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Welcome to the R Cookbook, 2nd Edition

R is a powerful tool for statistics, graphics, and statistical programming. It is used by
tens of thousands of people daily to perform serious statistical analyses. It is a free,
open source system whose implementation is the collective accomplishment of many
intelligent, hard-working people. There are more than 10,000 available add-on pack‐
ages, and R is a serious rival to all commercial statistical packages.

But R can be frustrating. It’s not obvious how to accomplish many tasks, even simple
ones. The simple tasks are easy once you know how, yet figuring out that “how” can
be maddening.

This book is full of how-to recipes, each of which solves a specific problem. Each
recipe includes a quick introduction to the solution followed by a discussion that
aims to unpack the solution and give you some insight into how it works. We know
these recipes are useful and we know they work, because we use them ourselves.

The range of recipes is broad. It starts with basic tasks before moving on to input and
output, general statistics, graphics, and linear regression. Any significant work with R
will involve most or all of these areas.

If you are a beginner, then this book will get you started faster. If you are an inter‐
mediate user, this book will be useful for expanding your horizons and jogging your
memory (“How do I do that Kolmogorov–Smirnov test again?”).

The book is not a tutorial on R, although you will learn something by studying the
recipes. It is not a reference manual, but it does contain a lot of useful information. It
is not a book on programming in R, although many recipes are useful inside R
scripts.

Finally, this book is not an introduction to statistics. Many recipes assume that you
are familiar with the underlying statistical procedure, if any, and just want to know
how it’s done in R.
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The Recipes
Most recipes use one or two R functions to solve a specific problem. It’s important to
remember that we do not describe the functions in detail; rather, we describe just
enough to solve the immediate problem. Nearly every such function has additional
capabilities beyond those described here, and some have amazing capabilities. We
strongly urge you to read the functions’ help pages. You will likely learn something
valuable.

Each recipe presents one way to solve a particular problem. Of course, there are likely
several reasonable solutions to each problem. When we knew of multiple solutions,
we generally selected the simplest one. For any given task, you can probably discover
several alternative solutions yourself. This is a cookbook, not a bible.

In particular, R has literally thousands of downloadable add-on packages, many of
which implement alternative algorithms and statistical methods. This book concen‐
trates on the core functionality available through the basic distribution combined
with several important packages known collectively as the tidyverse.

The most concise definition of the tidyverse comes from Hadley Wickham, its origi‐
nator and one of its core maintainers:

The tidyverse is a set of packages that work in harmony because they share common
data representations and API design. The tidyverse package is designed to make it
easy to install and load core packages from the tidyverse in a single command. The
best place to learn about all the packages in the tidyverse and how they fit together is R
for Data Science.

A Note on Terminology
The goal of every recipe is to solve a problem and solve it quickly. Rather than labo‐
ring in tedious prose, we occasionally streamline the description with terminology
that is correct but not precise. A good example is the term generic function. We refer
to print(x) and plot(x) as generic functions because they work for many kinds of x,
handling each kind appropriately. A computer scientist would wince at our terminol‐
ogy because, strictly speaking, these are not simply “functions”; they are polymorphic
methods with dynamic dispatching. But if we carefully unpacked every such technical
detail, the essential solutions would be buried in the technicalities. So we just call
them functions, which we think is more readable.

Another example, taken from statistics, is the complexity surrounding the semantics
of statistical hypothesis testing. Using the strict language of probability theory would
obscure the practical application of some tests, so we use more colloquial language
when describing each statistical test. See the introduction to Chapter 9 for more
about how hypothesis tests are presented in the recipes.

xii | Welcome to the R Cookbook, 2nd Edition



Our goal is to make the power of R available to a wide audience by writing readably,
not formally. We hope that experts in their respective fields will understand if our ter‐
minology is occasionally informal.

Software and Platform Notes
The base distribution of R has frequent and planned releases, but the language defini‐
tion and core implementation are stable. The recipes in this book should work with
any recent release of the base distribution.

Some recipes have platform-specific considerations, and we have carefully noted
them. Those recipes mostly deal with software issues, such as installation and config‐
uration. As far as we know, all other recipes will work on all three major platforms for
R: Windows, macOS, and Linux/Unix.

Other Resources
Here are a few suggestions for further reading, if oyu’d like to dig a little deeper:

On the web
The mother ship for all things R is the R project site. From there you can down‐
load R for your platform, add-on packages, documentation, and source code as
well as many other resources.

Beyond the R project site, we recommend using an R-specific search engine, such
as RSeek, created by Sasha Goodman. You can use a generic search engine, such
as Google, but the “R” search term brings up too much extraneous stuff. See
Recipe 1.11 for more about searching the web.

Reading blogs is a great way to learn about R and stay abreast of leading-edge
developments. There are surprisingly many such blogs, so we recommend fol‐
lowing two blogs-of-blogs: R-bloggers, created by Tal Galili, and PlanetR. By sub‐
scribing to their RSS feeds, you will be notified of interesting and useful articles
from dozens of websites.

R books
There are many, many books about learning and using R. Listed here are a few
that we have found useful. Note that the R project site contains an extensive bib‐
liography of books related to R.

R for Data Science, by Hadley Wickham and Garrett Grolemund (O’Reilly), is an
excellent introduction to the tidyverse packages, especially for using them in data
analysis and statistics. It is also available online.

We find the R Graphics Cookbook, 2nd ed., by Winston Chang (O’Reilly), indis‐
pensible for creating graphics. The book ggplot2: Elegant Graphics for Data
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Analysis by Hadley Wickham (Springer) is the definitive reference for the graph‐
ics package ggplot2, which we use in this book.

Anyone doing serious graphics work in R will want R Graphics by Paul Murrell
(Chapman & Hall/CRC).

R in a Nutshell, by Joseph Adler (O’Reilly), is the quick tutorial and reference
you’ll keep by your side. It covers many more topics than this cookbook.

New books on programming in R appear regularly. We suggest Hands On Pro‐
gramming with R by Garrett Grolemund (O’Reilly) for an introduction, or The
Art of R Programming by Normal Matloff (No Starch Press). Hadley Wickham’s
Advanced R (Chapman & Hall/CRC) is available either as a printed book or free
online and is a great deeper dive into advanced R topics. Efficient R Programming,
by Colin Gillespie and Robin Lovelace (O’Reilly), is another good guide to learn‐
ing the deeper concepts about R programming.

Modern Applied Statistics with S, 4th ed., by William Venables and Brian Ripley
(Springer), uses R to illustrate many advanced statistical techniques. The book’s
functions and datasets are available in the MASS package, which is included in the
standard distribution of R.

Serious geeks can download the R Language Definition from the R Core Team.
The Definition is a work in progress, but it can answer many of your detailed
questions regarding R as a programming language.

Statistics books
For learning statistics, a great choice is Using R for Introductory Statistics by John
Verzani (Chapman & Hall/CRC). It teaches statistics and R together, giving you
the necessary computer skills to apply the statistical methods.

You will need a good statistics textbook or reference book to accurately interpret
the statistical tests performed in R. There are many such fine books—far too
many for us to recommend any one above the others.

Increasingly, statistics authors are using R to illustrate their methods. If you work
in a specialized field, then you will likely find a useful and relevant book in the R
project bibliography.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, packages, data types, envi‐
ronment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, source code for the book, exercises, etc.) is
available for download at http://rc2e.com. The Twitter account for content associated
with this book is @R_cookbook.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.
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We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “R Cookbook, 2nd ed., by J.D. Long
and Paul Teetor. Copyright 2019 J.D. Long and Paul Teetor, 978-1-492-04068-2.”

If you feel your use of code examples falls outside fair use or the permission just
described, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/RCookbook_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Getting Started and Getting Help

This chapter sets the groundwork for the other chapters. It explains how to down‐
load, install, and run R.

More importantly, it also explains how to get answers to your questions. The R com‐
munity provides a wealth of documentation and assistance. You are not alone. Here
are some common sources of help:

Local, installed documentation
When you install R on your computer, a mass of documentation is also installed.
You can browse the local documentation (Recipe 1.7) and search it (Recipe 1.9).
We are amazed how often we search the web for an answer only to discover it
was already available in the installed documentation.

Task views
A task view describes packages that are specific to one area of statistical work,
such as econometrics, medical imaging, psychometrics, or spatial statistics. Each
task view is written and maintained by an expert in the field. There are more
than 35 such task views, so there is likely to be one or more for your areas of
interest. We recommend that every beginner find and read at least one task view
in order to gain a sense of R’s possibilities (Recipe 1.12).

Package documentation
Most packages include useful documentation. Many also include overviews and
tutorials, called vignettes in the R community. The documentation is kept with
the packages in package repositories such as CRAN, and it is automatically
installed on your machine when you install a package.
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Question and answer (Q&A) websites
On a Q&A site, anyone can post a question, and knowledgeable people can
respond. Readers vote on the answers, so the best answers tend to emerge over
time. All this information is tagged and archived for searching. These sites are a
cross between a mailing list and a social network; Stack Overflow is the canonical
example.

The web
The web is loaded with information about R, and there are R-specific tools for
searching it (Recipe 1.11). The web is a moving target, so be on the lookout for
new, improved ways to organize and search information regarding R.

Mailing lists
Volunteers have generously donated many hours of time to answer beginners’
questions that are posted to the R mailing lists. The lists are archived, so you can
search the archives for answers to your questions (Recipe 1.13).

1.1 Downloading and Installing R
Problem
You want to install R on your computer.

Solution
Windows and macOS users can download R from CRAN, the Comprehensive R
Archive Network. Linux and Unix users can install R packages using their package
management tool.

Windows

1. Open http://www.r-project.org/ in your browser.
2. Click on “CRAN.” You’ll see a list of mirror sites, organized by country.
3. Select a site near you or the top one listed as “0-Cloud,” which tends to work well

for most locations (https://cloud.r-project.org/).
4. Click on “Download R for Windows” under “Download and Install R.”
5. Click on “base.”
6. Click on the link for downloading the latest version of R (an .exe file).
7. When the download completes, double-click on the .exe file and answer the usual

questions.
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macOS

1. Open http://www.r-project.org/ in your browser.
2. Click on “CRAN.” You’ll see a list of mirror sites, organized by country.
3. Select a site near you or the top one listed as “0-Cloud,” which tends to work well

for most locations.
4. Click on “Download R for (Mac) OS X.”
5. Click on the .pkg file for the latest version of R, under “Latest release:,” to down‐

load it.
6. When the download completes, double-click on the .pkg file and answer the

usual questions.

Linux or Unix
The major Linux distributions have packages for installing R. Table 1-1 shows some
examples.

Table 1-1. Linux distributions
Distribution Package name
Ubuntu or Debian r-base

Red Hat or Fedora R.i386

SUSE R-base

Use the system’s package manager to download and install the package. Normally, you
will need the root password or sudo privileges; otherwise, ask a system administrator
to perform the installation.

Discussion
Installing R on Windows or macOS is straightforward because there are prebuilt
binaries (compiled programs) for those platforms. You need only follow the preced‐
ing instructions. The CRAN web pages also contain links to installation-related
resources, such as frequently asked questions (FAQs) and tips for special situations
(“Does R run under Windows Vista/7/8/Server 2008?”), that you may find useful.

The best way to install R on Linux or Unix is by using your Linux distribution pack‐
age manager to install R as a package. The distribution packages greatly streamline
both the initial installation and subsequent updates.

On Ubuntu or Debian, use apt-get to download and install R. Run under sudo to
have the necessary privileges:
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$ sudo apt-get install r-base

On Red Hat or Fedora, use yum:

$ sudo yum install R.i386

Most Linux platforms also have graphical package managers, which you might find
more convenient.

Beyond the base packages, we recommend installing the documentation packages,
too. We like to install r-base-html (because we like browsing the hyperlinked docu‐
mentation) as well as r-doc-html, which installs the important R manuals locally:

$ sudo apt-get install r-base-html r-doc-html

Some Linux repositories also include prebuilt copies of R packages available on
CRAN. We don’t use them because we’d rather get software directly from CRAN itself,
which usually has the freshest versions.

In rare cases, you may need to build R from scratch. You might have an obscure,
unsupported version of Unix, or you might have special considerations regarding
performance or configuration. The build procedure on Linux or Unix is quite stan‐
dard. Download the tarball from the home page of your CRAN mirror; it’ll be called
something like R-3.5.1.tar.gz, except the 3.5.1 will be replaced by the latest version.
Unpack the tarball, look for a file called INSTALL, and follow the directions.

See Also
R in a Nutshell by Joseph Adler (O’Reilly) contains more details on downloading and
installing R, including instructions for building the Windows and macOS versions.
Perhaps the ultimate guide is the one entitled “R Installation and Administration”,
available on CRAN, which describes building and installing R on a variety of plat‐
forms.

This recipe is about installing the base package. See Recipe 3.10 for installing add-on
packages from CRAN.

1.2 Installing RStudio
Problem
You want a more comprehensive integrated development environment (IDE) than the
R default. In other words, you want to install RStudio Desktop.

Solution
Over the past few years RStudio has become the most widely used IDE for R. We are
of the opinion that almost all R work should be done in the RStudio Desktop IDE,
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unless there is a compelling reason to do otherwise. RStudio makes multiple prod‐
ucts, including RStudio Desktop, RStudio Server, and RStudio Shiny Server, just to
name a few. For this book we will use the term RStudio to mean RStudio Desktop,
though most concepts apply to RStudio Server as well.

To install RStudio, download the latest installer for your platform from the RStudio
website.

The RStudio Desktop Open Source License version is free to download and use.

Discussion
This book was written and built using RStudio version 1.2.x and R versions 3.5.x.
New versions of RStudio are released every few months, so be sure to update regu‐
larly. Note that RStudio works with whichever version of R you have installed, so
updating to the latest version of RStudio does not upgrade your version of R. R must
be upgraded separately.

Interacting with R is slightly different in RStudio than in the built-in R user interface.
For this book, we’ve elected to use RStudio for all examples.

1.3 Starting RStudio
Problem
You want to run RStudio on your computer.

Solution
A common mistake made by new users of R and RStudio is to accidentally start R
when they intended to start RStudio. The easiest way to ensure you’re actually start‐
ing RStudio is to search for RStudio on your desktop, then use whatever method your
OS provides for pinning the icon somewhere easy to find later:

Windows
Click on the Start Screen menu in the lower-left corner of the screen. In the
search box, type RStudio.

macOS
Look in your launchpad for the RStudio app or press Cmd-space (Cmd is the
command or ⌘ key) and type RStudio to search using Spotlight Search.

Ubuntu
Press Alt-F1 and type RStudio to search for RStudio.
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Discussion
It’s easy to get confused between R and RStudio because, as you can see in Figure 1-1,
the icons look similar.

Figure 1-1. R and RStudio icons in macOS

If you click on the R icon, you’ll be greeted by something like Figure 1-2, which is the
Base R interface on a Mac, but certainly not RStudio.
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Figure 1-2. The R console in macOS

When you start RStudio, by default it will reopen the last project you were working
on in RStudio.

1.4 Entering Commands
Problem
You’ve started RStudio. Now what?

Solution
When you start RStudio, the main window on the left is an R session. From there you
can enter commands interactively directly to R.
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Discussion
R prompts you with >. To get started, just treat R like a big calculator: enter an expres‐
sion, and R will evaluate the expression and print the result:

The computer adds 1 and 1, and displays the result, 2.

The [1] before the 2 might be confusing. To R, the result is a vector, even though it
has only one element. R labels the value with [1] to signify that this is the first ele‐
ment of the vector… which is not surprising, since it’s the only element of the vector.

R will prompt you for input until you type a complete expression. The expression
max(1,3,5) is a complete expression, so R stops reading input and evaluates what it’s
got:

In contrast, max(1,3, is an incomplete expression, so R prompts you for more input.
The prompt changes from greater-than (>) to plus (+), letting you know that R
expects more:

It’s easy to mistype commands, and retyping them is tedious and frustrating. So R
includes command-line editing to make life easier. It defines single keystrokes that let
you easily recall, correct, and reexecute your commands. A typical command-line
interaction goes like this:

1. You enter an R expression with a typo.
2. R complains about your mistake.
3. You press the up arrow key to recall your mistaken line.
4. You use the left and right arrow keys to move the cursor back to the error.
5. You use the Delete key to delete the offending characters.
6. You type the corrected characters, which inserts them into the command line.
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7. You press Enter to reexecute the corrected command.

That’s just the basics. R supports the usual keystrokes for recalling and editing com‐
mand lines, as listed in Table 1-2.

Table 1-2. R command shortcuts
Labeled key Ctrl-key combo Effect
Up arrow Ctrl-P Recall previous command by moving backward through the history of commands.

Down arrow Ctrl-N Move forward through the history of commands.

Backspace Ctrl-H Delete the character to the left of the cursor.

Delete (Del) Ctrl-D Delete the character to the right of the cursor.

Home Ctrl-A Move the cursor to the start of the line.

End Ctrl-E Move the cursor to the end of the line.

Right arrow Ctrl-F Move the cursor right (forward) one character.

Left arrow Ctrl-B Move the cursor left (back) one character.

Ctrl-K Delete everything from the cursor position to the end of the line.

Ctrl-U Clear the whole darn line and start over.

Tab Complete the name (on some platforms).

On most operating systems, you can also use the mouse to highlight commands and
then use the usual copy and paste commands to paste text into a new command line.

See Also
See Recipe 2.12. From the Windows main menu, follow Help → Console for a com‐
plete list of keystrokes useful for command-line editing.

1.5 Exiting from RStudio
Problem
You want to exit from RStudio.

Solution

Windows and most Linux distributions
Select File → Quit Session from the main menu, or click on the X in the upper-right
corner of the window frame.
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macOS
Select File → Quit Session from the main menu, or press Cmd-Q, or click on the red
circle in the upper-left corner of the window frame.

On all platforms, you can also use the q function (as in quit) to terminate R and
RStudio:

q()

Note the empty parentheses, which are necessary to call the function.

Discussion
Whenever you exit, R typically asks if you want to save your workspace. You have
three choices:

• Save your workspace and exit.
• Don’t save your workspace, but exit anyway.
• Cancel, returning to the command prompt rather than exiting.

If you save your workspace, R writes it to a file called .RData in the current working
directory. Saving the workspace saves any R objects you have created. The next time
you start R in the same directory, the workspace will automatically load. Saving your
workspace will overwrite the previously saved workspace, if any, so don’t save if you
don’t like your changes (e.g., if you have accidentally erased critical data from your
workspace).

We recommend never saving your workspace when you exit and instead always
explicitly saving your project, scripts, and data. We also recommend that you turn off
the prompt to save and autorestore the workspace in RStudio using the global options
found in the menu Tools → Global Options and shown in Figure 1-3. This way, when
you exit R and RStudio, you won’t be prompted to save your workspace. But keep in
mind that any objects created but not saved to disk will be lost!
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Figure 1-3. Save workspace options

See Also
See Recipe 3.1 for more about the current working directory and Recipe 3.3 for more
about saving your workspace. Also see Chapter 2 of R in a Nutshell.

1.6 Interrupting R
Problem
You want to interrupt a long-running computation and return to the command
prompt without exiting RStudio.
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Solution
Press the Esc key on your keyboard, or click on the Session menu in RStudio and
select “Interrupt R.” You may also click on the stop sign icon in the code console win‐
dow.

Discussion
Interrupting R means telling R to stop running the current command, but without
deleting variables from memory or completely closing RStudio. That said, interrupt‐
ing R can leave your variables in an indeterminate state, depending upon how far the
computation had progressed, so check your workspace after interrupting.

See Also
See Recipe 1.5.

1.7 Viewing the Supplied Documentation
Problem
You want to read the documentation supplied with R.

Solution
Use the help.start function to see the documentation’s table of contents:

help.start()

From there, links are available to all the installed documentation. In RStudio the help
will show up in the help pane, which by default is on the righthand side of the screen.

In RStudio you can also click Help → R Help to get a listing with help options for
both R and RStudio.

Discussion
The base distribution of R includes a wealth of documentation—literally thousands of
pages. When you install additional packages, those packages contain documentation
that is also installed on your machine.

It is easy to browse this documentation via the help.start function, which opens on
the top-level table of contents. Figure 1-4 shows how help.start appears inside the
help pane in RStudio.
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Figure 1-4. RStudio help.start

The two links in the Reference section are especially useful:

Packages
Click here to see a list of all the installed packages—both the base packages and
the additional installed packages. Click on a package name to see a list of its func‐
tions and datasets.

Search Engine & Keywords
Click here to access a simple search engine that allows you to search the docu‐
mentation by keyword or phrase. There is also a list of common keywords,
organized by topic; click one to see the associated pages.

The Base R documentation accessed via help.start is loaded on your computer
when you install R. The RStudio help, which you access by using the menu option
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Help → R Help, presents a page with links to RStudio’s website. So, you will need
internet access to access the RStudio help links.

See Also
The local documentation is copied from the R Project website, which may have upda‐
ted documents.

1.8 Getting Help on a Function
Problem
You want to know more about a function that is installed on your machine.

Solution
Use help to display the documentation for the function:

help(functionname)

Use args for a quick reminder of the function arguments:

args(functionname)

Use example to see examples of using the function:

example(functionname)

Discussion
We present many R functions in this book. Every R function has more bells and whis‐
tles than we can possibly describe. If a function catches your interest, we strongly sug‐
gest reading the help page for that function. One of its bells or whistles might be very
useful to you.

Suppose you want to know more about the mean function. Use the help function like
this:

help(mean)

This will open the help page for the mean function in the help pane in RStudio. A
shortcut for the help command is to simply type ? followed by the function name:

?mean

Sometimes you just want a quick reminder of the arguments to a function: what are
they, and in what order do they occur? For this case, use the args function:
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args(mean)
#> function (x, ...)
#> NULL

args(sd)
#> function (x, na.rm = FALSE)
#> NULL

The first line of output from args is a synopsis of the function call. For mean, the syn‐
opsis shows one argument, x, which is a vector of numbers. For sd, the synopsis
shows the same vector, x, and an optional argument called na.rm. (You can ignore the
second line of output, which is often just NULL.) In RStudio you will see the args out‐
put as a floating tool tip over your cursor when you type a function name, as shown
in Figure 1-5.

Figure 1-5. RStudio tool tip

Most documentation for functions includes example code near the end of the docu‐
ment. A cool feature of R is that you can request that it execute the examples, giving
you a little demonstration of the function’s capabilities. The documentation for the
mean function, for instance, contains examples, but you don’t need to type them your‐
self. Just use the example function to watch them run:

example(mean)
#>
#> mean> x <- c(0:10, 50)
#>
#> mean> xm <- mean(x)
#>
#> mean> c(xm, mean(x, trim = 0.10))
#> [1] 8.75 5.50

Everything you see after example(mean) was produced by R, which executed the
examples from the help page and displayed the results.

See Also
See Recipe 1.9 for searching for functions and Recipe 3.6 for more about the search
path.
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1.9 Searching the Supplied Documentation
Problem
You want to know more about a function that is installed on your machine, but the
help function reports that it cannot find documentation for any such function.

Alternatively, you want to search the installed documentation for a keyword.

Solution
Use help.search to search the R documentation on your computer:

help.search("pattern")

A typical pattern is a function name or keyword. Notice that it must be enclosed in
quotation marks.

For your convenience, you can also invoke a search by using two question marks (in
which case the quotes are not required). Note that searching for a function by name
uses one question mark, while searching for a text pattern uses two:

> ??pattern

Discussion
You may occasionally request help on a function only to be told R knows nothing
about it:

help(adf.test)
#> No documentation for 'adf.test' in specified packages and libraries:
#> you could try '??adf.test'

This can be frustrating if you know the function is installed on your machine. Here
the problem is that the function’s package is not currently loaded, and you don’t know
which package contains the function. It’s kind of a catch-22 (the error message indi‐
cates the package is not currently in your search path, so R cannot find the help file;
see Recipe 3.6 for more details).

The solution is to search all your installed packages for the function. Just use the
help.search function, as suggested in the error message:

help.search("adf.test")

The search will produce a listing of all packages that contain the function:

Help files with alias or concept or title matching 'adf.test' using
regular expression matching:

tseries::adf.test       Augmented Dickey-Fuller Test
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Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.

The preceding output indicates that the tseries package contains the adf.test func‐
tion. You can see its documentation by explicitly telling help which package contains
the function:

help(adf.test, package = "tseries")

or you can use the double colon operator to tell R to look in a specific package:

?tseries::adf.test

You can broaden your search by using keywords. R will then find any installed docu‐
mentation that contains the keywords. Suppose you want to find all functions that
mention the Augmented Dickey–Fuller (ADF) test. You could search on a likely
pattern:

help.search("dickey-fuller")

See Also
You can also access the local search engine through the documentation browser; see
Recipe 1.7 for how this is done. See Recipe 3.6 for more about the search path and
Recipe 1.8 for getting help on functions.

1.10 Getting Help on a Package
Problem
You want to learn more about a package installed on your computer.

Solution
Use the help function and specify a package name (without a function name):

help(package = "packagename")

Discussion
Sometimes you want to know the contents of a package (the functions and datasets).
This is especially true after you download and install a new package, for example. The
help function can provide the contents plus other information once you specify the
package name.

This call to help would display the information for the tseries package, a standard
package in the base distribution (try it!):

help(package = "tseries")
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The information begins with a description and continues with an index of functions
and datasets. In RStudio, the HTML-formatted help page will open in the help win‐
dow of the IDE.

Some packages also include vignettes, which are additional documents such as intro‐
ductions, tutorials, or reference cards. They are installed on your computer as part of
the package documentation when you install the package. The help page for a pack‐
age includes a list of its vignettes near the bottom.

You can see a list of all vignettes on your computer by using the vignette function:

vignette()

In RStudio this will open a new tab listing every package installed on your computer
that includes vignettes as well as the vignette names and descriptions.

You can see the vignettes for a particular package by including its name:

vignette(package = "packagename")

Each vignette has a name, which you use to view the vignette:

vignette("vignettename")

See Also
See Recipe 1.8 for getting help on a particular function in a package.

1.11 Searching the Web for Help
Problem
You want to search the web for information and answers regarding R.

Solution
Inside R, use the RSiteSearch function to search by keyword or phrase:

RSiteSearch("key phrase")

Inside your browser, try using these sites for searching:

RSeek
This is a Google custom search engine that is focused on R-specific websites.

Stack Overflow
Stack Overflow is a searchable Q&A site from Stack Exchange that is oriented
toward programming issues such as data structures, coding, and graphics. Stack
Overflow is a great “first stop” for all your syntax questions.
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Cross Validated
Cross Validated is a Stack Exchange site focused on statistics, machine learning,
and data analysis rather than programming. It’s a good place for questions about
what statistical method to use.

RStudio Community
The RStudio Community site is a discussion forum hosted by RStudio. The top‐
ics include R, RStudio, and associated technology. Being an RStudio site, this
forum is often visited by RStudio staff and those who use the software frequently.
This is a good place for general questions and questions that possibly don’t fit as
well into the Stack Overflow syntax-focused format.

Discussion
The RSiteSearch function will open a browser window and direct it to the search
engine on the R Project website. There you will see an initial search that you can
refine. For example, this call would start a search for “canonical correlation”:

RSiteSearch("canonical correlation")

This is quite handy for doing quick web searches without leaving R. However, the
search scope is limited to R documentation and the mailing list archives.

RSeek provides a wider search. Its virtue is that it harnesses the power of the Google
search engine while focusing on sites relevant to R. That eliminates the extraneous
results of a generic Google search. The beauty of RSeek is that it organizes the results
in a useful way.

Figure 1-6 shows the results of visiting RSeek and searching for “correlation.” Note
that the tabs across the top allow for drilling in to different types of content:

• All results
• Packages
• Books
• Support
• Articles
• For Beginners
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Figure 1-6. RSeek

Stack Overflow is a Q&A site, which means that anyone can submit a question and
experienced users will supply answers—often there are multiple answers to each
question. Readers vote on the answers, so good answers tend to rise to the top. This
creates a rich database of Q&A dialogues, which you can search. Stack Overflow is
strongly problem-oriented, and the topics lean toward the programming side of R.

Stack Overflow hosts questions for many programming languages; therefore, when
entering a term into its search box, prefix it with “[r]” to focus the search on ques‐
tions tagged for R. For example, searching for “[r] standard error” will select only the
questions tagged for R and will avoid the Python and C++ questions.

Stack Overflow also includes a wiki about the R language that provides an excellent
community-curated list of online R resources.

Stack Exchange (the parent company of Stack Overflow) has a Q&A area for statisti‐
cal analysis called Cross Validated. This area is more focused on statistics than pro‐
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gramming, so use it when seeking answers that are more concerned with statistics in
general and less with R in particular.

RStudio hosts its own discussion board as well. This is a great place to ask general
questions and more conceptual questions that may not work as well on Stack Over‐
flow.

See Also
If your search reveals a useful package, use Recipe 3.10 to install it on your machine.

1.12 Finding Relevant Functions and Packages
Problem
Of the 10,000+ packages for R, you have no idea which ones would be useful to you.

Solution
• To discover packages related to a certain field, visit CRAN’s list of task views.

Select the task view for your area, which will give you links to and descriptions of
relevant packages. Or visit RSeek, search by keyword, click on the Task Views tab,
and select an applicable task view.

• Visit crantastic and search for packages by keyword.
• To find relevant functions, visit RSeek, search by name or keyword, and click on

the Functions tab.

Discussion
This problem is especially vexing for beginners. You think R can solve your problems,
but you have no idea which packages and functions would be useful. A common
question on the mailing lists is: “Is there a package to solve problem X?” That is the
silent scream of someone drowning in R.

As of this writing, there are more than 10,000 packages available for free download
from CRAN. Each package has a summary page with a short description and links to
the package documentation. Once you’ve located a potentially interesting package,
you would typically click on the “Reference manual” link to view the PDF documen‐
tation with full details. (The summary page also contains download links for instal‐
ling the package, but you’ll rarely install the package that way; see Recipe 3.10.)

Sometimes you simply have a generic interest—such as Bayesian analysis, economet‐
rics, optimization, or graphics. CRAN contains a set of task view pages describing
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packages that may be useful. A task view is a great place to start since you get an over‐
view of what’s available. You can see the list of task view pages at CRAN Task Views
or search for them as described in the Solution. CRAN’s Task Views lists a number of
broad fields and shows packages that are used in each field. For example, there are
task views for high-performance computing, genetics, time series, and social science,
just to name a few.

Suppose you happen to know the name of a useful package—say, by seeing it men‐
tioned online. A complete alphabetical list of packages is available at CRAN with
links to the package summary pages.

See Also
You can download and install an R package called sos that provides powerful other
ways to search for packages; see the vignette at SOS.

1.13 Searching the Mailing Lists
Problem
You have a question, and you want to search the archives of the mailing lists to see
whether your question was answered previously.

Solution
Open Nabble in your browser. Search for a keyword or other search term from your
question. This will show results from the support mailing lists.

Discussion
This recipe is really just an application of Recipe 1.11. But it’s an important applica‐
tion, because you should search the mailing list archives before submitting a new
question to the list. Your question has probably been answered before.

See Also
CRAN has a list of additional resources for searching the web; see CRAN Search.
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1.14 Submitting Questions to Stack Overflow or Elsewhere
in the Community
Problem
You have a question you can’t find the answer to online, so you want to submit a
question to the R community.

Solution
The first step to asking a question online is to create a reproducible example. Having
example code that someone can run and see your exact problem is the most critical
part of asking for help online. A question with a good reproducible example has three
components:

Example data
This can be simulated data or some real data that you provide.

Example code
This code shows what you have tried or an error you are getting.

Written description
This is where you explain what you have, what you’d like to have, and what you
have tried that didn’t work.

The details of writing a reproducible example are covered in the Discussion. Once
you have a reproducible example, you can post your question on Stack Overflow. Be
sure to include the r tag in the Tags section of the ask page.

If your question is more general or related to concepts instead of specific syntax,
RStudio runs an RStudio Community discussion forum. Note that the site is broken
into multiple topics, so pick the topic category that best fits your question.

Or you may submit your question to the R mailing lists (but don’t submit to multiple
sites, the mailing lists, and Stack Overflow, as that’s considered rude cross-posting).

The mailing lists page contains general information and instructions for using the R-
help mailing list. Here is the general process:

1. Subscribe to the main R mailing list, R-help.
2. Write your question carefully and correctly and include your reproducible

example.
3. Mail your question to r-help@r-project.org.
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Discussion
The R-help mailing list, Stack Overflow, and the RStudio Community site are great
resources, but please treat them as a last resort. Read the help pages, read the docu‐
mentation, search the help list archives, and search the web. It is most likely that your
question has already been answered. Don’t kid yourself: very few questions are
unique. If you’ve exhausted all other options, though, maybe it’s time to create a good
question.

The reproducible example is the crux of a good help request. The first component is
example data. A good way to get this is to simulate the data using a few R functions.
The following example creates a data frame called example_df that has three col‐
umns, each of a different data type:

set.seed(42)
n <- 4
example_df <- data.frame(
  some_reals = rnorm(n),
  some_letters = sample(LETTERS, n, replace = TRUE),
  some_ints = sample(1:10, n, replace = TRUE)
)
example_df
#>   some_reals some_letters some_ints
#> 1      1.371            R        10
#> 2     -0.565            S         3
#> 3      0.363            L         5
#> 4      0.633            S        10

Note that this example uses the command set.seed at the beginning. This ensures
that every time this code is run, the answers will be the same. The n value is the num‐
ber of rows of example data you would like to create. Make your example data as sim‐
ple as possible to illustrate your question.

An alternative to creating simulated data is to use example data that comes with R.
For example, the dataset mtcars contains a data frame with 32 records about different
car models:

data(mtcars)
head(mtcars)
#>                    mpg cyl disp  hp drat   wt qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  0  1    4    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.32 18.6  1  1    4    1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1  0    3    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0  0    3    2
#> Valiant           18.1   6  225 105 2.76 3.46 20.2  1  0    3    1

If your example is reproducible only with your own data, you can use dput to put a
bit of your own data in a string that you can use in your example. We’ll illustrate that
approach using two rows from the mtcars dataset:
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dput(head(mtcars, 2))
#> structure(list(mpg = c(21, 21), cyl = c(6, 6), disp = c(160,
#> 160), hp = c(110, 110), drat = c(3.9, 3.9), wt = c(2.62, 2.875
#> ), qsec = c(16.46, 17.02), vs = c(0, 0), am = c(1, 1), gear = c(4,
#> 4), carb = c(4, 4)), row.names = c("Mazda RX4", "Mazda RX4 Wag"
#> ), class = "data.frame")

You can put the resulting structure directly in your question:

example_df <- structure(list(mpg = c(21, 21), cyl = c(6, 6), disp = c(160,
160), hp = c(110, 110), drat = c(3.9, 3.9), wt = c(2.62, 2.875
), qsec = c(16.46, 17.02), vs = c(0, 0), am = c(1, 1), gear = c(4,
4), carb = c(4, 4)), row.names = c("Mazda RX4", "Mazda RX4 Wag"
), class = "data.frame")

example_df
#>               mpg cyl disp  hp drat   wt qsec vs am gear carb
#> Mazda RX4      21   6  160 110  3.9 2.62 16.5  0  1    4    4
#> Mazda RX4 Wag  21   6  160 110  3.9 2.88 17.0  0  1    4    4

The second part of a good reproducible example is the example code. The code exam‐
ple should be as simple as possible and illustrate what you are trying to do or have
already tried. It should not be a big block of code with many different things going
on. Boil your example down to only the minimal amount of code needed. If you use
any packages, be sure to include the library call at the beginning of your code. Also,
don’t include anything in your question that is potentially harmful to someone run‐
ning your code, such as rm(list=ls()), which would delete all R objects in memory.
Have empathy for the person trying to help you, and realize that they are volunteer‐
ing their time to help you out and may run your code on the same machine they use
to do their own work.

To test your example, open a new R session and try running it. Once you’ve edited
your code, it’s time to give just a bit more information to your potential respondents.
In plain text, describe what you were trying to do, what you’ve tried, and your ques‐
tion. Be as concise as possible. As with the example code, your objective is to commu‐
nicate as efficiently as possible with the person reading your question. You may find it
helpful to include in your description which version of R you are running as well as
which platform (Windows, Mac, Linux). You can get that information easily with the
sessionInfo command.

If you are going to submit your question to the R mailing list, you should know there
are actually several mailing lists. R-help is the main list for general questions. There
are also many special interest group (SIG) mailing lists dedicated to particular
domains such as genetics, finance, R development, and even R jobs. You can see the
full list at https://stat.ethz.ch/mailman/listinfo. If your question is specific to a domain,
you’ll get a better answer by selecting the appropriate list. As with R-help, however,
carefully search the SIG list archives before submitting your question.
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See Also
We suggest that you read Eric Raymond and Rick Moen’s excellent essay entitled
“How to Ask Questions the Smart Way” before submitting any question. Seriously.
Read it.

Stack Overflow has an excellent post that includes details about creating a reproduci‐
ble example. You can find that at https://stackoverflow.com/q/5963269/37751.

Jenny Bryan has a great R package called reprex that helps in the creation of a good
reproducible example and provides helper functions for writing the markdown text
for sites like Stack Overflow. You can find that package on her GitHub page.
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CHAPTER 2

Some Basics

The recipes in this chapter lie somewhere between problem-solving ideas and tutori‐
als. Yes, they solve common problems, but the Solutions showcase common techni‐
ques and idioms used in most R code, including the code in this cookbook. If you are
new to R, we suggest skimming this chapter to acquaint yourself with these idioms.

2.1 Printing Something to the Screen
Problem
You want to display the value of a variable or expression.

Solution
If you simply enter the variable name or expression at the command prompt, R will
print its value. Use the print function for generic printing of any object. Use the cat
function for producing custom-formatted output.

Discussion
It’s very easy to ask R to print something—just enter it at the command prompt:

pi
#> [1] 3.14
sqrt(2)
#> [1] 1.41

When you enter expressions like these, R evaluates the expression and then implicitly
calls the print function. So the previous example is identical to this:
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print(pi)
#> [1] 3.14
print(sqrt(2))
#> [1] 1.41

The beauty of print is that it knows how to format any R value for printing, includ‐
ing structured values such as matrices and lists:

print(matrix(c(1, 2, 3, 4), 2, 2))
#>      [,1] [,2]
#> [1,]    1    3
#> [2,]    2    4
print(list("a", "b", "c"))
#> [[1]]
#> [1] "a"
#>
#> [[2]]
#> [1] "b"
#>
#> [[3]]
#> [1] "c"

This is useful because you can always view your data: just print it. You need not write
special printing logic, even for complicated data structures.

The print function has a significant limitation, however: it prints only one object at a
time. Trying to print multiple items gives this mind-numbing error message:

print("The zero occurs at", 2 * pi, "radians.")
#> Error in print.default("The zero occurs at", 2 * pi, "radians."):
#>     invalid 'quote' argument

The only way to print multiple items is to print them one at a time, which probably
isn’t what you want:

print("The zero occurs at")
#> [1] "The zero occurs at"
print(2 * pi)
#> [1] 6.28
print("radians")
#> [1] "radians"

The cat function is an alternative to print that lets you concatenate multiple items
into a continuous output:

cat("The zero occurs at", 2 * pi, "radians.", "\n")
#> The zero occurs at 6.28 radians.

Notice that cat puts a space between each item by default. You must provide a new‐
line character (\n) to terminate the line.

The cat function can print simple vectors, too:
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fib <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
cat("The first few Fibonacci numbers are:", fib, "...\n")
#> The first few Fibonacci numbers are: 0 1 1 2 3 5 8 13 21 34 ...

Using cat gives you more control over your output, which makes it especially useful
in R scripts that generate output consumed by others. A serious limitation, however,
is that it cannot print compound data structures such as matrices and lists. Trying to
cat them only produces another mind-numbing message:

cat(list("a", "b", "c"))
#> Error in cat(list("a", "b", "c")): argument 1 (type 'list') cannot
#>     be handled by 'cat'

See Also
See Recipe 4.2 for controlling output format.

2.2 Setting Variables
Problem
You want to save a value in a variable.

Solution
Use the assignment operator (<-). There is no need to declare your variable first:

x <- 3

Discussion
Using R in “calculator mode” gets old pretty fast. Soon you will want to define vari‐
ables and save values in them. This reduces typing, saves time, and clarifies your
work.

There is no need to declare or explicitly create variables in R. Just assign a value to the
name and R will create the variable:

x <- 3
y <- 4
z <- sqrt(x^2 + y^2)
print(z)
#> [1] 5

Notice that the assignment operator is formed from a less-than character (<) and a
hyphen (-) with no space between them.
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When you define a variable at the command prompt like this, the variable is held in
your workspace. The workspace is held in the computer’s main memory but can be
saved to disk. The variable definition remains in the workspace until you remove it.

R is a dynamically typed language, which means that we can change a variable’s data
type at will. We could set x to be numeric, as just shown, and then turn around and
immediately overwrite that with (say) a vector of character strings. R will not
complain:

x <- 3
print(x)
#> [1] 3

x <- c("fee", "fie", "foe", "fum")
print(x)
#> [1] "fee" "fie" "foe" "fum"

In some R functions you will see assignment statements that use the strange-looking 
assignment operator <<-:

x <<- 3

That forces the assignment to a global variable rather than a local variable. Scoping is
a bit, well, out of scope for this discussion, however.

In the spirit of full disclosure, we will reveal that R also supports two other forms of
assignment statements. A single equals sign (=) can be used as an assignment opera‐
tor. A rightward assignment operator (->) can be used anywhere the leftward assign‐
ment operator (<-) can be used (but with the arguments reversed):

foo <- 3
print(foo)
#> [1] 3

5 -> fum
print(fum)
#> [1] 5

We recommend that you avoid these as well. The equals-sign assignment is easily
confused with the test for equality. The rightward assignment can be useful in certain
contexts, but it can be confusing to those not used to seeing it.

See Also
See Recipes 2.4, 2.14, and 3.3. See also the help page for the assign function.
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2.3 Listing Variables
Problem
You want to know what variables and functions are defined in your workspace.

Solution
Use the ls function. Use ls.str for more details about each variable. You can also see
your variables and functions in the Environment pane in RStudio, shown in the next
recipe in Figure 2-1.

Discussion
The ls function displays the names of objects in your workspace:

x <- 10
y <- 50
z <- c("three", "blind", "mice")
f <- function(n, p) sqrt(p * (1 - p) / n)
ls()
#> [1] "f" "x" "y" "z"

Notice that ls returns a vector of character strings in which each string is the name of
one variable or function. When your workspace is empty, ls returns an empty vector,
which produces this puzzling output:

ls()
#> character(0)

That is R’s quaint way of saying that ls returned a zero-length vector of strings; that
is, it returned an empty vector because nothing is defined in your workspace.

If you want more than just a list of names, try ls.str; this will also tell you some‐
thing about each variable:

x <- 10
y <- 50
z <- c("three", "blind", "mice")
f <- function(n, p) sqrt(p * (1 - p) / n)
ls.str()
#> f : function (n, p)
#> x :  num 10
#> y :  num 50
#> z :  chr [1:3] "three" "blind" "mice"

The function is called ls.str because it is both listing your variables and applying the
str function to them, showing their structure (see Recipe 12.13).
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Ordinarily, ls does not return any name that begins with a dot (.). Such names are
considered hidden and are not normally of interest to users. (This mirrors the Unix
convention of not listing files whose names begin with a dot.) You can force ls to list
everything by setting the all.names argument to TRUE:

ls()
#> [1] "f" "x" "y" "z"
ls(all.names = TRUE)
#> [1] ".Random.seed" "f"            "x"            "y"
#> [5] "z"

The Environment pane in RStudio also hides objects with names that begin with a
dot.

See Also
See Recipe 2.4 for deleting variables and Recipe 12.13 for inspecting your variables.

2.4 Deleting Variables
Problem
You want to remove unneeded variables or functions from your workspace or to erase
its contents completely.

Solution
Use the rm function.

Discussion
Your workspace can get cluttered quickly. The rm function removes, permanently, one 
or more objects from the workspace:

x <- 2 * pi
x
#> [1] 6.28
rm(x)
x
#> Error in eval(expr, envir, enclos): object 'x' not found

There is no “undo”; once the variable is gone, it’s gone.

You can remove several variables at once:

rm(x, y, z)

You can even erase your entire workspace at once. The rm function has a list argu‐
ment consisting of a vector of names of variables to remove. Recall that the ls
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function returns a vector of variable names; hence, you can combine rm and ls to
erase everything:

ls()
#> [1] "f" "x" "y" "z"
rm(list = ls())
ls()
#> character(0)

Alternatively, you could click the broom icon at the top of the Environment pane in
RStudio, shown in Figure 2-1.

Figure 2-1. Environment pane in RStudio

Never put rm(list=ls()) into code you share with others, such as
a library function or sample code sent to a mailing list or Stack
Overflow. Deleting all the variables in someone else’s workspace is
worse than rude and will make you extremely unpopular.

See Also
See Recipe 2.3.
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2.5 Creating a Vector
Problem
You want to create a vector.

Solution
Use the c(...) operator to construct a vector from given values.

Discussion
Vectors are a central component of R, not just another data structure. A vector can
contain either numbers, strings, or logical values, but not a mixture.

The c(...) operator can construct a vector from simple elements:

c(1, 1, 2, 3, 5, 8, 13, 21)
#> [1]  1  1  2  3  5  8 13 21
c(1 * pi, 2 * pi, 3 * pi, 4 * pi)
#> [1]  3.14  6.28  9.42 12.57
c("My", "twitter", "handle", "is", "@cmastication")
#> [1] "My"            "twitter"       "handle"        "is"
#> [5] "@cmastication"
c(TRUE, TRUE, FALSE, TRUE)
#> [1]  TRUE  TRUE FALSE  TRUE

If the arguments to c(...) are themselves vectors, it flattens them and combines
them into one single vector:

v1 <- c(1, 2, 3)
v2 <- c(4, 5, 6)
c(v1, v2)
#> [1] 1 2 3 4 5 6

Vectors cannot contain a mix of data types, such as numbers and strings. If you create
a vector from mixed elements, R will try to accommodate you by converting one of
them:

v1 <- c(1, 2, 3)
v3 <- c("A", "B", "C")
c(v1, v3)
#> [1] "1" "2" "3" "A" "B" "C"

Here, we tried to create a vector from both numbers and strings. R converted all the
numbers to strings before creating the vector, thereby making the data elements com‐
patible. Note that R does this without warning or complaint.
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Technically speaking, two data elements can coexist in a vector only if they have the
same mode. The modes of 3.1415 and "foo" are numeric and character, respec‐
tively:

mode(3.1415)
#> [1] "numeric"
mode("foo")
#> [1] "character"

Those modes are incompatible. To make a vector from them, R converts 3.1415 to
character mode so it will be compatible with "foo":

c(3.1415, "foo")
#> [1] "3.1415" "foo"
mode(c(3.1415, "foo"))
#> [1] "character"

c is a generic operator, which means that it works with many data
types and not just vectors. However, it might not do exactly what
you expect, so check its behavior before applying it to other data
types and objects.

See Also
See the introduction to Chapter 5 for more about vectors and other data structures.

2.6 Computing Basic Statistics
Problem
You want to calculate basic statistics: mean, median, standard deviation, variance,
correlation, or covariance.

Solution
Use one of these functions, assuming that x and y are vectors:

• mean(x)

• median(x)

• sd(x)

• var(x)

• cor(x, y)

• cov(x, y)
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Discussion
When you first use R you might open the documentation and begin searching for
material entitled “Procedures for Calculating Standard Deviation.” It seems that such
an important topic would likely require a whole chapter.

It’s not that complicated.

Standard deviation and other basic statistics are calculated by simple functions. Ordi‐
narily, the function argument is a vector of numbers and the function returns the cal‐
culated statistic:

x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
mean(x)
#> [1] 8.8
median(x)
#> [1] 4
sd(x)
#> [1] 11
var(x)
#> [1] 122

The sd function calculates the sample standard deviation, and var calculates the sam‐
ple variance.

The cor and cov functions can calculate the correlation and covariance, respectively,
between two vectors:

x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
y <- log(x + 1)
cor(x, y)
#> [1] 0.907
cov(x, y)
#> [1] 11.5

All these functions are picky about values that are not available (NA). Even one NA
value in the vector argument causes any of these functions to return NA or even halt
altogether with a cryptic error:

x <- c(0, 1, 1, 2, 3, NA)
mean(x)
#> [1] NA
sd(x)
#> [1] NA

It’s annoying when R is that cautious, but it is appropriate. You must think carefully
about your situation. Does an NA in your data invalidate the statistic? If yes, then R is
doing the right thing. If not, you can override this behavior by setting na.rm=TRUE,
which tells R to ignore the NA values:
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x <- c(0, 1, 1, 2, 3, NA)
sd(x, na.rm = TRUE)
#> [1] 1.14

In older versions of R, mean and sd were smart about data frames. They understood
that each column of the data frame is a different variable, so they calculated their sta‐
tistics for each column individually. This is no longer the case and, as a result, you
may read confusing comments online or in older books (like the first edition of this
book). In order to apply the functions to each column of a data frame we now need to
use a helper function. The tidyverse family of helper functions for this sort of thing is
in the purrr package. As with other tidyverse packages, this gets loaded when you
run library(tidyverse). The function we’ll use to apply a function to each column
of a data frame is map_dbl:

data(cars)

map_dbl(cars, mean)
#> speed  dist
#>  15.4  43.0
map_dbl(cars, sd)
#> speed  dist
#>  5.29 25.77
map_dbl(cars, median)
#> speed  dist
#>    15    36

Notice in this example that mean and sd each return two values, one for each column
defined by the data frame. (Technically, they return a two-element vector whose
names attribute is taken from the columns of the data frame.)

The var function understands data frames without the help of a mapping function. It
calculates the covariance between the columns of the data frame and returns the
covariance matrix:

var(cars)
#>       speed dist
#> speed    28  110
#> dist    110  664

Likewise, if x is either a data frame or a matrix, then cor(x) returns the correlation
matrix and cov(x) returns the covariance matrix:

cor(cars)
#>       speed  dist
#> speed 1.000 0.807
#> dist  0.807 1.000
cov(cars)
#>       speed dist
#> speed    28  110
#> dist    110  664
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See Also
See Recipe 2.14, Recipe 5.27, and Recipe 9.17.

2.7 Creating Sequences
Problem
You want to create a sequence of numbers.

Solution
Use an n:m expression to create the simple sequence n, n+1, n+2, …, m:

1:5
#> [1] 1 2 3 4 5

Use the seq function for sequences with an increment other than 1:

seq(from = 1, to = 5, by = 2)
#> [1] 1 3 5

Use the rep function to create a series of repeated values:

rep(1, times = 5)
#> [1] 1 1 1 1 1

Discussion
The colon operator (n:m) creates a vector containing the sequence n, n+1, n+2, …, m:

0:9
#>  [1] 0 1 2 3 4 5 6 7 8 9
10:19
#>  [1] 10 11 12 13 14 15 16 17 18 19
9:0
#>  [1] 9 8 7 6 5 4 3 2 1 0

R was clever with the last expression (9:0). Because 9 is larger than 0, it counts back‐
ward from the starting to ending value. You can also use the colon operator directly
with the pipe to pass data to another function:

10:20 %>% mean()

The colon operator works for sequences that grow by 1 only. The seq function also
builds sequences but supports an optional third argument, which is the increment:

seq(from = 0, to = 20)
#>  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
seq(from = 0, to = 20, by = 2)
#>  [1]  0  2  4  6  8 10 12 14 16 18 20
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seq(from = 0, to = 20, by = 5)
#> [1]  0  5 10 15 20

Alternatively, you can specify a length for the output sequence and then R will calcu‐
late the necessary increment:

seq(from = 0, to = 20, length.out = 5)
#> [1]  0  5 10 15 20
seq(from = 0, to = 100, length.out = 5)
#> [1]   0  25  50  75 100

The increment need not be an integer. R can create sequences with fractional incre‐
ments, too:

seq(from = 1.0, to = 2.0, length.out = 5)
#> [1] 1.00 1.25 1.50 1.75 2.00

For the special case of a “sequence” that is simply a repeated value, you should use the
rep function, which repeats its first argument:

rep(pi, times = 5)
#> [1] 3.14 3.14 3.14 3.14 3.14

See Also
See Recipe 7.13 for creating a sequence of Date objects.

2.8 Comparing Vectors
Problem
You want to compare two vectors, or you want to compare an entire vector against a
scalar.

Solution
The comparison operators (==, !=, <, >, <=, >=) can perform an element-by-element
comparison of two vectors. They can also compare a vector’s element against a scalar.
The result is a vector of logical values in which each value is the result of one
element-wise comparison.

Discussion
R has two logical values, TRUE and FALSE. These are often called Boolean values in
other programming languages.

The comparison operators compare two values and return TRUE or FALSE, depending
upon the result of the comparison:
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a <- 3
a == pi # Test for equality
#> [1] FALSE
a != pi # Test for inequality
#> [1] TRUE
a < pi
#> [1] TRUE
a > pi
#> [1] FALSE
a <= pi
#> [1] TRUE
a >= pi
#> [1] FALSE

You can experience the power of R by comparing entire vectors at once. R will per‐
form an element-by-element comparison and return a vector of logical values, one
for each comparison:

v <- c(3, pi, 4)
w <- c(pi, pi, pi)
v == w # Compare two 3-element vectors
#> [1] FALSE  TRUE FALSE
v != w
#> [1]  TRUE FALSE  TRUE
v < w
#> [1]  TRUE FALSE FALSE
v <= w
#> [1]  TRUE  TRUE FALSE
v > w
#> [1] FALSE FALSE  TRUE
v >= w
#> [1] FALSE  TRUE  TRUE

You can also compare a vector against a single scalar, in which case R will expand the
scalar to the vector’s length and then perform the element-wise comparison. The pre‐
vious example can be simplified in this way:

v <- c(3, pi, 4)
v == pi # Compare a 3-element vector against one number
#> [1] FALSE  TRUE FALSE
v != pi
#> [1]  TRUE FALSE  TRUE

This is an application of the Recycling Rule discussed in Recipe 5.3.

After comparing two vectors, you often want to know whether any of the compari‐
sons were true or whether all the comparisons were true. The any and all functions
handle those tests. They both test a logical vector. The any function returns TRUE if
any element of the vector is TRUE. The all function returns TRUE if all elements of the
vector are TRUE:
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v <- c(3, pi, 4)
any(v == pi) # Return TRUE if any element of v equals pi
#> [1] TRUE
all(v == 0) # Return TRUE if all elements of v are zero
#> [1] FALSE

See Also
See Recipe 2.9.

2.9 Selecting Vector Elements
Problem
You want to extract one or more elements from a vector.

Solution
Select the indexing technique appropriate for your problem:

• Use square brackets to select vector elements by their position, such as v[3] for
the third element of v.

• Use negative indexes to exclude elements.
• Use a vector of indexes to select multiple values.
• Use a logical vector to select elements based on a condition.
• Use names to access named elements.

Discussion
Selecting elements from vectors is another powerful feature of R. Basic selection is
handled just as in many other programming languages—use square brackets and a
simple index:

fib <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
fib
#>  [1]  0  1  1  2  3  5  8 13 21 34
fib[1]
#> [1] 0
fib[2]
#> [1] 1
fib[3]
#> [1] 1
fib[4]
#> [1] 2
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fib[5]
#> [1] 3

Notice that the first element has an index of 1, not 0 as in some other programming
languages.

A cool feature of vector indexing is that you can select multiple elements at once. The
index itself can be a vector, and each element of that indexing vector selects an ele‐
ment from the data vector:

fib[1:3] # Select elements 1 through 3
#> [1] 0 1 1
fib[4:9] # Select elements 4 through 9
#> [1]  2  3  5  8 13 21

An index of 1:3 means select elements 1, 2, and 3, as just shown. The indexing vector
needn’t be a simple sequence, however. You can select elements anywhere within the
data vector—as in this example, which selects elements 1, 2, 4, and 8:

fib[c(1, 2, 4, 8)]
#> [1]  0  1  2 13

R interprets negative indexes to mean exclude a value. An index of –1, for instance,
means exclude the first value and return all other values:

fib[-1] # Ignore first element
#> [1]  1  1  2  3  5  8 13 21 34

You can extend this method to exclude whole slices by using an indexing vector of
negative indexes:

fib[1:3] # As before
#> [1] 0 1 1
fib[-(1:3)] # Invert sign of index to exclude instead of select
#> [1]  2  3  5  8 13 21 34

Another indexing technique uses a logical vector to select elements from the data vec‐
tor. Everywhere that the logical vector is TRUE, an element is selected:

fib < 10 # This vector is TRUE wherever fib is less than 10
#>  [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
fib[fib < 10] # Use that vector to select elements less than 10
#> [1] 0 1 1 2 3 5 8
fib %% 2 == 0 # This vector is TRUE wherever fib is even
#>  [1]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
fib[fib %% 2 == 0] # Use that vector to select the even elements
#> [1]  0  2  8 34

Ordinarily, the logical vector should be the same length as the data vector so you are
clearly either including or excluding each element. (If the lengths differ, then you
need to understand the Recycling Rule, discussed in Recipe 5.3.)
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By combining vector comparisons, logical operators, and vector indexing, you can
perform powerful selections with very little R code.

For example, you can select all elements greater than the median:

v <- c(3, 6, 1, 9, 11, 16, 0, 3, 1, 45, 2, 8, 9, 6, -4)
v[ v > median(v)]
#> [1]  9 11 16 45  8  9

or select all elements in the lower and upper 5%:

v[ (v < quantile(v, 0.05)) | (v > quantile(v, 0.95)) ]
#> [1] 45 -4

The previous example uses the | operator, which means “or” when indexing. If you
wanted “and,” you would use the & operator.

You can also select all elements that exceed ±1 standard deviations from the mean:

v[ abs(v - mean(v)) > sd(v)]
#> [1] 45 -4

or select all elements that are neither NA nor NULL:

v <- c(1, 2, 3, NA, 5)
v[!is.na(v) & !is.null(v)]
#> [1] 1 2 3 5

One final indexing feature lets you select elements by name. It assumes that the vector
has a names attribute, defining a name for each element. You can define the names by
assigning a vector of character strings to the attribute:

years <- c(1960, 1964, 1976, 1994)
names(years) <- c("Kennedy", "Johnson", "Carter", "Clinton")
years
#> Kennedy Johnson  Carter Clinton
#>    1960    1964    1976    1994

Once the names are defined, you can refer to individual elements by name:

years["Carter"]
#> Carter
#>   1976
years["Clinton"]
#> Clinton
#>    1994

This generalizes to allow indexing by vectors of names; R returns every element
named in the index:

years[c("Carter", "Clinton")]
#>  Carter Clinton
#>    1976    1994
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See Also
See Recipe 5.3 for more about the Recycling Rule.

2.10 Performing Vector Arithmetic
Problem
You want to operate on an entire vector at once.

Solution
The usual arithmetic operators can perform element-wise operations on entire vec‐
tors. Many functions operate on entire vectors, too, and return a vector result.

Discussion
Vector operations are one of R’s great strengths. All the basic arithmetic operators can
be applied to pairs of vectors. They operate in an element-wise manner; that is, the
operator is applied to corresponding elements from both vectors:

v <- c(11, 12, 13, 14, 15)
w <- c(1, 2, 3, 4, 5)
v + w
#> [1] 12 14 16 18 20
v - w
#> [1] 10 10 10 10 10
v * w
#> [1] 11 24 39 56 75
v / w
#> [1] 11.00  6.00  4.33  3.50  3.00
w^v
#> [1] 1.00e+00 4.10e+03 1.59e+06 2.68e+08 3.05e+10

Observe that the length of the result here is equal to the length of the original vectors.
The reason is that each element comes from a pair of corresponding values in the
input vectors.

If one operand is a vector and the other is a scalar, then the operation is performed
between every vector element and the scalar:

w
#> [1] 1 2 3 4 5
w + 2
#> [1] 3 4 5 6 7
w - 2
#> [1] -1  0  1  2  3
w * 2
#> [1]  2  4  6  8 10
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w / 2
#> [1] 0.5 1.0 1.5 2.0 2.5
2^w
#> [1]  2  4  8 16 32

For example, you can recenter an entire vector in one expression simply by subtract‐
ing the mean of its contents:

w
#> [1] 1 2 3 4 5
mean(w)
#> [1] 3
w - mean(w)
#> [1] -2 -1  0  1  2

Likewise, you can calculate the z-score of a vector in one expression—subtract the
mean and divide by the standard deviation:

w
#> [1] 1 2 3 4 5
sd(w)
#> [1] 1.58
(w - mean(w)) / sd(w)
#> [1] -1.265 -0.632  0.000  0.632  1.265

Yet the implementation of vector-level operations goes far beyond elementary arith‐
metic. It pervades the language, and many functions operate on entire vectors. The
functions sqrt and log, for example, apply themselves to every element of a vector
and return a vector of results:

w <- 1:5
w
#> [1] 1 2 3 4 5
sqrt(w)
#> [1] 1.00 1.41 1.73 2.00 2.24
log(w)
#> [1] 0.000 0.693 1.099 1.386 1.609
sin(w)
#> [1]  0.841  0.909  0.141 -0.757 -0.959

There are two great advantages to vector operations. The first and most obvious is
convenience. Operations that require looping in other languages are one-liners in R.
The second is speed. Most vectorized operations are implemented directly in C code,
so they are substantially faster than the equivalent R code you could write.

See Also
Performing an operation between a vector and a scalar is actually a special case of the
Recycling Rule; see Recipe 5.3.
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2.11 Getting Operator Precedence Right
Problem
Your R expression is producing a curious result, and you wonder if operator prece‐
dence is causing problems.

Solution
The full list of operators is shown in Table 2-1, listed in order of precedence from
highest to lowest. Operators of equal precedence are evaluated from left to right
except where indicated.

Table 2-1. Operator precedence
Operator Meaning See also

[ [[ Indexing Recipe 2.9

:: ::: Access variables in a namespace (environment)

$ @ Component extraction, slot extraction

^ Exponentiation (right to left)

- + Unary minus and plus

: Sequence creation Recipe 2.7, Recipe 7.13

%any% (including %>%) Special operators Discussion (this recipe)

* / Multiplication, division Discussion (this recipe)

+ - Addition, subtraction

== != < > <= >= Comparison Recipe 2.8

! Logical negation

& && Logical “and,” short-circuit “and”

| || Logical “or,” short-circuit “or”

~ Formula Recipe 11.1

-> ->> Rightward assignment Recipe 2.2

= Assignment (right to left) Recipe 2.2

<- <<- Assignment (right to left) Recipe 2.2

? Help Recipe 1.8

It’s not important that you know what every one of these operators does, or what they
mean. The list here is intended simply to expose you to the idea that different opera‐
tors have different precedence.
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Discussion
Getting your operator precedence wrong in R is a common problem. It certainly hap‐
pens to us a lot. We unthinkingly expect that the expression 0:n-1 will create a 
sequence of integers from 0 to n–1, but it does not:

n <- 10
0:n - 1
#>  [1] -1  0  1  2  3  4  5  6  7  8  9

It creates the sequence from –1 to n–1 because R interprets it as (0:n)-1.

You might not recognize the notation %any% in the table. R interprets any text
between percent signs (%…%) as a binary operator. Several such operators have prede‐
fined meanings:

%%

Modulo operator

%/%

Integer division

%*%

Matrix multiplication

%in%

Returns TRUE if the left operand occurs in its right operand; FALSE otherwise

%>%

Pipe that passes results from the left to a function on the right

You can also define new binary operators using the %…% notation; see Recipe 12.17.
The point here is that all such operators have the same precedence.

See Also
See Recipe 2.10 for more about vector operations, Recipe 5.15 for more about matrix
operations, and Recipe 12.17 to define your own operators. See also the Arithmetic
and Syntax topics in the R help pages as well as Chapters 5 and 6 of R in a Nutshell.

2.12 Typing Less and Accomplishing More
Problem
You are getting tired of typing long sequences of commands, and especially tired of
typing the same ones over and over.
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Solution
Open an editor window and accumulate your reusable blocks of R commands there.
Then, execute those blocks directly from that window. Reserve the console window
for typing brief or one-off commands.

When you are done, you can save the accumulated code blocks in a script file for later
use.

Discussion
The typical R beginner types an expression in the console window and sees what hap‐
pens. As he gets more comfortable, he types increasingly complicated expressions.
Then he begins typing multiline expressions. Soon, he is typing the same multiline
expressions over and over, perhaps with small variations, in order to perform his
increasingly complicated calculations.

The experienced R user does not often retype a complex expression. She may type the
same expression once or twice, but when she realizes it is useful and reusable she will
cut and paste it into an editor window. To execute the snippet thereafter, she selects
the snippet in the editor window and tells R to execute it, rather than retyping it. This
technique is especially powerful as her snippets evolve into long blocks of code.

In RStudio, a few shortcuts in the IDE facilitate this work style. Windows and Linux
machines have slightly different keys than Mac machines: Windows/Linux uses the
Ctrl and Alt modifiers, whereas the Mac uses Cmd and Opt.

To open an editor window
From the main menu, select File → New File, then select the type of file you want
to create—in this case, an R script. Or if you know you want an R script, you can
press Shift-Ctrl-N (Windows) or Shift-Cmd-N (Mac).

To execute one line of the editor window
Position the cursor on the line and then press Ctrl-Enter (Windows) or Cmd-
Enter (Mac) to execute it.

To execute several lines of the editor window
Highlight the lines using your mouse; then press Ctrl-Enter (Windows) or Cmd-
Enter (Mac) to execute them.

To execute the entire contents of the editor window
Press Ctrl-Alt-R (Windows) or Cmd-Opt-R (Mac) to execute the whole editor
window. Or from the menu, click Code → Run Region → Run All.

You can find these keyboard shortcuts and dozens more within RStudio by choosing
the Tools → Keyboard Shortcuts Help menu item.
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Reproducing lines from the console window in the editor window is simply a matter
of copy and paste. When you exit RStudio, it will ask if you want to save the new
script. You can either save it for future reuse or discard it.

2.13 Creating a Pipeline of Function Calls
Problem
Creating many intermediate variables in your code is tedious and overly verbose,
while nesting R functions makes the code nearly unreadable.

Solution
Use the pipe operator (%>%) to make your expressions easier to read and write. The
pipe operator, created by Stefan Bache and found in the magrittr package, is used
extensively in many tidyverse functions as well.

Use the pipe operator to combine multiple functions together into a “pipeline” of
functions without intermediate variables:

library(tidyverse)
data(mpg)

mpg %>%
  filter(cty > 21) %>%
  head(3) %>%
  print()
#> # A tibble: 3 x 11
#>   manufacturer model  displ  year   cyl trans drv     cty   hwy fl    class
#>   <chr>        <chr>  <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
#> 1 chevrolet    malibu   2.4  2008     4 auto~ f        22    30 r     mids~
#> 2 honda        civic    1.6  1999     4 manu~ f        28    33 r     subc~
#> 3 honda        civic    1.6  1999     4 auto~ f        24    32 r     subc~

Using the pipe is much cleaner and easier to read than using intermediate temporary
variables:

temp1 <- filter(mpg, cty > 21)
temp2 <- head(temp1, 3)
print(temp2)
#> # A tibble: 3 x 11
#>   manufacturer model  displ  year   cyl trans drv     cty   hwy fl    class
#>   <chr>        <chr>  <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
#> 1 chevrolet    malibu   2.4  2008     4 auto~ f        22    30 r     mids~
#> 2 honda        civic    1.6  1999     4 manu~ f        28    33 r     subc~
#> 3 honda        civic    1.6  1999     4 auto~ f        24    32 r     subc~
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Discussion
The pipe operator does not provide any new functionality to R, but it can greatly
improve the readability of code. It takes the output of the function or object on the
left of the operator and passes it as the first argument of the function on the right.

Writing this:

x %>% head()

is functionally the same as writing this:

head(x)

In both cases x is the argument to head. We can supply additional arguments, but x is
always the first argument. These two lines are also functionally identical:

x %>% head(n = 10)

head(x, n = 10)

This difference may seem small, but with a more complicated example, the benefits
begin to accumulate. If we had a workflow where we wanted to use filter to limit
our data to values, then select to keep only certain variables, followed by ggplot to
create a simple plot, we could use intermediate variables:

library(tidyverse)

filtered_mpg <- filter(mpg, cty > 21)
selected_mpg <- select(filtered_mpg, cty, hwy)
ggplot(selected_mpg, aes(cty, hwy)) + geom_point()

This incremental approach is fairly readable but creates a number of intermediate
data frames and requires the user to keep track of the state of many objects, which
can add cognitive load. But the code does produce the desired graph.

An alternative is to nest the functions together:

ggplot(select(filter(mpg, cty > 21), cty, hwy), aes(cty, hwy)) + geom_point()

While this is very concise since it’s only one line, this code requires much more atten‐
tion to read and understand what’s going on. Code that is difficult for the user to
parse mentally can introduce potential for error, and can also be harder to maintain
in the future. Instead, we can use pipes:

mpg %>%
  filter(cty > 21) %>%
  select(cty, hwy) %>%
  ggplot(aes(cty, hwy)) + geom_point()

The preceding code starts with the mpg dataset and pipes it to the filter function,
which keeps only records where the city mpg value (cty) is greater than 21. Those
results are piped into the select command, which keeps only the listed variables cty
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and hwy, and in turn those are piped into the ggplot command, which produces the
point plot in Figure 2-2.

Figure 2-2. Plotting with pipes example

If you want the argument going into your target (righthand side) function to be
somewhere other than the first argument, use the dot (.) operator. So this:

iris %>% head(3)

is the same as:

iris %>% head(3, x = .)

However, in the second example we passed the iris data frame into the second
named argument using the dot operator. This can be handy for functions where the
input data frame goes in a position other than the first argument.

Throughout this book we use pipes to hold together data transformations with multi‐
ple steps. We typically format the code with a line break after each pipe and then
indent the code on the following lines. This makes the code easily identifiable as parts
of the same data pipeline.
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2.14 Avoiding Some Common Mistakes
Problem
You want to avoid some of the common mistakes made by beginning users—and by
experienced users, for that matter!

Discussion
Here are some easy ways to make trouble for yourself.

Forgetting the parentheses after a function invocation
You call an R function by putting parentheses after the name. For instance, this line
invokes the ls function:

ls()

However, if you omit the parentheses, R does not execute the function. Instead, it
shows the function definition, which is almost never what you want:

ls

# > function (name, pos = -1L, envir = as.environment(pos), all.names = FALSE,
# >     pattern, sorted = TRUE)
# > {
# >     if (!missing(name)) {
# >         pos <- tryCatch(name, error = function(e) e)
# >         if (inherits(pos, "error")) {
# >             name <- substitute(name)
# >             if (!is.character(name))
# >                 name <- deparse(name)
# > # etc.

Mistyping “<-” as “<(space)-”

The assignment operator is <-, with no space between the < and the -:

x <- pi # Set x to 3.1415926...

If you accidentally insert a space between < and -, the meaning changes completely:

x < -pi # Oops! We are comparing x instead of setting it!
#> [1] FALSE

This is now a comparison (<) between x and -pi (negative π). It does not change x. If
you are lucky, x is undefined and R will complain, alerting you that something is
fishy:

x < -pi
#> Error in eval(expr, envir, enclos): object 'x' not found
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If x is defined, R will perform the comparison and print a logical value, TRUE or
FALSE. That should alert you that something is wrong, as an assignment does not nor‐
mally print anything:

x <- 0 # Initialize x to zero
x < -pi # Oops!
#> [1] FALSE

Incorrectly continuing an expression across lines
R reads your typing until you finish a complete expression, no matter how many lines
of input that requires. It prompts you for additional input using the + prompt until it
is satisfied. This example splits an expression across two lines:

total <- 1 + 2 + 3 + # Continued on the next line
  4 + 5
print(total)
#> [1] 15

Problems begin when you accidentally finish the expression prematurely, which can
easily happen:

total <- 1 + 2 + 3 # Oops! R sees a complete expression
+ 4 + 5 # This is a new expression; R prints its value
#> [1] 9
print(total)
#> [1] 6

There are two clues that something is amiss: R prompted you with a normal prompt
(>), not the continuation prompt (+), and it printed the value of 4 + 5.

This common mistake is a headache for the casual user. It is a nightmare for pro‐
grammers, however, because it can introduce hard-to-find bugs into R scripts.

Using = instead of ==

Use the double-equals operator (==) for comparisons. If you accidentally use the
single-equals operator (=), you will irreversibly overwrite your variable:

v <- 1 # Assign 1 to v
v == 0 # Compare v against zero
#> [1] FALSE
v = 0 # Assign 0 to v, overwriting previous contents
print(v)
#> [1] 0

Writing 1:n+1 when you mean 1:(n+1)

You might think that 1:n+1 is the sequence of numbers 1, 2, …, n, n+1. It’s not. It is
the sequence 1, 2, …, n with 1 added to every element, giving 2, 3, …, n, n+1. This
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happens because R interprets 1:n+1 as (1:n)+1. Use parentheses to get exactly what
you want:

n <- 5
1:n + 1
#> [1] 2 3 4 5 6
1:(n + 1)
#> [1] 1 2 3 4 5 6

Getting bitten by the Recycling Rule
Vector arithmetic and vector comparisons work well when both vectors have the
same length. However, the results can be baffling when the operands are vectors of
differing lengths. Guard against this possibility by understanding and remembering
the Recycling Rule (see Recipe 5.3).

Installing a package but not loading it with library or require
Installing a package is the first step toward using it, but one more step is required.
Use library or require to load the package into your search path. Until you do so, R
will not recognize the functions or datasets in the package (see Recipe 3.8):

x <- rnorm(100)
n <- 5
truehist(x, n)
#> Error in truehist(x, n): could not find function "truehist"

However, if you load the library first, then the code runs and you get the chart shown
in Figure 2-3:

library(MASS) # Load the MASS package into R
truehist(x, n)

We typically use library instead of require. The reason is that if you create an R
script that uses library and the desired package is not already installed, R will return
an error. In contrast, require will simply return FALSE if the package is not installed.
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Figure 2-3. Example truehist

Writing lst[n] when you mean lst[[n]] or vice versa

If the variable lst contains a list, it can be indexed in two ways: lst[[n]] is the nth
element of the list, whereas lst[n] is a list whose only element is the nth element of
lst. That’s a big difference. See Recipe 5.7.

Using & instead of &&, or vice versa; same for | and ||

Use & and | in logical expressions involving the logical values TRUE and FALSE. See
Recipe 2.9.

Use && and || for the flow-of-control expressions inside if and while statements.

Programmers accustomed to other programming languages may reflexively use &&
and || everywhere because “they are faster.” But those operators give peculiar results
when applied to vectors of logical values, so avoid them unless you are sure that they
do what you want.

Passing multiple arguments to a single-argument function

What do you think is the value of mean(9,10,11)? No, it’s not 10. It’s 9. The mean
function computes the mean of the first argument. The second and third arguments
are being interpreted as other positional arguments. To pass multiple items into a sin‐
gle argument, we put them in a vector with the c operator. mean(c(9,10,11)) will
return 10, as you might expect.
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Some functions, such as mean, take one argument. Other arguments, such as max and
min, take multiple arguments and apply themselves across all arguments. Be sure you
know which are which.

Thinking that max behaves like pmax, or that min behaves like pmin

The max and min functions have multiple arguments and return one value: the maxi‐
mum or minimum of all their arguments.

The pmax and pmin functions have multiple arguments but return a vector with values
taken element-wise from the arguments. For more info, see Recipe 12.8.

Misusing a function that does not understand data frames
Some functions are quite clever regarding data frames. They apply themselves to the
individual columns of the data frame, computing their result for each individual col‐
umn. Sadly, not all functions are that bright. This includes the mean, median, max, and
min functions. They will lump together every value from every column and compute
their result from the lump, or possibly just return an error. Be aware of which func‐
tions are savvy to data frames and which are not. When in doubt, read the documen‐
tation for the function you are considering.

Using a single backslash (\) in Windows paths
It’s common to copy and paste filepaths into your R scripts, but if you’re using R on
Windows you need to take care. Windows File Explorer may show you that your path
is C:\temp\my_file.csv, but if you try to tell R to read that file, you’ll get a cryptic
message:

Error: '\m' is an unrecognized escape in character string starting "'.\temp\m"

This is because R sees backslashes as special characters. You can get around this by
using either forward slashes (/) or double backslashes (\\):

read_csv(`./temp/my_file.csv`)
read_csv(`.\\temp\\my_file.csv`)

This is only an issue on Windows because both Mac and Linux use forward slashes as
path separators.

Posting a question to Stack Overflow or the mailing list before searching for the answer
Don’t waste your time. Don’t waste other people’s time. Before you post a question to
a mailing list or to Stack Overflow, do your homework and search the archives. Odds
are, someone has already answered your question. If so, you’ll see the answer in the
discussion thread for the question. See Recipe 1.13.
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See Also
See Recipes 1.13, 2.9, 3.8, 5.3, 5.7, and 12.8.
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CHAPTER 3

Navigating the Software

Both R and RStudio are big chunks of software, first and foremost. You will inevitably
spend time doing what one does with any big piece of software: configuring it, cus‐
tomizing it, updating it, and fitting it into your computing environment. This chapter
will help you perform those tasks. There is nothing here about numerics, statistics, or
graphics. This is all about dealing with R and RStudio as software.

3.1 Getting and Setting the Working Directory
Problem
You want to change your working directory, or you just want to know what it is.

Solution
RStudio

Navigate to a directory in the Files pane. Then from the Files pane, select More →
Set As Working Directory, as shown in Figure 3-1.

Console
Use getwd to report the working directory, and use setwd to change it:

getwd()
#> [1] "/Volumes/SecondDrive/jal/DocumentsPersonal/R-Cookbook"

setwd("~/Documents/MyDirectory")
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Figure 3-1. RStudio: Set As Working Directory

Discussion
Your working directory is important because it is the default location for all file input
and output—including reading and writing data files, opening and saving script files,
and saving your workspace image. When you open a file and do not specify an abso‐
lute path, R will assume that the file is in your working directory.

If you’re using RStudio projects, your default working directory will be the home
directory of the project. See Recipe 3.2 for more about creating RStudio projects.

See Also
See Recipe 4.5 for dealing with filenames in Windows.

3.2 Creating a New RStudio Project
Problem
You want to create a new RStudio project to keep all your files related to a specific
project.
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Solution
Click File → New Project as in Figure 3-2.

Figure 3-2. Creating a new project

This will open the New Project dialog box and allow you to choose which type of
project you would like to create, as shown in Figure 3-3.
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Figure 3-3. New Project dialog

Discussion
Projects are a powerful concept that’s specific to RStudio. They help you by doing the
following:

• Setting your working directory to the project directory.
• Preserving window state in RStudio so when you return to a project your win‐

dows are all as you left them. This includes opening any files you had open when
you last saved your project.

• Preserving RStudio project settings.

To hold your project settings, RStudio creates a project file with an .Rproj extension
in the project directory. If you open the project file in RStudio, it works like a short‐
cut for opening the project. In addition, RStudio creates a hidden directory
named .Rproj.user to house temporary files related to your project.

Any time you’re working on something nontrivial in R we recommend creating an
RStudio project. Projects help you stay organized and make your project workflow
easier.
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3.3 Saving Your Workspace
Problem
You want to save your workspace and all variables and functions you have in
memory.

Solution
Call the save.image function:

save.image()

Discussion
Your workspace holds your R variables and functions, and it is created when R starts.
The workspace is held in your computer’s main memory and lasts until you exit from
R. You can easily view the contents of your workspace in RStudio in the Environment
tab, as shown in Figure 3-4.

Figure 3-4. RStudio Environment pane

However, you may want to save your workspace without exiting R, because you know
bad things mysteriously happen when you close your laptop to carry it home. In this
case, use the save.image function.

The workspace is written to a file called .RData in the working directory. When R
starts, it looks for that file and, if it finds it, initializes the workspace from it.
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Sadly, the workspace does not include your open graphs: for example, that cool graph
on your screen disappears when you exit R. The workspace also does not include the
positions of your windows or your RStudio settings. This is why we recommend
using RStudio projects and writing your R scripts so that you can reproduce every‐
thing you’ve created.

See Also
See Recipe 3.1 for setting the working directory.

3.4 Viewing Your Command History
Problem
You want to see your recent sequence of commands.

Solution
Depending on what you are trying to accomplish, you can use a few different meth‐
ods to access your prior command history. If you are in the RStudio console pane,
you can press the up arrow to interactively scroll through past commands.

If you want to see a listing of past commands, you can either execute the history
function or access the History pane in RStudio to view your most recent input:

history()

In RStudio typing history() into the console simply activates the History pane
(Figure 3-5). You could also make that pane visible by clicking on it with your cursor.

Figure 3-5. RStudio History pane
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Discussion
The history function displays your most recent commands. In RStudio the history
command will activate the History pane. If you’re running R outside of RStudio, his
tory shows the most recent 25 lines, but you can request more like so:

history(100)          # Show 100 most recent lines of history
history(Inf)          # Show entire saved history

From within RStudio, the History tab shows an exhaustive list of past commands in
chronological order, with the most recent at the bottom of the list. You can highlight
past commands with your cursor, then click on “To Console” or “To Source” to copy
past commands into the console or source editor, respectively. This can be terribly
handy when you’ve done interactive data analysis and then decide you want to save
some past steps to a source file for later use.

From the console you can see your history by simply pressing the up arrow to scroll
backward through your input, which causes your previous typing to reappear, one
line at a time.

If you’ve exited from R or RStudio, you can still see your command history. R saves
the history in a file called .Rhistory in the working directory. Open the file with a text
editor and then scroll to the bottom; you will see your most recent typing.

3.5 Saving the Result of the Previous Command
Problem
You typed an expression into R that calculated a value, but you forgot to save the
result in a variable.

Solution
A special variable called .Last.value saves the value of the most recently evaluated
expression. Save it to a variable before you type anything else.

Discussion
It is frustrating to type a long expression or call a long-running function but then for‐
get to save the result. Fortunately, you needn’t retype the expression nor invoke the
function again—the result was saved in the .Last.value variable:

aVeryLongRunningFunction()  # Oops! Forgot to save the result!
x <- .Last.value            # Capture the result now
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A word of caution here: the contents of .Last.value are overwritten every time you
type another expression, so capture the value immediately. If you don’t remember
until another expression has been evaluated, it’s too late!

See Also
See Recipe 3.4 to recall your command history.

3.6 Displaying Loaded Packages via the Search Path
Problem
You want to see the list of packages currently loaded into R.

Solution
Use the search function with no arguments:

search()

Discussion
The search path is a list of packages that are currently loaded into memory and avail‐
able for use. Although many packages may be installed on your computer, only a few
of them are actually loaded into the R interpreter at any given moment. You might be
wondering which packages are loaded right now.

With no arguments, the search function returns the list of loaded packages. It pro‐
duces output like this:

search()
#>  [1] ".GlobalEnv"        "package:knitr"     "package:forcats"
#>  [4] "package:stringr"   "package:dplyr"     "package:purrr"
#>  [7] "package:readr"     "package:tidyr"     "package:tibble"
#> [10] "package:ggplot2"   "package:tidyverse" "package:stats"
#> [13] "package:graphics"  "package:grDevices" "package:utils"
#> [16] "package:datasets"  "package:methods"   "Autoloads"
#> [19] "package:base"

Your machine may return a different result, depending on what’s installed there. The
return value of search is a vector of strings. The first string is ".GlobalEnv", which
refers to your workspace. Most strings have the form "package:packagename", which
indicates that the package called packagename is currently loaded into R. In the pre‐
ceding example, you can see many tidyverse packages installed, including purrr,
ggplot2, and tibble.
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R uses the search path to find functions. When you type a function name, R searches
the path—in the order shown—until it finds the function in a loaded package. If the
function is found, R executes it. Otherwise, it prints an error message and stops.
(There is actually a bit more to it: the search path can contain environments, not just
packages, and the search algorithm is different when initiated by an object within a
package; see the R Language Definition for details.)

Since your workspace (.GlobalEnv) is first in the list, R looks for functions in your
workspace before searching any packages. If your workspace and a package both con‐
tain a function with the same name, your workspace will “mask” the function; this
means that R stops searching after it finds your function and so never sees the pack‐
age function. This is a blessing if you want to override the package function…and a
curse if you still want access to it. If you find yourself feeling cursed because you (or
some package you loaded) overrode a function (or other object) from an existing
loaded package, you can use the full environment::name form to call an object from a
loaded package environment. For example, if you wanted to call the dplyr function
count, you could do so using dplyr::count. Using the full explicit name to call a
function will work even if you have not loaded the package, so if you have dplyr
installed but not loaded, you can still call dplyr::count.

It is becoming increasingly common with online examples to show
the full packagename::function in examples. While this removes
ambiguity about where a function comes from, it makes example
code very wordy.

Note that R will include only loaded packages in the search path. So if you have
installed a package but not loaded it by using library(packagename), then R will not
add that package to the search path.

R also uses the search path to find R datasets (not files) or any other object via a simi‐
lar procedure.

Unix and Mac users: don’t confuse the R search path with the Unix search path (the
PATH environment variable). They are conceptually similar but two distinct things.
The R search path is internal to R and is used by R only to locate functions and data‐
sets, whereas the Unix search path is used by the OS to locate executable programs.

See Also
See Recipe 3.8 for loading packages into R and Recipe 3.7 for viewing the list of
installed packages (not just loaded packages).
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3.7 Viewing the List of Installed Packages
Problem
You want to know what packages are installed on your machine.

Solution
Use the library function with no arguments for a basic list. Use installed.pack
ages to see more detailed information about the packages.

Discussion
The library function with no arguments prints a list of installed packages:

library()

The list can be quite long. In RStudio, it is displayed in a new tab in the editor win‐
dow.

You can get more details via the installed.packages function, which returns a
matrix of information regarding the packages on your machine. Each row corre‐
sponds to one installed package. The columns contain information such as the pack‐
age name, library path, and version. The information is taken from R’s internal data‐
base of installed packages.

To extract useful information from this matrix, use normal indexing methods. The
following snippet calls installed.packages and extracts both the Package and
Version columns for the first five packages, letting you see what version of each
package is installed:

installed.packages()[1:5, c("Package", "Version")]
#>           Package     Version
#> abind     "abind"     "1.4-5"
#> ade4      "ade4"      "1.7-13"
#> adegenet  "adegenet"  "2.1.1"
#> analogsea "analogsea" "0.6.6.9110"
#> ape       "ape"       "5.3"

See Also
See Recipe 3.8 for loading a package into memory.
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3.8 Accessing the Functions in a Package
Problem
A package installed on your computer is either a standard package or a package
you’ve downloaded. When you try using functions in the package, however, R cannot
find them.

Solution
Use either the library function or the require function to load the package into R:

library(packagename)

Discussion
R comes with several standard packages, but not all of them are automatically loaded
when you start R. Likewise, you can download and install many useful packages from
CRAN or GitHub, but they are not automatically loaded when you run R. The MASS
package comes standard with R, for example, but you could get this message when
using the lda function in that package:

lda(x)
#> Error in lda(x): could not find function "lda"

R is complaining that it cannot find the lda function among the packages currently
loaded into memory.

When you use the library function or the require function, R loads the package 
into memory and its contents become immediately available to you:

my_model <-
  lda(cty ~ displ + year, data = mpg)
#> Error in lda(cty ~ displ + year, data = mpg): could not find function "lda"

library(MASS)                          # Load the MASS library into memory
#>
#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>
#>     select
my_model <-
  lda(cty ~ displ + year, data = mpg)  # Now R can find the function

Before you call library, R does not recognize the function name. Afterward, the
package contents are available and calling the lda function works.

Notice that you needn’t enclose the package name in quotes.
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The require function is nearly identical to library, but it has two features that are
useful for writing scripts. It returns TRUE if the package was successfully loaded and
FALSE otherwise. It also generates a mere warning if the load fails—unlike library,
which generates an error.

Both functions have a key feature: they do not reload packages that are already
loaded, so calling twice for the same package is harmless. This is especially nice for
writing scripts. The script can load needed packages while knowing that loaded pack‐
ages will not be reloaded.

The detach function will unload a package that is currently loaded:

detach(package:MASS)

Observe that the package name must be qualified, as in package:MASS.

One reason to unload a package is that it contains a function whose name conflicts
with a same-named function lower on the search list. When such a conflict occurs,
we say the higher function masks the lower function. You no longer “see” the lower
function because R stops searching when it finds the higher function. Hence, unload‐
ing the higher package unmasks the lower name.

See Also
See Recipe 3.6.

3.9 Accessing Built-in Datasets
Problem
You want to use one of R’s built-in datasets, or you want to access one of the datasets
that comes with another package.

Solution
The standard datasets distributed with R are already available to you, since the
datasets package is in your search path. If you’ve loaded any other packages, datasets
that come with those loaded packages will also be available in your search path.

To access datasets in other packages, use the data function while giving the dataset
name and package name:

data(dsname, package = "pkgname")
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Discussion
R comes with many built-in datasets. Other packages, such as dplyr and ggplot2,
also come with example data that’s used in the examples found in their help files. 
These datasets are useful when you are learning about R, since they provide data with
which to experiment.

