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Preface
As a very powerful open source language, R is rapidly becoming a standard in the 
scientific community, particularly for data analysis and data visualization. This is 
related mainly to the vast availability of library packages, which empower the user 
to apply this software in virtually any field of scientific research. In relation to data 
visualization, R provides a rich palette of tools, and among the packages available, 
ggplot2 is fast becoming one of the more sophisticated and advanced packages. Its 
use is constantly growing in the community of R users. This increasing interest is 
particularly related to the ggplot2 capability of creating high-quality plots with a  
very appealing layout and coding that is sufficiently easy to use.

As a scripting language, R may be difficult to master, but in this book, you will 
find a large number of examples and tips as well as detailed explanations, which 
will provide you with all the necessary tools to understand the concepts behind 
ggplot2 in depth and concretely apply them to solve everyday problems related 
to data visualization. You will see step-by-step descriptions, ranging from the 
basic applications of ggplot2 in realizing simple plots up to the realization of more 
advanced and sophisticated plots. We will also dig into controlling plot details, 
which will enable you to perform a full customization of the plot you intend to 
realize. Finally, we will also see more special applications of ggplot2, for instance, 
regarding how to include map data in plots, realize heatmaps, and realize matrix 
scatterplots using additional packages based on ggplot2.

By the end of this book, you will not only have learned how to use the full potential 
of ggplot2, but you will also be able to generate publication-quality plots. Moreover, 
you will also be able to use this book and its examples as a reference for daily 
questions concerning the use of ggplot2 for data representation.
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What this book covers
Chapter 1, Graphics in R, gets you up and running with R and ggplot2 by providing 
you with a description of the R installation as well as the integrated development 
environment you may want to use in your daily use of R. You will also be introduced 
to the general ideas behind the different packages available for data visualization, 
graphics and lattice, and you will also see a few examples of how different plots 
realized with these packages can be realized with ggplot2. This will provide you 
with a quick reference to the similarities and differences among the different versions 
of code if you are already familiar with the other packages.

Chapter 2, Getting Started, provides you with an easy start to ggplot2 and the different 
plots that can be realized. We will see different plot examples using the qplot (quick 
plot) function, which provides you with a simplified tool to easily generate plots. 
In this chapter, we will go through histograms, density plots, bar charts, boxplots, 
scatterplots, time series, and dot charts.

Chapter 3, The Layers and Grammar of Graphics, gives you a general introduction to the 
different components on which the grammar of graphics is based. Such components 
are, for instance, the scales, coordinate system, faceting, aesthetic, and geometry. 
Understanding these is crucial for the use of the full potential of this package since 
only understanding the layered grammar can provide you with the right overview of 
how the different components are connected to each other. In this chapter, you will 
also find a series of tables summarizing the options available for function arguments, 
such as geometry and statistics, and they are intended to provide you with a 
reference for consultation when needed.

Chapter 4, Advanced Plotting Techniques, presents a few more advanced features 
and plots that can be realized in ggplot2. Building on the knowledge you will have 
developed, we will see how the grammar components can be combined to generate 
more complex plots. You will see how more advanced aesthetic mapping can be 
realized, for instance, using variables generated from statistical analysis or how 
components such as text and reference lines can be included on a plot. We will then 
also see how polar coordinate systems can be used to generate pie charts and other 
types of plots.

Chapter 5, Controlling Plot Details, shows you how you can modify the plot details as 
well as the default plot layout. You will see how we can modify the plot title, axis,  
and legend appearance and position. Moreover, you will also see how themes  
can be used to completely customize the plot appearance without affecting  
the data represented.
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Chapter 6, Plot Output, shows you how to modify and organize multiple plots  
after their realization. We will see how to reproduce multiple plots next to each  
other and save the plots in different file formats from the R console, as well as  
using scripting commands.

Chapter 7, Special Applications of ggplot2, shows you examples of the special 
application of ggplot2 and other packages based on ggplot2. We will see how we 
can include maps in plots as well as add data to such maps; we will see how we can 
draw scatterplot matrices to represent the relationships between different variables. 
Finally, we will see how we can realize heat maps.

What you need for this book
To get the most out of this book, you will need to install R on your computer, as well 
as the ggplot2 package. Additional packages, such as ggmap and GGally, will also 
be used in Chapter 7, Special Applications of ggplot2. In Chapter 1, Graphics in R, you 
will find a detailed description of how you can install R and additional packages 
on your computer. You will also find additional information concerning additional 
programming interfaces such as RStudio.

Who this book is for
This book is perfect for R programmers who are interested in learning to use ggplot2 
for a different type of data visualization—from the basics up to using more advanced 
applications, such as faceting and grouping. Since this book will not cover the basics of 
R commands and objects, you should have a basic understanding of the R language.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " 
The qplot (quick plot) function is a basic high-level function of ggplot2"

Any command-line input or output is written as follows:

plot(age~circumference, data=Orange)
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New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "For 
instance, the Animation and Documentary types have a much smaller sample  
size compared with the other categories"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/3529OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Graphics in R
The objective of this chapter is to provide you with a general overview of the 
plotting environments in R and of the most efficient way of coding your graphs in 
it. We will go through the most important Integrated Development Environment 
(IDE) available for R as well as the most important packages available for plotting 
data; this will help you to get an overview of what is available in R and how those 
packages are compared with ggplot2. Finally, we will dig deeper into the grammar 
of graphics, which represents the basic concepts on which ggplot2 was designed. 
But first, let's make sure that you have a working version of R on your computer.

Getting ggplot2 up and running
If you have this book in your hands, it is very likely you already have a working 
version of R installed on your computer. If this is not the case, you can download the 
most up-to-date version of R from the R project website (http://www.r-project.
org/). There, you will find a direct connection to the Comprehensive R Archive 
Network (CRAN), a network of FTP and web servers around the world that store 
identical, up-to-date versions of code and documentation for R. In addition to access 
to the CRAN servers, on the website of the R project, you may also find information 
about R, a few technical manuals, the R journal, and details about the packages 
developed for R and stored in the CRAN repositories.

At the time of writing, the current version of R is 3.1.2. If you have already installed 
R on your computer, you can check the actual version with the R.Version() code, or 
for a more concise result, you can use the R.version.string code that recalls only 
part of the output of the previous function.
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Packages in R
In the next few pages of this chapter, we will quickly go through the most important 
visualization packages available in R, so in order to try the code, you will also 
need to have additional packages as well as ggplot2 up and running in your R 
installation. In the basic R installation, you will already have the graphics package 
available and loaded in the session; the lattice package is already available among 
the standard packages delivered with the basic installation, but it is not loaded by 
default. ggplot2, on the other hand, will need to be installed. You can install and 
load a package with the following code:

> install.packages("ggplot2")

> library(ggplot2)

Keep in mind that every time R is started, you will need to load the package  
you need with the library(name_of_the_package) command to be able to use 
the functions contained in the package. In order to get a list of all the packages 
installed on your computer, you can use the call to the library() function without 
arguments. If, on the other hand, you would like to have a list of the packages 
currently loaded in the workspace, you can use the search() command. One more 
function that can turn out to be useful when managing your library of packages is 
.libPaths(), which provides you with the location of your R libraries. This function 
is very useful to trace back the package libraries you are currently using, if any, in 
addition to the standard library of packages, which on Windows is located by default 
in a path of the kind C:/Program Files/R/R-3.1.2/library.

The following list is a short recap of the functions just discussed:

.libPaths()   # get library location
library()   # see all the packages installed
search()   # see the packages currently loaded

The Integrated Development Environment
You will definitely be able to run the code and the examples shown in this book 
directly from the standard R Graphical User Interface (GUI), especially if you are 
frequently working with R in more complex projects or simply if you like to keep an 
eye on the different components of your code, such as scripts, plots, and help pages, 
you may well think about the possibility of using an IDE. The number of specific 
IDEs that get integrated with R is still limited, but some of them are quite efficient, 
well-designed and open source.
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RStudio
RStudio (http://www.rstudio.com/) is a very nice and advanced programming 
environment developed specifically for R, and this would be my recommended 
choice of IDE as the R programming environment in most cases. It is available for all 
the major platforms (Windows, Linux, and Mac OS X), and it can be run on a local 
machine, such as your computer, or even over the Web, using RStudio Server. With 
RStudio Server, you can connect a browser-based interface (the RStudio IDE) to a 
version of R running on a remote Linux server.

RStudio allows you to integrate several useful functionalities, in particular if you use 
R for a more complex project. The way the software interface is organized allows 
you to keep an eye on the different activities you very often deal with in R, such as 
working on different scripts, overviewing the installed packages, as well as having 
easy access to the help pages and the plots generated. This last feature is particularly 
interesting for ggplot2 since in RStudio, you will be able to easily access the history 
of the plots created instead of visualizing only the last created plot, as is the case in 
the default R GUI. One other very useful feature of RStudio is code completion. You 
can, in fact, start typing a comment, and upon pressing the Tab key, the interface will 
provide you with functions matching what you have written . This feature will turn 
out to be very useful in ggplot2, so you will not necessarily need to remember all the 
functions and you will also have guidance for the arguments of the functions as well.

In Figure 1.1, you can see a screenshot from the current version of RStudio (v 0.98.1091):

Figure 1.1: This is a screenshot of RStudio on Windows 8
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The environment is composed of four different areas:

•	 Scripting area: In this area you can open, create, and write the scripts.
•	 Console area: This area is the actual R console in which the commands are 

executed. It is possible to type commands directly here in the console or write 
them in a script and then run them on the console (I would recommend the 
last option).

•	 Workspace/History area: In this area, you can find a practical summary of 
all the objects created in the workspace in which you are working and the 
history of the typed commands.

•	 Visualization area: Here, you can easily load packages, open R help files, 
and, even more importantly, visualize plots.

The RStudio website provides a lot of material on how to use the program, such  
as manuals, tutorials, and videos, so if you are interested, refer to the website for 
more details.

Eclipse and StatET
Eclipse (http://www.eclipse.org/) is a very powerful IDE that was mainly 
developed in Java and initially intended for Java programming. Subsequently, 
several extension packages were also developed to optimize the programming 
environment for other programming languages, such as C++ and Python. Thanks 
to its original objective of being a tool for advanced programming, this IDE is 
particularly intended to deal with very complex programming projects, for instance, 
if you are working on a big project folder with many different scripts. In these 
circumstances, Eclipse could help you to keep your programming scripts in order 
and have easy access to them. One drawback of such a development environment is 
probably its big size (around 200 MB) and a slightly slow-starting environment.

Eclipse does not support interaction with R natively, so in order to be able to write 
your code and execute it directly in the R console, you need to add StatET to your 
basic Eclipse installation. StatET (http://www.walware.de/goto/statet) is a 
plugin for the Eclipse IDE, and it offers a set of tools for R coding and package 
building. More detailed information on how to install Eclipse and StatET and how 
to configure the connections between R and Eclipse/StatET can be found on the 
websites of the related projects.
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Emacs and ESS
Emacs (http://www.gnu.org/software/emacs/) is a customizable text editor 
and is very popular, particularly in the Linux environment. Although this text 
editor appears with a very simple GUI, it is an extremely powerful environment, 
particularly thanks to the numerous keyboard shortcuts that allow interaction with 
the environment in a very efficient manner after getting some practice. Also, if the 
user interface of a typical IDE, such as RStudio, is more sophisticated and advanced, 
Emacs may be useful if you need to work with R on systems with a poor graphical 
interface, such as servers and terminal windows. Like Eclipse, Emacs does not 
support interfacing with R by default, so you will need to install an add-on package 
on your Emacs that will enable such a connection, Emacs Speaks Statistics (ESS). 
ESS (http://ess.r-project.org/) is designed to support the editing of scripts and 
interacting with various statistical analysis programs including R. The objective of 
the ESS project is to provide efficient text editor support to statistical software, which 
in some cases comes with a more or less defined GUI, but for which the real power of 
the language is only accessible through the original scripting language.

The plotting environments in R
R provides a complete series of options to realize graphics, which makes it quite 
advanced with regard to data visualization. Along the next few sections of this 
chapter, we will go through the most important R packages for data visualization 
by quickly discussing some high-level differences and analogies. If you already 
have some experience with other R packages for data visualization, in particular 
graphics or lattice, the following sections will provide you with some references 
and examples of how the code used in such packages appears in comparison with 
that used in ggplot2. Moreover, you will also have an idea of the typical layout of 
the plots created with a certain package, so you will be able to identify the tool used 
to realize the plots you will come across.

The core of graphics visualization in R is within the grDevices package, which 
provides the basic structure of data plotting, such as the colors and fonts used in the 
plots. Such a graphic engine was then used as the starting point in the development 
of more advanced and sophisticated packages for data visualization, the most 
commonly used being graphics and grid.

The graphics package is often referred to as the base or traditional graphics 
environment since, historically, it was the first package for data visualization 
available in R, and it provides functions that allow the generation of complete plots.
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The grid package, on the other hand, provides an alternative set of graphics tools. 
This package does not directly provide functions that generate complete plots, so it 
is not frequently used directly to generate graphics, but it is used in the development 
of advanced data visualization packages. Among the grid-based packages, the most 
widely used are lattice and ggplot2, although they are built by implementing 
different visualization approaches—Trellis plots in the case of lattice and the 
grammar of graphics in the case of ggplot2. We will describe these principles 
in more detail in the coming sections. A diagram representing the connections 
between the tools just mentioned is shown in Figure 1.2. Just keep in mind that this 
is not a complete overview of the packages available but simply a small snapshot 
of the packages we will discuss. Many other packages are built on top of the tools 
just mentioned, but in the following sections, we will focus on the most relevant 
packages used in data visualization, namely graphics, lattice, and, of course, 
ggplot2. If you would like to get a more complete overview of the graphics tools 
available in R, you can have a look at the web page of the R project summarizing 
such tools, http://cran.r-project.org/web/views/Graphics.html.

grDevices

gridgraphics

lattice ggplot2

Trellis Graphics
principle

Grammar of Graphics
principles

Figure 1.2: This is an overview of the most widely used R packages for graphics

In order to see some examples of plots in graphics, lattice and ggplot2, we will 
go through a few examples of different plots over the following pages. The objective 
of providing these examples is not to do an exhaustive comparison of the three 
packages but simply to provide you with a simple comparison of how the different 
codes as well as the default plot layouts appear for these different plotting tools. 
For these examples, we will use the Orange dataset available in R; to load it in the 
workspace, simply write the following code:

>data(Orange)
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This dataset contains records of the growth of orange trees. You can have a look at 
the data by recalling its first lines with the following code:

>head(Orange)

You will see that the dataset contains three columns. The first one, Tree, is an ID 
number indicating the tree on which the measurement was taken, while age and 
circumference refer to the age in days and the size of the tree in millimeters, 
respectively. If you want to have more information about this data, you can have  
a look at the help page of the dataset by typing the following code:

?Orange

Here, you will find the reference of the data as well as a more detailed description of 
the variables included.

Standard graphics and grid-based 
graphics
The existence of these two different graphics environments brings these questions  
to most users' minds—which package to use and under which circumstances? For 
simple and basic plots, where the data simply needs to be represented in a standard 
plot type (such as a scatter plot, histogram, or boxplot) without any additional 
manipulation, then all the plotting environments are fairly equivalent. In fact, it 
would probably be possible to produce the same type of plot with graphics as well 
as with lattice or ggplot2. Nevertheless, in general, the default graphic output of 
ggplot2 or lattice will be most likely superior compared to graphics since both 
these packages are designed considering the principles of human perception deeply 
and to make the evaluation of data contained in plots easier.

When more complex data should be analyzed, then the grid-based packages, 
lattice and ggplot2, present a more sophisticated support in the analysis of 
multivariate data. On the other hand, these tools require greater effort to become 
proficient because of their flexibility and advanced functionalities. In both cases, 
lattice and ggplot2, the package provides a full set of tools for data visualization, 
so you will not need to use grid directly in most cases, but you will be able to do all 
your work directly with one of those packages.
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Graphics and standard plots
The graphics package was originally developed based on the experience of the 
graphics environment in R. The approach implemented in this package is based on 
the principle of the pen-on-paper model, where the plot is drawn in the first function 
call and once content is added, it cannot be deleted or modified.

In general, the functions available in this package can be divided into high-level and 
low-level functions. High-level functions are functions capable of drawing the actual 
plot, while low-level functions are functions used to add content to a graph that was 
already created with a high-level function.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Let's assume that we would like to have a look at how age is related to the 
circumference of the trees in our dataset Orange; we could simply plot the data on a 
scatter plot using the high-level function plot() as shown in the following code:

plot(age~circumference, data=Orange)

This code creates the graph in Figure 1.3. As you would have noticed, we obtained 
the graph directly with a call to a function that contains the variables to plot in the 
form of y~x, and the dataset to locate them. As an alternative, instead of using a 
formula expression, you can use a direct reference to x and y, using code in the form 
of plot(x,y). In this case, you will have to use a direct reference to the data instead 
of using the data argument of the function. Type in the following code:

plot(Orange$circumference, Orange$age)
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The preceding code results in the following output:

Figure 1.3: Simple scatterplot of the dataset Orange using graphics

For the time being, we are not interested in the plot's details, such as the title or the 
axis, but we will simply focus on how to add elements to the plot we just created. For 
instance, if we want to include a regression line as well as a smooth line to have an 
idea of the relation between the data, we should use a low-level function to add the 
just-created additional lines to the plot; this is done with the lines() function:

plot(age~circumference, data=Orange)   ###Create basic plot

abline(lm(Orange$age~Orange$circumference), col="blue")

lines(loess.smooth(Orange$circumference,Orange$age), col="red")
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The graph generated as the output of this code is shown in Figure 1.4:

Figure 1.4: This is a scatterplot of the Orange data with a regression line  
(in blue) and a smooth line (in red) realized with graphics

As illustrated, with this package, we have built a graph by first calling one function, 
which draws the main plot frame, and then additional elements were included using 
other functions. With graphics, only additional elements can be included in the 
graph without changing the overall plot frame defined by the plot() function. This 
ability to add several graphical elements together to create a complex plot is one of 
the fundamental elements of R, and you will notice how all the different graphical 
packages rely on this principle. If you are interested in getting other code examples 
of plots in graphics, there is also some demo code available in R for this package, and 
it can be visualized with demo(graphics).

In the coming sections, you will find a quick reference to how you can generate a 
similar plot using graphics and ggplot2. As will be described in more detail later 
on, in ggplot2, there are two main functions to realize plots, ggplot() and qplot(). 
The function qplot() is a wrapper function that is designed to easily create basic 
plots with ggplot2, and it has a similar code to the plot() function of graphics. 
Due to its simplicity, this function is the easiest way to start working with ggplot2, 
so we will use this function in the examples in the following sections. The code in 
these sections also uses our example dataset Orange; in this way, you can run the 
code directly on your console and see the resulting output.
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Scatterplots with individual data points
To generate the plot generated using graphics, use the following code:

plot(age~circumference, data=Orange)

The preceding code results in the following output:

To generate the plot using ggplot2, use the following code:

qplot(circumference,age, data=Orange)
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The preceding code results in the following output:
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Scatterplots with the line of one tree
To generate the plot using graphics, use the following code:

plot(age~circumference, data=Orange[Orange$Tree==1,], type="l")

The preceding code results in the following output:
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To generate the plot using ggplot2, use the following code:

qplot(circumference,age, data=Orange[Orange$Tree==1,],  
geom="line")

The preceding code results in the following output:
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Scatterplots with the line and points of  
one tree
To generate the plot using graphics, use the following code:

plot(age~circumference, data=Orange[Orange$Tree==1,], type="b")

The preceding code results in the following output:
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To generate the plot using ggplot2, use the following code:

qplot(circumference,age, data=Orange[Orange$Tree==1,],  
geom=c("line","point"))

The preceding code results in the following output:
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Boxplots of the orange dataset
To generate the plot using graphics, use the following code:

boxplot(circumference~Tree, data=Orange)

The preceding code results in the following output:
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To generate the plot using ggplot2, use the following code:

qplot(Tree,circumference, data=Orange, geom="boxplot")

The preceding code results in the following output:
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Boxplots with individual observations
To generate the plot using graphics, use the following code:

boxplot(circumference~Tree, data=Orange)

points(circumference~Tree, data=Orange)

The preceding code results in the following output:
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To generate the plot using ggplot2, use the following code:

qplot(Tree,circumference, data=Orange, geom=c("boxplot","point"))

The preceding code results in the following output:
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Histograms of the orange dataset
To generate the plot using graphics, use the following code:

hist(Orange$circumference)

The preceding code results in the following output:
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To generate the plot using ggplot2, use the following code:

qplot(circumference, data=Orange, geom="histogram")

The preceding code results in the following output:
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Histograms with the reference line at the 
median value in red
To generate the plot using graphics, use the following code:

hist(Orange$circumference)

abline(v=median(Orange$circumference), col="red")

The preceding code results in the following output:
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To generate the plot using ggplot2, use the following code:

qplot(circumference, data=Orange,  
geom="histogram")+geom_vline(xintercept =  
median(Orange$circumference),  
colour="red")

The preceding code results in the following output:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 25 ]

Lattice and Trellis plots
Along with with graphics, the base R installation also includes the lattice 
package. This package implements a family of techniques known as Trellis graphics, 
proposed by William Cleveland to visualize complex datasets with multiple 
variables. The objective of those design principles was to ensure the accurate and 
faithful communication of data information. These principles are embedded into the 
package and are already evident in the default plot design settings. One interesting 
feature of Trellis plots is the option of multipanel conditioning, which creates multiple 
plots by splitting the data on the basis of one variable. A similar option is also 
available in ggplot2, but in that case, it is called faceting.

In lattice, we also have functions that are able to generate a plot with one single 
call, but once the plot is drawn, it is already final. Consequently, plot details as well as 
additional elements that need to be included in the graph, need to be specified already 
within the call to the main function. This is done by including all the specifications in 
the panel function argument. These specifications can be included directly in the main 
body of the function or specified in an independent function, which is then called; this 
last option usually generates more readable code, so this will be the approach used 
in the following examples. For instance, if we want to draw the same plot we just 
generated in the previous section with graphics, containing the age and circumference 
of trees and also the regression and smooth lines, we need to specify such elements 
within the function call. You may see an example of the code here; remember that 
lattice needs to be loaded in the workspace:

require(lattice)              ##Load lattice if needed

myPanel <- function(x,y){

panel.xyplot(x,y)            # Add the observations 

panel.lmline(x,y,col="blue")   # Add the regression

panel.loess(x,y,col="red")      # Add the smooth line

}

xyplot(age~circumference, data=Orange, panel=myPanel)
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This code produces the plot in Figure 1.5:

Figure 1.5: This is a scatter plot of the Orange data with the regression line (in blue) and  
the smooth line (in red) realized with lattice

As you would have noticed, taking aside the code differences, the plot generated 
does not look very different from the one obtained with graphics. This is because 
we are not using any special visualization feature of lattice. As mentioned earlier, 
with this package, we have the option of multipanel conditioning, so let's take a look 
at this. Let's assume that we want to have the same plot but for the different trees in 
the dataset. Of course, in this case, you would not need the regression or the smooth 
line, since there will only be one tree in each plot window, but it could be nice to 
have the different observations connected. This is shown in the following code:

myPanel <- function(x,y){

panel.xyplot(x,y, type="b") #the observations

}

xyplot(age~circumference | Tree, data=Orange, panel=myPanel)
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This code generates the graph shown in Figure 1.6:

Figure 1.6: This is a scatterplot of the Orange data realized with lattice, with one subpanel representing the 
individual data of each tree. The number of trees in each panel is reported in the upper part of the plot area

As illustrated, using the vertical bar |, we are able to obtain the plot conditional to 
the value of the variable Tree. In the upper part of the panels, you would notice the 
reference to the value of the conditional variable, which, in this case, is the column 
Tree. As mentioned before, ggplot2 offers this option too; we will see one example 
of that in the next section.

In the next section, You would find a quick reference to how to convert a typical plot 
type from lattice to ggplot2. In this case, the examples are adapted to the typical 
plotting style of the lattice plots.
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Scatterplots with individual observations
To plot the graph using lattice, use the following code:

xyplot(age~circumference, data=Orange)

The preceding code results in the following output:
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To plot the graph using ggplot2, use the following code:

qplot(circumference,age, data=Orange)

The preceding code results in the following output:
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Scatterplots of the orange dataset with 
faceting
To plot the graph using lattice, use the following code:

xyplot(age~circumference|Tree, data=Orange)

The preceding code results in the following output:
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To plot the graph using ggplot2, use the following code:

qplot(circumference,age, data=Orange, facets=~Tree)

The preceding code results in the following output:
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Faceting scatterplots with line and points
To plot the graph using lattice, use the following code:

xyplot(age~circumference|Tree, data=Orange, type="b")

The preceding code results in the following output:
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To plot the graph using ggplot2, use the following code:

qplot(circumference,age, data=Orange, geom=c("line","point"),  
facets=~Tree)

The preceding code results in the following output:
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Scatterplots with grouping data
To plot the graph using lattice, use the following code:

xyplot(age~circumference, data=Orange, groups=Tree, type="b")

The preceding code results in the following output:
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To plot the graph using ggplot2, use the following code:

qplot(circumference,age, data=Orange,color=Tree,  
geom=c("line","point"))

The preceding code results in the following output:
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Boxplots of the orange dataset
To plot the graph using lattice, use the following code:

bwplot(circumference~Tree, data=Orange)

The preceding code results in the following output:
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To plot the graph using ggplot2, use the following code:

qplot(Tree,circumference, data=Orange, geom="boxplot")

The preceding code results in the following output:
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Histograms of the orange dataset
To plot the graph using lattice, use the following code:

histogram(Orange$circumference, type = "count")
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To plot the graph using ggplot2, use the following code:

qplot(circumference, data=Orange, geom="histogram")

The preceding code results in the following output:
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Histograms with the reference line at the 
median value in red
To plot the graph using lattice, use the following code:

histogram(~circumference, data=Orange, type = "count",  
panel=function(x,...){panel.histogram(x,  
...);panel.abline(v=median(x), col="red")})

The preceding code results in the following output:
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To plot the graph using ggplot2, use the following code:

qplot(circumference, data=Orange,  
geom="histogram")+geom_vline(xintercept =  
median(Orange$circumference),  
colour="red")

The preceding code results in the following output:
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ggplot2 and the grammar of graphics
The ggplot2 package was developed by Hadley Wickham by implementing a 
completely different approach to statistical plots. As is the case with lattice, this 
package is also based on grid, providing a series of high-level functions that allow 
the creation of complete plots. The ggplot2 package provides an interpretation and 
extension of the principles of the book The Grammar of Graphics by Leland Wilkinson. 
Briefly, The Grammar of Graphics assumes that a statistical graphic is a mapping of 
data to the aesthetic attributes and geometric objects used to represent data, such 
as points, lines, bars, and so on. Besides the aesthetic attributes, the plot can also 
contain statistical transformation or grouping of data. As in lattice, in ggplot2, we 
have the possibility of splitting data by a certain variable, obtaining a representation 
of each subset of data in an independent subplot; such representation in ggplot2 is 
called faceting.

