place.

You can use the round() function to do this (see Chapter 4).

3. Paste a percentage sign after the rounded number.

The paste() function is at your service to fulfill this task (see
Chapter 5).

4. Print the result.

The print() function does this.

You can easily translate these steps into a little script for R. So, open a new
script file in your editor and type the following code:

x <- c(0.458, 1.6653, 0.83112)
percent <- round(x * 100, digits = 1)
result <- paste(percent, "%", sep = "")
print(result)

If you save this script as a script file — for example, pastePercent.R —
you can now call this script in the console (as shown in Chapter 2) with the
following command:

> source("pastePercent.R")
[1] "45.8%" "166.5%" "83.1%"

That works splendidly, as long as you want to see the same three numbers
every time you call the script. But using the script for other data would be
mildly inconvenient, because you would have to change the script every
time.

In most editors, you also can source a script (send a complete script file to
the R console) with one simple click. In RStudio, this is done by clicking the
Source button or by pressing Ctrl+Shift+S for sourcing without echo, and
Ctrl+Shift+Enter for sourcing with echo.

153 Chapter 8: Putting the Fun in Functions

Transforming the script
To make this script into a function, you need to do a few things. Imagine the
script as a little factory that takes the raw numeric material and polishes it
up to shiny percentages every mathematician will crave.

First, you have to construct the factory building, preferably with an address
so people would know where to send their numbers. Then you have to install
a front gate so you can get the raw numbers in. Next, you create the produc-
tion line to transform those numbers. Finally, you have to install a back gate
so you can send your shiny percentages into the world.

To build your factory, change the script to the following code:

addPercent <- function(x){
 percent <- round(x * 100, digits = 1)
 result <- paste(percent, "%", sep = "")
 return(result)
}

Take a closer look at the different parts that make up this little factory. The
function has the following elements:

 ✓ The keyword function always must be followed by parentheses. It tells
R that what comes next is a function.

 ✓ The parentheses after function form the front gate, or argument list, of
your function. Between the parentheses, the arguments to the function
are given. In this case, there’s only one argument, named x.

 ✓ The braces, {}, can be seen as the walls of your function. Everything
between the braces is part of the assembly line, or the body of your
 function.

 ✓ The return() statement is the back gate of your function. The object
you put between the parentheses is returned from inside the function to
your workspace. You can put only one object between the parentheses.

If you put all this together, you get a complete function, but R doesn’t know
where to find it yet. So, you use the assignment operator <‐ to put this com-
plete function into an object named addPercent. This is the address R can
send numbers to for transformation. Now the function has a nice name and is
ready to use.

You can’t specify in the argument list that x should be a numeric vector. For
example, if you try to use a character vector as a value for x, the multiplica-
tion inside the body will throw an error because you can’t multiply charac-
ters by a number. If you want to control which type of object is given as an
argument, you have to do so manually, in the body of the function. (You see
examples of that in Chapters 9 and 10.)

154 Part III: Coding in R

Using the function
Save the script again, and load it into the console using the source() func-
tion displayed earlier. Now you see . . . nothing. R doesn’t let you know by
itself that you created a function, but it’s there in the global environment, as
you can confirm by using ls():

> ls()
[1] "addPercent" "percent" "result" "x"

If you create a function and load it in the global environment by sourcing
the script containing the function, this function becomes an object in the
global environment and can, thus, be found using ls() and — if necessary —
removed using rm().

Formatting the numbers
The output of ls() tells you the function is there, so you should be able to
use it. You can now create the most astonishing percentages by using the
addPercent() function like this:

> new.numbers <- c(0.8223, 0.02487, 1.62, 0.4)
> addPercent(new.numbers)
[1] "82.2%" "2.5%" "162%" "40%"

Actually, you could use the code sprintf("%1.1f%%", 100*x) instead of
the addPercent() function for a very similar result. C coders will recognize
sprintf() immediately and agree that it’s both incredibly versatile and
complex. The function comes with a very long Help page that’s definitely
worth reading if you need to format values often. If not, save yourself the
headache.

Playing with function objects
Because a function in R is just another object, you can manipulate it much
the same way as you manipulate other objects. You can assign the function
to a new object and effectively copy it like this:

> ppaste <- addPercent

Now ppaste is a function as well that does exactly the same as addPercent.
Note that you don’t add parentheses after addPercent in this case.

If you add the parentheses, you call the function and put the result of that
call in ppaste. If you don’t add the parentheses, you refer to the function
object itself without calling it. This difference is important when you use
functions as arguments (see the “Using functions as arguments” section, later
in this chapter).

155 Chapter 8: Putting the Fun in Functions

You can print the content of a function by simply typing its name at the
prompt, like this:

> ppaste
function(x){
 percent <- round(x * 100, digits = 1)
 result <- paste(percent, "%", sep = "")
 return(result)
}

So, the assignment to ppaste actually copied the function code of
 addPercent into a new object.

That’s all cool, but it also means that you can effectively erase a function if
you accidentally use the same name for another object. Or you could lose
data if you accidentally gave the same name as your data object to a function.
There’s no undo button in R, so pay attention to the names you choose.

Luckily, this problem doesn’t occur with the base R functions and functions
contained in packages. Although it’s not a good idea, you could, for example,
name a vector sum and still be able to use the sum() function afterward.
When you use sum() as a function, R only searches for functions with that
name and disregards all other objects with the same name.

Reducing the number of lines
Not all elements mentioned in the “Transforming the script” section, earlier
in this chapter, are required. In fact, the return() statement is optional,
because, by default, R always returns the value of the last line of code in the
function body.

Returning values by default
Suppose you forgot to add return(result) in the addPercent() function.
What would happen then? You can find out if you delete the last line of the
 addPercent() function, save the file, and source it again to load it into the
workspace.

Any change you make to a function will take effect only after you send the
adapted code to the console. This will effectively overwrite the old function
object by a new one.

If you try addPercent(new.numbers) again, you see . . . nothing.
Apparently, the function doesn’t do anything anymore — but this is an
 illusion, as you can see with the following code:

> print(addPercent(new.numbers))
 [1] "82.2%" "2.5%" "162%" "40%"

156 Part III: Coding in R

In this case, the last line of the function returns the value of result invis-
ibly, which is why you see it only if you specifically ask to print it. The value
is returned invisibly due to the assignment in the last line. Because this isn’t
really practical, you can drop the assignment in the last line and change the
function code to the following:

addPercent <- function(x){
 percent <- round(x * 100, digits = 1)
 paste(percent, "%", sep = "")
}

This function works again as before. It may look like return() is utterly use-
less, but you really need it if you want to exit the function before the end of
the code in the body. For example, you could add a line to the addPercent
function that checks whether x is numeric, and if not, returns NULL, like this:

addPercent <- function(x){
 if(!is.numeric(x)) return(NULL)
 percent <- round(x * 100, digits = 1)
 paste(percent, "%", sep = "")
}

In Chapter 9, we explain how to use if() conditions. In Chapter 10, you meet
the functions you need to throw your own warnings and errors.

Breaking the walls
The braces, { }, form the proverbial wall around the function, but in some
cases you can drop them as well. Suppose you want to calculate the odds
from a proportion. The odds of something happening is no more than the
chance it happens divided by the chance it doesn’t happen. So, to calculate
the odds, you can write a function like this:

> odds <- function(x) x / (1-x)

Even without the braces or return() statement, this works perfectly fine, as
you can see in the following example:

> odds(0.8)
[1] 4

If a function consists of only one line of code, you can just add that line after
the argument list without enclosing it in braces. R will see the code after the
argument list as the body of the function.

You could do the same with the addPercent() function by nesting
 everything like this:

> addPercent <- function(x) paste(round(x * 100, digits = 1), "%", sep = "")

157 Chapter 8: Putting the Fun in Functions

That’s a cunning plan to give the next person reading that code a major head-
ache. It’s a bit less of a cunning plan if that next person is you, though, and
chances are, it will be.

Saving space in a function body is far less important than keeping the code
readable, because saving space gains you nothing. Constructs like the
odds() function are useful only in very specific cases. You find examples
of this in the “Using anonymous functions” section, later in this chapter, as
well as in Chapter 13. But for now, remember that using braces { } is a good
practice, even when you have only a single line of code in the body of your
function.

Using Arguments the Smart Way
In Chapter 3, you saw how to specify arguments in a function call. To
 summarize:

 ✓ Arguments are always named when you define the function. But when
you call the function, you don’t have to specify the name of the argu-
ment if you give them in the order in which they appear in the argument
list of a function.

 ✓ Arguments can be optional, in which case you don’t have to specify a
value for them.

 ✓ Arguments can have a default value, which is used if you didn’t specify a
value for that argument yourself.

Not only can you use as many arguments as you like — or as is feasible, at
least — but you can very easily pass arguments on to functions inside the
body of your own function with the simply genius dots argument. Fasten your
seat belts — we’re off to make some sweet R magic.

Adding more arguments
The argument list of the addPercent() function doesn’t really look much
like a list yet. Actually, the only thing you can do for now is tell the function
which number you want to see converted. It serves perfectly well for this
little function, but you can do a lot more with arguments than this.

The addPercent() function automatically multiplies the numbers by
100. This is fine if you want to convert fractions to percentages, but if the

158 Part III: Coding in R

 calculated numbers are percentages already, you would have to divide these
numbers first by 100 to get the correct result, like this:

> percentages <- c(58.23, 120.4, 33)
> addPercent(percentages / 100)
[1] "58.2%" "120.4%" "33%"

That’s quite a way around, but you can avoid this by adding another
 argument to the function that controls the multiplication factor.

Adding the mult argument
You add extra arguments by including them between the parentheses after
the function keyword. All arguments are separated by commas. To add an
argument mult that controls the multiplication factor in your code, you
change the function like this:

addPercent <- function(x, mult){
 percent <- round(x * mult, digits = 1)
 paste(percent, "%", sep = "")
}

Now you can specify the mult argument in the call to addPercent(). If you
want to use the percentages vector from the previous section, you use the
addPercent() function, like this:

> addPercent(percentages, mult = 1)
[1] "58.2%" "120.4%" "33%"

Adding a default value
Adding an extra argument gives you more control over what the function
does, but it also introduces a new problem. If you don’t specify the mult
argument in the addPercent() function, you get the following result:

> addPercent(new.numbers)
Error in x * mult : 'mult' is missing

Because you didn’t specify the mult argument, R has no way of knowing
which number you want to multiply x by, so it stops and tells you it needs
more information. That’s pretty annoying, because it also means you would
have to specify mult=100 every time you used the function with fractions.
Specifying a default value for the argument mult takes care of this.

You specify default values for any argument in the argument list by adding
the = sign and the default value after the respective argument.

159 Chapter 8: Putting the Fun in Functions

To get the wanted default behavior, you adapt addPercent() like this:

addPercent <- function(x, mult = 100){
 percent <- round(x * mult, digits = 1)
 paste(percent, "%", sep = "")
}

Now the argument works exactly the same as arguments with a default value
from base R functions. If you don’t specify the argument, the default value
of 100 is used. If you do specify a value for that argument, that value is used
instead. So, in the case of addPercent(), you can now use it as shown in the
following example:

> addPercent(new.numbers)
[1] "82.2%" "2.5%" "162%" "40%"
> addPercent(percentages, 1)
[1] "58.2%" "120.4%" "33%"

You don’t have to specify the names of the arguments if you give them in the
same order as they’re given in the argument list. This works for all functions
in R, including those you create yourself.

Conjuring tricks with dots
The addPercent() function rounds every percentage to one decimal place.
To add another argument to specify the number of digits used in rounding,
you can specify the argument explicitly as you did for the mult argument
in the previous section. However, if you have many arguments to pass on
to other functions inside the body, you’ll end up with quite a long list of
 arguments.

R has a genius solution for this: the dots (...) argument. You can see the
dots argument as an extra gate in your little function. Through that gate, you
drop additional resources (arguments) immediately at the right spot in the
production line (the body) without the hassle of having to check everything
at the main gate.

You normally use the dots argument by adding it at the end of the argument
list of your own function and at the end of the arguments for the function you
want to pass arguments to.

160 Part III: Coding in R

To pass any argument to the round() function inside the body of addPer-
cent, adapt the code of the latter as follows:

addPercent <‐ function(x, mult = 100, ...){
 percent <‐ round(x * mult, ...)
 paste(percent, "%", sep = "")
}

Now you can specify the digits argument for round() in the
 addPercent() call like this:

> addPercent(new.numbers, digits = 2)
[1] "82.23%" "2.49%" "162%" "40%"

You don’t have to specify any argument if the function you pass the
 arguments to doesn’t require it. You can use addPercent() as before:

> addPercent(new.numbers)
[1] "82%" "2%" "162%" "40%"

Notice that the outcome isn’t the same as it used to be. The numbers are
rounded to integers and not to the first decimal.

If you don’t specify an argument in lieu of the dots, the function where the
arguments are passed to uses its own default values. If you want to specify
different default values, you’ll have to add a specific argument to the argu-
ment list instead of using the dots.

So, to get addPercent() to use a default rounding to one decimal, you have
to use the following code:

addPercent <- function(x, mult = 100, digits = 1){
 percent <- round(x * mult, digits = digits)
 paste(percent, "%", sep = "")
}

You don’t have to give the argument in the argument list the same name as
the argument used by round(). You can use whatever name you want, as
long as you place it in the right position within the body. However, if you can
use names for arguments that also are used by native functions within R, it’ll
be easier for people to understand what the argument does without having to
look at the source code.

R won’t complain if you use the dots argument in more than one function
within the body, but before passing arguments to more than one function in
the body, you have to be sure this won’t cause any trouble. R passes all extra
arguments to every function, and — if you’re lucky — complains about the
resulting mess afterward.

161 Chapter 8: Putting the Fun in Functions

Using functions as arguments
You read that correctly. In R, you can pass a function itself as an argument.
In the “Playing with function objects” section, earlier in this chapter, you saw
that you can easily assign the complete code of a function to a new object.
In much the same way, you also can assign the function code to an argument.
This opens up a complete new world of possibilities. We show you only a
small piece of that world in this section.

Applying different ways of rounding
In Chapter 4, we show you different options for rounding numbers. The
addPercent() function uses round() for that, but you may want to use
one of the other options — for example, signif(). The signif() func-
tion doesn’t round to a specific number of decimals; instead, it rounds to
a specific number of digits (see Chapter 4). You can’t use it before you
call addPercent(), because the round() function in that body will mess
 everything up again.

Of course, you could write a second function specifically for that, but there’s
no need to do so. Instead, you can just adapt addPercent() in such a way
that you simply give the function you want to use as an argument:

addPercent <‐ function(x, mult = 100, FUN = round, ...){
 percent <‐ FUN(x * mult, ...)
 paste(percent, "%", sep = "")
}

This really couldn’t be easier: You add an argument to the list — in this case,
FUN — and then you can use the name of that argument as a function. Also,
specifying a default value works exactly the same as with other arguments;
just specify the default value — in this case, round — after an = sign.

If you want to use signif() now for rounding the numbers to three digits,
you can easily do that using the following call to addPercent():

> addPercent(new.numbers, FUN = signif, digits = 3)
[1] "82.2%" "2.49%" "162%" "40%"

What happens here?

1. As before, R takes the vector new.numbers and multiplies it by 100,
because that’s the default value for mult.

2. R assigns the function code of signif to FUN, so now FUN() is a perfect
copy of signif() and works exactly the same way.

3. R takes the argument digits and passes it on to FUN().

162 Part III: Coding in R

Note the absence of parentheses in the argument assignment. If you added
the parentheses there, you would assign the result of a call to signif()
instead of the function itself. R would interpret signif(), in that case, as a
nested function, and that’s not what you want. Plus, R would throw an error
because, in that case, you call signif() without arguments, and R doesn’t
like that.

Using anonymous functions
You can, of course, use any function you want for the FUN argument. In fact,
that function doesn’t even need to have a name, because you effectively copy
the code. So, instead of giving a function name, you can just add the code as
an argument as a nameless or anonymous function. An anonymous function is
a function without a name.

Suppose you have the quarterly profits of your company in a vector like
this:

> profits <- c(2100, 1430, 3580, 5230)

Your manager asks you to report the profit for each quarter relative to the
total for the year, and, of course, you want to use your new addPercent()
function. To calculate the relative profits in percent, you could write a rel.
profit() function like this:

> rel.profit <- function(x) round(x / sum(x) * 100)

But you don’t have to. Instead, you can just use the function body itself as an
argument, as in the following example:

> addPercent(profits,
+ FUN = function(x) round(x / sum(x) * 100))
[1] "17%" "12%" "29%" "42%"

Of course, this isn’t the optimal way of doing this specific task. You could
easily have gotten the same result with the following code:

> addPercent(profits / sum(profits))
[1] "17%" "12%" "29%" "42%"

In some cases, this construct with anonymous functions is really a treat,
especially when you want to use functions that can be written in only a little
code and aren’t used anywhere else in your script. (You find more — and
better — examples of anonymous functions in Chapter 13.)

163 Chapter 8: Putting the Fun in Functions

Coping with Scoping
In the previous chapters, you work solely in the workspace. Every object
you create ends up in this environment, which is called the global environ-
ment. The global environment is the universe of the R user where everything
 happens.

R gurus will tell you that this “universe” is actually contained in another
“universe” and that one in yet another, and so on — but that “outer space” is
a hostile environment suited only to daring coders without fear of breaking
things. So, there’s no need to go there now.

Matching functions
In the examples in the “Using functions as
arguments” section, you effectively pass the
code of a function as an argument. This also
means that if you have an object with the same
name as the function you want to use, this
whole construct won’t work. Suppose you had
the not‐so‐smart idea of creating a vector with
the relative gain of a couple rounds of poker like
this:

> round <- c(0.48, -0.52, 1.88)

If you tried to call addPercent() with the
FUN argument on this vector, you’d get the
following error:

> addPercent(round, FUN = round)
Error in addPercent(round, FUN = round) :
 could not find function "FUN"

Instead of passing the code of the round
function, R passes the vector round as the
FUN argument. To avoid these kinds
of problems, you can use a special
function, match.fun(), in the body of
addPercent(), like this:

addPercent <‐ function(x, mult = 100,
FUN, ...){

 FUN <- match.fun(FUN)
 percent <‐ FUN(x * mult, ...)
 paste(percent, "%", sep = "")
}

This function looks for a function that matches
the name round and copies that code into the
FUN argument instead of the vector round. As
an added bonus, match.fun() also allows
you to use a character object as the argument,
so specifying FUN = 'round' now works as
well. All native R functions use match.fun()
for this purpose, and we can only advise you to
do the same if you write code that will be used
by other people. But passing functions works
fine without using match.fun(), as long as
you use sensible names for the other objects in
your global environment.

Finally, clean up the round object so you don’t
get into trouble later on:

> rm(round)

164 Part III: Coding in R

Crossing the borders
In the functions in the previous sections, you work with some objects that
you didn’t first create in the global environment. You use the arguments x,
mult, and FUN as if they’re objects, and you create an object percent within
the function that you can’t find back in the global environment after using the
function. So, what’s going on?

Creating a test case
Let’s find out through a small example. First, create an object x and a small
test() function like this:

x <- 1:5
test <- function(x){
 cat("This is x:", x, "\n")
 rm(x)
 cat("This is x after removing it:", x, "\n")
}

The test() function doesn’t do much. It takes an argument x, prints it to
the console, removes it, and tries to print it again. You may think this func-
tion will fail, because x disappears after the line rm(x). But no, if you try this
function it works just fine, as shown in the following example:

> test(5:1)
This is x: 5 4 3 2 1
This is x after removing it: 1 2 3 4 5

Even after removing x, R still can find another x that it can print. If you look a
bit more closely, you see that the x printed in the second line is actually not
the one you gave as an argument, but the x you created before in the global
environment. How come?

Searching the path
If you use a function, the function first creates a temporary local environment.
This local environment is nested within the global environment, which means
that, from that local environment, you also can access any object from the
global environment. As soon as the function ends, the local environment is
destroyed together with all objects in it.

To be completely correct, a function always creates an environment within
the environment it’s called from, called the parent environment. If you
call a function from the global environment, either through a script or by
using the command line, this parent environment happens to be the global
 environment.

165 Chapter 8: Putting the Fun in Functions

You can see a schematic illustration of how the test() function works in
Figure 8-1. The big rectangle represents the global environment, and the
small rectangle represents the local environment of the test function. In the
global environment, you assign the value 1:5 to the object x. In the function
call, however, you assign the value 5:1 to the argument x. This argument
becomes an object x in the local environment.

If R sees any object name — in this case, x — mentioned in any code in the
function, it first searches the local environment. Because it finds an object
x there, it uses that one for the first cat() statement. In the next line, R
removes that object x. So, when R reaches the third line, it can’t find an
object x in the local environment anymore. No problem. R moves up the
stack of environments and checks to see if it finds anything looking like an x
in the global environment. Because it can find an x there, it uses that one in
the second cat() statement.

If you use rm() inside a function, rm() will, by default, delete only objects
within the local environment of that function. This way, you can avoid
 running out of memory when you write functions that have to work on huge
datasets. You can immediately remove big temporary objects instead of
 waiting for the function to do so at the end.

Dispatching to a Method
We want to cover one more thing about functions, because you need it to
understand how one function can give a different result based on the type
of value you give the arguments. R has a genius system, called the generic
function system, allowing you to call different functions using the same
name. If you think this is weird, think again about data frames and lists (see
Chapter 7). If you print a list in the console, you get the output arranged in
rows. On the other hand, a data frame is printed to the console arranged in

Figure 8-1:
How R looks

through
global and
local envi-
ronments.

166 Part III: Coding in R

columns. So, the print() function treats lists and data frames differently,
but both times you used the same function. Or did you really?

Finding the methods behind the function
It’s easy to find out if you used the same function both times — you can just
peek inside the function code of print() by typing its name at the command
line, like this:

> print
function (x, ...)
UseMethod("print")
<bytecode: 0x0464f9e4>
<environment: namespace:base>

You can safely ignore the two last lines, because they refer to complicated
stuff in the “outer space” of R and are used only by R developers. But take a
look at the function body — it’s only one line!

Functions that don’t do much other than passing on objects to the right
function are called generic functions. In this example, print() is a generic
function. The functions that do the actual work are called methods. So, every
method is a function, but not every function is a method.

Using methods with UseMethod
How on earth can that one line of code in the print() function do so many
complex things like printing vectors, data frames, and lists all in a different
way? The answer is contained in the UseMethod() function, which is the
central function in the generic function system of R. All UseMethod() does
is tell R to move along and look for a function that can deal with the type of
object that is given as the argument x.

R does that by looking through the complete set of functions in search of
another function that starts with print followed by a dot and then the name
of the object type.

You can do that yourself by using the command methods("print").
The function methods() lists all known methods for the generic function
of interest. Don’t be surprised when you get over 40 different print()
functions for all kinds of objects. If you want to find all methods for a spe-
cific type of object, you can specify the argument class. For example,
methods(class = "data.frame") will give you all methods specific to
the class data.frame.

167 Chapter 8: Putting the Fun in Functions

Suppose you have a data frame you want to print. R looks up the function
print.data.frame() and uses that function to print the object you passed
as an argument. You also can call that function yourself like this:

> small.one <- data.frame(a = 1:2, b = 2:1)
> print.data.frame(small.one)
 a b
1 1 2
2 2 1

The effect of that function differs in no way from what you would get if you
used the generic print(small.one) function instead. That’s because
print() will give the small.one to the print.data.frame() function to
take care of it.

Using default methods
In the case of a list, you may be tempted to look for a print.list() func-
tion. But it won’t work, because the print.list() function doesn’t exist.
This isn’t a problem — R ignores the type of the object in that case and looks
for a default method, print.default().

For many generic functions, there is a default method that’s used if no spe-
cific method can be found. If there is one, you can recognize the default
method by the word default after the dot in the function name.

So, if you want to print the data frame as a list, you can use the default
method like this:

> print.default(small.one)
$a
[1] 1 2
$b
[1] 2 1
attr(,"class")
[1] "data.frame"

Object‐oriented programming (OOP) in R
The system of method dispatching described
in this chapter is called S3, and it’s only one
of the ways you can work object oriented in
R. If you’ve programmed in an object‐oriented
language like Java or C++ before, be sure to
check out the options for OOP in R. The method
dispatching here is only the very start; the S4
methods and reference classes are far more

powerful and include many of the necessary
principles of OOP, including constructors,
inheritance, and the like. But that’s a subject so
complex that it could fill a whole book.

OOP in R is covered in quite some detail in
Advanced R, by Hadley Wickham (Chapman
and Hall/CRC).

168 Part III: Coding in R

Doing it yourself
All that method dispatching sounds nice, but it may seem mostly like internal
affairs of R and not that interesting to know as a user . . . unless you could
use that system yourself, of course — and you can!

Adapting the addPercent function
Suppose you want to be able to paste the percent sign to character vectors
with the addPercent function. As the function is written in the previous
 sections, you can’t. A character vector will give an error the moment you try
to multiply it, so you need another function for that, like the following:

addPercent.character <- function(x){
 paste(x, "%", sep = "")
}

Note that the type of the object is not vector but character. In the same way,
you also have to rename the original addPercent function to addPercent.
numeric in your script.

If you use the system of method dispatching, you can keep all functions in
one script file if they aren’t too big. That way, you have to source only one
script file in order to have the whole generic system working.

All you need now is a generic addPercent() function like this:

addPercent <‐ function(x,...){
 UseMethod("addPercent")
}

You use only two arguments here: x and the dots (...). The use of the
dots argument assures that you can still use all the arguments from the
addPercent.numeric() function in your call to addPercent(). The extra
arguments are simply passed on to the appropriate method via the dots argu-
ment, as explained in the “Using Arguments the Smart Way” section, earlier in
this chapter.

After sending the complete script file to the console, you can send both
 character vectors and numeric vectors to addPercent(), like this:

> addPercent(new.numbers, FUN = floor)
[1] "82%" "2%" "162%" "40%"
> addPercent(letters[1:6])
[1] "a%" "b%" "c%" "d%" "e%" "f%"

169 Chapter 8: Putting the Fun in Functions

A detail that might prevent some headaches is that the argument names in
methods should match the argument names in the generic. You don’t want to
have the argument called x in the generic but object in a method.

Adding a default function
If you try to use the small data frame you made in the previous section, you
will get the following error:

> addPercent(small.one)
Error in UseMethod("addPercent") :
 no applicable method for 'addPercent' applied to an object of class "data.

frame"

That’s a rather complicated way of telling you that there’s no method for a
data frame. There’s no need for a data frame method either, but it may be
nice to point out to the users of your code that they should use a vector
instead. So, you can easily add a default method exactly like R does:

addPercent.default <- function(x){
 message('You should try a numeric or character vector.')
}
> addPercent(small.one)

This default method doesn’t do much apart from printing a message, but
at least that message is a bit easier to understand than the one R spits out.
Sometimes it’s apparent that the error messages of R aren’t always written
with a normal end‐user in mind!

170 Part III: Coding in R

Controlling the Logical Flow
In This Chapter

 ▶ Making choices based on conditions

 ▶ Looping over different values

 ▶ Applying functions row‐wise and column‐wise

 ▶ Applying functions over values, variables, and list components

A function can be nothing more than a simple sequence of actions, but
these kinds of functions are highly inflexible. Often, you want to make

choices and take action dependent on a certain value.

Choices aren’t the only things that can be useful in functions. Loops can pre-
vent you from having to rewrite the same code over and over again. If you
want to calculate the summary statistics on different datasets, for example,
you can write the code to calculate those statistics and then tell R to carry
out that code for all the datasets you had in mind.

R has a very specific mechanism for looping over values that combines a
lot of power with a minimum of unwanted side effects. Instead of using a
classic loop structure, you use a function to apply another function on any
of the objects discussed in the previous chapters. This way of looping over
values is one of the features that distinguish R from many other programming
languages.

In this chapter, we cover the R tools to create loops and make decisions.

Note: If a piece of code is not preceded by a prompt (>), it represents an
example function that you can copy to your editor and then send to the con-
sole (as explained in Chapter 2). All code you normally type directly at the
command line is preceded by a prompt.

Chapter 9

172 Part III: Coding in R

Making Choices with if Statements
Defining a choice in your code is pretty simple: If a condition is true, then
carry out a certain task. Many programming languages let you do that with
exactly those words: if . . . then. R makes it even easier: You can drop the
word then and specify your choice in an if statement.

An if statement in R consists of three elements:

 ✓ The keyword if

 ✓ A single logical value between parentheses (or an expression that leads
to a single logical value)

 ✓ A block of code between braces that has to be executed when the logical
value is TRUE

To see how easy this is, look at a very small function, priceCalculator(),
that calculates the price you charge to a customer based on the hours of
work you did for that customer. The function takes the number of hours
(hours) and the price per hour (pph) as input. The priceCalculator()
function could look like this:

priceCalculator <- function(hours, pph = 40){
 net.price <- hours * pph
 round(net.price)
}

Here’s what this code does:

 ✓ With the function keyword, you define the function.

 ✓ Everything between the braces is the body of the function (see
Chapter 8).

 ✓ Between the parentheses, you specify the arguments hours (without a
default value) and pph (with a default value of $40 per hour).

 ✓ You calculate the net price by multiplying hours by pph.

 ✓ The outcome of the last statement in the body of your function is the
returned value. In this case, this is the total price rounded to the dollar.

You could drop the argument pph and just multiply hours by 40. But that
would mean that if, for example, your colleague uses a different hourly rate,
he would have to change the value in the body of the function in order to be
able to use it. It’s good coding practice to use arguments with default values
for any value that can change. Doing so makes a function more flexible and
usable.

173 Chapter 9: Controlling the Logical Flow

Now imagine you have some big clients that give you a lot of work. To keep
them happy, you decide to give them a reduction of 10 percent on the price
per hour for orders that involve more than 100 hours of work. So, if the
number of hours worked is larger than 100, you calculate the new price by
multiplying the price by 0.9. You can write that almost literally in your code
like this:

priceCalculator <- function(hours, pph = 40){
 net.price <- hours * pph
 if(hours > 100) {
 net.price <- net.price * 0.9
 }
 round(net.price)
}

Copy this code in a script file, and send it to the console to make it available
for use. If you try out this function, you can see that the reduction is given
only when the number of hours is larger than 100:

> priceCalculator(hours = 55)
[1] 2200
> priceCalculator(hours = 110)
[1] 3960

An if statement in R consists of three elements: the keyword if, a single
logical value between parentheses, and a block of code between braces
that has to be executed when the logical value is TRUE. If you look at the if
statement in the previous function, you find these three elements. Between
the parentheses, you find an expression (hours > 100) that evaluates to a
single logical value. Between the braces stands one line of code that reduces
the net price by 10 percent when the line is carried out.

This construct is the most general way you can specify an if statement. But
if you have only one short line of code in the code block, you don’t have to
put braces around it. You can change the complete if statement in the func-
tion with the following line:

if(hours > 100) net.price <- net.price * 0.9

The usual way of getting help on a function named, for example, fun.name
(?fun.name) does not work for if. To access the built‐in help for if, you
have to quote the function name with backticks, the symbol that looks like a
backward slanting quote (’). This prevents R from reading the if as part of a
condition statement.

?’if’

174 Part III: Coding in R

The help function also allows you to pass a character vector with the name of
the function. So each of the following statements takes you to the Help page
for if:

?'if'
?"if"

Doing Something Else with an if. . .else
Statement

In some cases, you need your function to do something if a condition is true
and something else if it is not. You could do this with two if statements, but
there’s an easier way in R: an if...else statement. An if...else state-
ment contains the same elements as an if statement (see the preceding sec-
tion), and then some extra:

 ✓ The keyword else, placed after the first code block

 ✓ A second block of code, contained within braces, that has to be carried out
if and only if the result of the condition in the if() statement is FALSE

In some countries, the amount of value added tax (VAT) that has to be paid
on certain services depends on whether the client is a public or private
organization. Imagine that public organizations pay only 6 percent VAT and
private organizations pay 12 percent VAT. You can add an extra argument
public to the priceCalculator() function and adopt it as follows to add
the correct amount of VAT:

priceCalculator <- function(hours, pph = 40, public = TRUE){
 net.price <- hours * pph
 if(hours > 100) net.price <- net.price * 0.9
 if(public) {
 tot.price <- net.price * 1.06
 } else {
 tot.price <- net.price * 1.12
 }
 round(tot.price)
}

If you send this code to the console, you can test the function. For example, if
you worked for 25 hours, the following code gives you the different amounts
you charge for public and private organizations, respectively:

> priceCalculator(25, public = TRUE)
[1] 1060
> priceCalculator(25, public = FALSE)
[1] 1120

175 Chapter 9: Controlling the Logical Flow

This works well, but how does it work?

If you look at the if...else statement in the previous function, you find
these elements. If the value of the argument public is TRUE, the total price
is calculated as 1.06 times the net price. Otherwise, the total price is 1.12
times the net price.

The if statement needs a logical value between the parentheses. Any expres-
sion you put between the parentheses is evaluated before being passed on to
the if statement. So, if you work with a logical value directly, you don’t have
to specify an expression at all. Using, for example, if(public == TRUE) is
about as redundant as asking if white snow is white. It would work, but it’s
bad coding practice.

Also, in the case of an if...else statement, you can drop the braces if both
code blocks exist of only a single line of code. So, you could just forget about
the braces and squeeze the whole if...else statement on a single line. Or
you could even write it like this:

if(public) tot.price <- net.price * 1.06 else
 tot.price <- net.price * 1.12

Putting the else statement at the end of a line and not the beginning of
the next one is a good idea. In general, R reads multiple lines as a single
line as long as it’s absolutely clear that the command isn’t finished yet (see
Chapter 3). If you put else at the beginning of the second line, R considers
the first line finished and complains. You can put else at the beginning of a
next line only if you do so within a function and you source the complete file
at once to R.

But you can still make this shorter. The if statement works like a function
and, hence, it also returns a value. As a result, you can assign that value to an
object or use it in calculations. So, instead of recalculating net.price and
assigning the result to tot.price within the code blocks, you can use the
if...else statement like this:

tot.price <- net.price * if(public) 1.06 else 1.12

R first evaluates the if...else statement, and multiplies the outcome
by net.price. The result is then assigned to tot.price. This differs not
one iota from the result of the five lines of code we used for the original
if...else statement. R allows programmers to be incredibly lazy, er,
 economical here.

176 Part III: Coding in R

Vectorizing Choices
As we discuss in Chapter 4, vectorization is one of the defining attributes
of the R language. R wouldn’t be R if it didn’t have some kind of vectorized
version of an if...else statement. If you wonder why on earth you would
need such a thing, take a look at the problem discussed in this section.

Looking at the problem
The priceCalculator() function still isn’t very economical to use. If you
have 100 clients, you have to calculate the price for every client separately.
Check for yourself what happens if you add, for example, three different
amounts of hours as an argument:

> priceCalculator(c(25, 110))
[1] 1060 4664
Warning message:
In if (hours > 100) net.price <- net.price * 0.9 :
 the condition has length > 1 and only the first element will be used

Not only does R warn you that something fishy is going on, but the result you
get is plain wrong. Instead of $4,664, the second client should be charged
only $4,198:

> priceCalculator(110)
[1] 4198

What happened? The warning message should give you a fair idea about
what went wrong. An if statement can deal only with a single value, but the
expression hours > 100 returns two values, as shown by the following code:

> c(25, 110) > 100
[1] FALSE TRUE

Choosing based on a logical vector
The solution you’re looking for is the ifelse() function, which is a vector-
ized way of choosing values from two vectors. This remarkable function
takes three arguments:

 ✓ A test vector with logical values

 ✓ A vector with values that should be returned if the corresponding value
in the test vector is TRUE

 ✓ A vector with values that should be returned if the corresponding value
in the test vector is FALSE

177 Chapter 9: Controlling the Logical Flow

Understanding how it works
Take a look at the following trivial example:

> ifelse(c(1, 3) < 2.5 , 1:2 , 3:4)
[1] 1 4

To understand how it works, run over the steps the function takes:

1. The conditional expression c(1, 3) < 2.5 is evaluated to a logical
vector.

2. The first value of this vector is TRUE, because 1 is smaller than 2.5. So,
the first value of the result is the first value of the second argument,
which is 1.

3. The next value is FALSE, because 3 is larger than 2.5. Hence,
ifelse() takes the second value of the third argument (which is 4) as
the second value of the result.

4. A vector with the selected values is returned as the result.

Trying it out
To see how this works in the example of the priceCalculator() function,
try the function out at the command line in the console. Say you have two
clients and you worked 25 and 110 hours for them, respectively. You can cal-
culate the net price with the following code:

> my.hours <- c(25, 110)
> my.hours * 40 * ifelse(my.hours > 100, 0.9, 1)
[1] 1000 3960

Didn’t you just read that the second and third arguments should be a vector?
Yes, but the ifelse() function recycles its arguments. And that’s exactly
what it does here. In the preceding ifelse() function call, you translate the
logical vector created by the expression my.hours > 100 into a vector con-
taining the numbers 0.9 and 1 in lieu of TRUE and FALSE, respectively.

Adapting the function
Of course, you need to adapt the priceCalculator() function in such a
way that you also can input a vector with values for the argument public.
Otherwise, you wouldn’t be able to calculate the prices for a mixture of
public and private clients. The final function looks like this:

priceCalculator <- function(hours, pph = 40, public){
 net.price <- hours * pph
 net.price <- net.price * ifelse(hours > 100 , 0.9, 1)
 tot.price <- net.price * ifelse(public, 1.06, 1.12)
 round(price)
}

178 Part III: Coding in R

Next, create a little data frame to test the function. For example:

> clients <- data.frame(
+ hours = c(25, 110, 125, 40),
+ public = c(TRUE, TRUE, FALSE, FALSE)
+)

You can now use this data frame as arguments for the priceCalculator()
function, like this:

> with(clients, priceCalculator(hours, public = public))
[1] 1060 4198 5040 1792

There you go. Problem solved!

Making Multiple Choices
The if and if...else statements in the previous section leave you with
exactly two options, but life is seldom as simple as that.

Imagine you have some clients abroad. Let’s assume that any client abroad
doesn’t need to pay VAT. This leaves you with three different VAT rates: 12
percent for private clients, 6 percent for public clients, and none for foreign
clients.

Chaining if...else statements
The most intuitive way to solve this problem is just to chain the choices. If a
client is living abroad, don’t charge any VAT. Otherwise, check whether the
client is public or private and apply the relevant VAT rate.

If you define an argument client for your function that can take the values
"abroad", "public", and "private", you could code the previous algo-
rithm like this:

if(client == "private"){
 tot.price <- net.price * 1.12 # 12% VAT
} else {
 if(client == "public"){
 tot.price <- net.price * 1.06 # 6% VAT
 } else {
 tot.price <- net.price * 1 # 0% VAT
 }
}

179 Chapter 9: Controlling the Logical Flow

With this code, you nest the second if...else statement in the first
if...else statement. That’s perfectly acceptable and it will work, but
 imagine what you would have to do if you had four or even more possi-
bilities. Nesting a statement in a statement in a statement in a statement
quickly creates one huge curly mess.

Luckily, R allows you to write all that code a bit more clearly. You can chain
the if...else statements as follows:

if(client == "private"){
 tot.price <- net.price * 1.12
} else if(client == "public"){
 tot.price <- net.price * 1.06
} else {
 tot.price <- net.price
}

In this example, the chaining makes a difference of only two braces, but when
you have more possibilities, it really makes the difference between readable
code and sleepless nights. Note, also, that you don’t have to test whether the
argument client is equal to "abroad" (although it wouldn’t be wrong to
do that). You just assume that if client doesn’t have any of the two other
values, it has to be "abroad".

In this specific case, you can further simplify the code if you keep in mind
that if also can return a value, as we explained in the earlier section “Doing
Something Else with an if. . .else Statement.” Using the same trick as before,
you can simplify the preceding code to:

tot.price <- net.price *
 if(client == "private") 1.12 else
 if(client == "public") 1.06 else 1

Chained if...else statements work on a single value at a time. You can’t
use these chained if...else statements in a vectorized way. For that, you
can nest multiple ifelse statements, like this:

VAT <- ifelse(client == "private", 1.12,
 ifelse(client == "public", 1.06, 1)
)
tot.price <- net.price * VAT

This style of code can be very confusing if you have more than three choices,
though. The solution to this is to switch.

180 Part III: Coding in R

Switching between possibilities
The nested if...else statement is especially useful if you have complete
code blocks that have to be carried out when a condition is met. But if you
need to select values based only on a condition, you have a better option:
Use the switch() function.

Making choices with switch
In the previous example, you wanted to adjust the VAT rate depending on
whether the client is public, private, or lives abroad. You have a list of three
possible choices, and for each choice you have a specific VAT rate. You can
use the switch() function like this:

VAT <- switch(client, private = 1.12, public = 1.06, abroad = 1)

You construct a switch() call as follows:

1. Give a single value as the first argument (in this case, the value of
client).

Note that switch() isn’t vectorized, so it can’t deal with vectors as a
first argument.

2. After the first argument, you give a list of choices with the respected
values.

Note that you don’t have to put quotation marks around the choices.

Remember that switch() doesn’t work in a vectorized way. You can distin-
guish the choices more easily, however, so the code becomes more readable.

In fact, the first argument doesn’t have to be a value; it can be some expres-
sion that evaluates to either a character vector or a number. In case you
work with numbers, you don’t even have to use choice=value in the func-
tion call. If you have integers, switch() will return the option in that posi-
tion. In the statement switch(2, "some value", "something else",
"some more"), the result is "something else". You can find more infor-
mation and examples on the Help page ?switch.

Using default values in switch
You don’t have to specify all options in a switch() call. If you want to have
a certain result in case the matched value is not among the specified options,
put that result as the last option, without any choice before it. So, the follow-
ing line of code does exactly the same thing as the nested ifelse call from
the “Chaining if...else statements” section, earlier in this chapter:

VAT <- switch(client, private = 1.12, public = 1.06, 1)

181 Chapter 9: Controlling the Logical Flow

You can easily test this out in the console by creating an object called
client with a certain value and then running the switch() call, as in the
following example:

> client <- "other"
> switch(client, private = 1.12, public = 1.06, 1)
[1] 1

To try it yourself, give client different values to see how switch() works.

Looping Through Values
In the previous section, you used different methods to make choices. Some of
these methods aren’t vectorized, so you can use only a single value to base
your choice on. You could, of course, apply that code on each value you have
by hand, but it makes far more sense to automate this task.

Constructing a for loop
As in many other programming languages, you repeat an action for every
value in a vector by using a for loop. You construct a for loop in R as
follows:

for(i in values){
 . . . do something . . .
}

This for loop consists of the following parts:

 ✓ The keyword for, followed by parentheses.

 ✓ An identifier between the parentheses. In this example, we use i, but
that can be any object name you like.

 ✓ The keyword in, which follows the identifier.

 ✓ A vector with values to loop over. In this example code, we use the
object values, but that again can be any vector you have available.

 ✓ A code block between braces that has to be carried out for every value
in the object values.

In the code block, you can use the identifier. Each time R loops through the
code, R assigns the next value in the vector values to the identifier.

182 Part III: Coding in R

Calculating values in a for loop
Take another look at the priceCalculator() function (refer to the “Making
Multiple Choices” section, earlier in this chapter). Earlier, you saw a few
 possibilities to adapt this function so that you can apply a different VAT rate
for public, private, and foreign clients. You can’t use any of these options in a
vectorized way, but you can use a for loop so the function can calculate the
price for multiple clients at once.

Using the values of the vector
Adapt the priceCalculator() function as follows:

priceCalculator <- function(hours, pph = 40, client){
 net.price <- hours * pph *
 ifelse(hours > 100, 0.9, 1)
 VAT <- numeric(0)
 for(i in client){
 VAT <- c(VAT, switch(i, private = 1.12, public = 1.06, 1))
 }

 tot.price <- net.price * VAT
 round(tot.price)
}

The first and the last part of the function haven’t changed, but in the middle
section, you do the following:

1. Create a numeric vector with length 0 and call it VAT.

2. For every value in the vector client, apply switch() to select the cor-
rect amount of VAT to be paid.

3. In each round through the loop, add the outcome of switch() at the
end of the vector VAT.

The result is a vector VAT that contains, for each client, the correct VAT
that needs to be applied. You can test this by adding, for example, a variable
type to the data frame clients you created in the previous section.
Try this:

> clients$type <- c("public", "abroad", "private", "abroad")
> priceCalculator(clients$hours, client = clients$type)
[1] 1060 3960 5040 1600

183 Chapter 9: Controlling the Logical Flow

Using loops and indices
The function from the previous section works, but you can write more effi-
cient code if you loop not over the values but over the indices. To do so,
replace the middle section in the function with the following code:

nclient <- length(client)
VAT <- numeric(nclient)
for(i in seq_along(client)){
 VAT[i] <- switch(client[i], private = 1.12, public = 1.06, 1))
}

This code acts very similar to the previous one, but there are a few
differences:

 ✓ You assign the length of the vector client to the variable nclient.

 ✓ Then you make a numeric vector VAT that is exactly as long as the
vector client. This is called pre‐allocation of a vector.

 ✓ Then you loop over indices of client instead of the vector itself by using
the function seq_along(). In the first pass through the loop, the first
value in VAT is set to be the result of switch() applied to the first value
in client. In the second pass, the second value of VAT is the result of
switch() applied to the second value in client and so on.

Doing more with loops — and when not to do so
R contains some of the mechanisms used in other
programming languages to manipulate loops:

 ✓ The keyword next, to skip to the next
 iteration of a loop without running the
remaining code in the code block

 ✓ The keyword break, to break out of a loop
at any given point

 ✓ The keyword while, to construct a loop
that continues as long as a certain condi-
tion is TRUE

Find more information on the use of these
keywords on the Help page ?Control.

Although you can technically use all three options,
they’re not often used. Many programmers

consider the use of break and next to be bad
coding practice in any language.

For while, the situation is a bit more complex.
A while loop is useful only in very specific
cases, like when you generate artificial data
that has to meet certain conditions or when
you write your own optimization algorithms.
But in many cases the built‐in optimization
functions like optim(), optimize(), and
nlm() work faster than a while loop — and
often give more stable results. These functions
require a bit of study before you can apply
them, but studying the Help pages ?optim,
?optimize, and ?nlm, as well as related
pages, can really pay off.

184 Part III: Coding in R

You may be tempted to replace seq_along(client) with the vector
1:nclient, but that would be a bad idea. If the vector client has a length
of 0, seq_along(client) creates an empty vector and the code in the loop
never executes. If you use 1:nclient, R creates a vector c(1,0) and loops
over those two values, giving a completely wrong result.

Every time you lengthen an object in R, R copies the whole object and moves
it to a new place in memory. This has two effects: First, it slows down your
code, because all the copying takes time. Second, as R continuously moves
things around in memory, this memory gets split up in a lot of small spaces.
This is called fragmentation, and it makes the communication between R and
the memory less smooth. You can avoid this fragmentation by pre‐allocating
memory as in the previous example.

Looping without Loops: Meeting the
Apply Family

Using for loops in R has side effects that some programmers would call seri-
ous drawbacks. For example, any object that you create or change in a for
loop is created or changed in the global environment. This may be exactly
what you’re trying to do, but more often than not, this is an unwanted side
effect of the way for loops are implemented in R.

Take a look at the following trivial example:

> songline <‐ "Get out of my dreams..."
> for(songline in 1:5) print("...Get into my car!")

Contrary to what you may expect, after running this code, the value of
 songline is not the string "Get out of my dreams...", but the
number 5, as shown in the output below:

> songline
[1] 5

Although you never explicitly changed the value of songline anywhere in
the code, R does so implicitly when carrying out the for loop. Every itera-
tion, R reassigns the next value from the vector to songline . . . in the global
environment! By choosing the names of the variables and the identifier
wisely, you can avoid running into this kind of trouble. But when writing large
scripts, you need to do some serious bookkeeping for the names, and making
mistakes becomes all too easy.

185 Chapter 9: Controlling the Logical Flow

To be completely correct, using a for loop has an effect on the environment
you work in at that moment. If you just use the for loop in scripts that you
run in the console, the effects will take place in the global environment. If you
use a for loop in the body of the function, the effects will take place within
the environment of that function. For more information, see Chapter 8.

Here’s the good news: R has another looping system that’s very power-
ful, that’s at least as fast as for loops (and sometimes faster), and — most
important of all — that doesn’t have the side effects of a for loop. Actually,
this system consists of a complete family of related functions, known as the
apply family. In base R, this family contains eight functions, all ending with
apply, and many packages provide additional apply‐like functions.

Looking at the family features
Before you start using any of the functions in the apply family, here are the
most important properties of these functions:

 ✓ Every one of the apply functions takes at least two arguments: an
object and another function. You pass the function as an argument
(see Chapter 8).