Many datasets are kept in a package called (naturally enough) datasets, which is dis‐
tributed with R. That package is in your search path, so you have instant access to its
contents. For example, you can use the built-in dataset called pressure:

head(pressure)
#>   temperature pressure
#> 1           0   0.0002
#> 2          20   0.0012
#> 3          40   0.0060
#> 4          60   0.0300
#> 5          80   0.0900
#> 6         100   0.2700

If you want to know more about pressure, use the help function to learn about it:

help(pressure)      # Bring up help page for pressure dataset

You can see a table of contents for datasets by calling the data function with no
arguments:

data()              # Bring up a list of datasets

Any R package can elect to include datasets that supplement those supplied in
datasets. The MASS package, for example, includes many interesting datasets. Use the
data function with the package argument to load a dataset from a specific package.
MASS includes a dataset called Cars93, which you can load into memory in this way:

data(Cars93, package = "MASS")

After this call to data, the Cars93 dataset is available to you; then you can execute
summary(Cars93), head(Cars93), and so forth.

When attaching a package to your search list (e.g., via library(MASS)), you don’t
need to call data. Its datasets become available automatically when you attach it.

You can see a list of available datasets in MASS, or any other package, by using the data
function with a package argument and no dataset name:

data(package = "pkgname")

See Also
See Recipe 3.6 for more about the search path and Recipe 3.8 for more about pack‐
ages and the library function.
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3.10 Installing Packages from CRAN
Problem
You found a package on CRAN, and now you want to install it on your computer.

Solution
R code

Use the install.packages function, putting the name of the package in quotes:

install.packages("packagename")

RStudio
The Packages pane in RStudio helps make installing new R packages straightfor‐
ward. All packages that are installed on your machine are listed in this pane,
along with description and version information. To load a new package from
CRAN, click on the Install button near the top of the Packages pane, shown in
Figure 3-6.

Figure 3-6. RStudio Packages pane

Discussion
Installing a package locally is the first step toward using it. If you are installing pack‐
ages outside of RStudio, the installer may prompt you for a mirror site from which it
can download the package files. It will then display a list of CRAN mirror sites. The
top CRAN mirror is 0-Cloud. This is typically the best option, as it connects you to a
globally mirrored content delivery network (CDN) sponsored by RStudio. If you want
to select a different mirror, choose one geographically close to you.
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The official CRAN server is a relatively modest machine generously hosted by the
Department of Statistics and Mathematics at WU Wien, Vienna, Austria. If every R
user downloaded from the official server, it would buckle under the load, so there are
numerous mirror sites around the globe. In RStudio the default CRAN server is set to
be the RStudio CRAN mirror. The RStudio CRAN mirror is accessible to all R users,
not just those running the RStudio IDE.

If the new package depends upon other packages that are not already installed locally,
then the R installer will automatically download and install those required packages.
This is a huge benefit that frees you from the tedious task of identifying and resolving
those dependencies.

There is a special consideration when you are installing on Linux or Unix. You can
install the package either in the systemwide library or in your personal library. Pack‐
ages in the systemwide library are available to everyone; packages in your personal
library are (normally) used only by you. So, a popular, well-tested package would
likely go in the systemwide library, whereas an obscure or untested package would go
into your personal library.

By default, install.packages assumes you are performing a systemwide install. If
you do not have sufficient user permissions to install in the systemwide library loca‐
tion, R will ask if you would like to install the package in a user library. The default
that R suggests is typically a good choice. However, if you would like to control the
path for your library location, you can use the lib argument of the install.pack
ages function:

install.packages("packagename", lib = "~/lib/R")

Or you can change your default CRAN server as described in Recipe 3.12.

See Also
See Recipe 1.12 for ways to find relevant packages and Recipe 3.8 for using a package
after installing it.

See also Recipe 3.12.

3.11 Installing a Package from GitHub
Problem
You’ve found an interesting package you’d like to try. However, the author has not yet
published the package on CRAN, but has published it on GitHub. You’d like to install
the package directly from GitHub.
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Solution
Ensure you have the devtools package installed and loaded:

install.packages("devtools")
library(devtools)

Then use install_github and the name of the GitHub repository to install directly
from GitHub. For example, to install Thomas Lin Pederson’s tidygraph package, you
would execute the following:

install_github("thomasp85/tidygraph")

Discussion
The devtools package contains helper functions for installing R packages from
remote repositories, like GitHub. If a package has been built as an R package and then
hosted on GitHub, you can install the package using the install_github function by
passing the GitHub username and repository name as a string parameter. You can
determine the GitHub username and repo name from the GitHub URL, or from the
top of the GitHub page, as in the example shown in Figure 3-7.

Figure 3-7. Example GitHub project page

3.12 Setting or Changing a Default CRAN Mirror
Problem
You are downloading packages. You want to set or change your default CRAN mirror.

Solution
In RStudio, you can change your default CRAN mirror from the RStudio Preferences
menu shown in Figure 3-8.
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Figure 3-8. RStudio package preferences

If you are running R without RStudio, you can change your CRAN mirror using the
following solution. This solution assumes you have an .Rprofile, as described in
Recipe 3.16:

1. Call the chooseCRANmirror function:
chooseCRANmirror()

R will present a list of CRAN mirrors.
2. Select a CRAN mirror from the list and press OK.
3. To get the URL of the mirror, look at the first element of the repos option:

options("repos")[[1]][1]
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4. Add this line to your .Rprofile file. If you want the RStudio CRAN mirror, you
would do the following:

options(repos = c(CRAN = "http://cran.rstudio.com"))

Or you could use the URL of another CRAN mirror.

Discussion
When you install packages, you probably use the same CRAN mirror each time
(namely, the mirror closest to you or the RStudio mirror) because RStudio does not
prompt you every time you load a package; it simply uses the setting from the Prefer‐
ences menu. You may want to change that mirror to use a different mirror that’s
closer to you or controlled by your employer. Use this solution to change your repo
so that every time you start R or RStudio, you will be using your desired repo.

The repos option is the name of your default mirror. The chooseCRANmirror func‐
tion has the important side effect of setting the repos option according to your selec‐
tion. The problem is that R forgets the setting when it exits, leaving no permanent
default. By setting repos in your .Rprofile, you restore the setting every time R starts.

See Also
See Recipe 3.16 for more about the .Rprofile file and the options function.

3.13 Running a Script
Problem
You captured a series of R commands in a text file. Now you want to execute them.

Solution
The source function instructs R to read the text file and execute its contents:

source("myScript.R")

Discussion
When you have a long or frequently used piece of R code, capture it inside a text file.
That lets you easily rerun the code without having to retype it. Use the source func‐
tion to read and execute the code, just as if you had typed it into the R console.

Suppose the file hello.R contains this one familiar greeting:

print("Hello, World!")
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Then sourcing the file will execute the file’s contents:

source("hello.R")
#> [1] "Hello, World!"

Setting echo=TRUE will echo the script’s lines before they are executed, with the R
prompt shown before each line:

source("hello.R", echo = TRUE)
#>
#> > print("Hello, World!")
#> [1] "Hello, World!"

See Also
See Recipe 2.12 for running blocks of R code inside the GUI.

3.14 Running a Batch Script
Problem
You are writing a command script, such as a shell script in Unix or macOS or a BAT
script in Windows. Inside your script, you want to execute an R script.

Solution
Run the R program with the CMD BATCH subcommand, giving the script name and the
output filename:

R CMD BATCH scriptfile outputfile

If you want the output sent to stdout or if you need to pass command-line argu‐
ments to the script, consider the Rscript command instead:

Rscript scriptfile arg1 arg2 arg3

Discussion
R is normally an interactive program, one that prompts the user for input and then
displays the results. Sometimes you want to run R in batch mode, reading commands
from a script. This is especially useful inside shell scripts, such as scripts that include
a statistical analysis.

The CMD BATCH subcommand puts R into batch mode, reading from scriptfile and
writing to outputfile. It does not interact with a user.

You will likely use command-line options to adjust R’s batch behavior to your circum‐
stances. For example, using --quiet silences the startup messages that would other‐
wise clutter the output:
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R CMD BATCH --quiet myScript.R results.out

Other useful options in batch mode include the following:

--slave

Like --quiet, but it makes R even more silent by inhibiting echo of the input.

--no-restore

At startup, do not restore the R workspace. This is important if your script
expects R to begin with an empty workspace.

--no-save

At exit, do not save the R workspace. Otherwise, R will save its workspace and
overwrite the .RData file in the working directory.

--no-init-file

Do not read either the .Rprofile or the ~/.Rprofile file.

The CMD BATCH subcommand normally calls proc.time when your script completes,
showing the execution time. If this annoys you, then end your script by calling the q
function with runLast=FALSE, which will prevent the call to proc.time.

The CMD BATCH subcommand has two limitations: the output always goes to a file,
and you cannot easily pass command-line arguments to your script. If either limita‐
tion is a problem, consider using the Rscript program that comes with R. The first
command-line argument is the script name, and the remaining arguments are given
to the script:

Rscript scriptfile.R arg1 arg2 arg3

Inside the script, you can access the command-line arguments by calling
commandArgs, which returns the arguments as a vector of strings:

argv <- commandArgs(TRUE)

The Rscript program takes the same command-line options as CMD BATCH, which
were just described.

Output is written to stdout, which R inherits from the calling shell script, of course. 
You can redirect the output to a file by using the normal redirection:

Rscript --slave scriptfile.R arg1 arg2 arg3 >results.out

Here is a small R script, arith.R, that takes two command-line arguments and per‐
forms four arithmetic operations on them:

argv <- commandArgs(TRUE)
x <- as.numeric(argv[1])
y <- as.numeric(argv[2])

cat("x =", x, "\n")
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cat("y =", y, "\n")
cat("x + y = ", x + y, "\n")
cat("x - y = ", x - y, "\n")
cat("x * y = ", x * y, "\n")
cat("x / y = ", x / y, "\n")

The script is invoked like this:

Rscript arith.R 2 3.1415

which produces the following output:

x = 2
y = 3.1415
x + y = 5.1415
x - y = -1.1415
x * y = 6.283
x / y = 0.6366385

On Linux, Unix, or Mac, you can make the script fully self-contained by placing a #!
line at the head with the path to the Rscript program. Suppose that Rscript is
installed in /usr/bin/Rscript on your system. Adding this line to arith.R makes it a self-
contained script:

#!/usr/bin/Rscript --slave

argv <- commandArgs(TRUE)
x <- as.numeric(argv[1])
.
. (etc.)
.

At the shell prompt, we mark the script as executable:

chmod +x arith.R

Now we can invoke the script directly without the Rscript prefix:

arith.R 2 3.1415

See Also
See Recipe 3.13 for running a script from within R.

3.15 Locating the R Home Directory
Problem
You need to know the R home directory, which is where the configuration and instal‐
lation files are kept.
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Solution
R creates an environment variable called R_HOME that you can access by using the
Sys.getenv function:

Sys.getenv("R_HOME")
#> [1] "/Library/Frameworks/R.framework/Resources"

Discussion
Most users will never need to know the R home directory. But system administrators
or sophisticated users must know it in order to check or change the R installation
files.

When R starts, it defines a system environment variable (not an R variable) called
R_HOME, which is the path to the R home directory. The Sys.getenv function can
retrieve the system environment variable value. Here are examples by platform. The
exact value reported will almost certainly be different on your own computer:

• On Windows:
> Sys.getenv("R_HOME")
[1] "C:/PROGRA~1/R/R-34~1.4"

• On macOS:
> Sys.getenv("R_HOME")
[1] "/Library/Frameworks/R.framework/Resources"

• On Linux or Unix:
> Sys.getenv("R_HOME")
[1] "/usr/lib/R"

The Windows result looks funky because R reports the old, DOS-style compressed
pathname. The full, user-friendly path would be C:\Program Files\R\R-3.4.4 in
this case.

On Unix and macOS, you can also run the R program from the shell and use the
RHOME subcommand to display the home directory:

R RHOME
# /usr/lib/R

Note that the R home directory on Unix and macOS contains the installation files but
not necessarily the R executable file. The executable could be in /usr/bin while the R
home directory is, for example, /usr/lib/R.
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3.16 Customizing R Startup
Problem
You want to customize your R sessions by, for instance, changing configuration
options or preloading packages.

Solution
Create a script called .Rprofile that customizes your R session. R will execute
the .Rprofile script when it starts. The placement of .Rprofile depends upon your plat‐
form:

macOS, Linux, or Unix
Save the file in your home directory (~/.Rprofile).

Windows
Save the file in your Documents directory.

Discussion
R executes profile scripts when it starts allowing you to tweak the R configuration
options.

You can create a profile script called .Rprofile and place it in your home directory
(macOS, Linux, Unix) or your Documents directory (Windows). The script can call
functions to customize your sessions, such as this simple script that sets two environ‐
ment variables and sets the console prompt to R>:

Sys.setenv(DB_USERID = "my_id")
Sys.setenv(DB_PASSWORD = "My_Password!")
options(prompt = "R> ")

The profile script executes in a bare-bones environment, so there are limits on what it
can do. Trying to open a graphics window will fail, for example, because the graphics
package is not yet loaded. Also, you should not attempt long-running computations.

You can customize a particular project by putting an .Rprofile file in the directory that
contains the project files. When R starts in that directory, it reads the local .Rprofile
file; this allows you to do project-specific customizations (e.g., setting your console
prompt to a specific project name). However, if R finds a local profile, then it does not
read the global profile. That can be annoying, but it’s easily fixed: simply source the
global profile from the local profile. On Unix, for instance, this local profile would
execute the global profile first and then execute its local material:
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source("~/.Rprofile")
#
# ... remainder of local .Rprofile ...
#

Setting options

Some customizations are handled via calls to the options function, which sets the R
configuration options. There are many such options, and the R help page for options
lists them all:

help(options)

Here are some examples:

browser="path"

Path of default HTML browser

digits=n

Suggested number of digits to print when printing numeric values

editor="path"

Default text editor

prompt="string"

Input prompt

repos="url"

URL for default repository for packages

warn=n

Controls display of warning messages

Reproducibility
Many of us use certain packages over and over in our scripts (for example, the tidy‐
verse packages). It is tempting to load these packages in your .Rprofile so that they are
always available without you typing anything. As a matter of fact, this advice was
given in the first edition of this book. However, the downside of loading packages in
your .Rprofile is reproducibility. If someone else (or you, on another machine) tries to
run your script, they may not realize that you had loaded packages in your .Rprofile.
Your script might not work for them, depending on which packages they load. So
while it might be convenient to load packages in .Rprofile, you will play better with
collaborators (and your future self) if you explicitly call library(packagename) in
your R scripts.

Another issue with reproducibility is when users change default behaviors of R inside
their .Rprofile. An example of this would be setting options(stringsAsFactors =
FALSE). This is appealing, as many users would prefer this default. However, if some‐
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one runs the script without this option being set, they will get different results or not
be able to run the script at all. This can lead to considerable frustration.

As a guideline, you should primarily put things in the .Rprofile that:

• Change the look and feel of R (e.g., digits).
• Are specific to your local environment (e.g., browser).
• Specifically need to be outside of your scripts (i.e., database passwords).
• Do not change the results of your analysis.

Startup sequence

Here is a simplified overview of what happens when R starts (type help(Startup) to
see the full details):

1. R executes the Rprofile.site script. This is the site-level script that enables system
administrators to override default options with localizations. The script’s full path
is R_HOME/etc/Rprofile.site. (R_HOME is the R home directory; see Recipe
3.15.)
The R distribution does not include an Rprofile.site file. Rather, the system
administrator creates one if it is needed.

2. R executes the .Rprofile script in the working directory; or, if that file does not
exist, executes the .Rprofile script in your home directory. This is the user’s
opportunity to customize R for their own purposes. The .Rprofile script in the
home directory is used for global customizations. The .Rprofile script in a lower-
level directory can perform specific customizations when R is started there—for
instance, customizing R when started in a project-specific directory.

3. R loads the workspace saved in .RData, if that file exists in the working direc‐
tory. R saves your workspace in the file called .RData when it exits. It reloads
your workspace from that file, restoring access to your local variables and func‐
tions. You can disable this behavior in RStudio through Tools → Global Options.
We recommend you disable this option and always explicitly save and load your
work.

4. R executes the .First function, if you defined one. The .First function is a
useful place for users or projects to define startup initialization code. You can
define it in your .Rprofile or in your workspace.

5. R executes the .First.sys function. This step loads the default packages. The
function is internal to R and not normally changed by either users or administra‐
tors.
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Note that R does not load the default packages until the final step, when it executes
the .First.sys function. Before that, only the base package has been loaded. This is a
key point, because it means the previous steps cannot assume that packages other
than the base are available. It also explains why trying to open a graphics window in
your .Rprofile script fails: the graphics packages aren’t loaded yet.

See Also
See the R help page for Startup (help(Startup)) and the R help page for options
(help(options)). See Recipe 3.8 for more about loading packages. 

3.17 Using R and RStudio in the Cloud
Problem
You want to run R and RStudio in a cloud environment.

Solution
The most straightforward way to use R in the cloud is to use the RStudio.cloud web
service. To use the service, point your web browser to http://rstudio.cloud and set up
an account, or log in with your Google or GitHub credentials.

Discussion
After you log in, click New Project to begin a new RStudio session in a new work‐
space. You’ll be greeted by the familiar RStudio interface shown in Figure 3-9.

Keep in mind that as of this writing the RStudio.cloud service is in alpha testing and
may not be 100% stable. Your work will persist after you log off. However, as with any
system, it is a good idea to ensure you have backups of all the work you do. A com‐
mon work pattern is to connect your project in RStudio.cloud to a GitHub repository
and push your changes frequently from Rstudio.cloud to GitHub. This workflow has
been used significantly in the writing of this book.

Use of Git and GitHub is beyond the scope of this book, but if you are interested in
learning more, we highly recommend Jenny Bryan’s web book Happy Git and GitHub
for the useR.

In its current alpha state, RStudio.cloud limits each session to 1 GB of RAM and 3 GB
of drive space—so it’s a great platform for learning and teaching but might not (yet)
be the platform on which you want to build a commercial data science laboratory.
RStudio has expressed its intent to offer greater processing power and storage as part
of a paid tier of service as the platform matures.
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Figure 3-9. RStudio.cloud

If you need more computing power than offered by RStudio.cloud and you are will‐
ing to pay for the services, both Amazon Web Services (AWS) and Google Cloud
Platform offer cloud-based RStudio offerings. Other cloud platforms that support
Docker, such as Digital Ocean, are also reasonable options for cloud-hosted RStudio.
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CHAPTER 4

Input and Output

All statistical work begins with data, and most data is stuck inside files and databases.
Dealing with input is probably the first step of implementing any significant statistical
project.

All statistical work ends with reporting numbers back to a client, even if you are the
client. Formatting and producing output is probably the climax of your project.

Casual R users can solve their input problems by using basic readr package functions
such as read_csv to read CSV files and read_delim to read more complicated, tabu‐
lar data. They can use print, cat, and format to produce simple reports.

Users with heavy-duty input/output (I/O) needs are strongly encouraged to read the
R Data Import/Export guide, available on CRAN. This manual includes important
information on reading data from sources such as spreadsheets, binary files, other
statistical systems, and relational databases.

4.1 Entering Data from the Keyboard
Problem
You have a small amount of data—too small to justify the overhead of creating an
input file. You just want to enter the data directly into your workspace.

Solution
For very small datasets, enter the data as literals using the c constructor for vectors:

scores <- c(61, 66, 90, 88, 100)
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Discussion
When working on a simple problem, you may not want the hassle of creating and
then reading a data file outside of R. You may just want to enter the data into R. The
easiest way to do so is by using the c constructor for vectors, as shown in the Solu‐
tion.

You can use this approach for data frames, too, by entering each variable (column) as
a vector:

points <- data.frame(
  label = c("Low", "Mid", "High"),
  lbound = c(0, 0.67,   1.64),
  ubound = c(0.67, 1.64,   2.33)
)

See Also
For cutting and pasting data from another application into R, be sure to look at data
pasta, a package that provides RStudio add-ins that make pasting data into your
scripts easier.

4.2 Printing Fewer Digits (or More Digits)
Problem
Your output contains too many digits, or too few digits. You want to print fewer, or
more.

Solution
For print, the digits parameter can control the number of printed digits.

For cat, use the format function (which also has a digits parameter) to alter the for‐
matting of numbers.

Discussion
R normally formats floating-point output to have seven digits. This works well most
of the time but can become annoying when you have lots of numbers to print in a
small space. It gets downright misleading when there are only a few significant digits
in your numbers and R still prints seven.

The print function lets you vary the number of printed digits using the digits
parameter:
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print(pi, digits = 4)
#> [1] 3.142
print(100 * pi, digits = 4)
#> [1] 314.2

The cat function does not give you direct control over formatting. Instead, use the
format function to format your numbers before calling cat:

cat(pi, "\n")
#> 3.14
cat(format(pi, digits = 4), "\n")
#> 3.142

This is R, so both print and format will format entire vectors at once:

print(pnorm(-3:3), digits = 2)
#> [1] 0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987
format(pnorm(-3:3), digits = 2)
#> [1] "0.0013" "0.0228" "0.1587" "0.5000" "0.8413" "0.9772" "0.9987"

Notice that both print and format format the vector elements consistently, finding
the number of significant digits necessary to format the smallest number and then
formatting all numbers to have the same width (though not necessarily the same
number of digits). This is extremely useful for formatting an entire table:

q <- seq(from = 0, to = 3, by = 0.5)
tbl <- data.frame(Quant = q,
                  Lower = pnorm(-q),
                  Upper = pnorm(q))
tbl                                # Unformatted print
#>   Quant   Lower Upper
#> 1   0.0 0.50000 0.500
#> 2   0.5 0.30854 0.691
#> 3   1.0 0.15866 0.841
#> 4   1.5 0.06681 0.933
#> 5   2.0 0.02275 0.977
#> 6   2.5 0.00621 0.994
#> 7   3.0 0.00135 0.999
print(tbl, digits = 2)             # Formatted print: fewer digits
#>   Quant  Lower Upper
#> 1   0.0 0.5000  0.50
#> 2   0.5 0.3085  0.69
#> 3   1.0 0.1587  0.84
#> 4   1.5 0.0668  0.93
#> 5   2.0 0.0228  0.98
#> 6   2.5 0.0062  0.99
#> 7   3.0 0.0013  1.00

As you can see, when an entire vector or column is formatted, each element in the
vector or column is formatted the same way.

You can also alter the format of all output by using the options function to change
the default for digits:
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pi
#> [1] 3.14
options(digits = 15)
pi
#> [1] 3.14159265358979

But this is a poor choice in our experience, since it also alters the output from R’s
built-in functions, and that alteration will likely be unpleasant.

See Also
Other functions for formatting numbers include sprintf and formatC; see their help
pages for details.

4.3 Redirecting Output to a File
Problem
You want to redirect the output from R to a file instead of your console.

Solution
You can redirect the output of the cat function by using its file argument:

cat("The answer is", answer, "\n", file = "filename.txt")

Use the sink function to redirect all output from both print and cat. Call sink with
a filename argument to begin redirecting console output to that file. When you are
done, use sink with no argument to close the file and resume output to the console:

sink("filename")          # Begin writing output to file

# ... other session work ...

sink()                    # Resume writing output to console

Discussion
The print and cat functions normally write their output to your console. The cat
function writes to a file if you supply a file argument, which can be either a filename
or a connection. The print function cannot redirect its output, but the sink function
can force all output to a file. A common use for sink is to capture the output of an R
script:

sink("script_output.txt")   # Redirect output to file
source("script.R")          # Run the script, capturing its output
sink()                      # Resume writing output to console
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If you are repeatedly cating items to one file, be sure to set append=TRUE. Otherwise,
each call to cat will simply overwrite the file’s contents:

cat(data, file = "analysisReport.out")
cat(results, file = "analysisRepart.out", append = TRUE)
cat(conclusion, file = "analysisReport.out", append = TRUE)

Hardcoding filenames like this is a tedious and error-prone process. Did you notice
that the filename is misspelled in the second line? Instead of hardcoding the filename
repeatedly, we suggest opening a connection to the file and writing your output to the
connection:

con <- file("analysisReport.out", "w")
cat(data, file = con)
cat(results, file = con)
cat(conclusion, file = con)
close(con)

(You don’t need append=TRUE when writing to a connection because append is the
default with connections.) This technique is especially valuable inside R scripts
because it makes your code more reliable and more maintainable.

4.4 Listing Files
Problem
You want an R vector that is a listing of the files in your working directory.

Solution
The list.files function shows the contents of your working directory:

list.files()
#>  [1] "_book"                            "_bookdown_files"
#>  [3] "_bookdown.yml"                    "_common.R"
#>  [5] "_main.log"                        "_main.rds"
#>  [7] "_output.yml"                      "01_GettingStarted_cache"
#>  [9] "01_GettingStarted.md"             "01_GettingStarted.Rmd"
#> # etc.

Discussion
This function is terribly handy to grab the names of all files in a subdirectory. You can
use it to refresh your memory of your filenames or, more likely, as input into another
process, like importing data files.

You can pass list.files a path and a pattern to show files in a specific path and
matching a specific regular expression pattern:
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list.files(path = 'data/') # show files in a directory
#>  [1] "ac.rdata"               "adf.rdata"
#>  [3] "anova.rdata"            "anova2.rdata"
#>  [5] "bad.rdata"              "batches.rdata"
#>  [7] "bnd_cmty.Rdata"         "compositePerf-2010.csv"
#>  [9] "conf.rdata"             "daily.prod.rdata"
#> [11] "data1.csv"              "data2.csv"
#> [13] "datafile_missing.tsv"   "datafile.csv"
#> [15] "datafile.fwf"           "datafile.qsv"
#> [17] "datafile.ssv"           "datafile.tsv"
#> [19] "datafile1.ssv"          "df_decay.rdata"
#> [21] "df_squared.rdata"       "diffs.rdata"
#> [23] "example1_headless.csv"  "example1.csv"
#> [25] "excel_table_data.xlsx"  "get_USDA_NASS_data.R"
#> [27] "ibm.rdata"              "iris_excel.xlsx"
#> [29] "lab_df.rdata"           "movies.sas7bdat"
#> [31] "nacho_data.csv"         "NearestPoint.R"
#> [33] "not_a_csv.txt"          "opt.rdata"
#> [35] "outcome.rdata"          "pca.rdata"
#> [37] "pred.rdata"             "pred2.rdata"
#> [39] "sat.rdata"              "singles.txt"
#> [41] "state_corn_yield.rds"   "student_data.rdata"
#> [43] "suburbs.txt"            "tab1.csv"
#> [45] "tls.rdata"              "triples.txt"
#> [47] "ts_acf.rdata"           "workers.rdata"
#> [49] "world_series.csv"       "xy.rdata"
#> [51] "yield.Rdata"            "z.RData"
list.files(path = 'data/', pattern = '\\.csv')
#> [1] "compositePerf-2010.csv" "data1.csv"
#> [3] "data2.csv"              "datafile.csv"
#> [5] "example1_headless.csv"  "example1.csv"
#> [7] "nacho_data.csv"         "tab1.csv"
#> [9] "world_series.csv"

To see all the files in your subdirectories, too, use:

list.files(recursive = T)

A possible “gotcha” of list.files is that it ignores hidden files—typically, any file
whose name begins with a dot. If you don’t see the file you expected to see, try setting
all.files=TRUE:

list.files(path = 'data/', all.files = TRUE)
#>  [1] "."                      ".."
#>  [3] ".DS_Store"              ".hidden_file.txt"
#>  [5] "ac.rdata"               "adf.rdata"
#>  [7] "anova.rdata"            "anova2.rdata"
#>  [9] "bad.rdata"              "batches.rdata"
#> [11] "bnd_cmty.Rdata"         "compositePerf-2010.csv"
#> [13] "conf.rdata"             "daily.prod.rdata"
#> [15] "data1.csv"              "data2.csv"
#> [17] "datafile_missing.tsv"   "datafile.csv"
#> [19] "datafile.fwf"           "datafile.qsv"
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#> [21] "datafile.ssv"           "datafile.tsv"
#> [23] "datafile1.ssv"          "df_decay.rdata"
#> [25] "df_squared.rdata"       "diffs.rdata"
#> [27] "example1_headless.csv"  "example1.csv"
#> [29] "excel_table_data.xlsx"  "get_USDA_NASS_data.R"
#> [31] "ibm.rdata"              "iris_excel.xlsx"
#> [33] "lab_df.rdata"           "movies.sas7bdat"
#> [35] "nacho_data.csv"         "NearestPoint.R"
#> [37] "not_a_csv.txt"          "opt.rdata"
#> [39] "outcome.rdata"          "pca.rdata"
#> [41] "pred.rdata"             "pred2.rdata"
#> [43] "sat.rdata"              "singles.txt"
#> [45] "state_corn_yield.rds"   "student_data.rdata"
#> [47] "suburbs.txt"            "tab1.csv"
#> [49] "tls.rdata"              "triples.txt"
#> [51] "ts_acf.rdata"           "workers.rdata"
#> [53] "world_series.csv"       "xy.rdata"
#> [55] "yield.Rdata"            "z.RData"

If you just want to see which files are in a directory and not use the filenames in a
procedure, the easiest way is to open the Files pane in the lower-right corner of RStu‐
dio. But keep in mind that the RStudio Files pane hides files that start with a dot, as
you can see in Figure 4-1.

Figure 4-1. RStudio Files pane

See Also
R has other handy functions for working with files; see help(files).
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4.5 Dealing with “Cannot Open File” in Windows
Problem
You are running R on Windows, and you are using filenames such as C:\data\sam‐
ple.txt. R says it cannot open a file, but you know the file does exist.

Solution
The backslashes in the filepath are causing trouble. You can solve this problem in one
of two ways:

• Change the backslashes to forward slashes: "C:/data/sample.txt".
• Double the backslashes: "C:\\data\\sample.txt".

Discussion
When you open a file in R, you give the filename as a character string. Problems arise 
when the name contains backslashes (\) because backslashes have a special meaning
inside strings. You’ll probably get something like this:

samp <- read_csv("C:\Data\sample-data.csv")
#> Error: '\D' is an unrecognized escape in character string starting ""C:\D"

R escapes every character that follows a backslash and then removes the backslashes.
That leaves a meaningless filepath, such as C:Datasample-data.csv in this example.

The simple solution is to use forward slashes instead of backslashes. R leaves the for‐
ward slashes alone, and Windows treats them just like backslashes. Problem solved:

samp <- read_csv("C:/Data/sample-data.csv")

An alternative solution is to double the backslashes, since R replaces two consecutive
backslashes with a single backslash:

samp <- read_csv("C:\\Data\\sample-data.csv")

4.6 Reading Fixed-Width Records
Problem
You are reading data from a file of fixed-width records: records whose data items
occur at fixed boundaries.
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Solution
Use the read_fwf function from the readr package (which is part of the tidyverse).
The main arguments are the filename and the description of the fields:

library(tidyverse)
records <- read_fwf("myfile.txt",
                    fwf_cols(col1 = 10,
                             col2 = 7))
records

This form uses the fwf_cols parameter to pass column names and widths to the
function. You can also pass column parameters in other ways, as discussed next.

Discussion
For reading data into R, we highly recommend the readr package. There are Base R
functions for reading in text files, but readr improves on these base functions with
faster performance, better defaults, and more flexibility.

Suppose we want to read an entire file of fixed-width records, such as fixed-width.txt,
shown here:

Fisher    R.A.      1890 1962
Pearson   Karl      1857 1936
Cox       Gertrude  1900 1978
Yates     Frank     1902 1994
Smith     Kirstine  1878 1939

We need to know the column widths. In this case the columns are:

• Last name, 10 characters
• First name, 10 characters
• Year of birth, 5 characters
• Year of death, 5 characters

There are five different ways to define the columns using read_fwf. Pick the one
that’s easiest to use (or remember) in your situation:

• read_fwf can try to guess your column widths if there is empty space between
the columns, with the fwf_empty option:

file <- "./data/datafile.fwf"
t1 <- read_fwf(file,
          fwf_empty(file,
          col_names = c("last", "first", "birth", "death")))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),

4.6 Reading Fixed-Width Records | 95



#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )

• You can define each column by a vector of widths followed by a vector of names
with fwf_widths:

t2 <- read_fwf(file, fwf_widths(c(10, 10, 5, 4),
                                c("last", "first", "birth", "death")))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )

• The columns can be defined with fwf_cols, which takes a series of column
names followed by the column widths:

t3 <-
  read_fwf("./data/datafile.fwf",
           fwf_cols(
             last = 10,
             first = 10,
             birth = 5,
             death = 5
           ))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )

• Each column can be defined by a beginning position and ending position with
fwf_cols:

t4 <- read_fwf(file, fwf_cols(
  last = c(1, 10),
  first = c(11, 20),
  birth = c(21, 25),
  death = c(26, 30)
))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
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#>   death = col_double()
#> )

• You can also define the columns with a vector of starting positions, a vector of
ending positions, and a vector of column names, with fwf_positions:

t5 <- read_fwf(file, fwf_positions(
  c(1, 11, 21, 26),
  c(10, 20, 25, 30),
  c("first", "last", "birth", "death")
))
#> Parsed with column specification:
#> cols(
#>   first = col_character(),
#>   last = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )

The read_fwf function returns a tibble, which is a tidyverse flavor of data frame. As is
common with tidyverse packages, read_fwf has a good selection of default assump‐
tions that make it less tricky to use than some Base R functions for importing data.
For example, read_fwf will, by default, import character fields as characters, not fac‐
tors, which prevents much pain and consternation for users.

See Also
See Recipe 4.7 for more discussion of reading text files.

4.7 Reading Tabular Data Files
Problem
You want to read a text file that contains a table of whitespace-delimited data.

Solution
Use the read_table2 function from the readr package, which returns a tibble:

library(tidyverse)

tab1 <- read_table2("./data/datafile.tsv")
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
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tab1
#> # A tibble: 5 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939

Discussion
Tabular data files are quite common. They are text files with a simple format:

• Each line contains one record.
• Within each record, fields (items) are separated by a whitespace delimiter, such

as a space or tab.
• Each record contains the same number of fields.

This format is more free-form than the fixed-width format because fields needn’t be
aligned by position. Here is the data file from Recipe 4.6 in tabular format, using a tab
character between fields:

last    first   birth   death
Fisher  R.A.    1890    1962
Pearson Karl    1857    1936
Cox Gertrude    1900    1978
Yates   Frank   1902    1994
Smith   Kirstine    1878    1939

The read_table2 function is designed to make some good guesses about your data. It
assumes your data has column names in the first row, it guesses your delimiter, and it
imputes your column types based on the first 1,000 records in your dataset. Next is an
example with space-delimited data.

The source file looks like this:

last first birth death
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

And read_table2 makes some rational guesses:

t <- read_table2("./data/datafile1.ssv")
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
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#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
print(t)
#> # A tibble: 5 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939

read_table2 often guesses correctly. But as with other readr import functions, you
can overwrite the defaults with explicit parameters:

t <-
  read_table2(
    "./data/datafile1.ssv",
    col_types = c(
      col_character(),
      col_character(),
      col_integer(),
      col_integer()
    )
  )

If any field contains the string "NA", then read_table2 assumes that the value is miss‐
ing and converts it to NA. Your data file might employ a different string to signal miss‐
ing values, in which case use the na parameter. The SAS convention, for example, is
that missing values are signaled by a single period (.). We can read such text files
using the na="." option. If we have a file named datafile_missing.tsv that has a miss‐
ing value indicated with a . in the last row:

last    first     birth   death
Fisher  R.A.      1890    1962
Pearson Karl      1857    1936
Cox     Gertrude  1900    1978
Yates   Frank     1902    1994
Smith   Kirstine  1878    1939
Cox     David     1924    .

we can import it like so:

t <- read_table2("./data/datafile_missing.tsv", na = ".")
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
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#> )
t
#> # A tibble: 6 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939
#> 6 Cox     David     1924    NA

We’re huge fans of self-describing data: data files that describe their own contents. (A
computer scientist would say the file contains its own metadata.) The read_table2
function makes the default assumption that the first line of your file contains a header
line with column names. If your file does not have column names, you can turn this
off with the parameter col_names = FALSE.

An additional type of metadata supported by read_table2 is comment lines. Using
the comment parameter you can tell read_table2 which character distinguishes com‐
ment lines. The following file has a comment line at the top that starts with #:

# The following is a list of statisticians
last first birth death
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

so we can import this file as follows:

t <- read_table2("./data/datafile.ssv", comment = '#')
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
t
#> # A tibble: 5 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939

read_table2 has many parameters for controlling how it reads and interprets the
input file. See the help page (?read_table2) or the readr vignette
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(vignette("readr")) for more details. If you’re curious about the difference between
read_table and read_table2, it’s in the help file… but the short answer is that
read_table is slightly less forgiving in file structure and line length.

See Also
If your data items are separated by commas, see Recipe 4.8 for reading a CSV file.

4.8 Reading from CSV Files
Problem
You want to read data from a comma-separated values (CSV) file.

Solution
The read_csv function from the readr package is a fast (and, according to the docu‐
mentation, fun) way to read CSV files. If your CSV file has a header line, use this:

library(tidyverse)

tbl <- read_csv("datafile.csv")

If your CSV file does not contain a header line, set the col_names option to FALSE:

tbl <- read_csv("datafile.csv",  col_names = FALSE)

Discussion
The CSV file format is popular because many programs can import and export data
in that format. This includes R, Excel, other spreadsheet programs, many database
managers, and most statistical packages. A CSV file is a flat file of tabular data, where
each line in the file is a row of data, and each row contains data items separated by
commas. Here is a very simple CSV file with three rows and three columns. The first
line is a header line that contains the column names, also separated by commas:

label,lbound,ubound
low,0,0.674
mid,0.674,1.64
high,1.64,2.33

The read_csv function reads the data and creates a tibble. The function assumes that
your file has a header line unless told otherwise:

tbl <- read_csv("./data/example1.csv")
#> Parsed with column specification:
#> cols(
#>   label = col_character(),
#>   lbound = col_double(),
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#>   ubound = col_double()
#> )
tbl
#> # A tibble: 3 x 3
#>   label lbound ubound
#>   <chr>  <dbl>  <dbl>
#> 1 low    0      0.674
#> 2 mid    0.674  1.64
#> 3 high   1.64   2.33

Observe that read_csv took the column names from the header line for the tibble. If
the file did not contain a header, then we would specify col_names=FALSE and R
would synthesize column names for us (X1, X2, and X3 in this case):

tbl <- read_csv("./data/example1.csv", col_names = FALSE)
#> Parsed with column specification:
#> cols(
#>   X1 = col_character(),
#>   X2 = col_character(),
#>   X3 = col_character()
#> )
tbl
#> # A tibble: 4 x 3
#>   X1    X2     X3
#>   <chr> <chr>  <chr>
#> 1 label lbound ubound
#> 2 low   0      0.674
#> 3 mid   0.674  1.64
#> 4 high  1.64   2.33

Sometimes it’s convenient to put metadata in files. If this metadata starts with a com‐
mon character, such as a pound sign (#), we can use the comment=FALSE parameter to
ignore metadata lines.

The read_csv function has many useful bells and whistles. A few of these options and
their default values include:

na = c("", "NA")

Indicates what values represent missing or NA values

comment = ""

Indicates which lines to ignore as comments or metadata

trim_ws = TRUE

Indicates whether to drop whitespace at the beginning and/or end of fields

skip = 0

Indicates the number of rows to skip at the beginning of the file

guess_max = min(1000, n_max)

Indicates the number of rows to consider when imputing column types
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See the R help page, help(read_csv), for more details on all the available options.

If you have a data file that uses semicolons (;) for separators and commas for the dec‐
imal mark, as is common outside of North America, you should use the function
read_csv2, which is built for that very situation.

See Also
See Recipe 4.9. See also the vignette for readr: vignette(readr).

4.9 Writing to CSV Files
Problem
You want to save a matrix or data frame in a file using the comma-separated values
format.

Solution
The write_csv function from the tidyverse readr package can write a CSV file:

library(tidyverse)

write_csv(df, path = "outfile.csv")

Discussion
The write_csv function writes tabular data to an ASCII file in CSV format. Each row
of data creates one line in the file, with data items separated by commas (,). We can
start with the data frame tab1 we created previously in Recipe 4.7:

library(tidyverse)

write_csv(tab1, "./data/tab1.csv")

This example creates a file called tab1.csv in the data directory, which is a subdirec‐
tory of the current working directory. The file looks like this:

last,first,birth,death
Fisher,R.A.,1890,1962
Pearson,Karl,1857,1936
Cox,Gertrude,1900,1978
Yates,Frank,1902,1994
Smith,Kirstine,1878,1939

write_csv has a number of parameters with typically very good defaults. Should you
want to adjust the output, here are a few parameters you can change, along with their
defaults:
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col_names = TRUE

Indicates whether or not the first row contains column names.

col_types = NULL

write_csv will look at the first 1,000 rows (changeable with guess_max) and
make an informed guess as to what data types to use for the columns. If you’d
rather explicitly state the column types, you can do so by passing a vector of col‐
umn types to the parameter col_types.

na = c("", "NA")

Indicates what values represent missing or NA values.

comment = ""

Indicates which lines to ignore as comments or metadata.

trim_ws = TRUE

Indicates whether to drop whitespace at the beginning and/or end of fields.

skip = 0

Indicates the number of rows to skip at the beginning of the file.

guess_max = min(1000, n_max)

Indicates the number of rows to consider when guessing column types.

See Also
See Recipe 3.1 for more about the current working directory and Recipe 4.18 for
other ways to save data to files. For more info on reading and writing text files, see the
readr vignette: vignette(readr).

4.10 Reading Tabular or CSV Data from the Web
Problem
You want to read data directly from the web into your R workspace.

Solution
Use the read_csv or read_table2 functions from the readr package, using a URL
instead of a filename. The functions will read directly from the remote server:

library(tidyverse)

berkley <- read_csv('http://bit.ly/barkley18', comment = '#')
#> Parsed with column specification:
#> cols(
#>   Name = col_character(),

104 | Chapter 4: Input and Output



#>   Location = col_character(),
#>   Time = col_time(format = "")
#> )

You can also open a connection using the URL and then read from the connection,
which may be preferable for complicated files.

Discussion
The web is a gold mine of data. You could download the data into a file and then read
the file into R, but it’s more convenient to read directly from the web. Give the URL to
read_csv, read_table2, or another read function in readr (depending upon the for‐
mat of the data), and the data will be downloaded and parsed for you. No fuss, no
muss.

Aside from using a URL, this recipe is just like reading from a CSV file (see Recipe
4.8) or a complex file (Recipe 4.15), so all the comments in those recipes apply here,
too.

Remember that URLs work for FTP servers, not just HTTP servers. This means that
R can also read data from FTP sites using URLs:

tbl <- read_table2("ftp://ftp.example.com/download/data.txt")

See Also
See Recipe 4.8 and Recipe 4.15.

4.11 Reading Data from Excel
Problem
You want to read data in from an Excel file.

Solution
The openxlsx package makes reading Excel files easy:

library(openxlsx)
df1 <- read.xlsx(xlsxFile = "file.xlsx",
                 sheet = 'sheet_name')

Discussion
The package openxlsx is a good choice for both reading and writing Excel files with
R. If we’re reading in an entire sheet, using the read.xlsx function is a simple option.
We need only pass in a filename and, if desired, the name of the sheet we want
imported:

4.11 Reading Data from Excel | 105



library(openxlsx)

df1 <- read.xlsx(xlsxFile = "data/iris_excel.xlsx",
                 sheet = 'iris_data')
head(df1, 3)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa

But openxlsx supports more complex workflows.

A common pattern is to read a named table out of an Excel file and into an R data
frame. This is trickier because the sheet we’re reading from may have values outside
of the named table, but we want to only read in the named table range. We can use
the functions in openxlsx to get the location of a table, then read that range of cells
into a data frame.

First we load the entire workbook into R:

library(openxlsx)
wb <- loadWorkbook("data/excel_table_data.xlsx")

Then we can use the getTables function to get the names and ranges of all the Excel
tables in the input_data sheet and select the one table we want. In this example the
Excel table we are after is named example_table:

tables <- getTables(wb, 'input_data')
table_range_str <- names(tables[tables == 'example_table'])
table_range_refs <- strsplit(table_range_str, ':')[[1]]

# use a regex to extract out the row numbers
table_range_row_num <- gsub("[^0-9.]", "", table_range_refs)

# extract out the column numbers
table_range_col_num <- convertFromExcelRef(table_range_refs)

Now the vector table_range_col_num contains the column numbers of our named
table, while table_range_row_num contains the row numbers of our named table. We
can then use the read.xlsx function to pull in only the rows and columns we are
after:

df <- read.xlsx(
  xlsxFile = "data/excel_table_data.xlsx",
  sheet = 'input_data',
  cols = table_range_col_num[1]:table_range_col_num[2],
  rows = table_range_row_num[1]:table_range_row_num[2]
)

While this may seem complicated, this design pattern can save a lot of hassle when
sharing data with analysts who are using highly structured Excel files that include
named tables.
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See Also
You can see the vignette for openxlsx by installing openxlsx and running
vignette('Introduction', package='openxlsx').

The readxl package is part of the tidyverse and provides fast, simple reading of Excel
files. However, readxl does not currently support named Excel tables.

The writexl package is a fast and lightweight (no dependencies) package for writing
Excel files (discussed in Recipe 4.12).

4.12 Writing a Data Frame to Excel
Problem
You want to write an R data frame to an Excel file.

Solution
The openxlsx package makes writing to Excel files relatively easy. While there are lots
of options in openxlsx, a typical pattern is to specify an Excel filename and a sheet
name:

library(openxlsx)
write.xlsx(df,
           sheetName = "some_sheet",
           file = "out_file.xlsx")

Discussion
The openxlsx package has a huge number of options for controlling many aspects of
the Excel object model. We can use it to set cell colors, define named ranges, and set
cell outlines, for example. It also has a few helper functions like write.xlsx that
make simple tasks super easy.

When businesses work with Excel, it’s a good practice to keep all input data in an
Excel file in a named Excel table, which makes accessing the data easier and less error
prone. However, if you use openxlsx to overwrite an Excel table in one of the sheets,
you run the risk that the new data may contain fewer rows than the Excel table it
replaces. That could cause errors, as you would end up with old data and new data in
contiguous rows. The solution is to first delete the existing Excel table, then add the
new data back into the same location and assign the new data to a named Excel table.
To do this we need to use the more advanced Excel manipulation features of
openxlsx.

First we use loadWorkbook to read the Excel workbook into R in its entirety:
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library(openxlsx)

wb <- loadWorkbook("data/excel_table_data.xlsx")

Before we delete the table, we want to extract the table’s starting row and column:

tables <- getTables(wb, 'input_data')
table_range_str <- names(tables[tables == 'example_table'])
table_range_refs <- strsplit(table_range_str, ':')[[1]]

# use a regex to extract out the starting row number
table_row_num <- gsub("[^0-9.]", "", table_range_refs)[[1]]

# extract out the starting column number
table_col_num <- convertFromExcelRef(table_range_refs)[[1]]

Then we can use the removeTable function to remove the existing named Excel table:

removeTable(wb = wb,
            sheet = 'input_data',
            table = 'example_table')

Now we can use writeDataTable to write the iris data frame (which comes with R)
back into our workbook object in R:

writeDataTable(
  wb = wb,
  sheet = 'input_data',
  x = iris,
  startCol = table_col_num,
  startRow = table_row_num,
  tableStyle = "TableStyleLight9",
  tableName = 'example_table'
)

At this point we could save the workbook and our table would be updated. However,
it’s a good idea to save some metadata in the workbook to let others know exactly
when the data was refreshed. We can do this with the writeData function, then save
the workbook to a file and overwrite the original file. In this example, we’ll put the
metadata text in cell B:5, then save the workbook back to a file, overwriting the origi‐
nal:

writeData(
  wb = wb,
  sheet = 'input_data',
  x = paste('example_table data refreshed on:', Sys.time()),
  startCol = 2,
  startRow = 5
)

# then save the workbook
saveWorkbook(wb = wb,
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             file = "data/excel_table_data.xlsx",
             overwrite = TRUE)

The resulting Excel sheet is shown in Figure 4-2.

Figure 4-2. Excel table and metadata text

See Also
You can see the vignette for openxlsx by installing openxlsx and running
vignette('Introduction', package='openxlsx').

The readxl package is part of the tidyverse and provides fast, simple reading of Excel
files (discussed in Recipe 4.11).

The writexl package is a fast and lightweight (no dependencies) package for writing
Excel files.

4.13 Reading Data from a SAS File
Problem
You want to read a Statistical Analysis Software (SAS) dataset into an R data frame.

Solution
The sas7bdat package supports reading .sas7bdat files into R:
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library(haven)

sas_movie_data <- read_sas("data/movies.sas7bdat")

Discussion
SAS V7 and beyond all support the .sas7bdat file format. The read_sas function in
haven supports reading the .sas7bdat file format, including variable labels. If your
SAS file has variable labels, when they are imported into R they will be stored in the
label attributes of the data frame. These labels will not be printed by default. You can
see the labels by opening the data frame in RStudio, or by calling the attributes Base
R function on each column:

sapply(sas_movie_data, attributes)
#> $Movie
#> $Movie$label
#> [1] "Movie"
#>
#>
#> $Type
#> $Type$label
#> [1] "Type"
#>
#>
#> $Rating
#> $Rating$label
#> [1] "Rating"
#>
#>
#> $Year
#> $Year$label
#> [1] "Year"
#>
#>
#> $Domestic__
#> $Domestic__$label
#> [1] "Domestic $"
#>
#> $Domestic__$format.sas
#> [1] "F"
#>
#>
#> $Worldwide__
#> $Worldwide__$label
#> [1] "Worldwide $"
#>
#> $Worldwide__$format.sas
#> [1] "F"
#>
#>
#> $Director
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#> $Director$label
#> [1] "Director"

See Also
The sas7bdat package is much slower on large files than haven, but it has more elab‐
orate support for file attributes. If the SAS metadata is important to you, then you
should investigate sas7bdat::read.sas7bdat.

4.14 Reading Data from HTML Tables
Problem
You want to read data from an HTML table on the web.

Solution
Use the read_html and html_table functions in the rvest package. To read all tables
on the page, do the following:

library(rvest)
library(tidyverse)

all_tables <-
  read_html("url") %>%
  html_table(fill = TRUE, header = TRUE)

Note that rvest is installed when you run install.packages('tidyverse'), but it is
not a core tidyverse package. So, you must explicitly load the package.

Discussion
Web pages can contain several HTML tables. Calling read_html(url) and then pip‐
ing that to html_table reads all tables on the page and returns them in a list. This can
be useful for exploring a page, but it’s annoying if you want just one specific table. In
that case, use extract2(n) to select the nth table.

For example, here we extract all tables from a Wikipedia article:

library(rvest)

all_tables <-
  read_html("https://en.wikipedia.org/wiki/Aviation_accidents_and_incidents") %>%
  html_table(fill = TRUE, header = TRUE)

read_html puts all the tables from the HTML document into the output list. To pull a
single table from that list, you can use the function extract2 from the magrittr
package:
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out_table <-
  all_tables %>%
  magrittr::extract2(2)

head(out_table)
#>   Year Deaths[53] # of incidents[54]
#> 1 2018      1,040            113[55]
#> 2 2017        399                101
#> 3 2016        629                102
#> 4 2015        898                123
#> 5 2014      1,328                122
#> 6 2013        459                138

Two common parameters for the html_table function are fill=TRUE, which fills in
missing values with NA, and header=TRUE, which indicates that the first row contains
the header names.

The following example loads all tables from the Wikipedia page entitled “World pop‐
ulation”:

url <- 'http://en.wikipedia.org/wiki/World_population'
tbls <- read_html(url) %>%
  html_table(fill = TRUE, header = TRUE)

As it turns out, that page contains 23 tables (or things that html_table thinks might
be tables):

length(tbls)
#> [1] 23

In this example we care only about the sixth table (which lists the largest populations
by country), so we can either access that element using brackets—tbls[[6]]—or we
can pipe it into the extract2 function from the magrittr package:

library(magrittr)
tbl <- tbls %>%
  extract2(6)

head(tbl, 2)
#>   Rank Country / Territory    Population         Date % of world population
#> 1    1       China[note 4] 1,397,280,000 May 11, 2019                 18.1%
#> 2    2               India 1,347,050,000 May 11, 2019                 17.5%
#>   Source
#> 1   [84]
#> 2   [85]

The extract2 function is a “pipe-friendly” version of the R [[i]] syntax: it pulls out
a single list element from a list. The extract function is analogous to [i], which
returns element i from the original list into a list of length 1.

In that table, columns 2 and 3 contain the country name and population, respectively:
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tbl[, c(2, 3)]
#>    Country / Territory    Population
#> 1        China[note 4] 1,397,280,000
#> 2                India 1,347,050,000
#> 3        United States   329,181,000
#> 4            Indonesia   265,015,300
#> 5             Pakistan   212,742,631
#> 6               Brazil   209,889,000
#> 7              Nigeria   188,500,000
#> 8           Bangladesh   166,532,000
#> 9       Russia[note 5]   146,877,088
#> 10               Japan   126,440,000

Right away, we can see problems with the data: China and Russia have [note 4] and
[note 5] appended to their names. On the Wikipedia website those were footnote
references, but now they’re just bits of unwanted text. Adding insult to injury, the
population numbers have embedded commas, so you cannot easily convert them to
raw numbers. All these problems can be solved by some string processing, but each
problem adds at least one more step to the process.

This illustrates the main obstacle to reading HTML tables. HTML was designed for
presenting information to people, not to computers. When you “scrape” information
off an HTML page, you get stuff that’s useful to people but annoying to computers. If
you ever have a choice, choose instead a computer-oriented data representation such
as XML, JSON, or CSV.

The read_html(url) and html_table functions are part of the
rvest package, which (by necessity) is large and complex. Any
time you pull data from a site designed for human readers, not
machines, expect that you will have to do post-processing to clean
up the bits and pieces the machine leaves messy.

See Also
See Recipe 3.10 for downloading and installing packages such as the rvest package.

4.15 Reading Files with a Complex Structure
Problem
You are reading data from a file that has a complex or irregular structure.

Solution
Use the readLines function to read individual lines; then process them as strings to
extract data items.
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Alternatively, use the scan function to read individual tokens and use the argument
what to describe the stream of tokens in your file. The function can convert tokens
into data and then assemble the data into records.

Discussion
Life would be simple and beautiful if all our data files were organized into neat tables
with cleanly delimited data. We could read those files using one of the functions in
the readr package and get on with living.

Unfortunately, we don’t live in a land of rainbows and unicorn kisses.

You will eventually encounter a funky file format, and your job is to read the file’s
contents into R.

The read.table and read.csv functions are file-oriented and probably won’t help.
However, the readLines and scan functions are useful here because they let you pro‐
cess the individual lines and even tokens of the file.

The readLines function is pretty simple. It reads lines from a file and returns them as
a list of character strings:

lines <- readLines("input.txt")

You can limit the number of lines by using the n parameter, which gives the maxi‐
mum number of lines to be read:

lines <- readLines("input.txt", n = 10)       # Read 10 lines and stop

The scan function is much richer. It reads one token at a time and handles it accord‐
ing to your instructions. The first argument is either a filename or a connection. The
second argument is called what, and it describes the tokens that scan should expect in
the input file. The description is cryptic but quite clever:

what=numeric(0)

Interprets the next token as a number

what=integer(0)

Interprets the next token as an integer

what=complex(0)

Interprets the next token as a complex number

what=character(0)

Interprets the next token as a character string

what=logical(0)

Interprets the next token as a logical value

The scan function will apply the given pattern repeatedly until all data is read.
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Suppose your file is simply a sequence of numbers, like this:

2355.09 2246.73 1738.74 1841.01 2027.85

Use what=numeric(0) to say, “My file is a sequence of tokens, each of which is a
number”:

singles <- scan("./data/singles.txt", what = numeric(0))
singles
#> [1] 2355.09 2246.73 1738.74 1841.01 2027.85

A key feature of scan is that the what can be a list containing several token types. The
scan function will assume your file is a repeating sequence of those types. Suppose
your file contains triplets of data, like this:

15-Oct-87 2439.78 2345.63 16-Oct-87 2396.21 2207.73
19-Oct-87 2164.16 1677.55 20-Oct-87 2067.47 1616.21
21-Oct-87 2081.07 1951.76

Use a list to tell scan that it should expect a repeating, three-token sequence:

triples <-
  scan("./data/triples.txt",
       what = list(character(0), numeric(0), numeric(0)))
triples
#> [[1]]
#> [1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87"
#>
#> [[2]]
#> [1] 2439.78 2396.21 2164.16 2067.47 2081.07
#>
#> [[3]]
#> [1] 2345.63 2207.73 1677.55 1616.21 1951.76

Give names to the list elements, and scan will assign those names to the data:

triples <- scan("./data/triples.txt",
                what = list(
                  date = character(0),
                  high = numeric(0),
                  low = numeric(0)
                ))
triples
#> $date
#> [1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87"
#>
#> $high
#> [1] 2439.78 2396.21 2164.16 2067.47 2081.07
#>
#> $low
#> [1] 2345.63 2207.73 1677.55 1616.21 1951.76

This can easily be turned into a data frame with the data.frame command:
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df_triples <- data.frame(triples)
df_triples
#>        date    high     low
#> 1 15-Oct-87 2439.78 2345.63
#> 2 16-Oct-87 2396.21 2207.73
#> 3 19-Oct-87 2164.16 1677.55
#> 4 20-Oct-87 2067.47 1616.21
#> 5 21-Oct-87 2081.07 1951.76

The scan function has many bells and whistles, but the following are especially
useful:

n=number

Stop after reading this many tokens. (Default: stop at end of file.)

nlines=number

Stop after reading this many input lines. (Default: stop at end of file.)

skip=number

Number of input lines to skip before reading data.

na.strings=list

A list of strings to be interpreted as NA.

An Example
Let’s use this recipe to read a dataset from StatLib, the repository of statistical data
and software maintained by Carnegie Mellon University. Jeff Witmer contributed a
dataset called wseries that shows the pattern of wins and losses for every World Ser‐
ies since 1903. The dataset is stored in an ASCII file with 35 lines of comments fol‐
lowed by 23 lines of data. The data itself looks like this:

1903  LWLlwwwW    1927  wwWW      1950  wwWW      1973  WLwllWW
1905  wLwWW       1928  WWww      1951  LWlwwW    1974  wlWWW
1906  wLwLwW      1929  wwLWW     1952  lwLWLww   1975  lwWLWlw
1907  WWww        1930  WWllwW    1953  WWllwW    1976  WWww
1908  wWLww       1931  LWwlwLW   1954  WWww      1977  WLwwlW
.
. (etc.)
.

The data is encoded as follows: L = loss at home, l = loss on the road, W = win at
home, w = win on the road. The data appears in column order, not row order, which
complicates our lives a bit.

Here is the R code for reading the raw data:

# Read the wseries dataset:
#     - Skip the first 35 lines
#     - Then read 23 lines of data
#     - The data occurs in pairs: a year and a pattern (char string)
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#
world.series <- scan(
  "http://lib.stat.cmu.edu/datasets/wseries",
  skip = 35,
  nlines = 23,
  what = list(year = integer(0),
              pattern = character(0)),
)

The scan function returns a list, so we get a list with two elements: year and pattern.
The function reads from left to right, but the dataset is organized by columns and so
the years appear in a strange order:

world.series$year
#>  [1] 1903 1927 1950 1973 1905 1928 1951 1974 1906 1929 1952 1975 1907 1930
#> [15] 1953 1976 1908 1931 1954 1977 1909 1932 1955 1978 1910 1933 1956 1979
#> [29] 1911 1934 1957 1980 1912 1935 1958 1981 1913 1936 1959 1982 1914 1937
#> [43] 1960 1983 1915 1938 1961 1984 1916 1939 1962 1985 1917 1940 1963 1986
#> [57] 1918 1941 1964 1987 1919 1942 1965 1988 1920 1943 1966 1989 1921 1944
#> [71] 1967 1990 1922 1945 1968 1991 1923 1946 1969 1992 1924 1947 1970 1993
#> [85] 1925 1948 1971 1926 1949 1972

We can fix that by sorting the list elements according to year:

perm <- order(world.series$year)
world.series <- list(year    = world.series$year[perm],
                     pattern = world.series$pattern[perm])

Now the data appears in chronological order:

world.series$year
#>  [1] 1903 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
#> [15] 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
#> [29] 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
#> [43] 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
#> [57] 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
#> [71] 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
#> [85] 1988 1989 1990 1991 1992 1993

world.series$pattern
#>  [1] "LWLlwwwW" "wLwWW"    "wLwLwW"   "WWww"     "wWLww"    "WLwlWlw"
#>  [7] "WWwlw"    "lWwWlW"   "wLwWlLW"  "wLwWw"    "wwWW"     "lwWWw"
#> [13] "WWlwW"    "WWllWw"   "wlwWLW"   "WWlwwLLw" "wllWWWW"  "LlWwLwWw"
#> [19] "WWwW"     "LwLwWw"   "LWlwlWW"  "LWllwWW"  "lwWLLww"  "wwWW"
#> [25] "WWww"     "wwLWW"    "WWllwW"   "LWwlwLW"  "WWww"     "WWlww"
#> [31] "wlWLLww"  "LWwwlW"   "lwWWLw"   "WWwlw"    "wwWW"     "WWww"
#> [37] "LWlwlWW"  "WLwww"    "LWwww"    "WLWww"    "LWlwwW"   "LWLwwlw"
#> [43] "LWlwlww"  "WWllwLW"  "lwWWLw"   "WLwww"    "wwWW"     "LWlwwW"
#> [49] "lwLWLww"  "WWllwW"   "WWww"     "llWWWlw"  "llWWWlw"  "lwLWWlw"
#> [55] "llWLWww"  "lwWWLw"   "WLlwwLW"  "WLwww"    "wlWLWlw"  "wwWW"
#> [61] "WLlwwLW"  "llWWWlw"  "wwWW"     "wlWWLlw"  "lwLLWww"  "lwWWW"
#> [67] "wwWLW"    "llWWWlw"  "wwLWLlw"  "WLwllWW"  "wlWWW"    "lwWLWlw"
#> [73] "WWww"     "WLwwlW"   "llWWWw"   "lwLLWww"  "WWllwW"   "llWWWw"
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#> [79] "LWwllWW"  "LWwww"    "wlWWW"    "LLwlwWW"  "LLwwlWW"  "WWlllWW"
#> [85] "WWlww"    "WWww"     "WWww"     "WWlllWW"  "lwWWLw"   "WLwwlW"

4.16 Reading from MySQL Databases
Problem
You want access to data stored in a MySQL database.

Solution
Follow these steps:

1. Install the RMySQL package on your computer and add a user and password.
2. Open a database connection using the DBI::dbConnect function.
3. Use dbGetQuery to initiate a SELECT and return the result sets.
4. Use dbDisconnect to terminate the database connection when you are done.

Discussion
This recipe requires that the RMySQL package be installed on your computer. That
package requires, in turn, the MySQL client software. If that software is not already
installed and configured on your system, consult the MySQL documentation or your
system administrator.

Use the dbConnect function to establish a connection to the MySQL database. It
returns a connection object that is used in subsequent calls to RMySQL functions:

library(RMySQL)

con <- dbConnect(
    drv = RMySQL::MySQL(),
    dbname = "your_db_name",
    host = "your.host.com",
    username = "userid",
    password = "pwd"
  )

The username, password, and host parameters are the same parameters used for
accessing MySQL through the mysql client program. The example given here shows
them hardcoded into the dbConnect call, but actually that is an ill-advised practice. It
puts your password in a plain-text document, creating a security problem. It also cre‐
ates a major headache whenever your password or host changes, requiring you to
hunt down the hardcoded values. We strongly recommend using the security mecha‐
nism of MySQL instead. Version 8 of MySQL introduces even more advanced secu‐
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rity options, but currently these have not been built into the RMySQL client. So, we rec‐
ommend you use MySQL native passwords by setting default-authentication-
plugin=mysql_native_password in your MySQL configuration file, which is
$HOME/.my.cnf on Unix and C:\my.cnf on Windows. We use loose-local-infile=1
to ensure that we have permissions to write to the database. Make sure the file is
unreadable by anyone except you. The file is delimited into sections with markers
such as [mysqld] and [client]. Put connection parameters into the [client] sec‐
tion, so that your config file will contain something like this:

[mysqld]
default-authentication-plugin=mysql_native_password
loose-local-infile=1

[client]
loose-local-infile=1
user="jdl"
password="password"
host=127.0.0.1
port=3306

Once the parameters are defined in the config file, you no longer need to supply them
in the dbConnect call, which then becomes much simpler:

con <- dbConnect(
  drv = RMySQL::MySQL(),
  dbname = "your_db_name")

Use the dbGetQuery function to submit your SQL to the database and read the result
sets. Doing so requires an open database connection:

sql <- "SELECT * from SurveyResults WHERE City = 'Chicago'"
rows <- dbGetQuery(con, sql)

You are not restricted to SELECT statements. Any SQL that generates a result set is
OK. It is common to use CALL statements, for example, if your SQL is encapsulated in
stored procedures and those stored procedures contain embedded SELECT statements.

Using dbGetQuery is convenient because it packages the result set into a data frame
and returns the data frame. This is the perfect representation of a SQL result set. The
result set is a tabular data structure of rows and columns, and so is a data frame. The
result set’s columns have names given by the SQL SELECT statement, and R uses them
for naming the columns of the data frame.

Call dbGetQuery repeatedly to perform multiple queries. When you are done, close
the database connection using dbDisconnect:

dbDisconnect(con)

Here is a complete session that reads and prints three rows from a database of stock
prices. The query selects the price of IBM stock for the last three days of 2008. It
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assumes that the username, password, dbname, and host parameters are defined in the
my.cnf file:

con <- dbConnect(RMySQL::MySQL())
sql <- paste(
  "select * from DailyBar where Symbol = 'IBM'",
  "and Day between '2008-12-29' and '2008-12-31'"
)
rows <- dbGetQuery(con, sql)

dbDisconnect(con)
print(rows)

##   Symbol        Day       Next OpenPx HighPx LowPx ClosePx AdjClosePx
## 1    IBM 2008-12-29 2008-12-30  81.72  81.72 79.68   81.25      81.25
## 2    IBM 2008-12-30 2008-12-31  81.83  83.64 81.52   83.55      83.55
## 3    IBM 2008-12-31 2009-01-02  83.50  85.00 83.50   84.16      84.16
##   HistClosePx  Volume OpenInt
## 1       81.25 6062600      NA
## 2       83.55 5774400      NA
## 3       84.16 6667700      NA

See Also
See Recipe 3.10 and the documentation for RMySQL, which contains more details
about configuring and using the package.

See Recipe 4.17 for information about how to get data from a SQL database without
writing any SQL.

R can read from several other RDBMSs, including Oracle, Sybase, PostgreSQL, and
SQLite. For more information, see the R Data Import/Export guide, which is supplied
with the base distribution (Recipe 1.7) and is also available on CRAN.

4.17 Accessing a Database with dbplyr
Problem
You want to access a database, but you’d rather not write SQL code in order to manip‐
ulate data and return results to R.

Solution
In addition to being a grammar of data manipulation, the tidyverse package dplyr
can, in connection with the dbplyr package, turn dplyr commands into SQL for you.

Let’s set up an example database using RSQLite. Then we’ll connect to it and use
dplyr and the dbplyr backend to extract data.
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We’ll first set up the example table by loading the msleep example data into an in-
memory SQLite database:

con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
sleep_db <- copy_to(con, msleep, "sleep")

Now that we have a table in our database, we can create a reference to it from R:

sleep_table <- tbl(con, "sleep")

The sleep_table object is a type of pointer or alias to the table on the database.
However, dplyr will treat it like a regular tidyverse tibble or data frame, so you can
operate on it using dplyr and other R commands. Let’s select all animals from the
data who sleep less than three hours:

little_sleep <- sleep_table %>%
  select(name, genus, order, sleep_total) %>%
  filter(sleep_total < 3)

The dbplyr backend does not go fetch the data when we do the preceding com‐
mands. But it does build the query and get ready. To see the query built by dplyr, you
can use show_query:

show_query(little_sleep)
#> <SQL>
#> SELECT *
#> FROM (SELECT `name`, `genus`, `order`, `sleep_total`
#> FROM `sleep`)
#> WHERE (`sleep_total` < 3.0)

To bring the data back to your local machine, use collect:

local_little_sleep <- collect(little_sleep)
local_little_sleep
#> # A tibble: 3 x 4
#>   name        genus         order          sleep_total
#>   <chr>       <chr>         <chr>                <dbl>
#> 1 Horse       Equus         Perissodactyla         2.9
#> 2 Giraffe     Giraffa       Artiodactyla           1.9
#> 3 Pilot whale Globicephalus Cetacea                2.7

Discussion
When you use dplyr to access SQL databases by writing only dplyr commands, you
can be more productive by not having to switch from one language to another and
back. The alternative is to have large chunks of SQL code stored as text strings in the
middle of an R script, or have the SQL in separate files that are read in by R.

By allowing dplyr to transparently create the SQL in the background, you are freed
from having to maintain separate SQL code to extract data.
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The dbplyr package uses DBI to connect to your database, so you’ll need a DBI back‐
end package for whichever database you want to access.

Some commonly used DBI backend packages are:

odbc

Uses the Open Database Connectivity (ODBC) protocol to connect to many dif‐
ferent databases. This is typically the best choice when you are connecting to
Microsoft SQL Server. ODBC is typically straightforward on Windows machines
but may require some considerable effort to get working in Linux or macOS.

RPostgreSQL

For connecting to Postgres and Redshift.

RMySQL

For MySQL and MariaDB.

RSQLite

For connecting to SQLite databases on disk or in memory.

bigrquery

For connections to Google’s BigQuery.

Each DBI backend package discussed here is listed on CRAN and
can be installed with the typical install.packages('package
name') command.

See Also
For more information about connecting the databases with R and RStudio, see
https://db.rstudio.com/.

For more detail on SQL translation in dbplyr, see the sql-translation vignette at
vignette("sql-translation") or http://bit.ly/2wVCOKe.

4.18 Saving and Transporting Objects
Problem
You want to store one or more R objects in a file for later use, or you want to copy an
R object from one machine to another.

Solution
Write the objects to a file using the save function:
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save(tbl, t, file = "myData.RData")

Read them back using the load function, either on your computer or on any platform
that supports R:

load("myData.RData")

The save function writes binary data. To save in an ASCII format, use dput or dump
instead:

dput(tbl, file = "myData.txt")
dump("tbl", file = "myData.txt")    # Note quotes around variable name

Discussion
Suppose you’ve found yourself with a large, complicated data object that you want to
load into other workspaces, or you want to move R objects between a Linux box and a
Windows box. The load and save functions let you do all this: save will store the
object in a file that is portable across machines, and load can read those files.

When you run load, it does not return your data per se; rather, it creates variables in
your workspace, loads your data into those variables, and then returns the names of
the variables (in a vector). The first time you run load, you might be tempted to do
this:

myData <- load("myData.RData")     # Achtung! Might not do what you think

Let’s look at what myData is:

myData
#> [1] "tbl" "t"
str(myData)
#>  chr [1:2] "tbl" "t"

This might be puzzling, because myData will not contain your data at all. This can be
perplexing and frustrating the first time you encounter it.

There are a few other things to keep in mind, too. First, the save function writes in a
binary format to keep the file small. Sometimes you want an ASCII format instead.
When you submit a question to a mailing list or to Stack Overflow, for example,
including an ASCII dump of the data lets others re-create your problem. In such
cases use dput or dump, which write an ASCII representation.

You must also be careful when you save and load objects created by a particular R
package. When you load the objects, R does not automatically load the required pack‐
ages, too, so it will not “understand” the object unless you previously loaded the pack‐
age yourself. For instance, suppose we have an object called z created by the zoo
package, and we save the object in a file called z.RData. The following sequence of
functions will create some confusion:
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load("./data/z.RData")   # Create and populate the z variable
plot(z)                  # Does not plot as expected: zoo pkg not loaded

The plot in Figure 4-3 shows the resulting plot, which is just points.

Figure 4-3. Plot without zoo loaded

We should have loaded the zoo package before printing or plotting any zoo objects,
like this:

library(zoo)           # Load the zoo package into memory
load("./data/z.RData") # Create and populate the z variable
plot(z)                # Ahhh. Now plotting works correctly

You can see the resulting plot in Figure 4-4.

Figure 4-4. Plotting with zoo
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See Also
If you are just saving and loading a single data frame or other R object, you should
consider write_rds and read_rds. These functions don’t have “side effects” like load.
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CHAPTER 5

Data Structures

You can get pretty far in R just using vectors. That’s what Chapter 2 is all about. This
chapter moves beyond vectors to recipes for matrices, lists, factors, data frames, and
tibbles (which are a special kind of data frame). If you have preconceptions about
data structures, we suggest you put them aside. R does data structures differently than
many other languages. Before we get to the recipes in this chapter, we’ll take a quick
look at different data structures in R.

If you want to study the technical aspects of R’s data structures, we suggest reading R
in a Nutshell and the R Language Definition. The notes here are more informal. These
are things we wish we’d known when we started using R.

Vectors
Here are some key properties of vectors:

Vectors are homogeneou.s
All elements of a vector must have the same type or, in R terminology, the same
mode.

Vectors can be indexed by position.
So v[2] refers to the second element of v.

Vectors can be indexed by multiple positions, returning a subvector.
So v[c(2,3)] is a subvector of v that consists of the second and third elements.

Vector elements can have names.
Vectors have a names property, the same length as the vector itself, that gives
names to the elements:

v <- c(10, 20, 30)
names(v) <- c("Moe", "Larry", "Curly")
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print(v)
#>   Moe Larry Curly
#>    10    20    30

If vector elements have names, then you can select them by name.
Continuing the previous example:

v[["Larry"]]
#> [1] 20

Lists
Here are some key properties of lists:

Lists are heterogeneous.
Lists can contain elements of different types—in R terminology, list elements may
have different modes. Lists can even contain other structured objects, such as lists
and data frames; this allows you to create recursive data structures.

Lists can be indexed by position.
So lst[[2]] refers to the second element of lst. Note the double square brack‐
ets. Double brackets means that R will return the element as whatever type of ele‐
ment it is.

Lists let you extract sublists.
So lst[c(2,3)] is a sublist of lst that consists of the second and third elements.
Note the single square brackets. Single brackets means that R will return the
items in a list. If you pull a single element with single brackets, like lst[2], R will
return a list of length 1 with the first item being the desired item.

List elements can have names.
Both lst[["Moe"]] and lst$Moe refer to the element named “Moe.”

Since lists are heterogeneous and since their elements can be retrieved by name, a list
is like a dictionary or hash or lookup table in other programming languages (dis‐
cussed in Recipe 5.9).

What’s surprising (and cool) is that in R, unlike most of those other programming
languages, lists can also be indexed by position.

Mode: Physical Type
In R, every object has a mode, which indicates how it is stored in memory: as a num‐
ber, as a character string, as a list of pointers to other objects, as a function, and so
forth (see Table 5-1).
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Table 5-1. R object-mode mapping
Object Example Mode
Number 3.1415 Numeric

Vector of numbers c(2.7.182, 3.1415) Numeric

Character string "Moe" Character

Vector of character strings c("Moe", "Larry", "Curly") Character

Factor factor(c("NY", "CA", "IL")) Numeric

List list("Moe", "Larry", "Curly") List

Data frame data.frame(x=1:3, y=c("NY", "CA", "IL")) List

Function print Function

The mode function gives us this information:

mode(3.1415)                        # Mode of a number
#> [1] "numeric"
mode(c(2.7182, 3.1415))             # Mode of a vector of numbers
#> [1] "numeric"
mode("Moe")                         # Mode of a character string
#> [1] "character"
mode(list("Moe", "Larry", "Curly")) # Mode of a list
#> [1] "list"

A critical difference between a vectors and lists can be summed up this way:

• In a vector, all elements must have the same mode.
• In a list, the elements can have different modes.

Class: Abstract Type
In R, every object also has a class, which defines its abstract type. The terminology is
borrowed from object-oriented programming. A single number could represent
many different things: a distance, a point in time, or a weight, for example. All those
objects have a mode of "numeric" because they are stored as a number, but they
could have different classes to indicate their interpretation.

For example, a Date object consists of a single number:

d <- as.Date("2010-03-15")
mode(d)
#> [1] "numeric"
length(d)
#> [1] 1

But it has a class of Date, telling us how to interpret that number—namely, as the
number of days since January 1, 1970:
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class(d)
#> [1] "Date"

R uses an object’s class to decide how to process the object. For example, the generic
function print has specialized versions (called methods) for printing objects accord‐
ing to their class: data.frame, Date, lm, and so forth. When you print an object, R
calls the appropriate print function according to the object’s class.

Scalars
The quirky thing about scalars is their relationship to vectors. In some software,
scalars and vectors are two different things. In R, they are the same thing: a scalar is
simply a vector that contains exactly one element. In this book we often use the term
“scalar,” but that’s just shorthand for “vector with one element.”

Consider the built-in constant pi. It is a scalar:

pi
#> [1] 3.14

Since a scalar is a one-element vector, you can use vector functions on pi:

length(pi)
#> [1] 1

You can index it. The first (and only) element is π, of course:

pi[1]
#> [1] 3.14

If you ask for the second element, there is none:

pi[2]
#> [1] NA

Matrices
In R, a matrix is just a vector that has dimensions. It may seem strange at first, but
you can transform a vector into a matrix simply by giving it dimensions.

A vector has an attribute called dim, which is initially NULL, as shown here:

A <- 1:6
dim(A)
#> NULL
print(A)
#> [1] 1 2 3 4 5 6

We give dimensions to the vector when we set its dim attribute. Watch what happens
when we set our vector dimensions to 2 × 3 and print it:

dim(A) <- c(2, 3)
print(A)
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#>      [,1] [,2] [,3]
#> [1,]    1    3    5
#> [2,]    2    4    6

Voilà! The vector was reshaped into a 2 × 3 matrix.

A matrix can be created from a list, too. Like a vector, a list has a dim attribute, which
is initially NULL:

B <- list(1, 2, 3, 4, 5, 6)
dim(B)
#> NULL

If we set the dim attribute, it gives the list a shape:

dim(B) <- c(2, 3)
print(B)
#>      [,1] [,2] [,3]
#> [1,] 1    3    5
#> [2,] 2    4    6

Voilà! We have turned this list into a 2 × 3 matrix.

Arrays
The discussion of matrices can be generalized to three-dimensional or even n-
dimensional structures: just assign more dimensions to the underlying vector (or
list). The following example creates a three-dimensional array with dimensions 2 × 3
× 2:

D <- 1:12
dim(D) <- c(2, 3, 2)
print(D)
#> , , 1
#>
#>      [,1] [,2] [,3]
#> [1,]    1    3    5
#> [2,]    2    4    6
#>
#> , , 2
#>
#>      [,1] [,2] [,3]
#> [1,]    7    9   11
#> [2,]    8   10   12

Note that R prints one “slice” of the structure at a time, since it’s not possible to print
a three-dimensional structure on a two-dimensional medium.

It strikes us as very odd that we can turn a list into a matrix just by giving the list a
dim attribute. But wait: it gets stranger.
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Recall that a list can be heterogeneous (mixed modes). We can start with a heteroge‐
neous list, give it dimensions, and thus create a heterogeneous matrix. This code
snippet creates a matrix that is a mix of numeric and character data:

C <- list(1, 2, 3, "X", "Y", "Z")
dim(C) <- c(2, 3)
print(C)
#>      [,1] [,2] [,3]
#> [1,] 1    3    "Y"
#> [2,] 2    "X"  "Z"

To us, this is strange because we ordinarily assume a matrix is purely numeric, not
mixed. R is not that restrictive.

The possibility of a heterogeneous matrix may seem powerful and strangely fascinat‐
ing. However, it creates problems when you are doing normal, day-to-day stuff with
matrices. For example, what happens when the matrix C (from the previous example)
is used in matrix multiplication? What happens if it is converted to a data frame? The
answer is that odd things happen.

In this book, we generally ignore the pathological case of a heterogeneous matrix. We
assume you’ve got simple, vanilla matrices. Some recipes involving matrices may
work oddly (or not at all) if your matrix contains mixed data. Converting such a
matrix to a vector or data frame, for instance, can be problematic (see Recipe 5.29).

Factors
A factor looks like a character vector, but it has special properties. R keeps track of
the unique values in a vector, and each unique value is called a level of the associated
factor. R uses a compact representation for factors, which makes them efficient for
storage in data frames. In other programming languages, a factor would be repre‐
sented by a vector of enumerated values.

There are two key uses for factors:

Categorical variables
A factor can represent a categorical variable. Categorical variables are used in
contingency tables, linear regression, analysis of variance (ANOVA), logistic
regression, and many other areas.

Grouping
This is a technique for labeling or tagging your data items according to their
group. See Chapter 6.
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1 A data frame can be built from a mixture of vectors, factors, and matrices. The columns of the matrices
become columns in the data frame. The number of rows in each matrix must match the length of the vectors
and factors. In other words, all elements of a data frame must have the same height.

Data Frames
A data frame is a powerful and flexible structure. Most serious R applications involve
data frames. A data frame is intended to mimic a dataset, such as one you might
encounter in SAS or SPSS, or a table in an SQL database.

A data frame is a tabular (rectangular) data structure, which means that it has rows
and columns. It is not implemented by a matrix, however. Rather, a data frame is a list
with the following characteristics:

• The elements of the list are vectors and/or factors.1

• Those vectors and factors are the columns of the data frame.
• The vectors and factors must all have the same length; in other words, all col‐

umns must have the same height.
• The equal-height columns give a rectangular shape to the data frame.
• The columns must have names.

Because a data frame is both a list and a rectangular structure, R provides two differ‐
ent paradigms for accessing its contents:

• You can use list operators to extract columns from a data frame, such as df[i],
df[[i]], or df$name.

• You can use matrix-like notation, such as df[i,j], df[i,], or df[,j].

Your perception of a data frame likely depends on your background:

To a statistician
A data frame is a table of observations. Each row contains one observation. Each
observation must contain the same variables. These variables are called columns,
and you can refer to them by name. You can also refer to the contents by row
number and column number, just as with a matrix.

To a SQL programmer
A data frame is a table. The table resides entirely in memory, but you can save it
to a flat file and restore it later. You needn’t declare the column types because R
figures that out for you.
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To an Excel user
A data frame is like a worksheet, or perhaps a range within a worksheet. It is
more restrictive, however, in that each column has a type.

To an SAS user
A data frame is like an SAS dataset for which all the data resides in memory. R
can read and write the data frame on disk, but the data frame must be in memory
while R is processing it.

To an R programmer
A data frame is a hybrid data structure, part matrix and part list. A column can
contain numbers, character strings, or factors, but not a mix of them. You can
index the data frame just like you index a matrix. The data frame is also a list,
where the list elements are the columns, so you can access columns by using list
operators.

To a computer scientist
A data frame is a rectangular data structure. The columns are typed, and each
column must contain numeric values, character strings, or factors. Columns
must have labels; rows may have labels. The table can be indexed by position, col‐
umn name, and/or row name. It can also be accessed by list operators, in which
case R treats the data frame as a list whose elements are the columns of the data
frame.

To a corporate executive
You can put names and numbers into a data frame. A data frame is like a little
database. Your staff will enjoy using data frames.

Tibbles
A tibble is a modern reimagining of the data frame, introduced by Hadley Wickham
in the tibble package, which is a core package in the tidyverse. Most of the common
functions you would use with data frames also work with tibbles. However, tibbles
typically do less than data frames and complain more. This idea of complaining and
doing less may remind you of your least favorite coworker; however, we think tibbles
will be one of your favorite data structures. Doing less and complaining more can be
a feature, not a bug.

Unlike data frames, tibbles:

• Do not give you row numbers by default.
• Do not give you strange, unexpected column names.
• Don’t coerce your data into factors (unless you explicitly ask for that).
• Recycle vectors of length 1 but not other lengths.
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In addition to basic data frame functionality, tibbles:

• Print only the top four rows and a bit of metadata by default.
• Always return a tibble when subsetting.
• Never do partial matching: if you want a column from a tibble, you have to ask

for it using its full name.
• Complain more by giving you more warnings and chatty messages to make sure

you understand what the software is doing.

All these extras are designed to give you fewer surprises and help you make fewer
mistakes.

5.1 Appending Data to a Vector
Problem
You want to append additional data items to a vector.

Solution
Use the vector constructor (c) to construct a vector with the additional data items:

v <- c(1, 2, 3)
newItems <- c(6, 7, 8)
c(v, newItems)
#> [1] 1 2 3 6 7 8

For a single item, you can also assign the new item to the next vector element. R will
automatically extend the vector:

v <- c(1, 2, 3)
v[length(v) + 1] <- 42
v
#> [1]  1  2  3 42

Discussion
If you ask us about appending a data item to a vector, we will likely suggest that
maybe you shouldn’t.
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R works best when you think about entire vectors, not single data
items. Are you repeatedly appending items to a vector? If so, then
you are probably working inside a loop. That’s OK for small vec‐
tors, but for large vectors your program will run slowly. The mem‐
ory management in R works poorly when you repeatedly extend a
vector by one element. Try to replace that loop with vector-level
operations. You’ll write less code, and R will run much faster.

Nonetheless, one does occasionally need to append data to vectors. Our experiments
show that the most efficient way of doing so is to create a new vector using the vector
constructor (c) to join the old and new data. This works for appending single ele‐
ments or multiple elements:

v <- c(1, 2, 3)
v <- c(v, 4) # Append a single value to v
v
#> [1] 1 2 3 4

w <- c(5, 6, 7, 8)
v <- c(v, w) # Append an entire vector to v
v
#> [1] 1 2 3 4 5 6 7 8

You can also append an item by assigning it to the position past the end of the vector,
as shown in the Solution. In fact, R is very liberal about extending vectors. You can
assign to any element and R will expand the vector to accommodate your request:

v <- c(1, 2, 3)   # Create a vector of three elements
v[10] <- 10       # Assign to the 10th element
v                 # R extends the vector automatically
#>  [1]  1  2  3 NA NA NA NA NA NA 10

Note that R did not complain about the out-of-bounds subscript. It just extended the
vector to the needed length, filling it with NA.

R includes an append function that creates a new vector by appending items to an
existing vector. However, our experiments show that this function runs more slowly
than both the vector constructor and the element assignment.

5.2 Inserting Data into a Vector
Problem
You want to insert one or more data items into a vector.
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Solution
Despite its name, the append function inserts data into a vector by using the after
parameter, which gives the insertion point for the new item or items:

append(vec, newvalues, after = n)

Discussion
The new items will be inserted at the position given by after. This example inserts 99
into the middle of a sequence:

append(1:10, 99, after = 5)
#>  [1]  1  2  3  4  5 99  6  7  8  9 10

The special value of after=0 means insert the new items at the head of the vector:

append(1:10, 99, after = 0)
#>  [1] 99  1  2  3  4  5  6  7  8  9 10

The comments in Recipe 5.1 apply here, too. If you are inserting single items into a
vector, you might be working at the element level when working at the vector level
would be easier to code and faster to run.

5.3 Understanding the Recycling Rule
Problem
You want to understand the mysterious Recycling Rule that governs how R handles
vectors of unequal length.

Discussion
When you do vector arithmetic, R performs element-by-element operations. That
works well when both vectors have the same length: R pairs the elements of the vec‐
tors and applies the operation to those pairs.

But what happens when the vectors have unequal lengths?

In that case, R invokes the Recycling Rule. It processes the vector elements in pairs,
starting at the first elements of both vectors. At a certain point, the shorter vector is
exhausted while the longer vector still has unprocessed elements. R then returns to
the beginning of the shorter vector, “recycling” its elements, while it continues taking
elements from the longer vector until it completes the operation. It will recycle the
shorter vector’s elements as often as necessary until the operation is complete.
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It’s useful to visualize the Recycling Rule. Here is a diagram of two vectors, 1:6 and
1:3:

   1:6   1:3
  ----- -----
    1     1
    2     2
    3     3
    4
    5
    6

Obviously, the 1:6 vector is longer than the 1:3 vector. If we try to add the vectors
using (1:6) + (1:3), it appears that 1:3 has too few elements. However, R recycles
the elements of 1:3, pairing the two vectors like this and producing a six-element
vector:

   1:6   1:3   (1:6) + (1:3)
  ----- ----- ---------------
    1     1         2
    2     2         4
    3     3         6
    4               5
    5               7
    6               9

Here is what you see in the R console:

(1:6) + (1:3)
#> [1] 2 4 6 5 7 9

It’s not only vector operations that invoke the Recycling Rule; functions can, too. The
cbind function can create column vectors, such as the following column vectors of
1:6 and 1:3. The two columns have different heights, of course:

cbind(1:6)

cbind(1:3)

If we try binding these column vectors together into a two-column matrix, the
lengths are mismatched. The 1:3 vector is too short, so cbind invokes the Recycling
Rule and recycles the elements of 1:3:

cbind(1:6, 1:3)
#>      [,1] [,2]
#> [1,]    1    1
#> [2,]    2    2
#> [3,]    3    3
#> [4,]    4    1
#> [5,]    5    2
#> [6,]    6    3
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If the longer vector’s length is not a multiple of the shorter vector’s length, R gives a
warning. That’s good, since the operation is highly suspect and there is likely a bug in
your logic:

(1:6) + (1:5) # Oops! 1:5 is one element too short
#> Warning in (1:6) + (1:5): longer object length is not a multiple of shorter
#> object length
#> [1]  2  4  6  8 10  7

Once you understand the Recycling Rule, you will realize that operations between a 
vector and a scalar are simply applications of that rule. In this example, the 10 is recy‐
cled repeatedly until the vector addition is complete:

(1:6) + 10
#> [1] 11 12 13 14 15 16

5.4 Creating a Factor (Categorical Variable)
Problem
You have a vector of character strings or integers. You want R to treat them as a fac‐
tor, which is R’s term for a categorical variable.