In a more formal way, the main components of the grammar of graphics are  
the data and its mapping, aesthetics, geometric objects, statistical transformations, 
scales, coordinates, and faceting. We will cover each one of these elements in more 
detail in Chapter 3, The Layers and Grammar of Graphics, but for now, consider these 
general principles:

•	 The data that must be visualized is mapped to aesthetic attributes, which 
define how the data should be perceived

•	 Geometric objects describe what is actually displayed on the plot, such as 
lines, points, or bars; the geometric objects basically define which kind of plot 
you are going to draw

•	 Statistical transformations are applied to the data to group them; examples 
of statistical transformations would be the smooth line or the regression lines 
of the previous examples or the binning of the histograms

•	 Scales represent the connection between the aesthetic spaces and the actual 
values that should be represented. Scales may also be used to draw legends

•	 Coordinates represent the coordinate system in which the data is drawn
•	 Faceting, which we have already mentioned, is the grouping of data in 

subsets defined by a value of one variable

In ggplot2, there are two main high-level functions capable of directly creating 
a plot, qplot(), and ggplot(); qplot() stands for quick plot, and it is a simple 
function that serves a purpose similar to that served by the plot() function in 
graphics. The ggplot()function, on the other hand, is a much more advanced 
function that allows the user to have more control of the plot layout and details. In 
our journey into the world of ggplot2, we will see some examples of qplot(), in 
particular when we go through the different kinds of graphs, but we will dig a lot 
deeper into ggplot() since this last function is more suited to advanced examples.
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If you have a look at the different forums based on R programming, there is quite a 
bit of discussion as to which of these two functions would be more convenient to use. 
My general recommendation would be that it depends on the type of graph you are 
drawing more frequently. For simple and standard plots, where only the data should 
be represented and only the minor modification of standard layouts are required, 
the qplot() function will do the job. On the other hand, if you need to apply 
particular transformations to the data or if you would just like to keep the freedom of 
controlling and defining the different details of the plot layout, I would recommend 
that you focus on ggplot(). As you will see, the code between these functions is not 
completely different since they are both based on the same underlying philosophy, 
but the way in which the options are set is quite different, so if you want to adapt a 
plot from one function to the other, you will essentially need to rewrite your code. If 
you just want to focus on learning only one of them, I would definitely recommend 
that you learn ggplot().

In the following code, you will see an example of a plot realized with ggplot2, 
where you can identify some of the components of the grammar of graphics. 
The example is realized with the ggplot() function, which allows a more direct 
comparison with the grammar of graphics, but coming just after the following code, 
you could also find the corresponding qplot() code useful. Both codes generate the 
graph depicted in Figure 1.7:

require(ggplot2)                             ## Load ggplot2

data(Orange)                                 ## Load the data

ggplot(data=Orange,                          ## Data used

  aes(x=circumference,y=age, color=Tree))+   ## Aesthetic

geom_point()+                                ## Geometry 

stat_smooth(method="lm",se=FALSE)            ## Statistics

### Corresponding code with qplot()

qplot(circumference,age,data=Orange,         ## Data used

  color=Tree,                                ## Aesthetic mapping 

  geom=c("point","smooth"),method="lm",se=FALSE)
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This simple example can give you an idea of the role of each portion of code in a 
ggplot2 graph; you have seen how the main function body creates the connection 
between the data and the aesthetics we are interested to represent and how, on top 
of this, you add the components of the plot, as in this case, we added the geometry 
element of points and the statistical element of regression. You can also notice how 
the components that need to be added to the main function call are included using 
the + sign. One more thing worth mentioning at this point is that if you run just the 
main body function in the ggplot() function, you will get an error message. This is 
because this call is not able to generate an actual plot. The step during which the plot 
is actually created is when you include the geometric attribute, which, in this case 
is geom_point(). This is perfectly in line with the grammar of graphics since, as we 
have seen, the geometry represents the actual connection between the data and what 
is represented on the plot. This is the stage where we specify that the data should be 
represented as points; before that, nothing was specified about which plot we were 
interested in drawing.

Figure 1.7: This is an example of plotting the Orange dataset with ggplot2
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Further reading
•	 R Graphics (2nd edition), P. Murrell, CRC Press
•	 The Grammar of Graphics (Statistics and Computing) (2nd edition),  

L. Wilkinson, Springer
•	 Lattice: Multivariate Data Visualization with R (Use R!), D. Sarkar, Springer
•	 S-PLUS Trellis Graphics User's Manual, R. Becker and W. Cleveland,  

MathSoft Inc

Summary
In this chapter, we set up your installation of R and made sure that you are ready to 
start creating the ggplot2 plots. You saw the different packages available to realize 
plots in R and their history and relations. The graphics package is the first package 
that was developed in R; it represents a simple and effective tool to realize plots. 
Subsequently, the grid package was introduced with more advanced control of the 
plot elements as well as more advanced graphics functionalities. Several packages 
were then built on top of grid, in particular lattice and ggplot2, providing high-
level functions for advanced data representation. In the next chapter, we will explore 
some important plot types that can be realized with ggplot2. You will also be 
introduced to faceting.
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Getting Started
In this chapter, we will go through the main plot types that can be realized with 
ggplot2. In the examples, we will use the qplot() basic function so that you 
have a reference for how to realize such plots, even if you are not interested in a 
more detailed personalization of the graph details. We will see how to realize the 
following plots:

•	 Histograms and density plots
•	 Bar charts
•	 Boxplots
•	 Scatterplots
•	 Time series plots
•	 Bubble charts and dot plots

In Chapter 3, The Layers and Grammar of Graphics, we will describe the use of the 
ggplot function, and in the equivalent coding between qplot and ggplot, we  
will also discuss how to realize the plots with such a sophisticated function.

General aspects
The qplot (quick plot) function is a basic high-level function of ggplot2. The general 
syntax that you should use with this function is the following:

qplot(x, y, data, color, shape, size, facets, geom, stat)

The definitions of the various components of this function are as follows:

•	 x and y: These represent the variables to plot (y is optional, with a default 
value of NULL).

•	 data: This defines the dataset containing the variables.
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•	 color, shape and size: These are the aesthetic arguments that can be 
mapped on additional variables.

•	 facets: This defines the optional faceting of the plot based on one variable 
contained in the dataset.

•	 geom: This allows you to select the actual visualization of the data, which, 
basically, will define the plot that will be generated. The possible values are 
point, line, and boxplot, and we will see several different examples in the 
next pages.

•	 stat: This defines the statistics to be used for the data.

These arguments represent the most important options available in qplot().  
You can find descriptions of the other arguments of this function on the help  
page of the function, accessible with ?qplot or on the ggplot2 website at  
http://docs.ggplot2.org/0.9.3/qplot.html.

Thanks to the way the grammar of graphics was conceived, most of the previously 
mentioned arguments can be applied to different types of plots. For instance, you 
can use the color argument to do an aesthetics mapping to one variable, and you can 
do that on a scatter plot as well as a histogram. Exactly the same concept can be seen 
in facets, which you can use to split data into subplots, independently of the type of 
plot considered.

Before moving on to the different plots, we should clarify some details about the 
syntax of aesthetic mapping and faceting, so that you are able to adapt the coming 
examples to different situations.

Introduction to aesthetic attributes
In ggplot2, the color, shape, and size of graphical objects are aesthetic attributes 
that are usually mapped to the value of a variable contained in the data. For instance, 
in your dataset, if you have different series of measurements, you can associate the 
color attribute with a flag variable and have each series of data in a different color, 
exactly as we did in Chapter 1, Graphics in R in section ggplot2 and the grammar of 
graphics, with the following code:

qplot(circumference,age,data=Orange, color=Tree,  
geom=c("point","smooth"),method="lm", se=FALSE)

This generates a plot (see Figure 1.7) where each series of data from the same tree 
will have the same color and its relative regression line. We will go into more details 
on this point in Chapter 3, The Layers and Grammar of Graphics, but for now, what is 
important to know is that if you want to have, for instance, all the data with the same 
color, you will need to use the I() function. So, in order to get the same plot with all 
the data in blue, you will need to specify color=I("blue"). 
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Exactly the same principle applies to size and shape attributes, which you can map 
to a variable or specify using I(), where, for instance, size=I(3) would produce 
bigger symbols and shape=I(2) would produce triangles instead of dots.

Introduction to faceting
You can use faceting to create multiple plots by creating a subplot for each level of 
a categorical variable. The general code for faceting would be facets=a~b, where 
a and b represent two categorical variables for which data is split. This code would 
generate a grid containing a subplot for each combination of the a and b variables. 
However, quite often you may be interested in faceting only relative to one variable; 
in this case, you would use a code such as facets=a~., where the period indicates 
that there is no second faceting variable.

How to change the faceting orientation
When using faceting, you may need to change the panel orientation. 
This is done by changing the order of the variables, so facets=a~b 
create one row for each value of a and one column for each value of b, 
while b~a will do it the other way around. Just remember that the same 
applies when you only have one variable. So facets=a~. will create 
one row for each value of a, while facets=.~a will arrange the plots 
in columns.

Histograms and density plots
Histograms are plots used to explore how one or more quantitative variables are 
distributed. To show some examples of histograms, we will use the iris data. This 
dataset contains measurements in centimetres of the length and width variables of 
the sepal and petal, and these measurements are available for 50 flowers from each of 
three species of iris: Iris setosa, versicolor, and virginica. You can get more details upon 
running ?iris.

The geometric attribute used to produce histograms is defined simply by specifying 
geom="histogram" in the qplot function. This default histogram will represent 
the variable specified in the function on the x axis, while the y axis will represent 
the number of elements in each bin. One other very useful way of representing 
distributions is to look at the kernel density function, which represents an 
approximation of the distribution of the data as a continuous function instead of 
different bins, by estimating the probability density function.
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For example, let's plot the petal length of all three species of iris as a histogram and 
as a density plot with the following code:

qplot(Petal.Length, data=iris, geom="histogram")  ## Histogram

qplot(Petal.Length, data=iris, geom="density")    ## Density plot

The output of this code is showed in Figure 2.1:

Figure 2.1: This shows a histogram (left) and a density plot (right)

As you can see in both plots of Figure 2.1, it appears that the data is not distributed 
uniformly, but there are at least two distinct distributions clearly separated. This 
is due to a different distribution for one of the iris species. To verify that the two 
distributions are indeed related to species differences, we could generate the same 
plot using aesthetic attributes and have a different color for each subtype of iris. To 
do this, we can simply map color to the Species column in the dataset; in this case 
we can also do that for both the histogram and the density plot. This is shown in the 
following code:

qplot(Petal.Length, data=iris, geom="histogram", color=Species)

qplot(Petal.Length, data=iris, geom="density", color=Species)
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Figure 2.2 is the result of the preceding code:

Figure 2.2: Histogram (left) and density plot (right) with aesthetic attribute for color

As you have seen in Figure 2.2, mapping a categorical variable to an aesthetic 
attribute has automatically split geom of the plot by that variable. In the distributions 
represented in our plots, the lower petal lengths are shown coming from the setosa 
species, while the two other distributions are partly overlapping. This clarifies 
our question about the distribution of the data, but the plots we have obtained are 
not really nice, since the color in this case has affected only the borders of the plot 
elements. In fact, in ggplot2, we have access to the fill argument defining, as you can 
easily imagine, the filling of the graphical elements. So, let's color the inside of the 
histogram and the density plot; we are interested in having the inside the same color 
as the border, so we can also map the fill argument to the Species variable, as we 
already did for the color argument. The following is the code we built:

qplot(Petal.Length, data=iris, geom="histogram", color=Species,  
fill=Species)

qplot(Petal.Length, data=iris, geom="density", color=Species,  
fill=Species)
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Figure 2.3 shows the resulting output:

Figure 2.3: This shows the histogram (left) and the density plot (right) with aesthetic attributes for color and fill

As illustrated, the plot we now have is definitely better than the previous one. On 
the other hand, there is still an improvement that we could make to the graphical 
visualization of the data. The plot now has quite strong colors, so we could add some 
transparency to make the plot elements much nicer. In ggplot2, this is done with the 
alpha argument. This argument can be used to make colors transparent by selecting 
the degree of transparency between 0 (completely transparent) and 1 (completely 
opaque). There are many possible applications of this argument, but for the time 
being, we will use the basic assignment in qplot(). Just remember that since this is 
an aesthetic parameter, you need to use the I() function, since we are not mapping 
something, but simply assigning a value of transparency. So in our case, this would 
be our code:

qplot(Petal.Length, data=iris, geom="histogram", color=Species,  
fill=Species, alpha=I(0.5))

qplot(Petal.Length, data=iris, geom="density", color=Species,  
fill=Species, alpha=I(0.5))
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In Figure 2.4, we have the resulting plots, and now the result is quite nice:

Figure 2.4: This shows the histogram (left) and the density plot (right) with aesthetic  
attributes for color and fill plus transparency with alpha included

After running the code provided in the previous examples, you would have 
probably noticed the warning message on the console informing the user that the 
program is choosing the size of the bins used in the histogram. As an alternative, 
the bin size can also be also specified in the qplot function using the binwidth 
argument, which controls the smoothing level of the histogram by setting the bin 
size. Evaluating different bin sizes can be very important, since it can greatly affect 
the visualization of your data.

Bar charts
Bar charts are usually used to explore how one (or more) categorical variables are 
distributed. In qplot(), this is done using the geom option bar. This geometry counts 
the number of occurrences of each factor variable, which appears in the data. To 
show an example of the bar chart, we will use the movies dataset, which is included 
within the ggplot2 package. We have already seen how to recall the dataset included 
with the basic installation of R, but if you are interested in the list of datasets within a 
specific package (ggplot2 in this case), you can use the following code:

require(ggplot2)       ## Load ggplot2 if needed

data(package="ggplot2")  ## List of dataset within ggplot2
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The movies dataset contains information about movies, including the rating, from 
the http://imdb.com/ website. You can get a more detailed description in the help 
page of the dataset.

This dataset contains different variables but, for our example, we will not need all of 
them, so let´s rearrange a bit of its content. For our exercise, we are first interested 
in knowing how many movies were produced in each category - Action, Animation, 
Comedy, Drama, Documentary, and Romance. Let's also keep in the dataset the 
information about the movie budget, whether it was a short or regular movie,  
its year, and so on. So, the steps covered in our code are:

1.	 Load the data.
2.	 Extract from the dataset the information for each movie type concerning 

budget and length.
3.	 Create a factor variable containing the movie type.

The header of our final dataset, called myMovieData, will then be Budget, Short, 
Year, and Type. So, here's our code:

d1 <-data.frame(movies[movies$Action==1, c("budget", "Short",  
"year")])

d1$Type <- "Animation"

d2 <-data.frame(movies[movies$Animation==1, c("budget", "Short",  
"year")])

d2$Type <- "Animation"

d3 <-data.frame(movies[movies$Comedy==1, c("budget", "Short",  
"year")])

d3$Type <- "Comedy"

d4 <-data.frame(movies[movies$Drama==1, c("budget", "Short",  
"year")])

d4$Type <- "Drama"

d5 <-data.frame(movies[movies$Documentary==1, c("budget", "Short",  
"year")])

d5$Type <- "Documentary"

d6 <-data.frame(movies[movies$Romance==1, c("budget", "Short",  
"year")])

d6$Type <- "Romance"

myMovieData <- rbind(d1, d2, d3, d4, d5, d6)

names(myMovieData) <- c("Budget", "Short", "Year", "Type" )
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Now that our data is ready, let's create our first bar chart. In general, we will follow 
the same structure as the other plots, just replacing the geom specification:

qplot(Type, data=myMovieData , geom="bar", fill=Type)

This standard bar chart will generate bars representing the count of each element 
(the movie type) for each type available. Since we have also assigned the fill 
aesthetic attribute to the same type variable, we also obtain the coloring of each  
bar in a different way. The plot generated is represented in Figure 2.5:

Figure 2.5: This shows a bar chart of the different movie types

In the plot we just created, the bars are colored differently depending on the movie 
type. However, we can use the fill argument in a more useful way. In fact, we 
could also require a different color based on the value of a second variable, in this 
way adding more information to the plot. In our simple example, we can split 
each bar by the relative amount of a short or regular movie. This is done simply by 
assigning the Short column to the fill argument as shown in the following code:

qplot(Type, data=myMovieData , geom="bar", fill=factor(Short))
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The result is shown in Figure 2.6. As illustrated, we can now see the movie counts for 
short and regular movies, summing up the total number of movies for each type.

Figure 2.6: This shows a bar chart of the different movie types with filling split by movie length
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As you probably noticed in this last example, we assigned the Short variable to the 
fill argument, but in the assignment, we also converted the variable to factor, 
while in the previous example, when we used the Type variable, we did not do 
so. The reason is that the fill aesthetic attribute, in this case, needed a discrete 
variable, which defined different levels. These, in turn, were assigned to different 
colors. The Type variable of the previous example was already a factor, where each 
level represented the movie type. On the other hand, the Short variable is actually 
numeric: 0 for regular movies and 1 for short movies. For this reason, we had to 
convert it first to a factor, so qplot could identify this variable as indicating two 
levels of a discrete variable. We will also discuss in detail the assignment of discrete 
and continuous variables in Chapter 4, Advanced Plotting Techniques. You can check 
out the class of the two columns with the following code:

 > class(myMovieData$Short)

[1] "integer"

> class(myMovieData$Type)

[1] "factor"

One last thing to mention about bar charts is the position argument of the qplot 
function. Such argument defines the way you would like to display the bars within 
the chart. The three main options are stack, dodge, and fill. The stack option puts 
the bars with the same x value on top of each other; the dodge option places the bars 
next to each other for the same x value; and the fill option places the bars on top of 
each other but normalizes the height to 1. The following code shows the position 
adjustment applied to our last example:

qplot(Type, data=myMovieData, geom="bar", fill=factor(Short),  
position="stack")

qplot(Type, data=myMovieData, geom="bar", fill=factor(Short),  
position="dodge")

qplot(Type, data=myMovieData, geom="bar", fill=factor(Short),  
position="fill")
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Figure 2.7 shows you the resulting plot for each option:

Figure 2.7: This shows the bar chart of different movie types with filling split by  
movie length for different displays of bars—stack (A), dodge (B), and fill (C)
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Boxplots
Box plots, also known as box-and-whisker plots, are a type of plot used to depict a 
distribution by representing its quartile values. In such plots, the upper and lower 
sides of the box represent the twenty-fifth and seventy-fifth percentiles (also called 
the first and third quartiles), while the horizontal line within the box represents the 
median of the data. The difference between the first and third quartiles is defined as 
Inter-Quartile Range (IQR), and it is often used as a measure of statistical dispersion 
of a distribution. The upper whisker represents the higher values up to 1.5*IQR of 
the upper quartile, while the lower whisker represents lower values within 1.5*IQR 
of the lower quartile. The pieces of data not in the whisker range are plotted as 
points and are defined as outliers. You can get additional details and references  
in the package website shown at the end of the chapter.

In this section, we will see some examples of boxplots using the dataset created in 
the previous section, myMovieData, so please refer to previous examples of how to 
create such datasets. In this case, we will have a look at the budget of the movies 
present in the dataset. More precisely, we are interested in the budgets of different 
types of movies. In order to produce a boxplot, we will just need to specify a boxplot 
geometry. As illustrated in the next code, the command is exactly the same as the one 
used in the bar chart example; we have just chosen a different geometry to represent 
the data. The following code shows this:

qplot(Type,Budget, data=myMovieData, geom="boxplot")

The resulting plot is represented in Figure 2.8. You probably have seen a warning 
message appearing on the screen, such as the following:

Warning message:

Removed 49699 rows containing non-finite values (stat_boxplot).

This is simply because in the data, there are many NA values in the column budget, 
and the function informs us that these values were removed when representing  
the distribution.

Removing NA values
When working with data and distributions, you will probably come 
across the need to exclude NA values from your dataset. You can see an 
example of how such values could be excluded from the dataset of the 
previous example, that of myMovieData. The following code shows this:
myMovieData <- myMovieData [!is.na(myMovieData  
$Budget),]
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In the boxplot that we just produced, as outputted in Figure 2.8, we obtained the 
desired result - the distribution of budget values for the different categories of 
movies. You can clearly see the outlier values represented as points. Since the budget 
for the documentaries is very low compared to other movies, we cannot clearly see 
their values. In such cases, it may be useful to plot the log-transformed data so that, 
in the plots, the values are easier to compare visually. Of course, you will have to 
keep in mind that, in this case, the y axis will represent magnitudes in the log scale.

Figure 2.8: This shows a standard box plot of movie budgets for different categories of movies

One option to obtain the log transformation of the data can be to simply use the 
log() function when recalling the variable to transform and using the log(Budget) 
code. On the other hand, the more elegant way of plotting log-transformed values 
is via the log argument of the qplot function. Such an argument can have values 
of "x", "y" or "xy", which simply indicates which axis you are interested in having 
log-transformed—whether x, y or both. Just remember that the quotes should be 
also included in the code. With this option, the scale of the transformed axis is also 
changed in the log scale. With the alternative coding for direct data transformation, 
you have probably noted that both options produce the same plot—just with some 
differences in the y-scale notation. The following code shows this:

qplot(Type, Budget, data=myMovieData, geom="boxplot", log="y")
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## Equivalent coding

qplot(Type, log(Budget), data=myMovieData, geom="boxplot")

The preceding code results in the following output:

Figure 2.9: This shows a standard boxplot of movie budgets for the different  
categories of movies with the y axis in the log scale

As illustrated in Figure 2.9, the resulting plot with the y axis in the log scale shows 
the movie budgets better distributed in the central area of the plot, allowing a better 
visual comparison of the data.

A very useful option in boxplots is the ability to visualize actual data points. This is 
particularly useful since it allows you to see where the observed values are actually 
located, with respect to the values of the descriptive statistics (median and quartiles). 
In order to do that in ggplot2, we simply need to add the "point"geometry together 
with the "boxplot"geometry. The following code shows this:

qplot(Type, Budget, data=myMovieData, geom=c("boxplot","point"),  
log="y")
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Bear in mind that geom attributes in qplot can be combined in vectors 
using c(). Combining these attributes will also give you the possibility 
of trying several combinations of attributes in order to create the plot 
you have in mind. Also, consider that the order of the elements in the 
vector will define the order of plotting. This means that in our case, with 
geom=c("boxplot","point"), we will have the points on top of 
the box plot. You can try to inverse the order and you will see how the 
points are covered by the boxplot.

The following graph is the output of the preceding code:

Figure 2.10: This shows a standard boxplot of movie budgets for different  
categories of movies, including data points (y axis in the log scale)
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As you can see in Figure 2.10, we now have the data points included in our plot. 
Although data points in the boxplot are useful in some cases, in this example, this 
generates a sort of over-plotting, since we have too many data points and we end up 
with just a sort of vertical bar in the middle of our box plot. This is definitely not very 
helpful. Having data points a little separated from each other along the x axis could 
be a good way of improving our visualization. Luckily for us, in ggplot2, we have 
the option of jittering the data. Jittering is a process of adding random noise to data 
in order to prevent over-plotting in statistical graphs. As illustrated in the following 
code, it is done in quite a straightforward way by changing the geometry:

qplot(Type,Budget, data=myMovieData, geom=c("boxplot","jitter"),  
log="y")

The preceding code results in the following graph (Figure 2.11):

Figure 2.11: This shows the boxplot of movie budgets for different categories of movies,  
including data points with jittering (y axis in the log scale)

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started

[ 64 ]

As is clear from the plot we obtained, we are now able to better recognise the position 
of the individual measurements on the plot. On the other hand, one problem we have 
now is that the data is almost covering the boxplot, and this is not really what we want. 
As you already know, we could change the order of the element in the geom vector, 
so that the boxplot would be drawn on top of the jittering measurements, but in this 
case, we would simply get the box covering the data. One option to overcome this 
issue would be to have the boxplot on top of the data, but add some transparency to it, 
so that the data is still visible. In order to do that, we simply use the alpha argument 
we introduced in the Histogram section. Just remember that we need to use the I() 
function in order to fix the transparency to a fixed value. The following data shows this:

qplot(Type,Budget, data=myMovieData,  
geom=c("jitter","boxplot"),alpha=I(0.6), log="y")

In Figure 2.12, you can see the plot we obtained. Now all the elements are there 
for a nice visualization of the different budgets. It also shows the individual 
measurements for each movie type available from the dataset, and which were then 
used to build the boxplots. For instance, the Animation and Documentary types 
have a much smaller sample size compared with the other categories, so we can also 
assume that the descriptive statistics represented in the boxplot may be less accurate.

The preceding code results in the following graph:

 Figure 2.12: This shows a boxplot of movie budgets for different categories of movies, including  
data points with jittering and transparency on the boxplot (the y axis in the log scale)
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Scatterplots
Scatterplots are probably among the most common plots, since they are frequently 
used to display the relationship between two quantitative variables. When two 
variables are provided, ggplot2 will make a scatterplot by default. Now that you 
have already acquired some experience from the previous sections of this chapter, 
the representation of the scatter plot will be quite straightforward for you.

For our example on how to build a scatterplot, we will use a dataset called 
ToothGrowth, which is available in the base R installation. Reported in this dataset 
are measurements of the length of the teeth of 10 guinea pigs for three different doses 
of vitamin C (0.5, 1, and 2 mg). It is delivered in two different ways—as orange juice 
or as ascorbic acid (a compound with vitamin C activity). You can find details on the 
dataset help page at ?ToothGrowth.

We are interested in seeing how the length of the teeth changed for each different 
dose. We are not able to distinguish the different guinea pigs since this information is 
not contained in the data, so for the moment, we will simply plot the data we have:

require(ggplot2)

qplot(dose, len, data=ToothGrowth, geom="point")

##Alternative coding

qplot(dose, len, data=ToothGrowth)
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The resulting plot is reproduced in Figure 2.13. As you have seen, the default plot 
generated, without a geom argument, is the scatterplot, which is the default bivariate 
plot type. In this plot, we see that the length of the teeth increases as the vitamin C 
intake increases. On the other hand, we know that since the vitamin C was provided 
in two different ways, as orange juice or as ascorbic acid, it could be interesting to 
check whether these two groups behave differently.

Figure 2.13: This shows a scatterplot of the data on tooth length versus the dose in ToothGrowth

The first approach could be to have the data in two different colors. To do that,  
we simply need to assign the color attribute to the column supp in the data,  
which defines the way in which vitamin C is given to the guinea pigs:

qplot(dose, len,data=ToothGrowth, geom="point", col=supp)
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The resulting plot is in Figure 2.14. We will discuss later on in the book how the colors 
are assigned in ggplot2, but for now, we will only focus on the general layout. We 
can now find out which intake route each data point came from, and it looks like the 
subgroup where orange juice was administered has higher teeth growth compared 
to the subgroup where ascorbic acid was administered. Nevertheless, to differentiate 
between them is not easy. We could then try with the facets, so that the data will be 
completely separated in two different subplots. So let's see what happens:

Figure 2.14: This shows a scatterplot of the length of teeth versus the dose in ToothGrowth  
with data in different colors depending on vitamin C intake

The discussion in the preceding paragraph is encapsulated in this code:

qplot(dose, len,data=ToothGrowth, geom="point", facets=.~supp)

In this new plot, showed in Figure 2.15, we definitely have a better picture of the  
data, since we can see how the growth of teeth differs for the different intakes.
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As illustrated in this simple example, the best visualization can differ depending  
on the data you have. In some cases, grouping a variable with colors or dividing the 
data with faceting may give you a different idea about the data and its tendency. For 
instance, with the plot in Figure 2.15, we see that growth of teeth increases with the 
dose and seems to be each for different intake route. However when studying only 
the data points, it is difficult to identify any difference in the data behavior:

Figure 2.15: This shows a scatterplot of the length of teeth versus dose in ToothGrowth with faceting

One approach to highlighting the general tendency of the data could be to  
include a smooth line in the graph. In this case, we can see that the growth after the 
administration of orange juice does not look linear, so a smooth line could be a nice 
way to capture this. In order to do that, we simply add a smooth curve to the vector  
of geometry components in the qplot function. The following code shows this:

qplot(dose, len,data=ToothGrowth, geom=c("point","smooth"),  
facets=.~supp)
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As you can see from the plot obtained in Figure 2.16, we now clearly see, not only the 
different data thanks to the faceting, but also the tendency of the data with respect 
to the dose administered. As you have seen, the smooth line in ggplot2 will also 
require a confidence interval in the plot. If you don't want the confidence interval, 
you can simply add the se=FALSE argument. We will cover this topic in more detail 
in Chapter 4, Advanced Plotting Techniques.