 ✓ None of these apply functions has side effects. This is the main reason
to use them, so we can’t stress it enough: If you can use any apply func-
tion instead of a for loop, use the apply solution. Be aware, though, that
possible side effects of the applied function are not taken care of by the
apply family.

 ✓ Every apply function can pass on arguments to the function that is given
as an argument. It does that using the dots argument (see Chapter 8).

 ✓ Every function of the apply family always returns a result. Using the
apply family makes sense only if you need that result. If you want to
print messages to the console with print() or cat(), for example,
there’s no point in using the apply family for that.

Meeting three of the members
Say hello to apply(), sapply(), and lapply(), the most used members
of the apply family. Each of these functions applies another function to all
components in an object. What those components are depends on the object
and the apply function you use. Table 9-1 provides an overview of the objects
that each of these three functions works on, what each function sees as a
component, and which objects each function can return. We explain how to
use these functions in the remainder of this chapter.

186 Part III: Coding in R

Applying functions on rows and columns
In Chapter 7, you calculate the sum of a matrix with the rowSums() function.
You can do the same for means with the rowMeans() function, and you have
the related functions colSums() and colMeans() to calculate the sum and
the mean for each column. But R doesn’t have similar functions for every
operation you want to carry out. Luckily, you can use the apply() function
to apply a function over every row or column of a matrix or data frame.

Counting birds
Imagine you counted the birds in your backyard on three different days and
stored the counts in a matrix like this:

> counts <- matrix(c(3, 2, 4, 6, 5, 1, 8, 6, 1), ncol = 3)
> colnames(counts) <- c("sparrow", "dove", "crow")
> counts
 sparrow dove crow
[1,] 3 6 8
[2,] 2 5 6
[3,] 4 1 1

Table 9-1 Using apply, sapply, and lapply
Function Name Objects the Function

Works On
What the Function
Sees as Components

Result Type

apply Matrix Rows or columns Vector, matrix,
array, or list

Array Rows, columns, or
any dimension

Vector, matrix,
array, or list

Data frame Rows or columns Vector, matrix,
array, or list

sapply Vector Elements Vector, matrix,
or list

Data frame Variables Vector, matrix,
or list

List Components Vector, matrix,
or list

lapply Vector Elements List

Data frame Variables List

List Components List

187 Chapter 9: Controlling the Logical Flow

Each column represents a different species, and each row represents a differ-
ent day. Now you want to know the maximum count per species on any given
day. You could construct a for loop to do so, but using apply(), you do
this in only one line of code:

> apply(counts, 2, max)
sparrow dove crow
 4 6 8

The apply() function returns a vector with the maximum for each column
and conveniently uses the column names as names for this vector as well. If R
doesn’t find names for the dimension over which apply() runs, it returns an
unnamed object instead.

Let’s take a look at how this apply() function works. In the example you
used three arguments:

 ✓ The object on which the function has to be applied: In this case, it’s the
matrix counts.

 ✓ The dimension or index over which the function has to be applied:
The number 1 means row‐wise, and the number 2 means column‐wise.
Here, we apply the function over the columns. In the case of more‐
dimensional arrays, this index can be larger than 2.

 ✓ The name of the function that has to be applied: You can use quotation
marks around the function name, but you don’t have to. Here, we apply
the function max. Note that there are no parentheses needed after the
function name.

The apply() function splits up the matrix (or data frame) in rows (or col-
umns). Remember that if you select a single row or column, R, by default,
simplifies that to a vector. The apply() function then uses these vectors
one by one as an argument to the function you specified. So, the applied
function needs to be able to deal with vectors.

Adding extra arguments
Let’s go back to our example from the preceding section: Imagine you didn’t
look for doves the second day. This means that, for that day, you don’t have
any data, so you have to set that value to NA like this:

> counts[2, 2] <- NA

If you apply the max() function on the columns of this matrix, you get the fol-
lowing result:

> apply(counts, 2, max)
sparrow dove crow
 4 NA 8

188 Part III: Coding in R

That’s not what you want. In order to deal with the missing values, you need
to pass the argument na.rm to the max() function in the apply() call (see
Chapter 4). Luckily, this is easily done in R. You just have to add all extra
arguments to the function as extra arguments of the apply() call, like this:

> apply(counts, 2, max, na.rm = TRUE)
sparrow dove crow
 4 6 8

You can pass any arguments you want to the function in the apply() call by
just adding them between the parentheses after the first three arguments.

Applying functions to listlike objects
The apply() function works on anything that has dimensions, but what if
you don’t have dimensions (for example, when you have a list or a vector)?
For that, you have two related functions from the apply family at your dis-
posal: sapply() and lapply(). The l in lapply stands for list, and the s in
sapply stands for simplify. The two functions work basically the same —
the only difference is that lapply() always returns a list with the result,
whereas sapply() tries to simplify the final object if possible.

Applying a function to a vector
As you can see in Table 9-1, both sapply() and lapply() consider every
value in the vector to be an element on which they can apply a function. Many
functions in R work in a vectorized way, so there’s often no need to use this.

Using switch on vectors
The switch() function, however, doesn’t work in a vectorized way.
Consider the following basic example:

> sapply(c("a", "b"), switch, a = "Hello", b = "Goodbye")
 a b
 "Hello" "Goodbye"

The sapply() call works very similar to the apply() call from the previous
section, although you don’t have an argument that specifies the index. Here’s
a recap:

 ✓ The first argument is the vector on which values you want to apply the
function — in this case, the vector c("a", "b").

 ✓ The second argument is the name of the function — in this case, switch.

 ✓ All other arguments are simply the arguments you pass to the switch
function.

189 Chapter 9: Controlling the Logical Flow

The sapply() function now takes first the value "a" and then the value "b"
as the first argument to switch(), using the arguments a="Hello" and
b="Goodbye" each time as the other arguments. It combines both results
into a vector and uses the values of c("a", "b") as names for the resulting
vector.

The sapply() function has an argument USE.NAMES that you can set to
FALSE if you don’t want sapply() to use character values as names for the
result. For details about this argument, see the Help page ?sapply.

Replacing a complete for loop with a single statement
In the “Calculating values in a for loop” section, earlier in this chapter, you
use a for loop to apply the switch() function on all values passed through
the argument client. Although that trick works nicely, you can replace the
pre‐allocation and the loop with one simple statement, like this:

priceCalculator <- function(hours, pph = 40, client){
 net.price <- hours * pph * ifelse(hours > 100, 0.9, 1)

 VAT <- sapply(client, switch, private = 1.12, public = 1.06, 1)

 tot.price <- net.price * VAT
 round(tot.price)
}

Applying a function to a data frame
You also can use sapply() on lists and data frames. In this case, sapply()
applies the specified function on every component in that list. Because data
frames are lists as well, everything in this section applies to both lists and
data frames.

Imagine that you want to know which type of variables you have in your data
frame clients. For a vector, you can use the class() function to find out
the type. In order to know this for all variables of the data frame at once, you
simply apply the class() function to every variable by using sapply()
like this:

> sapply(clients, class)
 hours public type
 "numeric" "logical" "character"

R returns a named vector that gives you the types of every variable, and it
uses the names of the variables as names for the vector. In case you use a
named list, R uses the names of the list components as names for the
vector.

190 Part III: Coding in R

Simplifying results (or not) with sapply
The sapply() function doesn’t always return a vector. In fact, the standard
output of sapply is a list, but that list gets simplified to either a matrix or a
vector if possible. By default, sapply() works in the following way:

 ✓ If the result of the applied function on every component of the list or
vector is a single number, sapply() simplifies the result to a vector.

 ✓ If the result of the applied function on every component of the list or
vector is a vector with exactly the same length, sapply() simplifies the
result to a matrix.

 ✓ In all other cases, sapply() returns a (named) list with the results.

Say you want to know the unique values of every variable in the data frame
clients. To get all unique values in a vector, you use the unique() func-
tion. You can get the result you want by applying that function to the data
frame clients like this:

> sapply(clients, unique)
$hours
[1] 25 110 125 40

$public
[1] TRUE FALSE

$type
[1] "public" "abroad" "private"

In the variable hours, you find four unique values; in the variable public,
only two; and in the variable type, three. Because the lengths of the result
differ for every variable, sapply() can’t simplify the result, so it returns a
named list.

Getting lists using lapply
The lapply() function works exactly the same as the sapply() function,
with one important difference: It always returns a list. This trait can be ben-
eficial if you’re not sure what the outcome of sapply() will be.

Say you want to know the unique values of only a subset of the data frame
clients. You can get the unique values in the first and third rows of the
data frame like this:

> sapply(clients[c(1, 3),], unique)
 hours public type
[1,] "25" "TRUE" "public"
[2,] "125" "FALSE" "private"

191 Chapter 9: Controlling the Logical Flow

But because every variable now has two unique values, sapply() simplifies
the result to a matrix. If you counted on the result to be a list in the following
code, you would get errors. If you used lapply(), on the other hand, you
would also get a list in this case, as shown in the following output:

> lapply(clients[c(1,3),], unique)
$hours
[1] 25 125
$public
[1] TRUE FALSE

$type
[1] "public" "private"

Actually, the sapply() function has an extra argument, simplify, that
you can set to FALSE if you don’t want a simplified list, or to the character
value “array” if you want to allow simplification to arrays with more than
two dimensions. If you set both the arguments simplify and USE.NAMES to
FALSE, sapply() and lapply() return exactly the same result. For details
on the difference between the two functions, look at the Help file ?sapply.

192 Part III: Coding in R

Debugging Your Code
In This Chapter

 ▶ Discovering what warnings tell you

 ▶ Reading errors correctly

 ▶ Finding the bugs in your code

 ▶ Optimizing your debugging strategies

T
o err is human, and programmers fall into that “human” category as well
(even though we like to believe otherwise!). Nobody manages to write

code without errors, so instead of wondering if you have errors in your code,
you should ask yourself where you have errors in your code. In this chapter,
you discover some general strategies and specific tools to find that out.

Knowing What to Look For
A bug is simply another word for some kind of error in your program. So,
debugging doesn’t involve insecticides — it just means getting rid of all types
of semantic and/or logical errors in your functions.

Before you start hunting down bugs, you have to know what you’re looking
for. In general, you can divide errors in your code into three different catego-
ries:

 ✓ Syntax errors: If you write code that R can’t understand, you have
syntax errors. Syntax errors always result in an error message and often
are caused by misspelling a function or forgetting a bracket.

 ✓ Semantic errors: If you write correct code that doesn’t do what you
think it does, you have a semantic error. The code itself is correct,
but the outcome of that line of code is not. It may, for example, return
another type of object than you expect. If you use that object further on,
it won’t be the type you think it is and your code will fail there.

Chapter 10

194 Part III: Coding in R

 ✓ Logic errors: Probably the hardest‐to‐find are errors in the logic of your
code. Your code works, it doesn’t generate any errors or warning, but it
still doesn’t return the result you expect. The mistake is not in the code
itself, but in the logic it executes.

This may seem like a small detail, but finding different types of bugs requires
different strategies. Often, you can easily locate a syntax error by simply
reading the error messages, but semantic errors pose a whole different
challenge, and logic errors can hide in your code without your being aware
they exist.

Reading Errors and Warnings
If something goes wrong with your code, R tells you. This can happen in two
ways:

 ✓ The code keeps on running until the end, and when the code is finished,
R prints out a warning message.

 ✓ The code stops immediately because R can’t carry it out, and R prints
out an error message.

We have to admit it: These error messages can range from mildly confusing
to completely incomprehensible if you’re not used to them. But it doesn’t
have to stay that way. When you get familiar with the errors and warning
messages from R, you can quickly tell what’s wrong.

Reading error messages
Let’s take a look at such an error message. If you try the following code, you
get this more or less clear error message:

> "a" + 1
Error in "a" + 1 : non-numeric argument to binary operator

You get two bits of information in this error message. First, the line "a" + 1
tells you in which line of code you have an error. Then it tells you what the
error is. In this case, you used a non‐numeric argument (the character "a"):
In combination with a binary operator (the + sign).

R always tells you in which code the error occurs, so you know in many cases
where you have to start looking.

195 Chapter 10: Debugging Your Code

Error messages aren’t always that clear. Take a look at the following example:

> data.frame(1:10, 10:1,)
Error in data.frame(1:10, 10:1,) : argument is missing, with no default

To what argument does this error refer? Actually, it refers to an empty argu-
ment you provided for the function. After the second vector, there’s a comma
that shouldn’t be there. A small typing error, but R expects another argument
after that comma and doesn’t find one.

If you don’t immediately understand an error message, take a closer look
at the things the error message is talking about. It could be that you simply
typed something wrong there.

Caring about warnings (or not)
You can’t get around errors, because they just stop your code. Warnings
on the other hand are a whole different beast. Even if R throws a warning, it
continues to execute the code regardless. So, you can ignore warnings, but
in general that’s a pretty bad idea. Warnings often are the only sign you have
that your code has some semantic or logic error.

For example, you could’ve forgotten about the ifelse() function discussed
in Chapter 9 and tried something like the following example:

> x <- 1:10
> y <- if (x < 5) 0 else 1
Warning message:
In if (x < 5) 0 else 1 :
 the condition has length > 1 and only the first element will be used

This warning points at a semantic error: if() expects a single TRUE or
FALSE value, but you provided a whole vector. Note that, just like errors,
warnings tell you in general which code has generated the warning.

Here is another warning that pops up regularly and may point to a semantic
or logic error in your code:

> x <- 4
> sqrt(x - 5)
[1] NaN
Warning message:
In sqrt(x - 5) : NaNs produced

196 Part III: Coding in R

Because x ‐ 5 is negative when x is 4, R cannot calculate the square root and
warns you that the square root of a negative number is not a number (NaN).

If you’re a mathematician, you may point out that the square root of –1 is
0 ‐ 1i. R can, in fact, do calculations on complex numbers, but then you
have to define your variables as complex numbers. You can check, for
 example, ?complex for more information.

Although most warnings result from either semantic or logic errors in your
code, even a simple syntax error can generate a warning instead of an error.
If you want to plot some points in R, you use the plot() function, as shown
in Chapter 16. The function plot() takes an argument col to specify the
color of the points, but you could mistakenly try to color the points using the
following:

> plot(1:10, 10:1, color = "green")

If you try this, you get six warning messages at once, all telling you that
color is probably not the argument name you were looking for:

Warning messages:
1: In plot.window(. . .) : "color" is not a graphical parameter
2: In plot.xy(xy, type, . . .) : "color" is not a graphical parameter
....

Notice that the warning messages don’t point toward the code you typed at
the command line; instead, they point to functions you never used before,
like plot.window() and plot.xy(). Remember: You can pass arguments
from one function to another using the dots argument (see Chapter 8). That’s
exactly what plot() does here. So, plot() itself doesn’t generate a warn-
ing, but every function that plot() passes the color argument to does.

If you get warning or error messages, a thorough look at the Help pages of
the function(s) that generated the error can help in determining what the
reason is for the message you got. For example, at the Help page ?plot.xy,
you find that the correct name for the argument is col.

To summarize, most warnings point to one of the following problems:

 ✓ The function gave a result, but for some reason that result may not be
correct.

 ✓ The function generated an atypical outcome, like NA or NaN values.

 ✓ The function couldn’t deal with some of the arguments and ignored
them.

Only the last one tells you there’s a problem with your syntax. For the other
ones, you have to examine your code a bit more.

197 Chapter 10: Debugging Your Code

Going Bug Hunting
Although the error message always tells you which line of code generates the
error, it may not be the line of code where things started going wrong. This
makes bug hunting a complex business, but some simple strategies can help
you track down these pesky creatures.

Calculating the logit
To illustrate some bug‐hunting strategies in R, we use a simple example. Say,
for example, your colleague wrote two functions to calculate the logit from
both proportions and percentages, but he can’t get them to work. So, he asks
you to help find the bugs. Here’s the code he sends you:

checks input and does logit calculation
logit <- function(x){
 x <- ifelse(x < 0 | x > 1, "NA", x)
 log(x / (1 - x))
}
transforms percentage to number and calls logit
logitpercent <- function(x){
 x <- gsub("%", "", x)
 logit(as.numeric(x))
}

Type this code into the editor, and save the file using, for example,
logitfunc.R as its name. After that, source the file in R from the editor
using either the source() function or the source button or command from
the editor of your choice. Now the function code is loaded in R, and you’re
ready to start hunting.

The logit is nothing else but the logarithm of the odds, calculated as
log(x / (1‐x)) where x is the probability of some event taking place.
Statisticians use this when modeling binary data using generalized linear
models. If you ever need to calculate a logit yourself, you can use the func-
tion qlogis() for that. To calculate probabilities from logit values, you use
the plogis() function.

Knowing where an error comes from
Your colleague complained that he got an error with this code:

> logitpercent("50%")
Error in 1 - x : non-numeric argument to binary operator

198 Part III: Coding in R

Sure enough, but you don’t find the code 1 ‐ x in the body of
logitpercent(). So, the error comes from somewhere else. To know
from where, you can use the traceback() function immediately after the
error occurred, like this:

> traceback()
2: logit(as.numeric(x)) at logitfunc.R#9
1: logitpercent("50%")

This traceback() function prints what is called the call stack that led to
the last error. This call stack represents the sequence of function calls, but
in reverse order. The function at the top is the function in which the actual
error is generated.

In this example, R called the logitpercent() function, and that function, in
turn, called logit(). The traceback tells you that the error occurred inside
the logit() function. Even more, the traceback() function tells you that
the error occurred in line 9 of the logitfunc.R code file, as indicated by
logitfunc.R#9 in the traceback() output.

The call stack gives you a whole lot of information — sometimes too much. It
may point to some obscure internal function as the one that threw the error.
If that function doesn’t ring a bell, check higher in the call stack for a function
you recognize and start debugging from there.

Looking inside a function
Now that you know where the error came from, you can try to find out
how the error came about. If you look at the code, you expect that the
as.numeric() function in logitpercent() sends a numeric value to the
logit() function. So, you want to check what’s going on in there.

In ancient times, programmers debugged a function simply by letting it print
out the value of variables they were interested in. You can do the same by
inserting a few print() statements in the logit() function. This way, you
can’t examine the object, though, and you have to add and delete print state-
ments at every point where you want to peek inside the function. Luckily,
we’ve passed the age of the dinosaurs; R gives you better methods to check
what’s going on.

Telling R which function to debug
You can step through a function after you tell R you want to debug it using
the debug() function, like this:

> debug(logit)

199 Chapter 10: Debugging Your Code

From now on, R will switch to the browser mode every time that function
is called from anywhere in R, until you tell R explicitly to stop debugging or
until you overwrite the function by sourcing it again. To stop debugging a
function, you simply use undebug(logit).

If you want to step through a function only once, you can use the function
debugonce() instead of debug(). R will go to browser mode the next
time the function is called, and only that time — so you don’t need to use
undebug() to stop debugging.

If you try the function logitpercent() again after running the code
debug(logit), you see the following in the console:

> logitpercent("50%")
debugging in: logit(as.numeric(x))
debug at D:/RForDummies/Ch10/logitfunc.R#2: {
 x <- ifelse(x < 0 | x > 1, "NA", x)
 log(x/(1 - x))
}
Browse[2]>

You see that the prompt changed. It now says Browse[2]. This prompt tells
you that you’re browsing inside a function.

The number indicates at which level of the call stack you’re browsing at that
moment. Remember from the output of the traceback() function that the
logit() function occurred as the second function on the call stack. That’s
the number 2 in the output above.

The additional text above the changed prompt gives you the following infor-
mation:

 ✓ The line from where you called the function — in this case, the line
logit(as.numeric(x)) from the logitpercent() function

 ✓ The file or function that you debug — in this case, the file
logitfunc.R, starting at the second line

 ✓ Part of the code you’re about to browse through

If you’re working in RStudio, you also notice a number of other changes, as
shown in Figure 10-1. Right under the environment pane you notice an extra
pane called ’Traceback’. It shows you where in the call stack you’re currently
browsing. Remember that the call stack is the sequence of function calls.

You also see some extra buttons appearing at the top of the console. These
buttons are easy shortcuts for the browser commands. Lastly, you see a
green arrow in the left margin of your script, indicating at which point in the
code you’re currently browsing.

200 Part III: Coding in R

If you didn’t save the script file before sourcing, RStudio behaves a bit
 differently when debugging a function in that script file. RStudio opens a
 special Source Viewer pane; it shows the code you’re debugging, although
you can’t edit it. RStudio places the green arrow at the place in the code
you’re currently browsing, but warns you that its guess is approximate
because it doesn’t have a saved script file or “source” available.

Stepping through the function
When you’re in browser mode, you can use any R code you want in order
to check the state of different objects. You can browse through the function
now with the following commands:

 ✓ To run the next line of code, type n and press Enter. R enters the step‐
through mode. To run the subsequent lines of code line by line, you
don’t have to type n anymore (although you still can). Just pressing
Enter suffices.

 ✓ To run the remaining part of the code block you’re debugging, type c
and press Enter. Note that when you’re in a loop, typing c will run the
remaining iterations of that loop and drops you off at the first line of
code following that loop.

 ✓ To exit browser mode, type Q and press Enter.

Figure 10-1:
Browsing

through
a func-

tion using
RStudio

debugging

201 Chapter 10: Debugging Your Code

You find more browse commands on the help page ?browser. If you want to
look at an object that’s named like any of the special browse commands, you
have to specifically print it out, using either print(n) or str(n).

Try it yourself, by typing n in the console, then pressing Enter:

Browse[2]> n
debug at D:/RForDummies/Ch10 /logitfunc.R#3: x <- ifelse(x < 0 | x > 1, "NA", x)

R now tells you what line it will run next. Because this is the first line in your
code, x still has the value that was passed by the logitpercent() function.

It’s always smart to check whether that value is what you expect it to be. The
logitpercent() function should pass the value 0.50 to logit(), because
this is the translation of 50 percent into a proportion. However, if you look at
the value of x, you see the following:

Browse[2]> str(x)
 num 50

Okay, it is a number, but it’s 100 times larger than it should be. So, in the
logitpercent() function, your colleague made a logical error and forgot
to divide by 100. If you correct that in the editor window and then save and
source the file again, the test command gives the correct answer:

> logitpercent("50%")
[1] 0

Start browsing from within the function
This still doesn’t explain the error. Your colleague intended to return NA if
the number wasn’t between 0 and 1, but the function doesn’t do that. The
number is checked in the ifelse() line in the code, so that is a good place
to start looking for an error.

You can easily browse through the logit() function until you reach that
point, but when your function is larger, that task can become tedious. R
allows you to start the browser at a specific point in your code if you insert a
browser() statement at that point. For example, to start the browser mode
right after the ifelse() line, you change the body of the logit() function,
as in the following code, and source it again:

logit <- function(x){
 x <- ifelse(x < 0 | x > 1, "NA", x)
 browser()
 log(x / (1 - x))
}

202 Part III: Coding in R

By sourcing the same function again, you implicitly stop debugging the func-
tion. That’s why you don’t have to un‐debug the function explicitly using
undebug(logit).

If you now try to run this function again, you see the following:

> logit(50)
Called from: logit(50)
Browse[1]>

You get less information than you do when you use debug(), but you can
use the browser mode in exactly the same way as with debug(). If you use
RStudio, you also notice that RStudio opens up all browser tools, exactly like
before.

You can put a browser() statement inside a loop as well. If you use the com-
mand c to run the rest of the code, in this case, R will carry out the function
only until the next round in the loop. This way, you can step through the
loops of a function.

As you entered the function after the ifelse() line, R carried out that code
already, so the value of x should be changed to NA. But if you check the value
of x now, you see this:

Browse[2]> str(x)
 chr "NA"

Running the next line finally gives the error. Indeed, your colleague made a
semantic error here: He wanted to return NA if the value of x wasn’t between
0 and 1, but he accidentally quoted the NA and that makes it a character
vector. The code doesn’t have any syntax error, but it’s still not correct.

If you use browser() in your code, don’t forget to delete it afterward.
Otherwise, your function will continue to switch to browse mode every time
you use it. And don’t think you won’t forget — even experienced R program-
mers forget this all the time!

Generating Your Own Messages
Generating your own messages may sound strange in a chapter about debug-
ging, but you can prevent bugs by actually generating your own errors.
Remember the logic error in the logitpercent() function? It would’ve
been easier to spot if the logit() function returned an error saying that you
passed a number greater than 1.

203 Chapter 10: Debugging Your Code

Adding sensible error (or warning) messages to a function can help debug-
ging future functions where you call that specific function again. It especially
helps in finding semantic or logic errors that are otherwise hard to find.

Creating errors
You can tell R to throw an error by inserting the stop() function anywhere
in the body of the function, as in the following example:

logit <- function(x){
 if(any(x < 0 | x > 1)) stop("x not between 0 and 1")
 log(x / (1 - x))
}

With the if() statement, you test whether any value in x lies between
0 and 1. Using the any() function around the condition allows your code to
work with complete vectors at once, instead of with single values. Because
the log() function works vectorized as well, the whole function is now
vectorized (see Chapter 4).

If you change the body of the logit() function this way and try to calculate
the logit of 50% and 150% (or 0.5 and 1.5), R throws an error like the following:

> logitpercent(c("50%", "150%"))
Error in logit(as.numeric(x)/100) : x not between 0 and 1

As the name implies, the execution of the code stops anytime the stop()
function is actually carried out; hence, it doesn’t return a result.

Creating warnings
Your colleague didn’t intend for the logit() function to stop, though, when
some input values were wrong — he just wanted the function to return NA
for those values. So, you also could make the function generate a warning
instead of an error. That way you still get the same information, but the com-
plete function is carried out so you get a result as well.

To generate a warning, use the warning() function instead of the stop()
function. So, to get the result your colleague wants, you simply change the
body of the function to the following code:

 x <- ifelse(x < 0 | x > 1, NA, x)
 if(any(is.na(x))) warning("x not between 0 and 1")
 log(x / (1 - x))

204 Part III: Coding in R

If you try the function now, you get the desired result:

> logitpercent(c("50%", "150%"))
[1] 0 NA
Warning message:
In logit(as.numeric(x)/100) : x not between 0 and 1

Not only does the function return NA when it should, but it also gives you a
warning that can help with debugging other functions that use the logit()
function somewhere in the body.

Recognizing the Mistakes You’re
Sure to Make

Despite all the debugging tools you have at your disposal, you need some
experience to quickly find pesky bugs. But some mistakes are fairly common,
and checking whether you made any of these gives you a big chance of pin-
pointing the error easily. Some of these mistakes come from default behavior
of R you didn’t take into account; others are just the result of woolgathering.
But every R programmer has made these mistakes at one point, and so
will you.

Starting with the wrong data
Probably the most common mistakes in R are made while reading in
data from text files using read.table() or read.csv(), as you do in
Chapter 12. Many mistakes result in R throwing errors, but sometimes you
only notice something went wrong when you look at the structure of your
data. In the latter case, you often find that some or all variables are converted
to factors when they really shouldn’t be (for example, because they should
contain only numerical data).

When R gives errors or the structure of your data isn’t what you think it
should be, check the following:

 ✓ Did you forget to specify the argument header=TRUE? If so, R will see
the column names as values and, as a result, convert every variable to a
factor as it always does with character data in a text file.

 ✓ Did you have spaces in your column names or data? The read.table()
function can interpret spaces in, for example, column names or in string
data as a separator. You then get errors telling you 'line x did not
have y elements'.

205 Chapter 10: Debugging Your Code

 ✓ Did you have a different decimal separator? In some countries, deci-
mals are separated by a comma. You have to specifically tell R that’s the
case by using the argument dec="," in the read.table() function.

 ✓ Did you forget to specify stringsAsFactors = FALSE? By default, R
changes character data to factors, so you always have to add this argu-
ment if you want your data to remain character variables.

 ✓ Did you have another way of specifying missing values? R reads 'NA'
in a text file as a missing value, but the file may use a different code (for
example, 'missing'). R will see that as text and again convert that vari-
able to a factor. You solve this by specifying the argument na.strings
in the read.table() function.

If you always check the structure of your data immediately after you read it
in, you can catch errors much earlier and avoid hours of frustration. Good
practice is to use str() for information on the types, and head() to see if
the values are what you expected.

Having your data in the wrong format
As we’ve stressed multiple times, every function in R expects your data to be
in a specific format. That doesn’t mean simply whether it’s an integer, char-
acter, or factor, but also whether you supply a vector, a matrix, a data frame,
or a list. Many functions can deal with multiple formats, but sometimes the
result isn’t what you expect at all.

In fact, some functions are generic functions that dispatch to a method for
the object you supplied as an argument. (See Chapter 8 for more information
on dispatching.)

Dropping dimensions when you don’t expect it
This mistake is definitely another classic. R automatically tries to reduce the
number of dimensions when subsetting a matrix, array, or data frame (see
Chapter 7). If you want to calculate the row sums of the numeric variables in
a data frame — for example, the built‐in data frame sleep — you can write a
little function like this:

rowsum.df <- function(x){
 id <- sapply(x, is.numeric)
 rowSums(x[, id])
}

206 Part III: Coding in R

If you try that out on two built‐in data frames, pressure and sleep, you get
a result for the first one but the following error message for the second:

> rowsum.df(sleep)
Error in rowSums(x[, id]) :
 'x' must be an array of at least two dimensions

Because sleep contains only a single numeric variable, x[, id] returns a
vector instead of a data frame, and that causes the error in rowSums().

You can solve this problem either by adding drop=FALSE (as shown in
Chapter 7) or by using the list subsetting method x[id] instead.

Messing up with lists
Although lists help with keeping data together and come in very handy when
you’re processing multiple datasets, they also can cause some trouble.

First, you can easily forget that some function returns a list instead of a
vector. For example, many programmers forget that strsplit() returns
a list instead of a vector. So, if you want the second word from a sentence,
the following code doesn’t return an error, but it doesn’t give you the right
answer either:

> strsplit("this is a sentence", " ")[2]
[[1]]
NULL

In this example, strsplit() returns a list with one component, the vector
with the words from the sentence:

> strsplit("this is a sentence", " ")
[[1]]
[1] "this" "is" "a" "sentence"

To access this vector, you first have to select the wanted component from
the list. Only then can you look for the second value using the vector indices:

> strsplit("this is a sentence", " ")[[1]][2]
[1] "is"

Even the indexing mechanism itself can cause errors of this kind. For exam-
ple, you have some names of customers and you want to add a dot between
their first and last names. So, first, you split them like this:

> customer <- c("Johan Delong", "Marie Petit")
> namesplit <- strsplit(customer, " ")

207 Chapter 10: Debugging Your Code

You want to paste the second name together with a dot in between, so you
need to select the second component from the list. If you use single brackets,
you get the following:

> paste(namesplit[2], collapse = ".")
[1] "c(\"Marie\", \"Petit\")"

That isn’t what you want at all. Remember from Chapter 7 that you can use
both single brackets and double brackets to select components from a list,
but when you use single brackets, you always get a list returned. So, to get
the correct result, you need double brackets, like this:

> paste(namesplit[[2]], collapse = ".")
[1] "Marie.Petit"

Notice that R never gave a sign — not even a warning — that something was
wrong. So, if you notice lists where you wouldn’t expect them (or don’t notice
them where you do expect them), check your brackets.

Mixing up factors and numeric vectors
If you work with factors that have numeric values as levels, you have to be
extra careful when using these factors in models and other calculations. For
example, you convert the number of cylinders in the dataset mtcars to a
factor like this:

> cyl.factor <- as.factor(mtcars$cyl)

If you want to know the median number of cylinders, you may be tempted to
do the following:

> median(as.numeric(cyl.factor))
[1] 2

This result is bogus, because the minimum number of cylinders is four. R
converts the internal representation of the factor to numbers, not the labels.
So, you get numbers starting from one to the number of levels instead of the
original values.

To correctly transform a factor into its original numeric values, you can
first transform the factor to character and then to numeric, as shown in
Chapter 5. But on very big data, this is done faster with the following
construct:

> as.numeric(levels(cyl.factor))[cyl.factor]

With this code, you create a short vector with the levels as numeric values,
and then use the internal integer representation of the factor to select the
correct value.

208 Part III: Coding in R

Although R often converts a numeric vector to a factor automatically when
necessary, it doesn’t do so if both numeric vectors and factors can be used.
If you want to model, for example, the mileage of a car to the number of cyl-
inders, you get a different model when you use the number of cylinders as
a numeric vector or as a factor. The interpretation of both models is com-
pletely different, and a lot depends on what exactly you want to do. But you
have to be aware of that, or you may be interpreting the wrong model.

Getting Help
In This Chapter

 ▶ Using the built‐in R help

 ▶ Finding information online

 ▶ Joining the R community

 ▶ Making a reproducible example to get help

E
ven the best R programmers occasionally get stuck on a problem. In
these situations, you need to know how to find help. Fortunately, R code

is generally very well documented and has excellent help available. You just
need to know how to access it. In this chapter, we show you how.

If the built‐in help doesn’t solve your problem, you can search for informa-
tion on the Internet and turn to the online R community. We end this chap-
ter by walking you through how to create a minimal reproducible example,
which you’ll find helpful in getting help.

Finding Information in the
R Help Files

The R documentation (in the form of R Help files) is a rich resource that also
can seem cryptic at times. Most of the time, if you read the Help files care-
fully, you’ll get a better understanding of why a function isn’t doing what you
think it should or why you’re getting an error. Some of the R help can look
incomprehensible at first glance, but if you persevere — and know what to
look for — your investment will pay off.

Chapter 11

210 Part III: Coding in R

When you know exactly what
you’re looking for
If you know the name of the function you need help with, you can access the
R Help files in two ways:

 ✓ By typing help(. . .) with the function name inside the brackets. For
example, typing help(paste) returns help about the paste() function.

 ✓ By typing ? followed by the name of the function. For example, typing
?paste returns help about the paste() function.

Typically, the R Help files follow a fairly standard outline. You find most of
these sections in every R Help file:

 ✓ Title: A one‐sentence overview of the function.

 ✓ Description: An introduction to the high‐level objectives of the function,
typically about one paragraph long.

 ✓ Usage: A description of the syntax of the function (in other words, how
the function is called). This is where you find all the arguments that
you can supply to the function, as well as any default values of these
arguments.

 ✓ Arguments: A description of each argument. Usually this includes a
specification of the class (for example, character, numeric, list, and
so on). This section is an important one to understand, because supply-
ing an argument of the wrong class is quite frequently a cause of errors
in R.

 ✓ Details: Extended details about how the function works, provides longer
descriptions of the various ways to call the function (if applicable), and
a longer discussion of the arguments.

 ✓ Value: A description of the class of the value returned by the function.

 ✓ See also: Links to other relevant functions. In most of the R editors, you
can click these links to read the Help files for these functions.

 ✓ Examples: Worked examples of real R code that you can paste into your
console and run.

One of the most powerful ways of using R Help is to carefully study the exam-
ples in the Examples section. The documentation authors designed these
examples to be reproducible, which means that you can copy the whole
example to your R console and run it directly. Often, this can help you really
understand the nature of the input that each function needs and the output
the function gives.

211 Chapter 11: Getting Help

When you don’t know exactly what you’re
looking for
Sometimes you don’t know the exact function to use. Or maybe you know
the name of the function but you can’t remember whether it’s spelled in all
 lowercase letters or with some uppercase letters. In these situations, you
have to search the R Help files to find what you need.

You can search the R Help files by typing help.search(. . .) with a quoted
search term inside the brackets. This gives a list of functions that are simi-
lar to the search term; it’s useful if you can’t remember the exact name of a
function, because help.search() makes use of fuzzy matching to return a
list of matching Help topics. For example, typing help.search(“date”) in the
console returns a long list of possible matches, including format.Date,
as.POSIXlt, and DateTimeClasses, among others.

Typing two question marks followed by the search term is a shortcut for
help.search(). For example, typing ??date returns the same list of func-
tions as typing help.search(“date”) does.

When you search for R help, you get a list of topics that match the search
term. For example, you may get this result when typing ??date:

> ??date
ada::update.ada Add more trees to an ada object
chron::chron Create a Chronological Object
chron::cut.dates Create a Factor from a Chron or Dates Object
chron::dates Generate Dates and Times Components from Input
....
base::Date Date Class
base::DateTimeClasses Date-Time Classes
base::diff Lagged Differences
. . .

The left‐hand column contains the functions that match your search term,
and the right‐hand column contains the R Help file title for this function.
Notice that each function consists of two elements separated by two colons
(for example, ada::update.ada). This means, for example, that the pack-
age ada contains a function called update.ada().

From the description of update.ada, it’s immediately apparent that
this function has nothing to do with dates or times. Nonetheless, it was
included in the search results because the function name contained the
substring date. In this case, if you scroll down the list, you’ll also find ref-
erences to several date functions in the base package, including Date(),
DateTimeClasses(), and diff().

212 Part III: Coding in R

After you’ve identified a function that looks helpful, type ?functionName to
open the relevant Help page. For example, typing ?Date opens the Help page
for Date.

When you use help() or ?, you also can specify a topic name, not just a
function name. Some really useful Help pages describe the effect of many
functions at once, and because they have a unique topic name, you can
access these directly. For example, try reading the Help for ?Syntax,
?Quotes, or ?DateTimeClasses.

Searching the Web for Help with R
Sometimes the built‐in R Help simply doesn’t give you that moment of inspi-
ration to solve your problem. When this happens, it’s time to tap into the
information available on the web.

You can search the Internet directly from your R console, by using the
RSiteSearch() function. This function enables you to search for keywords
in the R documentation, including the help files, vignettes, and task views.
RSiteSearch() takes your search term and passes it to the search engine
at http://search.r‐project.org. Then you can view the search results
in your web browser.

For example, to use RSiteSearch() to search for the term cluster analysis, use:

> RSiteSearch("cluster analysis")

Another way of searching the web directly from your console is to use the
add‐on package called sos and the search function findFn(). This function
is a wrapper around RSiteSearch() that combines all the RSiteSearch()
results into tabular form on a single page, which may make the results easier
to digest.

To use findFn(), you first have to install the sos package:

> install.packages("sos")

Then you load the package using library("sos"). Finally, you use
findFn("cluster"):

> library("sos")
> findFn("cluster")
found 2311 matches; retrieving 20 pages, 400 matches.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

http://search.r-project.org/

213 Chapter 11: Getting Help

This opens a new tab in your web browser with results in an easy‐to‐read
table. Each row of the table contains a function, the name of the package, and
a helpful description and link to the Help page for that function.

If you’re trying to search for R topics in your favorite search engine, you may
find that the results tend to be unrelated to the programming language. One
way of improving the accuracy of your search results is to enclose the R in
square brackets. For example, to search for the topic of regression in R, use
[R] regression as your search term. This technique seems to work because
the R mailing lists tend to have [R] in the topic for each message. In addition,
on the Stack Overflow website (www.stackoverflow.com), questions that
are related to R are tagged with [r].

In addition to your favorite search engine, you also can use the dedicated
R search site at http://search.r‐project.org to search through
R functions, vignettes, and the R Help mailing lists. Or you can use the search
engine www.rseek.org, which is dedicated to R and will search first through
all R‐related websites for an answer.

Getting Involved in the R Community
Sometimes, no matter how hard you search for help in the mailing list
archives, blogs, or other relevant material, you’re still stuck. If this ever hap-
pens to you, you may want to tap into the R community. R has a very active
community made up of people who not only write and share code, but also
are very willing to help other R users with their problems.

Discussing R on Stack Overflow and Stack
Exchange
Stack Exchange (www.stackexchange.com) is a popular website where
people ask and answer questions on a variety of topics. It’s really a network
of sites. Two of the Stack Exchange sites have substantial communities of
people asking and answering questions about R:

 ✓ Stack Overflow (www.stackoverflow.com): Here, people discuss pro-
gramming questions in a variety of programming languages, such as C++,
Java, and R.

 ✓ CrossValidated (http://stats.stackexchange.com): Here, people
discuss topics related to statistics and data visualization. Because R
really excels at these tasks, there is a growing community of R users on
CrossValidated.

http://www.stackoverflow.com/
http://search.r-project.org/
http://www.rseek.org/
http://www.stackexchange.com/
http://www.stackoverflow.com/
http://stats.stackexchange.com/

214 Part III: Coding in R

Both of these sites use tags to identify topics that are discussed. Both sites
use the [r] tag to identify questions about R. To find these questions, navi-
gate to the Tags section on the page and type r in the search box.

Using the R mailing lists
The R Core Team actively supports four different mailing lists. At www.r‐
project.org/mail.html, you can find up‐to‐date information about these
lists, as well as find links to subscribe or unsubscribe from the lists. When
you subscribe to a mailing list, you can choose to receive either individual
email messages or a daily digest.

The four important mailing lists are

 ✓ R‐help: This is the main R Help mailing list. Anyone can register and
post messages on this list, and people discuss a wide variety of topics
(for example, how to install packages, how to interpret R’s output of sta-
tistical results, or what to do in response to warnings and error
messages).

 ✓ R‐announce: This list is for announcements about significant develop-
ments in the R code base.

 ✓ R‐packages: This list is where package authors can announce news
about their packages.

 ✓ R‐devel: This is a specialist mailing list aimed at developers of functions
or new R packages — in other words, serious R developers! It’s more
about programming than about general topics.

Before posting a message to any of the R mailing lists, make sure that you
read the posting guidelines, available at www.r‐project.org/posting‐
guide.html. In particular, make sure you include a good, small, reproduc-
ible example (see “Making a Minimal Reproducible Example,” later in this
chapter).

Special interest group mailing lists
In addition to the general mailing lists, you also
can participate in about 20 special interest
group mailing lists. The R mailing list website
www.r‐project.org/mail.html also
contains links to more than 20 mailing lists for
special interest groups.

These special interest groups (SIG) include
mailing lists for operating systems, advanced
modeling, using R in specific fields, and other
specialist development topics. You can also
find SIG mailing lists for R‐related jobs and
teaching.

http://www.r-project.org/mail.html
http://www.r-project.org/mail.html
http://www.r-project.org/posting-guide.html
http://www.r-project.org/posting-guide.html
http://www.r-project.org/mail.html

215 Chapter 11: Getting Help

Tweeting about R
If you want to join the discussion about R on Twitter (www.twitter.com),
follow and use the hashtag #rstats. This hashtag attracts discussion from
a wide variety of people, including bloggers, package authors, professional R
developers, and other interested parties.

Making a Minimal Reproducible
Example

When you ask the R community for help, you’ll get the most useful advice if
you know how to make a minimal reproducible example. A reproducible exam-
ple is a sample of code and data that any other user can run and get the same
results as you do. A minimal reproducible example is the smallest possible
example that illustrates the problem; it consists of

 ✓ A small set of sample data

 ✓ A short snippet of code that reproduces the error

 ✓ The necessary information on your R version, the system it’s being run
on, and the packages you’re using

If you want to know what a minimal reproducible example looks like, take a
look at the examples in the R Help files. In general, all the code given in the R
Help files fulfills the requirements of a minimal reproducible example.

Creating sample data with
random values
In most cases, you can use random data to illustrate a problem. R has some
useful built‐in functions to generate random numbers and other random
data. For example, to make a vector of random numbers, use rnorm() for
the normal distribution or runif() for a uniform distribution. To make a
random vector with five elements, try:

> set.seed(1)
> x <- rnorm(5)
> x
[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

http://www.twitter.com/

216 Part III: Coding in R

You can use the set.seed() function to specify a starting seed value for
generating random numbers. By setting a seed value, you guarantee that the
random numbers are the same each time you run the code. This sounds a bit
pointless, doesn’t it? It may be pointless in production code, but it’s essential
for a reproducible example. By setting a seed, you guarantee that your code
will produce the same results as another person running your code.

If you want to generate random values of a predetermined set, use the
sample() function. This function is a bit like dealing from a deck of playing
cards. In a card game, you have 52 cards and you know exactly which cards
are in the deck. But each deal will be different. You can simulate dealing a
hand of seven cards using:

> cards <- c(1:9, "J", "Q", "K", "A")
> suits <- c("Spades", "Diamonds", "Hearts", "Clubs")
> deck <- paste(rep(suits, each = 13), cards)
> set.seed(123)
> sample(deck, 7)
[1] "Diamonds 2" "Clubs 2" "Diamonds 8" "Clubs 5"
[5] "Clubs 7" "Spades 3" "Diamonds K"

By default, sample() uses each value only once. But sometimes you want
values to appear multiple times. In this case, you can use the argument
replace=TRUE. For example, if you want to create a sample of size 12 con-
sisting of the first three letters of the alphabet, use:

> set.seed(5)
> sample(LETTERS[1:3], 12, replace = TRUE)
[1] "A" "C" "C" "A" "A" "C" "B" "C" "C" "A" "A" "B"

Creating a data.frame with sample data is straightforward:

> set.seed(42)
> dat <- data.frame(
+ x = sample(1:5),
+ y = sample(c("yes", "no"), 5, replace = TRUE)
+)
> dat
 x y
1 5 no
2 4 no
3 1 yes
4 2 no
5 3 no

217 Chapter 11: Getting Help

Producing minimal code
The hardest part of producing a minimal reproducible example is to keep it
minimal. The challenge is to identify the smallest example (the fewest lines of
code) that reproduces the problem or error.

Before you submit your code, make sure to describe clearly which packages
you use. In other words, remember to include the library() statements.
Also, test your code in a new, empty R session to make sure it runs without
error. People should be able to just copy and paste your data and your code
in the console and get exactly the same results as you get.

Providing the necessary information
Including a little bit of information about your R environment helps people
answer your questions. You should consider supplying:

 ✓ Your R version (for example, R 3.2.0)

 ✓ Your operating system (for example, Windows 64‐bit)

The function sessionInfo() prints information about your version of R and
some locale information, as well as attached or loaded packages. Sometimes
the output of this function can help you determine whether there are con-
flicts between your loaded packages. Here’s an example of the results of
sessionInfo():

> sessionInfo()
R version 3.2.0 (2015-04-20)
Platform: x86_64-w64-mingw32/x64 (64-bit)

How to use a copy of your own data
Sometimes you have to use a small set of
your real‐world data in an example. On these
occasions, you can first create a subset of
your data and then use the function dput()
to get an ASCII representation of your data.
Then you can paste this representation in your
question to the community. As an example, take
the built in dataset cars and create an ASCII
representation of the first four rows:

> dput(cars[1:4,])
structure(list(speed = c(4, 4, 7, 7),

dist = c(2, 10, 4, 22)), .Names
= c("speed",

"dist"), row.names = c(NA, 4L), class =
"data.frame")

218 Part III: Coding in R

locale:
[1] LC_COLLATE=English_United Kingdom.1252
[2] LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] ggplot2_1.0.0

loaded via a namespace (and not attached):
 [1] colorspace_1.2-4 digest_0.6.4 grid_3.1.2
 [4] gtable_0.1.2 MASS_7.3-34 munsell_0.4.2
 [7] plyr_1.8.1 proto_0.3-10 Rcpp_0.11.3
[10] reshape2_1.4 scales_0.2.4 stringr_0.6.2
[13] tools_3.1.2

The results tell you that this session is running R version 3.2.0 on 64‐bit
Windows, with a United Kingdom locale. You also can see that R has attached
(loaded) the base packages and the add‐on package ggplot2 version 1.0.0.

Sometimes it’s helpful to include the results of sessionInfo() in your
question, because other R users can then tell whether there can be an issue
with your R installation.

Visit www.dummies.com/extras/r for great Dummies content online.

Making the Data Talk
Part IV

http://www.dummies.com/extras/r

In this part . . .
 ✓ Extract meaningful relationships from data.

 ✓ Subsetting, combining, and restructuring your data.

 ✓ Summarizing data in meaningful ways.

 ✓ Testing your hypotheses.

 ✓ Visit www.dummies.com/extras/r for great Dummies content
online.

http://www.dummies.com/extras/r

Getting Data into and out of R
In This Chapter

 ▶ Exploring the various ways of getting data into R

 ▶ Looking at how to save your results

 ▶ Understanding how files are organized in R

E
very data‐processing or analysis problem involves at least three broad
steps: input, process, and output. In this chapter, we cover the input

and output steps.

Specifically, we look at some of the options you have for importing your data
into R, including using the Clipboard, reading data from comma‐separated
value (CSV) files, and interfacing with spreadsheets like Excel. We also give
you some pointers on importing data from commercial statistical software
such as SPSS. Next, we give you some options for exporting your data from R.
Finally, you manipulate files and folders on your computer.

Getting Data into R
You have several options for importing your data into R, and we cover those
options in this section.

Because spreadsheets are so widely used, the bulk of this chapter looks at
the different options for importing data originating in spreadsheets. To illus-
trate the techniques in this chapter, we use a small spreadsheet table with
information about the first ten elements of the periodic table, as shown in
Figure 12-1.