Solution
The factor function encodes your vector of discrete values into a factor:

f <- factor(v)   # v can be a vector of strings or integers

If your vector contains only a subset of possible values and not the entire universe,
then include a second argument that gives the possible levels of the factor:

f <- factor(v, levels)

Discussion
In R, each possible value of a categorical variable is called a level. A vector of levels is
called a factor. Factors fit very cleanly into the vector orientation of R, and they are
used in powerful ways for processing data and building statistical models.

Most of the time, converting your categorical data into a factor is a simple matter of
calling the factor function, which identifies the distinct levels of the categorical data
and packs them into a factor:

f <- factor(c("Win", "Win", "Lose", "Tie", "Win", "Lose"))
f
#> [1] Win  Win  Lose Tie  Win  Lose
#> Levels: Lose Tie Win
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Notice that when we printed the factor, f, R did not put quotes around the values.
They are levels, not strings. Also notice that when we printed the factor, R displayed
the distinct levels below the factor.

If your vector contains only a subset of all the possible levels, then R will have an
incomplete picture of the possible levels. Suppose you have a string-valued variable
wday that gives the day of the week on which your data was observed:

wday <- c("Wed", "Thu", "Mon", "Wed", "Thu",
          "Thu", "Thu", "Tue", "Thu", "Tue")
f <- factor(wday)
f
#>  [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
#> Levels: Mon Thu Tue Wed

R thinks that Monday, Thursday, Tuesday, and Wednesday are the only possible levels.
Friday is not listed. Apparently, the lab staff never made observations on a Friday, so
R does not know that Friday is a possible value. Hence, you need to list the possible
levels of wday explicitly:

f <- factor(wday, levels=c("Mon", "Tue", "Wed", "Thu", "Fri"))
f
#>  [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
#> Levels: Mon Tue Wed Thu Fri

Now R understands that f is a factor with five possible levels. It knows their correct
order, too. It originally put Thursday before Tuesday because it assumes alphabetical
order by default. The explicit levels argument defines the correct order.

In many situations it is not necessary to call factor explicitly. When an R function
requires a factor, it usually converts your data to a factor automatically. The table
function, for instance, works only on factors, so it routinely converts its inputs to fac‐
tors without asking. You must explicitly create a factor variable when you want to
specify the full set of levels or when you want to control the ordering of levels.

See Also
See Recipe 12.5 to create a factor from continuous data.

5.5 Combining Multiple Vectors into One Vector and a
Factor
Problem
You have several groups of data, with one vector for each group. You want to combine
the vectors into one large vector and simultaneously create a parallel factor that iden‐
tifies each value’s original group.
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Solution
Create a list that contains the vectors. Use the stack function to combine the list into
a two-column data frame:

comb <- stack(list(v1 = v1, v2 = v2, v3 = v3)) # Combine 3 vectors

The data frame’s columns are called values and ind. The first column contains the
data, and the second column contains the parallel factor.

Discussion
Why in the world would you want to mash all your data into one big vector and a
parallel factor? The reason is that many important statistical functions require the
data in that format.

Suppose you survey freshmen, sophomores, and juniors regarding their confidence
level (“What percentage of the time do you feel confident in school?”). Now you have
three vectors, called freshmen, sophomores, and juniors. You want to perform an
ANOVA of the differences between the groups. The ANOVA function, aov, requires
one vector with the survey results as well as a parallel factor that identifies the group.
You can combine the groups using the stack function:

freshmen <- c(1, 2, 1, 1, 5)
sophomores <- c(3, 2, 3, 3, 5)
juniors <- c(5, 3, 4, 3, 3)

comb <- stack(list(fresh = freshmen, soph = sophomores, jrs = juniors))
print(comb)
#>    values   ind
#> 1       1 fresh
#> 2       2 fresh
#> 3       1 fresh
#> 4       1 fresh
#> 5       5 fresh
#> 6       3  soph
#> 7       2  soph
#> 8       3  soph
#> 9       3  soph
#> 10      5  soph
#> 11      5   jrs
#> 12      3   jrs
#> 13      4   jrs
#> 14      3   jrs
#> 15      3   jrs

Now you can perform the ANOVA on the two columns:

aov(values ~ ind, data = comb)
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When building the list we must provide tags for the list elements. (The tags are fresh,
soph, and jrs in this example.) Those tags are required because stack uses them as
the levels of the parallel factor.

5.6 Creating a List
Problem
You want to create and populate a list.

Solution
To create a list from individual data items, use the list function:

lst <- list(x, y, z)

Discussion
Lists can be quite simple, such as this list of three numbers:

lst <- list(0.5, 0.841, 0.977)
lst
#> [[1]]
#> [1] 0.5
#>
#> [[2]]
#> [1] 0.841
#>
#> [[3]]
#> [1] 0.977

When R prints the list, it identifies each list element by its position ([[1]], [[2]],
[[3]]) and prints the element’s value (e.g., [1] 0.5) under its position.

More usefully, lists can, unlike vectors, contain elements of different modes (types).
Here is an extreme example of a mongrel created from a scalar, a character string, a
vector, and a function:

lst <- list(3.14, "Moe", c(1, 1, 2, 3), mean)
lst
#> [[1]]
#> [1] 3.14
#>
#> [[2]]
#> [1] "Moe"
#>
#> [[3]]
#> [1] 1 1 2 3
#>
#> [[4]]
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#> function (x, ...)
#> UseMethod("mean")
#> <bytecode: 0x7ff04b0bc900>
#> <environment: namespace:base>

You can also build a list by creating an empty list and populating it. Here is our
“mongrel” example built in that way:

lst <- list()
lst[[1]] <- 3.14
lst[[2]] <- "Moe"
lst[[3]] <- c(1, 1, 2, 3)
lst[[4]] <- mean
lst
#> [[1]]
#> [1] 3.14
#>
#> [[2]]
#> [1] "Moe"
#>
#> [[3]]
#> [1] 1 1 2 3
#>
#> [[4]]
#> function (x, ...)
#> UseMethod("mean")
#> <bytecode: 0x7ff04b0bc900>
#> <environment: namespace:base>

List elements can be named. The list function lets you supply a name for every ele‐
ment:

lst <- list(mid = 0.5, right = 0.841, far.right = 0.977)
lst
#> $mid
#> [1] 0.5
#>
#> $right
#> [1] 0.841
#>
#> $far.right
#> [1] 0.977

See Also
See the introduction to this chapter for more about lists; see Recipe 5.9 for more
about building and using lists with named elements.
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5.7 Selecting List Elements by Position
Problem
You want to access list elements by position.

Solution
Use one of these ways. Here, lst is a list variable:

lst[[n]]

Selects the nth element from the list

lst[c(n1, n2, ..., nk)]

Returns a list of elements, selected by their positions

Note that the first form returns a single element and the second form returns a list.

Discussion
Suppose we have a list of four integers, called years:

years <- list(1960, 1964, 1976, 1994)
years
#> [[1]]
#> [1] 1960
#>
#> [[2]]
#> [1] 1964
#>
#> [[3]]
#> [1] 1976
#>
#> [[4]]
#> [1] 1994

We can access single elements using the double-square-bracket syntax:

years[[1]]
#> [1] 1960

We can extract sublists using the single-square-bracket syntax:

years[c(1, 2)]
#> [[1]]
#> [1] 1960
#>
#> [[2]]
#> [1] 1964
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This syntax can be confusing because of a subtlety: there is an important difference
between lst[[n]] and lst[n]. They are not the same thing:

lst[[n]]

This is an element, not a list. It is the nth element of lst.

lst[n]

This is a list, not an element. The list contains one element, taken from the nth
element of lst.

The second form is a special case of lst[c(n1, n2, ..., nk)] in
which we eliminated the c(...) construct because there is only
one n.

The difference becomes apparent when we inspect the structure of the result—one is
a number and the other is a list:

class(years[[1]])
#> [1] "numeric"

class(years[1])
#> [1] "list"

The difference becomes annoyingly apparent when we cat the value. Recall that cat
can print atomic values or vectors but complains about printing structured objects:

cat(years[[1]], "\n")
#> 1960

cat(years[1], "\n")
#> Error in cat(years[1], "\n"): argument 1 (type 'list')
#> cannot be handled by 'cat'

We got lucky here because R alerted us to the problem. In other contexts, you might
work long and hard to figure out that you accessed a sublist when you wanted an ele‐
ment, or vice versa.

5.8 Selecting List Elements by Name
Problem
You want to access list elements by their names.

Solution
Use one of these forms. Here, lst is a list variable:
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lst[["name"]]

Selects the element called name. Returns NULL if no element has that name.

lst$name

Same as previous, just different syntax.

lst[c(name1, name2, ..., namek)]

Returns a list built from the indicated elements of lst.

Note that the first two forms return an element, whereas the third form returns a list.

Discussion
Each element of a list can have a name. If named, the element can be selected by its
name. This assignment creates a list of four named integers:

years <- list(Kennedy = 1960, Johnson = 1964,
              Carter = 1976, Clinton = 1994)

These next two expressions return the same value—namely, the element that is
named “Kennedy”:

years[["Kennedy"]]
#> [1] 1960
years$Kennedy
#> [1] 1960

The following two expressions return sublists extracted from years:

years[c("Kennedy", "Johnson")]
#> $Kennedy
#> [1] 1960
#>
#> $Johnson
#> [1] 1964

years["Carter"]
#> $Carter
#> [1] 1976

Just as with selecting list elements by position (see Recipe 5.7), there is an important
difference between lst[["name"]] and lst["name"]. They are not the same:

lst[["name"]]

This is an element, not a list.

lst["name"]

This is a list, not an element.
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The second form is a special case of lst[c(name1, name2, ...,
namek)] in which we don’t need the c(...) construct because there
is only one name.

See Also
See Recipe 5.7 to access elements by position rather than by name.

5.9 Building a Name/Value Association List
Problem
You want to create a list that associates names and values, like a dictionary, hash, or
lookup table would in another programming language.

Solution
The list function lets you give names to elements, creating an association between
each name and its value:

lst <- list(mid = 0.5, right = 0.841, far.right = 0.977)

If you have parallel vectors of names and values, you can create an empty list and
then populate the list by using a vectorized assignment statement:

values <- c(1, 2, 3)
names <- c("a", "b", "c")
lst <- list()
lst[names] <- values

Discussion
Each element of a list can be named, and you can retrieve list elements by name. This
gives you a basic programming tool: the ability to associate names with values.

You can assign element names when you build the list. The list function allows
arguments of the form name=value:

lst <- list(
  far.left = 0.023,
  left = 0.159,
  mid = 0.500,
  right = 0.841,
  far.right = 0.977
)
lst
#> $far.left
#> [1] 0.023

5.9 Building a Name/Value Association List | 147



#>
#> $left
#> [1] 0.159
#>
#> $mid
#> [1] 0.5
#>
#> $right
#> [1] 0.841
#>
#> $far.right
#> [1] 0.977

One way to name the elements is to create an empty list and then populate it via
assignment statements:

lst <- list()
lst$far.left <- 0.023
lst$left <- 0.159
lst$mid <- 0.500
lst$right <- 0.841
lst$far.right <- 0.977

Sometimes you have a vector of names and a vector of corresponding values:

values <- -2:2
names <- c("far.left", "left", "mid", "right", "far.right")

You can associate the names and the values by creating an empty list and then popu‐
lating it with a vectorized assignment statement:

lst <- list()
lst[names] <- values
lst
#> $far.left
#> [1] -2
#>
#> $left
#> [1] -1
#>
#> $mid
#> [1] 0
#>
#> $right
#> [1] 1
#>
#> $far.right
#> [1] 2

Once the association is made, the list can “translate” names into values through a sim‐
ple list lookup:

cat("The left limit is", lst[["left"]], "\n")
#> The left limit is -1
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cat("The right limit is", lst[["right"]], "\n")
#> The right limit is 1

for (nm in names(lst)) cat("The", nm, "limit is", lst[[nm]], "\n")
#> The far.left limit is -2
#> The left limit is -1
#> The mid limit is 0
#> The right limit is 1
#> The far.right limit is 2

5.10 Removing an Element from a List
Problem
You want to remove an element from a list.

Solution
Assign NULL to the element. R will remove it from the list.

Discussion
To remove a list element, select it by position or by name, and then assign NULL to the
selected element:

years <- list(Kennedy = 1960, Johnson = 1964,
              Carter = 1976, Clinton = 1994)
years
#> $Kennedy
#> [1] 1960
#>
#> $Johnson
#> [1] 1964
#>
#> $Carter
#> [1] 1976
#>
#> $Clinton
#> [1] 1994
years[["Johnson"]] <- NULL # Remove the element labeled "Johnson"
years
#> $Kennedy
#> [1] 1960
#>
#> $Carter
#> [1] 1976
#>
#> $Clinton
#> [1] 1994
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You can remove multiple elements this way, too:

years[c("Carter", "Clinton")] <- NULL # Remove two elements
years
#> $Kennedy
#> [1] 1960

5.11 Flattening a List into a Vector
Problem
You want to flatten all the elements of a list into a vector.

Solution
Use the unlist function.

Discussion
There are many contexts that require a vector. Basic statistical functions work on vec‐
tors but not on lists, for example. If iq.scores is a list of numbers, then we cannot
directly compute their mean:

iq.scores <- list(100, 120, 103, 80, 99)
mean(iq.scores)
#> Warning in mean.default(iq.scores): argument is not numeric or logical:
#> returning NA
#> [1] NA

Instead, we must flatten the list into a vector using unlist and then compute the
mean of the result:

mean(unlist(iq.scores))
#> [1] 100

Here is another example. We can cat scalars and vectors, but we cannot cat a list:

cat(iq.scores, "\n")
#> Error in cat(iq.scores, "\n"): argument 1 (type 'list') cannot be
#> handled by 'cat'

One solution is to flatten the list into a vector before printing:

cat("IQ Scores:", unlist(iq.scores), "\n")
#> IQ Scores: 100 120 103 80 99

See Also
Conversions such as this are discussed more fully in Recipe 5.29.
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5.12 Removing NULL Elements from a List
Problem
Your list contains NULL values. You want to remove them.

Solution
The compact function from the purrr package will remove the NULL elements.

Discussion
The curious reader may be wondering how a list can contain NULL elements, given
that we remove elements by setting them to NULL (see Recipe 5.10). The answer is that
we can create a list containing NULL elements:

library(purrr)     # or library(tidyverse)

lst <- list("Moe", NULL, "Curly")
lst
#> [[1]]
#> [1] "Moe"
#>
#> [[2]]
#> NULL
#>
#> [[3]]
#> [1] "Curly"

compact(lst)   # Remove NULL element
#> [[1]]
#> [1] "Moe"
#>
#> [[2]]
#> [1] "Curly"

In practice, we might also end up with NULL items in a list after applying some trans‐
formation.

Note that in R, NA and NULL are not the same thing. The compact function will remove
NULL from a list but not NA. To remove NA values, see Recipe 5.13.

See Also
See Recipe 5.10 for how to remove list elements and Recipe 5.13 for how to remove
list elements conditionally.
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5.13 Removing List Elements Using a Condition
Problem
You want to remove elements from a list according to a conditional test, such as
removing elements that are undefined, negative, or smaller than some threshold.

Solution
Start with a function that returns TRUE when your criteria are met and FALSE other‐
wise. Then use the discard function from purrr to remove values that match your
criteria. This code snippet, for example, uses the is.na function to remove NA values
from lst:

lst <- list(NA, 0, NA, 1, 2)

lst %>%
  discard(is.na)
#> [[1]]
#> [1] 0
#>
#> [[2]]
#> [1] 1
#>
#> [[3]]
#> [1] 2

Discussion
The discard function removes elements from a list using a predicate, which is a func‐
tion that returns either TRUE or FALSE. The predicate is applied to each element of the
list. If the predicate returns TRUE, the element is discarded; otherwise, it is kept.

Suppose we want to remove character strings from lst. The function is.character
is a predicate that returns TRUE if its argument is a character string, so we can use it
with discard:

lst <- list(3, "dog", 2, "cat", 1)

lst %>%
  discard(is.character)
#> [[1]]
#> [1] 3
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 1
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You can define your own predicate and use it with discard. This example removes
both NA and NULL values from a list by defining the predicate is_na_or_null:

is_na_or_null <- function(x) {
  is.na(x) || is.null(x)
}

lst <- list(1, NA, 2, NULL, 3)

lst %>%
  discard(is_na_or_null)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3

Lists can hold complex objects, too, not just atomic values. Suppose that mods is a list
of linear models created by the lm function:

mods <- list(lm(x ~ y1),
             lm(x ~ y2),
             lm(x ~ y3))

We can define a predicate, filter_r2, to identify models whose R2 values are less
than 0.70, then use the predicate to remove those models from mods:

filter_r2 <- function(model) {
  summary(model)$r.squared < 0.7
}

mods %>%
  discard(filter_r2)

The inverse of discard is the keep function, which uses a predicate to retain list ele‐
ments instead of discarding them.

See Also
See Recipe 5.7, Recipe 5.10, and Recipe 15.3.

5.14 Initializing a Matrix
Problem
You want to create a matrix and initialize it from given values.
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Solution
Capture the data in a vector or list, and then use the matrix function to shape the
data into a matrix. This example shapes a vector into a 2 × 3 matrix (i.e., two rows
and three columns):

vec <- 1:6
matrix(vec, 2, 3)
#>      [,1] [,2] [,3]
#> [1,]    1    3    5
#> [2,]    2    4    6

Discussion
The first argument of matrix is the data, the second argument is the number of rows,
and the third argument is the number of columns. Note that the matrix in the Solu‐
tion was filled column by column, not row by row.

It’s common to initialize an entire matrix to one value, such as 0 or NA. If the first
argument of matrix is a single value, then R will apply the Recycling Rule and auto‐
matically replicate the value to fill the entire matrix:

matrix(0, 2, 3) # Create an all-zeros matrix
#>      [,1] [,2] [,3]
#> [1,]    0    0    0
#> [2,]    0    0    0

matrix(NA, 2, 3) # Create a matrix populated with NAs
#>      [,1] [,2] [,3]
#> [1,]   NA   NA   NA
#> [2,]   NA   NA   NA

You can create a matrix with a one-liner, of course, but it becomes difficult to read:

mat <- matrix(c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3), 2, 3)
mat
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.3  2.2
#> [2,]  1.2  2.1  2.3

A common idiom in R is typing the data itself in a rectangular shape that reveals the
matrix structure:

theData <- c(
  1.1, 1.2, 1.3,
  2.1, 2.2, 2.3
)
mat <- matrix(theData, 2, 3, byrow = TRUE)
mat
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.2  1.3
#> [2,]  2.1  2.2  2.3
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Setting byrow=TRUE tells matrix that the data is row-by-row and not column-by-
column (which is the default). In condensed form, that becomes:

mat <- matrix(c(1.1, 1.2, 1.3,
                2.1, 2.2, 2.3),
              2, 3,
              byrow = TRUE)

Expressed this way, it’s easy to see the two rows and three columns of data.

There is a quick-and-dirty way to turn a vector into a matrix: just assign dimensions
to the vector. This was discussed in the introduction to this chapter. The following
example creates a vanilla vector and then shapes it into a 2 × 3 matrix:

v <- c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3)
dim(v) <- c(2, 3)
v
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.3  2.2
#> [2,]  1.2  2.1  2.3

We find this more opaque than using matrix, especially since there is no byrow
option here.

See Also
See Recipe 5.3.

5.15 Performing Matrix Operations
Problem
You want to perform matrix operations such as transposition, inversion, multiplica‐
tion, or constructing an identity matrix.

Solution
Perform these operations with the following functions:

t(A)

Matrix transposition of A

solve(A)

Matrix inverse of A

A %*% B

Matrix multiplication of A and B
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diag(n)

Constructs an n×n diagonal (identity) matrix

Discussion
Recall that A*B is element-wise multiplication, whereas A %*% B is matrix multiplica‐
tion (see Recipe 2.11).

All these functions return a matrix. Their arguments can be either matrices or data
frames. If they are data frames, then R will first convert them to matrices (although
this is useful only if the data frame contains exclusively numeric values).

5.16 Giving Descriptive Names to the Rows and Columns
of a Matrix
Problem
You want to assign descriptive names to the rows or columns of a matrix.

Solution
Every matrix has a rownames attribute and a colnames attribute. Assign a vector of
character strings to the appropriate attribute:

rownames(mat) <- c("rowname1", "rowname2", ..., "rownameN")
colnames(mat) <- c("colname1", "colname2", ..., "colnameN")

Discussion
R lets you assign names to the rows and columns of a matrix, which is useful for
printing the matrix. R will display the names if they are defined, enhancing the read‐
ability of your output. Consider this matrix of correlations between the stock prices
of IBM, Microsoft, and Google:

print(corr_mat)
#>       [,1]  [,2]  [,3]
#> [1,] 1.000 0.556 0.390
#> [2,] 0.556 1.000 0.444
#> [3,] 0.390 0.444 1.000

In this form, the interpretation of the matrix is not self-evident. We can give names to
the rows and columns, clarifying its meaning:

colnames(corr_mat) <- c("AAPL", "MSFT", "GOOG")
rownames(corr_mat) <- c("AAPL", "MSFT", "GOOG")
corr_mat
#>       AAPL  MSFT  GOOG
#> AAPL 1.000 0.556 0.390
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#> MSFT 0.556 1.000 0.444
#> GOOG 0.390 0.444 1.000

Now you can see at a glance which rows and columns apply to which stocks.

Another advantage of naming rows and columns is that you can refer to matrix ele‐
ments by those names:

# What is the correlation between MSFT and GOOG?
corr_mat["MSFT", "GOOG"]
#> [1] 0.444

5.17 Selecting One Row or Column from a Matrix
Problem
You want to select a single row or a single column from a matrix.

Solution
The solution depends on what you want. If you want the result to be a simple vector,
just use normal indexing:

mat[1, ]     # First row
mat[, 3]     # Third column

If you want the result to be a one-row matrix or a one-column matrix, then include
the drop=FALSE argument:

mat[1, , drop=FALSE]   # First row, one-row matrix
mat[, 3, drop=FALSE]   # Third column, one-column matrix

Discussion
Normally, when you select one row or column from a matrix, R strips off the dimen‐
sions. The result is a dimensionless vector:

mat[1, ]
#> [1] 1.1 1.2 1.3
mat[, 3]
#> [1] 1.3 2.3

When you include the drop=FALSE argument, however, R retains the dimensions. In
that case, selecting a row returns a row vector (a 1 × n matrix):

mat[1, , drop=FALSE]
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.2  1.3

Likewise, selecting a column with drop=FALSE returns a column vector (an n × 1
matrix):
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mat[, 3, drop=FALSE]
#>      [,1]
#> [1,]  1.3
#> [2,]  2.3

5.18 Initializing a Data Frame from Column Data
Problem
Your data is organized by columns, and you want to assemble it into a data frame.

Solution
If your data is captured in several vectors and/or factors, use the data.frame function
to assemble them into a data frame:

df <- data.frame(v1, v2, v3, f1)

If your data is captured in a list that contains vectors and/or factors, use
as.data.frame instead:

df <- as.data.frame(list.of.vectors)

Discussion
A data frame is a collection of columns, each of which corresponds to an observed
variable (in the statistical sense, not the programming sense). If your data is already
organized into columns, then it’s easy to build a data frame.

The data.frame function can construct a data frame from vectors, where each vector
is one observed variable. Suppose you have two numeric variables, one character
variable, and one response variable. The data.frame function can create a data frame
from your vectors:

data.frame(pred1, pred2, pred3, resp)
#>   pred1 pred2 pred3 resp
#> 1  1.75  11.8    AM 13.2
#> 2  4.01  10.7    PM 12.9
#> 3  2.64  12.2    AM 13.9
#> 4  6.03  12.2    PM 14.9
#> 5  2.78  15.0    PM 16.4

Notice that data.frame takes the column names from your program variables. You
can override that default by supplying explicit column names:

data.frame(p1 = pred1, p2 = pred2, p3 = pred3, r = resp)
#>     p1   p2 p3    r
#> 1 1.75 11.8 AM 13.2
#> 2 4.01 10.7 PM 12.9
#> 3 2.64 12.2 AM 13.9
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#> 4 6.03 12.2 PM 14.9
#> 5 2.78 15.0 PM 16.4

If you’d rather have a tibble than a data frame, use the tibble function from the
tidyverse:

tibble(p1 = pred1, p2 = pred2, p3 = pred3, r = resp)
#> # A tibble: 5 x 4
#>      p1    p2 p3        r
#>   <dbl> <dbl> <fct> <dbl>
#> 1  1.75  11.8 AM     13.2
#> 2  4.01  10.7 PM     12.9
#> 3  2.64  12.2 AM     13.9
#> 4  6.03  12.2 PM     14.9
#> 5  2.78  15.0 PM     16.4

Sometimes, your data may indeed be organized into vectors, but those vectors are
held in a list, not individual program variables:

list.of.vectors <- list(p1=pred1, p2=pred2, p3=pred3, r=resp)

In that case, use the as.data.frame function to create a data frame from the list:

as.data.frame(list.of.vectors)
#>     p1   p2 p3    r
#> 1 1.75 11.8 AM 13.2
#> 2 4.01 10.7 PM 12.9
#> 3 2.64 12.2 AM 13.9
#> 4 6.03 12.2 PM 14.9
#> 5 2.78 15.0 PM 16.4

or use as_tibble to create a tibble:

as_tibble(list.of.vectors)
#> # A tibble: 5 x 4
#>      p1    p2 p3        r
#>   <dbl> <dbl> <fct> <dbl>
#> 1  1.75  11.8 AM     13.2
#> 2  4.01  10.7 PM     12.9
#> 3  2.64  12.2 AM     13.9
#> 4  6.03  12.2 PM     14.9
#> 5  2.78  15.0 PM     16.4

Factors in data frames
There is an important difference between creating a data frame and creating a tibble.
When you use the data.frame function to create a data frame, R will convert charac‐
ter values into factors by default. The pred3 value in the preceding data.frame exam‐
ple was converted to a factor, but that is not evident from the output.

The tibble and as_tibble functions, however, do not change character data. If you
look at the tibble example, you’ll see column p3 has type chr, meaning character.
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This difference is something you should be aware of. It can be maddeningly frustrat‐
ing to debug an issue caused by this subtle difference.

5.19 Initializing a Data Frame from Row Data
Problem
Your data is organized by rows, and you want to assemble it into a data frame.

Solution
Store each row in a one-row data frame. Use rbind to bind the rows into one large
data frame:

rbind(row1, row2, ... , rowN)

Discussion
Data often arrives as a collection of observations. Each observation is a record or
tuple that contains several values, one for each observed variable. The lines of a flat
file are usually like that: each line is one record, each record contains several columns,
and each column is a different variable (see Recipe 4.15). Such data is organized by
observation, not by variable. In other words, you are given rows one at a time rather
than columns one at a time.

Each such row might be stored in several ways. One obvious way is as a vector. If you
have purely numerical data, use a vector.

Many datasets, however, are a mixture of numeric, character, and categorical data, in
which case a vector won’t work. We recommend storing each such heterogeneous
row in a one-row data frame. (You could store each row in a list, but this recipe gets a
little more complicated.)

We need to bind together those rows into a data frame. That’s what the rbind func‐
tion does. It binds its arguments in such a way that each argument becomes one row
in the result. If we rbind these three observations, for example, we get a three-row
data frame:

r1 <- data.frame(a = 1, b = 2, c = "X")
r2 <- data.frame(a = 3, b = 4, c = "Y")
r3 <- data.frame(a = 5, b = 6, c = "Z")
rbind(r1, r2, r3)
#>   a b c
#> 1 1 2 X
#> 2 3 4 Y
#> 3 5 6 Z

160 | Chapter 5: Data Structures



When you’re working with a large number of rows, they will likely be stored in a list;
that is, you will have a list of rows. The bind_rows function, from the tidyverse pack‐
age dplyr, handles that case, as shown in this toy example:

list.of.rows <- list(r1, r2, r3)
bind_rows(list.of.rows)
#> Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector

#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector

#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector
#>   a b c
#> 1 1 2 X
#> 2 3 4 Y
#> 3 5 6 Z

Sometimes, for reasons beyond your control, each row of data is stored in a list rather
than one-row data frames. You may be dealing with rows returned by a function or a
database package, for example. bind_rows can handle that situation as well:

# Same toy data, but rows stored in lists
l1 <- list(a = 1, b = 2, c = "X")
l2 <- list(a = 3, b = 4, c = "Y")
l3 <- list(a = 5, b = 6, c = "Z")
list.of.lists <- list(l1, l2, l3)

bind_rows(list.of.lists)
#> # A tibble: 3 x 3
#>       a     b c
#>   <dbl> <dbl> <chr>
#> 1     1     2 X
#> 2     3     4 Y
#> 3     5     6 Z

Factors in data frames
If you would rather get characters instead of factors, you have a couple of options.
One is to set the stringsAsFactors parameter to FALSE when data.frame is called:

data.frame(a = 1, b = 2, c = "a", stringsAsFactors = FALSE)
#>   a b c
#> 1 1 2 a

Of course, if you inherited your data and it’s already in a data frame with factors, you
can convert all the factors to characters using this bonus recipe:

# same setup as in the previous examples
l1 <- list( a=1, b=2, c='X' )
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l2 <- list( a=3, b=4, c='Y' )
l3 <- list( a=5, b=6, c='Z' )
obs <- list(l1, l2, l3)
df <- do.call(rbind, Map(as.data.frame, obs))

# Yes, you could use stringsAsFactors=FALSE above,
# but we're assuming the data.frame
# came to you with factors already

i <- sapply(df, is.factor)             # determine which columns are factors
df[i] <- lapply(df[i], as.character)   # turn only the factors to characters

Keep in mind that if you use a tibble instead of a data frame, then characters will not
be forced into factors by default.

See Also
See Recipe 5.18 if your data is organized by columns, not rows.

5.20 Appending Rows to a Data Frame
Problem
You want to append one or more new rows to a data frame.

Solution
Create a second, temporary data frame containing the new rows. Then use the rbind
function to append the temporary data frame to the original data frame.

Discussion
Suppose we have a data frame of Chicago-area suburbs:

suburbs <- read_csv("./data/suburbs.txt")
#> Parsed with column specification:
#> cols(
#>   city = col_character(),
#>   county = col_character(),
#>   state = col_character(),
#>   pop = col_double()
#> )

Further suppose we want to append a new row. First, we create a one-row data frame
with the new data:

newRow <- data.frame(city = "West Dundee", county = "Kane",
                     state = "IL", pop = 7352)
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Next, we use the rbind function to append that one-row data frame to our existing
data frame:

rbind(suburbs, newRow)
#> # A tibble: 18 x 4
#>   city    county   state     pop
#>   <chr>   <chr>    <chr>   <dbl>
#> 1 Chicago Cook     IL    2853114
#> 2 Kenosha Kenosha  WI      90352
#> 3 Aurora  Kane     IL     171782
#> 4 Elgin   Kane     IL      94487
#> 5 Gary    Lake(IN) IN     102746
#> 6 Joliet  Kendall  IL     106221
#> # ... with 12 more rows

The rbind function tells R that we are appending a new row to suburbs, not a new
column. It may be obvious to you that newRow is a row and not a column, but it is not
obvious to R. (Use the cbind function to append a column.)

The new row must use the same column names as the data frame.
Otherwise, rbind will fail.

We can combine these two steps into one, of course:

rbind(suburbs,
      data.frame(city = "West Dundee", county = "Kane",
                 state = "IL", pop = 7352))
#> # A tibble: 18 x 4
#>   city    county   state     pop
#>   <chr>   <chr>    <chr>   <dbl>
#> 1 Chicago Cook     IL    2853114
#> 2 Kenosha Kenosha  WI      90352
#> 3 Aurora  Kane     IL     171782
#> 4 Elgin   Kane     IL      94487
#> 5 Gary    Lake(IN) IN     102746
#> 6 Joliet  Kendall  IL     106221
#> # ... with 12 more rows

We can even extend this technique to multiple new rows because rbind allows multi‐
ple arguments:

rbind(suburbs,
      data.frame(city = "West Dundee", county = "Kane",
                 state = "IL", pop = 7352),
      data.frame(city = "East Dundee", county = "Kane",
                 state = "IL", pop = 3192)
)
#> # A tibble: 19 x 4

5.20 Appending Rows to a Data Frame | 163



#>   city    county   state     pop
#>   <chr>   <chr>    <chr>   <dbl>
#> 1 Chicago Cook     IL    2853114
#> 2 Kenosha Kenosha  WI      90352
#> 3 Aurora  Kane     IL     171782
#> 4 Elgin   Kane     IL      94487
#> 5 Gary    Lake(IN) IN     102746
#> 6 Joliet  Kendall  IL     106221
#> # ... with 13 more rows

It’s worth noting that in the previous examples we seamlessly commingled tibbles and
data frames. suburbs is a tibble because we used the tidy function read_csv, which
produces tibbles, while newRow was created using data.frame, which returns a tradi‐
tional R data frame. And note that the data frames contain factors while the tibbles do
not:

str(suburbs) # a tibble
#> Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 17 obs. of
#> 4 variables:
#>  $ city  : chr  "Chicago" "Kenosha" "Aurora" "Elgin" ...
#>  $ county: chr  "Cook" "Kenosha" "Kane" "Kane" ...
#>  $ state : chr  "IL" "WI" "IL" "IL" ...
#>  $ pop   : num  2853114 90352 171782 94487 102746 ...
#>  - attr(*, "spec")=
#>   .. cols(
#>   ..   city = col_character(),
#>   ..   county = col_character(),
#>   ..   state = col_character(),
#>   ..   pop = col_double()
#>   .. )
str(newRow)  # a data.frame
#> 'data.frame':    1 obs. of  4 variables:
#>  $ city  : Factor w/ 1 level "West Dundee": 1
#>  $ county: Factor w/ 1 level "Kane": 1
#>  $ state : Factor w/ 1 level "IL": 1
#>  $ pop   : num 7352

When the inputs to rbind are a mix of data.frame objects and tibble objects, the
result will have the same type as the first argument of rbind. So this would produce a
tibble:

rbind(some_tibble, some_data.frame)

while this would produce a data frame:

rbind(some_data.frame, some_tibble)
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5.21 Selecting Data Frame Columns by Position
Problem
You want to select columns from a data frame according to their position.

Solution
Use the select function:

df %>% select(n1, n2, ..., nk)

where df is a data frame and n1, n2, …, nk are integers with values between 1 and the
number of columns.

Discussion
Let’s use the first three rows of the dataset of population data for the 16 largest cities
in the Chicago metropolitan area:

suburbs <- read_csv("data/suburbs.txt") %>% head(3)
#> Parsed with column specification:
#> cols(
#>   city = col_character(),
#>   county = col_character(),
#>   state = col_character(),
#>   pop = col_double()
#> )
suburbs
#> # A tibble: 3 x 4
#>   city    county  state     pop
#>   <chr>   <chr>   <chr>   <dbl>
#> 1 Chicago Cook    IL    2853114
#> 2 Kenosha Kenosha WI      90352
#> 3 Aurora  Kane    IL     171782

Right off the bat, we can see this is a tibble. This will extract the first column (and
only the first column):

suburbs %>%
  dplyr::select(1)
#> # A tibble: 3 x 1
#>   city
#>   <chr>
#> 1 Chicago
#> 2 Kenosha
#> 3 Aurora

These will extract multiple columns:
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suburbs %>%
  dplyr::select(1, 3, 4)
#> # A tibble: 3 x 3
#>   city    state     pop
#>   <chr>   <chr>   <dbl>
#> 1 Chicago IL    2853114
#> 2 Kenosha WI      90352
#> 3 Aurora  IL     171782
suburbs %>%
  dplyr::select(2:4)
#> # A tibble: 3 x 3
#>   county  state     pop
#>   <chr>   <chr>   <dbl>
#> 1 Cook    IL    2853114
#> 2 Kenosha WI      90352
#> 3 Kane    IL     171782

List expressions

The select verb is part of the tidyverse package dplyr. Base R also has its own rich
functionality for selecting columns, at the cost of some additional syntax. The choices
can be confusing until you understand the logic behind the alternatives.

One alternative uses list expressions. This might seem odd until you recall that a data
frame is a list of columns. The list expression selects columns from that list. As you
read this explanation, notice how the change in syntax—double brackets versus single
brackets—changes the meaning of the expression.

We can select exactly one column by using double brackets ([[ and ]]):

df[[n]]

Returns a vector—specifically, the vector in the nth column of df

We can select one or more columns by using single brackets ([ and ]).

df[n]

Returns a data frame consisting solely of the nth column of df

df[c(n1, n2, ..., nk)]

Returns a data frame built from the columns in positions n1, n2, …, nk of df

For example, we can use list notation to select the first column from suburbs, the
city column:

suburbs[[1]]
#> [1] "Chicago" "Kenosha" "Aurora"

That column is a character vector, so that’s what suburbs[[1]] returns: a vector.
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The result changes when we use the single-bracket notation, as in suburbs[1] or
suburbs[c(1,3)]. We still get the requested columns, but R leaves them in a data
frame. This example returns the first column as a one-column data frame:

suburbs[1]
#> # A tibble: 3 x 1
#>   city
#>   <chr>
#> 1 Chicago
#> 2 Kenosha
#> 3 Aurora

And this example returns the first and third columns as a data frame:

suburbs[c(1, 3)]
#> # A tibble: 3 x 2
#>   city    state
#>   <chr>   <chr>
#> 1 Chicago IL
#> 2 Kenosha WI
#> 3 Aurora  IL

The expression suburbs[1] is actually a shortened form of sub
urbs[c(1)]. We don’t need the c(...) wrapper because there is
only one n.

A major source of confusion is that suburbs[[1]] and suburbs[1] look similar but
produce very different results:

suburbs[[1]]

Returns one column

suburbs[1]

Returns a data frame that contains exactly one column

The point here is that “one column” is different from “a data frame that contains one
column.” The first expression returns a vector. The second expression returns a data
frame, which is a different data structure.

Matrix-style subscripting
You can use matrix-style subscripting to select columns from a data frame:

df[, n]

Returns a vector taken from the nth column (assuming that n contains exactly
one value)
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df[, c(n1, n2, ..., nk)]

Returns a data frame built from the columns in positions n1, n2, …, nk

An odd quirk can bite you here: you might get a column vector or you might get a
data frame, depending upon how many subscripts you use and whether you are oper‐
ating on a tibble or a data.frame. Tibbles will always return tibbles when you index.
However, a data.frame may return a vector if you use one index.

In the simple case of one index on a data.frame you get a vector, like this:

# suburbs is a tibble so we convert for this example
suburbs_df &lt;<- as.data.frame(suburbs)
suburbs_df[, 1]
#> [1] "Chicago" "Kenosha" "Aurora"

But using the same matrix-style syntax with multiple indexes returns a data frame:

suburbs_df[, c(1, 4)]
#>      city     pop
#> 1 Chicago 2853114
#> 2 Kenosha   90352
#> 3  Aurora  171782

This creates a problem. Suppose you see this expression in some old R code:

df[, vec]

Quick, does that return a column or a data frame? Well, it depends. If vec contains
one value, then you get a column; otherwise, you get a data frame. You cannot tell
from the syntax alone.

To avoid this problem, you can include drop=FALSE in the subscripts, forcing R to
return a data frame:

df[, vec, drop = FALSE]

Now there is no ambiguity about the returned data structure. It’s a data frame.

When all is said and done, using matrix notation to select columns from data frames
can be tricky. Use select when you can.

See Also
See Recipe 5.17 for more about using drop=FALSE.

5.22 Selecting Data Frame Columns by Name
Problem
You want to select columns from a data frame according to their name.
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Solution
Use select and give it the column names.

df %>% select(name1, name2, ..., namek)

Discussion
All columns in a data frame must have names. If you know the name, it’s usually
more convenient and readable to select by name, not by position. Note that you don’t
put the column names in quotes when using select.

The solutions described here are similar to those for Recipe 5.21, where we selected
columns by position. The only difference is that here we use column names instead of
column numbers. All the observations made in that recipe apply here.

List expressions

The select verb is part of the tidyverse. Base R itself also has several rich methods for
selecting columns by name, at the cost of some additional syntax.

To select a single column, use one of these list expressions. Note that they use double
brackets ([[ and ]]):

df[["name"]]

Returns one column, the column called name

df$name

Same as previous, just different syntax

To select one or more columns, use these list expressions. Note that they use single
brackets ([ and ]):

df["name"]

Selects one column from a data frame

df[c("name1", "name2", ..., "namek")]

Selects several columns

Matrix-style subscripting
Base R also allows matrix-style subscripting for selecting one or more columns from a
data frame by name:

df[, "name"]

Returns the named column
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df[, c("name1", "name2", ..., "namek")]

Selects several columns in a data frame

The matrix-style subscripting can return either a column or a data frame, so be care‐
ful how many names you supply. See the comments in Recipe 5.21 for a discussion of
this “gotcha” and using drop=FALSE.

See Also
See Recipe 5.21 to select by position instead of name.

5.23 Changing the Names of Data Frame Columns
Problem
You want to change the names of a data frame’s columns.

Solution
The rename function from the dplyr package makes renaming pretty easy:

df %>% rename(newname1 = oldname1, ... , newnamen = oldnamen)

where df is a data frame, oldnamei are names of columns in df, and newnamei are the
desired new names.

Note that the argument order is newname = oldname.

Discussion
The columns of data frames must have names. You can change them using rename:

df <- data.frame(V1 = 1:3, V2 = 4:6, V3 = 7:9)
df %>% rename(tom = V1, dick = V2)
#>   tom dick V3
#> 1   1    4  7
#> 2   2    5  8
#> 3   3    6  9

The column names are stored in an attribute called colnames, so another way to
rename columns is to change that attribute:

colnames(df) <- c("tom", "dick", "V2")
df
#>   tom dick V2
#> 1   1    4  7
#> 2   2    5  8
#> 3   3    6  9
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If you happen to be using select to select individual columns, you can rename those
columns at the same time:

df <- data.frame(V1 = 1:3, V2 = 4:6, V3 = 7:9)
df %>% select(tom = V1, V2)
#>   tom V2
#> 1   1  4
#> 2   2  5
#> 3   3  6

The difference between renaming with select versus renaming with rename is that
rename will rename what you specify, leaving all other columns intact and unchanged,
whereas select keeps only the columns you select. In the preceding example, V3 is
dropped because it’s not in the select statement. Both select and rename use the
same argument order: newname = oldname.

See Also
See Recipe 5.29.

5.24 Removing NAs from a Data Frame
Problem
Your data frame contains NA values, which is creating problems for you.

Solution
Use na.omit to remove rows that contain any NA values:

clean_dfrm <- na.omit(dfrm)

Discussion
We frequently stumble upon situations where just a few NA values in a data frame
cause everything to fall apart. One solution is simply to remove all rows that contain
any NAs. That’s what na.omit does.

Consider a data frame with embedded NA values:

df <- data.frame(
  x = c(1, NA, 3, 4, 5),
  y = c(1, 2, NA, 4, 5)
)
df
#>    x  y
#> 1  1  1
#> 2 NA  2
#> 3  3 NA
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#> 4  4  4
#> 5  5  5

The cumsum function should calculate cumulative sums, but it stumbles on the NA
values:

colSums(df)
#>  x  y
#> NA NA

If we remove rows with NA values, cumsum can complete its summations:

cumsum(na.omit(df))
#>    x  y
#> 1  1  1
#> 4  5  5
#> 5 10 10

But watch out! The na.omit function removes entire rows. The non-NA values in
those rows also disappear, changing the meaning of “cumulative sum.”

This recipe works for removing NA from vectors and matrices, too, but not lists.

The obvious danger here is that simply dropping observations from your data could
render the results numerically or statistically meaningless. Make sure that omitting
data makes sense in your context. Remember that na.omit will remove entire rows,
not just the NA values, which could eliminate useful information.

5.25 Excluding Columns by Name
Problem
You want to exclude a column from a data frame using its name.

Solution
Use the select function from the dplyr package with a dash (minus sign) in front of 
the name of the column to exclude:

select(df, -bad)   # Select all columns from df except bad

Discussion
Placing a minus sign in front of a variable name tells the select function to drop that
variable.

This can come in handy when we’re calculating a correlation matrix from a data
frame, and we want to exclude the nondata columns such as labels:
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cor(patient_data)
#>            patient_id    pre  dosage   post
#> patient_id     1.0000  0.159 -0.0486  0.391
#> pre            0.1590  1.000  0.8104 -0.289
#> dosage        -0.0486  0.810  1.0000 -0.526
#> post           0.3912 -0.289 -0.5262  1.000

This correlation matrix includes the meaningless “correlation” between patient_id
and other variables, which is annoying. We can exclude the patient_id column to
clean up the output:

patient_data %>%
  select(-patient_id) %>%
  cor
#>           pre dosage   post
#> pre     1.000  0.810 -0.289
#> dosage  0.810  1.000 -0.526
#> post   -0.289 -0.526  1.000

We can exclude multiple columns the same way:

patient_data %>%
  select(-patient_id, -dosage) %>%
  cor()
#>         pre   post
#> pre   1.000 -0.289
#> post -0.289  1.000

5.26 Combining Two Data Frames
Problem
You want to combine the contents of two data frames into one data frame.

Solution
To combine the columns of two data frames side by side, use cbind (column bind):

all.cols <- cbind(df1, df2)

To “stack” the rows of two data frames, use rbind (row bind):

all.rows <- rbind(df1, df2)

Discussion
You can combine data frames in one of two ways: either by putting the columns side
by side to create a wider data frame, or by “stacking” the rows to create a taller data
frame.

The cbind function will combine data frames side by side:
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df1 <- data.frame(a = c(1,2))
df2 <- data.frame(b = c(7,8))

cbind(df1, df2)
#>   a b
#> 1 1 7
#> 2 2 8

You would normally combine columns with the same height (number of rows). Tech‐
nically speaking, however, cbind does not require matching heights. If one data frame
is short, R will invoke the Recycling Rule to extend the short columns as necessary
(see Recipe 5.3), which may or may not be what you want.

The rbind function will “stack” the rows of two data frames:

df1 <- data.frame(x = c("a", "a"), y = c(5, 6))
df2 <- data.frame(x = c("b", "b"), y = c(9, 10))
rbind(df1, df2)
#>   x         y
#> 1 a         5
#> 2 a         6
#> 3 b         9
#> 4 b        10

The rbind function requires that the data frames have the same width—the same
number of columns and same column names. The columns need not be in the same
order, however; rbind will sort that out.

Finally, this recipe is slightly more general than the title implies. First, you can com‐
bine more than two data frames because both rbind and cbind accept multiple argu‐
ments. Second, you can apply this recipe to other data types because rbind and cbind
work also with vectors, lists, and matrices.

5.27 Merging Data Frames by Common Column
Problem
You have two data frames that share a common column. You want to merge or join
their rows into one data frame by matching on the common column.

Solution
We can use the join functions from the dplyr package to join our data frames
together on a common column. If you want only rows that appear in both data
frames, use inner_join:

inner_join(df1, df2, by = "col")

where "col" is the column that appears in both data frames.
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If you want all rows that appear in either data frame, use full_join instead:

full_join(df1, df2, by = "col")

If you want all rows from df1 and only those from df2 that match, use left_join:

left_join(df1, df2, by = "col")

Or to get all records from df2 and only the matching ones from df1, use right_join:

right_join(df1, df2, by = "col")

Discussion
Suppose we have two data frames, born and died, that each contain a column called
name:

born <- tibble(
  name = c("Moe", "Larry", "Curly", "Harry"),
  year.born = c(1887, 1902, 1903, 1964),
  place.born = c("Bensonhurst", "Philadelphia", "Brooklyn", "Moscow")
)

died <- tibble(
  name = c("Curly", "Moe", "Larry"),
  year.died = c(1952, 1975, 1975)
)

We can merge them into one data frame by using name to combine matched rows:

inner_join(born, died, by="name")
#> # A tibble: 3 x 4
#>   name  year.born place.born   year.died
#>   <chr>     <dbl> <chr>            <dbl>
#> 1 Moe        1887 Bensonhurst       1975
#> 2 Larry      1902 Philadelphia      1975
#> 3 Curly      1903 Brooklyn          1952

Notice that inner_join does not require the rows to be sorted or even to occur in the
same order. It found the matching rows for Curly even though they occur in different
positions. It also discarded the row for Harry, which appeared only in born.

A full_join of these data frames includes every row of both, even rows with no
matching values:

full_join(born, died, by="name")
#> # A tibble: 4 x 4
#>   name  year.born place.born   year.died
#>   <chr>     <dbl> <chr>            <dbl>
#> 1 Moe        1887 Bensonhurst       1975
#> 2 Larry      1902 Philadelphia      1975
#> 3 Curly      1903 Brooklyn          1952
#> 4 Harry      1964 Moscow              NA
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Where a data frame has no matching value, its columns are filled with NA: the
year.died for Harry is NA.

If we don’t supply the join function with a field to join by, then it will attempt to join
by any field with matching names in both data frames and will return an informa‐
tional response stating which field it is joining on:

full_join(born, died)
#> Joining, by = "name"
#> # A tibble: 4 x 4
#>   name  year.born place.born   year.died
#>   <chr>     <dbl> <chr>            <dbl>
#> 1 Moe        1887 Bensonhurst       1975
#> 2 Larry      1902 Philadelphia      1975
#> 3 Curly      1903 Brooklyn          1952
#> 4 Harry      1964 Moscow              NA

If we want to join two data frames on a field that does not have the same name in
both data frames, we need our by parameter to be a vector of equalities:

df1 <- data.frame(key1 = 1:3, value=2)
df2 <- data.frame(key2 = 1:3, value=3)

inner_join(df1, df2, by = c("key1" = "key2"))
#>   key1 value.x value.y
#> 1    1       2       3
#> 2    2       2       3
#> 3    3       2       3

Notice in the preceding example how both tables have a field named value that gets
renamed in the output. The field from the first table becomes value.x, while the field
from the second table becomes value.y. dplyr joins will always rename output this
way when there is a naming clash on columns not being joined on.

See Also
See Recipe 5.26 for other ways to combine data frames.

The example joined on a single column, name, but these functions can join on multi‐
ple columns, too. For details, see the function documentation by typing ?

dplyr::join.

These join operations were inspired by SQL. Just like in SQL, there are multiple types
of joins in dplyr, including inner, left, right, full, semi, and anti. Again, see the func‐
tion documentation.
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5.28 Converting One Atomic Value into Another
Problem
You have a data value that has an atomic data type: character, complex, double, inte‐
ger, or logical. You want to convert this value into one of the other atomic data types.

Solution
For each atomic data type, there is a function for converting values to that type. The
conversion functions for atomic types include:

• as.character(x)

• as.complex(x)

• as.numeric(x) or as.double(x)
• as.integer(x)

• as.logical(x)

Discussion
Converting one atomic type into another is usually pretty simple. If the conversion
works, you get what you would expect. If it does not work, you get NA:

as.numeric(" 3.14 ")
#> [1] 3.14
as.integer(3.14)
#> [1] 3
as.numeric("foo")
#> Warning: NAs introduced by coercion
#> [1] NA
as.character(101)
#> [1] "101"

If you have a vector of atomic types, these functions apply themselves to every value.
So the preceding examples of converting scalars generalize easily to converting entire
vectors:

as.numeric(c("1", "2.718", "7.389", "20.086"))
#> [1]  1.00  2.72  7.39 20.09
as.numeric(c("1", "2.718", "7.389", "20.086", "etc."))
#> Warning: NAs introduced by coercion
#> [1]  1.00  2.72  7.39 20.09    NA
as.character(101:105)
#> [1] "101" "102" "103" "104" "105"
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When converting logical values into numeric values, R converts FALSE to 0 and TRUE
to 1:

as.numeric(FALSE)
#> [1] 0
as.numeric(TRUE)
#> [1] 1

This behavior is useful when you are counting occurrences of TRUE in vectors of logi‐
cal values. If logvec is a vector of logical values, then sum(logvec) does an implicit
conversion from logical to integer values and returns the number of TRUEs:

logvec <- c(TRUE, FALSE, TRUE, TRUE, TRUE, FALSE)
sum(logvec) ## num true
#> [1] 4
length(logvec) - sum(logvec) ## num not true
#> [1] 2

5.29 Converting One Structured Data Type into Another
Problem
You want to convert a variable from one structured data type to another—for exam‐
ple, converting a vector into a list, or a matrix into a data frame.

Solution
These functions convert their argument into the corresponding structured data type:

• as.data.frame(x)

• as.list(x)

• as.matrix(x)

• as.vector(x)

Some of these conversions may surprise you, however. We suggest you review
Table 5-2 for more detail.

Discussion
Converting between structured data types can be tricky. Some conversions behave as
you’d expect. If you convert a matrix into a data frame, for instance, the rows and col‐
umns of the matrix become the rows and columns of the data frame. No sweat.

In other cases, the results might surprise you. Table 5-2 summarizes some noteworthy
examples.
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Table 5-2. Data conversions
Conversion How Notes
Vector→List as.list(vec) Don’t use list(vec);

that creates a one-element
list whose only element is a
copy of vec.

Vector→Matrix To create a one-column matrix: cbind(vec) or
as.matrix(vec) 
To create a one-row matrix: rbind(vec) 
To create an n × m matrix: matrix(vec,n,m)

See Recipe 5.14.

Vector→Data frame To create a one-column data frame: as.data.frame(vec) 
To create a one-row data frame:
as.data.frame(rbind(vec))

List→Vector unlist(lst) Use unlist rather than
as.vector; see Note 1
and Recipe 5.11.

List→Matrix To create a one-column matrix: as.matrix(lst) 
To create a one-row matrix: as.matrix(rbind(lst)) 
To create an n × m matrix: matrix(lst,n,m)

List→Data frame If the list elements are columns of data:
as.data.frame(lst) 
If the list elements are rows of data, see Recipe 5.19.

Matrix→Vector as.vector(mat) Returns all matrix elements
in a vector.

Matrix→List as.list(mat) Returns all matrix elements
in a list.

Matrix→Data frame as.data.frame(mat)

Data frame→Vector To convert a one-row data frame: df[1,] 
To convert a one-column data frame: df[,1] or df[[1]]

See Note 2.

Data frame→List as.list(df) See Note 3.

Data frame→Matrix as.matrix(df) See Note 4.

The notes cited in the table are as follows:

1. When you convert a list into a vector, the conversion works cleanly if your list
contains atomic values that are all of the same mode. Things become complicated
if either your list contains mixed modes (e.g., numeric and character), in which
case everything is converted to characters, or your list contains other structured
data types (such as sublists or data frames), in which case very odd things hap‐
pen, so don’t do that.

2. Converting a data frame into a vector makes sense only if the data frame contains
one row or one column. To extract all its elements into one long vector, use
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as.vector(as.matrix(df)). But even that makes sense only if the data frame is
all numeric or all character; if not, everything is first converted to character
strings.

3. Converting a data frame into a list may seem odd in that a data frame is already a
list (i.e., a list of columns). Using as.list essentially removes the class
(data.frame) and thereby exposes the underlying list. That is useful when you
want R to treat your data structure as a list—say, for printing.

4. Be careful when converting a data frame into a matrix. If the data frame contains
only numeric values, then you get a numeric matrix. If it contains only character
values, you get a character matrix. But if the data frame is a mix of numbers,
characters, and/or factors, then all values are first converted to characters. The
result is a matrix of character strings.

Special considerations for matrices
The matrix conversions detailed here assume that your matrix is homogeneous—that
is, all elements have the same mode (e.g., all numeric or all character). A matrix can
be heterogeneous, too, when the matrix is built from a list. If so, conversions become
messy. For example, when you convert a mixed-mode matrix to a data frame, the data
frame’s columns are actually lists (to accommodate the mixed data).

See Also
See Recipe 5.28 for converting atomic data types; see the introduction to this chapter
for remarks on problematic conversions.
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CHAPTER 6

Data Transformations

While traditional programming languages use loops, R has traditionally encouraged
using vectorized operations and the apply family of functions to crunch data in
batches, greatly streamlining the calculations. There is nothing to prevent you from
writing loops in R that break your data into whatever chunks you want and then
doing an operation on each chunk. However, using vectorized functions can, in many
cases, increase the speed, readability, and maintainability of your code.

In recent history, though, the tidyverse—specifically the purrr and dplyr packages—
has introduced new idioms into R that make these concepts easier to learn and
slightly more consistent. The name purrr comes from a play on the phrase “Pure R.”
A “pure function” is a function whose result is determined only by its inputs, and
which does not produce any side effects. This is not a functional programming con‐
cept you need to understand in order to get great value from purrr, however. All
most users need to know is that purrr contains functions to help us operate “chunk
by chunk” on our data in a way that meshes well with other tidyverse packages such
as dplyr.

Base R has many apply functions—apply, lapply, sapply, tapply, and mapply—as
well as their cousins, by and split. These are solid functions that have been workhor‐
ses in Base R for years. We struggled a bit with how much to focus on the Base R
apply functions and how much to focus on the newer “tidy” approach. After much
debate, we’ve chosen to try to illustrate the purrr approach and to acknowledge Base
R approaches and, in a few places, to illustrate both. The interface to purrr and dplyr
is very clean and, we believe, in most cases, more intuitive.
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6.1 Applying a Function to Each List Element
Problem
You have a list, and you want to apply a function to each element of the list.

Solution
Use map to apply a function to every element of a list:

library(tidyverse)

lst %>%
  map(fun)

Discussion
Let’s look at a specific example of taking the average of all the numbers in each ele‐
ment of a list:

library(tidyverse)

lst <- list(
  a = c(1,2,3),
  b = c(4,5,6)
)
lst %>%
  map(mean)
#> $a
#> [1] 2
#>
#> $b
#> [1] 5

The map function will call your function once for every element in your list. Your
function should expect one argument, an element from the list. The map functions
will collect the returned values and return them in a list.

The purrr package contains a whole family of map functions that take a list or a vector
and then return an object with the same number of elements as the input. The type of
object they return varies based on which map function is used. See the help file for map
for a complete list, but a few of the most common are as follows:

map

Always returns a list, and the elements of the list may be of different types. This is
quite similar to the Base R function lapply.

map_chr

Returns a character vector.
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map_int

Returns an integer vector.

map_dbl

Returns a floating-point numeric vector.

Let’s take a quick look at a contrived situation where we have a function that could
result in a character or an integer result:

fun <- function(x) {
  if (x > 1) {
    1
  } else {
    "Less Than 1"
  }
}

fun(5)
#> [1] 1
fun(0.5)
#> [1] "Less Than 1"

Let’s create a list of elements that we can map fun to and look at how some of the map
variants behave:

lst <- list(.5, 1.5, .9, 2)

map(lst, fun)
#> [[1]]
#> [1] "Less Than 1"
#>
#> [[2]]
#> [1] 1
#>
#> [[3]]
#> [1] "Less Than 1"
#>
#> [[4]]
#> [1] 1

You can see that map produced a list and it is of mixed data types.

map_chr will produce a character vector and coerce the numbers into characters:

map_chr(lst, fun)
#> [1] "Less Than 1" "1.000000"    "Less Than 1" "1.000000"

## or using pipes
lst %>%
  map_chr(fun)
#> [1] "Less Than 1" "1.000000"    "Less Than 1" "1.000000"

while map_dbl will try to coerce a character string into a double and die trying:
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map_dbl(lst, fun)
#> Error: Can't coerce element 1 from a character to a double

As mentioned earlier, the Base R lapply function acts very much like map. The Base R
sapply function is more like the other map functions we discussed previously, in that
the function tries to simplify the results into a vector or matrix.

See Also
See Recipe 15.3.

6.2 Applying a Function to Every Row of a Data Frame
Problem
You have a function and you want to apply it to every row in a data frame.

Solution
The mutate function will create a new variable based on a vector of values. But if we
are using a function that can’t take in a vector and output a vector, then we have to do
a row-by-row operation using rowwise.

We can use rowwise in a pipe chain to tell dplyr to do all following commands row
by row:

df %>%
  rowwise() %>%
  row_by_row_function()

Discussion
Let’s create a function and apply it row by row to a data frame. Our function will sim‐
ply calculate the sum of a sequence from a to b by c:

fun <- function(a, b, c) {
  sum(seq(a, b, c))
}

Let’s create some data to apply this function to, then use rowwise to apply our func‐
tion, fun, to it:

df <- data.frame(mn = c(1, 2, 3),
                 mx = c(8, 13, 18),
                 rng = c(1, 2, 3))

df %>%
  rowwise %>%
  mutate(output = fun(a = mn, b = mx, c = rng))
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#> Source: local data frame [3 x 4]
#> Groups: <by row>
#>
#> # A tibble: 3 x 4
#>      mn    mx   rng output
#>   <dbl> <dbl> <dbl>  <dbl>
#> 1     1     8     1     36
#> 2     2    13     2     42
#> 3     3    18     3     63

Had we tried to run this function without rowwise, it would have thrown an error
because the seq function cannot process an entire vector:

df %>%
  mutate(output = fun(a = mn, b = mx, c = rng))
#> Error in seq.default(a, b, c): 'from' must be of length 1

6.3 Applying a Function to Every Row of a Matrix
Problem
You have a matrix. You want to apply a function to every row, calculating the function
result for each row.

Solution
Use the apply function. Set the second argument to 1 to indicate row-by-row applica‐
tion of the function:

results <- apply(mat, 1, fun)    # mat is a matrix, fun is a function

The apply function will call fun once for each row of the matrix, assemble the
returned values into a vector, and then return that vector.

Discussion
You may notice that we show only the use of the Base R apply function here, while
other recipes illustrate purrr alternatives. As of this writing, matrix operations are
out of scope for purrr, so we use the very solid Base R apply function. If you really
like the purrr syntax, you can use those functions if you first convert your matrix to a
data frame or tibble. But if your matrix is large, you will notice a meaningful runtime
slowdown using purrr.

Suppose we have a matrix long containing longitudinal data, so each row has data for
one subject and the columns contain the repeated observations over time:

long <- matrix(1:15, 3, 5)
long
#>      [,1] [,2] [,3] [,4] [,5]
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#> [1,]    1    4    7   10   13
#> [2,]    2    5    8   11   14
#> [3,]    3    6    9   12   15

We could calculate the average observation for each subject by applying the mean
function to each row. The result is a vector:

apply(long, 1, mean)
#> [1] 7 8 9

If our matrix has row names, apply uses them to identify the elements of the result‐
ing vector, which is handy:

rownames(long) <- c("Moe", "Larry", "Curly")
apply(long, 1, mean)
#>   Moe Larry Curly
#>     7     8     9

The function being called should expect one argument, a vector, which will be one
row from the matrix. The function can return a scalar or a vector. In the vector case,
apply assembles the results into a matrix. The range function returns a vector of two
elements, the minimum and the maximum, so applying it to long produces a matrix:

apply(long, 1, range)
#>      Moe Larry Curly
#> [1,]   1     2     3
#> [2,]  13    14    15

You can employ this recipe on data frames as well. It works if the data frame is homo‐
geneous—that is, either all numbers or all character strings. When the data frame has
columns of different types, extracting vectors from the rows isn’t sensible because
vectors must be homogeneous.

6.4 Applying a Function to Every Column
Problem
You have a matrix or data frame, and you want to apply a function to every column.

Solution
For a matrix, use the apply function. Set the second argument to 2, which indicates
column-by-column application of the function. So, if our matrix or data frame was
named mat and we wanted to apply a function named fun to every column, it would
look like this:

apply(mat, 2, fun)
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For a data frame, use the map_df function from purrr:

df2 <- map_df(df, fun)

Discussion
Let’s look at an example with real numbers and apply the mean function to every col‐
umn of a matrix:

mat <- matrix(c(1, 3, 2, 5, 4, 6), 2, 3)
colnames(mat) <- c("t1", "t2", "t3")
mat
#>      t1 t2 t3
#> [1,]  1  2  4
#> [2,]  3  5  6

apply(mat, 2, mean)  # Compute the mean of every column
#>  t1  t2  t3
#> 2.0 3.5 5.0

In Base R, the apply function is intended for processing a matrix or data frame. The
second argument of apply determines the direction:

• 1 means process row by row.
• 2 means process column by column.

This is more mnemonic than it looks. We speak of matrices in “rows and columns,” so
rows are first and columns second: 1 and 2, respectively.

A data frame is a more complicated data structure than a matrix, so there are more
options. You can simply use apply, in which case R will convert your data frame to a
matrix and then apply your function. That will work if your data frame contains only
one type of data but will probably not do what you want if some columns are numeric
and some are character. In that case, R will force all columns to have identical types,
likely performing an unwanted conversion as a result.

Fortunately, there are multiple alternatives. Recall that a data frame is a kind of list: it
is a list of the columns of the data frame. purrr has a whole family of map functions
that return different types of objects. Of particular interest here is map_df, which
returns a data.frame (thus the df in the name):

df2 <- map_df(df, fun) # Returns a data.frame

The function fun should expect one argument: a column from the data frame.

Here is a common recipe to check the types of columns in data frames. In this exam‐
ple, the batch column of this data frame, at a quick glance, seems to contain
numbers:
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load("./data/batches.rdata")
head(batches)
#>   batch clinic dosage shrinkage
#> 1     3     KY     IL    -0.307
#> 2     3     IL     IL    -1.781
#> 3     1     KY     IL    -0.172
#> 4     3     KY     IL     1.215
#> 5     2     IL     IL     1.895
#> 6     2     NJ     IL    -0.430

But using map_df to print out the class of each column reveals the column batch to be
a factor instead:

map_df(batches, class)
#> # A tibble: 1 x 4
#>   batch  clinic dosage shrinkage
#>   <chr>  <chr>  <chr>  <chr>
#> 1 factor factor factor numeric

Notice how the third line of the output says <chr> repeatedly. This
is because the output of class is being put in a data frame and then
printed. The intermediate data frame is all character fields. It’s the
last row that tells us our original data frame has three factor col‐
umns and one numeric field.

See Also
See Recipe 5.21, Recipe 6.1, and Recipe 6.3.

6.5 Applying a Function to Parallel Vectors or Lists
Problem
You have a function that takes multiple arguments. You want to apply the function
element-wise to vectors and obtain a vector result. Unfortunately, the function is not
vectorized; that is, it works on scalars but not on vectors.

Solution
Use one of the map or pmap functions from the tidyverse core package purrr. The
most general solution is to put your vectors in a list, then use pmap:

lst <- list(v1, v2, v3)
pmap(lst, fun)

pmap will take the elements of lst and pass them as the inputs to fun.
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If you only have two vectors you are passing as inputs to your function, the map2
family of functions is convenient and saves you the step of putting your vectors in a
list first. map2 will return a list:

map2(v1, v2, fun)

while the typed variants (map2_chr, map2_dbl, etc.) return vectors of the type their
name implies. So, if fun returns only a double, use the typed variant of map2 instead:

map2_dbl(v1, v2, fun)

The typed variants in purrr functions refer to the output type expected from the
function. All the typed variants return vectors of their respective type, while the
untyped variants return lists, which allow mixing of types.

Discussion
The basic operators of R, such as x + y, are vectorized; this means that they compute
their result element by element and return a vector of results. Also, many R functions
are vectorized.

Not all functions are vectorized, however, and those that are not typed work only on
scalars. Using vector arguments produces errors at best and meaningless results at
worst. In such cases, the map functions from purrr can effectively vectorize the func‐
tion for you.

Consider the gcd function from Recipe 15.3, which takes two arguments:

gcd <- function(a, b) {
  if (b == 0) {
    return(a)
  } else {
    return(gcd(b, a %% b))
  }
}

If we apply gcd to two vectors, the result is wrong answers and a pile of error
messages:

gcd(c(1, 2, 3), c(9, 6, 3))
#> Warning in if (b == 0) {: the condition has length > 1 and only the first
#> element will be used

#> Warning in if (b == 0) {: the condition has length > 1 and only the first
#> element will be used

#> Warning in if (b == 0) {: the condition has length > 1 and only the first
#> element will be used
#> [1] 1 2 0
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The function is not vectorized, but we can use map to “vectorize” it. In this case, since
we have two inputs we’re mapping over, we should use the map2 function. This gives
the element-wise greatest common divisors (GCDs) between two vectors:

a <- c(1, 2, 3)
b <- c(9, 6, 3)
my_gcds <- map2(a, b, gcd)
my_gcds
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3

Notice that map2 returns a list of lists. If we wanted the output in a vector, we could
use unlist on the result:

unlist(my_gcds)
#> [1] 1 2 3

or use one of the typed variants, such as map2_dbl.

The map family of purrr functions give you a series of variations that return specific
types of output. The suffixes on the function names communicate the type of vector
they will return. While map and map2 return lists, since the type-specific variants are
returning objects guaranteed to be the same type, they can be put in atomic vectors. 
For example, we could use the map_chr function to ask R to coerce the results into
character output or map2_dbl to ensure the results are doubles:

map2_chr(a, b, gcd)
#> [1] "1.000000" "2.000000" "3.000000"
map2_dbl(a, b, gcd)
#> [1] 1 2 3

If our data has more than two vectors, or the data is already in a list, we can use the
pmap family of functions, which take a list as an input:

lst <- list(a,b)
pmap(lst, gcd)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3

Or if we want a typed vector as output:
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lst <- list(a,b)
pmap_dbl(lst, gcd)
#> [1] 1 2 3

With the purrr functions, remember that the pmap family are parallel mappers that
take in a list as inputs, while map2 functions take two, and only two, vectors as inputs.

See Also
This is really just a special case of our very first recipe in this chapter, Recipe 6.1. See
that recipe for more discussion of map variants. In addition, Jenny Bryan has a great
collection of purrr tutorials on her GitHub site.

6.6 Applying a Function to Groups of Data
Problem
Your data elements occur in groups. You want to process the data by groups—for
example, summing by group or averaging by group.

Solution
The easiest way to do grouping is with the dplyr function group_by in conjunction 
with summarize. If our data frame is df and has a variable we want to group by
named grouping_var, and we want to apply the function fun to all the combinations
of v1 and v2, we can do that with group_by:

df %>%
  group_by(v1, v2) %>%
  summarize(
    result_var = fun(value_var)
  )

Discussion
Let’s look at a specific example where our input data frame, df, contains a variable,
my_group, which we want to group by, and a field named values which we would like
to calculate some statistics on:

df <- tibble(
  my_group = c("A", "B","A", "B","A", "B"),
  values = 1:6
)

df %>%
  group_by(my_group) %>%
  summarize(
    avg_values = mean(values),
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    tot_values = sum(values),
    count_values = n()
  )
#> # A tibble: 2 x 4
#>   my_group avg_values tot_values count_values
#>   <chr>         <dbl>      <int>        <int>
#> 1 A                 3          9            3
#> 2 B                 4         12            3

The output has one record per grouping along with calculated values for the three
summary fields we defined.

If you are grouping by several variables, please be aware that summa
rize will change your grouping. Each grouping becomes a single
row; at the same time, it also removes the last grouping variable. In
other words, if you group your data by A, B, and C and then summa
rize it, the resulting data frame is grouped only by A and B. This is
surprising but necessary. If summarize kept the C grouping, each
“group” would contain exactly one row, which would be pointless.

6.7 Creating a New Column Based on Some Condition
Problem
You want to create a new column in a data frame based on some condition.

Solution
Using the dplyr tidyverse package, we can create new data frame columns with
mutate and then use case_when to implement conditional logic.

df %>%
  mutate(
    new_field = case_when(my_field == "something" ~ "result",
                    my_field != "something else" ~ "other result",
                    TRUE ~ "all other results")
  )

Discussion
The case_when function from dplyr is analogous to CASE WHEN in SQL or nested IF
statements in Excel. The function tests every element and, when it finds a condition
that is true, returns the value on the righthand side of the ~ (tilde).

Let’s look at an example where we want to add a text field that describes a value. First
let’s set up some simple example data in a data frame with one column named vals:

df <- data.frame(vals = 1:5)
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Now let’s implement logic that creates a field called new_vals. If vals is less than or
equal to 2, we’ll return 2 or less; if the value is greater than 2 and less than or equal
to 4, we’ll return 2 to 4, and otherwise we’ll return over 4:

df %>%
  mutate(new_vals = case_when(vals <= 2 ~ "2 or less",
                              vals > 2 & vals <= 4 ~ "2 to 4",
                              TRUE ~ "over 4"))
#>   vals  new_vals
#> 1    1 2 or less
#> 2    2 2 or less
#> 3    3    2 to 4
#> 4    4    2 to 4
#> 5    5    over 4

You can see in the example that the condition goes on the left of the ~, while the
resulting return value goes on the right. Each condition is separated by commas.
case_when will evaluate each condition sequentially and stop evaluating as soon as
one of the criteria returns TRUE. Our last line is our “or else” statement. Setting the
condition to TRUE ensures that, no matter what, this condition will be met if no con‐
dition above it has returned TRUE.

See Also
See Recipe 6.2 for more examples of using mutate.
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CHAPTER 7

Strings and Dates

Strings? Dates? In a statistical programming package?

As soon as you read files or print reports, you need strings. When you work with
real-world problems, you need dates.

R has facilities for both strings and dates. They are clumsy compared to string-
oriented languages such as Perl, but then it’s a matter of the right tool for the job. We
wouldn’t want to perform logistic regression in Perl.

Some of this clunkiness with strings and dates has been improved through the tidy‐
verse packages stringr and lubridate. As with other chapters in this book, the
examples here will pull from Base R as well as add-on packages that make life easier,
faster, and more convenient.

Classes for Dates and Times
R has a variety of classes for working with dates and times, which is nice if you prefer
having a choice but annoying if you prefer living simply. There is a critical distinction
among the classes: some are date-only classes, some are datetime classes. All classes
can handle calendar dates (e.g., March 15, 2019), but not all can represent a datetime
(11:45 AM on March 1, 2019).

The following classes are included in the base distribution of R:

Date

The Date class can represent a calendar date but not a clock time. It is a solid,
general-purpose class for working with dates, including conversions, formatting,
basic date arithmetic, and time-zone handling. Most of the date-related recipes in
this book are built on the Date class.
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POSIXct

This is a datetime class, and it can represent a moment in time with an accuracy
of one second. Internally, the datetime is stored as the number of seconds since
January 1, 1970, so it’s a very compact representation. This class is recommended
for storing datetime information (e.g., in data frames).

POSIXlt

This is also a datetime class, but the representation is stored in a nine-element list
that includes the year, month, day, hour, minute, and second. This representation
makes it easy to extract date parts, such as the month or hour. Obviously, this is
much less compact than the POSIXct class; hence, it is normally used for inter‐
mediate processing and not for storing data.

The base distribution also provides functions for easily converting between represen‐
tations: as.Date, as.POSIXct, and as.POSIXlt.

The following helpful packages are available for downloading from CRAN:

chron

The chron package can represent both dates and times, but without the added
complexities of handling time zones and Daylight Saving Time. It’s therefore eas‐
ier to use than Date but less powerful than POSIXct and POSIXlt. It would be
useful for work in econometrics or time series analysis.

lubridate

This is a tidyverse package designed to make working with dates and times easier
while keeping the important bells and whistles such as time zones. It’s especially
clever regarding datetime arithmetic. This package introduces some helpful con‐
structs like durations, periods, and intervals. lubridate is part of the tidyverse,
so it is installed when you install.packages('tidyverse'), but it is not part of
“core tidyverse,” so it does not get loaded when you run library(tidyverse).
This means you must explicitly load it by running library(lubridate).

mondate

This is a specialized package for handling dates in units of months in addition to
days and years. It can be helpful in accounting and actuarial work, for example,
where month-by-month calculations are needed.

timeDate

This is a high-powered package with well-thought-out facilities for handling
dates and times, including date arithmetic, business days, holidays, conversions,
and generalized handling of time zones. It was originally part of the Rmetrics
software for financial modeling, where precision in dates and times is critical. If
you have a demanding need for date facilities, consider this package.
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Which class should you select? The article “Date and Time Classes in R” by Gabor
Grothendieck and Thomas Petzoldt offers this general advice:

When considering which class to use, always choose the least complex class that will
support the application. That is, use Date if possible, otherwise use chron and other‐
wise use the POSIX classes. Such a strategy will greatly reduce the potential for error
and increase the reliability of your application.

See Also
See help(DateTimeClasses) for more details regarding the built-in facilities. See the
June 2004 article “Date and Time Classes in R” by Gabor Grothendieck and Thomas
Petzoldt for a great introduction to the date and time facilities. The June 2001 article
“Date-Time Classes” by Brian Ripley and Kurt Hornik discusses the two POSIX
classes in particular. Chapter 16, “Dates and Times”, from the book R for Data Science
by Garrett Grolemund and Hadley Wickham (O’Reilly) provides a great introduction
to lubridate.

7.1 Getting the Length of a String
Problem
You want to know the length of a string.

Solution
Use the nchar function, not the length function.

Discussion
The nchar function takes a string and returns the number of characters in the string:

nchar("Moe")
#> [1] 3
nchar("Curly")
#> [1] 5

If you apply nchar to a vector of strings, it returns the length of each string:

s <- c("Moe", "Larry", "Curly")
nchar(s)
#> [1] 3 5 5

You might think the length function returns the length of a string. Nope. It returns
the length of a vector. When you apply the length function to a single string, R
returns the value 1 because it views that string as a singleton vector—a vector with
one element:
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length("Moe")
#> [1] 1
length(c("Moe", "Larry", "Curly"))
#> [1] 3

7.2 Concatenating Strings
Problem
You want to join together two or more strings into one string.

Solution
Use the paste function.

Discussion
The paste function concatenates several strings together. In other words, it creates a
new string by joining the given strings end to end:

paste("Everybody", "loves", "stats.")
#> [1] "Everybody loves stats."

By default, paste inserts a single space between pairs of strings, which is handy if
that’s what you want and annoying otherwise. The sep argument lets you specify a
different separator. Use an empty string ("") to run the strings together without sepa‐
ration:

paste("Everybody", "loves", "stats.", sep = "-")
#> [1] "Everybody-loves-stats."
paste("Everybody", "loves", "stats.", sep = "")
#> [1] "Everybodylovesstats."

It’s a common idiom to want to concatenate strings together with no separator at all.
The function paste0 makes this very convenient:

paste0("Everybody", "loves", "stats.")
#> [1] "Everybodylovesstats."

The function is very forgiving about nonstring arguments. It tries to convert them to
strings using the as.character function silently behind the scenes:

paste("The square root of twice pi is approximately", sqrt(2 * pi))
#> [1] "The square root of twice pi is approximately 2.506628274631"

If one or more arguments are vectors of strings, paste will generate all combinations 
of the arguments (because of recycling):

stooges <- c("Moe", "Larry", "Curly")
paste(stooges, "loves", "stats.")
#> [1] "Moe loves stats."   "Larry loves stats." "Curly loves stats."
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Sometimes you want to join even those combinations into one big string. The
collapse parameter lets you define a top-level separator and instructs paste to con‐
catenate the generated strings using that separator:

paste(stooges, "loves", "stats", collapse = ", and ")
#> [1] "Moe loves stats, and Larry loves stats, and Curly loves stats"

7.3 Extracting Substrings
Problem
You want to extract a portion of a string according to position.

Solution
Use substr(string,start,end) to extract the substring that begins at start and
ends at end.

Discussion
The substr function takes a string, a starting point, and an ending point. It returns
the substring between the starting and ending points:

substr("Statistics", 1, 4) # Extract first 4 characters
#> [1] "Stat"
substr("Statistics", 7, 10) # Extract last 4 characters
#> [1] "tics"

Just like many R functions, substr lets the first argument be a vector of strings. In
that case, it applies itself to every string and returns a vector of substrings:

ss <- c("Moe", "Larry", "Curly")
substr(ss, 1, 3) # Extract first 3 characters of each string
#> [1] "Moe" "Lar" "Cur"

In fact, all the arguments can be vectors, in which case substr will treat them as par‐
allel vectors. From each string, it extracts the substring delimited by the correspond‐
ing entries in the starting and ending points. This can facilitate some useful tricks.
For example, the following code snippet extracts the last two characters from each
string; each substring starts on the penultimate character of the original string and
ends on the final character:

cities <- c("New York, NY", "Los Angeles, CA", "Peoria, IL")
substr(cities, nchar(cities) - 1, nchar(cities))
#> [1] "NY" "CA" "IL"

You can extend this trick into mind-numbing territory by exploiting the Recycling
Rule, but we suggest you avoid the temptation.
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7.4 Splitting a String According to a Delimiter
Problem
You want to split a string into substrings. The substrings are separated by a delimiter.

Solution
Use strsplit, which takes two arguments, the string and the delimiter of the sub‐
strings:

strsplit(string, delimiter)

The delimiter can be either a simple string or a regular expression.

Discussion
It is common for a string to contain multiple substrings separated by the same delim‐
iter. One example is a filepath, whose components are separated by slashes (/):

path <- "/home/mike/data/trials.csv"

We can split that path into its components by using strsplit with a delimiter of /:

strsplit(path, "/")
#> [[1]]
#> [1] ""           "home"       "mike"       "data"       "trials.csv"

Notice that the first “component” is actually an empty string because nothing pre‐
ceded the first slash.

Also notice that strsplit returns a list and that each element of the list is a vector of
substrings. This two-level structure is necessary because the first argument can be a
vector of strings. Each string is split into its substrings (a vector), and then those vec‐
tors are returned in a list.

If you are operating only on a single string, you can pop out the first element like this:

strsplit(path, "/")[[1]]
#> [1] ""           "home"       "mike"       "data"       "trials.csv"

This example splits three filepaths and returns a three-element list:

paths <- c(
  "/home/mike/data/trials.csv",
  "/home/mike/data/errors.csv",
  "/home/mike/corr/reject.doc"
)
strsplit(paths, "/")
#> [[1]]
#> [1] ""           "home"       "mike"       "data"       "trials.csv"
#>
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#> [[2]]
#> [1] ""           "home"       "mike"       "data"       "errors.csv"
#>
#> [[3]]
#> [1] ""           "home"       "mike"       "corr"       "reject.doc"

The second argument of strsplit (the delimiter argument) is actually much more
powerful than these examples indicate. It can be a regular expression, letting you
match patterns far more complicated than a simple string. In fact, to turn off the reg‐
ular expression feature (and its interpretation of special characters), you must include
the fixed=TRUE argument.

See Also
To learn more about regular expressions in R, see the help page for regexp. See
O’Reilly’s Mastering Regular Expressions, by Jeffrey E.F. Friedl, to learn more about
regular expressions in general.

7.5 Replacing Substrings
Problem
Within a string, you want to replace one substring with another.

Solution
Use sub to replace the first instance of a substring:

sub(old, new, string)

Use gsub to replace all instances of a substring:

gsub(old, new, string)

Discussion
The sub function finds the first instance of the old substring within string and
replaces it with the new substring:

str <- "Curly is the smart one. Curly is funny, too."
sub("Curly", "Moe", str)
#> [1] "Moe is the smart one. Curly is funny, too."

gsub does the same thing, but it replaces all instances of the substring (a global
replace), not just of the first instance:

gsub("Curly", "Moe", str)
#> [1] "Moe is the smart one. Moe is funny, too."

To remove a substring altogether, simply set the new substring to be empty:
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sub(" and SAS", "", "For really tough problems, you need R and SAS.")
#> [1] "For really tough problems, you need R."

The old argument can be a regular expression, which allows you to match patterns
much more complicated than a simple string. This is actually assumed by default, so
you must set the fixed=TRUE argument if you don’t want sub and gsub to interpret
old as a regular expression.

See Also
To learn more about regular expressions in R, see the help page for regexp. See Mas‐
tering Regular Expressions to learn more about regular expressions in general.

7.6 Generating All Pairwise Combinations of Strings
Problem
You have two sets of strings, and you want to generate all combinations from those
two sets (their Cartesian product).

Solution
Use the outer and paste functions together to generate the matrix of all possible
combinations:

m <- outer(strings1, strings2, paste, sep = "")

Discussion
The outer function is intended to form the outer product. However, it allows a third
argument to replace simple multiplication with any function. In this recipe we replace
multiplication with string concatenation (paste), and the result is all combinations of
strings.

Suppose we have four test sites and three treatments:

locations <- c("NY", "LA", "CHI", "HOU")
treatments <- c("T1", "T2", "T3")

We can apply outer and paste to generate all combinations of test sites and treat‐
ments like so:

outer(locations, treatments, paste, sep = "-")
#>      [,1]     [,2]     [,3]
#> [1,] "NY-T1"  "NY-T2"  "NY-T3"
#> [2,] "LA-T1"  "LA-T2"  "LA-T3"
#> [3,] "CHI-T1" "CHI-T2" "CHI-T3"
#> [4,] "HOU-T1" "HOU-T2" "HOU-T3"
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The fourth argument of outer is passed to paste. In this case, we passed sep="-" in
order to define a hyphen as the separator between the strings.

The result of outer is a matrix. If you want the combinations in a vector instead, 
flatten the matrix using the as.vector function.

In the special case where you are combining a set with itself and order does not mat‐
ter, the result will be duplicate combinations:

outer(treatments, treatments, paste, sep = "-")
#>      [,1]    [,2]    [,3]
#> [1,] "T1-T1" "T1-T2" "T1-T3"
#> [2,] "T2-T1" "T2-T2" "T2-T3"
#> [3,] "T3-T1" "T3-T2" "T3-T3"

Or you can use expand.grid to get a pair of vectors representing all combinations:

expand.grid(treatments, treatments)
#>   Var1 Var2
#> 1   T1   T1
#> 2   T2   T1
#> 3   T3   T1
#> 4   T1   T2
#> 5   T2   T2
#> 6   T3   T2
#> 7   T1   T3
#> 8   T2   T3
#> 9   T3   T3

But suppose we want all unique pairwise combinations of treatments. We can elimi‐
nate the duplicates by removing the lower triangle (or upper triangle). The lower.tri
function identifies that triangle, so inverting it identifies all elements outside the lower
triangle:

m <- outer(treatments, treatments, paste, sep = "-")
m[!lower.tri(m)]
#> [1] "T1-T1" "T1-T2" "T2-T2" "T1-T3" "T2-T3" "T3-T3"

See Also
See Recipe 13.3 for using paste to generate combinations of strings. The gtools
package on CRAN has the functions combinations and permutation, which may be
of help with related tasks.
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7.7 Getting the Current Date
Problem
You need to know today’s date.

Solution
The Sys.Date function returns the current date:

Sys.Date()
#> [1] "2019-05-13"

Discussion
The Sys.Date function returns a Date object. In the preceding example it seems to
return a string because the result is printed inside double quotes. What really hap‐
pens, however, is that Sys.Date returns a Date object and then R converts that object
into a string for printing purposes. You can see this by checking the class of the result
from Sys.Date:

class(Sys.Date())
#> [1] "Date"

See Also
See Recipe 7.9.

7.8 Converting a String into a Date
Problem
You have the string representation of a date, such as "2018-12-31", and you want to
convert that into a Date object.

Solution
You can use as.Date, but you must know the format of the string. By default,
as.Date assumes the string looks like yyyy-mm-dd. To handle other formats, you
must specify the format parameter of as.Date. Use format="%m/%d/%Y" if the date is
in American style, for instance.
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Discussion
This example shows the default format assumed by as.Date, which is the ISO 8601
standard format of yyyy-mm-dd:

as.Date("2018-12-31")
#> [1] "2018-12-31"

The as.Date function returns a Date object that (as in the prior recipe) is being con‐
verted here back to a string for printing; this explains the double quotes around the
output.

The string can be in other formats, but you must provide a format argument so that
as.Date can interpret your string. See the help page for the stftime function for
details about allowed formats.

Being simple Americans, we often mistakenly try to convert the usual American date
format (mm/dd/yyyy) into a Date object, with these unhappy results:

as.Date("12/31/2018")
#> Error in charToDate(x): character string is not in a standard
#> unambiguous format

Here is the correct way to convert an American-style date:

as.Date("12/31/2018", format = "%m/%d/%Y")
#> [1] "2018-12-31"

Observe that the Y in the format string is capitalized to indicate a four-digit year. If
you’re using two-digit years, specify a lowercase y.

7.9 Converting a Date into a String
Problem
You want to convert a Date object into a character string, usually because you want to
print the date.

Solution
Use either format or as.character:

format(Sys.Date())
#> [1] "2019-05-13"
as.character(Sys.Date())
#> [1] "2019-05-13"

Both functions allow a format argument that controls the formatting. Use
format="%m/%d/%Y" to get American-style dates, for example:
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format(Sys.Date(), format = "%m/%d/%Y")
#> [1] "05/13/2019"

Discussion
The format argument defines the appearance of the resulting string. Normal charac‐
ters, such as a slash (/) or hyphen (-), are simply copied to the output string. Each
two-letter combination of a percent sign (%) followed by another character has special
meaning. Some common ones are:

%b

Abbreviated month name (“Jan”)

%B

Full month name (“January”)

%d

Day as a two-digit number

%m

Month as a two-digit number

%y

Year without century (00–99)

%Y

Year with century

See the help page for the strftime function for a complete list of formatting codes.

7.10 Converting Year, Month, and Day into a Date
Problem
You have a date represented by its year, month, and day in different variables. You
want to merge these elements into a single Date object representation.

