
Implementing
Reproducible
Research

Im
plem

enting R
eproducible

R
esearch

Edited by

Victoria Stodden
Friedrich Leisch
Roger D. Peng

S
todden
Leisch
P
eng

K15945

In computational science, reproducibility requires that researchers
make code and data available to others so that the data can be ana-
lyzed in a similar manner as in the original publication. Code must
be available to be distributed, data must be accessible in a readable
format, and a platform must be available for widely distributing the
data and code. In addition, both data and code need to be licensed
permissively enough so that others can reproduce the work without
a substantial legal burden.

Implementing Reproducible Research covers many of the elements
necessary for conducting and distributing reproducible research. It
explains how to accurately reproduce a scientific result.

Divided into three parts, the book discusses the tools, practices, and
dissemination platforms for ensuring reproducibility in computational
science. It describes:

• Computational tools, such as Sweave, knitr, VisTrails, Sumatra,
CDE, and the Declaratron system

• Open source practices, good programming practices, trends in
open science, and the role of cloud computing in reproducible
research

• Software and methodological platforms, including open source
software packages, RunMyCode platform, and open access
journals

Each part presents contributions from leaders who have developed
software and other products that have advanced the field. These
innovators explore the use of reproducible research in bioinformatics
and large-scale data analyses and offer guidelines on best practices
and legal issues, including recommendations of the Reproducible
Research Standard.

Statistics The R Series

K15945_Cover.indd 1 3/12/14 9:54 AM

The R Series

Implementing
Reproducible

Research

Edited by

Victoria Stodden
Columbia University

New York, New York, USA

Friedrich Leisch
University of Natural Resources and Life Sciences

Institute of Applied Statistics and Computing

Vienna, Austria

Roger D. Peng
Johns Hopkins University

Baltimore, Maryland, USA

Chapman & Hall/CRC

The R Series

John M. Chambers

Department of Statistics
Stanford University

Stanford, California, USA

Duncan Temple Lang

Department of Statistics
University of California, Davis

Davis, California, USA

Torsten Hothorn

Division of Biostatistics
University of Zurich

Switzerland

Hadley Wickham

Department of Statistics
Rice University

Houston, Texas, USA

Aims and Scope

This book series reflects the recent rapid growth in the development and application
of R, the programming language and software environment for statistical computing
and graphics. R is now widely used in academic research, education, and industry.
It is constantly growing, with new versions of the core software released regularly
and more than 4,000 packages available. It is difficult for the documentation to
keep pace with the expansion of the software, and this vital book series provides a
forum for the publication of books covering many aspects of the development and
application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology,

genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and

mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and

graphics.

The books will appeal to programmers and developers of R software, as well as
applied statisticians and data analysts in many fields. The books will feature
detailed worked examples and R code fully integrated into the text, ensuring their
usefulness to researchers, practitioners and students.

Series Editors

Published Titles

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Customer and Business Analytics: Applied Data Mining for Business Decision

Making Using R, Daniel S. Putler and Robert E. Krider

Dynamic Documents with R and knitr, Yihui Xie

Event History Analysis with R, Göran Broström

Implementing Reproducible Research, Victoria Stodden,
Friedrich Leisch, and Roger D. Peng

Programming Graphical User Interfaces with R, Michael F. Lawrence and
John Verzani

R Graphics, Second Edition, Paul Murrell

Reproducible Research with R and RStudio, Christopher Gandrud

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131025

International Standard Book Number-13: 978-1-4665-6160-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface. vii
Acknowledgment . xiii
Editors. .xv
Contributors . xvii

Part I Tools

1. knitr: A Comprehensive Tool for Reproducible Research in R. 3
Yihui Xie

2. Reproducibility Using VisTrails . 33
Juliana Freire, David Koop, Fernando Chirigati, and Cláudio T. Silva

3. Sumatra: A Toolkit for Reproducible Research . 57
Andrew P. Davison, Michele Mattioni, Dmitry Samarkanov, and
Bartosz Teleńczuk

4. CDE: Automatically Package and Reproduce Computational
Experiments . 79
Philip J. Guo

5. Reproducible Physical Science and the Declaratron 113
Peter Murray-Rust and Dave Murray-Rust

Part II Practices and Guidelines

6. Developing Open-Source Scientific Practice. 149
K. Jarrod Millman and Fernando Pérez

7. Reproducible Bioinformatics Research for Biologists. 185
Likit Preeyanon, Alexis Black Pyrkosz, and C. Titus Brown

8. Reproducible Research for Large-Scale Data Analysis. 219
Holger Hoefling and Anthony Rossini

v

vi Contents

9. Practicing Open Science . 241
Luis Ibanez, William J. Schroeder, and Marcus D. Hanwell

10. Reproducibility, Virtual Appliances, and Cloud Computing. 281
Bill Howe

11. The Reproducibility Project: A Model of Large-Scale
Collaboration for Empirical Research on Reproducibility 299
Open Science Collaboration

12. What Computational Scientists Need to Know about
Intellectual Property Law: A Primer . 325
Victoria Stodden

Part III Platforms

13. Open Science in Machine Learning. 343
Mikio L. Braun and Cheng Soon Ong

14. RunMyCode.org: A Research-Reproducibility Tool for
Computational Sciences . 367
Christophe Hurlin, Christophe Pérignon, and Victoria Stodden

15. Open Science and the Role of Publishers in Reproducible
Research. 383
Iain Hrynaszkiewicz, Peter Li, and Scott Edmunds

Index.. 419

Preface

Science moves forward when discoveries are replicated and reproduced. In
general, the more frequently a given relationship is observed by indepen-
dent scientists, the more trust we have that such a relationship truly exists
in nature. Replication, the practice of independently implementing scientific
experiments to validate specific findings, is the cornerstone of discovering
scientific truth. Related to replication is reproducibility, which is the calcu-
lation of quantitative scientific results by independent scientists using the
original datasets and methods. Reproducibility can be thought of as a differ-
ent standard of validity from replication because it forgoes independent data
collection and uses the methods and data collected by the original investiga-
tor (Peng et al., 2006). Reproducibility has become an important issue for
more recent research due to advances in technology and the rapid spread of
computational methods across the research landscape.

Much has been written about the rise of computational science and the
complications computing brings to the traditional practice of science (Bailey
et al. 2013; Birney et al. 2009; Donoho et al. 2009; Peng 2011; Stodden 2012;
Stodden et al. 2013; Yale Roundtable 2010). Large datasets, fast computers,
and sophisticated statistical modeling make a powerful combination for sci-
entific discovery. However, they can also lead to a lack of reproducibility in
computational science findings when inappropriately applied to the discov-
ery process. Recent examples show that improper use of computational tools
and software can lead to spectacularly incorrect results (e.g., Coombes et al.
2007). Making computational research reproducible does not guarantee cor-
rectness of all results, but it allows for quickly building on sound results and
for rapidly rooting out unsound ones.

The sharing of analytic data and the computer codes used to map those
data into computational results is central to any comprehensive definition of
reproducibility. Except for the simplest of analyses, the computer code used
to analyze a dataset is the only record that permits others to fully understand
what a researcher has done. The traditional materials and methods sections
in most journal publications are simply too short to allow for the inclusion of
critical details that make up an analysis. Often, seemingly innocuous details
can have profound impacts on the results, particularly when the relation-
ships being examined are inherently weak. Some concerns have been raised
over the sharing of code and data. For example, the sharing of data may
allow other competing scientists to analyze the data and scoop the scien-
tists who originally published the data, or the sharing of code may lead
to the inability to monetize software through proprietary versions of the
code. While these concerns are real and have not been fully resolved by the
scientific community, we do not dwell on them in this book.

vii

viii Preface

This book is focused on a simple question. Assuming one agrees that
reproducibility of a scientific result is a good thing, how do we do it? In com-
putational science, reproducibility requires that one make code and data
available to others so that they may analyze the original data in a similar
manner as in the original publication. This task requires that the analysis be
done in such a way that preserves the code and data, and permits their dis-
tribution in a format that is generally readable, and a platform be available
to the author on which the data and code can be distributed widely. Both
data and code need to be licensed permissively enough so that others can
reproduce the work without a substantial legal burden.

In this book, we cover many of the ingredients necessary for conducting
and distributing reproducible research. The book is divided into three parts
that cover the three principal areas: tools, practices, and platforms. Each part
contains contributions from leaders in the area of reproducible research who
have materially contributed to the area with software or other products.

Tools

Literate statistical programming is a concept introduced by Rossini, which
builds on the idea of literate programming as described by Donald Knuth.
With literate statistical programming, one combines the description of a sta-
tistical analysis and the code for doing the statistical analysis into a single
document. Subsequently, one can take the combined document and pro-
duce either a human-readable document (i.e., PDF) or a machine-readable
code file. An early implementation of this concept was the Sweave system
of Leisch, which uses R as its programming language and LaTeX as its doc-
umentation language. Yihui Xie describes his knitr package, which builds
substantially on Sweave and incorporates many new ideas developed since
the initial development of Sweave. Along these lines, Tanu Malik and col-
leagues describe the Science Object Linking and Embedding framework for
creating interactive publications that allow authors to embed various aspects
of computational research in a document, creating a complete research
compendium.

There have been a number of systems developed recently that are
designed to track the provenance of data analysis outputs and to manage
a researcher’s workflow. Juliana Freire and colleagues describe the VisTrails
system for open source provenance management for scientific workflow cre-
ation. VisTrails interfaces with existing scientific software and captures the
inputs, outputs, and code that produced a particular result, even presenting
this workflow in flowchart form. Andrew Davison and colleagues describe
the Sumatra toolkit for reproducible research. Their goal is to introduce a tool
for reproducible research that minimizes the disruption to scientists’ existing

Preface ix

workflows, therefore maximizing the uptake by current scientists. Their tool
serves as a kind of “backend” to keep track of the code, data, and depen-
dencies as a researcher works. This allows for easily reproducing specific
analyses and for sharing with colleagues.

Philip Guo takes the “backend tracking” idea one step further and
describes his Code, Data, Environment (CDE) package, which is a minimal
“virtual machine” for reproducing the environment as well as the analysis.
This package keeps track of all files used by a given program (i.e., a statistical
analysis program) and bundles everything, including dependencies, into a
single package. This approach guarantees that all requirements are included
and that a given analysis can be reproduced on another computer.

Peter Murray-Rust and Dave Murray-Rust introduce The Declaraton, a
tool for the precise mapping of mathematical expressions to computational
implementations. They present an example from materials science, defining
what reproducibility means in this field, in particular for unstable dynamical
systems.

Practices and Guidelines

Conducting reproducible research requires more than the existence of good
tools. Ensuring reproducibility requires the integration of useful tools into a
larger workflow that is rigorous in keeping track of research activities. One
metaphor is that of the lab notebook, now extended to computational exper-
iments. Jarrod Millman and Fernando Pérez raise important points about
how computational scientists should be trained, noting that many are not
formally trained in computing, but rather pick up skills “on the go.” They
detail skills and tools that may be useful to computational scientists and
describe a web-based notebook system developed in IPython that can be
used to combine text, mathematics, computation, and results into a repro-
ducible analysis. Titus Brown discusses tools that can be useful in the area
of bioinformatics as well as good programming practices that can apply to a
broad range of areas.

Holger Hoeing and Anthony Rossini present a case study in how to
produce reproducible research in a commercial environment for large-scale
data analyses involving teams of investigators, analysts, and stakeholders/
clients. All scientific practice, whether in academia or industry, can be
informed by the authors’ experiences and the discussion of tools they used
to organize their work.

Closely coupled with the idea of reproducibility is the notion of “open
science,” whereby results are made available to the widest audience possi-
ble through journal publications or other means. Luis Ibanez and colleagues
give some thoughts on open science and reproducibility and trends that are

x Preface

either encouraging or discouraging it. Bill Howe discusses the role of cloud
computing in reproducible research. He describes how virtual machines can
be used to replicate a researcher’s entire software environment and allow
researchers to easily transfer that environment to a large number of people.
Other researchers can then copy this environment and conduct their own
research without having to go through the difficult task of reconstructing
the environment from scratch.

Members of the Open Science Collaboration outline the need for repro-
ducibility in all science and detail why most scientific findings are rarely
reproduced. Reasons include a lack of incentives on the part of journals
and investigators to publish reproductions or null findings. He describes
the Reproducibility Project, whose goal is to estimate the reproducibil-
ity of scientific findings in psychology. This massive undertaking rep-
resents a collaboration of over 100 scientists to reproduce a sample of
findings in the psychology literature. By spreading the effort across many
people, the project overcomes some of the disincentives to reproducing
previous work.

Platforms

Related to the need for good research practices to promote reproducibility is
the need for software and methodological platforms on which reproducible
research can be conducted and distributed. Mikio Braun and Cheng Soon
Ong discuss the area of machine learning and place it in the context of open
source software and open science. Aspects of the culture of machine learning
have led to many open source software packages and hence reproducible
methods.

Christophe Hurlin and colleagues, in Chapter 14, describe the RunMy-
Code platform for sharing reproducible research. This chapter addresses a
critical need in the area of reproducible research, which is the lack of central
infrastructure for distributing results. A key innovation of this platform is the
use of cloud computing to allow research findings to be reproduced through
the RunMyCode web interface, or on the user’s local system via code and
data download.

Perhaps the oldest “platform” for distributing research is the journal. Iain
Hrynaszkiewicz and colleagues describe some of the infrastructure available
for publishing reproducible research. In particular, they review how journal
policies and practices in the growing field of open access journals encourage
reproducible research.

Victoria Stodden provides a primer on the current legal and policy frame-
work for publishing reproducible scientific work. While the publication of
traditional articles is rather clearly covered by copyright law, the publication

Preface xi

of data and code treads into murkier legal territory. Stodden describes the
options available to researchers interested in publishing data and code and
summarizes the recommendations of the Reproducible Research Standard.

Summary

We have divided this book into three parts: Tools, Practices and Guide-
lines, and Platforms. These mirror the composition of research happening
in reproducibility today. Even just over the last two years, tool develop-
ment for computational science has taken off. An early conference at Applied
Mathematics Perspectives called “Reproducible Research: Tools and Strate-
gies for Scientific Computing” in July of 2011 sought to encourage the
nascent community of research tool builders (Stodden 2012). Recently, in
December of 2012, a workshop entitled “Reproducibility in Computational
and Experimental Mathematics” was held as part of the ICERM workshop
series (ICERM Workshop 2012). A summary of the tools presented is avail-
able on the workshop wiki (Stodden 2012), and the growth of the field is
evident. Additional material, including code and data, is available from the
editor’s website: www.ImplementingRR.org.

Journals are continuing to raise standards to ensure reproducibility in
computational science (Nature Editorial 2013; Marcia 2014) and funding
agencies have recently been instructed by the White House to develop plans
for the open dissemination of data arising from federally funded research
(Stebbins 2013). We feel that a book documenting available tools, practices,
and dissemination platforms could not come at a better time.

References

Bailey, D.H., Borwein, J.M., LeVeque, R.J., Rider, B., Stein, W., and
Stodden, V. (2012). Reproducibility in computational and experimental
mathematics, in ICERM Workshop, December 10–14, 2012. http://icerm.
brown.edu/tw12-5-.rcem.

Bailey, D.H., Borwein, J.M., Stodden, V., Set the default to ‘Open,’ notices
of the American Mathematical Society, June/July 2013. http://www.ams.
org/notices/201306/rnoti-p679.pdf.

Birney, E., Hudson, T. J., Green, E. D., Gunter, C., Eddy, S., Rogers, J., Harris,
J. R. et al. (2009), Prepublication data sharing, Nature, 461, 168–170.

Coombes, K., Wang, J., and Baggerly, K. (2007), Microarrays: Retracing steps,
Nat. Med., 13, 1276–1277.

http://icerm.brown.edu/tw12-5-.rcem
http://icerm.brown.edu/tw12-5-.rcem
http://www.ams.org/notices/201306/rnoti-p679.pdf
http://www.ams.org/notices/201306/rnoti-p679.pdf

xii Preface

Donoho, D.L., Maleki, A., Rahman I.U., Shahram, M., and Stodden V.,
Reproducible research in computational harmonic analysis, computing
in science and engineering, IEEE Comput. Sci. Eng., 11(1), 8–18, Jan/Feb
2009, doi:10.1109/MCSE.2009.15.

McNutt, M. (2014, January 17), Reproducibility, Science, 343(6168), 229.
http://www.sciencemag.org/content/343/6168/229.summary.

Nature Editorial (2013, April 24), Announcement: Reducing our irrepro-
ducibility, Nature, 496. http://www.nature.com/news/announcement-
reducing-our-irreproducibility-1.12852.

Peng, R. D. (2011), Reproducible research in computational science, Science,
334, 1226–1227.

Peng, R. D., Dominici, F., and Zeger, S. L. (2006), Reproducible epidemio-
logic research, Am. J. Epidemiol., 163, 783–789.

Stebbins, M. (2013), Expanding public access to the results of federally
funded research, February 22, 2013. http://www.whitehouse.gov/blog/
2013/02/22/expanding-public-access-results-federally-funded-research.

Stodden, V. (2012), Reproducible research: Tools and strategies for scien-
tific computing, Comput. Sci. Eng., 14(4), 11–12 July/August 2012. http://
www.computer.org/csdl/mags/cs/2012/04/mcs2012040011-abs.html.

Stodden, V., Borwein, J., and Bailey, D.H. (2013), Setting the default to
reproducible in computational science research, SIAM News, June 3, 2013.
http://www.siam.org/news/news.php?id=2078.

Yale Roundtable (2010), Reproducible research: Addressing the need for data
and code sharing in computational science, IEEE Comput. Sci. Eng., 12,
8–13.

MATLAB� is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
Email: info@mathworks.com
Web: www.mathworks.com

http://www.sciencemag.org/content/343/6168/229.summary
http://www.nature.com/news/announcement-reducing-our-irreproducibility-1.12852
http://www.nature.com/news/announcement-reducing-our-irreproducibility-1.12852
http://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research
http://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research
http://www.computer.org/csdl/mags/cs/2012/04/mcs2012040011-abs.html
http://www.computer.org/csdl/mags/cs/2012/04/mcs2012040011-abs.html
http://www.siam.org/news/news.php?id=2078

Acknowledgment

The editors acknowledge the generous support of Awards R01ES019560
and R21ES020152 from the National Institute of Environmental Health
Sciences (Peng), NSF Award 1153384 “EAGER: Policy Design for Repro-
ducibility and Data Sharing in Computational Science” (Stodden), and
the Sloan Foundation Award “Facilitating Transparency in Scientific
Publishing” (Stodden). The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Insti-
tute of Environmental Health Sciences, the National Institutes of Health, the
National Science Foundation, or the Alfred P. Sloan Foundation.

xiii

Editors

Victoria Stodden is an assistant professor of statistics at Columbia Univer-
sity and affiliated with the Columbia University Institute for Data Sciences
and Engineering, New York City, New York. Her research centers on
the multifaceted problem of enabling reproducibility in computational sci-
ence. This includes studying adequacy and robustness in replicated results,
designing and implementing validation systems, developing standards of
openness for data and code sharing, and resolving legal and policy bar-
riers to disseminating reproducible research. She is the developer of the
award-winning “Reproducible Research Standard,” a suite of open licensing
recommendations for the dissemination of computational results.

Friedrich Leisch is head of the Institute of Applied Statistics and Computing
at the University of Natural Resources and Life Sciences in Vienna. He is a
member of the R Core Team, the original creator of the Sweave system in R,
and has published extensively about tools for reproducible research. He is
also a leading researcher in the area of high-dimensional data analysis.

Roger D. Peng is an associate professor in the Department of Biostatistics at
the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
He is a prominent researcher in the areas of air pollution and health risk
assessment and statistical methods for environmental health data. Dr. Peng
is the associate editor for reproducibility for the journal Biostatistics and is
the author of numerous R packages.

xv

Contributors

Mikio L. Braun
Department of Computer Science
Technical University of Berlin
Berlin, Germany

C. Titus Brown
Department of Computer Science

and Engineering
and
Department of Microbiology and

Molecular Genetics
Michigan State University
East Lansing, Michigan

Fernando Chirigati
Department of Computer Science

and Engineering
Polytechnic Institute of New York

University
Brooklyn, New York

Andrew P. Davison
Unité de Neurosciences, Information

& Complexité
Centre National de la Recherche

Scientifique
Gif sur Yvette, France

Scott Edmunds
Beijing Genomics Institute
Beijing, People’s Republic of China

Juliana Freire
Department of Computer Science

and Engineering
Polytechnic Institute of New York

University
Brooklyn, New York

Philip J. Guo
University of Rochester
Rochester, New York

Marcus D. Hanwell
Kitware, Inc.
Clifton Park, New York

Holger Hoefling
Novartis, Pharma
Basel, Switzerland

Bill Howe
Scalable Data Analytics
University of Calabria
Rende, Italy

and

eScience Institute
and
Department of Computer Science

and Engineering
University of Washington
Seattle, Washington

Iain Hrynaszkiewicz
Outreach Director
Faculty of 1000
London, United Kingdom

Christophe Hurlin
Department of Economics
University of Orléans
Orléans, France

Luis Ibanez
Kitware, Inc.
Clifton Park, New York

xvii

xviii Contributors

David Koop
Department of Computer Science

and Engineering
Polytechnic Institute of New York

University
Brooklyn, New York

Peter Li
Giga Science
Beijing Genomics Institute
Beijing, People’s Republic of China

Michele Mattioni
European Molecular Biology

Laboratory
European Bioinformatics Institute
Hinxton, United Kingdom

K. Jarrod Millman
Division of Biostatistics
School of Public Health
University of California, Berkeley
Berkeley, California

Dave Murray-Rust
Department of Informatics
University of Edinburgh
Edinburgh, Scotland

Peter Murray-Rust
Department of Chemistry
University of Cambridge
Cambridge, United Kingdom

Cheng Soon Ong
Bioinformatics Group
National ICT Australia
University of Melbourne
Melbourne, Victoria, Australia

Open Science Collaboration
Charlottesville, Virginia

Fernando Pérez
Henry H. Wheeler Jr. Brain Imaging

Center
Helen Wills Neuroscience Institute
University of California, Berkeley
Berkeley, California

Christophe Pérignon
Finance Department
Hautes études commerciales de

Paris
Paris, France

Likit Preeyanon
Department of Microbiology and

Molecular Genetics
Michigan State University
East Lansing, Michigan

Alexis Black Pyrkosz
Avian Disease and Oncology

Laboratory
East Lansing, Michigan

Anthony Rossini
Novartis, Pharma
Basel, Switzerland

Dmitry Samarkanov
Ecole Centrale de Lille
Lille University of Science and

Technology
Villeneuve-d’Ascq, France

William J. Schroeder
Kitware, Inc.
Clifton Park, New York

Cláudio T. Silva
Polytechnic Institute of New York

University
Brooklyn, New York

Victoria Stodden
Department of Statistics
Columbia University
New York City, New York

Contributors xix

Bartosz Teleńczuk
Unité de Neurosciences, Information

& Complexité
Centre National de la Recherche

Scientifique
Gif sur Yvette, France

and

Institute for Theoretical Biology
Humboldt University
Berlin, Germany

Yihui Xie
Department of Statistics
Iowa State University
Ames, Iowa

Part I

Tools

1
knitr: A Comprehensive Tool for Reproducible
Research in R

Yihui Xie

CONTENTS

1.1 Web Application. 5
1.2 Design . 6

1.2.1 Parser . 6
1.2.2 Evaluator . 8
1.2.3 Renderer . 10

1.3 Features . 12
1.3.1 Code Decoration . 12
1.3.2 Graphics . 13

1.3.2.1 Graphical Devices. 14
1.3.2.2 Plot Recording. 15
1.3.2.3 Plot Rearrangement . 16
1.3.2.4 Plot Size . 17
1.3.2.5 Tikz Device . 18

1.3.3 Cache. 19
1.3.4 Code Externalization . 20
1.3.5 Chunk Reference . 21
1.3.6 Evaluation of Chunk Options . 22
1.3.7 Child Document . 23
1.3.8 R Notebook . 23

1.4 Extensibility . 24
1.4.1 Hooks . 24
1.4.2 Language Engines. 27

1.5 Discussion . 27
Acknowledgments . 29
References . 30

Reproducibility is the ultimate standard by which scientific findings are
judged. From the computer science perspective, reproducible research is
often related to literate programming [13], a paradigm conceived by Donald
Knuth, and the basic idea is to combine computer code and software

3

4 Implementing Reproducible Research

documentation in the same document; the code and documentation can be
identified by different special markers. We can either compile the code and
mix the results with documentation or extract the source code from the doc-
ument. To some extent, this implies reproducibility because everything is
generated automatically from computer code, and the code can reflect all the
details about computing.

Early implementations like WEB [12] and Noweb [20] were not directly
suitable for data analysis and report generation, which was partly overcome
by later tools like Sweave [14]. There are still a number of challenges that
were not solved by existing tools; for example, Sweave is closely tied to LATEX
and hard to extend. The knitr package [28,29] was built upon the ideas of
previous tools with a framework redesigned, enabling easy and fine control
of many aspects of a report. Sweave can be regarded as a subset of knitr in
terms of the features.

In this chapter, we begin with a simple but striking example that shows
how reproducible research can become natural practice to authors given a
simple and appealing tool. We introduce the design of the package in Section
1.2 and how it works with a variety of document formats, including LATEX,
HTML, and Markdown. Section 1.3 lists the features that can be useful to
data analysis such as the cache system and graphics support. Section 1.4 cov-
ers advanced features that extend knitr to a comprehensive environment for
data analysis; for example, other languages such as Python, awk, and shell
scripts can also be integrated into the knitr framework. We will conclude
with a few significant examples, including student homework, data reports,
blog posts, and websites built with knitr.

The main design philosophy of knitr is to make reproducible research
easier and more enjoyable than the common practice of cut-and-paste results.
This package was written in the R language [11,19]. It is freely avail-
able on CRAN (Comprehensive R Archive Network) and documented in
its website http://yihui.name/knitr/; the development repository is on
Github: https://github.com/yihui/knitr, where users can file bug reports
and feature requests and participate in the development.

There are obvious advantages of writing a literate programming docu-
ment over copying and pasting results across software packages and doc-
uments. An overview of literate programming applied to statistical analysis
can be found in [22]; [8] introduced general concepts of literate programming
documents for statistical analysis, with a discussion of the software architec-
ture; [7] is a practical example based on [8], using an R package GolubRR to
distribute reproducible analysis; and [2] revealed several problems that may
arise with the standard practice of publishing data analysis results, which
can lead to false discoveries due to lack of enough details for reproducibility
(even with datasets supplied). Instead of separating results from computing,
we can actually put everything in one document (called a compendium in [8]),
including the computer code and narratives. When we compile this docu-
ment, the computer code will be executed, giving us the results directly.

knitr 5

This is the central idea of this chapter—we go from the source code to the
report in one step, and everything is automated by the source code.

1.1 Web Application

R Markdown (referred to as Rmd hereafter) is one of the document formats
that knitr supports, and it is also the simplest one. Markdown [10] is a both
easy-to-read and easy-to-write language that was designed primarily for
writing web content easily and can be translated to HTML (e.g., **text**
translates to text). What follows is a trivial example
of how Rmd looks like:

First section

Description of the methods.

```{r brownian-motion, fig.height=4, fig.cap='Brownian Motion'}
x <- cumsum(rnorm(100))
plot(x)
```

The mean of x is `r mean(x)`.

We can compile this document with knitr, and the output will be an
HTML web page containing all the results from R, including numeric and
graphical results. This is not only easier for authors to write a report but
also guarantees a report is reproducible since no cut-and-paste operations
are involved. To compile the report, we only need to load the knitr package
in R and call the knit() function:

library(knitr)
knit("myfile.Rmd") # suppose we saved the above file as
myfile.Rmd

Based on this simple idea, knitr users have contributed hundreds of
reports to the hosting website RPubs (http://rpubs.com) within a few
months since it was launched, ranging from student homework, data analy-
sis reports, HTML5 slides, and class quizzes. Traditionally, literate program-
ming tools often choose LATEX as the authoring environment, which has a
steep learning curve for beginners. The success of R Markdown and RPubs

6 Implementing Reproducible Research

shows that one does not have to be a typesetting expert in order to make use
of literate programming and write reproducible reports.

1.2 Design

The package design consists of three components: parser, evaluator, and
renderer. The parser identifies and extracts computer code from the source
document; the evaluator executes the code; and the renderer generates the
final output by appropriately marking up the results according to the output
format.

1.2.1 Parser

To include computer code into a document, we have to use special patterns
to separate it from normal texts. For instance, the Rmd example in Section
1.1 has an R code chunk that starts with ```{r} and ends with ```.

Internally, knitr uses the object knit_patterns to set or get the pat-
tern rules, which are essentially regular expressions. Different document
formats use different sets of regular expressions by default, and all built-in
patterns are stored in the object all_patterns as a named list. For exam-
ple, all_patterns$rnw is a set of patterns for the Rnw format, which has
an R code embedded in a LATEX document using the Noweb syntax. Sim-
ilarly, knitr has default syntax patterns for other formats like Markdown
(md), HTML (html), and reStructuredText (rst). We take the Rnw syntax
for example.

library(knitr)
names(all_patterns) # all built-in document formats

[1] "rnw" "brew" "tex" "html" "md" "rst"

all_patterns$rnw[c("chunk.begin", "chunk.end", "inline.code")]

$chunk.begin
[1] "^\\s*<<(.*)>>="
##
$chunk.end
[1] "^\\s*@\\s*(%+.*|)$"
##
$inline.code
[1] "\\\\Sexpr\\{([^}]+)\\}"

knitr 7

In the pattern list for the Rnw format, there are three major elements
as shown earlier: chunk.begin, chunk.end, and inline.code, which
are regular expressions indicating the patterns for the beginning and end-
ing of a code chunk, and inline code, respectively. For example, the regular
expression ^\s*<<(.*)>>= means the pattern for the beginning of a code
chunk is: in the beginning (^) of this line, there are at most some white spaces
(\s*), then the chunk header starts with <<; inside the chunk header, there
can be some texts denoting chunk options ((.*)), which can be regarded as
metadata for a chunk (e.g., fig.height=4 means the figure height will be
4 in. for this chunk); the chunk header is closed by >>=. The code chunk is
usually closed by @ (white spaces are allowed before it and TEX comments
are allowed after it), and we can also write inline code inside the pseudo TEX
command \Sexpr{}. What follows is an example of a fragment of an Rnw
document:

\section{First section}

Description of the methods.

<<brownian-motion, fig.height=4, fig.cap='Brownian Motion'>>=
x <- cumsum(rnorm(100))
plot(x)
@

The mean of x is \Sexpr{mean(x)}.

Based on the Rnw syntax, knitr will find out the code chunk, as well
as the inline code mean(x). Anything else in the document will remain
untouched and will be mixed with the results from the computer code even-
tually. To show the parser can be easily generalized, we take a look at the
Rmd syntax as well:

str(all_patterns$md[c("chunk.begin", "chunk.end",
"inline.code")])

List of 3
$ chunk.begin: chr "^\\s*`{3,}\\s*\\{r(.*)\\}\\s*$"
$ chunk.end : chr "^\\s*`{3,}\\s*$"
$ inline.code: chr "`r +([^`\n]+)\\s*`"

Roughly speaking, the three major patterns are changed to ```{r *}
(beginning), ``` (ending), and `r *` (inline), respectively. If we want to
specify our own syntax, we can use the knit_patterns$set() function,
which will override the default syntax, for example:

8 Implementing Reproducible Research

knit_patterns$set(chunk.begin = "^<<r(.*)", chunk.end =
"^r>>$", inline.code = "\\{\\{([^}]+)\\}\\}")

Then, we will be able to parse a document like this with the custom
syntax:

<<r brownian-motion, fig.height=4, fig.cap='Brownian Motion'
x <- cumsum(rnorm(100))
plot(x)
r>>

The mean of x is {{mean(x)}}.

In practice, however, this kind of customization is often unnecessary. It
is better to follow the default syntax, otherwise additional instructions will
be required in order to compile a literate programming document. Table 1.1
shows all the document formats that are currently supported by knitr.

Among all chunk options, there is a special option called the chunk label.
It is the only chunk option that does not have to be of the form option =
value. The chunk label is supposed to be a unique identifier of a code chunk,
which will be used as the filename for figure files, cache files, and also ids
for chunk references. We will mention these later in Section 1.3.

1.2.2 Evaluator

Once we have the code chunks and inline code expressions extracted from
the document, we need to evaluate them. The evaluate package [26] is used
to execute code chunks, and the eval() function in base R is used to execute
the inline R code. The latter is easy to understand and is made possible by

TABLE 1.1

Code Syntax for Different Document Formats

Format Start End Inline Output

Rnw <<*>>= @ \Sexprx TEX
Rmd ‘‘‘{r *} ‘‘‘ ‘r x‘ Markdown
Rhtml <!-begin.rcode * end.rcode-> <!-rinline x-> HTML

Rrst .. {r *} :r:‘x‘ reST
Rtex % begin.rcode * % end.rcode \rinlinex TEX

brew <% x %> text

* Denotes local chunk options, for example, <<label, eval=FALSE>>=; x denotes inline R
code, for example, <% 1+2 %>.

knitr 9

the power of “computing on the language” [18] of R. Suppose we have a
code fragment 1+1 as a character string, we can parse and evaluate it as an
R code:

eval(parse(text = "1+1"))

[1] 2

For code chunks, it is more complicated. The evaluate package takes a
piece of R source code, evaluates it, and returns a list containing the results
of six possible classes: character (normal text output), source (source
code), warning, message, error, and recordedplot (plots).

library(evaluate)
res <- evaluate(c("'hello world!'", "1:2+1:3"))
str(res, nchar.max = 37)

List of 5
$:List of 1
..$ src: chr "'hello world!'\n"
..- attr(*, "class")= chr "source"
$: chr "[1] \"hello world!\"\n"
$:List of 1
..$ src: chr "1:2+1:3"
..- attr(*, "class")= chr "source"
$:List of 2
..$ message: chr "longer object length is not a

multip"| __truncated__
..$ call : language 1:2 + 1:3
..- attr(*, "class")= chr [1:3] "simpleWarning"

"warning" "condition"
$: chr "[1] 2 4 4\n"

An internal S3 generic function wrap() in knitr is used to deal with differ-
ent types of output using output hooks defined in the object knit_hooks,
which constitutes the renderer. Before the final output is rendered, we
may have to postprocess the output from evaluate according to the chunk
options. For example, if the chunk option is echo=FALSE, we need to
remove the source code. This is one advantage of using the evaluate pack-
age because we can easily filter out the result elements that we do not want
according to the classes of the elements. Continuing the aforementioned
example, we can remove the source code by

10 Implementing Reproducible Research

filter out elements which are not source
res <- Filter(Negate(is.source), res)
str(res, nchar.max = 37)

List of 3
$: chr "[1] \"hello world!\"\n"
$:List of 2
..$ message: chr "longer object length is not a

multip"| __truncated__
..$ call : language 1:2 + 1:3
..- attr(*, "class")= chr [1:3] "simpleWarning" "warning"

"condition"
$: chr "[1] 2 4 4\n"

Similarly, we can process other elements according to the chunk options;
for instance, warning=FALSE means to remove warning messages, and
results=’hide’ means to remove elements of the class character;
knitr has a large number of chunk options to tweak the output, which are
documented at http://yihui.name/knitr/options.

One notable feature of the evaluate package that may be surprising to
most R users is that it does not stop on errors by default. This is to mimic the
behavior of R when we copy and paste R code in the console (or terminal):
If an error occurs in a previous R expression, the rest of the code will still be
pasted and executed. To completely stop on errors, we need to set a chunk
option in knitr:

opts_chunk$set(error = FALSE)

1.2.3 Renderer

Unlike other implementations such as Sweave, knitr makes almost every-
thing accessible to the users, including every piece of results returned from
evaluate. The users are free to write these results in any formats they like via
output hook functions. Consider the following simple example:

1 + 1

[1] 2

There are two parts in the returned results: the source code 1+1 and the
output [1] 2. Users may define a hook function for the source code like this
to use the lstlisting environment in LATEX:

knitr 11

knit_hooks$set(source = function(x, options) {
paste("\\begin{lstlisting}\n", x, "\\end{lstlisting}\n",

sep = "")
})

Or put it inside the <pre> tag with a CSS class source in HTML:

knit_hooks$set(source = function(x, options) {
paste("<pre class='source'>", x, "</pre>", sep = "")

})

Here, the name of the hook function corresponds to the class of the ele-
ment returned from evaluate; see Table 1.2 for the mapping between the
two sets of names. The argument x of the hook denotes the correspond-
ing output (a character string), and options is a list of chunk options for
the current code chunk, for example, options$fig.width is a numeric
value that determines the width of figures in the current chunk. Note that
there are two additional output hooks called chunk and document. The
chunk hook takes the output of the whole chunk as input, which has been
processed by the previous six output hooks; the document hook takes the
output of the whole document as input and allows further postprocessing of
the output text.

Like the parser, knitr also has a series of default output hooks for differ-
ent document formats, so users do not have to rewrite the renderer in most
cases.

TABLE 1.2

Output Hook Functions and the Object Classes of
Results from the evaluate Package

Class Output Hook Arguments

source source x, options

character output x, options
recordedplot plot x, options
message message x, options

warning warning x, options
error error x, options

chunk x, options
document x

12 Implementing Reproducible Research

1.3 Features

The knitr package borrowed features such as TikZ graphics [25] and cache
from pgfSweave [3] and cacheSweave [16], respectively, but the imple-
mentations are completely different. New features like code reference from
an external R script, as well as output customization, are also introduced.
The feature of hook functions in Sweave was reimplemented and hooks
have extended power now. Special emphasis was put on graphics: there can
be any number of plots per chunk, there are more than 20 graphical devices
to choose from (PDF, PNG, and Cairo devices), and it is also easy to specify
the size and alignment of plots via chunk options.

There are several other small features that were motivated from the expe-
rience of using Sweave. For example, a progress bar is provided when
knitting a file so we more or less know how long we still need to wait; out-
put from inline R code (e.g., \Sexpr{x[1]}) is automatically formatted in
scientific notation (like 1.2346 × 108) if the result is numeric (this applies to
all document formats), and we will not get too many digits by default (the
default number in R is 7, which is too long).

As we emphasize the ease of use, the concept of an “R Notebook” was
also introduced in this package, which enables one to write a pure R script
to create a report, and knitr will take care of the details of formatting and
compilation.

1.3.1 Code Decoration

Syntax highlighting comes by default in knitr (chunk option highlight=
TRUE) since we believe it enhances the readability of the source code. The
formatR [27] is used to reformat R code (option tidy=TRUE), for example,
add spaces and indentation, break long lines into shorter ones, and automat-
ically replace the assignment operator = to <-; see the manual of formatR for
details.

For LATEX output, the framed package is used to decorate code chunks
with a light gray background (as we can see in this document). If this LATEX
package is not found in the system, a version will be copied directly from
knitr. The output for HTML documents is styled with CSS, which looks
similar to LATEX (with gray shadings and syntax highlighting).

The prompt characters are removed by default because they mangle the
R source code in the output and make it difficult to copy the R code. The R
output is masked in comments by default based on the same rationale. In
fact, this was largely motivated from my experience of grading homework;
with the default prompts, it is difficult to verify the results in the homework
because it is so inconvenient to copy the source code. Anyway, it is easy to
revert to the output with prompts (set option prompt=TRUE), and we will

knitr 13

quickly realize the inconvenience to the readers if they want to run the code
in the output document:

> x <- rnorm(5)
> x
[1] -0.56048 -0.23018 1.55871 0.07051 0.12929
> var(x)
[1] 0.6578

The example below shows the effect of tidy=TRUE/FALSE:

option tidy=FALSE
for(k in 1:10){j=cos(sin(k)*k^2)+3;print(j-5)}

option tidy=TRUE
for (k in 1:10) {

j <- cos(sin(k) * k^2) + 3
print(j - 5)

}

While this may seem to be irrelevant to reproducible research, we would
argue that it is of great importance to design styles that look appealing and
helpful at the first glance, which can encourage users to write reports in
this way.

1.3.2 Graphics

Graphics is an important part of reports, and several enhancements have
been made in knitr. For example, grid graphics [15] may not need to be
explicitly printed as long as the same code can produce plots in the R console
(in some cases, however, they have to be printed, e.g., in a loop, because we
have to do so in an R console); what follows is a chunk of code that will
produce a plot in both the R console and the knitr:

library(ggplot2)
p <- qplot(carat, price, data = diamonds) + geom_hex()
p # no need to print(p)

14 Implementing Reproducible Research

1,000

2,000

3,000

4,000

5,000

0

Pr
ice

0

5,000

10,000

15,000

1 2 3 4 5

Count

Carat

1.3.2.1 Graphical Devices

Over a long time, a frequently requested feature for Sweave was the
support for other graphics devices, which has been implemented since R
2.13.0. Instead of using several logical options like png or jpeg, knitr
uses a single option dev (like grdevice in Sweave), which has support
for more than 20 devices. For instance, dev=’png’ will use the png()
device in the grDevices package in base R, and dev=’CairoJPEG’ uses
the CairoJPEG() device in the add-on package Cairo (it has to be installed
first, of course). Here are the possible values for dev:

[1] "bmp" "postscript" "pdf" "png"
[5] "svg" "jpeg" "pictex" "tiff"
[9] "win.metafile" "cairo_pdf" "cairo_ps" "quartz_pdf"
[13] "quartz_png" "quartz_jpeg" "quartz_tiff" "quartz_gif"
[17] "quartz_psd" "quartz_bmp" "CairoJPEG" "CairoPNG"
[21] "CairoPS" "CairoPDF" "CairoSVG" "CairoTIFF"
[25] "Cairo_pdf" "Cairo_png" "Cairo_ps" "Cairo_svg"
[29] "tikz"

If none of these devices is satisfactory, we can provide the name of a cus-
tomized device function, which must have been defined in this form before
it is used:

custom_dev <- function(file, width, height, ...) {
open the device here, e.g. pdf(file, width, height, ...)

}

Then, we can set the chunk option dev=’custom_dev’.

knitr 15

1.3.2.2 Plot Recording

All the plots in a code chunk are first recorded as R objects and then
“replayed” inside a graphical device to generate plot files. The evaluate
package will record plots per expression basis; in other words, the source
code is split into individual complete expressions and evaluate will examine
the possible plot changes in snapshots after each single expression has been
evaluated. For example, the following code consists of three expressions, out
of which two are related to drawing plots, therefore evaluate will produce
two plots by default:

par(mar = c(3, 3, 0.1, 0.1))
plot(1:10, ann = FALSE, las = 1)
text(5, 9, "mass $\\rightarrow$ energy\n$E=mc^2$")

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10
Mass Energy

E = mc2

2 4 6 8 10

This brings a significant difference with traditional tools in R for
dynamic report generation since low-level plotting changes can also be
recorded. The option fig.keep controls which plots to keep in the out-
put; fig.keep=’all’ will keep low-level changes in separate plots; by
default (fig.keep=’high’), knitr will merge low-level plot changes into
the previous high-level plot, like most graphics devices do. This feature may
be useful for teaching R graphics step by step. Note, however, that low-
level plotting commands in a single expression (a typical case is a loop) will
not be recorded cumulatively, but high-level plotting commands, regard-
less of where they are, will always be recorded. For example, this chunk
will only produce 2 plots instead of 21 plots because there are 2 complete
expressions:

16 Implementing Reproducible Research

plot(0, 0, type = "n", ann = FALSE)
for (i in seq(0, 2 * pi, length = 20)) points(cos(i), sin(i))

But this will produce 20 plots as expected:

for (i in seq(0, 2 * pi, length = 20)) {
plot(cos(i), sin(i), xlim = c(-1, 1), ylim = c(-1, 1))

}

We can discard all previous plots and keep the last one only by
fig.keep=’last’, or keep only the first plot by fig.keep=’first’, or
discard all plots by fig.keep=’none’.

1.3.2.3 Plot Rearrangement

The chunk option fig.show can decide whether to hold all plots while
evaluating the code and “flush” all of them to the end of a chunk
(fig.show=’hold’; see the previous plot example), or just insert them to
the places where they were created (by default fig.show=’asis’). Here is
an example of fig.show=’asis’ for two plots in one chunk:

contour(volcano) # contour lines

120

150
140

110

110

160180

160

170

130

110

100110

190

1000.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

knitr 17

filled.contour(volcano) # fill contour plot with colors

100

120

140

160

180

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Besides ’hold’ and ’asis’, the option fig.show can take a third
value, ’animate’, which makes it possible to insert animations into the out-
put document. In LATEX, the package animate is used to put together image
frames as an animation. For animations to work, there must be more than
one plot produced in a chunk. The option interval controls the time inter-
val between animation frames; by default it is 1 s. Note that we have to add
\usepackage{animate} in the LATEX preamble because knitr will not add
it automatically. Animations in the PDF output can only be viewed in Adobe
Reader. There are animation examples in both the main manual and graphics
manual of knitr, which can be found on the package website.

We can specify the figure alignment via the chunk option fig.align
(’left’, ’center’, and ’right’). The plot example in the previous
section used fig.align=’center’ so the two plots were centered.

1.3.2.4 Plot Size

The fig.width and fig.height options specify the size of plots in the
graphics device (units in inches), and the real size in the output docu-
ment can be different (specified by out.width and out.height). When
there are multiple plots per code chunk, it is possible to arrange mul-
tiple plots side by side. For example, in LATEX, we only need to set
out.width to be less than half of the current line width, for example,
out.width=’.49\\linewidth’.

18 Implementing Reproducible Research

1.3.2.5 Tikz Device

Besides PDF, PNG, and other traditional R graphical devices, knitr has spe-
cial support to TikZ graphics via the tikzDevice package [24], which is
similar to the feature of pgfSweave. If we set the chunk option dev=’tikz’,
the tikz() device in tikzDevice will be used to generate plots. The options
sanitize (for escaping special TEX characters) and external are related
to the tikz device: see the documentation of tikz() for details. Note
that external=TRUE in knitr has a different meaning with pgfSweave—
it means standAlone=TRUE in tikz(), and the TikZ graphics output will
be compiled to PDF immediately after it is created, so the “externalization”
does not depend on the official but complicated externalization commands
in the tikz package in LATEX. To maintain consistency in (font) styles, knitr
will read the preamble of the input document and pass it to the tikz device
so that the font style in the plots will be the same as the style of the whole
LATEX document.

Besides consistency of font styles, the tikz device also enables us to write
arbitrary LATEX expressions into R plots. A typical use is to write math expres-
sions. The traditional approach in R is to use an expression() object to
write math symbols in the plot, and for the tikz device, we only need to
write normal LATEX code. What follows is an example of a math expression
p(θ|x) ∝ π(θ)f (x|θ) using the two approaches, respectively:

plot(0, type = "n", ann = FALSE)
text(0, expression(p(theta ~ "|" ~ bold(x)) %prop% pi(theta)

* f(bold(x) ~ "|" ~ theta)), cex = 2)

p(θ |x) π(θ)f(x | θ)

With the tikz device, it is both straightforward (if we are familiar with
LATEX) and more beautiful:

plot(0, type = "n", ann = FALSE)
text(0, "$p(\\theta|\\mathbf{x})\\propto\\pi(\\theta)

f(\\mathbf{x}|\\theta)$", cex = 2)

p(θ|x) π(θ) f (x|θ)

One disadvantage of the tikz device is that LATEX may not be able to han-
dle too large tikz files (it can run out of memory). For example, an R plot with
tens of thousands of graphical elements may fail to compile in LATEX if we use
the tikz device. In such cases, we can switch to the PDF or PNG device, or

knitr 19

reconsider our decision on the type of plots, for example, a scatter plot with
millions of points is usually difficult to read, and a contour plot or a hexagon
plot showing the 2D density can be a better alternative (they are smaller in
size).

We emphasized the uniqueness of chunk labels in Section 1.2.1, and here
is one reason why it has to be unique: the chunk label is used in the filenames
of plots; if there are two chunks that share the same label, the latter chunk
will override the plots generated in the previous chunk. The same is true for
cache files in the next section.

1.3.3 Cache

The basic idea of cache is that we directly load results from a previous run
instead of recompute everything from scratch if nothing has been changed
since the last run. This is not a new idea—both cacheSweave [16] and
weaver [6] have implemented it based on Sweave, with the former using
filehash [17] and the latter using .RData images; cacheSweave also supports
lazy-loading of objects based on filehash. The knitr package directly uses
internal base R functions to save (tools:::makeLazyLoadDB()) and lazy-
load objects (lazyLoad()). The cacheSweave vignette has clearly explained
lazy-loading; roughly speaking, lazy-loading means an object will not be
really loaded into memory unless it is really used somewhere. This is very
useful for cache; sometimes, we read a large object and cache it, then take
a subset for analysis and this subset is also cached; in the future, the initial
large object will not be loaded into R if our computation is only based on the
subset object.