Chapter 12

222 Part IV: Making the Data Talk

Entering data in the R text editor
Although R is primarily a programming language, R has a very basic data
editor that allows you to enter data directly using the edit() function.

The edit() function is only available in some R code editors, so depending
on which software you’re using to edit your R code, this approach may not
work. The good news is that this option is supported in recent versions of
RStudio.

To use the R text editor, first you need to initiate a variable. For example, to
create a data frame and manually enter some of the periodic table data, enter
the following:

> elements <- data.frame()
> elements <- edit(elements)

In RStudio, this creates a pop-up window with an interactive editor where
you can enter data, as shown in Figure 12-2. Notice that because the data
frame is empty, you can scroll left and right, or up and down, to extend the
editing range. Notice also that the editor doesn’t allow you to modify column
or row names.

Enter some data. Then to save your work, click the X in the top‐right corner.

Figure 12-1:
A spread-
sheet with

elements
of the peri-
odic table
serves as

our example
throughout

this chapter.

Figure 12-2:
Editing data

in the R
interactive
text editor.

223 Chapter 12: Getting Data into and out of R

To view the details that you’ve just entered, use the print() function:

> print(elements)
 var1 var2 var3
1 1 Hydrogen H
2 2 Helium He
3 3 Lithium Li

Using the Clipboard to copy and paste
Another way of importing data interactively into R is to use the Clipboard to
copy and paste data.

If you’re used to working in spreadsheets and other interactive applications,
copying and pasting probably feels natural. If you’re a programmer or data
analyst, it’s much less intuitive. Why? Because data analysts and program-
mers strive to make their results reproducible. A copy‐and‐paste action can’t
be reproduced easily unless you manually repeat the same action. Still, some-
times copying and pasting is useful, so we cover it in this section.

To import data from the Clipboard, use the readClipboard() function. For
example, select cells B2:B4 in the periodic table spreadsheet, press Ctrl+C to
copy those cells to the Clipboard, and then use the following R code:

> x <- readClipboard()
> x
[1] "Hydrogen" "Helium" "Lithium"

As you can see, this approach works very well for vector data (in other
words, a single column or row of data). But things get just a little bit more
complicated when you want to import tabular data to R.

To copy and paste tabular data from a spreadsheet, first select a range in
your sheets (for example, cells B1:D5). Then use the readClipboard()
function and see what happens:

> x <- readClipboard()
> x
[1] "Name\tSymbol\tGroup" "Hydrogen\tH\t1" "Helium\tHe\t1"
[4] "Lithium\tLi\t1" "Beryllium\tBe\t2"

This rather unintelligible result looks like complete gibberish. If you look
a little bit closer, though, you’ll notice that R has inserted lots instances of
"\t" into the results. The "\t" is the R way of indicating a tab character —
in other words, a tab separator between elements of data. Clearly, you need
to do a bit more processing on this to get it to work.

224 Part IV: Making the Data Talk

The backslash in "\t" is called an escape sequence. See the sidebar “Using
special characters in escape sequences,” later in this chapter, for other exam-
ples of frequently used escape sequences in R.

The very powerful read.table() function (which you get to explore in
more detail later in this chapter) imports tabular data into R. You can cus-
tomize the behavior of read.table() by changing its many arguments. Pay
special attention to the following arguments:

 ✓ file: The name of the file to import. To use the Clipboard, specify file
= "clipboard".

 ✓ sep: The separator between data elements. In the case of Microsoft
Excel spreadsheet data copied from the Clipboard, the separator is a
tab, indicated by "\t".

 ✓ header: This argument indicates whether the Clipboard data includes
a header in the first row (that is, column names). Whether you specify
TRUE or FALSE depends on the range of data that you copied.

 ✓ stringsAsFactors: If TRUE, this argument converts strings to factors.
It’s TRUE by default.

Using special characters in escape sequences
Certain keys on your keyboard, such as the
Enter and Tab keys, produce behavior without
leaving a mark in the document. To use these
keys in R, you need to use an escape sequence
(a special character preceded by a backslash).

Here are some escape sequences you may
encounter or want to use:

 ✓ New line: \n

 ✓ Tab stop: \t

 ✓ Backslash: \\

 ✓ Double quote: \". Use this when you need
a quote inside a string.

 ✓ Hexadecimal code: \xnn

The new line (\n) character comes in handy
when you create reports or print messages
from your code, while the tab stop (\t) is
important when you import some types of
delimited text file.

For more information, refer to the section of the
R online manual that describes literal constants:
http://cran.r‐project.org/doc/
manuals/R‐lang.html#Literal‐
constants.

http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html#Literal-constants

225 Chapter 12: Getting Data into and out of R

> x <- read.table(file = "clipboard", sep = "\t", header = TRUE)
> x
 Name Symbol Group
1 Hydrogen H 1
2 Helium He 1
3 Lithium Li 1
4 Beryllium Be 2

Although R offers some interactive facilities to work with data and the
Clipboard, it’s almost certainly less than ideal for large amounts of data. If
you want to import large data files from spreadsheets, you’ll be better off
using CSV files (described later in this chapter).

Reading data in CSV files
One of the easiest and most reliable ways of getting data into R is to use text
files, in particular CSV files. The CSV file format uses commas to separate the
different elements in a line, and each line in the textfile represents a single
line of data. This makes CSV files ideal for representing tabular data. The
additional benefit of CSV files is that almost any data application supports
export of data to the CSV format. This is certainly the case for most spread-
sheet applications, including Microsoft Excel and LibreOffice Calc.

Some EU countries use an alternative standard where a comma is the decimal
separator and a semicolon is the field separator. These settings are stored
in a specific set of parameters called the locale. When reading or writing CSV
files, R ignores those settings; the functions described in this chapter will
work the same way on every computer. The same cannot be said about most
spreadsheet applications. If you want to open a CSV file generated by R in a
spreadsheet, keep in mind that the default decimal and field separators might
differ between R and the spreadsheet program you use.

In the following examples, we assume that you have a CSV file stored in a
convenient folder in your file system. If you want to reproduce the exact
examples, create a small spreadsheet that looks like the example sheet in
Figure 12-1. To convert an Excel spreadsheet to CSV format, you need to
choose File➪Save As, which gives you the option to save your file in a variety
of formats. Keep in mind that a CSV file can represent only a single worksheet
of a spreadsheet. Finally, be sure to use the topmost row of your worksheet
(row 1) for the column headings.

An easy way to create this file is to read the elements data from the
rfordummies package (see the sidebar “Getting the elements data from
the rfordummies package”).

226 Part IV: Making the Data Talk

Using read.csv() to import data
In R, you use the read.csv() function to import data in CSV format. This
function has a number of arguments, but the only essential argument is file,
which specifies the location and filename. To read a file called elements.csv
located in your working directory, use read.csv():

> elements <- read.csv("elements.csv")
> str(elements, vec.len = 2)
'data.frame': 118 obs. of 9 variables:
 $ Atomic.no : int 1 2 3 4 5 . . .
 $ Name : Factor w/ 118 levels "(Ununhexium) ",..: 50 48 59 16 19 . . .
 $ Symbol : Factor w/ 118 levels "Ac ","Ag ","Al ",..: 41 42 53 11 9 . . .
 $ Group : int 1 18 1 2 13 . . .
 $ Period : int 1 1 2 2 2 . . .
 $ Block : Factor w/ 4 levels "d ","f ","p ",..: 4 4 4 4 3 . . .
 $ State.at.STP: Factor w/ 4 levels "","Gas ","Liquid ",..: 2 2 4 4 4 . . .
 $ Occurrence : Factor w/ 3 levels "Primordial ",..: 1 1 1 1 1 . . .
 $ Description : Factor w/ 11 levels "","Actinide",..: 10 9 3 4 8 . . .

Getting the elements data from the
rfordummies package

On CRAN (http://cran.r‐project.org/web/packages/rfordummies/index.
html), you can find a package rfordummies with all the code examples in this book. The
package also contains a data frame, elements, with data of the elements of the periodic table.
To access this data, try:

> install.packages("rfordummies")
> library("rfordummies")
> ?elements
> str(elements)

You can find more information about working with packages in Chapter 20.

This data allows you to easily create a CSV file to try out the code in this chapter. To save this file
in your working directory, simply use the function write.csv(), like this:

> write.csv(elements, file = "elements.csv", row.names = FALSE)

You read more on write.csv() in the section “Getting Your Data out of R” later in this chapter.

The rfordummies package also contains a useful function saveElements() that you can
use to easily create a CSV or Excel file, directly from R:

> saveElements("elements.xlsx")
> saveElements("elements.csv", type = "csv")

http://cran.r-project.org/web/packages/rfordummies/index.html
http://cran.r-project.org/web/packages/rfordummies/index.html

227 Chapter 12: Getting Data into and out of R

R imports the data into a data frame. As you can see, this example has 118
observations of 9 variables. Setting the argument vec.len just keeps the
output concise for printing in this book. You can safely ignore it.

Notice that the default option is to convert character strings into fac-
tors. Thus, the columns Name, Block, State.At.STP, Occurrence, and
Description all have been converted to factors. Also, notice that R con-
verts spaces in the column names to periods (for example, in the column
State.at.STP).

This default option of converting strings to factors when you use
read.table() can be a source of great confusion. Sometimes it can be
easier to import data containing strings in such a way that the strings aren’t
converted factors, but remain character vectors. To import data, keeping
the strings as strings, pass the argument stringsAsFactors = FALSE
to read.csv() or read.table():

> elements <- read.csv("elements.csv", stringsAsFactors = FALSE)
> str(elements, vec.len = 2)
'data.frame': 118 obs. of 9 variables:
 $ Atomic.no : int 1 2 3 4 5 . . .
 $ Name : chr "Hydrogen " "Helium " . . .
 $ Symbol : chr "H " "He " . . .
 $ Group : int 1 18 1 2 13 . . .
 $ Period : int 1 1 2 2 2 . . .
 $ Block : chr "s " "s " . . .
 $ State.at.STP: chr "Gas " "Gas " . . .
 $ Occurrence : chr "Primordial " "Primordial " . . .
 $ Description : chr "Non‐metal" "Noble gas" . . .

You can also take more control of the import process by using the argument
colClasses. You can pass the colClasses argument to read.csv() to
explicitly define whether a specific column should be a numeric, charac-
ter, or factor. Although this requires you to know the format of your data
prior to importing, this small amount of extra work can make it easier to per-
form your downstream analysis!

If you have a file in the EU format mentioned earlier (where commas are used
as decimal separators and semicolons are used as field separators), you need
to import it to R using read.csv2() instead of the read.csv() function.

Using read.table() to import tabular data in text files
The CSV format, described in the previous section, is a special case of tabular
data in text files. In general, text files can use a multitude of options to distin-
guish between data elements. For example, instead of using commas, another
format is to use tab characters as the separator between columns of data. If
you have a tab‐delimited file, you can use read.delim() to read your data.

228 Part IV: Making the Data Talk

The functions read.csv(), read.csv2(), and read.delim() are special
cases of the multipurpose read.table() function that can deal with a wide
variety of data file formats. The read.table() function has a number of
arguments that give you fine control over the specification of the text file you
want to import. Here are some of these arguments:

 ✓ header: If the file contains column names in the first row, specify TRUE.

 ✓ sep: The data separator (for example, sep = "," for CSV files or sep =
"\t" for tab‐separated files).

 ✓ quote: By default, R considers anything between single (') or double
(") quotation marks in the text file as a character string. If you want to
change that (for example, because an apostrophe in a name is wrong-
fully seen as the start of a character string), you can change the value
of this argument to quote = "\"". Note that you have to escape the
quotation marks.

 ✓ nrows: If you want to read only a certain number of rows of a file, you
can specify this by providing an integer number.

 ✓ skip: Allows you to ignore a certain number of lines before starting to
read the rest of the file.

 ✓ stringsAsFactors: If TRUE, it converts strings to factors. It’s FALSE
by default.

You can access the built‐in help by typing ?read.table into your console.

Using the RStudio data import tool
Although R has an extensive range of functions
to import many types of data files, sometimes
it’s just easier to ask a wizard for help. Recent
versions of RStudio have such a tool.

To use the RStudio data import tool, select
Tools➪Import Dataset. From here, you have
the option to import either “From Text File” or
“From web URL”. In both cases, you point to
the location of a text file (for example, a comma
delimited file).

You then get a nice user interface that allows
you to both preview your data and specify
the headers, separator, decimal, and quote
symbols.

This tool is ideal if you plan to import data only
once (or a few times). To automate a regular
data import job, you may prefer to write simple
scripts using the tools in this chapter.

229 Chapter 12: Getting Data into and out of R

Reading data from Excel
If you ask users of R what the best way is to import data directly from Microsoft
Excel, most of them will probably answer that your best option is to first export
from Excel to a CSV file and then use read.csv() to import your data to R.

In fact, this is still the advice in Chapter 9 of the R import and export manual,
which says, “The first piece of advice is to avoid doing so if possible!” See
for yourself at http://cran.r‐project.org/doc/manuals/R‐data.
html#Reading‐Excel‐spreadsheets. The reason is that many of the
existing methods for importing data from Excel depend on third‐party soft-
ware or libraries that may be difficult to configure, are not available on all
operating systems, or perhaps have restrictive licensing terms.

However, since February 2011, there exists a new alternative: using the package
XLConnect, available from CRAN at http://cran.r‐project.org/web/
packages/XLConnect/index.html. What makes XLConnect different is that
it uses a Java library to read and write Excel files. This has two advantages:

 ✓ It runs on all operating systems that support Java. XLConnect is
written in Java and runs on Windows, Linux, and Mac OS.

 ✓ There’s nothing else to load. XLConnect doesn’t require any other
libraries or software. If you have Java installed, it should work.

XLConnect also can write Excel files, including changing cell formatting, in
both Excel 97–2003 and Excel 2007/10 formats.

To find out more about XLConnect, you can read the excellent package
vignette at http://cran.r‐project.org/web/packages/XLConnect/
vignettes/XLConnect.pdf.

By now you’re probably itching to get started with an example. Let’s
assume you want to read an Excel spreadsheet in your user directory called
Elements.xlsx. First, install and load the package; then create an object
with the filename:

> install.packages("XLConnect")
> library("XLConnect")

Now you’re ready to read a sheet of this workbook with the
readWorksheetFromFile() function. You need to pass it at least two
arguments:

 ✓ file: A character string with a path to a valid .xls or .xlsx file

 ✓ sheet: Either an integer indicating the position of the worksheet
(for example, sheet=1) or the name of the worksheet (for example,
sheet="Elements")

http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/web/packages/XLConnect/index.html
http://cran.r-project.org/web/packages/XLConnect/index.html
http://cran.r-project.org/web/packages/XLConnect/vignettes/XLConnect.pdf
http://cran.r-project.org/web/packages/XLConnect/vignettes/XLConnect.pdf
http://cran.r-project.org/doc/manuals/R-data.html%23Reading%E2%80%90Excel%E2%80%90spreadsheets
http://cran.r-project.org/doc/manuals/r-release/R-data.html#Reading-Excel-spreadsheets

230 Part IV: Making the Data Talk

The following two lines do exactly the same thing — they both import the
data in the first worksheet (called Elements):

> elements <- readWorksheetFromFile("Elements.xlsx", sheet = 1)
> elements <- readWorksheetFromFile("Elements.xlsx", sheet = "Elements")

Later in this chapter, you learn about a set of functions to do some file manip-
ulation. For now, if you want to remove the CSV and Excel files, and leave
your folders in a clean condition, use file.remove():

> file.remove(c("elements.xlsx", "elements.csv"))

Working with other data types
Despite the fact that CSV files are very widely used to import and export
data, they aren’t always the most appropriate format. Some data formats
allow the specification of data that isn’t tabular in nature. Other data formats
allow the description of the data using metadata (data that describes data).

R includes a recommended package called foreign with functions to import
data files from a number of commercial statistical packages, including SPSS,
Stata, SAS, Octave, and Minitab. Table 12-1 lists some of the functions in the
foreign package.

To use these functions, you first have to load the foreign package:

> library(foreign)
> read.spss(file = "location/of/myfile")

Read the Help documentation on these functions carefully. Because data
frames in R may have a quite different structure than datasets in the statisti-
cal packages, you have to pay special attention to how value and variable
labels are treated by the functions mentioned in Table 12-1. Check also the
treatment of special missing values.

Table 12-1 Functions to Import from Commercial Statistical
 Software Available in the foreign Package
System Function to Import to R
SPSS read.spss

SAS read.xport or read.ssd

Stata read.dta

Minitab read.mtp

231 Chapter 12: Getting Data into and out of R

These functions need a specific file format. The function read.xport() only
works with the XPORT format of SAS. For read.mtp(), the file must be in
the Minitab portable worksheet (.mtp) format.

Note that some of these functions are rather old. The newest versions of the
statistical packages mentioned here may have different specifications for the
format, so the functions aren’t always guaranteed to work.

Note that some of these functions require the statistical package itself to be
installed on your computer. For example, read.ssd() can work only if you
have SAS installed.

The bottom line: If you can transfer data using CSV files, you’ll save yourself a
lot of trouble.

Finally, if you need to connect R to a database, the odds are that a package
exists that can connect to your database of choice. See the sidebar, “Working
with databases in R,” for some pointers.

Working with databases in R
Data analysts increasingly make use of
databases to store large quantities of data or
to share data with other people. R has good
support to work with a variety of databases, but
the exact details of how you do that will vary
from system to system.

If you need to connect R to your database, a
really good place to start looking for information
is in Chapter 4 of the R manual “R data
import/export.” You can read this chapter at
http://cran.r‐project.org/doc/
manuals/R‐data.html#Relational‐
databases.

The package RODBC allows you to connect
to Open Database Connectivity (ODBC) data
sources. You can find this package on CRAN
at http://cran.r‐project.org/
package=RODBC.

In addition, you can download and install
packages to connect R to many database
systems, including:

 ✓ MySQL: The RMySql package, available
at http://cran.r‐project.org/
package=RMySQL

 ✓ SQLite: The RSQLite package, available
at http://cran.r‐project.org/
package=RSQLite

 ✓ PostgreSQL: The RPostgreSQL package,
available at h t t p : / / c r a n .
r‐project.org/package=
RPostgreSQL

Finally, the DBI (Database Interface) package
aims to provide a consistent interface to a
range of databases. This means you only
learn one set of functions to connect and
send commands to the database. You can
learn more at the CRAN package page at
http://cran.r‐project.org/web/
packages/DBI/index.html.

http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/package=RODBC
http://cran.r-project.org/package=RODBC
http://cran.r-project.org/package=RMySQL
http://cran.r-project.org/package=RMySQL
http://cran.r-project.org/package=RSQLite
http://cran.r-project.org/package=RSQLite
http://cran.r-project.org/package=RPostgreSQL
http://cran.r-project.org/package=RPostgreSQL
http://cran.r-project.org/package=RPostgreSQL
http://cran.r-project.org/web/packages/DBI/index.html
http://cran.r-project.org/web/packages/DBI/index.html
http://cran.r-project.org/doc/manuals/R-data.html#Relational-databases

232 Part IV: Making the Data Talk

Getting Your Data out of R
For the same reason that it’s convenient to import data into R using CSV files,
it’s also convenient to export results from R to other applications in CSV
format. To create a CSV file, use the write.csv() function. In the same way
that read.csv() is a special case of read.table(), write.csv() is a spe-
cial case of write.table().

To interactively export data from R for pasting into other applications, you
can use writeClipboard() or write.table(). The writeClipboard()
function is useful for exporting vector data. For example, to export the names
of the built‐in dataset iris, try the following:

> writeClipboard(names(iris))

This function doesn’t produce any output to the R console, but you can now
paste the vector into any application. For example, if you paste this into
Excel, you’ll have a column of five entries that contains the names of the
iris data, as shown in Figure 12-3.

To write tabular data to the Clipboard, you need to use write.table() with
the arguments file="clipboard", sep="\t", and row.names=FALSE:

> write.table(head(iris), file = "clipboard", sep = "\t", row.names = FALSE)

Again, this doesn’t produce output to the R console, but you can paste the
data into a spreadsheet. The results look like Figure 12-4.

Figure 12-3:
A spread-

sheet after
first using
write-
Clip-

board()
and then
pasting.

233 Chapter 12: Getting Data into and out of R

Working with Files and Folders
You know how to import your data into R and export your data from R. Now
all you need is an idea of where the files are stored with R and how to manip-
ulate those files.

Understanding the working directory
Every R session has a default location on your operating system’s file struc-
ture called the working directory.

You need to keep track of and deliberately set your working directory in each
R session. If you read or write files to disk, this takes place in the working
directory. If you don’t set the working directory to your desired location, you
could easily write files to an undesirable file location.

The getwd() function tells you what the current working directory is:

> getwd()
[1] "F:/git"

To change the working directory, use the setwd() function. Be sure to enter
the working directory as a character string (enclose it in quotes).

This example shows how to change your working directory to a folder called
F:/git/roxygen2:

> setwd("F:/git/roxygen2")
> getwd()
[1] "F:/git/roxygen2"

Notice that the separator between folders is forward slash (/), as it is on
Linux and Mac systems. If you use the Windows operating system, the for-
ward slash will look odd, because you’re familiar with the backslash (\) of
Windows folders. When working in Windows, you need to either use the

Figure 12-4:
The first

six lines of
iris after
pasting into

a spread-
sheet.

234 Part IV: Making the Data Talk

forward slash or escape your backslashes using a double backslash (\\).
Compare the following code:

> setwd("F:\\git\\stringr")
> getwd()
[1] "F:/git/stringr"

R will always print the results using /, but you’re free to use either / or \\ as
you please.

To avoid having to deal with escaping backslashes in file paths, you can use
the file.path() function to construct file paths that are correct, indepen-
dent of the operating system you work on. This function is a little bit similar
to paste in the sense that it will append character strings, except that the
separator is always correct, regardless of the settings in your operating
system:

> file.path("f:", "git", "surveyor")
[1] "f:/git/surveyor"

It’s often convenient to use file.path() in setting the working directory.
This allows you specify a cascade of drive letters and folder names, and
file.path() then assembles these into a proper file path, with the correct
separator character:

> setwd(file.path("F:", "git", "roxygen2"))
> getwd()
[1] "F:/git/roxygen2"

You also can use file.path() to specify file paths that include the filename
at the end. Simply add the filename to the path argument. For example, here’s
the file path to the README.md file in the roxygen2 package installed in a
local folder:

> file.path("F:", "git", "roxygen2", "roxygen2", "README.md")
[1] "F:/git/roxygen2/roxygen2/README.md"

Manipulating files
Occasionally, you may want to write a script that will traverse a given folder
and perform actions on all the files or a subset of files in that folder.

To get a list of files in a specific folder, use list.files() or dir(). These
two functions do exactly the same thing, but for backward‐compatibility rea-
sons, the same function has two names:

235 Chapter 12: Getting Data into and out of R

> list.files(file.path("F:", "git", "roxygen2"))
[1] "roxygen2" "roxygen2.Rcheck"
[3] "roxygen2_2.0.tar.gz" "roxygen2_2.1.tar.gz"

Table 12-2 lists some other useful functions for working with files.

Next, you get to exercise all your knowledge about working with files. In the
next example, you first create a temporary file, then save a copy of the iris
data frame to this file. To test that the file is on disk, you then read the newly
created file to a new variable and inspect this variable. Finally, you delete the
temporary file from disk.

Start by using the tempfile() function to return a name to a character
string with the name of a file in a temporary folder on your system:

> my.file <- tempfile()
> my.file
[1] "C:\\Users\\Andrie\\AppData\\Local\\Temp\\tmpGYeLTj\\file14d4366b6095"

Notice that the result is purely a character string, not a file. This file doesn’t
yet exist anywhere. Also note the double \\ as a file separator in Windows,
that you encounter in Chapter 5. Remember, the \ is an escape character in
R, so to write a backslash, you have to escape it first, hence the \\. If you’re
on Mac or Linux, R displays the path using the forward slash (/) instead.

Table 12-2 Useful Functions for Manipulating Files
Function Description
list.files Lists files in a directory.

list.dirs Lists subdirectories of a directory.

file.exists Tests whether a specific file exists in a location.

file.create Creates a file.

file.remove Deletes files (and directories in Unix operating systems).

tempfile Returns a name for a temporary file. If you create a file —
for example, with file.create() or write.
table() using this returned name — R creates a file in
a temporary folder.

tempdir Returns the file path of a temporary folder on your file
system.

236 Part IV: Making the Data Talk

You can safely use a forward slash in file paths yourself, even on Windows. R
can read file paths using either \\ or /, but it uses the preferred way of your
operating system to display a file path.

Next, you save a copy of the data frame iris to my.file using the
write.csv() function. Then use list.files() to see if R created the file:

> write.csv(iris, file = my.file, , row.names = FALSE)
> list.files(tempdir())
[1] "file14d4366b6095"

As you can see, R created the file. Now you can use read.csv() to import
the data to a new variable called file.iris:

> file.iris <- read.csv(my.file)

Use str() to investigate the structure of file.iris. As expected
file.iris is a data.frame of 150 observations and six variables. Six
 variables, you say? Yes, six, although the original iris only has five
 columns. What happened here was that the default value of the argument
row.names of read.csv() is row.names=TRUE. (You can confirm this by
taking a close look at the Help for ?read.csv().) So, R saved the original
row names of iris to a new column called X:

> str(file.iris, vec.len = 2)
'data.frame': 150 obs. of 6 variables:
 $ X : int 1 2 3 4 5 ...
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 ...
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 ...

To leave your file system in its original order, you can use file.remove()
to delete the temporary file:

> file.remove(my.file)
> list.files(tempdir())
character(0)

As you can see, the result of list.files() is an empty character string,
because the file no longer exists in that folder.

237 Chapter 12: Getting Data into and out of R

Creating reports
Sometimes, the best way of presenting your
results is in a nicely formatted report. R has
several mechanisms for creating reports,
usually by interleaving reporting content and R
analysis code in a single document. This style of
creating reports is usually referred to as literate
programming.

For many years, the most widely used scientific
literate programming tool that came with R
was Sweave. Sweave is a format that allows
you to embed R into the LaTEX typesetting
language, with the resulting output most
frequently PDF documents. The name Sweave
evokes weaving, where two different types of
programming languages (yarn) are interlaced to
create a report (cloth or fabric). To learn more,
see the Help for ?Sweave.

More recently, rmarkdown, based on knitr
has become very popular. The original knitr
package allows you to embed R code into a
markdown document. This document then is
knitted to produce HTML output. The word knit
refers to the process of running the R code, then
embedding the results directly inside the text,
producing HTML that you can view in a web
browser. The rmarkdown package extends
knitr to also create PDF or Microsoft Word
documents and even HTML presentations. The
rmarkdown package is available on CRAN at
http://cran.r‐project.org/web/
packages/rmarkdown/index.html
and also is bundled with the RStudio download.
A good place to learn more is http://
rmarkdown.rstudio.com/.

http://cran.r-project.org/web/packages/rmarkdown/index.html
http://cran.r-project.org/web/packages/rmarkdown/index.html
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/

238 Part IV: Making the Data Talk

Manipulating and Processing Data
In This Chapter

 ▶ Creating subsets of data

 ▶ Adding calculated fields

 ▶ Merging data from different sources

 ▶ Sorting data

 ▶ Meeting more members of the apply family

 ▶ Getting your data into shape

N
ow it’s time to put together all the tools you’ve seen in earlier chapters.
You know how to get data into R, you know how to work with lists and

data frames, and you know how to write functions. Combined, these tools
form the basic toolkit to be able to do data manipulation and processing in R.

In this chapter, you use some tricks and design idioms for working with data.
This includes methods for selecting and ordering data, such as working with
lookup tables. You also use some techniques for reshaping data — for example,
changing the shape of data from wide format to long format.

Deciding on the Most Appropriate
Data Structure

The first decision you have to make before analyzing your data is how to rep-
resent that data inside R. In Chapters 4, 5, and 7, you see that the basic data
structures in R are vectors, matrices, lists, and data frames.

If your data has only one dimension, then you already know that vectors rep-
resent this type of data very well. However, if your data has more than one
dimension, you have the choice of using matrices, lists, or data frames. So,
the question is: Which do you use when?

Chapter 13

240 Part IV: Making the Data Talk

Matrices and higher‐dimensional arrays are useful when all your data are of
a single class — in other words, all your data are numeric or all your data
are characters. If you’re a mathematician or statistician, you’re familiar with
matrices and likely use this type of object very frequently.

But in many practical situations, you have data with many different classes —
in other words, you have a mixture of numeric and character data. In this case,
you need to use either lists or data frames.

If you can imagine your data as a single spreadsheet, a data frame is probably
a good choice. Remember that a data frame is simply a list of named vectors
of the same length, which is conceptually very similar to a spreadsheet with
columns and a column heading for each. If you’re familiar with databases,
you can think of a data frame as similar to a single table in a database. Data
frames are tremendously useful and, in many cases, will be your first choice
of object for storing your data.

If your data consists of a collection of objects but you can’t represent that
as an array or a data frame, then a list is your ideal choice. Because lists
can contain all kinds of other objects, including other lists or data frames,
they’re tremendously flexible. Consequently, R has a wide variety of tools to
process lists.

Table 13-1 contains a summary of these choices.

Table 13-1 Useful Objects for Data Analysis
Object Description Comments
vector The basic data object in R, consisting

of one or more values of a single type
(for example, character, number, or
integer).

Think of this as a single
column or row in a spread-
sheet, or a column in a
 database table.

matrix
or array

A multidimensional object of a single
type (known as atomic). A matrix is an
array of two dimensions.

When you have to store
 numbers in many dimensions,
use arrays.

list Lists can contain objects of any type. Lists are very useful for
 storing collections of data
that belong together. Lists
can contain other lists.

data.
frame

Data frames are a special kind of
named list where all components
have equal length.

Data frames are similar to a
single spreadsheet or to a
table in a database.

241 Chapter 13: Manipulating and Processing Data

You may find that a data frame is a very suitable choice for most analysis
and data‐processing tasks. It’s a very convenient way of representing your
data, and it’s similar to working with database tables. When you read data
from a comma‐separated value (CSV) file with the function read.csv() or
read.table(), R puts the results in a data frame.

Creating Subsets of Your Data
Often the first task in data processing is to create subsets of your data for fur-
ther analysis. In Chapters 3 and 4, we show you ways of subsetting vectors.
In Chapter 7, we outline methods for creating subsets of arrays, data frames,
and lists.

Because this is such a fundamental task in data analysis, we review and sum-
marize the different methods for creating subsets of data.

Understanding the three subset operators
You’re already familiar with the three subset operators:

 ✓ $: The dollar‐sign operator selects a single component of your data (and
drops the dimensions of the returned object). When you use this opera-
tor with a data frame, the result is always a vector; when you use it with
a named list, you get the named component.

 ✓ [[: The double‐square‐brackets operator also returns a single compo-
nent, but it offers you the flexibility of referring to the components by
position, rather than by name. You use it for data frames and lists.

 ✓ [: The single‐square‐brackets operator can return multiple components
of your data.

Note that [[and [differ in two important ways: the number of components
you can select and the type of object that is returned. Whereas [[returns the
component itself, [returns an object of the same type as the one you subset,
dropping of dimensions aside (see Chapter 7 and the section “Subsetting data
frames” further in this chapter).

Next, we look at how to use these operators to get exactly the components
from your data that you want.

242 Part IV: Making the Data Talk

Understanding the five ways
of specifying the subset
When you use the single‐square‐brackets operator, you return multiple com-
ponents of your data. This means that you need a way of specifying exactly
which components you need.

In this paragraph, you subset the built‐in dataset islands, a named numeric
vector with 48 elements:

> str(islands)
 Named num [1:48] 11506 5500 16988 2968 16 . . .
 ‐ attr(*, "names")= chr [1:48] "Africa" "Antarctica" "Asia" "Australia" . . .

Table 13-2 illustrates the five ways of specifying which components you want
to include in or exclude from your data.

Subsetting data frames
Having reviewed the rules for creating subsets, you can try it with some data
frames. You just have to remember that a data frame is a two‐dimensional
object and contains rows as well as columns. This means you need to specify
the subset for rows and columns independently. To do so, you combine the
operators.

Table 13-2 Specifying the Subset Elements
Subset Effect Example
Blank Returns all your data islands[]

Positive numerical
values

Extracts the elements at these
locations

islands
[c(8, 1, 1, 42)]

Negative numerical
values

Extract all but these elements;
in other words, excludes these
elements

islands
[‐(3:46)]

Logical values A logical value of TRUE includes
element; FALSE excludes
element

islands
[islands < 20]

Character strings Includes elements where the
names match

islands
[c("Madagascar",
"Cuba")]

243 Chapter 13: Manipulating and Processing Data

To illustrate subsetting of data frames, look at the built‐in dataset iris, a
data frame of 5 columns and 150 rows with data about iris flowers:

> str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 . . .
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 . . .
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 . . .
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 . . .
 $ Species : Factor w/ 3 levels "setosa","versicolor",..:

1 1 1 1 1 1 1 1 1 1 . . .

When you subset objects with more than one dimension, you specify the
subset argument for each dimension — you separate the subset arguments
with commas.

For example, to get the first five rows of iris and all the columns, try:

> iris[1:5,]

To get all the rows but only two stated columns, try:

> iris[, c("Sepal.Length", "Sepal.Width")]

Take special care when subsetting a single column of a data frame, because R
may simplify the result. Try:

iris[, "Sepal.Length"]

Notice that the result is a vector, not a data frame as you would expect.

When your subset operation returns a single column (or vector), the default
behavior is to return a simplified version. The way this works is that R
inspects the lengths of the returned components. If all these components
have the same length, then R simplifies the result to a vector, matrix, or
array. In our example, R simplifies the result to a vector. To override this
behavior, specify the argument drop=FALSE in your subset operation:

> iris[, "Sepal.Length", drop = FALSE]

Alternatively, you can subset the data frame like a list, as shown in Chapter 7.
The following code returns you a data frame with only one column as well:

> iris["Sepal.Length"]

244 Part IV: Making the Data Talk

Finally, to get a subset of only some columns and some rows:

> iris[1:5, c("Sepal.Length", "Sepal.Width")]
 Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
3 4.7 3.2
4 4.6 3.1
5 5.0 3.6

Taking samples from data
Statisticians often have to take samples of data and then calculate statis-
tics. Because a sample is really nothing more than a subset of data, taking a
sample is easy with R. To do so, you make use of sample(), which takes a
vector as input; then you tell it how many samples to draw from that list.

Say you wanted to simulate rolls of a die, and you want to get ten results.
Because the outcome of a single roll of a die is a number between one and
six, your code looks like this:

> sample(1:6, 10, replace = TRUE)
 [1] 2 2 5 3 5 3 5 6 3 5

You tell sample() to return 10 values, each in the range 1:6. Because
every roll of the die is independent from every other roll of the die, you’re
sampling with replacement. This means that you take one sample from the
list and reset the list to its original state (in other words, you put the ele-
ment you’ve just drawn back into the list). To do this, you add the argument
replace=TRUE, as in the example.

Because the return value of the sample() function is a randomly determined
number, if you try this function repeatedly, you’ll get different results every
time. This is the correct behavior in most cases, but sometimes you may
want to get repeatable results every time you run the function. Usually, this
will occur only when you develop and test your code, or if you want to be
certain that someone else can test your code and get the same values you
did. In this case, it’s customary to specify a so‐called seed value.

If you provide a seed value, the random‐number sequence will be reset to
a known state. This is because R doesn’t create truly random numbers, but
only pseudo‐random numbers. A pseudo‐random sequence is a set of num-
bers that, for all practical purposes, seem to be random but were generated
by an algorithm. When you set a starting seed for a pseudo‐random process,
R always returns the same pseudo‐random sequence. But if you don’t set the
seed, R draws from the current state of the random number generator (RNG).
On startup, R may set a random seed to initialize the RNG, but each time you

245 Chapter 13: Manipulating and Processing Data

call it, R starts from the next value in the RNG stream. You can read the Help
for ?RNG to get more detail.

You use the set.seed() function to specify your seed starting value. The
argument to set.seed() is any integer value:

> set.seed(1)
> sample(1:6, 10, replace = TRUE)
 [1] 2 3 4 6 2 6 6 4 4 1

If you draw another sample, without setting a seed, you get a different set of
results, as you would expect:

> sample(1:6, 10, replace = TRUE)
 [1] 2 2 5 3 5 3 5 6 3 5

Now, to demonstrate that set.seed() actually does reset the RNG, try it
again. But this time, set the seed once more:

> set.seed(1)
> sample(1:6, 10, replace = TRUE)
 [1] 2 3 4 6 2 6 6 4 4 1

You get exactly the same results as the first time you used set.seed(1).

You can use sample() to take samples from the data frame iris. In this
case, you may want to use the argument replace=FALSE. Because this
is the default value of the replace argument, you don’t need to write it
explicitly:

> set.seed(123)
> index <- sample(nrow(iris), 5)
> index
[1] 44 118 61 130 138
> iris[index,]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
44 5.0 3.5 1.6 0.6 setosa
118 7.7 3.8 6.7 2.2 virginica
61 5.0 2.0 3.5 1.0 versicolor
130 7.2 3.0 5.8 1.6 virginica
138 6.4 3.1 5.5 1.8 virginica

Removing duplicate data
A special application of subsetting is finding and removing duplicate values.

The function duplicated() finds duplicate values and returns a logical vector
that tells you whether the specific value is a duplicate of a previous value.

246 Part IV: Making the Data Talk

This means that for duplicated values, duplicated() returns FALSE for the
first occurrence and TRUE for every following occurrence of that value, as in
the following example:

> duplicated(c(1, 2, 1, 3, 1, 4))
[1] FALSE FALSE TRUE FALSE TRUE FALSE

If you try this on a data frame, R automatically checks the observations
(meaning, it treats every row as a value). For example, using iris:

> duplicated(iris)
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [10] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
....
 [136] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE

If you look carefully, you notice that row 143 is a duplicate (because the
143rd value in the resulting vector has the value TRUE). You also can tell this
by using the which() function:

> which(duplicated(iris))
[1] 143

To remove the duplicate from iris, you need to exclude this row from your
data. Remember there are two ways to exclude data using subsetting:

 ✓ Specify a logical vector, where FALSE means that the respective com-
ponent of the list will be excluded. The ! (exclamation point) operator
is a logical negation. This means that it converts TRUE into FALSE and
vice versa. So, to remove the duplicates from iris, you do the following:

> iris[!duplicated(iris),]

 ✓ Specify negative values. In other words:

> index <- which(duplicated(iris))
> iris[-index,]

In both cases, you’ll notice that your instruction has removed row 143.

Be careful when removing components using negative values. If you create a
vector of negative subscripts, you need to make sure it has at least one com-
ponent. Otherwise you get nothing when you want everything!

Removing rows with missing data
Another application of subsetting data frames is finding and removing rows
with missing data. The function to check for this is complete.cases().

247 Chapter 13: Manipulating and Processing Data

Try this on the built‐in dataset airquality, a data frame with much
missing data:

> str(airquality)
> complete.cases(airquality)

The results of complete.cases() is a logical vector with the value TRUE
for rows that are complete, and FALSE for rows that have some NA values.
To remove the rows with missing data from airquality, try the following:

> x <- airquality[complete.cases(airquality),]
> str(x)

Your result should be a data frame with 111 rows, rather than the 153 rows of
the original airquality data frame.

As always with R, there is more than one way of achieving your goal. In this
case, you can use na.omit() to omit all rows that contain NA values:

> x <- na.omit(airquality)

When you’re certain that your data is clean, you can start to analyze it by
adding calculated fields.

If you use any of these methods to subset your data or clean out missing
values, remember to store the result in a new object. R doesn’t change any-
thing in the original data frame unless you explicitly overwrite it. That’s a
good thing, because you can’t accidently mess up your data.

Adding Calculated Fields to Data
After creating the appropriate subset of your data, the next step in your
 analysis is to perform some calculations.

Doing arithmetic on columns
of a data frame
R makes it very easy to perform calculations on columns of a data frame
because each column is itself a vector. This means that you can use all the
tools that you encountered in Chapters 4, 5, and 6.

248 Part IV: Making the Data Talk

Sticking to the iris data frame, try to do a few calculations on the columns.
For example, calculate the ratio between the lengths and width of the sepals:

> x <- iris$Sepal.Length / iris$Sepal.Width

Now you can use all the R tools to examine your result. For example, inspect
the first five elements of your results with the head() function:

> head(x)
[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615

As you can see, performing calculations on columns of a data frame is
straightforward. Just keep in mind that each column is really a vector,
so you simply have to remember how to perform operations on vectors
(see Chapter 5).

Using with and transform to
improve code readability
After a short while of writing subset statements in R, you’ll get tired of typing
the dollar sign to extract columns of a data frame. Fortunately, there is a way
to reduce the amount of typing and to make your code much more readable
at the same time. The trick is to use the with() function. Try this:

> y <- with(iris, Sepal.Length / Sepal.Width)

The with() function allows you to refer to columns inside a data frame with-
out explicitly using the dollar sign or even the name of the data frame itself.
So, in our example, because you use with(iris, ...), R knows to evaluate
both Sepal.Length and Sepal.Width in the context of iris.

Hopefully, you agree that this is much easier to read and understand. With
the function identical() you can confirm that y is in fact identical to x:

> identical(x, y)
[1] TRUE

In addition to with(), the helpful transform() function allows you to
assign values to columns in your data frame very easily. Say you want to add
your calculated ratio (sepal length : width) to the original data frame. You’re
already familiar with writing code like this:

> iris$ratio <- iris$Sepal.Length / iris$Sepal.Width

249 Chapter 13: Manipulating and Processing Data

Now, using transform() it turns into the following:

> transform.iris <- transform(iris, ratio = Sepal.Length / Sepal.Width)

Now look at the structure of iris and notice that ratio is a column:

> head(transform.iris$ratio)
[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615

Note that with() and transform() are nice helper functions for use when
working interactively in the R console. However, these functions make use of
some special R magic, called non‐standard evaluation. Because of the way this
evaluation is special, it is generally advised to use $, [or [[in your own
scripts, especially inside functions.

Creating subgroups or bins of data
One of the first tasks statisticians use to investigate their data is to draw
histograms. (You get to plot histograms in Chapter 15). A histogram is a plot
of the number of occurrences of data in specific bins or subgroups. Because
this type of calculation is fairly common when you do statistics, R has some
functions to do exactly that.

The cut() function creates bins of equal size (by default) in your data and
then classifies each element into its appropriate bin.

If this sounds like a mouthful, don’t worry. A few examples should make this
come to life.

Using cut to create a fixed number of subgroups
To illustrate the use of cut(), have a look at the built‐in dataset state.x77,
an array with several columns and one row for each state in the United States:

> head(state.x77)
 Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417
Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945
California 21198 5114 1.1 71.71 10.3 62.6 20 156361
Colorado 2541 4884 0.7 72.06 6.8 63.9 166 103766

250 Part IV: Making the Data Talk

We want to work with the column called Frost. To extract this column, try
the following:

> frost <- state.x77[, "Frost"]
> head(frost, 5)
 Alabama Alaska Arizona Arkansas California
 20 152 15 65 20

You now have a new object, frost, a named numeric vector. Now use cut()
to create three bins in your data:

> cut(frost, 3, include.lowest = TRUE)
 [1] [-0.188,62.6] (125,188] [-0.188,62.6] (62.6,125]
 [5] [-0.188,62.6] (125,188] (125,188] (62.6,125]
....
[45] (125,188] (62.6,125] [-0.188,62.6] (62.6,125]
[49] (125,188] (125,188]
Levels: [-0.188,62.6] (62.6,125] (125,188]

The result is a factor with three levels. The names of the levels seem a bit
complicated, but they tell you in mathematical set notation what the bound-
aries of your bins are. For example, the first bin contains those states that
have frost between –0.188 and 62.6 days. In reality, of course, none of the
states will have frost on negative days — R is being mathematically conserva-
tive and adds a bit of padding.

Note the argument include.lowest = TRUE to cut(). The default value
for this argument is include.lowest = FALSE, which can sometimes
cause R to ignore the lowest value in your data.

Adding labels to cut
The level names aren’t very user-friendly, so specify some better names with
the labels argument:

> cut(frost, 3, include.lowest = TRUE, labels = c("Low", "Med", "High"))
 [1] Low High Low Med Low High High Med Low Low Low
....
[45] High Med Low Med High High
Levels: Low Med High

Now you have a factor that classifies states into low, medium, and high,
depending on the number of days of frost they get.

Using table to count the number of observations
One interesting piece of analysis is to count how many states are in each
bracket. You can do this with the table() function, which simply counts
the number of observations in each level of your factor:

251 Chapter 13: Manipulating and Processing Data

> x <- cut(frost, 3, include.lowest = TRUE, labels = c("Low", "Med", "High"))
> table(x)
x
 Low Med High
 11 19 20

You encounter the table() function again in Chapter 15.

Combining and Merging Data Sets
The next thing you may want to do is combine data from different sources.
Generally speaking, you can combine different sets of data in three ways:

 ✓ By adding columns: If the two sets of data have an equal set of rows,
and the order of the rows is identical, then adding columns makes
sense. Your options for doing this are data.frame or cbind()
(see Chapter 7).

 ✓ By adding rows: If both sets of data have the same columns and you
want to add rows to the bottom, use rbind() (see Chapter 7).

 ✓ By combining data with different shapes: The merge() function
 combines data based on common columns, as well as common rows.
In databases language, this is usually called joining data.

Figure 13-1 shows these three options schematically.

In this section, we look at some of the possibilities of combining data with
merge(). More specifically, you use merge() to find the intersection, as well
as the union, of different data sets. You also look at other ways of working
with lookup tables, using the functions match() and %in%.

Figure 13-1:
Different
ways of

combining
data.

252 Part IV: Making the Data Talk

Sometimes you want to combine data where it isn’t as straightforward to
simply add columns or rows. It could be that you want to combine data
based on the values of preexisting keys in the data. This is where the
merge() function is useful. You can use merge() to combine data only
when certain matching conditions are satisfied.

Say, for example, you have information about states in a country. If one data-
set contains information about population and another contains information
about regions, and both have information about the state name, you can use
merge() to combine your results.

Creating sample data to illustrate merging
To illustrate the different ways of using merge, have a look at the built‐in
dataset state.x77. This is an array, so start by converting it into a data
frame. Then add a new column with the names of the states. Finally, remove
the old row names. (Because you explicitly add a column with the names of
each state, you don’t need to have that information duplicated in the row
names.)

> all.states <- as.data.frame(state.x77)
> all.states$Name <- rownames(state.x77)
> rownames(all.states) <- NULL

Now you should have a data frame all.states with 50 observations of nine
variables:

> str(all.states)
'data.frame': 50 obs. of 9 variables:
 $ Population: num 3615 365 2212 2110 21198 . . .
 $ Income : num 3624 6315 4530 3378 5114 . . .
 $ Illiteracy: num 2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 . . .
 $ Life Exp : num 69 69.3 70.5 70.7 71.7 . . .
 $ Murder : num 15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 10.7 13.9 . . .
 $ HS Grad : num 41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 52.6 40.6 . . .
 $ Frost : num 20 152 15 65 20 166 139 103 11 60 . . .
 $ Area : num 50708 566432 113417 51945 156361 . . .
 $ Name : chr "Alabama" "Alaska" "Arizona" "Arkansas" . . .

Creating a subset of cold states
Next, create a subset called cold.states consisting of those states with
more than 150 days of frost each year, keeping the columns Name and Frost:

> cold.states <- all.states[all.states$Frost>150, c("Name", "Frost")]
> cold.states

253 Chapter 13: Manipulating and Processing Data

 Name Frost
2 Alaska 152
6 Colorado 166
....
45 Vermont 168
50 Wyoming 173

Creating a subset of large states
Finally, create a subset called large.states consisting of those states with
a land area of more than 100,000 square miles, keeping the columns Name
and Area:

> large.states <- all.states[all.states$Area >= 100000, c("Name", "Area")]
> large.states
 Name Area
2 Alaska 566432
3 Arizona 113417
....
31 New Mexico 121412
43 Texas 262134

Now you’re ready to explore the different types of merge.

Using the merge() function
In R you use the merge() function to combine data frames. This powerful
function tries to identify columns or rows that are common between the two
different data frames.

Using merge to find the intersection of data
The simplest form of merge() finds the intersection between two different
sets of data. In other words, to create a data frame that consists of those
states that are cold as well as large, use the default version of merge():

> merge(cold.states, large.states)
 Name Frost Area
1 Alaska 152 566432
2 Colorado 166 103766
3 Montana 155 145587
4 Nevada 188 109889

If you’re familiar with a database language such as SQL, you may have
guessed that merge() is very similar to a database join. This is, indeed, the
case, and the different arguments to merge() allow you to perform natural
joins, as well as left, right, and full outer joins.