Solution
Use the ISOdate function:

ISOdate(year, month, day)

The result is a POSIXct object that you can convert into a Date object:

year <- 2018
month <- 12
day <- 31
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as.Date(ISOdate(year, month, day))
#> [1] "2018-12-31"

Discussion
It is common for input data to contain dates encoded as three numbers: year, month,
and day. The ISOdate function can combine them into a POSIXct object:

ISOdate(2020, 2, 29)
#> [1] "2020-02-29 12:00:00 GMT"

You can keep your date in the POSIXct format. However, when working with pure
dates (not dates and times), we often convert to a Date object and truncate the unused
time information:

as.Date(ISOdate(2020, 2, 29))
#> [1] "2020-02-29"

Trying to convert an invalid date results in NA:

ISOdate(2013, 2, 29) # Oops! 2013 is not a leap year
#> [1] NA

ISOdate can process entire vectors of years, months, and days, which is quite handy
for mass conversion of input data. The following example starts with the year/
month/day numbers for the third Wednesday in January of several years and then
combines them all into Date objects:

years <- c(2010, 2011, 2012, 2014)
months <- c(1, 1, 1, 1, 1)
days <- c(15, 21, 20, 18, 17)
ISOdate(years, months, days)
#> [1] "2010-01-05 12:00:00 GMT" "2011-01-06 12:00:00 GMT"
#> [3] "2012-01-07 12:00:00 GMT" "2013-01-08 12:00:00 GMT"
#> [5] "2014-01-09 12:00:00 GMT"
as.Date(ISOdate(years, months, days))
#> [1] "2010-01-05" "2011-01-06" "2012-01-07" "2013-01-08" "2014-01-09"

Purists will note that the vector of months is redundant and that the last expression
can therefore be further simplified by invoking the Recycling Rule:

as.Date(ISOdate(years, 1, days))
#> [1] "2010-01-05" "2011-01-06" "2012-01-07" "2013-01-08" "2014-01-09"

You can also extend this recipe to handle year, month, day, hour, minute, and second
data by using the ISOdatetime function (see the help page for details):

ISOdatetime(year, month, day, hour, minute, second)
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7.11 Getting the Julian Date
Problem
Given a Date object, you want to extract the Julian date—which is, in R, the number
of days since January 1, 1970.

Solution
Either convert the Date object to an integer or use the julian function:

d <- as.Date("2019-03-15")
as.integer(d)
#> [1] 17970
jd <- julian(d)
jd
#> [1] 17970
#> attr(,"origin")
#> [1] "1970-01-01"
attr(jd, "origin")
#> [1] "1970-01-01"

Discussion
A Julian “date” is simply the number of days since an arbitrary starting point. In the
case of R, that starting point is January 1, 1970, the same starting point as Unix sys‐
tems. So the Julian date for January 1, 1970 is zero, as shown here:

as.integer(as.Date("1970-01-01"))
#> [1] 0
as.integer(as.Date("1970-01-02"))
#> [1] 1
as.integer(as.Date("1970-01-03"))
#> [1] 2

7.12 Extracting the Parts of a Date
Problem
Given a Date object, you want to extract a date part such as the day of the week, the
day of the year, the calendar day, the calendar month, or the calendar year.

Solution
Convert the Date object to a POSIXlt object, which is a list of date parts. Then extract
the desired part from that list:
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d <- as.Date("2019-03-15")
p <- as.POSIXlt(d)
p$mday        # Day of the month
#> [1] 15
p$mon         # Month (0 = January)
#> [1] 2
p$year + 1900 # Year
#> [1] 2019

Discussion
The POSIXlt object represents a date as a list of date parts. Convert your Date object
to POSIXlt by using the as.POSIXlt function, which will give you a list with these
members:

sec

Seconds (0–61)

min

Minutes (0–59)

hour

Hours (0–23)

mday

Day of the month (1–31)

mon

Month (0–11)

year

Years since 1900

wday

Day of the week (0–6, 0 = Sunday)

yday

Day of the year (0–365)

isdst

Daylight Saving Time flag

Using these date parts, we can learn that April 2, 2020, is a Thursday (wday = 4) and
the 93rd day of the year (because yday = 0 on January 1):

d <- as.Date("2020-04-02")
as.POSIXlt(d)$wday
#> [1] 4
as.POSIXlt(d)$yday
#> [1] 92

7.12 Extracting the Parts of a Date | 209



A common mistake is failing to add 1900 to the year, giving the impression you are
living a long, long time ago:

as.POSIXlt(d)$year # Oops!
#> [1] 120
as.POSIXlt(d)$year + 1900
#> [1] 2020

7.13 Creating a Sequence of Dates
Problem
You want to create a sequence of dates, such as a sequence of daily, monthly, or
annual dates.

Solution
The seq function is a generic function that has a version for Date objects. It can create
a Date sequence similarly to the way it creates a sequence of numbers.

Discussion
A typical use of seq specifies a starting date (from), ending date (to), and increment
(by). An increment of 1 indicates daily dates:

s <- as.Date("2019-01-01")
e <- as.Date("2019-02-01")
seq(from = s, to = e, by = 1) # One month of dates
#>  [1] "2019-01-01" "2019-01-02" "2019-01-03" "2019-01-04" "2019-01-05"
#>  [6] "2019-01-06" "2019-01-07" "2019-01-08" "2019-01-09" "2019-01-10"
#> [11] "2019-01-11" "2019-01-12" "2019-01-13" "2019-01-14" "2019-01-15"
#> [16] "2019-01-16" "2019-01-17" "2019-01-18" "2019-01-19" "2019-01-20"
#> [21] "2019-01-21" "2019-01-22" "2019-01-23" "2019-01-24" "2019-01-25"
#> [26] "2019-01-26" "2019-01-27" "2019-01-28" "2019-01-29" "2019-01-30"
#> [31] "2019-01-31" "2019-02-01"

Another typical use specifies a starting date (from), increment (by), and number of
dates (length.out):

seq(from = s, by = 1, length.out = 7) # Dates, one week apart
#> [1] "2019-01-01" "2019-01-02" "2019-01-03" "2019-01-04" "2019-01-05"
#> [6] "2019-01-06" "2019-01-07"

The increment (by) is flexible and can be specified in days, weeks, months, or years:

seq(from = s, by = "month", length.out = 12)   # First of the month for one year
#>  [1] "2019-01-01" "2019-02-01" "2019-03-01" "2019-04-01" "2019-05-01"
#>  [6] "2019-06-01" "2019-07-01" "2019-08-01" "2019-09-01" "2019-10-01"
#> [11] "2019-11-01" "2019-12-01"
seq(from = s, by = "3 months", length.out = 4) # Quarterly dates for one year
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#> [1] "2019-01-01" "2019-04-01" "2019-07-01" "2019-10-01"
seq(from = s, by = "year", length.out = 10)    # Year-start dates for one decade
#>  [1] "2019-01-01" "2020-01-01" "2021-01-01" "2022-01-01" "2023-01-01"
#>  [6] "2024-01-01" "2025-01-01" "2026-01-01" "2027-01-01" "2028-01-01"

Be careful with by="month" near month-end. In this example, the end of February
overflows into March, which is probably not what you want:

seq(as.Date("2019-01-29"), by = "month", len = 3)
#> [1] "2019-01-29" "2019-03-01" "2019-03-29"
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CHAPTER 8

Probability

Probability theory is the foundation of statistics, and R has plenty of machinery for
working with probability, probability distributions, and random variables. The rec‐
ipes in this chapter show you how to calculate probabilities from quantiles, calculate
quantiles from probabilities, generate random variables drawn from distributions,
plot distributions, and so forth.

Names of Distributions
R has an abbreviated name for every probability distribution. This name is used to
identify the functions associated with the distribution. For example, the name of the
normal distribution is “norm,” which is the root of the function names listed in
Table 8-1.

Table 8-1. Normal distribution functions
Function Purpose

dnorm Normal density

pnorm Normal distribution function

qnorm Normal quantile function

rnorm Normal random variates

Table 8-2 describes some common discrete distributions, and Table 8-3 describes sev‐
eral common continuous distributions.
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Table 8-2. Common discrete distributions
Discrete distribution R name Parameters
Binomial binom n = number of trials; p = probability of success for one trial

Geometric geom p = probability of success for one trial

Hypergeometric hyper m = number of white balls in urn; n = number of black balls in urn; k = number of balls
drawn from urn

Negative binomial
(NegBinomial)

nbinom size = number of successful trials; either prob = probability of successful trial or mu
= mean

Poisson pois lambda = mean

Table 8-3. Common continuous distributions
Continuous distribution R name Parameters
Beta beta shape1; shape2

Cauchy cauchy location; scale

Chi-squared (Chisquare) chisq df = degrees of freedom

Exponential exp rate

F f df1 and df2 = degrees of freedom

Gamma gamma rate or scale

Log-normal (Lognormal) lnorm meanlog = mean on logarithmic scale; sdlog = standard deviation on
logarithmic scale

Logistic logis location; scale

Normal norm mean; sd = standard deviation

Student’s t (TDist) t df = degrees of freedom

Uniform unif min = lower limit; max = upper limit

Weibull weibull shape; scale

Wilcoxon wilcox m = number of observations in first sample; n = number of observations in second
sample

All distribution-related functions require distributional parame‐
ters, such as size and prob for the binomial or prob for the geo‐
metric. The big “gotcha” is that the distributional parameters may
not be what you expect. For example, we would expect the parame‐
ter of an exponential distribution to be β, the mean. The R conven‐
tion, however, is for the exponential distribution to be defined by
the rate = 1/β, so we often supply the wrong value. The moral is,
study the help page before you use a function related to a distribu‐
tion. Be sure you’ve got the parameters right.
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Getting Help on Probability Distributions
To see the R functions related to a particular probability distribution, use the help
command and the full name of the distribution. For example, this will show the func‐
tions related to the normal distribution:

?Normal

Some distributions have names that don’t work well with the help command, such as
“Student’s t.” They have special help names, as noted in Table 8-2 and Table 8-3: Neg‐
Binomial, Chisquare, Lognormal, and TDist. Thus, to get help on the Student’s t dis‐
tribution, use this:

?TDist

See Also
There are many other distributions implemented in downloadable packages; see the
CRAN task view devoted to probability distributions. The SuppDists package is part
of the R base, and it includes 10 supplemental distributions. The MASS package, which
is also part of the base, provides additional support for distributions, such as
maximum-likelihood fitting for some common distributions as well as sampling from
a multivariate normal distribution.

8.1 Counting the Number of Combinations
Problem
You want to calculate the number of combinations of n items taken k at a time.

Solution
Use the choose function:

choose(n, k)

Discussion
A common problem in computing probabilities of discrete variables is counting com‐
binations: the number of distinct subsets of size k that can be created from n items.
The number is given by n!/r!(n – r)!, but it’s much more convenient to use the choose
function—especially as n and k grow larger:

choose(5, 3)   # How many ways can we select 3 items from 5 items?
#> [1] 10
choose(50, 3)  # How many ways can we select 3 items from 50 items?
#> [1] 19600
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choose(50, 30) # How many ways can we select 30 items from 50 items?
#> [1] 4.71e+13

These numbers are also known as binomial coefficients.

See Also
This recipe merely counts the combinations; see Recipe 8.2 to actually generate them.

8.2 Generating Combinations
Problem
You want to generate all combinations of n items taken k at a time.

Solution
Use the combn function:

items <- 2:5
k <- 2
combn(items, k)
#>      [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,]    2    2    2    3    3    4
#> [2,]    3    4    5    4    5    5

Discussion
We can use combn(1:5,3) to generate all combinations of the numbers 1 through 5
taken three at a time:

combn(1:5, 3)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,]    1    1    1    1    1    1    2    2    2     3
#> [2,]    2    2    2    3    3    4    3    3    4     4
#> [3,]    3    4    5    4    5    5    4    5    5     5

The function is not restricted to numbers. We can generate combinations of strings,
too. Here are all combinations of five treatments taken three at a time:

combn(c("T1", "T2", "T3", "T4", "T5"), 3)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] "T1" "T1" "T1" "T1" "T1" "T1" "T2" "T2" "T2" "T3"
#> [2,] "T2" "T2" "T2" "T3" "T3" "T4" "T3" "T3" "T4" "T4"
#> [3,] "T3" "T4" "T5" "T4" "T5" "T5" "T4" "T5" "T5" "T5"
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As the number of items, n, increases, the number of combinations
can explode—especially if k is not near to 1 or n.

See Also
See Recipe 8.1 to count the number of possible combinations before you generate a
huge set.

8.3 Generating Random Numbers
Problem
You want to generate random numbers.

Solution
The simple case of generating a uniform random number between 0 and 1 is handled
by the runif function. This example generates one uniform random number:

runif(1)
#> [1] 0.915

If you are saying runif out loud (or even in your head), you should
pronounce it “are unif ” instead of “run if.” The term runif is a
portmanteau of “random uniform” so should not sound as if it’s a
flow control function.

R can generate random variates from other distributions as well. For a given distribu‐
tion, the name of the random number generator is “r” prefixed to the distribution’s
abbreviated name (e.g., rnorm for the normal distribution’s random number genera‐
tor). This example generates one random value from the standard normal distribu‐
tion:

rnorm(1)
#> [1] 1.53

Discussion
Most programming languages have a wimpy random number generator that gener‐
ates one random number, uniformly distributed between 0.0 and 1.0, and that’s all.
Not R.
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R can generate random numbers from many probability distributions other than the
uniform distribution. The simple case of generating uniform random numbers
between 0 and 1 is handled by the runif function:

runif(1)
#> [1] 0.83

The argument of runif is the number of random values to be generated. Generating a
vector of 10 such values is as easy as generating one:

runif(10)
#>  [1] 0.642 0.519 0.737 0.135 0.657 0.705 0.458 0.719 0.935 0.255

There are random number generators for all built-in distributions. Simply prefix the
distribution name with “r” and you have the name of the corresponding random
number generator. Here are some common ones:

runif(1, min = -3, max = 3)      # One uniform variate between -3 and +3
#> [1] 2.49
rnorm(1)                         # One standard Normal variate
#> [1] 1.53
rnorm(1, mean = 100, sd = 15)    # One Normal variate, mean 100 and SD 15
#> [1] 114
rbinom(1, size = 10, prob = 0.5) # One binomial variate
#> [1] 5
rpois(1, lambda = 10)            # One Poisson variate
#> [1] 12
rexp(1, rate = 0.1)              # One exponential variate
#> [1] 3.14
rgamma(1, shape = 2, rate = 0.1) # One gamma variate
#> [1] 22.3

As with runif, the first argument is the number of random values to be generated.
Subsequent arguments are the parameters of the distribution, such as mean and sd for
the normal distribution or size and prob for the binomial. See the function’s R help
page for details.

The examples given so far use simple scalars for distributional parameters. Yet the
parameters can also be vectors, in which case R will cycle through the vector while
generating random values. The following example generates three normal random
values drawn from distributions with means of –10, 0, and +10, respectively (all dis‐
tributions have a standard deviation of 1.0):

rnorm(3, mean = c(-10, 0, +10), sd = 1)
#> [1] -9.420 -0.658 11.555

That is a powerful capability in cases such as hierarchical models, where the parame‐
ters are themselves random. The next example calculates 30 draws of a normal variate
whose mean is itself randomly distributed and with hyperparameters of μ = 0 and σ =
0.2:
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means <- rnorm(30, mean = 0, sd = 0.2)
rnorm(30, mean = means, sd = 1)
#>  [1] -0.5549 -2.9232 -1.2203  0.6962  0.1673 -1.0779 -0.3138 -3.3165
#>  [9]  1.5952  0.8184 -0.1251  0.3601 -0.8142  0.1050  2.1264  0.6943
#> [17] -2.7771  0.9026  0.0389  0.2280 -0.5599  0.9572  0.1972  0.2602
#> [25] -0.4423  1.9707  0.4553  0.0467  1.5229  0.3176

If you are generating many random values and the vector of parameters is too short,
R will apply the Recycling Rule to the parameter vector.

See Also
See the introduction to this chapter.

8.4 Generating Reproducible Random Numbers
Problem
You want to generate a sequence of random numbers, but you want to reproduce the
same sequence every time your program runs.

Solution
Before running your R code, call the set.seed function to initialize the random
number generator to a known state:

set.seed(42) # Or use any other positive integer...

Discussion
After generating random numbers, you may often want to reproduce the same
sequence of “random” numbers every time your program executes. That way, you get
the same results from run to run. One of the authors once supported a complicated
Monte Carlo analysis of a huge portfolio of securities. The users complained about
getting slightly different results each time the program ran. No kidding! The analysis
was driven entirely by random numbers, so of course there was randomness in the
output. The solution was to set the random number generator to a known state at the
beginning of the program. That way, it would generate the same (quasi-)random
numbers each time and thus yield consistent, reproducible results.

In R, the set.seed function sets the random number generator to a known state. The
function takes one argument, an integer. Any positive integer will work, but you must
use the same one in order to get the same initial state.

The function returns nothing. It works behind the scenes, initializing (or reinitializ‐
ing) the random number generator. The key here is that using the same seed restarts
the random number generator back at the same place:
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set.seed(165)   # Initialize generator to known state
runif(10)       # Generate ten random numbers
#>  [1] 0.116 0.450 0.996 0.611 0.616 0.426 0.666 0.168 0.788 0.442

set.seed(165)   # Reinitialize to the same known state
runif(10)       # Generate the same ten "random" numbers
#>  [1] 0.116 0.450 0.996 0.611 0.616 0.426 0.666 0.168 0.788 0.442

When you set the seed value and freeze your sequence of random
numbers, you are eliminating a source of randomness that may be
critical to algorithms such as Monte Carlo simulations. Before you
call set.seed in your application, ask yourself: am I undercutting
the value of my program or perhaps even damaging its logic?

See Also
See Recipe 8.3 for more about generating random numbers.

8.5 Generating a Random Sample
Problem
You want to sample a dataset randomly.

Solution
The sample function will randomly select n items from a set:

sample(set, n)

Discussion
Suppose your World Series data contains a vector of years when the Series was played. 
You can select 10 years at random using sample:

world_series <- read_csv("./data/world_series.csv")
sample(world_series$year, 10)
#>  [1] 2010 1961 1906 1992 1982 1948 1910 1973 1967 1931

The items are randomly selected, so running sample again (usually) produces a dif‐
ferent result:

sample(world_series$year, 10)
#>  [1] 1941 1973 1921 1958 1979 1946 1932 1919 1971 1974

The sample function normally samples without replacement, meaning it will not
select the same item twice. Some statistical procedures (especially the bootstrap)
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require sampling with replacement, which means that one item can appear multiple
times in the sample. Specify replace=TRUE to sample with replacement.

It’s easy to implement a simple bootstrap using sampling with replacement. Suppose
we have a vector, x, of 1,000 random numbers, drawn from a normal distribution
with mean 4 and standard deviation 10:

set.seed(42)
x <- rnorm(1000, 4, 10)

This code fragment samples 1,000 times from x and calculates the median of each
sample:

medians <- numeric(1000)   # empty vector of 1000 numbers
for (i in 1:1000) {
  medians[i] <- median(sample(x, replace = TRUE))
}

From the bootstrap estimates, we can estimate the confidence interval for the median:

ci <- quantile(medians, c(0.025, 0.975))
cat("95% confidence interval is (", ci, ")\n")
#> 95% confidence interval is ( 3.16 4.49 )

We know that x was created from a normal distribution with a mean of 4, and hence
the sample median should be 4 also. (In a symmetrical distribution like this one, the
mean and the median are the same.) Our confidence interval easily contains the
value.

See Also
See Recipe 8.7 for randomly permuting a vector and Recipe 13.8 for more about
bootstrapping. Recipe 8.4 discusses setting seeds for quasi-random numbers.

8.6 Generating Random Sequences
Problem
You want to generate a random sequence, such as a series of simulated coin tosses or
a simulated sequence of Bernoulli trials.

Solution
Use the sample function. Sample n draws from the set of possible values, and set
replace=TRUE:

sample(set, n, replace = TRUE)
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Discussion
The sample function randomly selects items from a set. It normally samples without
replacement, which means that it will not select the same item twice and will return
an error if you try to sample more items than exist in the set. With replace=TRUE,
however, sample can select items over and over; this allows you to generate long, ran‐
dom sequences of items.

The following example generates a random sequence of 10 simulated flips of a coin:

sample(c("H", "T"), 10, replace = TRUE)
#>  [1] "H" "T" "H" "T" "T" "T" "H" "T" "T" "H"

The next example generates a sequence of 20 Bernoulli trials—random successes or
failures. We use TRUE to signify a success:

sample(c(FALSE, TRUE), 20, replace = TRUE)
#>  [1]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#> [12]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE

By default sample will choose equally among the set elements, so the probability of
selecting either TRUE or FALSE is 0.5. With a Bernoulli trial, the probability p of suc‐
cess is not necessarily 0.5. You can bias the sample by using the prob argument of
sample; this argument is a vector of probabilities, one for each set element. Suppose
we want to generate 20 Bernoulli trials with a probability of success p = 0.8. We set
the probability of FALSE to be 0.2 and the probability of TRUE to 0.8:

sample(c(FALSE, TRUE), 20, replace = TRUE, prob = c(0.2, 0.8))
#>  [1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
#> [12]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE

The resulting sequence is clearly biased toward TRUE. We chose this example because
it’s a simple demonstration of a general technique. For the special case of a binary-
valued sequence you can use rbinom, the random generator for binomial variates:

rbinom(10, 1, 0.8)
#>  [1] 1 0 1 1 1 1 1 0 1 1

8.7 Randomly Permuting a Vector
Problem
You want to generate a random permutation of a vector.

Solution
If v is your vector, then sample(v) returns a random permutation.
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Discussion
We typically think of the sample function for sampling from large datasets. However,
the default parameters enable you to create a random rearrangement of the dataset.
The function call sample(v) is equivalent to:

sample(v, size = length(v), replace = FALSE)

which means “select all the elements of v in random order while using each element
exactly once.” That is a random permutation. Here is a random permutation of 1, …,
10:

sample(1:10)
#>  [1]  7  3  6  1  5  2  4  8 10  9

See Also
See Recipe 8.5 for more about sample.

8.8 Calculating Probabilities for Discrete Distributions
Problem
You want to calculate either the simple or the cumulative probability associated with a
discrete random variable.

Solution
For a simple probability, P(X = x), use the density function. All built-in probability
distributions have a density function whose name is “d” prefixed to the distribution
name; for example, dbinom for the binomial distribution.

For a cumulative probability, P(X ≤ x), use the distribution function. All built-in
probability distributions have a distribution function whose name is “p” prefixed to
the distribution name; thus, pbinom is the distribution function for the binomial dis‐
tribution.

Discussion
Suppose we have a binomial random variable X over 10 trials, where each trial has a
success probability of 1/2. Then we can calculate the probability of observing x = 7 by
calling dbinom:

dbinom(7, size = 10, prob = 0.5)
#> [1] 0.117
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That calculates a probability of about 0.117. R calls dbinom the density function. Some
textbooks call it the probability mass function or the probability function. Calling it a
density function keeps the terminology consistent between discrete and continuous
distributions (see Recipe 8.9).

The cumulative probability, P(X ≤ x), is given by the distribution function, which is
sometimes called the cumulative probability function. The distribution function for
the binomial distribution is pbinom. Here is the cumulative probability for x = 7 (i.e.,
P(X ≤ 7)):

pbinom(7, size = 10, prob = 0.5)
#> [1] 0.945

It appears the probability of observing X ≤ 7 is about 0.945.

The density functions and distribution functions for some common discrete distribu‐
tions are shown in Table 8-4.

Table 8-4. Discrete distributions
Distribution Density function: P(X = x) Distribution function: P(X ≤ x)
Binomial dbinom(x, size, prob) pbinom(x, size, prob)

Geometric dgeom(x, prob) pgeom(x, prob)

Poisson dpois(x, lambda) ppois(x, lambda)

The complement of the cumulative probability is the survival function, P(X > x). All
of the distribution functions let you find this right-tail probability simply by specify‐
ing lower.tail=FALSE:

pbinom(7, size = 10, prob = 0.5, lower.tail = FALSE)
#> [1] 0.0547

Thus we see that the probability of observing X > 7 is about 0.055.

The interval probability, P(x1 < X ≤ x2), is the probability of observing X between the
limits x1 and x2. It is calculated as the difference between two cumulative probabili‐
ties: P(X ≤ x2) – P(X ≤ x1). Here is P(3 < X ≤ 7) for our binomial variable:

pbinom(7, size = 10, prob = 0.5) - pbinom(3, size = 10, prob = 0.5)
#> [1] 0.773

R lets you specify multiple values of x for these functions and will return a vector of
the corresponding probabilities. Here we calculate two cumulative probabilities,
P(X ≤ 3) and P(X ≤ 7), in one call to pbinom:

pbinom(c(3, 7), size = 10, prob = 0.5)
#> [1] 0.172 0.945
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This leads to a one-liner for calculating interval probabilities. The diff function cal‐
culates the difference between successive elements of a vector. We apply it to the out‐
put of pbinom to obtain the difference in cumulative probabilities—in other words,
the interval probability:

diff(pbinom(c(3, 7), size = 10, prob = 0.5))
#> [1] 0.773

See Also
See this chapter’s introduction for more about the built-in probability distributions.

8.9 Calculating Probabilities for Continuous Distributions
Problem
You want to calculate the distribution function (DF) or cumulative distribution func‐
tion (CDF) for a continuous random variable.

Solution
Use the distribution function, which calculates P(X ≤ x). All built-in probability dis‐
tributions have a distribution function whose name is “p” prefixed to the distribu‐
tion’s abbreviated name—for instance, pnorm for the normal distribution.

For example, we can calculate the probability of a draw being from a random stan‐
dard normal distribution being below 0.8 as follows:

pnorm(q = .8, mean = 0, sd = 1)
#> [1] 0.788

Discussion
The R functions for probability distributions follow a consistent pattern, so the solu‐
tion to this recipe is essentially identical to the solution for discrete random variables
(see Recipe 8.8). The significant difference is that continuous variables have no
“probability” at a single point, P(X = x). Instead, they have a “density” at a point.

Given that consistency, the discussion of distribution functions in Recipe 8.8 is appli‐
cable here, too. Table 8-5 gives the distribution functions for several continuous dis‐
tributions.
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Table 8-5. Continuous distributions
Distribution Distribution function: P(X ≤ x)
Normal pnorm(x, mean, sd)

Student’s t pt(x, df)

Exponential pexp(x, rate)

Gamma pgamma(x, shape, rate)

Chi-squared (χ2) pchisq(x, df)

We can use pnorm to calculate the probability that a man is shorter than 66 inches,
assuming that men’s heights are normally distributed with a mean of 70 inches and a
standard deviation of 3 inches. Mathematically speaking, we want P(X ≤ 66) given
that X ~ N(70, 3):

pnorm(66, mean = 70, sd = 3)
#> [1] 0.0912

Likewise, we can use pexp to calculate the probability that an exponential variable
with a mean of 40 could be less than 20:

pexp(20, rate = 1 / 40)
#> [1] 0.393

Just as for discrete probabilities, the functions for continuous probabilities use
lower.tail=FALSE to specify the survival function, P(X > x). This call to pexp gives
the probability that the same exponential variable could be greater than 50:

pexp(50, rate = 1 / 40, lower.tail = FALSE)
#> [1] 0.287

Also like discrete probabilities, the interval probability for a continuous variable,
P(x1 < X < x2), is computed as the difference between two cumulative probabilities,
P(X < x2) – P(X < x1). For the same exponential variable, here is P(20 < X < 50), the
probability that it could fall between 20 and 50:

pexp(50, rate = 1 / 40) - pexp(20, rate = 1 / 40)
#> [1] 0.32

See Also
See this chapter’s introduction for more about the built-in probability distributions.
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8.10 Converting Probabilities to Quantiles
Problem
Given a probability p and a distribution, you want to determine the corresponding
quantile for p: the value x such that P(X ≤ x) = p.

Solution
Every built-in distribution includes a quantile function that converts probabilities to
quantiles. The function’s name is “q” prefixed to the distribution name; thus, for
instance, qnorm is the quantile function for the normal distribution.

The first argument of the quantile function is the probability. The remaining argu‐
ments are the distribution’s parameters, such as mean, shape, or rate:

qnorm(0.05, mean = 100, sd = 15)
#> [1] 75.3

Discussion
A common example of computing quantiles is when we compute the limits of a con‐
fidence interval. If we want to know the 95% confidence interval (α = 0.05) of a stan‐
dard Normal variable, then we need the quantiles with probabilities of α/2 = 0.025
and (1 – α)/2 = 0.975:

qnorm(0.025)
#> [1] -1.96
qnorm(0.975)
#> [1] 1.96

In the true spirit of R, the first argument of the quantile functions can be a vector of
probabilities, in which case we get a vector of quantiles. We can simplify this example
into a one-liner:

qnorm(c(0.025, 0.975))
#> [1] -1.96  1.96

All the built-in probability distributions provide a quantile function. Table 8-6 shows
the quantile functions for some common discrete distributions.

Table 8-6. Discrete quantile distributions
Distribution Quantile function
Binomial qbinom(p, size, prob)

Geometric qgeom(p, prob)

Poisson qpois(p, lambda)
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Table 8-7 shows the quantile functions for common continuous distributions.

Table 8-7. Continuous quantile distributions
Distribution Quantile function
Normal qnorm(p, mean, sd)

Student’s t qt(p, df)

Exponential qexp(p, rate)

Gamma qgamma(p, shape, rate) or qgamma(p, 
shape, scale)

Chi-squared (χ2) qchisq(p, df)

See Also
Determining the quantiles of a dataset is different from determining the quantiles of a
distribution—see Recipe 9.5.

8.11 Plotting a Density Function
Problem
You want to plot the density function of a probability distribution.

Solution
Define a vector x over the domain. Apply the distribution’s density function to x and
then plot the result. If x is a vector of points over the domain you care about plotting,
you then calculate the density using one of the d_____ density functions, like dlnorm
for lognormal or dnorm for normal:

dens <- data.frame(x = x,
                   y = d_____(x))
ggplot(dens, aes(x, y)) + geom_line()

Here is a specific example that plots the standard normal distribution for the interval
–3 to +3:

library(ggplot2)

x <- seq(-3, +3, 0.1)
dens <- data.frame(x = x, y = dnorm(x))

ggplot(dens, aes(x, y)) + geom_line()

Figure 8-1 shows the smooth density function.
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Figure 8-1. Smooth density function

Discussion
All the built-in probability distributions include a density function. For a particular
density, the function name is “d” prepended to the distribution name. The density
function for the normal distribution is dnorm, the density for the gamma distribution
is dgamma, and so forth.

If the first argument of the density function is a vector, then the function calculates
the density at each point and returns the vector of densities.

The following code creates a 2 × 2 plot of four densities (Figure 8-2):

x <- seq(from = 0, to = 6, length.out = 100) # Define the density domains
ylim <- c(0, 0.6)

# Make a data.frame with densities of several distributions
df <- rbind(
  data.frame(x = x, dist_name = "Uniform"=, y = dunif(x, min   = 2, max = 4)),
  data.frame(x = x, dist_name = "Normal"=, y = dnorm(x, mean  = 3, sd = 1)),
  data.frame(x = x, dist_name = "Exponential", y = dexp(x, rate  = 1 / 2)),
  data.frame(x = x, dist_name = "Gamma"=, y = dgamma(x, shape = 2, rate = 1)) )

# Make a line plot like before, but use facet_wrap to create the grid
ggplot(data = df, aes(x = x, y = y)) +
  geom_line() +
  facet_wrap(~dist_name)   # facet and wrap by the variable dist_name
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Figure 8-2. Multiple density plots

Figure 8-2 shows four density plots. However, a raw density plot is rarely useful or
interesting by itself, and we often shade a region of interest.

Figure 8-3 is a normal distribution with shading from the 75th percentile to the 95th

percentile.

We create the plot by plotting the density and then creating a shaded region with the
geom_ribbon function from ggplot2.

First, we create some data and draw a density curve like the one shown in Figure 8-4:

x <- seq(from = -3, to = 3, length.out = 100)
df <- data.frame(x = x, y = dnorm(x, mean = 0, sd = 1))

p <- ggplot(df, aes(x, y)) +
  geom_line() +
  labs(
    title = "Standard Normal Distribution",
    y = "Density",
    x = "Quantile"
  )
p
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Figure 8-3. Standard normal with shading

Figure 8-4. Density plot

Next, we define the region of interest by calculating the x values for the quantiles
we’re interested in. Finally, we use geom_ribbon to add a subset of our original data as
a colored region:
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q75 <- quantile(df$x, .75)
q95 <- quantile(df$x, .95)

p +
  geom_ribbon(
    data = subset(df, x > q75 & x < q95),
    aes(ymax = y),
    ymin = 0,
    fill = "blue",
    color = NA,
    alpha = 0.5
  )

The resulting plot is shown in Figure 8-5.

Figure 8-5. Normal density with shading
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CHAPTER 9

General Statistics

Any significant application of R includes statistics or models or graphics. This chapter
addresses the statistics. Some recipes simply describe how to calculate a statistic, such
as relative frequency. Most recipes involve statistical tests or confidence intervals. The
statistical tests let you choose between two competing hypotheses; that paradigm is
described next. Confidence intervals reflect the likely range of a population parame‐
ter and are calculated based on your data sample.

Null Hypotheses, Alternative Hypotheses, and p-Values
Many of the statistical tests in this chapter use a time-tested paradigm of statistical
inference. In the paradigm, we have one or two data samples. We also have two com‐
peting hypotheses, either of which could reasonably be true.

One hypothesis, called the null hypothesis, is that nothing happened: the mean was
unchanged; the treatment had no effect; you got the expected answer; the model did
not improve; and so forth.

The other hypothesis, called the alternative hypothesis, is that something happened: the
mean rose; the treatment improved the patients’ health; you got an unexpected
answer; the model fit better; and so forth.

We want to determine which hypothesis is more likely in light of the data. Here’s how
we do this:

1. To begin, we assume that the null hypothesis is true.
2. We calculate a test statistic. It could be something simple, such as the mean of the

sample, or it could be quite complex. The critical requirement is that we must
know the statistic’s distribution. We might know the distribution of the sample
mean, for example, by invoking the Central Limit Theorem.

233



3. From the statistic and its distribution we can calculate a p-value, the probability
of a test statistic value as extreme or more extreme than the one we observed,
while assuming that the null hypothesis is true.

4. If the p-value is too small, we have strong evidence against the null hypothesis.
This is called rejecting the null hypothesis.

5. If the p-value is not small, then we have no such evidence. This is called failing to
reject the null hypothesis.

There is one necessary decision here: when is a p-value “too small”?

In this book, we follow the common convention that we reject the
null hypothesis when p < 0.05 and fail to reject it when p > 0.05. In
statistical terminology, we choose a significance level of α = 0.05 to
define the border between strong evidence and insufficient evi‐
dence against the null hypothesis.

But the real answer is, “It depends.” Your chosen significance level depends on your
problem domain. The conventional limit of p < 0.05 works for many problems. In our
work, the data is especially noisy and so we are often satisfied with p < 0.10. For
someone working in high-risk areas, p < 0.01 or p < 0.001 might be necessary.

In the recipes, we mention which tests include a p-value so that you can compare the
p-value against your chosen significance level of α. We worded the recipes to help you
interpret the comparison. Here is the wording from Recipe 9.4, a test for the inde‐
pendence of two factors:

Conventionally, a p-value of less than 0.05 indicates that the variables are likely not
independent, whereas a p-value exceeding 0.05 fails to provide any such evidence.

This is a compact way of saying:

• The null hypothesis is that the variables are independent.
• The alternative hypothesis is that the variables are not independent.
• For α = 0.05, if p < 0.05 then we reject the null hypothesis, giving strong evidence

that the variables are not independent; if p > 0.05, we fail to reject the null
hypothesis.

• You are free to choose your own α, of course, in which case your decision to
reject or fail to reject might be different.

Remember, the recipe states the informal interpretation of the test results, not the rig‐
orous mathematical interpretation. We use colloquial language in the hope that it will
guide you toward a practical understanding and application of the test. If the precise
semantics of hypothesis testing are critical for your work, we urge you to consult the
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reference cited under See Also or one of the other fine textbooks on mathematical
statistics.

Confidence Intervals
Hypothesis testing is a well-understood mathematical procedure, but it can be frus‐
trating. First, the semantics are tricky. The test does not reach a definite, useful con‐
clusion. You might get strong evidence against the null hypothesis, but that’s all you’ll
get. Second, it does not give you a number, only evidence.

If you want numbers then use confidence intervals, which bound the estimate of a
population parameter at a given level of confidence. Recipes in this chapter can calcu‐
late confidence intervals for means, medians, and proportions of a population.

For example, Recipe 9.9 calculates a 95% confidence interval for the population mean
based on sample data. The interval is 97.16 < μ < 103.98, which means there is a 95%
probability that the population’s mean, μ, is between 97.16 and 103.98.

See Also
Statistical terminology and conventions can vary. This book generally follows the
conventions of Mathematical Statistics with Applications, 6th ed., by Dennis Wackerly
et al. (Duxbury Press). We recommend this book also for learning more about the
statistical tests described in this chapter.

9.1 Summarizing Your Data
Problem
You want a basic statistical summary of your data.

Solution
The summary function gives some useful statistics for vectors, matrices, factors, and
data frames:

summary(vec)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#>     0.0     0.5     1.0     1.6     1.9    33.0

Discussion
The Solution exhibits the summary of a vector. The 1st Qu. and 3rd Qu. are the first
and third quartile, respectively. Having both the median and mean is useful because
you can quickly detect skew. The output in the Solution, for example, shows a mean

9.1 Summarizing Your Data | 235



that is larger than the median; this indicates a possible skew to the right, as one would
expect from a lognormal distribution.

The summary of a matrix works column by column. Here we see the summary of a
matrix, mat, with three columns named Samp1, Samp2, and Samp3:

summary(mat)
#>      Samp1           Samp2            Samp3
#>  Min.   :  1.0   Min.   :-2.943   Min.   : 0.04
#>  1st Qu.: 25.8   1st Qu.:-0.774   1st Qu.: 0.39
#>  Median : 50.5   Median :-0.052   Median : 0.85
#>  Mean   : 50.5   Mean   :-0.067   Mean   : 1.60
#>  3rd Qu.: 75.2   3rd Qu.: 0.684   3rd Qu.: 2.12
#>  Max.   :100.0   Max.   : 2.150   Max.   :13.18

The summary of a factor gives counts:

summary(fac)
#> Maybe    No   Yes
#>    38    32    30

The summary of a character vector is pretty useless, giving just the vector length:

summary(char)
#>    Length     Class      Mode
#>       100 character character

The summary of a data frame incorporates all these features. It works column by col‐
umn, giving an appropriate summary according to the column type. Numeric values
receive a statistical summary and factors are counted (character strings are not sum‐
marized):

suburbs <- read_csv("./data/suburbs.txt")
summary(suburbs)
#>      city              county             state
#>  Length:17          Length:17          Length:17
#>  Class :character   Class :character   Class :character
#>  Mode  :character   Mode  :character   Mode  :character
#>
#>
#>
#>       pop
#>  Min.   :   5428
#>  1st Qu.:  72616
#>  Median :  83048
#>  Mean   : 249770
#>  3rd Qu.: 102746
#>  Max.   :2853114

The “summary” of a list is pretty funky: you get the data type of each list member. 
Here is a summary of a list of vectors:
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summary(vec_list)
#>   Length Class  Mode
#> x 100    -none- numeric
#> y 100    -none- numeric
#> z 100    -none- character

To summarize the data inside a list of vectors, map summary to each list element:

library(purrr)
map(vec_list, summary)
#> $x
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#>  -2.572  -0.686  -0.084  -0.043   0.660   2.413
#>
#> $y
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#>  -1.752  -0.589   0.045   0.079   0.769   2.293
#>
#> $z
#>    Length     Class      Mode
#>       100 character character

Unfortunately, the summary function does not compute any measure of variability,
such as standard deviation or median absolute deviation. This is a serious shortcom‐
ing, so we usually call sd or mad (mean absolute deviation) right after calling summary.

See Also
See Recipe 2.6 and Recipe 6.1.

9.2 Calculating Relative Frequencies
Problem
You want to count the relative frequency of certain observations in your sample.

Solution
Identify the interesting observations by using a logical expression; then use the mean
function to calculate the fraction of observations it identifies. For example, given a
vector x, you can find the relative frequency of positive values in this way:

mean(x > 3)
#> [1] 0.12

Discussion
A logical expression, such as x > 3, produces a vector of logical values (TRUE and
FALSE), one for each element of x. The mean function converts those values to 1s and
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0s, respectively, and computes the average. This gives the fraction of values that are
TRUE—in other words, the relative frequency of the interesting values. In the Solution,
for example, that’s the relative frequency of values greater than 3.

The concept here is pretty simple. The tricky part is dreaming up a suitable logical
expression. Here are some examples:

mean(lab == "NJ")

Fraction of lab values that are New Jersey

mean(after > before)

Fraction of observations for which the effect increases

mean(abs(x-mean(x)) > 2*sd(x))

Fraction of observations that exceed two standard deviations from the mean

mean(diff(ts) > 0)

Fraction of observations in a time series that are larger than the previous obser‐
vation

9.3 Tabulating Factors and Creating Contingency Tables
Problem
You want to tabulate one factor or build a contingency table from multiple factors.

Solution
The table function produces counts of one factor:

table(f1)
#> f1
#>  a  b  c  d  e
#> 14 23 24 21 18

It can also produce contingency tables (cross-tabulations) from two or more factors:

table(f1, f2)
#>    f2
#> f1   f  g  h
#>   a  6  4  4
#>   b  7  9  7
#>   c  4 11  9
#>   d  7  8  6
#>   e  5 10  3

table works for characters, too, not only factors:

t1 <- sample(letters[9:11], 100, replace = TRUE)
table(t1)
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#> t1
#>  i  j  k
#> 20 40 40

Discussion
The table function counts the levels of one factor or characters, such as these counts
of initial and outcome (which are factors):

set.seed(42)
initial <- factor(sample(c("Yes", "No", "Maybe"), 100, replace = TRUE))
outcome <- factor(sample(c("Pass", "Fail"), 100, replace = TRUE))

table(initial)
#> initial
#> Maybe    No   Yes
#>    39    31    30

table(outcome)
#> outcome
#> Fail Pass
#>   56   44

The greater power of table is in producing contingency tables, also known as cross-
tabulations. Each cell in a contingency table counts how many times that row/column
combination occurred:

table(initial, outcome)
#>        outcome
#> initial Fail Pass
#>   Maybe   23   16
#>   No      20   11
#>   Yes     13   17

This table shows that the combination of initial = Yes and outcome = Fail occur‐
red 13 times, the combination of initial = Yes and outcome = Pass occurred 17
times, and so forth.

See Also
The xtabs function can also produce a contingency table. It has a formula interface,
which some people prefer.

9.4 Testing Categorical Variables for Independence
Problem
You have two categorical variables that are represented by factors. You want to test
them for independence using the chi-squared test.
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Solution
Use the table function to produce a contingency table from the two factors. Then use
the summary function to perform a chi-squared test of the contingency table. In this
example we have two vectors of factor values, which we created in the prior recipe:

summary(table(initial, outcome))
#> Number of cases in table: 100
#> Number of factors: 2
#> Test for independence of all factors:
#>  Chisq = 3, df = 2, p-value = 0.2

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the variables are likely not independent, whereas a p-value exceeding 0.05 fails to
provide any such evidence.

Discussion
This example performs a chi-squared test on the contingency table from Recipe 9.3,
and yields a p-value of 0.2:

summary(table(initial, outcome))
#> Number of cases in table: 100
#> Number of factors: 2
#> Test for independence of all factors:
#>  Chisq = 3, df = 2, p-value = 0.2

The large p-value indicates that the two factors, initial and outcome, are probably
independent. Practically speaking, we conclude there is no connection between the
variables. This makes sense, as this example data was created by simply drawing ran‐
dom data using the sample function in the prior recipe.

See Also
The chisq.test function can also perform this test.

9.5 Calculating Quantiles (and Quartiles) of a Dataset
Problem
Given a fraction f, you want to know the corresponding quantile of your data. That is,
you seek the observation x such that the fraction of observations below x is f.

Solution
Use the quantile function. The second argument is the fraction, f:
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quantile(vec, 0.95)
#>  95%
#> 1.43

For quartiles, simply omit the second argument altogether:

quantile(vec)
#>      0%     25%     50%     75%    100%
#> -2.0247 -0.5915 -0.0693  0.4618  2.7019

Discussion
Suppose vec contains 1,000 observations between 0 and 1. The quantile function
can tell you which observation delimits the lower 5% of the data:

vec <- runif(1000)
quantile(vec, .05)
#>     5%
#> 0.0451

The quantile documentation refers to the second argument as a “probability,” which
is natural when we think of probability as meaning relative frequency.

In true R style, the second argument can be a vector of probabilities; in this case,
quantile returns a vector of corresponding quantiles, one for each probability:

quantile(vec, c(.05, .95))
#>     5%    95%
#> 0.0451 0.9363

That is a handy way to identify the middle 90% (in this case) of the observations.

If you omit the probabilities altogether, then R assumes you want the probabilities 0,
0.25, 0.50, 0.75, and 1.0—in other words, the quartiles:

quantile(vec)
#>       0%      25%      50%      75%     100%
#> 0.000405 0.235529 0.479543 0.737619 0.999379

Amazingly, the quantile function implements nine (yes, nine) different algorithms
for computing quantiles. Study the help page before assuming that the default algo‐
rithm is the best one for you.

9.6 Inverting a Quantile
Problem
Given an observation x from your data, you want to know its corresponding quantile.
That is, you want to know what fraction of the data is less than x.
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Solution
Assuming your data is in a vector vec, compare the data against the observation and
then use mean to compute the relative frequency of values less than x—say, 1.6 as per
this example:

mean(vec < 1.6)
#> [1] 0.948

Discussion
The expression vec < x compares every element of vec against x and returns a vector
of logical values, where the nth logical value is TRUE if vec[n] < x. The mean function
converts those logical values to 0s and 1s: 0 for FALSE and 1 for TRUE. The average of
all those 1s and 0s is the fraction of vec that is less than x, or the inverse quantile of x.

See Also
This is an application of the general approach described in Recipe 9.2.

9.7 Converting Data to z-Scores
Problem
You have a dataset, and you want to calculate the corresponding z-scores for all data
elements. (This is sometimes called normalizing the data.)

Solution
Use the scale function:

scale(x)
#>          [,1]
#>  [1,]  0.8701
#>  [2,] -0.7133
#>  [3,] -1.0503
#>  [4,]  0.5790
#>  [5,] -0.6324
#>  [6,]  0.0991
#>  [7,]  2.1495
#>  [8,]  0.2481
#>  [9,] -0.8155
#> [10,] -0.7341
#> attr(,"scaled:center")
#> [1] 2.42
#> attr(,"scaled:scale")
#> [1] 2.11
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This works for vectors, matrices, and data frames. In the case of a vector, scale
returns the vector of normalized values. In the case of matrices and data frames,
scale normalizes each column independently and returns columns of normalized
values in a matrix.

Discussion
You might also want to normalize a single value y relative to a dataset x. You can do so
by using vectorized operations as follows:

(y - mean(x)) / sd(x)
#> [1] -0.633

9.8 Testing the Mean of a Sample (t-Test)
Problem
You have a sample from a population. Given this sample, you want to know if the
mean of the population could reasonably be a particular value m.

Solution
Apply the t.test function to the sample x with the argument mu = m:

t.test(x, mu = m)

The output includes a p-value. Conventionally, if p < 0.05 then the population mean
is unlikely to be m, whereas p > 0.05 provides no such evidence.

If your sample size n is small, then the underlying population must be normally dis‐
tributed in order to derive meaningful results from the t-test. A good rule of thumb is
that “small” means n < 30.

Discussion
The t-test is a workhorse of statistics, and this is one of its basic uses: making inferen‐
ces about a population mean from a sample. The following example simulates sam‐
pling from a normal population with mean μ = 100. It uses the t-test to ask if the pop‐
ulation mean could be 95, and t.test reports a p-value of 0.005:

x <- rnorm(75, mean = 100, sd = 15)
t.test(x, mu = 95)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = 3, df = 70, p-value = 0.005
#> alternative hypothesis: true mean is not equal to 95
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#> 95 percent confidence interval:
#>   96.5 103.0
#> sample estimates:
#> mean of x
#>      99.7

The p-value is small, so it’s unlikely (based on the sample data) that 95 could be the
mean of the population.

Informally, we could interpret the low p-value as follows. If the population mean were
really 95, then the probability of observing our test statistic (t = 2.8898 or something
more extreme) would be only 0.005. That is very improbable, yet that is the value we
observed. Hence we conclude that the null hypothesis is wrong; therefore, the sample
data does not support the claim that the population mean is 95.

In sharp contrast, testing for a mean of 100 gives a p-value of 0.9:

t.test(x, mu = 100)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = -0.2, df = 70, p-value = 0.9
#> alternative hypothesis: true mean is not equal to 100
#> 95 percent confidence interval:
#>   96.5 103.0
#> sample estimates:
#> mean of x
#>      99.7

The large p-value indicates that the sample is consistent with assuming a population
mean μ of 100. In statistical terms, the data does not provide evidence against the true
mean being 100.

A common case is testing for a mean of zero. If you omit the mu argument, it defaults
to 0.

See Also
The t.test function is a many-splendored thing. See Recipe 9.9 and Recipe 9.15 for
other uses.

9.9 Forming a Confidence Interval for a Mean
Problem
You have a sample from a population. Given that sample, you want to determine a
confidence interval for the population’s mean.
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Solution
Apply the t.test function to your sample x:

t.test(x)

The output includes a confidence interval at the 95% confidence level. To see inter‐
vals at other levels, use the conf.level argument.

As in Recipe 9.8, if your sample size n is small, then the underlying population must
be normally distributed for there to be a meaningful confidence interval. Again, a
good rule of thumb is that “small” means n < 30.

Discussion
Applying the t.test function to a vector yields a lot of output. Buried in the output
is a confidence interval:

t.test(x)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = 50, df = 50, p-value <2e-16
#> alternative hypothesis: true mean is not equal to 0
#> 95 percent confidence interval:
#>   94.2 101.5
#> sample estimates:
#> mean of x
#>      97.9

In this example, the confidence interval is approximately 94.2 < μ < 101.5, which is
sometimes written simply as (94.2, 101.5).

We can raise the confidence level to 99% by setting conf.level=0.99:

t.test(x, conf.level = 0.99)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = 50, df = 50, p-value <2e-16
#> alternative hypothesis: true mean is not equal to 0
#> 99 percent confidence interval:
#>   92.9 102.8
#> sample estimates:
#> mean of x
#>      97.9

That change widens the confidence interval to 92.9 < μ < 102.8.
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9.10 Forming a Confidence Interval for a Median
Problem
You have a data sample, and you want to know the confidence interval for the
median.

Solution
Use the wilcox.test function, setting conf.int=TRUE:

wilcox.test(x, conf.int = TRUE)

The output will contain a confidence interval for the median.

Discussion
The procedure for calculating the confidence interval of a mean is well defined and
widely known. The same is not true for the median, unfortunately. There are several
procedures for calculating the median’s confidence interval. None of them is “the”
procedure, but the Wilcoxon signed rank test is pretty standard.

The wilcox.test function implements that procedure. Buried in the output is the
95% confidence interval, which is approximately (–0.102, 0.646) in this case:

wilcox.test(x, conf.int = TRUE)
#>
#>  Wilcoxon signed rank test
#>
#> data:  x
#> V = 200, p-value = 0.1
#> alternative hypothesis: true location is not equal to 0
#> 95 percent confidence interval:
#>  -0.102  0.646
#> sample estimates:
#> (pseudo)median
#>          0.311

You can change the confidence level by setting conf.level, such as conf.level=0.99
or other such values.

The output also includes something called the pseudomedian, which is defined on the
help page. Don’t assume it equals the median; they are different:

median(x)
#> [1] 0.314
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See Also
The bootstrap procedure is also useful for estimating the median’s confidence inter‐
val; see Recipe 8.5 and Recipe 13.8.

9.11 Testing a Sample Proportion
Problem
You have a sample of values from a population consisting of successes and failures.
You believe the true proportion of successes is p, and you want to test that hypothesis
using the sample data.

Solution
Use the prop.test function. Suppose the sample size is n and the sample contains x
successes:

prop.test(x, n, p)

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the true proportion is unlikely to be p, whereas a p-value exceeding 0.05 fails to
provide such evidence.

Discussion
Suppose you encounter some loudmouthed fan of the Chicago Cubs early in the
baseball season. The Cubs have played 20 games and won 11 of them, or 55% of their
games. Based on that evidence, the fan is “very confident” that the Cubs will win
more than half of their games this year. Should they be that confident?

The prop.test function can evaluate the fan’s logic. Here, the number of observa‐
tions is n = 20, the number of successes is x = 11, and p is the true probability of win‐
ning a game. We want to know whether it is reasonable to conclude, based on the
data, that p > 0.5. Normally, prop.test would check for p ≠ 0.05, but we can check
for p > 0.5 instead by setting alternative="greater":

prop.test(11, 20, 0.5, alternative = "greater")
#>
#>  1-sample proportions test with continuity correction
#>
#> data:  11 out of 20, null probability 0.5
#> X-squared = 0.05, df = 1, p-value = 0.4
#> alternative hypothesis: true p is greater than 0.5
#> 95 percent confidence interval:
#>  0.35 1.00
#> sample estimates:

9.11 Testing a Sample Proportion | 247



#>    p
#> 0.55

The prop.test output shows a large p-value, 0.55, so we cannot reject the null
hypothesis; that is, we cannot reasonably conclude that p is greater than 1/2. The
Cubs fan is being overly confident based on too little data. No surprise there.

9.12 Forming a Confidence Interval for a Proportion
Problem
You have a sample of values from a population consisting of successes and failures.
Based on the sample data, you want to form a confidence interval for the population’s
proportion of successes.

Solution
Use the prop.test function. Suppose the sample size is n and the sample contains x
successes:

prop.test(x, n)

The function output includes the confidence interval for p.

Discussion
We subscribe to a stock market newsletter that is well written, but includes a section
purporting to identify stocks that are likely to rise. It does this by looking for a certain
pattern in the stock price. It recently reported, for example, that a certain stock was
following the pattern. It also reported that the stock rose six times after the last nine
times that pattern occurred. The writers concluded that the probability of the stock
rising again was therefore 6/9, or 66.7%.

Using prop.test, we can obtain the confidence interval for the true proportion of
times the stock rises after the pattern. Here, the number of observations is n = 9 and
the number of successes is x = 6. The output shows a confidence interval of (0.309,
0.910) at the 95% confidence level:

prop.test(6, 9)
#> Warning in prop.test(6, 9): Chi-squared approximation may be incorrect
#>
#>  1-sample proportions test with continuity correction
#>
#> data:  6 out of 9, null probability 0.5
#> X-squared = 0.4, df = 1, p-value = 0.5
#> alternative hypothesis: true p is not equal to 0.5
#> 95 percent confidence interval:
#>  0.309 0.910

248 | Chapter 9: General Statistics



#> sample estimates:
#>     p
#> 0.667

The writers are pretty foolish to say the probability of the stock rising is 66.7%. They
could be leading their readers into a very bad bet.

By default, prop.test calculates a confidence interval at the 95% confidence level.
Use the conf.level argument for other confidence levels:

prop.test(x, n, p, conf.level = 0.99)   # 99% confidence level

See Also
See Recipe 9.11.

9.13 Testing for Normality
Problem
You want a statistical test to determine whether your data sample is from a normally
distributed population.

Solution
Use the shapiro.test function:

shapiro.test(x)

The output includes a p-value. Conventionally, p < 0.05 indicates that the population
is likely not normally distributed, whereas p > 0.05 provides no such evidence.

Discussion
This example reports a p-value of 0.4 for x:

shapiro.test(x)
#>
#>  Shapiro-Wilk normality test
#>
#> data:  x
#> W = 1, p-value = 0.4

The large p-value suggests the underlying population could be normally distributed.
The next example reports a very small p-value for y, so it is unlikely that this sample
came from a normal population:

shapiro.test(y)
#>
#>  Shapiro-Wilk normality test
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#>
#> data:  y
#> W = 0.7, p-value = 7e-13

We have highlighted the Shapiro–Wilk test because it is a standard R function. You
can also install the package nortest, which is dedicated entirely to tests for normality.
This package includes the following tests:

• Anderson–Darling (ad.test)
• Cramer–von Mises (cvm.test)
• Lilliefors (lillie.test)
• Pearson chi-squared for the composite hypothesis of normality (pearson.test)
• Shapiro–Francia (sf.test)

The problem with all of these is their null hypothesis: they all assume that the popula‐
tion is normally distributed until proven otherwise. As a result, the population must
be decidedly nonnormal before the test reports a small p-value and you can reject that
null hypothesis. That makes the tests quite conservative, tending to err on the side of
normality.

Instead of depending solely upon a statistical test, we suggest also using histograms
(Recipe 10.19) and quantile-quantile plots (Recipe 10.21) to evaluate the normality of
any data. Are the tails too fat? Is the peak too peaked? Your judgment is likely better
than a single statistical test.

See Also
See Recipe 3.10 for how to install the nortest package.

9.14 Testing for Runs
Problem
Your data is a sequence of binary values: yes/no, 0/1, true/false, or other two-valued
data. You want to know: is the sequence random?

Solution
The tseries package contains the runs.test function, which checks a sequence for
randomness. The sequence should be a factor with two levels:

library(tseries)
runs.test(as.factor(s))
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The runs.test function reports a p-value. Conventionally, a p-value of less than 0.05
indicates that the sequence is likely not random, whereas a p-value exceeding 0.05
provides no such evidence.

Discussion
A run is a subsequence composed of identical values, such as all 1s or all 0s. A ran‐
dom sequence should be properly jumbled up, without too many runs. It shouldn’t
contain too few runs, either—a sequence of perfectly alternating values (0, 1, 0, 1, 0, 1,
…) contains no runs, but would you say that it’s random?

The runs.test function checks the number of runs in your sequence. If there are too
many or too few, it reports a small p-value.

This first example generates a random sequence of 0s and 1s and then tests the
sequence for runs. Not surprisingly, runs.test reports a large p-value, indicating the
sequence is likely random:

s <- sample(c(0, 1), 100, replace = T)
runs.test(as.factor(s))
#>
#>  Runs Test
#>
#> data:  as.factor(s)
#> Standard Normal = 0.1, p-value = 0.9
#> alternative hypothesis: two.sided

This next sequence, however, consists of three runs and so the reported p-value is
quite low:

s <- c(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)
runs.test(as.factor(s))
#>
#>  Runs Test
#>
#> data:  as.factor(s)
#> Standard Normal = -2, p-value = 0.02
#> alternative hypothesis: two.sided

See Also
See Recipe 5.4 and Recipe 8.6.
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9.15 Comparing the Means of Two Samples
Problem
You have one sample each from two populations. You want to know if the two popu‐
lations could have the same mean.

Solution
Perform a t-test by calling the t.test function:

t.test(x, y)

By default, t.test assumes that your observations are not paired. If the observations
are paired (i.e., if each xi is paired with one yi), then specify paired=TRUE:

t.test(x, y, paired = TRUE)

In either case, t.test will compute a p-value. Conventionally, if p < 0.05 then the
means are likely different, whereas p > 0.05 provides no such evidence:

• If either sample size is small, then the populations must be normally distributed.
Here, “small” means fewer than 20 data points.

• If the two populations have the same variance, specify var.equal=TRUE to obtain
a less conservative test.

Discussion
We often use the t-test to get a quick sense of the difference between two population
means. It requires that the samples be large enough (i.e., both samples have 20 or
more observations) or that the underlying populations be normally distributed. We
don’t take the “normally distributed” part too literally. Being bell-shaped and reasona‐
bly symmetrical should be good enough.

A key distinction here is whether or not your data contains paired observations, since
the results may differ in the two cases. Suppose we want to know if drinking coffee in
the morning improves scores on SATs. We could run the experiment two ways:

• Randomly select one group of people. Give them the SAT twice, once with morn‐
ing coffee and once without morning coffee. For each person, we will have two
SAT scores. These are paired observations.

• Randomly select two groups of people. One group has a cup of morning coffee
and takes the SAT. The other group just takes the test. We have a score for each
person, but the scores are not paired in any way.
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Statistically, these experiments are quite different. In experiment 1, there are two
observations for each person (caffeinated and not) and they are not statistically inde‐
pendent. In experiment 2, the observations are independent.

If you have paired observations (experiment 1) and erroneously analyze them as
unpaired observations (experiment 2), then you could get this result with a p-value of
0.3:

load("./data/sat.rdata")
t.test(x, y)
#>
#>  Welch Two Sample t-test
#>
#> data:  x and y
#> t = -1, df = 200, p-value = 0.3
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#>  -46.4  16.2
#> sample estimates:
#> mean of x mean of y
#>      1054      1069

The large p-value forces you to conclude there is no difference between the groups.
Contrast that result with the one that follows from analyzing the same data but cor‐
rectly identifying it as paired:

t.test(x, y, paired = TRUE)
#>
#>  Paired t-test
#>
#> data:  x and y
#> t = -20, df = 100, p-value <2e-16
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#>  -16.8 -13.5
#> sample estimates:
#> mean of the differences
#>                   -15.1

The p-value plummets to 2e-16, and we reach the exactly opposite conclusion.

See Also
If the populations are not normally distributed (bell-shaped) and either sample is
small, consider using the Wilcoxon–Mann–Whitney test described in Recipe 9.16.
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9.16 Comparing the Locations of Two Samples
Nonparametrically
Problem
You have samples from two populations. You don’t know the distribution of the pop‐
ulations, but you know they have similar shapes. You want to know: is one population
shifted to the left or right compared with the other?

Solution
You can use a nonparametric test, the Wilcoxon–Mann–Whitney test, which is 
implemented by the wilcox.test function. For paired observations (every xi is
paired with yi), set paired=TRUE:

wilcox.test(x, y, paired = TRUE)

For unpaired observations, let paired default to FALSE:

wilcox.test(x, y)

The test output includes a p-value. Conventionally, a p-value of less than 0.05 indi‐
cates that the second population is likely shifted left or right with respect to the first
population, whereas a p-value exceeding 0.05 provides no such evidence.

Discussion
When we stop making assumptions regarding the distributions of populations, we
enter the world of nonparametric statistics. The Wilcoxon–Mann–Whitney test is
nonparametric and so can be applied to more datasets than the t-test, which requires
that the data be normally distributed (for small samples). This test’s only assumption
is that the two populations have the same shape.

In this recipe, we are asking: is the second population shifted left or right with respect
to the first? This is similar to asking whether the average of the second population is
smaller or larger than that of the first. However, the Wilcoxon–Mann–Whitney test
answers a different question: it tells us whether the central locations of the two popu‐
lations are significantly different or, equivalently, whether their relative frequencies
are different.

Suppose we randomly select a group of employees and ask each one to complete the
same task under two different circumstances: under favorable conditions and under
unfavorable conditions, such as a noisy environment. We measure their completion
times under both conditions, so we have two measurements for each employee. We
want to know if the two times are significantly different, but we can’t assume they are
normally distributed.
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The observations are paired, so we must set paired=TRUE:

load(file = "./data/workers.rdata")
wilcox.test(fav, unfav, paired = TRUE)
#>
#>  Wilcoxon signed rank test
#>
#> data:  fav and unfav
#> V = 10, p-value = 1e-04
#> alternative hypothesis: true location shift is not equal to 0

The p-value is essentially zero. Statistically speaking, we reject the assumption that the
completion times were equal. Practically speaking, it’s reasonable to conclude that the
times were different.

In this example, setting paired=TRUE is critical. Treating the data as unpaired would
be wrong because the observations are not independent, and this in turn would pro‐
duce bogus results. Running the example with paired=FALSE produces a p-value of
0.1022, which leads to the wrong conclusion.

See Also
See Recipe 9.15 for the parametric test.

9.17 Testing a Correlation for Significance
Problem
You calculated the correlation between two variables, but you don’t know if the corre‐
lation is statistically significant.

Solution
The cor.test function can calculate both the p-value and the confidence interval of
the correlation. If the variables came from normally distributed populations then use
the default measure of correlation, which is the Pearson method:

cor.test(x, y)

For nonnormal populations, use the Spearman method instead:

cor.test(x, y, method = "spearman")

The function returns several values, including the p-value from the test of signifi‐
cance. Conventionally, p < 0.05 indicates that the correlation is likely significant,
whereas p > 0.05 indicates it is not.
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Discussion
In our experience, people often fail to check a correlation for significance. In fact,
many people are unaware that a correlation can be insignificant. They jam their data
into a computer, calculate the correlation, and blindly believe the result. However,
they should ask themselves: Was there enough data? Is the magnitude of the correla‐
tion large enough? Fortunately, the cor.test function answers those questions.

Suppose we have two vectors, x and y, with values from normal populations. We
might be very pleased that their correlation is greater than 0.75:

cor(x, y)
#> [1] 0.751

But that is naïve. If we run cor.test, it reports a relatively large p-value of 0.09:

cor.test(x, y)
#>
#>  Pearson's product-moment correlation
#>
#> data:  x and y
#> t = 2, df = 4, p-value = 0.09
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#>  -0.155  0.971
#> sample estimates:
#>   cor
#> 0.751

The p-value is above the conventional threshold of 0.05, so we conclude that the cor‐
relation is unlikely to be significant.

You can also check the correlation by using the confidence interval. In this example,
the confidence interval is (–0.155, 0.971). The interval contains zero and so it is possi‐
ble that the correlation is zero, in which case there would be no correlation. Again,
you could not be confident that the reported correlation is significant.

The cor.test output also includes the point estimate reported by cor (at the bottom,
labeled “sample estimates”), saving you the additional step of running cor.

By default, cor.test calculates the Pearson correlation, which assumes that the
underlying populations are normally distributed. The Spearman method makes no
such assumption because it is nonparametric. Use method="Spearman" when working
with nonnormal data.

See Also
See Recipe 2.6 for calculating simple correlations.
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9.18 Testing Groups for Equal Proportions
Problem
You have samples from two or more groups. The groups’ elements are binary-valued:
either success or failure. You want to know if the groups have equal proportions of
successes.

Solution
Use the prop.test function with two vector arguments:

ns <- c(48, 64)
nt <- c(100, 100)
prop.test(ns, nt)
#>
#>  2-sample test for equality of proportions with continuity
#>  correction
#>
#> data:  ns out of nt
#> X-squared = 5, df = 1, p-value = 0.03
#> alternative hypothesis: two.sided
#> 95 percent confidence interval:
#>  -0.3058 -0.0142
#> sample estimates:
#> prop 1 prop 2
#>   0.48   0.64

These are parallel vectors. The first vector, ns, gives the number of successes in each
group. The second vector, nt, gives the size of the corresponding group (often called
the number of trials).

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that it is likely the groups’ proportions are different, whereas a p-value exceeding 0.05
provides no such evidence.

Discussion
In Recipe 9.11, we tested a proportion based on one sample. Here, we have samples
from multiple groups and want to compare the proportions in the underlying groups.

One of the authors recently taught statistics to 38 students and awarded a grade of A
to 14 of them. A colleague taught the same class to 40 students and awarded an A to
only 10. We wanted to know: was the author fostering grade inflation by awarding
significantly more A grades than the other teacher did?
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We used prop.test. “Success” means awarding an A, so the vector of successes con‐
tains two elements, the number awarded by the author and the number awarded by
the colleague:

successes <- c(14, 10)

The number of trials is the number of students in the corresponding class:

trials <- c(38, 40)

The prop.test output yields a p-value of 0.4:

prop.test(successes, trials)
#>
#>  2-sample test for equality of proportions with continuity
#>  correction
#>
#> data:  successes out of trials
#> X-squared = 0.8, df = 1, p-value = 0.4
#> alternative hypothesis: two.sided
#> 95 percent confidence interval:
#>  -0.111  0.348
#> sample estimates:
#> prop 1 prop 2
#>  0.368  0.250

The relatively large p-value means that we cannot reject the null hypothesis: the evi‐
dence does not suggest any difference between the teachers’ grading.

See Also
See Recipe 9.11.

9.19 Performing Pairwise Comparisons Between Group
Means
Problem
You have several samples, and you want to perform a pairwise comparison between
the sample means. That is, you want to compare the mean of every sample against the
mean of every other sample.

Solution
Place all data into one vector and create a parallel factor to identify the groups. Use
pairwise.t.test to perform the pairwise comparison of means:

pairwise.t.test(x, f)   # x is the data, f is the grouping factor
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The output contains a table of p-values, one for each pair of groups. Conventionally,
if p < 0.05 then the two groups likely have different means, whereas p > 0.05 provides
no such evidence.

Discussion
This is more complicated than Recipe 9.15, where we compared the means of two
samples. Here we have several samples and want to compare the mean of every sam‐
ple against the mean of every other sample.

Statistically speaking, pairwise comparisons are tricky. It is not the same as simply
performing a t-test on every possible pair. The p-values must be adjusted, as other‐
wise you will get an overly optimistic result. The help pages for pairwise.t.test and
p.adjust describe the adjustment algorithms available in R. Anyone doing serious
pairwise comparisons is urged to review the help pages and consult a good textbook
on the subject.

Suppose we are using a larger sample of the data from Recipe 5.5, where we com‐
bined data for freshmen, sophomores, and juniors into a data frame called comb. The
data frame has two columns: the data in a column called values, and the grouping
factor in a column called ind. We can use pairwise.t.test to perform pairwise
comparisons between the groups:

pairwise.t.test(comb$values, comb$ind)
#>
#>  Pairwise comparisons using t-tests with pooled SD
#>
#> data:  comb$values and comb$ind
#>
#>      fresh soph
#> soph 0.001 -
#> jrs  3e-04 0.592
#>
#> P value adjustment method: holm

Notice the table of p-values. The comparisons of juniors versus freshmen and of
sophomores versus freshmen produced small p-values: 0.001 and 0.0003, respectively.
We can conclude there are significant differences between those groups. However, the
comparison of sophomores versus juniors produced a (relatively) large p-value of
0.592, so they are not significantly different.

See Also
See Recipe 5.5 and Recipe 9.15.
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9.20 Testing Two Samples for the Same Distribution
Problem
You have two samples, and you are wondering: did they come from the same
distribution?

Solution
The Kolmogorov–Smirnov test compares two samples and tests them for being
drawn from the same distribution. The ks.test function implements that test:

ks.test(x, y)

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the two samples (x and y) were drawn from different distributions, whereas a p-
value exceeding 0.05 provides no such evidence.

Discussion
The Kolmogorov–Smirnov test is wonderful for two reasons. First, it is a nonpara‐
metric test and so you needn’t make any assumptions regarding the underlying distri‐
butions: it works for all distributions. Second, it checks the location, dispersion, and
shape of the populations, based on the samples. If these characteristics disagree then
the test will detect that, allowing you to conclude that the underlying distributions are
different.

Suppose we suspect that the vectors x and y come from differing distributions. Here,
ks.test reports a p-value of 0.04:

ks.test(x, y)
#>
#>  Two-sample Kolmogorov-Smirnov test
#>
#> data:  x and y
#> D = 0.2, p-value = 0.04
#> alternative hypothesis: two-sided

From the small p-value we can conclude that the samples are from different distribu‐
tions. However, when we test x against another sample, z, the p-value is much larger
(0.6); this suggests that x and z could have the same underlying distribution:

z <- rnorm(100, mean = 4, sd = 6)
ks.test(x, z)
#>
#>  Two-sample Kolmogorov-Smirnov test
#>
#> data:  x and z
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#> D = 0.1, p-value = 0.6
#> alternative hypothesis: two-sided
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CHAPTER 10

Graphics

Graphics is a great strength of R. The graphics package is part of the standard distri‐
bution and contains many useful functions for creating a variety of graphic displays.
The base functionality has been expanded and made easier with ggplot2, part of the
tidyverse of packages. In this chapter we will focus on examples using ggplot2, and
we will occasionally suggest other packages. In this chapter’s See Also sections we
mention functions in other packages that do the same job in a different way. We sug‐
gest that you explore those alternatives if you are dissatisfied with what’s offered by
ggplot2 or base graphics.

Graphics is a vast subject, and we can only scratch the surface here. Winston Chang’s
R Graphics Cookbook, 2nd ed., is part of the O’Reilly Cookbook series and walks
through many useful recipes with a focus on ggplot2. If you want to delve deeper, we
recommend R Graphics by Paul Murrell (Chapman & Hall); it discusses the para‐
digms behind R graphics, explains how to use the graphics functions, and contains
numerous examples, including the code to re-create them. Some of the examples are
pretty amazing.

The Illustrations
The graphs in this chapter are mostly plain and unadorned. We did that intentionally.
When you call the ggplot function, as in:

library(tidyverse)

df <- data.frame(x = 1:5, y = 1:5)
ggplot(df, aes(x, y)) +
  geom_point()

you get a plain graphical representation of x and y as shown in Figure 10-1.
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Figure 10-1. Simple plot

You could adorn the graph with colors, a title, labels, a legend, text, and so forth, but
then the call to ggplot becomes more and more crowded, obscuring the basic
intention:

ggplot(df, aes(x, y)) +
  geom_point() +
  labs(
    title = "Simple Plot Example",
    subtitle = "with a subtitle",
    x = "x-values",
    y = "y-values"
  ) +
  theme(panel.background = element_rect(fill = "white", color = "grey50"))

The resulting plot is shown in Figure 10-2. We want to keep the recipes clean, so we
emphasize the basic plot and then show later (as in Recipe 10.2) how to add
adornments.
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Figure 10-2. Slightly more complicated plot

Notes on ggplot2 Basics
While the package is called ggplot2, the primary plotting function in the package is
called ggplot. It is important to understand the basic pieces of a ggplot graph. In the
preceding examples, you can see that we pass data into ggplot, then define how the
graph is created by stacking together small phrases that describe some aspect of the
plot. This stacking together of phrases is part of the “grammar of graphics” ethos
(that’s where the gg comes from). To learn more, you can read “A Layered Grammar
of Graphics” written by ggplot author Hadley Wickham. The concept originated
with Leland Wilkinson, who articulated the idea of building graphics up from a set of
primitives (i.e., verbs and nouns). With ggplot, the underlying data need not be fun‐
damentally reshaped for each type of graphical representation. In general, the data
stays the same and the user changes the syntax slightly to illustrate the data differ‐
ently. This is significantly more consistent than base graphics, which often require
reshaping the data in order to change the way it is visualized.

As we’re talking about ggplot graphics, it’s worth defining the components of a
ggplot graph:

Geometric object functions
These are geometric objects that describe the type of graph being created. Their
names start with geom_; examples include geom_line, geom_boxplot, and
geom_point, along with dozens more.

Graphics | 265



Aesthetics
The aesthetics, or aesthetic mappings, communicate to ggplot which fields in the
source data get mapped to which visual elements in the graphic. This is the aes
line in a ggplot call.

Stats
Stats are statistical transformations that are done before displaying the data. Not
all graphs will have stats, but a few common stats are stat_ecdf (the empirical
cumulative distribution function) and stat_identity, which tells ggplot to pass
the data without doing any stats at all.

Facet functions
Facets are subplots where each small plot represents a subgroup of the data. The
faceting functions include facet_wrap and facet_grid.

Themes
Themes are the visual elements of the plot that are not tied to data. These might
include titles, margins, table of contents locations, or font choices.

Layer
A layer is a combination of data, aesthetics, a geometric object, a stat, and other
options to produce a visual layer in the ggplot graphic.

“Long” Versus “Wide” Data with ggplot
One of the first sources of confusion for new ggplot users is that they are inclined to
reshape their data to be “wide” before plotting it. “Wide” here means every variable
they are plotting is its own column in the underlying data frame. This is an approach
that many users develop while using Excel and then bring with them to R. ggplot
works most easily with “long” data, where additional variables are added as rows in
the data frame rather than columns. The great side effect of adding more measure‐
ments as rows is that any properly constructed ggplot graphs will automatically
update to reflect the new data without changing the ggplot code. If each additional
variable were added as a column, then the plotting code would have to be changed to
introduce additional variables. This idea of “long” versus “wide” data will become
more obvious in the examples in the rest of this chapter.

Graphics in Other Packages
R is highly programmable, and many people have extended its graphics machinery
with additional features. Quite often, packages include specialized functions for plot‐
ting their results and objects. The zoo package, for example, implements a time series
object. If you create a zoo object z and call plot(z), then the zoo package does the
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plotting; it creates a graphic that is customized for displaying a time series. zoo uses
base graphics, so the resulting graph will not be a ggplot graphic.

There are even entire packages devoted to extending R with new graphics paradigms.
The lattice package is an alternative to base graphics that predates ggplot2. It uses a
powerful graphics paradigm that enables you to create informative graphics more
easily. It was implemented by Deepayan Sarkar, who also wrote Lattice: Multivariate
Data Visualization with R (Springer), which explains the package and how to use it.
The lattice package is also described in R in a Nutshell (O’Reilly).

There are two chapters in Hadley Wickham and Garrett Grolemund’s excellent book
R for Data Science that deal with graphics. Chapter 7, “Exploratory Data Analysis,”
focuses on exploring data with ggplot2, while Chapter 28, “Graphics for Communi‐
cation,” explores communicating to others with graphics. R for Data Science is avail‐
able in print or online.

10.1 Creating a Scatter Plot
Problem
You have paired observations: (x1, y1), (x2, y2), …, (xn, yn). You want to create a scatter
plot of the pairs.

Solution
We can plot the data by calling ggplot, passing in the data frame, and invoking a geo‐
metric point function:

ggplot(df, aes(x, y)) +
  geom_point()

In this example, the data frame is called df and the x and y data are in fields named x
and y, which we pass to the aesthetic in the call aes(x, y).

Discussion
A scatter plot is a common first attack on a new dataset. It’s a quick way to see the
relationship, if any, between x and y.

Plotting with ggplot requires telling ggplot what data frame to use, then what type
of graph to create and which aesthetic mapping (aes) to use. The aes in this case
defines which field from df goes into which axis on the plot. Then the command
geom_point communicates that you want a point graph, as opposed to a line or other
type of graphic.
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We can use the built-in mtcars dataset to illustrate plotting horsepower (hp) on the x-
axis and fuel economy (mpg) on the y-axis:

ggplot(mtcars, aes(hp, mpg)) +
  geom_point()

The resulting plot is shown in Figure 10-3.

Figure 10-3. Scatter plot

See Also
See Recipe 10.2 for adding a title and labels, Recipe 10.3 for adding a grid, and Recipe
10.6 for adding a legend. See Recipe 10.8 for plotting multiple variables.

10.2 Adding a Title and Labels
Problem
You want to add a title to your plot or add labels for the axes.
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Solution
With ggplot we add a labs element that controls the labels for the title and axes.

When calling labs in ggplot, specify:

title

Desired title text

x

x-axis label

y

y-axis label

For example:

ggplot(df, aes(x, y)) +
  geom_point() +
  labs(title = "The Title",
       x = "X-axis Label",
       y = "Y-axis Label")

Discussion
The graph created in Recipe 10.1 is quite plain. A title and better labels will make it
more interesting and easier to interpret.

Note that in ggplot you build up the elements of the graph by connecting the parts
with the plus sign, +. So, we add further graphical elements by stringing together
phrases. You can see this in the following code, which uses the built-in mtcars dataset
and plots horsepower versus fuel economy in a scatter plot, shown in Figure 10-4:

ggplot(mtcars, aes(hp, mpg)) +
  geom_point() +
  labs(title = "Cars: Horsepower vs. Fuel Economy",
       x = "HP",
       y = "Economy (miles per gallon)")
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Figure 10-4. Labeled axes and title

10.3 Adding (or Removing) a Grid
Problem
You want to change the background grid of your graphic.

Solution
With ggplot background grids come as a default, as you have seen in previous rec‐
ipes. However, we can alter the background grid using the theme function or by
applying a prepackaged theme to our graph.

We can use theme to alter the background panel of our graphic. This example
removes it, as seen in Figure 10-5:

ggplot(df) +
  geom_point(aes(x, y)) +
  theme(panel.background = element_rect(fill = "white", color = "grey50"))
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Figure 10-5. White background

Discussion
ggplot fills in the background with a grey grid by default. You may find yourself
wanting to remove that grid completely or change it to something else. Let’s create a
ggplot graphic and then incrementally change the background style.

We can add or change aspects of our graphic by creating a ggplot object, then calling
the object and using the + to add to it. The background shading in a ggplot graphic is
actually three different graph elements:

panel.grid.major

The major grid is white by default and heavy.

panel.grid.minor

The minor grid is white by default and light.

panel.background

The background is grey by default.

You can see these elements if you look carefully at the background of Figure 10-4.
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If we set the background as element_blank, then the major and minor grids are still
there, but they are white on white so we can’t see them in Figure 10-6:

g1 <- ggplot(mtcars, aes(hp, mpg)) +
  geom_point() +
  labs(title = "Cars: Horsepower vs. Fuel Economy",
       x = "HP",
       y = "Economy (miles per gallon)") +
  theme(panel.background = element_blank())
g1

Figure 10-6. Blank background

Notice in the previous code we put the ggplot graph into a variable called g1. Then
we printed the graphic by just calling g1. Having the graph inside of g1 means we can
add further graphical components without rebuilding the graph.
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If we wanted to show the background grid with unusual patterns for illustration, it’s
as easy as setting its components to a color and setting a line type, as in this example
(see Figure 10-7):

g2 <- g1 + theme(panel.grid.major =
                   element_line(color = "black", linetype = 3)) +
  # linetype = 3 is dash
  theme(panel.grid.minor =
          element_line(color = "darkgrey", linetype = 4))
  # linetype = 4 is dot dash
g2

Figure 10-7. Major and minor gridlines

Figure 10-7 lacks visual appeal, but you can clearly see that the dotted black lines
make up the major grid and the dashed grey lines are the minor grid.

Or we could do something less garish and take the ggplot object g1 from before and
add grey gridlines to the white background, as shown in Figure 10-8:

g1 +
  theme(panel.grid.major = element_line(color = "grey"))
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Figure 10-8. Grey major gridlines

See Also
See Recipe 10.4 to see how to apply an entire canned theme to your figure.

10.4 Applying a Theme to a ggplot Figure
Problem
You want your plot to use a preset collection of colors, styles, and formatting.

Solution
ggplot supports themes, which are collections of settings for your figures. To use one
of the themes, just add the desired theme function to your ggplot with a +:

ggplot(df, aes(x, y)) +
  geom_point() +
  theme_bw()

The ggplot2 package contains the following themes:

theme_bw()
theme_dark()
theme_classic()
theme_gray()
theme_linedraw()
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theme_light()
theme_minimal()
theme_test()
theme_void()

Discussion
Let’s start with a simple plot and then show how it looks with a few of the built-in
themes. Figure 10-9 shows a basic ggplot figure with no theme applied:

p <- ggplot(mtcars, aes(x = disp, y = hp)) +
  geom_point() +
  labs(title = "mtcars: Displacement vs. Horsepower",
       x = "Displacement (cubic inches)",
       y = "Horsepower")
p

Figure 10-9. Starting plot

Let’s create the same plot multiple times, but apply a different theme to each one.
Figure 10-10 shows what it looks like with the black and white theme applied:

p + theme_bw()

Figure 10-11 shows the classic theme:

p + theme_classic()
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Figure 10-10. theme_bw

Figure 10-11. theme_classic

Figure 10-12 shows the minimal theme:

p + theme_minimal()
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Figure 10-12. theme_minimal

And Figure 10-13 shows the void theme:

p + theme_void()

Figure 10-13. theme_void
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In addition to the themes included in ggplot2, there are packages, like ggtheme, that
include themes to help you make your figures look more like the figures found in
popular tools and publications such as Stata or The Economist.

See Also
See Recipe 10.3 to see how to change a single theme element.

10.5 Creating a Scatter Plot of Multiple Groups
Problem
You have data in a data frame with multiple observations per record: x, y, and a factor
f that indicates the group. You want to create a scatter plot of x and y that distin‐
guishes among the groups.

Solution
With ggplot we control the mapping of shapes to the factor f by passing shape = f
to the aes function:

ggplot(df, aes(x, y, shape = f)) +
  geom_point()

Discussion
Plotting multiple groups in one scatter plot creates an uninformative mess unless we
distinguish one group from another. We make this distinction in ggplot by setting
the shape parameter of the aes function.

The built-in iris dataset contains paired measures of Petal.Length and
Petal.Width. Each measurement also has a Species property indicating the species
of the flower that was measured. If we plot all the data at once, we just get the scatter
plot shown in Figure 10-14:

ggplot(data = iris,
       aes(x = Petal.Length,
           y = Petal.Width)) +
  geom_point()
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Figure 10-14. iris: length vs. width

The graphic would be far more informative if we distinguished the points by species.
In addition to distinguishing the species by shape, we could also differentiate by
color. We can add shape = Species and color = Species to our aes call to get each
species with a different shape and color, as shown in Figure 10-15:

ggplot(data = iris,
       aes(
         x = Petal.Length,
         y = Petal.Width,
         shape = Species,
         color = Species
       )) +
  geom_point()
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Figure 10-15. iris: shape and color

ggplot conveniently sets up a legend for you as well, which is handy.

See Also
See Recipe 10.6 for more on how to add a legend.

10.6 Adding (or Removing) a Legend
Problem
You want your plot to include a legend, the little box that decodes the graphic for the
viewer.

Solution
In most cases ggplot will add legends automatically, as you can see in the previous
recipe. But if we do not have explicit grouping in the aes function, then ggplot will
not show a legend by default. If we want to force ggplot to show a legend, we can set
the shape or line type of our graph to a constant. ggplot will then show a legend with
one group. We use guides to guide ggplot in how to label the legend.

This can be illustrated with our iris scatter plot:
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g <- ggplot(data = iris,
       aes(x = Petal.Length,
           y = Petal.Width,
           shape="Observation")) +
  geom_point()  +
  guides(shape=guide_legend(title="My Legend Title"))
g

Figure 10-16 illustrates the result of setting the shape to a string value and then relab‐
eling the legend using guides.

Figure 10-16. Legend added

More commonly, you may want to turn legends off, which you can do by calling
theme with legend.position = "none". Figure 10-17 shows the result when we add
this call to the iris plot from the previous recipe:

g <- ggplot(data = iris,
            aes(
              x = Petal.Length,
              y = Petal.Width,
              shape = Species,
              color = Species
            )) +
  geom_point() +
  theme(legend.position = "none")
g
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Figure 10-17. Legend removed

Discussion
Adding legends to ggplot when there is no grouping is an exercise in “tricking”
ggplot into showing the legend by passing a string to a grouping parameter in aes. 
While this will not change the grouping (as there is only one group), it will result in a
legend being shown with a name.

Then we can use guides to alter the legend title. It’s worth noting that we are not
changing anything about the data, just exploiting settings in order to coerce ggplot
into showing a legend when it typically would not.

One of the huge benefits of ggplot is its very good defaults. Getting positions and
correspondence between labels and their point types is done automatically, but this
can be overridden if needed. To remove a legend totally, we set theme parameters
with theme(legend.position = "none"). We can also set the legend.position to
be "left", "right", "bottom", "top", or a two-element numeric vector. Use a two-
element numeric vector in order to pass ggplot specific coordinates of where you
want the legend. If you’re using the coordinate positions, the values passed are
between 0 and 1 for the x and y positions, in that order.

282 | Chapter 10: Graphics



Figure 10-18 shows an example of a legend positioned at the bottom, created with
this adjustment to the legend.position:

g + theme(legend.position = "bottom")

Figure 10-18. Legend at the bottom

Or we could use a two-element numeric vector to put the legend in a specific loca‐
tion, as in Figure 10-19. This example puts the center of the legend at 80% to the right
and 20% up from the bottom:

g + theme(legend.position = c(.8, .2))

In many aspects beyond legends, ggplot uses sane defaults but offers the flexibility to
override them and tweak the details. You can find more details on ggplot options
related to legends in the help for theme by typing ?theme or by looking in the ggplot
online reference material.
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Figure 10-19. Legend at a point

10.7 Plotting the Regression Line of a Scatter Plot
Problem
You are plotting pairs of data points, and you want to add a line that illustrates their
linear regression.

Solution
With ggplot there is no need to calculate the linear model first using the R lm func‐
tion. We can instead use the geom_smooth function to calculate the linear regression
inside of our ggplot call.

If our data is in a data frame df and the x and y data are in columns x and y, we plot
the regression line like this:

ggplot(df, aes(x, y)) +
  geom_point() +
  geom_smooth(method = "lm",
              formula = y ~ x,
              se = FALSE)

The se = FALSE parameter tells ggplot not to plot the standard error bands around
our regression line.
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Discussion
Suppose we are modeling the strongx dataset found in the faraway package. We can
create a linear model using the built-in lm function in R. We can predict the variable
crossx as a linear function of energy. First, let’s look at a simple scatter plot of our
data (Figure 10-20):

library(faraway)
data(strongx)

ggplot(strongx, aes(energy, crossx)) +
  geom_point()

Figure 10-20. strongx scatter plot

ggplot can calculate a linear model on the fly and then plot the regression line along
with our data (Figure 10-21):

g <- ggplot(strongx, aes(energy, crossx)) +
  geom_point()

g + geom_smooth(method = "lm",
                formula = y ~ x)
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Figure 10-21. Simple linear model ggplot

We can turn the confidence bands off by adding the se = FALSE option, as shown in
Figure 10-22:

g + geom_smooth(method = "lm",
                formula = y ~ x,
                se = FALSE)

Notice that in geom_smooth we use x and y rather than the variable names. ggplot has
set x and y inside the plot based on the aesthetic. Multiple smoothing methods are
supported by geom_smooth. You can explore those and other options in the help by
typing ?geom_smooth.
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Figure 10-22. Simple linear model ggplot without se

If we had a line we wanted to plot that was stored in another R object, we could use
geom_abline to plot the line on our graph. In the following example we pull the inter‐
cept term and the slope from the regression model m and add those to our graph (see
Figure 10-23):

m <- lm(crossx ~ energy, data = strongx)

ggplot(strongx, aes(energy, crossx)) +
  geom_point() +
  geom_abline(
    intercept = m$coefficients[1],
    slope = m$coefficients[2]
  )
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Figure 10-23. Simple line from slope and intercept

This produces a plot very similar to Figure 10-22. The geom_abline method can be
handy if you are plotting a line from a source other than a simple linear model.