Figure 2.16: This shows a scatterplot of the length of teeth versus the dose in  
ToothGrowth with faceting and a smooth line
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Time series
In this section, we will cover a special case of data you may find in R—the time 
series. This class of data is used in R to represent time data, such as hours, years, or 
dates in general. Of the data available in the R installation, there are some datasets 
containing time series, such as the UKgas and economics datasets. For our simple 
example, we will use the latter, which is a data frame containing population and 
employment information in the US over the last 40 years. You can find an overview 
of the dataset information in the help page at ?economics.

Let's first have a look to the dataset and see its structure:

head(economics)

     date         pce        pop      psavert     uempmed     unemploy

1 1967-06-30     507.8     198712       9.8         4.5           2944

2 1967-07-31     510.9     198911       9.8         4.7           2945

3 1967-08-31     516.7     199113       9.0         4.6           2958

4 1967-09-30     513.3     199311       9.8         4.9           3143

5 1967-10-31     518.5     199498       9.7         4.7           3066

6 1967-11-30     526.2     199657       9.4         4.8           3018

As illustrated, this data has the usual dataset structure, with the first column of the 
data containing dates. For such data, you will not need any special modification. For 
instance, let's plot unemployment versus time in a typical scatterplot. In this case, 
instead of dots to represent individual data points, we can use a continuous line, so 
that we will have a continuous description of the data with time. We can simply use 
qplot as we would do normally, by selecting the two columns we want to plot and 
choosing the "line" geometry. This is shown in the following code:

qplot(date, unemploy, data=economics, geom="line")
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As you can see in Figure 2.17, the plot looks exactly like a normal plot, with the 
difference that ggplot2 recognized the time series and represented dates and  
not simple numbers:

Figure 2.17: This is an example of a time series plot from the economics dataset,  
representing unemployment versus time

Bubble charts and dot plots
In the scatterplot section, we have seen how bivariate data can be represented in a 
typical x-y plot. In some cases, you may need to represent an additional variable in 
your plot, and we have already seen how different colors can be used to represent 
different types of data. One other option is to use the size of the symbols; if you 
are representing the data in points, you can, for instance, change the point size to 
represent an additional property of your data (an additional variable). This type of 
plot is usually called a bubble chart.

We can see a very easy example using the movie dataset we created in the Bar charts 
example. Please refer to that section for how to create this dataset.

We can create a plot of the different types of movies versus time by adding the size 
attribute of the symbol (in this case, they are points) to represent the budget of the 
movie. This is an example of the code to generate such a plot:

qplot(Year, Type, data=myMovieData, size=Budget)
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As illustrated in the resulting plot in Figure 2.18, without selecting a special geometry 
the observations are, by default, represented as points.

You can also see how it was possible to generate a bivariate plot, as an x-y plot, with 
one discrete variable—the movie type in this case. This type of plot, often called dot 
plot, has the advantage, compared with a boxplot, of showing the progression of the 
data for each category for different years, while the point size is used to represent 
the budget of each movie. For instance, in Figure 2.8, we were able to show the 
distribution of budgets for each movie type, but not to differentiate whether budgets 
had changed over the years, as is the case for many types of movies.

Figure 2.18: This is a dot plot of movie production versus time  
with the point size representing the budget amount
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Further reading
Additional examples can be found on the respective help pages of each geometric 
attribute, or on the webpages of the ggplot document. Here are some useful links  
to such pages:

•	 The qplot function: http://docs.ggplot2.org/current/qplot.html
•	 Histograms: http://docs.ggplot2.org/current/geom_histogram.html
•	 Density plots: http://docs.ggplot2.org/current/geom_density.html 

and http://docs.ggplot2.org/current/stat_density.html
•	 Bar charts: http://docs.ggplot2.org/current/geom_bar.html
•	 Boxplots: http://docs.ggplot2.org/current/geom_boxplot.html
•	 Scatterplots and Bubble charts: http://docs.ggplot2.org/0.9.3.1/geom_

point.html

Summary
In this chapter, we went through the most important plot types that can be realized 
with ggplot2. We have seen how to realize histograms and density plots, how 
to build bar charts and boxplots, and how to create scatterplots for bivariate 
data. Moreover, you saw the application of special types of plots, such as the 
representation of time series data, as well as bubble charts. For each plot type, you 
saw simple examples with the inclusion of additional elements in the basic plot,  
such as faceting and change in point size and color, using the qplot function.  
In the next chapter, we will start using the more sophisticated ggplot function.
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The Layers and Grammar of 
Graphics

In this chapter, we will take a closer look at the grammar of graphics as implemented 
in ggplot2. We will go through the main concepts of the layer approach that 
will help you to understand and master the full potential of the basic qplot 
function which we were introduced to in Chapter 2, Getting Started. After a general 
introduction to the different components of the grammar of graphics, we will go 
deeper into the faceting, coordinate system, scales, and concept of layers in dedicated 
sections of this chapter. Afterwards, we will have a look at how you can use the 
ggplot() function and how its code relates to the one you have already seen used 
with the simplified qplot() function.

Components of layered grammar
The grammar of graphics is a tool that allows us to effectively describe the 
components of a graph. In Chapter 1, Graphics in R, we mentioned some of the  
basic concepts behind the approach implemented in ggplot2 for data visualization. 
The ggplot2 package is an implementation of the ideas presented in the book, The 
Grammar of Graphics (Statistics and Computing) by Leland Wilkinson. The goal of the 
book was to define a set of general unifying principles for the visualization of data. 
For this reason, the plotting paradigm implemented in the package is based on the 
idea that, instead of providing many different functions, with each one targeting the 
realization of one specific type of graph, providing a smaller set of functions defines 
the different components of a graph and can be combined to generate a large variety 
of plots.
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The grammar of graphics is designed to help in separating and identifying each step 
of the charting process, helping you to better decide upon the best way to visualize 
data. Reflecting the structure of a language, each component of the grammar of 
graphics in ggplot2 has a specific name, and in Figure 3.1, you can find an overall 
representation of these components:

The layered grammar

Layers Scales

Coordinate system

Faceting

� Data
� Aesthetic
� Geom
� Stat
� Position

adjustment

Figure 3.1: This is the overall diagram of the different components of  
the grammar of graphics as implemented in ggplot2

If we take as an example a simple scatterplot, what we are plotting is one point 
representing the value of a variable y corresponding to the value of a different 
variable x. If the values come from different measurements or experiments, we could 
also group them and represent them with a different color. If, for instance, we look 
at the Orange data, which we introduced in Chapter 1, Graphics in R, we have two 
variables, age and circumference, and a third variable, Tree, identifying the tree 
from which the measurement was taken. The following code shows this:

> head(Orange)

The output will be as follows:

        Tree      age       circumference

1        1        118              30

2        1        484              58

3        1        664              87

4        1       1004             115

5        1       1231             120

6        1       1372             142
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As mentioned earlier, we could represent the circumference of trees (x) against their 
age (y) and group them by the tree used in the measurement using a different color. 
These elements, such as the horizontal and vertical position of the points as well as 
their size, shape, and color, are elements that are perceived in the plot and defined 
as aesthetic objects. Each aesthetic attribute can also be mapped to a variable to 
represent a cluster of data or set to a constant value. In this example, that's what we 
did when mapping the color.

After selecting the data we are interested in representing, we need to choose how to 
represent them. We could, for instance, use bars, lines connecting the observations, 
or simply points to represent the observed values on the plot. All these elements 
(bars, lines, and points) are geometric objects (geom) of the graph. They are 
independent of the data and several of these components could be applied to the 
same dataset. The next step would be to actually represent the data, but in order 
to do that, we would need to convert the actual data contained in the dataset in to 
elements that the computer can represent (for instance, pixels) and elements that 
can be mapped to aesthetic units, such as the different colors in our example. These 
transformations are done by the scales. This scaled data can then be represented in 
the coordinate system on which we want to plot the data. You can see the different 
components of the plot representation depicted in the simple example in Figure 3.2.

As you have seen, to create the complete plot in this simple example, we had to go 
through different steps:

•	 The data and the geometric elements are combined with the coordinate 
system to produce the plot

•	 Together with the x-y variables represented in the plot, additional aesthetic 
attributes can be assigned, such as the mapping of data to different colors

•	 Scales are used to transform the data into elements that can be represented 
and mapped to aesthetic attributes

An additional possibility could be to split the data into different panels in a process 
defined as faceting or to perform statistical (stat) transformation on the data.
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Going back to Figure 3.1, you can now see how a plot is composed of layers 
containing information about the data, geometric representation, statistical 
transformation, and aesthetic elements, for instance. The layers are then combined 
with scales and the coordinate system to represent the graphics object. Optionally, 
data can be split into facets. One plot can then contain several layers, for instance, if 
different geometries overlap (points and boxplot in Figure 2.12 of Chapter 2, Getting 
Started,) or if statistical transformations are included in the data (smooth line in 
Figure 2.16 of Chapter 2, Getting Started).

Figure 3.2: This is a representation of the main components of a plot in the grammar of graphics; the data and 
the geometric elements (top-left corner) are combined with the coordinate system (top-right corner) to obtain 
the plot (bottom-left corner). Additional aesthetic attributes can be added, for instance, mapping to color to 

another variable (bottom-right corner)
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We will now go into more detail, discussing the different components of the 
grammar of graphics, as represented in Figure 3.1, in the following sections,  
and we will discuss in more detail the layers and their individual components  
in the Layers in ggplot2 section of this chapter.

Creating a plot layer by layer with the 
ggplot function
We have already seen that qplot()is a simple function that can be used to generate 
plots quickly, but for more detailed control of the plot layers, the ggplot2 package 
also provides a more sophisticated function, ggplot(). Using this function, we first 
create a plot object in which we define the data and the aesthetic mapping we are 
interested in representing, and afterwards, we add elements such as geom and stat 
that produce the actual plot. Just remember that aesthetic mapping not only includes 
the colors and sizes of plotting elements, but also the x-y mapping to the axis. In 
the previous chapter, we showed an example of creating a scatterplot with the 
ToothGrowth dataset, where it described the effect of vitamin C on tooth growth in 
guinea pigs. We will now use the same dataset as an example and discuss how you 
can build the plot in Figure 2.14 of Chapter 2, Getting Started by adding one layer on 
top of the other.

First of all, we will create our basic plot object containing the data and aesthetic 
mapping. The following code shows this:

myPlot <-ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp))

As illustrated in this case, aesthetic mapping is provided using the aes() (aesthetics) 
function within the body of the ggplot() function. If you try to call the object just 
created, myPlot, you will get an empty window and an error message specifying that 
there is no actual layer in the plot. This object, in fact, contains the basic information 
of the plot, but it does not produce any output since it does not yet contain any 
geom assignment, so there is no actual visualization attribute assigned to the plot. 
The myPlot object is an R S3 object of the class ggplot consisting of a component 
named data and other components containing information about the plot. The plot 
details contained in such objects can be accessed using the summary() function. The 
following code shows this:

summary(myPlot)
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The output will be as follows:

data: len, supp, dose [60x3]

mapping:  x = dose, y = len, color = supp

faceting: facet_null()

As illustrated, in this way we can keep track of exactly which data was used in the 
plot and how the mapping was realized; this is particularly useful if you save the 
plot objects in your workspace and then would like to check their content.

So, let's now add a layer to our basic plot object and create a basic plot. As we will 
see in the Layers in ggplot2 section, a basic plot can be realized using data, aesthetic 
mapping, and geometry, so in this case, we are only missing this last component. In 
the ggplot() function, additional layers can be added using the + operator followed 
by the function defining the layer to be added. So, for a scatterplot with points, we 
have the following code:

myPlot + geom_point()

How to separate code in multiple lines
When you use the + operator to add plot elements, you may end up 
with quite long lines of code which would benefit some organizations. 
One common way to structure code is by dividing it into multiple 
lines; just keep in mind that the + operator should be always on the 
right-hand side of the previous line so you could divide the preceding 
code into two lines, for instance, in this way:
myPlot +

geom_point()

In this case, we used the object created previously and which contained the plot 
information, and added the geometry; one other option is to use all the code together:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) + geom_point()
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With both options, you will obtain the same results. Using assignment to objects can 
be useful, in particular if you have a long series of plots pointing to the same data. In 
this case, you would have shorter and cleaner code that recalls a previously created 
plot object.

Also, in this case, we could create a new object, this time containing the final plot, 
and again using the summary() function, we can get access to its content. The 
following code shows this:

myNewPlot <- myPlot +geom_point()

summary(myNewPlot)

The output will be as follows:

data: len, supp, dose [60x3]

mapping:  x = dose, y = len, color = supp

faceting: facet_null()

-----------------------------------

geom_point: na.rm = FALSE

stat_identity:  

position_identity: (width = NULL, height = NULL)

You have seen how all the main details of the plot are accessible, in particular the 
geom and stat details used.

The layers created can also be overwritten, so, for instance, we can take away the 
aesthetic mapping of colors on the supp variable. This can be easily done by setting 
the aesthetic argument col to NULL. The following code shows this:

myNewPlot + geom_point(aes(col=NULL))
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As illustrated in the resulting plot represented in Figure 3.3, we overwrote the aesthetic 
of color assignment, but the legend, which was created with the previous call, is still 
present since the legend represents the aesthetic scale that was generated in the first 
layer by calling myNewPlot, which contains the aesthetic assignment. These examples 
show us how aesthetic mapping applied to a layer only affect that layer, while scales 
and legends will remain at their default values unless manually modified.

Figure 3.3: This is an example of color aesthetic mapping  
overwritten without overwriting the legend argument
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In order to take away the legend in this example, we will have to overwrite that 
component directly with the following code:

myNewPlot + geom_point(aes(col=NULL)) +  
theme(legend.position="none")

In these latest examples, we have seen something very important concerning ggplot2 
and the way the plotting is implemented. In fact, in this graphical package the plots 
can be saved as R objects, which can then be called to produce the visualization of the 
graph and stored within the workspace. More importantly, these objects can also be 
used to produce new plots by updating the layers that compose the original picture. 
This is a very useful functionality that differentiates ggplot2 from the paradigm 
implemented in other graphical packages such as graphics or lattice.

Scales
Scales take care of the mapping of aesthetic attributes to the data. When the data is 
assigned to aesthetic mapping, the scales map the data to the corresponding aesthetic 
attribute, and this is done via a specific function depending on the scale applied. The 
inverse of this function is then used to map back the elements from the aesthetic to 
the actual value of the data. This process is used to create the axis, to represent the 
x-y position of the elements on the plot, or to create the legends that represent the 
mapping of other aesthetic attributes.

If, for instance, we consider the assignment of data to a color scale. First, the data 
is assigned to a color by mapping the value of the data to colors within the range 
defined by the scale, and then the inverse of the scale defines the total range of colors 
used in the mapping, which will be used to draw the legend of the graph.

Within a plot, each aesthetic assignment has a different scale, and each aesthetic 
attribute has a default scale assigned. After the scale is assigned to an aesthetic, the 
same scale is applied to that specific aesthetic on all the data in the plot in order to 
guarantee consistent mapping.
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In the following Figure 3.4, you will find some examples of scales depicted. As 
illustrated, scales will appear slightly different if they apply to scatterplots, with 
point geometry or if they apply to the filling of histograms, for instance. In ggplot2, 
you have access to color scales in the continuous range, which can be used to map 
continuous variables. Finally, we also have the possibility of mapping variables to 
the size or shape of the symbols used in the plot. We will cover the topic of scales in 
more detail in Chapter 5, Controlling Plot Details, so for now, it is only important that 
you have an idea of the different possibilities available in ggplot2.

Figure 3.4: These are a few examples of typical scales
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The coordinate system
The coordinate system adjusts the mapping from coordinates to the 2D plane of the 
computer screen. Among the different coordinate systems available in ggplot2, 
the Cartesian system is the most common coordinate system for two dimensions, 
while the polar coordinate system is often used for special plots, such as pie charts. 
When you create a plot, the coordinate system for the graph will be set with default 
values, which, in most cases, would be Cartesian coordinates. If you want a different 
coordinate system, you can overwrite the default value using the appropriate 
function. Such functions have the general form coord_x, where x is replaced by the 
specific coordinate desired.

The following is a table summarizing the main functions of coordinate systems; a 
more exhaustive list can be found on the package website:

Main coord functions Description

coord_
cartesian(xlim, 
ylim)

This is a Cartesian coordinate system.
xlim and ylim can be used to provide limits for the axis. They 
are provided as vectors indicating the range.

coord_fixed(ratio , 
xlim , ylim)

These are Cartesian coordinates with a fixed relationship 
between the x and y scales.
The ratio argument defines the ratio between the two axes 
expressed as y/x.

coord_flip(…) This flips the Cartesian coordinates by inverting the x and y 
axes.

coord_polar(theta , 
start , direction)

These are polar coordinates.
The theta argument is used to define the variable to which 
the map should be mapped; it can be x or y.
start is used for the offset of the starting point from twelve 
o´clock. It is expressed in radians.
direction can be 1 (clockwise) or -1 (counterclockwise).

We will now see a couple of examples of how to use a few of these functions. We will 
first have a look at the coord_flip() function which simply changes the axes of the 
plot. In most cases, you will not need any additional argument, so for instance, if we 
consider the plot in Figure 2.14, representing the data from the ToothGrowth dataset, 
we have already seen in the previous section how we can obtain the same plot 
defining the different layers with ggplot(). If now, we want to flip the coordinates, 
we simply need to change the coordinate system. The following code shows this:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + coord_flip()
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This code will create the plot in Figure 3.5, where the x and y axes are flipped 
compared to the default coordinates:

Figure 3.5: This is a plot of length versus dose from the ToothGrowth  
dataset with an inverted coordinate system

One other very useful function is the coord_fixed() function which allows us to 
create a plot with a fixed ratio of the y and x axes. The default value for the ratio 
argument is 1 which creates a plot with the same fixed axis extension for x and y, 
ensuring that one unit on the x axis is the same length as one unit on the y axis. Just 
remember that this does not mean that the two axes will have the same range but 
simply that the unit extension would be the same.

So, for instance, if we take the plot in our previous example, we could, instead of 
flipping the coordinates, set them to a fixed value. The following code shows this:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + coord_fixed(ratio=0.1)
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In this case, we have fixed the ratio of the two axes to 0.1, meaning that one length 
unit on the x axis will be translated to 10 units on the y axis. The plot generated with 
the previous code is represented in Figure 3.6:

Figure 3.6: This shows a plot of length versus dose from the ToothGrowth  
dataset using a fixed coordinate system with a ratio of 0.1 for y/x

Faceting
Faceting is a mechanism to automatically lay out multiple plots on one page. This 
functionality is quite nice and useful in many situations and, for this reason, we will 
venture a little deeper into it and look at some examples. As already mentioned, if 
you are familiar with other plotting packages, this functionality is very similar to the 
concept of panels in lattice.

The plot is realized with the faceting option by splitting the data into subsets, and 
each subset of data is represented in an individual plot. Nevertheless, the individual 
plots are formatted in an overall plot page with a header at the top or on the 
side of the panels, which identify the data represented in the subplot. Faceting is 
particularly useful if you need to have a first impression of how different data sets 
behaves or if the representation of the data should be separated for any reason.

There are two main ways to perform faceting in ggplot2: grid faceting and  
wrap faceting.
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Grid faceting
This is probably the faceting you will use most of the time. Grid faceting consists 
of creating a faceting of the plot by splitting the data into subgroups relative to 
two or more variables, which are then used to produce subplots for the specific 
combinations of variables. In grid faceting, at least two variables are provided and 
if you are interested in splitting the graph by only one variable, the second one is 
replaced by a . (dot), indicating that all variables should be taken for the second 
splitting. Let's start with a simple example. We will work on the myMovieData 
dataset, which we created in Chapter 2, Getting Started, starting with the movies 
dataset available in R. We will work with the ggplot() function, so you can already 
begin to become familiar with this other function. In order to add grid faceting to a 
plot, we will use the facet_grid() function. The first argument of the function is the 
faceting elements and hence the variables for which we want to create facet plots. For 
instance, we could use facet_grid(x~y), indicating that we have one row for each 
value of the variable x and one column for each value of the variable y. If we were 
only interested in a split by the variable x, we would code it as facet_wrap(x~.), 
indicating that the variable represented in the plot will only be split by x in rows and 
all other subsets will be included in the plot. Similarly, the facet_grid(.~.)code 
will not produce any faceting.

Now, let's go to our example. We can now plot the histogram of movie budgets by 
splitting the data by budget. We will also plot the budget in the log scale in order 
to make the distribution clearer; you can also obtain the same result by just using 
the log() function on the budget variable, but in the example, you will also see the 
alternative function available in ggplot2. You have the possibility of splitting in to 
columns or rows, and as illustrated, they produce a result that is visually very different.

### Faceting with orientation by rows

ggplot(data=myMovieData,aes(Budget)) + geom_histogram(binwith=1) +  
facet_grid(Type~.) + scale_x_log10()

### Faceting with orientation by columns

ggplot(data=myMovieData,aes(Budget)) + geom_histogram(binwith=1) +  
facet_grid(.~Type)+ scale_x_log10()

The answer to the question as to which orientation of the plot better describes the 
data really depends on the distribution you are representing and the range of the 
data. For instance, if the range in x is much larger than the one in y, splitting by rows 
would often give you a much better visualization. In this specific case, the orientation 
of faceting by columns seems more adequate. In Figure 3.7, you can see the resulting 
graphs generated with the two different visualization options:
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Figure 3.7: This shows the histogram of movie budget faceting by movie type.  
The faceting is done by rows (top graph) or by columns (bottom graph)

As already discussed, we can also generate plots by splitting by two different 
variables, so in this case it would be interesting to have a look at the movie budgets 
split by years and movie type. We have quite a few different years in the dataset—
more than 100. Now, 100 plots would be quite difficult to visualize. So first of all, 
we will add a column to our dataset, rounding off the years of the movies to their 
decades. We can do that, for instance, by rounding the years to just three significant 
digits. The following code shows this:

myMovieData$roundYear <- signif(myMovieData$Year, digits = 3)
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This new column will group the movies around the closest decade in which they were 
made, so, for instance, the 1980s decade will include movies from 1975 up to 1984.

We will use the column just created to have the histogram split by decade:

ggplot(data=myMovieData,aes(Budget)) + geom_histogram(binwith=1) +  
facet_grid(roundYear~Type) + scale_x_log10()

In Figure 3.8, you can see the resulting picture. In this case, we produced a matrix 
plot with rows and columns representing the possible combinations of the two 
variables: decades and movie type. You can also see how this visualization includes 
all the possible combinations between these two variables even if there is no data, so 
you can notice how, in some cases, the subplot could be empty.

Figure 3.8: This is a histogram of movie budget faceting by movie type and year rounded off by decades
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One very useful argument of the facet_grid()function is the margin option. In this 
argument it is possible to provide additional facets that could be added to the plot. 
These additional facets can be provided as a vector of names listing the variables 
for which facets should be produced or as a logical vector, where TRUE indicates the 
creation of additional facets containing all the data. We will see an example of this 
option, which will add an additional column and row to the plot in Figure 3.8 where 
the distributions for all the data are represented:

ggplot(data=myMovieData,aes(Budget)) + geom_histogram(binwith=1) +  
facet_grid(roundYear~Type, margin=TRUE) + scale_x_log10()

The resulting plot is represented in Figure 3.9. As you can see, the intersection 
between columns and rows of all the data represents the budget distribution  
for all the data:

Figure 3.9: This is a histogram of movie budget faceting by movie type and  
year rounded off by decades containing a facet for all the data
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Using the faceting option, it is also possible to produce facets for more than two 
variables. This can be done using the + operator to add additional variables to the row 
or column argument of the faceting. For instance, in our example, we could perform 
faceting for year and movie type—all by columns. In this case, to reduce the number of 
plots, we could look only at the movies after the 1980s. Also notice how only a subset 
of the data is used within the plot function. The following code shows this:

ggplot(data=subset(myMovieData, roundYear>1980), 

aes(Budget)) +  
geom_histogram(binwith=1) +  
facet_grid(.~Type+roundYear) + s 
cale_x_log10()

The resulting plot is showed in Figure 3.10. For instance, this kind of visualization 
would allow you to have the movie budgets for both the 1990s and the 2000s for 
each type of movie side by side, allowing easy comparison of the distribution of the 
budgets in these two different decades. As you can see, in this example, we have also 
used the subset() function directly within the plot function to choose only a subset 
of the data. Such an approach may turn out to be very useful in some cases.
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Figure 3.10: This is a histogram of movie budget faceting by movie type and  
the decades 1990s and 2000s with facets by columns
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Wrap faceting
Wrap faceting produces a single ribbon of plots that are spread along one or more 
rows. This kind of faceting is particularly useful if you have faceting with many 
combinations; here the subplots can be arranged in several rows, making the 
plot much easier to read. To realize wrap faceting, we can use the facet_wrap() 
function. We will see a simple example using our simplified movie dataset. We 
will look at the movie budgets for each year from 2000 onwards. This will generate 
a relatively large series of plots, and wrap faceting will help us to have better 
representation of the data. The following code shows this:

ggplot(data=subset(myMovieData,Year>1999), 

aes(Budget)) +  
geom_histogram() + facet_wrap(~Year, nrow=2) +  
scale_x_log10()

You can see the resulting plot in Figure 3.11.

As illustrated in the previous code, we used the facet_wrap() function in which 
we specified only one variable. This function uses arguments in the form of facet_
wrap(~x+y+z), where the faceting variables can be listed. In this case, we can only 
provide arguments after the ~ sign. We can also specify the number of columns and 
rows we want to have in the faceting using the nrow and ncol arguments.

Figure 3.11: This shows a histogram of movie budget faceting by year from 2000 onwards using wrap faceting
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Layers in ggplot2
As just discussed in the previous section, we saw how important the concept of 
layers was when creating a plot with ggplot2. These layers are then combined 
with a coordinate system and other transformations which then generate the final 
plot. But what exactly are the layers? In the grammar of graphics as implemented 
in ggplot2, the layers are responsible for the objects that we see in the graph. Each 
layer can come from a different dataset, have different geometry, and have a different 
aesthetic mapping. As you can see in Figure 3.1, the layers are composed of several 
components—the data, aesthetic, geom, stat, and position adjustment. Not all 
these components are needed in order to create a layer, but a minimal layer can be 
created just by including the data, aesthetic mapping, and geom that will define the 
type of plot to be generated. In fact, the geometry is a very important component of the 
layer since no visualization is possible without specifying the geometry.

Data
As you can see, the data represents the actual data shown in the plot. At this point, 
ggplot2 contains a major restriction compared with other plotting packages in R—
the data must be a data frame. This means that even if you have your observations as 
vector for instance, you would first need to combine them in a data frame and then 
realize the plot. The reason for this is to ensure that the data used in the plots can be 
easily traced back, even to people other than the author. Moreover, structuring the 
data in data frames somehow forces the user to keep it organized, thus reducing the 
possibility of mistakes and errors.