254 Part IV: Making the Data Talk

The merge() function takes quite a large number of arguments. These argu-
ments can look quite intimidating until you realize that they form a smaller
number of related arguments:

 ✓ x: A data frame.

 ✓ y: A data frame.

 ✓ by, by.x, by.y: The names of the columns that are common to both x
and y. The default is to use the columns with common names between
the two data frames. The arguments by.x and by.y allow you to state
which columns to match even if they don’t have the same column name.
See the examples in ?merge

 ✓ all, all.x, all.y: Logical values that specify the type of merge.
The default value is all=FALSE (meaning that only the matching rows
are returned).

That last group of arguments — all, all.x and all.y — deserves some
explanation. These arguments determine the type of merge that will happen
(see the next section).

Understanding the different types of merge
The merge() function allows four ways of combining data:

 ✓ Natural join: To keep only rows that match from the data frames, spec-
ify the argument all=FALSE.

 ✓ Full outer join: To keep all rows from both data frames, specify
all=TRUE.

 ✓ Left outer join: To include all the rows of your data frame x and only
those from y that match, specify all.x=TRUE.

 ✓ Right outer join: To include all the rows of your data frame y and only
those from x that match, specify all.y=TRUE.

You can see a visual depiction of all these different options in Figure 13-2.

Figure 13-2:
Different
types of

merge()
and their
database

join
 equivalents.

255 Chapter 13: Manipulating and Processing Data

Finding the union (full outer join)
Returning to the examples of U.S. states, to perform a complete merge of cold
and large states, use merge() and specify all=TRUE:

> merge(cold.states, large.states, all = TRUE)
 Name Frost Area
1 Alaska 152 566432
2 Arizona NA 113417
3 California NA 156361
....
13 Texas NA 262134
14 Vermont 168 NA
15 Wyoming 173 NA

Both data frames have a variable Name, so R matches the cases based
on the names of the states. The variable Frost comes from the data
frame cold.states, and the variable Area comes from the data frame
large.states.

Note that this performs the complete merge and fills the columns with NA
values where there is no matching data.

Working with lookup tables
Sometimes doing a full merge of the data isn’t exactly what you want. In these
cases, it may be more appropriate to match values in a lookup table. To do
this, you can use the match() or %in% functions.

Finding a match
The match() function returns the matching positions of two vectors or,
more specifically, the positions of first matches of one vector in the second
vector. For example, to find which large states also occur in the data frame
cold.states, you can do the following:

> index <- match(cold.states$Name, large.states$Name)
> index
 [1] 1 4 NA NA 5 6 NA NA NA NA NA

As you see, the result is a vector that indicates matches were found at posi-
tions one, four, five, and six. You can use this result as an index to find all the
large states that are also cold states.

256 Part IV: Making the Data Talk

Keep in mind that you need to remove the NA values first, using na.omit():

> large.states[na.omit(index),]
 Name Area
2 Alaska 566432
6 Colorado 103766
26 Montana 145587
28 Nevada 109889

Making sense of %in%
A very convenient alternative to match() is the function %in%, which
returns a logical vector indicating whether there is a match.

The %in% function is a special type of function called a binary operator. This
means you use it by placing it between two vectors, unlike most other func-
tions where the arguments are in parentheses:

> index <- cold.states$Name %in% large.states$Name
> index
 [1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

If you compare this to the result of match(), you see that you have a TRUE
value for every non‐missing value in the result of match(). Or, to put it in R
code, the operator %in% does the same as the following code:

> !is.na(match(cold.states$Name, large.states$Name))
 [1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

The match() function returns the indices of the matches in the second argu-
ment for the values in the first argument. On the other hand, %in% returns
TRUE for every value in the first argument that matches a value in the second
argument. The order of the arguments is important here.

Because %in% returns a logical vector, you can use it directly to subset
values in a vector.

> cold.states[index,]
 Name Frost
2 Alaska 152
6 Colorado 166
26 Montana 155
28 Nevada 188

The %in% function is an example of a binary operator in R. This means that
the function is used by putting it between two values, as you would for other
operators, such as + (plus) and ‐ (minus). At the same time, %in% is in infix
operator. An infix operator in R is identifiable by the percent signs around the

257 Chapter 13: Manipulating and Processing Data

function name. If you want to know how %in% is defined, look at the details
section of its Help page. But note that you have to place quotation marks
around the function name to get the Help page, like this: ?"%in%".

Sorting and Ordering Data
Another common task in data analysis and reporting is to sort information.
You can answer many everyday questions with league tables — sorted tables
that tell you the best or worst of specific things. For example, parents want to
know which school in their area is the best, and businesses need to know the
most productive factories or the most lucrative sales areas. When you have
the data, you can answer all these questions simply by sorting it.

As an example, look again at the built‐in data about the states in the U.S. First,
create a data frame called some.states that contains information contained
in the built‐in variables state.region and state.x77:

> some.states <- data.frame(
+ Region = state.region,
+ state.x77)

To keep the example manageable, create a subset of only the first ten rows
and the first three columns:

> some.states <- some.states[1:10, 1:3]
> some.states
 Region Population Income
Alabama South 3615 3624
Alaska West 365 6315
Arizona West 2212 4530
....
Delaware South 579 4809
Florida South 8277 4815
Georgia South 4931 4091

You now have a variable called some.states that is a data frame consisting
of ten rows and three columns (Region, Population, and Income).

Sorting vectors
R makes it easy to sort vectors in either ascending or descending order.
Because each column of a data frame is a vector, you may find that you
 perform this operation quite frequently.

258 Part IV: Making the Data Talk

Sorting a vector in ascending order
To sort a vector, you use the sort() function. For example, to sort
Population in ascending order, try this:

> sort(some.states$Population)
 [1] 365 579 2110 2212 2541 3100 3615 4931 8277
[10] 21198

Sorting a vector in decreasing order
You also can tell sort() to go about its business in decreasing order. To
do this, specify the argument decreasing=TRUE:

> sort(some.states$Population, decreasing = TRUE)
 [1] 21198 8277 4931 3615 3100 2541 2212 2110 579
[10] 365

You can access the Help documentation for the sort() function by typing
?sort into the R console.

Sorting data frames
Another way of sorting data is to determine the order that elements should
be in, if you were to sort. This sounds long-winded, but as you’ll see, having
this flexibility means you can write statements that are very natural.

Getting the order
First, determine the element order to sort state.info$Population in
ascending order. Do this using the order() function:

> order.pop <- order(some.states$Population)
> order.pop
 [1] 2 8 4 3 6 7 1 10 9 5

This means to sort the elements in ascending order, you first take the second
element, then the eighth element, then the fourth element, and so on. Try it:

> some.states$Population[order.pop]
 [1] 365 579 2110 2212 2541 3100 3615 4931 8277
[10] 21198

Yes, this is rather long-winded. But next we look at how you can use
order() in a very powerful way to sort a data frame.

259 Chapter 13: Manipulating and Processing Data

Sorting a data frame in ascending order
In the preceding section, you calculated the order in which the elements of
Population should be in order for it to be sorted in ascending order, and
you stored that result in order.pop. Now, use order.pop to sort the data
frame some.states in ascending order of population:

> some.states[order.pop,]
 Region Population Income
Alaska West 365 6315
Delaware South 579 4809
Arkansas South 2110 3378
....
Georgia South 4931 4091
Florida South 8277 4815
California West 21198 5114

Sorting in decreasing order
Just like sort(), the order() function also takes an argument called
decreasing. For example, to sort some.states in decreasing order of
population:

> order(some.states$Population)
 [1] 2 8 4 3 6 7 1 10 9 5
> order(some.states$Population, decreasing = TRUE)
 [1] 5 9 10 1 7 6 3 4 8 2

Just as before, you can sort the data frame some.states in decreasing
order of population. Try it, but this time don’t assign the order to a tempo-
rary variable:

> some.states[order(some.states$Population, decreasing = TRUE),]
 Region Population Income
California West 21198 5114
Florida South 8277 4815
Georgia South 4931 4091
....
Arkansas South 2110 3378
Delaware South 579 4809
Alaska West 365 6315

Sorting on more than one column
You probably think that sorting is very straightforward, and you’re correct.
Sorting on more than one column is almost as easy.

You can pass more than one vector as an argument to the order() function.
If you do so, the result will be the equivalent of adding a secondary sorting
key. In other words, the order will be determined by the first vector and any
ties will then sort according to the second vector.

260 Part IV: Making the Data Talk

Next, you sort some.states on more than one column — in this case,
Region and Population. If this sounds confusing, don’t worry — it really
isn’t. Try it yourself. First, calculate the order to sort some.states by
region as well as population:

> index <- with(some.states, order(Region, Population))
> some.states[index,]
 Region Population Income
Connecticut Northeast 3100 5348
Delaware South 579 4809
Arkansas South 2110 3378
Alabama South 3615 3624
Georgia South 4931 4091
Florida South 8277 4815
Alaska West 365 6315
Arizona West 2212 4530
Colorado West 2541 4884
California West 21198 5114

Traversing Your Data with
the Apply Functions

R has a powerful suite of functions that allows you to apply a function repeat-
edly over the components of a list. The interesting and crucial thing about

Sorting multiple columns in mixed order
You may start to wonder how to calculate the
order when some of the columns need to be
in increasing order and others need to be in
decreasing order.

To do this, you need to make use of a helper
function called xtfrm() . This function
transforms a vector into a numeric vector
that sorts in the same order. After you’ve
transformed a vector, you can take the negative
to indicate decreasing order.

To sort some.states into decreasing order
of region and increasing order of population, try
the following:

> index <- order(-xtfrm(some.
states$Region),

+ some.states$Population)
> some.states[index,]
 Region Population Income
Alaska West 365 6315
Arizona West 2212 4530
Colorado West 2541 4884
California West 21198 5114
Delaware South 579 4809
Arkansas South 2110 3378
Alabama South 3615 3624
Georgia South 4931 4091
Florida South 8277 4815
Connecticut Northeast 3100 5348

261 Chapter 13: Manipulating and Processing Data

this is that it happens without an explicit loop. In Chapter 9, you see how to
use loops appropriately and get a brief introduction to the apply family.

Because this is such a useful concept, you’ll come across quite a few differ-
ent flavors of functions in the apply family of functions. The specific flavor of
apply() depends on the structure of data that you want to traverse:

 ✓ Array or matrix: Use the apply() function. This traverses either the
rows or columns of a matrix, applies a function to each resulting vector,
and returns a vector (or array or list) of summarized results.

 ✓ List: Use the lapply() function to traverse a list, apply a function to
each component, and return a list of the results. Sometimes it’s possible
to simplify the resulting list into an array, matrix, or vector. This is what
the sapply() function does.

Figure 13-3 demonstrates the appropriate function, depending on whether
your data is in the form of an array or a list.

The ability to apply a function over the components of a list is one of the
distinguishing features of the functional programming style as opposed to
an imperative programming style. In the imperative style, you use loops, but
in the functional programming style you apply functions. R has a variety of
apply‐type functions, including apply(), lapply(), and sapply().

Using the apply() function
to summarize arrays
If you have data in the form of an array or matrix and you want to summa-
rize this data, the apply() function is really useful. The apply() function

Figure 13-3:
Use apply

on arrays
and matri-

ces; use
lapply or
sapply

on lists and
data frames.

262 Part IV: Making the Data Talk

 traverses an array or matrix by column or row and applies a summarizing
function.

The apply() function takes four arguments:

 ✓ X: This is your data — an array (or matrix).

 ✓ MARGIN: A numeric vector indicating the dimension over which to tra-
verse; 1 means rows and 2 means columns.

 ✓ FUN: The function to apply (for example, sum or mean).

 ✓ . . . (dots): If your FUN function requires any additional arguments, you
can add them here.

To illustrate this, look at the built‐in dataset Titanic. This is a four‐
dimensional table with passenger data of the ship Titanic, describing their
cabin class, gender, age, and whether they survived.

> str(Titanic)
 table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 . . .
 - attr(*, "dimnames")=List of 4
 ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
 ..$ Sex : chr [1:2] "Male" "Female"
 ..$ Age : chr [1:2] "Child" "Adult"
 ..$ Survived: chr [1:2] "No" "Yes"

You can treat a table as an array. Under the hood, a table is an array of inte-
ger values. In Chapter 14, you find some more examples of working with
tables, including information differences between tables and arrays.

To find out how many passengers were in each of their cabin classes, you
need to summarize Titanic over its first dimension, Class:

> apply(Titanic, 1, sum)
 1st 2nd 3rd Crew
 325 285 706 885

Similarly, to calculate the number of passengers in the different age groups,
you need to apply the sum() function over the third dimension:

> apply(Titanic, 3, sum)
Child Adult
 109 2092

You also can apply a function over two dimensions at the same time. To do
this, you need to combine the desired dimensions with the c() function. For

263 Chapter 13: Manipulating and Processing Data

example, to get a summary of how many people in each age group survived,
you do the following:

> apply(Titanic, c(3, 4), sum)
 Survived
Age No Yes
 Child 52 57
 Adult 1438 654

Using lapply() and sapply() to traverse
a list or data frame
In Chapter 9 we show you how to use the lapply() and sapply()
 functions. In this section, we briefly review these functions.

When your data is in a list or data frame, and you want to perform calcula-
tions on each component of that list, the appropriate apply function is
lapply(). For example, to get the class of each component of iris, try:

> lapply(iris, class)

As you know, when you use sapply(), R attempts to simplify the results to a
matrix or vector:

> sapply(iris, class)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 "numeric" "numeric" "numeric" "numeric" "factor"

Say you want to calculate the mean of each column of iris:

> sapply(iris, mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 5.843333 3.057333 3.758000 1.199333 NA
Warning message:
In mean.default(X[[5L]], . . .) :
 argument is not numeric or logical: returning NA

There is a problem with this line of code. It throws a warning message
because species is not a numeric column. So, you may want to write a small
function inside sapply() that tests whether the argument is numeric. If it is,
then calculate the mean score; otherwise, simply return NA.

264 Part IV: Making the Data Talk

In Chapter 8, you create your own functions. The FUN argument of the
apply() functions can be any function, including your own custom func-
tions. In fact, you can go one step further. It’s actually possible to define a
function inside the FUN argument call to any apply() function:

> sapply(iris, function(x) if(is.numeric(x)) mean(x) else NA)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 5.843333 3.057333 3.758000 1.199333 NA

What’s happening here? You defined a function that takes a single argument x.
If x is numeric, it returns mean(x); otherwise, it returns NA. Because
sapply() traverses your list, each column, in turn, is passed to your func-
tion and evaluated.

When you define a nameless function like this inside another function, it’s
called an anonymous function. Anonymous functions are useful when you
want to calculate something fairly simple, but you don’t necessarily want to
permanently store that function in the global environment.

Using tapply() to create
tabular summaries
So far, you’ve used three members of the apply family of functions: apply(),
lapply(), and sapply(). It’s time to meet the fourth member of the family.
You use tapply() to create tabular summaries of data. This function takes
three arguments:

 ✓ X: A vector

 ✓ INDEX: A factor or list of factors

 ✓ FUN: A function

With tapply(), you can easily create summaries of subgroups in data. For
example, calculate the mean sepal length in the dataset iris:

> tapply(iris$Sepal.Length, iris$Species, mean)
 setosa versicolor virginica
 5.006 5.936 6.588

With this short line of code, you do some powerful stuff. You tell R to take the
Sepal.Length column, split it according to Species, and then calculate
the mean for each group.

265 Chapter 13: Manipulating and Processing Data

This is an important idiom for writing code in R, and it usually goes by the
name Split, Apply, and Combine (SAC). In this case, you split a vector into
groups, apply a function to each group, and then combine the result into
a vector.

Of course, using the with() function, you can write your line of code in a
slightly more readable way:

> with(iris, tapply(Sepal.Length, Species, mean))
 setosa versicolor virginica
 5.006 5.936 6.588

Using tapply(), you also can create more complex tables to summarize
your data. You do this by using a list as your INDEX argument.

Using tapply() to create higher‐dimensional tables
For example, try to summarize the data frame mtcars, a built‐in data frame
with data about motor‐car engines and performance. As with any object, you
can use str() to inspect its structure:

> str(mtcars)

The variable am is a numeric vector that indicates whether the engine has
an automatic (0) or manual (1) gearbox. Because this isn’t very descriptive,
start by creating a new object, cars, that is a copy of mtcars, and change
the column am to be a factor:

> cars <- transform(mtcars,
+ am = factor(am, levels = 0:1, labels = c("Automatic", "Manual"))
+)

Now use tapply() to find the mean miles per gallon (mpg) for each type of
gearbox:

> with(cars, tapply(mpg, am, mean))
Automatic Manual
 17.14737 24.39231

Yes, you’re correct. This is still only a one‐dimensional table. Now, try to
make a two‐dimensional table with the type of gearbox (am) and number of
gears (gear):

> with(cars, tapply(mpg, list(gear, am), mean))
 Automatic Manual
3 16.10667 NA
4 21.05000 26.275
5 NA 21.380

266 Part IV: Making the Data Talk

You use tapply() to create tabular summaries of data. This is a little bit
similar to the table() function. However, table() can create only con-
tingency tables (that is, tables of counts), whereas with tapply(), you
can specify any function as the aggregation function. In other words, with
tapply(), you can calculate counts, means, or any other value.

If you want to summarize statistics on a single vector, tapply() is very
useful and quick to use.

Using aggregate()
Another R function that does something very similar is aggregate():

> with(cars, aggregate(mpg, list(gear = gear, am = am), mean))
 gear am x
1 3 Automatic 16.10667
2 4 Automatic 21.05000
3 4 Manual 26.27500
4 5 Manual 21.38000

Next, you take aggregate() to new heights using the formula interface.

Getting to Know the Formula Interface
Now it’s time to get familiar with another very important idea in R: the for-
mula interface. The formula interface allows you to concisely specify which
columns to use when fitting a model, as well as the behavior of the model.

It’s important to keep in mind that the formula notation refers to statisti-
cal formulae, as opposed to mathematical formulae. So, for example, the
formula operator + means to include a column, not to mathematically add
two columns together. Table 13-3 contains some formula operators, as well
as examples and their meanings. You need these operators when you start
building models.

We won’t go deeper into this subject in this book, but now you know what
to look for in the Help pages of different modeling functions. Be aware of the
fact that the interpretation of the signs can differ depending on the modeling
function you use.

Many R functions allow you to use the formula interface, often in addition to
other ways of working with that function. For example, the aggregate()
function also allows you to use formulae:

267 Chapter 13: Manipulating and Processing Data

> aggregate(mpg ~ gear + am, data = cars, mean)
 gear am mpg
1 3 Automatic 16.10667
2 4 Automatic 21.05000
3 4 Manual 26.27500
4 5 Manual 21.38000

Notice that the first argument is a formula and the second argument is the
source data frame. In this case, you tell aggregate() to model mpg as a
function of gear and am, calculating the mean. By using the formula interface
your function becomes very easy to read. Notice also the last column is cor-
rectly named mpg, not x, as it was with the default method, so your output is
nicely formatted and easier to work with.

When you look at the Help file for a function, it’ll always be clear whether you
can use a formula with that function. For example, take a look at the Help for
?aggregate. In the usage section of this page, you find the following text:

S3 method for class 'data.frame'
aggregate(x, by, FUN, . . ., simplify = TRUE)

S3 method for class 'formula'
aggregate(formula, data, FUN, . . .,
 subset, na.action = na.omit)

This page lists a method for class data.frame, as well as a method for class
formula. This indicates that you can use either formulation.

You can find more (technical) information about formula on its own Help
page, ?formula.

In the next section, we offer yet another example of using the formula inter-
face for reshaping data.

Table 13-3 Some Formula Operators and Their Meanings
Operator Example Meaning
~ y ~ x Model y as a function of x

+ y ~ a + b Include columns a as well as b

‐ y ~ a ‐ b Include a but exclude b

: y ~ a : b Estimate the interaction of a and b

* y ~ a * b Include columns as well as their interaction
(that is, y ~ a + b + a:b)

| y ~ a | b Estimate y as a function of a conditional on b

268 Part IV: Making the Data Talk

Whipping Your Data into Shape
Often, a data analysis task boils down to creating tables with summary infor-
mation, such as aggregated totals, counts, or averages. Say, for example, you
have information about four games of Granny, Geraldine, and Gertrude:

 Game Venue Granny Geraldine Gertrude
1 1st Bruges 12 5 11
2 2nd Ghent 4 4 5
3 3rd Ghent 5 2 6
4 4th Bruges 6 4 7

You now want to analyze the data and get a summary of the total scores for
each player in each venue:

 variable Bruges Ghent
1 Granny 18 9
2 Geraldine 9 6
3 Gertrude 18 11

If you use spreadsheets, you may be familiar with the term pivot table. The
functionality in pivot tables is essentially the ability to group and aggregate
data and to perform calculations.

In the world of R, people usually refer to this as the process of reshaping
data. In base R, there is a function, reshape(), that does this, but we dis-
cuss how to use the add‐on package reshape2, which you can find on CRAN.

Some more uses of formula
In Chapter 15, you get to do some statistical
modeling using R. In particular, you use aov()
to do an analysis of variance (ANOVA).

To do an ANOVA using the same data, try the
following:

> aov(mpg ~ gear + am, data = cars)

To find out how to interpret the results of
ANOVA, turn to Chapter 15.

You can use formulae to specify your model in
just about every R statistical modeling function,
such as ANOVA and linear regression.

Another use of the formula interface is in
graphics, especially in the package lattice
that you get to use in Chapter 17. To plot the
data in our example, try this:

> library("lattice")
> xyplot(mpg ~ gear + am, data = cars)

269 Chapter 13: Manipulating and Processing Data

Understanding data in long
and wide formats
When talking about reshaping data, it’s important to recognize data in long
and wide formats. These visual metaphors describe two ways of representing
the same information.

You can recognize data in wide format by the fact that columns generally
represent groups. So, our example of basketball games is in wide format,
because there is a column for the baskets made by each of the participants:

 Game Venue Granny Geraldine Gertrude
1 1st Bruges 12 5 11
2 2nd Ghent 4 4 5
3 3rd Ghent 5 2 6
4 4th Bruges 6 4 7

In contrast, have a look at the long format of exactly the same data:

 Game Venue variable value
1 1st Bruges Granny 12
2 2nd Ghent Granny 4
3 3rd Ghent Granny 5
4 4th Bruges Granny 6
5 1st Bruges Geraldine 5
6 2nd Ghent Geraldine 4
7 3rd Ghent Geraldine 2
8 4th Bruges Geraldine 4
9 1st Bruges Gertrude 11
10 2nd Ghent Gertrude 5
11 3rd Ghent Gertrude 6
12 4th Bruges Gertrude 7

Notice how, in the long format, the three columns for Granny, Geraldine, and
Gertrude have disappeared. In their place, you now have a column called
value that contains the actual score, and a column called variable that
links the score to either of the three ladies.

When converting data between long and wide formats, it’s important to be
able to distinguish identifier variables from measured variables:

 ✓ Identifier variables: Identifier, or ID, variables identify the observations.
Think of these as the key that identifies your observations. (In database
design, these are called primary or secondary keys.)

 ✓ Measured variables: This represents the measurements you observed.

270 Part IV: Making the Data Talk

In our example, the identifier variables are Game and Venue, while the
 measured variables are the goals (that is, the columns Granny, Geraldine,
and Gertrude).

Getting started with the reshape2 package
Base R has a function, reshape(), that works fine for data reshaping.
However, the original author of this function had in mind a specific use case
for reshaping: so‐called longitudinal data.

Longitudinal research takes repeated observations of a research subject over
a period of time. For this reason, longitudinal data typically has the variables
associated with time.

The problem of data reshaping is far more generic than simply dealing with
longitudinal data. For this reason, Hadley Wickham wrote and released the
package reshape2 that contains several functions to convert data between
long and wide format.

To download and install reshape2, use install.packages():

> install.packages("reshape2")

At the start of each new R session that uses reshape2, you need to load the
package into memory using library():

> library("reshape2")

Now you can start. First, create some data:

> goals <- data.frame(
+ Game = c("1st", "2nd", "3rd", "4th"),
+ Venue = c("Bruges", "Ghent", "Ghent", "Bruges"),
+ Granny = c(12, 4, 5, 6),
+ Geraldine = c(5, 4, 2, 4),
+ Gertrude = c(11, 5, 6, 7)
+)

This constructs a wide data frame with five columns and four rows with the
scores of Granny, Geraldine, and Gertrude.

Melting data to long format
You’ve already seen the words wide and long as visual metaphors for the
shape of your data. In other words, wide data tends to have more columns

271 Chapter 13: Manipulating and Processing Data

and fewer rows compared to long data. The reshape package extends this
metaphor by using the terminology of melt and cast:

 ✓ To convert wide data to long, you melt it with the melt() function.

 ✓ To convert long data to wide, you cast it with the dcast() function for
data frames or the acast() function for arrays.

Try converting your wide data frame goals to a long data frame using melt():

> mgoals <- melt(goals)
Using Game, Venue as id variables

The melt() function tries to guess your identifier variables (id.vars),
if you don’t provide them explicitly, and tells you which ones it used. By
default, melt() considers all categorical variables (factors) as identifier vari-
ables. This is often a good guess, and exactly what you want in this example.

Specifying your identifier variables explicitly is a good idea. You do this by
adding an argument id.vars, specifying the column names of the identifiers:

> mgoals <- melt(goals, id.vars = c("Game", "Venue"))

The new object, mgoals, now contains your data in long format:

> mgoals
 Game Venue variable value
1 1st Bruges Granny 12
2 2nd Ghent Granny 4
3 3rd Ghent Granny 5
. . .
10 2nd Ghent Gertrude 5
11 3rd Ghent Gertrude 6
12 4th Bruges Gertrude 7

Casting data to wide format
Now that you have a molten dataset (a dataset in long format), you’re ready
to reshape it. To illustrate that the process of reshaping keeps all your data
intact, try to reconstruct the original:

> dcast(mgoals, Venue + Game ~ variable, sum)
 Game Venue Granny Geraldine Gertrude
1 1st Bruges 12 5 11
2 2nd Ghent 4 4 5
3 3rd Ghent 5 2 6
4 4th Bruges 6 4 7

272 Part IV: Making the Data Talk

Can you see how dcast() takes a formula as its second argument? More
about that in a minute, but first inspect your results. It should match the
original data frame.

Next, you may want to do something more interesting — for example, create
a summary by venue and player.

You use the dcast() function to cast a molten data frame. To be clear, you
use this to convert from a long format to a wide format, but you also can
use this to aggregate into intermediate formats, similar to the way a pivot
table works.

The dcast() function takes three arguments:

 ✓ data: A molten data frame.

 ✓ formula: A formula that specifies how you want to cast the data. This
formula takes the form x_variable ~ y_variable. But we simplified
it to make a point. You can use multiple x‐variables, multiple y‐variables,
and even z‐variables. We say more about that in a few paragraphs.

 ✓ fun.aggregate: A function to use if the casting formula results in data
aggregation (for example, length(), sum(), or mean()).

So, to get that summary of venue versus player, you need to use dcast()
with a casting formula variable ~ Venue. Note that the casting formula
refers to columns in your molten data frame:

> dcast(mgoals, variable ~ Venue , sum)
 variable Bruges Ghent
1 Granny 18 9
2 Geraldine 9 6
3 Gertrude 18 11

If you want to get a table with the venue running down the rows and the player
across the columns, your casting formula should be Venue ~ variable:

> dcast(mgoals, Venue ~ variable , sum)
 Venue Granny Geraldine Gertrude
1 Bruges 18 9 18
2 Ghent 9 6 11

It’s actually possible to have more complicated casting formulae. According
to the Help page for dcast(), the casting formula takes this format:

x_variable + x_2 ~ y_variable + y_2 ~ z_variable ~ . . .

273 Chapter 13: Manipulating and Processing Data

Notice that you can combine several variables in each dimension with the
plus sign (+), and you separate each dimension with a tilde (~). Also, if you
have two or more tildes in the formula (that is, you include a z‐variable), your
result will be a multidimensional array.

So, to get a summary of goals by Venue, player (variable), and Game, you
do the following:

> dcast(mgoals, Venue + variable ~ Game , sum)
 Venue variable 1st 2nd 3rd 4th
1 Bruges Granny 12 0 0 6
2 Bruges Geraldine 5 0 0 4
3 Bruges Gertrude 11 0 0 7
4 Ghent Granny 0 4 5 0
5 Ghent Geraldine 0 4 2 0
6 Ghent Gertrude 0 5 6 0

One of the reasons you should understand data in long format is that both
the graphics packages lattice (Chapter 17) and ggplot2 (Chapter 18)
make extensive use of long format data. The benefit is that you can easily
create plots of your data that compare different subgroups. For example, the
following code generates Figure 13-4:

> library("ggplot2")
> ggplot(mgoals, aes(x = variable, y = value, fill = Game)) +
 + geom_bar(stat = "identity")

Figure 13-4:
Data in long

(molten)
format

makes it
easy to

work with
ggplot2

graphics.

274 Part IV: Making the Data Talk

Summarizing Data
In This Chapter

 ▶ Using statistical measures to describe your variables

 ▶ Using convenience functions to summarize variables and data frames

 ▶ Comparing two groups

I
t’s time to get down to the core business of R: statistics! Because R is
designed to do just that, you can apply most common statistical tech-

niques with a single command. In general, these commands are very well
 documented both in the Help files and on the web. If you need more advanced
methods or to implement cutting‐edge research, very often there’s a package
for that, and many of these packages come with a book filled with examples.

It may seem rather odd that it takes us 14 chapters to come to the core busi-
ness of R. Well, it isn’t. The difficult part is very often getting the data in the
right format. After you’ve done that, R allows you to carry out the planned
analyses rather easily. To see just how easy it is, read on.

R allows you to do just about anything you want, even if the analysis you
carry out doesn’t make sense at all. R gives you the correct calculation, but
that’s not necessarily the right answer to your question. In fact, R is like a
professional workbench available for everybody. If you don’t know what
you’re doing, chances are, things will get bloody at some point. So, make
sure you know the background of the tests you apply on your data, or look
for guidance by a professional. All techniques you use in this chapter are
explained in the book Statistics For Dummies, 2nd Edition, by Deborah J.
Rumsey, PhD (Wiley).

Starting with the Right Data
Before you attempt to describe your data, you have to make sure your data is
in the right format. This means

Chapter 14

276 Part IV: Making the Data Talk

 ✓ Making sure all your data is contained in a data frame (or in a vector if
it’s a single variable)

 ✓ Ensuring that all the variables are of the correct type

 ✓ Checking that the values are all processed correctly

The previous chapters give you a whole set of tools for doing exactly these
things. We can’t stress enough how important this is. Many of the mistakes in
data analysis originate from wrongly formatted data.

Using factors or numeric data
Some data can have only a limited number of different values. For example,
people can be either male or female, and you can describe most hair types
with only a few colors. Sometimes more values are theoretically possible
but not realistic. For example, cars can have more than 16 cylinders in their
engines, but you won’t find many of them. In one way or another, all this data
can be seen as categorical. By this definition, categorical data also includes
ordinal data (see Chapter 5).

On the other hand, you have data that can have an unlimited amount of possible
values. This doesn’t necessarily mean that the values can be any value you like.
For example, the mileage of a car is expressed in miles per gallon, often rounded
to the whole mile. Yet, the real value will be slightly different for every car. The
only thing that defines how many possible values you allow is the precision with
which you express the data. Data that can be expressed with any chosen level
of precision is continuous. Both the interval‐scaled data and the ratio‐scaled data
described in Chapter 5 are usually continuous data.

The distinction between categorical and continuous data isn’t always clear
though. Age is, in essence, a continuous variable, but it’s often expressed in
the number of years since birth. You still have a lot of possible values if you
do that, but what happens if you look at the age of the kids at your local high
school? Suddenly you have only five, maybe six, different values in your data.
At that point, you may get more out of your analysis if you treat that data as
categorical.

When describing your data, you need to make the distinction between data
that benefits from being converted to a factor and data that needs to stay
numeric. If you can view your data as categorical, converting it to a factor
helps with analyzing it.

277 Chapter 14: Summarizing Data

Counting unique values
Let’s take another look at the dataset mtcars. This built‐in dataset describes
fuel consumption and ten different design points from 32 cars from the 1970s.
It contains, in total, 11 variables, but all of them are numeric. Although you
can work with the data frame as is, some variables could be converted to a
factor because they have a limited amount of values.

If you don’t know how many different values a variable has, you can get this
information in two simple steps:

1. Get the unique values of the variable using unique().

2. Get the length of the resulting vector using length().

Using the sapply() function from Chapter 9, you can do this for the whole
data frame at once. You apply an anonymous function combining both
 mentioned steps on the whole data frame, like this:

> sapply(mtcars, function(x) length(unique(x)))
 mpg cyl disp hp drat wt qsec vs am gear carb
 25 3 27 22 22 29 30 2 2 3 6

So, it looks like the variables cyl, vs, am, gear, and carb can benefit from a
conversion to factor. Remember: You have 32 different observations in that
dataset, so all the variables have duplicates for at least some of their values.

When to treat a variable like a factor depends a bit on the situation, but, as a
general rule, avoid more than ten different levels in a factor and try to have at
least five values per level.

Preparing the data
In many real‐life cases, you get heaps of data in a big file, and often in a format
you can’t use at all. That must be the golden rule of data gathering: Make sure
your statistician sweats his pants off just by looking at the data. But no worries!
With R at your fingertips, you can quickly shape your data exactly as you want
it. Selecting only the variables you need and transforming them to the right
format becomes pretty easy with the tricks you see in the previous chapters.

Let’s prepare the data frame mtcars using some simple tricks. First, create a
data frame cars using the transform() function:

> cars <- transform(mtcars[c(1, 2, 9, 10)],
+ gear = ordered(gear),
+ am = factor(am, labels = c("auto", "manual")))

278 Part IV: Making the Data Talk

With this code, you do the following:

 ✓ Select four variables from the data frame mtcars and save them in a
data frame called cars. Note that you use the index system for lists to
select the variables (see Chapter 7).

 ✓ Make the variable gear in this data frame an ordered factor.

 ✓ Give the variable am the value "auto" if its original value is 0, and
"manual" if its original value is 1.

 ✓ Transform the new variable am to a factor.

After running this code, you should have a dataset cars in your workspace
with the following structure:

> str(cars, vec.len = 2)
'data.frame': 32 obs. of 4 variables:
 $ mpg : num 21 21 22.8 21.4 18.7 . . .
 $ cyl : num 6 6 4 6 8 . . .
 $ am : Factor w/ 2 levels "auto","manual": 1 1 1 2 2 . . .
 $ gear: Ord.factor w/ 3 levels "3"<"4"<"5": 2 2 2 1 1 . . .

With this dataset in your workspace, you’re ready to tackle the rest of this
chapter.

In order to avoid too much clutter on the screen, we set the argument
vec.len=2 in the str() function when creating the output. This argument
defines the default number of values that are displayed for each variable. If
you use str(cars), your output may look a bit different from the one shown
here. See the Help page ?str for more information. Or just forget about it —
you’ll never use it unless you start writing a book about R.

Describing Continuous Variables
You have the dataset and you’ve formatted it to fit your needs, so now you’re
ready for the real work. Analyzing your data always starts with describing it.
This way you can detect errors in the data, and you can decide which models
are appropriate to get the information you need from the data you have. Which
descriptive statistics you use depends on the nature of your data, of course.
Let’s first take a look at some things you want to do with continuous data.

Talking about the center of your data
Sometimes you’re more interested in the general picture of your data than
you are in the individual values. You may be interested not in the mileage of

279 Chapter 14: Summarizing Data

every car, but in the average mileage of all cars from that dataset. For this,
you calculate the mean using the mean() function, like this:

> mean(cars$mpg)
[1] 20.09062

You also could calculate the average number of cylinders those cars have,
but this doesn’t really make sense. The average would be 6.1875 cylinders,
and we have yet to see a car driving with an incomplete cylinder. In this case,
the median — the most central value in your data — makes more sense. You
get the median from using the function median(), like this:

> median(cars$cyl)
[1] 6

There are numerous other reasons for calculating the median instead of the
mean, or even both together. Both statistics describe a different property
of your data, and even the combination can tell you something. If you don’t
know how to interpret these statistics, Statistics For Dummies, 2nd Edition, by
Deborah J. Rumsey, PhD (Wiley) is a great resource.

Describing the variation
A single number doesn’t tell you that much about your data. Often it’s at least
as important to have an idea about the spread of your data. You can look at
this spread using a number of different approaches.

First, you can calculate either the variance or the standard deviation to
 summarize the spread in a single number. For that, you have the convenient
functions var() for the variance and sd() for the standard deviation. For
example, you calculate the standard deviation of the variable mpg in the data
frame cars like this:

> sd(cars$mpg)
[1] 6.026948

Checking the quantiles
In addition to the mean and variation, you also can take a look at the quan-
tiles. A quantile, or percentile, tells you how much of your data lies below
a certain value. The 50 percent quantile, for example, is the same as the
median. Again, R has some convenient functions to help you with looking at
the quantiles.

280 Part IV: Making the Data Talk

Calculating the range
The most‐used quantiles are actually the 0 percent and 100 percent quantiles.
You could just as easily call them the minimum and maximum, because that’s
what they are. We introduce the min() and max() functions in Chapter 4.
You can get both together using the range() function. This function
conveni ently gives you the range of the data. So, to know the range of mile-
ages, you simply do:

> range(cars$mpg)
[1] 10.4 33.9

Calculating the quartiles
The range still gives you only limited information. Often statisticians report
the first and the third quartile together with the range and the median. These
quartiles are, respectively, the 25 percent and 75 percent quantiles, which
are the numbers for which one‐fourth and three‐fourths of the data is smaller.
You get these numbers using the quantile() function, like this:

> quantile(cars$mpg)
 0% 25% 50% 75% 100%
10.400 15.425 19.200 22.800 33.900

The quartiles are not the same as the lower and upper hinge calculated in
the five‐number summary. The latter two are, respectively, the median of the
lower and upper half of your data, and they differ slightly from the first and
third quartiles. To get the five number statistics, you use the fivenum()
function.

Getting on speed with the quantile function
The quantile() function can give you any quantile you want. For that, you
use the probs argument. You give the probs (or probabilities) as a frac-
tional number. For the 20 percent quantile, for example, you use 0.20 as an
argument for the value. This argument also takes a vector as a value, so you
can, for example, get the 5 percent and 95 percent quantiles like this:

> quantile(cars$mpg, probs = c(0.05, 0.95))
 5% 95%
11.995 31.300

The default value for the probs argument is a vector representing the mini-
mum (0), the first quartile (0.25), the median (0.5), the third quartile (0.75),
and the maximum (1).

All functions from the previous sections have an argument na.rm that allows
you to remove all NA values before calculating the respective statistic. If you
don’t do this, any vector containing NA will have NA as a result. This works
identically to the na.rm argument of the sum() function (see Chapter 4).

281 Chapter 14: Summarizing Data

Describing Categories
A first step in every analysis consists of calculating the descriptive statistics
for your dataset. You have to get to know the data you received before you
can accurately decide what models you try out on them. You need to know
something about the range of the values in your data, how these values are
distributed in the range, and how values in different variables relate to each
other. Much of what you do and how you do it depends on the type of data.

Counting appearances
Whenever you have a limited number of different values, you can get a quick
summary of the data by calculating a frequency table. A frequency table is a
table that represents the number of occurrences of every unique value in the
variable. In R, you use the table() function for that.

Creating a table
You can tabulate, for example, the amount of cars with a manual and an
 automatic gearbox using the following command:

> amtable <- table(cars$am)
> amtable

 auto manual
 13 19

This outcome tells you that your data contains 13 cars with an automatic
gearbox and 19 with a manual gearbox.

Working with tables
As with most functions, you can save the output of table() in a new object
(in this case, called amtable). At first sight, the output of table() looks like
a named vector, but is it?

> class(amtable)
[1] "table"

The table() function generates an object of the class table. These objects
have the same structure as an array. Arrays can have an arbitrary number of
dimensions and dimension names (see Chapter 7). Tables can be treated as
arrays to select values or dimension names.

In the “Describing Multiple Variables” section, later in this chapter, you use
multidimensional tables and calculate margins and proportions based on
those tables.

282 Part IV: Making the Data Talk

Calculating proportions
After you have the table with the counts, you can easily calculate the pro-
portion of each count to the total simply by dividing the table by the total
counts. To calculate the proportion of manual and automatic gearboxes in
the dataset cars, you can use the following code:

> amtable / sum(amtable)

 auto manual
0.40625 0.59375

Yet, R also provides the prop.table() function to do the same. You can get
the exact same result as the previous line of code by doing the following:

> prop.table(amtable)

You may wonder why you would use an extra function for something that’s
as easy as dividing by the sum. The prop.table() function also can calcu-
late marginal proportions (see the “Describing Multiple Variables” section,
later in this chapter).

Finding the center
In statistics, the mode of a categorical variable is the value that occurs most
frequently. It isn’t exactly the center of your data, but if there’s no order in
your data — if you look at a nominal variable — you can’t really talk about a
center either.

Although there isn’t a specific function to calculate the mode, you can get it
by combining a few tricks:

1. To get the counts for each value, use table().

2. To find the location of the maximum number of counts, use max().

3. To find the mode of your variable, select the name corresponding
with the location in Step 2 from the table in Step 1.

So, to find the mode for the variable am in the dataset cars, you can use the
following code:

> id <- amtable == max(amtable)
> names(amtable)[id]
[1] "manual"

283 Chapter 14: Summarizing Data

The variable id contains a logical vector that has the value TRUE for every
value in the table amtable that is equal to the maximum in that table. You
select the name from the values in amtable using this logical vector as an
index.

You also can use the which.max() function to find the location of the maxi-
mum in a vector. This function has one important disadvantage, though: If
you have multiple maxima, which.max() returns the position of the first
maximum only. If you’re interested in all maxima, you should use the con-
struct in the previous example. Also, note that the R function mode() does
exist, but this mode refers to the storage type of the object, not the measure
of centrality.

Describing Distributions
Sometimes the information about the center of the data just isn’t enough.
You get some information about your data from the variance or the quan-
tiles, but still you may miss important features of your data. Instead of
calculating yet more numbers, R offers you some graphical tools to inspect
your data further. And in the meantime, you can impress people with some
fancy plots.

Plotting histograms
To get a clearer idea about how your data is distributed within the range, you
can plot a histogram. In Chapter 16, you fancy up your plots, but for now let’s
just check the most‐used tool for describing your data graphically.

Making the plot
To make a histogram for the mileage data, you simply use the hist()
 function, like this:

> hist(cars$mpg, col = "grey")

The result of this function is shown on the left of Figure 14-1. There you see
that the hist() function first cuts the range of the data in a number of even
intervals, and then counts the number of observations in each interval. The
bar height is proportional to those frequencies. On the y‐axis, you find the
counts.

284 Part IV: Making the Data Talk

With the argument col, you give the bars in the histogram a bit of color.
In Chapter 16, we give you some more tricks for customizing the histogram
(for example, by adding a title).

Playing with breaks
R chooses the number of intervals it considers most useful to represent the
data, but you can disagree with what R does and choose the breaks yourself.
For this, you use the breaks argument of the hist() function.

You can specify the breaks in a couple of ways:

 ✓ You can tell R the number of bars you want in the histogram by giving
a single number as the argument. Just keep in mind that R will still
decide whether that’s actually reasonable, and it tries to cut up the
range using nice rounded numbers.

 ✓ You can tell R exactly where to put the breaks by giving a vector with
the break points as a value to the breaks argument.

So, if you don’t agree with R and you want to have bars representing the
intervals 5 to 15, 15 to 25, and 25 to 35, you can do this with the following
code:

> hist(cars$mpg, breaks = c(5, 15, 25, 35))

The resulting plot is on the right side of Figure 14-1.

Figure 14-1:
Creating a
histogram

for your
data.

285 Chapter 14: Summarizing Data

You also can give the name of the algorithm R has to use to determine the
number of breaks as the value for the breaks argument. You can find more
information on those algorithms on the Help page ?hist. Try to experiment
with those algorithms a bit to check which one works the best.

Using frequencies or densities
By breaking up your data in intervals, you still lose some information, albeit a
lot less than when just looking at the descriptives you calculate in the previous
sections. Still, the most complete way of describing your data is by estimating
the probability density function (PDF) or density of your variable.

If this concept is unfamiliar to you, don’t worry. Just remember that the density
is proportional to the chance that any value in your data is approximately equal
to that value. In fact, for a histogram, the density is calculated from the counts,
so the only difference between a histogram with frequencies and one with den-
sities, is the scale of the y‐axis. For the rest, they look exactly the same.

Creating a density plot
You can estimate the density function of a variable using the density()
function. The output of this function itself doesn’t tell you that much, but you
can easily use it in a plot. For example, you can get the density of the mileage
variable mpg like this:

> mpgdens <- density(cars$mpg)

The object you get this way is a list containing a lot of information you don’t
really need to look at. But that list makes plotting the density as easy as
saying “plot the density”:

> plot(mpgdens)

You see the result of this command on the left side of Figure 14-2. The plot
looks a bit rough on the edges, but you can polish it with the tricks shown
in Chapter 16. The important thing is to see how your data comes out. The
density object is plotted as a line, with the actual values of your data on the
x‐axis and the density on the y‐axis.

The mpgdens list object contains — among other things — a component called
x and one called y. These represent the x‐ and y‐coordinates for plotting the
density. When R calculates the density, the density() function splits up your
data in a large number of small intervals and calculates the density for the mid-
point of each interval. Those midpoints are the values for x, and the calculated
densities are the values for y.

286 Part IV: Making the Data Talk

Plotting densities in a histogram
Remember that the hist() function returns the counts for each interval. Now
the chance that a value lies within a certain interval is directly proportional to
the counts. The more values you have within a certain interval, the greater the
chance that any value you picked is lying in that interval.

So, instead of plotting the counts in the histogram, you could just as well plot
the densities. R does all the calculations for you — the only thing you need to
do is set the freq argument of hist() to FALSE, like this:

> hist(cars$mpg, col = "grey", freq = FALSE)

Now the plot will look exactly the same as before; only the values on the
y‐axis are different. The scale on the y‐axis is set in such a way that you can
add the density plot over the histogram. For that, you use the lines()
 function with the density object as the argument. So, you can, for example,
fancy up the previous histogram a bit further by adding the estimated density
using the following code immediately after the previous command:

> lines(mpgdens)

You see the result of these two commands on the right side of Figure 14-2.
You get more information on how the lines() function works in Chapter 16.
For now, just remember that lines() uses the x and y elements from the
density object mpgdens to plot the line.

Figure 14-2:
Plotting
density

lines and
combining

them with a
histogram.

287 Chapter 14: Summarizing Data

Describing Multiple Variables
Until now, you looked at a single variable from your dataset each time. All
these statistics and plots tell part of the story, but when you have a dataset
with multiple variables, there’s a lot more of the story to be told. Taking a
quick look at the summary of the complete dataset can warn you already if
something went wrong with the data gathering and manipulation. But what
statisticians really go after is the story told by the relation between the vari-
ables. And that story begins with describing these relations.

Summarizing a complete dataset
If you need a quick overview of your dataset, you can, of course, always use
str() and look at the structure. But this tells you something only about the
classes of your variables and the number of observations. Also, the function
head() gives you, at best, an idea of the way the data is stored in the dataset.

Getting the output
To get a better idea of the distribution of your variables in the dataset, you
can use the summary() function like this:

> summary(cars)
 mpg cyl am gear
 Min. :10.40 Min. :4.000 auto :13 3:15
 1st Qu.:15.43 1st Qu.:4.000 manual:19 4:12
 Median :19.20 Median :6.000 5: 5
 Mean :20.09 Mean :6.188
 3rd Qu.:22.80 3rd Qu.:8.000
 Max. :33.90 Max. :8.000

The summary() function works best if you just use R interactively at the
command line for scanning your dataset quickly. You shouldn’t try to use it
within a custom function you wrote yourself. In that case, you’d better use
the functions from the first part of this chapter to get the desired statistics.

The output of summary() shows you for every variable a set of descriptive
statistics, depending on the type of the variable:

 ✓ Numerical variables: the range, quartiles, median, and mean.

 ✓ Factor variables: a table with frequencies.

 ✓ Numerical and factor variables: the number of missing values, if there
are any.

 ✓ Character variables: summary() doesn’t give you any information at all
apart from the length and the class (which is 'character').