See Also
See Chapter 11 for more about linear regression and the lm function.

10.8 Plotting All Variables Against All Other Variables
Problem
Your dataset contains multiple numeric variables. You want to see scatter plots for all
pairs of variables.

Solution
ggplot does not have any built-in method to create pairs plots; however, the package
GGally provides this functionality with the ggpairs function:

library(GGally)
ggpairs(df)
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Discussion
When you have a large number of variables, finding interrelationships between them
is difficult. One useful technique is looking at scatter plots of all pairs of variables.
This would be quite tedious if coded pair-by-pair, but the ggpairs function from the
package GGally provides an easy way to produce all those scatter plots at once.

The iris dataset contains four numeric variables and one categorical variable:

head(iris)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa

What is the relationship, if any, between the columns? Plotting the columns with
ggpairs produces multiple scatter plots, as seen in Figure 10-24:

library(GGally)
ggpairs(iris)

Figure 10-24. ggpairs plot of iris data

The ggpairs function is pretty, but not particularly fast. If you’re just doing interac‐
tive work and want a quick peek at the data, the base R plot function provides faster
output (see Figure 10-25):
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plot(iris)

Figure 10-25. Base plot pairs plot

While the ggpairs function is not as fast to plot as the Base R plot function, it pro‐
duces density graphs on the diagonal and reports correlation in the upper triangle of
the graph. When factors or character columns are present, ggpairs produces histo‐
grams in the lower triangle of the graph and boxplots in the upper triangle. These are
nice additions to understanding relationships in your data.

10.9 Creating One Scatter Plot for Each Group
Problem
Your dataset contains (at least) two numeric variables and a factor or character field
defining a group. You want to create several scatter plots for the numeric variables,
with one scatter plot for each level of the factor or character field.

Solution
We produce this kind of plot, called a conditioning plot, in ggplot by adding
facet_wrap to our plot. In this example we use the data frame df, which contains
three columns, x, y, and f, with f being a factor (or a character string):

ggplot(df, aes(x, y)) +
  geom_point() +
  facet_wrap( ~ f)
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Discussion
Conditioning plots (coplots) are another way to explore and illustrate the effect of a
factor or to compare different groups to each other.

The Cars93 dataset contains 27 variables describing 93 car models as of 1993. Two
numeric variables are MPG.city, the miles per gallon in the city, and Horsepower, the
engine horsepower. One categorical variable is Origin, which can be USA or non-
USA according to where the model was built.

Exploring the relationship between MPG and horsepower, we might ask: is there a
different relationship for USA models and non-USA models?

Let’s examine this as a facet plot (Figure 10-26):

data(Cars93, package = "MASS")
ggplot(Cars93, aes(MPG.city, Horsepower)) +
  geom_point() +
  facet_wrap( ~ Origin)

Figure 10-26. Cars93 data with facet

The resulting plot reveals a few insights. If we really crave that 300-horsepower mon‐
ster, then we’ll have to buy a car built in the USA; but if we want high MPG, we have
more choices among non-USA models. These insights could be teased out of a statis‐
tical analysis, but the visual presentation reveals them much more quickly.
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Note that using facet results in subplots with the same x- and y-axis ranges. This
helps ensure that visual inspection of the data is not misleading because of differing
axis ranges.

See Also
The Base R graphics function coplot can accomplish very similar plots using only
base graphics.

10.10 Creating a Bar Chart
Problem
You want to create a bar chart.

Solution
A common situation is to have a column of data that represents a group and then
another column that represents a measure about that group. This format is “long”
data because the data runs vertically instead of having a column for each group.

Using the geom_bar function in ggplot, we can plot the heights as bars. If the data is
already aggregated, we add stat = "identity" so that ggplot knows it needs to do
no aggregation on the groups of values before plotting:

ggplot(data = df, aes(x, y)) +
  geom_bar(stat = "identity")

Discussion
Let’s use the cars made by Ford in the Cars93 dataset in an example:

ford_cars <- Cars93 %>%
  filter(Manufacturer == "Ford")

ggplot(ford_cars, aes(Model, Horsepower)) +
  geom_bar(stat = "identity")

Figure 10-27 shows the resulting bar chart.
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Figure 10-27. Ford cars bar chart

This example uses stat = "identity", which assumes that the heights of your bars
are conveniently stored as a value in one field with only one record per column. That
is not always the case, however. Often you have a vector of numeric data and a paral‐
lel factor or character field that groups the data, and you want to produce a bar chart
of the group means or the group totals.

Let’s work up an example using the built-in airquality dataset, which contains daily
temperature data for a single location for five months. The data frame has a numeric
Temp column and Month and Day columns. If we want to plot the mean temperature
by month using ggplot, we don’t need to precompute the mean; instead, we can have
ggplot do that in the plot command logic. To tell ggplot to calculate the mean, we
pass stat = "summary", fun.y = "mean" to the geom_bar command. We can also
turn the month numbers into dates using the built-in constant month.abb, which
contains the abbreviations for the months:

ggplot(airquality, aes(month.abb[Month], Temp)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")

Figure 10-28 shows the resulting plot. But you might notice the sort order on the
months is alphabetical, which is not how we typically like to see months sorted.
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Figure 10-28. Bar chart: temp by month

We can fix the sorting issue using a few functions from dplyr combined with
fct_inorder from the forcats tidyverse package. To get the months in the correct
order, we can sort the data frame by Month, which is the month number. Then we can
apply fct_inorder, which will arrange our factors in the order they appear in the
data. You can see in Figure 10-29 that the bars are now sorted properly:

library(forcats)

aq_data <- airquality %>%
  arrange(Month) %>%
  mutate(month_abb = fct_inorder(month.abb[Month]))

ggplot(aq_data, aes(month_abb, Temp)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")
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Figure 10-29. Bar chart properly sorted

See Also
See Recipe 10.11 for adding confidence intervals and Recipe 10.12 for adding color.

Type ?geom_bar for help with bar charts in ggplot.

You can also use barplot for Base R bar charts or the barchart function in the
lattice package.

10.11 Adding Confidence Intervals to a Bar Chart
Problem
You want to augment a bar chart with confidence intervals.

Solution
Suppose we have a data frame df with columns group (group names), stat (a column
of statistics), and lower and upper (which represent the corresponding limits for the
confidence intervals). We can display a bar chart of stat for each group and its confi‐
dence interval using the geom_bar function combined with geom_errorbar:

ggplot(df, aes(group, stat)) +
  geom_bar(stat = "identity") +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = .2)
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Figure 10-30 shows the resulting bar chart with confidence intervals.

Figure 10-30. Bar chart with confidence intervals

Discussion
Most bar charts display point estimates, which are shown by the heights of the bars,
but rarely do they include confidence intervals. Our inner statisticians dislike this
intensely. The point estimate is only half of the story; the confidence interval gives the
full story.

Fortunately, we can plot the error bars using ggplot. The hard part is calculating the
intervals. In the previous examples our data had a simple –15% and +20% interval.
However, in Recipe 10.10 we calculated group means before plotting them. If we let
ggplot do the calculations for us, we can use the built-in mean_se along with the
stat_summary function to get the standard errors of the mean measures.

Let’s use the airquality data we used previously. First we’ll do the sorted factor pro‐
cedure (from the prior recipe) to get the month names in the desired order:

aq_data <- airquality %>%
  arrange(Month) %>%
  mutate(month_abb = fct_inorder(month.abb[Month]))
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Now we can plot the bars along with the associated standard errors, as in
Figure 10-31:

ggplot(aq_data, aes(month_abb, Temp)) +
  geom_bar(stat = "summary",
           fun.y = "mean",
           fill = "cornflowerblue") +
  stat_summary(fun.data = mean_se, geom = "errorbar") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")

Figure 10-31. Mean temp by month with error bars

Sometimes you’ll want to sort the columns in your bar chart in descending order
based on their height, as in Figure 10-32. This can be a little bit confusing when
you’re using summary stats in ggplot, but the secret is to use mean in the reorder
statement to sort the factor by the mean of the temp. Note that the reference to mean
in reorder is not quoted, while the reference to mean in geom_bar is quoted:

ggplot(aq_data, aes(reorder(month_abb, -Temp, mean), Temp)) +
  geom_bar(stat = "summary",
           fun.y = "mean",
           fill = "tomato") +
  stat_summary(fun.data = mean_se, geom = "errorbar") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")
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Figure 10-32. Mean temp by month in descending order

You may look at this example and the result in Figure 10-32 and wonder, “Why didn’t
they just use reorder(month_abb, Month) in the first example instead of that sorting
business with forcats::fct_inorder to get the months in the right order?” Well, we
could have. But sorting using fct_inorder is a design pattern that provides flexibility
for more complicated things. Plus it’s quite easy to read in a script. Using reorder
inside aes is a bit denser and harder to read later, but either approach is reasonable.

See Also
See Recipe 9.9 for more about t.test.

10.12 Coloring a Bar Chart
Problem
You want to color or shade the bars of a bar chart.

Solution
With gplot we add the fill parameter to our aes call and let ggplot pick the colors
for us:

ggplot(df, aes(x, y, fill = group))
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Discussion
We can use the fill parameter in aes to tell ggplot what field to base the colors on.
If we pass a numeric field to ggplot, we will get a continuous gradient of colors, and
if we pass a factor or character field to fill, we will get contrasting colors for each
group. Here we pass the character name of each month to the fill parameter:

aq_data <- airquality %>%
  arrange(Month) %>%
  mutate(month_abb = fct_inorder(month.abb[Month]))

ggplot(data = aq_data, aes(month_abb, Temp, fill = month_abb)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)") +
  scale_fill_brewer(palette = "Paired")

We define the colors in the resulting bar chart (Figure 10-33) by calling
scale_fill_brewer(palette="Paired"). The "Paired" color palette comes, along
with many other color palettes, in the package RColorBrewer.

Figure 10-33. Colored monthly temp bar chart

If we want to change the color of each bar based on the temperature, we can’t just set
fill = Temp—as might seem intuitive—because ggplot won’t understand we want
the mean temperature after the grouping by month. The way we get around this is by
accessing a special field inside of our graph called ..y.., which is the calculated value
on the y-axis. But we don’t want the legend labeled ..y.., so we add fill = "Temp"
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to our labs call in order to change the name of the legend. The result is shown in
Figure 10-34:

ggplot(airquality, aes(month.abb[Month], Temp, fill = ..y..)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)",
       fill = "Temp")

Figure 10-34. Bar chart shaded by value

If we want to reverse the color scale, we can just add a negative sign, -, in front of the
field we are filling by: fill=-..y.., for example.

See Also
See Recipe 10.10 for creating a bar chart.

10.13 Plotting a Line from x and y Points
Problem
You have paired observations in a data frame: (x1, y1), (x2, y2), …, (xn, yn). You want to
plot a series of line segments that connect the data points.
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Solution
With ggplot we can use geom_point to plot the points:

ggplot(df, aes(x, y)) +
  geom_point()

Since ggplot graphics are built up element by element, we can have both a point and
a line in the same graphic very easily by having two geoms:

ggplot(df, aes(x , y)) +
  geom_point() +
  geom_line()

Discussion
To illustrate, let’s look at some example US economic data that comes with ggplot2.
This example data frame has a column called date, which we’ll plot on the x-axis, and
a field called unemploy, which is the number of unemployed people:

ggplot(economics, aes(date , unemploy)) +
  geom_point() +
  geom_line()

Figure 10-35 shows the resulting chart, which contains both lines and points because
we used both geoms.

Figure 10-35. Line chart
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See Also
See Recipe 10.1.

10.14 Changing the Type, Width, or Color of a Line
Problem
You are plotting a line, and you want to change its type, width, or color.

Solution
ggplot uses the linetype parameter for controlling the appearance of lines. The
options are:

• linetype="solid" or linetype=1 (default)
• linetype="dashed" or linetype=2
• linetype="dotted" or linetype=3
• linetype="dotdash" or linetype=4
• linetype="longdash" or linetype=5
• linetype="twodash" or linetype=6
• linetype="blank" or linetype=0 (inhibits drawing)

We can change the line characteristics by passing linetype, col, and/or size as
parameters to geom_line. For example, if we wanted to change the line type to
dashed, red, and heavy, we could pass the following params to geom_line:

ggplot(df, aes(x, y)) +
  geom_line(linetype = 2,
            size = 2,
            col = "red")

Discussion
The example syntax shows how to draw one line and specify its style, width, or color.
A common scenario involves drawing multiple lines, each with its own style, width,
or color.

In ggplot this can be a conundrum for many users. The challenge is that ggplot
works best with “long” data instead of “wide” data, as was mentioned in the introduc‐
tion to this chapter.
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Let’s set up some example data:

x <- 1:10
y1 <- x**1.5
y2 <- x**2
y3 <- x**2.5
df <- data.frame(x, y1, y2, y3)

Our example data frame has four columns of wide data:

head(df, 3)
#>   x   y1 y2    y3
#> 1 1 1.00  1  1.00
#> 2 2 2.83  4  5.66
#> 3 3 5.20  9 15.59

We can make our wide data long by using the gather function from the core tidy‐
verse package tidyr. In this example, we use gather to create a new column named
bucket and put our column names in there while keeping our x and y variables:

df_long <- gather(df, bucket, y, -x)
head(df_long, 3)
#>   x bucket    y
#> 1 1     y1 1.00
#> 2 2     y1 2.83
#> 3 3     y1 5.20
tail(df_long, 3)
#>     x bucket   y
#> 28  8     y3 181
#> 29  9     y3 243
#> 30 10     y3 316

Now we can pass bucket to the col parameter and get multiple lines, each a different
color:

ggplot(df_long, aes(x, y, col = bucket)) +
  geom_line()

Figure 10-36 shows the resulting graph with each variable represented in a different
color.
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Figure 10-36. Multiple line chart

It’s straightforward to vary the line weight by a variable—simply pass a numerical
variable to size:

ggplot(df, aes(x, y1, size = y2)) +
  geom_line() +
  scale_size(name = "Thickness based on y2")

The result of varying the thickness with x is shown in Figure 10-37.
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Figure 10-37. Thickness as a function of x

See Also
See Recipe 10.13 for plotting a basic line.

10.15 Plotting Multiple Datasets
Problem
You want to show multiple datasets in one plot.

Solution
We can add multiple data frames to a ggplot figure by creating an empty plot and
then adding two different geoms to the plot:

ggplot() +
  geom_line(data = df1, aes(x1, y1)) +
  geom_line(data = df2, aes(x2, y2))

This code uses geom_line, but you could use any geom.
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Discussion
We could combine the data into one data frame before plotting using one of the join
functions from dplyr. However, next we will create two separate data frames and
then add them each to a ggplot graph.

First let’s set up our example data frames, df1 and df2:

# example data
n <- 20

x1 <- 1:n
y1 <- rnorm(n, 0, .5)
df1 <- data.frame(x1, y1)

x2 <- (.5 * n):((1.5 * n) - 1)
y2 <- rnorm(n, 1, .5)
df2 <- data.frame(x2, y2)

Typically we would pass the data frame directly into the ggplot function call. Since
we want two geoms with two different data sources, we will initiate a plot with ggplot
and then add in two calls to geom_line, each with its own data source:

ggplot() +
  geom_line(data = df1, aes(x1, y1), color = "darkblue") +
  geom_line(data = df2, aes(x2, y2), linetype = "dashed")

ggplot allows us to make multiple calls to different geom_ functions, each with its
own data source, if desired. Then ggplot will look at all the data we are plotting and
adjust the ranges to accommodate all the data.

The graph with expanded limits is shown in Figure 10-38.
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Figure 10-38. Two lines, one plot

10.16 Adding Vertical or Horizontal Lines
Problem
You want to add a vertical or horizontal line to your plot, such as an axis through the
origin or a pointer to a threshold.

Solution
The ggplot functions geom_vline and geom_hline produce vertical and horizontal
lines, respectively. The functions can also take color, linetype, and size parameters
to set the line style:

# using the data.frame df1 from the prior recipe
ggplot(df1) +
  aes(x = x1, y = y1) +
  geom_point() +
  geom_vline(
    xintercept = 10,
    color = "red",
    linetype = "dashed",
    size = 1.5
  ) +
  geom_hline(yintercept = 0, color = "blue")
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Figure 10-39 shows the resulting plot with added horizontal and vertical lines.

Figure 10-39. Vertical and horizontal lines

Discussion
A typical use of lines would be drawing regularly spaced lines. Suppose we have a
sample of points, samp. First, we plot them with a solid line through the mean. Then
we calculate and draw dotted lines at ±1 and ±2 standard deviations away from the
mean. We can add the lines into our plot with geom_hline:

samp <- rnorm(1000)
samp_df <- data.frame(samp, x = 1:length(samp))

mean_line <- mean(samp_df$samp)
sd_lines <- mean_line + c(-2, -1, +1, +2) * sd(samp_df$samp)

ggplot(samp_df) +
  aes(x = x, y = samp) +
  geom_point() +
  geom_hline(yintercept = mean_line, color = "darkblue") +
  geom_hline(yintercept = sd_lines, linetype = "dotted")

Figure 10-40 shows the sampled data along with the mean and standard deviation
lines.
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Figure 10-40. Mean and SD bands in a plot

See Also
See Recipe 10.14 for more about changing line types.

10.17 Creating a Boxplot
Problem
You want to create a boxplot of your data.

Solution
Use geom_boxplot from ggplot to add a boxplot geom to a ggplot graphic. Using the
samp_df data frame from the prior recipe, we can create a boxplot of the values in the
x column. The resulting graph is shown in Figure 10-41:

ggplot(samp_df) +
  aes(y = samp) +
  geom_boxplot()
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Figure 10-41. Single boxplot

Discussion
A boxplot provides a quick and easy visual summary of a dataset:

• The thick line in the middle is the median.
• The box surrounding the median identifies the first and third quartiles; the bot‐

tom of the box is Q1, and the top is Q3.
• The “whiskers” above and below the box show the range of the data, excluding

outliers.
• The circles identify outliers. By default, an outlier is defined as any value that is

farther than 1.5 × IQR away from the box. (IQR is the interquartile range, or Q3–
Q1.) In this example, there are a few outliers on the high side.

We can rotate the boxplot by flipping the coordinates. There are some situations
where this makes a more appealing graphic, as shown in Figure 10-42:

ggplot(samp_df) +
  aes(y = samp) +
  geom_boxplot() +
  coord_flip()
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Figure 10-42. Single boxplot, flipped

See Also
One boxplot alone is pretty boring. See Recipe 10.18 for creating multiple boxplots.

10.18 Creating One Boxplot for Each Factor Level
Problem
Your dataset contains a numeric variable and a factor (or other categorical text). You
want to create several boxplots of the numeric variable broken out by levels.

Solution
With ggplot we pass the name of the categorical variable to the x parameter in the
aes call. The resulting boxplot will then be grouped by the values in the categorical
variable:

ggplot(df) +
  aes(x = factor, y = values) +
  geom_boxplot()

10.18 Creating One Boxplot for Each Factor Level | 311



Discussion
This recipe is another great way to explore and illustrate the relationship between two
variables. In this case, we want to know whether the numeric variable changes
according to the level of a category.

The UScereal dataset from the MASS package contains many variables regarding
breakfast cereals. One variable is the amount of sugar per portion and another is the
shelf position (counting from the floor). Cereal manufacturers can negotiate for shelf
position, placing their products for the best sales potential. We wonder: where do
they put the high-sugar cereals? We can produce Figure 10-43 and explore that ques‐
tion by creating one boxplot per shelf:

data(UScereal, package = "MASS")

ggplot(UScereal) +
  aes(x = as.factor(shelf), y = sugars) +
  geom_boxplot() +
  labs(
    title = "Sugar Content by Shelf",
    x = "Shelf",
    y = "Sugar (grams per portion)"
  )

Figure 10-43. Boxplots by shelf number
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The boxplots suggest that shelf #2 has the most high-sugar cereals. Could it be that
this shelf is at eye level for young children who can influence their parents’ choice of
cereals?

Note that in the aes call we had to tell ggplot to treat the shelf
number as a factor. Otherwise, ggplot would not react to the shelf
as a grouping and would print only a single boxplot.

See Also
See Recipe 10.17 for creating a basic boxplot.

10.19 Creating a Histogram
Problem
You want to create a histogram of your data.

Solution
Use geom_histogram, and set x to a vector of numeric values.

Discussion
Figure 10-44 is a histogram of the MPG.city column taken from the Cars93 dataset:

data(Cars93, package = "MASS")

ggplot(Cars93) +
  geom_histogram(aes(x = MPG.city))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

The geom_histogram function must decide how many cells (bins) to create for bin‐
ning the data. In this example, the default algorithm chose 30 bins. If we wanted
fewer bins, we would include the bins parameter to tell geom_histogram how many
bins we want:

ggplot(Cars93) +
  geom_histogram(aes(x = MPG.city), bins = 13)

Figure 10-45 shows the histogram with 13 bins.
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Figure 10-44. Histogram of counts by MPG

Figure 10-45. Histogram of counts by MPG with fewer bins
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See Also
The Base R function hist provides much of the same functionality, as does the
histogram function of the lattice package.

10.20 Adding a Density Estimate to a Histogram
Problem
You have a histogram of your data sample, and you want to add a curve to illustrate
the apparent density.

Solution
Use the geom_density function to approximate the sample density, as shown in
Figure 10-46:

ggplot(Cars93) +
  aes(x = MPG.city) +
  geom_histogram(aes(y = ..density..), bins = 21) +
  geom_density()

Figure 10-46. Histogram with density plot
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Discussion
A histogram suggests the density function of your data, but it is rough. A smoother
estimate could help you better visualize the underlying distribution. A kernel density
estimation (KDE) is a smoother representation of univariate data.

In ggplot we tell the geom_histogram function to use the geom_density function by
passing it aes(y = ..density..).

The following example takes a sample from a gamma distribution and then plots the
histogram and the estimated density, as shown in Figure 10-47:

samp <- rgamma(500, 2, 2)

ggplot() +
  aes(x = samp) +
  geom_histogram(aes(y = ..density..), bins = 10) +
  geom_density()

Figure 10-47. Histogram and density: gamma distribution

See Also
The geom_density function approximates the shape of the density nonparametrically.
If you know the actual underlying distribution, use Recipe 8.11 to plot the density
function instead.
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10.21 Creating a Normal Quantile–Quantile Plot
Problem
You want to create a quantile–quantile (Q–Q) plot of your data, typically because you
want to know how the data differs from a normal distribution.

Solution
With ggplot we can use the stat_qq and stat_qq_line functions to create a Q–Q
plot that shows the observed points as well as the Q–Q line. Figure 10-48 shows the
resulting plot:

df <- data.frame(x = rnorm(100))

ggplot(df, aes(sample = x)) +
  stat_qq() +
  stat_qq_line()

Figure 10-48. Q–Q plot

Discussion
Sometimes it’s important to know if your data is normally distributed. A quantile–
quantile (Q–Q) plot is a good first check.

The Cars93 dataset contains a Price column. Is it normally distributed? This code
snippet creates a Q–Q plot of Price, as shown in Figure 10-49:
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ggplot(Cars93, aes(sample = Price)) +
  stat_qq() +
  stat_qq_line()

Figure 10-49. Q–Q plot of car prices

If the data had a perfect normal distribution, then the points would fall exactly on the
diagonal line. Many points are close, especially in the middle section, but the points
in the tails are pretty far off. Too many points are above the line, indicating a general
skew to the left.

The leftward skew might be cured by a logarithmic transformation. We can plot
log(Price), which yields Figure 10-50:

ggplot(Cars93, aes(sample = log(Price))) +
  stat_qq() +
  stat_qq_line()
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Figure 10-50. Q–Q plot of log car prices

Notice that the points in the new plot are much better behaved, staying close to the
line except in the extreme left tail. It appears that log(Price) is approximately
normal.

See Also
See Recipe 10.22 for creating Q–Q plots for other distributions. See Recipe 11.16 for
an application of Normal Q–Q plots to diagnose linear regression.

10.22 Creating Other Quantile–Quantile Plots
Problem
You want to view a quantile-quantile plot for your data, but the data is not normally
distributed.

Solution
For this recipe, you must have some idea of the underlying distribution, of course.
The solution is built from the following steps:

1. Use the ppoints function to generate a sequence of points between 0 and 1.
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2. Transform those points into quantiles, using the quantile function for the
assumed distribution.

3. Sort your sample data.
4. Plot the sorted data against the computed quantiles.
5. Use abline to plot the diagonal line.

This can all be done in two lines of R code. Here is an example that assumes your
data, y, has a Student’s t distribution with 5 degrees of freedom. Recall that the quan‐
tile function for Student’s t is qt and that its second argument is the degrees of
freedom.

First let’s make some example data:

df_t <- data.frame(y = rt(100, 5))

In order to create the Q–Q plot we need to estimate the parameters of the distribu‐
tion we want to plot. Since this is a Student’s t distribution, we only need to estimate
one parameter, the degrees of freedom. Of course we know the actual degrees of free‐
dom is 5, but in most situations we’ll need to calculate that value. So, we’ll use the
MASS::fitdistr function to estimate the degrees of freedom:

est_df <- as.list(MASS::fitdistr(df_t$y, "t")$estimate)[["df"]]
est_df
#> [1] 19.5

As expected, that’s pretty close to what was used to generate the simulated data, so
let’s pass the estimated degrees of freedom to the Q–Q functions and create
Figure 10-51:

ggplot(df_t) +
  aes(sample = y) +
  geom_qq(distribution = qt, dparams = est_df) +
  stat_qq_line(distribution = qt, dparams = est_df)
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Figure 10-51. Student’s t distribution Q–Q plot

Discussion
The Solution looks complicated, but the gist of it is picking a distribution, fitting the
parameters, and then passing those parameters to the Q–Q functions in ggplot.

We can illustrate this recipe by taking a random sample from an exponential distribu‐
tion with a mean of 10 (or, equivalently, a rate of 1/10):

rate <- 1 / 10
n <- 1000
df_exp <- data.frame(y = rexp(n, rate = rate))

est_exp <- as.list(MASS::fitdistr(df_exp$y, "exponential")$estimate)[["rate"]]
est_exp
#> [1] 0.101

Notice that for an exponential distribution, the parameter we estimate is called rate
as opposed to df, which was the parameter in the t distribution.
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The quantile function for the exponential distribution is qexp, which takes the rate
argument. Figure 10-52 shows the resulting Q–Q plot using a theoretical exponential
distribution:

ggplot(df_exp) +
  aes(sample = y) +
  geom_qq(distribution = qexp, dparams = est_exp) +
  stat_qq_line(distribution = qexp, dparams = est_exp)

Figure 10-52. Exponential distribution Q–Q plot

10.23 Plotting a Variable in Multiple Colors
Problem
You want to plot your data in multiple colors, typically to make the plot more infor‐
mative, readable, or interesting.

Solution
We can pass a color to a geom_ function in order to produce colored output (see
Figure 10-53):

df <- data.frame(x = rnorm(200), y = rnorm(200))

ggplot(df) +
  aes(x = x, y = y) +
  geom_point(color = "blue")
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If you are reading this in print you may see only black. Try it out on your own in
order to see the graph in full color.

Figure 10-53. Point data in color

The value of color can be:

• One color, in which case all data points are that color.
• A vector of colors, the same length as x, in which case each value of x is colored

with its corresponding color.
• A short vector, in which case the vector of colors is recycled.

Discussion
The default color in ggplot is black. While it’s not very exciting, black is high contrast
and easy for almost anyone to see.

However, it is much more useful (and interesting) to vary the color in a way that illu‐
minates the data. Let’s illustrate this by plotting a graphic two ways, once in black and
white and once with simple shading.

This produces the basic black-and-white graphic in Figure 10-54:

df <- data.frame(
  x = 1:100,
  y = rnorm(100)
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)

ggplot(df) +
  aes(x, y) +
  geom_point()

Figure 10-54. Simple point plot

Now we can make it more interesting by creating a vector of "gray" and "black"
values, according to the sign of x, and then plotting x using those colors, as shown in
Figure 10-55:

shade <- if_else(df$y >= 0, "black", "gray")

ggplot(df) +
  aes(x, y) +
  geom_point(color = shade)
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Figure 10-55. Color-shaded point plot

The negative values are now plotted in gray because the corresponding element of
colors is "gray".

See Also
See Recipe 5.3 regarding the Recycling Rule. Execute colors to see a list of available
colors, and use geom_segment in ggplot to plot line segments in multiple colors.

10.24 Graphing a Function
Problem
You want to graph the value of a function.

Solution
The ggplot function stat_function will graph a function across a range. In
Figure 10-56, we plot a sine wave across the range –3 to 3:

ggplot(data.frame(x = c(-3, 3))) +
  aes(x) +
  stat_function(fun = sin)
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Figure 10-56. Sine wave plot

Discussion
It’s pretty common to want to plot a statistical function, such as a normal distribu‐
tion, across a given range. stat_function in ggplot allows us to do this. We need
only supply a data frame with x value limits, and stat_function will calculate the y
values and plot the results as shown in Figure 10-57:

ggplot(data.frame(x = c(-3.5, 3.5))) +
  aes(x) +
  stat_function(fun = dnorm) +
  ggtitle("Standard Normal Density")
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Figure 10-57. Standard Normal density plot

Notice here that we used ggtitle to set the title. If setting multiple text elements in a
ggplot we use labs, but when we’re just adding a title, ggtitle is more concise than
labs(title='Standard Normal Density'), although they accomplish the same
thing. See ?labs for more discussion of labels with ggplot.

stat_function can graph any function that takes one argument and returns one
value. Let’s create a function and then plot it. Our function is a dampened sine wave
—that is, a sine wave that loses amplitude as it moves away from 0:

f <- function(x) exp(-abs(x)) * sin(2 * pi * x)

ggplot(data.frame(x = c(-3.5, 3.5))) +
  aes(x) +
  stat_function(fun = f) +
  ggtitle("Dampened Sine Wave")

The resulting plot is shown in Figure 10-58.
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Figure 10-58. Dampened sine wave plot

See Also
See Recipe 15.3 for how to define a function.

10.25 Displaying Several Figures on One Page
Problem
You want to display several plots side by side on one page.

Solution
There are a number of ways to put ggplot graphics into a grid, but one of the easiest
to use and understand is patchwork by Thomas Lin Pedersen. patchwork is not cur‐
rently available on CRAN, but you can install it from GitHub using the devtools
package:

devtools::install_github("thomasp85/patchwork")

After installing the package, you can use it to plot multiple ggplot objects using a +
between the objects, then a call to plot_layout to arrange the images into a grid, as
shown in Figure 10-59. The example code here has four ggplot objects:

library(patchwork)
p1 + p2 + p3 + p4
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Figure 10-59. A patchwork plot

patchwork supports grouping with parentheses and using / to put groupings under
other elements, as illustrated in Figure 10-60:

p3 / (p1 + p2 + p4)

Figure 10-60. A patchwork 1 / 2 plot
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Discussion
Let’s use a multifigure plot to display four different beta distributions. Using ggplot
and the patchwork package, we can create a 2×2 layout effect by creating four graph‐
ics objects and then printing them using the + notation from patchwork:

library(patchwork)

df <- data.frame(x = c(0, 1))

g1 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, 2, 4)
  ) +
  ggtitle("First")

g2 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, 4, 1)
  ) +
  ggtitle("Second")

g3 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, 1, 1)
  ) +
  ggtitle("Third")

g4 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, .5, .5)
  ) +
  ggtitle("Fourth")

g1 + g2 + g3 + g4 + plot_layout(ncol = 2, byrow = TRUE)

The output is shown in Figure 10-61.
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Figure 10-61. Four plots using patchwork

To lay the images out in column order, we could pass byrow=FALSE to plot_layout:

g1 + g2 + g3 + g4 + plot_layout(ncol = 2, byrow = FALSE)

See Also
Recipe 8.11 discusses plotting density functions as we do here.

Recipe 10.9 shows how you can create a matrix of plots using a facet function.

The grid package and the lattice package contain additional tools for multifigure
layouts with base graphics.

10.26 Writing Your Plot to a File
Problem
You want to save your graphics in a file, such as a PNG, JPEG, or PostScript file.

Solution
With ggplot figures you can use ggsave to save a displayed image to a file. ggsave
will make some default assumptions about size and file type for you, allowing you to
specify only a filename:

ggsave("filename.jpg")
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The file type is derived from the extension you use in the filename you pass to
ggsave. You can control details of size, file type, and scale by passing parameters to
ggsave. See ?ggsave for specific details.

Discussion
In RStudio, a shortcut is to click on Export in the Plots window and then click on
“Save as Image,” “Save as PDF,” or “Copy to Clipboard.” The save options will prompt
you for a file type and a filename before writing the file. The “Copy to Clipboard”
option can be handy if you are manually copying and pasting your graphics into a
presentation or word processor.

Remember that the file will be written to your current working directory (unless you
use an absolute filepath), so be certain you know which directory is your working
directory before calling savePlot.

In a noninteractive script using ggplot, you can pass plot objects directly to ggsave
so they need not be displayed before saving. In the prior recipe we created a plot
object called g1. We can save it to a file like this:

ggsave("g1.png", plot = g1, units = "in", width = 5, height = 4)

Note that the units for height and width in ggsave are specified with the units
parameter. In this case we used in for inches, but ggsave also supports mm and cm for
the more metrically inclined.

See Also
See Recipe 3.1 for more about the current working directory.
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CHAPTER 11

Linear Regression and ANOVA

In statistics, modeling is where we get down to business. Models quantify the rela‐
tionships between our variables. Models let us make predictions.

A simple linear regression is the most basic model. It’s just two variables and is mod‐
eled as a linear relationship with an error term:

yi = β0 + β1xi + εi

We are given the data for x and y. Our mission is to fit the model, which will give us
the best estimates for β0 and β1 (see Recipe 11.1).

That generalizes naturally to multiple linear regression, where we have multiple vari‐
ables on the righthand side of the relationship (see Recipe 11.2):

yi = β0 + β1ui + β2vi + β3wi + εi

Statisticians call u, v, and w the predictors and y the response. Obviously, the model is
useful only if there is a fairly linear relationship between the predictors and the
response, but that requirement is much less restrictive than you might think. Recipe
11.12 discusses transforming your variables into a (more) linear relationship so that
you can use the well-developed machinery of linear regression.

The beauty of R is that anyone can build these linear models. The models are built by
a function, lm, which returns a model object. From the model object, we get the coef‐
ficients (βi) and regression statistics. It’s easy. Really!

The horror of R is likewise that anyone can build these models. Nothing requires you
to check that the model is reasonable, much less statistically significant. Before you
blindly believe a model, check it! Most of the information you need is in the regres‐
sion summary (see Recipe 11.4):
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Is the model statistically significant?
Check the F statistic at the bottom of the summary.

Are the coefficients significant?
Check the coefficient’s t statistics and p-values in the summary, or check their
confidence intervals (see Recipe 11.14).

Is the model useful?
Check the R2 near the bottom of the summary.

Does the model fit the data well?
Plot the residuals and check the regression diagnostics (see Recipe 11.15 and
Recipe 11.16).

Does the data satisfy the assumptions behind linear regression?
Check whether the diagnostics confirm that a linear model is reasonable for your
data (see Recipe 11.16).

ANOVA
Analysis of variance (ANOVA) is a powerful statistical technique. First-year graduate
students in statistics are taught ANOVA almost immediately because of its impor‐
tance, both theoretical and practical. We are often amazed, however, at the extent to
which people outside the field are unaware of its purpose and value.

Regression creates a model, and ANOVA is one method of evaluating such models.
The mathematics of ANOVA are intertwined with the mathematics of regression, so
statisticians usually present them together; we follow that tradition here.

ANOVA is actually a family of techniques that are connected by a common mathe‐
matical analysis. This chapter mentions several applications:

One-way ANOVA
This is the simplest application of ANOVA. Suppose you have data samples from
several populations and are wondering whether the populations have different
means. One-way ANOVA answers that question. If the populations have normal
distributions, use the oneway.test function (see Recipe 11.21); otherwise, use
the nonparametric version, the kruskal.test function (see Recipe 11.24).

Model comparison
When you add or delete a predictor variable in a linear regression, you want to
know whether that change improved the model. The anova function compares
two regression models and reports whether they are significantly different (see
Recipe 11.25).
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ANOVA table
The anova function can also construct the ANOVA table of a linear regression
model, which includes the F statistic needed to gauge the model’s statistical sig‐
nificance (see Recipe 11.3). This important table is discussed in nearly every text‐
book on regression.

Example Data
In many of the examples in this chapter, we start by creating example data using R’s
pseudorandom number generation capabilities. So at the beginning of each recipe,
you may see something like the following:

set.seed(42)
x <- rnorm(100)
e <- rnorm(100, mean=0, sd=5)
y <- 5 + 15 * x + e

We use set.seed to set the random number generation seed so that if you run the
example code on your machine you will get the same answer. In the preceding exam‐
ple, x is a vector of 100 draws from a standard normal (mean=0, sd=1) distribution.
Then we create a little random noise called e from a normal distribution with mean=
0 and sd= 5. y is then calculated as 5 + 15 * x + e. The idea behind creating exam‐
ple “toy” data rather than using “real-world” data is that with simulated data you can
change the coefficients and parameters and see how the change impacts the resulting
model. For example, you could increase the standard deviation of e in the example
data and see what impact that has on the R^2 of your model.

See Also
There are many good texts on linear regression. One of our favorites is Applied Linear
Regression Models, 4th ed., by Michael Kutner, Christopher Nachtsheim, and John
Neter (McGraw-Hill/Irwin). We generally follow their terminology and conventions
in this chapter.

We also like Linear Models with R by Julian Faraway (Chapman & Hall/CRC), because
it illustrates regression using R and is quite readable. Earlier versions of Faraday’s
work are available free online, too.

11.1 Performing Simple Linear Regression
Problem
You have two vectors, x and y, that hold paired observations: (x1, y1), (x2, y2), …, (xn,
yn). You believe there is a linear relationship between x and y, and you want to create
a regression model of the relationship.
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Solution
The lm function performs a linear regression and reports the coefficients.

If your data is in vectors:

lm(y ~ x)

Or if your data is in columns in a data frame:

lm(y ~ x, data = df)

Discussion
Simple linear regression involves two variables: a predictor (or independent) variable,
often called x, and a response (or dependent) variable, often called y. The regression
uses the ordinary least-squares (OLS) algorithm to fit the linear model:

yi = β0 + β1xi + εi

where β0 and β1 are the regression coefficients and εi are the error terms.

The lm function can perform linear regression. The main argument is a model for‐
mula, such as y ~ x. The formula has the response variable on the left of the tilde
character (~) and the predictor variable on the right. The function estimates the
regression coefficients, β0 and β1, and reports them as the intercept and the coefficient
of x, respectively:

set.seed(42)
x <- rnorm(100)
e <- rnorm(100, mean = 0, sd = 5)
y <- 5 + 15 * x + e

lm(y ~ x)
#>
#> Call:
#> lm(formula = y ~ x)
#>
#> Coefficients:
#> (Intercept)            x
#>        4.56        15.14

In this case, the regression equation is:
yi = 4.56 + 15.14xi + εi

It is quite common for data to be captured inside a data frame, in which case you
want to perform a regression between two data frame columns. Here, x and y are col‐
umns of a data frame dfrm:

df <- data.frame(x, y)
head(df)
#>        x     y
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#> 1  1.371 31.57
#> 2 -0.565  1.75
#> 3  0.363  5.43
#> 4  0.633 23.74
#> 5  0.404  7.73
#> 6 -0.106  3.94

The lm function lets you specify a data frame by using the data parameter. If you do,
the function will take the variables from the data frame and not from your work‐
space:

lm(y ~ x, data = df)          # Take x and y from df
#>
#> Call:
#> lm(formula = y ~ x, data = df)
#>
#> Coefficients:
#> (Intercept)            x
#>        4.56        15.14

11.2 Performing Multiple Linear Regression
Problem
You have several predictor variables (e.g., u, v, and w) and a response variable, y. You
believe there is a linear relationship between the predictors and the response, and you
want to perform a linear regression on the data.

Solution
Use the lm function. Specify the multiple predictors on the righthand side of the for‐
mula, separated by plus signs (+):

lm(y ~ u + v + w)

Discussion
Multiple linear regression is the obvious generalization of simple linear regression. It
allows multiple predictor variables instead of one predictor variable and still uses
OLS to compute the coefficients of a linear equation. The three-variable regression
just given corresponds to this linear model:

yi = β0 + β1ui + β2vi + β3wi + εi

R uses the lm function for both simple and multiple linear regression. You simply add
more variables to the righthand side of the model formula. The output then shows
the coefficients of the fitted model. Let’s set up some example random normal data 
using the rnorm function:
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set.seed(42)
u <- rnorm(100)
v <- rnorm(100, mean = 3,  sd = 2)
w <- rnorm(100, mean = -3, sd = 1)
e <- rnorm(100, mean = 0,  sd = 3)

Then we can create an equation using known coefficients to calculate our y variable:

y <- 5 + 4 * u + 3 * v + 2 * w + e

Now if we run a linear regression, we can see that R solves for the coefficients and
gets pretty close to the actual values just used:

lm(y ~ u + v + w)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Coefficients:
#> (Intercept)            u            v            w
#>        4.77         4.17         3.01         1.91

The data parameter of lm is especially valuable when the number of variables increa‐
ses, since it’s much easier to keep your data in one data frame than in many separate
variables. Suppose your data is captured in a data frame, such as the df variable
shown here:

df <- data.frame(y, u, v, w)
head(df)
#>       y      u     v     w
#> 1 16.67  1.371 5.402 -5.00
#> 2 14.96 -0.565 5.090 -2.67
#> 3  5.89  0.363 0.994 -1.83
#> 4 27.95  0.633 6.697 -0.94
#> 5  2.42  0.404 1.666 -4.38
#> 6  5.73 -0.106 3.211 -4.15

When you supply df to the data parameter of lm, R looks for the regression variables
in the columns of the data frame:

lm(y ~ u + v + w, data = df)
#>
#> Call:
#> lm(formula = y ~ u + v + w, data = df)
#>
#> Coefficients:
#> (Intercept)            u            v            w
#>        4.77         4.17         3.01         1.91

See Also
See Recipe 11.1 for simple linear regression.
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11.3 Getting Regression Statistics
Problem
You want the critical statistics and information regarding your regression, such as R2,
the F statistic, confidence intervals for the coefficients, residuals, the ANOVA table,
and so forth.

Solution
Save the regression model in a variable, say m:

m <- lm(y ~ u + v + w)

Then use functions to extract regression statistics and information from the model:

anova(m)

ANOVA table

coefficients(m)

Model coefficients

coef(m)

Same as coefficients(m)

confint(m)

Confidence intervals for the regression coefficients

deviance(m)

Residual sum of squares

effects(m)

Vector of orthogonal effects

fitted(m)

Vector of fitted y values

residuals(m)

Model residuals

resid(m)

Same as residuals(m)

summary(m)

Key statistics, such as R2, the F statistic, and the residual standard error (σ)

vcov(m)

Variance–covariance matrix of the main parameters
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Discussion
When we started using R, the documentation said to use the lm function to perform
linear regression. So we did something like this, getting the output shown in Recipe
11.2:

lm(y ~ u + v + w)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Coefficients:
#> (Intercept)            u            v            w
#>        4.77         4.17         3.01         1.91

How disappointing! The output was nothing compared to other statistics packages
such as SAS. Where is R2? Where are the confidence intervals for the coefficients?
Where is the F statistic, its p-value, and the ANOVA table?

Of course, all that information is available—you just have to ask for it. Other statistics
systems dump everything and let you wade through it. R is more minimalist. It prints
a bare-bones output and lets you request what more you want.

The lm function returns a model object that you can assign to a variable:

m <- lm(y ~ u + v + w)

From the model object, you can extract important information using specialized
functions. The most important function is summary:

summary(m)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -5.383 -1.760 -0.312  1.856  6.984
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    4.770      0.969    4.92  3.5e-06 ***
#> u              4.173      0.260   16.07  < 2e-16 ***
#> v              3.013      0.148   20.31  < 2e-16 ***
#> w              1.905      0.266    7.15  1.7e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.66 on 96 degrees of freedom
#> Multiple R-squared:  0.885,  Adjusted R-squared:  0.882
#> F-statistic:  247 on 3 and 96 DF,  p-value: <2e-16
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The summary shows the estimated coefficients, the critical statistics (such as R2 and
the F statistic), and an estimate of σ, the standard error of the residuals. The summary
is so important that there is an entire recipe devoted to understanding it (Recipe
11.4).

There are specialized extractor functions for other important information:

Model coefficients (point estimates)
coef(m)
#> (Intercept)           u           v           w
#>        4.77        4.17        3.01        1.91

Confidence intervals for model coefficients
confint(m)
#>             2.5 % 97.5 %
#> (Intercept)  2.85   6.69
#> u            3.66   4.69
#> v            2.72   3.31
#> w            1.38   2.43

Model residuals
resid(m)
#>       1       2       3       4       5       6       7       8       9
#> -0.5675  2.2880  0.0972  2.1474 -0.7169 -0.3617  1.0350  2.8040 -4.2496
#>      10      11      12      13      14      15      16      17      18
#> -0.2048 -0.6467 -2.5772 -2.9339 -1.9330  1.7800 -1.4400 -2.3989  0.9245
#>      19      20      21      22      23      24      25      26      27
#> -3.3663  2.6890 -1.4190  0.7871  0.0355 -0.3806  5.0459 -2.5011  3.4516
#>      28      29      30      31      32      33      34      35      36
#>  0.3371 -2.7099 -0.0761  2.0261 -1.3902 -2.7041  0.3953  2.7201 -0.0254
#>      37      38      39      40      41      42      43      44      45
#> -3.9887 -3.9011 -1.9458 -1.7701 -0.2614  2.0977 -1.3986 -3.1910  1.8439
#>      46      47      48      49      50      51      52      53      54
#>  0.8218  3.6273 -5.3832  0.2905  3.7878  1.9194 -2.4106  1.6855 -2.7964
#>      55      56      57      58      59      60      61      62      63
#> -1.3348  3.3549 -1.1525  2.4012 -0.5320 -4.9434 -2.4899 -3.2718 -1.6161
#>      64      65      66      67      68      69      70      71      72
#> -1.5119 -0.4493 -0.9869  5.6273 -4.4626 -1.7568  0.8099  5.0320  0.1689
#>      73      74      75      76      77      78      79      80      81
#>  3.5761 -4.8668  4.2781 -2.1386 -0.9739 -3.6380  0.5788  5.5664  6.9840
#>      82      83      84      85      86      87      88      89      90
#> -3.5119  1.2842  4.1445 -0.4630 -0.7867 -0.7565  1.6384  3.7578  1.8942
#>      91      92      93      94      95      96      97      98      99
#>  0.5542 -0.8662  1.2041 -1.7401 -0.7261  3.2701  1.4012  0.9476 -0.9140
#>     100
#>  2.4278

Residual sum of squares
deviance(m)
#> [1] 679
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ANOVA table
anova(m)
#> Analysis of Variance Table
#>
#> Response: y
#>           Df Sum Sq Mean Sq F value  Pr(>F)
#> u          1   1776    1776   251.0 < 2e-16 ***
#> v          1   3097    3097   437.7 < 2e-16 ***
#> w          1    362     362    51.1 1.7e-10 ***
#> Residuals 96    679       7
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If you find it annoying to save the model in a variable, you are welcome to use one-
liners such as this:

summary(lm(y ~ u + v + w))

Or you can use magrittr pipes:

lm(y ~ u + v + w) %>%
  summary

See Also
See Recipe 11.4 for more on the regression summary. See Recipe 11.17 for regression
statistics specific to model diagnostics.

11.4 Understanding the Regression Summary
Problem
You created a linear regression model, m. However, you are confused by the output
from summary(m).

Discussion
The model summary is important because it links you to the most critical regression
statistics. Here is the model summary from Recipe 11.3:

summary(m)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -5.383 -1.760 -0.312  1.856  6.984
#>
#> Coefficients:
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1 Unless you performed the linear regression without an intercept term (see Recipe 11.5).

#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    4.770      0.969    4.92  3.5e-06 ***
#> u              4.173      0.260   16.07  < 2e-16 ***
#> v              3.013      0.148   20.31  < 2e-16 ***
#> w              1.905      0.266    7.15  1.7e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.66 on 96 degrees of freedom
#> Multiple R-squared:  0.885,  Adjusted R-squared:  0.882
#> F-statistic:  247 on 3 and 96 DF,  p-value: <2e-16

Let’s dissect this summary by section. We’ll read it from top to bottom, even though
the most important statistic (the F statistic) appears at the end:

Call
#> lm(formula = y ~ u + v + w)

This shows how lm was called when it created the model, which is important for
putting this summary into the proper context.

Residuals statistics
#> Residuals:
#>     Min      1Q  Median      3Q     Max
#>  -5.383  -1.760  -0.312   1.856   6.984

Ideally, the regression residuals would have a perfect normal distribution. These
statistics help you identify possible deviations from normality. The OLS algo‐
rithm is mathematically guaranteed to produce residuals with a mean of zero,1

hence the sign of the median indicates the skew’s direction and the magnitude of
the median indicates the extent. In this case the median is negative, which sug‐
gests some skew to the left.

If the residuals have a nice bell-shaped distribution, then the first quartile (1Q)
and third quartile (3Q) should have about the same magnitude. In this example,
the larger magnitude of 3Q versus 1Q (1.856 versus 1.76) indicates a slight skew to
the right in our data, although the negative median makes the situation less clear-
cut.

The Min and Max residuals offer a quick way to detect extreme outliers in the data,
since extreme outliers (in the response variable) produce large residuals.

Coefficients
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    4.770      0.969    4.92  3.5e-06 ***
#> u              4.173      0.260   16.07  < 2e-16 ***
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2 The significance level of α = 0.05 is the convention observed in this book. Your application might instead use
α = 0.10, α = 0.01, or some other value. See the introduction to Chapter 9.

#> v              3.013      0.148   20.31  < 2e-16 ***
#> w              1.905      0.266    7.15  1.7e-10 ***

The column labeled Estimate contains the estimated regression coefficients as
calculated by ordinary least squares.

Theoretically, if a variable’s coefficient is zero then the variable is worthless; it
adds nothing to the model. Yet the coefficients shown here are only estimates,
and they will never be exactly zero. We therefore ask: statistically speaking, how
likely is it that the true coefficient is zero? That is the purpose of the t statistics
and the p-values, which in the summary are labeled (respectively) t value and
Pr(>|t|).

The p-value is a probability. It gauges the likelihood that the coefficient is not
significant, so smaller is better. Big is bad because it indicates a high likelihood of
insignificance. In this example, the p-value for the u coefficient is a mere 0.00106,
so u is likely significant. The p-value for w, however, is 0.05744; this is just over
our conventional limit of 0.05, which suggests that w is likely insignificant.2 Vari‐
ables with large p-values are candidates for elimination.

A handy feature is that R flags the significant variables for quick identification.
Did you notice the extreme righthand column containing triple asterisks (*)?
Other values you might see in this column are double asterisks (**), a single
asterisk (*), and a period (.). This column highlights the significant variables.
The line labeled Signif. codes at the bottom of the Coefficients section gives a
cryptic guide to the flags’ meanings. You can interpret them as follows:

Significance indication Meaning

*** p-value between 0 and 0.001

** p-value between 0.001 and 0.01

* p-value between 0.01 and 0.05

. p-value between 0.05 and 0.1

(blank) p-value between 0.1 and 1.0

The column labeled Std. Error is the standard error of the estimated coefficient.
The column labeled t value is the t statistic from which the p-value was calcula‐
ted.
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Residual standard error
# Residual standard error: 2.66 on 96 degrees of freedom

This reports the standard error of the residuals (σ)—that is, the sample standard
deviation of ε.

R2 (coefficient of determination)
# Multiple R-squared:  0.885,    Adjusted R-squared:  0.882

R2 is a measure of the model’s quality. Bigger is better. Mathematically, it is the
fraction of the variance of y that is explained by the regression model. The
remaining variance is not explained by the model, so it must be due to other fac‐
tors (i.e., unknown variables or sampling variability). In this case, the model
explains 0.885 (88.5%) of the variance of y, and the remaining 0.115 (11.5%) is
unexplained.

That being said, we strongly suggest using the adjusted rather than the basic R2.
The adjusted value accounts for the number of variables in your model and so is
a more realistic assessment of its effectiveness. In this case, then, we would use
0.882, not 0.885.

F statistic
# F-statistic: 246.6 on 3 and 96 DF,  p-value: < 2.2e-16

The F statistic tells you whether the model is significant or insignificant. The
model is significant if any of the coefficients are nonzero (i.e., if βi ≠ 0 for some i).
It is insignificant if all coefficients are zero (β1 = β2 = … = βn = 0).

Conventionally, a p-value of less than 0.05 indicates that the model is likely sig‐
nificant (one or more βi are nonzero), whereas values exceeding 0.05 indicate that
the model is likely not significant. Here, the probability is only 2.2e-16 that our
model is insignificant. That’s good.

Most people look at the R2 statistic first. The statistician wisely starts with the F
statistic, because if the model is not significant then nothing else matters.

See Also
See Recipe 11.3 for more on extracting statistics and information from the model
object.

11.5 Performing Linear Regression Without an Intercept
Problem
You want to perform a linear regression, but you want to force the intercept to be
zero.
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Solution
Add "+ 0" to the righthand side of your regression formula. That will force lm to fit
the model with a zero intercept:

lm(y ~ x + 0)

The corresponding regression equation is:
yi = βxi + εi

Discussion
Linear regression ordinarily includes an intercept term, so that is the default in R. In
rare cases, however, you may want to fit the data while assuming that the intercept is
zero. In this case you make a modeling assumption: when x is zero, y should be zero.

When you force a zero intercept, the lm output includes a coefficient for x but no
intercept for y, as shown here:

lm(y ~ x + 0)
#>
#> Call:
#> lm(formula = y ~ x + 0)
#>
#> Coefficients:
#>   x
#> 4.3

We strongly suggest you check that modeling assumption before proceeding. Perform
a regression with an intercept; then see if the intercept could plausibly be zero. Check
the intercept’s confidence interval. In this example, the confidence interval is (6.26,
8.84):

confint(lm(y ~ x))
#>             2.5 % 97.5 %
#> (Intercept)  6.26   8.84
#> x            2.82   5.31

Because the confidence interval does not contain zero, it is not statistically plausible
that the intercept could be zero. So in this case, it is not reasonable to rerun the
regression while forcing a zero intercept.
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11.6 Regressing Only Variables That Highly Correlate with
Your Dependent Variable
Problem
You have a data frame with many variables and you want to build a multiple linear
regression using only the variables that are highly correlated to your response
(dependent) variable.

Solution
If df is our data frame containing both our response (dependent) and all our predic‐
tor (independent) variables and dep_var is our response variable, we can figure out
our best predictors and then use them in a linear regression. If we want the top four
predictor variables, we can use this:

best_pred <- df %>%
  select(-dep_var) %>%
  map_dbl(cor, y = df$dep_var) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names %>%
  df[.]

mod <- lm(df$dep_var ~ as.matrix(best_pred))

This recipe is a combination of many different pieces of logic used elsewhere in this
book. We will describe each step here, and then walk through it in the Discussion
using some example data.

First we drop the response variable out of our pipe chain so that we have only our
predictor variables in our data flow:

df %>%
  select(-dep_var)

Then we use map_dbl from purrr to perform a pairwise correlation on each column
relative to the response variable:

  map_dbl(cor, y = df$dep_var) %>%

We then take the resulting correlations and sort them in decreasing order:

  sort(decreasing = TRUE) %>%

We want only the top four correlated variables, so we select the top four records in
the resulting vector:

  .[1:4] %>%
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And we don’t need the correlation values, only the names of the rows—which are the
variable names from our original data frame, df:

names %>%

Then we can pass those names into our subsetting brackets to select only the columns
with names matching the ones we want:

df[.]

Our pipe chain assigns the resulting data frame into best_pred. We can then use
best_pred as the predictor variables in our regression and we can use df$dep_var as
the response:

mod <- lm(df$dep_var ~ as.matrix(best_pred))

Discussion
By combining the mapping functions discussed in Recipe 6.4, we can create a recipe
to remove low-correlation variables from a set of predictors and use the high-
correlation predictors in a regression.

We have an example data frame that contains six predictor variables named pred1
through pred6. The response variable is named resp. Let’s walk that data frame
through our logic and see how it works.

Loading the data and dropping the resp variable is pretty straightforward, so let’s
look at the result of mapping the cor function:

# loads the pred data frame
load("./data/pred.rdata")

pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp)
#> pred1 pred2 pred3 pred4 pred5 pred6
#> 0.573 0.279 0.753 0.799 0.322 0.607

The output is a named vector of values where the names are the variable names and
the values are the pairwise correlations between each predictor variable and resp, the
response variable.

If we sort this vector, we get the correlations in decreasing order:

pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE)
#> pred4 pred3 pred6 pred1 pred5 pred2
#> 0.799 0.753 0.607 0.573 0.322 0.279
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Using subsetting allows us to select the top four records. The . operator is a special
operator that tells the pipe where to put the result of the prior step:

pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4]
#> pred4 pred3 pred6 pred1
#> 0.799 0.753 0.607 0.573

We then use the names function to extract the names from our vector. The names are
the names of the columns we ultimately want to use as our independent variables:

pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names
#> [1] "pred4" "pred3" "pred6" "pred1"

When we pass the vector of names into pred[.], the names are used to select col‐
umns from the pred data frame. We then use head to select only the top six rows for
easier illustration:

pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names %>%
  pred[.] %>%
  head
#>    pred4   pred3  pred6  pred1
#> 1  7.252  1.5127  0.560  0.206
#> 2  2.076  0.2579 -0.124 -0.361
#> 3 -0.649  0.0884  0.657  0.758
#> 4  1.365 -0.1209  0.122 -0.727
#> 5 -5.444 -1.1943 -0.391 -1.368
#> 6  2.554  0.6120  1.273  0.433

Now let’s bring it all together and pass the resulting data into the regression:

best_pred <- pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names %>%
  pred[.]

mod <- lm(pred$resp ~ as.matrix(best_pred))
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summary(mod)
#>
#> Call:
#> lm(formula = pred$resp ~ as.matrix(best_pred))
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -1.485 -0.619  0.189  0.562  1.398
#>
#> Coefficients:
#>                           Estimate Std. Error t value Pr(>|t|)
#> (Intercept)                  1.117      0.340    3.28   0.0051 **
#> as.matrix(best_pred)pred4    0.523      0.207    2.53   0.0231 *
#> as.matrix(best_pred)pred3   -0.693      0.870   -0.80   0.4382
#> as.matrix(best_pred)pred6    1.160      0.682    1.70   0.1095
#> as.matrix(best_pred)pred1    0.343      0.359    0.95   0.3549
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.927 on 15 degrees of freedom
#> Multiple R-squared:  0.838,  Adjusted R-squared:  0.795
#> F-statistic: 19.4 on 4 and 15 DF,  p-value: 8.59e-06

11.7 Performing Linear Regression with Interaction Terms
Problem
You want to include an interaction term in your regression.

Solution
The R syntax for regression formulas lets you specify interaction terms. To indicate
the interaction of two variables, u and v, we separate their names with an asterisk (*):

lm(y ~ u * v)

This corresponds to the model yi = β0 + β1ui + β2vi + β3uivi + εi, which includes the
first-order interaction term β3uivi.

Discussion
In regression, an interaction occurs when the product of two predictor variables is
also a significant predictor (i.e., in addition to the predictor variables themselves).
Suppose we have two predictors, u and v, and want to include their interaction in the
regression. This is expressed by the following equation:

yi = β0 + β1ui + β2vi + β3uivi + εi
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Here the product term, β3uivi, is called the interaction term. The R formula for that
equation is:

y ~ u * v

When you write y ~ u * v, R automatically includes u, v, and their product in the
model. This is for a good reason. If a model includes an interaction term, such as
β3uivi, then regression theory tells us the model should also contain the constituent
variables ui and vi.

Likewise, if you have three predictors (u, v, and w) and want to include all their inter‐
actions, separate them by asterisks:

y ~ u * v * w

This corresponds to the regression equation:
yi = β0 + β1ui + β2vi + β3wi + β4uivi + β5uiwi + β6viwi + β7uiviwi + εi

Now we have all the first-order interactions and a second-order interaction (β7uiviwi).

Sometimes, however, you may not want every possible interaction. You can explicitly
specify a single product by using the colon operator (:). For example, u:v:w denotes
the product term βuiviwi but without all possible interactions. So the R formula:

y ~ u + v + w + u:v:w

corresponds to the regression equation:
yi = β0 + β1ui + β2vi + β3wi + β4uiviwi + εi

It might seem odd that a colon (:) means pure multiplication while an asterisk (*)
means both multiplication and inclusion of constituent terms. Again, this is because
we normally incorporate the constituents when we include their interaction, so mak‐
ing that approach the default for * makes sense.

There is some additional syntax for easily specifying many interactions:

(u + v + ... + w)^2

Include all variables (u, v, …, w) and all their first-order interactions.

(u + v + ... + w)^3

Include all variables, all their first-order interactions, and all their second-order
interactions.

(u + v + ... + w)^4

And so forth.

Both the asterisk (*) and the colon (:) follow a “distributive law,” so the following
notations are also allowed:
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x*(u + v + ... + w)

Same as x*u + x*v + ... + x*w (which is the same as x + u + v + ... + w +
x:u + x:v + ... + x:w)

x:(u + v + ... + w)

Same as x:u + x:v + ... + x:w

All this syntax gives you some flexibility in writing your formula. For example, these
three formulas are equivalent:

y ~ u * v
y ~ u + v + u:v
y ~ (u + v) ^ 2

They all define the same regression equation, yi = β0 + β1ui + β2vi + β3uivi + εi .

See Also
The full syntax for formulas is richer than described here. See R in a Nutshell or the R
Language Definition for more details.

11.8 Selecting the Best Regression Variables
Problem
You are creating a new regression model or improving an existing model. You have
the luxury of many regression variables, and you want to select the best subset of
those variables.

Solution
The step function can perform stepwise regression, either forward or backward.
Backward stepwise regression starts with many variables and removes the underper‐
formers:

full.model <- lm(y ~ x1 + x2 + x3 + x4)
reduced.model <- step(full.model, direction = "backward")

Forward stepwise regression starts with a few variables and adds new ones to improve
the model until it cannot be improved further:

min.model <- lm(y ~ 1)
fwd.model <-
  step(min.model,
       direction = "forward",
       scope = (~ x1 + x2 + x3 + x4))
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Discussion
When you have many predictors, it can be quite difficult to choose the best subset.
Adding and removing individual variables affects the overall mix, so the search for
“the best” can become tedious.

The step function automates that search. Backward stepwise regression is the easiest
approach. Start with a model that includes all the predictors. We call that the full
model. The model summary, shown here, indicates that not all predictors are statisti‐
cally significant:

# example data
set.seed(4)
n <- 150
x1 <- rnorm(n)
x2 <- rnorm(n, 1, 2)
x3 <- rnorm(n, 3, 1)
x4 <- rnorm(n,-2, 2)
e <- rnorm(n, 0, 3)
y <- 4 + x1 + 5 * x3 + e

# build the model
full.model <- lm(y ~ x1 + x2 + x3 + x4)
summary(full.model)
#>
#> Call:
#> lm(formula = y ~ x1 + x2 + x3 + x4)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -8.032 -1.774  0.158  2.032  6.626
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  3.40224    0.80767    4.21  4.4e-05 ***
#> x1           0.53937    0.25935    2.08    0.039 *
#> x2           0.16831    0.12291    1.37    0.173
#> x3           5.17410    0.23983   21.57  < 2e-16 ***
#> x4          -0.00982    0.12954   -0.08    0.940
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.92 on 145 degrees of freedom
#> Multiple R-squared:  0.77,   Adjusted R-squared:  0.763
#> F-statistic:  121 on 4 and 145 DF,  p-value: <2e-16

We want to eliminate the insignificant variables, so we use step to incrementally
eliminate the underperformers. The result is called the reduced model:

reduced.model <- step(full.model, direction="backward")
#> Start:  AIC=327
#> y ~ x1 + x2 + x3 + x4
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#>
#>        Df Sum of Sq  RSS AIC
#> - x4    1         0 1240 325
#> - x2    1        16 1256 327
#> <none>              1240 327
#> - x1    1        37 1277 329
#> - x3    1      3979 5219 540
#>
#> Step:  AIC=325
#> y ~ x1 + x2 + x3
#>
#>        Df Sum of Sq  RSS AIC
#> - x2    1        16 1256 325
#> <none>              1240 325
#> - x1    1        37 1277 327
#> - x3    1      3988 5228 539
#>
#> Step:  AIC=325
#> y ~ x1 + x3
#>
#>        Df Sum of Sq  RSS AIC
#> <none>              1256 325
#> - x1    1        44 1300 328
#> - x3    1      3974 5230 537

The output from step shows the sequence of models that it explored. In this case,
step removed x2 and x4 and left only x1 and x3 in the final (reduced) model. The
summary of the reduced model shows that it contains only significant predictors:

summary(reduced.model)
#>
#> Call:
#> lm(formula = y ~ x1 + x3)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -8.148 -1.850 -0.055  2.026  6.550
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    3.648      0.751    4.86    3e-06 ***
#> x1             0.582      0.255    2.28    0.024 *
#> x3             5.147      0.239   21.57   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.92 on 147 degrees of freedom
#> Multiple R-squared:  0.767,  Adjusted R-squared:  0.763
#> F-statistic:  241 on 2 and 147 DF,  p-value: <2e-16

Backward stepwise regression is easy, but sometimes it’s not feasible to start with
“everything” because you have too many candidate variables. In that case use forward
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stepwise regression, which will start with nothing and incrementally add variables
that improve the regression. It stops when no further improvement is possible.

A model that “starts with nothing” may look odd at first:

min.model <- lm(y ~ 1)

This is a model with a response variable (y) but no predictor variables. (All the fitted
values for y are simply the mean of y, which is what you would guess if no predictors
were available.)

We must tell step which candidate variables are available for inclusion in the model. 
That is the purpose of the scope argument. scope is a formula with nothing on the
lefthand side of the tilde (~) and candidate variables on the righthand side:

fwd.model <- step(
  min.model,
  direction = "forward",
  scope = (~ x1 + x2 + x3 + x4),
  trace = 0
)

Here we see that x1, x2, x3, and x4 are all candidates for inclusion. (We also included
trace = 0 to inhibit the voluminous output from step.) The resulting model has two
significant predictors and no insignificant predictors:

summary(fwd.model)
#>
#> Call:
#> lm(formula = y ~ x3 + x1)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -8.148 -1.850 -0.055  2.026  6.550
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    3.648      0.751    4.86    3e-06 ***
#> x3             5.147      0.239   21.57   <2e-16 ***
#> x1             0.582      0.255    2.28    0.024 *
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.92 on 147 degrees of freedom
#> Multiple R-squared:  0.767,  Adjusted R-squared:  0.763
#> F-statistic:  241 on 2 and 147 DF,  p-value: <2e-16

The step-forward algorithm reached the same model as the step-backward model by
including x1 and x3 but excluding x2 and x4. This is a toy example, so that is not sur‐
prising. In real applications, we suggest trying both the forward and backward regres‐
sion and then comparing the results. You might be surprised.
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Finally, don’t get carried away with stepwise regression. It is not a panacea, it cannot
turn junk into gold, and it is definitely not a substitute for choosing predictors care‐
fully and wisely. You might think: “Oh boy! I can generate every possible interaction
term for my model, then let step choose the best ones! What a model I’ll get!” You’d
be thinking of something like this, which starts with all possible interactions and then
tries to reduce the model:

full.model <- lm(y ~ (x1 + x2 + x3 + x4) ^ 4)
reduced.model <- step(full.model, direction = "backward")
#> Start:  AIC=337
#> y ~ (x1 + x2 + x3 + x4)^4
#>
#>               Df Sum of Sq  RSS AIC
#> - x1:x2:x3:x4  1    0.0321 1145 335
#> <none>                     1145 337
#>
#> Step:  AIC=335
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x3:x4 + x1:x2:x3 + x1:x2:x4 + x1:x3:x4 + x2:x3:x4
#>
#>            Df Sum of Sq  RSS AIC
#> - x2:x3:x4  1      0.76 1146 333
#> - x1:x3:x4  1      8.37 1154 334
#> <none>                  1145 335
#> - x1:x2:x4  1     20.95 1166 336
#> - x1:x2:x3  1     25.18 1170 336
#>
#> Step:  AIC=333
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x3:x4 + x1:x2:x3 + x1:x2:x4 + x1:x3:x4
#>
#>            Df Sum of Sq  RSS AIC
#> - x1:x3:x4  1      8.74 1155 332
#> <none>                  1146 333
#> - x1:x2:x4  1     21.72 1168 334
#> - x1:x2:x3  1     26.51 1172 334
#>
#> Step:  AIC=332
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x3:x4 + x1:x2:x3 + x1:x2:x4
#>
#>            Df Sum of Sq  RSS AIC
#> - x3:x4     1      0.29 1155 330
#> <none>                  1155 332
#> - x1:x2:x4  1     23.24 1178 333
#> - x1:x2:x3  1     31.11 1186 334
#>
#> Step:  AIC=330
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x1:x2:x3 + x1:x2:x4
#>
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#>            Df Sum of Sq  RSS AIC
#> <none>                  1155 330
#> - x1:x2:x4  1      23.4 1178 331
#> - x1:x2:x3  1      31.5 1187 332

This does not work well. Most of the interaction terms are meaningless. The step
function becomes overwhelmed, and you are left with many insignificant terms.

See Also
See Recipe 11.25.

11.9 Regressing on a Subset of Your Data
Problem
You want to fit a linear model to a subset of your data, not to the entire dataset.

Solution
The lm function has a subset parameter that specifies which data elements should be
used for fitting. The parameter’s value can be any index expression that could index
your data. This shows a fitting that uses only the first 100 observations:

lm(y ~ x1, subset=1:100)          # Use only x[1:100]

Discussion
You will often want to regress only a subset of your data. This can happen, for exam‐
ple, when you’re using in-sample data to create the model and out-of-sample data to
test it.

The lm function has a parameter, subset, that selects the observations used for fitting.
The value of subset is a vector. It can be a vector of index values, in which case lm
selects only the indicated observations from your data. It can also be a logical vector,
the same length as your data, in which case lm selects the observations with a corre‐
sponding TRUE.

Suppose you have 1,000 observations of (x, y) pairs and want to fit your model using
only the first half of those observations. Use a subset parameter of 1:500, indicating
lm should use observations 1 through 500:

## example data
n <- 1000
x <- rnorm(n)
e <- rnorm(n, 0, .5)
y <- 3 + 2 * x + e
lm(y ~ x, subset = 1:500)
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#>
#> Call:
#> lm(formula = y ~ x, subset = 1:500)
#>
#> Coefficients:
#> (Intercept)            x
#>           3            2

More generally, you can use the expression 1:floor(length(x)/2) to select the first
half of your data, regardless of size:

lm(y ~ x, subset = 1:floor(length(x) / 2))
#>
#> Call:
#> lm(formula = y ~ x, subset = 1:floor(length(x)/2))
#>
#> Coefficients:
#> (Intercept)            x
#>           3            2

Let’s say your data was collected in several labs and you have a factor, lab, that identi‐
fies the lab of origin. You can limit your regression to observations collected in New
Jersey by using a logical vector that is TRUE only for those observations:

load('./data/lab_df.rdata')
lm(y ~ x, subset = (lab == "NJ"), data = lab_df)
#>
#> Call:
#> lm(formula = y ~ x, data = lab_df, subset = (lab == "NJ"))
#>
#> Coefficients:
#> (Intercept)            x
#>        2.58         5.03

11.10 Using an Expression Inside a Regression Formula
Problem
You want to regress on calculated values, not simple variables, but the syntax of a
regression formula seems to forbid that.

Solution
Embed the expressions for the calculated values inside the I(...) operator. That will
force R to calculate the expression and use the calculated value for the regression.

Discussion
If you want to regress on the sum of u and v, then this is your regression equation:
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yi = β0 + β1(ui + vi) + εi

How do you write that equation as a regression formula? This won’t work:

lm(y ~ u + v)    # Not quite right

Here R will interpret u and v as two separate predictors, each with its own regression
coefficient. Likewise, suppose your regression equation is:

yi = β0 + β1ui + β2ui
2 + εi

This won’t work:

lm(y ~ u + u ^ 2)  # That's an interaction, not a quadratic term

R will interpret u^2 as an interaction term (see Recipe 11.7) and not as the square
of u.

The solution is to surround the expressions by the I(...) operator, which inhibits an
expression from being interpreted as a regression formula. Instead, it forces R to cal‐
culate the expression’s value and then incorporate that value directly into the regres‐
sion. Thus, the first example becomes:

lm(y ~ I(u + v))

In response to that command, R computes u + v and then regresses y on the sum.

For the second example we use:

lm(y ~ u + I(u ^ 2))

Here R computes the square of u and then regresses on the sum u + u ^ 2.

All the basic binary operators (+, -, *, /, ^) have special meanings
inside a regression formula. For this reason, you must use the
I(...) operator whenever you incorporate calculated values into a
regression.

A beautiful aspect of these embedded transformations is that R remembers them and
applies them when you make predictions from the model. Consider the quadratic
model described by the second example. It uses u and u^2, but we supply the value of
u only and R does the heavy lifting. We don’t need to calculate the square of u
ourselves:

load('./data/df_squared.rdata')
m <- lm(y ~ u + I(u ^ 2), data = df_squared)
predict(m, newdata = data.frame(u = 13.4))
#>   1
#> 877
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See Also
See Recipe 11.11 for the special case of regression on a polynomial. See Recipe 11.12
for incorporating other data transformations into the regression.

11.11 Regressing on a Polynomial
Problem
You want to regress y on a polynomial of x.

Solution
Use the poly(x, n) function in your regression formula to regress on an n-degree
polynomial of x. This example models y as a cubic function of x:

lm(y ~ poly(x, 3, raw = TRUE))

The example’s formula corresponds to the following cubic regression equation:

yi = β0 + β1xi + β2xi
2 + β3xi

3 + εi

Discussion
When people first use a polynomial model in R, they often do something clunky like
this:

x_sq <- x ^ 2
x_cub <- x ^ 3
m <- lm(y ~ x + x_sq + x_cub)

Obviously, this is quite annoying, and it litters their workspace with extra variables.

It’s much easier to write:

m <- lm(y ~ poly(x, 3, raw = TRUE))

The raw = TRUE is necessary. Without it, the poly function computes orthogonal
polynomials instead of simple polynomials.

Beyond the convenience, a huge advantage is that R will calculate all those powers of
x when you make predictions from the model (see Recipe 11.19). Without that, you
are stuck calculating x2 and x3 yourself every time you employ the model.

Here is another good reason to use poly. You cannot write your regression formula in
this way:

lm(y ~ x + x^2 + x^3)     # Does not do what you think!
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R will interpret x^2 and x^3 as interaction terms, not as powers of x. The resulting
model is a one-term linear regression, completely unlike your expectation. You could
write the regression formula like this:

lm(y ~ x + I(x ^ 2) + I(x ^ 3))

But that’s getting pretty verbose. Just use poly.

See Also
See Recipe 11.7 for more about interaction terms. See Recipe 11.12 for other transfor‐
mations on regression data.

11.12 Regressing on Transformed Data
Problem
You want to build a regression model for x and y, but they do not have a linear rela‐
tionship.

Solution
You can embed the needed transformation inside the regression formula. If, for
example, y must be transformed into log(y), then the regression formula becomes:

lm(log(y) ~ x)

Discussion
A critical assumption behind the lm function for regression is that the variables have
a linear relationship. To the extent this assumption is false, the resulting regression
becomes meaningless.

Fortunately, many datasets can be transformed into a linear relationship before apply‐
ing lm.

Figure 11-1 shows an example of exponential decay. The left panel shows the original
data, z. The dotted line shows a linear regression on the original data; clearly, it’s a
lousy fit.
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Figure 11-1. Example of a data transform

If the data is really exponential, then a possible model is:

z = exp[β0 + β1t + ε]

where t is time and exp[] is the exponential function (ex). This is not linear, of course,
but we can linearize it by taking logarithms:

log(z) = β0 + β1t + ε

In R, that regression is simple because we can embed the log transform directly into
the regression formula:

# read in our example data
load(file = './data/df_decay.rdata')
z <- df_decay$z
t <- df_decay$time

# transform and model
m <- lm(log(z) ~ t)
summary(m)
#>
#> Call:
#> lm(formula = log(z) ~ t)
#>
#> Residuals:
#>     Min      1Q  Median      3Q     Max
#> -0.4479 -0.0993  0.0049  0.0978  0.2802
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#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)   0.6887     0.0306    22.5   <2e-16 ***
#> t            -2.0118     0.0351   -57.3   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.148 on 98 degrees of freedom
#> Multiple R-squared:  0.971,  Adjusted R-squared:  0.971
#> F-statistic: 3.28e+03 on 1 and 98 DF,  p-value: <2e-16

The right panel of Figure 11-1 shows the plot of log(z) versus time. Superimposed on
that plot is their regression line. The fit appears to be much better; this is confirmed
by the R2 = 0.97, compared with 0.82 for the linear regression on the original data.

You can embed other functions inside your formula. If you thought the relationship
was quadratic, you could use a square-root transformation:

lm(sqrt(y) ~ month)

You can apply transformations to variables on both sides of the formula, of course.
This formula regresses y on the square root of x:

lm(y ~ sqrt(x))

This regression is for a log-log relationship between x and y:

lm(log(y) ~ log(x))

See Also
See Recipe 11.13.

11.13 Finding the Best Power Transformation (Box–Cox
Procedure)
Problem
You want to improve your linear model by applying a power transformation to the
response variable.

Solution
Use the Box–Cox procedure, which is implemented by the boxcox function of the
MASS package. The procedure will identify a power, λ, such that transforming y into yλ

will improve the fit of your model:
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library(MASS)
m <- lm(y ~ x)
boxcox(m)

Discussion
To illustrate the Box–Cox transformation, let’s create some artificial data using the
equation y–1.5 = x + ε, where ε is an error term:

set.seed(9)
x <- 10:100
eps <- rnorm(length(x), sd = 5)
y <- (x + eps) ^ (-1 / 1.5)

Then we will (mistakenly) model the data using a simple linear regression and derive
an adjusted R2 of 0.637:

m <- lm(y ~ x)
summary(m)
#>
#> Call:
#> lm(formula = y ~ x)
#>
#> Residuals:
#>      Min       1Q   Median       3Q      Max
#> -0.04032 -0.01633 -0.00792  0.00996  0.14516
#>
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  0.166885   0.007078    23.6   <2e-16 ***
#> x           -0.001465   0.000116   -12.6   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.0291 on 89 degrees of freedom
#> Multiple R-squared:  0.641,  Adjusted R-squared:  0.637
#> F-statistic:  159 on 1 and 89 DF,  p-value: <2e-16

When plotting the residuals against the fitted values, we get a clue that something is
wrong. We can get a ggplot residual plot using the broom library. The augment func‐
tion from broom will put our residuals (and other things) into a data frame for easier
plotting. Then we can use ggplot to plot:

library(broom)
augmented_m <- augment(m)

ggplot(augmented_m, aes(x = .fitted, y = .resid)) +
  geom_point()

The result is shown in Figure 11-2.
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Figure 11-2. Fitted values versus residuals

If you just need a fast peek at the residual plot and don’t care if the result is a ggplot
figure, you can use Base R’s plot method on the model object, m:

plot(m, which = 1)  # which = 1 plots only the fitted vs. residuals

We can see in Figure 11-2 that this plot has a clear parabolic shape. A possible fix is a
power transformation on y, so we run the Box–Cox procedure:

library(MASS)
#>
#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>
#>     select
bc <- boxcox(m)

The boxcox function plots values of λ against the log-likelihood of the resulting
model, as shown in Figure 11-3. We want to maximize that log-likelihood, so the
function draws a line at the best value and also draws lines at the limits of its confi‐
dence interval. In this case, it looks like the best value is around –1.5, with a confi‐
dence interval of about (–1.75, –1.25).
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Figure 11-3. Output of boxcox on the model (m)

Oddly, the boxcox function does not return the best value of λ. Rather, it returns the
(x, y) pairs displayed in the plot. It’s pretty easy to find the values of λ that yield the
largest log-likelihood, y. We use the which.max function:

which.max(bc$y)
#> [1] 13

Then this gives us the position of the corresponding λ:

lambda <- bc$x[which.max(bc$y)]
lambda
#> [1] -1.52

The function reports that the best λ is –1.52. In an actual application, we would urge
you to interpret this number and choose the power that makes sense to you, rather
than blindly accepting this “best” value. Use the graph to assist you in that interpreta‐
tion. Here, we’ll go with –1.52.

We can apply the power transform to y and then fit the revised model; this gives a
much better R2 of 0.967:

z <- y ^ lambda
m2 <- lm(z ~ x)
summary(m2)
#>
#> Call:
#> lm(formula = z ~ x)
#>
#> Residuals:
#>     Min      1Q  Median      3Q     Max
#> -13.459  -3.711  -0.228   2.206  14.188
#>
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#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  -0.6426     1.2517   -0.51     0.61
#> x             1.0514     0.0205   51.20   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 5.15 on 89 degrees of freedom
#> Multiple R-squared:  0.967,  Adjusted R-squared:  0.967
#> F-statistic: 2.62e+03 on 1 and 89 DF,  p-value: <2e-16

For those who prefer one-liners, the transformation can be embedded right into the
revised regression formula:

m2 <- lm(I(y ^ lambda) ~ x)

By default, boxcox searches for values of λ in the range –2 to +2.
You can change that via the lambda argument; see the help page for
details.

We suggest viewing the Box–Cox result as a starting point, not as a definitive answer.
If the confidence interval for λ includes 1.0, it may be that no power transformation is
actually helpful. As always, inspect the residuals before and after the transformation.
Did they really improve?

Compare Figure 11-4 (transformed data) with Figure 11-2 (no transformation).

augmented_m2 <- augment(m2)

ggplot(augmented_m2, aes(x = .fitted, y = .resid)) +
  geom_point()
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Figure 11-4. Fitted values versus residuals: m2

See Also
See Recipe 11.12 and Recipe 11.16.

11.14 Forming Confidence Intervals for Regression
Coefficients
Problem
You are performing linear regression and you need the confidence intervals for the
regression coefficients.

Solution
Save the regression model in an object; then use the confint function to extract con‐
fidence intervals:

load(file = './data/conf.rdata')
m <- lm(y ~ x1 + x2)
confint(m)
#>             2.5 % 97.5 %
#> (Intercept) -3.90   6.47
#> x1          -2.58   6.24
#> x2           4.67   5.17
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Discussion
The Solution uses the model y = β0 + β1(x1)i + β2(x2)i + εi. The confint function
returns the confidence intervals for the intercept (β0), the coefficient of x1 (β1), and
the coefficient of x2 (β2):

confint(m)
#>             2.5 % 97.5 %
#> (Intercept) -3.90   6.47
#> x1          -2.58   6.24
#> x2           4.67   5.17

By default, confint uses a confidence level of 95%. Use the level parameter to select
a different level:

confint(m, level = 0.99)
#>             0.5 % 99.5 %
#> (Intercept) -5.72   8.28
#> x1          -4.12   7.79
#> x2           4.58   5.26

See Also
The coefplot function of the arm package can plot confidence intervals for regres‐
sion coefficients.

11.15 Plotting Regression Residuals
Problem
You want a visual display of your regression residuals.

Solution
You can plot the model object by using broom to put model results in a data frame,
then plot with ggplot:

m <- lm(y ~ x1 + x2)

library(broom)
augmented_m <- augment(m)

ggplot(augmented_m, aes(x = .fitted, y = .resid)) +
  geom_point()
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Discussion
Using the linear model m from the prior recipe, we can create a simple residual plot:

library(broom)
augmented_m <- augment(m)

ggplot(augmented_m, aes(x = .fitted, y = .resid)) +
  geom_point()

The output is shown in Figure 11-5.

Figure 11-5. Model residual plot

You could also use the Base R plot method to get a quick peek, but it will produce
Base R graphics output, instead of a ggplot graph:

plot(m, which = 1)

See Also
See Recipe 11.16, which contains examples of residuals plots and other diagnostic
plots.
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11.16 Diagnosing a Linear Regression
Problem
You have performed a linear regression. Now you want to verify the model’s quality
by running diagnostic checks.

Solution
Start by plotting the model object, which will produce several diagnostic plots using
Base R graphics:

m <- lm(y ~ x1 + x2)
plot(m)

Next, identify possible outliers either by looking at the diagnostic plot of the residuals 
or by using the outlierTest function of the car package:

library(car)
outlierTest(m)

Finally, identify any overly influential observations. See Recipe 11.17.

Discussion
R fosters the impression that linear regression is easy: just use the lm function. Yet
fitting the data is only the beginning. It’s your job to decide whether the fitted model
actually works and works well.

Before anything else, you must have a statistically significant model. Check the F sta‐
tistic from the model summary (Recipe 11.4) and be sure that the p-value is small
enough for your purposes. Conventionally, it should be less than 0.05 or else your
model is likely not very meaningful.

Simply plotting the model object produces several useful diagnostic plots, shown in
Figure 11-6:

m <- lm(y ~ x1 + x2)
par(mfrow = (c(2, 2))) # this gives us a 2x2 plot
plot(m)
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Figure 11-6. Diagnostics of a good fit
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Figure 11-6 shows diagnostic plots for a pretty good regression:

• The points in the Residuals vs Fitted plot are randomly scattered with no particu‐
lar pattern.

• The points in the Normal Q–Q plot are more or less on the line, indicating that
the residuals follow a normal distribution.

• In both the Scale–Location plot and the Residuals vs Leverage plot, the points are
in a group with none too far from the center.

In contrast, the series of graphs in Figure 11-7 show the diagnostics for a not-so-good
regression:

load(file = './data/bad.rdata')
m <- lm(y2 ~ x3 + x4)
par(mfrow = (c(2, 2)))      # this gives us a 2x2 plot
plot(m)

Observe that the Residuals vs Fitted plot has a definite parabolic shape. This tells us
that the model is incomplete: a quadratic factor is missing that could explain more
variation in y. Other patterns in residuals would be suggestive of additional problems:
a cone shape, for example, may indicate nonconstant variance in y. Interpreting those
patterns is a bit of an art, so we suggest reviewing a good book on linear regression
while evaluating the plot of residuals.

There are other problems with these not-so-good diagnostics. The Normal Q–Q plot
has more points off the line than it does for the good regression. Both the Scale–Loca‐
tion and Residuals vs Leverage plots show points scattered away from the center,
which suggests that some points have excessive leverage.

Another pattern is that point number 28 sticks out in every plot. This warns us that
something is odd about that observation. The point could be an outlier, for example.
We can check that hunch with the outlierTest function of the car package:

library(car)
outlierTest(m)
#>    rstudent unadjusted p-value Bonferonni p
#> 28     4.46           7.76e-05       0.0031

outlierTest identifies the model’s most outlying observation. In this case, it identi‐
fied observation number 28 and so confirmed that it could be an outlier.
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Figure 11-7. Diagnostics of a poor fit
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See Also
See Recipe 11.4 and Recipe 11.17. The car package is not part of the standard distri‐
bution of R; see Recipe 3.10 for how to install it.

11.17 Identifying Influential Observations
Problem
You want to identify the observations that are having the most influence on the
regression model. This is useful for diagnosing possible problems with the data.

Solution
The influence.measures function reports several useful statistics for identifying
influential observations, and it flags the significant ones with an asterisk (*). Its main
argument is the model object from your regression:

influence.measures(m)

Discussion
The title of this recipe could be “Identifying Overly Influential Observations,” but that
would be redundant. All observations influence the regression model, even if only a
little. When a statistician says that an observation is influential, it means that remov‐
ing the observation would significantly change the fitted regression model. We want
to identify those observations because they might be outliers that distort our model;
we owe it to ourselves to investigate them.