The paths of cache files are determined by the chunk option
cache.path; by default all cache files are created under a directory cache/
relative to the current working directory, and if the option value contains
a directory (e.g., cache.path=’cache/abc-’), cache files will be stored
under the directory cache/ (automatically created if it does not exist) with a
prefix abc-. The cache is invalidated and purged on any changes to the code
chunk, including both the R code and chunk options; this means previous
cache files of this chunk are removed (filenames are identified by the chunk
label) and a new set of cache files will be written. The change is detected
by verifying if the MD5 hash of the code and options has changed, which is
calculated from the digest package [5].

Two new features that make knitr different from other packages are as
follows: cache files will never accumulate since old cache files will always be
removed, and knitr will also try to preserve side effects such as printing and
loading add-on packages. However, there are still other types of side effects
like setting par() or options(), which are not cached. Users should be
aware of these special cases and make sure to clearly divide the code that is
not meant to be cached into other chunks that are not cached, for example,

20 Implementing Reproducible Research

set all global options in the first chunk of a document and do not cache that
chunk.

Sometimes, a cached chunk may need to use objects from other cached
chunks, which can bring a serious problem—if objects in previous chunks
have changed, this chunk will not be aware of the changes and will still
use old cached results, unless there is a way to detect such changes from
other chunks. There is an option called dependson in cacheSweave, which
does this job. In knitr, we can also explicitly specify which other chunks
this chunk depends on by setting an option like dependson=c(’chunkA’,
’chunkB’) (a character vector of chunk labels). Each time the cache of a
chunk is rebuilt, all other chunks that depend on this chunk will lose cache,
hence their cache will be rebuilt as well.

There are two alternative approaches to specify chunk dependencies:
dep_auto() and dep_prev(). For the former, we need to turn on the
chunk option autodep (i.e., set autodep=TRUE), then put dep_auto()
in the first chunk in a document. This is an experimental feature borrowed
from weaver that frees us from setting chunk dependencies manually. The
basic idea is, if a latter chunk uses any objects created from a previous
chunk, the latter chunk is said to depend on the previous one. The func-
tion findGlobals() in the codetools package is used to find out all global
objects in a chunk, and according to its documentation, the result is an
approximation. Global objects roughly mean the ones that are not created
locally, for example, in the expression function() {y <- x}, x should
be a global object, whereas y is local. Meanwhile, we also need to save the
list of objects created in each cached chunk so that we can compare them to
the global objects in latter chunks. For example, if chunk A created an object
x and chunk B uses this object, chunk B must depend on A, that is, when-
ever A changes, B must also be updated. When autodep=TRUE, knitr will
write out the names of objects created in a cached chunk as well as those
global objects in two files named __objects and __globals, respectively; later
we can use the function dep_auto() to analyze the object names to figure
out the dependencies automatically. For dep_prev(), it is a very conserva-
tive approach that sets the dependencies so that a cached chunk will depend
on all of its previous chunks, that is, whenever a previous chunk is updated,
all later chunks will be updated accordingly; similarly, this function needs to
be called in the first code chunk in a document.

1.3.4 Code Externalization

It can be more convenient to write R code in a separate file rather than
mixing it into a literate programming document; for example, we can
run R code successively in a pure R script from one chunk to the other
without jumping through other text chunks. This may not sound impor-
tant for some editors that support interaction with R, such as RStudio
(http://www.rstudio.com/ide) or Emacs with ESS [21], since we can send

knitr 21

R code chunks directly from the editor to R, but for other editors like LYX
(http://www.lyx.org), we can only compile the whole report as a batch job,
which can be inconvenient when we only want to know the results of a single
chunk.

The second reason for the feature of code externalization is to be able
to reuse code across different documents. Currently the setting is like this:
the external R script also has chunk labels for the code in it (marked in the
form ## @knitr chunk-label by default); if the code chunk in the input
document is empty, knitr will match its label with the label in the R script to
input external R code. For example, suppose this is a code chunk labeled as
Q1 in an R script named mycode.R, which is under the same directory as the
source document:

@knitr Q1
#' find the greatest common divisor of m and n
gcd <- function(m, n) {

while ((r <- m%%n) != 0) {
m <- n
n <- r

}
n

}

In the source document, we can first read the script using the function
read_chunk(), which is available in knitr:

read_chunk("mycode.R")

This is usually done in an early chunk, and we can use the chunk Q1 later
in the source document (e.g., an Rnw document):

<<Q1, echo=TRUE, tidy=TRUE>>=
@

Different documents can read the same R script, so the R code can be
reusable across different input documents. In a large project, however, this
may not be an ideal approach to organizing code since there are too many
code fragments. We may consider an R package to organize functions, which
can be easier to call and test.

1.3.5 Chunk Reference

Code externalization is one way to reuse code chunks across documents, and
for a single document, all its code chunks are also reusable in this document.

22 Implementing Reproducible Research

We can either reuse a whole chunk or embed one chunk into the other one.
The former is done through the chunk option ref.label, for example.

<<chunkA>>=
x <- rnorm(100)
@
Now we reuse chunkA in another chunk:

<<chunkB, ref.label="chunkA">>=
@

Then, all the code in chunkA will be put into chunkB. Note only the code
is reused; in this example, chunkB will generate a new batch of random
numbers, regardless of the value of x in chunkA.

To embed a code chunk as a part of another chunk, we can use the syntax
<<label>>, for example

<<chunkA>>=
x <- rnorm(100)
@
Now we embed chunkA into chunkB:

<<chunkB>>=
<<chunkA>>
mean(x)
@

The location of the chunks does not matter. We can even define a code
chunk later, but reference it in an earlier chunk. We can also recursively
embed chunks, and there is no limit on the levels of recursion. For example,
we can embed A in B, and B in C, then C will reuse the code in A as well.

1.3.6 Evaluation of Chunk Options

By default knitr treats chunk options like function arguments instead of
a text string to be split by commas to obtain option values. This gives
the user much more power than the traditional syntax in Sweave; we
can pass arbitrary R objects to chunk options besides simple ones like
TRUE/FALSE, numbers, and character strings. The page http://yihui.name/
knitr/demo/sweave/ has given two examples to show the advantages of
the new syntax. Here, we show yet another useful application: conditional
evaluation.

The idea is, instead of setting chunk options eval to be TRUE or FALSE
(logical constants), their values can be controlled by a variable in the cur-
rent R session. This enables knitr to conditionally evaluate code chunks

knitr 23

according to variables. For example, here we assign TRUE to a variable
dothis:

dothis <- TRUE

In the next chunk, we set chunk options eval=dothis and
echo=!dothis, both are valid R expressions since the variable dothis
exists. As we can see, the source code is hidden, but it was indeed evaluated
since we can see the output:

[1] "you cannot see my source because !dothis is FALSE"

Then, we set eval=dothis and echo=dothis for another chunk:

if (dothis) print("you can see everything now because dothis
is TRUE")

[1] "you can see everything now because dothis is TRUE"

If we change the value of dothis to FALSE, neither of the aforemen-
tioned chunks will be evaluated any more. Therefore, we can control
many chunks with a single variable and present results selectively. When
chunk options are parsed and evaluated like function arguments, a literate
programming document becomes really programmable.

1.3.7 Child Document

We do not have to put everything in one single document; instead,
we can write smaller child documents and include them into a main
document. This can be done through the child option, for example,
child=c(’child1.Rnw’, ’child2.Rnw’). When knitr sees the child
option is not empty, it will parse, evaluate, and render the child documents
as usual and include the results back into the main document. Child doc-
uments can have a nested structure (one child can have a further child),
and there is no limit on the depth of nesting. This feature enables us to bet-
ter organize large projects, for example, one author can focus on one child
document.

1.3.8 R Notebook

We can obtain a report based on a pure R script without taking care of the
authoring tools such as LATEX or HTML. This kind of R scripts is called R note-
books in knitr. There are two approaches to compile R notebooks: stitch()

24 Implementing Reproducible Research

and spin(). The idea of “stitch” is we fit an R script into a predefined tem-
plate in knitr (choices of templates include LATEX, HTML, and Markdown)
and compile the mixed document to a report; all the code in the script will
be put into one single chunk. The idea of “spin” is to write a specially for-
matted script, with normal texts masked in roxygen comments (i.e., after #’)
and chunk options after #+. Here is an example for spin():

#' This is a report.
#'
#+ chunkA, eval=TRUE
generate data
x <- rnorm(100)
#'
#' The report is done.

This script will be parsed and translated to one of the document for-
mats that knitr supports (Table 1.1), and then compiled to a report. This can
be done through a single click in RStudio or we can also call the functions
manually in R:

library(knitr)
stitch("mycode.R") # stitch it, or spin it
spin("mycode.R")

1.4 Extensibility

The knitr package is highly extensible. We have seen in Section 1.2 that both
the syntax patterns and output hooks can be customized. In this section, we
introduce two new concepts: chunk hooks and language engines.

1.4.1 Hooks

A chunk hook (not to be confused with the output hooks) is a function to
be called when a corresponding chunk option is not NULL, and the returned
value of the function is written into the output if it is character. All chunk
hooks are also stored in the object knit_hooks.

One common and tedious task when using R base graphics is we often
have to call par() to set graphical parameters. This can be abstracted into
a chunk hook, so that before a code chunk is evaluated, a set of graphi-
cal parameters can be automatically set. A chunk hook can be arbitrarily
named as long as it does not conflict with existing hooks in knit_hooks.
For example, we create a hook named pars:

knitr 25

knit_hooks$set(pars = function(before, options, envir) {
if (before)

par(options$pars)
})

Now we can pass a list of parameters to the pars option in a chunk,
for example, <<pars = list(col = ’gray’, mar = c(4, 4, .1,
.1), pch = 19)>>=. Because this list is obviously not NULL, knitr will
run the chunk hook pars. In this hook, we specified that par() is called
before a chunk is evaluated (i.e., what if (before) means), and options
argument in the hook function is a list of current chunk options, so the value
of options$pars is just the list we passed to the chunk option pars. As
we can see, the name of the hook function and the name of the chunk option
should be the same, and that is how knitr knows which hook function to
call based on a chunk option. What follows is a code chunk testing the pars
hook:

plot(rnorm(100), ann = FALSE)

−2

−1

0

1

2

0 20 40 60 80 100

We see a scatter plot with solid gray points, which means par() was
indeed called (the default of R is black open circles), although it did not
show up in the source code. Because the hook function does not return
character results, nothing else is written in the output. Now we show
another example on how to save rgl plots [1] using a built-in chunk hook
hook_rgl() in knitr. Note this function returns a character string depend-
ing on the output format, for example if it is LATEX, it returns a character string
like \includegraphics{filename} where filename is the filename of
the rgl plot captured by knitr.

26 Implementing Reproducible Research

knit_hooks$set(rgl = hook_rgl)
head(hook_rgl, 7) # the hook function is defined as this

##
1 function (before, options, envir)
2 {
3 library(rgl)
4 if (before || rgl.cur() == 0)
5 return()
6 name = fig_path("", options)
7 par3d(windowRect = 100 + options$dpi * c(0, 0,

options$fig.width,

Then, we only have to set the chunk option rgl to a non-NULL value,
for example, <<rgl=TRUE, dev=’png’>>= (when dev=’png’, we record
the plot using rgl.snapshot() in rgl to capture the snapshot as a PNG
image):

library(rgl)
demo("bivar", package = "rgl", echo = FALSE)
par3d(zoom = 0.7)

In all, chunk hooks help us do additional tasks before or after the evalua-
tion of code chunks, and we can also use them to write additional content to
the output document.

knitr 27

1.4.2 Language Engines

Although knitr was created in R, it also supports other languages like
Python, Perl, awk, and shell scripts. For the time being, the interface is still
very preliminary: it is a call to external programs via the system() function
in R, and the results are collected as character strings.

The chunk option engine is used to specify the language engine, which
is ’R’ by default. It can be ’python’, ’perl’, ’awk’, ’haskell’, and
’bash’. Although the interface is naive, the design is very general. For
example, these engines can be used for all the document formats, and appro-
priate renderers have been set up for them. For example, we can call Python
in this LATEX document:

x = 'hello python from knitr'
print x.split(' ')
['hello', 'python', 'from', 'knitr']

As all other components of knitr, language engines can be customized
as well. The object that controls the engines is knit_engines, for exam-
ple, we can call knit_engines$get(’python’) to check how the Python
engine was defined, or knit_engines$set(python = ...) to override
the default engine. See the documentation in the package for more details.

A data analysis project often involves multiple tools other than R—we
may use a shell script to decompress the data, awk to preprocess the data,
and R to read the data. By integrating all tools into one framework, a project
can be more tight in the sense that all the relevant code lives in the same
document. It will be easy to redo the whole analysis without worrying if a
certain part of the project is not up-to-date.

1.5 Discussion

A few future directions about tools for reproducible research were out-
lined in [8], including multilanguage compendiums, conditional chunks,
and interactivity. All of these have been made possible in the knitr frame-
work. For example, modern web technologies have enabled us to interact
with web pages easily. RPubs mentioned in Section 1.1 is a good exam-
ple: we can publish reports to the web from RStudio with a single mouse
click; besides, we can also write interactive content into the web page based
on knitr and other tools like JavaScript: http://rpubs.com/jverzani/1143
is an interactive quiz for R; the questions and answers were generated
dynamically from knitr. Another application is the googleVis package [9]:

28 Implementing Reproducible Research

http://rpubs.com/gallery/googleVis (we are able to interact with tables and
Google maps there).

We observed a lot of homework submissions on RPubs (e.g., http://
rpubs.com/kaz_yos/1519), and we believe this is a good indication from the
educational point of view. When students are trained to write homework
in a reproducible manner, it should have more positive impact on scientific
research in the future.

It is debatable which authoring environment is ideal for reproducible
research (e.g., [8] suggested XML), and we would argue that a wide list
of choices should be made available. LATEX is a perfect typesetting tool for
experts, but it is very likely that beginners can get stuck. Markdown is much
less frustrating, and the most important thing is, users can step into the
paradigm of reproducible research really quickly rather than spending most
of their time figuring out typesetting problems. As one example, an RPubs
user published a data analysis about the hurricane “Sandy” almost imme-
diately after it hit the east coast of the United States: http://rpubs.com/
JoFrhwld/sandy.

Everything is moving to the “cloud” nowadays, and lots of applications
are developed and deployed on the server side. OpenCPU is a platform that
provides the service of R through a set of APIs that can be programmed
in JavaScript; knitr has a simple application there that allows one to write
a report in the web browser: http://public.opencpu.org/apps/knitr. The
computing is done on OpenCPU, and nothing is required on the client
side except a web browser. This could be one of the future directions of
statistical computing and report generation. A similar platform sponsored
by RStudio is the Shiny [23] server, and a knitr example can be found at
http://glimmer.rstudio.com/yihui/knitr/.

Web applications may also have an impact on publications related to data
analysis because it is convenient to collaborate with other people, fast to pub-
lish reports, and get feedback. Vistat (http://vis.supstat.com) is an attempt
to build a collaborative and reproducible website featuring statistical graph-
ics like a journal. It is based on Github and R Markdown; authors can submit
new articles through the version control tool GIT and reviewers can make
comments online. All the graphics will be verified independently, hence it
requires the author(s) to submit a detailed source document for other people
to reproduce the results.

There are a number of important issues when implementing the soft-
ware package for reproducible research. For example, cache may be handy
because it can save us a lot of time, but we have to be cautious about when to
invalidate the cache. Even if the code and chunk options are not changed,
do we need to purge the cache and recompute everything after we have
upgraded R from version 2.15.1 to 2.15.2? To incorporate with this kind of
questions, knitr provides additional approaches to invalidate the cache, for
example we can add a chunk option cache.extra=R.version.string
so that whenever the R version has changed, the cache will be rebuilt. Besides

knitr 29

R itself, there can also be problems with add-on packages. In knitr, there is
a convenience function write_bib() that can automatically write the cita-
tion information about R packages in the current R session into a BibTEX
database; this guarantees that the version information of packages is always
up-to-date. We illustrate one more issue as a potential problem: When we
distribute our analysis, how are we supposed to include external materi-
als such as the figure files? For LATEX, this is not a problem since images
are embedded in PDF; for Markdown/HTML, knitr uses the R package
markdown to encode images as base64 strings and embed the character
strings into HTML so that a web page is self-contained (i.e., no extra files
are required to publish it). However, it can be difficult, if not impossi-
ble, to embed everything in a single document, for example, how should
we disseminate datasets and unit tests? A potential media is an R pack-
age as proposed by [8], which has a nice structure of a project (source
code, documentation, vignettes, tests, and datasets). In this case, knitr will
be one part of a reproducible project. In fact, this has been made possible
since R 3.0.0—we can build package vignettes with knitr (traditionally only
Sweave was allowed) and the document formats can be LATEX, HTML, and
Markdown.

The knitr package has gained support in many editors that make it easy
to write the source documents; at the moment, RStudio has the most com-
prehensive support. We can also use LYX, Emacs/ESS, WinEdt, Eclipse, and
Tinn-R. All of them support the compilation of the source document with
one mouse click or keyboard shortcut.

We emphasized graphics but not tables in this chapter because tables
are essentially text output and can be supported by other packages such as
xtable [4]; in knitr, we just need to use the chunk option results=’asis’
when we want a table in the chunk output. Put it another way, tables are
orthogonal to knitr’s design.

In all, we have mainly introduced one comprehensive tool for repro-
ducible research, namely knitr, in this chapter. It has a flexible design to
allow customization and extension in several aspects from the input to the
output. The major functionality of this package has stabilized, and the future
work will be primarily bug fixes and improving existing features such as the
language engines. A much more detailed introduction of this package can be
found in the book [28].

Acknowledgments

First, I thank Friedrich Leisch for the seminal work on Sweave, which
deserves credits of the design and many features in knitr. As I mentioned
in Section 1.3, the ideas of cache and TikZ graphics were from cacheSweave

30 Implementing Reproducible Research

(Roger Peng), pgfSweave (Cameron Bracken and Charlie Sharpsteen),
and weaver (Seth Falcon); syntax highlighting was inspired by Romain
Francois from his highlight package. I thank all these package authors
as well as Hadley Wickham for his unpublished decumar package,
which greatly influenced the initial design of knitr. There have been a
large number of users giving me valuable feedbacks in the mailing list
https://groups.google.com/group/knitr and on Github, and I really appre-
ciate the communications. I thank the authors and contributors of open-
source editors such as LYX and RStudio for the quick support. I thank my
advisors Di Cook and Heike Hofmann for their guidance. Last but not least,
I thank the R Core Team for providing such a wonderful environment for
both data analysis and programming. There are a few nice functions in R
that introduced very useful features into knitr, such as recordPlot() and
lazyLoad().

References

1. D. Adler and D. Murdoch. rgl: 3D visualization device system (OpenGL),
2013. R package version 0.93.929/r929.

2. K.A. Baggerly, J.S. Morris, and K.R. Coombes. Reproducibility of SELDI-
TOF protein patterns in serum: Comparing datasets from different
experiments. Bioinformatics, 20(5):777–785, 2004.

3. C. Bracken and C. Sharpsteen. pgfSweave: Quality speedy graphics
compilation and caching with Sweave, 2012. R package version 1.3.0.

4. D.B. Dahl. xtable: Export tables to LaTeX or HTML, 2013. R package
version 1.7-1.

5. D. Eddelbuettel. digest: Create cryptographic hash digests of R objects,
2013. R package version 0.6.3.

6. S. Falcon. weaver: Tools and extensions for processing Sweave docu-
ments, 2013. R package version 1.24.0.

7. R. Gentleman. Reproducible research: A bioinformatics case study.
Statistical Applications in Genetics and Molecular Biology, 4(1):1034, 2005.

8. R. Gentleman and D. Temple Lang. Statistical analyses and reproducible
research. Bioconductor Project Working Papers, 2004.

9. M. Gesmann and D. de Castillo. googleVis: Interface between R and the
Google chart tools, 2013. R package version 0.4.2.

10. J. Gruber. The Markdown project, 2004. http://daringfireball.net/
projects/markdown/

11. R. Ihaka and R. Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

12. D.E. Knuth. The WEB system of structured documentation. Technical
report, Department of Computer Science, Stanford University, Stanford,
CA, 1983.

knitr 31

13. D.E. Knuth. Literate programming. The Computer Journal, 27(2):97–111,
1984.

14. F. Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. In COMPSTAT 2002 Proceedings in Computational Statistics,
Vol. 69, pp. 575–580. Physica Verlag, Heidelberg, Germany, 2002.

15. P. Murrell. R Graphics, 2nd ed. Chapman & Hall/CRC, Boca Raton, FL,
2011.

16. R.D. Peng. cacheSweave: Tools for caching Sweave computations, 2012.
R package version 0.6-1.

17. R.D. Peng. filehash: Simple key-value database, 2012. R package version
2.2-1.

18. R Core Team. R Language Definition. R Foundation for Statistical Computing.
Vienna, Austria, 2012.

19. R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing. Vienna, Austria, 2013. ISBN
3-900051-07-0.

20. N. Ramsey. Literate programming simplified. IEEE Software, 11(5):
97–105, 1994.

21. A.J. Rossini, R.M. Heiberger, R.A. Sparapani, M. Maechler, and
K. Hornik. Emacs speaks statistics: A multiplatform, multipackage
development environment for statistical analysis. Journal of Computa-
tional and Graphical Statistics, 13(1):247–261, 2004.

22. A. Rossini. Literate statistical analysis. In Proceedings of the 2nd Inter-
national Workshop on Distributed Statistical Computing, Hornik, K. and
Leisch, F. (Eds.), Technische Universität Wien, Vienna, Austria, 2001.
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/

23. RStudio, Inc. shiny: Web Application Framework for R, 2013. R package
version 0.4.0.99.

24. C. Sharpsteen and C. Bracken. tikzDevice: R graphics output in LaTeX
format, 2012. R package version 0.6.3/r49.

25. T. Tantau. The TikZ and PGF packages, 2008. http://sourceforge.net/
projects/pgf/

26. H. Wickham. evaluate: Parsing and evaluation tools that provide more
details than the default, 2013. R package version 0.4.3.

27. Y. Xie. formatR: Format R code automatically, 2012. R package version
0.7.2.

28. Y. Xie. Dynamic Documents with R and knitr. Chapman & Hall/CRC, Boca
Raton, FL, 2013. ISBN 978-1482203530.

29. Y. Xie. knitr: A general-purpose package for dynamic report generation
in R, 2013. R package version 1.1.8.

http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/

2
Reproducibility Using VisTrails

Juliana Freire, David Koop, Fernando Chirigati, and Cláudio T. Silva

CONTENTS

2.1 Introduction . 33
2.2 Reproducibility, Workflows, and Provenance . 35

2.2.1 Anatomy of a Reproducible Experiment . 35
2.2.1.1 Levels of Reproducibility . 35

2.2.2 Describing Computations as Workflows . 37
2.2.3 Provenance in Workflow Systems . 40
2.2.4 Workflows and Reproducibility . 40

2.3 VisTrails System . 40
2.4 Reproducing and Publishing Results with VisTrails. 43

2.4.1 Reproducibility Support . 43
2.4.1.1 Provenance-Rich Results. 44
2.4.1.2 Workflow Upgrades . 45
2.4.1.3 Managing Data and Their Versions . 46
2.4.1.4 Using Provenance for Future Work . 47

2.4.2 Publishing Results . 48
2.4.3 Publishing Interactive Results on the Web . 48

2.5 Challenges and Opportunities . 50
2.6 Related Work. 50
2.7 Conclusion. 51
Acknowledgments . 52
References . 52

2.1 Introduction

Science has long placed an emphasis on revisiting and reusing past results:
reproducibility is a core component of the scientific process. Testing and
extending published results are standard activities that lead to practical
progress: science moves forward using past work and allowing scientists to
“stand on the shoulders of giants.” In natural science, long tradition requires
experiments to be described in enough detail so that they can be reproduced

33

34 Implementing Reproducible Research

by other researchers. This standard, however, has not been widely applied
for computational experiments. Researchers often have to rely on tables,
plots, and figure captions included in papers. Consequently, it is difficult
to verify and reproduce many published results [43], and this has led to a
credibility crisis in computational science [17].

Scientific communities in different domains have started to act in
an attempt to address this problem. Prestigious conferences such as
SIGMOD [58] and VLDB [71], and journals such as PNAS [52], Biostatis-
tics [7], the IEEE Transactions on Signal Processing [65], Nature, and Science,
to name a few, have been encouraging—and sometimes requiring—that
published results be accompanied by the necessary data and code needed
to reproduce them. However, it can be difficult and time-consuming for
authors to make their experiment reproducible and for reviewers to ver-
ify the results. Authors need to encapsulate the whole experiment (data,
parameter settings, source code, and environment) to guarantee that the
same results are generated. Even when an experiment compendium is
available, reviewers may have difficulties reproducing the experiments due
to missing libraries or dependences on a specific operating system ver-
sion to run (or compile) the experiment. We posit that by planning for
reproducibility and through the use of systems that systematically cap-
ture provenance of the scientific exploration process, researchers will not
only create results that are reproducible but they can also streamline many
of the tasks they have to carry out. With this in mind, we have built a
framework that supports the life cycle of computational experiments [25,38].
This framework has been implemented and is currently released as part
of VisTrails [20,70], an open-source, workflow-based data exploration and
visualization system. VisTrails relies on a provenance management compo-
nent to automatically and transparently capture the necessary metadata to
allow experiments to be reproduced, including executable specification of
computational processes (i.e., the workflow structure), parameter settings,
input and output data, library versions, and code. It implements mecha-
nisms that leverage the provenance information to support the exploratory
process [37,39,60], which is common in data-intensive science [30]. These
mechanisms also make it easier for reviewers to run and verify the
results.

In this chapter, we describe the VisTrails reproducibility infrastructure.
We start in Section 2.2 with a definition for computational reproducibil-
ity and reproducibility levels. We also give an overview of workflow
systems and discuss their benefits and limitations for the creation of repro-
ducible experiments. The VisTrails system is described in Section 2.3 and in
Section 2.4, we present specific components we have added to the system to
support both authors and reviewers of reproducible experiments. Some lim-
itations of our reproducibility framework and directions for future work are
discussed in Section 2.5. We review related work in Section 2.6, and conclude
in Section 2.7.

Reproducibility Using VisTrails 35

2.2 Reproducibility, Workflows, and Provenance

2.2.1 Anatomy of a Reproducible Experiment

A computational experiment that has been developed at time t on hardware/
operating system s on data d is reproducible if it can be executed at time t′ on
system s′ on data d′ that is similar to (or potentially the same as) d with con-
sistent results [22]. For this to be possible, the description of the experiment
must be sufficiently precise and include

• A description of the input data, either in extension (the actual data)
or in intention (e.g., a script that derives the data)

• Detailed information about the system where the experiments were
run, including hardware and software configuration

• An executable specification for the experiment that describes the
steps followed to derive the result

The components of a reproducible paper are illustrated in Figure 2.1. This
paper investigates Galois conjugates of quantum double models [19]. Each
figure in the paper is accompanied by its provenance, consisting of the
workflow used to derive the plot, the underlying libraries invoked by the
workflow, and links to the input data, that is, simulation results stored
in an archival site. This provenance information allows all results in the
paper to be reproduced. In the PDF version of the paper,∗ the figures are
active, and when clicked on, the corresponding workflow is loaded into the
VisTrails and executed on the reader’s machine. The reader may then modify
the workflow, change parameter values, and input data.

2.2.1.1 Levels of Reproducibility

While full reproducibility is desirable, it can be hard or impossible to attain.
Therefore, it is important to consider different levels of reproducibility.
Freire et al. [22] have introduced three criteria to characterize the level of
reproducibility of experiments:

1. The depth evinces how much of an experiment is made available. The
default today is to include a set of figures in a manuscript. Higher
depths can be obtained by including the script (or spreadsheet file)
used to generate the figures in the paper together with the appropri-
ate datasets; the raw data and intermediate results derived during
the experiments; the set of experiments (system configuration and

∗ This paper can be downloaded from http://arxiv.org/abs/1106.3267.

http://arxiv.org/abs/1106.3267.

36 Implementing Reproducible Research

Re
pr

od
uc

ib
le

pa
pe

r
Pr

ov
en

an
ce

Re
pr

od
uc

ed
 re

su
lt

FI
G

U
R

E
2.

1
A

re
pr

od
uc

ib
le

pa
pe

r.
T

hi
s

pa
pe

r
by

Fr
ee

d
m

an
et

al
.[

19
]c

on
ta

in
s

fi
gu

re
s

th
at

ha
ve

be
en

in
se

rt
ed

vi
a

th
e

V
is

T
ra

ils
pu

bl
is

hi
ng

m
ec

ha
ni

sm
s.

C
lic

ki
ng

on
a

fi
gu

re
d

ow
nl

oa
d

s
th

e
w

or
kf

lo
w

in
st

an
ce

an
d

as
so

ci
at

ed
pr

ov
en

an
ce

ne
ed

ed
to

d
er

iv
e

th
e

fi
gu

re
.T

hi
s

in
fo

rm
at

io
n

ca
n

be
ex

am
in

ed
an

d
ex

ec
ut

ed
in

V
is

T
ra

ils
,r

ep
ro

d
uc

in
g

th
e

pl
ot

sh
ow

n
in

th
e

fi
gu

re
.

Reproducibility Using VisTrails 37

initialization, scripts, workload, measurement protocol) used to pro-
duce the raw data; and the software system as a white box (source,
configuration files, build environment) or black box (executable) on
which the experiments are performed.

2. The level of portability indicates whether the experiments can be
reproduced (a) on the original environment (basically the author of
the experiment can replay it on his or her machine), (b) on a simi-
lar environment (e.g., same OS but different machines), or (c) on a
different environment (i.e., on a different OS or machine).

3. Coverage specifies how much of an experiment can be reproduced.
Coverage can be partial or full. For example, considering an exper-
iment that requires special hardware to derive data, partial repro-
ducibility can be obtained by providing the data produced by
the hardware and the analysis processes used to derive the plots
included in the paper.

2.2.2 Describing Computations as Workflows

Workflows are widely used to represent and execute computational exper-
iments, as evidenced by the emergence of several workflow-based systems,
such as Apple’s Mac OS X Automator, Yahoo! Pipes, Galaxy, NiPype,
VisTrails, Kepler, and Taverna, to name a few. Workflow systems have fea-
tures that make them suitable as tools to create reproducible experiments.
Notably, (1) workflow specifications provide an explicit representation of
the structure of the experiments, (2) workflows automate repetitive tasks
and computations, and (3) workflow systems can transparently capture
provenance information.

In a workflow, computational steps are represented by modules, and
there is a connection between two modules if there is a dependency rela-
tion between them. The dependency relation can be either control or data
driven. When the dependencies are data driven, workflows are referred
to as dataflows. Dataflows can be naturally represented as directed-acyclic
graphs (DAGs) where the connections (or edges) correspond to data flowing
between modules. Dataflows are the underlying model for the major scien-
tific workflow systems [35,62,70] and also for many workflow-based systems
used for data processing and visualization.

Dataflows have several advantages over scripts or programs written in
high-level languages [25]. They provide a simple programming model where
a sequence of tasks is composed by connecting the outputs of one task to the
inputs of another. This enables the use of visual interfaces that are suitable
for users without programming expertise. The explicit DAG structure sup-
ports useful manipulations, including the ability to query workflows and
update them in a programmatic fashion [57]. Workflows can also be rep-
resented at different levels of abstraction [23]. As illustrated in Figure 2.2,

38 Implementing Reproducible Research

PersistentInputFile PersistentInputFile
ReadInputs

(Group)

Simulation
(PythonSource)

PersistentIntermediateFile

CSVReader

CSVReaderCSVReader

Simulation
(PythonSource)

PersistentIntermediateFile

CSVReader

GetTemperature
(ExtractColumn)

GetPercipitation
(ExtractColumn)

MplScatterplot

MplFigure

MplFigureCell

GetTemperature
(ExtractColumn)

GetPrecipitation
(ExtractColumn)

CreateScatterPlot
(Group)

2.5

2.0

1.5

1.0

Pr
ec

ip

0.5

0.0

–0.5
–30 –20 –10 0

Temp
10 20 30

FIGURE 2.2
A scientific workflow for visualizing temperature and precipitation data. Besides providing an
executable specification for the derivation of the scatterplot (bottom right), through the use of
abstraction, the workflow can also provide a specification that hides unnecessary details and is
easier to understand.

a series of modules can be grouped to hide unnecessary details. Abstrac-
tion can be used to make the specification easier to understand and more
amenable for publication.

A given workflow instance embodies not only the structure of the exper-
iment but also its configuration, that is, the input data and parameters used
to produce a result. Having a workflow instance associated with a pub-
lished result simplifies reproducibility. In addition, because the workflow
specification is executable and has an explicit structure, users can easily per-
form parameter sweeps and run experiments varying the input data, while
ensuring the same configuration is used across the different runs. For exam-
ple, the VisTrails system provides a mechanism for parameter exploration
and allows users to compare the results side by side [24]. Figure 2.3 shows
a series of scatter plots showing temperature and precipitation derived
for multiple years: the same workflow is run varying the input files for

Reproducibility Using VisTrails 39

FI
G

U
R

E
2.

3
T

he
V

is
T

ra
ils

pa
ra

m
et

er
ex

pl
or

at
io

n
m

ec
ha

ni
sm

.A
w

or
kf

lo
w

is
us

ed
to

d
er

iv
e

sc
at

te
rp

lo
ts

fo
r

te
m

pe
ra

tu
re

an
d

pr
ec

ip
it

at
io

n
va

ry
in

g
th

e
in

pu
t

d
at

a
to

an
al

yz
e

th
e

be
ha

vi
or

in
d

if
fe

re
nt

ye
ar

s.

40 Implementing Reproducible Research

different years. Such a mechanism is useful, for instance, to verify results
and perform sensitivity analyses, tasks that are essential for reviewers.

2.2.3 Provenance in Workflow Systems

In a script or a program, unless specified by the programmer, it is diffi-
cult to record the steps taken, the inputs consumed, and the tools called
throughout the execution. Because workflow systems control the execution
of computational processes, they can systematically capture their provenance.
As provenance is a key ingredient for reproducibility [23,25,60], workflows
systems are well suited as a platform to create reproducible experiments.

There are three main types of provenance captured by workflow systems:
prospective, retrospective, and workflow evolution [23]. Prospective prove-
nance embodies the description of an experiment—the specification of the
workflow structure, including modules, connections, and inputs. Retrospec-
tive provenance captures information about the execution of the workflow,
what actually happened when the workflow was run. Workflow evolution
captures the history of a workflow, that is all the different versions of the
workflow. Evolution provenance is especially useful for data-intensive tasks,
where workflows are iteratively refined, for example, to experiment with
different algorithms or simulation codes, and different input data. Interfaces
can be created to allow users to navigate over workflow versions in an intu-
itive way, undo changes without losing results, visually compare multiple
workflows, and show their results side by side (see Figure 2.4).

2.2.4 Workflows and Reproducibility

Workflow systems capture both prospective and retrospective provenance,
as such, they can provide a high depth of reproducibility: a detailed account
of how a result was derived. Because the prospective provenance, that is, the
workflow specification, is executable, the experiments can be reproduced.
One caveat is the fact that workflows may not be portable: it may not be
possible to run a workflow in an environment different from the one where
it was created. This can be due to a number of factors, including hard-
coded file names, missing libraries, and OS incompatibility. In Section 2.4,
we discuss how we have extended the VisTrails system to deal with these
limitations.

2.3 VisTrails System

VisTrails (http://www.vistrails.org) is an open-source provenance man-
agement and scientific workflow system that was designed to support the
scientific discovery process [20,24,25]. VisTrails provides unique support

http://www.vistrails.org

Reproducibility Using VisTrails 41

Iso
su

rfa
ce

H
ist

og
ra

m
H

TT
PF

ile

vt
kS

tru
ct

ur
ed

Po
in

tsR
ea

de
r

vt
kV

ol
um

eT
ex

tu
re

M
ap

pe
r3

D

vt
kP

lan
e

vt
kC

am
er

a

vt
kI

m
pl

ici
tP

lan
eW

id
ge

t

vt
kI

nt
er

ac
tio

nH
an

dl
er

VT
KC

ell

vt
kR

en
de

re
r

vt
kV

ol
um

e

vt
kV

ol
um

eP
ro

pe
rty

vt
kS

ca
led

Tr
an

sfe
rF

un
ct

io
n

Iso
su

rfa
ce

 sc
rip

t
Vo

lu
m

e r
en

de
rin

g H
W

Cl
ip

pi
ng

 p
lan

e H
W

Co
m

bi
ne

d
re

nd
er

in
g H

W
Co

m
bi

ne
d

re
nd

er
in

g S
W

Cl
ip

pi
ng

 p
lan

e S
W

Vo
lu

m
e r

en
de

rin
g S

W

Im
ag

e s
ilc

es
 H

W
Im

ag
e s

ilc
es

 S
W

FI
G

U
R

E
2.

4
T

he
V

is
T

ra
ils

sy
st

em
co

ns
is

ts
of

la
ye

rs
to

m
an

ag
e

co
m

pu
ta

ti
on

s,
pr

ov
en

an
ce

,a
nd

d
at

a.
T

he
in

te
rf

ac
e

in
cl

ud
es

a
ve

rs
io

n
tr

ee
th

at
al

lo
w

s
us

er
s

to
na

vi
ga

te
ov

er
pa

st
ve

rs
io

ns
,a

w
or

kf
lo

w
vi

ew
w

he
re

us
er

s
ca

n
cr

ea
te

or
m

od
if

y
w

or
kf

lo
w

s,
an

d
a

vi
su

al
sp

re
ad

sh
ee

tw
he

re
re

su
lt

s
ca

n
be

co
m

pa
re

d
si

d
e

by
si

d
e.

U
se

rs
m

ay
al

so
ad

d
ta

gs
an

d
an

no
ta

ti
on

s
to

th
e

d
if

fe
re

nt
w

or
kf

lo
w

ve
rs

io
ns

.

42 Implementing Reproducible Research

for data analysis and visualization, a comprehensive provenance infrastruc-
ture, and a user-centered design. The system combines and substantially
extends useful features of visualization and scientific workflow systems.
Similar to visualization systems [33,36,41,66], VisTrails makes advanced
visualization techniques available to users, allowing them to explore and
compare different visual representations of their data; and similar to sci-
entific workflow systems [35,50,62,69], VisTrails enables the composition of
workflows that combine specialized libraries, distributed computing infras-
tructure, and web services. As a result, users can create complex workflows
that encompass important steps of scientific discovery, from data gathering
and manipulation to complex analyses and visualizations, all integrated in
one system.

Whereas workflows have been traditionally used to automate repetitive
tasks, for applications that are exploratory in nature, such as simulations,
data analysis, and visualization, very little is repeated—change is the norm.
As a scientist generates and evaluates hypotheses about data under study, a
series of different, albeit related, workflows are created as they are adjusted
in an iterative process. VisTrails was designed to manage these rapidly
evolving workflows. Another distinguishing feature of VisTrails is a compre-
hensive provenance infrastructure that maintains detailed history information
about the steps followed and data derived in the course of an exploratory
task [24]: VisTrails maintains provenance of data products (e.g., visualiza-
tions, plots), the workflows that derive these products, and their executions.
The system also provides extensive annotation capabilities that allow users
to enrich the automatically captured provenance. This information is per-
sisted as XML files or in a relational database. Besides enabling reproducible
results, VisTrails leverages provenance information through a series of operations
and intuitive user interfaces that aid users to collaboratively analyze data. Notably,
the system supports reflective reasoning by storing temporary results, by
providing users the ability to reason about these results and to follow chains
of reasoning backward and forward [47]. Users can navigate workflow ver-
sions in an intuitive way, undo changes but not lose any results, visually
compare multiple workflows and show their results side by side in a visual
spreadsheet, and examine the actions that led to a result [6,24,60]. In addi-
tion, the system has native support for parameter sweeps, whose results can
also be displayed on the spreadsheet [24].

VisTrails addresses important usability issues that have hampered a
wider adoption of workflow and visualization system. It provides a series
of operations and user interfaces that simplify workflow design and use,
including the ability to create and refine workflows by analogy, to query
workflows by example, and a recommendation system that automati-
cally suggests workflow completions as users interactively construct their
workflows [40,57]. The system also supports the creation of mashups—
customized and simplified applications that can be more easily deployed to
scientists [55,56].

Reproducibility Using VisTrails 43

A beta version of the VisTrails system was first released in January 2007.
Since then, the core system has been downloaded over 40,000 times. The
VisTrails wiki has had over 1.7 million page views, and Google Analytics
reports that visitors to the site come from 70 different countries. VisTrails
has been adopted in several scientific projects, both nationally and interna-
tionally, and in different areas, including environmental science [4,12,31,32],
psychiatry [3], astronomy [63], cosmology [2], high-energy physics [16],
molecular modeling [29], quantum physics [5,19], earth observation [14,68],
and habitat modeling [46]. Besides being a stand-alone system, VisTrails has
been used as a key component of domain-specific tools. One notable example
is UV-CDAT, a new toolset for large-scale climate data analysis [54,67].

A number of groups have contributed to the project, some directly—by
checking in code into our git repository—and others by sharing packages
that add functionality to VisTrails, for example, ALPS (ETH Zurich) [1],
control flow [11] (Federal University of Rio de Janeiro, Brazil), ITK [34]
(University of Utah), GridFields [28] (University of Washington), vtDV3D
[72] (NASA), and SAHM [46,53] (USGS). Researchers at the Council for
Scientific and Industrial Research (CSIR) in South Africa have added spatial–
temporal data access and data preprocessing capabilities to VisTrails [18].
The system has been used by many projects, including DataONE [15] and
STC-CMOP [12]. VisTrails has also been successfully used as a tool for teach-
ing, having been adopted at universities in the United States and abroad [59].

2.4 Reproducing and Publishing Results with VisTrails

Because it was designed as a provenance-aware system, VisTrails natively
stores much of the information necessary for users to revisit or extend
existing work. To provide better support for result publication, we have
added new functionality to VisTrails including support for portability (i.e.,
the ability to run a workflow in an environment different from the one
where it was created) and to connect published results to their prove-
nance [25,38]. The new functionality both integrates with and complements
the core provenance features. At the same time, they are not required for
users of VisTrails nor are the ideas strictly dependent on VisTrails—they
could be implemented on other systems.

2.4.1 Reproducibility Support

VisTrails captures both the provenance of workflow executions and the
provenance of the workflow specifications. The system captures what hap-
pens when a workflow is run—the dependencies and properties of inter-
mediate data, and how workflows are modified from run to run—which

44 Implementing Reproducible Research

parameters are changed, which modules are connected together. Workflow
evolution is a key element in maintaining reproducible results, capturing
the changes that are made from initial explorations, tests, and extensions
to the final published results. Because no workflow versions are deleted or
replaced, all results can be retrieved, reproduced, and compared against.
At the same time, knowing how a computation was built can help others
understand the process, extend the results, or tweak them in meaningful
ways.

2.4.1.1 Provenance-Rich Results

Not only does VisTrails capture provenance, but it also makes this infor-
mation available to users to help them organize and understand past work.
This can be especially useful in collaborative settings, where multiple users
are contributing ideas and making changes. In addition to a visual workflow
builder, VisTrails provides a version tree that displays all of the workflow
versions users have created and their relationships. A version tree is shown
in Figure 2.4. Each node in the tree corresponds to a workflow version; an
edge corresponds to an action or sequence of actions applied to transform the
parent node into the child. For example, the node tagged Clipping Plane
HW was created by modifying the node Volume Rendering HW to include
a clipping plane. Unlike standard undo stacks, VisTrails captures and main-
tains all of the steps a user has taken, regardless of whether they may have
been unproductive. A user can switch to any version by selecting the appro-
priate node in the version tree. Having access to this workflow evolution
information allows users to investigate any idea they wish without worry-
ing about explicitly saving versions along the way. In addition, as illustrated
in Figure 2.4 (top right), each version is associated to metadata that includes
an optional label (tag) that describes the version, information about the user
who created the version, the time/date of creation, and free-text notes that
users can add to provide further details about their findings and to better
document the exploratory process. Because both the workflow specifica-
tion and metadata can be searched (and queried), users also do not have
to worry about meticulously labeling each version with the exact parame-
ters and inputs used. This reduces the burden on users to maintain all of the
information needed for reproducibility.

In addition to workflow evolution provenance, VisTrails also allows
users to view the provenance of workflow executions (see Figure 2.5). This
provenance information, containing timing information, any errors encoun-
tered, and which system was used, can be valuable in diagnosing possible
issues or determining more efficient methods of execution. It can also be
used to determine which outputs used a particular input, making it possible
to highlight results that may be invalidated by, for example, a malfunction-
ing sensor. Such information is also important for reproducibility because
it is possible that the system being used or any previous errors can inform

Reproducibility Using VisTrails 45

FIGURE 2.5
Retrospective provenance in VisTrails. Detailed information is kept about the execution of work-
flows and their modules, including when and for how long they ran and whether their execution
completed or failed.

those who attempt to emulate the original work later. For this reason, a Vis-
Trails contains a set of related workflows, the changes differentiating one
from another, and the provenance of any executions.

2.4.1.2 Workflow Upgrades

As time progresses, workflows can become stale for a number of reasons,
notably due to the fact that the software the workflow relies upon may
change. This can happen both during the scientific exploration or after
results are published. When possible, we wish to retain the original steps
so that given a compatible system (e.g., a virtual machine), they can be

46 Implementing Reproducible Research

repeated exactly. However, for later use, it is more convenient to be able
to work with the original computations in a current system. This requires
both a recognition of outdated computations and an upgrade path.

There are a variety of changes that may have occurred to warrant an
upgrade. It may be a change in algorithm where the interface (parameters,
input and output ports) remains the same. It could also be that the ports
were changed to provide new parameters or outputs, possibly with relabel-
ing. Finally, a module (or network of modules) may have been replaced or
removed due to a reorganization or reimplementation. All of these types of
upgrades can be handled, but some can be defaulted to automatic steps while
others require developer or user involvement.

VisTrails detects when upgrades are necessary by comparing the version
of a module in a given workflow with the currently available version. If the
module is out-of-date, it tries to upgrade the old module. Upgrade paths are
either determined automatically or specified by the module developer [39].
When the interface has not changed, VisTrails replaces the old module with
the new version. When it has, VisTrails will attempt to replace the old mod-
ule, and when ports have only been added or a changed port has not been
used, it will succeed. When it does not, it alerts the user so he or she can
determine a next step. However, for nontrivial upgrades, developers are
encouraged to provide explicit upgrade paths for the modules in their pack-
ages. VisTrails passes along any modules that the developer has designated
for special handling, and the developer can write a set of changes (the normal
VisTrails actions like “add module” and “change parameter”) to be applied.
These changes can be based on the current parameters being sent to the mod-
ule as well as any neighboring modules. When automated upgrades do not
work and developers have not specified an upgrade path, VisTrails alerts the
user who can then make the necessary changes.

Most importantly, any upgrades are recorded with the same change-
based provenance as a normal action. This means the original version of the
workflow is always retained, and anyone looking at the steps in the future
can see exactly how the original workflow was modified. One could, then,
re-execute the original version in a virtual machine and compare it to an
upgraded version to check if the behavior is unchanged or if a specific bug
has been fixed.

2.4.1.3 Managing Data and Their Versions

Even if authors have maintained the specification of the computation needed
to reproduce their results, reproducibility also requires the data used in the
work. The provenance of a computation may indicate the file name used,
but if this file is moved, deleted, or modified, reproducing that work is
not possible. One value we have added to VisTrails provenance is a hash
of a file’s contents, allowing users to later check if the provided data does
indeed match the one used in the original computation. In addition, we

Reproducibility Using VisTrails 47

have developed a persistence package that allows users to store input, out-
put, and intermediate data in a versioned repository [37]. This repository
not only ensures that data can be accessed later, but it also automatically
tracks changes in data, ensuring that different versions of the input data can
be recovered in the future. If a user generated a figure based on a dataset that
was later updated, the user can go back to the original version and reproduce
the original run. This mechanism also creates strong links between output
data and the computations used to generate them: users can match output
data and computations by comparing hashes with the repository and finding
provenance traces that match the given identifiers.