You should also keep in mind that when you create a data object, the data is copied 
within the object, so if you change something in the data, the change will not appear 
in the plot unless you create the plot object again. This is particularly important since 
ggplot2 objects can be saved in variables or stored in a workspace, so you should 
pay attention that the plot is actually updated with changes in data when you save 
and load ggplot2 objects.

Aesthetic mapping
As you saw in the examples presented previously in this chapter, aesthetic mapping 
is provided via the aes() function, which can be used, for instance, for x and y 
mapping, color mapping, or size and shape mapping. All the variables mapped 
should be present in the data provided, and if mapping is performed within the geom 
or stat function, the data should be specified even within the body of the function.
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Aesthetic mapping to x and y
When working with aesthetic mapping, keep in mind that even 
the mapping to the x and y variables in the plot is a part of 
aesthetic mapping, and, for this reason, it must be included in 
the aes() functions.

When discussing scales, we described how scales were used for mapping aesthetic 
arguments such as the x-y position in the axes. In the case of color, we can have 
continuous mapping, where different color levels are mapped to a continuous scale 
of variables, or we can even have discrete mapping, where the levels of a categorical 
variable are mapped to different colors. You can see examples of such scales in Figure 
3.4. When colors are mapped to a categorical variable, the continuous scale of colors 
is used to select the specific value of a color, which is mapped to the variables. These 
colors are, by default, selected as equally spaced from the so-called color wheel, 
represented in Figure 3.12:

Figure 3.12: This is a color wheel used to select equally spaced colors for the mapping to categorical covariates. 
Three equally spaced colors assigned by default in ggplot2 are also shown on the outside of the wheel

The default color scheme is selected using the scale_color_hue() function, which 
uses the hue_pal function from the scales package to assign the selected color. 
Calling this function allows you to find the actual color used in the plot by default; 
this can turn out to be quite useful if you need to reproduce a color assigned by 
default in a plot. For instance, if you want to know the first three colors of the series, 
you can use the following code:

library(scales)

scales::hue_pal()(3)
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The output will be as follows:

 [1] "#F8766D" "#00BA38" "#619CFF"

In Figure 3.12, you can see where these colors are located with respect to the color 
wheel and how they are actually equally spaced starting from the twelve o'clock 
position on the wheel.

The aesthetic attributes that you can map to variables depend on the geom function 
used. In the following table, you can find the arguments, mandatory and optional, 
associated with the most important geom functions. As you can easily imagine, the 
x and/or y arguments are often mandatory, but the optional arguments are also 
interesting since those are the arguments you can use to personalize your plot and to 
shape it in the best way to describe the data you have. Among such arguments, you 
will find, for instance, the fill argument we used to color the internal part of the 
histograms or the alpha argument we used for transparency. You can use this table 
as a reference to quickly search for such arguments and to have a look at the possible 
alternatives that could be provided by different functions:

Main geom functions Mandatory aesthetic Optional aesthetic
geom_abline alpha, color, linetype, size
geom_area x, ymax (ymin fix to 0) alpha, color, fill, linetype, size 

geom_bar x alpha, color, fill, linetype, size, 
weight

geom_boxplot
lower, middle, upper, 
ymax, ymin

x, alpha, color, fill, linetype, shape, 
size, weight

geom_density x, y alpha, color, fill, linetype, size, 
weight

geom_dotplot x, y alpha, color, fill

geom_histogram x alpha, color, fill, linetype, size, 
weight

geom_hline alpha, color, linetype, size
geom_jitter x, y alpha, color, fill, shape, size
geom_line x, y alpha, color, linetype, size
geom_point x, y alpha, color, fill, shape, size
geom_ribbon x, ymax, ymin alpha, color, fill, linetype, size 

geom_smooth x, y alpha, color, fill, linetype, size, 
weight

geom_text label, x, y alpha, angle, color, family, fontface, 
hjust, lineheight, size, vjust
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Geometric
The geometry attributes define the actual type of plot that will be applied to the 
data provided with the ggplot() function. These attributes are provided using 
functions with the general form geom_x, where x can be replaced by the specified 
geometry, such as, for instance, histogram or point. Additionally, different data 
can be used by providing a new dataset to the geom function. It is also possible to 
combine different geometries by combining different functions with the + operator, 
for instance, geom_point() + geom_smooth().

How to find the names of geom functions
When using ggplot2 in your coding, it can happen that you won't 
remember all the names of the geom functions, particularly if you need 
a special functionality you are not familiar with. Obviously, you can use 
the table provided by this book or have a look at the ggplot2 website, 
but one trick that can turn out to be useful is the use of the apropos()
function available in R to search for a function by a string contained in 
the function name. So, for instance, using the following code will list all 
the functions with the "geom" string in their name.
apropos("geom")

Of course, a similar approach could also be used to search for the 
"stat" and "coord" functions.

In the following table, you will find a reference to the most important geom functions 
available in ggplot2, with a short description indicating the actual plot generated 
by the function. You can also find the default statistical transformation executed by 
the function for each function. Pay attention to this argument because if you need a 
different statistical transformation, you would need to change this argument. You 
will find more details about statistical transformations in the next section. 
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Here's the table we talked about:

Main geom functions Default stat Description
geom_abline abline This is a line specified by the slope and intercept.

geom_area identity
This is an area plot, which is a continuous 
analogue of a stacked bar chart. It is a special case 
of geom_ribbon.

geom_bar bin These are bars with bases on the x axis.
geom_blank identity This is blank and doesn't draw anything.
geom_boxplot boxplot This is a box-and-whiskers plot.

geom_density density This is a smooth density estimate calculated by 
stat_density.

geom_dotplot bindot
This is a dot plot (the width of a dot corresponds 
to the bin width and each dot represents one 
observation).

geom_errorbar identity These add error bars to plots by coupling with 
other geometries.

geom_errorbarh identity These are horizontal error bars.
geom_histogram bin This is a histogram.
geom_hline hline This is a horizontal line.

geom_jitter identity These are points jittered (usually to reduce 
overplotting).

geom_line identity These connect observations ordered by the x 
value.

geom_path identity These connect observations in their original order.

geom_point identity This represents observations as points, as in a 
scatterplot.

geom_pointrange identity This is an interval represented by a vertical line, 
with a point in the middle.

geom_ribbon identity This is a ribbon of the y range with continuous x 
values.

geom_smooth smooth These add a smoothed conditional mean.
geom_text identity These are textual annotations.
geom_tile identity This is a tile plane with rectangles.
geom_vline vline This is a vertical line.
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Stat
A statistical transformation or stat is a statistical manipulation applied to the 
data, usually to summarize the data. A simple example would be the stat_bin() 
transformation which summarizes the data in bins typically for representation in 
a histogram. The general structure of these functions is "stat_x", where x can be 
replaced by the statistical transformation.

As you have seen in the previous table, each geometry comes with a default 
statistical transformation that is applied to the data. You would wonder why your 
data should be statistically manipulated if you only need a typical x-y plot, but 
among the statistical transformations, there is also the identity transformation which 
basically means that the data is left unchanged. This is usually the transformation 
applied to geom, for which an actual transformation is not needed. With this 
approach, in ggplot2, it is always possible to have a connection between the geom 
and stat arguments, keeping the code structure coherent and at the same time 
providing high flexibility since you can always change the default stat argument 
and generate new plots.

What statistical transformations do is basically take the data provided for the plot, 
apply the transformation, and return a new dataset, which is then used in the plot 
(as mentioned, the stat_identity() function does not do anything). Depending on 
the stat applied, this new dataset could contain new variables as outputs of applied 
statistical transformation. In the following table, you will find a summary of the main 
stat functions with a short description and a the list of new variables created in 
the transformation. These new variables are pretty interesting since they can also be 
mapped to aesthetic attributes in the plot. We will see a few examples of how to do 
this in Chapter 4, Advanced Plotting Techniques.

Main stat functions New variables created Description

stat_bin count, density, ncount, ndensity These split data into bins for 
histograms.

stat_bindot
x, y, binwidth, count, ncount, 
density, ndensity

These split data into bins for dot 
plots.

stat_boxplot
width, ymin, lower, notchlower, 
middle, notchupper, upper, 
ymax

This calculates the components 
of a box-and-whiskers plot.

stat_density density, count, scaled
These calculate the kernel 
density estimate for a density 
plot (geom_density).

stat_function x, y These superimpose a function to 
the plot.
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Main stat functions New variables created Description

stat_identity
These plot data without any 
statistical transformation.

stat_quantile quantile These calculate continuous 
quantiles.

stat_smooth y, ymin, ymax, se These add a smoother line.

stat_sum n, prop
This is the sum of unique values. 
This is useful for plotting on 
scatterplots.

stat_summary
fun.data, fun.ymin, fun.y, fun.
ymax

These summarise y values at 
every unique x value.

stat_unique These remove duplicates.

Position adjustment
Position adjustments are used to adjust the position of each geom. These adjustments 
do not refer to formatting the legend, axes, titles, and other similar components of 
the plot; they apply only to the elements in the plot area, such as bars in a bar plot 
and points in a scatterplot, and they can be applied to continuous and categorical 
data. As for the stat function, even in this case, we have the position_identity() 
function which does not adjust the position and which is used if there is no need for 
any adjustment.

Position adjustment of categorical data
These kinds of adjustments are more commonly used. They are often applied to bar 
plots in order to adjust the position of the bars. We have already seen an example 
of such an adjustment in Figure 2.7 in Chapter 2, Getting Started. There are different 
kinds of adjustments available:

•	 Dodge: It is done using the position_dodge() function. In this adjustment, 
the bars in a bar plot are placed next to each other for each category.

•	 Fill: It is realized with the position_fill() function. In this adjustment, 
the objects are overlapped on top of each other and standardized to have 
the same height, so in a bar plot, bars of the same category are stacked upon 
one another and the heights are equalized, so the bars would represent 
proportions and not absolute numbers of frequency.

•	 Stack: It is done with the position_stack() function. It is the same as fill 
but without the height standardisation. Stacking is the default behavior in  
many area plots, such as bar plots.
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We will now recreate the same plots as in Figure 2.7 of Chapter 2, Getting Started by 
using the ggplot() function and the position adjustment functions so you will have 
a reference on how to use these functions we have just introduced. The position 
adjustment specification is provided within the geom function for which position 
adjustment should be applied. In order to do that, you can simply specify the 
position desired to the position argument of the geom function. This is the easier way 
to use position adjustment and, in this case, you will use the default specification of 
each position_x function. The following code shows this:

ggplot(data=myMovieData, aes(x=Type,fill=factor(Short)))  
 + geom_bar(position="stack")

ggplot(data=myMovieData, aes(x=Type,fill=factor(Short)))  
 + geom_bar(position="dodge")

ggplot(data=myMovieData, aes(x=Type,fill=factor(Short)))  
 + geom_bar(position="fill")

If, on the other hand, you want to provide specifications different to the default 
values, you can use position functions as in the following example:

ggplot(data=myMovieData, aes(x=Type,fill=factor(Short))) +  
geom_bar(position=position_dodge(width = 0.5))

Position adjustment of continuous data
There is only one position adjustment for continuous data, and that is jittering. We 
have already seen an example of jittering in Figure 2.12 of Chapter 2, Getting Started, 
jittering as a position adjustment is performed by the position_jitter() function. 
However, since jitter is the default position adjustment in the geom_jitter() function, 
in most cases, if you want to realize the jittering of data, you can simply use the geom_
jitter() function. On the other hand, if you need to specify parameters different to 
the default values, then you will need to use the position_jitter() function.

Equivalent coding between qplot and 
ggplot
In this section, we will have a look at how we can realize a few of the plots we 
introduced in Chapter 2, Getting Started, with the ggplot() function we have 
introduced in this chapter. The idea is that you can use this simple roadmap as 
guidance on how to use the ggplot() function to generate several kinds of plots, 
building on the knowledge of qplot() that you already have. We will not go into  
too much detail about the different plots since many basic concepts have already 
been introduced in the previous chapter and they apply to both functions.
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In the following examples, we will use a few of the geom and stat functions listed 
in the summary tables previously presented; just remember that for each of these 
functions, you can map different aesthetic attributes. You can find a list of such 
attributes in the summary tables or in the help page of the function.

Histograms and density plots
In order to obtain a histogram, we will use the ggplot() function to create the 
aesthetic assignments to the dataset and the geom_histogram function to assign 
the geometry that creates the actual histogram. You will see how this is the general 
framework of how we can use the ggplot() function to create plots. The same process 
applies to the density plot, with the geom function being the only difference.

In this first example, you can also see the corresponding code with the qplot() 
function, while for the next example, we will stick to the code of the ggplot() 
function. The following code will produce the same plot as in Figure 2.4 of Chapter 2, 
Getting Started:

#### Example with the qplot() function

qplot(Petal.Length, data=iris, geom="histogram", color=Species,  
fill=Species, alpha=I(0.5))

qplot(Petal.Length, data=iris, geom="density", color=Species,  
fill=Species, alpha=I(0.5))

#### Example with the ggplot() function

ggplot(data=iris, aes(x=Petal.Length,color=Species,fill=Species)) +  
geom_histogram(alpha=I(0.5))

ggplot(data=iris, aes(x=Petal.Length,color=Species,fill=Species)) +  
geom_density(alpha=I(0.5))

You will also notice how the aesthetic assignments of position (only x in this case) 
and color are provided in the ggplot() function since they can also be applied to 
the overall plot, while the alpha aesthetic attribute, which applies directly to the 
histogram, is provided in the geom function. Since we do not make further use of 
the data other than to produce the histogram, the ggplot() function simply has the 
function of initializing the plot object. So, in this case, we could also alternatively 
provide all the arguments in the geom function, as shown in the following code:

ggplot() + geom_histogram(data=iris,  
aes(x=Petal.Length,color=Species,fill=Species),alpha=I(0.5))

Nevertheless, I would not recommend that you use this kind of coding since it can be 
more difficult to read.
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Bar charts
We will now use the ggplot()function to create the plot represented in Figure 2.6. 
of Chapter 2, Getting Started. In order to do that, we need our myMovieData dataset 
which we used in Chapter 2, Getting Started.

ggplot(data=myMovieData, aes(x=Type,fill=factor(Short))) + geom_bar()

As illustrated even in this second example, when using ggplot() instead of 
qplot(), you simply need to remember that the aesthetic must be provided using 
the aes() function within the body of the ggplot() function, while the geometry of 
the plot must be provided using the dedicated geom function. So, this implies that 
for a traditional plot, that is, in qplot(), you would start by specifying the x and y 
attributes at the beginning of the function, while in ggplot() you should keep in 
mind that those assignments are aesthetic assignments, so they are performed with 
the other aesthetic attributes.

Boxplots
To show you an example of boxplot, we will reproduce Figure 2.12 of Chapter 2, 
Getting Started. In this case, you will also see how to combine different geometries 
since we will need to combine the boxplot with the jitter geometry. The following 
code shows this:

ggplot(data=myMovieData, 

aes(Type,Budget)) +  
geom_jitter() + geom_boxplot(alpha=I(0.6)) +  
scale_y_log10()

As illustrated in the jitter geometry defined by the geom_jitter() function, we 
do not need to specify any argument since it applies to all the arguments already 
specified in the ggplot() function. On the other hand, for the boxplot geometry, 
we need to specify the transparencies with the alpha argument. Also, in this case, as 
already described for the qplot() function in this corresponding example, the order 
of the geom functions will determine the order of drawing the plot components, so 
if you draw the boxplot first and then the jittered observations, they would cover 
the plot. Finally, in this example, you also saw the appearance of the first scale 
argument. As mentioned, scales are dedicated to the mapping of the data to the 
aesthetic arguments, and the x-y position is among the aesthetic arguments, so in 
order to change the axis to a log scale, we need to change the scale used to draw the 
plot. This is done by overwriting the default layer of the plot (the default scale) using 
the dedicated scale function. We will go into more detail about the different scales 
and their relative functions in Chapter 5, Controlling Plot Details.
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Scatterplots
In this example, we will recreate Figure 2.16 of Chapter 2, Getting Started using the 
new functions that you learned about in this chapter. Here, we will represent the 
data of our ToothGrowth dataset as points, but we will split them into different facets 
depending on the supplement used to administer vitamin C, and we will also add a 
smooth line. You have already seen in the Faceting section how to split the data by 
faceting, but in this example, you will see how to add statistics to the plot, which, 
in this case, is the smooth line, and also how to combine the different components: 
geometry of points, statistics, and faceting. The following code shows this:

ggplot(data=ToothGrowth, aes(x=dose, 

y=len)) + geom_point() +  
stat_smooth() + facet_grid(.~supp)

As illustrated, we combined the different components in a way similar to the 
previous examples. You simply need to add the different functions on the plot 
created by ggplot(). In the geom or stat function, you can then provide additional 
arguments, which, in this example, were not needed.

Further reading
•	 The Grammar of Graphics (Statistics and Computing) (2nd edition),  

L. Wilkinson, Springer
•	 The PhD thesis, Practical Tools for Exploring Data and Models, H. Wickham

Summary
In this chapter, you saw the basics of the grammar of graphics as implemented in 
ggplot2 and how the concept of layer is used in the process of building the graph. 
You saw the high-level components of a plot such as the scales, coordinate system, 
and faceting, and you went through some examples of these functionalities. You then 
explored the concept of layer by reading descriptions of the different components 
of a layer. In the examples shown, you had the chance to see the basic use of the 
ggplot() function, which will be the basis for building more advanced examples.
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Advanced Plotting 
Techniques

In this chapter, we will explore a few of the more advanced features and plots that 
can be realized in ggplot2. We will build on the knowledge you already acquired on 
the grammar of graphics, and we will see how the different components discussed 
in the previous chapter can be combined in order to get a more sophisticated and 
complex plot to represent your data.

Adding statistics
In the previous chapter, you saw how plots are composed of different components 
and how the data, aesthetic mapping, and geometry are the three minimally required 
elements needed in order to make a plot. In reality, statistics are also needed in order 
to draw a plot, but it is not necessarily needed to be specified since, as we have seen 
in the previous chapter, each geometry has default statistics, which, in many cases, 
are simply the identity statistics. This stat transformation actually does not produce 
anything on the data but leaves the data as it is in the plot. Another common stat 
that you have already used, probably without realizing it, is bin, which is used by 
default, for instance, in histograms and barplots, to divide the data into bins that are 
then represented in the graph.

The default stat used from each geom function will be sufficient in most common 
situations, but in some cases, it could be important for you to use a different stat or 
add an additional stat on top of the one used by default. In the following pages, we 
will see a few examples of two of the most important and commonly used statistics: 
smooth lines and regression lines.
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Smooth lines
The smooth line implemented in ggplot2 generates a local regression that will 
follow the data and allow you to have an idea of the fluctuation of the data points. 
The smooth line can be added in the plots in two different ways: using the stat 
function stat_smooth() or using the geom function geom_smooth(). Both these 
methods are very similar, and we will see some examples for both the methods in  
the following pages.

The stat_smooth()function is the statistic function responsible for creating the 
smooth line, so using this function will allow you to have greater statistical control 
over the computation of the smooth line. In this function, you have available 
the argument method, which allows you to choose the smoothing method used 
in the calculation. The options available are lm, glm, gam, loess, and rlm. As an 
alternative, a formula can also be specified in the formula argument. For a dataset 
with the number of observations smaller than 1,000, the default method is loess, 
while for data with more than 1,000 observations, the default is gam. The following 
is a summary table for the different methods, while for a detailed description of 
the statistical calculation used in each method, you can refer to the help page of the 
different functions:

Smoothing 
method

Package Description

loess stats This fits a polynomial surface determined by one or more 
numerical predictors using local fitting. This is used by 
default when n<1000.

gam mgcv This fits a generalized additive model (gam) to the data. This 
is used by default when n>1000.

lm stats This fits a linear model.

rlm MASS This fits a linear model with a more robust fitting algorithm, 
which is less affected by outliers. 

We will see a few examples of how to add a smooth line using the data from the 
ToothGrowth dataset that we have already used in the past chapters. In Chapter 3, 
The Layers and Grammar of Graphics, we have already seen how the stat function 
is simply added to the geom and the ggplot() functions to create facets with a 
smoother in each subplot using the following code:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + stat_smooth() + facet_grid(.~supp)
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As you have seen in this example, we just added the specification of the stat 
transformation and the smooth line was added in each facet. This happens because 
the data and the aesthetic color are specified only in the main function, ggplot(), 
and for this reason, they are used for all the following functions. You have also 
probably noticed that when running the code, you see appearing on the screen a 
message specifying the method used in the calculation of the smooth line.

If we are not interested in having the data split into facets, we can simply remove the 
faceting argument. The following code shows this:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + stat_smooth()

The plot we just realized is represented in Figure 4.1. If you would like to use a 
different method to calculate the smoothing, you can specify it within the stat_
smooth() function.

Figure 4.1: This shows the data and smooth line of the ToothGrowth dataset. The data is grouped by 
administration supplement
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As you can see in the graph, without faceting, the data is in just one plot window 
but remains grouped by the administered supplement. Also, in this case, this 
depends on the fact that the data and the aesthetic attributes are specified only in the 
function creating the plot object. So, the same grouping based on the supp variable 
is applied to the geom attribute, which generates different colors, as well as the stat 
attribute, which generates two different smoothers. Keep in mind that if you want 
to get a different behavior, you can specify a different aesthetic mapping within the 
stat_smooth() function. For instance, let's assume that we want the data in the plot 
grouped by color depending on the supp variable, but we want a smooth line for the 
data altogether. We can specify independent aesthetic mapping within each function. 
The following code shows this:

ggplot() +  
geom_point(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
stat_smooth(data=ToothGrowth, aes(x=dose, y=len))

As you can see in the resulting plot represented in Figure 4.2, we now have the data 
represented with the same grouping but with a smoothing that does not take into 
account the grouping. For this reason, the default color used in the new smoothing is 
different from the grouping colors.

Figure 4.2: Here, the data and the smooth line of the ToothGrowth dataset are shown. The data is grouped by 
the administration of the supplement, while the smooth line is calculated on the overall dataset
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Using the same approach, you can also combine several stat or geom functions 
by adding different degrees of representation of your data. In this case, it could be 
interesting to look at the same time at the smoothing lines specific to each subgroup 
of the supplement administration as well as the total tendency of the data, for 
instance, to see whether the overall tendency is driven particularly by one of the 
subgroups. The following code shows this:

ggplot() +  
geom_point(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
stat_smooth(data=ToothGrowth, aes(x=dose, y=len)) +  
stat_smooth(data=ToothGrowth, aes(x=dose, y=len,col=supp))

The resulting plot is shown in Figure 4.3:

Figure 4.3: Here, the data and the smooth line of the ToothGrowth dataset are shown. The data is  
grouped by the administration of the supplement, and the smooth lines are calculated for each group as well  

as for the overall dataset
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The stat_smooth() function contains two other arguments that can turn out to 
be very useful to adapt the data representation to your needs—the se and span 
arguments. The se argument is a logical argument, where you can specify whether 
or not you want the point-wise confidence interval, which is represented in gray, 
included in the plot the point-wise confidence interval, which is represented in gray. 
So, setting se=FALSE, you can switch off its representation. By default, the confidence 
interval is calculated at 95 percent; you can change that by changing the level = 
0.95 argument. The argument span controls the degree of smoothing of the line. 
With the smoothing, the fitting is calculated locally, so for a fit in a point x, the fitting 
is calculated using points in a neighbor of x. The span parameter defines the size of 
this neighbor. You can think of this option simply as a way to control the width of 
the smoothing. This parameter can be used when the loess smoothing method is 
used since it is passed directly to the loess() function of the stats package. If you 
want more details, you can look at the help page of this function. The default value, 
which was used in the previous examples, is 0.75.

The stat_smooth() function uses a specific default geometry, that is, geom_smooth(). 
As an alternative you can also use this function directly to generate the smooth line 
as you would use any other geom function. So, for instance, the following code would 
produce the same graph as in Figure 4.1:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_smooth() + geom_point()

In a few cases, the use of the geom_smooth() function can be very useful. In fact, as 
we saw in the previous chapter, to realize a plot, you need to specify a geometry. 
This means that if you want smoothing of the data without representing the data, 
you can simply use the geom_smooth() function. As an alternative, you could use 
the stat_smooth() function and specify an empty geom function, such as geom_
blank(). So, the following two blocks of code are equivalent, and they will produce 
a smoothing for each administration group without representing the observations:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_smooth()

### Equivalent coding

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_blank()+stat_smooth()
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You can see the resulting graph in Figure 4.4:

Figure 4.4: These are the smooth lines of the ToothGrowth dataset for each administration of the supplement

Linear regression
Linear regression can be used to represent as a straight line the relationship between 
a variable x and a variable y. As a difference from smoothing, in this case, the 
relationship is assumed to be linear and is calculated over the total range of the data 
available. As we have seen in the previous section, the stat_smooth() function 
allows us to select different methods, with one of them being the lm method, which 
calculates exactly the linear regression. Using the data from ToothGrowth, we can 
represent this time the linear regression of the data by representing a different 
regression line depending on the supplement administered. Here, you will see two 
examples of how to obtain the regression line and how to get the regression without 
the confidence interval represented on the plot:

## Regression with confidence interval

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point()+stat_smooth(method="lm")

## Regression without confidence interval
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ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point()+stat_smooth(method="lm", se=FALSE)

The resulting plots are represented in Figure 4.5:

Figure 4.5: Here's the data and linear regression of the ToothGrowth dataset. (A) This shows linear regression 
with the confidence interval and (B) shows regression without the confidence interval

Statistics with faceting
We already introduced the basic concept of faceting in Chapter 3, The Layers and 
Grammar of Graphics, so now, we will see a few examples of how statistics can be used 
with faceting. Simply using the stat function with faceting, you will obtain smooth 
or linear regression in each facet calculated on the data of each facet, so, for instance, 
the following code will include a smooth line in each facet:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + stat_smooth() + facet_grid(.~supp)
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The resulting graph is represented in Figure 4.6. As you have seen, we simply applied 
the facet_grid() function, together with the stat_smooth() function, and we were 
able to obtain a statistic description in each subset of data.

Figure 4.6: Here's the data and smooth regression of the ToothGrowth dataset  
with the data divided into facets

In some cases, on the other hand, you could be interested in visualizing different 
information. For instance, it could be interesting to get an overview of the tendency 
of the dataset together with the statistical description of each subgroup of the data. 
This kind of analysis can be done by adding the margin to the facets, which will 
add a column or row, along with the statistical analysis applied to them, to the facet 
containing all the data. This is how it would look for our example:.

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + stat_smooth() + facet_grid(.~supp,margins=TRUE)
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As you can see from the code, we used the margin=TRUE option to generate the 
additional facet with all the data. This kind of summary could be very useful if you 
are interested in comparing the overall smooth regression to one of each subgroup. 
The resulting plot is depicted in Figure 4.7:

Figure 4.7: Here's the data and the smooth regression of the ToothGrowth dataset with the  
data divided into facets and also with a facet containing all the data

In other cases, you would want to apply the statistics only to one facet, for instance, 
if in some facets, you do not have enough data and you do not want to show any 
statistics since it would not be representative of the data group. You can do that by 
applying the statistical transformation to a subset of the data so that it will be applied 
only in the facet you are interested in. You can also use this approach if you want to 
apply different statistics to different facets. As an example, we will apply a smooth 
line to the first facet, corresponding to the data for the orange juice vehicle, and a 
linear regression, corresponding to the data for vitamin C, in the second facet:

ggplot(data=ToothGrowth, aes(x=dose, y=len, col=supp)) +  
geom_point() + stat_smooth(data = subset(ToothGrowth, supp  
=="OJ")) +  
stat_smooth(data = subset(ToothGrowth, supp  
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=="VC"),method="lm") +  
facet_grid(.~supp)

To make the code more clear, you can see each function on a different row. After 
creating the ggplot object and adding the observations as points, we apply the 
smooth statistic only on the subset of data where our supp variable is OJ. This means 
that only this data will have a smooth line, meaning only the first facet will have a 
smooth line. The same applies to the other facet except that this time we change the 
method used in the stat_smooth() function by selecting a linear method. You can 
see the resulting plot in Figure 4.8. The same approach can also be used to have the 
statistics only in one facet; in this case, you would simply apply the statistics to the 
facet you are interested in.