288 Part IV: Making the Data Talk

Fixing a problem
Did you see the weird values for the variable cyl? A quick look at the summary
can tell you there’s something fishy going on, as, for example, the minimum and
the first quartile have exactly the same value. In fact, the variable cyl has only
three values and would be better off as a factor. So, let’s put that variable out of
its misery:

> cars$cyl <- as.factor(cars$cyl)

Now you can use it correctly in the remainder of this chapter.

Plotting quantiles for subgroups
Often you want to split up this analysis for different subgroups in order to
compare them. You need to do this if you want to know how the average lip
size compares between male and female kissing gouramis (great fish by the
way!) or, in the case of our example, you want to know whether the number
of cylinders in a car influences the mileage.

Of course you can use tapply() to calculate any of the descriptive statistics
for subgroups defined by a factor variable. In Chapter 13, you do exactly that.
But in R you find some more tools for summarizing descriptive statistics for
different subgroups.

One way to quickly compare groups is to construct a box‐and‐whisker plot
from the data. You could construct this plot by calculating the range, the
quartiles, and the median for each group, but luckily you can just tell R to do
all that for you. For example, if you want to know how the mileage compares
between cars with a different number of cylinders, you simply use the
boxplot() function to get the result shown in Figure 14-3:

> boxplot(mpg ~ cyl, data = cars)

You supply a simple formula as the first argument to boxplot(). This for-
mula reads as “plot boxes for the variable mpg for the groups defined by the
variable cyl.” You find more information on the formula interface for func-
tions in Chapter 13.

This plot uses quantiles to give you an idea of how the data is spread within
each subgroup. The line in the middle of each box represents the median,
and the edges of the box represent the first and the third quartiles. The
whiskers extend to either the minimum and the maximum of the data or 1.5
times the distance between the first and the third quartiles, whichever is
smaller.

289 Chapter 14: Summarizing Data

To be completely correct, the edges of the box represent the lower
and upper hinges from the five‐number summary, calculated using the
fivenum() function. They’re equal to the quartiles only if you have an odd
number of observations in your data. Otherwise, the results of fivenum()
and quantile() may differ a bit due to differences in the details of the
 calculation.

You can let the whiskers always extend to the minimum and the maximum by
setting the range argument of the boxplot() function to 0.

Figure 14-3:
Use the
box-

plot()
function

to get this
result.

Extracting the data from the plots
The hist() and boxplot() functions have another incredibly nice feature: You can get access
to all the information R uses to plot the histogram or box plot and use it in further calculations.
Getting that information is as easy as assigning the output of the function to an object. For example,
you get the information on the breaks, counts, and density in a histogram like this:

> mpghist <- hist(cars$mpg)

This still plots your histogram, and in addition you create an object that contains a list with — among
other things — the components breaks, counts, and density. For a box plot, you can do exactly the
same and get an object that contains a list with — among other things — the components stats
and n, representing the used statistics and the number of cases in each category. On the Help

(continued)

290 Part IV: Making the Data Talk

Tracking correlations
Statisticians love it when they can link one variable to another. Sunlight,
for example, is detrimental to trouser length: The more the sun shines, the
shorter the trouser length — in summer people wear shorts; in winter they
wear long trousers. We say that the number of hours of sunshine correlates
with trouser length. Obviously, there isn’t really a direct causal relation-
ship here — you won’t find shorts during the summer in polar regions. But,
in many cases, the search for causal relationships starts with looking at
 correlations.

To illustrate, take a look at the famous iris dataset in R. One of the found-
ing fathers of statistics, Sir Ronald Fisher, used this dataset to illustrate
how multiple measurements can be used to discriminate between different
species. This dataset contains five variables, as you can see by using the
names() function:

> names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length"
[4] "Petal.Width" "Species"

It contains measurements of flower characteristics for three species of iris
and from 50 flowers for each species. Two variables describe the sepals
(Sepal.Length and Sepal.Width), two other variables describe the petals
(Petal.Length and Petal.Width), and the last variable (Species) is a
factor indicating from which species each flower comes.

(continued)

pages for hist() and boxplot(), you find more information on the list components in the
“Value” sections. To avoid the plot being created, you can set the argument plot to FALSE in
either function.

All that information you could, of course, also get using other functions in R. It can help, though,
to quickly add some extra information to a plot. For example, you can add the number of cases for
each box to a box plot like this:

> mpgbox <- boxplot(mpg ~ cyl, data = cars)
> n <- nlevels(as.factor(cars$cyl))
> text(1:n, mpgbox$stats[1,], paste("n =", mpgbox$n), pos = 1)

With this code, you add a text value under the lower whisker. The x‐coordinates 1 through n
coincide with the middle of each box. You get the y‐coordinates from the stats element in the
mpgbox object, which tells you where the lower whisker is. The argument pos=1 in the text()
function places the text under the coordinates. You can try playing around with it yourself. While
you’re at it, check Chapter 16 for some more tips on manipulating plots.

291 Chapter 14: Summarizing Data

Looking at relations
Although looks can be deceiving, you want to eyeball your data before dig-
ging deeper into it. In Chapter 16, you create scatterplots for two variables.
To plot a grid of scatterplots for all combinations of two variables in your
dataset, you can simply use the plot() function on your data frame, like
this:

> plot(iris[-5])

Because scatterplots are useful only for continuous variables, you can drop
all variables that are not continuous. Too many variables in the plot matrix
make the plots difficult to see. In the previous code, you drop the variable
Species, because that’s a factor.

You can see the result of this simple line of code in Figure 14-4. The variable
names appear in the squares on the diagonal, indicating which variables are
plotted along the x‐axis and the y‐axis. For example, the second plot on the
third row has Sepal.Width on the x‐axis and Petal.Length on the y‐axis.

When the plot() function notices that you pass a data frame as an argument,
it calls the pairs() function to create the plot matrix. This function offers
you a lot more flexibility. For example, on the Help page ?pairs, you find
some code that adds a histogram on the diagonal plots. Check out the exam-
ples on the Help page for some more tricks.

Figure 14-4:
Plotting the

relations for
all variables
in a dataset.

292 Part IV: Making the Data Talk

Getting the numbers
The amount in which two variables vary together can be described by the
correlation coefficient. You get the correlations between a set of variables in
R very easily by using the cor() function. You simply add the two variables
you want to examine as the arguments. For example, if you want to check
how much the petal width correlates with the petal length, try:

> with(iris, cor(Petal.Width, Petal.Length))
[1] 0.9628654

This tells you that the relation between the petal width and the petal length
is almost a perfect line, as you also can see in the fourth plot of the third row
in Figure 14-4.

Calculating correlations for multiple variables
You also can calculate the correlation among multiple variables at once,
much in the same way as you can plot the relations among multiple variables.
So, for example, you can calculate the correlations that correspond with the
plot in Figure 14-4 with the following line:

> iris.cor <- cor(iris[-5])

As always, you can save the outcome of this function in an object. This lets
you examine the structure of the function output so you can figure out how
you can use it in the rest of your code. Here’s a look at the structure of the
object iris.cor:

> str(iris.cor)
 num [1:4, 1:4] 1 ‐0.118 0.872 0.818 ‐0.118 . . .
 - attr(*, "dimnames")=List of 2
 ..$: chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
 ..$: chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

This output tells you that iris.cor is a matrix with the names of the vari-
ables as both row names and column names. To find the correlation of two
variables in that matrix, you can use the names as indices — for example:

> iris.cor["Petal.Width", "Petal.Length"]
[1] 0.9628654

Dealing with missing values
The cor() function can deal with missing values in multiple ways. For that,
you set the argument use to one of the possible text values. The value for

293 Chapter 14: Summarizing Data

the use argument is especially important if you calculate the correlations
of the variables in a data frame. By setting this argument to different values,
you can

 ✓ Use all observations by setting use="everything". This means that if
any variable contains any NA values, the resulting correlation is also NA.
This is the default.

 ✓ Exclude all observations that have NA for at least one variable. For
this, you set use="complete.obs". Note that this may leave you
with only a few observations if missing values are spread through the
 complete dataset.

 ✓ Exclude observations with NA values for every pair of variables
you examine. For that, you set the argument use="pairwise". This
ensures that you can calculate the correlation for every pair of vari-
ables without losing information because of missing values in the other
 variables.

You might think that use = "pairwise" should be the default choice,
because it uses the most data. However, this could lead to mathematical
problems downstream. (For the mathematical whiz kids: The resulting corre-
lation matrix is not guaranteed to be positive definite).

In fact, you can calculate different measures of correlation. By default, R
calculates the standard Pearson correlation coefficient. For data that is
not normally distributed, you can use the cor() function to calculate the
Spearman rank correlation, or Kendall’s tau. For this, you have to set the
method argument to the appropriate value. You can find more information
about calculating the different correlation statistics on the Help page ?cor.
For more formal testing of correlations, look at the cor.test() function and
the related Help page.

Working with Tables
In the “Describing Categories” section, earlier in this chapter, you use tables
to summarize one categorical variable. But tables can easily describe more
variables at once. You may want to know how many men and women teach in
each department of your university (although that’s not the most traditional
criterion for choosing your major).

294 Part IV: Making the Data Talk

Creating a two‐way table
A two‐way table is a table that describes two categorical variables together. It
contains the number of cases for each combination of the categories in both
variables. The analysis of categorical data always starts with tables, and R
gives you a whole toolset to work with them. But first, you have to create the
tables.

Creating a table from two variables
For example, you want to analyze the number of gears (3, 4, or 5) with gear-
box type (automatic or manual). You can do this again using the table()
function with two arguments, like this:

> with(cars, table(am, gear))

 3 4 5
 auto 0 8 5
 manual 15 4 0

The levels of the variable you give as the first argument are the row names,
and the levels of the variable you give as the second argument are the
column names. In the table, you get the counts for every combination. For
example, you can count 15 cars with manual gearboxes and three gears.

Creating tables from a matrix
Researchers also use tables for more serious business, like finding out
whether a certain behavior (like smoking) has an impact on the risk of get-
ting an illness (for example, lung cancer). This way you have four possible
cases: risk behavior and sick, risk behavior and healthy, no risk behavior and
healthy, or no risk behavior and sick.

Often the result of such a study consists of the counts for every combination.
If you have the counts for every case, you can very easily create the table
yourself, like this:

> trial <- matrix(c(34, 11, 9, 32), ncol = 2)
> colnames(trial) <- c("sick", "healthy")
> rownames(trial) <- c("risk", "no_risk")
> trial.table <- as.table(trial)

With this code, you do the following:

1. Create a matrix with the number of cases for every combination of
sick/healthy and risk/no risk behavior.

2. Add column names to point out which category the counts are for.

3. Convert that matrix to a table.

295 Chapter 14: Summarizing Data

The result looks like this:

> trial.table
 sick healthy
risk 34 9
no_risk 11 32

A table like trial.table can be seen as a summary of two variables. One
variable indicates if the person is sick or healthy, and the other variable
 indicates whether the person shows risky behavior.

Extracting the numbers
Although tables and matrices are two different beasts, you can treat a two‐
way table like a matrix in most situations. This becomes handy if you want
to extract values from the table. If you want to know how many people were
sick and showed risk behavior, you simply do the following:

> trial.table["risk", "sick"]
[1] 34

All the tricks with indices that we cover in Chapters 4 and 7 work on tables,
too. A table of a single variable reacts the same as a vector, and a two‐way
table reacts the same as a matrix.

Converting tables to a data frame
The resulting object trial.table looks exactly the same as the matrix
trial, but it really isn’t. The difference becomes clear when you transform
these objects to a data frame. Take a look at the outcome of this code:

> trial.df <- as.data.frame(trial)
> str(trial.df)
'data.frame': 2 obs. of 2 variables:
 $ sick : num 34 11
 $ healthy: num 9 32

Here you get a data frame with two variables (sick and healthy) with each
two observations. On the other hand, if you convert the table to a data frame,
you get the following result:

> trial.table.df <- as.data.frame(trial.table)
> str(trial.table.df)
'data.frame': 4 obs. of 3 variables:
 $ Var1: Factor w/ 2 levels "risk","no_risk": 1 2 1 2
 $ Var2: Factor w/ 2 levels "sick","healthy": 1 1 2 2
 $ Freq: num 34 11 9 32

296 Part IV: Making the Data Talk

The as.data.frame() function converts a table to a data frame in a format
that you need for regression analysis on count data. If you need to summa-
rize the counts first, you use table() to create the desired table.

Now you get a data frame with three variables. The first two — Var1 and
Var2 — are factor variables for which the levels are the values of the rows
and the columns of the table, respectively. The third variable — Freq —
contains the frequencies for every combination of the levels in the first two
variables.

In fact, you also can create tables in more than two dimensions by adding
more variables as arguments, or by transforming a multidimensional array to
a table using as.table(). You can access the numbers the same way you
do for multidimensional arrays, and the as.data.frame() function creates
as many factor variables as there are dimensions.

Looking at margins and proportions
In categorical data analysis, many techniques use the marginal totals of the
table in the calculations. The marginal totals are the total counts of the cases
over the categories of interest. For example, the marginal totals for behavior
would be the sum over the rows of the table trial.table.

Adding margins to the table
R allows you to extend a table with the marginal totals of the rows and
 columns in one simple command. Use the addmargins() function, like this:

> addmargins(trial.table)
 sick healthy Sum
risk 34 9 43
no_risk 11 32 43
Sum 45 41 86

You also can add the margins for only one dimension by specifying the
margin argument for the addmargins() function. For example, to get only
the marginal counts for the behavior, you do the following:

> addmargins(trial.table, margin = 2)
 sick healthy Sum
risk 34 9 43
no_risk 11 32 43

The margin argument takes a number or a vector of numbers, but it can be
a bit confusing. The margins are numbered the same way as in the apply()
function. So 1 stands for rows and 2 for columns. To add the column margin,
you need to set margin to 2, but this column margin contains the row totals.

297 Chapter 14: Summarizing Data

Calculating proportions
You can convert a table with counts to a table with proportions very easily
using the prop.table() function. This also works for multi-way tables. If
you want to know the proportions of observations in every cell of the table to
the total number of cases, you simply do the following:

> prop.table(trial.table)
 sick healthy
risk 0.3953488 0.1046512
no_risk 0.1279070 0.3720930

This tells you that, for example, 10.4 percent of the people in the study were
healthy, even when they showed risk behavior.

Calculating proportions over columns and rows
But what if you want to know which fraction of people with risk behavior got
sick? Then you don’t have to calculate the proportions by dividing the counts
by the total number of cases for the whole dataset; instead, you divide the
counts by the marginal totals.

R lets you do this very easily using, again, the prop.table() function, but
this time specifying the margin argument.

Take a look at the table again. You want to calculate the proportions over
each row, because each row represents one category of behavior. So, to get
the correct proportions, specify margin=1 like this:

> prop.table(trial.table, margin = 1)
 sick healthy
risk 0.7906977 0.2093023
no_risk 0.2558140 0.7441860

In every row, the proportions sum to 1. Notice that 79 percent of the people
showing risk behavior got sick. Well, it isn’t big news that risky behavior can
cause diseases, and the proportions shown in the last result point in that
direction. Yet, scientists believe you only if you can back it up in a more
objective way. That’s the point at which you should consider doing some
 statistical testing. We show you how in Chapter 15.

298 Part IV: Making the Data Talk

Testing Differences
and Relations

In This Chapter
 ▶ Evaluating distributions

 ▶ Comparing two samples

 ▶ Comparing more than two samples

 ▶ Testing relations between categorical variables

 ▶ Working with models

I
t’s one thing to describe your data and plot a few graphs, but if you want
to draw conclusions from these graphs, people expect a bit more proof.

This is where the data analysts chime in and start pouring p‐values gener-
ously over reports and papers. These p‐values summarize the conclusions
of statistical tests, basically indicating how likely it is that the result you see
is purely due to chance. The story is a bit more complex — but for that you
need to take a look at a statistics handbook like Statistics For Dummies, 2nd
Edition, by Deborah J. Rumsey, PhD (Wiley).

R really shines when you need some serious statistical number crunching.
Statistics is the alpha and omega of this language, but why have we waited
until Chapter 15 to cover some of that? There are two very good reasons why
we wait to talk about statistics until now:

 ✓ You can start with the statistics only after you’ve shaped your data into
the right format, so you need to get that down first.

 ✓ R contains an overwhelming amount of advanced statistical techniques,
many of which come with their own books and manuals.

Luckily, many packages follow the same principles regarding the user inter-
face. So, instead of trying to cover all of what’s possible, in this chapter we
introduce you to some basic statistical tests and explain the interfaces in
more detail so you get familiar with that.

Chapter 15

300 Part IV: Making the Data Talk

Taking a Closer Look at Distributions
The normal distribution (also known as the Gaussian distribution or bell curve)
is a key concept in statistics. Much statistical inference is based on the
assumption that, at some point in your calculations, you have values that are
distributed normally. Testing whether the distribution of your data follows
this bell curve closely enough is often one of the first things you do before
you choose a test to test your hypothesis.

If you’re not familiar with the normal distribution, check out Statistics For
Dummies, 2nd Edition, by Deborah J. Rumsey, PhD (Wiley), which devotes a
whole chapter to this concept.

Observing beavers
The biologist and statistician Penny Reynolds observed some beavers for a
complete day and measured their body temperature every ten minutes. She
also wrote down whether the beavers were active at that moment. You find
the measurements in the datasets beaver1 and beaver2. (See ?beavers for
more information.) In the following examples, we use beaver2:

> str(beaver2)
'data.frame': 100 obs. of 4 variables:
 $ day : num 307 307 307 307 307 . . .
 $ time : num 930 940 950 1000 1010 . . .
 $ temp : num 36.6 36.7 . . .
 $ activ: num 0 0 0 0 0 . . .

If you want to know whether there’s a difference between the average body
temperature during periods of activity and periods without, you first have to
make sure all variables are of a suitable type. In this case, the variable activ
is a numeric variable but actually describes categories. So before doing any-
thing else, you transform that variable to a factor like this:

> transform.beaver <- transform(beaver2,
+ activ = factor(activ, labels = c("no", "yes"))
+)

Then you choose a test. To know which test is appropriate, you need to find
out if the temperature is distributed normally during both periods. So, let’s
take a closer look at the distributions.

301 Chapter 15: Testing Differences and Relations

Testing normality graphically
You could, of course, plot a histogram for every sample you want to look at.
You can use the histogram() function pretty easily to plot histograms for
different groups. (This function is part of the lattice package you use in
Chapter 17.)

Using the formula interface, you can plot two histograms in Figure 15-1 at
once using the following code:

> library("lattice")
> histogram(~temp | activ, data = transform.beaver)

You find more information about the formula interface in Chapter 13, but let’s
go over this formula once more. The histogram() function uses a one‐sided
formula, so you don’t specify anything at the left side of the tilde (~). On the
right side, you specify:

 ✓ Which variable the histogram should be created for: In this case, that’s
the variable temp, containing the body temperature.

 ✓ After the vertical line (|),the factor by which the data should be split:
In this case, that’s the variable activ that has a value yes if the beaver
was active and no if it was not.

Figure 15-1:
Plotting

histograms
for different

groups.

302 Part IV: Making the Data Talk

You can read the vertical line (|) in the formula interface as “conditional on.”
It’s also used in that context in the formula interfaces of more advanced sta-
tistical functions.

Using quantile plots
Still, histograms leave much to the interpretation of the viewer. A better
graphical way to tell whether your data is distributed normally is to look at a
so‐called quantile‐quantile (QQ) plot.

With this technique, you plot quantiles against each other. If you compare
two samples, for example, you simply compare the quantiles of both samples.
Or, to put it a bit differently, R does the following to construct a QQ plot:

 ✓ It sorts the data of both samples.

 ✓ It plots these sorted values against each other.

If both samples don’t contain the same number of values, R calculates extra
values by interpolation for the smallest sample to create two samples of the
same size.

Comparing two samples
Of course, you don’t have to do that all by yourself, you can simply use the
qqplot() function for that. So, to check whether the temperatures during
activity and during rest are distributed equally, you simply do the following:

> with(transform.beaver,
+ qqplot(temp[activ == "yes"],
+ temp[activ == "no"])
+)

This creates a plot where the ordered values are plotted against each other,
as shown in Figure 15-2. You can use all the tricks from Chapter 16 to change
axis titles, color and appearance of the points, and so on.

Between the square brackets, you can use a logical vector to select the cases
you want. Here you select all cases where the variable activ equals 1 for the
first sample, and all cases where that variable equals 0 for the second sample.

Using a QQ plot to check for normality
In most cases, you don’t want to compare two samples with each other, but
compare a sample with a theoretical sample that comes from a certain distri-
bution (for example, the normal distribution).

303 Chapter 15: Testing Differences and Relations

To make a QQ plot this way, R has the special qqnorm() function. As the
name implies, this function plots your sample against a normal distribu-
tion. You simply give the sample you want to plot as a first argument and
add any of the graphical parameters from Chapter 16 you like. R then cre-
ates a sample with values coming from the standard normal distribution, or
a normal distribution with a mean of zero and a standard deviation of one.
With this second sample, R creates the QQ plot as explained before.

R also has a qqline() function, which adds a line to your normal QQ plot.
This line makes it a lot easier to evaluate whether you see a clear deviation
from normality. The closer all points lie to the line, the closer the distribution
of your sample comes to the normal distribution. The qqline() function
also takes the sample as an argument.

Now you want to do this for the temperatures during both the active and the
inactive period of the beaver. You can use the qqnorm() function twice to
create both plots. For the inactive periods, you can use the following code:

> with(transform.beaver, {
+ qqnorm(temp[activ == "no"], main = "Inactive")
+ qqline(temp[activ == "no"])
+ })

You can do the same for the active period by changing the value "no" to
"yes". The resulting plots you see in Figure 15-3.

Figure 15-2:
Plotting a
QQ plot of
two differ-

ent samples.

304 Part IV: Making the Data Talk

Testing normality in a formal way
Graphical methods for checking normality leave much to your own interpre-
tation. If you show any of these plots to ten different statisticians, you can
end up with ten different opinions. That’s quite an achievement when you
expect a simple yes or no, but statisticians don’t do simple answers.

On the contrary, everything in statistics revolves around measuring uncer-
tainty. This uncertainty is often summarized in a probability — often called a
p‐value — and to calculate this probability, you need a formal test.

Probably the most widely used test for normality is the Shapiro‐Wilks test.
The function to perform this test, conveniently called shapiro.test(),
couldn’t be easier to use. You give the sample as the one and only argument,
as in the following example:

> shapiro.test(transform.beaver$temp)

 Shapiro-Wilks normality test

data: transform.beaver$temp
W = 0.9334, p-value = 7.764e-05

This function returns a list object, and the p‐value is contained in an compo-
nent called p.value. So, for example, you can extract the p‐value simply by
using the following code:

> result <- shapiro.test(transform.beaver$temp)
> result$p.value
[1] 7.763782e-05

Figure 15-3:
Comparing
samples to
the normal
distribution

with QQ
plots.

tuhocr
Highlight

305 Chapter 15: Testing Differences and Relations

This p‐value tells you what the chances are that the sample comes from
a normal distribution. The lower this value, the smaller the chance.
Statisticians typically use a value of 0.05 as a cutoff, so when the p‐value is
lower than 0.05, you can conclude that the sample deviates from normality.
In the preceding example, the p‐value is clearly lower than 0.05 — and that
shouldn’t come as a surprise; the distribution of the temperature shows two
separate peaks (refer to Figure 15-1). This is nothing like the bell curve of a
normal distribution.

When you choose a test, you may be more interested in the normality in each
sample. You can test both samples in one line using the tapply() function,
like this:

> with(transform.beaver, tapply(temp, activ, shapiro.test))

This code returns the results of a Shapiro‐Wilks test on the temperature for
every group specified by the variable activ.

Statisticians sometimes refer to the Kolmogorov‐Smirnov test for testing
normality. You carry out the test by using the ks.test() function in base R.
But this R function is not suited to test deviation from normality; you can use
it only to compare different distributions.

Comparing Two Samples
Comparing groups is one of the most basic problems in statistics. If you
want to know if extra vitamins in the diet of cows is increasing their milk
production, you give the normal diet to a control group and extra vita-
mins to a test group, and then you compare the milk production in two
groups. By comparing the mileage between cars with automatic gearboxes
and those with manual gearboxes, you can find out which one is the more
 economical option.

Testing differences
R gives you two standard tests for comparing two groups with numerical
data: the t‐test with the t.test() function, and the Wilcoxon test with the
wilcox.test() function. If you want to use the t.test() function, you
first have to check, among other things, whether both samples are normally
distributed using any of the methods from the previous section. For the
Wilcoxon test, this isn’t necessary.

306 Part IV: Making the Data Talk

Carrying out a t‐test
Let’s take another look at the data of that beaver. If you want to know if the
average temperature differs between the periods the beaver is active and
inactive, you can do so with a simple command:

> t.test(temp ~ activ, data = transform.beaver)

 Welch Two-Sample t-test

data: temp by activ
t = -18.5479, df = 80.852, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.8927106 -0.7197342
sample estimates:
mean in group 0 mean in group 1
 37.09684 37.90306

Normally, you can only carry out a t‐test on samples for which the variances
are approximately equal. R uses Welch’s variation on the t‐test, which cor-
rects for unequal variances.

You get a whole lot of information here:

 ✓ The second line gives you the test statistic (t for this test), the degrees
of freedom (df), and the corresponding p‐value. The very small p‐value
indicates that the means of both samples differ significantly.

 ✓ The alternative hypothesis tells you what you can conclude if the p‐value
is lower than the limit for significance. Generally, scientists consider the
alternative hypothesis to be true if the p‐value is lower than 0.05.

 ✓ The 95 percent confidence interval is the interval that contains the
 diffe rence between the means with 95 percent probability, so in this case
the difference between the means lies probably between 0.72 and 0.89.

 ✓ The last line gives you the means of both samples.

You read the formula temp ~ activ as “evaluate temp within groups
determined by activ.” Alternatively, you can use two separate vectors for
the samples you want to compare and pass both to the function, as in the
 following example:

> with(transform.beaver,
+ t.test(temp[activ == "yes"],
+ temp[activ == "no"]))

307 Chapter 15: Testing Differences and Relations

Dropping assumptions
In some cases, your data deviates significantly from normality and you can’t
use the t.test() function. For those cases, you have the wilcox.test()
function, which you use in exactly the same way, as shown in the following
example:

> wilcox.test(temp ~ activ, data = transform.beaver)

This gives you the following output:

 Wilcoxon rank-sum test with continuity correction

data: temp by activ
W = 15, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

Again, you get the value for the test statistic (W in this test) and a p‐value.
Under that information, you read the alternative hypothesis, and that differs
a bit from the alternative hypothesis of a t‐test. The Wilcoxon test looks at
whether the center of your data (the location) differs between both samples.

With this code, you perform the Wilcoxon rank‐sum test or Mann‐Whitney U
test. Both tests are completely equivalent, so R doesn’t contain a separate
function for the Mann‐Whitney U test.

Testing direction
In both previous examples, you test whether the samples differ without speci-
fying in which way. Statisticians call this a two‐sided test. Imagine you don’t
want to know whether body temperature differs between active and inactive
periods, but whether body temperature is lower during inactive periods.

To do this, you have to specify the argument alternative in either the
t.test() or wilcox.test() function. This argument can take three
values:

 ✓ By default, it has the value "two.sided", which means you want the
standard two‐sided test.

 ✓ If you want to test whether the mean (or location) of the first group is
lower, you give it the value "less".

 ✓ If you want to test whether that mean is bigger, you specify the value
"greater".

If you use the formula interface for these tests, the groups are ordered in
the same order as the levels of the factor you use. You have to take that into
account to know which group is seen as the first group. If you give the data
for both groups as separate vectors, the first vector is the first group.

308 Part IV: Making the Data Talk

Comparing paired data
When testing differences between two groups, you can have either paired
or unpaired data. Paired data comes from experiments where two different
treatments were given to the same subjects.

For example, researchers give ten people two variants of a sleep medicine.
Each time the researchers record the difference in hours of sleep with and
without the drugs. Because each person receives both variants, the data is
paired. You find the data of this experiment in the dataset sleep, which has
three variables:

 ✓ A numeric variable extra, which gives the extra hours of sleep after the
medication is taken

 ✓ A factor variable group that tells which variant the person took

 ✓ A factor variable id that indicates the ten different test persons

Now they want to know whether both variants have a different effect on the
length of the sleep. Both the t.test() and the wilcox.test() functions
have an argument paired that you can set to TRUE in order to carry out a
test on paired data. You can test differences between both variants using the
 following code:

> t.test(extra ~ group, data = sleep, paired = TRUE)

This gives you the following output:

 Paired t-test

data: extra by group
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.4598858 -0.7001142
sample estimates:
mean of the differences
 -1.58

Unlike the unpaired test, you don’t get the means of both groups; instead,
you get a single mean of the differences.

309 Chapter 15: Testing Differences and Relations

Testing Counts and Proportions
Many research questions revolve around counts instead of continuous
numerical measurements. Counts can be summarized in tables and subse-
quently analyzed. In the following section, you use some of the basic tests
for counts and proportions contained in R. Be aware, though, that this is just
the tip of the iceberg; R has a staggering amount of statistical procedures for
categorical data available.

If you need more background on the statistics, check the book Categorical
Data Analysis, 3rd Edition, by Alan Agresti (Wiley‐Interscience). You find
more information, including links to datasets and a pdf file with R code for
the examples in the book, on the book’s website at http://www.stat.ufl.
edu/~aa/cda/cda.html. The related book An Introduction to Categorical
Data Analysis, also by Alan Agresti (Wiley) offers a more entry‐level introduc-
tion to the topic.

Checking out proportions
Let’s look at an example to illustrate the basic tests for proportions.

The following example is based on real research, published by Robert
Rutledge, MD, and his colleagues in the Annals of Surgery (1993).

In a hospital in North Carolina, the doctors registered the patients who were
involved in a car accident and whether they used seat belts. The following
matrix represents the number of survivors and deceased patients in each
group:

> survivors <- matrix(c(1781, 1443, 135, 47), ncol = 2)
> colnames(survivors) <- c("survived", "died")
> rownames(survivors) <- c("no seat belt", "seat belt")
> survivors
 survived died
no seat belt 1781 135
seat belt 1443 47

To know whether seat belts made a difference in the chances of surviving,
you can carry out a proportion test. This test calculates how probable it is
that both proportions are the same. A low p‐value tells you that both pro-
portions probably differ from each other. To test this in R, you can use the
prop.test() function on the preceding matrix:

> result.prop <- prop.test(survivors)

http://www.stat.ufl.edu/~aa/cda/cda.html
http://www.stat.ufl.edu/~aa/cda/cda.html

310 Part IV: Making the Data Talk

You also can use the prop.test() function on tables or vectors. If you
use it with vectors, remember that the first vector has to be the number of
 successes, and the second number has to be the total number of cases.

The prop.test() function then gives you the following output:

> result.prop

 2-sample test for equality of proportions with continuity correction

data: survivors
X-squared = 24.3328, df = 1, p-value = 8.105e-07
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.05400606 -0.02382527
sample estimates:
 prop 1 prop 2
0.9295407 0.9684564

This test report is almost identical to the one from t.test() and contains
 ess entially the same information. At the bottom, R prints for you the proportion
of people who survived in each group. The p‐value tells you how likely it is that
both the proportions are equal. So, you see that the chance of dying in a hospi-
tal after a crash is lower if you’re wearing a seat belt at the time of the crash. R
also reports the confidence interval of the difference between the proportions.

Analyzing tables
You can use the prop.test() function for matrices and tables. For prop.
test(), these tables need to have two columns with the number of counts
for the two possible outcomes like the matrix survivors from the previous
section.

Testing contingency of tables
Alternatively, you can use the chisq.test() function to analyze tables with
a chi‐squared (χ2) contingency test. To do this on the matrix with the seat‐belt
data, you simply do the following:

> chisq.test(survivors)

This returns the following output:

 Pearson's Chi-squared test with Yates' continuity correction

data: survivors
X-squared = 24.3328, df = 1, p-value = 8.105e-07

311 Chapter 15: Testing Differences and Relations

The values for the statistic (X‐squared), the degrees of freedom, and the
p‐value are exactly the same as with the prop.test() function. That’s to be
expected, because — in this case, at least — both tests are equivalent.

Testing tables with more than two columns
Unlike the prop.test() function, the chisq.test() function can deal with
tables with more than two columns. To illustrate this, let’s take a look at the
table HairEyeColor. You can see its structure with the following code:

> str(HairEyeColor)
 table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 . . .
 - attr(*, "dimnames")=List of 3
 ..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
 ..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
 ..$ Sex : chr [1:2] "Male" "Female"

So, the table HairEyeColor has three dimensions: one for hair color, one
for eye color, and one for sex. The table represents the distribution of these
three features among 592 students.

The dimension names of a table are stored in an attribute called dimnames.
As you can see from the output of the str() function, this is actually a
list with the names for the rows/columns in each dimension. If this list is
a named list, the names are used to label the dimensions. You can use the
dimnames() function to extract or change the dimension names. (Go to the
Help page ?dimnames for more examples.)

To check whether hair color and eye color are related, you can collapse
the table over the first two dimensions using the margin.table()
 function to summarize hair and eye color for both genders. This function
sums the values in some dimensions to give you a summary table with
fewer dimensions. For that, you have to specify which margins you want
to keep.

So, to get the table of hair and eye color, you use the following:

> HairEyeMargin <- margin.table(HairEyeColor, margin = c(1, 2))
> HairEyeMargin
 Eye
Hair Brown Blue Hazel Green
 Black 68 20 15 5
 Brown 119 84 54 29
 Red 26 17 14 14
 Blond 7 94 10 16

312 Part IV: Making the Data Talk

Now you can simply check whether hair and eye color are related by testing
it on this table:

> chisq.test(HairEyeMargin)

 Pearson's Chi-squared test

data: HairEyeMargin
X-squared = 138.2898, df = 9, p-value < 2.2e-16

As expected, the output of this test tells you that some combinations of hair
and eye color are more common than others. Not a big surprise, but you can
use these techniques on other, more interesting research questions.

Extracting test results
Many tests in this chapter return a htest object. That type of object is
basically a list with all the information about the test that has been carried
out. All these htest objects contain at least a component statistic with
the value of the statistic and a component p.value with the value of the
p‐value. You can see this easily if you look at the structure of the returned
object. The object returned by shapiro.test() in the previous section
looks like this:

> str(result)
List of 4
 $ statistic: Named num 0.933
 ..- attr(*, "names")= chr "W"
 $ p.value : num 7.76e-05
 $ method : chr "Shapiro-Wilk normality test"
 $ data.name: chr "transform.beaver$temp"
 - attr(*, "class")= chr "htest"

Because this htest objects are lists, you can use any of the list subsetting
methods to extract the information. The following code, for example, extracts
the p‐value from the t‐test on the beaver data:

> t.test(temp ~ activ, data = transform.beaver)$p.value
[1] 7.269112e-31

The extraction of information from the htest object also works with the
results of many more.test functions, including the ones discussed in this
chapter. You can check what kind of object a test returns by looking at the
Help page for the test you want to use.

313 Chapter 15: Testing Differences and Relations

Working with Models
The tests we describe in the previous sections are all basic statistical tests.
However, these days, much of statistics involves working with complex
models. Base R already contains an extensive set of modeling tools, allow-
ing you to do anything from simple linear models and analysis of variance
to mixed models and time‐series analysis. The nice thing about modeling
 functions in R is that they often work in a similar way.

Because this isn’t a statistics book, we can’t cover the details about assump-
tion testing and model evaluation. If you aren’t familiar with these concepts
or the applied models, be sure to consult a decent source of information,
or you’ll run the risk of basing important decisions on inadequate models.
The book Applied Linear Statistical Models, 5th Edition, by Michael Kutner
et al (McGraw‐Hill/Irwin), is very extensive but gives a good and thorough
 theoretical introduction on assumption testing and model evaluation.

In this section, we cover some basic models, and show you how to extract
useful information from the resulting model objects.

Analyzing variances
An analysis of variance (ANOVA) is a very common technique used to com-
pare the means between different groups. To illustrate this, take a look at the
dataset InsectSpray:

> str(InsectSprays)
'data.frame': 72 obs. of 2 variables:
 $ count: num 10 7 20 14 14 12 10 23 17 20 . . .
 $ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 . . .

This dataset contains the results of an agricultural experiment. Six insecti-
cides were tested on 12 fields each, and the researchers counted the number
of pesky bugs that remained on each field. Now the farmers need to know if
the insecticides make any difference, and if so, which one they should use.
You answer this question by using the aov() function to perform an ANOVA.

Building the model
For this simple example, building the model is a piece of cake. You essentially
want to model the means for the variable count as a function of the variable
spray. You translate that to R like this:

> AOVModel <- aov(count ~ spray, data = InsectSprays)

314 Part IV: Making the Data Talk

You pass two arguments to the aov() function in this line of code:

 ✓ The formula count ~ spray, which reads as “count as a function of
spray”

 ✓ The argument data, where you specify the data frame in which the
 variables in the formula can be found

Every modeling function returns a model object with a lot of information
about the fitted model. Always put this model object in a variable. This
way you don’t have to refit the model when you need to perform extra
 calculations.

Looking at the object
As with every object, you can look at a model object just by typing its name
in the console. If you do that for the object Model that you created in the
 preceding section, you see the following output:

> AOVModel
Call:
 aov(formula = count ~ spray, data = InsectSprays)

Terms:
 spray Residuals
Sum of Squares 2668.833 1015.167
Deg. of Freedom 5 66

Residual standard error: 3.921902
Estimated effects may be unbalanced

This doesn’t tell you that much, apart from the command (or the call) you
used to build the model and some basic information on the fitting result.

In the output, you also read that the estimated effects may be unbalanced.
This isn’t a warning as described in Chapter 10 — it’s a message that’s
built in by the author of the aov() function. This one can pop up in two
 situations:

 ✓ You don’t have the same number of cases in every group.

 ✓ You didn’t set orthogonal contrasts.

In this case, it’s the second reason. You can continue with this model as we
do now (that’s also how those models are fitted in SPSS and SAS by default),
or you can read the nearby sidebar, “Setting the contrasts,” and use contrasts
as the statistical experts who wrote R think you should.

315 Chapter 15: Testing Differences and Relations

Evaluating the differences
To check the model, use the summary() function on the model object:

> summary(AOVModel)
 Df Sum Sq Mean Sq F value Pr(>F)
spray 5 2669 533.8 34.7 <2e-16 ***
Residuals 66 1015 15.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Setting the contrasts
Before you can use the aov() function, you’d better set the contrasts you’re going to use. Contrasts
are very often forgotten about when doing ANOVA, but they generally help with interpreting the
model and increase the accuracy of aov() and the helper functions.

What are those contrasts then? Factors are translated to a set of variables, with one fewer variable
than the number of levels of the factor. Say you have a factor with three levels. R creates two
variables, and each level of the factor is represented by a combination of values. These values
define how the coefficients of the model have to be interpreted. By default, R uses treatment
contrasts, as you can see when you check the relevant option like this:

> options("contrasts")
$contrasts
 unordered ordered
"contr.treatment" "contr.poly"

Here you see that R uses different contrasts for unordered and ordered factors. These contrasts
are actually contrast functions. They return a matrix with the contrast values for each level of the
factor. The default contrasts for a factor with three levels look like this:

> X <- factor(c("A", "B", "C"))
> contr.treatment(X)
 B C
A 0 0
B 1 0
C 0 1

The two variables B and C are called that way because the variable B has a value of 1 if the factor
level is B; otherwise, it has a value of 0. The same goes for C. Level A is represented by two zeros
and called the reference level. In a one‐factor model, the intercept is the mean of A.

You can change these contrasts using the same options() function, like this:

> options(contrasts = c("contr.sum", "contr.poly"))

The contrast function, contr.sum(), gives orthogonal contrasts where you compare every
level to the overall mean. You can get more information about these contrasts on the Help page
?contr.sum.

316 Part IV: Making the Data Talk

R prints the analysis of variance table that, in essence, tells you whether
the different terms can explain a significant portion of the variance in your
data. This table tells you only something about the term, but nothing about
the differences between the different sprays. For that, you need to dig a bit
deeper into the model.

Checking the model tables
With the model.tables() function, you look at the results for the individual
levels of the factors. The function allows you to create two different tables;
either with the estimated mean result for each group, or with the differences
with the overall mean.

To know how much effect every spray had, you use the following code to see
the differences with the overall mean:

> model.tables(AOVModel, type = "effects")
Tables of effects

 spray
spray
 A B C D E F
 5.000 5.833 -7.417 -4.583 -6.000 7.167

Here you see that, for example, spray E resulted, on average, in six bugs
fewer than the average over all fields. On the other hand, on fields where
spray A was used, the farmers found, on average, five bugs more compared
to the overall mean.

To get the modeled means per group and the overall mean, just use the
 argument value type="means" instead of type="effects".

Looking at the individual differences
A farmer probably wouldn’t consider buying spray A, but what about spray
D? Although sprays E and C seem to be better, they also might be a lot more
expensive. To test whether the pairwise differences between the sprays are
significant, you use Tukey’s Honest Significant Difference (HSD) test. The
TukeyHSD() function allows you to do that very easily, like this:

> Comparisons <- TukeyHSD(AOVModel)

The Comparisons object now contains a list where every component is
named after one factor in the model. In the example, you have only one
 component, called spray. This component contains, for every combination
of sprays, the following:

317 Chapter 15: Testing Differences and Relations

 ✓ The difference between the means.

 ✓ The lower and upper level of the 95 percent confidence interval around
that mean difference.

 ✓ The p‐value that tells you whether this difference is significantly
 different from zero. This p‐value is adjusted using the method of Tukey
(hence, the column name p adj).

You can extract all that information using the classical methods for extrac-
tion. For example, you get the information about the difference between D
and C like this:

> Comparisons$spray["D-C",]
 diff lwr upr p adj
 2.8333333 -1.8660752 7.5327418 0.4920707

That difference doesn’t look impressive, if you ask Tukey.

Plotting the differences
The TukeyHSD object has another nice feature: It can be plotted. Don’t bother
looking for a Help page of the plot function — all you find is one sentence:
“There is a plot method.” But it definitely works! Try it out like this:

> plot(Comparisons, las = 1)

You see the output of this simple line in Figure 15-4. Each line represents the
mean difference between both groups with the according confidence interval.
Whenever the confidence interval doesn’t include zero (the vertical line), the
difference between both groups is significant.

Figure 15-4:
Plotting the

results of
Tukey’s HSD

test.

318 Part IV: Making the Data Talk

You can use some of the graphical parameters to make the plot more read-
able. Specifically, the las parameter is useful here. By setting las=1, you
print all axis labels horizontally so you can actually read them. You can find
out more about graphical parameters in Chapter 16.

Modeling linear relations
An analysis of variance also can be written as a linear model, where you use
a factor as a predictor variable to model a response variable. In the previous
section, you predict the mean bug count by looking at the insecticide that
was applied.

Of course, predictor variables also can be continuous variables. For example,
the weight of a car obviously has an influence on the mileage. But it would be
nice to have an idea about the magnitude of that influence. Essentially, you
want to find the equation that represents the trend line in Figure 15-5. You
find the data you need for checking this in the dataset mtcars.

Building a linear model
The lm() function allows you to specify anything from the most simple linear
model to complex interaction models. In this section, you build only a simple
model to learn how to work with model objects.

To model the mileage in function of the weight of a car, you use the lm()
function, like this:

> Model <- lm(mpg ~ wt, data = mtcars)

Figure 15-5:
Plotting a
trend line

through the
data.

319 Chapter 15: Testing Differences and Relations

You supply two arguments:

 ✓ A formula that describes the model: Here, you model the variable mpg
as a function of the variable wt.

 ✓ A data frame that contains the variables in the formula: Here, you use
the data frame mtcars.

You can specify many complex models with the formula interface when you
know your way around. The “Details” section of the Help page ?formula
 provides all the information you need in great detail.

The resulting object is a list with a very complex structure, but in most
cases you don’t need to worry about that. The model object contains a lot
of information that’s needed for the calculations of diagnostics and new
 predictions.

Extracting information from the model
Instead of diving into the model object itself and finding the information
somewhere in the list object, you can use some functions that help you to
get the necessary information from the model. For example, you can extract
a named vector with the coefficients from the model using the coef()
 function, like this:

> coef.Model <- coef(Model)
> coef.Model
(Intercept) wt
 37.285126 -5.344472

These coefficients represent the intercept and the slope of the trend line
in Figure 15-5. You can use this to plot the trend line on a scatterplot of the
data. You do this in two steps:

1. You plot the scatterplot with the data.

You use the plot() function for that. You discover more about this
function in Chapter 16.

2. You use the abline() function to draw the trend line based on the
coefficients.

The following code gives you the plot in Figure 15-5:

> plot(mpg ~ wt, data = mtcars)
> abline(coef = coef.Model)

320 Part IV: Making the Data Talk

The abline() argument coef takes a vector with two values: the inter-
cept and the slope. That is exactly what the coef() function returns.
Alternatively, you can specify the intercept and slope separately with the
arguments a and b. You plot a vertical line by setting the argument v to the
intercept with the x‐axis instead. Horizontal lines are plotted by setting the
argument h to the intercept with the y‐axis.

In fact, the abline() function can also take a model object as argument. It
uses the function coef() internally to look for the coefficients of the model.
So in this case, you can further simplify the code and construct the regres-
sion line as follows:

> abline(Model)

In Table 15-1, you find an overview of functions to extract information from
the model object itself. These functions work with different model objects,
including those built by aov() and lm().

Many package authors also provide the same functions for the models built
by the functions in their package. So, you can always try to use these extrac-
tion functions in combination with other model functions as well.

Evaluating linear models
Naturally, R provides a whole set of different tests and measures not only to
look at the model assumptions but also to evaluate how well your model fits
your data. Again, the overview presented here is far from complete, but it
gives you an idea of what’s possible and a starting point to look deeper into
the issue.

Table 15-1 Extracting Information from Model Objects
Function What It Does
coef() Returns a vector with the coefficients from the model

confint() Returns a matrix with the upper and lower limit of the
 confidence interval for each coefficient of the model

fitted() Returns a vector with the fitted values for every observation

residuals() Returns a vector with the residuals for every observation

vcov() Returns the variance‐covariance matrix for the coefficient

321 Chapter 15: Testing Differences and Relations

Summarizing the model
The summary() function immediately returns you the F test for models
 constructed with aov(). For lm() models, this is slightly different. Take a
look at the output:

> Model.summary <- summary(Model)
> Model.summary

Call:
lm(formula = mpg ~ wt, data = mtcars)

Residuals:
 Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

That’s a whole lot of useful information. Here you see the following:

 ✓ The distribution of the residuals, which gives you a first idea about how
well the assumptions of a linear model hold

 ✓ The coefficients accompanied by a t‐test, telling you by how much every
coefficient differs significantly from zero

 ✓ The goodness‐of‐fit measures R2 and the adjusted R2

 ✓ The F‐test that gives you an idea about whether your model explains a
significant portion of the variance in your data

You can use the coef() function to extract a matrix with the estimates,
 standard errors, t‐value, and p‐value for the coefficients from the summary
object like this:

> coef(Model.summary)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.285126 1.877627 19.857575 8.241799e-19
wt -5.344472 0.559101 -9.559044 1.293959e-10

322 Part IV: Making the Data Talk

If these terms don’t tell you anything, look them up in a good source about
modeling. For an extensive introduction to applying and interpreting linear
models correctly, check out Applied Linear Statistical Models, 5th Edition, by
Michael Kutner et al (McGraw‐Hill/Irwin).

Testing the impact of model terms
To get an analysis of variance table — like the summary() function makes
for an ANOVA model — you simply use the anova() function and pass it the
lm() model object as an argument, like this:

> Model.anova <- anova(Model)
> Model.anova
Analysis of Variance Table

Response: mpg
 Df Sum Sq Mean Sq F value Pr(>F)
wt 1 847.73 847.73 91.375 1.294e-10 ***
Residuals 30 278.32 9.28

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the resulting object is a data frame that allows you to extract any value
from that table using the subsetting and indexing tools from Chapter 7. For
example, to get the p‐value, you can do the following:

> Model.anova["wt", "Pr(>F)"]
[1] 1.293959e-10

You can interpret this value as the probability that adding the variable wt to
the model doesn’t make a difference. The low p‐value here indicates that the
weight of a car (wt) explains a significant portion of the difference in mileage
(mpg) between cars. This shouldn’t come as a surprise; a heavier car does,
indeed, need more power to drag its own weight around.

The tests done by the anova() function use Type I (sequential) Sum of
Squares, which is different from both SAS and SPSS. This also means that the
order in which the terms are added to the model has an impact on the test
values and the significance.

You can use the anova() function to compare different models as well, and
many modeling packages provide that functionality. You find examples of
this on most of the related Help pages like ?anova.lm and ?anova.glm.