Scientific workflows may also access external data sources such as rela-
tional databases as part of an experiment. For example, a module may have
to remotely query a large dataset and use the results for the remaining com-
putation, or it may also have to update information in the dataset. As with
file-based references, accessing relational databases in workflows may also
lead to problems for reproducibility. For example, when workflow consumes
data from a database, its results may depend on the data. When the database
is updated, the results of the workflow may no longer be reproduced, as
database updates may have changed the data that is used by the workflow.
Reproducibility, in this case, is more challenging because there is an inher-
ent mismatch between workflow and database models: while workflows
are stateless and deterministic, databases are stateful—new states reflect the
changes applied to the database.

To address this issue, we have implemented in VisTrails a model that
integrates workflow and database provenance and enables reproducibility
for workflows that interact with relational databases [9]. We rely on a trans-
action temporal model that is currently supported by commercial RDMS—in
our implementation, we used Oracle [48] and its Total Recall functional-
ity [49]. The states of the database are systematically captured and added to
the workflow provenance, and this information is used by VisTrails to com-
municate with the database and go back to a previous state so the workflow
can be correctly reproduced.

2.4.1.4 Using Provenance for Future Work

Provenance allows users to go back to previous work and possibly extend
it, but it can also be used to help create or inform future work. For exam-
ple, if a user performs some modification to a workflow like adding a data
filtering step, he or she may wish to add a similar step to other workflows
as well. This process could be very tedious, but because the VisTrails prove-
nance contains the steps needed to transform the workflow, it can usually be
automated. VisTrails workflow analogies [57] allow users to modify a set of
workflows based on the changes they have made to a single workflow; the
technique uses a flexible matching algorithm that allows the changes to be

48 Implementing Reproducible Research

applied to workflows that have different structures. While analogies are use-
ful for users that have well-defined changes, provenance can also be mined
to derive common workflow patterns. Similar to completion techniques often
seen in text entry boxes, VisComplete [40] uses a collection of workflows to
build ranked sets of possible completions for a partially constructed work-
flow. This allows users to save time spent rebuilding common substructures
or searching examples. These techniques highlight the use of provenance
not only as a record of past work but also as the starting point for future
exploration.

2.4.2 Publishing Results

One common problem with published work is that the caption of a figure,
table, or other result does not provide the whole story about the origin of
that figure. For example, after plotting raw data, an author may restrict the
dataset, transform the data to emphasize a particular aspect, or just refine the
graphical presentation. Sometimes, these steps are not recorded, and later,
readers (or even the original authors) are hard pressed to determine all the
steps used to generate the result. Our approach is to encode the actual com-
putation as part of the paper so that upon generating the final PDF, the result
is recalculated if necessary and a link to the exact computation included.

Our implementation of this hard link between the results displayed in a
paper and the computation uses VisTrails, LaTeX, and a LaTeX package that
defines a new command to reference the underlying computation and passes
the information to VisTrails for computation, placing the result from Vis-
Trails directly into the paper [38]. The vistrails LaTeX package defines
the base command for inserting a result as well as options for adding links
to a web-hosted definition of the workflow or an interactive version of the
result. The user can specify the workflow used to generate a result using a
tag or a unique identifier. With tags, the computation can be edited, and
the paper, upon recompilation, will include the updated result automati-
cally. We have also implemented mechanisms to include results derived by
VisTrails into web pages, wikis, Word documents, and PowerPoint presenta-
tions. Having these mechanisms reduces the burden on authors to manually
update results and mitigates the problem of losing previous results.

2.4.3 Publishing Interactive Results on the Web

The web has opened the possibility of publishing much more than a print-
able PDF, but the same issues that arise in traditional publishing must be
addressed. Specifically, authors must make sure that the published result
accurately reflects the underlying computation, and the idea of reproducibil-
ity as inspection and further exploration is not met simply by having an
interactive visualization. As with papers, being able to download, execute,
and modify a result is preferred over a static result locked into a particular

Reproducibility Using VisTrails 49

FIGURE 2.6
Authors may publish interactive results on the web. Here, we show how VisTrails results can
be displayed and interacted with on the crowdLabs site.

site. That said, there are benefits of server-hosted results, and many of the
goals of reproducibility can be met in such an environment. Because users do
not need to install additional software or download large datasets, the bur-
den of exploring results is lessened. Furthermore, the interactive possibilities
on the web allow authors to publish results that permit recomputation with
user-defined inputs and parameters.

With VisTrails, we have explored two alternatives for web-based pub-
lishing: wikis and interactive social websites. Our approach for wikis is very
similar to publishing for traditional PDFs: there is a specific vistrails tag
that allows a user to specify the workflow that should be computed to gen-
erate the output. As with LaTeX, a user can indicate the workflow by a tag or
a specific, unique identifier. After editing a wiki page, there is a MediaWiki
extension that processes the vistrail tag to re-execute, if necessary, the
workflow and insert the result directly into the wiki output.

We have also developed the crowdLabs website as a place where users
can host and share their workflows and results [45]. In addition, crowd-
Labs supports VisTrails mashups, which allow workflow creators to easily
specify higher-level interfaces to workflows [56]; an example is shown in
Figure 2.6. Such interfaces make it easy for users to quickly explore different
parameter settings for a given computation. Users can upload an entire ver-
sion tree (with all its tagged workflows), a specific workflow, datasets, or a
mashup directly from the VisTrails application. The computations can then
be executed on the crowdLabs server and the results made available via a

50 Implementing Reproducible Research

web browser. For mashups, a user can modify inputs to generate new results
on the fly without having VisTrails installed locally. This server-side execu-
tion allows some amount of reproducibility without requiring a reader to
download the required packages and data. Furthermore, crowdLabs allows
users to comment on others’ results and approaches, enabling conversations
about the computations that can help further future extensions.

2.5 Challenges and Opportunities

In the previous section, we have described our efforts in the area of compu-
tational reproducibility. The infrastructure we have presented, along with
all its features, has already been successfully used by different research
groups [38]. However, the infrastructure is by no means comprehensive.
Through our collaborations with scientists, we have gathered a set of require-
ments that guided our design. In the long term, our goal is to build a general
system where different components and methods can be mixed and used to
achieve reproducibility for many different domains and scenarios.

Our infrastructure is built on top of the VisTrails system, but this tight
integration is not always desirable. Although there are significant advan-
tages for using workflows (Section 2.2.2), it may be time consuming to
wrap the experiment into a workflow system if scientists are already using
another approach for the execution. Besides, the experiment may involve
interactive tools, which cannot be wrapped into a workflow. Nonetheless,
the key contribution here are the core ideas and functionalities on which
the infrastructure is based—the infrastructure itself is a proof-of-concept
implementation of our efforts to simplify the creation, review, and reuse of
reproducible experiments. A direction we are currently pursuing is to break
this infrastructure into components that can be more easily integrated with
other systems. In addition, we have developed a plug-in mechanism that
leverages the VisTrails provenance management subsystem to provenance
support to other tools. Examples of such tools are VisIt, Autodesk’s Maya,
and ParaView [8].

2.6 Related Work

There are many scientific workflow systems, besides VisTrails, that repre-
sent computations as dataflows, including Swift [61], Taverna [62], Kepler
[35], Triana [64], and Pegasus/Wings [50]. While these systems support
reproducibility, they do not have support for portability as discussed in
Section 2.2.4.

Reproducibility Using VisTrails 51

There are also a number of other tools that provide support for repro-
ducibility. Madagascar [44] is a software package for geophysics that allows
scientists to generate computational results and include these on repro-
ducible documents by making use of SCons, a software construction tool,
and LaTeX. Sweave [42] is a tool that embeds source code from R, the sta-
tistical computing software, in LaTeX documents. In this way, every time
data and analysis change, the document is automatically updated, creat-
ing dynamic reports, which supports reproducible research. ReproZip is a
tool that automatically captures the provenance of existing experiments and
packs all the components necessary to reproduce the results in different envi-
ronments [10]. Reviewers can then unpack and run the experiments in their
environment without having to install any additional software. ReproZip
also generates a workflow specification for the experiment, which reviewers
can use to explore the experiment and try different configurations.

The idea of linking data to publications is also explored by SOLE, Collage,
SHARE, and VCR. SOLE [51] is a system that defines command-line tools to
create scientific objects, such as source code, annotations in PDFs and virtual
machine images hosted on a cloud, and link those objects to a paper in HTML
format. Collage [13] is a framework, integrated by the publisher Elsevier, that
was developed to create executable papers, where authors include their code
and data. SHARE [27] is a web portal that allows authors to create and share
remote virtual machines. These machines can be cited in research papers,
and readers can access them and fully reproduce the experiment. Lastly,
verifiable computational results (VCRs) [26] are computational results that
have an identifier, known as verifiable result identifier (VRI), which is a URL
that points to a repository where the results and the computational process
behind it are located. VCRs can then be published in papers, and reviewers
and readers may follow the VRIs to possibly reproduce the results.

2.7 Conclusion

End-to-end and long-term reproducibility of a scientific result is hard to
achieve due to the factors that include the use of specialized hardware,
proprietary data, and inevitable changes in hardware and software environ-
ments. Nonetheless, with the infrastructure we have built, it is possible to
accurately document the processes through provenance capture, as well as
to attain reproducibility for important subcomponents of a result, for exam-
ple, the analysis and visualization of data derived from simulations run on
special hardware.

As reproducibility becomes more widely adopted, the availability of
repositories that contain fully documented experiments will open up new
opportunities for scientific sharing and progress. These repositories have the

52 Implementing Reproducible Research

potential to streamline scientific discovery by allowing researchers to search
through and more easily reuse existing work [21].

Acknowledgments

We thank the VisTrails team for making this work possible, especially
Emanuele Santos, Tommy Ellqvist, and Huy T. Vo. We also thank our
many collaborators and users that have provided us feedback on our repro-
ducibility infrastructure, particularly Philippe Bonnet, Dennis Shasha, Joel
Tohline, and Matthias Troyer. The research and development of the Vis-
Trails system has been funded by the National Science Foundation under
grants CNS-1229185, IIS-1139832, IIS-1142013, IIS-0905385, IIS-1050422, IIS-
0844572, ATM-0835821, IIS-0844546, IIS-0746500, CNS-0751152, IIS-0713637,
OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692, CNS-0524096, CCF-
0401498, OISE-0405402, CCF-0528201, CNS-0551724, the Department of
Energy SciDAC (VACET and SDM centers), and IBM Faculty Awards.

References

1. The ALPS project. http://alps.comp-phys.org (Accessed March, 2013).
2. E.W. Anderson, J.P. Ahrens, K. Heitmann, S. Habib, and C.T. Silva.

Provenance in comparative analysis: A study in cosmology. Computing
in Science and Engineering, 10(3):30–37, 2008.

3. E.W. Anderson, G.A. Preston, and C.T. Silva. Towards development
of a circuit based treatment for impaired memory: A multidisci-
plinary approach. In IEEE EMBS Neural Engineering, Kohala Coast, HI,
pp. 302–305, 2007.

4. A. Baptista, B. Howe, J. Freire, D. Maier, and C.T. Silva. Scientific
exploration in the era of ocean observatories. Computing in Science and
Engineering, 10(3):53–58, 2008.

5. B. Bauer et al. The ALPS project release 2.0: Open source software for
strongly correlated systems. Journal of Statistical Mechanics: Theory and
Experiment, 2011(05):P05001, 2011.

6. L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C.T. Silva, and
H.T. Vo. VisTrails: Enabling interactive multiple-view visualizations. In
Proceedings of IEEE Visualization, Minneapolis, MN, pp. 135–142, 2005.

7. Biostatistics Journal. http://biostatistics.oxfordjournals.org (Accessed
March, 2013).

8. S.P. Callahan, J. Freire, C.E. Scheidegger, C.T. Silva, and H.T. Vo.
Towards provenance-enabling ParaView. In J. Freire, D. Koop, and

http://alps.comp-phys.org
http://biostatistics.oxfordjournals.org

Reproducibility Using VisTrails 53

L. Moreau, editors, Provenance and Annotation of Data and Processes, Lec-
ture Notes in Computer Science, pp. 120–127. Springer-Verlag, Salt Lake
City, UT, 2008.

9. F. Chirigati and J. Freire. Towards integrating workflow and database
provenance. In P. Groth and J. Frew, editors, Provenance and Annota-
tion of Data and Processes, Lecture Notes in Computer Science, pp. 11–23.
Springer, Berlin, Germany, 2012.

10. F. Chirigati, D. Shasha, and J. Freire. Reprozip: Packing experiments
for sharing and publication. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD’13, 2013 ACM,
New York, 2013.

11. F.S. Chirigati, R. Dahis, S. Manuel Serra da Cruz, J. Freire, C.T. Silva, and
M. Mattoso. Desenvolvimento de estruturas de controle explícito para o
SGWfC VisTrails. In Brazilian Symposium on Databases (SBBD), Fortaleza,
Brazil, 2009 (Best poster award).

12. NSF Center for Coastal Margin Observation and Prediction (CMOP).
http://www.stccmop.org (Accessed March, 2013).

13. Collage: Authoring Environment for Executable Publications. https://
collage.elsevier.com/ (Accessed March, 2013).

14. Council for Scientific and Industrial Research (CSIR) in South Africa.
http://www.csir.co.za (Accessed March, 2013).

15. The Data Observation Network for Earth (DataONE). https://dataone.
org/ (Accessed March, 2013).

16. A. Dolgert, L. Gibbons, C.D. Jones, V. Kuznetsov, M. Riedewald,
D. Riley, G.J. Sharp, and P. Wittich. Provenance in high-energy physics
workflows. Computing in Science and Engineering, 10(3):22–29, 2008.

17. D.L. Donoho, A. Maleki, I.U. Rahman, M. Shahram, and V. Stodden.
Reproducible research in computational harmonic analysis. Computing
in Science and Engineering, 11(1):8–18, Jan–Feb 2009.

18. EO4VisTrails—Earth Observation Capabilities for VisTrails. http://
code.google.com/p/eo4vistrails (Accessed March, 2013).

19. M.H. Freedman, J. Gukelberger, M.B. Hastings, S. Trebst, M. Troyer,
and Z. Wang. Galois conjugates of topological phases. Physical Review
B, 85:045414, Jan 2012.

20. J. Freire, D. Koop, E. Santos, C. Scheidegger, C.T. Silva, and H.T. Vo. The
Architecture of Open Source Applications, Brown, A. and Wilson, G. (Eds.)
Lulu Publishing Inc., 2011. http://www.aosabook.org/en/vistrails.
html

21. J. Freire, P. Bonnet, and D. Shasha. Exploring the coming reposito-
ries of reproducible experiments: Challenges and opportunities. PVLDB,
4(12):1494–1497, 2011.

22. J. Freire, P. Bonnet, and D. Shasha. Computational reproducibility:
State-of-the-art, challenges, and database research opportunities. In
Proceedings of the 2012 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD’12, pp. 593–596, ACM, New York, 2012.

http://www.stccmop.org
https://collage.elsevier.com/
https://collage.elsevier.com/
http://www.csir.co.za
https://dataone.org/
https://dataone.org/
http://code.google.com/p/eo4vistrails
http://code.google.com/p/eo4vistrails
http://www.aosabook.org/en/vistrails.html
http://www.aosabook.org/en/vistrails.html

54 Implementing Reproducible Research

23. J. Freire, D. Koop, E. Santos, and C.T. Silva. Provenance for computa-
tional tasks: A survey. Computing in Science and Engineering, 10(3):11–21,
May 2008.

24. J. Freire, C.T. Silva, S. Callahan, E. Santos, C. Scheidegger, and H.T. Vo.
Managing rapidly-evolving scientific workflows. In International Prove-
nance and Annotation Workshop (IPAW), LNCS 4145, pp. 10–18. Springer
Verlag, Chicago, IL, 2006.

25. J. Freire and C.T. Silva. Making computations and publications
reproducible with VisTrails. Computing in Science and Engineering,
14(4):18–25, 2012.

26. M. Gavish and D. Donoho. A universal identifier for computational
results. Procedia Computer Science. In Proceedings of the International Con-
ference on Computational Science (ICCS), Singapore, 4:637–647, 2011.

27. P. Van Gorp and S. Mazanek. SHARE: A web portal for creating and
sharing executable research papers. Procedia Computer Science, 4:589–597,
2011. In Proceedings of the International Conference on Computational Science
(ICCS). Singapore.

28. GridFields. http://code.google.com/p/gridfields
29. R. Heiland, M. Swat, B. Zaitlen, J. Glazier, and A. Lumsdale. Workflows

for parameter studies of multi-cell modeling (HPC). In Proceedings of the
ACM High Performance Computing Symposium, Orlando, FL, pp. 94:1–94:6,
2010.

30. T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, Redmond, WA, 2009.

31. B. Howe, P. Lawson, R. Bellinger, E. Anderson, E. Santos, J. Freire,
C. Scheidegger, A. Baptista, and C.T. Silva. End-to-end escience: Inte-
grating workflow, query, visualization, and provenance at an ocean
observatory. In IEEE International Conference on eScience, Indianapolis, IN,
pp. 127–134, 2008.

32. B. Howe, C. Silva, and J. Freire. A science cloud on your desktop:
VisTrails + GridFields, 2009. http://clue.cs.washington.edu (Accessed
March, 2013).

33. IBM. OpenDX. http://www.research.ibm.com/dx (Accessed March,
2013).

34. The Insight Toolkit. http://www.itk.org (Accessed March, 2013).
35. The Kepler Project. http://kepler-project.org (Accessed March, 2013).
36. Kitware. ParaView. http://www.paraview.org (Accessed March, 2013).
37. D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C.T. Silva.

Bridging workflow and data provenance using strong links. In SSDBM,
Heidelberg, Germany, pp. 397–415, 2010.

38. D. Koop, E. Santos, P. Mates, H.T. Vo, P. Bonnet, B. Bauer, B.
Surer, M. Troyer, D.N. Williams, J.E. Tohline, J. Freire, and C.T. Silva.
A provenance-based infrastructure to support the life cycle of executable
papers. Procedia Computer Science, 4:648–657, 2011. In Proceedings of the
International Conference on Computational Science (ICCS). Singapore.

http://code.google.com/p/gridfields
http://clue.cs.washington.edu
http://www.research.ibm.com/dx
http://www.itk.org
http://kepler-project.org
http://www.paraview.org

Reproducibility Using VisTrails 55

39. D. Koop, C. Scheidegger, J. Freire, and C.T. Silva. The provenance of
workflow upgrades. In IPAW, Troy, NY, pp. 2–16, 2010.

40. D. Koop, C.E. Scheidegger, S.P. Callahan, J. Freire, and C.T. Silva.
VisComplete: Automating suggestions for visualization pipelines. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1691–1698,
2008.

41. Lawrence Livermore National Laboratory. VisIt: Visualize It in Parallel
Visualization Application. https://wci.llnl.gov/codes/visit, March 29,
2008. (Accessed March, 2013).

42. F. Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. In Compstat, pp. 575–580, 2002.

43. R.J. LeVeque. Python tools for reproducible research on hyperbolic
problems. Computing in Science and Engineering, 11(1):19–27, Jan–Feb
2009.

44. Madagascar. http://www.ahay.org/wiki/Main_Page (Accessed March,
2013).

45. P. Mates, E. Santos, J. Freire, and C.T. Silva. CrowdLabs: Social analysis
and visualization for the sciences. In SSDBM, Portland, OR, pp. 555–564,
2011.

46. J. Morisette, C. Jarnevich, T. Holcombe, C. Talbert, D. Ignizio, M. Talbert,
C.T. Silva, D. Koop, A. Swanson, and N. Young. VisTrails SAHM:
Visualization and workflow management for ecological niche modeling.
Ecography, 36:129–135, 2013.

47. D.A. Norman. Things That Make Us Smart: Defending Human Attributes in
the Age of the Machine. Addison Wesley, Reading, MA, 1994.

48. Oracle Database 11g Release 2. http://www.oracle.com/technetwork/
database/enterprise-edition/overview (Accessed March, 2013).

49. Oracle Total Recall with Oracle Database 11g Release 2. http://www.
oracle.com/technetwork/database/application-development/total-
recall-1667156.html (Accessed March, 2013).

50. The Pegasus Project. http://pegasus.isi.edu/ (Accessed March, 2013).
51. Q. Pham, T. Malik, I. Foster, R. Di Lauro, and R. Montella. SOLE: Linking

research papers with science objects. In P. Groth and J. Frew, editors,
Provenance and Annotation of Data and Processes, vol. 7525 of Lecture Notes
in Computer Science, pp. 203–208. Springer, Berlin, Germany, 2012.

52. PNAS Submission Guidelines. http://www.pnas.org/site/misc/iforc.
shtml\#submission (Accessed March, 2013).

53. Software for Assisted Habitat Modeling Package for VisTrails (SAHM:
VisTrails). http://www.fort.usgs.gov/products/software/sahm
(Accessed March, 2013).

54. E. Santos, D. Koop, T. Maxwell, C. Doutriaux, T. Ellqvist, G. Potter,
J. Freire, D. Williams, and C.T. Silva. Designing a provenance-based
climate data analysis application. In P. Groth and J. Frew, editors, Prove-
nance and Annotation of Data and Processes, vol. 7525 of Lecture Notes in
Computer Science, pp. 214–219. Springer, Berlin, Germany, 2012.

https://wci.llnl.gov/codes/visit
http://www.ahay.org/wiki/Main{_}Page
http://www.oracle.com/technetwork/database/enterprise-edition/overview
http://www.oracle.com/technetwork/database/enterprise-edition/overview
http://www.oracle.com/technetwork/database/application-development/total-recall-1667156.html
http://www.oracle.com/technetwork/database/application-development/total-recall-1667156.html
http://www.oracle.com/technetwork/database/application-development/total-recall-1667156.html
http://pegasus.isi.edu/
http://www.pnas.org/site/misc/iforc.shtml{}{#}submission
http://www.pnas.org/site/misc/iforc.shtml{}{#}submission
http://www.fort.usgs.gov/products/software/sahm

56 Implementing Reproducible Research

55. E. Santos, D. Koop, H.T. Vo, E.W. Anderson, J. Freire, and C.T. Silva.
Using workflow medleys to streamline exploratory tasks. In SSDBM,
New Orleans, LA, pp. 292–301, 2009.

56. E. Santos, L. Lins, J. Ahrens, J. Freire, and C.T. Silva. VisMashup: Stream-
lining the creation of custom visualization applications. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1539–1546, 2009.

57. C.E. Scheidegger, H.T. Vo, D. Koop, J. Freire, and C.T. Silva. Querying
and creating visualizations by analogy. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1560–1567, 2007.

58. SIGMOD Experimental Repeatability. http://www.sigmod2011.org/
calls_papers_sigmod_research_repeatability.shtml (Accessed March,
2013).

59. C.T. Silva, E. Anderson, E. Santos, and J. Freire. Using VisTrails and
provenance for teaching scientific visualization. Computer Graphics
Forum, 30(1):75–84, 2011.

60. C.T. Silva, J. Freire, and S.P. Callahan. Provenance for visualizations:
Reproducibility and beyond. Computing in Science and Engineering,
9(5):82–89, September 2007.

61. The Swift System. http://www.ci.uchicago.edu/swift (Accessed March,
2013).

62. The Taverna Project. http://www.taverna.org.uk/ (Accessed March,
2013).

63. J.E. Tohline, J. Ge, W. Even, and E. Anderson. A customized python
module for CFD flow analysis within VisTrails. Computing in Science and
Engineering, 11(3):68–73, 2009.

64. The Triana Project. http://www.trianacode.org (Accessed March, 2013).
65. IEEE Transactions on Signal Processing—Reproducible Research. http://

www.signalprocessingsociety.org/publications/periodicals/tsp/
(Accessed March, 2013).

66. C. Upson et al. The application visualization system: A computational
environment for scientific visualization. IEEE Computer Graphics and
Applications, 9(4):30–42, 1989.

67. Ultrascale Visualization—Climate Data Analysis Tools (UV-CDAT).
http://uv-cdat.llnl.gov (Accessed March, 2013).

68. T.L. Van Zyl, G. McFerren, and A. Vahed. Earth observation scientific
workflows in a distributed computing environment. Technical Report
7727, CSIR, 2011. http://hdl.handle.net/10204/5435 (Accessed March,
2013).

69. VDS—The GriPhyN Virtual Data System. http://www.ci.uchicago.edu/
wiki/bin/view/VDS/VDSWeb/WebMain (Accessed March, 2013).

70. VisTrails. http://www.vistrails.org (Accessed March, 2013).
71. VLDB Experimental Reproducibility. http://www.vldb.org/2013/

experimental_reproducibility.html (Accessed March, 2013).
72. vtDV3D VisTrails Package. http://portal.nccs.nasa.gov/DV3D/

vtDV3D/_build/html/index.html (Accessed March, 2013).

http://www.sigmod2011.org/calls{_}papers{_}sigmod{_}research{_}repeatability.shtml
http://www.sigmod2011.org/calls{_}papers{_}sigmod{_}research{_}repeatability.shtml
http://www.ci.uchicago.edu/swift
http://www.taverna.org.uk/
http://www.trianacode.org
http://www.signalprocessingsociety.org/publications/periodicals/tsp/
http://www.signalprocessingsociety.org/publications/periodicals/tsp/
http://uv-cdat.llnl.gov
http://hdl.handle.net/10204/5435
http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
http://www.vistrails.org
http://www.vldb.org/2013/experimental{_}reproducibility.html
http://www.vldb.org/2013/experimental{_}reproducibility.html
http://portal.nccs.nasa.gov/DV3D/vtDV3D/{_}build/html/index.html
http://portal.nccs.nasa.gov/DV3D/vtDV3D/{_}build/html/index.html

3
Sumatra: A Toolkit for Reproducible Research

Andrew P. Davison, Michele Mattioni, Dmitry Samarkanov, and
Bartosz Teleńczuk

CONTENTS

3.1 Introduction . 57
3.2 Using Sumatra . 58
3.3 Design Criteria . 66
3.4 Architecture . 68

3.4.1 Code Versioning and Dependency Tracking . 68
3.4.2 Data Handling . 70
3.4.3 Storing Provenance Information . 71
3.4.4 Parameter Handling . 72
3.4.5 Launching Computations . 72
3.4.6 Putting It All Together . 73
3.4.7 Search/Query/Reuse. 73

3.5 Discussion . 75
Acknowledgments . 77
References . 77

3.1 Introduction

Lack of replicability in computational studies is, at base, a problem of short-
comings in record keeping. In laboratory-based experimental science, the
tradition is to write down all experimental details in a paper notebook. This
approach is no longer viable for many computational studies as the number
of details that could have an impact on the final result is so large. Automated
or semiautomated tools for keeping track of all the experimental details—
the scientist’s own code, input and output data, supporting software, the
computer hardware used, etc.—are therefore needed.

For the busy scientist, the time investment needed to learn to use these
tools, or to adapt their workflow so as to make use of them, may be one they
are reluctant to make, especially since the problems of lack of reproducibility
often take some time to manifest themselves. To achieve wide uptake among
computational scientists, therefore, tools to support reproducible research

57

58 Implementing Reproducible Research

should aim to minimize the effort required to learn, adopt, and use them
(see [1] for a more detailed version of this argument).

Sumatra is a software tool to support reproducible computational
research, which aims to make reproducible computational science as easy to
achieve (or easier) than nonreproducible research, largely by automating the
process of capturing all the experimental details. In practice, this means that
using Sumatra should require minimal changes to existing workflows and,
given the wide diversity in workflows for computational science, Sumatra
should be easy to adapt to different computational environments.

This chapter is intended for two groups of people:

• Scientists who are interested in using Sumatra to track the details of
their own research

• Developers who are interested in using Sumatra as a library in their
own software for reproducible research

The first section is an extended case study, illustrating how Sumatra may be
of use in day-to-day research. This is followed by an in-depth explanation
of Sumatra’s architecture, including examples of how to use Sumatra as a
Python library and how to extend and customize Sumatra.

3.2 Using Sumatra

We will illustrate one way to use Sumatra, and why you might want to use
Sumatra, with a story about Alice and Bob. Bob is a graduate student in
Alice’s lab. When Alice was a graduate student herself, she kept track of
the evolution of her code by giving each significant version a different file
name, and she included the file name as a label in every figure she gener-
ated. Alice used to be quite confident she could, if it were ever necessary, go
back and recreate the results from her earlier papers since she has the original
data carefully archived on CD-ROMs. However, after her recent experience
with Charlie, she is not so sure. Charlie was a postdoc in Alice’s lab, who
got some great results, which they wrote up and submitted to a high-profile
journal. The reviews were quite positive, but the reviewers asked for some
new figures and a change to one of the existing figures. The problem was
that when they tried to generate the modified figure, they could not get the
results to match: the new graph looked significantly different, and no longer
showed the effect they had found. Although Charlie had used the Subver-
sion version control system for his code, he had not been so careful about
keeping track of which version of the code had been used for each figure
in the manuscript: several of the figures had originally been generated for

Sumatra 59

a poster, and in the rush to get the poster finished in time to send to the
printers, Charlie had not had time to keep such careful notes as usual, and
had not always remembered to check-in changes in his code to the Subver-
sion repository. Now Charlie has left science for a job with a major bank, and
the manuscript is languishing in a drawer.

As a consequence of these experiences, Alice asked Bob, her new gradu-
ate student, to try out Sumatra. Sumatra automates the necessary but tedious
and error-prone process of keeping track of which code version was used to
produce which output. Bob has his code in a Mercurial version control repos-
itory. (For the purposes of this chapter, we will use a simplified version
of Bob’s code. If you would like to follow along, the repository is avail-
able at http://bitbucket.org/apdavison/ircr2013.) Bob downloaded and
installed Sumatra according to the instructions at http://neuralensemble.
org/sumatra.

Bob normally runs his analysis (of scanning electron microscope images
of glass samples) as follows:

$ python glass_sem_analysis.py MV_HFV_012.jpg
1699.875 65.0

This analyses the image specified on the command line, generates some
further images, and prints out some statistics (see the SciPy tutorial at
http://scipy-lectures.github.com/ for more details). The output images are
saved to a specific subdirectory labeled according to the day on which
the code is run, and the individual files are labeled with a timestamp, for
example, “Data/20121025/MV_HFV_012_163953_phases.png.”

He creates a new Sumatra project in the same directory using the smt
command-line tool:

$ smt init ProjectGlass
$ smt configure -e python -m glass_sem_analysis.py -i . -d Data

This creates a new project, and sets “python” as the default executable
to be used, “glass_sem_analysis.py” as the default script file, the
current directory (“.”) as the place to look for input data, and a subdi-
rectory “Data” as the place to start looking for output files. (If Bob could
not remember the various options to the “smt configure” command,
“smt help configure” would tell him.)

“smt info” shows the current configuration of Bob’s project. Note that
it is using the already-existing Mercurial repository in his working directory:

$ smt info
Project name : ProjectGlass
Default executable : Python (version: 2.6.7) at

/usr/bin/python
Default repository : MercurialRepository at

/home/bob/Projects/Glass
Default main file : glass_sem_analysis.py

http://bitbucket.org/apdavison/ircr2013
http://scipy-lectures.github.com/

60 Implementing Reproducible Research

Default launch mode : serial
Data store (output) : ./Data
. (input) : .
Record store : Django record store at

/home/bob/Projects/Glass/.smt/records
Code change policy : error
Append label to : None

Now to run the analysis using Sumatra:

$ smt run MV_HFV_012.jpg
1699.875 65.0

Since Bob has already specified the executable and script file, all he has
to provide is the name of the input data file. The program runs as before and
gives the same results, but in addition, Sumatra has captured a great deal of
information about the context of the computation—exactly which version of
the code was used, what the input and output data files were, what operating
system and processor architecture were used, etc. Some of this information
can be viewed in the console:

$ smt list -l
Label : 20121025-170718
Timestamp : 2012-10-25 17:07:18
Reason :
Outcome :
Duration : 3.73256802559
Repository : MercurialRepository at /home/bob/Projects/

Glass
Main_File : glass_sem_analysis.py
Version : 9d24b099b5f3
Script_Arguments : MV_HFV_012.jpg
Executable : Python (version: 2.6.5) at /usr/bin/python
Parameters :
Input_Data : MV_HFV_012.jpg

(5d789282b10a0da7a91560f33f8baf7272f7543d)
Launch_Mode : serial
Output_Data : 20121025/MV_HFV_012_170722_phases.png

(c9955f84ca3c1912...
: 20121025/MV_HFV_012_170722_sand.png
(20bd5420d37ee589f3...

: 20121025/MV_HFV_012_170722_histogram.png
(e7884dc5f3e9c...

Tags :

but in general it is better to use the built-in web browser-based interface,
launched with the smtweb command—see Figure 3.1.

Two things in particular should be noted from this figure. The first is that
the versions of not only the Python interpreter and Bob’s own code but also
the libraries on which Bob’s code depends (NumPy, etc.), are captured. The

Sumatra 61

FIGURE 3.1
Record of a computation captured with Sumatra, displayed in the web browser interface.

second is that the path of each input and output data file is accompanied by a
long hexadecimal string. This is the SHA1 digest, or hash, of the file contents
(as used in crypographic applications, and also in version control systems
such as Git and Mercurial). If the file contents are changed even slightly,
the hash will change, which allows us to check for files being corrupted or
accidentally overwritten.

62 Implementing Reproducible Research

Now Bob would like to investigate how his image analysis method is
affected by changing its parameters. He thinks this will be easier to keep
track of if the parameters are separated out into a separate file, so he mod-
ifies his script and adds a new file default_parameters. The script now
expects two arguments, first the parameter file, second the input data, and
would normally be run using

$ python glass_sem_analysis.py default_parameters
MV_HFV_012.jpg

but Bob wants to run it with Sumatra:

$ smt run default_parameters MV_HFV_012.jpg
Code has changed, please commit your changes.

Bob has forgotten to commit his changes to the version control repository.
Sumatra detects this and will then either refuse to run (the default, seen here)
or will store the differences since the last commit. Bob commits and tries
again.

$ hg commit -m 'Separated out parameters into separate file'
$ smt run -r 'test separate parameter file' default_parameters
MV_HFV_012.jpg

1699.875 65.0

Note that he has also used the “-r” flag to note the reason for running
this analysis, in case he forgets in future. Have Bob’s modifications had any
effect on his results? The output statistics are the same, and an inspection
of the output data hashes in the web interface shows they have not changed
either, so no, the results are unchanged.

We have seen already that Bob has less typing to do when running his
analyses with Sumatra, as he has already specified the executable and script
file as defaults. This is an example of how Sumatra tries to make it easier to
use a tool for reproducible research than not to use one. Another example is
the ability to specify parameters on the command line rather than having to
edit the parameter file each time:

$ smt run -r 'No filtering' default_parameters MV_HFV_012.jpg
filter_size=1

$ smt run -r 'Trying a different colourmap' default_parameters
MV_HFV_012.jpg phases_colourmap=hot

$ smt comment 'The default colourmap is nicer'

So far, Bob has been using Charlie’s old computer, running Ubuntu Linux
10.04. The next day, he is excited to find that the new computer Alice ordered
for him has arrived. He installs Ubuntu 12.04, together with all the latest
versions of the Python scientific libraries. He also copies over his glass anal-
ysis data and migrates the Sumatra project. He tries to run the analysis
script, but gets an error: in the latest version of NumPy, the return for-
mat of the histogram() function has changed. This is straightforward to

Sumatra 63

fix (see https://bitbucket.org/apdavison/ircr2013/changeset/924a39a), so
now Bob can commit and try again:

$ smt run -r 'Fixed to work with new histogram() function'
default_parameters MV_HFV_012.jpg

Has the upgrade affected Bob’s results?

$ smt diff 20121025-172833 20121026-174545
Record 1 : 20121025-172833
Record 2 : 20121026-174545
Executable differs : no
Code differs : yes
Repository differs : no
Main file differs : no
Version differs : yes
Non checked-in code : no
Dependencies differ : yes

Launch mode differs : no
Input data differ : no
Script arguments differ : no
Parameters differ : no
Data differ : yes

OK, Bob knew he had changed the code because of the new
histogram() function, and he knew the dependencies had changed,
because of the operating system upgrade, but it was a bit disappointing to
see the output data are different. Using the web browser, we can look at the
results from the two simulations (one from Ubuntu 10.04, one from Ubuntu
12.04) side by side (Figure 3.2)—visually there is no difference, just a tiny
change in the margins, probably due to the upgraded matplotlib package.

Alice puts her head round the door to ask how Bob is getting on
with Sumatra. So far, Bob is happy. His productive workflow has hardly
changed—in fact, he has a little bit less to type, since Sumatra stores the
names of the default executable and default script for him, and he can mod-
ify parameters quickly on the command line rather than having to open up
the parameter file in his editor. The web browser interface lets him quickly
browse and search through his results (Figure 3.3), and compare different
runs side by side. And he feels much more confident that he will be able to
replicate his results in the future.

Alice tries Sumatra out for herself the following week. Alice wants
to use one of Bob’s figures in a grant application, but Bob is on vaca-
tion, and she wants to make a few small changes to the figure. She
copies Bob’s Sumatra record store (which by default was created as the file
.smt/records in a subdirectory of Bob’s working directory) to the lab net-
work file server, so that she can access Bob’s records and Bob in turn will
be able to see her results when he returns, and sets up a new project on her
MacBook:

https://bitbucket.org/apdavison/ircr2013/changeset/924a39a

64 Implementing Reproducible Research

FIGURE 3.2
Excerpts from a side-by-side comparison of two computation records, one run on Ubuntu 10.04,
the other on Ubuntu 12.04.

$ smt init -s /Volumes/shared/glass/smt_records ProjectGlass
$ smt configure -e python -m glass_sem_analysis.py -i .
-d Data

Before starting her own modifications, she re-runs Bob’s last analysis:

$ smt repeat 20121026-174545
The new record does not match the original. It differs as
follows.

Record 1 : 20121026-174545
Record 2 : 20121026-174545_repeat
Executable differs : no
Code differs : yes
Repository differs : no

Sumatra 65

FI
G

U
R

E
3.

3
L

is
to

fc
om

pu
ta

ti
on

re
co

rd
s

in
th

e
Su

m
at

ra
w

eb
br

ow
se

r
in

te
rf

ac
e.

66 Implementing Reproducible Research

Main file differs : no
Version differs : no
Non checked-in code : no
Dependencies differ : yes

Launch mode differs : no
Input data differ : no
Script arguments differ : no
Parameters differ : no
Data differ : no

She has slightly different versions of the dependencies on her MacBook,
but the results are unchanged. Alice can now proceed to reformat the figures,
confident that her computing environment is consistent with that of her
graduate student. Since the grant application is being written in LATEX, Alice
can also use the sumatra LATEX package to automatically pull images from
the Sumatra record store into her document, with automatic cross-checking
of SHA1 hashes to ensure the image is indeed the correct one and has not
been accidentally overwritten.

In conclusion, we hope to have demonstrated that by using Sumatra,
Alice and Bob have improved the reproducibility of their computational
experiments, enhanced communication within their lab, and increased the
manageability of their projects, with minimal effort and minimal change to
their existing workflow.

3.3 Design Criteria

In introducing the architecture of Sumatra so that others can build upon and
extend it, we begin by describing the constraints we wish Sumatra to satisfy,
before describing, in the following section, its current architecture.

The design of Sumatra is driven by two principles:

1. There is a huge diversity in computational science workflows.
2. Software to assist reproducibility must be very easy to use, or only

the very conscientious will use it.

To elaborate on the first issue, of workflow diversity, different scientists may
launch computations from the command line in interactive notebooks, in
graphical interfaces, and in web-based tools. Computations may be launched
serially as batch jobs or as distributed computations for immediate execu-
tion or queued for deferred execution on local machines, small clusters,
supercomputers, grids, or in the cloud. Projects may be solo or collabo-
rative efforts. Different workflows may be used for different components

Sumatra 67

of a project or during different phases of a project (e.g., exploration vs.
preparation of final published figures).

Given this diversity, it is unlikely that there is a single software tool to
support reproducible research that will be optimal for all possible work-
flows. At the same time, there is a considerable amount of functionality that
is required whatever the workflow, for example, unambiguous identifica-
tion of exactly which code has been run. Sumatra is therefore designed as a
core library of loosely coupled components for common functionality, easily
extensible and customizable, so that people can adapt Sumatra to their own
use cases and other people can build other tools on top of Sumatra.

Such a library is potentially useful to tool developers, but will not on its
own promote reproducibility: it must be integrated into scientists’ existing
workflows, so that the barrier to adoption is as low as possible. Sumatra also,
therefore, provides tools, built on top of the core library, that wrap around or
work alongside widely used types of workflow. Three such tools are avail-
able at the time of writing: smt, which supports workflows built around
running individual computations on the command line; smtweb, which pro-
vides a browser-based tool for browsing and querying the results of previous
computations; and a LATEX package, which allows the automated inclusion
of figures generated by a Sumatra-tracked computation in documents, with
hyperlinks to the provenance information. The use of these tools was demon-
strated in the previous section. In the future, further tools may be developed
to support more interactive workflows.

Given the aforementioned constraints, Sumatra must enable a scientist to
easily respond to the following questions:

• What code was run?
◦ Which executable?

� Name, location, version, compilation options
◦ Which script?

� Name, location, version
� Options, parameters
� Dependencies (name, location, version)

• What were the input data?
◦ Name, location, content

• What were the outputs?
◦ Data, logs, stdout/stderr

• Who launched the computation?
• When was it launched/when did it run? (queueing systems)
• Where did it run?

◦ Machine name(s), other identifiers (e.g., IP addresses)
◦ Processor architecture
◦ Available memory
◦ Operating system

68 Implementing Reproducible Research

• Why was it run?
• What was the outcome? (interpreted in terms of the ongoing project)
• Which project was it part of?

3.4 Architecture

This section gives an overview of Sumatra’s architecture, intended for
readers who may be interested in extending or building upon Sumatra,
or applying some of its methods in their own approaches to replicabil-
ity. More fine-grained detail is available in the online documentation at
http://neuralensemble.org/sumatra. Sumatra has a modular design, with
the coupling between modules made as loose as possible. Within modules,
a common motif to provide flexibility and configurability is to use abstract
base classes to define a common interface, which are then subclassed to pro-
vide different implementations of a given type of functionality (e.g., version
control, data storage). The principal classes in the core Sumatra library, and
their composition, are shown in Figure 3.4. More detail about the individual
modules, classes, and their interactions is given in the following sections.

3.4.1 Code Versioning and Dependency Tracking

To ensure replication, we need to capture identifying information about all of
the code that was run. Where code is modular, this means capturing the local
file system path of each library/module/package that is included/imported
by the “main” file (its “dependencies”), together with, if possible, the version
of the module, so that (1) the environment could be recreated in future, (2)
if failing to replicate with more up-to-date versions of libraries in future, we
can investigate what has changed. This must be done recursively, of course,
if a dependency itself has dependencies.

Finding the dependencies requires, in general, being able to parse the
programming language used (although in future it may be possible to use
a tool such as CDE [5,6] to determine which dependencies are loaded at
run time). Sumatra therefore requires a “dependency finder” module to
be provided for each programming language used. At the time of writ-
ing, such modules are all distributed within Sumatra, that is, as modules
dependency_finder.python, dependency_finder.matlab, etc., but
a plug-in architecture is planned so that users can easily extend Sumatra
where the language they are using is not supported.

Version information may be provided in many ways, some of which
are dependent on the programming language used, others independent.
As an example of the former, Python modules often define a variable called
__version__, VERSION or version, or a function called get_version().
Two examples of the latter are obtaining the version from a VCS and

http://neuralensemble.org/sumatra

Sumatra 69

FIGURE 3.4
The principal classes in Sumatra with their attributes and methods. The arrows denote the rela-
tionship “contains an instance or instances of.” Not shown, for reasons of space, are the classes
DataKey, DataItem, RecordDifference, PlatformInformation, and Formatter. Not
all subclasses are shown.

obtaining the version from a package management system (such as apt, on
Debian). Sumatra’s strategy, therefore, is that each dependency_finder
module provides a list of functions, each implementing one heuristic for
finding versions, for example, find_versions_by_attribute(), or
find_versions_by_version_control(). Each of these is tried in turn,
and the first version found is the one used (the order is important: gener-
ally a version obtained from a VCS is more reliable/precise than a version
obtained from a variable defined within the code).

It may happen that some of the code under version control has been mod-
ified since the last commit. In this scenario, it is usually best to abort the
computation and to commit the changes before proceeding. However, there
may be good reasons for not wanting to commit, and so Sumatra also pro-
vides the option of storing the “diff” between the VCS working copy and the
last commit.

Given the variety of VCSs in use, Sumatra’s strategy is to wrap each
VCS so as to provide a uniform interface. For each VCS supported by
Sumatra, the versioncontrol module contains a submodule containing

70 Implementing Reproducible Research

two classes—a subclass of versioncontrol.base.Repository and a
subclass of versioncontrol.base.WorkingCopy. Sumatra does not
require all the functionality of VCSs and is not intended to replace the normal
methods of interacting with a VCS for code development. The Repository
subclass has two roles: storing the repository URL and obtaining a fresh
checkout/clone of the code base from a remote server (even the latter is not
strictly necessary). The functionality required of the WorkingCopy subclass
is more extensive: determine the current version; determine whether any of
the code has been modified; determine the diff between the working code
and the last commit; determine whether a given file is under version control;
and change the working copy to an older or newer version (for replicating
previous computations and then returning to the most recent state of the
code base).

In general, the difference between distributed and centralized version
control systems is not important for Sumatra. The only difference is that, for
distributed VCSs, the repository used is always a local one, and it is therefore
often useful, for the purposes of future replication and open science, to store
the URL of the “upstream” repository, often a public repository on a remote
server.

3.4.2 Data Handling

Replicability of a computational result requires knowing what the input data
(if any) were, and it requires storing the output data so that future replication
attempts can be checked against the original results. Inputs to a program can
be subdivided into data and configuration/parameters. These can be gener-
ally distinguished in that data could be processed by a different program,
while parameters are tightly tied to the code. Sumatra attempts to distin-
guish parameter/configuration files from input data files by the structure of
the data; as a fall back, parameters will be treated as input data. Parameter
file handling is described later.

Data may be stored in many ways: in individual files on a local or remote
file system, in a relational database, and in a remote resource accessed over
the Internet by some API. However it is stored, the most important thing to
know about data is its content. However, it would be redundant for Suma-
tra to store a separate copy of each input and output data item, especially
given the potentially enormous size of data items in many scientific dis-
ciplines. Sumatra therefore stores an identifier for each data item, which
enables retrieval of the item from whichever data store—the file system, a
relational database, etc.—is used. In the case of the file system, for exam-
ple, the identifier consists of the file system path relative to a user-defined
root directory together with the SHA1 hash of the file contents. The latter is
needed to catch overwriting or corruption of files.

To handle different ways of storing data, Sumatra defines an
abstract DataStore class, which is then subclassed: for example, the

Sumatra 71

FileSystemDataStore that is used to work with data stored on a local
file system. The minimal functionality required of a DataStore subclass
is: find new content, given a time stamp (used to link output data to a
given computation); return a data item object, given the item’s identifier
(“key”); return the contents of a data item; and delete a data item. DataItem
objects support obtaining the data contents and may also contain additional
metadata, such as the mimetype.

It is straightforward to add extra functionality to a DataStore subclass.
For example, the ArchivingFileSystemDataStore works the same as
the plain FileSystemDataStore, but in addition copies all the output data
files to an archive format. The MirroredFileSystemDataStore allows
specifying a URL from which the data file can be retrieved (in addi-
tion to the local version). This supports, for example, using Dropbox
(https://www.dropbox.com) with a public folder, or FTP, or FigShare
(http://figshare.com) to make your data available online.

3.4.3 Storing Provenance Information

Once Sumatra has captured the context of your computational experiment, it
needs to store all this information somewhere. For individual projects, a local
database is probably the best way to do this. For collaborative projects, or if
you often work while traveling, it may be necessary for this information to
be stored in a remote database accessible over the Internet. To provide this
flexibility, Sumatra defines an abstract RecordStore class, which is then
subclassed.

Sumatra currently provides three RecordStore subclasses: Shelve
RecordStore, which provides only basic functionality, but has the advan-
tage of requiring no external libraries to be installed; DjangoRecordStore,
which uses the Django web framework to store the provenance information
in a relational database (SQLite by default, but MySQL, PostgreSQL, and
others are also supported) and adds the ability to browse the record store
using a web browser; and HttpRecordStore, which is a client for stor-
ing provenance information in a remote database accessed over HTTP using
JSON as the transport format. The server for the HttpRecordStore is not
distributed with Sumatra, but such a server is straightforward to implement.
Two implementations currently exist—a Django-based implementation at
https://bitbucket.org/apdavison/sumatra_server and a MongoDB-based
version at https://github.com/btel/Sumatra-MongoDB.