The influence.measures function reports several statistics: DFBETAS, DFFITS,
covariance ratio, Cook’s distance, and hat matrix values. If any of these measures indi‐
cate that an observation is influential, the function flags that observation with an
asterisk (*) along the righthand side:

influence.measures(m)
#> Influence measures of
#>   lm(formula = y2 ~ x3 + x4) :
#>
#>      dfb.1_   dfb.x3   dfb.x4    dffit cov.r   cook.d    hat inf
#> 1  -0.18784  0.15174  0.07081 -0.22344 1.059 1.67e-02 0.0506
#> 2   0.27637 -0.04367 -0.39042  0.45416 1.027 6.71e-02 0.0964
#> 3  -0.01775 -0.02786  0.01088 -0.03876 1.175 5.15e-04 0.0772
#> 4   0.15922 -0.14322  0.25615  0.35766 1.133 4.27e-02 0.1156
#> 5  -0.10537  0.00814 -0.06368 -0.13175 1.078 5.87e-03 0.0335
#> 6   0.16942  0.07465  0.42467  0.48572 1.034 7.66e-02 0.1062
#> 7  -0.10128 -0.05936  0.01661 -0.13021 1.078 5.73e-03 0.0333
#> 8  -0.15696  0.04801  0.01441 -0.15827 1.038 8.38e-03 0.0276
#> 9  -0.04582 -0.12089 -0.01032 -0.14010 1.188 6.69e-03 0.0995
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#> 10 -0.01901  0.00624  0.01740 -0.02416 1.147 2.00e-04 0.0544
#> 11 -0.06725 -0.01214  0.04382 -0.08174 1.113 2.28e-03 0.0381
#> 12  0.17580  0.35102  0.62952  0.74889 0.961 1.75e-01 0.1406
#> 13 -0.14288  0.06667  0.06786 -0.15451 1.071 8.04e-03 0.0372
#> 14 -0.02784  0.02366 -0.02727 -0.04790 1.173 7.85e-04 0.0767
#> 15  0.01934  0.03440 -0.01575  0.04729 1.197 7.66e-04 0.0944
#> 16  0.35521 -0.53827 -0.44441  0.68457 1.294 1.55e-01 0.2515   *
#> 17 -0.09184 -0.07199  0.01456 -0.13057 1.089 5.77e-03 0.0381
#> 18 -0.05807 -0.00534 -0.05725 -0.08825 1.119 2.66e-03 0.0433
#> 19  0.00288  0.00438  0.00511  0.00761 1.176 1.99e-05 0.0770
#> 20  0.08795  0.06854  0.19526  0.23490 1.136 1.86e-02 0.0884
#> 21  0.22148  0.42533 -0.33557  0.64699 1.047 1.34e-01 0.1471
#> 22  0.20974 -0.19946  0.36117  0.49631 1.085 8.06e-02 0.1275
#> 23 -0.03333 -0.05436  0.01568 -0.07316 1.167 1.83e-03 0.0747
#> 24 -0.04534 -0.12827 -0.03282 -0.14844 1.189 7.51e-03 0.1016
#> 25 -0.11334  0.00112 -0.05748 -0.13580 1.067 6.22e-03 0.0307
#> 26 -0.23215  0.37364  0.16153 -0.41638 1.258 5.82e-02 0.1883   *
#> 27  0.29815  0.01963 -0.43678  0.51616 0.990 8.55e-02 0.0986
#> 28  0.83069 -0.50577 -0.35404  0.92249 0.303 1.88e-01 0.0411   *
#> 29 -0.09920 -0.07828 -0.02499 -0.14292 1.077 6.89e-03 0.0361
#> # etc.

This is the model from Recipe 11.16, where we suspected that observation 28 was an
outlier. An asterisk is flagging that observation, confirming that it’s overly influential.

This recipe can identify influential observations, but you shouldn’t
reflexively delete them. Some judgment is required here. Are those
observations improving your model or damaging it?

See Also
See Recipe 11.16. Use help(influence.measures) to get a list of influence measures
and some related functions. See a regression textbook for interpretations of the vari‐
ous influence measures.

11.18 Testing Residuals for Autocorrelation (Durbin–
Watson Test)
Problem
You have performed a linear regression and want to check the residuals for autocorre‐
lation.
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Solution
The Durbin–Watson test can check the residuals for autocorrelation. The test is 
implemented by the dwtest function of the lmtest package:

library(lmtest)
m <- lm(y ~ x)           # Create a model object
dwtest(m)                # Test the model residuals

The output includes a p-value. Conventionally, if p < 0.05 then the residuals are sig‐
nificantly correlated, whereas p > 0.05 provides no evidence of correlation.

You can perform a visual check for autocorrelation by graphing the autocorrelation
function (ACF) of the residuals:

acf(m)                   # Plot the ACF of the model residuals

Discussion
The Durbin–Watson test is often used in time series analysis, but it was originally cre‐
ated for diagnosing autocorrelation in regression residuals. Autocorrelation in the
residuals is a scourge because it distorts the regression statistics, such as the F statistic
and the t statistics for the regression coefficients. The presence of autocorrelation
suggests that your model is missing a useful predictor variable or that it should
include a time series component, such as a trend or a seasonal indicator.

This first example builds a simple regression model and then tests the residuals for
autocorrelation. The test returns a p-value well above zero, which indicates that there
is no significant autocorrelation:

library(lmtest)
load(file = './data/ac.rdata')
m <- lm(y1 ~ x)
dwtest(m)
#>
#>  Durbin-Watson test
#>
#> data:  m
#> DW = 2, p-value = 0.4
#> alternative hypothesis: true autocorrelation is greater than 0

This second example exhibits autocorrelation in the residuals. The p-value is near
zero, so the autocorrelation is likely positive:

m <- lm(y2 ~ x)
dwtest(m)
#>
#>  Durbin-Watson test
#>
#> data:  m
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#> DW = 2, p-value = 0.01
#> alternative hypothesis: true autocorrelation is greater than 0

By default, dwtest performs a one-sided test and answers this question: is the auto‐
correlation of the residuals greater than zero? If your model could exhibit negative
autocorrelation (yes, that is possible), then you should use the alternative option to
perform a two-sided test:

dwtest(m, alternative = "two.sided")

The Durbin–Watson test is also implemented by the durbinWatsonTest function of
the car package. We suggested the dwtest function primarily because we think the
output is easier to read.

See Also
Neither the lmtest package nor the car package is included in the standard distribu‐
tion of R; see Recipe 3.8 and Recipe 3.10 for accessing their functions and installing
them. See Recipe 14.13 and Recipe 14.16 for more regarding tests of autocorrelation.

11.19 Predicting New Values
Problem
You want to predict new values from your regression model.

Solution
Save the predictor data in a data frame. Use the predict function, setting the newdata
parameter to the data frame:

load(file = './data/pred2.rdata')

m <- lm(y ~ u + v + w)
preds <- data.frame(u = 3.1, v = 4.0, w = 5.5)
predict(m, newdata = preds)
#>  1
#> 45

Discussion
Once you have a linear model, making predictions is quite easy because the predict
function does all the heavy lifting. The only annoyance is arranging for a data frame
to contain your data.

The predict function returns a vector of predicted values with one prediction for
every row in the data. The example in the Solution contains one row, so predict
returned one value.
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If your predictor data contains several rows, you get one prediction per row:

preds <- data.frame(
  u = c(3.0, 3.1, 3.2, 3.3),
  v = c(3.9, 4.0, 4.1, 4.2),
  w = c(5.3, 5.5, 5.7, 5.9)
)
predict(m, newdata = preds)
#>    1    2    3    4
#> 43.8 45.0 46.3 47.5

In case it’s not obvious: the new data needn’t contain values for response variables,
only predictor variables. After all, you are trying to calculate the response, so it would
be unreasonable of R to expect you to supply it.

See Also
These are just the point estimates of the predictions. See Recipe 11.20 for the confi‐
dence intervals.

11.20 Forming Prediction Intervals
Problem
You are making predictions using a linear regression model. You want to know the
prediction intervals: the range of the distribution of the prediction.

Solution
Use the predict function and specify interval = "prediction":

predict(m, newdata = preds, interval = "prediction")

Discussion
This is a continuation of Recipe 11.19, which described packaging your data into a
data frame for the predict function. We are adding interval = "prediction" to
obtain prediction intervals.

Here is the example from Recipe 11.19, now with prediction intervals. The new lwr
and upr columns are the lower and upper limits, respectively, for the interval:

predict(m, newdata = preds, interval = "prediction")
#>    fit  lwr  upr
#> 1 43.8 38.2 49.4
#> 2 45.0 39.4 50.7
#> 3 46.3 40.6 51.9
#> 4 47.5 41.8 53.2
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3 In the words of Mark Twain, “October: This is one of the peculiarly dangerous months to speculate in stocks
in. The others are July, January, September, April, November, May, March, June, December, August, and
February.”

By default, predict uses a confidence level of 0.95. You can change this via the level
argument.

A word of caution: these prediction intervals are extremely sensitive to deviations
from normality. If you suspect that your response variable is not normally dis‐
tributed, consider a nonparametric technique, such as the bootstrap (see Recipe 13.8),
for prediction intervals.

11.21 Performing One-Way ANOVA
Problem
Your data is divided into groups, and the groups are normally distributed. You want
to know if the groups have significantly different means.

Solution
Use a factor to define the groups. Then apply the oneway.test function:

oneway.test(x ~ f)

Here, x is a vector of numeric values and f is a factor that identifies the groups. The
output includes a p-value. Conventionally, a p-value of less than 0.05 indicates that
two or more groups have significantly different means, whereas a value exceeding
0.05 provides no such evidence.

Discussion
Comparing the means of groups is a common task. One-way ANOVA performs that
comparison and computes the probability that they are statistically identical. A small
p-value indicates that two or more groups likely have different means. (It does not
indicate that all groups have different means.)

The basic ANOVA test assumes that your data has a normal distribution or that, at
least, it is pretty close to bell-shaped. If not, use the Kruskal–Wallis test instead (see
Recipe 11.24).

We can illustrate ANOVA with stock market historical data. Is the stock market more
profitable in some months than in others? For instance, a common folk myth says
that October is a bad month for stock market investors.3 We explored this question by
creating a data frame, GSPC_df, containing two columns, r and mon. The factor r is
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the daily returns in the Standard & Poor’s 500 index, a broad measure of stock market
performance. The factor mon indicates the calendar month in which that change
occurred: Jan, Feb, Mar, and so forth. The data covers the period 1950 though 2009.

The one-way ANOVA shows a p-value of 0.03347:

load(file = './data/anova.rdata')
oneway.test(r ~ mon, data = GSPC_df)
#>
#>  One-way analysis of means (not assuming equal variances)
#>
#> data:  r and mon
#> F = 2, num df = 10, denom df = 7000, p-value = 0.03

We can conclude that stock market changes varied significantly according to the cal‐
endar month.

Before you run to your broker and start flipping your portfolio monthly, however, we
should check something: did the pattern change recently? We can limit the analysis to
recent data by specifying a subset parameter. This works for oneway.test just as it
does for the lm function. The subset contains the indexes of observations to be ana‐
lyzed; all other observations are ignored. Here, we give the indexes of the 2,500 most
recent observations, which is about 10 years’ worth of data:

oneway.test(r ~ mon, data = GSPC_df, subset = tail(seq_along(r), 2500))
#>
#>  One-way analysis of means (not assuming equal variances)
#>
#> data:  r and mon
#> F = 0.7, num df = 10, denom df = 1000, p-value = 0.8

Uh-oh! Those monthly differences evaporated during the past 10 years. The large p-
value, 0.8, indicates that changes have not recently varied according to calendar
month. Apparently, those differences are a thing of the past.

Notice that the oneway.test output says “(not assuming equal variances)”. If you
know the groups have equal variances, you’ll get a less conservative test by specifying
var.equal = TRUE:

oneway.test(x ~ f, var.equal = TRUE)

You can also perform a one-way ANOVA by using the aov function like this:

m <- aov(x ~ f)
summary(m)

However, the aov function always assumes equal variances and so is somewhat less
flexible than oneway.test.
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See Also
If the means are significantly different, use Recipe 11.23 to see the actual differences.
Use Recipe 11.24 if your data is not normally distributed, as required by ANOVA.

11.22 Creating an Interaction Plot
Problem
You are performing a multiway ANOVA, using two or more categorical variables as
predictors. You want a visual check of possible interaction between the predictors.

Solution
Use the interaction.plot function:

interaction.plot(pred1, pred2, resp)

Here, pred1 and pred2 are two categorical predictors and resp is the response vari‐
able.

Discussion
ANOVA is a form of linear regression, so ideally there is a linear relationship between
every predictor and the response variable. One source of nonlinearity is an interaction
between two predictors: as one predictor changes value, the other predictor changes
its relationship to the response variable. Checking for interaction between predictors
is a basic diagnostic.

The faraway package contains a dataset called rats. In it, treat and poison are cate‐
gorical variables and time is the response variable. When plotting poison against
time we are looking for straight, parallel lines, which indicate a linear relationship.
However, using the interaction.plot function produces Figure 11-8, which reveals
that something is not right:

library(faraway)
data(rats)
interaction.plot(rats$poison, rats$treat, rats$time)

Each line graphs time against poison. The difference between lines is that each line is
for a different value of treat. The lines should be parallel, but the top two are not
exactly parallel. Evidently, varying the value of treat “warped” the lines, introducing
a nonlinearity into the relationship between poison and time.

This signals a possible interaction that we should check. For this data it just so hap‐
pens that yes, there is an interaction, but no, it is not statistically significant. The
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moral is clear: the visual check is useful, but it’s not foolproof. Follow up with a statis‐
tical check.

Figure 11-8. Interaction plot

See Also
See Recipe 11.7.

11.23 Finding Differences Between Means of Groups
Problem
Your data is divided into groups, and an ANOVA test indicates that the groups have
significantly different means. You want to know the differences between those means
for all groups.

Solution
Perform the ANOVA test using the aov function, which returns a model object. Then
apply the TukeyHSD function to the model object:

m <- aov(x ~ f)
TukeyHSD(m)

Here, x is your data and f is the grouping factor. You can plot the TukeyHSD result to
obtain a graphical display of the differences:

plot(TukeyHSD(m))
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Discussion
The ANOVA test is important because it tells you whether or not the groups’ means
are different. But the test does not identify which groups are different, and it does not
report their differences.

The TukeyHSD function can calculate those differences and help you identify the larg‐
est ones. It uses the “honest significant differences” method invented by John Tukey.

We’ll illustrate TukeyHSD by continuing the example from Recipe 11.21, which grou‐
ped daily stock market changes by month. Here, we group them by weekday instead,
using a factor called wday that identifies the day of the week (Mon, …, Fri) on which
the change occurred. We’ll use the first 2,500 observations, which roughly cover the
period from 1950 to 1960:

load(file = './data/anova.rdata')
oneway.test(r ~ wday, subset = 1:2500, data = GSPC_df)
#>
#>  One-way analysis of means (not assuming equal variances)
#>
#> data:  r and wday
#> F = 10, num df = 4, denom df = 1000, p-value = 5e-10

The p-value is essentially zero, indicating that average changes varied significantly
depending on the weekday. To use the TukeyHSD function, we first perform the
ANOVA test using the aov function, which returns a model object, and then apply
the TukeyHSD function to the object:

m <- aov(r ~ wday, subset = 1:2500, data = GSPC_df)
TukeyHSD(m)
#>   Tukey multiple comparisons of means
#>     95% family-wise confidence level
#>
#> Fit: aov(formula = r ~ wday, data = GSPC_df, subset = 1:2500)
#>
#> $wday
#>              diff       lwr       upr p adj
#> Mon-Fri -0.003153 -4.40e-03 -0.001911 0.000
#> Thu-Fri -0.000934 -2.17e-03  0.000304 0.238
#> Tue-Fri -0.001855 -3.09e-03 -0.000618 0.000
#> Wed-Fri -0.000783 -2.01e-03  0.000448 0.412
#> Thu-Mon  0.002219  9.79e-04  0.003460 0.000
#> Tue-Mon  0.001299  5.85e-05  0.002538 0.035
#> Wed-Mon  0.002370  1.14e-03  0.003605 0.000
#> Tue-Thu -0.000921 -2.16e-03  0.000314 0.249
#> Wed-Thu  0.000151 -1.08e-03  0.001380 0.997
#> Wed-Tue  0.001072 -1.57e-04  0.002300 0.121

Each line in the output table includes the difference between the means of two groups
(diff) as well as the lower and upper bounds of the confidence interval (lwr and upr)
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for the difference. The first line in the table, for example, compares the Mon group
and the Fri group: the difference of their means is 0.003 with a confidence interval of
(–0.0044, –0.0019).

Scanning the table, we see that the Wed–Mon comparison had the largest difference,
which was 0.00237.

A cool feature of TukeyHSD is that it can display these differences visually, too. Simply
plot the function’s return value to get output, as shown in Figure 11-9:

plot(TukeyHSD(m))

Figure 11-9. TukeyHSD plot
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The horizontal lines plot the confidence intervals for each pair. With this visual rep‐
resentation you can quickly see that several confidence intervals cross over zero, indi‐
cating that the difference is not necessarily significant. You can also see that the Wed–
Mon pair has the largest difference because their confidence interval is farthest to
the right.

See Also
See Recipe 11.21.

11.24 Performing Robust ANOVA (Kruskal–Wallis Test)
Problem
Your data is divided into groups. The groups are not normally distributed, but their
distributions have similar shapes. You want to perform a test similar to ANOVA—you
want to know if the group medians are significantly different.

Solution
Create a factor that defines the groups of your data. Use the kruskal.test function,
which implements the Kruskal–Wallis test. Unlike the ANOVA test, this test does not
depend upon the normality of the data:

kruskal.test(x ~ f)

Here, x is a vector of data and f is a grouping factor. The output includes a p-value.
Conventionally, p < 0.05 indicates that there is a significant difference between the
medians of two or more groups, whereas p > 0.05 provides no such evidence.

Discussion
Regular ANOVA assumes that your data has a normal distribution. It can tolerate
some deviation from normality, but extreme deviations will produce meaningless p-
values.

The Kruskal–Wallis test is a nonparametric version of ANOVA, which means that it
does not assume normality. However, it does assume same-shaped distributions. You
should use the Kruskal–Wallis test whenever your data distribution is nonnormal or
simply unknown.

The null hypothesis is that all groups have the same median. Rejecting the null
hypothesis (with p < 0.05) does not indicate that all groups are different, but it does
suggest that two or more groups are different.
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One year, Paul taught Business Statistics to 94 undergraduate students. The class
included a midterm examination, and there were four homework assignments prior
to the exam. He wanted to know: what is the relationship between completing the
homework and doing well on the exam? If there is no relation, then the homework is
irrelevant and needs rethinking.

He created a vector of grades, one per student, and he also created a parallel factor
that captured the number of homework assignments completed by that student. The
data is in a data frame named student_data:

load(file = './data/student_data.rdata')
head(student_data)
#> # A tibble: 6 x 4
#>   att.fact hw.mean midterm hw
#>   <fct>      <dbl>   <dbl> <fct>
#> 1 3          0.808   0.818 4
#> 2 3          0.830   0.682 4
#> 3 3          0.444   0.511 2
#> 4 3          0.663   0.670 3
#> 5 2          0.9     0.682 4
#> 6 3          0.948   0.954 4

Notice that the hw variable—although it appears to be numeric—is actually a factor. It
assigns each midterm grade to one of five groups depending upon how many home‐
work assignments the student completed.

The distribution of exam grades is definitely not normal: the students have a wide
range of math skills, so there are an unusual number of A and F grades. Hence, regu‐
lar ANOVA would not be appropriate. Instead we used the Kruskal–Wallis test and
obtained a p-value of essentially zero (4 × 10–5, or 0.00004):

kruskal.test(midterm ~ hw, data = student_data)
#>
#>  Kruskal-Wallis rank sum test
#>
#> data:  midterm by hw
#> Kruskal-Wallis chi-squared = 30, df = 4, p-value = 4e-05

Obviously, there is a significant performance difference between students who com‐
plete their homework and those who do not. But what could Paul actually conclude?
At first, he was pleased that the homework appeared so effective. Then it dawned on
him that this was a classic error in statistical reasoning: he assumed that correlation
implied causality. It does not, of course. Perhaps strongly motivated students do well
on both homework and exams, whereas lazy students do not. In that case, the causal
factor is degree of motivation, not the brilliance of the homework selection. In the
end, he could only conclude something very simple—students who complete the
homework will likely do well on the midterm exam—but he still doesn’t really know
why.
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11.25 Comparing Models by Using ANOVA
Problem
You have two models of the same data, and you want to know whether they produce
different results.

Solution
The anova function can compare two models and report if they are significantly dif‐
ferent:

anova(m1, m2)

Here, m1 and m2 are both model objects returned by lm. The output from anova
includes a p-value. Conventionally, a p-value of less than 0.05 indicates that the mod‐
els are significantly different, whereas a value exceeding 0.05 provides no such evi‐
dence.

Discussion
In Recipe 11.3, we used the anova function to print the ANOVA table for one regres‐
sion model. Now we are using the two-argument form to compare two models.

The anova function has one strong requirement when comparing two models: one
model must be contained within the other. That is, all the terms of the smaller model
must appear in the larger model. Otherwise, the comparison is impossible.

The ANOVA analysis performs an F test that is similar to the F test for a linear
regression. The difference is that this test is between two models, whereas the regres‐
sion F test is between using the regression model and using no model.

Suppose we build three models of y, adding terms as we go:

load(file = './data/anova2.rdata')
m1 <- lm(y ~ u)
m2 <- lm(y ~ u + v)
m3 <- lm(y ~ u + v + w)

Is m2 really different from m1? We can use anova to compare them, and the result is a
p-value of 0.0091:

anova(m1, m2)
#> Analysis of Variance Table
#>
#> Model 1: y ~ u
#> Model 2: y ~ u + v
#>   Res.Df RSS Df Sum of Sq    F Pr(>F)
#> 1     18 197
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#> 2     17 130  1      66.4 8.67 0.0091 **
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The small p-value indicates that the models are significantly different. Comparing m2
and m3, however, yields a p-value of 0.055:

anova(m2, m3)
#> Analysis of Variance Table
#>
#> Model 1: y ~ u + v
#> Model 2: y ~ u + v + w
#>   Res.Df RSS Df Sum of Sq    F Pr(>F)
#> 1     17 130
#> 2     16 103  1      27.5 4.27  0.055 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is right on the edge. Strictly speaking, it does not pass our requirement of being
smaller than 0.05; however, it’s close enough that you might judge the models to be
“different enough.”

This example is a bit contrived, so it does not show the larger power of anova. We use
anova when, while experimenting with complicated models by adding and deleting
multiple terms, we need to know whether or not the new model is really different
from the original one. In other words: if we add terms and the new model is essen‐
tially unchanged, then the extra terms are not worth the additional complications.
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CHAPTER 12

Useful Tricks

The recipes in this chapter are neither obscure numerical calculations nor deep statis‐
tical techniques. Yet they are useful functions and idioms that you will likely need at
one time or another.

12.1 Peeking at Your Data
Problem
You have a lot of data—too much to display at once. Nonetheless, you want to see
some of the data.

Solution
Use head to view the first few data values or rows:

head(x)

Use tail to view the last few data values or rows:

tail(x)

Or you can view the whole thing in an interactive viewer in RStudio:

View(x)

Discussion
Printing a large dataset is pointless because everything just rolls off your screen. Use
head to see a little bit of the data (six rows by default):

391



load(file = './data/lab_df.rdata')
head(lab_df)
#>         x lab      y
#> 1  0.0761  NJ  1.621
#> 2  1.4149  KY 10.338
#> 3  2.5176  KY 14.284
#> 4 -0.3043  KY  0.599
#> 5  2.3916  KY 13.091
#> 6  2.0602  NJ 16.321

Use tail to see the last few rows and the number of rows:

tail(lab_df)
#>          x lab      y
#> 195  7.353  KY 38.880
#> 196 -0.742  KY -0.298
#> 197  2.116  NJ 11.629
#> 198  1.606  KY  9.408
#> 199 -0.523  KY -1.089
#> 200  0.675  KY  5.808

Both head and tail allow you to pass a number to the function to set the number of
rows returned:

tail(lab_df, 2)
#>          x lab     y
#> 199 -0.523  KY -1.09
#> 200  0.675  KY  5.81

RStudio comes with an interactive viewer built in. You can call the viewer from the
console or a script:

View(lab_df)

Or you can pipe an object to the viewer:

lab_df %>%
  View()

When piping to View you will notice that the viewer names the View tab simply .
(just a dot). To get a more informative name, you can put a descriptive name in
quotes:

lab_df %>%
  View("lab_df test from pipe")

The resulting RStudio viewer is shown in Figure 12-1.
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Figure 12-1. RStudio viewer

See Also
See Recipe 12.13 for seeing the structure of your variable’s contents.
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12.2 Printing the Result of an Assignment
Problem
You are assigning a value to a variable and you want to see its value.

Solution
Simply put parentheses around the assignment:

x <- 1/pi            # Prints nothing
(x <- 1/pi)          # Prints assigned value
#> [1] 0.318

Discussion
Normally, R inhibits printing when it sees you enter a simple assignment. When you
surround the assignment with parentheses, however, it is no longer a simple assign‐
ment and so R prints the value. This can be very handy for quick debugging in a
script.

See Also
See Recipe 2.1 for more ways to print things.

12.3 Summing Rows and Columns
Problem
You want to sum the rows or columns of a matrix or data frame.

Solution
Use rowSums to sum the rows:

rowSums(m)

Use colSums to sum the columns:

colSums(m)

Discussion
This is a mundane recipe, but it’s so common that it deserves mentioning. We use this
recipe, for example, when producing reports that include column totals. In this

394 | Chapter 12: Useful Tricks



example, daily.prod is a record of this week’s factory production and we want totals
by product and by day:

load(file = './data/daily.prod.rdata')
daily.prod
#>     Widgets Gadgets Thingys
#> Mon     179     167     182
#> Tue     153     193     166
#> Wed     183     190     170
#> Thu     153     161     171
#> Fri     154     181     186
colSums(daily.prod)
#> Widgets Gadgets Thingys
#>     822     892     875
rowSums(daily.prod)
#> Mon Tue Wed Thu Fri
#> 528 512 543 485 521

These functions return a vector. In the case of column sums, we can append the vec‐
tor to the matrix and thereby neatly print the data and totals together:

rbind(daily.prod, Totals=colSums(daily.prod))
#>        Widgets Gadgets Thingys
#> Mon        179     167     182
#> Tue        153     193     166
#> Wed        183     190     170
#> Thu        153     161     171
#> Fri        154     181     186
#> Totals     822     892     875

12.4 Printing Data in Columns
Problem
You have several parallel data vectors, and you want to print them in columns.

Solution
Use cbind to form the data into columns, then print the result.

Discussion
When you have parallel vectors, it’s difficult to see their relationship if you print them
separately:

load(file = './data/xy.rdata')
print(x)
#>  [1] -0.626  0.184 -0.836  1.595  0.330 -0.820  0.487  0.738  0.576 -0.305
print(y)

12.4 Printing Data in Columns | 395



#>  [1]  1.5118  0.3898 -0.6212 -2.2147  1.1249 -0.0449 -0.0162  0.9438
#>  [9]  0.8212  0.5939

Use the cbind function to form them into columns that, when printed, show the
data’s structure:

print(cbind(x,y))
#>            x       y
#>  [1,] -0.626  1.5118
#>  [2,]  0.184  0.3898
#>  [3,] -0.836 -0.6212
#>  [4,]  1.595 -2.2147
#>  [5,]  0.330  1.1249
#>  [6,] -0.820 -0.0449
#>  [7,]  0.487 -0.0162
#>  [8,]  0.738  0.9438
#>  [9,]  0.576  0.8212
#> [10,] -0.305  0.5939

You can include expressions in the output, too. Use a tag to give them a column
heading:

print(cbind(x, y, Total = x + y))
#>            x       y  Total
#>  [1,] -0.626  1.5118  0.885
#>  [2,]  0.184  0.3898  0.573
#>  [3,] -0.836 -0.6212 -1.457
#>  [4,]  1.595 -2.2147 -0.619
#>  [5,]  0.330  1.1249  1.454
#>  [6,] -0.820 -0.0449 -0.865
#>  [7,]  0.487 -0.0162  0.471
#>  [8,]  0.738  0.9438  1.682
#>  [9,]  0.576  0.8212  1.397
#> [10,] -0.305  0.5939  0.289

12.5 Binning Your Data
Problem
You have a vector, and you want to split the data into groups according to intervals.
Statisticians call this binning your data.

Solution
Use the cut function. You must define a vector, say breaks, that gives the ranges of
the intervals. The cut function will group your data according to those intervals. It
returns a factor whose levels (elements) identify each datum’s group:

f <- cut(x, breaks)
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Discussion
This example generates 1,000 random numbers that have a standard normal distribu‐
tion. It breaks them into six groups by defining intervals at ±1, ±2, and ±3 standard
deviations:

x <- rnorm(1000)
breaks <- c(-3, -2, -1, 0, 1, 2, 3)
f <- cut(x, breaks)

The result is a factor, f, that identifies the groups. The summary function shows the
number of elements by level. R creates names for each level, using the mathematical
notation for an interval:

summary(f)
#> (-3,-2] (-2,-1]  (-1,0]   (0,1]   (1,2]   (2,3]    NA's
#>      25     147     341     332     132      18       5

The results are bell-shaped, which is what we expect from the rnorm function. There
are five NA values, indicating that two values in x fell outside the defined intervals.

We can use the labels parameter to give nice, predefined names to the six groups
instead of the funky synthesized names:

f <- cut(x, breaks, labels = c("Bottom", "Low", "Neg", "Pos", "High", "Top"))

Now the summary function uses our names:

summary(f)
#> Bottom    Low    Neg    Pos   High    Top   NA's
#>     25    147    341    332    132     18      5

Binning is useful for summaries such as histograms. But it results in information loss,
which can be harmful in modeling. Consider the extreme case of binning a continu‐
ous variable into two values, high and low. The binned data has only two possible
values, so you have replaced a rich source of information with one bit of information.
Where the continuous variable might be a powerful predictor, the binned variable can
distinguish at most two states and so will likely have only a fraction of the original
power. Before you bin, we suggest exploring other transformations that are less lossy.

12.6 Finding the Position of a Particular Value
Problem
You have a vector. You know a particular value occurs in the contents, and you want
to know its position.
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Solution
The match function will search a vector for a particular value and return the position:

vec <- c(100, 90, 80, 70, 60, 50, 40, 30, 20, 10)
match(80, vec)
#> [1] 3

Here match returns 3, which is the position of 80 within vec.

Discussion
There are special functions for finding the location of the minimum and maximum
values—which.min and which.max, respectively:

vec <- c(100,90,80,70,60,50,40,30,20,10)
which.min(vec)          # Position of smallest element
#> [1] 10
which.max(vec)          # Position of largest element
#> [1] 1

See Also
This technique is used in Recipe 11.13.

12.7 Selecting Every nth Element of a Vector
Problem
You want to select every nth element of a vector.

Solution
Create a logical indexing vector that is TRUE for every nth element. One approach is to
find all subscripts that equal zero when taken modulo n:

v[seq_along(v) %% n == 0]

Discussion
This problem arises in systematic sampling: we want to sample a dataset by selecting
every nth element. The seq_along(v) function generates the sequence of integers
that can index v; it is equivalent to 1:length(v). We compute each index value mod‐
ulo n by the expression:

v <- rnorm(10)
n <- 2
seq_along(v) %% n
#>  [1] 1 0 1 0 1 0 1 0 1 0
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Then we find those values that equal zero:

seq_along(v) %% n == 0
#>  [1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE

The result is a logical vector, the same length as v and with TRUE at every nth element,
that can index v to select the desired elements:

v
#>  [1]  2.325  0.524  0.971  0.377 -0.996 -0.597  0.165 -2.928 -0.848  0.799
v[ seq_along(v) %% n == 0 ]
#> [1]  0.524  0.377 -0.597 -2.928  0.799

If you just want something simple like every second element, you can use the Recy‐
cling Rule in a clever way. Index v with a two-element logical vector, like this:

v[c(FALSE, TRUE)]
#> [1]  0.524  0.377 -0.597 -2.928  0.799

If v has more than two elements, then the indexing vector is too short. Hence, R will
invoke the Recycling Rule and expand the index vector to the length of v, recycling its
contents. That gives an index vector that is FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
and so forth. Voilà! The final result is every second element of v.

See Also
See Recipe 5.3 for more about the Recycling Rule.

12.8 Finding Minimums or Maximums
Problem
You have two vectors, v and w, and you want to find the minimums or the maximums
of pairwise elements. That is, you want to calculate:

min(v1, w1), min(v2, w2), min(v3, w3), …

or:
max(v1, w1), max(v2, w2), max(v3, w3), …

Solution
R calls these the parallel minimum and the parallel maximum. The calculation is per‐
formed by pmin(v,w) and pmax(v,w), respectively:

pmin(1:5, 5:1)    # Find the element-by-element minimum
#> [1] 1 2 3 2 1
pmax(1:5, 5:1)    # Find the element-by-element maximum
#> [1] 5 4 3 4 5
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Discussion
When an R beginner wants pairwise minimums or maximums, a common mistake is
to write min(v,w) or max(v,w). Those are not pairwise operations: min(v,w) returns
a single value, the minimum over all v and w. Likewise, max(v,w) returns a single
value from all of v and w.

The pmin and pmax values compare their arguments in parallel, picking the minimum
or maximum for each subscript. They return a vector that matches the length of the
inputs.

You can combine pmin and pmax with the Recycling Rule to perform useful hacks. 
Suppose the vector v contains both positive and negative values, and you want to
reset the negative values to zero. This does the trick:

v <- c(-3:3)
v
#> [1] -3 -2 -1  0  1  2  3
v <- pmax(v, 0)
v
#> [1] 0 0 0 0 1 2 3

By the Recycling Rule, R expands the zero-valued scalar into a vector of zeros that is
the same length as v. Then pmax does an element-by-element comparison, taking the
larger of zero and each element of v.

Actually, pmin and pmax are more powerful than the Solution indicates. They can take
more than two vectors, comparing all vectors in parallel.

It is not uncommon to use pmin or pmax to calculate a new variable in a data frame
based on multiple fields. Let’s look at a quick example:

df <- data.frame(a = c(1,5,8),
                 b = c(2,3,7),
                 c = c(0,4,9))
df %>%
  mutate(max_val = pmax(a,b,c))
#>   a b c max_val
#> 1 1 2 0       2
#> 2 5 3 4       5
#> 3 8 7 9       9

We can see the new column, max_val, now contains the row-by-row max value from
the three input columns.

See Also
See Recipe 5.3 for more about the Recycling Rule.
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12.9 Generating All Combinations of Several Variables
Problem
You have two or more variables. You want to generate all combinations of their levels, 
also known as their Cartesian product.

Solution
Use the expand.grid function. Here, f and g are vectors:

expand.grid(f, g)

Discussion
This code snippet creates two vectors—sides represents the two sides of a coin, and
faces represents the six faces of a die (those little spots on a die are called pips):

sides <- c("Heads", "Tails")
faces <- c("1 pip", paste(2:6, "pips"))

We can use expand.grid to find all combinations of one roll of the die and one coin
toss:

expand.grid(faces, sides)
#>      Var1  Var2
#> 1   1 pip Heads
#> 2  2 pips Heads
#> 3  3 pips Heads
#> 4  4 pips Heads
#> 5  5 pips Heads
#> 6  6 pips Heads
#> 7   1 pip Tails
#> 8  2 pips Tails
#> 9  3 pips Tails
#> 10 4 pips Tails
#> 11 5 pips Tails
#> 12 6 pips Tails

Similarly, we could find all combinations of two dice, but we won’t print the output
here because it’s 36 lines long:

expand.grid(faces, faces)

The result of expand.grid is a data frame. R automatically provides the row names
and column names.

The Solution and the example show the Cartesian product of two vectors, but
expand.grid can handle three or more factors, too.
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See Also
If you’re working with strings and want a bit more control over how you bring the
combinations together, then you can also use Recipe 7.6 to generate combinations.

12.10 Flattening a Data Frame
Problem
You have a data frame of numeric values. You want to process all its elements
together, not as separate columns—for example, to find the mean across all values.

Solution
Convert the data frame to a matrix and then process the matrix. This example finds
the mean of all elements in the data frame dfrm:

mean(as.matrix(dfrm))

It is sometimes necessary then to convert the matrix to a vector. In that case, use
as.vector(as.matrix(dfrm)).

Discussion
Suppose we have a data frame, such as the factory production data from Recipe 12.3:

load(file = './data/daily.prod.rdata')
daily.prod
#>     Widgets Gadgets Thingys
#> Mon     179     167     182
#> Tue     153     193     166
#> Wed     183     190     170
#> Thu     153     161     171
#> Fri     154     181     186

Suppose also that we want the average daily production across all days and products.
This won’t work:

mean(daily.prod)
#> Warning in mean.default(daily.prod): argument is not numeric or logical:
#> returning NA
#> [1] NA

The mean function doesn’t really know what to do with a data frame, so it just throws
an error. When you want the average across all values, first collapse the data frame
down to a matrix:

mean(as.matrix(daily.prod))
#> [1] 173
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This recipe works only on data frames with all-numeric data. Recall that converting a
data frame with mixed data (numeric columns mixed with character columns or fac‐
tors) into a matrix forces all columns to be converted to characters.

See Also
See Recipe 5.29 for more about converting between data types.

12.11 Sorting a Data Frame
Problem
You have a data frame. You want to sort the contents, using one column as the sort
key.

Solution
Use the arrange function from the dplyr package:

df <- arrange(df, key)

Here df is a data frame and key is the sort-key column.

Discussion
The sort function is great for vectors but is ineffective for data frames. Suppose we
have the following data frame and we want to sort by month:

load(file = './data/outcome.rdata')
print(df)
#>   month day outcome
#> 1     7  11     Win
#> 2     8  10    Lose
#> 3     8  25     Tie
#> 4     6  27     Tie
#> 5     7  22     Win

The arrange function rearranges the months into ascending order and returns the
entire data frame:

library(dplyr)
arrange(df, month)
#>   month day outcome
#> 1     6  27     Tie
#> 2     7  11     Win
#> 3     7  22     Win
#> 4     8  10    Lose
#> 5     8  25     Tie
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After rearranging the data frame, the month column is in ascending order—just as we
wanted. If you want to sort the data in descending order, put a - in front of the col‐
umn you want to sort by:

arrange(df,-month)
#>   month day outcome
#> 1     8  10    Lose
#> 2     8  25     Tie
#> 3     7  11     Win
#> 4     7  22     Win
#> 5     6  27     Tie

If you want to sort by multiple columns, you can add them to the arrange function.
The following example sorts by month first, then by day:

arrange(df, month, day)
#>   month day outcome
#> 1     6  27     Tie
#> 2     7  11     Win
#> 3     7  22     Win
#> 4     8  10    Lose
#> 5     8  25     Tie

Within months 7 and 8, the days are now sorted into ascending order.

12.12 Stripping Attributes from a Variable
Problem
A variable is carrying around old attributes. You want to remove some or all of them.

Solution
To remove all attributes, assign NULL to the variable’s attributes property:

attributes(x) <- NULL

To remove a single attribute, select the attribute using the attr function, and set it to
NULL:

attr(x, "attributeName") <- NULL

Discussion
Any variable in R can have attributes. An attribute is simply a name/value pair, and
the variable can have many of them. A common example is the dimensions of a
matrix variable, which are stored in an attribute. The attribute name is dim and the
attribute value is a two-element vector giving the number of rows and columns.

You can view the attributes of x by printing attributes(x) or str(x).
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Sometimes you want just a number and R insists on giving it attributes. This can hap‐
pen when you fit a simple linear model and extract the slope, which is the second
regression coefficient:

load(file = './data/conf.rdata')
m <- lm(y ~ x1)
slope <- coef(m)[2]
slope
#>  x1
#> -11

When we print slope, R also prints "x1". That is a name attribute given by lm to the 
coefficient (because it’s the coefficient for the x1 variable). We can see that more
clearly by printing the internals of slope, which reveals a "names" attribute:

str(slope)
#>  Named num -11
#>  - attr(*, "names")= chr "x1"

It’s easy to strip out all the attributes, after which the slope value becomes simply a
number:

attributes(slope) <- NULL    # Strip off all attributes
str(slope)                   # Now the "names" attribute is gone
#>  num -11

slope                        # And the number prints cleanly without a label
#> [1] -11

Alternatively, we could have stripped out the single offending attribute this way:

attr(slope, "names") <- NULL

Remember that a matrix is a vector (or list) with a dim attribute. If
you strip out all the attributes from a matrix, that will strip away
the dimensions and thereby turn it into a mere vector (or list). Fur‐
thermore, stripping the attributes from an object (specifically, an S3
object) can render it useless. So, remove attributes with care.

See Also
See Recipe 12.13 for more about seeing attributes.

12.13 Revealing the Structure of an Object
Problem
You called a function that returned something. Now you want to look inside that
something and learn more about it.
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Solution
Use class to determine the thing’s object class:

class(x)

Use mode to strip away the object-oriented features and reveal the underlying struc‐
ture:

mode(x)

Use str to show the internal structure and contents:

str(x)

Discussion
We are regularly amazed by how often we call a function, get something back, and
wonder: “What the heck is this thing?” Theoretically, the function documentation
should explain the returned value, but somehow we feel better when we can see its
structure and contents ourselves. This is especially true for objects with a nested
structure: objects within objects.

Let’s dissect the value returned by lm (the linear modeling function) in the simplest
linear regression recipe, Recipe 11.1:

load(file = './data/conf.rdata')
m <- lm(y ~ x1)
print(m)
#>
#> Call:
#> lm(formula = y ~ x1)
#>
#> Coefficients:
#> (Intercept)           x1
#>        15.9        -11.0

Always start by checking the thing’s class. The class indicates if it’s a vector, matrix,
list, data frame, or object:

class(m)
#> [1] "lm"

Hmmm. It seems that m is an object of class lm. That may not mean anything to you
but we know that all object classes are built upon the native data structures (vector,
matrix, list, or data frame). We can use mode to strip away the object facade and reveal
the underlying structure:

mode(m)
#> [1] "list"
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Ah-ha! It seems that m is built on a list structure. Now we can use list functions and
operators to dig into its contents. First, we want to know the names of its list
elements:

names(m)
#>  [1] "coefficients"  "residuals"     "effects"       "rank"
#>  [5] "fitted.values" "assign"        "qr"            "df.residual"
#>  [9] "xlevels"       "call"          "terms"         "model"

The first list element is called "coefficients". We could guess those are the regres‐
sion coefficients. Let’s have a look:

m$coefficients
#> (Intercept)          x1
#>        15.9       -11.0

Yes, that’s what they are. We recognize those values.

We could continue digging into the list structure of m, but that would get tedious. The
str function does a good job of revealing the internal structure of any variable:

str(m)
#> List of 12
#>  $ coefficients : Named num [1:2] 15.9 -11
#>   ..- attr(*, "names")= chr [1:2] "(Intercept)" "x1"
#>  $ residuals    : Named num [1:30] 36.6 58.6 112.1 -35.2 -61.7 ...
#>   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
#>  $ effects      : Named num [1:30] -73.1 69.3 93.9 -31.1 -66.3 ...
#>   ..- attr(*, "names")= chr [1:30] "(Intercept)" "x1" "" "" ...
#>  $ rank         : int 2
#>  $ fitted.values: Named num [1:30] 25.69 13.83 -1.55 28.25 16.74 ...
#>   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
#>  $ assign       : int [1:2] 0 1
#>  $ qr           :List of 5
#>   ..$ qr   : num [1:30, 1:2] -5.477 0.183 0.183 0.183 0.183 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
#>   .. .. ..$ : chr [1:2] "(Intercept)" "x1"
#>   .. ..- attr(*, "assign")= int [1:2] 0 1
#>   ..$ qraux: num [1:2] 1.18 1.02
#>   ..$ pivot: int [1:2] 1 2
#>   ..$ tol  : num 1e-07
#>   ..$ rank : int 2
#>   ..- attr(*, "class")= chr "qr"
#>  $ df.residual  : int 28
#>  $ xlevels      : Named list()
#>  $ call         : language lm(formula = y ~ x1)
#>  $ terms        :Classes 'terms', 'formula'  language y ~ x1
#>   .. ..- attr(*, "variables")= language list(y, x1)
#>   .. ..- attr(*, "factors")= int [1:2, 1] 0 1
#>   .. .. ..- attr(*, "dimnames")=List of 2
#>   .. .. .. ..$ : chr [1:2] "y" "x1"
#>   .. .. .. ..$ : chr "x1"
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#>   .. ..- attr(*, "term.labels")= chr "x1"
#>   .. ..- attr(*, "order")= int 1
#>   .. ..- attr(*, "intercept")= int 1
#>   .. ..- attr(*, "response")= int 1
#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#>   .. ..- attr(*, "predvars")= language list(y, x1)
#>   .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
#>   .. .. ..- attr(*, "names")= chr [1:2] "y" "x1"
#>  $ model        :'data.frame':   30 obs. of  2 variables:
#>   ..$ y : num [1:30] 62.25 72.45 110.59 -6.94 -44.99 ...
#>   ..$ x1: num [1:30] -0.8969 0.1848 1.5878 -1.1304 -0.0803 ...
#>   ..- attr(*, "terms")=Classes 'terms', 'formula'  language y ~ x1
#>   .. .. ..- attr(*, "variables")= language list(y, x1)
#>   .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
#>   .. .. .. ..- attr(*, "dimnames")=List of 2
#>   .. .. .. .. ..$ : chr [1:2] "y" "x1"
#>   .. .. .. .. ..$ : chr "x1"
#>   .. .. ..- attr(*, "term.labels")= chr "x1"
#>   .. .. ..- attr(*, "order")= int 1
#>   .. .. ..- attr(*, "intercept")= int 1
#>   .. .. ..- attr(*, "response")= int 1
#>   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#>   .. .. ..- attr(*, "predvars")= language list(y, x1)
#>   .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
#>   .. .. .. ..- attr(*, "names")= chr [1:2] "y" "x1"
#>  - attr(*, "class")= chr "lm"

Notice that str shows all the elements of m and then recursively dumps each element’s
contents and attributes. Long vectors and lists are truncated to keep the output man‐
ageable.

There is an art to exploring an R object. Use class, mode, and str to dig through the
layers. We have found that often str tells you everything you want to know…and
sometimes a lot more!

12.14 Timing Your Code
Problem
You want to know how much time is required to run your code. This is useful, for
example, when you are optimizing your code and need “before” and “after” numbers
to measure the improvement.

Solution
The tictoc package contains a very easy way to time and label chunks of code. The
tic function starts a timer and the toc function stops the timer and reports the exe‐
cution time:
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library(tictoc)
tic('Optional helpful name here')
aLongRunningExpression()
toc()

The output is the execution time in seconds.

Discussion
Suppose we want to know the time required to generate 10,000,000 random normal
numbers and sum them together:

library(tictoc)
tic('making big numbers')
total_val <- sum(rnorm(1e7))
toc()
#> making big numbers: 0.794 sec elapsed

The toc function returns the message set in tic along with the runtime in seconds.

If you assign the result of toc to an object, you can have access to the underlying start
time, finish time, and message:

tic('two sums')
sum(rnorm(10000000))
#> [1] -84.1
sum(rnorm(10000000))
#> [1] -3899
toc_result <- toc()
#> two sums: 1.373 sec elapsed

print(toc_result)
#> $tic
#> elapsed
#>    2.64
#>
#> $toc
#> elapsed
#>    4.01
#>
#> $msg
#> [1] "two sums"

If you want to report the results in minutes (or hours!), you can use the elements of
the output to get at the underlying start and finish times:

print(paste('the code ran in',
            round((toc_result$toc -  toc_result$tic) / 60, 4),
            'minutes'))
#> [1] "the code ran in 0.0229 minutes"

You can accomplish the same thing using just Sys.time calls, but without the conve‐
nience of labeling and clarity of syntax provided by toctoc:
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start <- Sys.time()
sum(rnorm(10000000))
#> [1] 3607
sum(rnorm(10000000))
#> [1] 1893
Sys.time() - start
#> Time difference of 1.37 secs

12.15 Suppressing Warnings and Error Messages
Problem
A function is producing annoying error messages or warning messages. You don’t
want to see them.

Solution
Surround the function call with suppressMessage(…) or suppressWarnings(…):

suppressMessage(annoyingFunction())
suppressWarnings(annoyingFunction())

Discussion
The Augmented Dickey–Fuller Test, adf.test, is a popular time series function.
However, it produces an annoying warning message, shown here at the bottom of the
output, when the p-value is below 0.01:

library(tseries)
load(file = './data/adf.rdata')
results <- adf.test(x)
#> Warning in adf.test(x): p-value smaller than printed p-value

Fortunately, we can muzzle the function by calling it inside suppressWarnings(…):

results <- suppressWarnings(adf.test(x))

Notice that the warning message disappeared. The message is not entirely lost
because R retains it internally. We can retrieve the message at our leisure by using the
warnings function:

warnings()

Some functions also produce “messages” (in R terminology), which are even more
benign than warnings. Typically, they are merely informative and not signals of prob‐
lems. If such a message is annoying you, you can make it disappear by calling the
function inside suppressMessages(...).
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See Also
See the options function for other ways to control the reporting of errors and
warnings.

12.16 Taking Function Arguments from a List
Problem
Your data is captured in a list structure. You want to pass the data to a function, but
the function does not accept a list.

Solution
In simple cases, convert the list to a vector. For more complex cases, the do.call
function can break the list into individual arguments and call your function:

do.call(function, list)

Discussion
If your data is in a vector, life is simple and most R functions work as expected:

vec <- c(1, 3, 5, 7, 9)
mean(vec)
#> [1] 5

If your data is captured in a list, some functions complain and return a useless result,
like this:

numbers <- list(1, 3, 5, 7, 9)
mean(numbers)
#> Warning in mean.default(numbers): argument is not numeric or logical:
#> returning NA
#> [1] NA

The numbers list is a simple, one-level list, so we can just convert it to a vector and call
the function:

mean(unlist(numbers))
#> [1] 5

The big headaches come when you have multilevel list structures: lists within lists.
These can occur within complex data structures. Here is a list of lists in which each
sublist is a column of data:

my_lists <-
  list(col1 = list(7, 8),
       col2 = list(70, 80),
       col3 = list(700, 800))
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my_lists
#> $col1
#> $col1[[1]]
#> [1] 7
#>
#> $col1[[2]]
#> [1] 8
#>
#>
#> $col2
#> $col2[[1]]
#> [1] 70
#>
#> $col2[[2]]
#> [1] 80
#>
#>
#> $col3
#> $col3[[1]]
#> [1] 700
#>
#> $col3[[2]]
#> [1] 800

Suppose we want to form this data into a matrix. The cbind function is supposed to
create data columns, but it gets confused by the list structure and returns something
useless:

cbind(my_lists)
#>      my_lists
#> col1 List,2
#> col2 List,2
#> col3 List,2

If we unlist the data then we just get one big, long column, which is not what we are
after either:

cbind(unlist(my_lists))
#>       [,1]
#> col11    7
#> col12    8
#> col21   70
#> col22   80
#> col31  700
#> col32  800

The solution is to use do.call, which splits the list into individual items and then
calls cbind on those items:

do.call(cbind, my_lists)
#>      col1 col2 col3
#> [1,] 7    70   700
#> [2,] 8    80   800
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Using do.call in that way is functionally identical to calling cbind like this:

cbind(my_lists[[1]], my_lists[[2]], my_lists[[3]])
#>      [,1] [,2] [,3]
#> [1,] 7    70   700
#> [2,] 8    80   800

Be careful if the list elements have names. In that case, do.call
interprets the element names as names of parameters to the func‐
tion, which might cause trouble.

This recipe presents the most basic use of do.call. The function is quite powerful
and has many other uses. See the help page for more details.

See Also
See Recipe 5.29 for converting between data types.

12.17 Defining Your Own Binary Operators
Problem
You want to define your own binary operators, making your R code more stream‐
lined and readable.

Solution
R recognizes any text between percent signs (%…%) as a binary operator. Create and
define a new binary operator by assigning a two-argument function to it.

Discussion
R contains an interesting feature that lets you define your own binary operators. Any
text between two percent signs (%…%) is automatically interpreted by R as a binary
operator. R predefines several such operators, such as %/% for integer division, %*% for
matrix multiplication, and the pipe %>% in the magrittr package.

You can create a new binary operator by assigning a function to it. This example cre‐
ates an operator, %+-%:

'%+-%' <- function(x, margin)
  x + c(-1, +1) * margin

The expression x %+-% m calculates x ± m. Here it calculates 100 ± (1.96 × 15), the
two-standard-deviation range of a standard IQ test:
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100 %+-% (1.96 * 15)
#> [1]  70.6 129.4

Notice that we quote the binary operator when defining it but not when using it.

The pleasure of defining your own operators is that you can wrap commonly used
operations inside a succinct syntax. If your application frequently concatenates two
strings without an intervening blank, then you might define a binary concatenation
operator for that purpose:

'%+%' <- function(s1, s2)
  paste(s1, s2, sep = "")
"Hello" %+% "World"
#> [1] "HelloWorld"
"limit=" %+% round(qnorm(1 - 0.05 / 2), 2)
#> [1] "limit=1.96"

A danger of defining your own operators, however, is that the code becomes less
portable to other environments. Bring the definitions along with the code in which
they are used; otherwise, R will complain about undefined operators.

All user-defined operators have the same precedence and are listed collectively in
Table 2-1 as %any%. Their precedence is fairly high: higher than multiplication and
division but lower than exponentiation and sequence creation. As a result, it’s easy to
misexpress yourself. If we omit parentheses from the %+-% example, we get an unex‐
pected result:

100 %+-% 1.96 * 15
#> [1] 1471 1529

R interpreted the expression as (100 %+-% 1.96) * 15.

See Also
See Recipe 2.11 for more about operator precedence and Recipe 15.3 for how to
define a function.

12.18 Suppressing the Startup Message
Problem
When you run R from a command prompt or shell script, you are tired of seeing R’s
verbose startup message.

Solution
Use the --quiet command-line option when you start R from the command line or a
shell script.
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Discussion
The startup message from R is handy for beginners because it contains useful infor‐
mation about the R project and getting help. But the novelty wears off pretty quickly
—especially if you start R from a shell prompt to use it as a calculator throughout the
day. This is not particularly helpful if you’re using R only from RStudio.

If you start R from the shell prompt, use the --quiet option to hide the startup
message:

R --quiet

On a Linux or Mac box, you could alias R like this from the shell so you never see the
startup message:

alias R="/usr/bin/R --quiet"

12.19 Getting and Setting Environment Variables
Problem
You want to see the value of an environment variable, or you want to change its value.

Solution
Use the Sys.getenv function to see values. Use Sys.putenv to change them:

Sys.setenv(DB_PASSWORD = "My_Password!")
Sys.getenv("DB_PASSWORD")
#> [1] "My_Password!"

Discussion
Environment variables are often used to configure and control software. Each process
has its own set of environment variables, which are inherited from its parent process.
You sometimes need to see the environment variable settings for your R process in
order to understand its behavior. Likewise, you sometimes need to change those set‐
tings to modify that behavior.

A common use case is to store a username or password for use in accessing a remote
database or cloud service. It’s a really bad idea to store passwords in plain text in a
project script. One way to avoid storing passwords in your script is to set an environ‐
ment variable containing your password when R starts.

To ensure your password and username are available at every R login, you can add
calls to Sys.setenv in the .Rprofile file in your home directory. .Rprofile is an R script
that is run every time R starts.
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For example, you could add the following to your .Rprofile:

Sys.setenv(DB_USERID = "Me")
Sys.setenv(DB_PASSWORD = "My_Password!")

Then you could fetch and use the environment variables in a script to log into an
Amazon Redshift database, for example:

con <- DBI::dbConnect(
  RPostgreSQL::PostgreSQL(),
  dbname   = "my_database",
  port     = 5439,
  host     = "my_database.amazonaws.com",
  user     = Sys.getenv("DB_USERID"),
  password = Sys.getenv("DB_PASSWORD")
)

See Also
See Recipe 3.16 for more about changing configuration at startup.

12.20 Use Code Sections
Problem
You’ve got a long script and you’re finding it difficult to navigate from one section of
code to the next.

Solution
Code sections provide section dividers in an outline pane on the side of your editor. 
To use code sections, simply start a comment with # and then end the comment with
---- or #### or ====:

# My First Section      -----
x <- 1

# My Second Section     ####
y <- 2

# My Third Section      ====
z <- 3

In the RStudio editor window you can see the outline on the righthand side (see
Figure 12-2).
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Figure 12-2. Code sections

Discussion
Code sections are just a specially formatted type of R comment since they start with
the # symbol. If you open your code with any editor other than RStudio, they are
treated simply as code comments. But RStudio sees these specially formatted code
comments as section headers and creates a helpful outline in the side panel of the
editor.

The first time you use code sections, you may need to click the out‐
line icon to the right of the Source button in order to show the out‐
line.

If you are writing R Markdown instead of a *.R script, your Markdown headings and
subheadings will show up in the outline pane, making navigating your document
much easier.

See Also
See Recipe 16.4 for using section headings in R Markdown documents.

12.21 Executing R in Parallel Locally
Problem
You have code that takes a while to run, and you would like to speed it up by using
more of the cores on your local computer.
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Solution
The easiest solution to get up and running with is to use the furrr package, which in
turn uses the future package to provide parallel processing via functions that feel like
those from purrr except that they operate in parallel.

You’ll want to download the latest development version from GitHub because the
package is still under active development as of this writing:

devtools::install_github("DavisVaughan/furrr")

To use furrr to parallelize our code, we call the furrr::future_map function in place
of the purrr::map function we discussed in Recipe 6.1. But first we have to tell furrr
how we want to parallelize. In this case we want a multiprocess parallel process that
uses all our local processors, so we set that up by calling plan(multiprocess). Then
we can apply a function to every element in our list using future_map:

library(furrr)

plan(multiprocess)

future_map(my_list, some_function)

Discussion
Let’s do an example simulation to illustrate parallelization. A classic stochastic simu‐
lation is to draw random points inside of a 2 × 2 box and see how many points fall
within one unit from the center of the box. The ratio of points inside the box / total
points multiplied by 4 is a good estimate of pi. The following function takes one
input, n_iterations, which is the number of random points to simulate. Then it
returns the resulting average estimate of pi:

simulate_pi <- function(n_iterations) {
  rand_draws <- matrix(runif(2 * n_iterations, -1, 1), ncol = 2)
  num_in <- sum(sqrt(rand_draws[, 1]**2 + rand_draws[, 2]**2) <= 1)
  pi_hat <- (num_in / n_iterations) * 4
  return(pi_hat)
}
simulate_pi(1000000)
#> [1] 3.14

As you can see, even with 1,000,000 simulations the result is only accurate out to a
couple of decimal points. This is not a very efficient way to estimate pi, but it works
for our illustration.

For the purpose of comparison later, let’s run 200 runs of this pi simulator where each
run has 2,500,000 simulated points. We’ll do this by creating a list with 200 elements,
each of which is the value 5,000,000, which we will pass to simulate_pi. We’ll time
the code with the tictoc package:
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library(purrr) # for `map`
library(tictoc) # for timing our code

draw_list <- as.list(rep(5000000, 200))

tic("simulate pi - single process")
sims_list <- map(draw_list, simulate_pi)
toc()
#> simulate pi - single process: 90.772 sec elapsed

mean(unlist(sims_list))
#> [1] 3.14

That runs in less than two minutes and gives an estimate of pi based on a billion sim‐
ulations (5m × 200).

Now let’s take the exact same R function, simulate_pi, and run it through
future_map to run it in parallel:

library(furrr)
#> Loading required package: future
#>
#> Attaching package: 'future'
#> The following object is masked from 'package:tseries':
#>
#>     value
plan(multiprocess)

tic("simulate pi - parallel")
sims_list <- future_map(draw_list, simulate_pi)
toc()
#> simulate pi - parallel: 26.33 sec elapsed
mean(unlist(sims_list))
#> [1] 3.14

The preceding example was run on a MacBook Pro with four physical cores and two
virtual cores per physical core. When you’re running code in parallel the best-case
scenario is that the runtime is reduced by 1/(number of physical cores). With four
physical cores you can see the parallel runtime is much faster than the single-
threaded version, but not quite one-fourth the runtime of the single-threaded ver‐
sion. There is always some overhead from moving the data around, so you will never
experience the best-case scenario. And the more data each iteration produces, the less
speed improvement you will experience from parallelization.

See Also
See Recipe 12.22.
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12.22 Executing R in Parallel Remotely
Problem
You have access to a number of remote machines and you would like to run your
code in parallel across them all.

Solution
Running code in parallel across multiple machines can be tricky to set up initially.
However, if we start with a few key prerequisites in place, the process has a much
higher probability of success.

The starting prerequisites are:

• You can ssh from your main machine to each remote node without a password
using previously generated SSH keys.

• The remote nodes all have R installed (ideally the same version of R).
• Paths are set such that you can run Rscript from SSH.
• The remote nodes have the package furrr installed (which in turn installs
future).

• The remote nodes already have all the packages your distributed code depends
on installed.

Once you have worker nodes that are set up and ready to go, you can create a cluster
by calling makeClusterPSOCK from the future package. Then use the resulting cluster
with the furrr function future_map:

library(furrr) # loads future as a dependency

workers <- c("node_1.domain.com", "node_2.domain.com")

cl <- makeClusterPSOCK(
  worker = workers
)

plan(cluster, workers = cl)

future_map(my_list, some_function)

Discussion
Suppose we have two big Linux machines named von-neumann12 and von-neumann15
that we can use to run numerical models. These machines meet the criteria just listed,
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so they are good candidates to be our backend for a furrr/future cluster. Let’s do the
same pi simulation we did in the previous recipe using the simulate_pi function:

library(tidyverse)
library(furrr)
library(tictoc)

my_workers <- c('von-neumann12','von-neumann15')

cl <- makeClusterPSOCK(
  workers = my_workers,
  rscript = '/home/anaconda2/bin/Rscript',  #yours may differ
  verbose=TRUE
)

draw_list <- as.list(rep(5000000, 200))

plan(cluster, workers = cl)

tic('simulate pi - parallel map')
sims_list_parallel <- draw_list %>%
  future_map(simulate_pi)
toc()
#> simulate pi - parallel map: 116.986 sec elapsed

mean(unlist(sims_list_parallel))
#> [1] 3.14167

This is ~8.5 million sims per second.

The two nodes in our ad hoc cluster each have 32 processors and 128 GB of RAM.
But if you compare the runtime of the preceding code with the runtime of the prior
recipe run on a humble MacBook Pro, you’ll notice that the MacBook executed the
code in about the same time as the multi-CPU Linux cluster with 64 total processors!
This unintuitive surprise happens because the preceding code runs only on one CPU
per cluster node. So, as a result, it uses only two CPUs, while the MacBook uses all
four of its CPUs.

So how do we run parallel code on a cluster and have each node also run in parallel
across multiple CPU cores? To do that we need to make three changes to our code:

1. Create a nested parallel plan that uses both cluster and multiprocess.
2. Create an input list that is a nested list. Each cluster machine will get from the

main list an item that contains sublist items that it can process in parallel across
all its CPUs.

3. Call future_map twice, using a nested call. The outer future_map will parallelize
items across the cluster nodes, and then the inner call will parallelize across the
CPUs.
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To created the nested parallel plan, we will create a multipart plan by passing a list of
two plans to the plan function like this:

plan(list(tweak(cluster, workers = cl), multiprocess))

The second change is to create the nested list to iterate on. We can do that by using
the split command and passing it our prior list followed by a vector of 1:4, like so:

split(draw_list, 1:4)

This will break the initial list into four sublists, so our resulting list will have four ele‐
ments. Each sublist will have 50 inputs for our final simulate_pi function.

The third change to our code is to create a nested future_map call that will pass each
of our four list elements to the worker nodes, which subsequently will iterate over the
elements of each sublist. We create that nested function like this:

future_map(draw_list, ~future_map(.,simulate_pi))

The ~ sets up R to expect an anonymous function inside the first future_map call, and
the . tells R where to put the list element. The anonymous function in this example is
a separate call to future_map that gets executed on each node.

Here are all three changes integrated into the code:

# nested parallel plan - the first part of the plan is the cluster call
# followed by the multiprocess
plan(list(tweak(cluster, workers = cl), multiprocess))

# break the draw_list into a nested list with fewer elements
draw_list_nested <- split(draw_list, 1:4)

tic('simulate pi - parallel nested map')
sims_list_nested_parallel <- future_map(
  draw_list_nested, ~future_map(.,simulate_pi)
)
toc()
#> simulate pi - parallel nested map: 15.964 sec elapsed
mean(unlist(sims_list_nested_parallel))
#> [1] 3.14158

You can see the runtime decreased substantially from the previous example, although
with 32 processors on each node, we’re not seeing a 32× improvement in runtime.
This is because we’re passing only 50 sets of simulations to each node. Each node runs
32 sets of simulations in the first pass but only 18 in the second pass, leaving half the
CPUs idle.

Let’s keep the CPUs a little busier by increasing our total simulations from 1 billion to
25 billion. Then we’ll break them into 500 work blocks to be spread to the two worker
nodes:
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draw_list <- as.list(rep(5000000, 5000))
draw_list_nested <- split(draw_list, 1:50)

plan(list(tweak(cluster, workers = cl), multiprocess))

tic('simulate pi - parallel nested map')
sims_list_nested_parallel <- future_map(
  draw_list_nested, ~future_map(.,simulate_pi)
)
toc()
#> simulate pi - parallel nested map: 260.532 sec elapsed
mean(unlist(sims_list_nested_parallel))
#> [1] 3.14157

This gives us ~ 96 million sims per second.

See Also
The future package has multiple excellent vignettes. To better understand the nested
plan call, start with vignette('future-3-topologies',package = 'future').

Further info about furrr can be found at its GitHub page.
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CHAPTER 13

Beyond Basic Numerics and Statistics

This chapter presents a few advanced techniques such as those you might encounter
in the first or second year of a graduate program in applied statistics.

Most of these recipes use functions available in the base distribution. Through add-
on packages, R provides some of the world’s most advanced statistical techniques.
This is because researchers in statistics now use R as their lingua franca, showcasing
their newest work. Anyone looking for a cutting-edge statistical technique is urged to
search CRAN and the web for possible implementations.

13.1 Minimizing or Maximizing a Single-Parameter
Function
Problem
Given a single-parameter function f, you want to find the point at which f reaches its
minimum or maximum.

Solution
To minimize a single-parameter function, use optimize. Specify the function to be
minimized and the bounds for its domain (x):

optimize(f, lower = lowerBound, upper = upperBound)

If you instead want to maximize the function, specify maximum = TRUE:

optimize(f,
         lower = lowerBound,
         upper = upperBound,
         maximum = TRUE)
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Discussion
The optimize function can handle functions of one argument. It requires upper and
lower bounds for x that delimit the region to be searched. The following example
finds the minimum of a polynomial, 3x4 – 2x3 + 3x2 – 4x + 5:

f <- function(x)
  3 * x ^ 4 - 2 * x ^ 3 + 3 * x ^ 2 - 4 * x + 5
optimize(f, lower = -20, upper = 20)
#> $minimum
#> [1] 0.597
#>
#> $objective
#> [1] 3.64

The returned value is a list with two elements: minimum, the x value that minimizes
the function; and objective, the value of the function at that point.

A tighter range for lower and upper means a smaller region to be searched and hence
a faster optimization. However, if you are unsure of the appropriate bounds, use big
but reasonable values such as lower = -1000 and upper = 1000. Just be careful that
your function does not have multiple minima within that range! The optimize func‐
tion will find and return only one such minimum.

See Also
See Recipe 13.2.

13.2 Minimizing or Maximizing a Multiparameter
Function
Problem
Given a multiparameter function f, you want to find the point at which f reaches its
minimum or maximum.

Solution
To minimize a multiparameter function, use optim. You must specify the starting
point, which is a vector of initial arguments for f:

optim(startingPoint, f)

To maximize the function instead, specify this control parameter:

optim(startingPoint, f, control = list(fnscale = -1))
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Discussion
The optim function is more general than optimize (see Recipe 13.1) because it han‐
dles multiparameter functions. To evaluate your function at a point, optim packs the
point’s coordinates into a vector and calls your function with that vector. The func‐
tion should return a scalar value. optim will begin at your starting point and move
through the parameter space, searching for the function’s minimum.

Here is an example of using optim to fit a nonlinear model. Suppose you believe that
the paired observations z and x are related by zi = (xi + α)β + εi, where α and β are
unknown parameters and where the εi are nonnormal noise terms. Let’s fit the model
by minimizing a robust metric, the sum of the absolute deviations:

∑|z – (x + a)b|

First we define the function to be minimized. Note that the function has only one for‐
mal parameter, a two-element vector. The actual parameters to be evaluated, a and b,
are packed into the vector in locations 1 and 2:

load(file = './data/opt.rdata')  # loads x, y, z

f <-
  function(v) {
    a <- v[1]
    b <- v[2]                           # "unpack" v, giving a and b
    sum(abs(z - ((x + a) ^ b)))         # calculate and return the error
  }

The following code makes a call to optim, starts from (1, 1), and searches for the min‐
imum point of f:

optim(c(1, 1), f)
#> $par
#> [1] 10.0  0.7
#>
#> $value
#> [1] 1.26
#>
#> $counts
#> function gradient
#>      485       NA
#>
#> $convergence
#> [1] 0
#>
#> $message
#> NULL

The returned list includes convergence, the indicator of success or failure. If this
indicator is 0, then optim found a minimum; otherwise, it did not. Obviously, the
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convergence indicator is the most important returned value because other values are
meaningless if the algorithm did not converge.

The returned list also includes par, the parameters that minimize our function, and
value, the value of f at that point. In this case, optim did converge and found a mini‐
mum point at approximately a = 10.0 and b = 0.7.

There are no lower and upper bounds for optim, just the starting
point that you provide. A better guess for the starting point means
a faster minimization.

The optim function supports several different minimization algorithms, and you can
select among them. If the default algorithm does not work for you, see the help page
for alternatives. A typical problem with multidimensional minimization is that the
algorithm gets stuck at a local minimum and fails to find a deeper, global minimum.
Generally speaking, the algorithms that are more powerful are less likely to get stuck.
However, there is a trade-off: they also tend to run more slowly.

See Also
The R community has implemented many tools for optimization. On CRAN, see the
task view for Optimization and Mathematical Programming for more solutions.

13.3 Calculating Eigenvalues and Eigenvectors
Problem
You want to calculate the eigenvalues or eigenvectors of a matrix.

Solution
Use the eigen function. It returns a list with two elements, values and vectors,
which contain (respectively) the eigenvalues and eigenvectors.

Discussion
Suppose we have a matrix such as the Fibonacci matrix:

fibmat <- matrix(c(0, 1, 1, 1), 2, 2)
fibmat
#>      [,1] [,2]
#> [1,]    0    1
#> [2,]    1    1
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Given the matrix, the eigen function will return a list of its eigenvalues and
eigenvectors:

eigen(fibmat)
#> eigen() decomposition
#> $values
#> [1]  1.618 -0.618
#>
#> $vectors
#>       [,1]   [,2]
#> [1,] 0.526 -0.851
#> [2,] 0.851  0.526

Use either eigen(fibmat)$values or eigen(fibmat)$vectors to select the needed
value from the list.

13.4 Performing Principal Component Analysis
Problem
You want to identify the principal components of a multivariable dataset.

Solution
Use the prcomp function. The first argument is a formula whose righthand side is the
set of variables, separated by plus signs (+). The lefthand side is empty:

r <- prcomp( ~ x + y + z)
summary(r)
#> Importance of components:
#>                          PC1     PC2     PC3
#> Standard deviation     1.894 0.11821 0.04459
#> Proportion of Variance 0.996 0.00388 0.00055
#> Cumulative Proportion  0.996 0.99945 1.00000

Discussion
Base R includes two functions for principal component analysis (PCA), prcomp and
princomp. The documentation mentions that prcomp has better numerical properties,
so that’s the function presented here.

An important use of PCA is to reduce the dimensionality of your dataset. Suppose
your data contains a large number N of variables. Ideally, all the variables are more or
less independent and contributing equally. But if you suspect that some variables are
redundant, PCA can tell you the number of sources of variance in your data. If that
number is near N, then all the variables are useful. If the number is less than N, then
your data can be reduced to a dataset of smaller dimensionality.
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PCA recasts your data into a vector space where the first dimension captures the
most variance, the second dimension captures the second most, and so forth. The
actual output from prcomp is an object that, when printed, gives the needed vector
rotation:

load(file = './data/pca.rdata')
r <- prcomp(~ x + y)
print(r)
#> Standard deviations (1, .., p=2):
#> [1] 0.393 0.163
#>
#> Rotation (n x k) = (2 x 2):
#>      PC1    PC2
#> x -0.553  0.833
#> y -0.833 -0.553

We typically find the summary of PCA much more useful. It shows the proportion of
variance that is captured by each component:

summary(r)
#> Importance of components:
#>                          PC1   PC2
#> Standard deviation     0.393 0.163
#> Proportion of Variance 0.853 0.147
#> Cumulative Proportion  0.853 1.000

In this example, the first component captured 85% of the variance and the second
component only 15%, so we know the first component captured most of it.

After calling prcomp, use plot(r) to view a bar chart of the variances of the principal
components and predict(r) to rotate your data to the principal components.

See Also
See Recipe 13.9 for an example of using principal component analysis. Further uses of
PCA in R are discussed in Modern Applied Statistics with S-Plus by W. N. Venables
and B. D. Ripley (Springer).

13.5 Performing Simple Orthogonal Regression
Problem
You want to create a linear model using orthogonal regression in which the variances
of x and y are treated symmetrically.

430 | Chapter 13: Beyond Basic Numerics and Statistics



Solution
Use prcomp to perform PCA on x and y. From the resulting rotation, compute the
slope and intercept:

r <- prcomp(~ x + y)
slope <- r$rotation[2, 1] / r$rotation[1, 1]
intercept <- r$center[2] - slope * r$center[1]

Discussion
Orthogonal regression is also known as total least squares (TLS).

The ordinary least squares (OLS) algorithm has an odd property: it is asymmetric.
That is, calculating lm(y ~ x) is not the mathematical inverse of calculating lm(x ~
y). The reason is that OLS assumes the x values to be constants and the y values to be
random variables, so all the variance is attributed to y and none is attributed to x.
This creates an asymmetric situation.

The asymmetry is illustrated in Figure 13-1, where the upper-left panel displays the
fit for lm(y ~ x). The OLS algorithm tries the minimize the vertical distances, which
are shown as dotted lines. The upper-right panel shows the identical dataset but fit
with lm(x ~ y) instead, so the algorithm is minimizing the horizontal dotted lines.
Obviously, you’ll get a different result depending upon which distances are mini‐
mized.

The lower panel of Figure 13-1 is quite different. It uses PCA to implement orthogo‐
nal regression. Now the distances being minimized are the orthogonal distances from
the data points to the regression line. This is a symmetric situation: reversing the
roles of x and y does not change the distances to be minimized.
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Figure 13-1. Ordinary least squares versus orthogonal regression

Implementing a basic orthogonal regression in R is quite simple. First, perform the
PCA:

load(file = './data/pca.rdata')
r <- prcomp(~ x + y)

Next, use the rotations to compute the slope:

slope <- r$rotation[2, 1] / r$rotation[1, 1]

And then, from the slope, calculate the intercept:

intercept <- r$center[2] - slope * r$center[1]

We call this a “basic” regression because it yields only the point estimates for the slope
and intercept, not the confidence intervals. Obviously, we’d like to have the regression
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statistics, too. Recipe 13.8 shows one way to estimate the confidence intervals using a
bootstrap algorithm.

See Also
Principal component analysis is described in Recipe 13.4. The graphics in this recipe
were inspired by the work of Vincent Zoonekynd and his tutorial on regression.

13.6 Finding Clusters in Your Data
Problem
You believe your data contains clusters: groups of points that are “near” each other.
You want to identify those clusters.

Solution
Your dataset, x, can be a vector, data frame, or matrix. Assume that n is the number of
clusters you desire:

d <- dist(x)               # Compute distances between observations
hc <- hclust(d)            # Form hierarchical clusters
clust <- cutree(hc, k=n)   # Organize them into the n largest clusters

The result, clust, is a vector of numbers between 1 and n, one for each observation in
x. Each number classifies its corresponding observation into one of the n clusters.

Discussion
The dist function computes distances between all the observations. The default is
Euclidean distance, which works well for many applications, but other distance meas‐
ures are also available.

The hclust function uses those distances to form the observations into a hierarchical
tree of clusters. You can plot the result of hclust to create a visualization of the hier‐
archy, called a dendrogram, as shown in Figure 13-2.

Finally, cutree extracts clusters from that tree. You must specify either how many
clusters you want or the height at which the tree should be cut. Often the number of
clusters is unknown, in which case you will need to explore the dataset for clustering
that makes sense in your application.

We’ll illustrate clustering of a synthetic dataset. We start by generating 99 normal var‐
iates, each with a randomly selected mean of either –3, 0, or +3:

means <- sample(c(-3, 0, +3), 99, replace = TRUE)
x <- rnorm(99, mean = means)
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For our own curiosity, we can compute the true means of the original clusters. (In a
real situation, we would not have the means factor and would be unable to perform
this computation.) We can confirm that the groups’ means are pretty close to –3, 0,
and +3:

tapply(x, factor(means), mean)
#>     -3      0      3
#> -3.015 -0.224  2.760

To “discover” the clusters, we first compute the distances between all points:

d <- dist(x)

Then we create the hierarchical clusters:

hc <- hclust(d)

And we can plot the hierarchical cluster dendrogram by calling plot on the hc object
(Figure 13-2):

plot(hc,
     sub = "",
     labels = FALSE)

Figure 13-2. Hierarchical cluster dendrogram

We can now extract the three largest clusters:

clust <- cutree(hc, k=3)
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Obviously, we have a huge advantage here because we know the true number of clus‐
ters. Real life is rarely that easy. However, even if we didn’t already know we were
dealing with three clusters, looking at the dendrogram gives us a good clue that there
are three big clusters in the data.

clust is a vector of integers between 1 and 3, one integer for each observation in the
sample, that assigns each observation to a cluster. Here are the first 20 cluster
assignments:

head(clust, 20)
#>  [1] 1 2 2 2 1 2 3 3 2 3 1 3 2 3 2 1 2 1 1 3

By treating the cluster number as a factor, we can compute the mean of each statisti‐
cal cluster (see Recipe 6.6):

tapply(x, clust, mean)
#>      1      2      3
#>  3.190 -2.699  0.236

R did a good job of splitting the data into clusters: the means appear distinct, with
one near –2.7, one near 0.27, and one near +3.2. (The order of the extracted means
does not necessarily match the order of the original groups, of course.) The extracted
means are similar but not identical to the original means. Side-by-side boxplots can
show why (see Figure 13-3):

library(patchwork)

df_cluster <- data.frame(x,
                         means = factor(means),
                         clust = factor(clust))

g1 <- ggplot(df_cluster) +
  geom_boxplot(aes(means, x)) +
  labs(title = "Original Clusters", x = "Cluster Mean")

g2 <- ggplot(df_cluster) +
  geom_boxplot(aes(clust, x)) +
  labs(title = "Identified Clusters", x = "Cluster Number")

g1 + g2
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Figure 13-3. Cluster boxplots

The clustering algorithm perfectly separated the data into nonoverlapping groups.
The original clusters overlapped, whereas the identified clusters do not.

This illustration used one-dimensional data, but the dist function works equally well
on multidimensional data stored in a data frame or matrix. Each row in the data
frame or matrix is treated as one observation in a multidimensional space, and dist
computes the distances between those observations.

See Also
This demonstration is based on the clustering features of the base package. There are
other packages, such as mclust, that offer alternative clustering mechanisms.

13.7 Predicting a Binary-Valued Variable (Logistic
Regression)
Problem
You want to perform logistic regression, a regression model that predicts the proba‐
bility of a binary event occurring.
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Solution
Call the glm function with family = binomial to perform logistic regression. The
result is a model object:

m <- glm(b ~ x1 + x2 + x3, family = binomial)

Here, b is a factor with two levels (e.g., TRUE and FALSE, 0 and 1), while x1, x2, and x3
are predictor variables.

Use the model object, m, and the predict function to predict a probability from new
data:

df <- data.frame(x1 = value, x2 = value, x3 = value)
predict(m, type = "response", newdata = dfrm)

Discussion
Predicting a binary-valued outcome is a common problem in modeling. Will a treat‐
ment be effective or not? Will prices rise or fall? Who will win the game, team A or
team B? Logistic regression is useful for modeling these situations. In the true spirit
of statistics, it does not simply give a “thumbs up” or “thumbs down” answer; rather, it
computes a probability for each of the two possible outcomes.

In the call to predict, we set type = "response" so that predict returns a probabil‐
ity. Otherwise, it returns log-odds, which most of us don’t find intuitive.

In his unpublished book entitled Practical Regression and ANOVA Using R, Julian Far‐
away gives an example of predicting a binary-valued variable: test from the dataset
pima is true if the patient tested positive for diabetes. The predictors are diastolic
blood pressure and body mass index (BMI). Faraway uses linear regression, so let’s try
logistic regression instead:

data(pima, package = "faraway")
b <- factor(pima$test)
m <- glm(b ~ diastolic + bmi, family = binomial, data = pima)

The summary of the resulting model, m, shows that the respective p-values for the
diastolic and bmi variables are 0.8 and (essentially) 0. We can therefore conclude
that only the bmi variable is significant:

summary(m)
#>
#> Call:
#> glm(formula = b ~ diastolic + bmi, family = binomial, data = pima)
#>
#> Deviance Residuals:
#>    Min      1Q  Median      3Q     Max
#> -1.913  -0.918  -0.685   1.234   2.742
#>
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#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.62955    0.46818   -7.75  9.0e-15 ***
#> diastolic   -0.00110    0.00443   -0.25      0.8
#> bmi          0.09413    0.01230    7.65  1.9e-14 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#>     Null deviance: 993.48  on 767  degrees of freedom
#> Residual deviance: 920.65  on 765  degrees of freedom
#> AIC: 926.7
#>
#> Number of Fisher Scoring iterations: 4

Because only the bmi variable is significant, we can create a reduced model like this:

m.red <- glm(b ~ bmi, family = binomial, data = pima)

Let’s use the model to calculate the probability that someone with an average BMI
(32.0) will test positive for diabetes:

newdata <- data.frame(bmi = 32.0)
predict(m.red, type = "response", newdata = newdata)
#>     1
#> 0.333

According to this model, the probability is about 33.3%. The same calculation for
someone in the 90th percentile gives a probability of 54.9%:

newdata <- data.frame(bmi = quantile(pima$bmi, .90))
predict(m.red, type = "response", newdata = newdata)
#>   90%
#> 0.549

See Also
Using logistic regression involves interpreting the deviance to judge the significance
of the model. We suggest you review a text on logistic regression before attempting to
draw any conclusions from your regression.

13.8 Bootstrapping a Statistic
Problem
You have a dataset and a function to calculate a statistic from that dataset. You want
to estimate a confidence interval for the statistic.
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Solution
Use the boot package. Apply the boot function to calculate bootstrap replicates of the
statistic:

library(boot)
bootfun <- function(data, indices) {
  # . . . calculate statistic using data[indices]. . .
  return(statistic)
}

reps <- boot(data, bootfun, R = 999)

Here, data is your original dataset, which can be stored in either a vector or a data
frame. The statistic function (bootfun in this case) should expect two arguments:
data and indices, a vector of integers that selects the bootstrap sample from data.

Next, use the boot.ci function to estimate a confidence interval from the replica‐
tions:

boot.ci(reps, type = c("perc", "bca"))

Discussion
Anybody can calculate a statistic, but that’s just the point estimate. We want to take it
to the next level: what is the confidence interval (CI)? For some statistics, we can cal‐
culate the CI analytically. The CI for a mean, for instance, is calculated by the t.test
function. Unfortunately, that is the exception and not the rule. For most statistics, the
mathematics are too tortuous or simply unknown, and there is no known closed-
form calculation for the CI.

The bootstrap algorithm can estimate a CI even when no closed-form calculation is
available. It works like this. The algorithm assumes that you have a sample of size N
and a function to calculate the statistic and performs the following steps:

1. Randomly select N elements from the sample, sampling with replacement. That
set of elements is called a bootstrap sample.

2. Apply the function to the bootstrap sample to calculate the statistic. That value is
called a bootstrap replication.

3. Repeat steps 1 and 2 many times to yield many (typically thousands) of bootstrap
replications.

4. From the bootstrap replications, compute the confidence interval.

That last step may seem mysterious, but there are several algorithms for computing
the CI. A simple one uses percentiles of the replications, such as taking the 2.5 per‐
centile and the 97.5 percentile to form the 95% CI.
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We’re huge fans of the bootstrap because we work daily with obscure statistics, it is
important that we know their confidence intervals, and there is definitely no known
formula for obtaining those. The bootstrap gives us a good approximation.

Let’s work an example. In Recipe 13.4 we estimated the slope of a line using orthogo‐
nal regression. That gave us a point estimate, but how can we find the CI? First, we
encapsulate the slope calculation within a function:

stat <- function(data, indices) {
  r <- prcomp(~ x + y, data = data, subset = indices)
  slope <- r$rotation[2, 1] / r$rotation[1, 1]
  return(slope)
}

Notice that the function is careful to select the subset defined by indices and to com‐
pute the slope from that exact subset.

Next, we calculate 999 replications of the slope. Recall that we had two vectors, x and
y, in the original recipe; here, we combine them into a data frame:

load(file = './data/pca.rdata')
library(boot)
set.seed(3) # for reproducability

boot.data <- data.frame(x = x, y = y)
reps <- boot(boot.data, stat, R = 999)

The choice of 999 replications is a good starting point. You can always repeat the
bootstrap with more and see if the results change significantly.

The boot.ci function can estimate the CI from the replications. It implements sev‐
eral different algorithms, and the type argument selects which algorithms are per‐
formed. For each selected algorithm, boot.ci will return the resulting estimate:

boot.ci(reps, type = c("perc", "bca"))
#> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
#> Based on 999 bootstrap replicates
#>
#> CALL :
#> boot.ci(boot.out = reps, type = c("perc", "bca"))
#>
#> Intervals :
#> Level     Percentile            BCa
#> 95%   ( 1.07,  1.99 )   ( 1.09,  2.05 )
#> Calculations and Intervals on Original Scale

Here we chose two algorithms, percentile and BCa, by setting type =

c("perc","bca"). The two resulting estimates appear at the bottom under their
names. Other algorithms are available; see the help page for boot.ci.
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You will note that the two confidence intervals are slightly different: (1.068, 1.992)
versus (1.086, 2.050). This is an uncomfortable but inevitable result of using two dif‐
ferent algorithms. We don’t know any method for deciding which is better. If the
selection is a critical issue, you will need to study the reference and understand the
differences. In the meantime, our best advice is to be conservative and use the mini‐
mum lower bound and the maximum upper bound; in this case, that would be (1.068,
2.050).

By default, boot.ci estimates a 95% CI. You can change that via the conf argument,
like this:

boot.ci(reps, type = c("perc", "bca"), conf = 0.90)

See Also
See Recipe 13.4 for the slope calculation. A good tutorial and reference for the boot‐
strap algorithm is An Introduction to the Bootstrap by Bradley Efron and Robert Tib‐
shirani (Chapman & Hall/CRC).

13.9 Factor Analysis
Problem
You want to perform factor analysis on your dataset, usually to discover what your
variables have in common.

Solution
Use the factanal function, which requires your dataset and your estimate of the
number of factors:

factanal(data, factors = n)

The output includes n factors, showing the loadings of each input variable for each
factor.

The output also includes a p-value. Conventionally, a p-value of less than 0.05 indi‐
cates that the number of factors is too small and does not capture the full dimension‐
ality of the dataset; a p-value exceeding 0.05 indicates that there are likely enough (or
more than enough) factors.

Discussion
Factor analysis creates linear combinations of your variables, called factors, that
abstract the variables’ underlying commonality. If your n variables are perfectly inde‐
pendent, then they have nothing in common and n factors are required to describe
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them. But to the extent that the variables have an underlying commonality, fewer fac‐
tors capture most of the variance and so fewer than n factors are required.

For each factor and variable, we calculate the correlation between them, known as the
loading. Variables with a high loading are well explained by the factor. We can square
the loading to know what fraction of the variable’s total variance is explained by the
factor.

Factor analysis is useful when it shows that a few factors capture most of the variance
of your variables. Thus, it alerts you to redundancy in your data. In that case you can
reduce your dataset by combining closely related variables or by eliminating redun‐
dant variables altogether.

A more subtle application of factor analysis is interpreting the factors to find interre‐
lationships between your variables. If two variables both have large loadings for the
same factor, then you know they have something in common. What is it? There is no
mechanical answer. You’ll need to study the data and its meaning.

There are two tricky aspects of factor analysis. The first is choosing the number of
factors. Fortunately, you can use PCA to get a good initial estimate of the number
of factors. The second tricky aspect is interpreting the factors themselves.

Let’s illustrate factor analysis by using stock prices, or, more precisely, changes in
stock prices. The dataset contains six months of price changes for the stocks of 12
companies. Every company is involved in the petroleum and gasoline industry. Their
stock prices probably move together, since they are subject to similar economic and
market forces. We might ask: how many factors are required to explain their changes?
If only one factor is required, then all the stocks are the same and one is as good as
another. If many factors are required, we know that owning several of them provides
diversification.