323 Chapter 15: Testing Differences and Relations

Predicting new values
Apart from describing relations, models also can be used to predict values
for new data. For that, many model systems in R use the same function, con-
veniently called predict(). Every modeling paradigm in R has a predict()
function with its own flavor, but in general the basic functionality is the same
for all of them.

Getting the values
For example, a car manufacturer has three designs for a new car and wants to
know what the predicted mileage is based on the weight of each new design.
In order to do this, you first create a data frame with the new values — for
example, like this:

> new.cars <- data.frame(wt = c(1.7, 2.4, 3.6))

Always make sure the variable names you use are the same as used in the
model. When you do that, you simply call the predict() function with the
suited arguments, like this:

> predict(Model, newdata = new.cars)
 1 2 3
28.19952 24.45839 18.04503

So, the lightest car has a predicted mileage of 28.2 miles per gallon and the
heaviest car has a predicted mileage of 18 miles per gallon, according to this
model. Of course, if you use an inadequate model, your predictions will also
be inadequate!

Having confidence in your predictions
In order to have an idea about the accuracy of the predictions, you can ask
for intervals around your prediction. To get a matrix with the prediction and
a 95 percent confidence interval around the mean prediction, you set the
argument interval to "confidence", like this:

> predict(Model, newdata = new.cars, interval = "confidence")
 fit lwr upr
1 28.19952 26.14755 30.25150
2 24.45839 23.01617 25.90062
3 18.04503 16.86172 19.22834

324 Part IV: Making the Data Talk

Now you know that — according to your model — a car with a weight of 2.4
tons has, on average, a mileage between 23 and 25.9 miles per gallon. In the
same way, you can ask for a 95 percent prediction interval by setting the
argument interval to "prediction":

> predict(Model, newdata = new.cars, interval = "prediction")
 fit lwr upr
1 28.19952 21.64930 34.74975
2 24.45839 18.07287 30.84392
3 18.04503 11.71296 24.37710

This information tells you that 95 percent of the cars with a weight of 2.4
tons have a mileage somewhere between 18.1 and 30.8 miles per gallon —
 assuming your model is correct, of course.

If you’d rather construct your own confidence interval, you can get the
 standard errors on your predictions as well by setting the argument se.
fit to TRUE. You don’t get a vector or a matrix; instead, you get a list with a
 component fit that contains the predictions and a component se.fit that
contains the standard errors.

Visit www.dummies.com/extras/r for great Dummies content online.

Working with Graphics
Part V

http://www.dummies.com/extras/r

In this part . . .
 ✓ Introducing the essentials of graphical systems.

 ✓ Creating clear and elegant plots.

 ✓ Visit www.dummies.com/extras/r for great Dummies
content online.

http://www.dummies.com/extras/r

Using Base Graphics
In This Chapter

 ▶ Creating a basic plot in R

 ▶ Changing the appearance of your plot

 ▶ Saving your plot as a picture

I
n statistics and other sciences, being able to plot your results in the form
of a graphic is often useful. An effective and accurate visualization can

make your data come to life and convey your message in a powerful way.

R has very powerful graphics capabilities that can help you visualize your
data. In this chapter, we give you a look at base graphics. It’s called base
graphics, because it’s built into the standard distribution of R.

Creating Different Types of Plots
The base graphics function to create a plot in R is simply called plot(). This
powerful function has many options and arguments to control all kinds of
things, such as the plot type, line colors, labels, and titles.

The plot() function is a generic function (see Chapter 8), and R dispatches
the call to the appropriate method. For example, if you make a scatterplot,
R dispatches the call to plot.default(). The plot.default() function
itself is reasonably simple and affects only the major look of the plot region
and the type of plotting. All the other arguments that you pass to plot(),
like colors, are used in internal functions that plot.default() simply
 happens to call.

Chapter 16

328 Part V: Working with Graphics

Getting an overview of plot
To get started with plot, you need a set of data to work with. One of the
built‐in datasets is islands, which contains data about the surface area
of the continents and some large islands on Earth.

First, create a subset of the ten largest islands in this dataset. You have many
ways of doing this, but this line of code sorts islands in decreasing order,
then uses head() to retrieve only the first ten elements:

> large.islands <- head(sort(islands, decreasing = TRUE), 10)

It is easy to create a plot with informative labels and titles. Try the following:

> plot(large.islands, main = "Land area of continents and islands",
+ ylab = "Land area in square miles")
> text(large.islands, labels = names(large.islands), adj = c(0.5, 1))

You can see the results in Figure 16-1. How does this work? The first line
 creates the basic plot with plot() and adds a main title and y‐axis label. The
second line adds text labels with the text() function. In the next section,
you get to know each of these functions in more detail.

Figure 16-1:
A plot with

labels, main
title, and

text.

329 Chapter 16: Using Base Graphics

Adding points and lines to a plot
To illustrate some different plot options and types, look at the built‐in dataset
faithful. This is a data frame with observations of the eruptions of the Old
Faithful geyser in Yellowstone National Park in the United States.

The built‐in R datasets are documented in the same way as functions. So, you
can get extra information on them by typing, for example, ?faithful.

You’ve already seen that plot() creates a basic graphic. Try it with
 faithful:

> plot(faithful)

Figure 16-2 shows the resulting plot. Because faithful is a data frame with
two columns, the plot is a scatterplot with the first column (eruptions) on the
x‐axis and the second column (waiting) on the y‐axis.

Eruptions indicate the time in minutes for each eruption of the geyser, while
waiting indicates the elapsed time between eruptions (also measured in
minutes). As you can see from the general upward slope of the points, there
tends to be a longer waiting period following longer eruptions.

Adding points
You add points to a plot with the points() function. You may have noticed
that on the plot of faithful two clusters seem to be in the data. One cluster
has shorter eruptions and waiting times — tending to last less than three
 minutes.

Figure 16-2:
Creating a

scatterplot.

330 Part V: Working with Graphics

Create a subset of faithful containing eruptions shorter than three
 minutes:

> short.eruptions <- with(faithful, faithful[eruptions < 3,])

Now use the points() function to add these points in red to your plot:

> plot(faithful)
> points(short.eruptions, col = "red", pch = 19)

You use the argument col to change the color of the points and the
 argument pch to change the plotting character. The value pch=19 indicates
a solid circle. To see all the arguments of points(), refer to ?points.

Your resulting graphic should look like Figure 16-3, with the shorter eruption
times indicated as solid red circles.

Changing the shape of points
You’ve already seen that you can use the argument pch to change the
 plotting character when using points. This is described in more detail in the
Help page for points, ?points. For example, the Help page lists a variety of
symbols, such as:

 ✓ pch=19: Solid circle

 ✓ pch=20: Bullet (smaller solid circle, two‐thirds the size of 19)

 ✓ pch=21: Filled circle

 ✓ pch=22: Filled square

 ✓ pch=23: Filled diamond

 ✓ pch=24: Filled triangle, point up

 ✓ pch=25: Filled triangle, point down

Figure 16-3:
Adding

points in a
different

color to a
plot.

331 Chapter 16: Using Base Graphics

Changing the color
You can change the foreground (and where it makes sense also the back-
ground color) of symbols as well as lines. You’ve already seen how to set
the foreground color using the argument col="red". Some plotting symbols
also use a background color, and you can use the argument bg to set the
background color (for example, bg="green"). In fact, R has a number of
 predefined colors that you can use in graphics.

To get a list of available names for colors, you use the colors() function
(or, if you prefer, colours()). The result is a vector of 657 elements with
valid color names. Here are the first ten elements of this list:

> head(colors(), 10)
 [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
 [5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"
 [9] "aquamarine1" "aquamarine2"

Adding lines to a plot
You add lines to a plot in a very similar way to adding points, except that you
use the lines() function to achieve this.

But first, use a bit of R magic to create a trend line through the data, called a
regression model (see Chapter 15). You use the lm() function to estimate a
linear regression model:

fit <- lm(waiting ~ eruptions, data = faithful)

The result is an object of class lm. You use the function fitted() to extract
the fitted values from a regression model (see Chapter 15). This is useful,
because you can then plot the fitted values on a plot. You do this next.

To add this regression line to the existing plot, you simply use the function
lines(). You also can specify the line color with the col argument:

> plot(faithful)
> lines(faithful$eruptions, fitted(fit), col = "blue")

The function lines() connects the data points in the exact order you give
them. If you want to avoid your plot looking like a plate of spaghetti, you
have to order your data points along the x axis. In the preceding example,
this is already the case.

Another useful function is abline(). This allows you to draw horizontal,
vertical, or sloped lines. To draw a vertical line at position eruptions==3 in
the color purple, try:

> abline(v = 3, col = "purple")

332 Part V: Working with Graphics

Your resulting graphic should look like Figure 16-4, with a vertical purple line
at eruptions==3 and a blue regression line.

To create a horizontal line, you also use abline(), but this time you specify
the h argument. For example, create a horizontal line at the mean waiting time:

> abline(h = mean(faithful$waiting))

You also can use the function abline() to create a sloped line through your
plot. In fact, by specifying the arguments a and b, you can draw a line that fits
the mathematical equation y = a + b*x. In other words, if you specify the
coefficients of your regression model as the arguments a and b, you get a line
through the data that is identical to your prediction line:

> abline(a = coef(fit)[1], b = coef(fit)[2])

Even better, you can simply pass the lm object to abline() to draw the line
directly. (This works because there is a method abline.lm().) This makes
your code very easy:

> abline(fit, col = "red")

Different plot types
The plot function has a type argument that controls the type of plot that
gets drawn. For example, to create a plot with lines between data points, use
type="l"; to plot only the points, use type="p"; and to draw both lines and
points, use type="b":

> plot(LakeHuron, type = "l", main = "type=\"l\"")
> plot(LakeHuron, type = "p", main = "type=\"p\"")
> plot(LakeHuron, type = "b", main = "type=\"b\"")

Figure 16-4:
Adding lines

to a plot.

333 Chapter 16: Using Base Graphics

Note the use of the escape sequence \" inside the string to indicate that you
want a double quote in the main text. You encounter escaped quotes in
Chapter 12.

Your resulting graphics should look similar to the three plots in Figure 16-5.
The plot with lines only is on the left, the plot with points is in the middle,
and the plot with both lines and points is on the right.

The Help page for plot() has a list of all the different types that you can use
with the type argument:

 ✓ "p": Points

 ✓ "l": Lines

 ✓ "b": Both

 ✓ "c": The lines part alone of "b"

 ✓ "o": Both “overplotted”

 ✓ "h": Histogram like (or high‐density) vertical lines

 ✓ "n": No plotting

It seems odd to use a plot function and then tell R not to plot it. But this can
be very useful when you need to create just the titles and axes, and plot the
data later using points(), lines(), or any of the other graphical functions.

Figure 16-5:
Specifying

the plot type
argument.

334 Part V: Working with Graphics

This flexibility may be useful if you want to build a plot step by step
(for example, for presentations or documents). Here’s an example:

> x <- seq(0.5, 1.5, 0.25)
> y <- rep(1, length(x))
> plot(x, y, type = "n")
> points(x, y)

In the next section, you take full control over the plot options and arguments,
such as adding titles and labels or changing the font type of your plot.

Controlling Plot Options and Arguments
To really convey the message of your graphic, you may want to add titles and
labels. You also can modify other elements of the graphic (for example, the
type of box around the plot area or the font size of axis labels).

Base graphics allows you to take precise control over many plot options.

Using R functions to create more types of plot
Aside from plot() , which gives you
tremendous flexibility in creating your own plots,
R also provides a variety of functions to make
specific types of plots. (You use some of these in
Chapters 14 and 15). Here are a few to explore:

✓ Scatterplot: If you pass two numeric vec-
tors as arguments to plot(), the result is
a scatterplot. Try:

> with(mtcars, plot(mpg, disp))

✓ Box‐and‐whisker plot: Use the boxplot()
function:

> with(mtcars, boxplot(disp, mpg))

✓ Histogram: A histogram plots the fre-
quency of observations. Use the hist()
function:

> with(mtcars, hist(mpg))

✓ Matrix of scatterplots: The pairs() func-
tion is useful in data exploration, because it
plots a matrix of scatterplots. Each variable
gets plotted against another, as you see in
Chapter 14:

> pairs(iris)

335 Chapter 16: Using Base Graphics

Adding titles and axis labels
You add the main title and axis labels with arguments to the plot()
 function:

 ✓ main: Main plot title

 ✓ xlab: x‐axis label

 ✓ ylab: y‐axis label

To add a title and axis labels to your plot of faithful, try the following:

> plot(faithful,
+ main = "Eruptions of Old Faithful",
+ xlab = "Eruption time (min)",
+ ylab = "Waiting time to next eruption (min)")

Your graphic should look like Figure 16-6.

Changing plot options
You can change the look and feel of plots with a large number of options.

You can find all the documentation for changing the look and feel of base
graphics in the Help page ?par. This function allows you to set (or query)
the graphical parameters or options.

Figure 16-6:
Adding main

title, x‐axis
label, and y‐

axis label.

336 Part V: Working with Graphics

Notice that par() takes an extensive list of arguments. In this section, we
describe a few of the most commonly used options.

The axes label style
To change the axes label style, use the graphics option las (label style). This
changes the orientation angle of the labels:

 ✓ 0: The default, parallel to the axis

 ✓ 1: Always horizontal

 ✓ 2: Perpendicular to the axis

 ✓ 3: Always vertical

For example, to change the axis style to have all the axes text horizontal, use
las=1 as an argument to plot:

> plot(faithful, las = 1)

You can see what this looks like in Figure 16-7.

The box type
To change the type of box round the plot area, use the option bty (box type):

 ✓ "o": The default value draws a complete rectangle around the plot.

 ✓ "n": Draws nothing around the plot.

 ✓ "l", "7", "c", "u", or "]": Draws a shape around the plot area that
resembles the uppercase letter of the option. So, the option bty="l"
draws a line to the left and bottom of the plot.

Working with axes and legends
R allows you to also take control of other
elements of a plot, such as axes, legends,
and text:

✓ Axes: If you need to take full control of plot
axes, use axis(). This function allows
you to specify tickmark positions, labels,
fonts, line types, and a variety of other
options.

✓ Legends: You can use the legend()
function to add legends, or keys, to plots.

✓ Text: In addition to legends, you can use the
text() function to add text elements at
any position on the plot.

The Help pages of the respective functions
give you more information, and the examples
contained in the Help pages show you how
much you can do with these functions.

337 Chapter 16: Using Base Graphics

To make a plot with no box around the plot area, use bty="n" as an
 argument to plot:

> plot(faithful, bty = "n")

Your graphic should look like Figure 16-8.

More than one option
To change more than one graphics option in a single plot, simply add an
additional argument for each plot option you want to set. For example, to
change the label style, the box type, the color, and the plot character, try the
following:

> plot(faithful, las = 1, bty = "l", col = "red", pch = 19)

The resulting plot is the plot in Figure 16-9.

Figure 16-7:
Changing
the label

style.

Figure 16-8:
Changing

the box
type.

338 Part V: Working with Graphics

Font size of text and axes
To change the font size of text elements, use cex (short for character expan-
sion ratio). The default value is 1. To reduce the text size, use a cex value of
less than 1; to increase the text size, use a cex value greater than 1.

> x <- seq(0.5, 1.5, 0.25)
> y <- rep(1, length(x))
> plot(x, y, main = "Effect of cex on text size")
> text(x, y + 0.1, labels = x, cex = x)

Your plot should look like Figure 16-10 (left).

Figure 16-9:
Changing
the label

style, box
type, color,

and plot
character.

Figure 16-10:
Changing

the font size
of labels
(left) and
title and

axis labels
(right).

339 Chapter 16: Using Base Graphics

To change the size of other plot parameters, use the following:

 ✓ cex.main: Size of main title

 ✓ cex.lab: Size of axis labels (the text describing the axis)

 ✓ cex.axis: Size of axis text (the values that indicate the axis tick labels)

> plot(x, y, main = "Effect of cex.main, cex.lab and cex.axis",
+ cex.main = 1.25, cex.lab = 1.5, cex.axis = 0.75)

Your results should look like Figure 16-10 (right). Carefully compare the font
size of the main title and the axes labels with the left side of Figure 16-10, and
note how the main title as well as axes label fonts are larger while the axes
annotations (tick labels) are smaller.

Putting multiple plots on a single page
To put multiple plots on the same graphics pages, you can use the graphics
parameter mfrow or mfcol. To use this parameter, you need to supply a
vector argument with two elements: the number of rows and the number of
columns.

For example, to create two side‐by‐side plots, use mfrow=c(1, 2):

> old.par <- par(mfrow = c(1, 2))
> plot(faithful, main = "Faithful eruptions")
> plot(large.islands, main = "Islands", ylab = "Area")
> par(old.par)

When your plot is complete, you need to reset your par options. Otherwise,
all your subsequent plots will appear side by side (until you close the
active graphics device, or window, and start plotting in a new graphics
device). We use a neat little trick to do this: When you make a call to
par(), R sets your new options, but the return value from par() contains
your old options. In the previous example, we save the old options to an
object called old.par, and then reset the options after plotting using
par(old.par).

Your result should look like Figure 16-11.

340 Part V: Working with Graphics

Use mfrow to fill the plot grid by rows, and mfcol to fill the plot grid by
 columns. The Help page ?par explains these options in detail, and also points
you alternative layout mechanisms (like layout() or split.screen()).

If you want to put the graphics device back into a single plot state without
using the par(old.par) trick, then use either

> par(mfcol = c(1, 1))

or

> par(mfrow = c(1, 1))

Because both these alternatives have the same effect, it does not matter
which you use. If you work with the standard RGui, you can reset the graph-
ics device by simply closing it. In both in R and RStudio, you also can use the
function dev.off() to close (and hence reset) the graphics device.

Saving Graphics to Image Files
Much of the time, you may simply use R graphics in an interactive way to
explore your data. But if you want to publish your results, you have to save
your plot to a file and then import this graphics file into another document.

Figure 16-11:
Creating

side‐by‐side
plots.

341 Chapter 16: Using Base Graphics

To save a plot to an image file, you have to do three things in sequence:

1. Open a graphics device.

The default graphics device in R is your computer screen. To save a plot
to an image file, you need to tell R to open a new type of device — in this
case, a graphics file of a specific type, such as PNG, PDF, or JPG.

The R function to create a PNG device is png(). Similarly, you create a
PDF device with pdf() and a JPG device with jpg().

If you are putting your graphics into a word processor, then PDF is often
a good choice, because it creates highly detailed vector drawings. If
you are putting your graphics onto a webpage or into a presentation,
then PNG can be a good choice, because this creates small, compressed
images.

2. Create the plot.

3. Close the graphics device.

You do this with the dev.off() function.

Put this in action by saving a plot of faithful to the home folder on your
computer. First set your working directory to your home folder (or to any
other folder you prefer). If you use Linux or Mac, you’ll be familiar with using
"~/" as the shortcut to your home folder, but this also works on Windows:

> setwd("~/")
> getwd()
[1] "C:/Users/Andrie"

Next, write the three lines of code to save a plot to file:

> png(filename = "faithful.png")
> plot(faithful)
> dev.off()

Now you can check your file system to see whether the file faithful.png
exists. (It should!) The result is a graphics file of type PNG that you can insert
into a presentation, document, or website.

342 Part V: Working with Graphics

Creating Faceted Graphics
with Lattice

In This Chapter
 ▶ Getting to know the benefits of faceted graphics

 ▶ Using the lattice package to create faceted plots

 ▶ Changing the colors and other parameters of lattice plots

 ▶ Understanding the differences between base graphics and lattice graphics

C
reating subsets of data and plotting each subset allows you to see
whether there are patterns between different subsets of the data. For

example, a sales manager may want to see a sales report for different regions
in the form of a graphic. A biologist may want to investigate different species
of butterflies and compare the differences on a plot.

A single graphic that provides this kind of simultaneous view of different
slices through the data is called a faceted graphic. Figure 17-1 shows a faceted
plot of fuel economy and performance of motor cars. The important thing to
notice is that the plot contains three panels, one each for cars with four, six,
and eight cylinders.

R has a special package that allows you to easily create this kind of graphic.
The package is called lattice, and in this chapter you get to draw lattice
charts. Later in this chapter, you create a lattice plot that should be identi-
cal to Figure 17-1.

In this chapter, we give the briefest of introductions to the extensive function-
ality in lattice. An entire book could be written about lattice graphics —
and, in fact, such a book already exists. The author of the lattice package,
Deepayan Sarkar, also wrote a book called Lattice: Multivariate Data Visuali
zation with R (Springer). You can find the figures and code from that book at
http://lmdvr.r‐forge.r‐project.org/figures/figures.html.

Chapter 17

http://lmdvr.r-forge.r-project.org/figures/figures.html

344 Part V: Working with Graphics

Creating a Lattice Plot
To explore lattice graphics, first take a look at the built‐in dataset mtcars.
This dataset contains 32 observations of motor cars and information about
the engine, such as number of cylinders, automatic versus manual gearbox,
and engine power.

All the built‐in datasets of R also have good help information that you can
access through the Help mechanism — for example, by typing ?mtcars into
the R console:

> str(mtcars)
'data.frame': 32 obs. of 11 variables:
 $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 . . .
 $ cyl : num 6 6 4 6 8 6 8 4 4 6 . . .
 $ disp: num 160 160 108 258 360 . . .
 $ hp : num 110 110 93 110 175 105 245 62 95 123 . . .

 $ carb: num 4 4 1 1 2 1 4 2 2 4 ..

Say you want to explore the relationship between fuel economy, engine
power, and number of cylinders. The mtcars dataset has three elements
with this information:

 ✓ mpg: Fuel economy measured in miles per gallon (mpg)

 ✓ hp: Engine power measured in horsepower (hp)

 ✓ cyl: Number of cylinders

In this section, you create different plots of mpg against hp and cyl.

Figure 17-1:
Faceted

graphics,
like this

one, provide
simulta

neous views
of different

slices of
data.

345 Chapter 17: Creating Faceted Graphics with Lattice

However, you first have to do some data cleanup. The variable cyl is
numeric, when really it is a categorical variable and should be a factor.
Further in this chapter, you also need the variable am, a factor variable with
value 0 for automatic and 1 for manual gearbox. Finally, you want to store the
names of the cars in a proper variable instead of the rownames.

To prepare the data for plotting, first create the new transformed object:

> transform.mtcars <- transform(mtcars,
+ cyl = factor(cyl),
+ am = factor(am, labels = c("Automatic", "Manual")),
+ cars = rownames(mtcars)
+)

Loading the lattice package
Although the lattice package forms part of the R distribution, you have
to tell R that you plan to use the code in this package. You do this with the
library() function. Remember that you need to do this at the start of each
clean R session in which you want to use lattice:

> library("lattice")

Making a lattice scatterplot
The lattice package has a number of different functions to create
different types of plot. For example, to create a scatterplot, use the
xyplot() function. Notice that this is different from base graphics, where
the plot() function creates a variety of different plot types (because of the
method dispatch mechanism). Besides xyplot(), we briefly discuss the
other lattice functions later in this chapter.

To make a lattice plot, you need to specify at least two arguments:

 ✓ formula: This is a formula typically of the form y ~ x|z. It means to
create a plot of y against x, conditional on z. In other words, create a
plot for every unique value of z. Each of the variables in the formula
has to be a column in the data frame that you specify in the data
 argument.

 ✓ data: A data frame that contains all the columns that you specify in the
formula argument.

346 Part V: Working with Graphics

This example should make it clear:

> xyplot(mpg ~ hp | cyl, data = transform.mtcars)

You can see that

 ✓ The variables mpg, hp, and cyl are columns in the data frame
transform.mtcars.

 ✓ Although cyl is a numeric vector in the original mtcars, the number of
cylinders in a car can be only whole numbers (or discrete variables, in
statistical jargon). By using factor(cyl) to create transform.mtcars,
you tell R that cyl is, in fact, a discrete variable. If you forget to do this,
R will still create a graphic, but the labels of the strips at the top of each
panel will be displayed differently.

Your code should produce a graphic that looks like Figure 17-2. Because each
of the cars in the data frame has four, six, or eight cylinders, the chart has
three panes. You can see that the cars with larger engines tend to have more
power (hp) and poorer fuel consumption (mpg).

Adding trend lines
In Chapter 15, we show you how to create trend lines, or regression lines
through data.

When you tell lattice to calculate a line of best fit, it does so for each panel
in the plot. This is straightforward using xyplot(), because it’s as simple as
adding a type argument. In particular, you want to specify that the type is

Figure 17-2:
A lattice

scatterplot
of the data

in trans-
form.

mtcars.

347 Chapter 17: Creating Faceted Graphics with Lattice

both points (type = "p") and regression (type = "r"). You can combine
different types with the c() function, like this:

> xyplot(mpg ~ hp | cyl, data = transform.mtcars,
+ type = c("p", "r"))

Your graphic should look like Figure 17-3.

Strictly speaking, type is not an argument to xyplot(), but an argument to
panel.xyplot(). You can control the panels of lattice graphics with a
panel function. The function xyplot() calls this panel function internally, using
the type argument you specified. The default panel function for xyplot()
is panel.xyplot(). Similarly, the panel function for barchart() — which
we cover later in this chapter — is panel. barchart(). The panel function
allows you to take fine control over many aspects of your chart. You can find
out more in the excellent Help for these functions — for example, by typing
?panel.xyplot into your R console.

Figure 17-3:
Lattice

xyplot
with regres

sion lines
added.

Base, grid, and lattice graphics
Perhaps confusingly, the standard distribution
of R actually contains three different graphics
packages:

 ✓ Base graphics is the graphics system that
was originally developed for R. The work
horse function of base graphics is plot()

(see Chapter 16). The code for base graph
ics is in the graphics package, which is
loaded by default when you start R.

 ✓ Grid graphics is an alternative graphics
system that was later added to R. The big
difference between grid and the original

(continued)

348 Part V: Working with Graphics

Changing Plot Options
R has a very good reputation for being able to create publication‐quality
graphics. If you want to use your lattice graphics in reports or documents,
you’ll probably want to change the plot options.

The lattice package makes use of the grid graphics engine, which is com-
pletely different from the base graphics in Chapter 16. Because of this, none
of the mechanisms for changing plot options covered in Chapter 16 are appli-
cable to lattice graphics.

Adding titles and labels
To add a main title and axis labels to a lattice plot, you can specify the fol-
lowing arguments:

 ✓ main: Main title

 ✓ xlab: x‐axis label

 ✓ ylab: y‐axis label

> xyplot(mpg ~ hp | cyl, data = transform.mtcars,
+ type = c("p", "r"),
+ main = "Fuel economy vs. Performance",
+ xlab = "Performance (horse power)",
+ ylab = "Fuel economy (mpg)",
+)

base graphics system is that grid allows
for the creation of multiple regions, called
viewports, on a single graphics page. Grid
is a framework of code and doesn’t, by
itself, create complete charts. The author
of grid, Paul Murrell, describes some of
the ideas behind grid graphics on his
website at www.stat.auckland.
ac.nz/~paul/grid/doc/grid.
pdf. Note: The grid package needs to
be loaded before you can use it.

 ✓ Lattice is a graphics system that specifi
cally implements the idea of Trellis graph
ics (or faceted graphics), which was
originally developed for the languages S
and S‐Plus at Bell Labs. Lattice graphics
in R make use of grid graphics. This means
that the functions for creating graphics
and changing options in base and
lattice are mostly incompatible with
one another. The lattice package
needs to be loaded before use.

(continued)

http://www.stat.auckland.ac.nz/~paul/grid/doc/grid.pdf
http://www.stat.auckland.ac.nz/~paul/grid/doc/grid.pdf
http://www.stat.auckland.ac.nz/~paul/grid/doc/grid.pdf

349 Chapter 17: Creating Faceted Graphics with Lattice

Your output should now be similar to Figure 17-4.

Changing the font size of titles and labels
You probably think that the title and label text in Figure 17-4 are dispropor-
tionately large compared to the rest of the graphic.

To change the size of your labels, you need to modify your arguments to be
lists. Similar to base graphics, you specify a cex argument in lattice graph-
ics to modify the character expansion ratio. For example, to reduce the main
title and axis label text to 75 percent of standard size, specify cex=0.75 as
an element in the list argument to main, xlab, and ylab.

To keep it simple, build up the formatting of your plot step by step. Start by
changing the size of your main title to cex=0.75:

> xyplot(mpg ~ hp | cyl, data = transform.mtcars,
+ type = c("p", "r"),
+ main = list(
+ label = "Fuel economy vs. Performance given Number of Cylinders",
+ cex = 0.75)
+)

Do you see what happened? Your argument to main now contains a list with
two elements: label and cex.

Figure 17-4:
A lattice
graphic with

titles.

350 Part V: Working with Graphics

You construct the arguments for xlab and ylab in exactly the same way.
Each argument is a list that contains the label and any other formatting
options you want to set. Expand your code to modify the axis labels:

> xyplot(mpg ~ hp | cyl, data = transform.mtcars,
+ type = c("p", "r"),
+ main = list(
+ label = "Fuel economy vs. Performance given Number of Cylinders",
+ cex = 0.75),
+ xlab = list(
+ label = "Performance (horse power)",
+ cex = 0.75),
+ ylab = list(
+ label = "Fuel economy (mpg)",
+ cex = 0.75),
+ scales = list(cex = 0.5)
+)

If you look carefully, you’ll see that the code includes an argument to modify
the size of the scales text to 50 percent of standard (scales = list(cex =
0.5)). Your results should look like Figure 17-5.

Using themes to modify plot options
One neat feature of lattice graphics is that you can create themes to
change the plot options of your charts. To do this, you need to use the
par.settings argument. In Chapter 16, you use the par() function to
update graphics parameters of base graphics. The par.settings argument
in lattice is similar.

Figure 17-5:
Changing

the font
 size of

lattice
graphics

labels and
text.

351 Chapter 17: Creating Faceted Graphics with Lattice

The easiest way to use the par.settings argument is to use it in conjunc-
tion with the simpleTheme() function. With simpleTheme(), you can
specify the arguments for the following:

 ✓ col, col.points, col.line: Control the colors of symbols, points,
lines, and other graphics elements such as polygons

 ✓ cex, pch, font: Control the character expansion ratio (cex), plot
character (pch), and font type

 ✓ lty, lwd: Control the line type and line width

For example, to modify your plot to have red points and a blue regression
line, use the following:

> xyplot(mpg ~ hp | cyl, data = transform.mtcars,
+ type = c("p", "r"),
+ par.settings = simpleTheme(col = "red", col.line = "blue")
+)

You can see the result in Figure 17-6.

Plotting Different Types
With lattice graphics, you can create many different types of plots, such as
scatterplots and bar charts. Here are just a few of the different types of plots
you can create:

 ✓ Scatterplot: xyplot()

 ✓ Bar chart: barchart()

 ✓ Box‐and‐whisker plot: bwplot()

Figure 17-6:
Using a

theme to
change the
color of the
points and

lines.

352 Part V: Working with Graphics

 ✓ One‐dimensional strip plot: stripplot()

 ✓ Three‐dimensional scatterplots: cloud()

 ✓ Three‐dimensional surface plots: wireframe()

For a complete list of the different types of lattice plots, see the Help at
?lattice.

Because making bar charts and making box‐and‐whisker plots are such
common activities, we discuss these functions in the following sections.

Making a bar chart
To make a bar chart, use the lattice function barchart(). Say you want
to create a bar chart of fuel economy for each different type of car. To do
this, you first have to add the names of the cars to the data itself. Because the
names are contained in the row names, this means assigning a new column
in your data frame with the name cars, containing rownames(mtcars). You
already did this earlier in the chapter, when you created transform.mtcars.

Now you can create your bar chart using similar syntax to the scatterplot you
made earlier:

> barchart(cars ~ mpg | cyl, data = transform.mtcars,
+ main = "barchart",
+ scales = list(cex = 0.5),
+ layout = c(3, 1)
+)

Once again (because you have eagle eyes), you’ve noticed the additional
argument layout in this code. Lattice plots adapt to the size of the active
graphics window on your screen. They do this by changing the configura-
tion of the panels of your plot. For example, if your graphics window is too
narrow to contain the panels side by side, then lattice will start to stack
your panels.

You control the layout of your panels with the argument layout, consisting
of two numbers indicating the number of columns and number of rows in
your plot. In our example, we want to ensure that the three panels are side by
side, so we specify layout=c(3, 1).

353 Chapter 17: Creating Faceted Graphics with Lattice

Your plot should look like Figure 17-7.

Making a box‐and‐whisker plot
A box‐and‐whisker plot is useful when you want to visually summarize the
uncertainty of a variable. The plot consists of a dark circle at the mean; a box
around the upper and lower hinges (the hinges are at approximately the 25th
and 75th percentiles); and a dotted line, or whisker, at most 1.5 times the box
length (see Chapter 14).

The lattice function to create a box-and-whisker plot is bwplot(), and
you can see the result in Figure 17-8.

Notice that the function formula does not have a left‐hand side to the equa-
tion. Because you’re creating a one‐dimensional plot of horsepower condi-
tional on cylinders, the formula simplifies to ~ hp | cyl. In other words,
the formula starts with the tilde symbol:

> bwplot(~ hp | cyl, data = transform.mtcars, main = "bwplot")

Figure 17-7:
Making a

lattice
bar chart.

354 Part V: Working with Graphics

Plotting Data in Groups
Often, you want to create plots where you compare different groups in your
data. In this section, you first take a look at data in tall format as opposed to
data in wide format. When you have data in tall format, you can easily use
lattice graphics to visualize subgroups in your data. Then you create some
charts with contained subgroups. Finally, you add a key, or legend, to your
plot to indicate the different subgroups.

Using data in tall format
So far, you’ve graphed only one variable against another in your lattice
plots. In most of the examples, you plotted mpg against hp for each unique
value of cyl. But what happens when you want to analyze more than one
variable simultaneously?

Consider the built‐in dataset longley, containing data about employment,
unemployment, and other population indicators:

> str(longley)
'data.frame': 16 obs. of 7 variables:
 $ GNP.deflator: num 83 88.5 88.2 89.5 96.2 . . .
 $ GNP : num 234 259 258 285 329 . . .
 $ Unemployed : num 236 232 368 335 210 . . .
 $ Armed.Forces: num 159 146 162 165 310 . . .
 $ Population : num 108 109 110 111 112 . . .
 $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 . . .
 $ Employed : num 60.3 61.1 60.2 61.2 63.2 . . .

One way to easily analyze the different variables of a data frame is to first
reshape the data frame from wide format to tall format.

Figure 17-8:
Making a

lattice
box‐and‐
whisker

plot.

355 Chapter 17: Creating Faceted Graphics with Lattice

A wide data frame contains a column for each variable (see Chapter 13).
A tall data frame contains all the same information, but the data is organized
in such a way that one column is reserved for identifying the name of the
variable and a second column contains the actual data.

An easy way to reshape a data frame from wide format to tall format is to use
the melt() function in the reshape2 package. Remember: reshape2 is not
part of base R — it’s an add‐on package that is available on CRAN. You can
install it with the install.packages("reshape2") function.

> library("reshape2")
> mlongley <- melt(longley, id.vars = "Year")
> str(mlongley)
'data.frame': 96 obs. of 3 variables:
 $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 . . .
 $ variable: Factor w/ 6 levels "GNP.deflator",..: 1 1 1 1 1 1 1 1 1 1 . . .
 $ value : num 83 88.5 88.2 89.5 96.2 . . .

Now you can plot the tall data frame mlongley and use the new columns
value and variable in the formula value~Year | variable:

> xyplot(value ~ Year | variable, data = mlongley,
+ layout = c(6, 1),
+ par.strip.text = list(cex = 0.5),
+ scales = list(cex = 0.5)
+)

The additional arguments par.strip.text and scales control the font
size (character expansion ratio) of the strip at the top of the chart, as well as
the scale, as you can see in Figure 17-9.

Figure 17-9:
Using data

in tall for
mat to put

different
variables in
each panel.

356 Part V: Working with Graphics

When you create plots with multiple groups, make sure that the resulting plot
is meaningful. For example, Figure 17-9 plots the longley data, but it can be
misleading because the units of measurement are very different. For example,
the unit of GNP (short for Gross National Product) is probably billions of dol-
lars. In contrast, the unit of population is probably millions of people. (The
documentation of the longley dataset is not clear on this topic.) Be very
careful when you present plots like this — you don’t want to be accused of
creating chart junk (misleading graphics).

Creating a chart with groups
Many graphics types — but bar charts in particular — tend to display multi-
ple groups of data at the same time. Usually, you can distinguish different
groups by their color or sometimes their shading.

If you ever want to add different colors to your plot to distinguish between
different data, you need to define groups in your lattice plot.

Say you want to create a bar chart that differentiates whether a car has
an automatic or manual gearbox. The transform.mtcars dataset has a
column with this data, called am. (Remember you transformed this variable
to a factor in the beginning of this chapter.) You plot your data using the
same formula as before, but this time you add an argument defining the
group, group=am:

> barchart(cars ~ mpg | cyl, data = transform.mtcars,
+ group = am,
+ scales = list(cex = 0.5),
+ layout = c(3, 1),
+)

When you run this code, you’ll get your desired bar chart. However, the first
things you’ll notice are that the colors look a bit washed out and you don’t
have a key to distinguish between automatic and manual cars.

Adding a key
It is easy to add a key to a graphic that already contains a group argument.
Usually, it’s as simple as adding another argument, auto.key = TRUE,
which automatically creates a key that matches the groups:

> plot.colours <- c("grey80", "grey20")
> barchart(cars ~ mpg | cyl, data = transform.mtcars,
+ main = "barchart with groups",

357 Chapter 17: Creating Faceted Graphics with Lattice

+ group = am,
+ auto.key = TRUE,
+ par.settings = simpleTheme(col = plot.colours, border = plot.colours),
+ scales = list(cex = 0.5),
+ layout = c(3, 1)
+)

One more thing to notice about this specific example is the arguments for
par.settings to control the color of the bars. In this case, the colors are
shades of gray. You can see the effect in Figure 17-10.

Printing and Saving a Lattice Plot
You need to know three other essential things about lattice plots: how to
assign a lattice plot to an object, how to print a lattice plot in a script,
and how to save a lattice plot to file. That’s what we cover in this section.

Figure 17-10:
A lattice

bar chart
with groups

and a key.

358 Part V: Working with Graphics

Assigning a lattice plot to an object
Lattice plots are objects; therefore, you can assign them to variables, just
like any other object. This is very convenient when you want to reuse a plot
object in your downstream code — for example, to print it later.

The assignment to a variable works just like any variable assignment in R:

> my.plot <- xyplot(mpg ~ hp | cyl, data = transform.mtcars)
> class(my.plot)
[1] "trellis"

Printing a lattice plot in a script
When you run code interactively — by typing commands into the R con-
sole — simply typing the name of a variable prints that variable. However,
you need to explicitly print an object when running a script. You do this with
the print() function.

Because a lattice plot is an object, you need to explicitly use the print()
function in your scripts. This is a frequently asked question in the R docu-
mentation, and it can easily lead to confusion if you forget.

To be clear, the following line of code will do nothing if you put it in a script
and source the script. (To be technically correct: The code will still run, but
the resulting object will never get printed — it simply gets discarded.)

> xyplot(mpg ~ hp | cyl, data = transform.mtcars)

To get the desired effect of printing the plot, you must use print():

> my.plot <- xyplot(mpg ~ hp | cyl, data = transform.mtcars)
> print(my.plot)

Saving a lattice plot to file
To save a lattice plot to an image file, you use a slightly modified version
of the sequence of functions that you came across in base graphics (see
Chapter 16).

359 Chapter 17: Creating Faceted Graphics with Lattice

Here’s a reminder of the sequence:

1. Open a graphics device using, for example, png().

Tip: The lattice package provides the trellis.device() function
that effectively does the same thing, but it’s optimized for lattice
plots, because it uses appropriate graphical parameters.

2. Print the plot.

Remember: You must use the print() function explicitly!

3. Close the graphics device.

Put this into action using trellis.device() to open a file called
xyplot.png, print your plot, and then close the device. (You can use
setwd("~/") to set your working directory to your home folder; see
Chapter 16.)

> setwd("~/")
> trellis.device(device = "png", filename = "xyplot.png")
> print(my.plot)
> dev.off()

You should now be able to find the file xyplot.png in your home folder.

To change the working directory and then change it back to the original, you
would do something like:

origwd <- getwd()
setwd("~/") # Set the working directory here
do stuff
setwd(origwd)

360 Part V: Working with Graphics

Looking At ggplot 2 Graphics
In This Chapter

 ▶ Installing and loading the ggplot2 package

 ▶ Understanding how to use build a plot using layers

 ▶ Creating charts with suitable geoms and stats

 ▶ Adding facets to your plot

O
ne of the strengths of R is that it’s more than just a programming
 language — it also has thousands of packages written and contributed

by independent developers. One of these packages, ggplot2, is tremen-
dously popular and offers a new way of creating insightful graphics using R.

Much of the ggplot2 philosophy is based on the so‐called “grammar of
graphics,” a consistent sound way of describing all the components that go
into a graphical plot. You don’t need to know anything about the grammar
of graphics to use ggplot2 effectively, but now you know where its name
comes from.

In this chapter, you first install and load the ggplot2 package and then
take a first look at layers, the building blocks of the ggplot2 graphics. Next,
you define the data, geoms, and stats that make up a layer, and use these to
create some plots. Finally you take full control over your graphics by adding
facets and scales as well as controlling other plot options, such as adding
labels and titles.

Installing and Loading ggplot2
Because ggplot2 isn’t part of the standard distribution of R, you have to
download the package from CRAN and install it.

Chapter 18

362 Part V: Working with Graphics

In Chapter 3, you see that the Comprehensive R Archive Network (CRAN)
is a network of servers around the world that contain the source code,
 documentation and add‐on packages for R. Its home page is at http://
cran.r‐project.org.

Each submitted package on CRAN also has a page that describes what the
package is about. You can view the ggplot2 page at http://cran.
r‐project.org/web/packages/ggplot2/index.html.

Although it’s fairly common practice to simply refer to the package as
ggplot, it is, in fact, the second implementation of the grammar of graphics
for R; hence, the package is ggplot2. Version 1.0.0 of ggplot2 was released
in May 2014.

Perhaps somewhat confusingly, the most important function in this pack-
age is ggplot(). Notice that the function doesn’t have a 2 in its name. So,
be careful to include the 2 when you refer to the package in your R code (for
example, when using install.packages() or library()), but remember
that the function ggplot() itself does not contain a 2.

In Chapter 3, you also see how to install a package for the first time with the
install.packages() function and to load the package at the start of each
R session with the library() function.

To install the ggplot2 package, use:

> install.packages("ggplot2")

And then to load the package, use:

> library("ggplot2")

Looking At Layers
The basic concept of a ggplot2 graphic is that you combine different plot
elements into layers. Each layer of a ggplot2 graphic contains information
about the following:

 ✓ The data that you want to plot: For ggplot(), this must be a data
frame.

 ✓ A mapping from the data to your plot: This usually is as simple as tell-
ing ggplot() what goes on the x‐axis and what goes on the y‐axis. (In
the “Mapping data to plot aesthetics” section, later in this chapter, we
explain how to use the aes() function to set up the mapping.)

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html

363 Chapter 18: Looking At ggplot 2 Graphics

 ✓ A geometric object, or geom in ggplot terminology: The geom defines
the overall look of the layer (for example, whether the plot is made up of
bars, points, or lines).

 ✓ A statistical summary, called a stat in ggplot: This describes how you
want the data to be summarized (for example, binning for histograms,
or smoothing to draw regression lines). Note that each stat has a default
associated geom, and vice versa.

That was a mouthful. In practice, you describe all this in a short line of code.
For example, here is the ggplot2 code to plot the faithful data using
two layers. (Because you plot faithful in Chapter 16, we won’t bore you
by describing it here.) The first layer is a geom that draws the points of a
scatterplot; the second layer is a stat that draws a smooth line through the
points.

> ggplot(faithful, aes(x = eruptions, y = waiting)) +
+ geom_point() +
+ stat_smooth()

This single line of code creates the graphic in Figure 18-1.

The ggplot2 package is generous with tips in the form of messages, as you
can see when running the preceding code. Unless these messages mention
the words warning or error, you can safely ignore them.

Using Geoms and Stats
To create a ggplot2 graphic, you have to explicitly tell the function what’s
in each of the components of the layer. In other words, you have to tell the

Figure 18-1:
A

ggplot2
graphic

of the
faithful

dataset.

364 Part V: Working with Graphics

ggplot() function your data, the mapping between your data and the geom,
and then either a geom or a stat. Since each geom has a default stat, and each
stat has a default geom, you don’t have to specify both, unless you want to
take full control of the plot.

In this section, we discuss geoms and then stats.

Defining what data to use
The first element of a ggplot2 layer is the data. There is only one rule for
supplying data to ggplot(): Your data must be in the form of a data frame.
This is different from base graphics, which allow plotting of data in vectors,
matrices, and other structures.

In the remainder of this chapter, we use the built‐in dataset quakes. This
dataset is a data frame with information about earthquakes near Fiji.

You tell ggplot() what data to use and how to map your data to your geom
in the ggplot() function. The ggplot() function takes two arguments:

 ✓ data: a data frame with your data (for example, data=quakes).

 ✓ ...: The dots argument indicates that any other argument you
specified here gets passed on to downstream functions (that is, other
functions that ggplot() happens to call). In the case of ggplot(), this
means that anything you specify in this argument is available to your
geoms and stats that you define later.

Because the dots argument is available to any geom or stat in your plot, it’s
a convenient place to define the mapping between your data and the visual
 elements of your plot.

This is where you typically specify a mapping between your data and
your geom.

Mapping data to plot aesthetics
After you’ve told ggplot() what data to use, the next step is to tell it how
your data corresponds to visual elements of your plot. This mapping between
data and visual aesthetics is the second element of a ggplot2 layer.

365 Chapter 18: Looking At ggplot 2 Graphics

The visual elements of a plot, or aesthetics, include lines, points, symbols,
colors, position . . . anything that you can see. For example, you can map a
column of your data to the x‐axis of your plot, or you can map a column of
your data to correspond to the y‐axis of your plot. You also can map data to
groups, colors, or the size of points in scatterplots — in fact, you can map
your data to anything that your geom supports.

You use the special function aes() to set up a mapping between data and
aesthetics. Each argument to aes() maps a column in your data to a specific
element in your geom.

Take another look at the code used to create Figure 18-1:

> ggplot(faithful, aes(x = eruptions, y = waiting)) +
+ geom_point() +
+ stat_smooth()

You can see that this code tells ggplot() to use the data frame faithful
as the data source. And now you understand that aes() creates a mapping
between the x‐axis and faithful$eruptions, as well as between the y‐axis
and faithful$waiting.

The next thing you notice about this code is the plus (+) signs at the end of
each line. In ggplot2, you use the + operator to combine the different layers
of the plot.

In summary, you use the aes() function to define the mapping between your
data and your plot. This is simple enough, but it leaves one question: How do
you know which aesthetics are available in different geoms?

Getting geoms
A ggplot2 geom tells the plot how you want to display your data. For exam-
ple, you use geom_bar() to make a bar chart. In ggplot2, you can use a
variety of predefined geoms to make standard types of plot.

A geom defines the layout of a ggplot2 layer. For example, you can use
geoms to create bar charts, scatterplots, and line diagrams (as well as a vari-
ety of other plots), as you can see in Table 18-1.

Each geom has a default stat, and each stat has a default geom. In practice,
you have to specify only one of these.

366 Part V: Working with Graphics

Creating a bar chart
To make a bar chart, you use the geom_bar() function. However, note that
the default stat is stat_bin(), which is used to cut your data into bins.
Thus, the default behavior of geom_bar() is to create a histogram.

For example, to create a histogram of the depth of earthquakes in the
quakes dataset, try:

> ggplot(quakes, aes(x = depth)) + geom_bar()
> ggplot(quakes, aes(x = depth)) + geom_bar(binwidth = 50)

Notice that your mapping defines only the x‐axis variable (in this case,
quakes$depth). A useful argument to geom_bar() is binwidth, which
controls the size of the bins that your data is cut into. This creates the plot of
Figure 18-2.

So, if geom_bar() makes a histogram by default, how do you make a bar
chart? The answer is that you first have to aggregate your data, and then
specify the argument stat="identity" in your call to geom_bar().