The functionality required of a RecordStore subclass is: support mul-
tiple Sumatra projects; list all projects contained in the store; save a Sumatra
Record object under a given project; list all the records in a project; retrieve a
Record given its identifier (project+label); delete a Record given its identi-
fier; delete all Records that have a given tag; return the most recent record;
export a record in JSON format; import a record in the same format; and

https://bitbucket.org/apdavison/sumatra_server
https://github.com/btel/Sumatra-MongoDB

72 Implementing Reproducible Research

synchronize with another record store so that they both contain the same
records for a given project.

3.4.4 Parameter Handling

It is a common practice in scientific computing to run a simulation or analysis
with different parameters and to compare the results. Given this important
use case, Sumatra allows parameters to be handled differently from other
input data. If Sumatra is able to recognize a particular parameter file for-
mat, then (1) the parameters are available for future searching/querying/
comparison and (2) Sumatra can add extra parameters. An important use
case of the latter is that Sumatra can add the label/identifier for the current
record, for use by the user’s code in constructing file names, etc. Sumatra cur-
rently supports four parameter file formats, including simple “key=value”
files, JSON, and config/ini-style formats. Implementing support for a new
parameter file format is straightforward: define a MyParameterSet class
whose constructor accepts either a filename or a text string containing the
file contents. The class should also implement method as_dict(), which
returns parameter names and values in a (possibly nested) Python dict;
update(), which functions like dict.update(); and save(), which
writes the parameter set to file in the given format.

3.4.5 Launching Computations

If your code is written in Python, then you can use Sumatra directly within
your scripts and run your computation with Python as usual. If you are
using other tools (or if using Python and you do not want to modify your
code), then Sumatra needs to launch your computation in order to be able
to capture the context. The challenge here is that there are so many different
workflows ways of launching a computation: from the command line on the
local machine and from the command line on a remote machine (e.g., using
ssh); on a cluster, computing grid, or supercomputer using a job manager;
as a parallel computation using MPI; or by clicking a button in a graphical
interface.

To handle this variety, Sumatra follows the usual pattern of defining
an abstract base class, LaunchMode, which is then subclassed to sup-
port different methods of launching computations. A LaunchMode subclass
needs to define a method generate_command(), which should return
a string that will be executed on the command line. The LaunchMode is
also responsible for capturing information about the platform—the oper-
ating system, the processor architecture, etc. For computations run on the
local machine, the base class takes care of this. For computations run on
a remote machine or machines, the LaunchModel subclass must override
the get_platform_information() method. Sumatra currently provides
SerialLaunchMode and DistributedLaunchMode subclasses.

Sumatra 73

To generate the launch command, Sumatra may need extra information
about the particular executable being used—particular arguments or flags
that are needed in different circumstances. Similarly, there may be a build
step or other preliminary that is needed before launching the computation.
If this is the case, a user may define an Executable subclass that may
define any of the attributes pre_run, mpi_options, requires_script,
and may optionally redefine the method _get_version(). The user then
calls the programs.register_executable()method to register the new
subclass with Sumatra.

3.4.6 Putting It All Together

Tying all of the foregoing together are the Record class and the Project
class. The Record class has two main roles: gathering provenance infor-
mation when running a computation and acting as a container for prove-
nance information. When launching a new computation, as diagrammed in
Figure 3.5, a new Record object stores the identifiers of any input data, inter-
acts with a WorkingCopy object to check that the code is at the requested
version, uses the dependency_finder module to find the list of depen-
dencies (and their versions), and then obtains platform information from the
appropriate LaunchMode. It then runs any precursor tasks, such as build-
ing the executable, writes a modified parameter file, if necessary, and then
passes control to the LaunchMode, which spawns a new process in which
it runs the requested computation while capturing the standard output and
standard error streams. Once this completes, the Record object calculates
the time taken, stores stdout and stderr, asks the DataStore object to find
any new data generated by the computation, and stores the identifiers of this
output data.

The Project class has one main role: to simplify use of the Sumatra API
by storing default values and providing shortcut functions for frequently
performed tasks. Thus, for example, while creating a new Record object
requires passing up to 16 arguments, the Project.new_record() method
will often be called with just two—the parameter set and the list of input data
items—since most of the others take default values stored by the Project.
The smt command accesses Sumatra’s functionality almost entirely through
an instance of the Project class.

The precise division of responsibilities between the Record and
Project class is not critical and could evolve in future versions of Sumatra
to enhance usability of the API.

3.4.7 Search/Query/Reuse

So far, we have talked about the API from the perspective of capturing prove-
nance information. We now consider the use cases of accessing, querying,
and using the stored provenance information.

74 Implementing Reproducible Research
:P

ro
jec

t ha
s_

ch
an

ge
d(

)

us
e_

ve
rs

io
n(

ve
r)

ne
w(

lm
, e

x,
ds

)

re
gi

ste
r(w

c)

ru
n(

)

pr
e_

ru
n(

ex
)

ru
n(

ex
, m

ain
, ..

.)

pr
e_

ru
n

pa
th

op
tio

ns

wc
:W

or
ki

ng
Co

py
:R

ec
or

d
:D

ep
en

de
nc

yF
in

de
r

lm
:L

au
nc

hM
od

e
ex

:E
xe

cu
ta

bl
e

ds
:D

at
aS

to
re

H
as

 th
e c

od
e

ch
an

ge
d?

Cr
ea

te
 n

ew
 re

co
rd

Fi
nd

 d
ep

en
de

nc
ies

Ge
t p

la
tfo

rm
in

fo
rm

at
io

n

Ru
n

sim
ul

at
io

n/
an

al
ys

is

Re
co

rd
 ti

m
e t

ak
en

Fi
nd

 n
ew

 fi
les

fin
d_

ne
w_

da
ta

(ti
m

es
ta

m
p)

ge
t_

pl
at

fo
rm

_i
nf

or
m

at
io

n(
)

fin
d_

de
pe

nd
en

cie
s(m

ain
, e

x)

lau
nc

h(
ex

, m
ain

, v
er

, lm
, w

c,
ds

)

FI
G

U
R

E
3.

5
T

he
fl

ow
of

co
nt

ro
lb

et
w

ee
n

d
if

fe
re

nt
Su

m
at

ra
ob

je
ct

s
d

ur
in

g
a

co
m

pu
ta

ti
on

.T
im

e
fl

ow
s

fr
om

to
p

to
bo

tt
om

.E
ac

h
d

as
he

d
ve

rt
ic

al
lin

e
re

pr
es

en
ts

th
e

lif
et

im
e

of
an

ob
je

ct
,l

ab
el

ed
at

th
e

to
p

w
it

h
th

e
cl

as
s

an
d

,i
n

so
m

e
ca

se
s,

an
in

st
an

ce
na

m
e.

So
lid

ho
ri

zo
nt

al
ar

ro
w

s
re

pr
es

en
t

m
et

ho
d

ca
lls

or
at

tr
ib

ut
e

ac
ce

ss
.

Sumatra 75

As described earlier, this information is stored in a “record store,” repre-
sented by a subclass of RecordStore, and whose backend may be a flat
file, relational database, or web service. The common record store inter-
face allows querying based on record identifiers (project + label) and on
tags. Individual record store implementations may allow more sophisticated
queries: for example, the DjangoRecordStore allows queries based on
Django’s object-relational-mapper or even using plain SQL.

The main use cases for accessing records of previous computations are
(1) comparing the results of similar runs (e.g., examining the effects of
parameter changes); (2) repeating a previous computation to check that the
results are reproducible; and (3) further processing of results, for example,
further analyses, visualization, and inclusion in manuscripts.

The first two of these use cases are supported by the Project.
compare() method, which calls Record.difference(), that returns an
instance of the RecordDifference class. This class has assorted methods
that allow a precise dissection of the differences between two computations.

3.5 Discussion

In this chapter, we have presented Sumatra for two (although overlapping)
audiences: the working computational scientist and the software developer
or scientist-developer who may wish to extend or build upon Sumatra.
In this book as a whole, a number of different tools to support reproducible
research have been presented. For a scientist interested in ensuring their
research is easily reproducible, when should you use Sumatra and when
another tool?

Software for reproducible research can be divided into three general cate-
gories: tools for literate programming, workflow management systems, and
tools for environment capture.

Literate programming∗ and the closely related “interactive notebook”
approach† inextricably bind together code and the results generated by that
code, which is clearly hugely beneficial for reproducible research. With
some such systems, information about software versions, input data, and
the computing environment can also be included in the final document. If
your literate programming environment or interactive notebook supports
Python, you could also use Sumatra via its API to provide this functionality.

∗ See, for example, Ref. [2], which explains the use of Sweave (http://www.statistik.lmu.
de/ leisch/Sweave/) and Org-mode (http://orgmode.org) for reproducible research, and
Ref. [11] in the current volume.

† For example, Mathematica (http://www.wolfram.com/mathematica/), Sage (http://www.
sagemath.org), and IPython (http://ipython.org).

http://orgmode.org
http://www.wolfram.com/mathematica/
http://ipython.org

76 Implementing Reproducible Research

Scenarios that are generally more difficult to handle with the current genera-
tion of literate programming tools and interactive notebooks are (1) where
computations take considerable time (hours or days) to run; (2) where
computations are distributed on parallel hardware or are queued for later
execution; and (3) where code is split among many modules, so that the
code included in the literate document or notebook is only a small part of
the whole.

Visual workflow management or pipeline tools, such as Kepler [8],
Taverna [10], and VisTrails [3,4], are aimed at scientists with limited coding
experience or who prefer visual programming environments. They are par-
ticularly straightforward to use in domains where there some standardiza-
tions of data formats and analysis methods—for example, in bioinformatics
and in fields that make extensive use of image processing. The main disad-
vantage is that where there are no preexisting components for a given need,
creating a new component can require considerable effort and a detailed
knowledge of the workflow system architecture. Most widely used sys-
tems include provenance tracking either as an integral part or as an optional
module.

Environment capture systems, such as Sumatra, are generally the easiest
to adopt for an existing workflow. The simplest approach is to capture the
entire operating system as a virtual machine (VM) image—see the chapter
by Howe [7] in the current volume. A more lightweight alternative to this
is CDE [5,6], which archives only those executables and libraries actually
used by the computation. The main disadvantages with such approaches are
(1) your results risk being highly sensitive to the particular configuration of
your computer and (2) it is difficult or impossible to index, search, or analyse
the provenance information. Sumatra aims to overcome both of these disad-
vantages by capturing the information needed to recreate the experimental
context rather than the context itself in binary form. Some combination of
Sumatra and CDE would perhaps give the best of both worlds. Integration
of CDE is planned in a future version of Sumatra.

In summary, at the time of writing, Sumatra is most suitable for scien-
tists who prefer to write their own code and run it from the command line,
especially when factors such as computation time, parallelism, or remote
execution make it difficult to work interactively, or where code is highly
modular so that literate programming tools capture only the tip of the code
iceberg. In any case, Sumatra is fast to set up, easy to use, and requires no
changes to existing code, so there is little to be lost in trying it out.

We have seen that Sumatra makes it much easier to replicate compu-
tational research in capturing the details of the software and hardware
environment that was used. In particular, Sumatra makes it much easier to
identify, in the case of failure to reproduce a result, what are the differences
between the original and current environments. However, Sumatra cannot
guarantee reproducibility, for two reasons. First, there are some details that
are not captured. For example, in Figure 3.1, you can see that for some of the

Sumatra 77

dependencies the version is unknown, either because the version informa-
tion is genuinely not present or because Sumatra does not yet have a heuristic
for finding it. Similarly, the compilation procedure and software library ver-
sions used to compile third-party programs, such as the Python interpreter,
are not currently captured, and it may sometimes be impossible to cap-
ture this information. Second, with the passage of time, even if you know
the particular versions of the libraries used, these versions may no longer
be available, or the particular hardware architecture needed may not even
be available. This problem is not restricted to Sumatra, of course. The use
of VMs and careful archiving of old hardware is one partial solution, while
for code that continues to be useful, a program of maintenance and ongoing
updates can avoid obsolescence.

In the future, we plan to add support for using Sumatra with interac-
tive notebooks (i.e., supporting a more granular unit of computation than an
entire script), automated re-creation of software environments using the cap-
tured information, support for pipelines (where the output in one Sumatra
record is the input in another), better support for compiled languages and
software build systems, and interoperability with other provenance tracking
tools, probably using the Open Provenance Model [9].

Sumatra is open-source software and is developed as an open
community—if you have ideas or wish to contribute in any way, please join
us at http://neuralensemble.org/sumatra.

Acknowledgments

We thank Eilif Muller, Konrad Hinsen, Stephan Gabler, Takafumi Arakaki,
Yoav Ram, Tristan Webb, and Maximilian Albert for their contributions to
Sumatra, as well as everyone who has reported bugs on the issue tracker.
The code examples of SEM image analysis were based on the SciPy tutorial
at http://scipy-lectures.github.com/.

References

1. AP Davison. Automated capture of experiment context for easier repro-
ducibility in computational research. Computing in Science and Engineer-
ing, 14:48–56, 2012.

2. M Delescluse, R Franconville, S Joucla, T Lieury, and C Pouzat. Making
neurophysiological data analysis reproducible: Why and how? Journal of
Physiology Paris, 106:159–170, 2012.

http://neuralensemble.org/sumatra

78 Implementing Reproducible Research

3. J Freire. Making computations and publications reproducible with
VisTrails. Computing in Science and Engineering, 14(4):18–25, 2012.

4. J Freire, D Koop, F Seabra Chirigati, and CT Silva. Reproducibility using
VisTrails. In V Stodden, F Leisch, and R Peng, editors, Implementing
Reproducible Computational Research. CRC Press/Taylor & Francis, Boca
Raton, FL, 2013.

5. PJ Guo. CDE: A tool for creating portable experimental software
packages. Computing in Science and Engineering, 14:32–35, 2012.

6. PJ Guo. CDE: Automatically package and reproduce computational
experiments. In V Stodden, F Leisch, and R Peng, editors, Implementing
Reproducible Computational Research. CRC Press/Taylor & Francis, Boca
Raton, FL, 2013.

7. B Howe. Reproducibility, virtual appliances and cloud computing. In
V Stodden, F Leisch, and R Peng, editors, Implementing Reproducible
Computational Research. CRC Press/Taylor & Francis, Boca Raton, FL,
2013.

8. B Ludäscher, I Altintas, C Berkley, D Higgins, E Jaeger, M Jones,
EA Lee, J Tao, and Y Zhao. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice and Experience,
18(10):1039–1065, 2006.

9. L Moreau, B Clifford, J Freire, J Futrelle, Y Gil, P Groth, N Kwas-
nikowska, S Miles, P Missier, J Myers, B Plale, Y Simmhan, E Stephan,
and J Van den Bussche. The Open Provenance Model core specification
(v1.1). Future Generation Computer Systems, 27:743–756, June 2011.

10. T Oinn, M Greenwood, M Addis, M Nedim Alpdemir, J Ferris, K Glover,
C Goble, A Goderis, D Hull, D Marvin, P Li, P Lord, MR Pocock,
M Senger, R Stevens, A Wipat, and C Wroe. Taverna: Lessons in cre-
ating a workflow environment for the Life Sciences. Concurrency and
Computation: Practice and Experience, 18(10):1067–1100, 2006.

11. Y Xie. knitr: A comprehensive tool for reproducible research in R. In
V Stodden, F Leisch, and R Peng, editors, Implementing Reproducible
Computational Research. CRC Press/Taylor & Francis, Boca Raton, FL,
2013.

4
CDE: Automatically Package and Reproduce
Computational Experiments

Philip J. Guo

CONTENTS

4.1 Motivation . 80
4.2 CDE System Overview . 80

4.2.1 Creating a New Package with cde . 83
4.2.2 Executing a Package with cde-exec . 84
4.2.3 CDE Package Portability . 84
4.2.4 Ignoring Files and Environment Variables . 85
4.2.5 Nongoals . 86

4.3 Use Case Categories . 87
4.3.1 Creating Reproducible Computational Experiments 87
4.3.2 Distributing Research Software . 88
4.3.3 Deploying Computations to Cluster or Cloud. 89
4.3.4 Running Production Software on Incompatible Distros 90
4.3.5 Class Programming Projects. 90

4.4 Implementation Details . 91
4.4.1 Creating a New Package with cde . 91

4.4.1.1 Primary Action . 91
4.4.1.2 Copying Files into Package. 91

4.4.2 Executing Package with cde-exec . 94
4.4.2.1 Primary Action . 94
4.4.2.2 Implementing Syscall Rewriting . 95
4.4.2.3 Spoofing Current Working Directory. 96
4.4.2.4 Execve Syscall . 96

4.5 Advanced Features . 97
4.5.1 Semiautomated Package Completion . 97

4.5.1.1 OKAPI: Deep File Copying. 98
4.5.1.2 Heuristics for Copying Shared Libraries 100
4.5.1.3 OKAPI-Based Directory Copying . 101

79

80 Implementing Reproducible Research

4.5.2 Seamless Execution Mode . 101
4.5.3 On-Demand Application Streaming . 103

4.5.3.1 Implementation and Example . 104
4.5.3.2 Synergy with Package Managers . 105

4.6 Discussion . 106
4.6.1 Practical Lessons Learned . 107

4.7 Future Vision: PhD-In-A-Box . 108
References . 110

4.1 Motivation

The simple-sounding task of taking software that runs on one person’s
machine and getting it to run on another machine can be painfully difficult
in practice, even if both machines have the same operating system. Since
no two machines are identically configured, it is hard for developers to pre-
dict the exact versions of software and libraries already installed on potential
users’ machines and whether those conflict with the requirements of their
own software. Thus, software companies devote considerable resources to
creating and testing one-click installers for products such as Microsoft Office,
Adobe Photoshop, and Google Chrome. Similarly, open-source develop-
ers must carefully specify the proper dependencies in order to integrate
their software into package management systems [2] (e.g., RPM on Linux,
MacPorts on Mac OS X). Despite these efforts, online forums and mailing
lists are filled with discussions of users’ troubles in compiling, installing,
and configuring software and dependencies.

Researchers are unlikely to invest the effort to create one-click installers
or wrestle with package managers since their job is not to release production-
quality software. Instead, they usually “release” their software by uploading
their source code and data files to a server and writing some informal
installation instructions. There is a slim chance that their colleagues will
be able to run their research code “out-of-the-box” without some technical
support.

4.2 CDE System Overview

In this chapter, we present a tool called CDE [1] that makes it easy
for people to get their software running on other machines without
the hassle of manually creating a robust installer or dealing with user

CDE 81

Your Linux
machine

Debian

Fedora

Ubuntu

CentOS

SUSE

FIGURE 4.1
CDE enables users to package up any Linux program and deploy it to all modern Linux distros.

complaints about dependencies. CDE automatically packages up the Code,
Data, and Environment required to run a set of x86-Linux programs on other
x86-Linux machines without any installation (see Figure 4.1). To use CDE,
the user simply:

1. Prepends any set of Linux commands with the cde executable. cde
executes the commands and uses ptrace system call interposition
to collect all code, data, and environment variables used during
execution into a self-contained package.

2. Copies the resulting CDE package to an x86-Linux machine running
any distribution (distro) from the past ∼5 years.

3. Prepends the original packaged commands with the cde-exec exe-
cutable to run them on the target machine. cde-exec uses ptrace
to redirect file-related system calls so that executables can load
the required dependencies from within the package. Execution can
range from ∼0% to ∼30% slower.

The main benefits of CDE are that creating a package is as easy as execut-
ing the target program under its supervision, and that running a program
within a package requires no installation, configuration, or root permissions.

In addition, CDE offers an application streaming mode, described in
Section 4.5.3. Figure 4.2 shows its high-level architecture: The system admin-
istrator first installs multiple versions of many popular Linux distros in a
“distro farm” in the cloud (or an internal compute cluster). The user connects
to that distro farm via an ssh-based protocol from any x86-Linux machine.
The user can now run any application available within the package managers

82 Implementing Reproducible Research

Debian

Fedora

Ubuntu

“The cloud”

CentOS

SUSE

Your Linux
machine

FIGURE 4.2
CDE’s streaming mode enables users to run any Linux application on demand by fetching the
required files from a farm of preinstalled distros in the cloud.

of any of the distros in the farm. CDE’s streaming mode fetches the required
files on demand, caches them locally on the user’s machine, and creates a
portable distro-independent execution environment. Thus, Linux users can
instantly run the hundreds of thousands of applications already available in
the package managers of all distros without being forced to use one specific
release of one specific distro.∗

We will use an example to introduce the core features of CDE.
Suppose that Alice is a climate scientist whose experiment involves run-
ning a Python weather simulation script on a Tokyo dataset using this Linux
command:

python weather_sim.py tokyo.dat

Alice’s script (weather_sim.py) imports some third-party Python
extension modules, which consist of optimized C++ numerical analysis code
compiled into shared libraries. If Alice wants her colleague Bob to run and
build upon her experiment, then it is not sufficient to just send her script
and tokyo.dat data file to him. Even if Bob has a compatible version of
Python on his machine, he will not be able to run her script until he com-
piles, installs, and configures the extension modules that she used (and all of
their transitive dependencies).

∗ The package managers included in different releases of the same Linux distro often contain
incompatible versions of many applications!

CDE 83

4.2.1 Creating a New Package with cde

To create a self-contained package with all dependencies required to run her
experiment on another machine, Alice prepends her command with the cde
executable:

cde python weather_sim.py tokyo.dat

cde runs her command normally and uses the Linux ptrace mech-
anism to monitor all files it accesses throughout execution. cde creates
a new subdirectory called cde-package/cde-root/ and copies all of
those accessed files into there, mirroring the original directory struc-
ture. For example, if her script dynamically loads an extension module
(shared library) named /usr/lib/weather.so, then cde will copy it
to cde-package/cde-root/usr/lib/weather.so (see Figure 4.3).
cde also saves the values of environment variables in a file within
cde-package/.

weather.so

Alice’s computer

cde <command>

filesystem

filesystem redirect open()

open()

/usr/lib/weather.so

/usr/lib/weather.so

copy

Bob’s computer

cde-exec <command>3.

cde-package/

1.

cde-root/
usr/

lib/

weather.so

cde-package/
cde-root/

usr/
lib/

2.

FIGURE 4.3
Example use of CDE: 1. Alice runs her command with cde to create a package, 2. Alice sends
her package to Bob’s computer, and 3. Bob runs that same command with cde-exec, which
redirects file accesses into the package.

84 Implementing Reproducible Research

When execution terminates, the cde-package/ subdirectory (which we
call a “CDE package”) contains all of the files required to run Alice’s original
command.

4.2.2 Executing a Package with cde-exec

Alice zips up the cde-package/ directory and transfers it to Bob’s Linux
machine. Now Bob can run Alice’s experiment without installing anything
on his machine. He unzips the package, changes into the subdirectory con-
taining the script, and prepends the original command with the cde-exec
executable∗:

cde-exec python weather_sim.py tokyo.dat

cde-exec sets up the environment variables saved from Alice’s machine
and executes the version of python and its extension modules from within
the package. cde-exec uses ptrace to monitor all system calls that access
files and rewrites their path arguments to the corresponding paths within
the cde-package/cde-root/ subdirectory. For example, when her script
requests to load the /usr/lib/weather.so extension library using an
open system call, cde-exec rewrites the path argument of the open
call to cde-package/cde-root/usr/lib/weather.so (see Figure 4.3).
This path redirection is essential because /usr/lib/weather.so probably
does not exist on Bob’s machine.

Not only can Bob reproduce Alice’s exact experiment, but he can also edit
her script and dataset and then rerun to explore variations and alternative
hypotheses, as long as his edits do not cause the script to import new Python
extension modules that are not in the package. Also, since a CDE package is
a directory tree, Bob can add additional dataset files into the package to run
related experiments.

4.2.3 CDE Package Portability

Alice’s CDE package can execute on any Linux machine with an architec-
ture and kernel version that are compatible with its constituent binaries.
CDE currently works on 32- and 64-bit variants of the x86 architecture (i386
and x86-64, respectively). In general, a 32-bit cde-exec can execute 32-
bit packaged applications on 32- and 64-bit machines. A 64-bit cde-exec
can execute both 32- and 64-bit packaged applications on a 64-bit machine.
Extending CDE to other architectures (e.g., ARM) is straightforward because
the strace tool that CDE is built upon already works on many architectures.

∗ The package contains a copy of cde-exec.

CDE 85

However, CDE packages cannot be transported across architectures without
using a CPU emulator.

In practice, CDE packages are portable across Linux distros released
within approximately 5 years of the distro where the package originated [13].
Besides sharing with colleagues such as Bob, Alice can also deploy her
package to run on a cluster for more computational power or to a public
server for real-time weather simulation reporting. Since she does not need
to install any software or libraries as the root user, she does not risk per-
turbing existing software on those machines. Finally, having her script and
all of its dependencies (including the Python interpreter and extension mod-
ules) encapsulated within a CDE package makes it somewhat “future-proof”
and likely to still run on her machine even when its version of Python and
associated extensions are upgraded in the future.

Users can combine CDE with a virtual machine (VM) to achieve greater
portability. For example, if Alice wants her colleagues who run Windows,
Mac OS, or an antiquated Linux to reproduce her experiments, she can put
her CDE package within a Linux VM and distribute the entire VM image.
However, the price to pay for such portability is increased file size: A VM
image file can be 10–100 times larger than a CDE package because it contains
the entire operating system.

Finally, unlike language-based portability technologies (such as Java
or Python virtualenv), CDE works on Linux programs written in any
language or mix of languages.

4.2.4 Ignoring Files and Environment Variables

By convention, Linux directories such as /dev, /proc, and /sys contain
pseudo-files (e.g., device files) that do not make sense to include in a CDE
package. Also, environment variables such as $XAUTHORITY and the cor-
responding .Xauthority file (for X Window authorization) are machine
specific. Informed by our debugging experiences and user feedback, we
have manually created a blacklist of directories, files, and environment vari-
ables for CDE to ignore so that packages can be portable across machines. By
“ignore” we mean that cdewill not copy those files (or variables) into a pack-
age, and cde-exec will not redirect their paths and instead access the real
versions on the machine. This user-customizable blacklist is implemented as
a plain-text options file. Figure 4.4 shows this file’s default contents.

CDE also allows users to customize which paths it should ignore (leave
alone) and which it should redirect into the package, thereby making its
sandbox “semi-permeable.” For example, one computational scientist chose
to have CDE ignore a directory that mounts an NFS share containing huge
data files because he knew that the machine on which he was going to exe-
cute the package also mounts that NFS share at the same path. Therefore,
there was no point in bloating up the package with those data files.

86 Implementing Reproducible Research

These directories often contain pseudo-files that shouldn't be tracked

ignore_prefix=/dev/

ignore_exact=/dev

ignore_prefix=/proc/

ignore_exact=/proc

ignore_prefix=/sys/

ignore_exact=/sys

ignore_prefix=/var/cache/

ignore_prefix=/var/lock/

ignore_prefix=/var/log/

ignore_prefix=/var/run/

ignore_prefix=/var/tmp/

ignore_prefix=/tmp/

ignore_exact=/tmp

ignore_substr=.Xauthority # Ignore to allow X Window programs to work

ignore_exact=/etc/resolv.conf # Ignore so networking can work properly

Access the target machine's password files:

(some programs like texmacs need these lines to be commented-out,

since they try to use home directory paths within the passwd file,

and those paths might not exist within the package.)

ignore_prefix=/etc/passwd

ignore_prefix=/etc/shadow

These environment vars might lead to 'overfitting' and hinder portability

ignore_environment_var=DBUS_SESSION_BUS_ADDRESS

ignore_environment_var=ORBIT_SOCKETDIR

ignore_environment_var=SESSION_MANAGER

ignore_environment_var=XAUTHORITY

ignore_environment_var=DISPLAY

FIGURE 4.4
The default CDE options file, which specifies the file paths and environment variables that CDE
should ignore. ignore_exact matches an exact file path, ignore_prefix matches a path’s
prefix string (e.g., directory name), and ignore_substr matches a substring within a path.
Users can customize this file to tune CDE’s sandboxing policies (see Section 4.2.4).

4.2.5 Nongoals

Our philosophy in designing CDE was to create the simplest possible tool
that would allow a large class of real-world Linux programs to be portable
across a range of contemporary distros. One way we have kept CDE’s design
simple was to limit its scope. Here are some tasks that CDE is not designed
to perform:

• Deterministic replay: CDE does not try to replay exact execution
paths like record-replay tools [8,17,20] do. Thus, CDE does not need
to capture sources of randomness, thread scheduling, and other

CDE 87

nondeterminism. It also does not need to create snapshots of filesys-
tem state for rollback/recovery.

• OS/hardware emulation: CDE does not spoof the OS or hardware.
Thus, programs that require specialized hardware or device drivers
will not be portable across machines. Also, CDE cannot capture
remote network dependencies.

• Security: Although CDE isolates target programs in a chroot-like
sandbox, it does not guard against attacks to circumvent such sand-
boxes [11]. Users should only run CDE packages from trusted
sources. (Of course, the same warning applies to all downloaded
software.)

• Licensing: CDE does not attempt to “crack” software licenses, nor
does it enforce licensing or distribution restrictions. It is ultimately
the package creator’s responsibility to make sure that he/she is both
willing and able to distribute the files within a package, abiding by
the proper software and dataset licenses.

4.3 Use Case Categories

Since we released the first version of CDE on November 9, 2010, it has been
downloaded at least 10,000 times as of November 2012 [1]. We cannot track
how many people have directly checked out its source code from GitHub [1],
though.

We have exchanged hundreds of e-mails with CDE users and discovered
five salient real-world use cases as a result of these discussions:

4.3.1 Creating Reproducible Computational Experiments

The results of many computational science experiments can be reproduced
within CDE packages because their code is output-deterministic [8], always
producing the same outputs (e.g., statistics, tables, graphs) for a given input.
We have received several e-mails describing how researchers have used CDE
to make their experiments reproducible, including

• Robotics motion planning experiments using C++ and OpenGL
code [22]

• Genetic algorithms for social networking using C++ and R code [18]
• Biological fingerprint identification using the LibSVM machine

learning library and the Open Babel computational chemistry
toolbox [15]

88 Implementing Reproducible Research

4.3.2 Distributing Research Software

The creators of several research tools found CDE online and used it to create
portable packages that they uploaded to their websites:

The website for Graph-Tool, a Python/C++ module for analyzing graphs,
lists these (direct) dependencies: “GCC 4.2 or above, Boost libraries, Python
2.5 or above, expat library, NumPy and SciPy Python modules, GCAL C++
geometry library, and Graphviz with Python bindings enabled” [6]. Unsur-
prisingly, lots of people had trouble compiling it: 47% of all messages on
its mailing list (137 out of 289) were questions related to compilation prob-
lems. The author of Graph-Tool used CDE to automatically create a portable
package (containing 149 shared libraries and 1909 total files) and uploaded
it to his website so that users no longer needed to suffer through the pain of
manually compiling it.

Arachni, a Ruby-based tool that audits web application security [5],
requires six hard-to-compile Ruby extension modules, some of which
depend on versions of Ruby and libraries that are not available in the pack-
age managers of most modern Linux distributions. Its creator, a security
researcher, created and uploaded CDE packages and then sent us a grate-
ful e-mail describing how much effort CDE saved him: “My guess is that
it would take me half the time of the development process to create a self-
contained package by hand; which would be an unacceptable and truly scary
scenario.”

A British research programming team used CDE to make portable pack-
ages for their protein crystallography software.∗ Similarly, a team at Johns
Hopkins University made CDE packages for CAWorks,† medical visual-
ization software for computational anatomy. The following e-mail snippet
from a conversation with its lead developer provides a sense of the complex
dependencies that CDE automatically encapsulated: “My program which is
called CAWorks is huge with a massive dependency list. ParaView the base
program uses vtk, python, zlib and of course Qt and all of their dependent
libraries. While my program CAWorks adds to this libcurl, openssl, ITK and
vxl, blitz, dicom, ivcon, clapack, getopt, gts, md5, quazip, and glib and all of
their dependent libraries, none of which ParaView uses.”

Finally, we used CDE to create portable binary packages for two of our
Stanford‡ colleagues’ research tools, which were originally distributed as tar-
balls of source code: PADS [10] and Saturn [7]. Forty-four percent of the
messages on the PADS mailing list (38/87) were questions related to trou-
bles with compiling it (22% for Saturn). Once we successfully compiled these
projects (after a few hours of improvising our own hacks since the documen-
tation was grossly outdated), we created CDE packages by running their

∗ http://www.ccp4.ac.uk/.
† http://cis.jhu.edu/software/caworks/.
‡ CDE originated as a research project in the Computer Science Department at Stanford

University.

http://www.ccp4.ac.uk/
http://cis.jhu.edu/software/caworks/

CDE 89

regression test suites. Now our fellow researchers no longer need to suffer
through the compilation process.

To see the benefits of CDE here, note that the Saturn team leader admit-
ted in a public e-mail, “As it stands the current release likely has problems
running on newer systems because of bit rot—some libraries and interfaces
have evolved over the past couple of years in ways incompatible with the
release” [3]. In contrast, CDE packages are largely immune to “bit rot” (until
the user-kernel ABI changes) because they contain all dependencies.

4.3.3 Deploying Computations to Cluster or Cloud

People working on computational experiments on their desktop machines
often want to run them on a cluster for greater performance and parallelism.
However, before they can deploy their computations to a cluster or cloud
computing (e.g., Amazon EC2), they must first install all of the required
executables and dependent libraries on the cluster machines. At best, this
process is tedious and time consuming, since cluster/cloud machines run
older versions of software and libraries due to both slow upgrade cycles and
concerns about security and stability. At worst, installation can be impossible
since regular users often do not have root access on cluster machines.

Using CDE, a user can create a self-contained package on their desktop
machine and then execute that package on the cluster or cloud (possibly
many instances in parallel), without needing to install any dependencies or
to get root access on the remote machines.

For example, our Stanford colleague Peter wanted to use a department-
administered 100-CPU cluster to run a parallel image processing job on
topological maps. However, since he did not have root access on those older
machines, it was nearly impossible for him to install all of the dependencies
required to run his computation, especially the image processing libraries.
Peter used CDE to create a package by running his job on a small dataset on
his desktop, transferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.

Similarly, we worked with labmates to use CDE to deploy the CPU-
intensive Klee [9] automated bug finding tool from the desktop to Amazon’s
EC2 cloud computing service without needing to compile Klee on the cloud
machines. Klee can be hard to compile since it depends on LLVM, which is
very picky about specific versions of GCC and other build tools being present
on the machine before it will compile.

Researchers have also used CDE to deploy computational experiments to
internal compute clusters within several software companies, to the Euro-
pean Grid distributed computing infrastructure, and to the iPlant∗ cloud
infrastructure (NSF-funded cyberinfrastructure for plant biologists).

∗ http://www.iplantcollaborative.org/.

http://www.iplantcollaborative.org/

90 Implementing Reproducible Research

On a related note, several researchers have used CDE to deploy their
research software not to a cluster but rather to a webserver; that way, users
can interact with their code via a web interface. Since researchers often do
not have root access on shared web hosting machines, it can be impossible to
install all of the required dependencies on there.

4.3.4 Running Production Software on Incompatible Distros

Even production-quality software might be hard to install on Linux distros
with older kernel or library versions, especially when system upgrades are
infeasible. A user can run software under CDE supervision on a modern
distro to create a package and then run that package on an older distro,
regardless of what libraries are present on there.

For example, an engineer at Cisco wanted to run some new open-source
tools on his work machines, but the IT department mandated that those
machines run an older, more secure enterprise Linux distro. He could not
install the tools on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade. Therefore, he
installed a modern distro at home, ran CDE on there to create packages for
the tools he wanted to port, and then ran the tools from within the packages
on his work machines.

Hobbyists applied CDE in a similar way: A game enthusiast could only
run classic games within a DOS emulator on one of his Linux machines, so
he used CDE to create a package and can now play the games on his other
machines. We also helped a user create a portable package for the Google
Earth 3D map application, so he can now run it on older distros whose
libraries are incompatible with Google Earth.

4.3.5 Class Programming Projects

A teaching assistant for Stanford’s Parallel Computing course (CS 149) used
CDE to package up the toolchain required to compile and run class program-
ming projects; thus, students can focus on the actual programming rather
than on the drudgery of installation and configuration.

In addition, two users sent us CDE packages they created for collab-
orating on class assignments: Rahul, a Stanford grad student, was using
NLTK [19], a Python module for natural language processing, to build a
semantic e-mail search engine for a machine learning class. Despite much
struggle, Rahul’s two teammates were unable to install NLTK on their Linux
machines due to conflicting library versions. This meant that they could run
only one instance of the project at a time on Rahul’s laptop for query testing
and debugging. When Rahul discovered CDE, he created a package for their
project and was able to run it on his two teammates’ machines so that all
three of them could test and debug in parallel. Joshua, an undergrad from
Mexico, e-mailed us a similar story about how he used CDE to collaborate
on and demo his virtual reality class project.

CDE 91

4.4 Implementation Details

This section describes the implementation of CDE in some detail, so it is
relevant only for readers who are either curious about those details or who
want to implement a similar tool.

CDE uses the Linux ptrace system call to monitor the target program’s
processes and threads, read/write to its memory, and modify its system call
arguments, all without requiring root permission. System call interposition
using ptrace is a well-known technique that computer systems researchers
have used for implementing tools such as secure sandboxes [12,16], record-
replay systems [17], and user-level filesystems [21].

We implemented CDE by adding 3000 lines of C code to the strace
system call monitoring tool. CDE works only on x86-based Linux machines
(32-bit and 64-bit) but should be easy to extend to other hardware archi-
tectures. Although implementation details are Linux-specific, these same
ideas could be used to implement CDE for another OS such as Mac OS X
or Windows.

4.4.1 Creating a New Package with cde

4.4.1.1 Primary Action

The main job of cde is to use ptrace to monitor the target program’s sys-
tem calls and copy all of its accessed files into a self-contained package. The
only relevant syscalls here are those that take a file path string as an argu-
ment, which are listed in the “File path access” category in Table 4.1 (and
also execve). After the kernel finishes executing one of these syscalls and
is about to return to the target program, cde wakes and observes the return
value. If the return value signifies that the indicated file exists, then cde
copies that file into the package (see Figure 4.5).

Note that many syscalls operate on files but take a file descriptor as an
argument rather than a file path (e.g., mmap); cde does not need to track
those since it already tracks the preceding syscalls (e.g., open) that create
file descriptors from file paths.

4.4.1.2 Copying Files into Package

Prior to copying a file into the package, cde creates all necessary subdirecto-
ries and symbolic links to mirror the original file’s location. In our example
from Figure 4.3, cde copies /usr/lib/weather.so into the package as
cde-package/cde-root/usr/lib/weather.so. For efficiency, copies
are done via Linux hard links if possible.

If a file is a symlink, then both it and its target must be copied into the
package. Multiple levels of symlinks, to both files and directories, must be

92 Implementing Reproducible Research

TABLE 4.1

The 48 (out of 338 Total) Linux 2.6 System Calls Intercepted by cde and cde-exec,
and Actions Taken for Each Category of Syscalls

Category Linux Syscalls cde Action cde-exec Action

File path access open[at], mknod[at],

fstatat64, access,

faccessat,readlink[at],

truncate[64], stat[64],

creat,lstat[64],

oldstat, oldlstat,

chown[32],lchown[32],

fchownat, chmod,

fchmodat, utime,

utimes, futimesat

Copy file into
package

Redirect path into
package

Local sockets bind, connect None Redirect path into
packagea

Mutate filesystem link[at], symlink[at],

rename[at], unlink[at],

mkdir[at], rmdir

Repeat in
package

Redirect path into
package

Get current dir. getcwd Update current
directory

Spoof current
directory

Change directory chdir, fchdir Update current directory
Spawn child fork, vfork, clone Track child process or thread

Execute program execve Copy binary
into package

Maybe run
dynamic linker

Syscalls with suffixes in [brackets] include variants both with and without the suffix: for
example, open[at] means open and openat.

a For bind and connect, cde-exec only redirects the path if it is used to access a file-based
socket for local IPC.

cde

Kernel

Program

open()

Open file

Copy file into package

FIGURE 4.5
Timeline of control flow between the target program, kernel, and cde process during an open
syscall.

CDE 93

properly handled. More subtly, any component of a path may be a symlink
to a directory, so the exact directory structure must be replicated within the
package for cde-exec to work. For example, we once encountered a path
/usr/lib/gcc/4.1.2/libgcc.a, where 4.1.2 is a symlink to a direc-
tory named 4.1.1. We observed that some programs are sensitive to exact
filesystem layout, so cde must faithfully replicate symlinks within the pack-
age, or else those programs will fail with cryptic errors when run from within
the package.

Finally, if the file being copied is an ELF binary (executable or library
code), then cde searches through the binary’s contents for constant strings
that are filenames and then copies those files into the package. Although
this hack is simplistic, it works well in practice to partially overcome CDE’s
limitation of only being able to gather dependencies on executed paths (see
Section 4.5.1 for more details). It works because many binaries dynamically
load libraries whose filenames are constant strings. For example, we encoun-
tered a Python extension library that dynamically loads one of a few versions
of the Intel Math Kernel Library based on the current CPU’s capabilities.
Without this hack, any given execution will copy only one version of the
Intel library into the package, so packaged execution will fail when running
on another machine with different CPU capabilities. Finding and copying all
versions of the Intel library into the package makes the program more likely
to run on machines with different hardware.

Here is how cde handles the other syscalls in Table 4.1:

Mutate filesystem: After each call that mutates the filesystem, cde
repeats the same action on the corresponding copies of files in the
package. For example, if a program renames a file from foo to
bar, then cde also renames the copy of foo in the package to bar.
This way, at the end of execution, the package’s contents mirror the
“poststate” of the original filesystem’s contents, not the “prestate”
before execution.

Updating current working directory: At the completion of getcwd,
chdir, and fchdir, cde updates its record of the monitored pro-
cess’s current working directory, which is necessary for resolving
relative paths.

Tracking subprocesses and threads: If the target program spawns sub-
processes, cde also attaches onto those children with ptrace (it
attaches onto spawned threads in the same way). cde keeps track
of each monitored process’s current working directory and shared
memory segment address (needed for Section 4.4.2). cde remains
single-threaded and responds to events queued by ptrace.

This feature is useful for packaging up workflows consisting of
multiple program invocations, such as a compilation job. Running
“cde make” will track all subprocesses that the Makefile spawns
and package up the source files and compiler toolchain. Now you

94 Implementing Reproducible Research

can edit and compile the given project on another Linux machine by
simply running “cde-exec make” without needing to install any
compilation tools or header files on that machine.

execve syscall: cde copies the executable’s binary into the package. For
a script, cde finds the name of its interpreter binary from the she-
bang (#!) line. If the binary is dynamically linked, cde also finds
its dynamic linker (e.g., ld-linux.so.2) and copies it into the
package. The dynamic linker is responsible for loading the shared
libraries that a program needs at start-up time.

4.4.2 Executing Package with cde-exec

4.4.2.1 Primary Action

The main job of cde-exec is to use ptrace to redirect file paths that the
target program requests into the package. Before the kernel executes most
syscalls listed in Table 4.1, cde-exec rewrites their path argument(s) to refer
to the corresponding path within cde-package/cde-root/ (Figure 4.6).
By doing so, cde-exec creates a chroot-like sandbox that fools the target
program into “believing” that it is executing on the original machine. Unlike
chroot, this sandbox does not require root access to set up, and it is user-
customizable (see Section 4.2.4).

In our running example, suppose that Alice runs her experiment within
the /expt directory on her computer:

cd /expt
cde python weather_sim.py tokyo.dat

She then sends the package to Bob’s computer. If Bob unzips it into his
home directory (/home/bob), then he can run these commands to execute
her Python script:

cd /home/bob/cde-package/cde-root/expt
cde-exec python weather_sim.py tokyo.dat

cde-exec

Kernel

Program

open()

Open file
from package

Rewrite open() argument

FIGURE 4.6
Timeline of control flow between the target program, kernel, and cde-exec process during an
open syscall.

CDE 95

Note that Bob needs to first change into the /expt subdirectory within
the package, since that is where Alice’s scripts and data files reside. When
cde-exec starts, it finds Alice’s python executable within the package
(with the help of $PATH) and launches it. Now if her program requests to
open, say, /usr/lib/weather.so, cde-exec rewrites the path argument
of the open call to /home/bob/cde-package/cde-root/usr/lib/
weather.so, so that the kernel opens the library version from within the
package.

4.4.2.2 Implementing Syscall Rewriting

Since ptrace allows cde-exec to directly read and write into the target
program’s memory, the easiest way to rewrite a syscall’s argument is to sim-
ply override its buffer with a new string. However, this approach does not
work because the new path string is always longer than the original, so it
might overflow the buffer. Also, if the program makes a system call with a
constant string, the buffer would be read-only.

Instead, what cde-exec does is redirect the pointer to the buffer.
When the target program (or one of its subprocesses) first makes a syscall,
cde-exec forces it to make another syscall to attach a 16kB shared memory
segment (a trick from Spillane et al. [21]). Now cde-exec can write data into
that shared segment and have it be visible in the target program’s address
space. The two large rectangles in Figure 4.7 show the address spaces of the
target program and cde-exec, respectively. Figure 4.7 illustrates the three
steps involved in syscall argument rewriting:

1. cde-exec uses ptrace to read the original argument from the
traced program’s address space.

2. cde-exec creates a new string representing the path redirected
inside of the package and writes it into the shared memory buffer.

Program

cde-exec

cde-package/cde-root/usr/lib/weather.so

cde-package/cde-root/usr/lib/weather.so

3.

2.

1.
/usr/lib/weather.so

open()

FIGURE 4.7
Example address spaces of target program and cde-exec when rewriting path argument of
open. The two boxes connected by dotted lines are shared memory.

96 Implementing Reproducible Research

This value is immediately visible in the target program’s address
space.

3. cde-exec uses ptrace to mutate the syscall’s filename char*
argument(s) to point to the start of the shared memory buffer (in the
target program’s address space). x86-Linux syscall arguments are
stored in registers, so ptrace mutates the target program’s regis-
ters prior to executing the call. Most syscalls take only one filename
argument, which is stored in %ebx on i386 and %rdi on x86-64.
Syscalls such as link, symlink, and rename take two filename
arguments; their second argument is stored in %ecx on i386 and
%rsi on x86-64.

4.4.2.3 Spoofing Current Working Directory

At the completion of the getcwd syscall, cde-execmutates the return value
string to eliminate all path components up to cde-root/. For example,
when Bob runs Alice’s script:

cd /home/bob/cde-package/cde-root/expt
cde-exec python weather_sim.py tokyo.dat

If her Python script requests its current working directory using getcwd,
the kernel will return the true full path: /home/bob/cde-package/
cde-root/expt. Then cde-exec will truncate that string so that it
becomes /expt, which is the value it would have returned if it were run-
ning on Alice’s machine. We have encountered many programs that break
when getcwd is not spoofed.

There is no danger of buffer overflow here since the new string is always
shorter, and the char* buffer passed into getcwd cannot be read-only,
since the kernel must be able to update its contents. Some programs call
readlink(“/proc/self/cwd”) to get the current working directory, so
cde-exec also spoofs the return value for that particular syscall instance.

4.4.2.4 Execve Syscall

When the target program executes a dynamically linked binary, cde-exec
rewrites the execve syscall arguments to execute the dynamic linker stored
in the package (with the binary as its first argument) rather than directly
executing the binary. For example, if Bob invokes “cde-exec python
weather_sim.py tokyo.dat”, cde-exec will prepend the dynamic
linker filename to the argv array argument of the execve syscall:

argv[0]: cde-package/cde-root/lib/ld-linux.so.2
argv[1]: /usr/bin/python
argv[2]: weather_sim.py
argv[3]: tokyo.dat

CDE 97

(Also note that although argv[1] is /usr/bin/python, that path will get
redirected into the version of the binary file within the CDE package during
the open syscall.)