Figure 4.8: Shown here are the data and statistics regressions of the ToothGrowth dataset with the data divided 
into facets. The left facet contains the smooth line regression, while the right one is the linear regression
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Advanced aesthetic mapping
In ggplot2, you have already seen how important the role played by aesthetic 
mapping is. You have the possibility of applying a very sophisticated and 
personalized scheme of aesthetic mapping in order to represent data or calculate 
statistical transformations based on the value of a variable used as a flagging factor. 
In the following sections, we will go through the different options of aesthetic 
mapping available and how they can be combined in your plot. For most of the 
examples, we will simply create small datasets by simulating random variables since, 
for the time being, we are just looking at the different mapping options for the data.

Typical aesthetic mappings available in 
ggplot2
You have already seen that the most relevant function used when applying aesthetic 
mapping is the aes() function. Leaving aside the mapping of the x and y variables, 
which were already covered in the previous chapter, we will now focus on the other 
mapping options. The most useful attributes to map are the color, the type of line, or 
the symbol used to represent the data (linetype or shape respectively, size of the 
symbols, and transparency (alpha). All these attributes can be mapped to different 
variables and combined in the plot in order to get the required data representation or 
the visual effect. In the examples we have come across until now, you have already 
seen some applications of the mapping for colors. The same approach can also be 
applied to the other attributes.

In the following example, we will create a dataset with three series of exponential 
values using exponents of 1, 1.5, and 2, and we will plot these three series of data. In 
the dataset, we will also include, together with our x and y values, a flag, which will 
allow us to retrieve the three different sequences of data, and we will use this flag to 
map the data. The following code shows this:

cont <-  
data.frame(y=c(1:20,(1:20)^1.5,(1:20)^2),  
x=1:20,group=rep(c(1,2,3),ea

ch=20))
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We will represent the different sequences of data as points or lines using the  
geom_point() and geom_line() functions. The following code shows this:.

#### Data represented as points

ggplot(data=cont, aes(x=x, y=y, col=factor(group)))) + geom_point()

ggplot(data=cont, aes(x=x, y=y,  
col=factor(group),size=factor(group))) +  
geom_point()

ggplot(data=cont, aes(x=x, y=y,  
col=factor(group),shape=factor(group))) +  
geom_point()

#### Data represented as lines

ggplot(data=cont, aes(x=x, y=y, col=factor(group))) + geom_line()

ggplot(data=cont, aes(x=x, y=y,  
col=factor(group),size=factor(group))) +  
geom_line()

ggplot(data=cont, aes(x=x, y=y,  
col=factor(group),linetype=factor(group))) +  
geom_line()

As illustrated, we first assigned the grouping factor to the color attribute, we 
mapped the size of the line or points, and then we mapped the type of symbol used. 
In this last case, you would notice how we have used different arguments since point 
symbols can be mapped using the shape argument, while the tile of the line can be 
mapped with the linetype argument.

In Chapter 3, The Layers and Grammar of Graphics, you can find 
summary tables providing an overview of the aesthetics available 
for the most important geom_x functions, or as an alternative, you 
can also find this information on the help page of each function.
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In Figure 4.9, you can see the plots we have obtained:

Figure 4.9: These are examples of points (left) and lines (right) with aesthetic  
mapping of colors (first row), size (second row), and type (third row)

You would also notice how, with the mapping size (second row of Figure 4.9), the 
aesthetic maps, by default, the size to the value of the mapping variable (group 
in our example). Consequently, group 3 has much bigger points and thicker lines 
compared to group 1.

In the next section, we will have a look at the mapping of the alpha parameter, which 
adds transparency to the element of the plot.
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Mapping the aesthetic to new stat variables
In the previous chapter, we described how the stat_x functions work in general: 
they take the data you provide as input, and they use such data for statistical 
calculations. During such calculations, new variables can be created, such as the 
variable defining the bins or the variable defining the count element in a histogram. 
The output of these statistical transformations is also a dataset that contains the 
original data and the new variables created in the process, and that depends on the 
specific stat_x function used. In Chapter 3, The Layers and Grammar of Graphics, you 
can find a summary table for these stat functions that also contains specific new 
variables created for the most important functions. These newly created variables 
are quite interesting since they can also be used in the plot that contains the stat_x 
function. This is exactly how the results of the statistical transformations are 
represented in the plot. On top of this default representation, you can also use these 
newly created variables to represent additional information on the plot, or you can, 
for instance, map aesthetic attributes to such variables.

We will now just see a simple example showing how we can use such variables which, 
in some cases, can produce a very nice effect on the histogram, for instance. We will 
just create a simple normal distribution with default values (0 as the mean and 1 as the 
standard deviation) using the rnorm function, and then we will create a histogram of 
such a distribution. We can then map the filling color to the number of observations in 
each bin available in the new count variable created by the stat_bin() function. Just 
remember that, in order to avoid errors because of variables with the same name in 
the original dataset, the newly created variables must be surrounded by .., so in our 
example, we would need to use ..count... The following code shows this:

set.seed(1234)

x <-data.frame(x=rnorm(1000))

ggplot(data=x, aes(x=x, fill=..count..)) + geom_histogram()

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Plotting Techniques

[ 122 ]

Since we are performing a simulation of random numbers, as the first thing, we 
set up the seed function used in the random number generation process so that 
we get the same results every time we run the code. The plot we just obtained is 
represented in Figure 4.10. As illustrated, the use of such variables is quite similar to 
the traditional variable; the trickiest part is to know which additional variables you 
have available for the statistic you are using, and for this, you can use the tables in 
the previous chapter. With them, you can also get new ideas about new applications 
that better fit your needs.

Figure 4.10: Here's a histogram of a normally distributed random variable representing the  
data count (default option) with the color intensity proportional to the data count

Applying this method to aesthetic mapping, we use a continuous scale of color tones 
to map the observation count. Since the scale is continuous, we cannot apply this 
method on geometries with only one continuous plot area, such as geom_density(), 
which generate a smooth estimate of the kernel density. We have used this function 
in some of the examples in Chapter 2, Getting Started.
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On the other side, you can apply it to the histogram representing the density  
of observations. We can, in fact, use the new variable density created by the  
stat_bin() function to represent as a y value the density of observations  
present in each bin and at the same time use a filling color proportional  
to the observations. The following code shows this:

ggplot(data=x, aes(x=x)) +  
geom_histogram(aes(y=..density..,fill=..density..))

We can also combine multiple geometries on the same plot and also add the kernel 
density function on top of the histogram we have obtained. The following code 
shows this:

ggplot(data=x, aes(x=x)) +  
geom_histogram(aes(y=..density..,fill=..density..)) +  
geom_density()

You can see both plots in Figure 4.11. You can see how the data density is scaled to 
integrate to 1 and how in this case we have used the new variable ..density.. not 
only for the color filling aesthetic, but also for the plotting value y. In the previous 
example, when representing the data count, we did not need to specify the y variable 
since the default behavior of geom_histogram() is to represent the data count.

Figure 4.11: (A) This is a histogram of a normally distributed random variable representing data density with 
color intensity proportional to the data density scaled to 1. (B) This is the same plot as (A) but also includes the 

estimate for the kernel density function
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As you can see from the plot in Figure 4.11, the graphical effect that we have produced 
with this mapping is to have the data bins represented with a color shade that is 
proportional to the amount of data in each bin. A similar effect can be obtained by 
assigning a mapping to the alpha variable, which defines the transparency of the data. 
We have already used the alpha attributes in some other examples previously, but 
in this case, we will use it for an actual aesthetic mapping instead of assigning a fixed 
value to it. This means that we will need to give the definition of alpha in the aes() 
function, together with the other aesthetic attributes. The following code shows this:

ggplot(data=x, aes(x=x)) + geom_histogram(aes(alpha=..count..))

As illustrated in the resulting plot in Figure 4.12 (A), the default behavior of alpha 
mapping is to use gray scales since it is not a mapping of colors but rather a mapping 
of transparency. It is also possible to combine the mapping of the previous example 
with the filling, together with the transparency, and you can see the resulting plot in 
Figure 4.12 (B). The following code shows this:

ggplot(data=x, aes(x=x)) +  
geom_histogram(aes(alpha=..count..,fill=..count..))

As is apparent, the effect is quite redundant since both mappings produce a similar 
effect although one is based on color and the other on transparency. You would also 
notice how the two mappings are considered independent and ggplot2 will produce 
two different scales for them.

Figure 4.12: (A) This is a histogram of a normally distributed random variable representing the data count 
with transparency (alpha) mapped to the data count. (B) This is the same plot as (A) but also includes a filling 

mapping to the data count
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If you want to try out such a mapping on real data, you can go to Chapter 2, Getting 
Started, where we used the iris dataset as an example for histograms and density 
plots. You could, for instance, add alpha mapping to Figure 2.4 of Chapter 2, Getting 
Started, with the following code:

ggplot(data=iris,  
aes(x=Petal.Length,col=Species,fill=Species,alpha=..count..)) +  
geom_histogram()

Difference in mapping continuous and 
categorical variables
In the preceding chapter, in Figure 3.4, we saw an overview of a few options of scales 
and the difference in scales between continuous and categorical variables. In this 
section, we will have a closer look at how the assignment of scales is done using 
these different scales and at how you can control this aspect to get a grip on the scale 
that is used.

Let's first create a small dataset with four different distributions of random variables:

dist <- data.frame(value=rnorm(10000, 1:4), group=1:4)

The distributions we just created are all normal with a standard deviation of 1 but 
are built around an increasing mean, so the first distribution will have 1 as the mean, 
the second will have 2 as the mean, and so on.

We can plot such data as jittered points using a different color for each group; with 
the following code, we obtain the plot in Figure 4.13:

ggplot(dist, aes(x=group, y=value, color=group)) +  
geom_jitter(alpha=0.5)

As illustrated, we simply represented the values of the distributions on the y axis 
for the different groups that are on the x axis. As shown, the default scale selected 
by ggplot2 is a continuous scale where the color intensity is associated with the 
color value. Of course, this is not what we are interested in since we just wanted to 
represent the different distributions with a different color that is easy to identify and 
not connected in a color scale. The reason for this is related to the type of values that 
we represented.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Plotting Techniques

[ 126 ]

In fact, in our dataset, the variables contained in the group column are numeric, 
and this means that ggplot2 will treat them as connected in a numeric scale and 
consequently will associate with them a continuous scale. One way to overcome this 
issue is to simply change the variable to factor. In this way, the numbers will be 
treated only as levels and not as numeric values.

Figure 4.13: This is a representation of different distributions with jittered points

This can be done, of course, directly in the dataset in simple examples as ours, but 
in most cases, where, eventually, you will use a big dataset, you would not want 
to change its variables for each plot. In this situation, it is much more convenient 
to change the variables directly in the plot. The following is the code to have the 
grouping variable as a factor:

ggplot(dist, aes(x=group, y=value,

color=as.factor(group))) +  
geom_jitter(alpha=0.5)
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In Figure 4.14, you can see the resulting plot. As illustrated, changing the variable to 
factor will produce a default plot with the as.factor(group) scale notation. This 
can be changed by changing the title of the legend; we will see how to do that in the 
next chapter. The use of converting a variable from numeric to factor can turn out 
to be very handy, and I am sure that you will find this approach when browsing for 
help. In the following code, you can find an example of such an approach on a real 
dataset—the mtcars dataset. In this case, the grouping variable, that is, the number 
of cylinders of the cars, is also treated as numeric, but the idea is, of course, to simply 
use this variable as a grouping variable. The following code shows this:

ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(color = cyl))

ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(color = factor(cyl)))

Figure 4.14: This is a representation of the different distributions with jittered points  
and with the grouping variable treated as a factor
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Adding text and reference lines to plots
In this section, we will take a look at some of the most useful annotations you would 
want to add to a plot. After you have represented your data, you would probably 
need to add a specific reference to the plot, for instance, vertical bars, text, or other 
types of annotations. The ggplot2 package provides a vast variety of options, 
and for a complete reference, you can have a look at the ggplot2 documentation 
website http://docs.ggplot2.org. In this section, we will take a look at the most 
important annotations.

Let's consider again our dataset that we created previously just by generating a series 
of normally distributed random numbers.

x <- data.frame(x=rnorm(1000))

We can, for instance, represent this distribution using a histogram. In this case, 
it could be useful to add a vertical bar to the plot representing the mean of the 
distribution. As for graphics, ggplot2 also provides three major functions to 
produce such reference lines:

•	 geom_hline() for horizontal lines
•	 geom_vline() for vertical lines
•	 geom_abline() using which any line can be created by specifying the slope 

and intercept

The first two functions are a special case of this last one since they allow you only  
to represent lines parallel to the axis. In the following code, we use the relative 
function to add a vertical line to the histogram corresponding to the median of  
the distribution:

ggplot(x, aes(x=x)) +  
geom_histogram(alpha=0.5) +  
geom_vline(aes(xintercept=median(x)),

color="red", linetype="dashed", size=1)
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We also specified the color, the type of line, and the size the line should have. You 
can see how such arguments are similar to the arguments used by other graphical 
packages in R. As you have seen in this case, we specified the intercept on the x 
axis by calculating it from our data. This is a very useful approach since even if 
you changed the data, the plot would still be produced correctly. Of course, as an 
alternative, we could also specify the numeric value at which we want to have our 
intercept. For instance, we can add to our plot a horizontal line corresponding to a 
level of 50 in our data count. In this case, we will draw a solid black line:

ggplot(x, aes(x=x)) +  
geom_histogram(alpha=0.5) +  
geom_vline(aes(xintercept=median(x)), color="red", linetype="dashed", 

size=1) +  
geom_hline(aes(yintercept=50), col="black", linetype="solid")

You can see the resulting plot in Figure 4.15:

Figure 4.15: This is a histogram of a normal distribution with two reference lines
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Together with the vertical line, it is also possible to add text to the plot as an 
annotation. Text as well as lines can also be mapped to variables, producing a 
plot representing text corresponding to the variables, for instance. In this case, it 
would be nice to include in the plot an indication that the red vertical bar refers to 
the median and specify its numeric value. We can do that using the geom_text() 
function, in which we can specify the text we want to add as well as its coordinates. 
The following code shows this:

ggplot(x, aes(x=x)) + 

geom_histogram(alpha=0.5) +  
geom_vline(aes(xintercept=median(x)), color="red", linetype="dashed", 

size=1) +  
geom_hline(aes(yintercept=50), col="black", linetype="solid") +  
geom_text(aes(x=median(x),y=80),label="Median",hjust=1) +  
geom_text(aes(x=median(x),y=80,label=round(median(x),

digit=3)),hjust=-0.5)

Within the geom_text() function, we also used aesthetic mapping to define the 
position of the objects. As you can see, we had the possibility of using a numeric 
value as we did for the y argument, as well as a calculated value as we did for the x 
value, which is calculated using the median() function. In this situation, when you 
actually don't know the value but you calculate it within the plot function, it is very 
useful to use adjustment arguments to add an offset to the text so that it does not 
overlap with the median line. You can do that using hjust for horizontal adjustment 
and vjust for the vertical ones. These adjustments will represent the text with a shift 
from its original position equivalent to the value that you provided. In our example, 
the word "Median" will be shifted by 1 unit to the left, while the numeric value of 
the median will be shifted by 0.5 to the right since the value is negative. Since the 
default of the digits produces a number with too high a level of precision, you would 
often need to round off these calculated values, and that's what we did using the 
round() function, in which we specified the number of digits to represent.

Finally, ggplot2 also provides an annotate() function that allows you to  
easily create annotations to the plot. You can use it to add specific lines, text,  
and a shading area to the plot by providing the limits on the axes. You would  
find an idea of the possible annotation by looking at the help page of the function  
or on the ggplot2 website. Additional examples are also shown on the ggplot2 
website under the theme() function. In this case, we will have a look at one example. 
We will draw a shade area on our histogram covering the interquartile range 
between the twenty-fifth and the seventy-fifth percentiles.
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The following code shows this:

ggplot(x, aes(x=x)) +  
geom_histogram(alpha=0.5) +  
geom_vline(aes(xintercept=median(x)), color="red",linetype="dashed", 
size=1) +  
geom_hline(aes(yintercept=50), col="black",linetype="solid") +  
geom_text(aes(x=median(x),y=80),label="Median",hjust=1) + geom_text(aes(x
=median(x),y=80,label=round(median(x)

, digit=3)),hjust=-0.5) +  
annotate("rect", xmin = quantile(x$x, probs = 0.25), xmax = quantile(x$x, 
probs = 0.75), ymin = 0, ymax = 100, 

alpha = .2, fill="blue")

As illustrated, in the annotate() function, we selected the type of geometry we want 
to represent, that is, the rectangular one, and then we defined the extremes of the 
area. You would also notice that since, in this case, we are not mapping aesthetics, 
for our calculations, we need to provide a specific reference to the dataset, for 
instance, in quantile(x$x, probs = 0.75), we need to specify the actual column 
in the datasets. On the other hand, for the calculation of the median, within the 
aes() function, we were able to specify only the column in the dataset since the data 
was already loaded in the plot object ready for aesthetic mapping. You can see the 
final plot with all our annotations in Figure 4.16:

Figure 4.16: This is a histogram of a normal distribution with two reference lines, the notation  
for the median value, and a shade area for the interquartile range
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The annotate() function can be very useful to quickly make annotations without 
having the data in a data frame structure, for instance, in this case, we were able to 
draw a rectangular area without the need to have to use geom functions.

Add text and reference lines with facets
In the examples we just discussed, we applied text and reference lines to only 
one plot, but in many cases, you would probably have plots divided into facets in 
which you would also like to add reference lines. One easy way to do that is using 
the same approach we discussed in the Adding statistics section at the beginning of 
this chapter. We can add text as well as the reference lines by applying the layer to 
only a subset of data. We can see an example of this using the dist dataset, which 
we created in the previous sections, and which contains four different normal 
distributions. We will represent such distributions in facets, and we will apply a 
reference line on the median value of the first distribution as well as its numeric 
value. The following code shows this:

ggplot(dist, aes(x=value, fill=as.factor(group))) +  
geom_histogram(alpha=0.5) +  
geom_vline(data = subset(dist, group 

=="1"), aes(xintercept=median(value)), color="black", 

linetype="dashed", size=1) +  
geom_text(data = subset(dist, group 

=="1"),aes(x=median(value),y=350,label=round(median(value), 
digit=3)),hjust=-0.2) +  
facet_grid(.~group)

As you can see from the preceding code, we simply applied the text and the  
vertical line only to the data with the group value equal to 1. This way, we add these 
elements only to the first facet. You can see the resulting graph in Figure 4.17. You 
would also notice how selecting the data within the geom_text() and geom_vline() 
functions, the median is only calculated on this subset of data.
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Figure 4.17: This is a histogram of the dist dataset with a facet for each distribution. A reference line indicating 
the median is added on the first facet and the median value is also included

Using the same approach, you can add the median reference line and the median 
value to the other facets; you will just need to also include the code for the other 
groups as well. On the other hand, you will get reference lines on the plots that will 
not match the colors used in the distributions since we include a component after 
the other instead of letting ggplot2 split the data and make the color assignments. 
To solve this, recall the default assignments of colors and then use them in the plot. 
We already mentioned in Chapter 3, The Layers and Grammar of Graphics, how equally 
spaced colors on the color wheel are assigned the default to categorical variables. 
Here, we will show a practical example of that.

First of all, we create a vector with the first four default colors assigned by ggplot2 
to categorical variables. The following code shows this:

myColours <- scales::hue_pal()(4)

The myColours vector will contain the four colors in the same order as assigned by 
ggplot2, so the first will be assigned to the first variable, the second to the second 
one, and so on.
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We will then create the plot using the same method used before with the difference 
that the colors used to draw the vertical line will be taken from this vector of colors. 
Since this code is quite long, you have the different parts of the code divided by a 
comment indicating to which facet it applies. You can also see italicized the code 
for the first facet since the remaining code will have a similar structure for the other 
facets. The following code shows this:

ggplot(dist, aes(x=value, fill=as.factor(group))) +

geom_histogram(alpha=0.5)+

### Facet 1

geom_vline(data = subset(dist, group ==1),  
aes(xintercept=median(value)), color=myColours[1], linetype="dashed",  
size=1.5)+geom_text(data = subset(dist, group 
==1),aes(x=median(value),y=350,label=round(median(value),  
digit=3)),hjust=-0.2)+

### Facet 2

geom_vline(data = subset(dist, group==2),  
aes(xintercept=median(value)), color=myColours[2], linetype="dashed",  
size=1.5)+

geom_text(data = subset(dist, group  
==2),aes(x=median(value),y=350,label=round(median(value),  
digit=3)),hjust=-0.2)+

### Facet 3

geom_vline(data = subset(dist, group==3),  
aes(xintercept=median(value)), color=myColours[3], linetype="dashed",  
size=1.5)+geom_text(data = subset(dist, group  
==3),aes(x=median(value),y=350,label=round(median(value),  
digit=3)),hjust=-0.2)+

### Facet 4

geom_vline(data = subset(dist, group==4),  
aes(xintercept=median(value)), color=myColours[4], linetype="dashed",  
size=1.5)+geom_text(data = subset(dist, group  
==4),aes(x=median(value),y=350,label=round(median(value),  
digit=3)),hjust=-0.2)+facet_grid(.~group)

The resulting plot is represented in Figure 4.18. As you have seen, we now have the 
vertical reference lines with a matching color that is the same as the one used to fill 
the histograms, with a resulting nicer graphical effect. When using this approach, 
you just need to be sure that the reference lines can be clearly distinguished since you 
are drawing them on top of histograms having the same color. A possible solution, 
used in our example, is to slightly increase the size of the lines. In the final plot, you 
can also see how in each facet we obtain the same median calculation that was used 
to simulate the original distributions. Clearly, you could use the same method even 
to the text added to the facet by specifying the color in the geom_text() function.
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Figure 4.18: This is a histogram of the dist dataset with a facet for each distribution. A reference line indicating 
the median is added in each facet with a color matching the ggplot default assignment

Plots with polar coordinates
In this section, we will have a look at a few plots that can be created using polar 
coordinates. We have already introduced this coordinate system in the previous 
chapter. Just remember that you should always use these coordinates with caution 
since the representation of data in circular form can generate very pronounced 
perceptual problems concerning the relative areas in the plot.

The most important plots that you can realize with these coordinates are the pie 
chart, the bullseye chart, and the coxcomb diagram. For our examples, we will use 
the movie dataset, which we created in previous chapters and the myMovieData 
dataset, and we will represent in these different plots the proportions of movies 
within each category.

A pie chart
A pie chart in ggplot2 corresponds to a stacked bar chart in polar coordinates.  
This means that to produce a pie chart, we will first create a bar chart with bars 
stacked one on top of the other, and then we will change the coordinate system.  
The following code shows this:

ggplot(data=myMovieData, 

aes(x=factor(1),fill=factor(Type))) +  
geom_bar(width = 1) + coord_polar(theta = "y")
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This code can turn out to be quite tricky to follow, but with more details, it should 
become much clearer. The first two lines simply define a bar with the count for 
each movie type stacked on top of each other along the y axis, with the type 
variable defining the filling color. This variable is finally the one that we will end up 
representing in the pie chart. The definition of x=factor(1) doesn't do anything, and 
it can contain any value; its scope is simply to have just one factor that will be the x axis 
of our hypothetical bar chart. The width=1 parameter basically defines the radius of 
our pie chart. Any value greater than 1 will not produce any change since 1 means that 
the bars of our plot will cover the whole plot area. On the other hand, a value lower 
than 1 would produce a tighter bar. Finally, with the last line, we just make polar the 
coordinate y, which is the axis along which we have built our bar chart. In Figure 4.19 
are represented the bar plots and the resulting pie charts obtained when changing the 
coordinates to polar for width=1 and for width=0.5. As you can see, even using a 
smaller width value can create a nice pie chart effect with an empty area in the middle.

Figure 4.19: This shows bar plots and the resulting pie charts obtained when changing  
the coordinates to polar for width=1 and for width=0.5
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A bullseye chart
A bullseye chart is a chart in which the variables are represented in a circular way 
with an area proportional to the variable value. The difference compared with the 
pie chart is that the variables are represented in a concentric way, as in the center of a 
target ("bull's-eye"). In ggplot2, these plots are realized by producing a bar chart as 
shown in Figure 4.19, but instead of stretching the y axis along the polar coordinates, 
in this case, we simply stretch them along the x axis. The following code shows how 
this is done:

ggplot(data=myMovieData, aes(x=factor(1),fill=factor(Type))) +  
geom_bar(width = 1) + coord_polar()

The resulting plot is represented in Figure 4.20:

Figure 4.20: This is an example of a bullseye chart realized with the myMovieData dataset

A coxcomb diagram
The coxcomb diagram is similar to a pie chart, but the areas representing the data in 
the pie are not normalized to cover the whole area of the circle. They can be realized 
in a similar way to the pie chart by producing a normal bar chart and converting its 
coordinates into polar coordinates. In this case, the bar chart is not realized with the 
stacked position adjustment, but the data is placed such that one piece of data is next 
to another along the x axis of our bar chart. The following code shows this:

ggplot(data=myMovieData, 

aes(x=Type,fill=factor(Type))) +  
geom_bar(width = 1) + coord_polar(theta = "x")
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You can then see the resulting chart in Figure 4.21:

Figure 4.21: Here's an example of a coxcomb diagram realized with the myMovieData dataset

Further reading
Additional examples can be found on the respective help pages of each function 
mentioned or on the package webpage at http://docs.ggplot2.org/.

Summary
In this chapter, we had a look at a few examples of more advanced plots that can 
be realized with ggplot2. We went through the inclusion of statistics in the plot by 
showing examples for the smooth and linear regression. We then covered examples 
of more complex mapping of aesthetic variables, for instance, by recalling the 
variables that are created from the statistical transformations and how to use them 
to create histograms with shades of colors that are related to the count or density of 
the data. We then also saw a few examples of how annotations can be added to plots. 
Finally, we saw a few examples of how to realize a polar area chart using the polar 
coordinates. In the next chapter, we will look at how to control plot detail using 
ggplot2 and explore axis scales, legends, and themes in detail.
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Controlling Plot Details
Although, by now, you have gained a good understanding of how to make plots, 
you certainly realize that we did not discuss how to change the default details of 
the plot, which are automatically set up by ggplot2. In this chapter, we will go 
through how to personalize details such as the plot title and axis, axis scales, plot 
background, and the legend details. We will then see examples of of layout changes 
that can be applied to facet plots.