We start by doing a PCA on diffs, the data frame of price changes. Plotting the PCA
results shows the variance captured by the components (Figure 13-4):

load(file = './data/diffs.rdata')
plot(prcomp(diffs))
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Figure 13-4. PCA results plot

We can see in Figure 13-4 that the first component captures much of the variance, but
we don’t know if more components are required. So we perform the initial factor
analysis while assuming that two factors are required:

factanal(diffs, factors = 2)
#>
#> Call:
#> factanal(x = diffs, factors = 2)
#>
#> Uniquenesses:
#>   APC    BP   BRY   CVX   HES   MRO   NBL   OXY   ETP   VLO   XOM
#> 0.307 0.652 0.997 0.308 0.440 0.358 0.363 0.556 0.902 0.786 0.285
#>
#> Loadings:
#>     Factor1 Factor2
#> APC 0.773   0.309
#> BP  0.317   0.497
#> BRY
#> CVX 0.439   0.707
#> HES 0.640   0.389
#> MRO 0.707   0.377
#> NBL 0.749   0.276
#> OXY 0.562   0.358
#> ETP 0.283   0.134
#> VLO 0.303   0.350
#> XOM 0.355   0.767
#>
#>                Factor1 Factor2
#> SS loadings       2.98   2.072
#> Proportion Var    0.27   0.188
#> Cumulative Var    0.27   0.459
#>
#> Test of the hypothesis that 2 factors are sufficient.
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#> The chi square statistic is 62.9 on 34 degrees of freedom.
#> The p-value is 0.00184

We can ignore most of the output because the p-value at the bottom is very close to
zero (.00184). The small p-value indicates that two factors are insufficient, so the
analysis isn’t good. More are required, so we try again with three factors instead:

factanal(diffs, factors = 3)
#>
#> Call:
#> factanal(x = diffs, factors = 3)
#>
#> Uniquenesses:
#>   APC    BP   BRY   CVX   HES   MRO   NBL   OXY   ETP   VLO   XOM
#> 0.316 0.650 0.984 0.315 0.374 0.355 0.346 0.521 0.723 0.605 0.271
#>
#> Loadings:
#>     Factor1 Factor2 Factor3
#> APC  0.747   0.270   0.230
#> BP   0.298   0.459   0.224
#> BRY                  0.123
#> CVX  0.442   0.672   0.197
#> HES  0.589   0.299   0.434
#> MRO  0.703   0.350   0.167
#> NBL  0.760   0.249   0.124
#> OXY  0.592   0.357
#> ETP  0.194           0.489
#> VLO  0.198   0.264   0.535
#> XOM  0.355   0.753   0.190
#>
#>                Factor1 Factor2 Factor3
#> SS loadings      2.814   1.774   0.951
#> Proportion Var   0.256   0.161   0.086
#> Cumulative Var   0.256   0.417   0.504
#>
#> Test of the hypothesis that 3 factors are sufficient.
#> The chi square statistic is 30.2 on 25 degrees of freedom.
#> The p-value is 0.218

The large p-value (0.218) confirms that three factors are sufficient, so we can use the
analysis.

The output includes a table of explained variance, shown here:

               Factor1 Factor2 Factor3
SS loadings      2.814   1.774   0.951
Proportion Var   0.256   0.161   0.086
Cumulative Var   0.256   0.417   0.504

This table shows that the proportion of variance explained by each factor is 0.256,
0.161, and 0.086, respectively. Cumulatively, they explain 0.504 of the variance, which
leaves 1 – 0.504 = 0.496 unexplained.
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Next we want to interpret the factors, which is more like voodoo than science. Let’s
look at the loadings, repeated here:

Loadings:
    Factor1 Factor2 Factor3
APC  0.747   0.270   0.230
BP   0.298   0.459   0.224
BRY                  0.123
CVX  0.442   0.672   0.197
HES  0.589   0.299   0.434
MRO  0.703   0.350   0.167
NBL  0.760   0.249   0.124
OXY  0.592   0.357
ETP  0.194           0.489
VLO  0.198   0.264   0.535
XOM  0.355   0.753   0.190

Each row is labeled with the variable name (stock symbol): APC, BP, BRY, and so
forth. The first factor has many large loadings, indicating that it explains the variance
of many stocks. This is a common phenomenon in factor analysis. We are often look‐
ing at related variables, and the first factor captures their most basic relationship. In
this example, we are dealing with stocks, and most stocks move together in concert
with the broad market. That’s probably captured by the first factor.

The second factor is more subtle. Notice that the loadings for CVX (0.67) and XOM
(0.75) are the dominant ones, with BP not far behind (0.46), but all other stocks have
noticeably smaller loadings. This indicates a connection between CVX, XOM, and BP.
Perhaps they operate together in a common market (e.g., multinational energy) and
so tend to move together.

The third factor also has three dominant loadings: VLO, ETP, and HES. These are
somewhat smaller companies than the global giants we saw in the second factor. Pos‐
sibly these three share similar markets or risks and so their stocks also tend to move
together.

In summary, it seems there are three groups of stocks here:

• CVX, XOM, BP
• VLO, ETP, HES
• Everything else

Factor analysis is an art and a science. We suggest that you read a good book on mul‐
tivariate analysis before employing it.

See Also
See Recipe 13.4 for more about PCA.
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CHAPTER 14

Time Series Analysis

Time series analysis has become a hot topic with the rise of quantitative finance and
automated trading of securities. Many of the facilities described in this chapter were
invented by practitioners and researchers in finance, securities trading, and portfolio
management.

Before you start any time series analysis in R, a key decision is your choice of data
representation (object class). This is especially critical in an object-oriented language
such as R, because the choice affects more than how the data is stored; it also dictates
which functions (methods) will be available for loading, processing, analyzing, print‐
ing, and plotting your data. When many people start using R they simply store time
series data in vectors. That seems natural. However, they quickly discover that none
of the coolest analytics for time series analysis work with simple vectors. We’ve found
when users switch to using an object class intended for time series data, the analysis
gets easier, opening a gateway to valuable functions and analytics.

This chapter’s first recipe recommends using the zoo or xts packages for representing
time series data. They are quite general and should meet the needs of most users.
Nearly every subsequent recipe assumes you are using one of those two representa‐
tions.

The xts implementation is a superset of zoo, so xts can do every‐
thing that zoo can do. In this chapter, whenever a recipe works for
a zoo object, you can safely assume (unless stated otherwise) that it
also works for an xts object.
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Other Representations
Other representations of time series data are available in the R universe, including:

• The fts package
• The irts class from the tseries package
• The timeSeries package
• The ts class in the base distribution
• The tsibble package, a tidyverse style package for time series

In fact, there is a whole toolkit, called tsbox, just for converting between representa‐
tions.

Two representations deserve special mention.

ts (base distribution)

The base distribution of R includes a time series class called ts. We don’t recommend
this representation for general use because the implementation itself is too limited
and restrictive.

However, the base distribution includes some important time series analytics that
depend upon ts, such as the autocorrelation function (acf) and the cross-correlation
function (ccf). To use those base functions on xts data, use the to.ts function to
“downshift” your data into the ts representation before calling the function. For
example, if x is an xts object, you can compute its autocorrelation like this:

acf(as.ts(x))

tsibble package

The tsibble package is a recent extension to the tidyverse, specifically designed for
working with time series data within the tidyverse. We find it useful for cross-sectional
data—that is, data for which the observations are grouped by date, and you want to
perform analytics within dates more than across dates.

Date Versus Datetime
Every observation in a time series has an associated date or time. The object classes
used in this chapter, zoo and xts, give you the choice of using either dates or date‐
times for representing the data’s time component. You would use dates to represent
daily data, of course, and also for weekly, monthly, or even annual data; in these cases,
the date gives the day on which the observation occurred. You would use datetimes
for intraday data, where both the date and time of observation are needed.
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In describing this chapter’s recipes, we found it pretty cumbersome to keep saying
“date or datetime.” So, we simplified the prose by assuming that your data is daily and
thus uses whole dates. Please bear in mind, of course, that you are free and able to use
timestamps below the resolution of a calendar date.

See Also
R has many useful functions and packages for time series analysis. You’ll find pointers
to them in the task view for Time Series Analysis.

14.1 Representing Time Series Data
Problem
You want an R data structure that can represent time series data.

Solution
We recommend the zoo and xts packages. They define a data structure for time ser‐
ies, and they contain many useful functions for working with time series data. Create
a zoo object this way, where x is a vector, matrix, or data frame, and dt is a vector of
corresponding dates or datetimes:

library(zoo)
ts <- zoo(x, dt)

Create an xts object in this way:

library(xts)
ts <- xts(x, dt)

Convert between representations of the time series data by using as.zoo and as.xts:

as.zoo(ts)

Converts ts to a zoo object

as.xts(ts)

Converts ts to an xts object

Discussion
R has at least eight different implementations of data structures for representing time
series. We haven’t tried them all, but we can say that zoo and xts are excellent pack‐
ages for working with time series data and better than the others that we have tried.
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These representations assume you have two vectors: a vector of observations (data)
and a vector of dates or times of those observations. The zoo function combines them
into a zoo object:

library(zoo)
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#>     as.Date, as.Date.numeric
x <- c(3, 4, 1, 4, 8)
dt <- seq(as.Date("2018-01-01"), as.Date("2018-01-05"), by = "days")

ts <- zoo(x, dt)
print(ts)
#> 2018-01-01 2018-01-02 2018-01-03 2018-01-04 2018-01-05
#>          3          4          1          4          8

The xts function is similar, returning an xts object:

library(xts)
#>
#> Attaching package: 'xts'
#> The following objects are masked from 'package:dplyr':
#>
#>     first, last
ts <- xts(x, dt)
print(ts)
#>            [,1]
#> 2018-01-01    3
#> 2018-01-02    4
#> 2018-01-03    1
#> 2018-01-04    4
#> 2018-01-05    8

The data, x, should be numeric. The vector of dates or datetimes, dt, is called the
index. Legal indices vary between the packages:

zoo

The index can be any ordered values, such as Date objects, POSIXct objects, inte‐
gers, or even floating-point values.

xts

The index must be a supported date or time class. This includes Date, POSIXct,
and chron objects. Those should be sufficient for most applications, but you can
also use yearmon, yearqtr, and dateTime objects. The xts package is more
restrictive than zoo because it implements powerful operations that require a
time-based index.
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The following example creates a zoo object that contains the price of IBM stock for
the first five days of 2010; it uses Date objects for the index:

prices <- c(132.45, 130.85, 130.00, 129.55, 130.85)
dates <- as.Date(c(
  "2010-01-04", "2010-01-05", "2010-01-06",
  "2010-01-07", "2010-01-08"
))
ibm.daily <- zoo(prices, dates)
print(ibm.daily)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131

In contrast, the next example captures the price of IBM stock at one-second intervals.
It represents time by the number of hours past midnight starting at 9:30 a.m. (1 sec‐
ond = 0.00027778 hours, more or less):

prices <- c(131.18, 131.20, 131.17, 131.15, 131.17)
seconds <- c(9.5, 9.500278, 9.500556, 9.500833, 9.501111)
ibm.sec <- zoo(prices, seconds)
print(ibm.sec)
#>  10  10  10  10  10
#> 131 131 131 131 131

Those two examples used a single time series, where the data came from a vector.
Both zoo and xts can also handle multiple, parallel time series. For this, capture the
several time series in a matrix or data frame and then create a multivariate time series
by calling the zoo (or xts) function:

ts <- zoo(df, dt) # OR: ts <- xts(dfrm, dt)

The second argument is a vector of dates (or datetimes) for each observation. There is
only one vector of dates for all the time series; in other words, all observations in each
row of the matrix or data frame must have the same date. See Recipe 14.5 if your data
has mismatched dates.

Once the data is captured inside a zoo or xts object, you can extract the pure data via
coredata, which returns a simple vector (or matrix):

coredata(ibm.daily)
#> [1] 132 131 130 130 131

You can extract the date or time portion via index:

index(ibm.daily)
#> [1] "2010-01-04" "2010-01-05" "2010-01-06" "2010-01-07" "2010-01-08"

The xts package is very similar to zoo. It is optimized for speed, so is especially well
suited for processing large volumes of data. It is also clever about converting to and
from other time series representations.
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One big advantage of capturing data inside a zoo or xts object is that special-purpose
functions become available for printing, plotting, differencing, merging, periodic
sampling, applying rolling functions, and other useful operations. There is even a
function, read.zoo, dedicated to reading time series data from ASCII files.

Remember that the xts package can do everything that the zoo package can do, so
everywhere that this chapter talks about zoo objects you can also use xts objects.

If you are a serious user of time series data, we strongly recommend studying the
documentation of these packages in order to learn about the ways they can improve
your life. They are rich packages with many useful features.

See Also
See CRAN for documentation on zoo and xts, including reference manuals,
vignettes, and quick reference cards. If the packages are already installed on your
computer, view their documentation using the vignette function:

vignette("zoo")
vignette("xts")

The timeSeries package is another good implementation of a time series object. It is
part of the Rmetrics project for quantitative finance.

14.2 Plotting Time Series Data
Problem
You want to plot one or more time series.

Solution
Use plot(x), which works for zoo objects and xts objects containing either single or
multiple time series.

For a simple vector v of time series observations, you can use either plot(v,type =
"l") or plot.ts(v).

Discussion
The generic plot function has a version for zoo objects and xts objects. It can plot
objects that contain a single time series or multiple time series. In the latter case, it
can plot each series in a separate plot or together in one plot.

Suppose that ibm.infl is a zoo object that contains two time series. One shows the
quoted price of IBM stock from January 2000 through December 2017, and the other
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is that same price adjusted for inflation. If you plot the object, R will plot the two time
series together in one plot, as shown in Figure 14-1:

load(file = "./data/ibm.rdata")
library(xts)

main <- "IBM: Historical vs. Inflation-Adjusted"
lty <- c("dotted", "solid")

# Plot the xts object
plot(ibm.infl,
  lty = lty, main = main,
  legend.loc = "left"
)

Figure 14-1. Example xts plot

The plot function for xts provides a default title as simply the name of the xts
object. As we show here, it’s common to set the main parameter to a more meaningful
title.

The code specifies two line types (lty) so that the two lines are drawn in two different
styles, making them easier to distinguish.

See Also
For working with financial data, the quantmod package contains special plotting func‐
tions that produce beautiful, stylized plots.
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14.3 Extracting the Oldest or Newest Observations
Problem
You want to see only the oldest or newest observations of your time series.

Solution
Use head to view the oldest observations:

head(ts)

Use tail to view the newest observations:

tail(ts)

Discussion
The head and tail functions are generic, so they will work whether your data is
stored in a simple vector, a zoo object, or an xts object.

Suppose you have an xts object with a multiyear history of the price of IBM stock,
like the one used in the prior recipe. You can’t display the whole dataset because it
would scroll off your screen. But you can view the initial observations:

ibm <- ibm.infl$ibm # grab one column for illustration
head(ibm)
#>             ibm
#> 2000-01-01 78.6
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0
#> 2000-01-06 80.6
#> 2000-01-07 80.2

And you can view the final observations:

tail(ibm)
#>            ibm
#> 2017-12-21 148
#> 2017-12-22 149
#> 2017-12-26 150
#> 2017-12-27 150
#> 2017-12-28 151
#> 2017-12-29 150

By default, head and tail show (respectively) the six oldest and six newest observa‐
tions. You can see more observations by providing a second argument—for example,
tail(ibm, 20).

454 | Chapter 14: Time Series Analysis



The xts package also includes first and last functions, which use calendar periods
instead of number of observations. We can use first and last to select data by num‐
ber of days, weeks, months, or even years:

first(ibm, "2 week")
#>             ibm
#> 2000-01-01 78.6
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0
#> 2000-01-06 80.6
#> 2000-01-07 80.2

At first glance this output might be confusing. We asked for "2 week" and xts
returned six days. That might seem off until we look at a calendar of January 2000
(Figure 14-2).

Figure 14-2. January 2000 calendar

We can see from the calendar that the first week of January 2000 has only one day,
Saturday the 1st. Then the second week runs from the 2nd to the 8th. Our data has no
value for the 8th, so when we ask first for the first "2 week" it returns all the values
from the first two calendar weeks. In our example dataset the first two calendar weeks
contain only six values.

Similarly, we can ask last to give us the last month’s worth of data:

last(ibm, "month")
#>            ibm
#> 2017-12-01 152
#> 2017-12-04 153
#> 2017-12-05 152
#> 2017-12-06 151
#> 2017-12-07 150
#> 2017-12-08 152
#> 2017-12-11 152
#> 2017-12-12 154
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#> 2017-12-13 151
#> 2017-12-14 151
#> 2017-12-15 149
#> 2017-12-18 150
#> 2017-12-19 150
#> 2017-12-20 150
#> 2017-12-21 148
#> 2017-12-22 149
#> 2017-12-26 150
#> 2017-12-27 150
#> 2017-12-28 151
#> 2017-12-29 150

If we had been using zoo objects here, we would need to have converted them to xts
objects before passing the objects to first or last, as those are xts functions.

See Also
See help(first.xts) and help(last.xts) for details on the first and last func‐
tions, respectively.

The tidyverse package dplyr also has functions called first and
last. If your workflow involves loading both the xts and dplyr
packages, make sure to be explicit about which function you are
calling by using the package::function notation (for example,
xts::first).

14.4 Subsetting a Time Series
Problem
You want to select one or more elements from a time series.

Solution
You can index a zoo or xts object by position. Use one or two subscripts, depending
upon whether the object contains one time series or multiple time series:

ts[_i-]

Selects the ith observation from a single time series

ts[j,i]

Selects the ith observation of the jth time series of multiple time series

You can index the time series by date. Use the same type of object as the index of your
time series. This example assumes that the index contains Date objects:

ts[as.Date("yyyy-mm-dd")]
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You can index it by a sequence of dates:

dates <- seq(startdate, enddate, increment)
ts[dates]

The window function can select a range by start and end date:

window(ts, start = startdate, end = enddate)

Discussion
Recall our xts object that is a sample of inflation-adjusted IBM stock prices from the
previous recipe:

head(ibm)
#>             ibm
#> 2000-01-01 78.6
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0
#> 2000-01-06 80.6
#> 2000-01-07 80.2

We can select an observation by position, just like selecting elements from a vector
(see Recipe 2.9):

ibm[2]
#>            ibm
#> 2000-01-03  82

We can also select multiple observations by position:

ibm[2:4]
#>             ibm
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0

Sometimes it’s more useful to select by date. Simply use the date itself as the index:

ibm[as.Date("2010-01-05")]
#>            ibm
#> 2010-01-05 103

Our ibm data is an xts object, so we can use date-like subsetting, too (the zoo object
does not offer this flexibility):

ibm['2010-01-05']

ibm['20100105']

We can also select by a vector of Date objects:

dates <- seq(as.Date("2010-01-04"), as.Date("2010-01-08"), by = 2)
ibm[dates]
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#>            ibm
#> 2010-01-04 104
#> 2010-01-06 102
#> 2010-01-08 103

The window function is easier for selecting a range of consecutive dates:

window(ibm, start = as.Date("2010-01-05"), end = as.Date("2010-01-07"))
#>            ibm
#> 2010-01-05 103
#> 2010-01-06 102
#> 2010-01-07 102

We can select a year/month combination using yyyymm subsetting:

ibm['201001']  # Jan 2010

Select year ranges using / like so:

ibm['2009/2011'] # all of 2009 - 2011

Or use / to select ranges including months:

ibm['2009/201001'] # all of 2009 plus Jan 2010
ibm['200906/201005'] # June 2009 through May 2010

See Also
The xts package provides many other clever ways to index a time series. See the
package documentation.

14.5 Merging Several Time Series
Problem
You have two or more time series. You want to merge them into a single time series
object.

Solution
Use a zoo or xts object to represent the time series, then use the merge function to
combine them:

merge(ts1, ts2)

Discussion
Merging two time series is an incredible headache when the two series have differing
timestamps. Consider these two time series, with the daily price of IBM stock from
1999 through 2017 and the monthly Consumer Price Index (CPI) for the same
period:
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load(file = "./data/ibm.rdata")
head(ibm)
#>             ibm
#> 1999-01-04 64.2
#> 1999-01-05 66.5
#> 1999-01-06 66.2
#> 1999-01-07 66.7
#> 1999-01-08 65.8
#> 1999-01-11 66.4
head(cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-02-01 0.938
#> 1999-03-01 0.938
#> 1999-04-01 0.945
#> 1999-05-01 0.945
#> 1999-06-01 0.945

Obviously, the two time series have different timestamps because one is daily data
and the other is monthly data. Even worse, the downloaded CPI data is timestamped
for the first day of every month, even when that day is a holiday or weekend (e.g.,
New Year’s Day).

Thank goodness for the merge function, which handles the messy details of reconcil‐
ing the different dates:

head(merge(ibm, cpi))
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-01-04 64.2    NA
#> 1999-01-05 66.5    NA
#> 1999-01-06 66.2    NA
#> 1999-01-07 66.7    NA
#> 1999-01-08 65.8    NA

By default, merge finds the union of all dates: the output contains all dates from both
inputs, and missing observations are filled with NA values. You can replace those NA
values with the most recent observation by using the na.locf function from the zoo
package:

head(na.locf(merge(ibm, cpi)))
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-01-04 64.2 0.938
#> 1999-01-05 66.5 0.938
#> 1999-01-06 66.2 0.938
#> 1999-01-07 66.7 0.938
#> 1999-01-08 65.8 0.938
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(Here locf stands for “last observation carried forward.”) Observe that the NAs were
replaced. However, na.locf left an NA in the first observation (1999-01-01) because
there was no IBM stock price on that day.

You can get the intersection of all dates by setting all = FALSE:

head(merge(ibm, cpi, all = FALSE))
#>             ibm   cpi
#> 1999-02-01 63.1 0.938
#> 1999-03-01 59.2 0.938
#> 1999-04-01 62.3 0.945
#> 1999-06-01 79.0 0.945
#> 1999-07-01 92.4 0.949
#> 1999-09-01 89.8 0.956

Now the output is limited to observations that are common to both files.

Notice, however, that the intersection begins on February 1, not January 1. The rea‐
son is that January 1 is a holiday, so there is no IBM stock price for that date and
hence no intersection with the CPI data. To fix this, see Recipe 14.6.

14.6 Filling or Padding a Time Series
Problem
Your time series data is missing observations. You want to fill or pad the data with the
missing dates/times.

Solution
Create a zero-width (dataless) zoo or xts object with the missing dates/times. Then
merge your data with the zero-width object, taking the union of all dates:

empty <- zoo(, dates) # 'dates' is vector of the missing dates
merge(ts, empty, all = TRUE)

Discussion
The zoo package includes a handy feature in the constructor for zoo objects: you can
omit the data and build a zero-width object. The object contains no data, just dates.
We can use these “Frankenstein” objects to perform such operations as filling and
padding on other time series objects.

Suppose you download monthly CPI data used in the last recipe. The data is time‐
stamped with the first day of each month:

head(cpi)
#>              cpi
#> 1999-01-01 0.938
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#> 1999-02-01 0.938
#> 1999-03-01 0.938
#> 1999-04-01 0.945
#> 1999-05-01 0.945
#> 1999-06-01 0.945

As far as R knows, we have no observations for the other days of the months. How‐
ever, we know that each CPI value applies to the subsequent days through month-
end. So first we build a zero-width object with every day of the decade, but no data:

dates <- seq(from = min(index(cpi)), to = max(index(cpi)), by = 1)
empty <- zoo(, dates)

We use min(index(cpi)) and max(index(cpi)) to get the minimum and maximum
index values from our cpi data. So our resulting empty object is just an index of daily
dates with the same range as our cpi data.

Then we take the union of the CPI data and the zero-width object, yielding a dataset
filled with NA values:

filled.cpi <- merge(cpi, empty, all = TRUE)
head(filled.cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-01-02    NA
#> 1999-01-03    NA
#> 1999-01-04    NA
#> 1999-01-05    NA
#> 1999-01-06    NA

The resulting time series contains every calendar day, with NAs where there was no
observation. That might be what you need. However, a more common requirement is
to replace each NA with the most recent observation as of that date. The na.locf func‐
tion from the zoo package does exactly that:

filled.cpi <- na.locf(merge(cpi, empty, all = TRUE))
head(filled.cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-01-02 0.938
#> 1999-01-03 0.938
#> 1999-01-04 0.938
#> 1999-01-05 0.938
#> 1999-01-06 0.938

January’s value of 1 is carried forward until February 1, at which time it is replaced by
the February value. Now every day has the latest CPI value as of that date. Note that
in this dataset, the CPI is based on January 1, 1999 = 100% and all CPI values are
relative to the value on that date:

tail(filled.cpi)
#>             cpi
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#> 2017-11-26 1.41
#> 2017-11-27 1.41
#> 2017-11-28 1.41
#> 2017-11-29 1.41
#> 2017-11-30 1.41
#> 2017-12-01 1.41

We can use this recipe to fix the problem mentioned in Recipe 14.5. There, the daily
price of IBM stock and the monthly CPI data had no intersection on certain days. We
can fix that using several different methods. One way is to pad the IBM data to
include the CPI dates and then take the intersection (recall that index(cpi) returns
all the dates in the CPI time series):

filled.ibm <- na.locf(merge(ibm, zoo(, index(cpi))))
head(merge(filled.ibm, cpi, all = FALSE))
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-02-01 63.1 0.938
#> 1999-03-01 59.2 0.938
#> 1999-04-01 62.3 0.945
#> 1999-05-01 73.6 0.945
#> 1999-06-01 79.0 0.945

That gives monthly observations. Another way is to fill out the CPI data (as described
previously) and then take the intersection with the IBM data. That gives daily obser‐
vations, as follows:

filled_data <- merge(ibm, filled.cpi, all = FALSE)
head(filled_data)
#>             ibm   cpi
#> 1999-01-04 64.2 0.938
#> 1999-01-05 66.5 0.938
#> 1999-01-06 66.2 0.938
#> 1999-01-07 66.7 0.938
#> 1999-01-08 65.8 0.938
#> 1999-01-11 66.4 0.938

Another common method for filling missing values uses the cubic spline technique,
which interpolates smooth intermediate values from the known data. We can use the
zoo function na.spline to fill our missing values using a cubic spline:

combined_data <- merge(ibm, cpi, all = TRUE)
head(combined_data)
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-01-04 64.2    NA
#> 1999-01-05 66.5    NA
#> 1999-01-06 66.2    NA
#> 1999-01-07 66.7    NA
#> 1999-01-08 65.8    NA

combined_spline <- na.spline(combined_data)
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head(combined_spline)
#>              ibm   cpi
#> 1999-01-01  4.59 0.938
#> 1999-01-04 64.19 0.938
#> 1999-01-05 66.52 0.938
#> 1999-01-06 66.21 0.938
#> 1999-01-07 66.71 0.938
#> 1999-01-08 65.79 0.938

Notice that both the missing values for cpi and ibm were filled. However, the value
filled in for January 1, 1999 for the ibm column seems out of line with the January 4th
observation. This illustrates one of the challenges with cubic splines: they can become
quite unstable if the value that is being interpolated is at the very beginning or the
very end of a series. To get around this instability, we could get some data points from
before January 1, 1999, then interpolate using na.spline, or we could simply choose
a different interpolation method.

14.7 Lagging a Time Series
Problem
You want to shift a time series in time, either forward or backward.

Solution
Use the lag function. The second argument, k, is the number of periods to shift the
data:

lag(ts, k)

Use positive k to shift the data forward in time (tomorrow’s data becomes today’s
data). Use a negative k to shift the data backward in time (yesterday’s data becomes
today’s data).

Discussion
Recall the zoo object containing five days of IBM stock prices from Recipe 14.1:

ibm.daily
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131

To shift the data forward one day, we use k = +1:

lag(ibm.daily, k = +1, na.pad = TRUE)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>         NA        132        131        130        130
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We also set na.pad = TRUE to fill the trailing dates with NA. Otherwise, they would
simply be dropped, resulting in a shortened time series.

To shift the data backward one day, we use k = -1. Again we use na.pad = TRUE to
pad the beginning with NAs:

lag(ibm.daily, k = -1, na.pad = TRUE)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>         NA        132        131        130        130

If the sign convention for k seems odd to you, you are not alone.

The function is called lag, but a positive k actually generates lead‐
ing data, not lagging data. Use a negative k to get lagging data. Yes,
this is bizarre. Perhaps the function should have been called lead.

The other thing to be careful with when using lag is that the dplyr package contains
a function named lag as well. The arguments for dplyr::lag are not exactly the
same as for the Base R lag function. In particular, dplyr uses n instead of k:

dplyr::lag(ibm.daily, n = 1)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>         NA        132        131        130        130

If you want to load dplyr, you should use the namespace to be
explicit about which lag function you are using. The Base R func‐
tion is stats::lag, while the dplyr function is, naturally,
dplyr::lag.

14.8 Computing Successive Differences
Problem
Given a time series, x, you want to compute the difference between successive obser‐
vations: (x2 – x1), (x3 – x2), (x4 – x3), ….

Solution
Use the diff function:

diff(x)

464 | Chapter 14: Time Series Analysis



Discussion
The diff function is generic, so it works on simple vectors, xts objects, and zoo
objects. The beauty of differencing a zoo or xts object is that the result is the same
type of object you started with and the differences have the correct dates. Here we
compute the differences for successive prices of IBM stock:

ibm.daily
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131
diff(ibm.daily)
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>      -1.60      -0.85      -0.45       1.30

The difference labeled 2010-01-05 is the change from the previous day (2010-01-04),
which is usually what you want. The differenced series is shorter than the original
series by one element because R can’t compute the change as of 2010-01-04, of course.

By default, diff computes successive differences. You can compute differences that
are more widely spaced by using its lag parameter. Suppose you have monthly CPI
data and want to compute the change from the previous 12 months, giving the year-
over-year change. Specify a lag of 12:

head(cpi, 24)
#>              cpi
#> 1999-01-01 0.938
#> 1999-02-01 0.938
#> 1999-03-01 0.938
#> 1999-04-01 0.945
#> 1999-05-01 0.945
#> 1999-06-01 0.945
#> 1999-07-01 0.949
#> 1999-08-01 0.952
#> 1999-09-01 0.956
#> 1999-10-01 0.957
#> 1999-11-01 0.959
#> 1999-12-01 0.961
#> 2000-01-01 0.964
#> 2000-02-01 0.968
#> 2000-03-01 0.974
#> 2000-04-01 0.973
#> 2000-05-01 0.975
#> 2000-06-01 0.981
#> 2000-07-01 0.983
#> 2000-08-01 0.983
#> 2000-09-01 0.989
#> 2000-10-01 0.990
#> 2000-11-01 0.992
#> 2000-12-01 0.994
head(diff(cpi, lag = 12), 24) # Compute year-over-year change
#>               cpi
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#> 1999-01-01     NA
#> 1999-02-01     NA
#> 1999-03-01     NA
#> 1999-04-01     NA
#> 1999-05-01     NA
#> 1999-06-01     NA
#> 1999-07-01     NA
#> 1999-08-01     NA
#> 1999-09-01     NA
#> 1999-10-01     NA
#> 1999-11-01     NA
#> 1999-12-01     NA
#> 2000-01-01 0.0262
#> 2000-02-01 0.0302
#> 2000-03-01 0.0353
#> 2000-04-01 0.0285
#> 2000-05-01 0.0296
#> 2000-06-01 0.0353
#> 2000-07-01 0.0342
#> 2000-08-01 0.0319
#> 2000-09-01 0.0330
#> 2000-10-01 0.0330
#> 2000-11-01 0.0330
#> 2000-12-01 0.0330

14.9 Performing Calculations on Time Series
Problem
You want to use arithmetic and common functions on time series data.

Solution
No problem. R is pretty clever about operations on zoo and xts objects. You can use
arithmetic operators (+, -, *, /, etc.) as well as common functions (sqrt, log, etc.) and
usually get what you expect.

Discussion
When you perform arithmetic on zoo or xts objects, R aligns the objects according to
date so that the results make sense. Suppose we want to compute the percentage
change in IBM stock. We need to divide the daily change by the price, but those two
time series are not naturally aligned—they have different start times and different
lengths. Here’s an illustration with a zoo object:

ibm.daily
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131
diff(ibm.daily)
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#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>      -1.60      -0.85      -0.45       1.30

Fortunately, when we divide one series by the other, R aligns the series for us and
returns a zoo object:

diff(ibm.daily) / ibm.daily
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>   -0.01223   -0.00654   -0.00347    0.00994

We can scale the result by 100 to compute the percentage change, and the result is
another zoo object:

100 * (diff(ibm.daily) / ibm.daily)
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>     -1.223     -0.654     -0.347      0.994

Functions work just as well. If we compute the logarithm or square root of a zoo
object, the result is a zoo object with the timestamps preserved:

log(ibm.daily)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>       4.89       4.87       4.87       4.86       4.87

In investment management, computing the difference of logarithms of prices is quite
common. That’s a piece of cake in R:

diff(log(ibm.daily))
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>   -0.01215   -0.00652   -0.00347    0.00998

See Also
See Recipe 14.8 for the special case of computing the difference between successive
values.

14.10 Computing a Moving Average
Problem
You want to compute the moving average of a time series.

Solution
Use the rollmean function of the zoo package to calculate the k-period moving aver‐
age:

library(zoo)
ma <- rollmean(ts, k)
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Here ts is the time series data, captured in a zoo object, and k is the number of peri‐
ods.

For most financial applications, you want rollmean to calculate the mean using only
historical data; that is, for each day, you use only the data available that day. To do
that, specify align = right. Otherwise, rollmean will “cheat” and use future data
that was actually unavailable at the time:

ma <- rollmean(ts, k, align = "right")

Discussion
Traders are fond of moving averages for smoothing out fluctuations in prices. The
formal name is the rolling mean. You could calculate the rolling mean as described in
Recipe 14.12 by combining the rollapply function and the mean function, but
rollmean is much faster.

Besides speed, the beauty of rollmean is that it returns the same type of time series
object it’s called on (i.e., xts or zoo). For each element in the object, its date is the “as
of ” date for a calculated mean. Because the result is a time series object, you can
easily merge the original data and the moving average and then plot them together as
in Figure 14-3:

ibm_year <- ibm["2016"]
ma_ibm <- rollmean(ibm_year, 7, align = "right")
ma_ibm <- merge(ma_ibm, ibm_year)
plot(ma_ibm)

Figure 14-3. Rolling average plot
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The output is normally missing a few initial data points, since rollmean needs a full k
observations to compute the mean. Consequently, the output is shorter than the
input. If that’s a problem, specify na.pad = TRUE; then rollmean will pad the initial
output with NA values.

See Also
See Recipe 14.12 for more about the align parameter.

The moving average described here is a simple moving average. The quantmod, TTR,
and fTrading packages contain functions for computing and plotting many kinds of
moving averages, including simple ones.

14.11 Applying a Function by Calendar Period
Problem
Given a time series, you want to group the contents by a calendar period (e.g., week,
month, or year) and then apply a function to each group.

Solution
The xts package includes functions for processing a time series by day, week, month,
quarter, or year:

apply.daily(ts, f)
apply.weekly(ts, f)
apply.monthly(ts, f)
apply.quarterly(ts, f)
apply.yearly(ts, f)

Here ts is an xts time series, and f is the function to apply to each day, week, month,
quarter, or year.

If your time series is a zoo object, convert it to an xts object first so you can access
these functions; for example:

apply.monthly(as.xts(ts), f)

Discussion
It is common to process time series data according to calendar period. But figuring
calendar periods is tedious at best and bizarre at worst. Let these functions do the
heavy lifting.

Suppose we have a five-year history of IBM stock prices stored in an xts object:
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ibm_5 <- ibm["2012/2017"]
head(ibm_5)
#>            ibm
#> 2012-01-03 152
#> 2012-01-04 151
#> 2012-01-05 150
#> 2012-01-06 149
#> 2012-01-09 148
#> 2012-01-10 148

We can calculate the average price by month if we use apply.monthly and mean
together:

ibm_mm <- apply.monthly(ibm_5, mean)
head(ibm_mm)
#>            ibm
#> 2012-01-31 151
#> 2012-02-29 158
#> 2012-03-30 166
#> 2012-04-30 167
#> 2012-05-31 164
#> 2012-06-29 159

Notice that the IBM data is in an xts object from the start. Had the data been in a zoo
object, we would have needed to convert it to xts using as.xts.

A more interesting application is calculating volatility by calendar month, where vol‐
atility is measured as the standard deviation of daily log-returns. Daily log-returns are
calculated this way:

diff(log(ibm_5))

We calculate their standard deviation, month by month, like this:

apply.monthly(as.xts(diff(log(ibm_5))), sd)

We can scale the daily number to estimate annualized volatility, as shown in
Figure 14-4:

ibm_vol <- sqrt(251) * apply.monthly(as.xts(diff(log(ibm_5))), sd)
plot(ibm_vol,
  main = "IBM: Monthly Volatility"
)
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Figure 14-4. IBM volatility plot

14.12 Applying a Rolling Function
Problem
You want to apply a function to a time series in a rolling manner: calculate the func‐
tion at a data point using some window of time around that point, move to the next
data point, calculate the function around that point, move to the next data point, and
so forth.

Solution
Use the rollapply function in the zoo package. The width parameter defines how
many data points from the time series (ts) should be processed by the function (f) at
each point:

library(zoo)
rollapply(ts, width, f)

For many applications, you will likely set align = "right" to avoid computing f
with historical data that was unavailable at the time:

rollapply(ts, width, f, align = "right")

14.12 Applying a Rolling Function | 471



Discussion
The rollapply function extracts a “window” of data from your time series, calls your
function with that data, saves the result, and moves to the next window—and repeats
this pattern for the entire input. As an illustration, consider calling rollapply with a
width of 21:

rollapply(ts, 21, f)

rollapply will repeatedly call the function, f, with a sliding window of data, like this:

1. f(ts[1:21])

2. f(ts[2:22])

3. f(ts[3:23])

4. … etc. …

Observe that the function should expect one argument, which is a vector of values.
rollapply will save the returned values before packaging them into a zoo object
along with a timestamp for every value. The choice of timestamp depends on the
align parameter given to rollapply:

align="right"

The timestamp is taken from the rightmost value.

align="left"

The timestamp is taken from the leftmost value.

align="center" (default)

The timestamp is taken from the middle value.

By default, rollapply will recalculate the function at successive data points. You may
instead want to calculate the function at every nth data point. Use the by = n parame‐
ter to have rollapply move ahead n points after each function call. When we calcu‐
late the rolling standard deviation of a time series, for example, we usually want each
window of data to be separate, not overlapping, so we set the by value equal to the
window size:

ibm_sds <- rollapply(ibm_5, width = 30, FUN = sd, by = 30, align = "right")
ibm_sds <- na.omit(ibm_sds)
head(ibm_sds)

The rollapply function will, by default, return an object with as many observations
as your input data with the missing values filled with NA. In the preceding example we
use na.omit to drop the NA values so that our resulting object has records only for the
dates for which we have values.
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14.13 Plotting the Autocorrelation Function
Problem
You want to plot the autocorrelation function (ACF) of your time series.

Solution
Use the acf function:

acf(ts)

Discussion
The autocorrelation function is an important tool for revealing the interrelationships
within a time series. It is a collection of correlations, ρk for k = 1, 2, 3, …, where ρk is
the correlation between all pairs of data points that are exactly k steps apart.

Visualizing the autocorrelations is much more useful than listing them, so the acf
function plots them for each value of k. The following example shows the autocorre‐
lation functions for two time series, one with autocorrelations (Figure 14-5) and one
without (Figure 14-6). The dashed line delimits the significant and insignificant cor‐
relations: values above the line are significant (the height of the line is determined by
the amount of data). We can plot them as follows:

load(file = "./data/ts_acf.rdata")

acf(ts1, main = "Significant Autocorrelations")

acf(ts2, main = "Insignificant Autocorrelations")
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Figure 14-5. Autocorrelations at each lag: ts1

Figure 14-6. Autocorrelations at each lag: ts2

The presence of autocorrelations is one indication that an autoregressive integrated
moving average (ARIMA) model could model the time series. From the ACF, you can
count the number of significant autocorrelations, which is a useful estimate of the
number of moving average (MA) coefficients in the model. Figure 14-5 shows seven
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significant autocorrelations, for example, so we estimate that its ARIMA model will
require seven MA coefficients (MA(7)). That estimate is just a starting point, how‐
ever, and must be verified by fitting and diagnosing the model.

14.14 Testing a Time Series for Autocorrelation
Problem
You want to test your time series for the presence of autocorrelations.

Solution
Use the Box.test function, which implements the Box–Pierce test for autocorrela‐
tion:

Box.test(ts)

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the data contains significant autocorrelations, whereas a p-value exceeding 0.05
provides no such evidence.

Discussion
Graphing the autocorrelation function is useful for digging into your data. Some‐
times, however, you just need to know whether or not the data is autocorrelated. A
statistical test such as the Box–Pierce test can provide an answer.

We can apply the Box–Pierce test to the data whose autocorrelation function we plot‐
ted in Recipe 14.13. The test shows p-values for the two time series that are nearly 0
and 0.79, respectively:

Box.test(ts1)
#>
#>  Box-Pierce test
#>
#> data:  ts1
#> X-squared = 100, df = 1, p-value <2e-16

Box.test(ts2)
#>
#>  Box-Pierce test
#>
#> data:  ts2
#> X-squared = 0.07, df = 1, p-value = 0.8

The p-value near 0 indicates that the first time series has significant autocorrelations.
(We don’t know which autocorrelations are significant; we just know they exist.) The
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p-value of 0.8 indicates that the test did not detect autocorrelations in the second time
series.

The Box.test function can also perform the Ljung–Box test, which is better for small
samples. That test calculates a p-value whose interpretation is the same as that for the
Box–Pierce p-value:

Box.test(ts, type = "Ljung-Box")

See Also
See Recipe 14.13 to plot the autocorrelation function, a visual check of the autocorre‐
lation.

14.15 Plotting the Partial Autocorrelation Function
Problem
You want to plot the partial autocorrelation function (PACF) for your time series.

Solution
Use the pacf function:

pacf(ts)

Discussion
The partial autocorrelation function is another tool for revealing the interrelation‐
ships in a time series. However, its interpretation is much less intuitive than that of
the autocorrelation function. We’ll leave the mathematical definition of partial corre‐
lation to a textbook on statistics. Here, we’ll just say that the partial correlation
between two random variables, X and Y, is the correlation that remains after account‐
ing for the correlation shown by X and Y with all other variables. In the case of time
series, the partial autocorrelation at lag k is the correlation between all data points
that are exactly k steps apart, after accounting for their correlation with the data
between those k steps.

The practical value of a PACF is that it helps you to identify the number of autore‐
gression (AR) coefficients in an ARIMA model. The following example shows the
PACF for the two time series used in Recipe 14.13. One of these series has partial
autocorrelations and one does not. Lag values whose lines cross above the dotted line
are statistically significant. In the first time series (Figure 14-7) there are two such
values, at k = 1 and k = 2, so our initial ARIMA model will have two AR coefficients
(AR(2)). As with autocorrelation, however, that is just an initial estimate and must be
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verified by fitting and diagnosing the model. The second time series (Figure 14-8)
shows no such autocorrelation pattern. We can plot them as follows:

pacf(ts1, main = "Significant Partial Autocorrelations")

pacf(ts2, main = "Insignificant Partial Autocorrelations")

Figure 14-7. Autocorrelations at each lag: ts1

Figure 14-8. Autocorrelations at each lag: ts2
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1 Specifically, the bonds variable is the log-returns of the Vanguard Long-Term Bond Index Fund (VBLTX), and
the cmdtys variable is the log-returns of the Invesco DB Commodity Tracking Fund (DBC). The data was
taken from the period 2007-01-01 through 2017-12-31.

See Also
See Recipe 14.13.

14.16 Finding Lagged Correlations Between Two Time
Series
Problem
You have two time series, and you are wondering if there is a lagged correlation
between them.

Solution
Use the Ccf function from the package forecast to plot the cross-correlation func‐
tion, which will reveal lagged correlations:

library(forecast)
Ccf(ts1, ts2)

Discussion
The cross-correlation function helps you discover lagged correlations between two
time series. A lagged correlation occurs when today’s value in one time series is corre‐
lated with a future or past value in the other time series.

Consider the relationship between commodity prices and bond prices. Some analysts
believe those prices are connected because changes in commodity prices are a barom‐
eter of inflation, one of the key factors in bond pricing. Can we discover a correlation
between them?

Figure 14-9 shows a cross-correlation function generated from daily changes in bond
prices and a commodity price index:1

library(forecast)
load(file = "./data/bnd_cmty.Rdata")
b <- coredata(bonds)[, 1]
c <- coredata(cmdtys)[, 1]

Ccf(b, c, main = "Bonds vs. Commodities")
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Figure 14-9. Cross-correlation function

Note that since the objects we start with, bonds and cmdtys, are xts objects, we
extract from each the vector of data using coredata()[1]. This is because the Ccf
function expects inputs to be simple vectors.

Every vertical line shows the correlation between the two time series at some lag, as
indicated along the x-axis. If a correlation extends above or below the dotted lines, it
is statistically significant.

Notice that the correlation at lag 0 is –0.24, which is the simple correlation between
the variables:

cor(b, c)
#> [1] -0.24

Much more interesting are the correlations at lags 1, 5, and 8, which are statistically
significant. Evidently there is some “ripple effect” in the day-to-day prices of bonds
and commodities because changes today are correlated with changes tomorrow. Dis‐
covering this sort of relationship is useful to short-term forecasters such as market
analysts and bond traders.

14.17 Detrending a Time Series
Problem
Your time series data contains a trend that you want to remove.
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Solution
Use linear regression to identify the trend component, and then subtract the trend
component from the original time series. These two lines show how to detrend the
zoo object ts and put the result in detr:

m <- lm(coredata(ts) ~ index(ts))
detr <- zoo(resid(m), index(ts))

Discussion
Some time series data contains trends, which means that it gradually slopes upward
or downward over time. Suppose our time series object (a zoo object in this case),
yield, contains a trend as shown in Figure 14-10.

Figure 14-10. Time series with trend

We can remove the trend component in two steps. First, we identify the overall trend
by using the linear model function, lm. The model should use the time series index
for the x variable and the time series data for the y variable:

m <- lm(coredata(yield) ~ index(yield))

Second, we remove the linear trend from the original data by subtracting the straight
line found by lm. This is easy because we have access to the linear model’s residuals,
which are defined by the difference between the original data and the fitted line:
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ri = yi − β1xi − β0

where ri is the ith residual and β1 and β0 are the model’s slope and intercept, respec‐
tively. We can extract the residuals from the linear model by using the resid function
and then embed the residuals inside a zoo object:

detr <- zoo(resid(m), index(yield))

Notice that we use the same time index as the original data. When we plot detr it is 
clearly trendless, as is evident in Figure 14-11:

autoplot(detr)

Figure 14-11. Residual plot

This data is the state average corn yield for Illinois in bushels per acre (bu/ac), so
detr is the difference between the actual yield and the trend. Sometimes when
detrending you may want to determine the percent deviation from the trend. In that
case you can divide by the initial measure (see Figure 14-12):

library(patchwork)
# y <- autoplot(yield) +
#   labs(x='Year', y='Yield (bu/ac)', title='IL Corn Yield')
d <- autoplot(detr, geom = "point") +
  labs(
    x = "Year", y = "Yield Dev (bu/ac)",
    title = "IL Corn Yield Deviation from Trend (bu/ac)"
  )
dp <- autoplot(detr / yield, geom = "point") +
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  labs(
    x = "Year", y = "Yield Dev (%)",
    title = "IL Corn Yield Deviation from Trend (%)"
  )

d / dp

Figure 14-12. Detrended plots

The top plot in Figure 14-12 shows the yield deviation from the trend in bu/ac (the
original units), while the lower plot shows the percent deviation from the trend.

14.18 Fitting an ARIMA Model
Problem
You want to fit an ARIMA model to your time series data.

Solution
The auto.arima function in the forecast package can select the correct model order
and fit the model to your data:

library(forecast)
auto.arima(x)
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If you already know the model order, (p, d, q), then the arima function can fit the
model directly:

arima(x, order = c(p, d, q))

Discussion
Creating an ARIMA model involves three steps:

1. Identify the model order.
2. Fit the model to the data, giving the coefficients.
3. Apply diagnostic measures to validate the model.

The model order is usually denoted by three integers, (p, d, q), where p is the number
of autoregressive coefficients, d is the degree of differencing, and q is the number of
moving average coefficients.

When most of us build an ARIMA model, we are usually clueless about the appropri‐
ate order. Rather than tediously searching for the best combination of p, d, and q, we
typically use auto.arima, which does the searching for us:

library(forecast)
library(fpp2) # for example data

auto.arima(ausbeer)
#> Series: ausbeer
#> ARIMA(1,1,2)(0,1,1)[4]
#>
#> Coefficients:
#>         ar1     ma1    ma2    sma1
#>       0.050  -1.009  0.375  -0.743
#> s.e.  0.196   0.183  0.153   0.050
#>
#> sigma^2 estimated as 241:  log likelihood=-886
#> AIC=1783   AICc=1783   BIC=1800

In this case, auto.arima decided the best order was (1, 1, 2), which means that it dif‐
ferenced the data once (d = 1) before selecting a model with one AR coefficient (p =
1) and two MA coefficients (q = 2). In addition, the auto.arima function determined
that our data has seasonality and included the seasonal terms P = 0, D = 1, Q = 1 and
a period of m = 4. The seasonality terms are similar to the nonseasonal ARIMA
terms, but relate to the seasonality component of the model. The m term tells us the
periodicity of the seasonality, which in this case is quarterly. We can see this more
easily if we plot the ausbeer data as in Figure 14-13:

autoplot(ausbeer)
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Figure 14-13. Australian beer consumption

By default, auto.arima limits p and q to the range 0 ≤ p ≤ 5 and 0 ≤ q ≤ 5. If you are
confident that your model needs fewer than five coefficients, use the max.p and max.q
parameters to limit the search further; this makes it faster. Likewise, if you believe
that your model needs more coefficients, use max.p and max.q to expand the search
limits.

If you want to turn off the seasonality component of auto.arima, you can set
seasonal = FALSE:

auto.arima(ausbeer, seasonal = FALSE)
#> Series: ausbeer
#> ARIMA(3,2,2)
#>
#> Coefficients:
#>          ar1     ar2     ar3     ma1    ma2
#>       -0.957  -0.987  -0.925  -1.043  0.142
#> s.e.   0.026   0.018   0.024   0.062  0.062
#>
#> sigma^2 estimated as 327:  log likelihood=-935
#> AIC=1882   AICc=1882   BIC=1902

But notice that since the model fits a nonseasonal model, the coefficients are different
than in the seasonal model.

If you already know the order of your ARIMA model, the arima function can quickly
fit the model to your data:
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arima(ausbeer, order = c(3, 2, 2))
#>
#> Call:
#> arima(x = ausbeer, order = c(3, 2, 2))
#>
#> Coefficients:
#>          ar1     ar2     ar3     ma1    ma2
#>       -0.957  -0.987  -0.925  -1.043  0.142
#> s.e.   0.026   0.018   0.024   0.062  0.062
#>
#> sigma^2 estimated as 319:  log likelihood = -935,  aic = 1882

The output looks identical to that of auto.arima with the seasonal parameter set to
FALSE. What you can’t see here is that arima executes much more quickly.

The output from auto.arima and arima includes the fitted coefficients and the stan‐
dard error (s.e.) for each coefficient:

Coefficients:
          ar1      ar2      ar3      ma1     ma2
      -0.9569  -0.9872  -0.9247  -1.0425  0.1416
s.e.   0.0257   0.0184   0.0242   0.0619  0.0623

You can find the coefficients’ confidence intervals by capturing the ARIMA model in
an object and then using the confint function:

m <- arima(x = ausbeer, order = c(3, 2, 2))
confint(m)
#>       2.5 % 97.5 %
#> ar1 -1.0072 -0.907
#> ar2 -1.0232 -0.951
#> ar3 -0.9721 -0.877
#> ma1 -1.1639 -0.921
#> ma2  0.0195  0.264

This output illustrates a major headache of ARIMA modeling: not all the coefficients
are necessarily significant. If one of the intervals contains zero, the true coefficient
might be zero itself, in which case the term is unnecessary.

If you discover that your model contains insignificant coefficients, use Recipe 14.19
to remove them.

The auto.arima and arima functions contain useful features for
fitting the best model. For example, you can force them to include
or exclude a trend component. See the help pages for details.

A final caveat: the danger of auto.arima is that it makes ARIMA modeling look sim‐
ple. ARIMA modeling is not simple. It is more art than science, and the automatically
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generated model is just a starting point. We urge you to review a good book about
ARIMA modeling before settling on a final model.

See Also
See Recipe 14.20 for performing diagnostic tests on the ARIMA model.

As a textbook on time series forecasting we highly recommend Forecasting: Principles
and Practice, 2nd ed., by Rob J. Hyndman and George Athanasopoulos, which is
freely available online.

14.19 Removing Insignificant ARIMA Coefficients
Problem
One or more of the coefficients in your ARIMA model are statistically insignificant.
You want to remove them.

Solution
The arima function includes the parameter fixed, which is a vector. The vector
should contain one element for every coefficient in the model, including a term for
the drift (if any). Each element is either NA or 0. Use NA for the coefficients to be kept
and use 0 for the coefficients to be removed. This example shows an ARIMA(2, 1, 2)
model with the first AR coefficient and the first MA coefficient forced to be 0:

arima(x, order = c(2, 1, 2), fixed = c(0, NA, 0, NA))

Discussion
The fpp2 package contains a dataset called euretail, which is a quarterly retail index
for the Euro area. Let’s run auto.arima on the data and look at the 98% confidence
intervals:

m <- auto.arima(euretail)
m
#> Series: euretail
#> ARIMA(0,1,3)(0,1,1)[4]
#>
#> Coefficients:
#>         ma1    ma2    ma3    sma1
#>       0.263  0.369  0.420  -0.664
#> s.e.  0.124  0.126  0.129   0.155
#>
#> sigma^2 estimated as 0.156:  log likelihood=-28.6
#> AIC=67.3   AICc=68.4   BIC=77.7
confint(m, level = .98)
#>          1 %   99 %
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#> ma1  -0.0246  0.551
#> ma2   0.0774  0.661
#> ma3   0.1190  0.721
#> sma1 -1.0231 -0.304

In this example, we can see that the 98% confidence interval for the ma1 parameter
contains 0 and we can reasonably conclude that this parameter is insignificant at this
level of confidence. We can set this parameter to 0 using the fixed parameter:

m <- arima(euretail,
                   order = c(0, 1, 3),
                   seasonal = c(0, 1, 1),
                   fixed = c(0, NA, NA, NA)).
m
#>
#> Call:
#> arima(x = euretail,
                     order = c(0, 1, 3),
                     seasonal = c(0, 1, 1),
                     fixed = c(0,
#>     NA, NA, NA))
#>
#> Coefficients:
#>       ma1    ma2    ma3    sma1
#>         0  0.404  0.293  -0.700
#> s.e.    0  0.129  0.107   0.135
#>
#> sigma^2 estimated as 0.156:  log likelihood = -30.8,  aic = 69.5

Observe that the ma1 coefficient is now 0. The remaining coefficients (ma2, ma3, sma1)
are still significant, as shown by their confidence intervals, so we have a reasonable
model:

confint(m, level = .98)
#>          1 %   99 %
#> ma1       NA     NA
#> ma2   0.1049  0.703
#> ma3   0.0438  0.542
#> sma1 -1.0140 -0.386

14.20 Running Diagnostics on an ARIMA Model
Problem
You have built an ARIMA model using the forecast package, and you want to run
diagnostic tests to validate the model.
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Solution
Use the checkresiduals function. This example fits the ARIMA model using
auto.arima, puts the results in m, and then runs diagnostics on the model:

m <- auto.arima(x)
checkresiduals(m)

Discussion
The result of checkresiduals is a set of three graphs, as shown in Figure 14-14. A
good model should produce results like these:

#>
#>  Ljung-Box test
#>
#> data:  Residuals from ARIMA(1,1,2)(0,1,1)[4]
#> Q* = 5, df = 4, p-value = 0.3
#>
#> Model df: 4.   Total lags used: 8

Figure 14-14. Residuals plots: good model

Here’s what’s good about the graphs:

• The standardized residuals don’t show clusters of volatility.
• The autocorrelation function (ACF) shows no significant autocorrelation

between the residuals.
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• The residuals look bell-shaped, suggesting they are reasonably symmetrical.
• The p-value in the Ljung–Box test is large, indicating that the residuals are pat‐

ternless—meaning all the information has been extracted by the model and only
noise is left behind.

For contrast, Figure 14-15 shows diagnostic charts with problems:

#>
#>  Ljung-Box test
#>
#> data:  Residuals from ARIMA(1,1,1)(0,0,1)[4]
#> Q* = 20, df = 5, p-value = 5e-04
#>
#> Model df: 3.   Total lags used: 8

Figure 14-15. Residuals plots: problem model

The issues here are:

• The ACF shows significant autocorrelations between residuals.
• The p-values for the Ljung–Box statistics are small, indicating there is some pat‐

tern in the residuals (i.e., there is still information to be extracted from the data).
• The residuals appear asymmetrical.
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These are basic diagnostics, but they are a good start. Find a good book on ARIMA
modeling and perform the recommended diagnostic tests before concluding that
your model is sound. Additional checks of the residuals could include:

• Tests for normality
• Quantile–quantile (Q–Q) plot
• Scatter plot against the fitted values

14.21 Making Forecasts from an ARIMA Model
Problem
You have an ARIMA model for your time series that you built with the forecast
package. You want to forecast the next few observations in the series.

Solution
Save the model in an object, and then apply the forecast function to the object. This
example saves the model from Recipe 14.19 and predicts the next eight observations:

m <- arima(euretail, order = c(0, 1, 3), seasonal = c(0, 1, 1),
  fixed = c(0, NA, NA, NA))
forecast(m)
#>         Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
#> 2012 Q1           95.1  94.6  95.6  94.3  95.9
#> 2012 Q2           95.2  94.5  95.9  94.1  96.3
#> 2012 Q3           95.2  94.2  96.3  93.7  96.8
#> 2012 Q4           95.3  93.9  96.6  93.2  97.3
#> 2013 Q1           94.5  92.8  96.1  91.9  97.0
#> 2013 Q2           94.5  92.6  96.5  91.5  97.5
#> 2013 Q3           94.5  92.3  96.7  91.1  97.9
#> 2013 Q4           94.5  92.0  97.0  90.7  98.3

Discussion
The forecast function will calculate the next few observations and their standard
errors according to the model. It returns a list with 10 elements. When we print the
model, as we just did, forecast returns the time series points it is forecasting, the
forecast, and two pairs of confidence bands: high/low 80% and high/low 95%.

If we want to extract out just the forecast, we can do that by assigning the results to
an object, and then pulling out the list item named mean:

fc_m <- forecast(m)
fc_m$mean
#>      Qtr1 Qtr2 Qtr3 Qtr4
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#> 2012 95.1 95.2 95.2 95.3
#> 2013 94.5 94.5 94.5 94.5

The result is a Time-Series object containing the forecasts created by the forecast
function.

14.22 Plotting a Forecast
Problem
You have created a time series forecast with the forecast package and you would like
to plot it.

Solution
Time series models created with the forecast package have a plotting method that
uses ggplot2 to create graphs easily, as shown in Figure 14-16:

fc_m <- forecast(m)
autoplot(fc_m)

Figure 14-16. Forecast cone of uncertainty: default

Discussion
The autoplot function makes a very reasonable figure, as shown in Figure 14-16.
Since the resulting figure is a ggplot object, we can adjust the plotting parameters the
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same way we would with any other ggplot object. Here we add labels and a title and
change the theme, as shown in Figure 14-17:

autoplot(fc_m) +
  ylab("Euro Index") +
  xlab("Year/Quarter") +
  ggtitle("Forecasted Retail Index") +
  theme_bw()

Figure 14-17. Forecast cone of uncertainty: labeled

See Also
See Chapter 10 for more information on working with ggplot figures.

14.23 Testing for Mean Reversion
Problem
You want to know if your time series is mean-reverting (stationary).

Solution
A common test for mean reversion is the Augmented Dickey–Fuller (ADF) test,
which is implemented by the adf.test function of the tseries package:

library(tseries)
adf.test(ts)
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The output from adf.test includes a p-value. Conventionally, if p < 0.05, the time
series is likely mean-reverting, whereas a p > 0.05 provides no such evidence.

Discussion
When a time series is mean-reverting, it tends to return to its long-run average. It
may wander off, but eventually it wanders back. If a time series is not mean-reverting,
then it can wander away without ever returning to the mean.

Figure 14-18 appears to be wandering upward and not returning. The large p-value
from adf.test confirms that it is not mean-reverting:

library(tseries)
library(fpp2)
autoplot(goog200)
adf.test(goog200)
#>
#>  Augmented Dickey-Fuller Test
#>
#> data:  goog200
#> Dickey-Fuller = -2, Lag order = 5, p-value = 0.7
#> alternative hypothesis: stationary

Figure 14-18. Time series without mean reversion

The time series in Figure 14-19, however, is just bouncing around its average value.
The small p-value (0.01) confirms that it is mean-reverting:
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autoplot(hsales)
adf.test(hsales)
#>
#>  Augmented Dickey-Fuller Test
#>
#> data:  hsales
#> Dickey-Fuller = -4, Lag order = 6, p-value = 0.01
#> alternative hypothesis: stationary

Figure 14-19. Time series with mean reversion

The example data here comes from the fpp2 package and comprises all Time-Series
object types. If your data were in a zoo or xts object, then you would need to call
coredata to extract out the raw data from the object before passing it to adf.test:

library(xts)
data(sample_matrix)
xts_obj <- as.xts(sample_matrix, dateFormat = "Date")[, "Close"] # vector of data

adf.test(coredata(xts_obj))
#>
#>  Augmented Dickey-Fuller Test
#>
#> data:  coredata(xts_obj)
#> Dickey-Fuller = -3, Lag order = 5, p-value = 0.3
#> alternative hypothesis: stationary

The adf.test function massages your data before performing the ADF test. First it
automatically detrends your data, and then it recenters the data, giving it a mean of
zero.
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If either detrending or recentering is undesirable for your application, use the
adfTest function in the fUnitRoots package instead:

library(fUnitRoots)
adfTest(coredata(ts1), type = "nc")

With type = "nc", the function neither detrends nor recenters your data. With
type = "c", the function recenters your data but does not detrend it.

Both the adf.test and adfTest functions let you specify a lag value that controls the
exact statistic they calculate. These functions provide reasonable defaults, but serious
users should study the textbook description of the ADF test to determine the appro‐
priate lag for their application.

See Also
The urca and CADFtest packages also implement tests for a unit root, which is the
test for mean reversion. Be careful when comparing the tests from several packages,
however. Each package can make slightly different assumptions, which can lead to
puzzling differences in the results.

14.24 Smoothing a Time Series
Problem
You have a noisy time series. You want to smooth the data to eliminate the noise.

Solution
The KernSmooth package contains functions for smoothing. Use the dpill function
to select an initial bandwidth parameter, and then use the locpoly function to
smooth the data:

library(KernSmooth)

gridsize <- length(y)
bw <- dpill(t, y, gridsize = gridsize)
lp <- locpoly(x = t, y = y, bandwidth = bw, gridsize = gridsize)
smooth <- lp$y

Here, t is the time variable and y is the time series.

Discussion
The KernSmooth package is a standard part of the R distribution. It includes the
locpoly function, which constructs, around each data point, a polynomial that is
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fitted to the nearby data points. These are called local polynomials. The local polyno‐
mials are strung together to create a smoothed version of the original data series.

The algorithm requires a bandwidth parameter to control the degree of smoothing. A
small bandwidth means less smoothing, in which case the result follows the original
data more closely. A large bandwidth means more smoothing, so the result contains
less noise. The tricky part is choosing just the right bandwidth: not too small, not too
large.

Fortunately, KernSmooth also includes the function dpill for estimating the appro‐
priate bandwidth, and it works quite well. We recommend that you start with the
dpill value and then experiment with values above and below that starting point.
There is no magic formula here. You need to decide what level of smoothing works
best in your application.

The following is an example of smoothing. We’ll create some example data that is the
sum of a simple sine wave and normally distributed “noise”:

t <- seq(from = -10, to = 10, length.out = 201)
noise <- rnorm(201)
y <- sin(t) + noise

Both dpill and locpoly require a grid size—in other words, the number of points
for which a local polynomial is constructed. We often use a grid size equal to the
number of data points, which yields a fine resolution. The resulting time series is very
smooth. You might use a smaller grid size if you want a coarser resolution or if you
have a very large dataset:

library(KernSmooth)
gridsize <- length(y)
bw <- dpill(t, y, gridsize = gridsize)

The locpoly function performs the smoothing and returns a list. The y element of
that list is the smoothed data:

lp <- locpoly(x = t, y = y, bandwidth = bw, gridsize = gridsize)
smooth <- lp$y

ggplot() +
  geom_line(aes(x = t, y = y)) +
  geom_line(aes(x = t, y = smooth), linetype = 2)

In Figure 14-20, the smoothed data is shown as a dashed line, while the solid line is
our original example data. The figure demonstrates that locpoly did an excellent job
of extracting the original sine wave.
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Figure 14-20. Example time series plot

See Also
The ksmooth, lowess, and HoltWinters functions in the base distribution can also
perform smoothing. The expsmooth package implements exponential smoothing.
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CHAPTER 15

Simple Programming

R lets you accomplish a lot without knowing anything about programming. Program‐
ming opens the door to accomplishing more, however, and most serious users even‐
tually perform some level of programming, starting simply and possibly becoming
quite proficient. While this is not a programming book, this chapter lays out some
programming recipes that R users typically find useful to begin their journey.

If you are already familiar with programming and programming languages, a few
notes here may help you quickly adapt. (If these terms are unfamiliar to you, you can
skip this section.) Here are some technical details of R to be aware of:

Typeless variables
Variables in R do not have a fixed type, such as integer or character, unlike in
typed languages such as C and Java. A variable could contain a number one
moment and a data frame the next.

Return values
All functions return a value. Normally, a function returns the value of the last
expression in its body. You can also use return(expr) anywhere within the body.

Call-by-value parameters
Function parameters are “call by value”—in other words, parameters are strictly
local variables, and changes to those variables do not affect the caller’s value.

Local variables
You create a local variable simply by assigning a value to it. Explicit declaration is
not required. When the function exits, local variables are lost.
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Global variables
Global variables are held in the user’s workspace. Within a function you can
change a global variable by using the <<- assignment operator, but this is not
encouraged.

Conditional execution
The R syntax includes an if statement. See help(Control) for details.

Loops
The R syntax also includes for loops, while loops, and repeat loops. For details,
see help(Control).

Case or switch statements
A special function called switch provides a basic case statement. The semantics
may strike you as odd, however. See help(switch) for details.

Lazy evaluation
R does not immediately evaluate function arguments when the function is called.
Rather, it waits until the argument is actually used within the function, then eval‐
uates it. This gives the language an especially rich and powerful semantics. Most
of the time, it’s not noticeable, but occasionally it results in situations that are baf‐
fling to programmers familiar only with “eager” evaluation, where arguments are
evaluated when the function is called.

Functional semantics
Functions are “first-class citizens” and can be treated like other objects: assigned
to variables, passed to functions, printed, inspected, and so forth.

Object orientation
R supports object-oriented programming. In fact, there are several different para‐
digms for object orientation, which is a blessing if you enjoy having a choice and
baffling if you don’t.

15.1 Choosing Between Two Alternatives: if/else
Problem
You want to write a conditional branch that will choose between two paths based on a
simple test.

Solution
An if block can implement conditional logic by testing a simple condition:

if (condition) {
  ## do this if condition is TRUE
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} else {
  ## do this if condition is FALSE
}

Notice the parentheses around the condition, which are required, and the curly
braces around the subsequent two blocks of code.

Discussion
The if structure lets you choose between two alternative code paths by testing some
condition, such as x == 0 or y > 1, and then following one path or the other accord‐
ingly. This if, for example, checks for negative numbers before calculating a square
root:

if (x >= 0) {
  print(sqrt(x))             # do this if x >= 0
} else {
  print("negative number")   # do this otherwise
}

You can chain a series of if/else structures to make a series of decisions. Let’s sup‐
pose we want a value to be cupped at 0 (no negative values) and capped at 1. We
could code that as follows:

x <- -0.3

if (x < 0) {
  x <- 0
} else if (x > 1) {
  x <- 1
}

print(x)
#> [1] 0

It is important that the conditional test (the expression after if) is a simple test; that
is, it must return a single, logical value of either TRUE or FALSE. A common problem is
mistakenly using a vector of logical values, as in this example:

x <- c(-2, -1, 0, 1, 2)

if (x < 0) {
  print("values are negative")
}
#> Warning in if (x < 0) {: the condition has length > 1 and only the first
#> element will be used
#> [1] "values are negative"

The problem arises because x < 0 is ambiguous when x is a vector: are you testing for
all values being negative or some values being negative? R provides the helper
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functions all and any to address the situation. They take a vector of logical values
and reduce them to one, single value:

x <- c(-2, -1, 0, 1, 2)

if (all(x < 0)) {
  print("all are negative")
}

if (any(x < 0)) {
  print("some are negative")
}
#> [1] "some are negative"

See Also
The if structure presented here is intended for programming. There is also a func‐
tion called ifelse that implements a vectorized if/else structure, useful for trans‐
forming entire vectors. See help(ifelse).

15.2 Iterating with a Loop
Problem
You want to iterate over the elements of a vector or list.

Solution
A common iteration technique uses the for structure. If v is a vector or list, this for
loop selects each element of v one by one, assigns the element to x, and does some‐
thing with it:

for (x in v) {
  # do something with x
}

Discussion
Programmers from C and Python will recognize for loops. They are less common in
R but still occasionally useful.

For illustration, this for loop prints the first five integers and their squares. It sets x to
1, 2, 3, 4, and 5 successively, executing the body of the loop each time:

for (x in 1:5) {
  cat(x, x^2, "\n")
}
#> 1 1
#> 2 4
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#> 3 9
#> 4 16
#> 5 25

We can also iterate over the subscripts of a vector or list, which is useful for updating
the data in place. Here, we initialize v with the vector 1:5, then update its elements by
squaring each one:

v <- 1:5
for (i in 1:5) {
  v[[i]] <- v[[i]] ^ 2
}
print(v)
#> [1]  1  4  9 16 25

But, frankly, this also illustrates one reason why loops are less common in R than in
other programming languages. The vectorized operations of R are fast and easy, often
eliminating the need for looping altogether. Here is the vectorized version of the pre‐
vious example:

v <- 1:5
v <- v^2
print(v)
#> [1]  1  4  9 16 25

See Also
Another reason loops are rare is that map and similar functions can process entire
vectors and lists at once, usually more quickly and easily than a loop. See Recipe 6.1
for details on using the purrr package to apply functions to lists.

15.3 Defining a Function
Problem
You want to define a new R function.

Solution
Create the function by using the function keyword followed by a list of parameter
names and then the function body:

name <- function(param1, ..., paramN) {
          expr1
          .
          .
          .
          exprM
        }
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Put parentheses around the parameter names. Put curly braces around the function
body, which is a sequence of one or more expressions. R will evaluate each expression
in order and return the value of the last one, denoted here as exprM.

Discussion
Function definitions are how you tell R, “Here’s how to calculate this.” For example, R
does not have a built-in function for calculating the coefficient of variation, but we
can create such a function, calling it cv:

cv <- function(x) {
  sd(x) / mean(x)
}

This function has one parameter, x, and the body of the function is sd(x) / mean(x).

When we call the function with an argument, R will set the parameter x to that value,
then evaluate the body of the function:

cv(1:10)     # Set x = 1:10 and evaluate sd(x)/mean(x)
#> [1] 0.550482

Note that the parameter x is distinct from any other variable called x. If you have a
global variable x in your workspace, for example, that x is distinct from this x and
won’t be affected by cv. Furthermore, the parameter x exists only while the cv func‐
tion is executing and disappears after that.

A function can have more than one argument. This function has two arguments, both
integers, and implements Euclid’s algorithm for computing their greatest common
divisor:

gcd <- function(a, b) {
  if (b == 0) {
    a                # Return a to caller
  } else {
    gcd(b, a %% b)   # Recursively call ourselves
  }
}

# What's the greatest common denominator of 14 and 21?
gcd(14, 21)
#> [1] 7

(This function definition is recursive because it calls itself when b is nonzero.)

Normally, the function returns the value of the last expression in the function body.
You can choose to return a value earlier, however, by writing return(expr), forcing
the function to stop and immediately return expr to the caller. We can illustrate this
by coding gcd in a subtly different way using an explicit return:
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gcd <- function(a, b) {
  if (b == 0) {
    return(a)    # Stop and return a
  }
  gcd(b, a %% b)
}

When parameter b is 0, gcd executes return(a), returning that value immediately to
the caller.

See Also
Functions are a central component of R programming, so they are covered well in
books such as R for Data Science by Hadley Wickham and Garrett Grolemund
(O’Reilly) and The Art of R Programming by Norman Matloff (No Starch Press).

15.4 Creating a Local Variable
Problem
You want to create a variable that is local to a function—that is, a variable that is cre‐
ated inside the function, used inside the function, and removed when the function is
done.

Solution
Inside the function, simply assign a value to the name. The name automatically
becomes a local variable and will be removed when the function finishes.

Discussion
This function will map a vector, x, into the unit interval. It requires two intermediate
values, low and high:

unitInt <- function(x) {
  low <- min(x)
  high <- max(x)
  (x - low) / (high - low)
}

The low and high values are automatically created by the assignment statements.
Because the assignments occur within the function body, the variables are local to the
function. That brings two important advantages.

First, the local variables named low and high are distinct from any global variables
named low and high in your workspace. Because they are distinct, there is no “colli‐
sion”: changes to the local variables do not change the global variables.
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Second, local variables disappear when the function is done. That prevents clutter
and automatically frees the space they used.

15.5 Choosing Between Multiple Alternatives: switch
Problem
A variable can take on several different values. You want your program to handle
each case separately, according to the value.

Solution
The switch function will branch according to a value, letting you select how you han‐
dle each case.

Discussion
The first argument to switch is a value for R to consider. The remaining arguments
show how to handle each possible value. For example, this call to switch considers
the value of who, then returns one of three possible results:

hair_type = switch(who,
                   Moe = "long",
                   Larry = "fuzzy",
                   Curly = "none")

Notice that each expression after the initial who is labeled with a possible value for
who. If who is Moe, then the switch returns "long"; if it is Larry, the switch returns
"fuzzy"; if it’s Curly, it returns "none".

Very often, you cannot anticipate all possible values to be considered, so switch lets
you define a default for the situation where no label matches. Simply put the default
last with no label. This switch, for example, will translate the contents of s from
"one", "two", or "three" into the corresponding integer. It returns NA for any other
value:

num <- switch(s,
              one = 1,
              two = 2,
              three = 3,
              NA)

An annoying quirk of switch arises when the labels are integers. This won’t do what
you expect, for example:

switch(i,            # Does not work the way you expect
       10 = "ten",
       20 = "twenty",
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       30 = "thirty",
       "other")

But there is a workaround—convert the integer to a character string, then use charac‐
ter strings for the labels:

switch(as.character(i),
       "10" = "ten",
       "20" = "twenty",
       "30" = "thirty",
       "other")

See Also
See help(switch) for more details.

This sort of feature is quite common in other programming languages, where it’s usu‐
ally called a switch or case statement.

The switch function works only with scalars. Switching on the contents of a data
frame is more complicated. See the function case_when in the dplyr package for a
powerful mechanism to handle that situation.

15.6 Defining Defaults for Function Parameters
Problem
You want to define default parameters for a function—that is, values to use when the
caller does not provide explicit arguments.

Solution
R lets you set default values for parameters by including them in the function defini‐
tion:

my_fun <- function(param = default_value) {
  ...
}

Discussion
Let’s create a toy function that greets someone by name:

greet <- function(name) {
  cat("Hello,", name, "\n")
}

greet("Fred")
#> Hello, Fred
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If we call greet without a name argument, we get this error:

greet()
#> Error in cat("Hello,", name, "\n") :
#>   argument "name" is missing, with no default

We can change the function definition, however, to define a default name. In this
case, we’ll default to the generic name world:

greet <- function(name = "world") {
  cat("Hello,", name, "\n")
}

Now if we omit the argument, R supplies a default:

greet()
#> Hello, world

This mechanism for defaults is handy. Nonetheless, we recommend using it judi‐
ciously. We’ve seen too many cases where the function creator defined defaults and
the function caller accepted the defaults without much thought, leading to questiona‐
ble results. For example, if you are using the k-nearest neighbors algorithm, the
choice of k is critical and providing a default makes no sense. Sometimes it’s better to
force the caller to make a choice.

15.7 Signaling Errors
Problem
When your code encounters a serious problem, you want to halt and alert the user.

Solution
Call the stop function, which will print your message and terminate all processing.

Discussion
It is critical to halt processing when your code encounters fatal errors, such as this
check that an account still has a positive balance:

if (balance < 0) {
  stop("Funds exhausted.")
}

This call to stop would display the message, terminate processing, and put the user
back at the console prompt:

#> Error in eval(expr, envir, enclos): Funds exhausted
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Problems arise for all sorts of reasons: bad data, user error, network failures, and bugs
in code, to name a few. The list is endless. It is important that you anticipate potential
problems and code appropriately:

Detect
At a minimum, detect possible errors. Halt if further processing is impossible.
Undetected errors are a major source of program failures.

Report
If you must halt, give users a reasonable explanation of why. That will help them
diagnose and fix the problem.

Recover
In some cases, the code may be able to correct the situation itself and continue.
We recommend, however, warning the user that your code encountered a prob‐
lem and corrected it.

Error handling is part of defensive programming, the practice of making your code
robust.

See Also
An alternative to stop is the warning function, which prints its message and contin‐
ues without halting. Be sure, however, that it is actually reasonable to continue.

15.8 Protecting Against Errors
Problem
You anticipate the possibility of fatal errors, and you want to handle them rather than
halt altogether.

Solution
Use the possibly function to “wrap” the problematic code. It will trap errors and let
you respond to them.

Discussion
The purrr package contains a function called possibly, which takes two parameters.
The first parameter is a function, and possibly will protect against failures in that
function. The second parameter is a value called otherwise.

A concrete example is useful here. The read.csv function tries to read a file, but it
simply halts if the file does not exist. That could be undesirable. We might want to
recover and continue instead.
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We can “wrap” the read.csv function in a protective layer this way:

library(purrr)
safe_read <- possibly(read.csv, otherwise=NULL)

It may seem strange, but possibly returns a new function. The new function, called
safe_read here, behaves exactly like the old function, read.csv, but with one very
important difference. When read.csv would fail and halt, safe_read will instead
return the otherwise value (NULL) and let you continue. (If read.csv succeeds, you
get its usual result: a data frame.)

You could use safe_read like this to handle optional files:

details = safe_read("details.csv")    # Try to read details.csv file
if (is.null(details)) {               # NULL means read.csv failed
  cat("Details are not available\n")
} else {
  print(details)                      # We got the contents!
}

If the details.csv file exists, safe_read returns the contents and this code will print
them. If it does not exist, then read.csv fails, safe_read returns NULL, and this code
prints a message.

The otherwise value in this case is NULL, but it can be anything. It could be a data
frame, for example, which provides a default. In that case, when the details.csv file is
unavailable, safe_read would return that default.

See Also
The purrr package contains other functions for protecting against errors. Check out
the safely and quietly functions.

If you need even higher-powered tools, use help(tryCatch) to see the mechanism
behind possibly, which has sophisticated bells and whistles for handling both errors
and warnings. It mirrors the familiar try/catch paradigm of other programming
languages.

15.9 Creating an Anonymous Function
Problem
You are using tidyverse functions such as map or discard that require a function. You
want a shortcut for easily defining the required function.
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Solution
Use the function keyword to define a function with parameters and a body, but
instead of giving the function a name, simply use its definition inline.

Discussion
It may seem strange to create a function with no name, but it can be a handy conve‐
nience.

In Recipe 15.3, we defined a function, is_na_or_null, and used it to remove NA and
NULL elements from a list:

is_na_or_null <- function(x) {
  is.na(x) || is.null(x)
}

lst %>%
  discard(is_na_or_null)

Sometimes, writing a tiny, one-off function such as is_na_or_null is annoying. You
can avoid that hassle by using the function definition directly, not giving it a name:

lst %>%
  discard(function(x) is.na(x) || is.null(x))

This kind of function is called an anonymous function, for the obvious reason that it
has no name.

See Also
Function definitions are described in Recipe 15.3.

15.10 Creating a Collection of Reusable Functions
Problem
You want to reuse one or more functions across several scripts.

Solution
Save the functions in a local file, say myLibrary.R, then use the source function to
load those functions into your script:

source("myLibrary.R")
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Discussion
Quite often, you will write functions that are useful in several scripts. For example,
you could have one function that loads, checks, and cleans your data; now you want
to reuse that function in every script that needs the data.

Most beginners simply cut and paste the reusable function into each script, duplicat‐
ing the code. That creates a serious problem. What if you discover a bug in that dupli‐
cated code? Or what if you must change the code to accommodate new circumstan‐
ces? You’re forced to hunt down every copy and make the identical change every‐
where, an annoying and error-prone process.

Instead, create a file, say myLibrary.R, and save the function definition there. The file
contents could look like this:

loadMyData <- function() {
  # code for data loading, checking, and cleaning here
}

Then, inside each script, use the source function to read the code from the file:

source("myLibrary.R")

When you run the script, the source function reads the indicated file, just as if you’d
typed the file contents at that location in the script. It’s better than cutting and pasting
because you’ve isolated the function’s definition into one known place.

This example has only one function in the sourced file, but the file
can contain multiple functions, of course. We suggest gathering
related functions into their own file, creating a group of related,
reusable functions.

See Also
This recipe is a very simple method for reusing code, appropriate for small projects.
A more powerful approach is to create your own R package of functions, which is
especially useful for collaborating with other people. Package creation is a large topic,
but getting started is pretty easy. We suggest the excellent book R Packages by Hadley
Wickham (O’Reilly), available in printed form or online.
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15.11 Automatically Reindenting Code
Problem
You want to reformat your code so that it lines up nicely and is indented consistently.

Solution
To consistently indent a block of code, highlight the text in RStudio, then press Ctrl-I
(Windows or Linux) or Cmd-I (Mac).

Discussion
One of the many features of the RStudio IDE is that it helps with routine code main‐
tenance, such as reformatting. When you’re editing code it’s easy to end up with
indentation that is inconsistent and a little confusing. The IDE can fix that.

Take the following code, for example:

for (i in 1:5) {
    if (i >= 3) {
  print(i**2)
} else {
  print(i * 3)
}
  }

While that’s valid code, it can be tricky to read because of the odd indentation. If we
highlight the text in the RStudio IDE and press Ctrl-I (or Cmd-I on Mac), then our
code gets consistent indentation:

for (i in 1:5) {
  if (i >= 3) {
    print(i**2)
  }
  else {
    print(i * 3)
  }
}

See Also
RStudio has several helpful features for code editing. You can access cheat sheets by
clicking Help → Cheatsheets or by going directly to https://www.rstudio.com/resour
ces/cheatsheets/.
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CHAPTER 16

R Markdown and Publishing

While R by itself is an incredibly powerful tool for data analysis and visualization,
almost all of us, after we do analysis, will need to communicate the results to others. 
We may do that with published papers, blog posts, PowerPoint presentations, or
books. R Markdown is the tool that helps us go from R analysis and visualization all
the way to publishable documents.

R Markdown is a package (as well as an ecosystem of tools) that allows us to add R
code to a plain-text file with some Markdown formatting. The document can then be
rendered into many different output formats, including PDF, HTML, Microsoft
Word, and Microsoft PowerPoint. At rendering, also called knitting, the R code is run
and the resulting output and figures are placed in the final document.

In this chapter we’ll give you recipes to get you started creating R Markdown docu‐
ments. After you go through these recipes, one of the best ways to learn more about R
Markdown is by looking at the source files and final output of other people’s R Mark‐
down work. The book you are reading was itself written in R Markdown. You can see
the source to this book on GitHub.

In addition, Yihui Xie, J. J. Allaire, and Garrett Grolemund have written R Markdown:
The Definitive Guide (Chapman & Hall/CRC) and also made the source R Markdown
available on GitHub.

Many other books written with R Markdown have been made freely available online.

We mentioned that R Markdown is an ecosystem as well as a package. There are spe‐
cialized packages to extend R Markdown for blogging (blogdown), for books (book
down), and for making gridded dashboards (flexdashboard). The initial package in
the ecosystem is called knitr, and we still call the process of turning R Markdown
into a final format “knitting” the document. The R Markdown ecosystem supports
many output formats, and covering them all would be unreasonable. In this book
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we’ll stick primarily to four common output formats: HTML, LaTeX, Microsoft
Word, and Microsoft PowerPoint.

The RStudio IDE contains many helpful features for creating and editing R Mark‐
down documents. While we’ll make use of those features in the following recipes, R
Markdown is not dependent on RStudio in order to be useful. It’s possible to edit
plain-text R Markdown files with your favorite text editor and then knit the docu‐
ment using R’s command-line interface. However, the RStudio tools are so helpful
that we’ll illustrate them extensively.

16.1 Creating a New Document
Problem
You want to create a new R Markdown document to tell your data story.

Solution
The easiest way to create a new R Markdown document is using the File → New File
→ R Markdown… menu choice in the RStudio IDE (see Figure 16-1).

Figure 16-1. Creating a new R Markdown document

Selecting “R Markdown…” will lead you to the New R Markdown dialog, where you
can choose the type of output document you would like to create (see Figure 16-2).
The default option is HTML, which is a good choice if you want to publish your work
online or in an email, or if you haven’t made up your mind yet about how you’d like
to output your final document. Changing to a different format later is typically as
easy as chaining one line of text in the document, or a few clicks in the IDE.
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Figure 16-2. New R Markdown document options

After you make your selection and click OK, you’ll get an R Markdown template with
some metadata and example text (see Figure 16-3).
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Figure 16-3. New R Markdown document

Discussion
R Markdown documents are plain-text files. The shortcut just outlined is the fastest
way to get a template for creating a new R Markdown text document. Once you have
the template you can edit the text, alter the R code, and change anything you want.
The other recipes in this chapter deal with the types of things you will likely want to
do in your R Markdown document, but if you just want to see what some output
looks like, click on the Knit button in the RStudio IDE and your R Markdown docu‐
ment will be rendered into your desired output format.

16.2 Adding a Title, Author, or Date
Problem
You want to alter the title, author, or date of your document.
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Solution
At the top of an R Markdown document is a block of specially formatted text that
starts and ends with ---. This block contains important metadata about your docu‐
ment. In this block, you can set the title, author, and date:

---
title: "Your Title Here"
author: "Your Name Here"
date: "12/31/9999"
output: html_document
---

You can also set the output format (e.g., output: html_document). We’ll discuss the
different output formats later in the recipes that cover specific formats.

Discussion
When you knit your R Markdown document to create your output, R will run each
chunk, create Markdown (not R Markdown) for each chunk’s output, and pass the
full Markdown document to Pandoc. Pandoc is the software that creates your final
output document from the intermediate Markdown. Most of the time, you don’t even
need to think about the steps unless you’re having a problem knitting your document.

The text at the top of your R Markdown document between the --- marks is in a 
format called YAML (Yet Another Markup Language). This chunk is used to pass
metadata to the Pandoc software that builds your output document. The fields title,
author, and date are read by Pandoc and inserted at the top of most output docu‐
ment formats.

The way these values are formatted and inserted into the output document is a func‐
tion of the template used for output. The default templates for HTML, PDF, and
Microsoft Word each format the title, author, and date fields similarly (see
Figure 16-4).

Figure 16-4. Header illustration

You can add other key/value pairs into the YAML header, but if your template is not
configured to use these values, they are ignored.
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See Also
For information on creating your own templates, see Chapter 17, “Document Tem‐
plates,” in R Markdown: The Definitive Guide.

16.3 Formatting Document Text
Problem
You want to format the text of your document, such as putting text into italics or
bold.

Solution
The body of an R Markdown document is plain text and allows formatting using
Markdown notation. You’ll likely want to add formatting, such as making text bold or
italic. You’ll also want to add section headers, lists, and tables, which will be covered
in later recipes. All of these options can be accomplished through Markdown.

Table 16-1 shows a brief summary of some of the most common formatting syntax.

Table 16-1. Common Markdown formatting syntax
Markdown Output

plain text plain text

*italics* italics

**bold** bold

`code` code

sub~script~ subscript

super^script^ superscript

~~strikethrough~~ strikethrough

endash: -- endash: –

emdash: --- emdash: —

See Also
RStudio publishes a handy reference sheet.

See also recipes for inserting various structures, such as Recipe 16.4, Recipe 16.5, and
Recipe 16.9.
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16.4 Inserting Document Headings
Problem
Your R Markdown document needs section headings.

Solution
You can insert section headings by starting a line with the # (hash) character. Use one
hash character for the top level, two for the second level, and so on:

# Level 1 Heading
## Level 2 Heading
### Level 3 Heading
#### Level 4 Heading
##### Level 5 Heading
###### Level 6 Heading

Discussion
Markdown and HTML both support up to six heading levels, so that’s what’s sup‐
ported in R Markdown. In R Markdown (and Markdown in general) the formatting
does not include specific font details; it communicates only what formatting class to
apply to text. The specifics of each class are defined by the output format and the
template used by each output format.

16.5 Inserting a List
Problem
You want to include a bulleted or numbered list in your document.

Solution
To create a bulleted list, start each line with an asterisk (*) like so:

* first item
* second item
* third item

To create a numbered list, start each line with 1. as follows:

1. first item
1. second item
1. third item

R Markdown will replace the 1. prefixes with the sequence 1., 2., 3., and so on.
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The rules for lists are a bit strict:

• There must be a blank line before the list.
• There must be a blank line after the list.
• There must be a space character after the leading asterisk.

Discussion
The syntax for lists is simple, but watch out for the rules given in the Solution. If you
violate even one, the output will be gobbledygook.

An important feature of lists is that they allow sublists. This bulleted list has three
subitems:

* first item
   * first subitem
   * second subitem
   * third subitem
* second item

which produces this output:

• first item
— first subitem
— second subitem
— third subitem

• second item

Again, there is an important rule: the sublists must be indented by two, three, or four
spaces relative to the level above. No more, no less—otherwise, chaos will ensue.