Here is why cde-exec needs to explicitly execute the dynamic linker:
When a user executes a dynamically linked binary, Linux first executes the
system’s default dynamic linker to resolve and load its shared libraries.
However, we have found that the dynamic linker on one Linux distro
might not be compatible with binaries created on another distro, due to
minor differences in ELF binary formats. Therefore, to maximize portabil-
ity across machines, cde copies the dynamic linker into the package, and
cde-exec executes the dynamic linker from the package rather than the
target machine’s builtin dynamic linker. Without this hack, we have noticed
that even a trivial “hello world” binary compiled on one distro (e.g., Ubuntu
with Linux 2.6.35) will not run on an older distro (e.g., Knoppix with Linux
2.6.17).∗

A side effect of rewriting execve to call the dynamic linker is that
when a target program inspects its own executable name, the kernel will
return the name of the dynamic linker, which is incorrect. Thus, cde-exec
spoofs the return values of calls to readlink(“/proc/self/exe”) and
readlink(“/proc/<$PID>/exe”) to return the original executable’s
name. This spoofing is necessary because some narcissistic programs crash
with cryptic errors if their own names are not properly identified!

4.5 Advanced Features

We now describe three advanced CDE features that are relevant for power
users: semiautomated package completion, seamless execution mode, and
application streaming mode.

4.5.1 Semiautomated Package Completion

CDE’s main limitation is that it packages only the files accessed on executed
program paths. Thus, programs run from within a CDE package will fail
when executing paths that access new files (e.g., libraries, configuration files)
that the original execution(s) did not.

Unfortunately, no automatic tool (static or dynamic) can find and package
up all of the files required to successfully execute all possible program paths
since that problem is undecidable in general. Similarly, it is also impossible
to automatically quantify how “complete” a CDE package is or determine
what files are missing since every file-related system call instruction could

∗ It actually crashes with a cryptic “Floating point exception” error message.

98 Implementing Reproducible Research

be invoked with complex or nondeterministic arguments. For example, the
Python interpreter executable has only one dlopen call site for dynamically
loading extension modules, but that dlopen could be called many times
with different dynamically generated string arguments derived from script
variables or configuration files.

There are two ways to cope with this package incompleteness problem.
First, if the user executes additional program paths, then CDE will add new
files into the same cde-package/ directory. However, making repeated
executions can get tedious, and it is unclear how many or which paths are
necessary to complete the package.∗

Another way to make CDE packages more complete is by manually copy-
ing additional files and subdirectories into cde-package/cde-root/ (see
Section 4.5.1.3 for more details). For example, while executing a Python
script, CDE might automatically copy the few Python standard library files
it accesses into, say, cde-package/cde-root/usr/lib/python/. To
complete the package, the user could copy the entire /usr/lib/python/
directory into cde-package/cde-root/ so that all Python libraries are
present.

However, programs also depend on shared libraries that reside in
system-wide directories such as /lib and /usr/lib. Copying the entire
contents of those directories into a package results in lots of wasted disk
space. In Section 4.5.1.2, we present an automatic heuristic technique that
finds nearly all shared libraries that a program requires and copies them into
the package.

4.5.1.1 OKAPI: Deep File Copying

Before describing our heuristics for completing CDE packages, we first intro-
duce a utility library we built called OKAPI (pronounced oh-copy), which
performs detailed copying of files, directories, and symlinks. OKAPI does
one seemingly simple task that turns out to be tricky in practice: copying
a filesystem entity (i.e., a file, directory, or symlink) from one directory to
another while fully preserving its original subdirectory and symlink struc-
ture (a process that we call deep-copying). CDE uses OKAPI to copy files into
the cde-root/ subdirectory when creating a new package, and the support
scripts of Sections 4.5.1.2 and 4.5.1.3 also use OKAPI.

For example, suppose that CDE needs to copy the /usr/bin/java exe-
cutable file into cde-root/ when it is packaging a Java application. The
straightforward way to do this is to use the standard mkdir and cp utilities.
Figure 4.8 shows the resulting subdirectory structure within cde-root/,
with the boxes representing directories and the bold ellipse representing
the copy of the java executable file located at cde-root/usr/bin/java.
However, it turns out that if CDE were to use this straightforward copying

∗ Similar to trying to achieve 100% coverage during software testing.

CDE 99

cde-root usr bin java

FIGURE 4.8
The result of copying a file named /usr/bin/java into cde-root/.

method, the Java application would fail to run from within the CDE pack-
age! This failure occurs because the java executable introspects its own path
and uses it as the search path for finding the Java standard libraries. On our
Fedora Core 9 machine, the Java standard libraries are actually installed in
/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0, so when java reads
its own path as /usr/bin/java, it cannot possibly use that path to find
its standard libraries.

For Java applications to run from within CDE packages, all of their
constituent files must be “deep-copied” into the package while replicat-
ing their original subdirectory and symlink structures. Figure 4.9 illus-
trates the complexity of deep-copying a single file, /usr/bin/java,
into cde-root/. The diamond-shaped nodes represent symlinks, and
the dashed arrows point to their targets. Notice how /usr/bin/java
is a symlink to /etc/alternatives/java, which is itself a symlink
to /usr/lib/jvm/jre-1.6.0-openjdk/bin/java. Another complicat-
ing factor is that /usr/lib/jvm/jre-1.6.0-openjdk is itself a symlink
to the /usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0/jre/ directory,
so the actual java executable resides in /usr/lib/jvm/java-1.6.0-
openjdk-1.6.0.0/jre/bin/. Java can only find its standard libraries
when these paths are all faithfully replicated within the CDE package.

The OKAPI utility library automatically performs the deep-copying
required to generate the filesystem structure of Figure 4.9. Its interface is
as simple as ordinary cp: The caller simply requests for a path to be copied
into a target directory, and OKAPI faithfully replicates the subdirectory and
symlink structure.

OKAPI performs one additional task: rewriting the contents of sym-
links to transform absolute path targets into relative path targets within the
destination directory (e.g., cde-root/). In our example, /usr/bin/java

cde-root
etc

bin

lib jvm

java

java

java-1.6.0-openjdk-1.6.0.0

binjrejre-1.6.0-openjdk

javaalternatives

usr

FIGURE 4.9
The result of using OKAPI to deep-copy a single /usr/bin/java file into cde-root/,
preserving the exact symlink structure from the original directory tree. Boxes are directories
(solid arrows point to their contents), diamonds are symlinks (dashed arrows point to their
targets), and the bold ellipse is the real java executable.

100 Implementing Reproducible Research

is a symlink to /etc/alternatives/java. However, OKAPI can-
not simply create the cde-root/usr/bin/java symlink to also point
to /etc/alternatives/java since that target path is outside of
cde-root/. Instead, OKAPI must rewrite the symlink target so that it actu-
ally refers to ../../etc/alternatives/java, which is a relative path
that points to cde-root/etc/alternatives/java.

The details of this particular example are not important, but the high-
level message that Figure 4.9 conveys is that deep-copying even a single
file can lead to the creation of over a dozen subdirectories and (pos-
sibly rewritten) symlinks. The problem that OKAPI solves is not Java-
specific; we have observed that many real-world Linux applications fail to
run from within CDE packages unless their files are deep-copied in this
intricate way.

Aside from being an integral part of CDE, OKAPI is also available as a
free standalone command-line tool [1]. To our knowledge, no other Linux file
copying tool (e.g., cp, rsync) can perform the deep-copying and symlink
rewriting that OKAPI does.

4.5.1.2 Heuristics for Copying Shared Libraries

When Linux starts executing a dynamically linked executable, the dynamic
linker (e.g., ld-linux*.so*) finds and loads all shared libraries that are
listed in a special .dynamic section within the executable file. Running the
ldd command on the executable shows these start-up library dependencies.
When CDE is executing a target program to create a package, CDE finds all
of these dependencies as well because they are loaded at start-up time via
open system calls.

However, programs sometimes load shared libraries in the middle of exe-
cution using, say, the dlopen function. This run-time loading occurs mostly
in GUI programs with a plug-in or extension architecture. For example,
when the user instructs Firefox to visit a web page with a Flash animation,
Firefox will use dlopen to load the Adobe Flash Player shared library. ldd
will not find that dependency since it is not hard-coded in the .dynamic
section of the Firefox executable, and CDE will only find that dependency if
the user actually visits a Flash-enabled web page while creating a package
for Firefox.

We have created a simple heuristic-based script that finds most or all
shared libraries that a program requires.∗ The user first creates a base CDE
package by executing the target program once (or a few times) and then runs
our script, which works as follows:

∗ Always a superset of the shared libraries that ldd finds.

CDE 101

1. Find all ELF binaries (executables and shared libraries) within the
package using the Linux find and file utilities.

2. For each binary, find all constant strings using the strings utility
and look for strings containing “.so” since those are likely to be
shared libraries.

3. Call the locate utility on each candidate shared library string,
which returns the full absolute paths of all installed shared libraries
that match each string.

4. Use OKAPI to copy each library into the package.
5. Repeat this process until no new libraries are found.

This heuristic technique works well in practice because programs often
list all of their dependent shared libraries in string constants within their
binaries. The main exception occurs in dynamic languages such as Python
or MATLAB�, whose programs often dynamically generate shared library
paths based on the contents of scripts and configuration files. Of course, our
technique provides no completeness guarantees since the package complete-
ness problem is undecidable in general.

4.5.1.3 OKAPI-Based Directory Copying

In general, running an application once under CDE monitoring only pack-
ages up a subset of all required files. In our experience, the easiest way to
make CDE packages complete is to copy entire subdirectories into the pack-
age. To facilitate this process, we created a script that repeatedly calls OKAPI
to copy an entire user-specified directory into cde-root/, automatically
following symlinks to other directories and recursively copying as needed.
(Note that simply running “cp -aR” is not sufficient since that does not
follow and preserve symlinks.)

Although this approach might seem primitive, it is effective in practice
because applications often store all of their files in a few top-level directories.
When a user inspects the directory structure within cde-root/, it is usually
obvious where the application’s files reside. Thus, the user can run our script
to copy those directories into the package.

4.5.2 Seamless Execution Mode

When executing a program from within a CDE package, cde-exec redirects
all file accesses into the package by default, thereby creating a chroot-like
sandbox with cde-package/cde-root/ as the pseudo-root directory (see
Figure 4.3, Step 3).

This default chroot-like execution mode is fine for running self-contained
GUI applications such as games or web browsers, but it is a somewhat awk-
ward way to run most types of UNIX-style command-line programs that

102 Implementing Reproducible Research

researchers often prefer. If users are running, say, a compiler or command-
line image processing utility from within a CDE package, they would need
to first move their input data files into the package, run the target program
using cde-exec, and then move the resulting output data files back out of
the package, which is a cumbersome process.

Let us consider a modified version of the Alice-and-Bob example from
Section 4.2. Suppose Alice is a researcher who is developing a Python script
to detect anomalies in network log files. She normally runs her script using
this Linux command:

python detect_anomalies.py net.log

Let us say she packages up her command with CDE and sends that pack-
age to Bob, who can now rerun her original analysis on the net.log file
from within the package. However, if Bob wants to run Alice’s script on his
own log data (e.g., bob.log), then he needs to first move his data file inside
of cde-package/cde-root/, change into the appropriate subdirectory
deep within the package, and run:

cde-exec python detect_anomalies.py bob.log

In contrast, if Bob had actually installed the proper version of Python and
its required extension modules on his machine, then he could run Alice’s
script from anywhere on his filesystem with no restrictions.

Some CDE users wanted CDE-packaged programs to behave just like reg-
ularly installed programs rather than requiring input files to be moved inside
of a cde-package/cde-root/ sandbox, so we implemented a seamless
execution mode that largely achieves this goal.

Seamless execution mode works using a simple heuristic: If cde-exec
is being invoked from a directory not in the CDE package (i.e., from
somewhere else on the user’s filesystem), then only redirect a path into
cde-package/cde-root/ if the file that the path refers to actually exists
within the package. Otherwise simply leave the path unmodified so that the
program can access the file normally. No user intervention is needed in the
common case.

The intuition behind why this heuristic works is that when programs
request to load libraries and other mandatory components, those files must
exist within the package, so their paths are redirected. On the other hand,
when programs request to load an input file passed via, say, a command-
line argument, that file does not exist within the package, so the original
path is used to load it from the native filesystem.

In the example shown in Figure 4.10, if Bob ran Alice’s script to
analyze an arbitrary log file on his machine (e.g., his web server log,
/var/log/httpd/access_log), then cde-exec will redirect Python’s

CDE 103

/
home

var

bob

log

cde-package

httpd access_log

error_log

libc.so.6

cde-root
lib

lib

python

logutils.so

bin

Alice’s CDE package

libpython2.6.so

usr

FIGURE 4.10
Example filesystem layout on Bob’s machine after he receives a CDE package from Alice (boxes
are directories, ellipses are files). CDE’s seamless execution mode enables Bob to run Alice’s
packaged script on the log files in /var/log/httpd/ without first moving those files inside
of cde-root/.

request for libraries (e.g., /lib/libpython2.6.so and /usr/lib/
logutils.so) inside of cde-root/ since those files exist within the pack-
age, but cde-exec will not redirect /var/log/httpd/access_log and
instead load the real file from its original location.

Seamless execution mode fails when the user wants the packaged
program to access a file from the native filesystem, but an identically
named file actually exists within the package. In the aforementioned exam-
ple, if cde-package/cde-root/var/log/httpd/access_log existed,
then that file would be processed by the Python script instead of
/var/log/httpd/access_log. There is no automated way to resolve
such name conflicts, but cde-exec provides a “verbose mode” where it
prints out a log of what paths were redirected into the package. The user
can inspect that log and then manually write redirection/ignore rules in a
configuration file (see Figure 4.4) to control which paths cde-exec redirects
into cde-root/. For instance, the user could tell cde-exec to not redirect
any paths starting with /var/log/httpd/*.

4.5.3 On-Demand Application Streaming

With CDE’s streaming mode, users can instantly run any Linux applica-
tion on demand without having to create, transfer, or install any packages.
Figure 4.2 shows a high-level architectural overview. The basic idea is that a
system administrator first installs multiple versions of many popular Linux
distros in a “distro farm” in the cloud (or an internal compute cluster). When
a user wants to run some application that is available on a particular distro,
they use sshfs (an ssh-based network filesystem [4]) to mount the root direc-
tory of that distro into a special cde-remote-root/mount point. Then, the

104 Implementing Reproducible Research

user can use CDE’s streaming mode to run any application from that distro
locally on their own machine.

4.5.3.1 Implementation and Example

Figure 4.11 shows an example of streaming mode. Let us say that Alice wants
to run the Eclipse 3.6 IDE on her Linux machine, but the particular distro she
is using makes it difficult to obtain all the dependencies required to install
Eclipse 3.6. Rather than suffering through finding, installing, and configur-
ing all dependent libraries and software, Alice can simply connect to a distro
in the farm that contains Eclipse 3.6 and then use CDE’s streaming mode to
“harvest” the required dependencies on demand.

Alice first mounts the root directory of the remote distro at
cde-remote-root/. Then, she runs “cde-exec -s eclipse” (-s acti-
vates streaming mode). cde-exec finds and executes cde-remote-root/
bin/eclipse. When that executable requests shared libraries, plug-
ins, or any other files, cde-exec will redirect the respective paths into
cde-remote-root/, thereby executing the version of Eclipse 3.6 that
resides in the cloud distro. However, note that the application is running
locally on Alice’s machine, not in the cloud.

Astute readers will recognize that running applications in this manner
can be slow since files are being accessed from a remote server. While sshfs
performs some caching, we have found that it does not work well enough
in practice. Thus, we have implemented our own caching layer within CDE:
When a remote file is accessed from cde-remote-root/, cde-exec uses

/ home

cde-root

eclipse

eclipse-3.6

eclipse-3.6

Local cache (mirrors remote FS)

eclipse-3.6

eclipse-3.6

lib

lib

share

share

eclipsebin

bin

usr

usrcde-remote-root

alice

sshfs mount of a remote Linux distro’s root FS

FIGURE 4.11
An example use of CDE’s streaming mode to run Eclipse 3.6 on any Linux machine without
installation. cde-exec fetches all dependencies on demand from a remote Linux distro and
stores them in a local cache.

CDE 105

OKAPI to make a deep-copy into a local cde-root/ directory and then
redirects that file’s path into cde-root/. In streaming mode, cde-root/
initially starts out empty and then fills up with a subset of files from
cde-remote-root/ that the target program has accessed.

To avoid unnecessary filesystem accesses, CDE’s cache also keeps a list
of file paths that the target program tried to access from the remote server,
even keeping paths for nonexistent files. On subsequent runs, when the pro-
gram tries to access one of those paths, cde-exec will redirect the path into
the local cde-root/ cache. It is vital to track nonexistent files since pro-
grams often try to access nonexistent files at start-up while, say, searching
for shared libraries by probing a list of directories in a search path. If CDE
did not track nonexistent files, then the program would still access the direc-
tory entries on the remote server before discovering that those files still do
not exist, thus slowing down execution.

With this cache in place, the first time an application runs, all of its depen-
dencies must be downloaded, which could take several seconds to minutes.
This one-time delay is unavoidable. However, subsequent runs simply use
the files already in the local cache, so they execute at regular cde-exec
speeds. Even running a different application for the first time might still result
in some cache hits for, say, generic libraries such as libc, so the entire
application does not need to be downloaded.

Finally, the package incompleteness problem faced by regular CDE
(see Section 4.5.1) no longer exists in streaming mode. When the target
application needs to access new files that do not yet exist in the local cache
(e.g., Alice loads a new Eclipse plug-in for the first time), those files are
transparently fetched from the remote server and cached.

4.5.3.2 Synergy with Package Managers

Nearly all Linux users are currently running one particular distro with one
default package manager that they use to install software. For instance,
Ubuntu users must use APT, Fedora users must use YUM, SUSE users must
use Zypper, and Gentoo users must use Portage. Moreover, different releases
of the same distro contain different software package versions since distro
maintainers add, upgrade, and delete packages in each new release.∗

As long as a piece of software and all of its dependencies are present
within the package manager of the exact distro release that a user hap-
pens to be using, then installation is trivial. However, as soon as even one

∗ We once tried installing a machine learning application that depended on the libcv com-
puter vision library. The required libcv version was found in the APT repository on Ubuntu
10.04, but it was not found in the repositories on the two neighboring Ubuntu releases: 9.10
and 10.10.

106 Implementing Reproducible Research

dependency cannot be found within the package manager, then users must
revert to the arduous task of compiling from source (or configuring a custom
package manager).

CDE’s streaming mode frees Linux users from this single-distro restric-
tion and allows them to run software that is available within the package
manager of any distro in the cloud distro farm. The system administra-
tor is responsible for setting up the farm and provisioning access rights
(e.g., ssh keys) to users. Then users can directly install packages in any
cloud distro and stream the desired applications to run locally on their own
machines.

Philosophically, CDE’s streaming mode maximizes user freedom since
users are now free to run any application in any package manager from the
comfort of their own machines, regardless of which distro they choose to
use. CDE complements traditional package managers by leveraging all of
the work that the maintainers of each distro have already done and opening
up access to users of all other distros. This synergy can potentially elimi-
nate quasi-religious squabbles and flame-wars over the virtues of competing
distros or package management systems. Such fighting is unnecessary since
CDE allows users to freely choose from among all of them.

4.6 Discussion

Our design philosophy underlying CDE is that people should be able to
package up their Linux software and deploy it to run on other Linux
machines with as little effort as possible. However, we are not proposing
CDE as a replacement for traditional software installation. CDE packages
have a number of limitations. Most notably,

• They are not guaranteed to be complete.
• Their constituent shared libraries are “frozen” and do not receive

regular security updates. (Static linking also shares this limitation.)
• They run slower than native applications due to ptrace overhead.

We measured slowdowns of up to 28% in our experiments [13], but
slowdowns can be worse for I/O-heavy programs.

Software engineers who are releasing production-quality software should
obviously take the time to create and test one-click installers or integrate
with package managers. But for the millions of research scientists, prototype
designers, system administrators, programming course students and teach-
ers, and hobby hackers who just want to deploy their ad hoc software as
quickly as possible, CDE can emulate many of the benefits of traditional soft-
ware distribution with much less required labor: In just minutes, users can

CDE 107

create a base CDE package by running their program under CDE supervi-
sion, use our semiautomated heuristic tools (Section 4.5.1) to make the package
complete, deploy to the target Linux machine, and then execute it in seamless
execution mode (Section 4.5.2) to make the target program behave like it was
installed normally.

4.6.1 Practical Lessons Learned

Here are some generalizable lessons that we have learned in the past two
years of developing CDE and supporting thousands of diverse users.

• First and foremost, start with a conceptually clear core idea, make it
work for basic nontrivial cases, document the still-unimplemented
tricky cases, launch your tool, and then get feedback from real users.
User feedback is by far the easiest way for you to discover what bugs
are important to fix and what new features to add next.

• A simple and appealing quick-start web page guide and screencast
video demo are essential for attracting new users. No potential user
is going to read through dozens of pages of an academic research
paper before deciding to try your tool. In short, even hackers need
to learn to be great salespeople.

• To maximize your tool’s usefulness, you must design it to be
easy to use for beginners but also to give advanced users the abil-
ity to customize it to their liking. One way to accomplish this goal
is to have well-designed default settings, which can be adjusted
via command-line options or configuration files. The defaults must
work effectively “out-of-the-box” without any tuning, or else new
users will get frustrated.

• Resist the urge to add new features just because they are “cool,”
interesting, or potentially useful. Only add new features when there
are compelling real users who demand it. Instead, focus your devel-
opment efforts on fixing bugs, writing more test cases, improving
your documentation, and, most importantly, attracting new users.

• Users are by far the best sources of bug reports since they often stress
your tool in ways that you could have never imagined. Whenever a
user reports a bug, send them a sincere thank you note, try to create
a representative minimal test case, and add it to your regression test
suite.

• If a user has a conceptual misunderstanding of how your tool works,
then think hard about how you can improve your documentation or
default settings to eliminate this misunderstanding.

Reflecting on the past two years of serving CDE’s users, we believe that its
success thus far is largely due to it being a conceptually simple tool that

108 Implementing Reproducible Research

has been meticulously engineered to do one thing well—eliminating Linux
software dependency problems.

4.7 Future Vision: PhD-In-A-Box

Despite the fact that so much modern scientific research is being done on
computers, research papers are still the primary means of disseminating
new knowledge. Dead trees are an impoverished communications medium,
though. The ideas in this chapter could be extended to build a richer
electronic medium where one’s colleagues, apprentices, and intellectual
adversaries can interactively explore the results of one’s experiments. Imag-
ine enhancing CDE packages with fine-grained versioning history and notes,
perhaps hosted on a cloud service where readers can visit a website to rerun
and tweak those experiments. If we could capture and present a rich history
of a project’s progression over time, then readers can learn from the entire
research process, not merely digest the final products.

To convey the potential benefits of learning from research processes rather
than just end results, we will make an analogy to mathematics. Mathemat-
ics research papers are written in a concise manner presenting a minimal set
of proofs of lemmas and theorems. Readers unfamiliar with the process of
discovery in mathematics might mistakenly assume that some lofty genius
must have dreamt up the perfect proof fully formed and scribbled it down
on paper. The truth is far messier: Much like computational researchers,
mathematicians explore numerous hypotheses, go down dead ends, back-
track repeatedly, talk through ideas with colleagues, and gradually cobble
together a finished proof. Then they painstakingly whittle down that proof
until it can be presented as elegantly as possible, and only then do they
write up the final paper. The vast majority of intellectual wisdom lies in
the process of working through the problems, and such knowledge is not
represented anywhere in the published paper. Mathematicians learn their
craft not just by reading papers, but by actually watching their colleagues
and mentors at work. Imagine if there was a way to capture and present the
entire months-long process of a famous mathematician coming up with a
particular proof. Aspiring mathematicians could learn far more from such
an interactive presentation than from simply reading the final polished
paper.

We believe that such a goal of “total recall” is easier to accomplish in
the context of computational research. Since most of the work is being done
on the computer, it is easier to trace the entire workflow history and provide
user interfaces for in-context annotations and notetaking [14]. First-class sup-
port for branching and backtracking are vital needs in such a system since
much of the wisdom gained from a research apprenticeship is learning from

CDE 109

what did not work and what dead ends to avoid. In this vision, all PhD stu-
dents would maintain a hard disk image containing the complete trials and
tribulations of their five to seven (or more) years’ worth of computational
experiments. This “PhD-In-A-Box” could be used to train new students and
to pass down all of the implicit knowledge, experiences, tricks, and wisdom
that are often lost in a dead-tree paper dissertation.

Extending this analogy further, imagine an online library filled with the
collected electronic histories of all research projects, not just their final results
in published form. It now becomes possible to perform pattern recognition
and aggregation across multiple projects to discover common “tricks of the
trade.” Someone new to a field, say machine learning, can now immersively
learn from the collective wisdom of thousands of expert machine learning
researchers rather than simply reading their papers. One could argue that,
in the limit, such a system would be like “indexing” all of those researchers’
brains and making that knowledge accessible. We speculate that such a
system can be more effective than “brain indexing,” since people subcon-
sciously apply tricks from their intuitions and often forget the details of what
they were working on (especially failed trials). In this vision of the future,
a paper is merely a facade for the real contributions of the full research
process.

Such a dream “PhD-In-A-Box” system can approach the holy grail of
universally reproducible research in three main ways:

1. Researchers can revisit and reflect upon their old experiments,
perhaps uncovering hidden biases that might have skewed results
(e.g., multiple comparison problems in statistics).

2. Colleagues and students can reproduce, learn from, and scrutinize
the entire workflow history of fellow researchers, not just the final
products in the form of published papers. If properly authenticated,
such an audit trail can be used to detect evidence of “cherry picking”
and inappropriate “slicing and dicing” of data and code parameters
to achieve statistically significant results.

3. “Meta-researchers” can perform meta-analyses of research pro-
cesses, methodologies, trends, and findings within a field by data
mining the computational archives of all researchers in that field.

The good news is that the technology to realize this dream already exists.
A properly motivated team can use much of the ideas and tools described
in this book to create a “PhD-In-A-Box” system that makes the still-elusive
ideal of reproducible research into a pervasive reality. Just like how we now
take for granted that e-mails and documents are stored and synchronized in
the cloud, perhaps in a decade or two, computational researchers will take
for granted that all of their experiments are versioned, annotated, archived,
curated, and fully reproducible.

110 Implementing Reproducible Research

References

1. CDE public source code repository, https://github.com/pgbovine/
CDE (Accessed October, 2012.)

2. List of software package management systems, http://en.wikipedia.
org/wiki/List_of_software_package_management_systems (Accessed
October, 2012.)

3. Saturn online discussion thread, https://mailman.stanford.edu/
pipermail/saturn-discuss/2009-August/000174.html (Accessed Octo-
ber, 2012.)

4. SSH Filesystem, http://fuse.sourceforge.net/sshfs.html (Accessed Octo-
ber, 2012.)

5. arachni project home page, https://github.com/Zapotek/arachni
(Accessed October, 2012.)

6. graph-tool project home page, http://projects.skewed.de/graph-tool/
(Accessed October, 2012.)

7. A Aiken, S Bugrara, I Dillig, T Dillig, B Hackett, and P Hawkins.
An overview of the Saturn project. In PASTE ’07, pp. 43–48. ACM,
New York, 2007.

8. G Altekar and I Stoica. ODR: Output-deterministic replay for multicore
debugging. In SOSP ’09, pp. 193–206. ACM, New York, 2009.

9. C Cadar, D Dunbar, and D Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In OSDI
’08, pp. 209–224. USENIX Association, San Diego, CA, 2008.

10. K Fisher and R Gruber. PADS: A domain-specific language for process-
ing ad hoc data. In PLDI ’05, pp. 295–304. ACM, New York, 2005.

11. T Garfinkel. Traps and pitfalls: Practical problems in system call interpo-
sition based security tools. In NDSS ’03, San Diego, CA, 2003.

12. T Garfinkel, B Pfaff, and M Rosenblum. Ostia: A delegating architecture
for secure system call interposition. In NDSS ’04, San Diego, CA, 2004.

13. PJ Guo. CDE: Run any Linux application on-demand without installa-
tion. In Proceedings of the 2011 USENIX Large Installation System Adminis-
tration Conference, LISA ’11. USENIX Association, Boston, MA, 2011.

14. PJ Guo and M Seltzer. Burrito: Wrapping your lab notebook in computa-
tional infrastructure. In TaPP ’12: Proceedings of the 4th USENIX Workshop
on the Theory and Practice of Provenance, Boston, MA, 2012.

15. M Heinonen, H Shen, N Zamboni, and J Rousu. Metabolite iden-
tification and molecular fingerprint prediction via machine learning.
Bioinformatics, 28(18):2333–2341, 2012.

16. K Jain and R Sekar. User-level infrastructure for system call interposition:
A platform for intrusion detection and confinement. In NDSS ’00, San
Diego, CA, 2000.

http://fuse.sourceforge.net/sshfs.html
https://github.com/Zapotek/arachni
http://projects.skewed.de/graph-tool/

CDE 111

17. O Laadan, N Viennot, and J Nieh. Transparent, lightweight applica-
tion execution replay on commodity multiprocessor operating systems.
In SIGMETRICS ’10, New York, pp. 155–166, 2010.

18. M Lahiri and M Cebrian. The genetic algorithm as a general diffusion
model for social networks. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence. AAAI Press, Atlanta, GA, 2010.

19. E Loper and S Bird. NLTK: The Natural Language Toolkit. In In ACL
Workshop on Effective Tools and Methodologies for Teaching NLP and Compu-
tational Linguistics, Philadelphia, PA, 2002.

20. Y Saito. Jockey: A user-space library for record-replay debugging. In
AADEBUG, pp. 69–76. ACM Press, New York, 2005.

21. RP Spillane, CP Wright, G Sivathanu, and E Zadok. Rapid file system
development using ptrace. In Experimental Computer Science. USENIX
Association, San Diego, CA, 2007.

22. IA Sucan and LE Kavraki. Kinodynamic motion planning by interior-
exterior cell exploration. In International Workshop on the Algorithmic
Foundations of Robotics, pp. 449–464, 2008.

5
Reproducible Physical Science and the
Declaratron

Peter Murray-Rust and Dave Murray-Rust

CONTENTS

5.1 Introduction . 114
5.1.1 What Do We Mean by Reproducible Computation? 115

5.1.1.1 Archetypal Example of the Problem 115
5.1.2 What’s Wrong with Business as Usual? . 118

5.2 Constructing Chemical Semantics . 120
5.2.1 Note about Our Software Status and Availability 121
5.2.2 CIF and CML as Semantic Languages . 121
5.2.3 Dictionaries . 123

5.3 Components for Defining Computation . 125
5.3.1 Black-Box Libraries . 125
5.3.2 JUMBOConverters and FoX . 126
5.3.3 MathML . 126
5.3.4 Executable MathML . 127

5.4 Semantic Physical Computation . 129
5.4.1 XML and XPath Design . 132
5.4.2 Bridging the Gap between Human- and

Machine-Readable Semantics . 134
5.4.3 Example: Water–Energy Calculation. 135

5.4.3.1 Set Up the Document. 135
5.4.3.2 Identify and Verify Chemical Data. 136
5.4.3.3 Specify the FF to Be Used . 138
5.4.3.4 Specify the Computation to Be Carried Out 139

5.4.4 Moving beyond Toy Examples. 140
5.4.5 Integrating Semantic Physical Computation with

Emerging Architectures and Automation . 141
5.5 Conclusions . 142
References . 144

113

114 Implementing Reproducible Research

5.1 Introduction

In this chapter, we address the issue of reproducibility of computation in the
physical sciences. We focus on disciplines concerned with chemistry, crystal-
lography, and materials science, although the strategies, and the Declaratron
software we describe, have much greater applicability. Here, we will con-
centrate on the computation of the properties of materials, where there is
a long tradition of reproducibility. Much of this is based on the almost Pla-
tonic identity of materials: to a first practical approximation, sodium chloride
crystals have the same properties wherever and however they are produced.
This consistency of properties means that suppliers can offer materials for
sale with reproducible physical and chemical properties.

Over the last 50 years, it has become possible to measure, and now
calculate, the properties of substances to a high degree of consistency.
Substances are key to both research and technological exploitation (semi-
conductors, optical materials, piezoelectrics, second-harmonic generators,
etc.). We estimate that over one billion USD is spent annually on the com-
putation of materials properties (cf. the Materials Genomics Project [15]).
There is a dynamic interplay between the measurement of observables (prop-
erties that are discovered through measurement of physical substances) and
computables (properties that can be computed through simulation of phys-
ical laws, machine learning, or heuristics). As knowledge and techniques
are improved, sometimes the observable is more accessible or accurate, and
sometimes the computable, as observations feed back into more accurate
computation and vice versa. There is also a fundamental reliance on instru-
mentation as a mechanism for reproducibility: given instruments of similar
quality, there is an expectation that if an experiment is rerun, the results will
be noncontradictory to the previous measurements.

Instrumental measurements are fundamental to materials science, and all
modern instruments produce digital output. Many instrumental techniques
have now developed both automation (e.g., robot sample feeders) and high
throughput (hundreds of samples per day or more), such as single-crystal
x-ray crystallography, powder x-ray diffraction, IR/UV/VIS [8], nuclear
magnetic resonance spectroscopy [4], and mass spectrometry [7]. In princi-
ple, it should be possible to compare the output from two instruments using
automated methods, but this requires agreed communal semantics, which
are unfortunately rare. While some standards exist (e.g., JCAMP-DX∗ and
AnIML† [17]), most output is proprietary, so there are very few effective
communal dictionaries and semantics. We shall see the same problem later
for computation.

∗ http://www.jcamp-dx.org/.
† http://animl.sourceforge.net/.

http://www.jcamp-dx.org/.
http://animl.sourceforge.net/.

Reproducible Physical Science and the Declaratron 115

As well as self-consistency of results, reproducibility increasingly
requires agreement between experiment and theory. Computational exper-
iments, including calculation and simulation, are part of the architecture of
an agreement between theory and experiment. There is a need for mecha-
nisms and expectations of reproducibility to be applied equally to scientific
computation as instrumentation. In this chapter, we describe how existing
technologies can be combined with a novel approach to semantic calculation
to carry out reproducible scientific computation of materials properties.

5.1.1 What Do We Mean by Reproducible Computation?

5.1.1.1 Archetypal Example of the Problem

There are two main methods for computing the properties of matter
based on physical principles. Quantum mechanics (QM) involves solving
Schroedinger’s equation for a multi-nucleus, multielectron system. There is
no analytical solution, and the approximations can be very expensive often
rising with N3 (N is the number of atoms) or greater. Increasing the accuracy
requires additional expense. The more tractable alternative is “Forcefields”
(FFs), which use empirical parameterization of Newton’s laws. We use FFs
as the main example in this chapter.

In the FF approach, the energy of a molecule can be approximated by
a number of empirical terms, which are added together to form a “force-
field.”∗ A typical and widely used example is the AMBER program† for
computing molecular energy. It contains five terms (see Figure 5.1). The
energy of the molecule is described (empirically) by bonds, angles, tor-
sions (dihedrals), nonbonded contacts (“bumping atoms”), and electrostatic

V(r) =
∑

bonds

Kb(b − b0)2 +
∑

angles

Kθ(θ − θ0)2

+
∑

dihedrals

(
Vn
2

)
(1 + cos[nφ − δ])

+
∑

nonbij

⎛

⎝ Aij

r12
ij

⎞

⎠ −
⎛

⎝ Bij

r6
ij

⎞

⎠ +
(

qiqj

rij

)

FIGURE 5.1
Functional form of the AMBER forcefield. (Taken from http://ambermd.org/doc11/Amber11.
pdf, p. 1.9 reproduced verbatin including typographic errors) The last summation should be
split into separate sums, the first with A and B terms and the last with the electrostatics (qiqj/rij)
(Coulomb’s inverse power law).

∗ Technically this is a slight misnomer, as force is the derivative of energy w.r.t. distance.
† http://ambermd.org.

http://ambermd.org/doc11/Amber11.pdf
http://ambermd.org/doc11/Amber11.pdf
http://ambermd.org.

116 Implementing Reproducible Research

interactions. A molecule has many such interactions, and the energy of each
is computed and summed to give the total energy. The scale rises rapidly.
Water has 2 bonds and 1 angle; acetic acid, with 8 atoms, has 7 bonded
terms, 10 angle terms, 8 torsional terms, and 11 nonbonded terms (the precise
number varies with the FF formulation). A typical protein molecule might
have several thousand bonds and angles and over a million nonbonded
interactions.

The central problem of reproducibility is that each program/FF may have
a slightly different formulation. The number of nonbonded terms in AMBER
may not be the same as in MM2 [1]. Some programs will include atoms sep-
arated by three or more bonds as nonbonded; for others, it must be four or
more. These differences are often not formalized in the documentation and
may only be described in human language. The actual “algorithm” is usu-
ally hidden deep in FORTRAN code and can only be determined by reading
the program source. Additionally, the code may have been modified by later
developers, and these changes may not be reflected in the human documen-
tation. In some cases, the parameterization may change during the progress
of a calculation.

The current example also shows imprecision in the mathematical rep-
resentation. The dihedral function for a given bond is often not a single
cosine but a multiple sum (over Fourier terms), so formally, a double sum
(�dihedrals�Fourier terms) is required. Also, the electrostatic function has omit-
ted a factor of (1/4πε0), where ε0 represents the permittivity of free space.∗

One of our goals is to provide a precise, unambiguous formulation that
can be implemented by a competent programmer with no previous knowl-
edge of physics or chemistry. This can potentially be extended by using
machines to generate code from semantic specifications, and we see no
fundamental reason why molecular energy calculations cannot be specified
in this way. By contrast, it would currently be almost impossible for a
nonphysicist/chemist to recreate programs such as AMBER correctly from
the documentation.

At this point, it is necessary to discuss what we mean by reproducibil-
ity in scientific computation. When dealing with observables, the definition
is relatively clear: by following the same experimental procedure, one
should obtain the same results, allowing for known and unknown causes
of experimental variance. However, with computation, there are alternative
expectations and possibilities for what the same “experimental procedure”
and “results” should mean. Taking these separately, the “same experimental
procedure” could mean:

• Download the original software and data and run it.
• Download the original software, compile it for a different machine,

and run it with the original data.

∗ http://en.wikipedia.org/wiki/Vacuum_permittivity.

http://en.wikipedia.org/wiki/Vacuum_permittivity.

Reproducible Physical Science and the Declaratron 117

• Download software that carries out the same operations as originally
described, and apply it to the original data.

• Read a paper, produce a new implementation of the algorithms
described, and run it on the original data.

• Run any of the aforementioned programs on a refined or updated
data set.

And the “same results” could mean:

• Identical output at the bit level
• Exactly the same numbers
• Exactly the same numbers (when run on a similar machine)
• Numbers that are within some bound of error
• Ensembles of outputs that share certain characteristics (again, within

the bound of error)

This discussion of what the “same results” means is partially motivated
by the chaotic nature of some physical calculations. Many algorithms in
physical sciences are completely deterministic—for example, calculating the
length of a bond should give and identical result no matter what code is
used (within the bounds of floating-point imprecision). However, some
algorithms contain branch points that are sensitive to precision and insta-
bilities. For example, the QM calculation of molecular energy requires two
independent optimizations—the self-consistent field (SCF) of the molecular
orbitals and the optimization of energy against geometry to get the min-
imum energy structure. For many molecules, these are well-constrained,
and the calculation proceeds essentially identically on different machines
and often with different programs that use the same basic physical model.
However, calculations for some systems are unstable (e.g., near a transi-
tion state in a reaction), and the behavior is effectively unpredictable at a
detailed level. Similarly, the dynamics of molecules (e.g., when simulated
by Newton’s laws) is inherently unpredictable. Although formally deter-
ministic, small imprecisions cause bifurcations in trajectories, which rapidly
diverge. Hence, when discussing reproducibility for calculations of this type,
it is problematic to compare results from individual runs, or exact results,
and the focus must be moved to ensemble or aggregate properties. Addi-
tionally, since there is no experimental validation—for example, trajectories
of individual molecules are not usually observable—special human care is
required to validate code and parameters, as mistakes will be very difficult
to detect later.

For the purpose of this chapter, we take “semantically defined repro-
ducible science” to be defined as follows:

Can a computational scientist (or machine) with no intrinsic domain
knowledge, when given the specification, build a system which can be

118 Implementing Reproducible Research

guaranteed to compute problems in a scientific domain and produce
results which are semantically consistent, and in some sense similar.∗

5.1.2 What’s Wrong with Business as Usual?

Currently, computable semantics are not commonplace within scientific
practice. Indeed, very few scientific domains have fully addressed com-
putable semantics. While computational chemistry (CompChem) is more
advanced than some areas, it is still far from (1) having complete computa-
tional semantics and (2) integrating the use of computational semantics into
the daily lives of computational chemists. We will illustrate the problem of
missing semantics using examples from widely used programs; these have
been chosen as typical examples in widespread use. We are not attempting
to single out egregious offences, and many other examples—most commonly
used programs—display the same issues.

This is one line of input for MOPAC, a widely used CompChem program,
taken from http://openmopac.net/manual/index.html:

1 H 1.092 0 120.615 1 179.979 1 10 9 11

In this single line, there are no explicit semantics at all. Taking each field
(separated by groups of spaces) in turn, the implicit semantics are as
follows:

1. H is the element symbol for hydrogen. Although this seems like a
precise, commonly accepted designation, many other programs use
arbitrary, nonstandard abbreviations for elements, with integers or
floats for nuclear charge, for example, “W1” 8 for oxygen in water,
which could also be mistaken for tungsten.

2. 1.092 is the distance in angstrom units to 10th atom. The number
10 in field 8 is what specifies it as the 10th atom.

3. 0 is an integer flag: should this distance be allowed to vary during
the computation? 0 means yes, it should be allowed to vary.

4. 120.615 is the angle in degrees between this atom, atom 10, and
atom 9. Again, the 10th atom is specified by the 10 in field number
8 and 9th by the 9 in field 9.

5. 1 integer flag: do not allow this angle to change.
6. 179.979 is the dihedral angle in degrees between this atom, atom

10, atom 9, and atom 11.
7. 1 integer flag: do not allow this dihedral angle to change.
8. 10 means that bond length is between this atom and atom 10.

∗ We will leave open the question of exactly what “similar” means here, but specify that
numbers should be approximately the same.

http://openmopac.net/manual/index.html

Reproducible Physical Science and the Declaratron 119

9. 9 means that angle is between this atom, atom 10 and atom 9.
10. 11 means that dihedral angles are between this atom and atoms 10,

9, and 11.

This is just a typical example, and similar issues can be found in the input
specifications of many programs. This type of ad hoc, unmarked up yet
implicitly meaningful data format has enormous scope for catastrophic
errors. Common causes of error include fields mistyped when the file is
edited by hand; users have an old copy of the documentation, so col-
umn ordering or meaning can change without causing obvious errors; field
boundaries can be misplaced: Is it one space between each field or any num-
ber of spaces? Are tabs or spaces used as delimiters? Do fields need to be
justified to exact column positions? The input modules of the programs usu-
ally have no validation. “User-friendly” GUI editors are usually program
specific and proprietary, although sometimes there is an ecology of ad hoc
converters; both of these situations bring a different set of issues.

In addition to the possibility for error when managing data, a huge bur-
den is placed on the programmers who maintain applications that read these
files. They are forced to maintain parsers for poorly defined specifications
and may have to deal with different dialects of the data language as alterna-
tive interpretations come into fashion. It leads to (1) brittle code with poor
error handling; (2) a high barrier to entry for new programmers wanting to
join projects; and (3) an excessive proportion of programming effort being
given over to reading.

Output is similarly problematic. This example is taken from http://
www.cup.uni-muenchen.de/ch/compchem/energy/MOPAC_output.html:

1 ATOM NO. TYPE CHARGE ATOM ELECTRON DENSITY
2 1 O -.3827 6.3827
3 2 H .1914 .8086
4 3 H .1914 .8086
5 DIPOLE X Y Z TOTAL
6 POINT-CHG. .677 .859 .000 1.094
7 HYBRID .475 .602 .000 .767
8 SUM 1.151 1.461 .000 1.860

This cannot be understood without being a practitioner and/or having a
manual (often out of date) and/or asking questions to humans. You must
know or guess that charges are in units of electrons and that dipoles are
in Debyes—neither are SI units. It is not clear what a HYBRID is or how
it is calculated. It appears that SUM = POINT-CHG + HYBRID, and so we
might infer that it is probably the predicted quantity. Without complete
understanding of a quantity, it is by definition irreproducible—although this
particular calculation could be run again to give the same numbers, it would
be impossible to construct an alternative, clean room implementation, which
computed the same result.

http://www.cup.uni-muenchen.de/ch/compchem/energy/MOPAC_output.html
http://www.cup.uni-muenchen.de/ch/compchem/energy/MOPAC_output.html

120 Implementing Reproducible Research

In certain cases, computations are not reproducible due to licensing
restrictions on distribution of the output of proprietary programs. One major
program manufacturer legally forbids the publication of complete output
files; in order to have any chance of creating reproducible science, it is
fundamentally necessary to publish exactly these computational details.

We believe that, in addition to inhibiting reproducibility, the issues out-
lined earlier are responsible for many millions of hours of wasted work
each year, by allowing errors to go unvalidated and unnoticed, propagating
through chains of experiments; through time spent understanding unclear
semantics and editing brittle config files; and by forcing chemists to learn to
parse semistructured text, and programmers to maintain code that has to be
compatible with a fuzzy, moving-target data specification.

In an example from our own experience, we autogenerated input for
the GAMESS program. GAMESS has a limit of 80 characters per line (cf.
Hollerith cards), and some of out-generated lines exceeded this. Although
the program noted this in the (voluminous) output, it did not halt but quietly
discarded the offending atom records. The result was that erroneous calcu-
lations were carried out, without a strongly visible warning. These errors
were only discovered when the output was reused in further calculations,
where it caused crashes. This could have been avoided by carrying out syn-
tactic and semantic validation in the input stage and refusing to produce
output from invalid input. In general, not much trust can be placed in legacy
CompChem programs to carry out sufficient validation on input or output;
even when such validation is carried out, it is not clear how to verify that it
has happened.

5.2 Constructing Chemical Semantics

We have been inspired by the practice of crystallography in developing
a completely semantic approach to physical science. For half a century,
IUCr∗ and the community have insisted that crystallography is reproducible
by such means as comparing experimental data, testing programs against
experiments, and most critically the creation of a computable ontology: Crys-
tallographic Information Framework (CIF). CIF has provided a model for
Chemical Markup Language (CML) [11], which is now being adopted in
computational and other chemistry communities. Since fundamental chem-
istry concepts were probably solidified 80 years ago, the ontologies used are
simpler than those in, for example, bioscience or high energy physics.

∗ International Union of Crystallography.

Reproducible Physical Science and the Declaratron 121

To promote awareness of the need for and value of semantics we ran two
meetings at Cambridge [10,14].∗ These brought together a group of scientists
who cared about reproducibility and interpretability through developing
shared semantics (dictionaries and code). These have led to further meetings
(e.g., at Pacific Northwest National Laboratory in 2011) and the determina-
tion to make key tools such as NWChem [18] and Avogadro available. We
believe that if there are enough components available the world will come to
see the value of semantics, leading to a gradual change in practice.

5.2.1 Note about Our Software Status and Availability

Some parts of the software described here have been developed over two
decades with a large focus on reproducibility. The main parts (JUMBO,
CML) have been distributed and are widely used, but only implicitly for
reproducibility. JUMBOConverters (templates) provides semantic conver-
sion for legacy files during the transition to completely reproducible compu-
tation. The Declaratron itself is novel and provides complete reproducibility.
All software is in public repositories. In order to give an indication to the
reader of the status of any given software component, in the spirit of the
five-star open data nomenclature,† we use the following symbols: � =
vaporware; � = prototype (has worked for us); �� = “alpha” (hackable
by others); ��� = usable by others; and ���� = in widespread use.

Our software is written in Java and Scala, using XML and XPath libraries
also in Java. Other CML libraries have been written in C#, C++, and
Python—an object-oriented approach is almost essential. However, many
of the main third-party legacy computational programs are written in
FORTRAN and are too expensive to change. To interface them into this
framework therefore requires an XML/CML wrapper; the FoX ���� library
has been developed by Toby White and Andrew Walker for this purpose. It
deals with a subset of languages and concentrates on program output [6].

5.2.2 CIF and CML as Semantic Languages

CIF ���� [2] uses a lightweight set of primitives (items and tables) with
datatypes (char and numb) and a very extensive set of dictionaries compiled
by the community. A wide range of crystallographers—experimentalists,
instrument manufacturers, and computational—use it for interchange. CIF is
also used for journal submission and supports computable semantic articles.