Exploring scales
We already discussed scales in different situations but, in this case, we will focus 
on certain general aspects that will turn out to be essential for you to understand 
how to fully utilize the different scales available. Generally speaking, the scales 
are assigned during the aesthetic mapping and are then used to define guides to 
trace from the represented objects back to the data by creating legends as well as 
the plot axis. You can add a scale to your plot or modify the default values of the 
scale using one of the scale functions. These functions have the general structure 
of scale_aesthetic_scale, where aesthetic represents the aesthetic on which 
the scale is applied and scale represents the name of the scale on which it is used. 
Typical aesthetic values can be, for instance, color, x, y, fill, shape, or size, 
while examples of scales are hue, brewer, gradient, and log10. So, for instance, the 
scale_color_gradient() function defines the gradient of colors. Take for example 
a case where different shades of a certain color are used to map data, as we did 
in Figure 5.1. Another example is scale_color_hue(), which is used for equally 
spaced colors, for instance, for mapping categorical values to the color aesthetic, 
while scale_fill_hue() is the corresponding scale for the fill aesthetic. You also 
have the option to define your own scale for discrete data using the scale_manual() 
function. Also, keep in mind that if you want to set one of the aesthetics to a certain 
value, you need to use the I() operator, so to use only the color red, you can use the 
code color=I("red") as we already described in Chapter 2, Getting Started.
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In this chapter, we will see several examples of scales and their use, but we  
will not go into all the details as we shall see from our examples that in many  
cases their usage is almost the same. If you want an overview of the different scales 
available, you can have a look at them on the ggplot2 website documentation at 
http://docs.ggplot2.org.

Grayscale plots for black-and-white publications
In some cases, you may need to produce plots using only black-and-white 
colors. You can convert your plot to grayscale simply using the scale_
color_grey() and scale_fill_grey()functions depending on the 
aesthetic. For instance, the scatterplot from the previous chapter can be 
rendered in grayscale with the following command:
myScatter + scale_color_grey()

The plot title and axis labels
As you saw when creating a plot with ggplot2, the default result will be a plot 
without any title and with axis labels corresponding to the names of the variables 
represented in the plot. In many cases, you will want to personalize things such 
as labels, particularly if you are interested in including not only the name of the 
variable, but also its units. Alternatively, you might also be interested in providing 
more descriptive labels than simply the title of the variable. In this section, we will 
see examples of how to change three different types of details: how to change the 
title and labels of the axis, how to change the scale represented in the x and y axes, 
and how to remove them if you don't want to have them in the plot.

In order to change the plot title, there are two main options that you can choose from:

•	 There is the possibility of changing the title and axis label using specific 
functions: ggtitle() for the title and xlab() and ylab() for the axes

•	 Alternatively, you can use the labs() function in which you can specify both 
the axis and the title using the argument titles, x and y
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As a simple example, let's take the histogram we created in the previous chapter with 
the following command:

set.seed(1234)

x <- data.frame(x=rnorm(1000))

ggplot(data=x, aes(x=x, fill=..count..)) + geom_histogram()

As illustrated in Figure 4.9, the default plot obtained has the name of the variable 
used on the x axis, which, in this case, is x, and on the y axis the plot has the name 
of the variable count, which is created by the stat function. We can, additionally, 
change the plot title and labels of the axis as mentioned before. Here, you have an 
example of how that can be done using a unique call to labs() or by modifying 
independently; you can choose what is more convenient to you since there is no 
difference in the result. The following command shows this:

###### Using labs()

ggplot(data=x, aes(x=x, fill=..count..)) + geom_histogram() +  
labs(title="This is my histogram", x="Random variable", y="Number  
of times")

#### Using the individual functions

ggplot(data=x, aes(x=x, fill=..count..)) + geom_histogram() +  
ggtitle("This is my histogram") + xlab("Random variable") +  
ylab("Number of times")

Both commands generate the plot presented in Figure 5.1. When using the labs() 
function, you can also specify only some of the arguments, so you can also use that 
function to add the title without changing the labels, for instance.
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Split long titles into more lines
Sometimes, you may want to include in the plot a longer title or 
additional explanation. In this situation, you may end up with text that 
is too long to be included in the upper part of the graph. You can break 
a title into multiple lines using the special character \n, which indicates 
that you are going to a new line in many programming languages. This 
can turn out to be quite useful if you want to keep a longer title centered 
in the picture. You can include this special character directly in the text, 
so the title of our previous example would be as follows:
labs(title="This is \n my histogram", x="Random  
variable", y="Number of times")

Figure 5.1: Histogram with changed axis labels and title
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Axis scales
Together with axis labels, you will also often need to change the axis scales. For 
instance, you may want to change the scale in log values or modify the default range 
values included in the axis when creating the plot. In this section, we will take a look 
at exactly how to do these modifications. The axis scales as well as the legends are 
derived from the scales used in aesthetic mappings, so, in many cases, if you want 
to manipulate such values, you will need to use the scale function relative to your 
specific situation. For this reason, we will treat the plots with only discrete scales as 
different from those with only continuous scales.

The discrete axis
You may have a plot with discrete scales, for instance, when you represent data 
grouped in categories along one of the axes. As an example, we will use the dataset 
with the four different normal distributions that we created in the previous chapter 
with the next command. In this case, we will just directly define the grouping 
variable as a factor so that we don't need to convert numbers to factors later on.  
The following command shows this:

dist <- data.frame(value=rnorm(10000, 1:4), group=factor(1:4))

Our dist dataset will contain four different normal distributions, and we will 
visualize them as boxplots with the different groups defined by the variable  
group along the x axis, as follows:

myBoxplot <- ggplot(dist, aes(x=group, y=value, fill=group)) +  
geom_boxplot()

The resulting plot is represented in Figure 5.2(A). In this case, we have an x axis 
composed of discrete data, so if we, for instance, want to change the order of such 
data, we can do that using the scale function for discrete data and apply it to the x 
axis aesthetic. We will then use the scale_x_discrete() function. In the upcoming 
examples, we will consider scale transformations to the x axis, but the same 
transformation can be applied to the y axis by replacing x with y in the function or 
argument names. The following command shows this:

myBoxplot + scale_x_discrete(limits=c("1","3","2","4"))

As illustrated in Figure 5.2(B), we have changed the order of the data to the order we 
have specified.

www.it-ebooks.info

http://www.it-ebooks.info/


Controlling Plot Details

[ 144 ]

Reversing the order of discrete variables
We have seen how to manually set the order of discrete variables. 
You can also use this approach to invert the order of the variables, 
but, in case you are working on a dataset with many levels in the 
grouping variable, it may be handy to use the rev() function. This 
basic R function simply inverts the order of its elements, so using it 
in the limits argument will make the command shorter and easier to 
read. The following command shows how you can apply this method 
to invert the order of your variables; just remember that you need to 
specify the dataset explicitly since, in this case, you are actually using 
the vector of levels of your grouping variable directly:
myBoxplot + scale_x_discrete(limits =  
rev(levels(dist$group)))

In our previous examples, we specified the order of the discrete variables using the 
limits  argument of the scale function. There are also other arguments that you can 
use in this function to change default values in the scale. These arguments will be 
very similar to other scale functions, so we will not list them for all scale functions 
we will mention in the next pages. You can always check them in the help page of 
the specific function you are interested in. For the scale_x_discrete() function, the 
common available arguments are the following:

•	 name: This defines the name of the scale and so the label of the axis. 
Aesthetics that are used in the legend define the name of the legend.

•	 breaks: This controls the breaks in the guide and so which values appear on 
the axis or legend. The value is NULL for no breaks.

•	 labels: This defines the labels that should appear on the breakpoints defined 
by breaks; the value is NULL for no labels.

•	 na.value: This is how missing values should be displayed, for instance,  
by providing the value that should be represented as replacement.

•	 limits: This defines the limits of the data range and the default order of how 
they are displayed.

•	 guide: This is used to control the legend.

In most cases, the arguments of the specific scale functions are passed to a more 
general function, which then actually constructs the scale. For this reason, you will 
not find a description of such arguments on the help page of the scale function but 
on the help page of the constructor function. On the help page of the scale function, 
you will find specified which scale constructor is used. In our previous examples, for 
instance, the scale_x_discrete() as well as scale_y_discrete() scale functions 
use the discrete_scale() scale constructor.
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Figure 5.2: A boxplot of distributions in the dataset dist with default settings (A) and  
with the changed order of the discrete variable on the x axis (B)

The continuous axis
When dealing with continuous scales, two very common adjustments on the scale 
you will probably need to make in some cases are modifying the default data range 
represented in the plot and inversing the direction of the data. As we have seen 
in the previous section, the scale functions provided the limits argument, which 
allowed us to set the limits of the axis. We can, for instance, change the limits of the 
y axis in the boxplot we just created by extending it from -10 to 10, as shown in the 
following command:

myBoxplot + scale_y_continuous(limits=c(-10,10))

As an alternative, you can also use the xlim and ylim functions if you only  
need to change the range, so, for instance, the following command will produce  
the same result:

myBoxplot + ylim(-10,10)

The resulting plot is shown in Figure 5.3(A).
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If you want to make sure that a value in the range is included in your plot, you 
can also use the expand_limits() function. This function will increase the range 
plotted, making sure that all the values within the specified limits are included. For 
instance, if we want to make sure that the value -10 is represented in our plot, we can 
use this function, the resulting plot of which is represented in Figure 5.3(B):

myBoxplot + expand_limits(y=-10)

This function can be very handy since you only specify the values that should be 
included, so if you change the data in you plot or reuse part of your code, the limits 
are also be applied to the new plot. On the other hand, just keep in mind that the 
expand_limits() function cannot be used to shrink the range represented. Take  
the following command as an example:

myBoxplot + expand_limits(y=0)

The preceding command will not produce any change in our original plot since 0 is 
already included in the range plotted.

Figure 5.3: A boxplot of distributions in the dataset dist with the y axis range  
from -10 to 10 (A) and the expanded range to include value the value -10 (B)
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Axis transformations
By default, scales in plots are linear, but you have the option to replace this with 
a transformed scale for your axis. This can be done in several different ways, but 
the two main options are to transform the axis by changing the scale or changing 
the coordinate system. The result of such methods is slightly different since the 
transformation is applied at different points. 

For our examples, we will use the cont dataset that we generated in the previous 
chapter with the following command, which contains three series of data values.  
The following command shows this:

cont <- data.frame(y=c(1:20,(1:20)^1.5,(1:20)^2), x=1:20,  
group=rep(c(1,2,3),each=20))

We will first create a scatterplot with these values (Figure 5.4(A)), and then we will 
transform our y axis into log10 values, as shown in the following command:

myScatter <- ggplot(data=cont, aes(x=x, y=y,  
col=factor(group))) + geom_point()

myScatter + scale_y_log10()

In the preceding command, we used the scale function to transform the axis; this 
function directly corresponds to the scale_y_continuous() function but with 
log transformation of the data. Other similar functions that are also available are 
scale_x_reverse(), which inverts the values on the axis, and scale_x_sqrt(), 
which calculates the square root. You can see the resulting picture from our 
transformations in Figure 5.4(B). Since, in this case, we have used the scale function, 
we have applied the transformation when creating the scale, so before that, 
properties such as breaks and ranges of data were created, and this means that the 
scale representing log-transformed data is done based on the newly transformed 
data. As mentioned earlier, we can also use coordinate transformation, but in this 
case, the transformation is applied, after which the scale is defined, which means that 
the scale that contained the original values is now represented on a log axis.
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You can use coordinate transformation as shown in the following command and see 
the resulting plot in Figure 5.4(C).

myScatter + coord_trans(y="log10")

Figure 5.4: Example of scatterplots with default linear scales (A), a log-transformed y axis by changing the scale 
(B), and a log-transformed y axis by changing the coordinate system (C)

As illustrated, independent of the transformation method used, the data is 
represented in the same way in Figure 5.4(B) and Figure 5.4(C), but the y axis scale 
is different; when transforming the scale, the axis contains log-transformed values, 
while, when changing coordinates, the values represented are the same as with the 
linear scale but represented in a log-transformed coordinate system.

Removing axis tick marks
In some cases, you may want to remove the axis tick marks since they 
may be redundant in your plot. For instance, if we look again at our 
dataset dist, and we plot only one distribution, we would end up 
with two labels: one for the data and one for the axis. In these cases, it 
may be handy to just delete the axis tick marks and use the axis label to 
define the type of data, as shown in the following command: 
myBoxplot2 <- ggplot(subset(dist,group=="1"),  
aes(x=group, y=value, fill=group)) + geom_boxplot()

myBoxplot2 + scale_x_discrete(breaks=NULL) +  
xlab("Distribution of variable 1")
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Legends
As we mentioned in Chapter 3, The Layers and Grammar of Graphics, legends are guides 
that represent the inverse of the applied scales and are used to trace back the plot 
elements to the aesthetic mapping. For this reason, legends are defined in ggplot2 
as guides since they represent guides to the aesthetic mapping. The legend that is 
created by ggplot2 depends on the aesthetic mapping and the geometry that is 
used in the plot. For instance, Figure 5.1 contains a continuous color scale, Figure 5.2 
contains boxplots, and Figure 5.4 contains points.

Since legends are recreated by scale functions, most of the time you will need to 
use scale functions to modify the legend's appearance. In this section, we will go 
through how to change the four main aspects of legends: the title, labels, legend box, 
and legend position. But, first of all, let's see how we can remove the legend.

To remove the legend, you can use the guide argument of the scale function or 
directly use the guides() function dedicated to the manipulation of the guides.  
We will illustrate this using our boxplot example with the dist dataset:

### We create again our plot myBoxplot

myBoxplot <- ggplot(dist, aes(x=group, y=value, fill=group)) +  
geom_boxplot()

### Remove legend with guides function

myBoxplot + guides(fill=FALSE)

### Remove legend with scale function

myBoxplot + scale_fill_discrete(guide=FALSE)

As illustrated in the preceding example, the command is quite straightforward, and 
you can use the guides or the scale function to leave out of the legend by setting 
the aesthetic to false. For instance, in this example, we have used the fill aesthetic 
mapped to the group variable, so we will need to use the scale function for the fill 
mapping of the scale_fill_discrete() discrete variable, or the guides() function 
with the fill mapping set to FALSE. The result from both commands will be the 
same, namely a boxplot without a legend.

For all the legend adjustments we will go through in this section, it is possible to 
use both the guides() and scale functions, but we will only work with the scale 
functions in our examples since this has the greater functionality of the two and 
guides() is comparatively straightforward.
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The legend title
We have seen that the name argument of the scale function can be used for the axis 
label as well as the legend name. This may sound tricky but is actually quite simple. 
You will need to use the scale function for the aesthetic you want to manipulate. 
This aesthetic could be the axis, in which case the name argument will modify the 
axis label. Alternatively, the aesthetic could be the legend, in which case the name 
argument would modify the legend title. The following command shows a simple 
example of how to modify the axis name and the legend title, which will make this 
use clearer and generate the resulting plot of Figure 5.5:

myBoxplot +  
scale_x_discrete(name="This is my x-axis") +  
scale_fill_discrete(name="This is my legend")

This example modifies discrete variables in both cases; however, in the first case, we 
refer to the x aesthetic of the axis, while in the second case, the fill aesthetic is used 
to fill the boxplots with colors mapped to the group variable:

Figure 5.5: Example of boxplot with modified legend title and axis label

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 151 ]

Not only can you use this method to change the legend title, you can actually remove 
it completely by simply providing an empty title name, as follows:

myBoxplot + scale_fill_discrete(name="")

As an alternative, you can also use the theme() function, as shown in the next 
command. However, in this case, you will remove all legend titles from all legends 
in your plot. We will look into the details of this function later on in this chapter. The 
following command shows this:

myBoxplot + theme(legend.title=element_blank())

Legend keys and key labels
The legend is composed of keys, the symbols relating the legend to the plot, and 
key labels, which describe what the keys represent. Generally, there are two main 
modifications to the default legend involving keys and key labels: first, to change the 
order of the elements, and next, to modify the text of the key labels. You can do these 
two modifications using the breaks and labels arguments of the scale function. 
The breaks argument defines which values appear in the legend, while the labels 
argument specifies the text that appears in the key labels. So, if you want to change 
the order of the keys in the legend, you can provide the order you want as a vector 
to the breaks argument. Just remember that the vector elements should match the 
dataset elements used to create the legend. The following command shows this:

myBoxplot + scale_fill_discrete(breaks=c("1","3","2","4"))

You can also directly inverse the order of the elements in the legend using the 
guide_legend() function. We have seen that the scale functions have an argument 
guide that can be used to control the legend's appearance and has the default value of 
guide="legend". If you would like to modify the legend's appearance, there are also 
other guide options that can be used, but you will need to pass the explicit function 
name to guide, so the default value would correspond to guide=guide_legend(), 
and in the function body, you can change the default assignments. This function 
allows you to have profound control over the legend's appearance.  A full listing of all 
available arguments can be found on the help page of the ?guide_legend function. 
The guide_legend() function also provides the argument's reverse, which specifies 
that the legend order should be reversed. So, in our boxplot example, we could reverse 
the legend order with the following command:

myBoxplot + scale_fill_discrete(guide =  
guide_legend(reverse=TRUE))
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The same approach can also be used with the guides() function, as shown here:

myBoxplot + guides(fill = guide_legend(reverse=TRUE))

In order to change the key labels, we can use the labels argument to provide a 
vector of names matching breaks. Here, you can see the resulting boxplot example 
with a modified order of the legend elements and updated labels:

myBoxplot + scale_fill_discrete(breaks=c("1","3","2","4"),  
labels=c("Dist 1","Dist 3","Dist 2","Dist 4"))

The resulting plot can be found in Figure 5.6:

Figure 5.6: Example of boxplot with a modified order of the legend key and legend labels
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Themes
In ggplot2, you have access to a series of functions that enable detailed control of 
plot appearance. These functions are called themes in ggplot2 and can be used to 
control nondata components of plots, such as the axis font, plot background, and 
position of the legend. This means that they do not affect how the data is represented 
in terms of geometry or how it is transformed by the scales. The main function in 
this respect is the theme() function. This function is very complex since it allows 
you to specify all the different details contributing to the plot appearance as well 
as generating your own format and style. In the next few pages, we will see some 
illustrative examples that demonstrate what you can produce, but for more details, 
you should definitely have a look at the document page at http://docs.ggplot2.
org/current/theme.html.

In ggplot2, you have two built-in themes available that can be applied directly to 
your plot: theme_grey(), which is the default theme, has a gray background with 
white gridlines, while theme_bw() has a white background and black gridlines. You 
can use these predefined themes as normal plot elements that are added on top of the 
plot. Here, you can see an example of how to use them, and in Figure 5.7, you can see 
the resulting plots.

myBoxplot + theme_grey()

myBoxplot + theme_bw()

Figure 5.7: Example of the two built-in themes available
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If, on the other hand, you want to have different specifications for the themes available, 
then you will need to use the theme() function and specify the elements that you want 
to modify. In the theme() function, you will need to specify two things: the element 
of the plot that you want to modify (for instance, the axis character, background, 
and so on) and the theme element, which is basically a function that allows you to 
provide formatting specifications of that particular theme element. You can select three 
different theme elements depending on what you want to change in the plot. You will 
be introduced to the different themes available in the upcoming sections.

In our examples, we will take a look at how to use the theme() function to 
personalize the legend, axis, and plot background. After some examples, you will 
have a clearer idea of how to use these functions and what kinds of personalization 
you have available to you when specifying the plot layout.

Themes for the legend
You can use the theme function to modify legends and specify the legend 
background, its position, and its margins. For instance, you can add a rectangular 
box around the legend of our boxplot with the following command; the resulting 
plot is represented in Figure 5.8(A).

myBoxplot + theme(legend.background = element_rect(color =  
"black"))

In the preceding command, we used the legend.background() theme element 
to specify the legend box and its color. To do this, we have used the rectangular 
theme element element_rect(). This element is often used for backgrounds and 
borders. Other theme elements available include element_line() for line elements, 
element_text() for text elements, and element_blank() that does not draw 
anything and can be used to remove elements.

You are probably wondering why by selecting color="black", 
we do not end up with a black background. The logic behind 
this code is the same as for some of the geom as the bar plots and 
boxplots for instance. You can use the color argument to define 
the border, while you would use the fill argument to define the 
filling color of the box. So, for instance, if we want to change the 
legend background, you can use the following command:
myBoxplot + theme(legend.background =  
element_rect(fill="gray90"))
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As well as the legend background, you can also control the key background, that is, 
the background of the legend keys, which, by default, in ggplot2, is gray. In order to 
do that, we would need to use the legend.key argument, as shown here:

myBoxplot + theme(legend.key = element_rect(color = "black"))

myBoxplot + theme(legend.key = element_rect(fill = "yellow"))

In the first example, we included a black box around each legend key, as shown 
in Figure 5.8(B), while in the second example, we changed the key background, as 
shown in Figure 5.8(C).

Figure 5.8: Examples using the theme function to modify the legend background and legend keys
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You can also combine the element we just introduced to make a nice theme for the 
legend, where the default key background (gray) is replaced with a white background 
and the legend box is filled with the same background gray of the plot area. You can 
see the resulting plot in Figure 5.8(D). The following command shows this:

myBoxplot + theme(legend.background =  
element_rect(fill="gray90"), legend.key = element_rect(fill =  
"white"))

You can also control the space around the legend using the legend.margin() 
argument. For instance, you can increase the area around the legend to 3 cm  
with the following command:

require(grid)

myBoxplot + theme(legend.margin = unit(3, "cm"))

Just notice that the legend.margin argument needs an object of the unit class that 
can be created with the unit() function, so you need to load the package grid that 
contains this function. You can see the resulting plot in Figure 5.9, where you can see 
how this space is rendered in the plot:

Figure 5.9: Example of legend with increased margin space of 3cm
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It is also possible to control the legend text by choosing, for instance, its size, its 
position, its color, and its font. Here, you can see an example of applying such 
changes to our plot:

myBoxplot + theme(legend.text = element_text(size = 20, color =  
"red", angle = 45, face = "italic"))

As illustrated, in this case we had to use the legend.text argument, but in order to 
modify it, we used the element_text() theme function since, in this case, we are 
modifying a text element. We were also able to specify the angle at which we can 
rotate the text; we will see that this option can be quite useful in the next subsection 
to rotate axis labels. We also used the face argument to specify the font of the text. 
The same argument can also be used to change a font in another piece of text within 
the plots, such as the legend title or the axis text. You can see the resulting plot in 
Figure 5.10.

Figure 5.10: Example of legend with modified text in the key labels
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Finally, you can, of course, also modify the legend position. In this respect, ggplot2 
is really flexible since it allows you to not only choose from different standard 
positions, but also place the legend within the plot area very easily. In order to do 
that, we can use the legend.position argument and specify the position desired. 
You can choose between the traditional positions available in other graphic 
packages, namely left, right, top, bottom, and none if you do not have a legend. 
Alternatively, you can specify a vector defining the relative position within the plot 
area containing values from 0 to 1, with c(0,0) being the bottom-left position and 
c(1,1) being the top-right position. The following are two simple examples of its 
application: the first one with the legend at the bottom and the second one with the 
legend in the centre of the plot area. 

myBoxplot + theme(legend.position = "bottom")

myBoxplot + theme(legend.position = c(0.5, 0.5))

You can see the resulting plot in Figure 5.11:

Figure 5.11: Examples of legends with modified positions at the bottom (A) and in the centre of the plot area (B)
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Themes for the axis and title
The theme function available in ggplot2 also allows you to specify the details of 
how the axis text elements are represented, for instance, by controlling the type of 
characters, their size, and position. Here, you can see an example of formatting the axis 
tick marks, where we change the color of the text to blue and the character to italic.

myBoxplot + theme(axis.text = element_text(color = "blue", face =  
"italic"))

As illustrated, in this case, we used element_text() since we modified text 
elements and used the axis.text argument to allow us to modify elements along all 
axes at the same time. You can see the results in Figure 5.12(A). Generally speaking, 
within the different arguments that you will have available for the theme() function, 
you will find arguments that control elements of a certain class. In this case, axis.
text affects all axis elements, and further, you will find arguments that can be used 
to control specific elements within a class as, for instance, axis.text.y, which can 
be used to modify only the y axis. You can see an example of such a modification 
in the following command, where we will modify the angle of the text to make the 
caption of the y axis horizontal and increase size as well:

myBoxplot + theme(axis.title.y = element_text(size = rel(1.5),  
angle = 0))

The result is shown in Figure 5.12(B):

Figure 5.12: Examples of axis layout modifications—axis tick marks (A) and axis label (B)
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The same idea also applies to titles. In fact, you can use the argument title, which 
allows you to control all the title elements in the plot. This means that you can, for 
instance, change the axis title, the legend title, and the plot's main title using only one 
command. This can be quite handy since, in many situations, you will want to have a 
homogenous layout with all titles formatted in the same way, without using several 
different functions for the individual elements. So, in the example, we will change 
size and color of the title elements. The following command shows this: 

myBoxplot + labs(title="This is my boxplot") +  
theme(title = element_text(size = rel(1.5), color="blue"))

On the other hand, if you need to modify only one of the title elements, you have the 
option to use more specific arguments, for instance, in the following example, we 
will modify only the main title text. 

myBoxplot + labs(title="This is my boxplot") +  
theme(plot.title = element_text(size = rel(1.5), color="blue"))

The resulting plot of the command prior to the preceding command is found 
in Figure 5.13(A). You also have the resulting plot of the preceding command 
in Figure 5.13(B), and as illustrated, the axis titles remain unchanged.

Figure 5.13: Examples of title layout modifications—modification of all title  
elements (A) and only of the main title (B)
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At the beginning of this section, we mentioned the element_blank() function as a 
way to generate an element that does not draw anything. Keep in mind that you can 
always use this element to delete components of the plot that you don´t need and 
that this applies to titles, axis elements, and so on. For instance in our boxplot, we 
have the grouping information already contained in the legend, so we could think 
about removing the groups for the x axis so that we can use the blank element to 
delete them as shown here:

myBoxplot + theme(axis.text.x = element_blank())

As illustrated in the following plot, this produces a plot without the axis text, but the 
tick marks and the axis title are still there. However, since we have removed the text, 
we don't actually need these marks, so we can remove both the tick marks as well as 
the title as shown here:

myBoxplot + theme(axis.text.x = element_blank(), axis.ticks.x =  
element_blank(),axis.title.x = element_blank())

Figure 5.14: Examples of removing axis elements—only the x axis text (A) and x axis text,  
tick marks, and title components (B)

The results of both code statements are shown in Figure 5.14. Now you know how 
you can combine several theme elements on the same call and have also gained an 
understanding of how you can use the theme() function not only to modify, but  
also to remove plot components that you don´t need.
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We have seen so far how you can modify the text and title of the axis, but as  
you know, axes are not only composed of these components. We can, in fact, also 
modify the layout of the axes themselves: the appearance of the line along the plot 
axis as well as the axis tick marks, which, so far, we have only deleted in the previous 
example. For instance, we can modify the axis line as shown here to change its color 
and make it much thicker: 

myBoxplot + theme(axis.line = element_line(size = 3, color =  
"red", linetype = "solid"))

In this case, we had to use element_line() since the axis element we want to modify 
is a line. You can see the outcome in Figure 5.15(A). We can also apply a modification 
to the tick marks, as already mentioned. There are several arguments that can control 
the axis tick marks, but for the most part, the most useful modifications to tick marks 
are probably margin and length. The length element simply controls the length of 
tick marks for both axes, and you can provide the length as a unit object from the grid 
package. The margin, which you can also provide as a unit object, defines the distance 
between the tick marks and the text of the axis. You can see here an example of these 
two modifications:

require(grid)

myBoxplot + theme(axis.ticks.length = unit(.85,  
"cm"),axis.ticks.margin=unit(.85, "cm"))

The resulting plot is shown in Figure 5.15(B):

Figure 5.15: Example modification of axis line (A) and axis tick marks (B)
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Themes for the plot background
The theme() function allows you to control the background appearance of the 
plot. Here, there are a number of aspects that can be useful to modify, but the most 
important, by far, are background and the panel grid. The panel grid refers to 
guidelines drawn by default in ggplot2. Using the theme() function, you can, for 
instance, control the guideline appearance and the color.