In the next example, you use aggregate() (see Chapter 13) to calculate the
number of quakes at different depth strata:

> quakes.agg <- aggregate(mag ~ round(depth, -1), data = quakes,
+ FUN = length)
> names(quakes.agg) <- c("depth", "mag")

Table 18-1 A Selection of Geoms and Associated Default Stats
Geom Description Default Stat
geom_bar() Bar chart stat_bin()

geom_point() Scatterplot stat_identity()

geom_line() Line diagram, connecting
observations in order
by x‐value

stat_identity()

geom_boxplot Box‐and‐whisker plot stat_boxplot()

geom_path Line diagram, connecting
observations in original
order

stat_identity()

geom_smooth Add a smoothed condi-
tioned mean

stat_smooth()

geom_histogram An alias for geom_
bar() and stat_
bin()

stat_bin()

367 Chapter 18: Looking At ggplot 2 Graphics

Now you can plot the object quakes.agg with geom_bar(stat="identity"):

> ggplot(quakes.agg, aes(x = depth, y = mag)) +
+ geom_bar(stat = "identity")

Your results should be very similar to Figure 18-2.

In summary, you can use geom_bar() to create a histogram and let
ggplot2 summarize your data, or you can summarize your data and then
use stat="identity" to plot a bar chart.

Making a scatterplot
To create a scatterplot, you use the geom_point() function. A scatterplot
creates points (or sometimes bubbles or other symbols) on your chart. Each
point corresponds to an observation in your data.

You’ve probably seen or created this type of graphic a million times, so you
already know that scatterplots use the Cartesian coordinate system, where
one variable is mapped to the x‐axis and a second variable is mapped to the
y‐axis.

In exactly the same way, in ggplot2 you create a mapping between x‐axis
and y‐axis variables. So, to create a plot of the quakes data, you map
quakes$long to the x‐axis and quakes$lat to the y‐axis:

> ggplot(quakes, aes(x = long, y = lat)) + geom_point()

This creates Figure 18-3.

Figure 18-2:
Making
a histo-

gram with
geom_
bar().

368 Part V: Working with Graphics

Creating line charts
To create a line chart, you use the geom_line() function. You use this
 function in a very similar way to geom_point(); the difference is that
geom_line() draws a line between consecutive points in your data.

This type of chart is useful for time series data in data frames, such as the
population data in the built‐in dataset longley (see Chapter 17). To create a
line chart of unemployment figures, you use the following:

> ggplot(longley, aes(x = Year, y = Unemployed)) + geom_line()

This creates Figure 18-4.

You can use either geom_line() or geom_path() to create a line drawing
in ggplot2. The difference is that geom_line() first orders the observa-
tions according to x‐value, whereas geom_path() draws the observations in
the order found in the data.

Figure 18-3:
Making a

scatter-
plot with
geom_

point().

Figure 18-4:
Drawing

a line
chart with
geom_

line().

369 Chapter 18: Looking At ggplot 2 Graphics

Sussing Stats
After data, mapping, and geoms, the fourth element of a ggplot2 layer
describes how the data should be summarized. In ggplot2, you refer to this
statistical summary as a stat.

One very convenient feature of ggplot2 is its range of functions to sum-
marize your data in the plot. This means that you often don’t have to
pre‐ summarize your data. For example, the height of bars in a histogram indi-
cates how many observations of something you have in your data. The statis-
tical summary for this is to count the observations. Statisticians refer to this
process as binning, and the default stat for geom_bar() is stat_bin().

Analogous to the way that each geom has an associated default stat, each
stat also has a default geom. Table 18-2 shows some useful stat functions,
their effects, and their default geoms.

So, this begs the question: How do you decide whether to use a geom or a
stat? In theory it doesn’t matter whether you choose the geom or the stat
first. In practice, however, it often is intuitive to start with a type of plot
first — in other words, specify a geom. If you then want to add another layer
of statistical summary, use a stat.

Figure 18-2, earlier in this chapter, is an example of this. In this plot, you used
the same data to first create a scatterplot with geom_point(), and then you
added a smooth line with stat_smooth().

Next, we take a look at some practical examples of using stat functions.

Table 18-2 Some Useful Stats and Default Geoms
Stat Description Default Geom
stat_bin() Counts the number of

observations in bins.
geom_bar()

stat_smooth() Creates a smooth line. geom_line()

stat_sum() Adds values. geom_point()

stat_identity() No summary. Plots data
as is.

geom_point()

stat_boxplot() Summarizes data for a
box‐and‐whisker plot.

geom_boxplot()

370 Part V: Working with Graphics

Binning data
You’ve already seen how to use stat_bin() to summarize your data into
bins, because this is the default stat of geom_bar(). This means that the fol-
lowing two lines of code produce identical plots:

> ggplot(quakes, aes(x = depth)) + geom_bar(binwidth = 50)
> ggplot(quakes, aes(x = depth)) + stat_bin(binwidth = 50)

Your plot should be identical to Figure 18-2.

Smoothing data
The ggplot2 package also makes it very easy to create regression lines
through your data. You use the stat_smooth() function to create this type
of line.

The interesting thing about stat_smooth() is that it makes use of local
regression by default. R has several functions that can do this, but ggplot2
uses the loess() function for local regression. This means that if you want
to create a linear regression model (as in Chapter 15), you have to tell
stat_smooth() to use a different smoother function. You do this with the
method argument.

To illustrate the use of a smoother, start by creating a scatterplot of unem-
ployment in the longley dataset:

> p <- ggplot(longley, aes(x = Year, y = Employed)) + geom_point()
> p

Next, add a smoother. This is as simple as adding stat_smooth() to your
line of code.

> p + stat_smooth()

Your graphic should look like the plot to the left of Figure 18-5.

Sometimes, ggplot2 generates messages with extra tips and information. As
long as you don’t see warning or error, you can safely ignore these messages.
In this case, stat_smooth() tells you that the default smoother is a method
called loess (local smoothing). The message also says you can use alternative
smoothing methods.

Finally, use stat_smooth() to fit and plot a linear regression model. You do
this by adding the argument method="lm":

> p + stat_smooth(method = "lm")

Your graphic should now look like the plot to the right in Figure 18-5.

371 Chapter 18: Looking At ggplot 2 Graphics

Doing nothing with identity
Sometimes you don’t want ggplot2 to summarize your data in the plot.
This usually happens when your data is already pre‐summarized or when
each line of your data frame has to be plotted separately. In these cases, you
want to tell ggplot2 to do nothing at all, and the stat to do this is stat_
identity(). You probably noticed in Table 18-1 that stat_identity is the
default statistic for points and lines.

Adding Facets, Scales, and Options
In addition to data, geoms, and stats, the full specification of a ggplot2
includes facets and scales. You’ve encountered facets in Chapter 17 — these
allow you to visualize different subsets of your data in a single plot. Scales
include not only the x‐axis and y‐axis, but also any additional keys that
explain your data (for example, when different subgroups have different
colors in your plot).

Adding facets
To illustrate the use of facets, you may want to replicate some of the faceted
plots of the dataset mtcars that you encountered in Chapter 17.

To make the basic scatterplot of fuel consumption against performance, use
the following:

> p <- ggplot(mtcars, aes(x = hp, y = mpg)) + geom_point()
> p

Figure 18-5:
Adding

regression
lines with
stat_

smooth
().

372 Part V: Working with Graphics

Then, to add facets, use the function facet_grid(). This function allows you
to create a two‐dimensional grid that defines the facet variables. You write the
argument to facet_grid() as a formula of the form rows ~ columns. In
other words, a tilde (~) separates the row variable from the column variable.

To illustrate, add facets with the number of cylinders as the columns. This
means your formula is ~cyl. Notice that because there are no rows as facets,
there is nothing before the tilde character:

> p + stat_smooth(method = "lm") + facet_grid(~ cyl)

Your graphic should look like Figure 18-6.

Similar to facet_grid(), you also can use the facet_wrap() function to
wrap one dimension of facets to fill the plot grid.

Changing options
In ggplot2, you also can take full control of your titles, labels, and all other
plot parameters.

To add x‐axis and y‐axis labels, you use the functions xlab() and ylab().

Figure 18-6:
Adding

facets with
facet_
grid().

373 Chapter 18: Looking At ggplot 2 Graphics

Working with scales
In ggplot2, scales control the way your data gets mapped to your geom. In this way, your data is
mapped to something you can see (for example, lines, points, colors, position, or shapes).

The ggplot2 package is extremely good at selecting sensible default values for your scales. In
most cases, you don’t have to do much to customize your scales. However, ggplot2 has a wide
range of very sophisticated functions and settings to give you fine‐grained control over your scale
behavior and appearance.

In the following example, you map the column mtcars$cyl to both the shape and color of the
points. This creates two separate, but overlapping, scales: One scale controls shape, while the
second scale controls the color of the points:

> p <- ggplot(mtcars, aes(x = hp, y = mpg)) +
+ geom_point(aes(shape = factor(cyl), colour = factor(cyl)))

The name of a scale defaults to the name of the variable that gets mapped to it. In this case,
you map factor(cyl) to the scale. To change the appearance of a scale, you need to add a
scale function to your plot. The specific scale function you use is dependent on the type of scale,
but in this case, you have a shape scale with discrete values, so you use the scale_shape_
discrete() function. You also have a color scale with discrete value, so you can control that
with scale_colour_discrete(). To change the name that appears in the legend of the
plot, you need to specify the argument name to these scales. For example, change the name of
the legend to "Cylinders" by setting the argument name = "Cylinders":

> p +
+ scale_shape_discrete(name = "Cylinders") +
+ scale_colour_discrete(name = "Cylinders")

Similarly, to change the x‐axis scale, you would use scale_x_continuous().

374 Part V: Working with Graphics

To add a main title, you use the function ggtitle():

> ggplot(mtcars, aes(x = hp, y = mpg)) + geom_point(color = "red") +
+ xlab("Performance (horse power)") +
+ ylab("Fuel consumption (mpg)") +
+ ggtitle("Motor car comparison")

Your graphic should look like Figure 18-7.

Getting More Information
In this chapter, we give you only a glimpse of the incredible power and vari-
ety at your fingertips when you use ggplot2. No doubt you’re itching to do
more. Here are a few resources that you may find helpful:

 ✓ The ggplot2 website (http://ggplot2.org/) contains help and
code examples for all the geoms, stats, facets, and scales. This site is
an excellent resource. Because it also contains images of each plot, it’s
even easier to use than the built‐in R Help.

 ✓ Hadley Wickham, the author of ggplot2, also wrote an excellent book
that describes how to use ggplot2 in a very easy and helpful way. The
book is called ggplot2: Elegant Graphics for Data Analysis, and you can
find its website at http://ggplot2.org/book/. At this website, you
also can find some sample chapters that you can read free of charge.

 ✓ At https://github.com/hadley/ggplot2/wiki, you can find the
ggplot2 wiki, which is actively maintained and contains links to all
kinds of useful information.

Figure 18-7:
Changing

ggplot2
options.

https://github.com/hadley/ggplot2/wiki

Part VI
The Part of Tens

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Ten ways to replace Microsoft Excel.

 ✓ Ten things you really need to know about working with
packages.

 ✓ Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

Ten Things You Can Do in
R That You Would’ve Done in

Microsoft Excel
In This Chapter

 ▶ Performing calculations and other operations on data

 ▶ Going beyond what you can do in a spreadsheet

T
he spreadsheet is probably one of the most widely used PC applications —
and for good reason: Spreadsheets make it very easy to perform calcula-

tions and other operations on tabular data. But spreadsheets pose some risks
as well: They’re easy to corrupt and very difficult to debug.

The good news is, you can use R to do many of the same things you used to
do in spreadsheets. In R, you use data frames to represent tabular data. R
has many functions, operators, and methods that allow you to manipulate
and calculate on data frames. This means that you can do just about anything
(and more) in R that you would’ve done in Microsoft Excel, LibreOffice Calc,
or your favorite spreadsheet application.

In this chapter, we offer some pointers on functions that you can explore in R,
most of which are covered earlier in this book. In most cases, we provide some
sample code but not the results. Try these examples yourself, and remember
to use the R Help documentation to find out more about these functions.

Adding Row and Column Totals
One task that you may frequently do in a spreadsheet is calculating row or
column totals. The easiest way to do this is to use the functions rowSums()
and colSums(). Similarly, use rowMeans() and colMeans() to calculate
means.

Chapter 19

378 Part VI: The Part of Tens

Try it on the built‐in dataset iris. First, remove the fifth column, because it
contains text that describes the species of iris:

> iris.num <- iris[, -5]

Then calculate the sum and mean for each column:

> colSums(iris.num)
> colMeans(iris.num)

These two functions are very convenient, but you may want to calculate
some other statistic for each column or row. There’s an easy way of travers-
ing rows or columns of an array or data frame: the apply() function (see
Chapter 13). For example, getting the minimum of a column is the same as
applying a min() function to the second dimension of your data:

> apply(iris.num, 2, min)
> apply(iris.num, 2, max)

The apply() function is ideal when your data is in an array and will apply
happily over both rows and columns. For the special case where your data
is in a data frame and you want to get column summaries, you’re better off
using sapply() rather than apply(). So, to get your iris column summa-
ries, try this instead:

> sapply(iris.num, min)
> sapply(iris.num, max)

Formatting Numbers
When you produce reports, you want your numbers to appear all nicely for-
matted. For example, you may want to align numbers on the decimal points
or specify the width of the column. Or you may want to print your number
with a currency symbol ($100.00) or append a percentage sign to it (35.7%).

You can use format() to turn your numbers into pretty text, ready for print-
ing. This function takes a number of arguments to control the format of your
result. Here are a few:

 ✓ trim: A logical value. If FALSE, it adds spaces to right‐justify the result.
If TRUE, it suppresses the leading spaces.

 ✓ digits: How many significant digits of numeric values to show.

 ✓ nsmall: The minimum number of digits after the decimal point.

379 Chapter 19: Ten Things You Can Do in R That You Would’ve Done in Microsoft Excel

In addition, you control the format of the decimal point with decimal.mark,
the mark between intervals before the decimal point with big.mark, and the
mark between intervals after the decimal point with small.mark.

For example, you can print the number 12345.6789 with a comma as decimal
point, spaces as the big mark, and dots as the small mark:

> format(12345.6789, digits = 9, decimal.mark = ",",
+ big.mark = " ", small.mark = ".", small.interval = 3)
[1] "12 345,678.9"

As a more practical example, to calculate the means of some columns in
mtcars and then print the results with two digits after the decimal point, use
the following:

> x <- colMeans(mtcars[, 1:4])
> format(x, digits = 2, nsmall = 2)
 mpg cyl disp hp
" 20.09" " 6.19" "230.72" "146.69"

Notice that the result is no longer a number but a text string. So, be careful
when you use number formatting — this should be the last step in your
reporting workflow.

If you’re familiar with programming in languages similar to C or C++, then you
also may find the sprintf() function useful, because sprintf() is a wrap-
per around the C printf() function. This wrapper allows you to paste your
formatted number directly into a string.

Here’s an example of converting numbers into percentages:

> x <- seq(0.5, 0.55, 0.01)
> sprintf("%.1f %%", 100 * x)
[1] "50.0 %" "51.0 %" "52.0 %" "53.0 %" "54.0 %" "55.0 %"

This bit of magic should be familiar to C programmers, but for the rest of
us, this is what it does: The first argument to sprintf() indicates the
format — in this case, "%.1f %%". The format argument uses special liter-
als that indicate that the function should replace this literal with a variable
and apply some formatting. The literals always start with the % symbol. So,
in this case, %.1f means to format the first supplied value as a fixed point
value with one digit after the decimal point, and %% is a literal that means
print a %.

380 Part VI: The Part of Tens

To format some numbers as currency — in this case, U.S. dollars — use:

> set.seed(1)
> x <- 1000 * runif(5)
> sprintf("$ %3.2f", x)
[1] "$ 265.51" "$ 372.12" "$ 572.85" "$ 908.21" "$ 201.68"

As you saw earlier, the literal %3.2f means to format the value as a fixed point
value with three digits before the decimal and two digits after the decimal.

The sprintf() function is a lot more powerful than that: It gives you an
alternative way of pasting the value of any variable into a string:

> stuff <- c("bread", "cookies")
> price <- c(2.1, 4)
> sprintf("%s cost $ %3.2f ", stuff, price)
[1] "bread cost $ 2.10 " "cookies cost $ 4.00 "

What happens here is that, because you supplied two vectors (each with two
elements) to sprintf(), your result is a vector with two elements. R cycles
through the elements and places them into the sprintf() literals. Thus, %s
(indicating format the value as a string) gets the value "bread" the first time
and "cookies" the second time.

You can do everything with paste() and format() that you can do with
sprintf(), so you don’t really ever need to use it. But when you do, it can
simplify your code.

Sorting Data
To sort data in R, you use the sort() or order() functions (see Chapter 13).

To sort the data frame mtcars in increasing or decreasing order of the
column hp, use:

> with(mtcars, mtcars[order(hp),])
> with(mtcars, mtcars[order(hp, decreasing = TRUE),])

Making Choices with If
Spreadsheets give you the ability to perform all kinds of “What if?” analyses.
One way of doing this is to use the if() function in a spreadsheet.

381 Chapter 19: Ten Things You Can Do in R That You Would’ve Done in Microsoft Excel

R also has the if() function, but it’s mostly used for flow control in your
scripts. Because you typically want to perform a calculation on an entire
vector in R, it’s usually more appropriate to use the ifelse() function (see
Chapter 9).

Here’s an example of using ifelse() to identify cars with high fuel effi-
ciency in the dataset mtcars:

> mtcars <- transform(mtcars,
+ mpgClass = ifelse(mpg < mean(mpg), "Low", "High"))
> mtcars[mtcars$mpgClass == "High",]

Calculating Conditional Totals
Something else that you probably did a lot in Excel is calculating conditional
sums and counts with the functions sumif() and countif().

You can do the same thing in one of two ways in R:

 ✓ Use ifelse() (see the preceding section).

 ✓ Simply calculate the measure of interest on a subset of your data.

Say you want to calculate a conditional mean of fuel efficiency in mtcars.
You do this with the mean() function. Now, to get the fuel efficiency for cars
either side of a threshold of 150 horsepower, try the following:

> with(mtcars, mean(mpg))
[1] 20.09062
> with(mtcars, mean(mpg[hp < 150]))
[1] 24.22353
> with(mtcars, mean(mpg[hp >= 150]))
[1] 15.40667

Counting the number of elements in a vector is the same as asking about its
length. This means that the Excel function countif() has an R equivalent in
length():

> with(mtcars, length(mpg[hp > 150]))
[1] 13

382 Part VI: The Part of Tens

Transposing Columns or Rows
Sometimes you need to transpose your data from rows to columns or vice
versa. In R, the function to transpose a matrix is t():

> x <- matrix(1:12, ncol = 3)
> x
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

To get the transpose of a matrix, use t():

> t(x)
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

You also can use t() to transpose data frames, but be careful when you
do this. The result of a transposition is always a matrix (or array). Because
arrays always have only one type of variable, such as numeric or character,
the variable types of your results may not be what you expect.

Notice that the transposition of mtcars is a character array:

> t(mtcars[1:4,])
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
mpg "21.0" "21.0" "22.8" "21.4"
cyl "6" "6" "4" "6"
disp "160" "160" "108" "258"
hp "110" "110" " 93" "110"
drat "3.90" "3.90" "3.85" "3.08"
wt "2.620" "2.875" "2.320" "3.215"
qsec "16.46" "17.02" "18.61" "19.44"
vs "0" "0" "1" "1"
am "1" "1" "1" "0"
gear "4" "4" "4" "3"
carb "4" "4" "1" "1"
mpgClass "High" "High" "High" "High"

383 Chapter 19: Ten Things You Can Do in R That You Would’ve Done in Microsoft Excel

Finding Unique or Duplicated Values
To identify all the unique values in your data, use the unique() function.
Try finding the unique values of number of cylinders in mtcars:

> unique(mtcars$cyl)
[1] 6 4 8

Sometimes you want to know which values of your data are duplicates.
Depending on your situation, those duplicates will be valid, but sometimes
duplicate entries may indicate data‐entry problems.

The function to identify duplicate entries is duplicated(). In the built-in
dataset iris, there is a duplicated row in line 143. Try it yourself:

> dupes <- duplicated(iris)
> head(dupes)
[1] FALSE FALSE FALSE FALSE FALSE FALSE
> which(dupes)
[1] 143
> iris[dupes,]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
143 5.8 2.7 5.1 1.9 virginica

Because the result of duplicated() is a logical vector, you can use it
as an index to remove rows from your data. To do this, use the negation
 operator — the exclamation point (as in !dupes):

> iris[!dupes,]
> nrow(iris[!dupes,])
[1] 149

Working with Lookup Tables
In a spreadsheet application like Excel, you can create lookup tables with-the
functions vlookup or a combination of index and match.

In R, it may be convenient to use merge() (see Chapter 13) or match(). The
match() function returns a vector with the positions of elements that match
your lookup value.

384 Part VI: The Part of Tens

For example, to find the location of the element "Toyota Corolla" in the
row names of mtcars, try the following:

> index <- match("Toyota Corolla", rownames(mtcars))
> index
[1] 20
> mtcars[index, 1:4]
 mpg cyl disp hp
Toyota Corolla 33.9 4 71.1 65

You can see that the index position is 20, and that the 20th row is indeed the
row you’re looking for.

Working with Pivot Tables
In Excel, pivot tables are a useful tool for manipulating and analyzing data.

For simple tables in R, you can use the tapply() function to achieve similar
results. Here’s an example of using tapply() to calculate mean hp for cars
with different numbers of cylinders and gears:

> with(mtcars, tapply(hp, list(cyl, gear), mean))
 3 4 5
4 97.0000 76.0 102.0
6 107.5000 116.5 175.0
8 194.1667 NA 299.5

For slightly more complex tables — that is, tables with more than two cross‐
classifying factors — use the aggregate() function:

> aggregate(hp ~ cyl + gear + am, mtcars, mean)
 cyl gear am hp
1 4 3 0 97.00000
2 6 3 0 107.50000
3 8 3 0 194.16667
4 4 4 0 78.50000
5 6 4 0 123.00000
6 4 4 1 75.16667
7 6 4 1 110.00000
8 4 5 1 102.00000
9 6 5 1 175.00000
10 8 5 1 299.50000

385 Chapter 19: Ten Things You Can Do in R That You Would’ve Done in Microsoft Excel

If you frequently work with tables in Excel, you should definitely explore the
packages dplyr and tidyr that are available on CRAN at http://cran.
r‐project.org/web/packages/dplyr and http://cran.r‐project.
org/web/packages/tidyr, respectively. These packages provide a
number of functions for common data manipulation problems.

Using the Goal Seek and Solver
One very powerful feature of Excel is that it has a very easy‐to‐use solver that
allows you to find minimum or maximum values for functions given some
constraints.

A very large body of mathematics aims to solve optimization problems of all
kinds. In R, the optimize() function provides one fairly simple mechanism
for optimizing functions.

Imagine you’re the sales director of a company and you need to set the best
price for your product. In other words, find the price of a product that maxi-
mizes revenue.

In economics, a simple model of pricing states that people buy less of a given
product when the price increases. Here’s a very simple function that has this
behavior:

> sales <- function(price) { 100 - 0.5 * price }

Expected revenue is then simply the product of price and expected sales:

> revenue <- function(price) { price * sales(price) }

You can use the curve() function to plot continuous functions. This takes a
function as input and produces a plot. Try to plot the behavior of sales and
revenue using the curve() function, varying price from $50 to $150:

> oldpar <- par(mfrow = c(1, 2), bty = "l")
> curve(sales, from = 50, to = 150, xname = "price", main = "Sales")
> curve(revenue, from = 50, to = 150, xname = "price", main = "Revenue")
> par(oldpar)

Your results should look similar to Figure 19-1.

You have a working model of sales and revenue. From the figure, you can
see immediately that there is a point of maximum revenue. Next, use the
R function optimize() to find the value of that maximum. To use opti-
mize(), you need to tell it which function to use (in this case, revenue()),

http://cran.r-project.org/web/packages/dplyr
http://cran.r-project.org/web/packages/dplyr
http://cran.r-project.org/web/packages/tidyr/
http://cran.r-project.org/web/packages/tidyr/

386 Part VI: The Part of Tens

as well as the interval (in this case, prices between 50 and 150). By default,
 optimize() searches for a minimum value, so in this case you have to tell
it to search for maximum value:

> optimize(revenue, interval = c(50, 150), maximum = TRUE)
$maximum
[1] 100

$objective
[1] 5000

And there you go. Charge a price of $100, and expect to get $5,000 in revenue.

The Excel Solver uses the Generalized Reduced Gradient Algorithm for
optimizing nonlinear problems (http://support.microsoft.com/
kb/214115). The R function optimize() uses a combination of golden
section search and successive parabolic interpolation, which clearly is not
the same thing as the Excel Solver. Fortunately, a large number of packages
provide various different algorithms for solving optimization problems. In
fact, there is a special task view on CRAN for optimization and mathemati-
cal programming. Go to http://cran.r‐project.org/web/views/
Optimization.html to find out more than you ever thought you wanted
to know!

Figure 19-1:
A model of

expected
sales and
revenue.

http://support.microsoft.com/kb/214115
http://support.microsoft.com/kb/214115
http://cran.r-project.org/web/views/Optimization.html
http://cran.r-project.org/web/views/Optimization.html

Ten Tips on Working
with Packages

In This Chapter
 ▶ Finding packages

 ▶ Installing and updating packages

 ▶ Loading and unloading packages

O
ne of the very attractive features of R is that it contains a large collec-
tion of third‐party packages (collections of functions in a well‐defined

format). To get the most out of R, you need to understand where to find addi-
tional packages, how to download and install them, and how to use them.

In this chapter, we consolidate some of the things we cover earlier in the
book and give you ten tips on working with packages.

Many other software languages have concepts that are similar to R packages.
Sometimes these are referred to as “libraries.” However, in R, a library is the
folder on your hard disk (or USB stick, network, DVD, or whatever you use
for permanent storage) where your packages are stored.

Poking Around the Nooks
and Crannies of CRAN

The Comprehensive R Archive Network (CRAN; http://cran.r‐project.
org) is a network of web servers around the world where you can find the R
source code, R manuals and documentation, and contributed packages.

Chapter 20

http://cran.r-project.org/
http://cran.r-project.org/

388 Part VI: The Part of Tens

CRAN isn’t a single website; it’s a collection of web servers, each with an
identical copy of all the information on CRAN. Thus, each web server is called
a mirror. The idea is that you choose the mirror that is located nearest to
where you are, which reduces international or long‐distance Internet traffic.
You can find a list of CRAN mirrors at http://cran.r‐project.org/
mirrors.html.

RGui and RStudio allow you to set the location of your nearest CRAN mirror
directly in the application. For example, in the Windows RGui, you can find
this option by choosing Packages➪Set CRAN mirror. In RStudio, you can find
this option by choosing Tools➪Global Options➪Packages➪CRAN mirror.

Regardless of which R interface you use, you can permanently save your
preferred CRAN mirror (and other settings) in a special file called .RProfile,
located in the user’s home directory or the R startup directory. For example,
to set the Imperial College, UK mirror as your default CRAN mirror, include
this line in your .RProfile:

options("repos" = c(CRAN = "http://cran.ma.imperial.ac.uk/"))

For more information, see Appendix A.

Finding Interesting Packages
At the beginning of 2015, there were more than 6,000 packages on CRAN. That
means finding a package for your task at hand may seem difficult.

Fortunately, a handful of volunteer experts have collated some of the most
widely used packages into curated lists. These lists are called CRAN task
views, and you can view them at http://cran.r‐project.org/web/
views/. You can find task views for empirical finance, statistical genetics,
machine learning, statistical learning, and many other fascinating topics.

Each package has its own web page on CRAN. Say, for example, you want
to find a package to do high‐quality graphics. If you followed the link to
the graphics task view, http://cran.r‐project.org/web/views/
Graphics.html, you may notice a link to the ggplot2 package, http://
cran.r‐project.org/web/packages/ggplot2/index.html. On the
web page for a package, you find a summary, information about the packages
that are used, a link to the package website (if such a site exists), and other
useful information.

http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html

389 Chapter 20: Ten Tips on Working with Packages

Installing Packages
To install a package use the install.packages() function. This simple
command downloads the package from a specified repository (by default,
CRAN) and installs it on your machine:

 > install.packages("fortunes")

Note that the argument to install.packages() is a character string. In
other words, remember the quotes around the package name!

In RGui, as well as in RStudio, you find a menu command to do the same
thing:

 ✓ In RGui, choose Packages➪Install package(s).

 ✓ In RStudio, choose Tools➪Install packages. . . .

Loading Packages
To load a package, you use the library() or require() function. These
functions are identical in their effects, but they differ in the return value:

 ✓ library(): Invisibly returns a list of packages that are attached, or
stops with an error if the package is not on your machine.

 ✓ require(): Returns TRUE if the package was successfully attached and
FALSE if not.

The R documentation suggests that library() is the preferred way of load-
ing packages in scripts, while require() is preferred inside functions and
packages.

So, after installing the package fortunes you load it like this:

> library("fortunes")

Note that you don’t have to quote the name of the package in the argument of
library(), but it is good practice to always quote the package name.

Although it is possible to unload a package within an R session by using the
detach() function, in practice it usually is much easier to simply restart
your R session.

390 Part VI: The Part of Tens

Reading the Package Manual
and Vignette

After installing and loading a new package, a good starting point is to read
the package manual. The package manual is a collection of all functions and
other package documentation. You can access the manual in two ways. The
first way is to use the help argument to the library() function:

> library(help = "fortunes")

The second way is to find the manual on the package website. If you
point your browser window to the CRAN page for the fortunes package
(http://cran.r‐project.org/web/packages/fortunes/), you’ll
notice a link to the manual toward the bottom of the page (http://cran.
r‐project.org/web/packages/fortunes/fortunes.pdf).

Whichever approach you choose, the result is a PDF document containing
the package manual.

Some package authors also write one or more vignettes, documents that
illustrate how to use the package. A vignette typically shows some examples
of how to use the functions and how to get started. The key thing is that a
vignette illustrates how to use the package with R code and output, just like
this book.

To read the vignette for the fortunes package, try the following:

> vignette("fortunes")

Updating Packages
Most package authors release improvements to their packages from time to
time. To ensure that you have the latest version, use update.packages():

> update.packages()

This function connects to CRAN (by default) and checks whether there are
updates for all the packages that you’ve installed on your machine. If there
are, it asks you whether you want to update each package, and then down-
loads the code and installs the new version.

http://cran.r-project.org/web/packages/fortunes/
http://cran.r-project.org/web/packages/fortunes/fortunes.pdf
http://cran.r-project.org/web/packages/fortunes/fortunes.pdf

391 Chapter 20: Ten Tips on Working with Packages

If you add update.packages(ask = FALSE), R updates all out‐of‐date
packages in the current library location, without prompting you. Also, you
can tell update.packages() to look at a repository other than CRAN by
changing the repos argument. If the repos argument points to a file on your
machine (or network), R installs the package from this file.

Both RGui and RStudio have menu options that allow you to update the
packages:

 ✓ In RGui, choose Packages➪Update package(s).

 ✓ In RStudio, choose Tools➪Check for Package Updates. . . .

Both applications allow you to graphically select packages to update.

Forging Ahead with R‐Forge
Although not universally true, packages on CRAN tend to have some mini-
mum level of maturity. For example, to be accepted by CRAN, a package
needs to pass a basic minimum set of requirements.

So, where do packages live that are in the development cycle? Quite often,
they live at R‐Forge (http://r‐forge.r‐project.org/). R‐Forge gives
developers a platform to develop and test their R packages. For example,
R‐Forge offers

 ✓ A build and check system on Windows and Linux operating systems
(Mac OSX is not supported)

 ✓ Version control

 ✓ Bug‐report systems

 ✓ Backup and administration

To install a project from R‐Forge, you also use the install.packages()
function, but you have to specify the repos argument. For example, to install
the development version of the package data.table, try the following:

> install.packages("data.table", repos = "http://R-Forge.R-project.org")

Although R‐Forge doesn’t have a build and check system for Mac OSX specifi-
cally, Mac users can install and use packages from R‐Forge by installing the
source package. A source package is a compressed file (with a .tar.gz file
extension) containing all source code for the package. On installing, Linux
builds the package "from source". As OSX is built on Linux, in most cases you

http://r-forge.r-project.org/

392 Part VI: The Part of Tens

can install the source package on Mac OSX without any additional tools. You
find more information in the FAQ for Mac at this website:

http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html

Getting packages from github
In recent years, many developers have started to use github (https://
github.com) as a code development site. Although github does not offer
any of the R‐specific features of CRAN or R‐Forge, sometimes code is easier
to share by using github. So you may occasionally get instructions to install a
package directly from github.

On the Linux and Mac OSX operating systems, installing packages from
github is comparatively easy. However, on Windows you also must first
install RTools (a set of compilers and other tools to build packages from
source). To install RTools on a Windows machine, carefully follow the
instructions at http://cran.r‐project.org/bin/windows/Rtools.

For example, to install the rfordummies package, associated with this book,
directly from github, try:

> install.packages("devtools")
> library("devtools")
> install_github("andrie/rfordummies")

The rfordummies package also is available on CRAN, so it is much simpler
to install using

> install.packages("rfordummies", dependencies = TRUE)

You can find out more about the rfordummies package in Appendix B.

Conducting Installations
from BioConductor

BioConductor is a repository of R packages and software, a collection of tools
that specializes in analysis of genomic and related data.

BioConductor has its own sets of rules for developers. For example, to install
a package from BioConductor you have to source a script from its server:

> source("http://bioconductor.org/biocLite.R")

https://github.com/
https://github.com/
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html

393 Chapter 20: Ten Tips on Working with Packages

Then you can use the biocLite() function to install packages from
BioConductor. If you don’t supply an argument, you just install the necessary
base packages from the BioConductor project. You can find all the informa-
tion you need at www.bioconductor.org.

BioConductor extensively uses object‐orientation programming with S4
classes. Object orientation and its implementation as S4 classes is an
advanced R topic — one we don’t discuss in this book. If you’re interested,
you find more information in Hadley Wickham’s great online book Advanced
R at http://adv‐r.had.co.nz/OO‐essentials.html.

Reading the R Manual
The “R Installation and Administration” manual (http://cran.r‐project.
org/doc/manuals/R‐admin.html) is a comprehensive guide to the instal-
lation and administration of R. Chapter 6 of this manual contains all the
information you need about working with packages. You can find
it at http://cran.r‐project.org/doc/manuals/R‐admin.
html#Add_002don‐packages.

http://www.bioconductor.org/
http://adv-r.had.co.nz/OO-essentials.html
http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html#Add_002don-packages

394 Part VI: The Part of Tens

Installing R and RStudio

B
efore you use R, of course, you first have to install R. Although you can
use the built‐in code editor, you may also want to install an editor with

more functionality. Because RStudio runs on all platforms and is integrated
nicely with R, we also discuss the installation of RStudio on your system.

In this appendix, we don’t have enough space to provide installation instruc-
tions for every possible operating system. You can find that information on
the R and RStudio websites:

 ✓ R: www.r‐project.org

 ✓ RStudio: www.rstudio.com

If you use Linux, depending on the distribution you use, you may find that R
comes with the operating system and doesn’t require a separate installation.

Installing and Configuring R
Installing R isn’t difficult, but tweaking it to fit your own needs requires a bit
of explanation.

We can’t cover all possibilities here, so be sure to read the information on
the R website for more insight on how to install and configure the software.

Installing R
You can find the installation files and all information about installation on
one of the mirror sites of the Comprehensive R Archive Network (CRAN;
for example, http://cran.rstudio.com/). Select the download link for
your operating system, which will take you to the download site for the latest
version of R.

Appendix A

http://www.r-project.org/
http://www.rstudio.org/

396 R For Dummies

You can find detailed installation instructions in the R Installation and
Administration manual on CRAN (http://cran.r‐project.org/doc/
manuals/R‐admin.html). For Windows, you take the following steps:

1. Go to CRAN, click Download R for Windows, click Base, and down-
load the installer for the latest R version.

2. Right‐click the installer file and select Run as Administrator from the
pop‐up menu.

3. Select the language to be used during installation.

This doesn’t change the language used by R; all messages and Help files
are determined by the language settings of your computer.

4. Follow the instructions of the installer.

You can safely use the default settings and just keep clicking Next until R
starts installing.

R exists in a 32‐bit and 64‐bit version. If you have a 64‐bit Windows version,
you can easily install both versions next to each other. (The installer will do
this by default.) For other systems, you can find more information in the R
Installation and Administration manual. The 32‐bit version of R is perfectly
fine — sometimes it’s even a bit faster than the 64‐bit version. You need the
64‐bit version only if you require more work memory than the 32‐bit version
can handle. (On Windows, the maximum is about 3GB for a 32‐bit system.)

If you want to be able to personalize your R installation as explained here,
you should install R outside the Program Files folder (for example, in
C:\R\). This way, you avoid trouble with the default Windows folder
protection.

Mac OS X and Linux users especially need to read the instructions on the
CRAN site carefully. R can be installed on all systems, but depending on your
version of OS X or Linux, you may need to follow special procedures to install
R successfully. Not following these procedures could harm your system.

Configuring R
Apart from accepting the options in the installation procedure, you can
change a number of startup options by adapting the Rprofile.site
file. This file is located inside the installation directory, in the subfolder
.../R‐n.n.n/etc (for example, .../R‐3.2.0/etc). The file is sourced by
R at startup, so all R code in this file is carried out. The default installation of
R contains a perfectly valid Rprofile.site file, so you have to change this
only if you want to personalize your startup.

http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.r-project.org/doc/manuals/R-admin.html

397 Appendix A: Installing R and RStudio

Rprofile.site is a normal text file, so you can edit it as you would any
other text file. The file already contains some options that are commented
out, so you get a good idea of what’s possible when you open the file in a text
editor (for example, Notepad). Be sure to check the Help page ?options to
get more information on all possible options.

You can personalize R further by adding a code file called .Rprofile to
your personal home folder. You can find this folder from within R by setting
the working directory to "~/", like this:

> setwd("~/")
> getwd()
[1] "C:/Users/Joris FA Meys/Documents

Adding an .Rprofile file isn’t necessary, but R will always look for one,
either in the folder from which you call R or in the user’s home directory.
Whereas an Rprofile.site file is linked to a specific installation of R, the
.Rprofile file can differ for every user on the same system. If you update R,
you can leave the .Rprofile file where it is and the new R version will auto-
matically find it and apply the options you specified there. So, after updating
R to the latest version, you have to adapt the Rprofile.site again only if
you want to personalize it.

Functions you define or objects you create with code in Rprofile.site
won’t be visible if you use ls(), although you can use them without trouble.
This also means you can’t delete them easily from the workspace.

An Rprofile.site or .Rprofile file may look like the following example:

Sample profile file
Set CRAN mirror to a default location
options(repos = "http://cran.uk.r-project.org")
R interactive prompt
options(prompt = "R: ")
sets work directory back to original
go.home <- function() setwd("D:/MyWorkspace")

Using this file, R starts up with a different prompt (R: instead of >) and sets
the mirror from the UK as the default mirror from which to install packages.
You also define the go.home() function, which you can use at any point to
set your working directory back to your home directory (D:/MyWorkspace,
in this example).

398 R For Dummies

Installing and Configuring RStudio
RStudio is a relatively new and shiny editor for R. It’s our first choice for this
book because it’s easy to use, it has a good documentation website, it has
very good support, and it incorporates R in a practical way. Of course, you’re
free to work with any code editor you like; in Chapter 2, we discuss some
alternatives.

Installing RStudio
Installing RStudio is easy. Just follow these steps:

1. Go to http://www.rstudio.com/products/RStudio/#Desk.

2. Click the Download RStudio Desktop button.

3. Select the installation file for your system.

4. Run the installation file.

RStudio will be installed on your system. It normally detects your latest
installed R version automatically. If you didn’t do anything funky, you should
be able to use R from within RStudio without extra configuration.

Configuring RStudio
You may want to use a different R version from the one RStudio detected. For
example, you may want to use R in a 64‐bit context. Or RStudio may not have
recognized your installation of R. In that case, you can set which R version to
use by choosing Tools➪Global Options. . . to open the Global Options pane
(see Figure A-1).

To change the R version, click the Change button. Then you can switch
between the default 32‐bit R installation and the 64‐bit R installation (if
installed), or you can choose a specific version of R. (RStudio lists all the ver-
sions it finds.)

If you click Browse, you can select the root directory for any R version you
want to use. This folder normally looks something like .../R/R‐n.n.n. If
you select an R version that has both 32‐bit and 64‐bit builds, RStudio will ask
you which build you want to use.

399 Appendix A: Installing R and RStudio

In the Options pane (refer to Figure A‐1), you can tweak the behavior of R in
RStudio. If you click the General icon in the left column, you can set a number
of default options for R in RStudio:

 ✓ Initial working directory: You can set the default working directory R
uses at startup.

 ✓ Save workspace to .RData on exit: Your options are Ask, Never, or
Always. By default, RStudio asks you whether you want to save the
workspace when you quit.

 ✓ Restore .RData into workspace at startup: Select this check box to let
RStudio restore the workspace automatically at startup. RStudio will
look for a saved workspace in the root folder or the default working
directory.

 ✓ Always save history (even when not saving .RData): Select this check
box to have RStudio always save the history. If you don’t select this
check box, RStudio doesn’t save the history when you exit the program.

 ✓ Remove duplicate entries in history: If you select this check box,
RStudio removes duplicate entries from your history when the history is
saved.

The remaining icons in the options panel give you more possibilities for
adapting the general appearance of RStudio, the appearance of the code edit-
ing tool or script window, and the general layout of the panes. For example,
you can set the default CRAN mirror for installation of packages by clicking

Figure A‐1:
 The Options

pane of
RStudio.

RStudio may
display dif-

ferent default
values and

directories for
the options.

400 R For Dummies

on the Packages icon in the Options panel. By default RStudio uses its own
repository.

These settings work for R only from within RStudio. If you use R with another
code editor or by itself, the settings in RStudio will have no effect.

As you can see in Figure A‐1, the Options pane also offers you some more
advanced options. RStudio evolved to a complete Integrated Development
Environment (IDE) for R, and comes packed with tools for development of
your own packages. We don’t cover this advanced level of R programming in
this book, but the RStudio website contains information on the possibilities
for taking your R code to the next level.

The r fordummies Package

Y
ou can find all of the example code of this book in an R package called
rfordummies. You can install this package directly from CRAN and

then use the package to view the code and run the examples in the book.

Using rfordummies
You install the rfordummies package directly from CRAN using the function
install.packages(). If you add the argument dependencies = TRUE,
you automatically install all the packages mentioned in the book, like this:

> install.packages("rfordummies", dependencies = TRUE)

You load the package by using the function library():

> library("rfordummies")

You can view the table of contents of the book by using the function toc():

> toc()

To view the chapter code for a specific chapter, use the function chxx(),
where xx means the chapter number. For example, to view the code for
Chapters 2 and 13, enter these functions:

> ch2()
> ch13()

To run the examples from a specific chapter, use the example() function.
This function runs all the example code given on a certain help page. So to
run all examples from Chapter 3, try:

> example("ch3", package = "rfordummies")

Appendix B

402 R For Dummies

You can also find the data for the periodic table of elements (see Chapter 12)
in a data frame called elements:

> ?elements
> head(elements)

For more information, check the help page ?rfordummies.