CML was launched in 1994 [11] to support semantic chemistry. Since
there are few other semantic tools in physical science, this required the

∗ “Visions of a Semantic Molecular Future,” and “Semantic Physical Science,” sponsored by the
EPSRC “Pathways to Impact” program, which supports the dissemination of research done
under their auspices.

† http://5stardata.info/.

 http://5stardata.info/.

122 Implementing Reproducible Research

creation of a basic infrastructure for STM computation, scientific technical
medical markup language (STMML) [12].∗ STMML supports basic quanti-
ties, error estimations, datatypes, and scientific units of measurement, and
we believe it is very widely applicable, certainly to any discipline where
typed quantities with units can be understood as stand-alone objects. For
instance, temperature is not a specifically chemical quantity, and using
STMML, we can write

1 <html:p>It was a nice day, 21 degrees
2 (<cml:scalar dataType="xsd:double" dictRef="iupac:T06321"
3 min="19.1" max="23.1" units="nist:sp811.08.8.5"/>)
4 </html:p>

The dictRef points to the IUPAC GoldBook’s [9] temperature† and the
units points to the National Institute of Standards and Technology.‡ This
illustrates some key virtues of CML/STMML: (1) It can be mixed with text
(our “datument” approach [13]) and other markup languages (here HTML)
through namespaces; and (2) it builds on W3C work (XSD datatypes).
However, even though STMML was published 11 years ago, there has been
very little adoption of any markup languages in physical science. There is
full support in CML software , including FoX.§

For this chapter, we will make use of CML ���� and introduce a few
self-explanatory terms: <molecule> with <atom> and <bond> and a
<propertyList> (which may be measured or computed). A <property>
has a structural type (<scalar>, <array>, or <matrix>) annotated
with @dataType (xsd:string, xsd:integer, or xsd:double) and
annotated with a reference to a dictionary (@dictRef). This covers the vast
majority of CompChem data needs.¶

Here is how a molecule with atoms and coordinates can be completely
described:

1 <molecule
2 xmlns="http://www.xml-cml.org/schema"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
4 xmlns:units="http://www.xml-cml.org/schema/units"
5 xmlns:compchem="http://www.xml-cml.org/dict/compchem"
6 >
7 <atomArray>
8 <atom id="a1" elementType="O"
9 x3="0.0" y3="0.0" z3="0.0"/>

∗ http://www.ch.ic.ac.uk/rzepa/codata2/.
† http://goldbook.iupac.org/T06321.html.
‡ http://physics.nist.gov/Pubs/SP811/sec08.html#8.5.
§ Although markup languages map well onto object languages, FORTRAN needs special

support, and we thank Toby White and Andrew Walker for writing a FORTRAN library for
CML and XML.

¶ Where necessary, larger dimensions are supported by using CML pointers into (say) HDF or
NETCDF, but these extensions are not necessary for the examples at hand.

http://goldbook.iupac.org/T06321.html.
http://physics.nist.gov/Pubs/SP811/sec08.html#8.5.

Reproducible Physical Science and the Declaratron 123

10 <atom id="a2" elementType="H" x3="0.96" y3="0.0" z3="0.0
"/>

11 <atom id="a3" elementType="H" x3="-0.23" y3="0.93" z3="
0.0"/>

12 </atomArray>
13 <propertyList>
14 <property dictRef="compchem:dipole">
15 <scalar dataType="units:debye" dataType="xsd:double">

1.85</scalar>
16 </property>
17 </propertyList>
18 </molecule>

5.2.3 Dictionaries

Dictionaries are fundamental to semantic, and therefore reproducible, com-
puting. There is a hierarchy of power:

• Give every semantic object or concept a unique ID. Where possible,
we reuse authorities, so
◦ A float is defined as xsd:double (defined by W3C)
◦ Temperature by IUPAC (http://goldbook.iupac.org/T06321.html)
◦ Kelvin (units) NIST (http://physics.nist.gov/cuu/Units/kelvin.html)
These fit well into RDF/URI and could be written as nist:kelvin
and iupac:T06321 using standard prefix notations.

• Create a dictionary entry with an id and type and, if possible,
definition and description.

1 <cml:entry id="electricdipole" dataType="cml:vector3">
2 <cml:definition>The electric dipole a molecule</

cml:definition>
3 <cml:description>Dipole moments in molecules are

responsible for the behavior of a substance in
the presence of external electric fields.

4 See http://en.wikipedia.org/wiki/
Electric_dipole_moment

5 </cml:description>
6 </cml:entry>

• Add semantic validation of transformation to the entry. This
might be done through OWL ontologies or alternatively by adding
CML/Declaratron snippets.

The IUCr dictionaries are an excellent example of community-created dic-
tionaries. There is a core dictionary applicable to most crystallography and
many subdomain dictionaries for areas such as proteins, diffraction, and
powder. We recommend the use of multiple dictionaries as this gives each

124 Implementing Reproducible Research

community a chance to create well-developed subcomponents, which are
then rationalize later. For example, we propose one dictionary per compu-
tational code (e.g., for NWChem) and then rationalizing parts of these at
a higher communal level where possible. Within CML, as well as defining
objects such as molecule and atom, in an XML schema, there are thousands
of unit tests in JUMBO∗ that act to resolve possible ambiguities in the textual
descriptions.

The use of namespaces and semantic dictionary-based annotation is fun-
damental to CML (and to the MathML in the Declaratron and the Declaratron
itself). Here, we use the following namespaces:

• http://www.xml-cml.org/schema. CML with its domain seman-
tics hard coded. We can rely on a consistent interpretation of the
chemistry.

• http://www.w3.org/2001/XMLSchema. W3C XSD datatypes ���� .
Complete semantic description of xsd:double, for example, giving
min/max values and representations. It is possible to use an XSD
toolkit as a black box to manage these with complete confidence.
xsd:date could be normalized with (say) JodaTime.

• http://www.xml-cml.org/schema/units. �� Units are fundamen-
tal. Although NIST started a UnitsML nearly 20 years ago, it was
aimed at a database of units ���� . There are no agreed computable
semantics for units, and we use the ones we proposed in STMML.
Note the link later to a CML dictionary of units, which is somewhat
ad hoc.

• http://www.xml-cml.org/dict/compchem. There are many hun-
dreds of essential concepts and property definitions required in
CompChem. Despite 40+ years of CompChem programs, there is no
communal dictionary of terms, let alone a structured ontology. At
the Cambridge SPS meeting, we started a call for CompChem dictio-
naries, and this is being taken forward in Cambridge, CSIRO, PNNL,
and Kitware, and we hope it will spread to a wider community of
materials science informatics � .

• atom, elementType, x3.... CML elements (e.g., atom) repre-
sent structured objects and attributes (elementType, and x3 repre-
sent properties with hard-coded semantics). Thus, @elementType
must be found in a standard periodic table (avoiding the problem
of, say, “W1” authored for water, misread as tungsten). Similarly,
x3 is the Cartesian x-coordinate of an atom in angstrom; this avoids
confusion with x2 (chemical formula) and xFract (crystallography).
Legacy formats very commonly ambiguate these concepts causing
massive wasted work.

∗ “JUMBO” is a library for processing CML, which is based on XOM and subsumes CMLXOM
and XML DOM.

http://www.xml-cml.org/schema
http://www.w3.org/2001/XMLSchema
http://www.xml-cml.org/schema/units
http://www.xml-cml.org/dict/compchem

Reproducible Physical Science and the Declaratron 125

• property. This is a property of the molecule (atoms and bonds
can also have properties). It uses STMML syntax to define a scalar
quantity with defined units, defined datatype, and defined seman-
tics (through a linked dictionary). The dictionary can, in principle,
contain computable semantics for validation and transformation.

5.3 Components for Defining Computation

In this chapter, we take the view that scientific computation can be broken
down into three components:

1. Data to use in computation. In a chemical calculation, this might
consist of structures representing atoms, bonds, and molecules; their
relationships; and any parameterization.

2. Formulae to be applied to the data—for example, the functional
form of a molecular FF.

3. Computational specifications detailing how the formulae should be
applied, and to which bits of data; for example, which objects are
we computing over, are we computing a single value for a given
formula, or is it being used as input to an optimizer.

We demonstrate techniques for representing data and formulae in a seman-
tically well-defined manner, validated with unit tests. We then introduce
a tool for specifying computation that preserves semantics, supports data
transclusion, and allows a separation of domain knowledge and program-
ming, allowing the combination of well-tested “black-box” domain objects
with declaratively specified computation.

5.3.1 Black-Box Libraries

Because chemistry is stable, we have been able to create a black-box library
(JUMBO ����). JUMBO was developed to act as a reference implementation
for CML, with full unit testing. However, that also means it is deployable as
a reliable component for the Declaratron—we give an example:

1 public double getDistanceTo(CMLAtom atom2);

This returns the Euclidean distance between two atoms (or throws an excep-
tion), a result which is as well-defined in chemistry as a square root is in
mathematics. The method is tested with a common set of fixtures and tol-
erances (EPS). Note the use of assert that fails with an error if the condition
is not true—we adopt a similar strategy in the following for the Declaratron:

126 Implementing Reproducible Research

1 public final void testGetDistanceTo() {
2 double d = fixture.atom[0].getDistanceTo(fixture.atom

[1]);
3 Assert.assertEquals("distance", Math.sqrt(3.), d, EPS);
4 d = fixture.atom[0].getDistanceTo(fixture.atom[0]);
5 Assert.assertEquals("distance", 0.0, d, EPS);
6 }

The test not only confirms the correct operation but gives guidance to a
human developer about the intention behind the method. As well as JUMBO,
there are other open libraries (e.g., the Chemistry Development Kit, CDK)
that can also be reliably used as black boxes.

In order to compare XML documents, JUMBO must go beyond syntac-
tic equivalence, and consider issues such as character encoding, whitespace,
and line endings. A typical JUMBO test is

1 JumboTestUtils.assertEqualsIncludingFloat(
2 "MOPAC", referenceXML, textXML, ignoreWhitespace, 1.0E-6)

5.3.2 JUMBOConverters and FoX

Because almost all physical science is in nonsemantic form, there have
been many X-to-Y converters written to get the output of one program into
another; in chemistry, an excellent example is Open Babel.∗ Obviously, con-
version can only be provided for those concepts that exist in both programs
or can be generated algorithmically or looked up. The converters are rarely
complete and generally do not expose any semantics. We strongly recom-
mend conversion to a validatable semantic form and, for chemistry, provide
the JUMBOConverter ��� framework, which currently converts about 60
to CML.

Converters are often written where the source code is not visible, so inten-
tions and meanings must be inferred. The traditional approach is to create
procedural programs, using Python, Java, C++, etc. However, this does not
always lead to visible semantics that can be validated against dictionaries.
JUMBOConverter templates ��� provide a different approach. Here, legacy
output is mapped semantically onto validatable results. This forces the trans-
lator to define the dictionary entries used and leads to a robust implementa-
tion of unit and regression tests. It is also suited to analyzing large corpora.

5.3.3 MathML

MathML ���� is a W3C math working group recommendation for represent-
ing mathematics on the web. This is an established web standard, with
widepsread support in popular browsers, and an ecosystem of supporting

∗ http://openbabel.org/.

http://openbabel.org/.

Reproducible Physical Science and the Declaratron 127

tools such as MathJax∗ to aid in-line display. On the authoring side, there
are many tools available: the W3C lists more than 30 editors and viewers.†

There are two distinct dialects of MathML, with different goals:

1. Presentation MathML represents the visual layout of mathematical
equations. It concerns itself with how symbols are displayed and
arranged on the page, but not what they mean.

2. Content MathML [3] is oriented toward representing the semantics
of mathematics “to provide an explicit encoding of the underlying
mathematical meaning of an expression”[19].

Content MathML ��� (CoMML) is highly suited to representing computation
in a semantically aware manner—it has been designed to add an extra layer
of formalism to the communication of mathematical equations, removing
several sources of potential ambiguity.

5.3.4 Executable MathML

In order to use CoMML in an executable document, it must be linked to a
tool that can run the computations that it encodes. Here, we use ScMathML,‡

a Scala engine for running computations specified using CoMML. Scala is
a functional language that runs on the Java VM, combining the power of
functional programming with easy interoperability with Java code. It was
used here because

• It is very concise—most of the MathML entities are defined in about
a hundred lines of code

• Inbuilt XML support makes starting to work with XML easy—in the
listings as follows, XML blocks define real Scala objects, rather than
strings to be parsed

• Support for building domain-specific languages, with flexible
parsing

ScMathML “parses” CoMML into a tree of Scala objects, which can carry
out computation. We will illustrate, using unit tests from the framework,
how this works, and how it can be used for computation in the physical
sciences. Unit tests are written using the ScalaTest framework, which—along
with some wrapper functions—leads to clean, self-documenting test code:
all of the code examples in the following are taken directly§ from the unit

∗ http://www.mathjax.org/.
† http://www.w3.org/Math/Software/mathml_software_cat_editors.html.
‡ www.mo-seph.com/projects/SCMathML.
§ Formatting has been changed, and some variables have been renamed for clarity out of context.

http://www.mathjax.org/.
http://www.w3.org/Math/Software/mathml_software_cat_editors.html.
www.mo-seph.com/projects/SCMathML.

128 Implementing Reproducible Research

test files. For example, to check that a MathML <cn> element is parsed into
a SCMathML constant, we can write

1 parsing(<cn>5.3</cn>) should equal(DoubleConstant(5.3))

Two of the basic elements of MathML are constant numbers (<cn> for
content numeric) and variables (<ci> for content identifier). Variables need
to have values provided if a function is to be computed—for example, when
given y = x2 + c, if we want to get a number out, we need to provide values
for both x and c. In ScMathML, this is done through a context, where objects
can be passed in:

1 evaluating(<ci>x</ci>, "x"->5) should equal(5)

In this example, “evaluating” is a function defined to take a MathML
expression, and some mappings of strings to objects, and evaluate the
expression. should and equal (and later be, plusOrMinus) are Scala
Test functions that allow a natural reading of unit tests. This example can
be read that if we take the expression <ci>x</ci>, parse it, and then eval-
uate it in a context where x has been set to 5, we should get 5 out. This is
an illustration of how objects are bound to variables and used to evaluate
abstract mathematical expressions and obtain concrete results.

CoMML is strongly influenced by Scheme and related languages: it uses
<apply> tags to denote function application, with the first argument being
the function to apply. For example, <apply><plus/><cn>2</cn><cn>2
</cn></apply> is roughly equivalent to (plus 2 2) in Scheme, or

1 evaluating(<apply><sin/><ci>x</ci></apply>, "x"->3)
2 should equal(Math.sin(3))

For a slightly larger example, we can implement Leibniz’s method of
approximating π:

n∑

k=0

(−1)k

2k + 1
≈ π

4

1 evaluating(
2 <apply><times/><cn>4</cn>
3 <apply><sum/> <!--carry out a summation -->
4 <bvar><ci>k</ci></bvar> <!-- for k in ... -->
5 <lowlimit><cn>0</cn></lowlimit> <!-- start at 0 -->
6 <uplimit><ci>n</ci></uplimit> <!-- go up to the value

bound to n -->
7 <apply><divide/>
8 <apply><power/><cn>-1</cn><ci>k</ci></apply>
9 <apply><plus/>

10 <apply><times/><cn>2</cn><ci>k</ci></apply>
11 <cn>1</cn>
12 </apply>

Reproducible Physical Science and the Declaratron 129

13 </apply>
14 </apply></apply>, "n"->4000) should be (3.1415 plusOrMinus

0.01)

Finally, there is often a need to work with values obtained from domain
entities. In order to do this, we have defined a small set of extensions
to the MathML specification to interface with existing objects, using the
<csymbol> tag. Figure 5.2 gives a worked example where values are
extracted from domain objects. It is based on Hooke’s law, which would
typically be written as

E =
∑

bonds

1
2

kx2

However, since it has been translated into MathML, with bindings added, it
is clear that

1. x actually refers to displacement from equilibrium length, and so has
to be split into l and l0

2. All of the values are specific to a given spring, including the spring
coefficient k

Contrast this with the first term in the AMBER FF equation (Figure 5.1)
where it is up to the reader to interpret that (1) b is a subscript for the current
bond, (2) b on its own means the length of the current bond, and (3) b0 is the
equilibrium length of the current bond.

It should be noted, however, that this example only defines the mathe-
matical semantics—the operations to be carried out, and the bits of data to
lay them to. It does not deal with any domain semantics, as the Springs class
is not semantically explicit.

5.4 Semantic Physical Computation

We have discussed the representation of scientific entities using domain-
specific markup languages, and formalization of computation using domain-
independent markup. Now, we introduce a system—“the Declaratron” �� —
which brings these together to carry out reproducible scientific calculations.

The Declaratron consists of

1. An XML dialect for specifying declarative computation (Figure 5.3).
Our current vocabulary is
• <sem:computationalDocument>, the overall container and

organizer.

130 Implementing Reproducible Research

1 var sum = //Define Hookes law in Content MathML

2 <apply>

3 <sum/>

4 <bvar><ci>spring</ci></bvar><!-- this is the variable to bind -->

5 <condition> <!-- and this is the set to bind over -->

6 <apply><in/><ci>spring</ci><ci type='set'>springs</ci></apply>

7 </condition>

8 <apply><times/>

9 <cn>0.5</cn>

10 <apply><times/>

11 <apply><csymbol function='elasticity'>k</csymbol><ci>spring</

ci></apply>

12 <apply><power/>

13 <apply><minus/>

14 <apply><csymbol function='length'>l</csymbol><ci>bond</ci><

/apply>

15 <apply><csymbol function='equilibrium'>l0</csymbol><ci>bond

</ci></apply>

16 </apply>

17 <cn>2</cn>

18 </apply>

19 </apply>

20 </apply>

21 </apply>

22 //We have a spring class which takes 3 arguments:

23 //length, equilibrium length, and elasticity

24 //Create two Springs to test:

25 var bonds = List(new Spring("A",8,7,3),new Spring("B",10,9,4))

26

27 // Target equation is: sum of

28 // 0.5 * elasticity(spring)*(length(spring)-equilibrium(spring))^2

29 // With the test springs, the expected value is:

30 val exp =

31 0.5 * 3 * Math.pow(8-7, 2) + //Spring A

32 0.5 * 4 * Math.pow(10-9, 2); //Spring B

33

34 //Now run the test:

35 evaluating(${sum}$, "bonds"->bonds) should equal(exp)

FIGURE 5.2
Example MathML equation, showing a test summation over a set of domain-specific objects.
Target equation is E = (k(l − l0)2/2). Note that this example is not semantically bound.

• <sem:editor> that allows the document to modify itself using
copy, transform, move, and delete operations.

• <sem:assert> allows components to be tested against scalar
values or complete (XML) files.

• @href allows input of files (transclusion and copy).

Reproducible Physical Science and the Declaratron 131

E
2

=
k(l–lo)2

Dictionaries CML
<entry id=“e”
term=“molarEnergy”/>

term=“foreConstant”/>
<entry id=“k”/>

SemanticML
runtime

SemanticML
assembly

Forcefield

Monitors

MathML

runtime calculation CML
mol.bonds[0].getLength()

rOH
kOH

O

H

Algorithms
(BOBYQA)

FIGURE 5.3
Declarative creation and execution of computationalDocument. The mathematics is linked
to domain semantics (e.g., for each element of the summation l links (arrows) to reference
equilibrium bond length l0 in FF (e.g., for an O-H bond) and k to the reference O-H force con-
stant. Dictionaries are used to ensure semantic mapping (e.g., that energy can be related to
force-constants and lengths) and also to provide human prose. The document is assembled and
modified by repeated XPath queries to create nodeSets (parts of the tree) and then application of
editor commands (copy, create, move, delete) to modify it. In this way, a human-friendly (min-
imal) document is automatically expanded to constancy and machine-interpretability. In the
second phase, the document is executed using visitors to traverse the (now constant) tree and
process nodes. Because the tree is constant, it is possible to attach monitors to the nodes (e.g.,
recording which terms had significant values or which took longest to compute). Single func-
tions and nodes are declarative, it becomes possible to change algorithms (e.g., for optimization,
such as the single-point optimizer BOBYQA).

• <sem:writer> allows output of sections of the document.
• {<sem:functionalForm> specification of a MathML expres-

sion that can be bound to other domain semantics.
• <sem:computation> evaluation of a <sem:functionalForm

> either once or in an algorithm.
2. Core libraries that support the operations in this dialect: transclu-

sion, copying, merging, and validation.
3. Support for replacing XML nodes with domain objects that bring

useful code with them (decoration). This includes decorating data
structures (e.g., replacing a plain <cml:atom/> element with a Java
object and creating executable objects, such as unit converters).

4. Links to domain libraries to bring in necessary semantics and
computational elements, including:
• ScMathML for evaluating mathematical formulae in the context

of a scientific computation

132 Implementing Reproducible Research

• General STM information, such as units and their conversions
• CML/JUMBO for representing chemical data and computing

common properties

It is entirely possible for users to add their own domain libraries.

5.4.1 XML and XPath Design

Much of the power of the Declaratron comes through the XML data
structures used, in particular, the ease with which it can be navigated
and transformed. XML is generally represented as a tree, and all XML
libraries support concepts of parent/child—cml:atoms are children of
cml:atomArray, which itself is a child of cml:molecule. The XPath lan-
guage∗ allows easy navigation of the document tree, and it is central to
the Declaratron. Xpath can reference any set of nodes in the tree (nodeSet)
with a natural and powerful syntax (based on tree structures). To give a
feel for XPath, we provide some examples in the following†; the syntax can
be likened to a directory structure, with/representing direct children, and
[...] a condition:

1. //cml:atom—find all atoms in the document (// addresses any
level in the hierarchy).

2. //cml:molecule[@id=’acetic’]/cml:atomArray/cml:
atom—find all atoms in the cml:molecule with id attribute
acetic.

3. //cml:molecule[@id=’acetic’]/cml:atomArray/cml:atom
[not(@elementType=’H’)]—find all nonhydrogen atoms in the
earlier set.

4. //cml:molecule[count(.//cml:atom[@elementType=’H’])
=0—find all molecules without any hydrogen atoms.

A series of Declaratron editor commands allows documents to be mod-
ified. Since Declaratron documents are in XML, they can be self-modifying.
XML acts as both input and output and so can provide a full record of
computations. Snippets from files such as schemas and dictionaries can be
included in the output so that it is clear exactly what versions were used and
what was done.

The Declaratron works as follows, illustrated in Figure 5.4:

1. Read in a computational document
2. Manipulation: transclusion and substitution (see Section 5.4.2)

∗ http://www.w3.org/TR/xpath/.
† For a tutorial, see http://www.w3schools.com/xpath/.

http://www.w3.org/TR/xpath/.
http://www.w3schools.com/xpath/.

Reproducible Physical Science and the Declaratron 133

JUMBO/CML

Computation

Validation

Molecules Molecule:
href=...

Computation Energy
formula=

Forcefield
data

Database:
href=...

Assert: data
present

Computation

Validation

Molecules Molecule:
href=...

Computation Energy
formula=

Forcefield
data

Database:
href=...

Assert: data
present

Computation

Validation

Molecules Molecule:
href=...

Computation
Energy

formula=

Forcefield
data

Database:
href=...

Assert: data
present

MathML

Computation

Validation

Molecules Molecule:
href=...

Computation Energy
formula=

Forcefield
data

Database:
href=...

Assert: data
present

MathML

MathML

Transcluded XML data

Domain objects

Executable components

Result

Original
document

Transclusion
and

manipulation

Decoration

Execution

Joined XML Data

Computation

FIGURE 5.4
Overview of Declaratron operation: (1) original document; (2) manipulated XML document,
(3) decorated document with executable domain objects, and (4) executing a computation.

134 Implementing Reproducible Research

3. Decoration: replacing standard XML elements with domain objects
4. Computation

Validation is threaded through the entire process, to check that incoming
data are in the correct form, manipulated data have the right properties, and
the results of computations are correct.

We will use a case study—calculating the energy of water using a very
simple FF—to demonstrate this.

5.4.2 Bridging the Gap between Human- and Machine-Readable Semantics

Humans work with implicit semantics and require documents to be small
and nonrepetitive in order to extract meaning. Machines require explicit,
formal semantics and can work with large (typically 10–100 times larger),
repetitive documents that are deeply human-unfriendly. In order to address
this division, the Declaratron can use documents that are written in a rel-
atively concise, human-readable form, and automatically expanded to the
complete, explicit computable form. The human form uses

• Key-value syntactic substitution, which both reduces repeti-
tion, and allows for human-readable names to be attached
to complex structures. For example, replacing occurrences of
xpath="//cml:molecule[@id='molecule']" with xpath="
${molpath}" makes the document more readable as the intent of
the XPath expression is clear and makes it more robust as complex
expressions can be defined and tested once and then reused.

• Transclusion of files; there is a <sem:editor> that expands href
attributes recursively. Again, this enhances readability, espe-
cially where large files are brought in and reused, as com-
mon elements can be put into files and shared (e.g., <maths
href="$mathsPath/hookesLaw.xml"/>). It also allows the use
of data from nonlocal sources, as any URI that provides an XML
stream can be used.

Using this system of transclusion, we have successfully computed the
energy of acetic acid (8 atoms) using the current AMBER (parm94) FF,
by expanding a human-readable input, to machine form and evaluating
it. However, the human form hides many important details, and for this
chapter, we have therefore chosen a very simple complete example (water—
3 atoms), using a highly simplified functional form (only bonds), with
a later indication of how this would be expanded to a more complete
example.

Reproducible Physical Science and the Declaratron 135

5.4.3 Example: Water–Energy Calculation

To illustrate the Declaratron’s operation, we will walk through a calculation
file step by step � . This file carries out single-point energy computation and
atomic optimization on water, using the Hooke’s law term from the AMBER
FF (

∑
bonds Kb(b − b0)

2) and associated parameters.∗ This is described in four
stages:

• Setting up the document: namespaces and named variables
• Identifying the data to be used: the molecule, atoms, and bonds
• Specifying the FF
• Specifying the computations to be carried out

In a real-world file, the definitions of data and computations might be given
in a different order—for example, putting the computation first in files
makes it easy for a human to find out what a file does. The order of ele-
ments is fairly flexible, so in this explanation, we start with the data and then
later specify what we intend to compute. As noted previously, we also go
through some elements that would typically be expanded from databases or
refactored into individual files to make a humane document.

5.4.3.1 Set Up the Document

The <computationalDocument> node is a container for the entire com-
putation. We also define XML namespaces that can be used throughout
the file:

1 <computation xmlns="http://www.xml-cml.org/
semanticcomputation"

2 xmlns:m="http://www.w3.org/1998/Math/MathML"
3 xmlns:cml="http://www.xml-cml.org/schema"
4 xmlns:amber='http://www.xml-cml.org/dict/amber:gaffType'

>

In order to carry out XPath queries over namespaced documents, it is
necessary to set up namespace prefixes that can be used by the XPath engine:

5 <!-- setup XML namespaces for use in XPath queries -->
6 <queryNS prefix="semc" uri="http://www.xml-cml.org/

semanticcomputation"/>
7 <queryNS prefix="semf" uri="http://www.xml-cml.org/

semanticforcefields"/>
8 <queryNS prefix="cml" uri="http://www.xml-cml.org/schema

"/>

∗ The full file can be found at: https://bitbucket.org/petermr/semantic-forcefield/src/
cf7ef9b03020/src/main/resources/org/xmlcml/cml/examples/amberNew.xml?at=default.

https://bitbucket.org/petermr/semantic-forcefield/src/cf7ef9b03020/src/main/resources/org/xmlcml/cml/examples/amberNew.xml?at=default
https://bitbucket.org/petermr/semantic-forcefield/src/cf7ef9b03020/src/main/resources/org/xmlcml/cml/examples/amberNew.xml?at=default

136 Implementing Reproducible Research

9 <queryNS prefix="m" uri="http://www.w3.org/1998/Math/
MathML"/>

10 <queryNS prefix="amber" uri="http://www.xml-cml.org/dict
/amber:gaffType" />

11 <queryNS prefix="cmlx" uri="http://www.xml-cml.org/
schema/cmlx" />

Throughout the file, key/value pairs can be used to reduce repetition.
Here, we set up variables for XPath queries for (1) the molecule to analyze,
using an id to ensure only the desired molecule is used; (2) finding all the
bonds belonging to that molecule; and (3) finding all the atoms:

12 <!-- XPath references to molecule, atoms, bonds -->
13 <keyValue name="molpath" value="//cml:molecule[@id='

molecule']"/>
14 <keyValue name="bondpath" value="${molpath}/

cml:bondArray/cml:bond"/>
15 <keyValue name="atompath" value="${molpath}/

cml:atomArray/cml:atom"/>

5.4.3.2 Identify and Verify Chemical Data

Now we define the chemical data to be used. First, the molecule. As this
is a container for chemistry, it defines some extra namespaces for chemical
entities:

16 <cml:molecule
17 xmlns:cml="http://www.xml-cml.org/schema"
18 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
19 xmlns:units="http://www.xml-cml.org/schema/units"
20 xmlns:compchem="http://www.xml-cml.org/dict/compchem"
21 >

Next, the atoms. Note that each atom has an atomType defined by
AMBER. This is not the same as the elementType—AMBER uses atomTypes
as well as elementTypes for atoms, the distinction being that atomTypes
change depending on the surrounding atoms. For example, an oxygen
bonded to a hydrogen has atomType “OH”. Bond parameters are looked up
using atomTypes rather than elementTypes, and bonds are often annotated
with different atomTypes in different communities of practice (i.e., different
laboratories):

22 <cml:atomArray>
23 <cml:atom id="a1" elementType="O" x3="0.0" y3="0.0" z3

="0.0">
24 <atomType dictRef="amber:parm94Type">OH</atomType>
25 </cml:atom>
26 <cml:atom id="a2" elementType="H" x3="0.96" y3="0.0"

z3="0.0">

Reproducible Physical Science and the Declaratron 137

27 <atomType dictRef="amber:parm94Type">H</atomType>
28 </cml:atom>
29 <cml:atom id="a3" elementType="H" x3="-0.23" y3="0.93"

z3="0.0">
30 <atomType dictRef="amber:parm94Type">H</atomType>
31 </cml:atom>
32 </cml:atomArray>

The id structure is very important and is used to link components of the
document (e.g., the bonds reference the atom ids) or even to aggregate them
(through the editor).

The final component of the chemical data is a set of bonds, with parame-
ters looked up by atomType. For each bond, k is the spring constant, req
is the equilibrium bond length, and desc is the formal description (e.g.,
a literature reference):

33 <cml:bondArray>
34 <cml:bond atomRefs2="a1 a2">
35 <cml:property>
36 <cml:list id="c_ct" cmlx:atomTypesId="OH__H">
37 <cml:atomType dictRef="amber:parm94Type">OH<

/atomType>
38 <cml:atomType dictRef="amber:parm94Type">H</

atomType>
39 <cml:scalar dictRef="ff:k" dataType="

xsd:double">317.0</scalar>
40 <cml:scalar dictRef="ff:req" dataType="

xsd:double">1.522</scalar>
41 <cml:scalar dictRef="ff:desc" dataType="

xsd:string">JCC,7,(1986),230;AA</scalar>
42 </cml:list>
43 </property>
44 </cml:bond>
45 <cml:bond atomRefs2="a1 a3"> <!-- contents omitted for

brevity --> </cml:bond>
46 </cml:bondArray>

For the purposes of this example, we have declared the bond prop-
erties inline. In general, these would be pulled in from a knowledgebase
automatically, but this is too complex for this chapter.

Once all of the data are in place, we can verify it. To ensure that all atoms
can be annotated with the AMBER parm94 dictionary, an <assert> ele-
ment checks that (1) all atoms have a valid id (expressed as the inverse: there
are 0 atoms without a valid id) and (2) there are 0 atoms without a valid
atomType:

47 <!-- all atoms in the document must have ids and
atomTypes (expressed as negation) -->

48 <assert count="0" xpath="${atompath}[not(@id)]"/>

138 Implementing Reproducible Research

49 <assert count="0" xpath="${atompath}[not(cml:atomType[
@dictRef='amber:parm94Type'])]"/>

5.4.3.3 Specify the FF to Be Used

After specifying the data, we specify the functional form of the FF (E =
k(l − l0)2/2). It starts with the summation over bonds:

50 <functionalForm id="hookes"
51 hrefSource="src/main/resources/org/xmlcml/cml/forcefield

/functional/harmonicBond.xml"
52 xmlns="http://www.xml-cml.org/semanticforcefields">
53 <math xmlns="http://www.w3.org/1998/Math/MathML">
54 <apply><sum/> <!-- Sum -->
55 <bvar><ci>bond</ci></bvar> <!-- For bond -->
56 <condition> <!-- in bonds -->
57 <apply><in/><ci>bond</ci><ci type="set">bonds</ci><

/apply>
58 </condition>
59 <!-- This is what is inside the sum -->
60 <apply><times/><cn>0.5</cn> <!-- divide by 2 -->

We need to bind the value of k to the actual bond (property is child of
bond). Again, note the use of dictRef—this uses a defined id reference,
which means that the semantics of the value to be used can be looked up in
the dictionary:

61 <apply><times/> <!-- get k for the current
bond -->

62 <apply>
63 <csymbol xpath="./cml:property/cml:list/

cml:scalar[@dictRef='ff:k']">k</csymbol>
64 <ci>bond</ci>
65 </apply>
66 </apply>
67 <apply><power/> <!-- start the squared

term -->
68 <apply><minus/> <!-- start l-l_0 -->

The value of l is bound to the result of calling the JUMBO function cml:bond
.getBondLength() for each bond:

69 <apply>
70 <csymbol function="getBondLength">l</csymbol>
71 <ci>bond</ci>
72 </apply>

and the reference (equilibrium) length is looked up for each bond with an
XPath expression that selects the relevant property from its descendants:

Reproducible Physical Science and the Declaratron 139

73 <apply>
74 <csymbol xpath="./cml:property/cml:list/

cml:scalar[@dictRef='ff:req']">l0</csymbol>
75 <ci>bond</ci>
76 </apply>
77 </apply> <!-- end l-l_0 -->
78 <cn>2</cn> <!-- end of the squared

term -->
79 </apply>
80 </apply>
81 </apply>
82 </math>
83 </functionalForm>
84 </computation>

At this point, we have defined a molecule, and the FF which is to be
applied to it.

5.4.3.4 Specify the Computation to Be Carried Out

We now specify a computation to carry out with these entities (do we want
simply to evaluate the energy, or adjust the geometry to optimize the struc-
ture against its energy?). First, let’s create a node (child of molecule to hold
the result of a single-point energy calculation):

85 <editor method="createChild" xpath=".//molecule" element
="cml:scalar" targetId="singlePoint"/>

Next, specify that an evaluation of the functional form with the molecule in
its initial configuration should be carried out. This will locate the functional
form and ask it to evaluate itself, using the molecule as input. When the
molecule is passed in, the set of bonds will be bound to the variable bonds.
The functional given earlier will iterate over the set of bonds, and for each
bond, call the JUMBO function to find the current bond length, subtract the
equilibrium length, etc., as detailed earlier. After the calculation, we ensure
that the output has the correct value and has the correct units:

86 <computation method="singleEvaluation"
87 formula="//functionalForm[@id='hookes']" input="${

molpath}">
88 <variable name="bonds" xpath="${bondPath}"/>
89 </computation>
90 <assert value="1.234" xpath=".//scalar[@id='singlePoint

']"/>
91 <assert value="units:joule" xpath=".//scalar[@id='

singlePoint']@units"/>

The optimum geometry of a molecule is that of lowest energy, and many
calculations attempt to find this using a variety of algorithms. We have

140 Implementing Reproducible Research

chosen the recent BOBYQA method [16], which does not require analytical
derivatives (or second derivatives).

The same functional form can also be used in the optimization of geom-
etry to find the minimum energy. Here, we use the nonderivative optimizer
BOBYQA by giving it (1) a target function to evaluate (the functional form);
(2) the data to work over (the molecule); and (3) an XPath expression to find
the free variables in the optimization. The optimization happens in place, so
the modified atom positions are now part of the document:

92 <computation method="optimise" algorithm="BOBYQA"
93 formula="//functionalForm[@id='hookes']" input="${

molpath}"
94 freeVariables=".//@x3 or .//@y3 or .//@z3"/>

Finally, we can compare the output geometry and energy with a previous
computation stored in another file. This is a complete nodewise comparison
of XML, which will ensure both semantic identity and numerical identity,
including a tolerance (eps) for floating-point variations:

95 <assert href="expected.xml" ref="${molpath}" eps="1.0E
-06"/>

96 </computation>

5.4.4 Moving beyond Toy Examples

The Declaratron has a wider range of features than we have illustrated
here. There is a one-off cost to transforming legacy files to CML (some
of which can be done with JUMBOConverter templates). Most problems
then require a complex process of locating transcludable information (see
Section 5.4.2), extracting the desired nodes, and inserting into the growing
semanticDocument. Although this is a complex operation, once con-
structed, the semanticDocument subtrees can be reused without change for
future computations. This means that computations can be stated very sim-
ply in terms of the major free variables and the operations to be performed
on them.

As an example, to use the parm94 database in a semantic calculation, we
would carry out the following steps:

First, the JUMBO atomTypeTool can be used to add the required ids:

97 <!-- list is the default type for general data -->
98 <cml:list id="parm94Test" href="${forcefield}/amber/

parm94test.xml"/>
99 <!-- transform (add id) to atomType children -->

100 <atomTypeTool method="addAtomTypesId" using="./
cml:atomType"

101 xpath="//cml:list[@id='parm94Test']/cml:list/cml:list
[count(cml:atomType)>0]" />

Reproducible Physical Science and the Declaratron 141

Then we can merge functional form and parameters for each bond from
the database, by copying the relevant information into each cml:bond
element:

102

103 <moleculeTool method="getOrCreateBonds" xpath="${molpath
}" setId="createdBonds"/>

104 <editor method="copyChild"
105 xpath="//cml:molecule[@id='molecule']/cml:bondArray"
106 from="//cml:list[@id='parm94Test']/cml:list[@title

='bonds']/semf:functionalForm" />

We can also ensure that the bond angles are in the correct units:

107 <unitsVisitor xpath="//cml:list[@id='parm94Test']//
cml:scalar[@dictRef='ff:angeq'

108 or @dictRef='ff:phase']" method="degrees2Radians"/>

And finally, we can save this annotated molecule into its own file—
coarse-grain memoization—so we do not have to do the conversion again
in the future:

109 <writer xpath="//cml:list[@id='parm94Test']" file="
output/parm94testNew.xml" />

All this can be packaged into standard operations—a file can be cre-
ated for any given conversion and transcluded where necessary—so that the
final calculation mirrors the human-readable form and is expanded into the
detailed semantic form at runtime.

The program output can contain as detailed a list as we like of the oper-
ations and their outputs/results. It could contain fine-grained information
for debugging or simple summary data. It will have a complete record of
the input—not just the values but the semantic parameters, the dictionaries,
and the functional forms. This means the output is immediately rerunnable.
Note that XML has a very wide range of open document manipulation tools,
so we can build high-quality print or semantic indexes.

The output is directly transformable into the inputs of other programs
that share some or all of the semantics (e.g., chemistry and mathematics). In
many cases, these can be understood without the wider context—a molecule
optimized by an FF could then be read into a QM program or posted in an
online CML repository for use in chemical informatics.

5.4.5 Integrating Semantic Physical Computation with Emerging
Architectures and Automation

One of the most immediate and powerful benefits of declarative compu-
tational science is the parameter sweep. In many computations, we have a
number of independent parameters that the experimenter may wish to vary.
Examples are as follows:

142 Implementing Reproducible Research

• Compute the optimum geometry for a series of molecules.
• Use different methods (“functionals”) on a well-understood test

molecule and compare results to find the best method.
• Vary the temperature at which a zeolite is modeled and thence

compute the coefficient of thermal expansion.

Figure 5.5 shows an example of CompChem architecture. The input (LHS)
consists of about six orthogonal axes: (1) molecules; (2) commands—the sci-
entific problem to be solved; (3) basis set—the Qm parameterization; (4)
method of solving QM equations; (5) physical parameters, for example, tem-
perature and pressure; (6) computer environment, for example, CPU limits,
memory, number of processors. While this is a particular example, and
would be used for experiments such as “run 1000 molecules with 3 basis
sets,” many experiments have a similar structure to this, that is, “explore a
defined subset of the parameter space.”

The sweep has similarities to the “MapReduce” approach—a large num-
ber of job inputs are created, farmed out to processors, and then collected
and analyzed. The example in Figure 5.5 has several independent input axes,
and it is clear that these must be semantically defined if the experiment
is to be reproducible—ambiguity or the possibility for disagreement about
the meanings or intents of specifications will result in different or unpre-
dictable results. More generally, no science can be reproducible without
agreed semantics.

The Declaratron is very well suited to the flexible generation of
input—it allows parameter axes to be declared semantically and combined
through domain-specific commands (expanding the scope and precision of
“Convolution”). It is also a critical part of marshaling and validating out-
put, especially transforming documents to have different structures and
components.

5.5 Conclusions

The adoption of semantics by long-tail physical science has been extremely
slow, and its absence causes millions of lost hours and costs hundreds
of millions of dollars. We do not believe science is reproducible without
a committed community (as in crystallography or astronomy or much of
bioscience).

Instrumental and sensor output is now massive, but there are very few
semantic implementations or dictionaries; this is an essential task for the
communities to tackle.

In this chapter, we have demonstrated a system that addresses several of
these concerns. It integrates existing semantically aware components with

Reproducible Physical Science and the Declaratron 143

FI
G

U
R

E
5.

5
A

m
ul

ti
ax

is
pa

ra
m

et
er

sw
ee

p
fo

r
C

om
pC

he
m

us
in

g
N

W
C

he
m

�
�
�
�

as
a

se
m

an
ti

c
fr

am
ew

or
k

�
fo

r
co

m
pu

ti
ng

pr
op

er
ti

es
of

m
at

te
r.

T
he

ex
pe

ri
m

en
ts

of
te

n
in

vo
lv

e
se

ve
ra

la
xe

s
an

d
co

ul
d

in
vo

lv
e

m
an

y
th

ou
sa

nd
s

of
jo

bs
.O

ur
ar

ch
it

ec
tu

re
al

lo
w

s
th

e
au

to
m

at
ic

cr
ea

ti
on

of
jo

bs
w

it
h

co
m

bi
na

ti
on

s
of

se
tt

in
gs

(“
pa

ra
m

et
er

sw
ee

ps
”)

,w
hi

ch
ca

n
be

fi
lt

er
ed

se
m

an
ti

ca
lly

.N
W

C
he

m
ou

tp
ut

s
C

M
L

th
ro

ug
h

Fo
X

ca
lls

;a
lt

er
na

ti
ve

ly
,t

he
le

ga
cy

ou
tp

ut
is

co
nv

er
te

d
by

an
N

W
C

he
m

JU
M

B
O

co
nv

er
te

r
to

C
M

L
.T

he
ou

tp
ut

is
se

m
an

ti
ca

lly
va

lid
at

ed
ag

ai
ns

t(
a)

N
W

C
he

m
,(

b)
ge

ne
ra

lC
om

pC
he

m
,a

nd
(c

)u
ni

ts
d

ic
ti

on
ar

ie
s

an
d

no
rm

al
iz

ed
,b

ef
or

e
ar

ch
iv

e
an

d
re

d
is

tr
ib

ut
io

n
in

a
Q

ui
xo

te
re

po
si

to
ry

[5
].

N
ot

e:
W

e
th

an
k

PN
N

L
fo

rm
ak

in
g

N
W

C
he

m
op

en
an

d
ag

re
ss

iv
el

y
C

M
L

-i
zi

ng
it

.

144 Implementing Reproducible Research

legacy data and provides a strongly semantically grounded computation
environment, with a high level of reproducibility.

The usefulness of any semantically aware, reproducible system is depen-
dent on its context: the further the semantic frontier is pushed back, the more
use we can make of each component in the system. To make this happen, we
have a set of recommendations:

1. Build a community of practice around semantic computation and
reproducibility. Ideally, this should be through learned societies
or international scientific unions—without community semantics,
there is no interoperability and hence no effective reproducibility.

2. In the absence of any general approach from the scientific commu-
nity, adopt STMML semantics where possible: using strongly typed
quantities with dictionaries. Dictionaries can be created in a semifor-
mal manner, being ratified by formal groups when they are proved
to work.

3. Create black-box libraries for fundamental domain-specific oper-
ations and algorithms. These should be tested using declarative
approaches, to allow for integration with semantic systems.

4. Build declarative validators for legacy code bases (e.g., AMBER) so
that their correctness can be verified on a wide range of archetypal
problems.

5. Make all “documentation” semantic and computable: write exam-
ples in manuals as executable code so that the documentation is
always in sync with the code.

References

1. N.L. Allinger. Conformational analysis. 130. MM2. A hydrocarbon force
field utilizing V1 and V2 torsional terms. Journal of the American Chemical
Society, 99(25):8127–8134, 1977.

2. I.D. Brown and B. McMahon. CIF: The computer language of crystallog-
raphy. Acta Crystallographica Section B: Structural Science, 58(3):317–324,
2002.

3. D. Carlisle. OpenMath, MathML, and XSL. ACM SIGSAM Bulletin,
34(2):6–11, 2000.

4. A.N. Davies and P. Lampen. JCAMP-DX for NMR. Applied Spectroscopy,
47(8):1093–1099, 1993.

5. P. de Castro, P. Echenique, J. Estrada, M.D. Hanwell, P. Murray-Rust,
and J. Thomas. The quixote project: Collaborative and open quantum

Reproducible Physical Science and the Declaratron 145

chemistry data management in the internet age. Journal of Cheminformat-
ics, 3(1):1–27, 2011.

6. MT Dove, AM Walker, TOH White, RP Bruin, KF Austen, I Frame, GT
Chiang, P Murray-Rust, RP Tyer, PA Couch, et al. Usable grid infras-
tructures: Practical experiences from the eMinerals project. In Proceedings
of the UK e-Science All Hands Meeting 2007, Nottingham, UK, pp. 48–55,
2007.

7. P Lampen, H Hillig, AN Davies, and M Linscheid. JCAMP-DX for mass
spectrometry. Applied Spectroscopy, 48(12):1545–1552, 1994.

8. RS McDonald and PA Wilks. JCAMP-DX: A standard form for exchange
of infrared spectra in computer readable form. Applied Spectroscopy,
42(1):151–162, 1988.

9. AD McNaught and A Wilkinson. Compendium of Chemical Terminology,
vol. 1669. Blackwell Science, Oxford, U.K., 1997.

10. P Murray-Rust. Semantic science and its communication—A personal
view. Journal of Cheminformatics, 3(1):1–7, 2011.

11. P Murray-Rust and HS Rzepa. Chemical markup, XML, and the world-
wide web. 1. Basic principles. Journal of Chemical Information and Computer
Sciences, 39(6):928–942, 1999.

12. P Murray-Rust and HS Rzepa. STMML. A markup language for scien-
tific, technical and medical publishing. Data Science Journal, 1:128–192,
2002.

13. P Murray-Rust and HS Rzepa. The next big thing: From hypermedia to
datuments. Journal of Digital Information, 5(1), 2006.

14. P Murray-Rust and HS Rzepa. Semantic physical science. Journal of
Cheminformatics, 4(1):1–7, 2012.

15. S Ping Ong, A Jain, G Hautier, M Kocher, S Cholia, D Gunter, D Bailey,
D Skinner, KA Persson, and G Ceder. The Materials Project, 2011.

16. MJD Powell. The BOBYQA algorithm for bound constrained optimiza-
tion without derivatives. Cambridge NA Report NA2009/06, University
of Cambridge, Cambridge, U.K., 2009.

17. A Roth, R Jopp, R Schäfer, and GW Kramer. Automated generation of
AnIML documents by analytical instruments. Journal of the Association for
Laboratory Automation, 11(4):247–253, 2006.

18. M Valiev, EJ Bylaska, N Govind, K Kowalski, TP Straatsma, HJJ Van
Dam, D Wang, J Nieplocha, E Apra, TL Windus et al. NWChem: A com-
prehensive and scalable open-source solution for large scale molecular
simulations. Computer Physics Communications, 181(9):1477–1489, 2010.