One thing you should keep in mind is that in ggplot2 panels, there 
are two different grids, a major grid, which delimits the major unit 
steps, such as the ones represented on the axis by the tick marks, and 
a minor grid, which traces lines along the intermediate unit steps.

Here, you can see two different examples of how to modify these parameters. There 
is some variability as the grid behavior and appearance depend on the kind of data 
being represented; for factor data, just as we have on the x axis of our box plot, we 
only have major grid lines since we do not have intermediate units between the 
groups. As a comparison, had we applied the same formatting to a more traditional 
scatterplot, where there is continuous data on both axes, there would be both major 
and minor gridlines. As an example, we will use the myScatter plot, which we 
created earlier in this chapter.

# Example with a boxplot

myBoxplot + theme(panel.background = element_rect(fill =  
"gray80"), panel.grid.major = element_line(color = "blue"),  
panel.grid.minor = element_line(color = "white", linetype =  
"dotted", size=1))

# Example with a scatter plot

myScatter + theme(panel.background = element_rect(fill =  
"gray80"), panel.grid.major = element_line(color = "blue"),  
panel.grid.minor = element_line(color = "white", linetype =  
"dotted", size=1))
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You can see the resulting plots in Figure 5.16. Changing the appearance of the grids 
presented in the plot panel may be quite useful when you change the default color of 
the background since you may end up in the situation where the appearance of the 
grid does not have significant enough contrast.

Figure 5.16: Examples of  modification of panel background and gridlines in a boxplot (A) and a scatterplot (B)

As already discussed, you can also use element_blank() to eliminate the grid if you 
don't want to have it in the panel. Here, you can find a simple example of how to use 
this option:

myScatter + theme(panel.background = element_rect(fill =  
"gray80"), panel.grid.major = element_blank(), panel.grid.minor =  
element_blank())

Additionally, for the panel background, you also have the option to specify the 
actual plot background and border. In this case, we would be modifying the area 
around the plot window using the plot.background argument. In our example, we 
will modify both the color of this area as well as its border, which corresponds to 
the border of the plot figure:

myScatter + theme(plot.background = element_rect(fill = "green",  
color="red", size=2, linetype = "dotted"))
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You can see the resulting plot represented in Figure 5.17.

Figure 5.17: Example of plot background and border modification

Themes with facets
When using facets, you can apply the same formatting style that we have already 
discussed, so, for instance, the following command will create a plot where each 
facet will have a blue background:

myScatter + facet_grid(. ~ group) + theme(panel.background =  
element_rect(fill = "lightblue"))
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On the other hand, you also have additional formatting options available where  
you make a facet plot. If you are already familiar with the lattice package, you 
may know that on the top of facets is a title strip area. In the strip area, you can,  
for instance, control the text as well as the background, as shown here:

myScatter + facet_grid(. ~ group) + theme(strip.background =  
element_rect(color = "lightblue", fill = "pink",size = 3,  
linetype = "dashed"))

In this simple example, we have changed the background color of the facet title strip 
area and its border. You can see the resulting picture in Figure 5.18:

Figure 5.18: Example of  modification of color background and border with facet panel strip
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If you have a longer title in the strip area, it may turn out to be useful to change the 
text size and its orientation. For instance, you can use the labeller argument of 
the facet function to specify a variable name for the labels of the facets, which can 
be useful in some cases but may increase the text length. For instance, we can then 
change size and the orientation of such text as shown here:

myScatter + facet_grid(. ~ group, labeller = label_both) +  
theme(strip.text.x = element_text(color = "red", angle = 45, size  
= 15, hjust = 0.5, vjust = 0.5))

You can see the resulting plot in Figure 5.19:

Figure 5.19: Example of text modification in the panel strip
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Finally, here's another layout property specific to facets is the margin between the 
panels. In this case as well, you can modify such a space, for instance, to increase or 
decrease the space between the facets, as shown here:

myScatter + facet_grid(. ~ group) + theme(panel.margin = unit(2,  
"cm"))

You can see the result in Figure 5.20.

As we did in other examples, space units can be provided to use the unit() function 
from the grid package. It can also be used to specify the space in different units; 
more details can be found on the function's help page.

Figure 5.20: Example of facets with increased margin space between the panels
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In addition to increasing the space, you can also set the margin space to 0, and in this 
case, you will have the facets completely connected with each other, providing an 
interesting effect of a singular plot but with three different x axes that start over after 
each other. The following command shows this:

myScatter + facet_grid(. ~ group) + theme(panel.margin = unit(0,  
"cm"))

You can see this alternative plot in Figure 5.21:

Figure 5.21: Example of facets without margin space between the panels
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Further reading
Additional examples can be found on the respective help pages of ggplot2.  
Here, you can find examples of the most important options and scales:

•	 Axis labels and legend titles: http://docs.ggplot2.org/0.9.2.1/labs.
html

•	 Scales for x and y axes for discrete values: http://docs.ggplot2.org/
current/scale_discrete.html

•	 Scales for x and y axes for continuous values: http://docs.ggplot2.org/
current/scale_continuous.html

•	 Theme elements: http://docs.ggplot2.org/current/theme.html

Summary
In this chapter, we went through the most important layout changes that you can 
apply to your plot. We saw how you can personalize the plot title and the axis labels, 
use the scale functions to modify the axis plot scales, and make axis transformations. 
We then saw what kind of modifications you can apply to the legends and, finally, 
we saw the different options available within theme selections. What you should 
have at the end of this chapter is a good understanding of what kind of changes you 
can make to the default layout of the plot as well as how to perform them. You can 
use this chapter as a small library of examples to go through if you want to change 
something but can't remember how to do it. In the next chapter, we will have a look 
at how we can save plots in different formats on your hard drive as well as how 
different plots can be arranged in R in a single picture.
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Plot Output
In this chapter, we will take a look at the different methods you can use to save or 
manipulate the output generated with ggplot2. We will cover the different methods 
of displaying multiple plots in a unique plot page and how to save the plots that you 
have created on your hard drive.

Multiple plots in one page
If you are already familiar with the graphics package, you know that in R, you 
have the opportunity to create plot windows on which you can arrange multiple 
plots. In ggplot2, there is no single function available to do that, but you will need 
to become familiar with certain basic concepts of the grid package, which was used 
to build ggplot2. In grid, you have the possibility of defining viewports, which are 
rectangular regions on a graphics device, and plots can be assigned to these regions. 
In order to do that, we can use a grid function called viewport(). Using this 
method, you have two main ways of combining multiple plots:

•	 Arranging plots by specifying the plot position in terms of rows and columns
•	 Specifying the exact position of each plot

In the following sections, we will see examples of both methods.
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Arranging plots in rows and columns
This approach of combining plots is very likely to be more convenient, and it will 
probably fit most of your needs. If you are already familiar with graphics, this 
method is very similar to the use of the par() function. In this approach, we simply 
define a plot area as columns and rows by specifying how many rows and columns 
we need, and then assign each plot to a specific area. As an example, we will recreate 
Figure 3.2, which was used in Chapter 3, The Layers and Grammar of Graphics, to illustrate 
the concepts of layers in ggplot2. Since you are already familiar with the different 
functions that enable you to modify the plot details, we will not discuss this point any 
longer, but we will focus on how to arrange the plots created in a single plot window. 
Nevertheless, you can take a look at the code used to realize single plots and use them 
as additional examples of personalization of the plot's appearance. This example was 
realized using data from the Orange dataset available in R. As a starting point, we will 
create the four individual plots, as shown here, but remember that you will also need 
to load grid for the following steps:

library(ggplot2)

library(grid)

data(Orange)

x1<- ggplot(Orange, aes(age, circumference)) +  
geom_point(aes(colour=factor(Tree)))

### Remove the legend

x2 <- x1 + theme(legend.position = "none")

### Remove aesthetic

x3 <- ggplot(Orange, aes(age, circumference)) + geom_point()

### Plot without data

x4 <- x3 + theme(panel.border = element_rect(linetype = "solid",  
colour = "black"))

x5 <- x3 + theme(axis.ticks = element_blank(), axis.text.x =  
element_blank(), axis.text.y = element_blank(), panel.grid.major =  
element_blank(), panel.grid.minor = element_blank(),  
panel.background = element_blank()) + ylab("") + xlab("")
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As illustrated, we first created a basic, complete plot, x1, and then we modified the 
plot by changing its appearance. When working with plots, it is often convenient to 
save their ggplot2 objects as variables and reference them as needed. This coding 
style makes it easier to rearrange plots into different positions and makes your 
code easier to read. To combine these plots in one window, we will first specify 
to the grid function that we want to define four different plot areas, which can be 
considered as a grid of two rows and two columns. Then, we will assign the desired 
plot to each section, as shown here:

pushViewport(viewport(layout = grid.layout(nrow=2, ncol=2)))

print(x5, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))

print(x4, vp = viewport(layout.pos.row = 1, layout.pos.col = 2))

print(x3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

print(x2, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))

A tree of pushed viewports can be maintained by the grid in each device, allowing 
navigation between plots. A viewport object must be pushed onto the viewport 
tree before it has any effect on drawing. The pushViewport() function allows 
you to add viewport objects to the viewport tree and, in this function, we specify 
that we want to create a viewport with a layout composed of two rows and two 
columns. Afterwards, we assign plots to each plot area of the viewport by specifying 
its location in the plot area. As mentioned, the resulting picture is Figure 3.2 from 
Chapter 3, The Layers and Grammar of Graphics.

In the layout.pos.row and layout.pos.col arguments, you can specify a single 
position in the plot grid, as we did in our example, or a vector of length 2 units, 
which defines a range of rows or columns on which the plot should be represented. If 
one of these arguments is missing, it will be assumed that the plot will be present in 
all available rows and columns. For instance, we can modify Figure 3.2 by stretching 
the x4 plot across all the columns and removing the x5 plot. We can do that by 
simply removing the column argument, as shown here:

pushViewport(viewport(layout = grid.layout(2, 2)))

print(x4, vp = viewport(layout.pos.row = 1))

print(x3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

print(x2, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))
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This code will produce the plot represented in Figure 6.1. As previously mentioned, 
you can also specify a range of columns, so, for instance, in this case, we could also 
have specified that the x4 plot should be represented in the first row from the first  
to the second columns, as shown here:

pushViewport(viewport(layout = grid.layout(2, 2)))

print(x4, vp = viewport(layout.pos.row = 1,layout.pos.col =  
c(1,2)))

print(x3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

print(x2, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))

This code will also generate the plot in Figure 6.1:

Figure 6.1: Example of multiple plots, with one plot represented along two viewports
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Specifying the plot position
In the previous section, we considered the case where you have several plots 
that you want to visualize in a single window, but you want to leave the plots 
substantially separated and next to each other. In some cases, you may need to 
control the position of the plots more precisely, for instance, if you want to partly 
superimpose the plots. This can also be realized with the viewport() function, 
but instead of specifying the position of the plot as rows and columns, we can also 
provide the exact position to the functions. In this function, you have the x, y, width, 
and height arguments available, which allow you to specify the x and y locations 
and width and height of the plot, respectively. The default unit of these parameters 
is Normalized Parent Coordinates (NPC), where the coordinates (0, 0) represent 
the origins of the viewport's width and height of one unit. For instance, the position 
(0.5, 0.5) represents the center of the viewport. You can also specify the plot position 
in other units using the unit() function from the grid packages when providing 
the arguments. We already encountered this in the previous chapter. For additional 
details, you can take a look at the function help page by typing ?unit. Alternatively, 
the viewport() function also provides the default.units argument, where you 
can specify the unit you are using, and this unit will be used if the x, y, width, and 
height arguments are specified as numeric values instead of the unit() function. In 
order to know which units you can use, you can refer to the list of units available in 
the unit() function help page.

To demonstrate this approach, we will consider a simple example with the count 
dataset, which we already used in the previous chapters. Let's assume that we have 
our data represented in the normal scale and the log scale as well. In some cases, you 
will probably need to look at both plots at the same time since you may be interested 
in the behavior of the data when represented in the log scale. In our example here, 
we will create the data, represent it in the linear scale and the log scale for the y axis, 
and then include the plot in the log scale in a corner of the linear scale plot so that the 
plots of the data are visible next to each other. The following code shows this:

### We create the dataset 
cont <- data.frame(y=c(1:20,(1:20)^1.5,(1:20)^2),

   x=1:20,

   group=rep(c(1,2,3),each=20))

### We plot the data in two scatterplots, in linear and log-scale
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myScatter <- ggplot(data=cont, aes(x=x, y=y,  
col=factor(group))) + geom_point()

myScatterLog <- myScatter + scale_y_log10() +  
theme(legend.position="none")

### We combine the two plots

print(myScatter, vp = viewport(width = 1, height = 1, x=0.5, y =  
0.5))

print(myScatterLog, vp = viewport(width = 0.4, height = 0.4,  
x=0.315, y = 0.76))

In the resulting plot in Figure 6.2, you will notice how we removed the legend from 
the plot in the log scale since, with this representation, it is clear that the two plots 
refer to the same data and the legend applies to both of them. As illustrated, when 
representing the data with this approach, we obtain a different visual effect as 
compared to having the plots simply next to each other. This simple example shows 
how to control the exact position of your plot, but, of course, the possibilities are 
unlimited. You can start from here and try different possibilities of finding the best 
way to represent your data.

Figure 6.2: Example of one plot nested in the plot area of a second plot
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Saving plots to a file
In this section, we will take a look at the different methods available of saving your 
plots. Most of these concepts apply to all plots realized in R although we will also 
consider the ggsave() function that is specific to the ggplot2() package. In R, there 
are three ways that you can use to save created plots:

•	 Saving the plot manually by way of the device window system (could be 
different between operating systems)

•	 Saving the plot to a file without rendering the plot
•	 Saving the plot after rendering the plot

We will take a look at the different methods in the upcoming sections. Just keep in 
mind that when you save a file as a plot, the file with the specified filename will be 
saved in your working directory. Be careful since, if you already have a file with the 
same name, it will be overwritten without any warnings from R, so if you run the 
code in these examples, just verify that your working directory does not contain files 
with the same name as the plot that we will save.

Saving the plot manually
An easy way to save your plot to a file is to do it manually in the R GUI. After 
running the code that generates the plot, R will render the plot in a device window, 
which will open in the R console. At this point, by selecting the graph window, 
you will have access to the dedicated menu, where, in the File section, you can find 
the saving options. You can choose between different file formats, such as PNG, 
JPEG, and PDF, as well as save the plot in the clipboard or print the plot directly. 
Alternatively, you can also right-click on the plot itself, and you will be able to also 
copy the plot to the clipboard or save it as a metafile or bitmap.
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Saving the plot to a file without rendering it
In some cases, you may want to save the file directly from code without manually 
saving it. This approach can, for instance, be very useful if you have scripts running 
and producing standard plots. In this case, you can embed code in your scripts to do 
analysis and produce standard plots. There are several different functions that can 
save your plot in a variety of formats. What these functions do is open a graphical 
device and render your plot in the device until the device is closed. For this reason, 
the plot will not be rendered on the R console but will be saved directly in the 
graphical device. There are several functions that allow you to create different file 
formats, the most important of them being PNG, PDF, and JPEG, which are listed 
here with some of their main arguments:

•	 png(filename, width, height)

•	 pdf(file, width, height)

•	 jpeg(filename, width, height)

You can find a complete list of the devices available by running ?Devices.

All these functions work in a very similar way so, in our examples, we will take a 
look at the pdf() function.

Saving a single plot
If you want to save, for instance, a plot in a PDF file, you can use the following 
command:

pdf("myFile.pdf")

ggplot(data=cont, aes(x=x, y=y, col=factor(group))) + geom_point()

dev.off()

This code will create a file called myFile.pdf in the current working directory,  
in which the plot will be saved. Keep in mind that even if you are using the pdf() 
function, you will need to specify the file extension in the function; otherwise, the file 
created will not be saved as PDF. After running the pdf() function, simply run the 
plot code you want to include in myFile.pdf, and it will be saved to the file. After 
you have run all the plots you need, you can close the device with dev.off(). The 
first part of the code, where we used the pdf() function, is the part that should be 
changed if you want to create a different file, while the remaining part of the code is 
independent of the type of device selected. So, for instance, if you wanted to create a 
PNG file, you can do so in the following way:

png("myFile.png")
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ggplot(data=cont, aes(x=x, y=y, col=factor(group)))+geom_point()

dev.off()

In the simple examples that we have considered, we have been working on the 
console when creating the file. Alternatively, you can also include such code in a 
script that is run automatically to create plots. So, if you are running the code as a 
script, you will need to explicitly print the plot, as shown here:

png("myFile2.png")

print(ggplot(data=cont, aes(x=x, y=y,  
col=factor(group))) + geom_point())

dev.off()

Saving multiple plots on the same PDF file
One very interesting feature of PDF files is the possibility of saving multiple plots in 
them just by saving them in different pages. In order to do that, you need to simply 
add multiple plots one after the other, as shown here:

pdf("myFile2.pdf")

ggplot(data=cont, aes(x=x, y=y, col=factor(group))) + geom_point()

ggplot(Orange, aes(age, circumference)) +  
geom_point(aes(colour=factor(Tree)))

dev.off()

This code will create a PDF file with two pages, each containing one of the plots. This 
method does not work when you manipulate the viewport manually, for instance, 
using the viewport() function, as shown in the previous section, since each new 
plot generated overwrites the previous one. So, for instance, if you want to create a 
PDF file containing Figure 6.1 on the first page and Figure 6.2 on the second page, the 
code to be run would be as follows:

pdf("myFile3.pdf")

pushViewport(viewport(layout = grid.layout(2, 2)))

print(x4, vp = viewport(layout.pos.row = 1,layout.pos.col =  
c(1,2)))

print(x3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

print(x2, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))

print(myScatter, vp = viewport(width = 1, height = 1, x=0.5, y =  
0.5))

print(myScatterLog, vp = viewport(width = 0.4, height = 0.4,  
x=0.315, y = 0.76))

dev.off()
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But, in this case, you will produce a PDF file containing only the last created plot. 
The reason for this is that grid will add the plots on top of each other. This happens 
in the R console when you create several plots one after the other, but only the last 
one is visible in the device. In order to solve the problem, you must simply specify 
to the grid function that the plot should be produced in a new page and not by 
overwriting the previous one with the grid.newpage() command. The following 
code will create the right PDF files with the two plots in separate pages:

pdf("myFile3.pdf")

pushViewport(viewport(layout = grid.layout(2, 2)))

print(x4, vp = viewport(layout.pos.row = 1,layout.pos.col = c(1,2)))

print(x3, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))

print(x2, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))

grid.newpage()

print(myScatter, vp = viewport(width = 1, height = 1, x=0.5, y =  
0.5))

print(myScatterLog, vp = viewport(width = 0.4, height = 0.4, x=0.315,  
y = 0.76))

dev.off()

Finally, in in the pdf() function of each device function, you can also specify a 
number of different arguments. Here, the most important ones are width and 
height, which define the width and height parameters of the graphics region in 
inches, with a default value of 7. You can use these two parameters to modify the 
appearance of the graph, for instance, to modify the ratio between the two axes. 
You can also find additional arguments for a more precise fine-tuning of the file 
properties in the help pages of the individual functions.
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Saving the plot after rendering it
I find creating the files using the method illustrated in the previous section very 
convenient and, often, this is the easiest way to save plots, but some R users do not 
really find the approach practical as you need to refine the properties of your plot 
until the desired picture is obtained and then recreate it in order to save it in a file. 
In this respect, it may be of interest to some R users to save the plot directly from 
the rendered plot in the active window of the console. In this way, as soon as you 
are happy with your work, you can save it directly in a file without recreating the 
plot. Indeed, this may be useful if you are working with very complex plots that 
can require time to generate. In such cases, you need not wait again for the plot to 
be drawn. In order to do that, you can use the following two functions with some of 
their arguments:

•	 dev.copy(device, file)

•	 ggsave(filename, width, height)

These functions are substantially similar; however, an important difference is that 
when using the dev.copy() function, you should specify the type of device (and the 
type of file to create) in the function, and then you can specify all the arguments of 
that device function. On the other hand, in ggsave(), you can simply specify the file 
extension in the filename argument, and the function will automatically select the 
device function needed. Also, ggsave() provides you with additional arguments to 
specify the file's properties. 

Remember that these functions with their default arguments 
will only save the last plot that you displayed.

You can create the myFile.pdf file of the previous example, as shown here, using 
the following two functions:

#### Saving a rendered plot with dev.copy()

ggplot(data=cont, aes(x=x, y=y, col=factor(group))) + geom_point()

dev.copy(pdf, file="myFile.pdf")

dev.off()

#### Saving a rendered plot with ggsave()

ggplot(data=cont, aes(x=x, y=y, col=factor(group))) + geom_point()

ggsave(file="myFile.pdf")
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As illustrated, when using the dev.copy() function after all plots are saved you 
need to close the device using the dev.off() function. There is no such need with 
ggsave(), where you only need to provide the filename.

Further reading
•	 R Graphics (2nd edition), P. Murrell, CRC Press
•	 Documentation of the grid package for functions: ?unit, ?viewport, and 

?pushViewport

•	 Documentation of the device functions of the grDevices package: ?Devices
•	 Documentation of the ggsave() function: ?ggsave
•	 Tips on how to save your plots: http://blog.revolutionanalytics.

com/2009/01/10-tips-for-making-your-r-graphics-look-their-best.
html

Summary
In this chapter, we saw how you can manipulate the organization of the plot in the 
plot area. This is useful when you want to place several plots next to each other or 
if you want to include a small plot inset within the plot area of another graph. We 
also saw how you can save your plot in a file, ranging from manually saving the plot 
up to including the saving options in a script file that can be executed. In the last 
chapter, we will see a few applications of ggplot2 that also involve the use of other 
R packages. We will see how mapped data can be plotted in ggplot2 objects and 
how matrix scatterplots and heat maps can be created.
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Special Applications  
of ggplot2

In this chapter, we will see some examples of applications of ggplot2 for creating 
particular kinds of plots. We will see how it is possible to include maps in plots 
as well as add data to such maps; we will see how to draw scatterplot matrices to 
represent the relationships between different variables; finally, we will see how to 
generate heat maps. Although, in principle, it is also possible to realize these plots 
using only ggplot2, in some cases it is a lot more convenient and faster to use 
additional packages where the particular plot layout is already implemented.

Plotting maps with ggplot2 and ggmap
In ggplot2, it is possible to include maps as well as map data within a plot. This 
can be done thanks to certain ggplot2 functions that allow the combination of 
typical ggplot2 elements with data from the maps package. Alternatively, ggmap, 
a dedicated R package, was developed by David Kahle and Hadley Wickham and 
enables the easy inclusion of map data in ggplot2 graphs using map data provided 
on the Internet.
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Mapping representations with ggplot2 and 
maps
The maps package is an R package that contains cartographic data for some 
individual countries as well as for the entire world, including example datasets that 
can be used to combine data to map representations. The limitation of this data is 
related to the limited maps available, consequently limiting the plots that can be 
realized with this approach. In addition to this, you should also keep in mind that 
these maps may be quite outdated. The maps currently available in the package are 
as follows:

•	 world: This is a map of the entire world
•	 usa: This is a map of the US coast
•	 state: This is a map of the USA at the state level
•	 county: This is a map of the USA at the county level
•	 italy: This is a map of Italy
•	 france: This is a map of France
•	 nz: This is a map of New Zealand

Additionally in the package, maps are also provided along with databases 
with information about, and positions of, cities, such as us.cities and world.cities. 
The representation of map data as well as the inclusion of additional data to a 
cartographic representation can be very complex, so we will just go through general 
examples. If you are interested in a more detailed description, you will find links in 
the Further reading section at the end of the chapter.

The general way of plotting maps with ggplot2 is creating a plot element 
representing longitude and latitude data as x and y variables respectively and  
then using the borders() function available in the package to add map borders  
to the plot. The arguments available in this function are as follows:

borders(database, regions, fill, color, ...)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 185 ]

Here, database refers to a part of the preceding map data, and regions refers 
to map regions that can be made available in some map databases. The fill and 
color arguments define the colors for filling the inside and borders of the map. The 
ellipses … give the possibility of adding additional arguments to the geom_polygon() 
function used to represent the map.

You can see a simple example of the application here; we will first select the US cities 
with more than 500,000 inhabitants, and then we will add these cities to the US 
map. Keep in mind that, for this as well as the next examples, you will also need the 
maps package loaded. The following code shows this:

require(maps)

data(us.cities)

big_cities <- subset(us.cities, pop > 500000)

qplot(long, lat, data = big_cities) + borders("state", size = 0.5)

In this first example, we used qplot() to create the plot to show you the use of this 
function, but from now on, we will work with ggplot(). You can also see how, in 
this simple example, we used the argument size in the borders()function, which 
is not present in the function arguments listed before since this argument is passed 
directly to the polygon geometry. As you can see in the plot in Figure 7.1(A), the map 
represented in this example is the state map, so only state borders are drawn.

The us.cities database also contain state information, so we can also select only 
cities in an individual state. In this next example, we will choose only the cities in 
california and plot them on the california map:

ca_cities <- subset(us.cities, country.etc == "CA")

ggplot(ca_cities, aes(long, lat)) +  
borders(database="county", regions="california", color =  
"grey70") + geom_point()
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As illustrated, in this case, within the borders() function, we have selected  
the county map so that the California counties are also represented, and with  
the regions argument, we could select a specific state. You can see the resulting  
map in Figure 7.1(B):

Figure 7.1: Examples of a US state map with cities that have more than 500,000 inhabitants (A) and a map of 
California counties with all cities available in the database

Until now, we have simply represented the position of the cities, but we can also 
apply the basic principles of ggplot2 to these maps, for instance, adding aesthetic 
mapping to a specific variable. As an example, we will draw the world map with the 
size of the dot representing the city mapped to the population, which is available 
in the dataset in the pop column. In order to avoid overplotting, we will only plot 
capital cities, which are identified in the data column capital, with 1 indicating that 
the city is a country's capital. For a description of all data contained in the dataset, 
you can check the help page with the command ?world.cities. In this example, 
we will also change the default colors in the map to give you an idea of what can be 
modified from the default map appearance:

data(world.cities)

capitals <- subset(world.cities, capital == 1)

ggplot(capitals, aes(long, lat)) +  
borders("world", fill="lightblue", col="cornflowerblue") +  
geom_point(aes(size = pop),col="darkgreen")
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You can see the resulting plot in Figure 7.2.

Figure 7.2: A world map with capital cities with points scaled proportional to their population

We can also add text to the map. For instance, we could represent the city's name 
next to the point indicating the position of each city. For instance, we can represent 
the cities in Italy with a population higher than 500,000 and add their names in 
the plot. The map of Italy is available in the maps package, but there is no dataset 
containing the Italian cities, so we will use the world.cities database and just  
select the ones in Italy:

city.Italy <- world.cities[world.cities$country.etc=="Italy",]

city.Italy.big <- subset(city.Italy, pop > 500000)

ggplot(city.Italy.big, aes(long, lat)) + borders("italy") +  
geom_point(aes(size = pop)) +  
geom_text(aes(long, lat,label=name),hjust=-0.2)

Next you can also see a similar example with the world map, where we have 
included text identifying the country's name next to the capital of the country.  
In this case, we have only selected cities with a population higher than 5,000,000  
to avoid overplotting. The following code shows this:

data(world.cities)

capitals <- subset(world.cities, capital == 1)
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capitals.big <- subset(capitals, pop > 5000000)

ggplot(capitals.big, aes(long, lat)) + borders("world") +  
geom_point(aes(size = pop)) +  
geom_text(aes(long, lat,label=country.etc),hjust=-0.2,size=4)

You can see the resulting plots in Figure 7.3:

Figure 7.3: A map of Italy with cities with population higher then 500,000 (A)  
and a world map with capitals with more than 5,000,000 inhabitants (B)

Finally, when representing cartography data, we can also modify the coordinate 
systems using the coord_map() function available in ggplot2. Among the different 
arguments of this function, one of the most important is the projection argument, 
which defines which map projection to use. These parameters are used by the function 
mapproject() of the mapproj package, so you can refer to the help page of this 
function to know which kinds of projections are available and what they represent.