Index

Symbols
symbol, 45
| symbol, 92, 267, 302
- operator, 267
<- assignment operator,

27, 43, 80, 83
\ (backslash), 224
{} (braces), 156–157
[] (brackets), 66–67,

143–144, 241
: (colon operator), 26, 63,

82, 267
+ (continuation) symbol, 3,

43, 267, 273
$ (dollar sign), 135–136,

241
. (dot), 40, 42, 92
= = (double equal sign), 84
[[]] (double square

brackets), 85, 143, 241
= (equal sign), 70, 84
/ (forward slash), 43,

233–234
> (greater than) operator,

70
%/% (integer division

operator), 54
< (less than) operator, 70
%% (mod operator), 54
∗ (multiplication operator),

127, 267
! (NOT) operator, 71–72
() (parentheses), 43, 93
> (prompt) symbol, 3
" (quotation marks), 28, 43
∼ (tilde), 273, 372
_ (underscore), 40, 43

• A •
abline() function, 320,

331–332
abs() function, 54
addition, on dates and

times, 109–110
addmargins() function,

296
addPercent() function,

154, 155–162, 168–169
Advanced R (Wickham),

167, 393
aes() function, 365
aggregate() function,

266, 267, 366–367, 384
Agresti, Alan (author)

Categorical Data Analysis,
3rd Edition, 309

An Introduction to
Categorical Data
Analysis, 309

all() function, 72
alternatives, 92
analysis of variance

(ANOVA), 268, 313–314
Annals of Surgery

(Rutledge), 309
anonymous functions,

162, 264
ANOVA (analysis of

variance), 268, 313–314
anova() function, 322
any() function, 72, 203
aov() function, 313–314,

315, 320, 321
Applied Linear Statistical

Models, 5th Edition
(Kutner), 313, 322

apply() function, 185–191,
260–266, 296, 378

arguments
by, 63, 104
about, 157
adding, 157–159, 187–188
colClasses, 227
collapse, 86–87
digits, 38, 160
each, 65
format, 106–107
in functions, 37–39,
157–162
header, 228
length.out, 63–64, 65
mult, 158–159
nrows, 228
plot, 334–340
probs, 280
quote, 228
recycling, 76–77
replace, 245
sep, 86–87, 228
skip, 228
stringsAsFactors, 228
times, 65
type, 332

arithmetic
about, 51–52
basic operators, 51, 52–54
infinity, 58–60
mathematical functions,

52, 54–57
matrix operations, 52
recycling arguments,

76–77
vector operations, 52,

57–58, 60–76
array() function, 128–129

404 R For Dummies

array object, 240
arrays

creating, 128–129
summarizing, 261–263

as.character() function,
96–97

as.Dat() function, 104
as.data.frame()

function, 130, 296
as.Date() function, 105,

106–107
as.numeric() function,

96–97, 198
as.POSIXct() function,

107–108
as.POSIXlt() function,

107–108
assignment operator (<-),

27, 43, 80, 83
as.table() function, 296
attr() function, 116
attributes() function,

116
axes, 336
axis() function, 336
axis labels, adding to

graphs, 335

• B •
backslash (\), 224
backticks, 173
bar charts, 351, 352–353,

366–367
barchart() function, 347,

351, 352–353
base graphics, 347–348
bell curve, 300
binning, 369, 370
biocLite() function, 393
BioConductor, 392–393
bloggers, 14
box-and-whisker plot, 334,

351, 353–354
boxplot() function,

288–289, 289–290, 334

braces ({}), 156–157
brackets ([]), 66–67,

143–144, 241
browser() function,

201–202
bwplot() function, 351,

353–354
by argument, 63, 104

• C •
c() function, 28, 36, 64,

80–81, 86, 146, 262–263
case sensitivity, of names,

41
cat() function, 44, 165
categorical data, 94, 100
Categorical Data Analysis,

3rd Edition (Agresti),
309

categories, 281–283
cbind() function, 117,

139–140, 251
ceiling() function, 57
character variables, 287
character vectors

about, 62
assigning values to, 80
creating with more than

one element, 80–81
defined, 79
recycling, 87
using for text data, 79–84

charts, creating with
groups, 356

Cheat Sheet (website), 7
chisq.test() function,

310–311
chol() function, 127
choose() function, 54
chron package, 112
chxx() function, 401
class() function, 189
clipboard, 223–225
cloud() function, 352
cluster analysis, 212

code
open-source, 12–13
readability of, 40–45
structuring, 43–44

code, debugging
about, 193–194
calculating logit, 197
finding error sources,

197–198
generating messages,

202–204
looking inside functions,

198–202
reading errors and

warnings, 194–196
recognizing mistakes,

204–208
code editors

RStudio, 23–25. See also
RStudio

working with, 20–25
coef() function, 319–320,

321
colClasses argument, 227
collapse argument, 86–87
colMeans() function, 125,

186–188, 377–378
colnames() function,

121–123, 133–134
colon operator (:), 26, 63,

82, 267
color, of points, 331
colSums() function, 125,

186–188, 377–378
columns

adding totals, 377–378
applying functions on,

186–188
calculating summaries,

125
changing names, 122–123
transposing, 382

commands, issuing in RGui,
22

comments, adding, 45
compatibility, 14–15

405405 Index

complete.cases()
function, 246–247

complex() function, 54
Comprehensive R Archive

Network (CRAN), 45,
112, 226, 237, 362,
387–388

concatenating, 84–87
conditional totals, 381
confint() function, 320
continuation (+) symbol, 3
continuous variables, 43,

267, 273, 278–280
contrasts, setting, 315
contr.sum() function, 315
copy and paste, 223–225
cor() function, 292–293
correlation coefficient, 292
correlations, tracking,

290–293
cor.test() function, 293
countif() function, 381
counts, testing, 309–312
CRAN (Comprehensive

R Archive Network),
45, 112, 226, 237, 362,
387–388

CRAN task views, 388
CrossValidated (website),

14, 213–214
CSV files, reading data in,

225–228
cummax() function, 73, 75
cummin() function, 73, 75
cumprod() function, 73, 75
cumsum() function, 73
curve() function, 385–386
cut() function, 249–250

• D •
data

about, 275
adding calculated fields

to, 247–251
apply() function, 260–266

binning, 370
categorical, 94, 100
categories, 281–283
checking format of,

275–278
combining sets of, 251–257
continuous variables,

278–280
creating subsets of,

241–247
distributions, 283–286
extracting from plots,

289–290
formula interface, 266–267
getting into R, 221–231
getting out of R, 232–233
for ggplot2 graphics, 364
mapping, 364–365
merging sets of, 251–257
multiple variables, 287–

293
ordering, 257–260
plotting in groups, 354–

357
preparing, 277–278
reading from Excel,

229–230
reading in CSV files,

225–228
shaping, 268–273
smoothing, 370–371
sorting, 257–260, 380
structure for, 239–241
tables, 293–297

data frames
adding observations to,

136–138
adding variables to,

139–140
combining values in,

130–134
converting tables to,

295–296
creating from scratch,

132–133
defined, 112

doing arithmetic on
columns of, 247–248

manipulating values in,
134–140

sorting, 258–260
subsetting, 242–247

data types, 99–100
databases, 231
data.frame() function,

132–133, 137–138, 251
data.frame object, 240
dates

about, 103
adding time information

to, 107–108
comparing, 110–111
formats for, 106–107
formatting, 109
performing operations on,

109–112
working with, 104–105

datetime vectors, 62
DBI package, 231
dcast() function, 271, 272
debug() function, 198–200,

202
debugging code

about, 193–194
calculating logit, 197
finding error sources,

197–198
generating messages,

202–204
looking inside functions,

198–202
reading errors and

warnings, 194–196
recognizing mistakes,

204–208
debugonce() function, 199
default() function, 38
default functions, 169
default methods, 39, 167
density() function,

285–286
density plot, 285–286

406 R For Dummies

detach() function, 389
dev.off() function, 340,

341
diff() function, 73, 75–76,

77
differences

calculating, 75–76
evaluating, 315–318
testing, 305–307

digits argument, 38, 160
dim() function, 114, 115,

128–129
dimensions, adding,

127–130
dimnames() function, 123,

311
dir() function, 234–235
direction, testing, 307
discrete variables, 346
distributions

about, 283–286, 300
testing normality, 301–302,

304–305
using quantile plots,

302–304
dollar sign ($), 135–136, 241
dot (.), 40, 42, 92
double equal sign (==), 84
double-square brackets

([[]]), 85, 143, 241
dput() function, 217
duplicated() function,

245–246, 383

• E •
each argument, 65
Eclipse StatET (website), 20
edit() function, 221–223
editor, defined, 19
element, creating character

vectors with more than
one, 80–81

elements data, 225–226
Emacs Speaks Statistics

(website), 20

equal sign (=), 70, 84
errors. See debugging code
escape sequence, 224
example code (website), 7
example() function, 401
Excel (Microsoft)

compared with R, 377–386
Excel Solver, 386
reading data from, 229–230

exp() function, 54, 55
exponentials, calculating,

55
expressions, regular, 92–94
extensions, 13
extras (website), 7

• F •
faceted graphics. See also

graphics
about, 343–344
changing plot options,

348–351
creating lattice plots,

344–347
plot types, 351–354
plotting data in groups,

354–357
printing lattice plots,

357–359
saving lattice plots,

357–359
facet_grid() function,

372
facets, adding, 371–372
facet_wrap() function,

372
factor() function, 95, 100,

301–302
factor variables, 287
factorial() function, 54
factors

about, 62, 94–95
converting, 96–97
creating, 95–96
data types, 99–100

levels, 98–99
ordered, 99, 100–101
using, 276

file.create() function,
235

file.exists() function,
235

file.path() function, 234
file.remove() function,

235, 236
files, working with, 233–237
findFn() function, 212
Fisher, Ronald

(statistician), 290
fitted() function, 320,

331
fivenum() function, 280,

289
floor() function, 57
folders, working with,

233–237
font size, changing on

graphs, 349–350
for loop, 181, 182–184,

184–186
foreign package, 230–231
format argument, 106–107
format() function, 109,

378–380
formatting

dates, 109
numbers, 154, 378–380
times, 109

formula interface, 266–267
fortune() function, 47
fortunes package, 46, 47
forward slash (/), 43,

233–234
fragmentation, 184
frames, data

adding observations to,
136–138

adding variables to,
139–140

combining values in,
130–134

407407 Index

converting tables to,
295–296

creating from scratch,
132–133

defined, 112
doing arithmetic on

columns of, 247–248
manipulating values in,

134–140
sorting, 258–260
subsetting, 242–247

Free Software Foundation,
12

frequency table, 281
full outer join, 254
function objects, 154–155
functions
abline(), 320, 331–332
about, 35–36, 151
abs(), 54
addmargins(), 296
addPercent(), 154,

155–162, 168–169
advantages of, 151–152
aes(), 365
aggregate(), 266, 267,

366–367, 384
all(), 72
anonymous, 162, 264
anova(), 322
any(), 72, 203
aov(), 313–314, 315, 320,

321
apply(), 185–191,

260–266, 296, 378
applying on rows/

columns, 186–188
arguments in, 37–39,

157–162
array(), 128–129
as.character(), 96–97
as.Dat(), 104
as.data.frame(), 130,

296
as.Date(), 105, 106–107

as.numeric(), 96–97,
198

as.POSIXct(), 107–108
as.POSIXlt(), 107–108
as.table(), 296
attr(), 116
attributes(), 116
axis(), 336
barchart(), 347, 351,

352–353
biocLite(), 393
boxplot(), 288–289,

289–290, 334
browser(), 201–202
bwplot(), 351, 353–354
c(), 28, 36, 64, 80–81, 86,

146, 262–263
cat(), 44, 165
cbind(), 117, 139–140,

251
ceiling(), 57
chisq.test(), 310–311
chol(), 127
choose(), 54
chxx(), 401
class(), 189
cloud(), 352
coef(), 319–320, 321
colMeans(), 125,

186–188, 377–378
colnames(), 121–123,

133–134
colSums(), 125, 186–188,

377–378
complete.cases(),

246–247
complex(), 54
confint(), 320
contr.sum(), 315
cor(), 292–293
cor.test(), 293
countif(), 381
cummax(), 73, 75
cummin(), 73, 75
cumprod(), 73, 75

cumsum(), 73
curve(), 385–386
cut(), 249–250
data.frame(), 132–133,

137–138, 251
dcast(), 271, 272
debug(), 198–200, 202
debugonce(), 199
default, 169
default(), 38
defined, 26
density(), 285–286
detach(), 389
dev.off(), 340, 341
diff(), 73, 75–76, 77
dim(), 114, 115, 128–129
dimnames(), 123, 311
dir(), 234–235
dput(), 217
duplicated(), 245–246,

383
edit(), 221–223
example(), 401
exp(), 54, 55
facet_grid(), 372
facet_wrap(), 372
factor(), 95, 100,

301–302
factorial(), 54
file.create(), 235
file.exists(), 235
file.path(), 234
file.remove(), 235, 236
findFn(), 212
fitted(), 320, 331
fivenum(), 280, 289
floor(), 57
format(), 109, 378–380
fortune(), 47
geom_bar(), 365–366,

366–367, 369, 370
geom_boxplot(), 366
geom_histogram(), 366
geom_line(), 366, 368
geom_path(), 366, 368

408 R For Dummies

geom_point(), 366,
367–368, 369

geom_smooth(), 366
getRversion(), 43
getwd(), 233–234
ggplot(), 363–365
ggtitle(), 374
go.home(), 397
gr(), 127
grep(), 89–90
gsub(), 91–92, 93
head(), 82, 287
help with, 31
help.search(), 211
hist(), 283–286, 289–290,

334
histogram(), 301–302
history of, 39–40
identical(), 129,

248–249
if(), 380–381
ifelse(), 176–178,
195–196, 201–202, 381
%in%, 256–257
install.packages(),

46, 270, 362, 389, 391,
401

is.character(), 80
is.finite(), 58–60
is.foo(), 62
is.infinite(), 58–60
is.integer(), 62–63
is.na(), 60
is.nan(), 59, 60
is.numeric(), 63
jpg(), 341
ks.test(), 305
lapply(), 185–186,

188–191, 261, 263–264
legend(), 336
length(), 115, 131
levels(), 98–99
library(), 46–47, 93,

217, 270, 345, 362, 389,
390

lines(), 286, 331–333
list(), 141–142
list.dirs(), 235
list.files(), 234–235,

236
lm(), 318–320, 321, 322,

331
load(), 34
loadhistory(), 40
log(), 54, 55
logit(), 198, 201,

202–204
logitpercent(),

197–199, 201, 202–204
looking inside, 198–202
ls(), 32, 154–155, 397
margin.table(), 311
match(), 251, 255–256,

383–384
match.fun(), 163
matching, 163
mathematical, 52, 54–57
matrix(), 114–115,

128–129
max(), 73, 74, 187–188,

280
mean(), 278–279, 381
median(), 279
melt(), 271, 355
merge(), 251–255,

383–384
methods, 165–169
min(), 73, 74, 280, 378
mode(), 283
model.tables(), 316
months(), 105
names(), 83, 121–123,

133–134, 142, 290
na.omit(), 247
nchar(), 80
ncol(), 114, 115, 131
nested, 43, 97
nlevels(), 98
nlm(), 183
nrow(), 114, 115, 131
optim(), 183

optimize(), 183, 385–386
options(), 315
order(), 258–260, 380
ordered(), 100
pairs(), 291, 334
panel.barchart(), 347
panel.xyplot(), 347
par(), 350–351
paste(), 28, 31, 37, 42,

52, 84–87, 380
pdf(), 341
plot(), 4, 196, 291,

327–334, 335, 345
plot.default(), 327
png(), 341
points(), 329–332,

332–333
predict(), 323–324
priceCalculator(),

172–178, 182
print(), 29, 37–39, 42,

165–166, 167, 201, 358
print.data.frame(),

167
print.default(),

38–39, 42, 167
printif(), 379
prod(), 73, 74
profit(), 162
prop.table(), 282, 297
prop.test(), 309–310,

311
qqline(), 303
qqnorm(), 303
qqplot(), 302
quantile(), 280, 289
quarters(), 105
range(), 280
rbind(), 117, 121–123,

136–138, 139–140, 251
readClipboard(),

223–225
read.csv(), 204–205,

226–227, 229–230, 236,
241

read.delim(), 227–228

functions (continued)

409409 Index

readline(), 28
read.ssd(), 231
read.table(), 204–205,

224, 227–228, 232–233,
241

readWorksheet
FromFile(), 229–230

read.xport(), 231
rep(), 64–65
require(), 389
reshape(), 268–269
residuals(), 320
return(), 155–156
rm(), 32, 165
rnorm(), 215–216
round(), 56–57, 160,

161–162
rowMeans(), 125,

186–188, 377–378
rownames(), 121–123,

134, 136–138
rowSums(), 125, 186–188,

377–378
RSiteSearch(), 212–213
runif(), 215–216
R.Version(), 43
sample(), 216, 244–245
sapply(), 185–186,

188–191, 261, 263–264,
277, 378

save(), 33
savehistory(), 39, 43
save.image(), 33
scale_colour_

discrete(), 373
scale_shape_

discrete(), 373
scale_x_continuous(),

373
scoping, 163–165
sd(), 279
seq(), 63, 104, 105
seq_along(), 183–184
sessionInfo(), 217–218
set.seed(), 216, 245
setwd(), 233–234

shapiro.test(),
304–305, 312

signif(), 56, 161–162
solve(), 126
sort(), 88, 257–260, 380
source(), 29–31, 151
sprintf(), 154, 379–380
sqrt(), 51, 54
stat_bin(), 366–367,

369, 370
stat_boxplot(), 369
stat_identity(), 369,

371
stat_smooth(), 369,

370–371
stat_sum(), 369
str(), 61, 62, 82, 96–97,

115, 116, 131, 135–136,
146–148, 201, 205, 265,
278, 311

stripplot(), 352
strsplit(), 84–87, 206
sub(), 91–92
substr(), 89
sum(), 51–52, 72, 73, 74,

155, 280
sumif(), 381
summary(), 287, 315, 321,

322
svd(), 127
switch(), 180–181, 183,

188–189
Sys/time(), 110–111
t(), 126, 130, 382
table(), 100, 250–251,

281, 294
tail(), 82
tapply(), 264–266,

288–289, 305, 384–385
tempdir(), 235
tempfile(), 235
test(), 164–165
text(), 328, 336
toc(), 401
tolower(), 86
toupper(), 86

traceback(), 198, 199
transform(), 248–249,

277–278
trellis.device(), 359
trigonometric, 57
trunc(), 57
ts(), 112
t.test(), 305–308, 310
TukeyHSD(), 316
unclass(), 112
unique(), 85, 383
update.ada(), 211
update.packages(),

390–391
UseMethod(), 166–167
using, 154–155
var(), 279
vcov(), 320
vectorized, 36–37
vectorizing, 36–37
warning(), 203–204
weekdays(), 104, 105
which(), 69–70, 246
which.max(), 283
wilcox.test(), 305–308
wireframe(), 352
with(), 248–249, 265
within(), 140
write.csv(), 232–233,

236
write.table(), 232–233
xlab(), 372, 374
xtfrm(), 260
xyplot(), 345–346,

346–347, 351
ylab(), 372, 374

• G •
Gaussain distribution, 300
Generalized Reduced

Gradient Algorithm, 386
generic function system,

165
Gentleman, Robert (software

developer), 12

410 R For Dummies

geom_bar() function,
365–366, 366–367, 369,
370

geom_boxplot() function,
366

geom_histogram()
function, 366

geom_line() function,
366, 368

geom_path() function,
366, 368

geom_point() function,
366, 367–368, 369

geoms, 365–368
geom_smooth() function,

366
getRversion() function,

43
getwd() function, 233–234
ggplot() function, 363–365
ggplot2

about, 361
facets, 371–372
geoms, 363–368
installing, 361–362
layers, 362–363
loading, 361–362
options, 372, 374
resources for, 374
scales, 373
stats, 363–368, 369–371

ggplot2: Elegant Graphics
for Data Analysis
(Wickham), 374

ggtitle() function, 374
github, 392
global environment, 32, 163
Global Regular Expression

Print, 90
GNU (General Public

License (GPL)), 12, 13
go.home() function, 397
gr() function, 127
graphics

about, 327
base, 347–348

plot options and
arguments, 334–340

plot types, 327–334
saving to image files,

340–341
graphics, faceted

about, 343–344
changing plot options,

348–351
creating lattice plots,

344–347
plot types, 351–354
plotting data in groups,

354–357
printing lattice plots,

357–359
saving lattice plots,

357–359
greater than (>) operator, 70
grep() function, 89–90
grid graphics, 347–348
grouping, 93
groups, plotting data in,

354–357
gsub() function, 91–92, 93

• H •
head() function, 82, 287
header argument, 228
help. See also websites

Internet resources,
212–213

R community, 213–215
R Help files, 209–212
reproducible example,

215–218
help.search() function,

211
hist() function, 283–286,

289–290, 334
histogram() function,

301–302
histograms, 249, 283–285,

334
history, of functions, 39–40

Hoffman, Paul (author)
Perl For Dummies, 4th

Edition, 90
HSD (Tukey's Honest

Significant Difference)
test, 316

• I •
icons, explained, 6–7
IDE (Integrated

Development
Environment), 2

identical() function,
129, 248–249

identifier variables, 269
if() function, 380–381
if statements, 172–174,

175, 176, 203
ifelse() function, 176–

178, 195–196, 201–202,
381

if...else statement,
174–175, 178–179

Ihaka, Ross (softwar
developer), 12

image files, saving graphics
to, 340–341

%in% function, 256–257
indices

about, 65–66, 118
adding list components

using, 145
extracting values from

matrices, 118–120
using logical vectors as,

70–71
using names as, 123

infinity
missing values, 59–60
undefined outcomes, 59
using, 58–59

infix operator, 256–257
install.packages()

function, 46, 270, 362,
389, 391, 401

411411 Index

integer division operator
(%/%), 54

integer vectors, 62
Integrated Development

Environment (IDE), 2
interface, defined, 19
Internet resources

about, 212–213, 374
BioConductor, 393
bloggers, 14
Cheat Sheet, 7
CRAN, 112
CrossValidated, 14,

213–214
databases, 231
Eclipse StatET, 20
Emacs Speaks Statistics, 20
example code, 7
extras, 7
ggplot2, 374
github, 392
mailing lists, 214
R, 11, 12, 395
"R Installation and

Administration"
manual, 224, 393

R mailing lists, 13
Rattle, 20
Rcommander, 20
regular expressions, 94
R-Forge, 391–392
RODBC package, 14
ROracle package, 14
RStudio, 395
RTools, 392
Stack Exchange, 213–214
Stack Overflow, 14,

213–214
Statconn, 15
Tinn-R, 20
Twitter, 14, 215

interpreted language, 16–17
interval scaled data, 99–100
An Introduction to

Categorical Data
Analysis (Agresti), 309

inverting matrices, 126–127
is.character() function,

80
is.finite() function,

58–60
is.foo() function, 62
is.infinite() function,

58–60
is.integer() function,

62–63
is.na() function, 60
is.nan() function, 59, 60
is.numeric() function, 63

• J •
jpg() function, 341

• K•
keys, adding to graphs,

356–357
ks.test() function, 305
Kutner, Michael (author)

Applied Linear Statistical
Models, 5th Edition,
313, 322

• L •
labels, adding to graphs,

348–349
labels vector, 95–96
lapply() function,

185–186, 188–191, 261,
263–264

lattice graphics, 348
Lattice: Multivariate Data

Visualization with R
(Sarkar), 343

lattice package, 268,
343. See also faceted
graphics

layers, in ggplot2
graphics, 362–363

left outer join, 254
legend() function, 336
legends, 336
length() function, 115, 131
length.out argument,

63–64, 65
less than (<) operator, 70
levels() function, 98–99
levels vector, 95
lexicographic sorting, 88
library, defined, 46
library() function,

46–47, 93, 217, 270, 345,
362, 389, 390

line break (\n), 44
line charts, creating, 368
linear models, 318–322
lines

adding to plots, 329–332
reducing number of,

155–156
lines() function, 286,

331–333
Linux, options for, 19
list() function, 141–142
list object, 240
list.dirs() function, 235
list.files() function,

234–235, 236
lists

about, 140
changing components in,

144–146
combining, 146
creating, 141–142
extracting components

from, 142–144
literate programming, 237
lm() function, 318–320,

321, 322, 331
load() function, 34
loadhistory() function,

40
log() function, 54, 55
logarithms, calculating, 55
logic errors, 194

412 R For Dummies

logical statements,
combining, 71–72

logical vectors, 62, 68–72,
176–178

logit, calculating, 197
logit() function, 198, 201,

202–204
logitpercent() function,

197–199, 201, 202–204
lookup tables, 255–257,

383–384
looping, through values,

181–184
loops, 171
ls() function, 32, 154–155,

397
lubridate package, 112

• M •
Mac OS X, options for, 19
Mächler, Martin

(developer), 12
mailing lists, 214
Mann-Whitney U test, 307
margins, 296–297
margin.table() function,

311
match() function, 251,

255–256, 383–384
match.fun() function, 163
mathematical functions, 52,

54–57
matrix arithmetic, 126–127
matrix() function,

114–115, 128–129
matrix object, 240
matrix operations, 52, 114
matrix/matrices

calculating with, 123–130
combining vectors into, 117
creating, 114–115
creating data frames from,

130–131
extracting values from,

118–120

inverting, 126–127
multiplying, 127
naming rows/columns,

121–123
properties of, 115–116
replacing values in,

120–121
of scatterplots, 334
transposing, 126
using standard operations

with, 124–125
max() function, 73, 74,

187–188, 280
mean() function, 278–279,

381
measured variables, 269
median, defined, 279
median() function, 279
melt() function, 271, 355
merge() function, 251–255,

383–384
metadata, defined, 230
methods, 39, 165–169
Microsoft Excel

compared with R, 377–386
Excel Solver, 386
reading data from, 229–230

min() function, 73, 74, 280,
378

mirrors, 388
missing values, 59–60
mod operator (%%), 54
mode, 282
mode() function, 283
models

about, 313
analyzing variances,

313–314
linear, 318–322
predicting values, 323–324
setting contrasts, 315

model.tables() function,
316

molten dataset, 271
months() function, 105
mult argument, 158–159

multiple choice, 178–181
multiplication operator (*),

127, 267
multiplying matrices, 127
MySQL, 231

• N•
\n (line break), 44
named lists, 141–142
named vectors, 83–84
names

case sensitivity of, 41
using as indices, 123

names() function, 83,
121–123, 133–134, 142,
290

naming conventions
about, 40–42
matrix rows/columns,

121–123
values in vectors, 82–84

na.omit() function, 247
natural join, 254
nchar() function, 80
ncol() function, 114, 115,

131
negative indices, dropping

values using, 118–119
nested functions, 43, 97
nlevels() function, 98
nlm() function, 183
nominal data, 99
non-standard evaluation,

249
normal distribution, 300
NOT operator (!), 71–72
nrow() function, 114, 115,

131
nrows argument, 228
numbers

formatting, 154, 378–380
rounding, 56–57

numeric data, 99–100, 276
numeric vectors, 62
numerical variables, 287

413413 Index

• O •
object-oriented

programming (OOP),
167

objects, combining in lists,
140–148

observations
adding to data frames,

136–138
extracting, 135–136
naming, 133–134

ODBC (Open Database
Connectivity), 231

one-dimensional strip plot,
352

OOP (object-oriented
programming), 167

Open Database
Connectivity (ODBC),
231

open-source code, 12–13
operations, cumulating,

74–75
operators

basic, 51, 52–54
defined, 26
formula, 267

optim() function, 183
optimize() function, 183,

385–386
options() function, 315
order() function, 258–260,

380
order of operations, 53–54
ordered factors, 99, 100–101
ordered() function, 100
ordinal data, 99, 100

• P •
packages

finding, 45–46
installing, 46
loading, 46–47
tips for, 387–393

unloading, 46–47
paired data, comparing, 308
pairs() function, 291, 334
panel.barchart()

function, 347
panel.xyplot() function,

347
par() function, 350–351
parent environment, 164
parentheses (()), 43, 93
paste, copy and, 223–225
paste() function, 28, 31,

37, 42, 52, 84–87, 380
pattern, searching by, 89–90
PDF (probability density

function), 285
pdf() function, 341
Perl For Dummies, 4th

Edition (Hoffman), 90
pivot tables, 384–385
plot() function, 4, 196,

291, 327–334, 335, 345
plot.default() function,

327
plots

changing options, 348–351
controlling options and

arguments, 334–340
types of, 327–334

png() function, 341
points, adding to plots,

329–332
points() function,

329–332, 332–333
POSISct format, 108
position, searching by, 89
POSIX, 107
PostgreSQL, 231
predict() function,

323–324
priceCalculator()

function, 172–178, 182
print() function, 29,

37–39, 42, 165–166, 167,
201, 358

print.data.frame()
function, 167

print.default()
function, 38–39, 42, 167

printif() function, 379
printing lattice plots,

357–359
probability density function

(PDF), 285
probs argument, 280
prod() function, 73, 74
profit() function, 162
prompt (>) symbol, 3
properties

of matrices, 115–116
of vectors, 61–63

proportions
about, 296–297
calculating, 282
testing, 309–312

prop.table() function,
282, 297

prop.test() function,
309–310, 311

publications
Advanced R (Wckham),

167, 393
Annals of Surgery

(Rutledge), 309
Applied Linear Statistical

Models, 5th Edition
(Kutner), 313, 322

Categorical Data Analysis,
3rd Edition (Agresti), 309

ggplot2: Elegant Graphics
for Data Analysis
(Wickham), 374

An Introduction to
Categorical Data
Analysis (Agresti), 309

Lattice: Multivariate Data
Visualization with R
(Sarkar), 343

Perl For Dummies, 4th
Edition (Hoffman), 90

Statistics For Dummies, 2nd
Edition (Rumsey), 275,
279, 299, 300

p-value, 304

414 R For Dummies

• Q •
QQ (quantile-quantile) plot,

302–304
qqline() function, 303
qqnorm() function, 303
qqplot() function, 302
quantifiers, 93
quantile() function, 280,

289
quantile plots, 302–304
quantile-quantile (QQ) plot,

302–304
quantiles, 279–280, 288–289
quarters() function, 105
quartiles, calculating, 280
quotation marks ("), 28, 43
quote argument, 228

• R •
R. See also specific topics

about, 11, 19–20
benefits of using, 12–15
community for, 213–215
compared with Excel,

377–386
configuring, 396–397
defined, 1
downloading, 11
features of, 15–17
functions, 35–40
fundamentals of, 35–48
getting data into, 221–231
getting data out of, 232–233
history of, 12
installing, 395–396
mailing lists for, 13
readability of code, 40–45
starting first session, 25–28
website, 11, 12, 395

R Core Team, 12, 13, 214
R graphical user interface

(RGui)
about, 19, 20, 21–22

closing console, 22–23
issuing commands, 22

R Help files, 209–212
"R Installation and

Administration"
manual, 224, 393

R packages, 45
range, calculating, 280
range() function, 280
R.app, 19
ratio scaled data, 100
Rattle (website), 20
rbind() function, 117,

121–123, 136–138,
139–140, 251

Rcommander (website), 20
readClipboard()

function, 223–225
read.csv() function,

204–205, 226–227,
229–230, 236, 241

read.delim() function,
227–228

reading. See text
readline() function, 28
read.ssd() function, 231
read.table() function,

204–205, 224, 227–228,
232–233, 241

readWorksheetFrom
File() function,
229–230

read.xport() function,
231

recycling
arguments, 76–77
character vectors, 87

reference level, 315
regular expressions, 92–94
Remember icon, 6
rep() function, 64–65
repeating vectors, 64–65
replace argument, 245
reports, creating, 237
repositories, 45

reproducible example,
215–218

require() function, 389
reshape() function,

268–269
residuals() function, 320
return() function, 155–156
RExcel, 15
Reynolds, Penny

(biologist), 300
rfordummies package,

225–226, 392, 401–402
R-Forge, 391–392
RGui (R graphical user

interface)
about, 19, 20, 21–22
closing console, 22–23
issuing commands, 22

right outer join, 254
rm() function, 32, 165
rmarkdown package, 237
rnorm() function, 215–216
RODBC package, 14
ROracle package, 14
round() function, 56–57,

160, 161–162
rounding, 56–57, 161–162
rowMeans() function, 125,

186–188, 377–378
rownames() function,

121–123, 134, 136–138
rows

adding totals, 377–378
applying functions on,

186–188
calculating summaries, 125
changing names, 122–123
transposing, 382

rowSums() function, 125,
186–188, 377–378

RSiteSearch() function,
212–213

RStudio
about, 2, 19
configuring, 398–400

415415 Index

data import tool, 228
installing, 398
using, 23–25
website, 395

RTools, 392
Rumsey, Deborah J.

(author)
Statistics For Dummies,

2nd Edition, 275, 279,
299, 300

runif() function, 215–216
Rutledge, Robert (author)

Annals of Surgery, 309
R.Version() function, 43

• S •
sample() function, 216,

244–245
samples, comparing,

305–308
sapply() function,

185–186, 188–191, 261,
263–264, 277, 378

Sarkar, Deepayan (author)
Lattice: Multivariate Data

Visualization with R,
343

save() function, 33
savehistory() function,

39, 43
save.image() function, 33
saving

about, 33
graphics to image files,

340–341
lattice plots, 357–359

scale_colour_
discrete() function,
373

scales, 373
scale_shape_

discrete() function,
373

scale_x_continuous()
function, 373

scatterplots, 334, 345–346,
351, 367–368

scientific notation, 55–56
scoping, 163–165
scripts

creating, 152
opening files in RStudio,

23
sourcing a script, 29–31,

152
transforming, 153

sd() function, 279
semantic errors, 193
sep argument, 86–87, 228
seq() function, 63, 104, 105
seq_along() function,

183–184
sessionInfo() function,

217–218
set.seed() function, 216,

245
setwd() function, 233–234
shape, of points, 330
shapiro.test() function,

304–305, 312
Shapiro-Wilks test, 304
signif() function, 56,

161–162
skip argument, 228
smoothing data, 370–371
solve() function, 126
sort() function, 88, 257–

260, 380
sorting, 88, 257–260, 380
source() function, 29–31,

151
sourcing a script, 29–31,

152
special characters, 224
splitting strings, 84–87
sprintf() function, 154,

379–380
SQLite, 231
sqrt() function, 51, 54
Stack Exchange (website),

213–214

Stack Overflow (website),
14, 213–214

standard deviation, 279
standard operations, using

with matrices, 124–125
stat_bin() function,

366–367, 369, 370
stat_boxplot() function,

369
Statconn (website), 15
stat_identity()

function, 369, 371
statistics

about, 299
comparing samples,

305–308
distributions, 300–305
for ggplot2 graphics,

369–371
models, 313–324
testing counts and

proportions, 309–312
Statistics For Dummies, 2nd

Edition (Rumsey), 275,
279, 299, 300

stat_smooth() function,
369, 370–371

stat_sum() function, 369
str() function, 61, 62, 82,

96–97, 115, 116, 131,
135–136, 146–148, 201,
205, 265, 278, 311

string theory, 84–87
stringr package, 93
strings

combining, 84–87
defined, 79
splitting, 84–87

stringsAsFactors
argument, 228

stripplot() function, 352
strsplit() function,

84–87, 206
structure

of code, 43–44
of vectors, 61–62

416 R For Dummies

sub() function, 91–92
subsets

creating of data, 241–247
extracting of vectors,

81–82
substituting text, 91–92
substr() function, 89
subtraction, on dates and

times, 109–110
sum, calculating, 26
sum() function, 51–52, 72,

73, 74, 155, 280
sumif() function, 381
summary() function, 287,

315, 321, 322
svd() function, 127
Sweave, 237
switch() function,

180–181, 183, 188–189
syntax errors, 193
Sys/time() function,

110–111

• T •
t() function, 126, 130, 382
table() function, 100,

250–251, 281, 294
tables

analyzing, 310–312
converting to data frames,

295–296
creating, 281
creating two-way, 294–295
frequency, 281
lookup, 255–257, 383–384
margins, 296–297
pivot, 384–385
proportions, 296–297

tail() function, 82
tapply() function,

264–266, 288–289, 305,
384–385

Technical Stuff icon, 7
tempdir() function, 235

tempfile() function, 235
test() function, 164–165
text

changing case of, 86
concatenating, 85–87
finding inside text, 89–91
in graphs, 336
manipulating, 84–94
sorting, 88
substituting, 91–92
using character vectors

for, 79–84
text editor, 221–223
text() function, 328, 336
themes, in graphs, 350–351
three-dimensional

scatterplot, 352
three-dimensional surface

plot, 352
tilde (~), 273, 372
times

formatting, 109
performing operations on,

109–112
times argument, 65
Tinn-R (website), 20
Tip icon, 6
titles, adding to graphs,

335, 348–349
toc() function, 401
tolower() function, 86
toupper() function, 86
traceback() function,

198, 199
transform() function,

248–249, 277–278
trellis.device()

function, 359
trend lines, adding, 346–347
trigonometric functions, 57
trunc() function, 57
ts() function, 112
t.test() function, 305–308,

310
TukeyHSD() function, 316

Tukey's Honest Significant
Difference (HSD) test,
316

Turing complete, 16
Twitter (website), 14, 215
two-dimensional vectors.

See matrix/matrices
two-way tables, creating,

294–295
type argument, 332

• U •
unclass() function, 112
undefined outcomes, 59
underscore (_), 40, 43
unique() function, 85,

383
unique values, 277, 383
update.ada() function,

211
update.packages()

function, 390–391
UseMethod() function,

166–167

• V •
values

assigning to character
vectors, 80

calculating, 27–28
calculating in for loops,

182–184
changing in vectors, 67–68
combining in data frames,

130–134
comparing, 69–70
counting, 131
creating sample data with

random, 215–216
dropping using negative

indices, 118–119
duplicated, 383
extracting, 135–136

417417 Index

extracting from matrices,
118–120

extracting from vectors,
66–67

extracting with
dimensions, 129–130

looping through, 181–184
manipulating in data

frames, 134–140
missing, 59–60
naming in vectors, 82–84
predicting, 323–324
replacing in matrices,

120–121
storing, 27–28
unique, 277, 383
vectors and, 65–68

var() function, 279
variables

adding to data frames,
139–140

character, 287
continuous, 43, 267, 273,

278–280
counting, 131
discrete, 346
extracting, 135–136
factor, 287
identifier, 269
measured, 269
multiple, 287–293
naming, 133–134
numerical, 287

variances, analyzing,
313–314

vcov() function, 320
vector object, 240
vector operations, 52,

57–58, 60–76
vectorized functions, 36–37
vectorizing choices, 176–178
vectors

about, 15–16
calculating whole, 57–58
changing values in, 67–68
character. See character

vectors

combining, 64
combining into matrices,

117
creating, 63–64
creating data frames from,

132
datetime, 62
defined, 60
extracting subsets of, 81–82
extracting values from,

66–67
integer, 62
logical, 62, 68–72, 176–178
naming values in, 82–84
properties of, 61–63
repeating, 64–65
sorting, 257–258
summing, 74
using, 26–27
values and, 65–68

vignette, 45–46, 390

• W •
warning() function,

203–204
Warning! icon, 7
websites

about, 212–213, 374
BioConductor, 393
bloggers, 14
Cheat Sheet, 7
CRAN, 112
CrossValidated, 14,

213–214
databases, 231
Eclipse StatET, 20
Emacs Speaks Statistics, 20
example code, 7
extras, 7
ggplot2, 374
github, 392
mailing lists, 214
R, 11, 12, 395
"R Installation and

Administration"
manual, 224, 393

R mailing lists, 13
Rattle, 20
Rcommander, 20
regular expressions, 94
R-Forge, 391–392
RODBC package, 14
ROracle package, 14
RStudio, 395
RTools, 392
Stack Exchange, 213–214
Stack Overflow, 14,

213–214
Statconn, 15
Tinn-R, 20
Twitter, 14, 215

weekdays() function, 104,
105

which() function, 69–70,
246

which.max() function,
283

whole vectors, calculating,
57–58

Wickham, Hadley (author)
Advanced R, 167, 393
ggplot2: Elegant Graphics

for Data Analysis, 374
as a software developer,

93
Wilcoxon test, 305
wilcox.test() function,

305–308
Windows, options for, 19
wireframe() function,

352
with() function, 248–249,

265
within() function, 140
words

boundaries for, 85
searching for multiple, 91

working directory, 233–234
write.csv() function,

232–233, 236
write.table() function,

232–233
writing. See text

418 R For Dummies

• X •
x vector, 95
xlab() function, 372, 374
XLConnect package,

229–230
xtfrm() function, 260

xts package, 112
xyplot() function,

345–346, 346–347, 351

• Y •
ylab() function, 372, 374

• Z •
zoo package, 112

About the Authors
Andrie de Vries: Andrie started to use R in 2009 to analyze survey data, and
he has been continually impressed by the ability of the open‐source commu-
nity to innovate and create phenomenal software. During 2009 he also started
PentaLibra, a boutique market research and statistical analysis agency. After
getting increasingly involved in the R community, he joined Revolution
Analytics to help take R to enterprise customers, helping clients to deal with
the challenges of data science and big data. To maintain equilibrium in his
life, Andrie is studying and practicing yoga.

Joris Meys, MSc: Joris is a statistical consultant, R programmer and
R lecturer at Ghent University (Belgium). After earning a master’s degree in
biology, he worked for six years in environmental research and management
before starting an advanced master’s degree in statistical data analysis. Joris
writes packages for both specific projects and general implementation of
methods developed in his department, and he is the maintainer of several
packages on R‐Forge. He has co‐authored a number of scientific papers as a
statistical expert. To balance science with culture, Joris spends most of his
spare time playing saxophone in a couple of local bands.

Dedication
This book is for my wife, Annemarie, because of her encouragement, support,
and patience. Also for my niece, Tanya, who is really good at math and kept
reminding me of approaching deadlines! Finally, to my parents, for a lifetime of
encouragement.

—Andrie de Vries

I dedicate this book to the most important women in my life. For my mother,
because she made me the man I am. For Eva, because she loves the man I am.
For Amelie, because her little smile melts my heart every time. And for Granny,
because she rocks!

—Joris Meys

Authors’ Acknowledgments
This book is possible only because of the tremendous support we had from
our editorial team at Wiley. In particular, thanks to our project editors,
Elizabeth Kuball (first edition) and Katie Mohr (second edition).

Thank you to our technical editor, Gavin Simpson, for his thorough reading
and many helpful comments.

We wish to thank Patrick Burns, author of the R Inferno, for his enthusiastic
support and very detailed review of the first edition.

Thank you to the R core team for creating R, for maintaining CRAN, and for
your dedication to the R community in the form of mailing lists, documenta-
tion, and seminars. And thank you to the R community for creating thou-
sands of useful packages, writing blogs, and answering questions.

In this book, we use several packages by Hadley Wickham, whose contribu-
tion of ggplot graphics and other helpful packages like dplyr continues to be
an inspiration.

While writing this book we had very helpful support from a large number of
contributors to the R tag at Stack Overflow. Thank you to James (JD) Long,
David Winsemius, Ben Bolker, Joshua Ulrich, Barry Rowlingson, Roman
Luštrik, Joran Elias, Dirk Eddelbuettel, Richie Cotton, Colin Gillespie, Simon
Urbanek, Gabor Grotendieck, and everybody else who continue to make
Stack Overflow a great resource for the R community.

From Andrie: It is not an exaggeration to say that this book was partly
responsible for changing the course of my life. Learning R, contributing in the
open source community and writing this book all contributed to employment
at Revolution Analytics. I want to thank all my colleagues, in particular Derek
McCrae Norton, David Smith and Joseph Rickert.

From Joris: Thank you to the professors and my colleagues at the
Department of Mathematical Modeling, Statistics, and Bioinformatics at
Ghent University (Belgium) for the insightful discussions and ongoing sup-
port I received while writing this book.

Publisher’s Acknowledgments

Project Editor: Pat O’Brien

Technical Editor: Gavin Simpson

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Kumar Chellappan

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Changes in the Second Edition
	Conventions Used in This Book
	What You’re Not to Read
	Foolish Assumptions
	How This Book Is Organized
	Part I: Getting Started with R Programming
	Part II: Getting Down to Work in R
	Part III: Coding in R
	Part IV: Making the Data Talk
	Part V: Working with Graphics
	Part VI: The Part of Tens

	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I Getting Started with R Programming
	Chapter 1 Introducing R: The Big Picture
	Recognizing the Benefits of Using R
	It comes as free, open‐source code
	It runs anywhere
	It supports extensions
	It provides an engaged community
	It connects with other languages

	Looking At Some of the Unique Features of R
	Performing multiple calculations with vectors
	Processing more than just statistics
	Running code without a compiler

	Chapter 2 Exploring R
	Working with a Code Editor
	Exploring RGui
	Dressing up with RStudio

	Starting Your First R Session
	Saying hello to the world
	Doing simple math
	Using vectors
	Storing and calculating values
	Talking back to the user

	Sourcing a Script
	Echoing your work

	Navigating the Environment
	Manipulating the content of the environment
	Saving your work
	Retrieving your work

	Chapter 3 The Fundamentals of R
	Using the Full Power of Functions
	Vectorizing your functions
	Putting the argument in a function
	Making history

	Keeping Your Code Readable
	Following naming conventions
	Structuring your code
	Adding comments

	Getting from Base R to More
	Finding packages
	Installing packages
	Loading and unloading packages

	Part II Getting Down to Work in R
	Chapter 4 Getting Started with Arithmetic
	Working with Numbers, Infinity, and Missing Values
	Doing basic arithmetic
	Using mathematical functions
	Calculating whole vectors
	To infinity and beyond

	Organizing Data in Vectors
	Discovering the properties of vectors
	Creating vectors
	Combining vectors
	Repeating vectors

	Getting Values in and out of Vectors
	Understanding indexing in R
	Extracting values from a vector
	Changing values in a vector

	Working with Logical Vectors
	Comparing values
	Using logical vectors as indices
	Combining logical statements
	Summarizing logical vectors

	Powering Up Your Math
	Using arithmetic vector operations
	Recycling arguments

	Chapter 5 Getting Started with Reading and Writing
	Using Character Vectors for Text Data
	Assigning a value to a character vector
	Creating a character vector with more than one element
	Extracting a subset of a vector
	Naming the values in your vectors

	Manipulating Text
	String theory: Combining and splitting strings
	Sorting text
	Finding text inside text
	Substituting text
	Revving up with regular expressions

	Factoring in Factors
	Creating a factor
	Converting a factor
	Looking at levels
	Distinguishing data types
	Working with ordered factors

	Chapter 6 Going on a Date with R
	Working with Dates
	Presenting Dates in Different Formats
	Adding Time Information to Dates
	Formatting Dates and Times
	Performing Operations on Dates and Times
	Addition and subtraction
	Comparison of dates
	Extraction

	Chapter 7 Working in More Dimensions
	Adding a Second Dimension
	Discovering a new dimension
	Combining vectors into a matrix

	Using the Indices
	Extracting values from a matrix
	Replacing values in a matrix

	Naming Matrix Rows and Columns
	Changing the row and column names
	Using names as indices

	Calculating with Matrices
	Using standard operations with matrices
	Calculating row and column summaries
	Doing matrix arithmetic

	Adding More Dimensions
	Creating an array
	Using dimensions to extract values

	Combining Different Types of Values in a Data Frame
	Creating a data frame from a matrix
	Creating a data frame from scratch
	Naming variables and observations

	Manipulating Values in a Data Frame
	Extracting variables, observations, and values
	Adding observations to a data frame
	Adding variables to a data frame

	Combining Different Objects in a List
	Creating a list
	Extracting components from lists
	Changing the components in lists
	Reading the output of str() for lists
	Seeing the forest through the trees

	Part III Coding in R
	Chapter 8 Putting the Fun in Functions
	Moving from Scripts to Functions
	Making the script
	Transforming the script
	Using the function
	Reducing the number of lines

	Using Arguments the Smart Way
	Adding more arguments
	Conjuring tricks with dots
	Using functions as arguments

	Coping with Scoping
	Crossing the borders

	Dispatching to a Method
	Finding the methods behind the function
	Doing it yourself

	Chapter 9 Controlling the Logical Flow
	Making Choices with if Statements
	Doing Something Else with an if. . .else Statement
	Vectorizing Choices
	Looking at the problem
	Choosing based on a logical vector

	Making Multiple Choices
	Chaining if...else statements
	Switching between possibilities

	Looping Through Values
	Constructing a for loop
	Calculating values in a for loop

	Looping without Loops: Meeting the Apply Family
	Looking at the family features
	Meeting three of the members
	Applying functions on rows and columns
	Applying functions to listlike objects

	Chapter 10 Debugging Your Code
	Knowing What to Look For
	Reading Errors and Warnings
	Reading error messages
	Caring about warnings (or not)

	Going Bug Hunting
	Calculating the logit
	Knowing where an error comes from
	Looking inside a function

	Generating Your Own Messages
	Creating errors
	Creating warnings

	Recognizing the Mistakes You’re Sure to Make
	Starting with the wrong data
	Having your data in the wrong format

	Chapter 11 Getting Help
	Finding Information in the R Help Files
	When you know exactly what you’re looking for
	When you don’t know exactly what you’re looking for

	Searching the Web for Help with R
	Getting Involved in the R Community
	Discussing R on Stack Overflow and Stack Exchange
	Using the R mailing lists
	Tweeting about R

	Making a Minimal Reproducible Example
	Creating sample data with random values
	Producing minimal code
	Providing the necessary information

	Part IV Making the Data Talk
	Chapter 12 Getting Data into and out of R
	Getting Data into R
	Entering data in the R text editor
	Using the Clipboard to copy and paste
	Reading data in CSV files
	Reading data from Excel
	Working with other data types

	Getting Your Data out of R
	Working with Files and Folders
	Understanding the working directory
	Manipulating files

	Chapter 13 Manipulating and Processing Data
	Deciding on the Most Appropriate Data Structure
	Creating Subsets of Your Data
	Understanding the three subset operators
	Understanding the five ways of specifying the subset
	Subsetting data frames

	Adding Calculated Fields to Data
	Doing arithmetic on columns of a data frame
	Using with and transform to improve code readability
	Creating subgroups or bins of data

	Combining and Merging Data Sets
	Creating sample data to illustrate merging
	Using the merge() function
	Working with lookup tables

	Sorting and Ordering Data
	Sorting vectors
	Sorting data frames

	Traversing Your Data with the Apply Functions
	Using the apply() function to summarize arrays
	Using lapply() and sapply() to traverse a list or data frame
	Using tapply() to create tabular summaries

	Getting to Know the Formula Interface
	Whipping Your Data into Shape
	Understanding data in long and wide formats
	Getting started with the reshape2 package
	Melting data to long format
	Casting data to wide format

	Chapter 14 Summarizing Data
	Starting with the Right Data
	Using factors or numeric data
	Counting unique values
	Preparing the data

	Describing Continuous Variables
	Talking about the center of your data
	Describing the variation
	Checking the quantiles

	Describing Categories
	Counting appearances
	Calculating proportions
	Finding the center

	Describing Distributions
	Plotting histograms
	Using frequencies or densities

	Describing Multiple Variables
	Summarizing a complete dataset
	Plotting quantiles for subgroups
	Tracking correlations

	Working with Tables
	Creating a two‐way table
	Converting tables to a data frame
	Looking at margins and proportions

	Chapter 15 Testing Differences and Relations
	Taking a Closer Look at Distributions
	Observing beavers
	Testing normality graphically
	Using quantile plots
	Testing normality in a formal way

	Comparing Two Samples
	Testing differences
	Comparing paired data

	Testing Counts and Proportions
	Checking out proportions
	Analyzing tables
	Extracting test results

	Working with Models
	Analyzing variances
	Evaluating the differences
	Modeling linear relations
	Evaluating linear models
	Predicting new values

	Part V Working with Graphics
	Chapter 16 Using Base Graphics
	Creating Different Types of Plots
	Getting an overview of plot
	Adding points and lines to a plot
	Different plot types

	Controlling Plot Options and Arguments
	Adding titles and axis labels
	Changing plot options
	Putting multiple plots on a single page

	Saving Graphics to Image Files

	Chapter 17 Creating Faceted Graphics with Lattice
	Creating a Lattice Plot
	Loading the lattice package
	Making a lattice scatterplot
	Adding trend lines

	Changing Plot Options
	Adding titles and labels
	Changing the font size of titles and labels
	Using themes to modify plot options

	Plotting Different Types
	Making a bar chart
	Making a box‐and‐whisker plot

	Plotting Data in Groups
	Using data in tall format
	Creating a chart with groups
	Adding a key

	Printing and Saving a Lattice Plot
	Assigning a lattice plot to an object
	Printing a lattice plot in a script
	Saving a lattice plot to file

	Chapter 18 Looking At ggplot 2 Graphics
	Installing and Loading ggplot2
	Looking At Layers
	Using Geoms and Stats
	Defining what data to use
	Mapping data to plot aesthetics
	Getting geoms

	Sussing Stats
	Adding Facets, Scales, and Options
	Adding facets
	Changing options

	Getting More Information

	Part VI The Part of Tens
	Chapter 19 Ten Things You Can Do in R That You Would’ve Done in Microsoft Excel
	Adding Row and Column Totals
	Formatting Numbers
	Sorting Data
	Making Choices with If
	Calculating Conditional Totals
	Transposing Columns or Rows
	Finding Unique or Duplicated Values
	Working with Lookup Tables
	Working with Pivot Tables
	Using the Goal Seek and Solver

	Chapter 20 Ten Tips on Working with Packages
	Poking Around the Nooks and Crannies of CRAN
	Finding Interesting Packages
	Installing Packages
	Loading Packages
	Reading the Package Manual and Vignette
	Updating Packages
	Forging Ahead with R‐Forge
	Getting packages from github
	Conducting Installations from BioConductor
	Reading the R Manual

	Appendix A: Installing R and RStudio
	Installing and Configuring R
	Installing R
	Configuring R

	Installing and Configuring RStudio
	Installing RStudio
	Configuring RStudio

	Appendix B: The r fordummies Package
	Using rfordummies

	Index
	EULA