19. W3C Math Working Group. Content MathML. http://www.w3.org/
TR/MathML3/chapter4.html

http://www.w3.org/TR/MathML3/chapter4.html
http://www.w3.org/TR/MathML3/chapter4.html

Part II

Practices and Guidelines

6
Developing Open-Source Scientific Practice∗

K. Jarrod Millman and Fernando Pérez

CONTENTS

6.1 Introduction . 150
6.2 Computational Research . 150

6.2.1 Computational Research Life Cycle . 152
6.2.2 Open-Source Ecosystem . 155
6.2.3 Communities of Practice . 156

6.3 Routine Practice . 157
6.3.1 Version Control. 158
6.3.2 Execution Automation . 160
6.3.3 Testing . 161
6.3.4 Readability . 162
6.3.5 Infrastructure . 164

6.3.5.1 Hosted Version Control . 164
6.3.5.2 Continuous Integration . 165
6.3.5.3 Documentation Generation Systems 166

6.4 Collaboration. 167
6.4.1 Distributed Version Control . 168
6.4.2 Code Review . 169
6.4.3 Infrastructure Redux . 171

6.5 Communication. 172
6.5.1 Literate Programming . 173
6.5.2 Literate Computing . 174
6.5.3 IPython Notebook. 174

6.6 Conclusion. 180
Acknowledgments . 180
References . 181

∗ Dedicated to the memory of John D. Hunter III, 1968–2012.

149

150 Implementing Reproducible Research

6.1 Introduction

Computational tools are at the core of modern research. In addition to exper-
iment and theory, the notions of simulation and data-intensive discovery are
often referred to as “third and fourth pillars” of science [12]. It is probably
more accurate to simply accept that computing is now inextricably woven
into the DNA of science, as today, even theory and experiment are compu-
tational. Experimental work requires computing (whether in data collection,
preprocessing, or analysis), and theoretical work requires symbolic manipu-
lation and numerical exploration to develop and refine models. Scanning the
pages of any recent scientific journal, one is hard-pressed to find an article
that does not depend on computing for its findings.

Yet, for all its importance, computing receives perfunctory attention in
the training of new scientists and in the conduct of everyday research. It
is treated as an inconsequential task that students and researchers learn
“on the go” with little consideration for ensuring computational results are
trustworthy, comprehensible, and ultimately a secure foundation for repro-
ducible outcomes. Software and data are stored with poor organization, little
documentation, and few tests. A haphazard patchwork of software tools is
used with limited attention paid to capturing the complex workflows that
emerge. The evolution of code is not tracked over time, making it difficult to
understand what iteration of the code was used to obtain any specific result.
Finally, many of the software packages used by scientists in research are pro-
prietary and closed source, preventing complete understanding and control
of the final scientific results.

We argue that these considerations must play a more central role in how
scientists are trained and conduct their research. Our approach grows out
of our experience as part of both the research and the open-source scien-
tific Python communities. We begin (Section 6.2) by outlining our vision
for the scientific software development in everyday research. In the remain-
ing sections, we provide specific recommendations for computational work.
First, we describe the routine practices (Section 6.3) that should be part of the
daily conduct of computational work. We next discuss tools and practices
developed by open-source communities to enable and streamline collab-
oration (Section 6.4). Finally, we present an approach to developing and
communicating computational work that we call literate computing in contrast
to the traditional approach of literate programming (Section 6.5).

6.2 Computational Research

Consider a researcher using MATLAB� for prototyping a new analy-
sis method, developing high-performance code in C, postprocessing by

Developing Open-Source Scientific Practice 151

twiddling controls in a graphical user interface, importing data back into
MATLAB for generating plots, polishing the resulting plots by hand in
Adobe Illustrator, and finally pasting the plots into a publication manuscript
or PowerPoint presentation. What if months later they realize there is a
problem with the results? Will they be able to remember what buttons they
clicked to reproduce the workflow to generate updated plots, manuscript,
and presentation? Can they validate that their programs and overall work-
flow are free of errors? Will other researchers or students be able to repro-
duce these steps to learn how a new method works or understand how the
presented results were obtained?

The pressure to publish encourages us to charge forward chasing the goal
of an accepted manuscript, but the term “reproducibility” implies repetition
and thus a requirement to also move back—to retrace one’s steps, question
or change assumptions, and move forward again. Unfortunately, the all-too-
common way scientists conduct computational work makes this necessary
part of the research process difficult at best, often impossible.

The open-source software development community∗ has cultivated tools
and practices that, if embraced and adapted by the scientific community,
will greatly enhance our ability to achieve reproducible outcomes. Open-
source software development uses public forums for most discussion and
systems for sharing code and data. There is a strong culture of public disclo-
sure, tracking and fixing of bugs, and development often includes exhaustive
validation tests that are executed automatically whenever changes are made
to the software and whose output is publicly available on the Internet. This
detects problems early, mitigates their recurrence, and ensures that the state
and quality of the software is known under a wide variety of situations (oper-
ating systems, inputs, parameter ranges, etc.). The same systems used for
sharing code also track the authorship of contributions. All of this ensures
an open collaboration that recognizes the work of individual developers and
allows for a meritocracy to emerge.

As we learn from the open-source process how to improve our scientific
practice, we recognize that the ideal of scientific reproducibility is by neces-
sity a reality of shades. We see a gradation from a pure mathematical result
whose proof should be accessible to any person skilled in the necessary spe-
cialty to one-of-a-kind experiments such as the Large Hadron Collider or the
Hubble Space Telescope, which cannot be reproduced in any realistic sense.
However, it is always possible to improve our confidence in the results:
whether we reexamine the same unique datasets with independently devel-
oped packages run by separate groups or we reacquire partial sampling of
critical data multiple times.

∗ We take it as a forgone conclusion (see [16]) that to share our research code with one
another, we must use open-source tools. Instead of discussing the need for using open-source
software, we focus on adopting development practices used by open-source communities.

152 Implementing Reproducible Research

Similarly, in computational research, we also have certain areas where
complete reproducibility is more challenging than others. Some projects
require computations carried on the largest supercomputers, and these are
expensive resources that cannot be arbitrarily allocated for repeated execu-
tions of the same problem. Others may require access to enormous datasets
that cannot easily be transferred to the desktop of any researcher wishing
to reexecute an analysis. But again, alternatives exist: it is possible to par-
tially validate scaled versions of the largest problems against smaller runs
created on the same supercomputing environments. Similarly, coarse reso-
lution datasets can be used to conduct an analysis that may provide insights
into the reliability of the full analysis. While not every quantity can be stud-
ied in this manner and there are deep research questions embedded in this
problem, we should not consider this to be a paralyzing impediment to the
quest for better computational reproducibility. Fortunately, the vast major-
ity of research is conducted in smaller, simpler environments where full
replication is feasible.

6.2.1 Computational Research Life Cycle

We advocate an integrated approach to computing where the entire life cycle
of scientific research is considered, from the initial exploration of ideas and
data to the presentation of final results. Schematically, this life cycle can be
broken down into the following phases:

• Individual exploration: a single investigator tests an idea, algorithm,
or question, likely with a small-scale test, dataset, or simulation.

• Collaboration: if the initial exploration appears promising, more often
than not some kind of collaborative effort ensues to bring together
complementary expertise from colleagues.

• Production-scale execution: large datasets and complex simulations
often require the use of clusters, supercomputers, or cloud resources
in parallel.

• Publication: whether as a paper or an internal report for discussion
with colleagues, results need to be presented to others in a coherent
form.

• Education: ultimately, research results become part of the corpus of a
discipline that is shared with students and colleagues, thus seeding
the next iteration in the cycle of research.

Before presenting our approach, we examine the typical patchwork of tools
and approaches that researchers use to navigate these phases and dis-
cuss how the standard approach makes the goal of reproducibility nearly
unattainable.

Developing Open-Source Scientific Practice 153

For individual work, researchers use various interactive computing
environments: Microsoft Excel, MATLAB, Mathematica, Sage, and more
specialized systems like R, SPSS, SAS, and STATA for statistics. These envi-
ronments combine interactive, high-level programming languages with a
rich set of numerical and visualization libraries. The impact of these envi-
ronments cannot be overstated; researchers use them for rapid prototyping,
interactive exploration, and data analysis, as well as visualization. However,
they have limitations: (a) some of them are proprietary and/or expensive
(Excel, MATLAB, Mathematica); (b) most (except for Sage) are focused on
coding in a single, relatively slow, programming language; and (c) most
(except for Sage and Mathematica) do not have a document format that is
rich, that is, that can include text, equations, images, and video in addi-
tion to source code. While the use of proprietary tools is not a problem
per se and may be a good solution in industry, it is a barrier to scien-
tific collaboration and to the construction of a common scientific heritage
where anyone can validate the work of others and build upon it. Scientists
cannot share work unless all colleagues can purchase the same package; stu-
dents are forced to work with black boxes they are legally prevented from
inspecting. Furthermore, because of their limitations in performance and
handling large, complex codebases, these tools are mostly used for proto-
typing: researchers eventually have to switch tools for building production
systems.

For collaboration, researchers tend to use a mix of e-mail, version con-
trol systems (VCSs) and shared network folders (Dropbox, etc.). VCSs (see
Section 6.3.1) are critically important in making research collaborative and
reproducible. They allow groups to work collaboratively on documents
and track how they evolve over time. Ideally, all aspects of computational
research would be hosted on publicly available version control repositories,
such as GitHub or Google Code. Unfortunately, the common approach is
for researchers to e-mail documents to each other with ad hoc naming con-
ventions that provide a poor man’s version control (and are the source of
endless confusion and frequent mistakes). This form of collaboration makes
it nearly impossible to track the development of a large project and estab-
lish reproducible and testable workflows. While a small group can make
it work, this approach most certainly does not scale beyond a few collab-
orators, as painfully experienced by anyone who has participated in the
madness of a flurry of e-mail attachments with oddly named files such as
paper-final-v2-REALLY-FINAL-john-OCT9.doc.

For production-scale execution, researchers typically turn away from the
convenience of interactive computing environments to compiled code (C,
C++, Fortran) and libraries for distributed and parallel processing (Hadoop,
MPI). These tools are specialized enough that their mastery requires a sub-
stantial investment of time. We emphasize, that before production-scale
computations begin, the researchers already have a working prototype in

154 Implementing Reproducible Research

an interactive computing environment. Therefore, turning to new parallel
tools means starting over and maintaining at least two versions of the code
moving forward. Furthermore, data produced by the compiled version are
often imported back into the interactive environment for visualization and
analysis. The resulting back-and-forth workflow is nearly impossible to cap-
ture and put into VCSs, making the computational research difficult to
reproduce. Obviously the alternative, taken by many, is simply to run the
slow serial code for as long as it takes. This is hardly a solution to the repro-
ducibility problem, as runtimes in the weeks or months become in practice
single-shot efforts that no one will replicate.

For publications and education, researchers use tools such as LATEX,
Google Docs, or Microsoft Word and PowerPoint. The most important
attribute of these tools in this context is that, LATEX excepted, they integrate
poorly with VCSs and are ill-suited for workflow automation. Digital arti-
facts (code, data, and visualizations) are often manually pasted into these
documents, which easily leads to a divergence between the computational
outcomes and the publication. The lack of automated integration requires
manual updating, something that is error-prone and easy to forget.

From this perspective, we now draw a few lessons:

1. The common approaches and tools used today introduce discon-
tinuities between the different stages of the scientific workflow.
Forcing researchers to switch tools at each stage, which in turn
makes it difficult to move fluidly back and forth.

2. A key element of the problem is the gap that exists between what
we view as “final outcomes” of the scientific effort (papers and pre-
sentations that contain artifacts such as figures, tables, and other
outcomes of the computation) and the pipeline that feeds these
outcomes. Because most workflows involve a manual transfer of
information (often with unrecorded changes along the way), the
chances that these final outcomes match what the computational
pipeline actually produces at any given time are low.

3. The problems listed earlier are both technical and social. While
we largely focus on the tools aspect in this chapter, it is critical
to understand that at the end of the day, only when researchers
make a conscious decision to adopt improved work habits will we
see substantial improvements on this problem. Obviously, higher-
quality tools will make it easier and more appealing to adopt
such changes; but other factors—from the inertia of ingrained
habits to the pressure applied by the incentive models of modern
research—are also at play.

Asking about reproducibility by the time a manuscript is ready for
submission to a journal is simply too late: this problem must be tackled

Developing Open-Source Scientific Practice 155

from the start, not as an afterthought tacked on at publication time. We must
therefore look for approaches that allow researchers to fluidly move back
and forth between the previous stages and that integrate naturally into their
everyday practices of research, collaboration, and publishing, so that we can
simultaneously address the technical and social aspects of this issue.

6.2.2 Open-Source Ecosystem

With the previous discussions in mind, our approach focuses on the need
for tools and practices that enable researchers to naturally consider the
entire cycle of research as a continuum and where “doing the right thing”
is the easy and natural path rather than an awkward and cumbersome one.
Rather than the haphazard patchwork of tools and processes described pre-
viously, we promote the development and adoption of a robust, open-source
ecosystem that makes reproducible research a central aim.

To illustrate our point, we briefly describe the scientific Python ecosys-
tem [23,26,30] and introduce a few core projects, which serve as examples
throughout this chapter. While strong proponents of the Python program-
ming language, we understand Python is not the only choice for scien-
tific computing or reproducible research. Rather we consider the scientific
Python ecosystem as a case study for the type of community-developed
software stack that we believe necessary for improving the reliability and
reproducibility of our computational results.

Initially written for teaching, the Python language has a simple,
expressive, and accessible syntax that emphasizes code readability (see
Section 6.3.4). Rather than imposing a single programming paradigm, it
allows one to code at many levels of sophistication, including the procedural
programming style familiar to many scientists. Python is available in an eas-
ily installable form for almost every platform and, therefore, ideal for a het-
erogeneous computing environment. It is also powerful enough to manage
the complexity of large applications, supporting functional programming,
object-oriented programming, generic programming, and metaprogram-
ming. Due to excellent support for scripting tools written in other languages
(including C, C++, Fortran, and R), Python is often used as an integra-
tion language for calling routines from a wide array of high-quality scientific
libraries. Finally, it has an extensive standard library that provides built-in
functionality for many tasks including database access, Internet protocols,
data compression, and operating system services.

Importantly, from our perspective, Python is not specifically designed
for scientific computing. So it is extremely capable at a diverse set of gen-
eral purpose tasks. This benefits the scientific community, by providing an
assortment of useful functionality and features while we focus on extending
them with the specific features necessary for our research. While there are
numerous libraries and extensions for scientific computing in Python, the

156 Implementing Reproducible Research

three most widely used are NumPy,∗ SciPy,† and matplotlib.‡ NumPy [34]
provides a high-level multidimensional array object and basic operations
to manipulate them. SciPy is a collection of common numerical operations
used in scientific computing. Matplotlib [14,15] is the standard 2D plotting
library. In addition to these tools, there are even more specialized packages
to provide advanced support and algorithms for machine learning, image
processing, graph theory, symbolic mathematics, etc. On top of these general
scientific libraries, there are even more domain-specific projects developed
by those scientific communities. For instance, we are both members of the
Neuroimaging in Python [24] community in addition to participating in
the more general parts of the scientific Python software stack. The ability
to participate and contribute at multiple levels of the toolchain is possible
because of the adoption of common tools, standards, and procedures—many
of which will be discussed in this chapter.

In addition to this stack of scientific software packages, we briefly intro-
duce IPython,§ a system for interactive and parallel computing that has
become the de facto standard environment for scientific computing and data
analysis in the Python community. It was created by one of us (FP) in 2001
as an interactive command-line shell for Python and has evolved into a large
collaborative open-source project with contributions from a broad team of
scientists [29]. We call special attention to it as the natural focus of our inte-
grated approach to the computational life cycle. As such, it will serve as a
primary example throughout this chapter and will be discussed in detail in
Section 6.5.3.

6.2.3 Communities of Practice

While the case can be made for the use of open-source software in science,
even more important is the benefit that comes with open-source community-
driven development practices. In community-developed projects, the dis-
tinction between users and developers is more fluid than it is in proprietary
software projects where this distinction is not just expected but often rigor-
ously enforced by legal mechanisms. This does not mean that everyone must
become a core developer. There are still differing levels of contribution, which
includes reporting issues, suggesting functionality, contributing enhance-
ments, discussing use cases, and answering questions.

Communities of practice must drive the development of our scientific
software [32]. A participatory community of active researchers using and
contributing to the development of the code we depend on for our scientific
output is necessary for robust software ecosystems where we can share and

∗ http://numpy.org.
† http://scipy.org.
‡ http://matplotlib.org.
§ http://ipython.org.

http://numpy.org.
http://scipy.org.
http://matplotlib.org.
http://ipython.org.

Developing Open-Source Scientific Practice 157

verify our work. As this work becomes more reliant on computational tools
and techniques, the questions we can ask will be constrained by what our
software can do and how easy it is to extend. Hence, moving a field for-
ward will increasingly require scientists to be computationally literate, part
of which includes embracing the tools and practices widely adopted by the
open-source community.

There are real concerns that arise when attempting to transplant the prac-
tices of open-source development directly to computational research. The
open-source development model is one where, in practice, the copyright and
authorship of any large collaborative project is spread among many authors,
possibly thousands. While the source control tools in use allow for a pre-
cise provenance analysis to be performed, this is rarely done and its success
is contingent on the community having followed certain steps rigorously to
ensure that attribution was correctly recorded during development.

This is not a major issue in open-source, as the rewards mechanisms tend
to be more informal and based on the overall recognition of any one contrib-
utor in the community. Sometimes people contribute to open-source projects
as part of their official work responsibilities, and in that case, a company can
enact whatever policies it deems necessary; often contributions are made by
volunteers for whom acknowledgment in the project’s credits is sufficient
recognition.

In the academic world, the authorship of scholarly articles in scientific
journals and conference proceedings is currently the main driver of pro-
fessional advancement and reward. In this system, the order of authorship
matters enormously (with the many unpleasant consequences familiar to all
of us), and so does the total number of authors in a publication. While in
certain communities papers with thousands of authors do exist (experimen-
tal high-energy physics being the classic example), most scientists need the
prominent visibility they can achieve in a short author list. The dilution of
authorship resulting from a largely open collaborative development model
is an important issue that must be addressed.

Furthermore, the notion of a fully open development model typical of
open-source projects is at odds with another aspect of the scientific publi-
cation and reward system: the “first to publish” race. Many scientists are,
understandably, leery of exposing their projects on an openly accessible web-
site when in their embryonic stages. The fear of being scooped by others is
real, and again we must properly address it as we consider how to apply the
lessons of open-source development to the scientific context.

6.3 Routine Practice

The practices recommended in this section are distilled from writing and
maintaining software, teaching programming courses to students and

158 Implementing Reproducible Research

scientists, as well as extensive interaction and discussion with a diverse
group of scientists and engineers. Whole books have been dedicated to best
practices in software development with highly specialized tools and habits
for individual programming languages and methodologies. In this short
section, we highlight the practices and tools essential to any computational
work. For a more detailed discussion, we recommend [1,13,17].

We begin by discussing practices and tools that should be applied to even
exploratory, individual research. These practices are so essential to efficient
and productive use of computational resources that we routinely use them
whenever we use a computer. In Section 6.4, we discuss how these practices
and tools extend to collaborative work.

6.3.1 Version Control

When collecting data, running analyses, or writing papers, you inevitably
need to keep track of the various versions of your work: data is augmented
and curated, code is adapted and improved, and writing is revised and
expanded. While only keeping the most recent version of your work is pos-
sible, this is seldom sufficient. There are tentative new directions, detours,
and dead ends.

We have witnessed numerous researchers attempting to manage dif-
ferent versions of their work using manual and laborious kludges.
The most common patterns include using ad hoc naming schemes (e.g.,
file.txt.bak and file.txt.1st), e-mailing different versions to your-
self, or using the application specific functionality such as Microsoft Word’s
“Track Changes” feature. While these approaches are partial solutions to the
problem, they are also cumbersome, prone to failure, or limited to specific
applications. More importantly, they are unsustainable beyond simple sce-
narios with only one or two files and do not scale to any kind of sensible
collaboration workflow.

Because tracking and managing how work evolves over time is so fun-
damental to the workflow of software development, programmers have
created specialized software tools to do exactly this. These tools are called
version control systems or VCSs. Several open-source VCSs have been
developed over the years, the most well known being CVS, SVN, Git, and
Mercurial.

While there are notable differences among these tools, they all share
some basic concepts. All project files (code, text, figures, etc.) are stored in a
repository (often represented on disk in a directory hierarchy). There are com-
mands to add to and remove files from a repository. To track changes to a
file, it must be committed to the repository, ideally with a meaningful commit
message. The repository and commit mechanism provide a complete histori-
cal log of the project from inception to current state, including every change
made along with time stamps, author, comments, and other metadata for
each modification.

Developing Open-Source Scientific Practice 159

Code changes may follow a linear progression of commits. However, it
is more common for projects to include alternate development paths.∗ Given
the exploratory nature of research, several approaches to a problem are often
pursued simultaneously. In such cases, commits will resemble a tree with
several branches diverging from a common base or trunk. When exploring
these alternative approaches on different branches, several branches may
eventually converge and need to be merged back together. If the changes in
each of these branches do not overlap with one another, the VCS can merge
them together in a completely automated fashion. When there are conflict-
ing changes in different branches (e.g., edits to the same line of code), then
manual intervention is required. But in all cases, a VCS is the only reason-
able solution for managing the evolution of multiple branches of parallel
development in a set of files (whether written documents, computer code, or
data).

In the design of more modern VCS such as Git,† an important considera-
tion is woven into the core of the system: built-in data integrity verification via
cryptographically robust fingerprinting of all content. The basic idea is that
at every commit, the VCS computes a “fingerprint” of the content being com-
mitted as well as the data it depended on.‡ This makes it possible to establish
the integrity of the entire history of a repository at any point, by computing
these fingerprints and comparing them against the stored one. By the nature
of hash functions, even small changes will result in new hashes. This key
design idea is used by Git for all kinds of internal operations; but it also
means that when a scientist gets a copy of a repository, he or she can be con-
fident the content (including every recorded change) has not been tampered
with in any way.

Strong guarantees on data integrity are a necessary condition of any
reproducible workflow and one of the reasons why we emphasize so much
the pervasive use of modern VCSs as the foundation of a reproducible
research environment.

It is important to note that VCSs were developed for the management of
human-generated content such as computer source code or text documents,
not for the handling of large binary data that is common in science. By virtue
of their design, they tend to be somewhat inefficient if you attempt to store
all the changes in a project with many frequently changing large binary files,
which somewhat limits their use for the tracking of all assets in a research

∗ This tendency becomes more pronounced in collaborative projects (see Section 6.4).
† From this point on, we will mainly focus on Git, which is our preferred VCS. It is also the one

that is mostly widely used in the scientific Python community.
‡ More precisely, a hash function is evaluated on the content of the commit and the hash of

all commits it depends on, which creates a directed acyclic graph of hash values that signs the
entire repository. Today, these systems employ the SHA1 hash function, but other hashes
could be equally used if necessary.

160 Implementing Reproducible Research

project. But new efforts exist to mitigate these limitations, such as the git-
annex∗ project, which uses Git for storing all metadata about large binary
assets, along with a static (configurable) storage resource external to Git for
the assets themselves. This approach makes it possible to smoothly integrate
the management of binary data within a VCS workflow, without creating an
explosion in the size of the VCS storage area.

The use of version control should become second nature; we routinely
use it for everything—including the writing of this document.† We suggest
researchers adopt a practice of pervasive version control: research codes,
teaching materials, manuscripts, and data analysis projects should be devel-
oped, from the beginning, always using VCSs that track the actual history of
everyone’s contributions.

6.3.2 Execution Automation

Just as it is impossible to reproduce old results if you don’t have access to
the code and data that created them (hence the need for version control), it is
equally impossible if you did not record somewhere how the code and data
were used. You could write everything down and manually follow these
instructions again later on, but a more sensible approach is to record them
in a machine-readable way so that the computer can execute them. Further-
more, since most computational processes are a chain of executions where
each step depends on the previous or on inputs that may have been modified,
ideally you should be able to understand the structure of these dependencies
and only run things when necessary.

Since building complex software with many source files is repetitive, full
of detail, and time consuming, this is another task for which the software
development world has developed powerful, automated solutions. The ven-
erable make system is the workhorse of process automation [21]. It has a
declarative syntax for expressing dependencies between sources and targets
and a simple (timestamp-based) mechanism for resolving when dependen-
cies need to be rebuilt. To get an idea how this works, consider the situation
where a plot is created by a script, which reads a data file. In the parlance of
make, the output plot is a target that depends on two sources—the data file
and the script. If you type make plot, for example, make checks whether
the script or data has been modified after the current plot was generated; if
so, it calls the script on the data to generate an updated plot. In this sim-
ple scenario, using make does not offer much more than just running the
script by hand. However, if the data this script consumes are generated by
a chain of other scripts and data files, then the benefit of make becomes
apparent.

∗ http://git-annex.branchable.com.
† http://github.com/fperez/repro-chapter-oss.

http://git-annex.branchable.com.
http://github.com/fperez/repro-chapter-oss.

Developing Open-Source Scientific Practice 161

More modern systems also exist, and a detailed review of the options
is beyond our scope. But whether running a sequence of scripts to pro-
duce some figures, compiling your software, or creating the final PDFs for
a grant proposal, you should be able to do so by typing make results or
the equivalent syntax in your system of choice. Once things are automated
in this way, it becomes possible for others (humans or machines and even
yourself on a new system or months later) to reliably repeat the process.

6.3.3 Testing

Computing is error-prone. While there is no foolproof way to rid computing
of error, there are ways to limit and reduce it. One of the most successful
and widely used techniques involves comprehensive testing, so that bugs
(i.e., errors) are found quickly. Finding bugs as soon as possible in the devel-
opment process is extremely valuable. Depending on the nature of the bug,
it may reveal a fundamental problem with the overall design of your code
requiring months more of coding. Even small errors that are easily fixed may
require rerunning months of analysis. To reduce the amount of time it takes
to uncover bugs and to ease the pain of debugging your code, it is essential
to adopt a rigorous testing practice up front.∗

Testing should be performed on multiple levels and begun as early as
possible in the development process. For programs that accept input either
from a user or file, it is important that the code validates the input is what it
expects to receive. Tests that ensure individual code elements (e.g., functions,
classes, and class methods) behave correctly are called unit tests. Writing unit
tests early in the process of implementing new functionality helps you think
about what you want a piece of code to do, rather than just how it does it.
This practice improves code quality by focusing your attention on use cases
rather than getting lost in implementation details. By thinking about the test
at the outset, you can avoid finding that the code you just wrote is a huge,
untestable mess. It also improves documentation because an example (i.e.,
the test case) is often better than an explanation. And if you regularly run the
test, you will quickly know when your code no longer works for the example
(something you may never notice in the case of explanatory text). Finally,
unit testing leads to more robust code as you will more quickly isolate bugs,
which makes them easier to fix [27].

Testing is mainly a language-specific pursuit (as it must be implemented
in the programming language of a given project to be most effective). The
authors are most familiar with the Python-based world, and [4] is a good
hands-on starting point for the tool most widely used in scientific Python
projects, namely, the nose† testing framework.

∗ While testing is an extremely useful practice, we should also point out that it is often more
interesting work than debugging.

† http://nose.readthedocs.org.

http://nose.readthedocs.org.

162 Implementing Reproducible Research

6.3.4 Readability

While writing code that is well tested and systematically managed by a
modern VCS is important, code that is not easy to read will be difficult to
understand, correct, and modify. Readable code is written with explanatory
names, clear logical structure, and comprehensive documentation where
necessary. There is an extensive and growing literature on stylistic aspects of
good programming [3,9,13,17,22]. Because scientific papers and grant sub-
missions have become the currency of the scientific realm, many scientists
have read classics such as Strunk and White’s Elements of Style. Yet, even
as an increasing amount of our work is produced in lines of code, there is
a paucity of scientists paying the same attention to the elements of good
programming style. The emphasis on readability is included in this section
because even when you are the only one using or working on your code,
the chance that you will need to read your own code is high. Even when
your code is widely used and shared, you will still often be the one most
frequently reading it.

Self-documenting code, as the name implies, reduces the need for exter-
nal documentation by placing an emphasis on clear, well-written code that
is easy to read and understand. In mathematics, it is an accepted practice
to follow established naming conventions (e.g., capital letters for sets and
lowercase letter for set elements). It is equally expected that when making a
mathematical argument, one shouldn’t arbitrarily switch from functional to
relational notation. Similarly, using consistent and uniform naming conven-
tions when programming should be a standard practice. Brevity in naming
should be balanced against explicit and descriptive words. For example, you
might use the term download rather than get in a function call to down-
load a specific dataset from the Internet. Expressions are the next block to
readability. While mathematical manipulation (e.g., De Morgan’s laws) can
be used to great effect in making your expressions more easily understood,
it is often important to use the right level of abstraction. Higher-level pro-
gramming languages (e.g., Python and R) provide data structures (such as
n-dimensional vectors or statistical formulas) that enable the code to be more
readily understood at the level of the mathematical ideas they implement.
Finally, the overall control flow of your code must be clear and easy to fol-
low. Finding the best control flow requires a deep understanding of your
problem and an in-depth knowledge of programming methodology and the
specifics of the language you are using. Like good writing, good coding is
achieved through deliberate practice.

Inspired by the idea of self-documenting code, some argue that good
code does not need comments. Indeed, liberally commenting your program
to compensate for poorly written, obscure code is counterproductive. Com-
ments that merely explain how a piece of code works add limited benefit.
If code is so obscure to need explanation, it is better to revise or rewrite it.
Another limitation of comments (as with many types of documentation) is

Developing Open-Source Scientific Practice 163

that it is often uncoupled from the actual code. This means that there is no
way to ensure that the two do not diverge. And, if they diverge, it may not
be obvious which is correct.

To illustrate how comments and documentation can enhance readabil-
ity of your code, we discuss the commenting and documentation system
that has been developed by NumPy and is used by other scientific Python
projects. While this section is specific to the tools and processes put in place
in the scientific Python community, the general ideas are more broadly
applicable.

In 2007, NumPy lacked good reference information for the various func-
tions, classes, and modules it provided. Users and developers had access to
the source code, a nearly 400-page “Guide to NumPy” and an active mail-
ing list. Yet, it was clear that this level of documentation was not enough.
To address this, the community began a yearlong effort to develop a docu-
mentation string standard.∗ In Python, a documentation string (or docstring)
is any string in the first line in an object’s (e.g., function and class) definition.
Since docstrings are embedded in the source code, they are readily available
to anyone directly viewing the source. When the code is executed, this string
is associated with the object and can be programmatically accessed and
used by introspection tools such as IPython. Docstrings can also be accessed
for autogenerating documentation. Similar functionality exists in other pro-
gramming languages such as R. Even in languages that don’t include this
functionality, it is common practice to include comments at the beginning of
object definitions that are used similarly.

Given our desire for better documentation and wanting to leverage
Python docstrings, the discussion focused on what they should include.
Besides the information such as a brief statement of purpose as well as
input and output parameters, we identified several issues with particular
relevance for scientific applications. For instance, many algorithms had sim-
ple mathematical expressions that were not immediately obvious from their
implementation in Python, but which a few equations written in LATEX make
clear. Often, our code implemented functionality described in peer-reviewed
academic journals that could be referenced. Finally, we could provide short
mini-examples of how to use the code. Since Python makes it easy to include
examples in the docstrings as part of the test suite, this also improves test
coverage and helps ensure that the documentation doesn’t get out of sync
with the actual code. These types of standards encourage contributors to
explicitly think about input, output, equations, examples, and references.
This, in turn, helps promote more deliberate and rigorous coding practices.
And when reviewing code already written, having these details recorded
aids in understanding whether the code is performing as expected.

∗ http://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt.

http://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt.

164 Implementing Reproducible Research

6.3.5 Infrastructure

For small projects, managing everything by hand may be straightforward.
But as your research project (code, data, and text) evolves, the burden of run-
ning your tests, building your project, and generating reports will become
overwhelming. Eventually you will need tools and procedures in place to
take care of these details for you. Even when the project is small enough that
you can manually manage things, automating these tasks can be extremely
beneficial [7].

We have often seen colleagues shy away from adopting certain practices
related to the infrastructure that supports their computational research with
claims of not having enough time or energy to invest in learning how to use
them. This is a good example of being penny wise and pound foolish: a small
initial investment in learning best practices pays off manyfold over time in
increased productivity and smoother workflows that can support collabo-
ration and scale to complex scenarios. The manual execution and repetition
of common computational tasks may appear like an easy solution, but it is
error-prone and impossible to apply reliably in collaborative settings beyond
two or three people.

In the next section, we will discuss collaborative scenarios, but we want
to address first how certain tools and practices have enormous value even
for the individual researcher. And these are precisely the foundation that
will then make it possible to naturally evolve a project from a single-person
effort into a collaboration without a breakdown of complexity.

6.3.5.1 Hosted Version Control

While Git can be used purely locally, there are many advantages to having
your repositories replicated on a server that is externally accessible. Git’s
design allows it to simultaneously keep track of multiple repositories tied
to a single project, and it can synchronize and merge work between these
multiple sources. Each of these sources is denoted a remote in Git lingo, and
while a remote can be simply another location in your hard drive, the most
useful kind of remotes are those that are physically in other computers. By
synchronizing your local repository with an external remote, you simulta-
neously have an automatic backup of your entire project’s history. But more
importantly, this external remote is now available to synchronize with other
computers, so you can cleanly and robustly synchronize multiple machines,
even if you do independent development on each of them at some point.

There are many services online that host repositories from Git and other
VCSs; in recent years, GitHub∗ has gained wide adoption among the com-
munity of scientists who write open-source software in Python and R. As
discussed in Section 6.4.2, these systems truly shine once you use them to

∗ http://github.com.

http://github.com.

Developing Open-Source Scientific Practice 165

collaborate with others, since collaboration hinges on the ability of multiple
parties to synchronize their work.

6.3.5.2 Continuous Integration

Once your computational code is stored in version control repositories and,
has tests and scripts that automate the execution of these tests, then it
becomes possible to have a machine do this for you, all the time, bugging
you only when something goes wrong. This is known as continuous integra-
tion (CI). CI systems are servers that grab the most recent version of a project
from version control, execute the test suite, and gather statistics of this pro-
cess. They are typically configured to log and summarize these results and
to only produce alerts when something goes wrong (typically by e-mail, but
more aggressive options such as SMS are possible). The amount of data col-
lected during the test execution can be configured, so it is possible to have
setups that range from a basic summary of success and failure to a detailed
collection of metrics on the performance evolution of a codebase.

These systems are called continuous because they are meant to be used
all the time: as the codebase evolves (typically when changes are commit-
ted to an official version control repository), the system fires automatically
and collects its data. Therefore, these systems can also fulfill an important
role: over time, they accumulate a historical retrospective of a project’s evo-
lution. And this is where the importance of collecting detailed metrics is
realized: a CI system configured to do a fairly detailed analysis of a project
when it runs becomes an invaluable tool to analyze what is happening over
time. Is performance degrading in subtle ways that are not evident from
day to day? Is the fraction of code that is tested (known as the test cover-
age) going down over time, indicating that new contributions are not being
tested as thoroughly as the older code? Questions like these are impossible
to answer in a manually managed workflow, yet they come for free once a
few tools are set up, and can be an extremely important part of managing
a healthy computational pipeline. A more detailed discussion of CI can be
found in [5].

While a number of these tools exist, one of the most widely used by
projects from many different programming languages and communities is
called Jenkins.∗ Jenkins is a highly configurable CI system that can be run on
a personal laptop or internal server and that is available hosted in the cloud
as a service from a variety of sources. Travis CI† is a purely hosted CI system
that, while not as configurable for fine-grained statistics as Jenkins, requires
minimal setup, is free for open-source projects, and is tightly integrated with
the version control hosting service GitHub.

∗ http://jenkins-ci.org.
† http://travis-ci.org.

http://jenkins-ci.org.
http://travis-ci.org.

166 Implementing Reproducible Research

6.3.5.3 Documentation Generation Systems

We have already discussed the importance of documenting your code, and
in recent years, a number of systems have been developed that allow you to
easily produce complex documentation that combines handwritten narrative
sections with parts that are automatically extracted from the code. While the
ability to automatically extract and generate documentation is valuable and
important, we stress that it is critical that your projects have at least a mod-
icum of narrative explaining the purpose of your tools, their scope, how to
use them—with examples—and how the various concepts fit together. This
kind of information cannot be gleaned from automatically extracted frag-
ments that refer to individual function calls, and without it, your tools will
be much less useful as a building block of robust scientific practice.

A number of tools exist for the generation of documentation, from the
well-known LATEX to systems focused on the generation of source-based
documentation such as Doxygen∗ and newer ones designed for a combi-
nation of narrative and automatic documentation, like Sphinx.† There are
other such systems, but Doxygen and Sphinx are widely used in the soft-
ware world, actively developed and with rich toolkits that support complex
documentation tasks.

Before discussing these tools, it is important to note that in recent
years, new formats for authoring documentation have emerged, in particular
reStructuredText‡ (often abbreviated as reST) and Markdown.§ These for-
mats have slightly different philosophies, but they both aim at being more
friendly to manual authoring and reading than LATEX, while supporting more
convenient integration with HTML output. They both share the basic phi-
losophy of looking like plaintext with simple visual markup for commonly
used tasks, for example, marking emphasis and boldface with asterisks
(e.g., *italics* → italics and **boldface** → boldface). Markdown is
aimed at the production of HTML and is a strict subset of HTML; it defines
only a few special markup rules and leaves more complex tasks to be done
by hand in pure HTML. In contrast, reST is a highly extensible format, where
new commands (called “roles” and “directives”) can be created and where
the user can define entire new output pipelines by adding plugins written in
Python to the processing stream. For example, the SciPy Conference Proceed-
ings¶ are written in reST and the PDF version is generated by a custom LATEX
translator written in Python.

So while Markdown is simple and easy for the production of simple
HTML, it is not well suited to the generation of complex multipart docu-
ments with rich internal cross-referencing, bibliographic support, etc. Both

∗ http://doxygen.org.
† http://sphinx-doc.org.
‡ http://docutils.sourceforge.net/rst.html.
§ http://daringfireball.net/projects/markdown/syntax.
¶ http://github.com/scipy/scipy_proceedings.

http://doxygen.org.
http://sphinx-doc.org.
http://docutils.sourceforge.net/rst.html.
http://daringfireball.net/projects/markdown/syntax.
http://github.com/scipy/scipy_proceedings.

Developing Open-Source Scientific Practice 167

Markdown and reST support LATEX for mathematical expressions, and with
the right toolchain for rendering the output, they can generate a final PDF
document that has been typeset by LATEX. In talking about new documenta-
tion formats, it is important to mention the universal document converter,
pandoc.∗ Pandoc is capable of translating between many document formats,
including taking Markdown or reST input and producing HTML, LATEX,
and many other formats. It is an invaluable tool in managing a modern
documentation workflow.

Returning our attention to systems that produce final output based on
these formats, Doxygen has its own syntax that combines HTML with spe-
cial commands for many tasks specific to computer source code, such as
the specification of variable types, function arguments, and return values.
It also supports Markdown, allowing users to use this more readable and
concise syntax for the generation of common HTML markup. Sphinx, on
the other hand, is designed around reStructuredText: it supports the basic
format and provides a number of additional extensions aimed at the docu-
mentation of software projects. Sphinx was originally developed to produce
the official documentation for the Python programming language but has
become much more widely used. For instance, the SciPy community has
developed an online wiki-like documentation editing system [33] on top of
Sphinx that leverages the documentation standard discussed in Section 6.3.4,
dramatically increasing the extent and quality of the NumPy and SciPy docu-
mentation.† Today, most Python projects use Sphinx as their documentation
system, and because of the flexibility and extensibility of reST, it has also
become widely used as a way of creating rich, complex documents with a
strong computational base even beyond Python. There are even some statis-
tics courses taught in R, which use Sphinx to create web-based notes with
embedded R code and automatically generated output.‡

We note that all the formats we have discussed here, LATEX, HTML,
Markdown, and reST, share one critical feature: they can be handwritten
in a plaintext editor, and they are stored in files amenable to version control
with the tools described earlier. This stands in contrast to the binary formats
of Microsoft Word and similar tools that lead to a terrible version control
experience and which we avoid in computational workflows.

6.4 Collaboration

Open-source developers build on one another’s work just as scientists build
on each other’s work. Since development communities are geographically

∗ http://johnmacfarlane.net/pandoc.
† http://docs.scipy.org/doc.
‡ http://www.stanford.edu/class/stats191.

http://johnmacfarlane.net/pandoc.
http://docs.scipy.org/doc
http://www.stanford.edu/class/stats191

168 Implementing Reproducible Research

spread and often dependent on contributions from volunteers, there has
been careful attention paid to efficient and productive tools and processes for
managing collaborations. As scientific practice becomes increasingly compu-
tational, it is imperative that we learn from the collaborative practices used
in the open-source world.

6.4.1 Distributed Version Control

Earlier we discussed how VCS should be the foundation of a reproducible
research workflow, even for a single investigator working in isolation. But
the true power of these systems comes when considering the need to collab-
orate with others. Modern systems such as Git and Mercurial were designed
from the ground up for large-scale distributed collaboration: Git was writ-
ten by Linus Torvalds, the creator of the Linux kernel, to coordinate its
development. The Linux kernel is arguably the largest and most complex
open-source development project today: version 3.7 of the kernel included
roughly 12,000 distinct sets of changes affecting over 1,100,000 lines of code
by nearly 1,300 individual contributors.∗ Git’s entire design aims to make
collaboration on this scale smooth and efficient, and it succeeds admirably.
Scientists can benefit from this power as well for any project that requires col-
laboration, whether it is the development of an open-source research code or
the writing of a manuscript or grant proposal with multiple authors.

Git and other tools like it are called distributed version control systems
(DVCSs) because they don’t depend on a central server for their functioning,
instead maintaining the entire history of a project inside every repository.
This is in contrast to legacy systems such as CVS and SVN that made a dis-
tinction between the “working copy” that users would work on and which
contained only the most recent version of files and a special repository
hosted on a central server that had the entire project history. The centralized
model does enable collaboration, but it also creates a number of problems
that the distributed model addresses. In a DVCS, there is no single point of
failure, as every repository carries all the project history and therefore serves
as an automatic backup.

More importantly, a DVCS enables anyone who can clone a repository
(the term used to indicate getting a full copy of an existing repository to start
new work off of it) to develop their own history with new commits, even
if they don’t have write permission to the original source from where the
repository was cloned. This means that once you have a clone of a repository
(which could be someone else’s or yours from a different computer), you
can start working on that copy and building new history even if you are
disconnected from the original system, such as when working on a plane or
train without network access. If at a later stage you decide to merge your

∗ http://lwn.net/Articles/526748.

http://lwn.net/Articles/526748.

Developing Open-Source Scientific Practice 169

new history with the original repository, the merge capabilities in all DVCS
make this straightforward.

This model of cloning an existing repository, building new history in
isolation, and then merging it back into a common history is the basis for
how these systems enable a fluid workflow for collaboration. When the time
comes for a merge operation, DVCS can communicate the necessary changes
even via e-mail attachments, but the simplest way to do so is to have a special
repository∗ in a common location that all parties have access to and where
the changes are pushed. Pushing, as the term suggests, means sending the
set of changes from one repository into another; once the changes have been
put into this central repository, all parties can pull them into their personal
copies to synchronize their states and continue working again. So in prac-
tice, the simplest and most common collaboration workflow with a DVCS is
one where each person has a copy they develop on, and they all connect in
a star topology to a central node where a shared copy exists that is used for
synchronization.

6.4.2 Code Review

In recent years, a number of web services have appeared that play the role
of this central node; the most popular of them by far is GitHub,† but oth-
ers such as BitBucket‡ and Gitorious§ play similar roles. GitHub has had a
tremendous impact in the open-source community, reaching in a few years
millions of active users and gaining rapidly popularity in scientific circles.
We can attest to the power of this platform with our own experience: IPython
moved its development to GitHub in early 2010 and immediately saw a rapid
uptick in the pace of contributions. The workflow for collaboration enabled
by GitHub was so much smoother than all previously available tools that
many people were more willing to send contributions, while the core team
was able to review and integrate these contributions at a much more rapid
pace.

The core element of the collaborative process on GitHub is known as
a pull request, and it is something akin to a public peer review of a set of
changes to a manuscript. Let us illustrate how it works with a simple exam-
ple: Alice wants to contribute to IPython, a project available on GitHub¶

but to which she does not have write access. She can do so by getting her
own personal copy of the IPython Git repository where she makes all the

∗ We note that this central repository does not change the distributed nature of the process:
while it plays a special role for purposes of synchronization, the central repository is otherwise
completely symmetrical to everyone’s personal copy in the information it holds and can be
replaced at any time in case it is lost or damaged from anyone’s copy.

† http://github.com.
‡ http://bitbucket.org.
§ http://gitorious.org.
¶ http://github.com/ipython.

http://github.com.
http://bitbucket.org.
http://gitorious.org.
http://github.com/ipython.

170 Implementing Reproducible Research

changes she wants, and once she is ready to share them with the IPython
team she can publish them on her GitHub user account.∗ At that point, she
can click on a button to create a pull request for these changes: this contacts
the IPython developers and creates a special page on the website that sum-
marizes her changes as well as allowing everyone to begin a discussion about
the changes. This discussion page allows the developers to ask Alice ques-
tions (even making comments on specific lines of her new code), and she can
respond to these questions, update her code with new commits in order to
address any required improvements, etc. Once the IPython developers are
satisfied with this review and discussion (which may happen immediately
or may require a lengthy back-and-forth process, depending on the changes),
they can apply the changes to the official IPython repository with a click of a
button. Once the changes are merged, they become part of the official project
source and every individual commit that was merged is credited to Alice
from the time she made it while she was working on her personal copy.
Furthermore, even closed pull requests remain available on the website to
inform future discussions, making the entire collaboration process an open
one.†

The pull request process allows for a dynamic and open peer review
process of all proposed changes to a project. The only special role that the
official project authors have is the ability to approve the final merging of new
changes, but otherwise everyone participates on an equal footing in terms
of access to tools. This highly symmetrical structure proves to be extremely
beneficial in encouraging a meritocratic process of contribution and review,
where there are few points of special authority and where the discussions
can remain focused around the contribution that initiated the pull request.
Paraphrasing how some of the GitHub employees describe the process in
public presentations: “a pull request is a conversation that starts with code.”

From a scientific research perspective, we should consider these ideas in
a broader context that goes beyond code: while peer review is one of the
pillars of how the scientific community moves forward, in practice, modern
scientific peer review is often an opaque, arbitrary, and limited process. The
open, dynamic, and ongoing process of peer review enabled by the GitHub
pull request system (or the equivalent ones that exist on other similar ser-
vices) stands in sharp contrast to some of our institutional traditions, and
our community could benefit significantly from adopting these ideas in our
own review practices [11].

It is worth noting that by using a DVCS, authors can maintain private
branches in the context of a publicly available project; this can be useful if
new work needs to be developed in private prior to publication and subse-
quent public release. By tracking the public repository but keeping a private

∗ http://gitub.com/alice/ipython. if her GitHub user name is alice, for example.
† http://github.com/ipython/ipython/pull/1732. is an example of pull request and the entire,

recorded review process.

http://gitub.com/alice/ipython.
http://github.com/ipython/ipython/pull/1732.

Developing Open-Source Scientific Practice 171

branch, they can maintain exclusive access to their new work until it is pub-
lished, while continuing to develop the openly accessible code with the rest
of the scientific community. Once the code is ready to be made public, the
new contributions can be seamlessly merged with the public version, and
their entire provenance (including information such as time of invention and
individual credit within the lab) becomes available for inspection. This sim-
ple observation shows how these tools can be used to balance the sometimes
valid requests for privacy that may exist in a research environment with
the desire for subsequent disclosure and publication, without losing any
of the benefits of version control with regard to attribution and provenance
tracking.

6.4.3 Infrastructure Redux

Once we have adopted tools that allow for distributed collaboration (e.g.,
Git and GitHub) and our computational machinery has tests and scripts that
allow for automated installation and execution of the test suite, we achieve
a number of important benefits that we can think of as machine collaboration.
That is, once we have described in a standard way how our software must
be installed or tested, then not only can our colleagues do that as they start
collaborating with us, but so can machines. The Travis CI system, for exam-
ple, can be configured to automatically run a project’s test suite on every
pull request created on GitHub. This means that when the humans come to
review the proposed code, a report is already attached to the pull request
that indicates whether the test suite passed or not (and provides details of
any failures). This can save enormous amounts of time and make the col-
laboration much smoother, as reviewers don’t need to wait before starting a
new review for the tests to complete on their system and may even review
when they are away from a development machine capable of actually run-
ning the tests. In the IPython project, we have seen the value of having this
information always ready, as it reduces the small but persistent amount of
“friction” we had before when each reviewer was responsible for running all
tests first locally for each new pull request. While we still have tools for that
and occasionally run tests beyond what Travis does (as Travis doesn’t install
every optional library we require), saving even 5 minutes for each review can
make a huge difference for a project that sometimes has to process multiple
pull requests in a day.