The Solution recommends using the prefix 1. to identify numbered lists. You can also
use a. and i., which will produce lowercase letters and roman numeral sequences,
respectively. That’s handy for formatting sublists:

1. first item
1. second item
   a. subitem 1
   a. subitem 2
      i. sub-subitem 1
      i. sub-subitem 2
   a. subitem 2
1. third item

This produces:
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1. first item
2. second item

a. subitem 1
b. subitem 2

i. sub-subitem 1
ii. sub-subitem 2

c. subitem 2
3. third item

See Also
The syntax for lists is more flexible and feature-laden than described here. See the ref‐
erence material for details, such as the Pandoc Markdown guide.

16.6 Showing Output from R Code
Problem
You want to execute some R code and show the results in the output document.

Solution
You can insert R code in an R Markdown document. It will be executed and the out‐
put included in the final document.

There are two ways to insert the code. For small bits of code, include them inline
between two tick marks (``), as in:

The square root of pi is `r sqrt(pi)`.

which results in this output:

The square root of pi is 1.772.

For larger blocks of code, define a code chunk by placing the block between matching
triple tick marks (```).

```{r}
# code block goes here
```

Note the {r} after the first triple tick marks: this alerts R Markdown that we want it
to execute the code.
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Discussion
Embedding R code into your document is the most powerful feature of R Markdown.
In fact, without that feature, R Markdown would just be plain old Markdown.

Inline R, described first in the Solution, is useful for pulling in small bits of informa‐
tion directly into the text of a report—information such as dates, times, or the results
of small calculations.

Code chunks are for doing the heavy lifting. By default, the code chunk is shown in
the text, and the results are displayed directly under the code. The results are pre‐
ceded by a prefix, which defaults to a double hash tag: ##.

If we had this code chunk in a source R Markdown document:

```{r}
sqrt(pi)
sqrt(1:5)
```

it would produce this output:

sqrt(pi)
## [1] 1.77
sqrt(1:5)
## [1] 1.00 1.41 1.73 2.00 2.24

Conveniently, having the results preceded by the ## allows the reader to paste the
code and results into their own R session and execute the code. R will ignore the
results because they look like comments.

The {r} after the tick marks is important because R Markdown
allows code blocks from other languages, too, such as Python or
SQL. If you work in a multilanguage environment, this is a very
powerful feature. See the R Markdown documentation for details.

See Also
See Recipe 16.7 for controlling what’s shown in the output.

For details on the available language engines, see “Other language engines” in R
Markdown: The Definitive Guide.
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16.7 Controlling Which Code and Results Are Shown
Problem
Your document contains chunks of R code. You want to control what’s shown in the
final document: only the results, only the code, or neither.

Solution
Code blocks support several options that control what appears in the final document.
Set the options at the top of the block. For example, this block has echo set to FALSE:

```{r echo=FALSE}
# . . . code here will not appear in output . . .
```

See the Discussion for a table of available options.

Discussion
There are many display options, such as echo, which controls whether the code itself
appears in the final output, and eval, which controls whether or not the code is eval‐
uated (executed).

A few of the most popular options are listed in Table 16-2.

Table 16-2. Options that control what’s shown in the final document
Chunk option Executes code Shows code Shows output text Shows figures

results='hide' X X X

include=FALSE X

echo=FALSE X X X

fig.show='hide' X X X

eval=FALSE X

You can mix and match combinations of options to get the results you’re after. Some
common use cases are:

• You want the code’s output to appear, but not the code itself: echo=FALSE.
• You want the code to appear, but not be executed: eval=FALSE.
• You want to execute the code for its side effects (e.g., loading packages or loading

data), but neither the code nor any incidental output should appear:
include=FALSE.
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We often use include=FALSE for the first code chunk of an R Markdown document,
where we are calling library, initializing variables, and doing other housekeeping
tasks whose incidental output is just an annoyance.

In addition to the output options just described, there are several options that control
handling of the error messages, warning messages, and informational messages gen‐
erated by your code:

• error=TRUE allows your document to build completely even if there is an error in
the code chunk. This is helpful when you’re creating a document where you
specifically want to see the error in the output. The default is error=FALSE.

• warning=FALSE suppresses warning messages. The default is warning=TRUE.
• message=FALSE suppresses informational messages. This is handy when your

code uses chatty packages that produce messages while loading. The default is
message=TRUE.

See Also
The R Markdown cheat sheet from RStudio lists many available options.

The author of knitr, Yihui Xie, has documented the options on his website.

16.8 Inserting a Plot
Problem
You want to insert a plot into your output document.

Solution
Simply create a code chunk that creates the plot, and insert that chunk into your R
Markdown document. R Markdown will capture the plot and insert it into your out‐
put document.

Discussion
Here’s an R Markdown code chunk that creates a ggplot plot called gg, then “prints”
it:
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```{r}
library(ggplot2)
gg <- ggplot(airquality, aes(Wind, Temp)) + geom_point()
print(gg)
```

Recall that print(gg) renders the plot. If we insert this code chunk into an R Mark‐
down document, R Markdown will capture the result and insert it into the output,
which looks something like this:

library(ggplot2)
gg <- ggplot(airquality, aes(Wind, Temp)) + geom_point()
print(gg)

The resulting plot is shown in Figure 16-5.

Figure 16-5. Example ggplot in R Markdown

Almost any plot we can produce in R can be rendered into the output document. We
have some control over the rendered results using options in the code block, such as
setting the size, resolution, and format of the output. Let’s look at some examples
using the gg plot object we just created.

We can shrink the output using out.width:

```{r out.width='30%'}
print(gg)
```

which results in Figure 16-6:

print(gg)
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Figure 16-6. Small-width plot

Or we can enlarge the output to the full width of the page:

```{r out.width='100%'}
print(gg)
```

which results in Figure 16-7:

print(gg)

Figure 16-7. Large-width plot

Some common output settings to use with graphics are:

out.width and out.height
The size of the output figure as a percentage of the page size.
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dev

The R graphical device used to create the figure. The default is 'png' for HTML
output and 'pdf' for LaTeX output. You can also use 'jpg' or 'svg', for exam‐
ple.

fig.cap

The figure caption.

fig.align

The alignment of the plot: 'left', 'center', or 'right'.

Let’s use these settings to create a figure with 50% width, 20% height, a caption, and
left alignment:

```{r out.width='50%',
       out.height='20%',
        fig.cap='Temperature versus wind speed',
        fig.align='left'}
print(gg)

This produces Figure 16-8:

print(gg)

Figure 16-8. Temperature vs. wind speed
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16.9 Inserting a Table
Problem
You want to insert a nicely formatted table into your document.

Solution
Lay out the contents in a text table, using the pipe character (|) to separate columns.
Use dashes to “underline” column headings. R Markdown will format that into attrac‐
tive output. For example, this input:

| Stooge | Year | Hair?           |
|--------|------|-----------------|
| Moe    | 1887 | Yes             |
| Larry  | 1902 | Yes             |
| Curly  | 1903 | No (ironically) |

will produce this output:

Stooge Year Hair?
Moe 1887 Yes

Larry 1902 Yes

Curly 1903 No (ironically)

You must place a blank line before and after the table.

Discussion
The syntax for tables lets you “draw” the table using ASCII characters. The “under‐
line” made from dashes is a signal to R Markdown that the line above it contains col‐
umn headings. Without that “underline,” R Markdown would interpret the first line
as contents, not headings.

The table formatting is a bit more flexible than the Solution might suggest. This
(ugly) input, for example, would produce the same (beautiful) output as shown in the
Solution:

| Stooge | Year | Hair? |
|--------|------|-----------------|
| Moe | 1887 | Yes |
| Larry | 1902 | Yes |
| Curly | 1903 | No (ironically) |

The computer cares only about pipe characters (|) and dashes. The whitespace pad‐
ding is optional. Use it to make the input easier for you to read.
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A handy feature is the use of colons (:) to control justification of columns. Include
colons in the dash “underline” to set the column justification. This table defines the
justification for three of four columns:

|Left   |Right | Center  | Default |
|:------|-----:|:-------:|---------|
| 12345 |12345 | 12345   | 12345   |
| text  | text | text    | text    |
| 12    | 12   | 12      | 12      |

which gives this result:

Left Right Center Default
12345 12345 12345 12345

text text text text

12 12 12 12

Use the colons within a column heading’s “underline” this way:

• A colon at the extreme left end causes left justification.
• A colon at the extreme right causes right justification.
• Colons at both ends cause center justification.

See Also
Actually, R Markdown supports several syntaxes for tables—some might say a bewil‐
dering number of syntaxes. This recipe shows only one, just to keep it simple. See the
Markdown reference material for the alternatives.

16.10 Inserting a Table of Data
Problem
You want to include a table of computer-generated data in your output document.

Solution
Use the kable function from the knitr package, shown here formatting a data frame
called dfrm:

library(knitr)
kable(dfrm)
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Discussion
In Recipe 16.9, we showed how to put a static table into a document using plain text.
Here, we have the table contents captured in a data frame, and we want to show the
data in the document output.

We could just print the table, and it would end up in the output, unformatted:

myTable <- tibble(
  x=c(1.111, 2.222, 3.333),
  y=c('one', 'two', 'three'),
  z=c(pi, 2*pi, 3*pi))
myTable
#> # A tibble: 3 x 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1  1.11 one    3.14
#> 2  2.22 two    6.28
#> 3  3.33 three  9.42

But we typically want something more attractive and formatted. The easiest way to
implement this is by using the kable function from the knitr package (Figure 16-9):

library(knitr)
kable(myTable, caption = 'My Table')

Figure 16-9. A kable table

The kable function takes a data frame as input and a number of formatting parame‐
ters, returning a formatted table suitable for display.

kable produces great-looking output, but many people discover they want more con‐
trol over the output than it allows. Luckily kable can be paired with another package,
kableExtra, for—not surprisingly—extra kable functionality.

Here we set the rounding and caption using kable. Then we use kable_styling to
make the table more narrow than full width, add shaded striping in our LaTeX out‐
put, and center the table in the output (Figure 16-10):
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library(knitr)
library(kableExtra)
#>
#> Attaching package: 'kableExtra'
#> The following object is masked from 'package:dplyr':
#>
#>     group_rows

kable(myTable, digits = 2, caption = 'My Table') %>%
   kable_styling(full_width = FALSE,
                 latex_options = c('hold_position', 'striped'),
                 position = "center",
                 font_size = 12)

Figure 16-10. A kableExtra table

The kable_styling function takes a kable table as input (not a data frame), plus for‐
matting parameters, then returns a formatted table.

Some options in kable_styling have a different impact on your output depending
on your output format. In our previous example, the full_width = FALSE does not
change anything in LaTeX (PDF) format because tables in LaTeX output default to
not being full width. In HTML, however, the default behavior for kable tables is to be
full width, so this option has an impact.

Similiarly, the latex_options = c('hold_position', 'striped') option applies
only to LaTeX output, not HTML. The 'hold_position' ensures that the table ends
up where we put it in our source, not at the top or bottom of the page, which tends to
happen in LaTeX. The 'striped' option makes zebra-striped tables with alternating
light and dark rows for easier reading.

For more control over Microsoft Word tables, we recommend using the function
flextable::regulartable, which is discussed in Recipe 16.14.
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16.11 Inserting Math Equations
Problem
You want to insert a mathematical equation in your document.

Solution
R Markdown supports the LaTeX math equation notation. There are two ways of
entering LaTeX in R Markdown.

For short formulas, put the LaTeX notation inline between single dollar signs ($). The
notation for the solution to a linear regression could be expressed as $\beta =
(X^{T}X)^{-1}X^{T}{\bf{y}}$, which would result in the inline formula
β = XTX −1XT�.

For large formula blocks, embed the block between double dollar signs ($$), like this:

$$
\frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2}
      \mathrm S^{2} \frac{\partial^{2} \mathrm C}{\partial \mathrm C^2}
    + \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ =
    \mathrm r \mathrm C
    \label{eq:1}
$$

which generates this output:

∂C
∂t + 1

2σ2S2 ∂2C
∂C2 + rS∂C

∂S = rC

Discussion
The math equation markup syntax is a LaTeX standard that originated in TeX. Build‐
ing on that standard, R Markdown can render mathematical expressions in PDF,
HTML, MS Word, and MS PowerPoint documents. The PDF and HTML formats
support a full range of LaTeX math equations. The translation into Microsoft Word
and PowerPoint, however, supports only a subset of the full syntax.

The details of LaTeX equation notation are beyond the scope of this book, but since
TeX has been around for 40+ years there are many great resources available online
and in print. A very good online resource is the Wikibooks.org introduction to
LaTeX/Mathematics.

534 | Chapter 16: R Markdown and Publishing



16.12 Generating HTML Output
Problem
You would like to create a HyperText Markup Language (HTML) document from an
R Markdown document.

Solution
In RStudio, click on the down arrow next to the button labeled Knit at the top of the
code editing window. When you do, you’ll get a drop-down list of all the output for‐
mats available for your current document. Select the “Knit to HTML” option, as
shown in Figure 16-11.

Figure 16-11. Knit to HTML

Discussion
When you select “Knit to HTML,” RStudio moves html_document: default to the
top of your YAML output chunk at the top of the document, saves the file, and then
runs rmarkdown::render(./YourFile.Rmd). If you have knitted your document into
three different formats, your YAML may look like this:

output:
  html_document: default
  pdf_document: default
  word_document: default
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If you run render(./YourFile.Rmd) on your R Markdown document, substituting
your actual filename for YourFile.Rmd, it will, by default, knit to the topmost output
format (in this case, HTML).

If you are knitting to HTML, your R Markdown document should
not contain any special LaTeX-specific formatting, as this will not
knit properly in HTML. The exception, as mentioned in prior rec‐
ipes, is LaTeX math equations, which show up properly in HTML
thanks to the MathJax JavaScript library.

See Also
See Recipe 16.11.

16.13 Generating PDF Output
Problem
You would like to create an Adobe Portable Document Format (PDF) document from
an R Markdown document.

Solution
In RStudio, click on the down arrow next to the button labeled Knit at the top of the
code editing window. When you do, you’ll get a drop-down list of all the output for‐
mats available for your current document. Select the “Knit to PDF” option, as shown
in Figure 16-12.

This will move pdf_document to the top of your YAML output options:

---
title: "Nice Title"
output:
  pdf_document: default
  html_document: default
---

and then knit the document to PDF.
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Figure 16-12. Knit to PDF

Discussion
Knitting to PDF uses Pandoc and a LaTeX engine to generate a PDF document. If you
don’t already have a LaTeX distribution installed on your computer, the easiest way to
get one is with the tinytex package. Install tinytex in R, then call install_tiny
tex(), and tinytex will install a small and efficient LaTeX distribution on your com‐
puter:

install.packages("tinytex")
tinytex::install_tinytex()

LaTeX is rich with options, and fortunately, most things that we want to do can be
represented with R Markdown and automatically converted to LaTeX via Pandoc.
Since LaTeX is a powerful typesetting tool, it is possible to do things with it for which
there is no R Markdown equivalent. We can’t enumerate all the possibilities here, but
we can talk about the ways to pass parameters directly to LaTeX from R Markdown.
Keep in mind, though, that any LaTeX-specific options you use will not be translated
properly into other formats, like HTML or MS Word.

There are two main ways to pass information from R Markdown to the LaTeX ren‐
dering engine:

1. Pass LaTeX directly to the LaTeX compiler.
2. Set LaTeX options in the YAML header.

If you want to pass LaTeX commands directly through to the LaTeX compiler, you
can use the LaTeX command beginning with \. The limitation is that if you knit the
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document to any format other than PDF, the command following the slash is com‐
pletely omitted from the output.

For example, if we put this phrase into our R Markdown source:

Sometimes you want to write directly in \LaTeX !

it will be rendered as shown in Figure 16-13.

Figure 16-13. LaTeX typeset

However, if you render your document to HTML, the \LaTeX command will be drop‐
ped completely, leaving you with an unappealing blank in your document.

If you want to set global options for LaTeX, you can do so by adding parameters to
the YAML header in your R Markdown document. The YAML header has top-level
metadata as well as subdata for some options. Different parameters are set at different
levels of indentation, so we typically look them up in R Markdown: The Definitive
Guide just to be sure.

For example, if you have some previously written LaTeX content and you want to
include it in your document, you can add this prewritten content in three different
places in your document: in the header, before the body content, or after the body
content at the end. If you were adding external content in all three sections, your
YAML header would look something like this:

---
title: "My Wonderful Document"
output:
  pdf_document:
    includes:
      in_header: header_stuff.tex
      before_body: body_prefix.tex
      after_body: body_suffix.tex
---

Another common LaTeX option to use is a LaTeX template for formatting your docu‐
ment. Many templates are available online, and some companies and schools have
their own templates. If you want to use an existing template, you can reference it in
the YAML header like this:

---
title: "Poetry I Love"
output:
  pdf_document:
    template: i_love_template.tex
---
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You can also turn on or off page numbering and section numbering:

---
title: "Why I Love a Good ToC"
output:
  pdf_document:
    toc: true
    number_sections: true
---

Some LaTeX options, however, get set with top-level YAML metadata:

---
title: "Custom Report"
output: pdf_document
fontsize: 12pt
geometry: margin=1.2in
---

So when you are setting LaTeX options, consult the R Markdown documentation to
determine if the option you are setting is a suboption of the output: parameter or its
own top-level YAML option.

See Also
See the section “PDF document” in R Markdown: The Definitive Guide.

See also the Pandoc template documentation.

16.14 Generating Microsoft Word Output
Problem
You would like to create a Microsoft Word document from an R Markdown docu‐
ment.

Solution
In RStudio, click on the down arrow next to the button labeled Knit at the top of the
code editing window. When you do, you’ll get a drop-down list of all the output for‐
mats available for your current document. Select the “Knit to Word” option, as shown
in Figure 16-14.
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Figure 16-14. Knit to Word

This will move word_document to the top of your YAML output options and then
knit your R Markdown document to Word:

---
title: "Nice Title"
output:
  word_document: default
  pdf_document: default
---

Discussion
Knitting to Microsoft Word is helpful in businesses and scholastic environments
where supervisors and collaborators expect documents in Word format. Most R
Markdown features work very well in Word, but there are a few tweaks we have
found to be helpful when using Word output.

Microsoft has its own equation editing tool. Pandoc will coerce your LaTeX equations
into MS Equation Editor, which works well with most basic equations but does not
support all LaTeX equation options. One challenge is that MS Equation Editor does
not support changing fonts for part of an equation. As a result, matrix notation with
fractions and other formulas that require varying fonts can look a bit odd in Word.

Here’s a matrix example that looks good in HTML and PDF:

$$
M = \begin{bmatrix}
       \frac{1}{6} & \frac{1}{6} & 0           \\[0.3em]
       \frac{7}{8} & 0           & \frac{2}{3} \\[0.3em]
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       0           & \frac{7}{9} & \frac{7}{7}
     \end{bmatrix}
$$

Here’s how it renders in these output formats:

M =

1
6

1
6 0

7
8 0 2

3

0 7
9

7
7

But it looks like Figure 16-15 in MS Word.

Figure 16-15. Matrix in MS Word

Any formula using scaling of characters will not work properly in Word. For example,
this:

$( \big( \Big( \bigg( \Bigg($

would look like this in HTML and LaTeX:

but will get simplified in MS Equation Editor, as shown in Figure 16-16.
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Figure 16-16. Equation font scaling in MS Word

The easiest solution for equations in Word is to try your equation first. If you don’t
like the output, take your LaTeX equation to an online free equation editor, render it
there, and save it as an image file. Then include that image file in your R Markdown
document, ensuring that your Word documents have rendered equations that look as
good as HTML or LaTeX documents. You will probably want to save your LaTeX
equation source in a text file just to make sure you can alter it easily later.

Another challenge with Word output is that often figures don’t look quite as good as
they do in HTML or PDF. Take this example of a line graph:

```{r}
mtcars %>%
  group_by(cyl, gear) %>%
  summarize(mean_hp=mean(hp)) %>%
  ggplot(., aes(x = cyl, y = mean_hp, group = gear)) +
    geom_point() +
    geom_line(aes(linetype = factor(gear))) +
    theme_bw()
```

In a Word document this image appears as shown in Figure 16-17.

Figure 16-17. Graph in Word

542 | Chapter 16: R Markdown and Publishing



This looks pretty good, but when printed, the image looks a little blocky and not
sharp.

You can improve this by increasing the dots per inch (dpi) setting used when knitting
the output. This will help make the output smoother and sharper:

```{r, dpi=300}
mtcars %>%
  group_by(cyl, gear) %>%
  summarize(mean_hp=mean(hp)) %>%
  ggplot(., aes(x = cyl, y = mean_hp, group = gear)) +
    geom_point() +
    geom_line(aes(linetype = factor(gear))) +
    theme_bw()
```

To show the improvement in appearance, we’ve stitched together a composite image
showing the default low dpi on the left and the higher dpi on the right in
Figure 16-18.

Figure 16-18. Image resolution in Word (default low dpi in left half, higher dpi on right)
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In addition to images, table output in Word sometimes is not as customized as we
desire. Using kable, as illustrated in previous recipes, produces a good, no-frills table
in MS Word (see Figure 16-19):

library(knitr)
myTable <- tibble(x = c(1.111, 2.222, 3.333),
                 y = c('one', 'two', 'three'),
                 z = c(5, 6, 7))
kable(myTable, caption = 'My Table in Word')

Figure 16-19. A table in Word

Pandoc puts the table in a Microsoft table structure inside the Word document. But,
just like with tables in PDFs or HTML, we can use the flextable package in Word
too:

library(flextable)
regulartable(myTable)

which gives us Figure 16-20 in Word.

Figure 16-20. A regulartable in Word
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We can tap into the rich formatting features of flextable and pipe chains to adjust
the column widths, add background color to our headers, and make the header font
white:

regulartable(myTable) %>%
   width(width = c(.5, 1.5, 3)) %>%
   bg(bg = "#000080", part = "header") %>%
   color(color = "white", part = "header")

which gives us Figure 16-21 in Word.

Figure 16-21. A customized regulartable in Word

For details on all the customizable options in flextable, see the flextable vignettes
and the flextable online documentation.

Knitting to Word allows a template to control the formatting of your Word output. To
use a template, add reference_docs: template.docx to the YAML header:

title: "Nice Title"
output:
  word_document:
     reference_docx: template.docx

When you knit an R Markdown file to Word using a template, knitr maps the for‐
matting of elements in your source document to styles in the template. So if you want
to change the font of the body text, you can set the body text style in a Word template
to your desired font. Then knitr will use the template style in the new document.

A common workflow when using a template for the first time is to knit your docu‐
ment to Word without a template, then open the resulting Word document, adjust the
styles of each section to your preference, and use the adjusted Word document as a
template in the future. This way, you don’t have to guess what style knitr is using for
each element.

See Also
See the flextable vignette on formatting, vignette('format','flextable'), and
the flextable online documentation.
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16.15 Generating Presentation Output
Problem
You would like to create a presentation from an R Markdown document.

Solution
R Markdown and knitr support creating presentations from R Markdown docu‐
ments. The most common formats for presentations are HTML (using the ioslides
or Slidy HTML templates), PDF with Beamer, or Microsoft PowerPoint. The biggest
difference between R Markdown documents and R Markdown presentations is that
presentations default to landscape layout (wide, not long), and every time you create
a second-level header starting with ##, knitr will create a new “page” or slide.

The easiest way to get started with presentations with R Markdown is to use RStudio
and select File → New File → R Markdown…, then choose one of the four presenta‐
tion formats offered by the dialog in Figure 16-22.

The four classes of presentations map to the three major classes of documents dis‐
cussed in previous document recipes.

When it comes time to knit your document to an output format, in RStudio you click
the down arrow next to the Knit button and select the type of presentation you would
like to produce from the drop-down list, as shown in Figure 16-23.
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Figure 16-22. New R Markdown Presentation dialog

Figure 16-23. Knit: presentations
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Discussion
Knitting to a presentation format is very similar to knitting to a regular document,
only with different output names. When you use the Knit button in RStudio to
choose your output format, RStudio moves your selected output format to the top of
the output options in the YAML header of your document, then runs rmark
down::render("your_file.Rmd"), which knits to the topmost format in your YAML
header.

For example, if we selected “Knit to PDF (Beamer)”, the header of the presentation
might look like this:

---
title: "Best Presentation Ever"
output:
  beamer_presentation: default
  slidy_presentation: default
  ioslides_presentation: default
  powerpoint_presentation: default
---

Most of the HTML options discussed in previous recipes apply to Slidy and ioslides
HTML presentations. Beamer is a PDF-based format, so most LaTex and PDF
options discussed in previous recipes apply to Beamer. And last, but never least,
PowerPoint is a Microsoft format, so the caveats and options discussed previously
about Word documents apply to PowerPoint as well.

See Also
The other recipes related to R Markdown output can be helpful: see Recipe 16.12,
Recipe 16.13, and Recipe 16.14.

16.16 Creating a Parameterized Report
Problem
You would like to run the same report periodically with different inputs.

Solution
R Markdown documents can be created with parameters in the YAML header that
can then be used as variables in the document body. The parameters are stored as
named items in a list called params, which you can access in your code chunk:

---
output: html_document
params:
  var: 2
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---
```{r}
print(params$var)
```

Later, if you want to change the parameter(s), you have three options:

• Edit the R Markdown document and then render it again.
• Render the document from within R using the command rmarkdown::render,

passing parameters as a list:
rmarkdown::render("test_params.Rmd", params = list(var=3))

• Using RStudio, select Knitr → Knit with Parameters, and RStudio will prompt
you for parameters before knitting.

Discussion
Using parameters in R Markdown is very helpful if you have a document you need to
run regularly with different settings. A common use case is a report in which only a
date setting and a label are changed each time it runs.

Here’s an example R Markdown document illustrating how parameters can be passed
into the text of a document:

---
title: "Example of Params"
output: html_document
params:
  effective_date: '2018-07-01'
  quarter_num: 2
---

## Illustrate Params
```{r, results='asis', echo=FALSE}
cat('### Quarter', params$quarter_num,
    'report. Valuation date:',
    params$effective_date)
```

The rendered R Markdown results in Figure 16-24.
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Figure 16-24. Parameter output

In the header of the chunk, we set results='asis', because our code chunk is going
to generate Markdown text directly. We want to dump that Markdown into our docu‐
ment without prefixing it with ##, which is what normally happens to the output
from a code chunk. In addition, inside the code block we use cat to concatenate our
text together. We use cat here instead of paste because cat performs less conversion
on the text than calling paste. This ensures that the text is simply put together and
passed into the Markdown document without being altered.

If we want to render the document with other parameters, we can edit the default val‐
ues in the YAML header and then knit, or we can use the Knitr menu (Figure 16-25)
to knit with parameters.

Figure 16-25. Knit with Parameters… menu option

This then prompts us for parameters, as shown in Figure 16-26.

Or we can render the document from R, passing new parameters as a list:
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rmarkdown::render("example_of_params.Rmd",
params = list(quarter_num=2, effective_date='2018-07-01'))

As an alternative to using the Knitr menu, if we want to be prompted for parameters
we can set params="ask" when we call rmarkdown::render and R will prompt us for
inputs:

rmarkdown::render("example_of_params.Rmd", params="ask")

Figure 16-26. Knit with Parameters dialog

See Also
See the section “Parameterized reports” in R Markdown: The Definitive Guide.
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16.17 Organizing Your R Markdown Workflow
Problem
You want to organize your R Markdown project so that it’s efficient, flexible, and pro‐
ductive.

Solution
The best way to get control of your project is to organize your workflow. Organiza‐
tion takes a bit of effort, so it might be overkill to have a highly structured project if
your R Markdown document is only one page of output with three small code
chunks. However, most people find that organizing their workflow is worth the added
effort.

Here are four tips for organizing your workflow so that your work is easier to read,
edit, and maintain in the future:

1. Use RStudio Projects.
2. Name directories intuitively.
3. Create an R package for reused logic.
4. Keep R Markdown focused on content, and source logic.

Use RStudio Projects
RStudio includes the notion of an RStudio Project (note the capital P), which is a way
of storing metadata and settings related to a logical project. When you open a Project
in RStudio, one of the things that RStudio does is set the working directory to the
path where the Project is located. Every Project should live in its own unique direc‐
tory. All code is run from that working directory, which means your code should
never contain setwd commands that would keep your analysis from being run on
someone else’s computer.

Name directories intuitively
It’s a good idea to organize the files in your Project directory into subdirectories and
then name your files thoughtfully inside those directories. As the number of files in a
project increases, so does the importance of organization and intuitive naming. One
common structure recommended by the team at Software Carpentry is this:
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my_project
 |- data
 |- doc
 |- results
 |- src

In this structure, raw input data goes in the data directory, documentation goes in
doc, results of analyses go in results, and R source code goes in src.

Once you have a directory structure to put your work into, the individual files should
be named in a way that’s readable to both humans and computers. This helps with
maintaining your code in the future and saves a lot of headaches. Some of the best
advice we’ve seen on file naming comes from Jenny Bryan:

• Use underscores instead of spaces in filenames; spaces cause too many headaches
later.

• If you put dates in your filenames, use ISO 8601 dates: YYYY-MM-DD.
• Use a prefix on your scripts so they sort properly—for example, 00_start_here.R,

01_data_scrub.R, 02_report_output.Rmd.

Using numeric prefixes on your scripts and using ISO 8601 dates helps ensure that
your files sort in a meaningful way by default. This is very helpful when someone else,
or even future you, tries to make sense of your project.

Create an R package for reused logic
Once you have a good directory structure and rational naming, you should give some
thought to what logic goes where. You should consider building an R package for
logic you use in more than three different projects. R packages are collections of func‐
tions and other code that provide functionality not available in Base R. Throughout
this book we’ve used a number of packages, and there’s nothing stopping you from
writing a package for your functions that you use over and over. Building a package is
out of scope for this book, but Jim Hester’s presentation “You Can Make a Package in
20 Minutes” is one of the best introductions to the topic.

Keep R Markdown focused on content, and source logic
Most of us start a project with one big .Rmd file full of all our logic in code chunks. As
the document grows and the code chunks expand, this can get difficult to manage.
You may find that your code formatting is intermingled with code that reshapes data
and fetches things from files and databases. Having logic, formatting, and presenta‐
tion code all intermingled can make it hard to alter your code later and even harder
for someone else to understand your code. We recommend keeping the code blocks
in your main reporting .Rmd file focused on content, tables, and figures and having
your manipulation logic stored in *.R files that you pull in with the source function.
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Using source to pull in external R code involves passing the filename of your R file to
the source function:

source("my_logic_file.R")

R will run the entire contents of my_logic_file.R at the place in your code where
you call source. A good pattern is to source files that extract data frames and reshape
your data into the form you need to make graphs or tables in your document. Then,
in your main .Rmd file, you keep mostly code that prepares graphs and tables.

Keep in mind that this is a design pattern for managing large, unwieldy R Markdown
files. If your project is not very large, you should probably just keep all your code in
the .Rmd file.

See Also
Useful references include:

• “Project-oriented workflow” tidyverse documentation
• Project Management with RStudio from Software Carpentry
• R Packages by Hadley Wickham (O’Reilly)
• Naming Things by Jenny Bryan
• “Good Enough Practices in Scientific Computing” by Greg Wilson, et al.
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Symbols
! (logical negation) operator, 46
!= (inequality) operator, 40, 46
# beginning comment lines, 100, 102, 416
#! (shebang) line, 79
## ending comment lines, 416
% (percent sign) in format strings for dates, 206
%% (modulo) operator, 47, 398
%*% (matrix multiplication) operator, 47, 155,

413
%/% (integer division) operator, 47, 413
%>% (pipe) operator, 47, 49, 165, 392, 413
%in% (contained in) operator, 47
%…% (binary) operator, 47, 413
& (logical and) operator, 43, 46, 55
&& (short-circuit and) operator, 46, 55
() (parentheses)

enclosing an assignment, 394
enclosing conditions in if-else statement,

501
enclosing function parameters, 504
grouping with, 54, 329
in function calls, 52

* (asterisk)
multiplication and inclusion of constituent

terms, 351
multiplication operator, 44, 46

+ (plus sign)
connecting graphical elements in ggplot2,

269
connecting graphical elements in patch‐

work, 328
continuation prompt, 8, 53
unary plus or addition operator, 44, 46

, (comma)
as decimal mark, 103
separator, 101, 103, 193

- (unary minus, subtraction) operator, 42, 44,
46
using minus before variable names with

select, 172
--- text beginning/ending with, in R Markdown

documents, 519
---- ending comment lines, 416
-> (assignment) operator, 30, 46
->> (assignment) operator, 46
. (dot)

dot operator, 51
indicating missing values, 99
names beginning with, 32, 92
View tab in RStudio, 392

/ (division) operator, 44, 46
/ (forward slash)

in patchwork groupings, 329
selecting year and month ranges, 458

/ (forward slash) as path separator, 56, 94
: (colon) operator, 38, 42, 47, 351
:: (double colon) operator, 17
; (semicolon) separators, 103
< (less than) operator, 40, 46
<- (assignment) operator, 29, 46

mistakes with, 52
<<- (assignment) operator, 30, 46
<= (less than or equal to) operator, 40, 46
= (assignment) operator, 30, 46
== (equality) operator, 40, 46

mistaking = operator for, 53
==== ending comment lines, 416
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> (command prompt), 8, 53
> (greater than) operator, 40, 44, 46
>= (greater than or equal to) operator, 40, 46
? (help) operator, 46
?? (search shortcut), 16
[[]] (list indexing), 55, 112, 128, 133, 142

accessing single list elements, 144
in list expressions, 166, 169

[] (square brackets)
accessing contents in data frames, 133
accessing list elements, 128
extracting sublists with, 144
in list expressions, 166, 169
in subsetting, 348
vector indexing, 41

\ (backslash) in Windows paths, 56, 94
\n (newline) character, 28
\\ (double backslash), escaping single backslash,

56, 94
^ (exponentiation, interaction term) operator,

44
{} (curly braces)

enclosing code blocks, 501
enclosing function body, 504

| (logical or) operator, 43, 46, 55
|| (short-circuit or) operator, 46, 55
~ (tilde) in formulas, 192, 336, 355

A
abline function, 320
ACF (see autocorrelation function)
acf function, 473
ADF (Augmented Dickey-Fuller ) test, 494
adf.test function, 410, 494
adfTest function, 495
aesthetics, 266

aes function, 267
fill parameter of aes function, 299
grouping parameters in aes function, 282
passing name of categorical variable to aes,

311
shape parameter of aes function, 278

Alt key combinations, 48
alternative hypothesis, 233
Amazon Web Services (AWS), 85
analysis of variance (ANOVA), 334

comparing linear models with, 388-389
creating an interaction plot, 382-383

finding differences between means of
groups, 383-386

on differences between groups, 141
one-way, 334

performing, 380-382
robust, performing (Kruskal-Wallis test),

386
table, 335, 342

anonymous functions, 510
anova function, 334, 388
aov function, 141, 381, 383
append function, 136

inserting data into a vector, 137
Applied Linear Regression Models (Kutner et

al.), 335
apply family of functions, 181
apply function, 185, 187
apply.monthly function, 470
args function, 14
arguments, 504

function, taking from a list, 411-413
help with, 14
mistakenly passing multiple arguments to

single-argument function, 55
arima function, 483, 485, 486
arithmetic operations

on time series data, 466
on vectors, 44-45
operator precedence, 46

arm package, 369
arrange function, 403
arrays, 131
as.character function, 177, 198, 205
as.complex function, 177
as.data.frame function, 158, 178

using with map, 161
as.Date function, 196, 204, 456
as.integer function, 177
as.list function, 178
as.logical function, 177
as.matrix function, 178, 402
as.numeric function, 177
as.POSIXct function, 196
as.POSIXlt function, 196, 208
as.vector function, 178, 203, 402
as.xts function, 449
as.zoo function, 449
ASCII

dataset stored in, 116
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drawing tables using ASCII characters, 530
saving in ASCII format, 123
writing tabular data to ASCII file in CSV

format, 103
assignment

-> (assignment) operator, 30
<- (assignment) operator, 29
<<- (assignment) operator, 30
= (assignment) operator, 30
data elements to a vector, 136
populating list elements via, 148
printing results of, 394

as_tibble function, 159
atomic values/data types, 177
attr function, 404
attributes

attributes Base R function, 110
stripping from variables, 404

augment function, 364, 369
Augmented Dickey-Fuller (ADF) test, 410, 494
authentication to MySQL databases, 118
author, setting for R Markdown document, 519
auto.arima function, 482, 485, 486, 488
autocorrelation

testing residuals for, 376-378
testing time series for, 475

autocorrelation function (ACF), 488, 489
graphing for residuals, 377
plotting for a time series, 473-475

autoplot function, 481, 491
autoregression (AR) coefficients in ARIMA

model, 476
autoregressive integrated moving average

(ARIMA) model, 474, 476
fitting to a time series, 482-486
making forecasts from, 490
removing insignificant coefficients, 486
running diagnostics on, 487-490

averages, 182, 186
(see also mean; mean function)
computing moving average of a time series,

467

B
background grid of ggplot graphics, changing,

270-274
bandwidth parameter in smoothing data, 496
bar charts

adding confidence intervals, 295-298

coloring or shading, 298-300
creating, 292-295

Base R documentation, 12
batch scripts, running, 77-79
Beamer (PDF-based format), 548
Bernoulli trials, generating random sequence

of, 222
beta distributions, 330
beyond basics (see techniques, advanced)
binary data

binary-valued variable, predicting, 436-438
save function writing, 123

binary operators
defining your own, 413
special meanings inside regression formulas,

359
bind_rows function, 161
binning data, 396
binomial coefficients, 216
binomial distribution, 213

cumulative probability function pbinom,
223

density function dbinom, 223
pbinom function, 224

bins (in histograms), 313
blogdown package, 515
body of a function, 504
bookdown package, 515
Boolean values, 39
boot function, 439
boot.ci function, 440
bootstrap procedures, 247

bootstrapping a statistic, 438-441
sampling with replacement, 221

bootstrap replications, 439
bootstrap samples, 439
Box.test function, 475
boxcox function, 363-368
boxplots

creating, 309-311
creating one for each factor level, 311-313
of clusters, 436

Box–Cox procedure, 363-368
Box–Pierce test for autocorrelation, 475
broom library, 364, 369
bulleted lists, 521

C
c operator, 34, 55, 87, 135
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calendar period, applying function to time ser‐
ies by, 469-471

call by value, 499
CALL statements (SQL), 119
canonical correlation, 19
car package, 371, 378
Cartesian product, 202, 401-402
case or switch statements, 500
case_when function, 192, 507
cat function, 28

flattening a list into a vector for, 150
redirecting output to file with file argument,

90
redirecting output to file with sink function,

90
using format function with, 89

categorical variables, 132, 139, 291
(see also factors)
in ggplot boxplot, 311
testing for independence, 239

cbind function, 138, 163, 173, 395, 412
Ccf function, 478
character data, 188, 197

(see also strings)
converting atomic values to, 177
in creation of data frames vs. tibbles, 159,

161
map_chr function, 182
using character strings for switch labels, 507

checkresiduals function, 488
chi-squared test, 240
chisq.test function, 240
choose function, 215
chooseCRANmirror function, 75
chron package, 196
classes

defining abstract type of objects, 129
for dates and time, 195

deciding which to select, 197
revealing object's class with class function,

406
cloud, installing R and RStudio in, 84
cluster and multiprocess, remote plan using,

421-423
clusters, finding in data, 433-436
CMD BATCH subcommand, 77
Cmd key combinations, 48
code

controlling results shown in R Markdown
documents, 525

inserting R code in R Markdown document,
523

reindenting automatically, 513
timing running of, 408-410
using sections, 416

code blocks
options controlling display in R Markdown,

525
running in R scripts, 77
saving in a script, 48

code chunks, 523
coefficients, 333, 407

(see also regression coefficients)
autoregression (AR) coefficients in ARIMA

model, 476
calculating coefficient of variation, 504
for ARIMA model fitted to time series, 483
for ARIMA model, removing insignificant

coefficients, 486
moving average coefficients, 474

coefplot function, 369
coin toss, 401

generating random sequence of, 222
collect function, 121
colnames attribute, 156
colon operator (see : (colon) operator, under

Symbols)
colors

adding to ggplot bar chart, 298-300
color parameter in geometric object func‐

tions, 307
plotting a variable in multiple colors,

322-325
specifying for lines in a line chart, 302

colSums function, 394
columns

changing names in data frames, 170
column as sort key for a data frame, 403
creating new column in a data frame based

on a condition, 192-193
data in, using to initialize a data frame, 158
defining width with read_fwf function, 95
excluding by name in data frames, 172
in data frames, 133
in matrices or data frames, applying a func‐

tion to, 186-188
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in tables in R Markdown, setting justifica‐
tion, 531

merging data frames by a common column,
174-176

putting data into and printing, 395
selecting by name in data frames, 168-170
selecting by position in data frames, 165-168
selecting one column from a matrix, 157

combinations
counting number of, 215
generating, 216
generating all combinations of several vari‐

ables, 401-402
combinations function, 203
combn function, 216
comma-separated values files (see CSV files)
command line

+ prompt, 8
> prompt, 8
editing, 8
starting R from, using --quiet option, 414

commandArgs function, 78
commands

entering, 7-9
shortcuts, 9

saving result of previous command, 65
viewing command history, 64-65

comments, 416
comment parameter in read_table2 func‐

tion, 100
in read_csv function, 102

compact function, 151
comparison operators (== != < > <= >=), 39, 46
complex atomic type, 177
computer scientists, meaning of data frames to,

134
conditional branch, 500
conditional execution, 500
conditionals

creating new column in a data frame based
on a condition, 192-193

if-else statements, 500-502
removing list elements using a condition,

152-153
conditioning plots, 290
conf.level argument, 249
confidence intervals, 235

adding to a bar chart, 295-298
bootstrapping for statistics, 438-441

checking for intercepts in regression, 346
computing limits of, 227
finding for ARIMA model coefficients, 485
for ARIMA model coefficients, 486
for regression coefficients, 341, 368
forming for a mean, 244-245
forming for a median, 246
forming for a proportion, 248
of a correlation, 255

confint function, 368
connection to a file, writing output to, 91
connection to MySQL database, 118
contained in operator (%in%), 47
contingency tables, 238
continuation prompt (+), 53
continuous distributions, 213

calculating probabilities for, 225
quantile functions for, 228

coord_flip function, 310
coplot function, 292
cor function, 348
cor.test function, 255
coredata function, 451, 494
corporate executives, meaning of data frames

to, 134
correlation

autocorrelation function of a time series,
473

calculating correlation matrix from a data
frame, 172

calculating with cor function, 36
finding lagged correlations between time

series, 478
partial autocorrelation function for time

series, 476-478
testing for autocorrelation in time series,

475
testing for significance, 255-257

covariance, 339, 375
calculating with cov function, 36

CRAN (Comprehensive R Archive Network)
CRAN Search, 22
crantastic.org, searching for packages by

keyword, 21
distributions in downloadable packages, 215
downloading and installing R from, 2-4
installing packages from, 72-73
list of task views, 21
package documentation, 1
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packages for dates and time, 196
setting or changing default mirror, 74

cross-correlation function, 478
cross-sectional data, 448
cross-tabulations (see contingency tables)
CSV (comma-separated values) files

read.csv function, 509
reading from, 101-103
reading from the web, 104
writing to, 103

Ctrl key combinations, 48
cubic spline, 462
cumsum function, 172
cumulative probability function, 224
customizing R startup, 81-84
cut function, 396
cutree function, 433

D
dampened sine wave, 327
data

binning, 396
computer-oriented representations of, 113
displaying partial, 391
entering from the keyboard, 87
finding clusters in, 433-436
self-describing, 100

data frames
accessing content of, 133
appending rows to, 162-165
applying a function to each column, 37,

186-188
applying a function to every row, 184
changing names of columns, 170
combining two, 173
comparison to tibbles, 134
converting between other structured types,

178
converting list of vectors to, 141
converting to z-scores, 243
creating new column based on a condition,

192-193
creating vs. creating tibbles, 159
defined, 133
different meanings coming from different

backgrounds, 133
excluding columns by name, 172
flattening, 402
formatting in R Markdown document, 531

functions not understanding, misusing, 56
in linear regressions, 336
initializing from column data, 158
initializing from row data, 160-162
merging by common column, 174-176
multiple, adding to one plot, 305
removing NA value from, 171
selecting columns by name, 168-170

using list expressions, 169
using matrix-style subscripting, 169
using select function, 169

selecting columns by position, 165-168
using list expressions, 166
using matrix-style subscripting, 167
using select function, 165

sorting, 403
summary of, 236
summing rows and columns, 394
writing to Excel file, 107, 109

data function, 70
data structures, 127

(see also data frames; factors; lists; matrices;
tibbles; vectors)

representing time series data, 449
data transformations (see transformations)
data types

dynamic, 30
in vectors, 34
R as typeless language, 499
structured, converting to another type,

178-180
value having atomic type, converting to

another, 177
data.frame command, 115, 158

converting all factors to characters, 161
stringsAsFactors parameter, 161

datapasta package, 88
datasets

built-in, viewing, 70
calculating quantiles and quartiles of, 240
example, supplied with R, 24
factor analysis on, 441-445

Date class, 195
dates and time, 195-211

classes for, 195
deciding which to select, 197

converting a date into a string, 205
converting a string to a date, 204
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converting year, month, and day into a date,
206

creating a sequence of dates, 210
Date object and Date class, 129
dates or datetime in time series analysis, 448
extracting parts of a date, 208
getting the current date, 204
getting the Julian date, 208
indexing time series by date, 456
output of timing code execution, 409
setting date for R Markdown document, 519
time representation in time series analysis,

451
vector of, in time series data representation,

449
dbDisconnect function, 119
dbGetQuery function, 119
DBI backend packages, 122
DBI::dbConnect function, 118
dbinom function, 223
dbplyr package, accessing a database with,

120-122
defensive programming, 509
degrees of freedom (DOF), 320
delimiters, 200

delimiter argument of strsplit, 201
dendrograms, 433
density estimate, adding to histogram, 315-316
density function, 224

plotting for probability distributions,
228-231

dependent variables, 336
(see also response)

detach function, 70
detecting errors, 509
devtools package, 74
dice, rolling, finding all combinations of results,

401
diff function, 225, 465-466, 470

computing difference of logarithms of pri‐
ces, 467

digits, formatting for printing, 88-90
dimensions

assigning to a vector, 155
dropping or retaining in selecting row or

column from a matrix, 157
giving to a list, 131
giving to a vector, 130
of matrix variable, stored in attribute, 404

discard function, 152
discrete distributions, 213

calculating probabilities for, 223-225
density functions and distribution functions

for, 224
quantile functions for, 227

display options for R code in R Markdown, 525
dist function, 433, 436
distribution functions, 224, 225
distributions

getting help on, 215
names of, 213
random number generators for, 217
testing two samples for same distribution,

260
do.call function, 412
Docker, 85
documentation, 1

installing locally, 4
searching supplied documentation, 16-17
supplied with R, viewing, 12-14

Documents directory (Windows), profile
scripts in, 81

dpill function, 495
dplyr package, 71, 120

arrange function, 403
data transformations with, 181
first and last functions, 456
joins, 176
rename function, 170

dplyr::count function, 67
dplyr::lag function, 464
dput function, 24, 123
dump function, 123
durbinWatsonTest function, 378
Durbin–Watson test, 376-378
dwtest function, 377

alternative option, 378
dynamically typed languages, 30

E
echo option for code display, 525
eigen function, 428
eigenvalues or eigenvectors, calculating, 428
environment variables

getting and setting, 415
setting system environment variables, 81
system environment variable R_HOME, 80

environments
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in R search path for functions, 67
RStudio Environment tab, 63

equality operator (see ==, under Symbols)
equation editor (Microsoft), 540
error messages, suppressing, 410
error terms (in linear regression), 336
errors

in R code chunks in R Markdown, 526
protecting against, 509
signaling in code, 508

escaping special characters with backslash, 94
eval option, 525
example function, 15
Excel

meaning of data frames to a user, 134
nested IF statements, 192
reading data from files, 105-107
writing R data frames to, 107-109

executing R in parallel
locally, 417-419
remotely, 420-423

expand.grid function, 203, 401
exponential distributions, 321
expressions

incorrectly continuing across lines, 53
using in regression formula, 358-360

extract2 function, 111

F
F statistic, 345, 377
facets

facet_wrap function, 290
functions for, 266

factanal function, 441
factor analysis, performing, 441-445
factor function, 139

levels argument, 140
factors, 132

constructing data frames from, 158
conversion of character data to in data

frame creation, 159, 161
creating, 139
creating parallel factor from combined vec‐

tors, 140
summary of, 236
tabulating and creating contingency tables,

238
use in building data frames, 133

FALSE and TRUE logical values, 39

faraway package, 382
fct_order function, 294, 298
files

dealing with Cannot Open File in Windows,
94

listing, 91, 93
with complex or irregular structure, reading

data from, 113-118
fill in ggplot charts, 299
filling or padding time series data, 460-463
filter function, 50
first and last functions, 455
fitdistr function, 320
fitting ARIMA model to time series, 482-486
fixed-width records, reading, 94-97
flexdashboard package, 515
flextable package, 544
floating-point numbers

map_dbl function, 182
R formatting for output, 88

for loops, 500
iterating over vector or list elements,

502-503
forcats package, 294
forecast function, 490
forecast package, 478, 482
Forecasting: Principles and Practice (Hyndman

and Athanasopoulos), 486
forecasts

making from an ARIMA model, 490
plotting a time series forecast, 491

format function, 89, 205
format strings for dates, 204

converting American-style date to ISO stan‐
dard, 205

formatting document text in R Markdown, 520
fpp2 package

euretail dataset, 486
Time-Series object types, 494

full_join function, 175, 175
function definition, using inline, 511
function keyword, 503
functions, 500

accessing in a package, 69, 70
applying rolling function to time series,

471-472
applying to time series by calendar period,

469-471
arguments, taking from a list, 411-413
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assignment statements using <<- operator,
30

computing logarithm or square root of time
series, 467

creating anonymous function, 510
creating pipeline of function calls, 49-51
defining, 503-505
defining defaults for parameters, 507
distribution-related, parameter require‐

ments, 214
extracting regression statistics from linear

models, 339
finding relevant functions, 21
finding via the search path, 67
getting help on, 14-15
graphing value of, 325-328
local variables in, 505
multiparameter, minimizing or maximizing,

426-428
not understanding data frames, 56
pure, 181
reusable, creating collection of, 511
searching for help in supplied documenta‐

tion, 16-17
single-argument vs. multiple arguments, 55
single-parameter, minimizing or maximiz‐

ing, 425
fUnitRoots package, 495
furrr package, 420
future_map function, 419, 420

G
gamma distribution, 316

dgamma density function, 229
gather function, 303
gcd function, 189, 504
geometric object functions, 265

geom_abline function, 287
geom_bar function, 292, 297
geom_boxplot function, 309
geom_density function, 315
geom_histogram function, 313
geom_hline function, 308
geom_line function, 301, 305

linetype. col, and size parameters, 302
geom_point function, 267, 285, 301, 322
geom_qq function, 320, 321
geom_ribbon function, 230
geom_segment function, 325

geom_smooth function, 284, 286
geom_vline function, 307

getTables function, 106
getwd command, 59
GGally package, 289
ggpairs function, 289
ggplot function, 263

creating smoothed time series data plot, 496
piping function call results into, 50
plot in R Markdown, 526
plotting regression residuals, 364, 369

ggplot2 package, 71, 263
defining components of graphs, 265
long vs. wide data, 266
notes on the basics, 265
plotting density function for probability dis‐

tributions, 228-231
use to plot time series forecast, 491

ggsave function, 331
Git, using, information on, 84
GitHub

installing packages from, 73
patchwork package, 328
R Markdown source for this book, 515
R Markdown: The Definitive Guide, 515
using, information on, 84

glm function, 437
Global Options in RStudio, 10
global variables, 30, 500

local variables and, 505
Google Cloud Platform, 85
graphics, 263-267

(see also plots)
common output settings for in R Mark‐

down, 528
ggplot2 basics, 265
in packages other than ggplot2, 266

graphics package, 263
grid package, 331
grid size, 496
grouping

applying a function to groups of data, 191
patchwork support for, 329
using categorical variables, 132

groups
creating scatter plot of multiple groups,

278-280
finding differences between means of,

383-386
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testing for equal proportions, 257
group_by function, 191
gsub function, 201
gtools package, 203

H
haven library, read_sas function, 110
hclust function, 433
head function, 50, 71, 391, 454
header lines

column names in, 100
in CSV files, 101

headings, inserting in R Markdown documents,
521

help
? operator, 46
for functions, 14-15
for options, 82
for probability distributions, 215
for regular expressions, 201
help function, 17, 71
searching R mailing lists, 22
searching web for help on R, 18-21
sources of, 1

help.search function, 16
help.start function, 12
hidden names, 32

list.files ignoring, 92
hierarchical cluster dendrogram, 434
hist function, 315
histograms

adding density estimate to, 315-316
creating, 313-315

history function, 64
home directory

locating for R, 79
profile scripts in, 81

“How to Ask Questions the Smart Way” (Ray‐
mond and Moen), 26

HTML
generating HTML document from R Mark‐

down document, 535
matrix notation rendered in, 540
R Markdown output to, 519
reading data from HTML files, 111-113
Slidy and ioslides presentations, 548

html_table function, 111-113
hypothesis testing, 233

I
I(…) operator, 358

surrounding expressions inside regression
formula, 359

if-else statements, 500-502
ifelse function, 502
images

image resolution in Word, 543
saving plots as image in RStudio, 332

increments
in seq function for Date objects, 210, 457
in sequences, 38

indenting code, 513
independent variables, 336

(see also predictors)
indexing

creating logical indexing vector to sample
every nth element, 398

indexes for xts or zoo objects, 450
lists, 55, 112, 142

double vs. single brackets, 128, 145
scalars, 130
to select row or column from a matrix, 157
vectors, 41-44
xts or zoo objects, 456

influence.measures function, 375
influential observations, 375-376
inner_join function, 174
install.packages function, 72, 111
installed.packages function, 68
installing R, 2-4

in the cloud, 84
installing RStudio, 4
install_github function, 74
integers

converting atomic values to, 177
map_int function, 182
switch labels, 506

integrated development environments (IDEs)
RStudio, 4

interaction plot, creating, 382-383
interaction terms, 359, 361

generating with stepwise regression, 356
performing linear regression with, 350-352

interaction.plot function, 382
intercepts, 336

calculating in orthogonal regression, 432
performing linear regression without inter‐

cept, 345-346
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interquartile range (IQR), 310
interrupting R, 11
intersection of all dates, 460, 462
interval probability, 224, 226
is.character predicate, 152
ISOdate function, 206
ISOdatetime function, 207

J
joins

full_join function, 175
inner_join function, 174
left_join function, 175
right_join function, 175

Julian date, getting, 208

K
k-nearest neighbors algorithm, 508
kable function, 531
kable_styling function, 532
keep function, 153
kernel density estimation (KDE), 316
KernSmooth package, 495
keyboard shortcuts, 48
keyboard, entering data from, 87
keywords (search engine)

broadening your search with, 17
documentation for, 13

knitr package, 545
knitting R Markdown documents, 515
Kolmogorov–Smirnov test, 260
kruskal.test function, 334, 386
Kruskal–Wallis test, 380, 386
ks.test function, 260

L
labels

adding to ggplot graphics, 268
from SAS file read into data frame, 110
in switch function, 506
labs function in ggplot, 327
parameter in cut function, 397

lag function, 463
lagging a time series, 463, 465, 495

finding lagged correlations between time
series, 478

lambda argument, 366
lapply function, 184

last function, 455
.Last.value variable, 65
LaTeX

Beamer and, 548
excluding from HTML output, 536
installing distribution on your computer,

537
Pandoc coercing equations into MS Equa‐

tion Editor, 540
passing information from R Markdown to

LaTeX rendering engine, 537
R Markdown document with data table, 532
using templates to format documents, 538
ways to enter LaTeX in R Markdown, 534

lattice package, 267, 331
histogram function, 315

layers (in ggplot graphics), 266
lazy evaluation, 500
leading data, 464
left_join function, 175
legends, adding or removing in ggplot graphics,

280-283
length function, 197
levels (of factors), 132, 139
library function, 25, 54, 67, 69, 71, 82, 196

using with no arguments to display installed
packages, 68

line charts
changing type, width, and color of lines,

302-304
plotting a line from x and y points, 300-301

linear models, 153
full model, 353
reduced model, 353

Linear Models with R (Faraway), 335
linear regression, 333-380

and ANOVA, 334
comparing models, using ANOVA, 388-389
creating interaction plot, using ANOVA,

382-383
diagnosing model fit, 371-373
finding best power transformation (BoxCox

procedure), 363-368
finding differences between means of

groups, using ANOVA, 383-386
forming confidence intervals for regression

coefficients, 368
forming prediction intervals, 379
getting regression statistics, 339-342
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identifying influential observations, 375-376
multiple, performing, 337-338
performing one-way ANOVA, 380-382
performing robust ANOVA (Kruskal-Wallis

test), 386
performing with interaction terms, 350-352
performing without an intercept, 345-346
plotting regression line of a scatter plot,

284-288
plotting regression residuals, 369
predicting new values from the model, 378
regressing on a polynomial, 360
regressing on subset of your data, 357
regressing on transformed data, 361-363
regressing only variables highly correlating

to your dependent variable, 347-350
selecting best regression variables, 352-357
simple, performing, 335
testing residuals for autocorrelation,

376-378
understanding the regression summary,

342-345
using expression inside a regression for‐

mula, 358-360
lines

newline (\n) character, 28
vertical or horizontal, adding to ggplot

graph, 307-308
Linux

/ (forward slash) path separator, 56
Alt and Ctrl key combinations, 48
exiting RStudio, 9
installing R, 3
shebang line starting with #!, 79
starting RStudio, 5
Sys.getenv function results, 80

list expressions
using to select columns by name in data

frames, 169
using to select columns by position in data

frames, 166
list function, 142

building name/value association list,
147-149

list.files function, 91-93
lists, 128

applying a function to each element,
182-184

applying a function to parallel vectors or
lists, 188-191

building name/value association list,
147-149

bulleted or numbered, inserting in R Mark‐
down documents, 521-523

containing vectors or factors, initializing
into a data frame, 158

converting between other structured types,
178

creating a matrix from, 131, 132
creating and populating, 142-143
data frames as, 133
elements having different modes, 129
elements of different modes (types), 142
flattening into a vector, 150
indexing, 55, 112
printing with print function, 28
removing an element, 149
removing elements using a condition,

152-153
removing NULL elements from, 151
selecting elements by names, 145
selecting elements by position, 144-145
summary of, 236
tags for list elements, 142
taking function arguments from, 411-413
using list functions and operators to exam‐

ine an object, 407
Ljung–Box test, 476, 489
lm function, 153, 333, 336, 480

data parameter, 337, 338
examining return value for object structure,

406
for multiple linear regressions, 337
subset parameter, 357
with no intercept, 346

lmtest package, 377
load function, 123
loading, 442
loadWorkbook function, 107
local polynomials, 496
local variables, 499

creating, 505
locpoly function, 495, 496
log function, 45, 467
logarithmic transformations, 318, 362
logical expressions, 238
logical operators, 43
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mistakes in using, 55
logical values, 39, 178

converting other types to, 177
creating logical indexing vector for sam‐

pling every nth element, 398
logistic regression, 436-438
long vs. wide data (ggplot), 266, 302
loops, 500

iterating over vector or list elements,
502-503

lower.tri function, 203
ls function, 31

forcing to list hidden names, 32
using with rm function, 32

ls.str function, 31
lubridate package, 196

M
Mac systems

R search path vs. Unix search path, 67
shebang line starting with #!, 79
Sys.getenv function results, 80

macOS
/ (forward slash) path separator, 56
Cmd and Opt key combinations, 48
exiting RStudio, 10
installing R, 3
starting RStudio, 5

magrittr package, 111, 413
pipes, 342

mailing lists for R, 2
searching for answer to a question, 22
submitting questions to, 23-26

map function, 182
loops and, 503
using with as.data.frame, 161

map2 function, 189, 190
map2_chr function, 190
map2_dbl function, 190
map_chr function, 182, 183
map_dbl function, 37, 182, 183, 347
map_df function, 187
map_int function, 182
Markdown, 520

(see also R Markdown)
MASS package, 215

datasets in, 71
MASS::fitdistr function, 320
match function, 398

math equations, inserting into R Markdown
documents, 534

Mathematical Statistics with Applications
(Wackerly et al.), 235

matrices, 130
%*% multiplication operator, 47
applying a function to every column,

186-188
applying a function to every row, 185-186
calculating correlation matrix from a data

frame, 172
calculating eigenvalues or eigenvectors, 428
converting between other structured types,

178
special considerations, 180

converting data frame into, 402
converting to vector, 402
converting to z-scores, 243
correlation and covariance, 37
flattening into a vector, 203
giving descriptive names to rows and col‐

umns, 156
heterogeneous, creating from heterogene‐

ous list, 132
initializing, 154
matrix-style subscripting, 167, 169
performing matrix operations, 155
printing with print function, 28
selecting one row or column from, 157
summary of, 236
summing rows and columns, 394
use in building data frames, 133

matrix function, 154
max function, 56
mean

calculating, 35-37
calculating for clusters, 434
calculating in ggplot, 293
comparing for two samples, 252-253
confidence interval for, 235
finding differences between means of

groups, 383-386
forming confidence interval for, 244-245
in example data for linear regression, 335
in ggplot graph line, 308
mean function, 45, 55
pairwise comparisons between group

means, 258-259
rolling mean, 468
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testing mean of a sample, 243
mean function, 14, 238, 242

applying to each column of a matrix, 187
collapsing data frames to matrices for, 402

mean reversion, testing time series for, 492-495
mean_se function, 296
median

calculating, 35
calculating for samples, 221
forming confidence interval for, 246

merge function, 459
messages, suppressing, 410-411, 526
metadata about R Markdown document, 519
Microsoft Word

generating Word document from R Mark‐
down document, 539-545
equations in Word, 540
graphics and charts in Word, 542
tables in Word, 544

R Markdown output to, 519
tables in R Markdown output to, 533

Min and Max regression residuals, 343
min function, 56
minimum or maximum

finding, 399
maximizing multiparameter functions, 426
maximizing single-parameter functions, 425
minimizing multiparameter functions, 426
minimizing single-parameter functions, 425
using min and max functions for index val‐

ues, 461
missing values, 99

(see also NA values)
mistakes (common), avoiding, 52-56
mm/dd/yyyy date format, 205
mode function, 129, 406
models

comparing linear models using ANOVA,
388-389

evaluating with ANOVA, 334
extracting information from linear models

using functions, 340
linear models, 333
model object returned by lm function, 340

modes, 128
different modes in list elements, 142
of vector elements, 35, 127

mondate package, 196
moving average (MA) coefficients, 474

MS Equation Editor, 540
multiprocess and cluster, remote plan using,

421-423
mutate function, 184, 193
mysql client program, 118
MySQL databases

reading from, 118-120
RMySQL DBI backend package, 122

N
n:m expressions, 38
NA (not available) values, 36

filling in, html_table function, 112
in read_table2 function, 99
in vectors, 43
removing from data frame, 171
removing from list by defining a predicate

for discard, 153
replacing in time series data, 461

na.approx function, 462
na.locf function, 461
na.omit function, 171

removal of entire rows, 172
na.pad setting, 464
na.spline function, 462
Nabble, 22
name/value association lists, 147-149
names

changing for columns in data frames, 170
excluding columns by, in data frames, 172
for list elements, 128, 143
getting with names function, 349
given by lm function to regression coeffi‐

cients, 405
giving to matrix rows and columns, 156
indexing vectors by, 43
selecting data frame columns by, 168-170
selecting list elements by, 146

nchar function, 197
negative indexes, 42
nonparametric statistics, 254, 380
normal distributions, 221, 335

and prediction intervals' response to non-
normal distributions, 380

creating normal Q-Q plot, 317-319
distribution function pnorm, 225
example random data using rnorm func‐

tion, 337
functions for, 213
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plotting the density function, 228
quantile function qnorm, 227
random number generator, 218
testing data sample for normality, 249

nortest package, 250
not available values (see NA values)
null hypothesis, 233
NULL values

assigning to attributes property of variables,
404

assigning to list elements, 149
in vectors, 43
removing from list by defining a predicate

for discard, 153
removing NULL elements from a list, 151

number of trials, 257
numbered lists, 521
numeric data

converting atomic values to, 177
generating combinations of numbers, 216

O
object orientation, 500
objects

choice of object class, 447
class defining abstract type, 129
mode, 128
revealing structure of, 405-408
saving and transporting R objects, 122-125
stripping attributes from, 405

observations, 160
influential, identifying in linear model,

375-376
oneway.test function, 334, 380-382
openxlsx package, 105
operator precedence, 46-47
operators

having special meaning in regression for‐
mulas, 359

user-defined, 414
Opt key combinations, 48
optim function, 426-428
optimize function, 425
options function, 75, 82

digits parameter, changing default for, 89
ordinary least-squares (OLS) algorithm, 336
orthogonal regression, 430-433
outer function, 202
outlierTest function, 371

output
CMD BATCH subcommand, to file, 77
redirecting to file, 90
Rscript output to stdout, 78

output format for R Markdown documents, 519

P
p-values, 233, 240, 243, 377, 380

in linear model, 344
pacf function, 476
packages

accessing functions in, 69-70
creating your own package of R functions,

512
datasets in, 71
documentation, 1, 13
for dates and time, on CRAN, 196
from CRAN, installing, 72-73
from GitHub, installing, 73
full name of functions in, 67
getting help on, using help function, 17
installed, not loading with library or

require, 54
installed, viewing list of, 68
loaded, displaying via search path, 66-67
loading in profile scripts, 82
relevant, finding, 21

paired data
pairwise combinations of strings, 202
plotting pairs of variables, 288-290

paired observations, 252, 254
creating scatter plot for, 267-268

pairwise comparisons
between group means, 258-259
parallel minimum and parallel maximum

for vector elements, 400
pairwise.t.test function, 258
Pandoc, 519, 537
Pandoc Markdown Guide, 523
parallel maximum (pmax function), 399
parallel minimum (pmin function), 399
parallelization

executing R in parallel locally, 417-419
executing R in parallel remotely, 420-423

parameterized report, creating in R Markdown,
548-552

parameters
in function definitions, 504
setting default values for, 507
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partial autocorrelation function (PACF), plot‐
ting for time series, 476-478

paste function, 198
using with outer function, 202

patchwork package, 328
PATH environment variable, 67
patterns, 16

(see also regular expressions)
using in searches of supplied documenta‐

tion, 16
pbinom function, 224
PDF

generating PDF document from R Mark‐
down document, 536

Knit to PDF (Beamer), 548
matrix notation rendered in, 540
R Markdown output to, 519

Pearson correlation, 256
permutations

permutation function, 203
random permutation of a vector, 222

pexp function, 226
pi, 130

simulating, 418, 421
pipe operator (%>%), 49
pipes

creating pipeline of function calls, 49-51
piping object to RStudio viewer, 392
using magrittr pipes for linear model, 342

plain-text files, R Markdown documents, 518
plan function, 422
plot function, 290, 370, 385, 452
plots

adding confidence intervals to a bar chart,
295-298

adding or removing a grid, 270-274
adding or removing legends in ggplot,

280-283
adding title and labels, 268
adding vertical or horizontal lines, 307-308
applying themes in ggplot, 274-278
boxplot of clusters, 436
changing type, width, and color of lines,

302-304
coloring or shading a bar chart, 298-300
creating a bar chart, 292-295
creating a boxplot, 309-311
creating a scatter plot, 267-268
creating interaction plot, 382-383

creating normal quantile-quantile (Q-Q)
plot, 317-319

creating one boxplot for each factor level,
311-313

creating one scatter plot for each group of
data, 290-292

creating quantile-quantile (Q-Q) plots in
other distributions, 319-322

creating scatter plot of multiple groups,
278-280

density function for probability distribu‐
tions, 228-231

displaying several on one page, 328-331
graphing value of a function, 325-328
graphs from running checkresiduals on

ARIMA model, 488
hierarchical cluster dendrogram, 434
histogram, adding density estimate to,

315-316
inserting into R Markdown output docu‐

ment, 526-530
common output settings, 528
enlarging output to full page, 528
shrinking with out.width, 527

multiple datasets in one plot, 305-306
of autocorrelation function of time series,

473-475
of detrended time series, 481
of paired variables, 288-290
of partial autocorrelation function for time

series, 476-478
of smoothed time series, 496
of time series data, 452
of time series forecast, 491
plotting a line from x and y points, 300-301
plotting ACF of linear model residuals, 377
plotting linear model object, 371
plotting regression line of a scatter plot,

284-288
plotting regression residuals, 364, 369
plotting TukeyHSD function returns, 385
plotting variables in multiple colors,

322-325
saving to file in ggplot, 331
using function call pipelines, 50
volatility plot for prices, 470

plot_layout function, 328
pmap function, 188, 190
pmax function, 399
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pmin function, 399
pnorm function, 225
point plots, 323
poly function, 360

raw = TRUE parameter, 360
polynomial, regressing on, 360
POSIXct class, 196
POSIXct object, 206
POSIXlt class, 196
POSIXlt object, 208
possibly function, 509
power transformation, finding the best,

363-368
ppoints function, 319
Practical Regression and ANOVA Using R (Far‐

away), 437
prcomp function, 429, 432
precedence, operator, 46-47

for user-defined operators, 414
predicates

defining for discard function, 152
in data.frame function, 159

predict function, 378, 437
interval parameter, 379

predictions
forming prediction intervals, 379
predicting a binary-valued variable, 436-438
predicting new values from linear model,

378
predictors, 333, 336, 347

choosing best subset, 353-357
in linear model formulas, 336
interaction between, plotting, 382-383
multiple, specifying in linear regression for‐

mula, 337
removing low-correlation variables from,

348
presentation, creating from R Markdown docu‐

ment, 546-548
principal component analysis (PCA), 429, 432,

442
print function

digits parameter, 88
redirecting output to file with sink function,

90
printing

data in columns, 395
fewer digits or more digits, 88
ggplot plots, 527

multiple items with cat function, 28
print function methods for different object

classes, 130
results of an assignment, 394
single items with print function, 27

probability, 213-231
calculating for continuous distributions, 225
calculating for discrete distributions,

223-225
converting probabilities to quantiles,

227-228, 241
counting number of combinations, 215
distributions

getting help on, 215
names of, 213

generating combinations, 216
generating random numbers, 217-219
generating random permutation of a vector,

222
generating random samples, 220
generating random sequences, 221
generating reproducible random numbers,

219
plotting a density function, 228-231

proc.time function, 78
profile scripts, 81

reproducibility issues with, 82
programming, simple, 499-513

creating a local variable, 505
creating an anonymous function, 510
creating collection of reusable functions,

511
defining functions, 503-505
if-else statements, 500-502
iterating with a loop, 502-503
protecting against errors, 509
reindenting code automatically, 513
signaling errors, 508
switch function, choosing among multiple

alternatives, 506
projects, creating in RStudio, 60-62
prop.test function, 247, 248, 257
proportions

equal, testing groups for, 257
forming confidence interval for, 248
testing for a sample, 247

pseudomedian, 246
pure functions, 181
purrr package, 37
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compact function, 151
data transformations with, 181
map family of functions, 182
other functions protecting against errors,

510
possibly function, 509
tutorials on, 191

Q
q (quit) function, 10, 78
qexp function, 322
qnorm function, 227
qt function, 320
quantile function, 240
quantile-quantile (Q-Q) plots

creating non-normal distribution Q-Q
plots, 319-322

creating normal Q-Q plot, 317-319
quantiles

calculating for a dataset, 240
converting probabilities to, 227-228
inverting, 241

quantmod package, 453
quartiles, 310

calculating for a dataset, 241
questions

searching mailing list archives for answers
to, 22

submitting to R community, 23-26
--quiet command line option, 414
quietly function, 510

R
R

meaning of data frames to a programmer,
134

technical details for programming, 499
R Data Import/Export guide, 120
R for Data Science (Wickham), 267
R Graphics (Murrell), 263
R Graphics Cookbook (Chang), 263
R Markdown, 417, 515-554

adding title, author, or date to a document,
518-520

creating a new document, 516-518
creating a parameterized report, 548-551
ecosystem as well as a package, 515
formatting document text, 520
generating HTML output, 535

generating Microsoft Word output, 539-545
generating PDF output, 536
generating presentation output, 546-548
inserting math equations into documents,

534
inserting plots into output documents,

526-530
inserting section headings in documents,

521
inserting table of data into a document, 531
inserting tables into documents, 530-531
organizing your workflow, 552

creating R package for reused logic, 553
keeping focus on content and source

logic, 553
naming Project directories, 552
using RStudio Projects, 552

passing information to LaTeX rendering
engine, 537

showing output from R code in a document,
523

random numbers, generating, 217-219
pseudorandom number generation in R, 335
reproducible random numbers, 219

randomness, checking a sequence for, 250
range function, 186
rate parameter (exponential distribution), 321
rbind function, 160, 163, 173

inputs as mix of tibbles and data frames, 164
rbinom function, 222
RColorBrewer package, 299
RDBMS systems, R reading from, 120
read.csv function, wrapping with possibly, 509
read.xlsx function, 105
readLines function, 113
readr package, benefits of using, 95
read_csv function, 101-103, 164

reading CSV data from the web, 104
read_csv2 function, 103
read_fwf function, 95-97
read_html function, 111-113
read_rds function, 125
read_sas function, 110
read_table function, 101
read_table2 function, 97-101

reading tabular data from the web, 104
records, fixed-width, reading, 94-97
recovering from errors, 509
recursive functions, 504
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Recycling Rule, 40, 54
combining pmin and pmax functions with,

400
understanding, 137-139

regression, 333
(see also linear regression)
logistic, 436-438
performing simple orthogonal regression,

430-433
regression coefficients, 336, 407

and autocorrelation of residuals, 377
confidence intervals for, 341
forming confidence intervals for, 368
from linear models, 333
in multiple linear regressions, 338
information about, extracted from linear

model, 343
slope, 405

regular expressions, 16
as delimiters in splitting a string, 201
matching files in specific pattern, 91
using in substring substitutions, 202

relative frequencies, 237
removeTable function, 108
rename function, 170
render function, 536
reorder function, 298
rep function, 38
repeat loops, 500
reporting errors, 509
repos option, 75
reprex package, 26
reproducible examples, 23-26
require function, 54, 70
resid function, 481
residuals

checking for ARIMA model, 488
from linear model, 341
in linear model, 480
plotting regression residuals, 369
plotting with ggplot, 364
statistics on regression residuals, 343
testing for autocorrelation, 376-378

response, 333, 336
in linear model formulas, 336
regressing on variables highly correlating

with, 347-350
return statements, 504
return values, 499, 504

reusable code snippets, 48
RHOME subcommand, 80
right_join function, 175
rm function, 32
Rmetrics, 196
RMySQL package, 118
rnorm function, 337
rollapply function, 468, 471
rolling mean, 468
rollmean function, 467
rownames attribute, 156
rows

appending to a data frame, 162-165
applying a function to each matrix row,

185-186
applying a function to each row in data

frames, 184
initializing a data frame from row data,

160-162
selecting one row from a matrix, 157

rowSums function, 394
rowwise operation, 184
Rscript program, 77
RSeek, 19, 21
RSiteSearch function, 19
RSQLite package, 120
RStudio

changing CRAN mirror, 74
code editing features, 513
community discussion board, 21, 23
creating a new project, 60-62
creating a new R Markdown document, 516
creating and editing R Markdown docu‐

ments, 516
deleting variables in Environment Pane, 33
exiting, 9
Files pane, 93
getting help in, 12
indenting code blocks in, 513
installing, 4
installing in the cloud, 84
installing packages from CRAN, 72
Knit to HTML, 535
Knit to PDF, 536
Knit to Word, 539
Knit: Presentation, 546
Knitr menu, Knit with Parameters, 549, 550
Projects, 552
R Markdown cheat sheet, 526
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R Markdown presentation formats, 546
shortcuts, 48
starting, 5-7
viewer, interactive, 392

RStudio Desktop (see RStudio)
runif function, 217
runs, 251
runs.test function, 250
rvest package, 111
R_HOME environment variable, 80
R² coefficient of determination, 345

S
safely function, 510
safe_read function, 510
sample function, 220, 221

random permutation of a vector, 222
samples

comparing locations nonparametrically, 254
sampling a dataset by selecting every nth

element, 398
testing for same distribution, 260
testing mean of, 243
testing sample proportion, 247

sampling with replacement, 220
sapply function, 184
SAS

meaning of data frames to a user, 134
reading data from files, 109-111

sas7bdat package, 109
save function, 122
save.image function, 63
saving

function definitions to file, 512
images to file in ggplot, 331
objects in R, 122-124
on exiting RSpace, 10
result of previous command, 65
value in a variable, 29
workspace in RStudio, 63

scalars, 130
comparing a vector to a scalar, 40
operations between vectors and, 44, 139

scale function, 242
scale_fill_brewer function, 299
scan function, 114-118
scatter plots

creating for paired observations, 267-268
creating of multiple groups, 278-280

creating one plot for each group, 290-292
of paired variables, 288-290
plotting regression line of, 284-288

scripts
redirecting output to file with sink function,

90
running, 76
running a batch script, 77-79

sd function, 36
search engine, accessing in R documentation,

13, 17
searches

broadending by using keywords, 17
finding minimums or maximums for pair‐

wise elements in vectors, 399
finding relevant functions and packages, 21
search function, 66
searching a vector for particular value and

its position, 398
searching R mailing lists, 22
searching supplied documentation, 16-17
searching web for help on R, 18-21

select function, 50, 165, 169, 172
changing column name with, 171

SELECT statements (SQL), 119
self-describing data, 100
separators

hyphen as separator between strings, 203
in string concatenation with paste, 198

seq function, 38, 185
creating sequence of dates, 210

sequences
creating sequence of numbers, 38-39
indexing time series by sequences of dates,

457
random, generating, 221

seq_along function, 398
Session menu in RStudio, 12
sessionInfo command, 25
set.seed command, 24
set.seed function, 219, 221, 335
setwd command, 59
shading

background shading in ggplot graphics, 271
bars of a bar chart, 298-300
color shading in point plot, 324

shape parameter (aes function), 278
shapiro.test function, 249
Shapiro–Wilk test, 250
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shebang line, starting with #!, 79
shell prompt, starting R from, 415
shortcuts for R commands, 9
show_query function, 121
significance

of linear models, 333
testing a correlation for, 255-256

simulate_pi function, 418, 421
sine wave, dampened, 327
sink function, 90
slope (regression coefficient), 405, 432
smoothing a time series, 495-497
sort function, data frames and, 403
sorting

data frames, 403
fixing in ggplot bar chart, 293
in ggplot bar chart with confidence inter‐

vals, 296
source function, 76, 81, 511
Spearman method, 255
split function, 422
SQL (Structured Query Language)

CASE WHEN statements, 192
in MySQL database queries, 119
meaning of data frames to a programmer,

133
turning dplyr commands into, 120-122

SQLite database, 120
loading example data into, 121
RSQLite package, 122

sqrt function, 45
SSH, 420
stack function, 141
Stack Overflow website, 2, 20

post on creating reproducible examples, 26
submitting questions to, 24

StackExchange website, 20
standard deviation

calculating, 36-37
calculating in figures month by month, 470
in example data for linear regression, 335
in ggplot graph line, 308

standard error
for ARIMA model coefficients, 485
in ggplot bar chart with confidence inter‐

vals, 296
of residuals, 344
se parameter of ggplot, 284

startup message, suppressing, 414

startup, customizing for R sessions, 81-84
Statistical Analysis Software (see SAS)
statisticians, meaning of data frames to, 133
statistics, 233

basic, computing, 35-38
applying a function to each column of

data frame, 37
bootstrapping a statistic, 438-441
calculating quantiles and quartiles of a data‐

set, 240
calculating relative frequencies, 237
comparing locations of two samples non‐

parametrically, 254
comparing means of of two samples,

252-253
converting data to z-scores, 242
forming confidence interval for a mean,

244-245
forming confidence interval for a median,

246
forming confidence interval for a propor‐

tion, 248
inverting a quantile, 241
pairwise comparisons between group

means, 258-259
regression statistics, getting, 339-342
tabulating a factor and creating contingency

tables, 238
testing a sample proportion, 247
testing categorical variables for independ‐

ence, 239
testing correlation for significance, 255-257
testing for normality, 249
testing for runs, 250-252
testing groups for equal proportions, 257
testing the mean of a sample, 243
testing two samples for same distribution,

260
stats in ggplot graphs, 266
stats::lag function, 464
stat_function, 326
stat_qq and stat_qq_line functions, 317
stat_summary function, 296
stdout, Rscript output to, 78
step function, 352-357
stepwise regression, 352-357
stftime, 205
stop function, 508
str function, 31
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revealing internal structure of variables, 407
strings, 195

concatenating, 198
converting dates to, 205
converting to dates, 204
Date object converted to, 204
extracting substrings, 199
generating all pairwise combinations of, 202
generating combinations of, 216
getting length of, 197
replacing substrings within a string, 201
splitting according to a delimiter, 200
str function, 31
vectors of, returned by ls function, 31

strsplit function, 200
structures, 25, 127

(see also data frames; factors; lists; matrices;
tibbles; vectors)

converting between structured types,
178-180

Student's t distribution, 320
sub function, 201
subdirectories, listing files in, 92
sublists in R Markdown, 522
subscripting, matrix-style, 167, 169
subscripts of a vector or list, iterating over, 503
subsets

regressing on, 348, 357
subsetting a time series, 456-458

substr function, 199
summarize function, 191
summarizing data, 235-237
summary function, 71, 235, 240, 397

understanding the regression summary,
342-345

using on linear models, 340
summing rows and columns, 394
suppressMessage function, 410
suppressWarnings function, 410
survival function, 224, 226
switch function, 506
switch statements, 500
Sys.Date function, 204
Sys.getenv function, 80, 415
Sys.putenv function, 415
Sys.setenv function, 81, 415
Sys.time function, 409

T
t statistic, 344, 377
t-test, 243, 252, 254
t.test function, 243, 245, 252
table function, 238, 240

factors as input, 140
tables

ANOVA, of linear regression models, 335
in R Markdown output to Word, 544
inserting computer-generated data into R

Markdown document, 531
inserting into R Markdown output docu‐

ment, 530-531
tabular data files

data frames, 133
reading, 97-101
reading from the web, 104

tail function, 391, 454
techniques, advanced

bootstrapping a statistic, 438-441
calculating eigenvalues or eigenvectors, 428
factor analysis, 441-445
finding clusters in data, 433-436
minimizing or maximizing multiparameter

functions, 426-428
minimizing or maximizing single-

parameter functions, 425
performing principal component analysis,

429
performing simple orthogonal regression,

430-433
predicting a binary-valued variable, 436-438

templates
controlling R Markdown output formatting

in Word, 545
for creating R Markdown documents, 518
for R Markdown document output, 519
LaTeX, for formatting documents, 538

text editors, 516
text, formatting in R Markdown documents,

520
theme function, 270

legend.position setting, 281
themes, 266

applying to ggplot graphics, 274-278
tibble function, 159
tibbles, 97, 162

comingling with data frames, 164
creating from vectors in a list, 159
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defined, 134
tibble and as_tibble functions, not changing

character data, 159
tic function, 408, 418
tidygraph package, installing, 74
tidyr package, 303
tidyverse packages

helper functions for calculating basic statis‐
tics, 37

installing, 111
select function, 166
tibbles, 97, 134

time series analysis, 447-497
calculations on time series, 466
computing moving average of a time series,

467
computing successive differences, 464-466
date vs. datetime, 448
detrending a time series, 479-482
extracting newest or oldest observations,

454-456
filling or padding a time series, 460-463
finding lagged correlations between time

series, 478
fitting ARIMA model to a time series,

482-486
functions for, 410
lagging a time series, 463
making forecasts from ARIMA model, 490
merging several time series, 458-460
other representations of data, 448
packages for, zoo and xts, 447
plotting a time series forecast, 491
plotting partial autocorrelation function,

476-478
plotting the autocorrelation function,

473-475
plotting time series data, 452
removing insignificant ARIMA coefficients,

486
representing time series data, 449-452
running diagnostics on ARIMA model,

487-490
subsetting a time series, 456-458
testing for autocorrelation, 475
testing for mean reversion, 492-495

Time-Series object types, 494
timeDate package, 196
timeSeries package, 452

timing code, 408-410
tinytex package, 537
titles

adding to ggplot graphics, 268
setting for R Markdown document, 519
setting with ggtitle, 327

toc function, 408, 418
total least squares (TLS), 431

(see also orthogonal regression)
transformations, 181-193

applying a function to each column in a
matrix or data frame, 186-188

applying a function to each list element,
182-184

applying a function to each matrix row, 185,
186

applying a function to each row in data
frames, 184

applying a function to groups of data, 191
applying a function to parallel vectors or

lists, 188-191
creating new column in a data frame based

on a condition, 192-193
regressing on transformed data, 361-363

trends, identifying and removing from a time
series

trends,identifying and removing from a time
series, 479-482

TRUE and FALSE logical values, 39
ts class, 448
tseries::adf.test function, 17
tsibble package, 448
TukeyHSD function, 383-386

U
union of all dates, 459, 460
unit root tests, 495
Unix

search path, 67
shebang line starting with #!, 79
Sys.getenv function results, 80

unlist function, 150, 412
URLs, using to read data from the web, 104

V
variables

assigning value to, 29
categorical, representing with factors, 132
data type, changing at will, 30
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deleting, 32
.Last.value, 65
listing, 31
local, 505
plotting all variables against other variables,

288-290
stripping attributes from, 404

variance, 132
(see also analysis of variance)
calculating, 35

vectorized operations of R, eliminating need for
loops, 503

vectors
appending data to, 135
applying a function to parallel vectors or

lists, 188-191
arithmetic operations on, 44-45
comparing, 39-41
comparing elements in parallel with pmin

and pmax, 399
constructing data frames from, 158
converting between other structured types,

178
converting matrices to, 402
converting to z-scores, 243
creating, 34-35
elements having same mode, 129
finding position of a particular value, 397
flattening a list into, 150
flattening matrices into, 203
formatting with print and format functions,

89
getting length of, 197
inserting data into, 136
key properties of, 127
multiple, combining into one vector and a

factor, 140
of atomic types, converting to other types,

177
of levels (see factors)
of names and values, populating list with,

148
of probabilities in quantile functions, 227
of strings, 198
of unequal length, 137-139
of unequal lengths, 54
of years, months, and days converting to

Date objects, 207
printing with cat function, 28

random permutation of, 222
results of expressions in R, 8
scalars as one-element vector, 130
selecting elements from, 41
selecting every nth element, 398
summary of, 235
transforming into matrices, 130
turning a vector into a matrix, 155
use in building data frames, 133

versions, extracting for installed packages, 68
viewing data, partial and full dataset, 391
vignettes, 1

listing for a package, 18
openxlsx, 107
readr, 101
sql-translation, 122

volatility, calculating by calendar periods, 470

W
warning function, 509
warnings, suppressing, 410, 526
web search for help on R, 18-21
web, reading CSV and tabular data from, 105
which.max function, 366, 398
which.min function, 398
while loops, 500
wide vs. long data (ggplot), 266, 302
wilcox.test function, 246, 254
Wilcoxon–Mann–Whitney test, 254
window function, 457

selecting range of consecutive dates, 458
Windows

Alt and Ctrl key combinations, 48
Cannot Open File error, 94
exiting RStudio, 9
installing R, 3
starting RStudio, 5
Sys.getenv function results, 80
\ (backslash) in file paths, escaping, 56

Word (see Microsoft Word)
working directory, 59
workspace

indicated by .GlobalEnv, 66
saving, 10, 63

write.xlsx function, 107
writeData function, 108
writeDataTable function, 108
write_csv function, 103
write_rds function, 125
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X
xtabs function, 239
xts object, 449

plot function, 453
xts package, 447

Y
YAML header in R Markdown documents, 519

LaTeX options set in, 539
year, month, and day, converting to a date, 206

year/month (yyyymm) subsetting, 458
yyyy-mm-dd format for dates, 205

Z
z- scores, 45

converting data to, 242
zoo object, 449

Date objects as index, 451
plot function, 452

zoo package, 266, 447
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Colophon
The animal on the cover of R Cookbook is a harpy eagle (Harpia harpyja). One of the
50 species of eagle in the world, the harpy eagle is native to the tropical rain forests of
Central and South America, and prefers to nest in the upper canopy layer thereof.
Both its genus and species names refer to the harpies of ancient Greek mythology—
vicious creatures with the face of a woman and the body of an eagle or vulture.

On average, harpy eagles weigh about 18 lbs, are 36 to 40 inches long, and have a
wingspan of 6 to 7 feet, though females are consistently larger than males. The plu‐
mage of both sexes is identical, however: slate-black feathers dominate the animal’s
top half, while the underside is white or light gray. Light gray–colored heads are
accentuated with a double crest of large feathers, which specimens can raise when
showing hostility.

Harpy eagles are monogamous, and pairs raise only one chick every two to three
years. Females will usually lay two eggs at a time, and after the first hatches, the other
is neglected and does not hatch. Though the chick will fledge within six months, both
parents continue to care for and feed the chick for at least a year. Because of this low
rate of population growth, the harpy eagle is particularly susceptible to encroach‐
ments on its habitat and losses from human hunting. Throughout its range, the ani‐
mal’s conservation status ranges from threatened to critically endangered.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from J.G. Wood’s Animate Creation. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.
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