We will now take the world map we realized previously in Figure 7.3(B), and  
we will change the coordinate system to spherical coordinates. In this case, we  
will use the ortho projection, which represent a view from infinity. The following 
code shows this:

ggplot(capitals.big, aes(long, lat)) + borders("world") +  
geom_point(aes(size = pop)) +  
geom_text(aes(long, lat,label=country.etc),hjust=-0.2,size=4) +  
coord_map(projection = "ortho", orientation=c(41, 20, 0))
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We have changed the map orientation by centering the map on Europe. As 
mentioned earlier, there are many different kinds of projections, so the plot we just 
made could be alternatively realized using one of the azimuthal projections centered 
on the North Pole using coord_map(projection = "azequalarea") instead. You 
can see the resulting plots in Figure 7.4:

Figure 7.4: A world map with orthographic projection (A) and North Pole-centered projection (B)

Finally, you may also want to add map data that is contained in different databases. 
In this case, you will need to convert the map data to a data frame and match this 
data with the other one you want to include on the map. In this way, you will obtain 
a final dataset containing the map information as well as the additional one you 
want to represent. To show how it works, we will use one of the datasets provided 
in the maps package that contains the percentage of votes given to the Republican 
candidate in presidential elections from 1856 to 1976 for the different US states. So, 
first of all, we will load the datasets and convert the map data to a data frame; in 
order to do that, we will use the ggplot2 function map_data():

data(votes.repub)

states <- map_data("state")

Be aware that the package cluster contains a data 
frame votes.repub with the same data, but in this case, 
we worked with the data from maps to also see how data 
can be modified and adapted to our needs.
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As you can see from running class(votes.repub), this data is provided as a matrix, 
so first of all, we will need to convert this data to a data frame. Doing so, the column 
headers will be automatically assigned as dates available in the data, but this may 
generate issues afterwards since the column headers will be then treated as numeric 
values. To solve this issue, we will also change the column names, adding Year before 
the date. Moreover, since the names of the US states are reported differently in the two 
datasets, we will also need to convert the state names to lowercase to make them equal 
to the one contained in the map data. The following code shows this:

repubVotes <- as.data.frame(votes.repub)

names(repubVotes) <- paste("Year",names(repubVotes), sep="")

repubVotes$region <- tolower(rownames(repubVotes))

As the last step in our data preparation, we now need to combine the two datasets by 
matching the state names so that each state will also be associated the corresponding 
percentage of Republican votes. After using the match() function, we will need to 
reset the column order since this defines the order of the map elements and since this 
is essential to realize the correct map from the geom_polygon() function:

finalData <- merge(states, repubVotes, by = "region")

finalData <- finalData[order(finalData$order),]

We can now generate our plot, where we will have the US map at the state level with 
the filling color mapped on the percentage of Republican votes. As illustrated in the 
final data frame we just created, we have available the percentage of votes for different 
years, so we will choose the most recent one by selecting the Year1976 column:

ggplot(finalData, aes(long, lat)) +  
borders("state") + geom_polygon(aes(group=group,fill=Year1976))
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You can see the resulting graph in Figure 7.5:

Figure 7.5: A US state map with filling color map on the percentage of Republican votes

Representing maps with ggmap
The ggmap package is a very powerful and versatile tool to extract and reproduce 
map data using information on static maps from Google Maps, OpenStreetMap, 
Stamen Maps, or CloudMade Maps. In this context, we will just go through some  
of the main functionalities, but the authors of this package have provided a very  
nice and complete description of its use in an article on The R Journal; you can find  
a reference to this article at the end of the chapter.
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The basic idea of ggmap is to download a map from a specific database, format it in 
the context of the layer grammar of ggplot2, and then represent it with an option 
to add additional ggplot2 elements, such as geometry and statistics. The process is 
usually divided into two steps—first downloading and formatting the map and then 
realizing the actual plot. In order to download the maps, you can use the get_map() 
function, which allows you to specify details of the map, such as the location, zoom, 
type of map (for instance, terrain, satellite, roadmap, and hybrid), and the Internet 
service providing the map. As an alternative, you also have specific functions 
with the general structure get_x, where x is replaced by the map provider, so the 
function get_googlemap() will allow you to download maps from the Google Maps 
database. Once you have obtained the map and saved it in an R object, you can then 
recall it and plot it using the ggmap() function. Just as with the qplot() function in 
ggplot2, in this case too it is the qmap() function that wraps up the two processes 
and allows you to download and plot the map with one function call. In ggmap, 
the object positon on the map can be identified by the latitude and longitude 
coordinates, so if you want to add a red point on a map indicating a specific location, 
you would need such coordinates. In this respect, the package provides a very 
helpful function, geocode(), which can provide you with this information. For 
instance, if you want to know the position coordinates of Eiffel tower, you can 
simply run the following code:

> geocode("Eiffel tower")

Information from URL: http://maps.googleapis.com/maps/api/geocode/json?ad
dress=Eiffel+tower&sensor=false

Google Maps API Terms of Service: http://developers.google.com/maps/terms

         lon        lat

1   2.294481   48.85837

As mentioned previously, you can use the qmap() wrapper function to download 
and represent a map, so in this case too, we can obtain the map of Eiffel tower  
as shown here:

qmap("Eiffel tower", zoom = 14, maptype="terrain")
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As illustrated, you can use the zoom argument to modify the map zoom; this 
argument can only have integer values from 1 to 21. In Figure 7.6, you can see the 
resulting map, and with this method, the map's appearance is very much different 
than the one obtained previously with the map package.

Figure 7.6: A map of the Eiffel tower generated with the ggmap package
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This function can also be used with mailing addresses, so the code here will plot a 
map centered on Google´s headquarters:

qmap("1600 Amphitheatre Parkway Mountain View", zoom = 14,  
maptype="roadmap")

We will now see how to separately download map and then represent it with 
ggmap(). We will plot the map of Paris and add a marker symbol indicating the 
position of Eiffel tower:

myMarker <- geocode("Eiffel tower")

map <- get_googlemap("Paris", markers = myMarker , scale = 2,zoom  
= 12)

ggmap(map, extent = "device")

As you can see, in order to represent a marker on the map, we need its coordinates, 
so we first used the geocode() function to obtain the latitude and longitude of 
the Eiffel tower, and then we specified in the map that we would like to have the 
marker corresponding to these coordinates. In this case, we have also used the get_
googlemap() function that searches for a map in Google´s database. Alternatively, 
we could also have used the get_map() function. The extent argument in the 
ggmap() function allows you to control how much of the typical ggplot2 plotting 
format is maintained. You can choose between three different types: normal, where 
you have the typical ggplot2 axis and layout; panel, where only the axes are 
maintained; and device, where only the plot area with the map is represented. We 
will see how the three different options look later on in this section.

On the plot we realize with ggmap, we can also add typical elements from the 
grammar layer, so, for instance, we can also use datasets from the maps package to 
add elements on maps downloaded with gmap. Just keep in mind that in order to 
represent data on maps, you need to have the data of geographic coordinates. So, 
in this example, we will download the US map, and we will add the position of the 
different state capitals on top of it as Google Map markers. Next to each capital's 
location, we will also add its name. The following code shows this:

require(maps)

data(us.cities)

### Select only the capitals coordinates

state.capitals <- subset(us.cities, capital == 2)

state.capitals.coord <- state.capitals[,c("long","lat")]

### Download the USA map

mapUSA <- get_googlemap("USA", scale = 2,zoom = 4,  
markers=state.capitals.coord)

### Create the ggplot object with the USA map
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USAmap <- ggmap(mapUSA, extent = "device")

### Add the position and names of capital cities

USAmap + geom_text(aes(x = long, y = lat, label=name), data =  
state.capitals,hjust=-0.1,size=3.5)

As illustrated, we first downloaded the map with the get_googlemap() function, 
and with the markers argument, we defined where to add the tracker by providing 
longitude and latitude data (in this order). In order to do that, we extracted information 
from state.capitals and saved it in a new data frame, state.capitals.coord. You 
may notice how the grammar layer elements, such as geom_text() in this case, were 
simply added to a plot element, which we previously created with ggmap(). You can 
see the resulting map in Figure 7.7:

Figure 7.7: A US map from Google Maps with markers for US state capitals
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In addition to placing markers on the map, we can also connect different points  
with the argument path in the get_googlemap().function. So, for instance, we  
can trace the connection between Eiffel tower and Arc de Triomphe in Paris  
as shown here:

myMarker_Eiffel <- geocode("Eiffel tower")

myMarker_Arc <- geocode("Arc de Triomphe")

myMarkers <- rbind(myMarker_Eiffel,myMarker_Arc)

mapConnections <- get_googlemap("Eiffel tower", scale = 2,zoom = 14,  
markers=myMarkers, path=myMarkers)

ggmap(mapConnections, extent = "device")

ggmap(mapConnections, extent = "normal")

ggmap(mapConnections, extent = "panel")

As illustrated in the code, we first collected the geographical positions of the two 
points and then combined these positions in a single dataset, which will then be 
used to define the marker's position as well as the path to connect. We then created 
the plot in three different ways using the three options available for the extent 
argument; you can see the three resulting plots in Figure 7.8 A, B, and C:
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Figure 7.8: Paris maps with connection between the Eiffel Tower and the Arc de Triomphe. The plots are 
represented as extent = "device" (A), extent = "normal" (B), and extent = "panel" (C)
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In the previous example, we connected points on the map directly, without taking 
into account the actual road connections. The ggmap package also provides a function 
called route(), which allows you to obtain the route connection between two points.

In the example here, we will again plot the distance between the Eiffel tower and 
the Arc de Triomphe, but in this case, we will plot the walking route. In order to do 
that, we will first use the route() function to calculate the distance. This function 
will also generate the geographical coordinates as well as the distances between the 
two points, which can, as usual, be provided as a character string. You can see an 
example of this in the code here:

myRoutes <- route("Eiffel tower", "Arc de Triomphe", mode =  
"walking", alternatives = TRUE)

myDirections <- get_googlemap("Eiffel tower", scale = 2, zoom = 14,  
markers=rbind(myMarker_Eiffel,myMarker_Arc))

ggmap(myDirections, extent = "device") +  
geom_leg(aes(x = startLon, y = startLat, xend = endLon, yend =  
endLat, col=route), size = 1.5, data = myRoutes)

In the function, you can also use the logical argument alternatives if you want 
Google Maps to provide alternative routes. When this argument is TRUE, the function 
will provide different alternatives and in the dataset, it will include a column called 
route, which contains a flag to distinguish between the different route options. In 
our example, we used this column to assign a different color to the three alternatives. 
You can see the resulting plot in Figure 7.9:
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Figure 7.9: A map of Paris with a series of walking routes between the Eiffel Tower and the Arc de Triomphe. 
Three different route alternatives are showed in different colors

As already mentioned, in this section we have seen simple examples of how map 
elements and geographical coordinates can be included in ggplot2 graphics. If you 
are interested in more complex applications, you can find additional references at the 
end of the chapter in the Further reading section.
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Scatterplot matrix with GGally
A scatterplot matrix is a series of scatterplots organized in a grid and often used to 
describe the relationship between different variables. These plots can range over 
different degrees of complexity, from merely plotting correlations between variables 
up to histograms and kernel density plots of distributions that incorporate other 
variable metadata . If you are already familiar with the graphics package, the pairs() 
function can be used to generate a basic scatterplot matrix. Alternatively, the GGally 
package, a helper package of ggplot2, can be used to generate scatterplot matrices 
and other, more complex matrix figures in the ggplot2 style. It contains templates for 
different plots to be combined into a plot matrix, a parallel coordinate plot function, 
as well as a function for making a network plot. The main function available in this 
package is the ggpairs() function, which is able to generate a matrix scatterplot using 
ggplot2 graphs,. Its use is quite straightforward. We will see examples with the iris 
dataset, which we have already used previously in the book.

A basic use would simply imply passing the dataset to the function and eventually 
specifying typical ggplot2 arguments, such as color and alpha, in the example here:

require(GGally)

ggpairs(iris, color='Species', alpha=0.4)

Using the function in this way, it will generate a scatterplot matrix using all columns in 
the dataset as variables and by selecting the adequate default plot types depending on 
the nature of the parameter. You can see the plot we obtained in Figure 7.10:

Figure 7.10: A scatterplot matrix of the iris dataset with default settings
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As illustrated in the resulting plot, we have represented the data from the three 
flower species in different colors. The variable names are represented along the 
diagonals of the matrix and the relationship between variables is described in the 
various subplots. The plot matrix can be divided into two areas, a lower and an 
upper part, respectively, below and above the diagonal containing the variables. For 
continuous variables, such as Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width, 
it represents the correlation between each combination of variables. In the lower part, 
the data is represented as points, while in the upper part, the data is represented 
as details of the correlation coefficient. Since we have split the data into groups 
depending on the values of the Species column, this data is spread accordingly. 
The categorical variable, Species, is represented as a histogram in the lower part 
and as a boxplot in the upper one. A very useful option of the ggpairs() function is 
the possibility of choosing which representation to include in the lower and upper 
parts of the matrix depending on the type of variable represented. You can use 
the function arguments upper or lower and provide a list containing the different 
plot types. For each parameter combination, only one plot type can be selected. 
The following is a table summarizing the available plot options depending on the 
variable combination:

Argument Variable combination Plots available
continuous continuous versus. 

continuous
"points", "smooth", "density", 
"cor","blank"

discrete discrete versus. discrete "facetbar", "ratio", "blank"
combo continuous versus. discrete "box", "dot", "facethist", 

"facetdensity", "denstrip", "blank"

The blank option is also available and can be used not to represent any plot for that 
variable combination. So, for instance, if you wanted to have the density plot for the 
combinations between continuous variables in the upper panels, you would use the 
following code:

ggpairs(iris, upper=list(continuous="density"), color='Species')

In the same way, you can also modify the lower plots in a similar way:

ggpairs(iris, upper=list(continuous="density"),  
lower=list(continuous="smooth"))
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You can see this last plot in Figure 7.11:

Figure 7.11: A matrix scatterplot or iris dataset with density plots in the upper  
area and smooth lines in the lower area for continuous variables

As illustrated in the plot generated, in this case, we have removed the coloring of the 
observation depending on the species represented, so, as a consequence, we have 
obtained the smooth line in the lower panels as if all the data was coming from the 
same source. You can also notice how the panels defining the combination between 
the Species variable and all the other variables did not change. These panels, in 
fact, fall into the combo category since they are obtained from the combination of 
categorical and continuous variables. So, if we also want to modify these panels, for 
instance, to have a density plot, and obtain a smooth line for the different flower 
species, we can use the following code.

ggpairs(iris, upper=list(continuous="density"),  
lower=list(continuous="smooth",combo="facetdensity"),  
color="Species")
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You can see the resulting plot in Figure 7.12:

Figure 7.12: A scatterplot matrix of the iris dataset with density plots in the upper area and smooth lines  
in the lower area for continuous variables and density plots in the lower panels for combo variables

Plotting heatmaps with ggplot2
Heatmaps are representations of matrix data where the individual values contained 
are represented as colors. Heatmaps can be realized in ggplot2 using the traditional 
functions available, but we have also included plots in this chapter that represent 
very specific type of graphs.

In order to realize a heatmap with ggplot2, you will simply need to use the geom_
tile() function. These plots can be realized usually by representing two variables 
on both axes and the combinations between these variables are color-mapped using  
a third variable. Let's first create a simple dataset that we can use.

x1 <- seq(-10, 10, length.out = 10)

y1 <- seq(-10, 10, length.out = 10)

d1 <- expand.grid(x = x1, y = y1)

d1$z <- d1$x^2 - d1$y^2

We will generate two vectors and then generate all possible combinations between 
these vectors using the expand.grid().function. We will then just create a third 
variable, which is a function of the previous ones. What we end up with finally is a 
3D curve that can be represented in two dimensions by mapping the third variable  
to colors.
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We can use, for instance, the qplot() function to easily represent this data as  
shown here:

qplot(x=x, y=y, data=d1, fill=z, geom="tile")

As illustrated, we simply had to select the two variables and then map them to a 
third variable. In the geom argument, you can select the tile geometry. You can  
see the resulting picture in Figure 7.13:

Figure 7.13: An example of a heatmap with the default color scheme

As you can see from the resulting plot, these plots are usually represented as squares 
obtained by the combinations of the variables represented on the two axes. On the 
other hand, when the results are particularly dense, the plot can also appear as a 
continuous shade shifting from one color to the other if you are in a situation where 
the color mapping variable follows a regular pattern. We will see the same example 
with a simulation with more data points. Moreover, as an alternative to the default 
color scheme proposed by ggplot2, in these kinds of plots it is particularly effective 
when representing the values as shades between green and red, as is done in this 
second example:

x2 <- seq(-10, 10, length.out = 100)
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y2 <- seq(-10, 10, length.out = 100)

d2 <- expand.grid(x = x2, y = y2)

d2$z <- d2$x^2 - d2$y^2

ggplot(data=d2, aes(x=x, y=y, fill=z)) +  
geom_tile() + scale_fill_gradient(low="red", high="green")

In this second example, you have also seen how this plot can be realized with the 
ggplot() function as an alternative to the use of qplot(). The resulting plot is 
represented in Figure 7.14.

You can find additional examples of this type of plot in the help page of the  
geom_tile() function, as also reported in the Further reading section.

Figure 7.14: An example of a heatmap with a green-red color scheme
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Further reading
For maps, refer to the following resources:

•	 Function borders(): http://docs.ggplot2.org/current/borders.html
•	 Function coord_map(): http://docs.ggplot2.org/current/coord_map.

html

•	 Help page of the function mapproject(): ?mapproject
•	 Help page of the function map_data(): http://docs.ggplot2.org/

current/map_data.html

•	 ggmap: Spatial Visualization with ggplot2, The R Journal Vol. 5/1, D. Kahle  
and H. Wickham

For GGally, refer to the following resources:

•	 Help page of the function ggpairs(): ?ggpairs

For Heatmaps, refer to the following resources:

•	 Help page of the function geom_tile(): http://docs.ggplot2.org/
current/geom_tile.html

Summary
In this last chapter, we saw the use of ggplot2 in more specific applications, which, 
in some cases, may require the use of additional packages. We saw how ggplot2 
can be used to represent geographical data using the maps package as well as the 
more sophisticated ggmap package. We then saw how we can realize complex matrix 
scatterplots with the GGally package and finally how heatmaps can be realized with 
the tile geometry.
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Index
A
aesthetic attributes  42, 48, 49
aesthetic mapping

about  118
in ggplot2  118-120
to new stat variables  121-125

axis
modifying, themes used  159-162
transformation  147, 148

axis labels
about  140
modifying  140, 141

axis scales
about  143
axis, transformation  147, 148
continuous axis  145, 146
discrete axis  143, 144
modifying  143

axis tick marks
removing  148

B
bar charts

about  53-57, 104
URL  73

borders() function
URL  206

box plots (box-and-whisker plots)
about  59-64, 104
URL  73

bubble charts
about  71
URL  73

bullseye chart  137

C
categorical variables

and mapping continuous,  
differences  125-127

Comprehensive R Archive Network 
(CRAN)  1

continuous axis
modifying  145, 146

coord_fixed() function  86
coordinates  42
coordinate system

about  85-87
functions  85

coord_map() function
URL  206

coxcomb diagram  137

D
density plots

about  49-53, 103
URL  73

discrete axis
modifying  143, 144
order of discrete variables, reversing  144

dot plots  71, 72

E
Eclipse

about  4
URL  4

Emacs
about  5
URL  5
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Emacs Speaks Statistics (ESS)
about  5
URL  5

F
facet_grid() function  88
faceting

about  42, 49, 87
grid faceting  88-92
panel orientation, modifying  49
wrap faceting  94

facets
used, for adding reference lines  132-134
used, for adding text  132-134
using, with themes  165-169

facet_wrap() function  94

G
geom attributes  62
geometric objects  42
geom functions, geometry attributes

geom_abline  99
geom_area  99
geom_bar  99
geom_blank  99
geom_boxplot  99
geom_density  99
geom_dotplot  99
geom_errorbar  99
geom_errorbarh  99
geom_histogram  99
geom_hline  99
geom_jitter  99
geom_line  99
geom_path  99
geom_point  99
geom_pointrange  99
geom_ribbon  99
geom_smooth  99
geom_text  99
geom_tile  99
geom_vline  99
names, searching  98

geom_tile() function
URL  206

GGally
scatterplot matrix with  200-202

ggmap
used, for plotting maps  183
used, for representing maps  191-199

ggpairs() function
URL  206

ggplot2
about  1
aesthetic mappings  118-120
grammar, of graphics  42-44
layers  95
packages  2
references  170
running  1
URL  128, 138, 140
used, for plotting heatmaps  203-205
used, for plotting maps  183
used, for representing mapping  184-190

ggplot() function
and qplot() function, equivalent coding  102

grammar, of graphics  42-44
Graphical User Interface (GUI)  2
graphics package

about  8
boxplot, generating  17, 18
boxplot, generating with  

observations  19, 20
histogram, generating  21, 22
histogram, generating with vertical bar on 

median value  23, 24
implementing  8-10
scatter plot, generating with line and points 

of one tree  15, 16
scatter plot, generating with line of  

one tree  13, 14
scatter plot, generating with points of  

all data  11
graphics tools

reference link  6
grayscale plots

creating  140
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grid-based graphics  7
grid faceting  88-92

H
heatmaps

plotting, with ggplot2  203, 204
histograms

about  49, 103
URL  73

I
I() function  48
Integrated Development Environment (IDE)

about  1, 2
Eclipse  4
Emacs  5
Emacs Speaks Statistics (ESS)  5
RStudio  3, 4
StatET  4

Inter-Quartile Range (IQR)  59

L
lattice package

about  25
boxplot, generating  36, 37
example  25-27
histogram, generating with  

default options  38, 39
histogram, generating with vertical bar on 

median value  40, 41
scatter plot, faceting with line  

and points  32, 33
scatter plot, generating with faceting  30, 31
scatter plot, generating with  

grouping data  34, 35
scatter plot, generating with points  28

layered grammar
components  75-79

layers, ggplot2
about  95
aesthetic mapping  95-97
data  95
geometry attributes  98, 99
position adjustment  101
stat  100, 101

legends
about  149
key labels, modifying  151
keys, modifying  151
modifying  149
modifying, themes used  154-158
title, modifying  150, 151

linear regression
about  113
statistics, with faceting  114-117

M
map_data() function

URL  206
mapping continuous

and categorical variables,  
differences  125, 126

mapproject() function  206
maps

plotting, with ggmap  183
plotting, with ggplot2  183
representing, with ggmap  191-199
representing, with ggplot2  184-190

multiple plots, in one page
arranging  171
plot position, specifying  175, 176
plots, arranging in rows and  

columns  172, 173

N
Normalized Parent Coordinates (NPC)  175

P
packages  2
pie chart  136
plot output

multiple plots, in one page  171
plots, saving to file  177
references  182

plots
background modifying, themes  

used  163, 164
bullseye chart  137
coxcomb diagram  137
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layer by layer creating, qplot() function 
used  79-83

pie chart  135
reference lines, adding  128-132
text, adding  128-131
title modifying, themes used  159-162
with polar coordinates  135

plots, saving to file
about  177
after rendering plot  181, 182
multiple plots, saving on same  

PDF file  179, 180
saving manually  177
single plot, saving  178
without rendering plot  178

plotting environments  5-7
plot title

about  140
modifying  140, 141
splitting  142

position adjustment
about  101
of categorical data  101, 102
of continuous data  102

position adjustment, of categorical data
about  101
dodge  101
fill  101
stack  101

position_stack() function  101
pushViewport() function  173

Q
qplot() function

about  47
and ggplot() function,  

equivalent coding  102
components  47, 48
URL  48, 73
used, for creating plot layer by layer  79-82

R
reference lines

adding, facets used  132-134
adding, to plots  128-132

R project
URL  1

RStudio
about  3
console area  4
scripting area  4
URL  3
visualization area  4
workspace/history area  4

RStudio Server  3

S
scale_color_hue() function  96
scales

about  42, 83, 139
exploring  139, 140

scale_x_discrete() function, arguments
breaks  144
guide  144
labels  144
limits  144
name  144
na.value  144

scatterplots
about  65-68, 105
URL  73
with GGally  200-202

smooth lines
about  108-113

standard graphics  7
standard plots  8-10
StatET

about  4
URL  4

stat functions
stat_bin  100
stat_bindot  100
stat_boxplot  100
stat_density  100
stat_function  100
stat_identity  101
stat_quantile  101
stat_smooth  101
stat_sum  101
stat_summary  101
stat_unique  101
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statistical transformations  42
statistics

adding  107
stat variables

aesthetic mapping to  121-124
subset() function  92

T
text

adding, facets used  132-134
adding, to plots  128-132

themes
about  153
facets, using  165-169

URL  153
used, for modifying axis  159-162
used, for modifying legends  154-158
used, for modifying plot  

background  163, 164
used, for modifying title  159-162
using  153, 154

time series  70
Trellis plots  25-27

W
wrap faceting  94
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Thank you for buying  
ggplot2 Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.
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Building Interactive Graphs with 
ggplot2 and Shiny [Video]
ISBN: 978-1-78328-433-7              Duration: 01:51 hours

Build stunning graphics and interactive visuals for 
real-time data analysis and visualization with ggplot2 
and Shiny

1.	 Generate complex interactive web pages using 
R and produce publication-ready graphics in a 
principled manner.

2.	 Use aesthetics effectively to map your data into 
graphical elements.

3.	 Customize your graphs according to your 
specific needs without wasting time on 
programming issues.

R Graphs Cookbook
Second Edition
ISBN: 978-1-78398-878-5             Paperback: 368 pages

Over 70 recipes for building and customizing 
publication-quality visualizations of powerful  
and stunning R graphs

1.	 Create a wide range of powerful R graphs.

2.	 Leverage lattice and ggplot2 to create  
high-quality graphs.

3.	 Develop well-structured maps for efficient  
data visualization.

 
Please check www.PacktPub.com for information on our titles
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R Graph Essentials
ISBN: 978-1-78355-455-3            Paperback: 190 pages

Use R's powerful graphing capabilities to design and 
create professional-level graphics

1.	 Learn how to use Base R to analyze your data 
and generate statistical graphs.

2.	 Create attractive graphics using advanced 
functions such as qplot and ggplot for research 
and analysis.

3.	 A step-by-step guide, packed with examples 
using real-world data sets that can prove 
helpful to R programmers.

R Data Analysis Cookbook
ISBN: 978-1-78398-906-5             Paperback: 342 pages

Over 80 recipes to help you breeze through your data 
analysis projects using R

1.	 Analyse data with ready-to-use and 
customizable recipes.

2.	 Discover convenient functions to speed-up 
your work and data files.

3.	 Demystifies several R packages that seasoned 
data analysts regularly use.

 
Please check www.PacktPub.com for information on our titles
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