In a similar vein, the ReadTheDocs∗ project does for documentation what
Travis does for CI. ReadTheDocs hosts documentation built with Sphinx but,
more importantly, can be configured to automatically build it when new
commits are made to the project at GitHub. In this way, users can always
find a fully updated build of the project documentation without developers
having to spend time on this.

∗ http://readthedocs.org.

http://readthedocs.org.

172 Implementing Reproducible Research

Automated CI testing and documentation building are only two aspects
of the benefits that can be gained from building on a foundation of dis-
tributed version control, well-automated processes, integrated test suites,
and documentation generation. Once all these elements come together, a
virtuous cycle can be sustained where the focus of the scientists or develop-
ers can be on producing new results (be they text, code, or computational
outputs), and this machinery ensures that everything is validated and
documented along the way.

While some of these points are more easily applied in the context of pure
software development, the critical thing is how these ideas and tools work in
concert to produce an environment of robust, reproducible results. Adopt-
ing this viewpoint, it is always possible to adapt to the specifics of any given
project and apply only what is relevant. We conclude noting that the prac-
tices, tools, and ideas described in the previous two sections (Sections 6.3 and
6.4) may be put to use relatively quickly, but writing high-quality, trustwor-
thy, scientific code is not easy. Mastery and expertise in developing reliable
code that can be trusted to provide valid results takes sustained focus and
deliberate practice.∗

6.5 Communication

Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want
a computer to do.

Literate programming (1984)
Donald Knuth

Whether engaging colleagues in data analysis, educating students about
numerical algorithms, or publishing computational results, scientist need
to ultimately convey their computational work to others—not just the arti-
facts of that work but the specific details of how those artifacts arose. We
begin with a brief description of some existing tools for literate program-
ming as a backdrop to present a more recent approach we refer to as literate
computing. Again, our view is shaped by the desire to tackle the life cycle
of computational research described in Section 6.2.1 in an integrated way.
From this perspective, we argue that the literate computing approach is a
better fit to the needs of reproducibility in computational research than tra-
ditional literate programming tools and will present the IPython Notebook
as an example implementation.

∗ http://norvig.com/21-days.html. is a recommended reading.

http://norvig.com/21-days.html.

Developing Open-Source Scientific Practice 173

6.5.1 Literate Programming

Donald Knuth proposed literate programming in the early 1980s, and a com-
plete description of this approach to computer programming can be found
in his later book of the same title [19]. Knuth’s concern was the development
of a better approach to documenting computer software; he devised a pro-
cess whereby programmers would write literate source files that describe in
full prose the ideas underlying a given program, interspersed with the code
fragments implementing the actual computations. Knuth developed tools
that can process these input files to produce two different representations:
a tangled code file meant for compilation and execution by a computer and a
woven file containing the formatted documentation. Knuth’s original imple-
mentation, the WEB system [18], was focused on producing Pascal code and
LATEX documentation, but this basic idea has been extended to many other
programming languages and documentation systems.

The R community has embraced the ideas behind literate programming,
and a mature implementation of the concept exists for R in the Sweave
system [20]. Sweave is one of the central elements of the Bioconductor sys-
tem [8,10] for computational biology and bioinformatics. All Bioconductor
packages must be accompanied by at least one vignette, a literate program
that contains executable code illustrating the tasks the package is meant
to perform. Vignettes can be read in PDF format, but functions exist to
automatically extract all the R code for immediate execution. The journal
Biostatistics encourages authors to use literate programming tools such as
LATEX and Sweave when submitting articles they wish to be designated
reproducible [28].

A new entrant to the R community that is gaining rapid adoption is
the knitr package.∗ Knitr can be seen as a highly evolved Sweave with a
number of improvements, but still within the conceptual lineage of literate
programming tools. The use of literate programming tools is gaining increas-
ing traction in statistical education as well. For instance, at UC Berkeley,
students taking computational classes in both the Statistics Department and
the Division of Biostatistics are encouraged to use LATEX with Sweave or LATEX
(or R Markdown) with knitr.

As the earlier examples suggest, literate programming has been most
commonly adopted when the desired final document is intended primarily
for human consumption. A few, if any, large software libraries are writ-
ten this way. In fact, the most prevalent use of literate programming has
been among scientists to communicate computational ideas and results to
one another. These ideas have also influenced open-source software projects
where tools have been developed to automatically generate project docu-
mentation based on source files and to create live documentation containing

∗ http://yihui.name/knitr.

http://yihui.name/knitr.

174 Implementing Reproducible Research

the output from embedded code run during document generation (see
Section 6.3.5).

6.5.2 Literate Computing

Tools described in the previous section for literate programming are mature
and have been used to great effect to improve the quality of documentation
in scientific programs and data analysis, especially in the R community. But
they remain rooted in the original model proposed by Knuth, of authoring
a literate file that is then postprocessed by various tools to produce either
documentation or executable code.

In this section, we present an alternate approach to improving the
connection between code and documentation that we refer to as literate com-
puting. Our choice of terminology emphasizes the act of computing itself
rather than the writing of code, as the systems we describe are all centered
around interactive environments where the user can enter code for immediate
execution, obtain results, and continue with more commands that produce
new results based on the previous ones. A literate computing environment
is one that allows users not only to execute commands but also to store in a
literate document format the results of these commands along with figures
and free-form text that can include formatted mathematical expressions. In
practice, it can be seen as a blend of a command-line environment such as the
Unix shell with a word processor, since the resulting documents can be read
like text but contain blocks of code that were executed by the underlying
computational system.

The earliest full-fledged implementation of these ideas is the graphical
user interface of the Mathematica Notebook system, which dates back to early
versions of Mathematica on the NeXT computer platform and took advan-
tage of the superior graphical capabilities of NeXT. Today, a number of
other systems (both open-source and proprietary) provide similar capabil-
ities; on the open-source front, we notably mention the Maxima∗ symbolic
computing package, the Sage† mathematical computing system, and the
interactive computing project IPython, on which we will focus the rest of our
discussion.

6.5.3 IPython Notebook

In 2011, a web-based notebook was developed in IPython that connects to the
same interactive core as the original command-line shell but does so using
a web browser as the user interface, automatically enabling either local or
remote use as the system running the web browser can be different from that

∗ http://maxima.sourceforge.net.
† http://www.sagemath.org.

http://maxima.sourceforge.net.
http://www.sagemath.org.

Developing Open-Source Scientific Practice 175

FIGURE 6.1
The web-based IPython Notebook combines explanatory text, mathematics, multimedia, code,
and the results from executing the code.

executing the code, with all communication happening over the network.
Figure 6.1 shows a typical notebook session with code, text, mathematics,
and figures.

The driving idea behind the IPython Notebook is to enable researchers
to move fluidly between all the phases of the research life cycle described
in Section 6.2.1. If the environment where we conduct our exploratory
research can also support all subsequent stages of this cycle and does so
while smoothly integrating with the version control and process practices
we’ve previously espoused, the likelihood that a final published result will
be reproducible increases significantly. The Notebook system is designed
around two central ideas: (a) an openly specified protocol to control an inter-
active computational engine and (b) an equally open format to record these
interactions between the user and the computational engine, including the
results produced by the computations.

176 Implementing Reproducible Research

Before diving into the specifics of these two ideas, we note that the previ-
ous design is independent of the Python language: while IPython started
its life as a Python-specific project, the vision of the Notebook system is
language-agnostic. First, while working in Python, users can mark the entire
code blocks for execution via a separate language by using a special syntax
on the block’s first line: a user can, for example, start a block %%R, %%octave,
%%bash, or %%ruby and IPython will execute the entire block with the
respective system. The development community is also busy implementing
similar support for new and experimental scientific languages such as Julia,
enabling a user to control from a single IPython Notebook, a workflow that
combines the most commonly used high-level languages in modern scientific
computing. Second, an entire notebook can be executed in a different language
if a remote engine (referred to as a kernel) exists that implements the interac-
tion protocol. As of this writing, prototype kernels are being developed for
Ruby, JavaScript, R, and Julia.

The IPython architecture provides a way to capture, version control, reex-
ecute, and convert into other output formats, any computational session.
Notebooks can be shared with colleagues in their native form for reexecution
or converted into HTML, LATEX, or PDF formats for reading and dissemina-
tion. They can be used in slideshow mode to give presentations that remain
connected to a live computation and can be exported into plain scripts for
traditional execution outside of the IPython framework.

The IPython protocol consists of messages in JSON (JavaScript Object
Notation) format that encode all actions that an interactive user can request
of a computational kernel, such as executing code, transferring data, or
sending results, among many others. While this protocol is implemented
in IPython, it can be independently implemented to provide new kernels
also able to interact with the notebook interface and clients. The notebook
file format is a simple JSON data structure that contains a series of one or
more worksheets, each of which is a list of cells. A cell can contain either
text or code, and code cells can also have the output corresponding to the
execution. All substructures in the notebook format (the entire notebook,
the worksheets, and the individual cells) have attached flexible metadata
containers; this metadata can be used by postprocessing tools. The file for-
mat stores the communication protocol’s payloads unmodified, so it can be
thought of as a structured and filtered log (since the user chooses what to
keep while working interactively) of the computation.

The IPython project has taken elements pioneered by the Mathematica
and Sage Notebooks and created a generic protocol and file format to control
and record literate computing sessions in any programming language. This
was a deliberate choice in contrast to the literate programming approach: by
providing a tool that operates close to the live workflow of research comput-
ing (in contrast to the batch-processing mode encouraged by classic literate
programming tools), the resulting documents are immediately reproducible

Developing Open-Source Scientific Practice 177

sessions that can be published in their own right or as companion materials
to a traditional manuscript. Given how IPython also includes support for
parallel computing, which we don’t discuss here in the interest of concise-
ness, the system provides an end-to-end environment for the creation of
reproducible research.

The real-world possibilities this offers were demonstrated during a col-
laboration in 2012 between the IPython team, a microbiology team led by
Rob Knight from the University of Colorado and Greg Caporaso from the
University of Northern Arizona, and Justin Riley from MIT who created
the StarCluster∗ system for deployment and control of parallel resources
on Amazon’s EC2 cloud platform. As part of an NIH-funded workshop to
explore the future of genomics data analysis in the cloud, this combined
team collaborated on creating a fully parallelized analysis comparing the
predictive behavior of different sizes and locations of gene sequence reads
when reconstructing phylogenetic trees. The microbiologists had developed
a serial prototype of this idea using their Qiime libraries [6], but a large-scale
analysis with a full dataset would require roughly a month of CPU time on
a single workstation. By locating the IPython Notebook server on Amazon
cloud instances, the entire team was able to log into a single instance and
by editing the code directly in the cloud, in a single day turn this proto-
type into a set of production Notebooks that would execute the analysis in
parallel using multiple Amazon servers. Once the parallel code was tested, it
became evident that there was not only an interesting example of using cloud
technologies for rapid development of research ideas but also a biologically
relevant finding; within a week, the team had completed a more extensive
run using 24 hours of execution on 32 nodes and submitted a manuscript
for publication [31]. This paper is now accompanied by all of the IPython
Notebooks that enable any reader to fully reproduce our analysis, change
parameters, and question our assumptions, without having to reimplement
anything or be hampered by lack of access to the code and data. We have
made available not only the final notebooks but also the Amazon Virtual
Machine Images (data files that represent a virtual computer on Amazon’s
cloud platform), so that the entire analysis can literally be reexecuted under
identical conditions by anyone with an Amazon account.

This example, anecdotal as it may be, indicates the validity of the vision
we propose here: that by providing tools that encompass the entire cycle of
research, from exploration to large-scale parallel production and publication,
we can provide the scientific community with results that are immediately
accessible to others and reproducible, seeding the continued evolution of the
research process.

∗ http://star.mit.edu/cluster.

http://star.mit.edu/cluster

178 Implementing Reproducible Research

The IPython project has also developed tools to make it easy to share
and disseminate content created as notebooks in a variety of forms. The
Notebook Viewer∗ is an online service that renders any publicly available
IPython Notebook as a web page. This enables users to share notebooks by
simply putting them online and pointing colleagues to the rendered web
page. The same technology that powers the Notebook Viewer service can
also generate HTML files suitable for inclusion in other websites, in particu-
lar, blogs. Since a lot of rapid technical communication is happening today
on the Internet via blogs, this is an important aspect of linking reproducible
research to the rapid feedback cycle of web-based discussion. With a single
command, a user can convert a Notebook file into HTML ready for posting to
a blog, and this is already being used by scientists to write both short techni-
cal posts and also more complex materials: Jose Unpingco, a researcher with
the US Department of Defense, is currently working on a book titled Python
for Signal Processing, and this book is available during writing as a GitHub
repository.† This repository contains a series of IPython Notebooks so that
readers can directly execute the code in the book, and they are also being
published as a series of blog posts as they become available,‡ so readers can
comment and discuss with the author throughout the process of book devel-
opment, and they can do so based directly on the actual code that creates all
the examples in the book.

The signal processing book is, to our knowledge, the first example of
a full book being written as a collection of executable IPython Notebooks,
but this follows a tradition created by Mathematica, whose documentation
is itself a collection of executable notebooks. Furthermore, in recent years,
Rob Beezer, from the University of Puget Sound, has developed a popular
Introductory Linear Algebra book [2] that is based on the Sage system and
also combines the mathematics and text with code that can be directly exe-
cuted and modified by the readers. This ability to “close the loop” between
what the authors had on their screens and what their readers can execute
themselves is an important element of the movement toward reproducibility
in research.

As a concrete implementation of the ideas of reproducible research using
the tools we’ve described in this chapter, during the ongoing process of
research itself, we can point to work being carried by a collaboration where
one of us (FP) is a member, on novel ways to model the mathematical struc-
ture of the signal generated by MRI devices in the imaging of water diffusion
in the brain. This work, as yet unpublished, is being developed as an open
repository on GitHub§ where all code for our research is posted during
writing, all computational experiments are created as IPython Notebooks,

∗ http://nbviewer.org.
† http://github.com/unpingco/Python-for-Signal-Processing.
‡ http://python-for-signal-processing.blogspot.com.
§ http://github.com/fperez/spheredwi.

http://nbviewer.org.
http://github.com/unpingco/Python-for-Signal-Processing.
http://python-for-signal-processing.blogspot.com
http://github.com/fperez/spheredwi.

Developing Open-Source Scientific Practice 179

and submitted manuscripts are created directly from the code and notebooks
(along with additional narrative written by hand).

The aforementioned tools are also playing a central role in the last stage
of the computational research life cycle, education. We will increase our
chance that the next generation of scientists adopts improved reproducibil-
ity practices if we educate them with the same tools that we use for everyday
research, and a couple of modern efforts that aim to bring improved compu-
tational literacy to scientific research have adopted the IPython Notebook.
Software Carpentry∗ is a project funded by the Alfred P. Sloan Founda-
tion and led by Greg Wilson at the Mozilla Foundation whose motto is
Richard Feynman’s famous “What I cannot create, I do not understand.”
They produce, with rigorous follow-up and assessment, workshops aimed at
working scientists (typically graduate students and postdoctoral researchers,
but always open to broad audiences) and whose purpose is to instill in them
a collection of skills and best practices for effectively using computing as a
daily research tool. The Software Carpentry workshops cover topics ranging
from the basics of the Unix shell to version control, Makefile automation of
processes, and basics of scientific Python including data analysis and visu-
alization. They have recently adopted the IPython Notebook as the base
system for teaching the scientific Python parts of their curricula and provide
the IPython team with direct feedback on its strengths and weaknesses as an
educational tool. In a similar vein, Josh Bloom from the astronomy depart-
ment at UC Berkeley has led, for a number of years, 3-day workshops on
the use of Python as a tool for scientific computing.† These are open to the
entire campus community and followed by an optional for-credit seminar
where students learn more advanced skills for using Python as a research
tool. F. Pérez and other members of the IPython team at UC Berkeley regu-
larly lecture in the bootcamps and courses, where the notebook is the means
for the delivery of course materials and interactive lecturing. While we have
identified a number of weaknesses and areas for improvement, we have also
found this environment to be markedly superior to all previous tools we had
used in the past for teaching in similar contexts.

As these capabilities in IPython reach wider usage, with scientists now
developing complete books and lecture series based on the system, we are
considering a number of new challenges and questions introduced by these
capabilities. The interactive computing model is a fluid and natural one,
but we need to find ways to extend it into the development of longer-term
production codes that are robust, documented, tested, and integrated into
reusable libraries. This means bridging the gap between a scripting mentality
and a developer one, and while we have already made progress on that front
in IPython, many questions remain open for the future.

∗ http://software-carpentry.org.
† http://pythonbootcamp.info.

http://software-carpentry.org.
http://pythonbootcamp.info.

180 Implementing Reproducible Research

6.6 Conclusion

As research grows increasingly dependent on computing, it becomes crit-
ical for our computational resources to be developed with the same rigor,
review, and access, as the results they support. In particular, we believe
that reproducibility in computational research requires (1) sharing of sci-
entific software, data, and knowledge necessary for reproducible research;
(2) readable, tested, validated, and documented software as the basis for reli-
able scientific outcomes; (3) high standards of computational literacy in the
education of mathematicians, scientists, and engineers; and (4) open-source
software developed by collaborative, meritocratic communities of practice.

Achieving these goals will not be easy. It requires changing the educa-
tional process for new scientists, the incentive models for promotions and
rewards, the publication system [25], and more. In this chapter, we focused
on the need for an open-source ecosystem for scientific computing developed
by communities of practice. We then introduced several tools and practices
necessary—but not sufficient—for reliable code that can be the basis of repro-
ducible research. We illustrated these ideas with examples of how they have
been applied and advanced in the open-source scientific Python community.
Finally, we presented the IPython project’s powerful combination of inter-
activity, distributed and remote computing features, and literate computing
functionality as a natural integration point for the computational research
life cycle in order to make it more fluid, efficient, and reproducible.

We emphasize that the mechanical reproduction of computational results
is not an end in itself. The ultimate goal is to bring the rigor, openness, cul-
ture of validation and collaboration, as well as other aspects of reproducible
research to our everyday computational practices. This is not a goal we will
happily attain one day and then move on to pursue another; it must become
and remain an ongoing part of our scientific practice.

Acknowledgments

We thank all the members of the scientific Python community as well as
the many scientists from various labs whose work and ideas have inspired
what we have presented here. John D. Hunter, to whom this chapter is ded-
icated, created the matplotlib graphics library that has been a central pillar
of the scientific Python ecosystem; his tragic early passing in 2012 was a per-
sonal blow to the authors as well as a loss to our community. Brian Granger
and Min Ragan-Kelley have worked closely with FP on the development of
IPython for a number of years and are responsible for many of the ideas

Developing Open-Source Scientific Practice 181

that the project embodies. Matthew Brett has through long collaboration and
patient discussion helped clarify and refine many of the ideas presented
in this chapter. Titus Brown, Vincent Carey, Paul Ivanov, Jean-Baptiste
Poline, and Stéfan van der Walt provided valuable feedback on drafts of
this chapter.

References

1. D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy,
S. H. D. Haddock, K. Hu et al. Best practices for scientific computing.
arXiv:1210.0530, September 2012.

2. R. A. Beezer. A First Course in Linear Algebra. Congruent Press, 2012
http://linear.ups.edu

3. D. Boswell and T. Foucher. The Art of Readable Code. O’Reilly Media,
Sebastopol, CA, 2011.

4. C. T. Brown. An Extended Introduction to the Nose Unit Testing Framework.
2006.

5. C. T. Brown and R. Canino-Koning. Continuous integration. In A.
Brown and G. Wilson, eds., The Architecture of Open Source Applications,
pp. 77–89. Creative Commons, Mountain View, CA, June 1, 2011.

6. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman,
E. K. Costello, N. Fierer et al. Qiime allows analysis of highthroughput
community sequencing data. Nature Methods, 7(5):335–336, 2010.

7. M. Doar. Practical Development Environments. O’Reilly Media, Sebastopol,
CA, 2005.

8. S. Dudoit, R. C. Gentleman, and J. Quackenbush. Open source software
for the analysis of microarray data. Biotechniques, 34(13):S45–S51, 2003.

9. M. Fowler. Refactoring: Improving the Design of Existing Code. The
Addison-Wesley Object Technology Series. Addison-Wesley, Reading,
MA, 2000.

10. R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling,
S. Dudoit, B. Ellis et al. Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biology, 5(10):
R80, 2004.

11. S. S. Ghosh, A. Klein, B. Avants, and K. J. Millman. Learning from
open source software projects to improve scientific review. Frontiers in
Computational Neuroscience, 6:18, 2012.

12. T. Hey, S. Tansley, and K. Tolle, eds. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, Redmond, WA, 2009.

13. A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley, Reading, MA, 2000.

http://linear.ups.edu

182 Implementing Reproducible Research

14. J. D. Hunter. Matplotlib: A 2D graphics environnent. Computing in Science
& Engineering, 9(3):90–95, May–June 2007.

15. J. D. Hunter and M. Droetboom. Matplotlib. In A. Brown and
G. Wilson, eds., The Architecture of Open Source Applications, Vol. II,
pp. 165–178, 2012.

16. D. Joyner and W. Stein. Open source mathematical software. Notices of
the American Mathematical Society, 54(10):1279, 2007.

17. B. W. Kernighan and R. Pike. The Practice of Programming. Addison-
Wesley Professional, Boston, MA, 1999.

18. D. E. Knuth. The WEB system of structured documentation. Stanford
Computer Science Report CS980, Stanford University, Stanford, CA,
September 1983.

19. D. E. Knuth. Literate programming. CSLI Lecture Notes Number 27.
Stanford Center for the Study of Language and Information (CSLI),
Stanford, CA, 1992.

20. F. Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. In W. Härdle and B. Rönz, eds., Compstat 2002—Proceedings
in Computational Statistics, pp. 575–580. Physica Verlag, Heidelberg,
Germany, 2002.

21. R. Mecklenburg. Managing Projects with GNU Make, 3rd ed. O’Reilly
Media, Sebastopol, CA, November 2004.

22. S. McConnell. Complete: A Practical Handbook of Software Construction,
2nd ed. Microsoft Press, Redmond, WA, 2009.

23. K. J. Millman and M. Aivazis. Python for scientists and engineers.
Computing in Science & Engineering, 13(2):9–12, March–April 2011.

24. K. J. Millman and M. Brett. Analysis of functional magnetic resonance
imaging in python. Computing in Science & Engineering, 9(3):52–55,
May–June 2007.

25. C. Neylon, J. Aerts, C. T. Brown, D. Lemire, K. J. Millman, P. Murray-
Rust, F. Pérez et al. Changing computational research. The challenges
ahead. Source Code for Biology and Medicine, 7(1):2, 2012.

26. T. E. Oliphant. Python for scientific computing. Computing in Science &
Engineering, 9(3):10–20, May–June 2007.

27. A. Oram and G. Wilson. Making Software: What Really Works, and Why
We Believe It. O’Reilly Media, Sebastopol, CA, 2010.

28. R. D. Peng. Reproducible research and biostatistics. Biostatistics, 10(3):
405–408, 2009.

29. F. Pérez and B. E. Granger. IPython: A system for interactive scientific
computing. Computing in Science & Engineering, 9(3):21–29, May–June
2007.

30. F. Pérez, B. E. Granger, and J. D. Hunter. Python: An ecosystem for
scientific computing. Computing in Science & Engineering, 13(2):13–21,
March–April 2011.

31. B. Ragan-Kelley, W. A. Walters, D. McDonald, J. Riley, B. E. Granger,
A. Gonzalez, R. Knight et al. Collaborative cloud-enabled tools allow

Developing Open-Source Scientific Practice 183

rapid, reproducible biological insights. International Society for Microbial
Ecology Journal, 7(3):461–464, 2012. http://qiime.org/home_static/nih-
cloud-apr2012

32. M. J. Turk. How to scale a code in the human dimension. arXiv:1301.7064,
2013.

33. S. J. van der Walt. The SciPy Documentation Project (technical overview).
In G. Varoquaux, T. Vaught, and K. J. Millman, eds., Proceedings of the 7th
Python in Science Conference, pp. 27–28, Pasadena, CA, 2008.

34. S. J. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array:
A structure for efficient numerical computation. Computing in Science &
Engineering, 13(2):22–30, March–April 2011.

http://qiime.org/home{_}static/nih-cloud-apr2012
http://qiime.org/home{_}static/nih-cloud-apr2012

7
Reproducible Bioinformatics Research for
Biologists

Likit Preeyanon∗, Alexis Black Pyrkosz∗, and C. Titus Brown

CONTENTS

7.1 Introduction . 186
7.1.1 Computational Analysis in the Pregenomic Era 186
7.1.2 Computational Analysis in the Era of Next-Generation

Sequencing . 187
7.1.3 Concerns in Bioinformatic Research . 188
7.1.4 Reproducible Research Is Attainable in Bioinformatics

Using Modern Tools . 189
7.1.5 Guidelines for Getting Started . 190

7.2 Beginner . 190
7.2.1 Computing Environment: The New Benchtop 190

7.2.1.1 UNIX/Linux Operating System . 190
7.2.1.2 UNIX Tools: The New Benchtop Tools 191
7.2.1.3 Saving Commands. 194
7.2.1.4 Text Editors and IDEs: The Bioinformaticians’

Word Processors . 195
7.3 Intermediate . 196

7.3.1 Programming . 196
7.3.2 Programming Languages . 197
7.3.3 Good Programming Practices . 198

7.3.3.1 Code Documentation. 198
7.3.3.2 Managing Code/Text with a Version

Control System . 199
7.3.3.3 Basic Code Testing. 201
7.3.3.4 Code Testing in Real Life . 203

7.3.4 A Solid Foundation . 203
7.4 Advanced . 204

7.4.1 Modularity . 204
7.4.2 Code Refactoring . 205
7.4.3 Code Optimization. 206

∗ These authors contributed equally

185

186 Implementing Reproducible Research

7.4.4 Research Documentation . 207
7.4.4.1 IPython Notebook . 207

7.5 Related Topics . 209
7.5.1 Using Online Resources . 209
7.5.2 Advanced Tools . 209

7.5.2.1 Regular Expressions . 209
7.5.2.2 Debuggers. 210
7.5.2.3 Unit Tests and Automated Testing. 210

7.5.3 Advanced Programming Topics . 210
7.5.3.1 Object-Oriented Programming Paradigm. 210
7.5.3.2 Algorithms and Data Structures . 211
7.5.3.3 Compiled Languages . 211

7.6 Conclusion. 211
Acknowledgments . 212
Available Resources . 213

Books . 213
UNIX/Linux Tools. 213
Python . 213
Others . 213

Online Resources . 214
UNIX/Linux Tools. 214
Python . 214
R . 215
Web Forums . 215
Others . 215

References . 215

7.1 Introduction

7.1.1 Computational Analysis in the Pregenomic Era

At the dawn of computational biology in the 1960s, datasets were small.
Protein sequences were first distributed in the printed Dayhoff atlases [29]
and later on CD-ROM, with bioinformaticians eyeballing entire datasets
and shuffling data by hand. By the 1990s, bioinformaticians were using
spreadsheet programs and scientific software packages to analyze increas-
ingly large datasets that included several phage and bacterial genomes. In
2003, the pregenomic era ended with the online publication of the human
genome [7,14,26] and the National Institutes of Health invested heavily in
sequencing related organisms to aid in annotation. By the mid-2000s, Sanger
sequencing was replaced by faster and cheaper next-generation sequencing
technologies, resulting in an explosion of data, with bioinformaticians racing

Reproducible Bioinformatics Research for Biologists 187

to develop automated and scalable computational tools to analyze and
mine it [3].

7.1.2 Computational Analysis in the Era of Next-Generation Sequencing

As sequencing becomes ever more affordable, the grand genomic and tran-
scriptomic datasets that were the dream of many pregenomic era biologists
have become commonplace. A single experiment in a small research lab can
inform on thousands of genes or entire genomes, and small genomes can be
sequenced and assembled in a few hours. Initiatives such as ENCODE [4,19],
1000 Genomes Project [2], Cancer Genome Project [10], Human Microbiome
Project [15], Eukaryotic Pathogen and Disease Vector Sequencing Project
[20], Clinical Sequencing Exploratory Research [23], Centers for Mendelian
Genomics [22], Environmental Genome Project [21], and HapMap Project
[24] make vast amounts of data readily available for download and anal-
ysis. As the field comes closer to achieving the $1000 genome [16], waves
of individual genomes will inundate the public databases, providing a rich
information source for researchers to analyze with a wide array of tools.
Further, proteomics, metabolomics, medical imaging, environmental con-
ditions, and many other kinds of data are becoming readily available for
integration. As scientists continue to push the edge of data analysis and inte-
gration, the integration of these different data types is increasingly required.
The field has advanced far from the eye/hand methods of the pregenomic
era and outstripped the spreadsheets and single software packages of the
early postgenomic era. Modern computational analyses are a major part
of biological studies [32] and require analyzing gigabytes or terabytes of
data in complex computational pipelines, which typically involve running
several distinct programs with custom scripts porting data between them.
These pipelines start from quality control of raw data (or by download-
ing primary data from public databases) and pass the data through many
steps of calculation, validation, and statistics. They end with summarization
and graphical visualization to aid end-users in comprehending the com-
plex results. In short, modern biological studies require datasets that are
so large, that scientists must use advanced computational tools to perform
useful analyses.

Genomics has expanded the drivers of science from hypothesis (devise
a question and design/conduct experiments in response) to include discov-
ery (sifting through large datasets in search of patterns). With this greater
emphasis on statistical analyses of large datasets and data-driven modeling,
even wet-lab biologists are increasingly finding themselves at the computer
instead of the bench [31]. However, many biologists lack a strong back-
ground in mathematics or computer science [6,27], and struggle to transition
from a graphical computer desktop environment to the command-line inter-
face required for many analyses. Further, while they usually have been

188 Implementing Reproducible Research

trained in good wet-lab practice, they often have minimal experience with
computational practice and lack the knowledge necessary to efficiently per-
form high-quality reproducible computational research [13,31]. Effectively,
many biologists lack the computational skills they need to perform modern
biological studies.

7.1.3 Concerns in Bioinformatic Research

Biologists’ lack of computational experience is a significant hindrance as
biology expands to include data- and model-driven methodologies. While
the obvious solution is to limit the computational aspect of biology to
trained bioinformaticians and computer scientists, this is impractical for
two reasons: not enough skilled bioinformaticians are available (only a
minuscule percentage of US universities have bioinformatics undergraduate
programs), and many computer scientists are uninterested/uneducated in
science. Moreover, the substantial background in biology required to make
appropriate use of data blocks computer scientists from quickly moving into
bioinformatics. As a result, wet-lab biologists have begun to venture into
computation in increasing numbers [8,9]. They are usually long on data and
short on time, so they focus on learning the computational tools needed to
analyze their specific data, concentrating on rapidly processing data with the
tools as opposed to understanding the tools’ underlying assumptions. Even
more troubling, there is a cultural and social gap because many labs and
programs do not consider bioinformatics essential for their biologists [13]. A
researcher seeking to analyze large datasets when few or none of his/her
coworkers or superiors have computational expertise may have no clue
where to begin, and be given very little time to find or develop appropriate
tools. This situation fosters a dangerously ad hoc approach to bioinformatics.

The effects of this lack of expertise can be dire:

1. Many researchers download computational tools from the Internet
or collaborators and use them on large datasets without first run-
ning a known test set (the computational equivalent of a control).
Many programs contain technical or scientific errors that will be
readily apparent when running test sets, but will be missed other-
wise [9]. Errors will be carried into downstream analyses, costing
hundreds of hours of compute and bench time, and potentially
requiring retraction of papers when the errors are caught [31].

2. Many tools only run on the command line, are difficult to install,
lack documentation, etc., and therefore software may be selected
based on ease of use rather than accuracy and scientific relevance.

3. With the trial-and-error approach used to create custom pipelines,
biologists can lose track of which tools they ran, the order in which
they ran them, and the parameter sets used for each. Many biologists

Reproducible Bioinformatics Research for Biologists 189

have not carried the standard scientific practice of painstakingly
recording wet-lab procedures in laboratory notebooks over into
their computational research.

4. Many biologists use software with the default parameters. The
defaults are frequently selected by the original programmers to opti-
mize processing of the original test data or were based on a set of
assumptions that was correct for the original study, but may not
be appropriate for the different biologist’s data or research ques-
tion. While some parameters are relatively insensitive such that the
defaults are sufficient, others will produce widely different results
if varied slightly. A single parameter can be the difference between
one group’s results being correct and another’s being wrong.

5. Those biologists who program their own tools must decide how to
release and support their code. Some labs post their software on a
website but rarely update it. Frequently, as soon as a programmer
leaves the lab, their code becomes unsupported and joins the online
graveyard of dead and obsolete code. Some labs refuse to release
their code [18], leading reviewers and collaborators to wonder if
inaccuracies are being hidden.

The good news is that all of these problems can be addressed using tools and
practices that are already available.

7.1.4 Reproducible Research Is Attainable in Bioinformatics Using
Modern Tools

Many tools for reproducible computational research exist and are already
being used in computer science, physics, and engineering. These tools are
routinely used to quality control the data analysis process, facilitate useful
collaborations, and maintain laboriously developed programs and pipelines
in the long term. While these tools may be new to many biologists, they
have been in production for many years and are well-tested with tutorials
and online documentation. Investing time to learn the tools and establish-
ing good habits of using them yields a larger benefit: errors are consistently
detected and corrected early instead of being discovered only after time-
consuming downstream analyses and attempted wet-lab verification (or
after a paper has been submitted or published [17]). The more compu-
tational methods employed by a laboratory, the more essential the tools
are to efficiency, correctness, and reproducibility [30]. Further, while use
of these tools is currently optional in biology [12], researchers can expect
that within a decade, most journals and granting agencies will require the
appropriate use of tools and methods in computational biology research;
the National Science Foundation already requires detailed discussion of data
management.

190 Implementing Reproducible Research

7.1.5 Guidelines for Getting Started

Our goal is to help those biologists who have zero or little background
in computation to get started with good practices and tools for computa-
tional science. The following sections are structured to provide introduc-
tory knowledge for those biologists venturing into bioinformatics and the
command-line interface for the first time; intermediate knowledge for those
biologists ready to start programming; advanced techniques for seasoned
programmers for improving programs and automating pipelines; and a
related tools section that names tools and concepts that readers can seek out
once they have established a basic foundation for reproducible research.

Note: The following sections give overviews and simple examples of the tools,
but readers are encouraged to use the resources listed at the end of the chapter to find
specific information and step-by-step tutorials. Essentially, this chapter tells readers
about existing tools and why they are important to use, but is not itself a course in
computational research. If readers are interested in more hands-on experience with
some of these topics, the Software Carpentry project (http://software-carpentry.org)
offers free online videos as well as 2-day workshops in these and related areas.

7.2 Beginner

Here, we discuss simple practices that beginners can use to establish a strong
foundation for making their computational research reproducible, empha-
sizing those that are practical for scientists who primarily run other people’s
pipelines and are making the switch from a graphical user interface (GUI)
to the command line. We describe basic practices such as working on the
command line and selecting a text editor.

7.2.1 Computing Environment: The New Benchtop

Just as much wet-lab biology work is done on a lab bench with routinely
available tools such as micropipets, shakers, and spectroscopes, computa-
tional work is usually performed on a computer with routinely available
data parsing and analysis tools. In this section, we will discuss computing
environments (also sometimes called operating systems or platforms) and
the general tools that stand ready on the computational benchtop.

7.2.1.1 UNIX/Linux Operating System

Most biologists are aware of two primary computing platforms available:
Windows and UNIX systems (which include Linux and Mac OS X). In
the United States, most people learn basic computer skills on Windows
machines. However, developers of bioinformatics software primarily use

http://software-carpentry.org

Reproducible Bioinformatics Research for Biologists 191

UNIX systems because of the large existing ecosystem of tools, most of
which are open source—meaning that anyone can freely use, modify,
and redistribute resources under open-source licenses. The open source or
free-software community has long attracted programmers and other tech-
nically oriented people who creatively solve problems. The Free Software
Foundation [25] has numerous open-source collections of development tools,
libraries, licenses, and applications for the GNU/Linux system. Conse-
quently, biologists can get an operating system and all the bioinformatics
tools they need for free for all of their computers and clusters. Further,
UNIX systems have traditionally been easier to use remotely than Windows
machines, whether the machine is a desktop computer in another room, an
institution’s high-performance compute cluster, or the cloud.

Making the switch from GUI-based software to command-line software
is useful because the power to remix and combine tools at the command line
outstrips that of most GUI-based software; as an analogy, GUI-based soft-
ware is similar to a lab that relies exclusively on commercial kits, whereas
the command line is like a lab that is also equipped with chemicals and
instruments that can be used to supplement the kits or develop novel
techniques. Also, many GUI-based software packages require users to man-
ually click through an analysis, while the command line can be used to
write complete instructions for an analysis and run many datasets simul-
taneously. Automation ensures that each dataset is run according to the
same instructions (avoiding human error) and unshackles the biologist from
the computer. Some GUI and web-based programs are available for those
biologists who want to build pipelines without using the command line
(such as Taverna, Pipeline Pilot, and Galaxy). Further, most cutting-edge
bioinformatics tools lack a GUI, partly because building GUIs is a time-
consuming task that is difficult to fund. As a result, biologists need basic
command line navigation skills to use the latest bioinformatics software.
Biologists who use Windows but wish to take advantage of this cache
of software and tools can download and install a free program such as
Cygwin (or MSYS+Mingw32 or Microsoft Interix) to emulate a UNIX system
on their Windows machine, or can use PowerShell.

Note: Modern Macintosh machines are a good compromise for modern research
labs because they have a UNIX-based system with a friendly GUI for casual use.

7.2.1.2 UNIX Tools: The New Benchtop Tools

Just as wet-lab biologists use simple tools like pipettes, centrifuges, incuba-
tors, and gel boxes individually and then combine them to perform a specific
procedure, so bioinformaticians use simple UNIX tools that each perform
a specific task and string them together into a pipeline. Many UNIX tools
come preinstalled on UNIX systems or are freely available online. These
tools are invaluable for the beginning bioinformatician, particularly if that
researcher has no programming experience, because they will perform tasks

192 Implementing Reproducible Research

with speed, customizability, and reliability that custom scripts cannot eas-
ily match. Here, we introduce some of the most basic, useful UNIX tools for
bioinformatics.

7.2.1.2.1 Shell

The shell is a language as well as interpreter that reads and interprets com-
mands from a user. Any biologist who has opened a terminal or command-
line interface and typed a command has used the shell. There are several
types of shells available for UNIX, but bash is predominant. Bioinformati-
cians often use shell commands to run tools and automate tasks such as
running pipelines, backing up data, and submitting jobs on a computer clus-
ter. While shell languages can be used to develop full-fledged programs,
this can be time consuming because the shell is designed around operating
system tasks rather than data analysis. Bioinformaticians usually use shell
commands to perform routine tasks such as sorting large datasets, search-
ing for specific data in a group of files, or sifting through a large log file
and printing only the data relevant to a given project; they write programs
to perform more complex tasks. Detailed next are some of the most general
and useful tools on UNIX systems.

7.2.1.2.2 grep, sed, cut, and awk

grep, sed, cut, and awk are tools for parsing text files. grep is used to quickly
search through a text file for a given word or sequence motif, similar to using
a find all command in a word processor. sed is useful for replacing words or
phrases, similar to using the find and replace command in a word processor.
cut is used for selecting a column of data in a text file. awk, among many other
uses, can search through files containing many columns of data and only
print those lines or columns that are needed for a given application. Each
tool is useful when the user needs to perform a single task quickly, create
a simple pipeline to accomplish a combination of simple tasks, or process
files that are too large to open in a spreadsheet program. grep, sed, and awk
understand regular expression syntax (covered in Section 7.5), which offers
more robust pattern searching options.

7.2.1.2.3 apropos and man

apropos is a program that displays a list of programs related to a keyword.
It is useful for biologists who need to find a tool to perform a specific func-
tion without knowing the tool’s name. For example, if a biologist wanted
to archive files, he or she might use the apropos command to search for an
appropriate tool:

$ apropos archive

Note: $ indicates the command prompt or where the user would begin typing. The
user would not actually type the $.

Reproducible Bioinformatics Research for Biologists 193

The output will vary depending on system, but should look like:

jar(1) - Java archive tool

libtool(1) - create libraries ranlib - add or update the table

of contents of archive libraries

tar(1) - manipulate tape archives

unzip(1) - list, test and extract compressed files in a

ZIP archive...

To learn more about each program, the biologist can look at the standard
manual for each program using a man command (man is short for manual).

$ man tar

In this case, a man command will display a standard manual page, which
typically includes the name of the program, synopsis, detailed description,
and options, as well as some examples. Here is an example of the first few
lines of the standard manual for the tar program:

NAME
tar -- manipulate tape archives

SYNOPSIS
tar [bundled-flags <args>] [<file> | <pattern> ...] tar -c

[options] [files | directories] tar -r | -u -f archive-file
[options] [files | directories] tar -t | -x [options]
[patterns]

DESCRIPTION

tar creates and manipulates streaming archive files. This

implementation can extract from tar, pax, cpio, zip, jar, ar,

and ISO 9660 cdrom images and can create tar, pax, cpio, ar,

and shar archives...

Note: apropos and man commands serve as a reference, not a tutorial on how to use a
particular command. Biologists may need to search in Google, Wikipedia, and other
resources (such as software-carpentry.org) to find tutorials, examples, and
other information.

7.2.1.2.4 History and Script

The shell automatically keeps a record of all commands used in a session.
Typing history will print the list of commands. This tool is useful when
a biologist is developing a computational procedure. Once the biologist
has determined which commands and parameters are necessary to perform
a required task, he or she can use the history tool to view and save the
commands for future use (see next section).

194 Implementing Reproducible Research

If a biologist needs to save an interactive session at the command line, he
or she can use the script tool. A record will be generated for all data output
to the terminal window.

7.2.1.3 Saving Commands

One of the advantages of the command line is that biologists can save the
exact commands and parameters used to perform a computational procedure,
as opposed to a GUI-based procedure where it is difficult to record which
buttons and options were used and the order in which they were clicked. At
the most basic level, biologists can write the commands in their bound lab
notebook. Another option is save the commands in a text file as a rudimentary
electronic notebook so the biologist can search for a procedure later.

Example of shell commands to be written/typed in a bound or electronic
notebook:

bowtie-build DataSet001.fa DataSet001.Index

bowtie -m 1 DataSet001.Index DataSet001Reads.fq

DataSet001.map

In the example, the biologist is using software that aligns short reads
to a reference sequence database. To use the software, two commands
are required: (1) call the program bowtie-build to read the reference file
DataSet001.fa and return the output files with the prefix DataSet001.Index,
and (2) call the program bowtie with the parameter -m 1 using the files from
the previous step and the read file DataSet001Reads.fq as input and name
the resulting alignment file DataSet001.map. By recording these commands
exactly as typed in a notebook, the biologist will know the procedure used
to generate the alignment file. If the biologist has more datasets, then these
can be run using the same commands, changing only the file names. Further,
when the biologist is writing up the results several months later, he or she
can include the procedure so the results are credible and reproducible.

The most useful option is to create a short shell script. While this may
seem daunting to a beginner, it is no more difficult than programming lab
equipment (e.g., creating a PCR program on a thermocycler), and just as the
PCR program is recorded in full in a notebook and used for all subsequent
experiments, so can the shell script be painstakingly written and then simply
used and referred to in later analyses.

Example bash script alignMyRnaSeqData.sh

#! /bin/bash

dataName='DataSet001'

params='-m 1'

bowtie-build $dataName'.fa' $dataName'.Index'

bowtie $params $dataName'.Index' $dataName'Reads.fq'

$dataName'.map'

Reproducible Bioinformatics Research for Biologists 195

In the example bash script, the biologist has converted the previous
example procedure into a series of commands with the name of the dataset
and parameter list turned into variables. When the biologist needs to run
it, he or she will type bash alignMyRnaSeqData.sh at the command prompt
and the instructions will be executed automatically. The beginner can then
manually edit the dataset name or parameter list with a text editor (see next
section) each time it is run. Users who need to run the shell script on tens or
thousands of files will benefit from learning a few extra commands so they
can make the script loop through a list of file names. Using the script ensures
that each time a dataset is run, the procedure remains the same, the output
files are named systematically, and the biologist saves time by not having to
retype commands or troubleshoot errors from typos.

Bash scripts are particularly useful when testing scientific software with
different parameter sets. Biologists may not know that unlike laboratory
commercial kits that have been rigorously tested on a variety of samples
by experienced technicians, a significant number of scientific programs are
written by graduate students and other academic researchers who are trying
to solve a specific problem and optimize the parameters to that particu-
lar system. These default parameter sets are usually untested with other
types of data unless the software has an active community of users who
have found many of the problems. Therefore, biologists using new soft-
ware should start by running a dataset with a known result (a control) on
the default parameters and then vary the parameters one by one to deter-
mine their sensitivity. (When possible, the parameters should be looked up
in the documentation and through Internet searches to determine whether
they are set to their optimal values for the current sample type.) Bash
scripts are useful for testing parameter sets because biologists can set default
parameters, run the script, change one parameter, and run the script again,
confident that the only change to the procedure is the one they deliber-
ately made. In the previous example, a biologist would vary the parameters
listed in the params variable for each run. The results are more comparable
and reproducible, and automating the procedure speeds up the parameter
optimization process.

7.2.1.4 Text Editors and IDEs: The Bioinformaticians’ Word Processors

Text editors are similar to word processors in that they are used to open,
create/modify, and save text files and source code, but different because
they do not save formatting characters or binary information in the file.
Therefore, they produce the clean, simple files that are needed for running
programs and analyzing data. There are many freely available editors with
features such as GUIs, programming language-specific syntax highlighting,
and advanced text parsing commands. We recommend that biologists learn
cross-platform editors (i.e., can be used on Windows, and UNIX systems),

196 Implementing Reproducible Research

particularly those biologists who use Windows machines locally and UNIX
systems remotely.

Two editors are particularly popular among computational scien-
tists: Emacs and vi (or Vim). Both editors are cross-platform and have
productivity-increasing features such as macros that can automate tasks, reg-
ular expressions to tailor/speed search and replace, etc. Emacs and vi can
also be modified/customized using their internal scripting languages. This
feature makes these two editors highly expandable and flexible. Numer-
ous free plugins for both editors are developed and maintained by a large
user-based community, which also provides free support for new users.

Integrated development environments (IDEs) provide tool sets, includ-
ing an editor, usually with advanced features, debugger, package manager,
and numerous plugins. The most popular IDEs such as Eclipse and Net-
beans support many languages, including C++, Python, and Ruby, as well as
HTML, PHP, and JavaScript for web development. IDEs also provide a nice
GUI, which is built on top of command-line tools. Moreover, online tutorials
are freely available for users of all levels. For biologists who intend to invest
heavily in programming their own tools, IDEs may be a convenient step up
from text editors.

7.3 Intermediate

This section addresses programming, the keystone of bioinformatics
research. Biologists will be introduced to programming languages (and how
to select one), good programming practices for developing less error-prone
and more efficient code, program documentation for self and general use,
version control systems as electronic notebooks and distribution methods,
and controls for testing homegrown code. These sections are each intended
as an overview of the tools and practices for writing scripts that are shorter
than a page or two in length. References and tutorials for learning the
languages and tools are included at the end of the chapter.

7.3.1 Programming

Programming is one of the most valuable skills for bioinformaticians. For
example, just as an experienced wet-lab biologist might quickly pour a gel
to purify a new sample, a bioinformatician will write a small script to filter a
raw data file. Some scripts only contain a few lines of code, which are writ-
ten for immediate use and then discarded. Therefore, most custom scripts are
not documented, tested, or maintained. Major problems arise when hastily
written scripts are blindly reused for other projects or different datasets

Reproducible Bioinformatics Research for Biologists 197

without proper quality control. In this section, we discuss programming
tools and approaches that are important for good computational lab practice.

7.3.2 Programming Languages

Programming languages are sets of human-readable instructions that are
translated into machine code to instruct a computer to perform a task. They
are generally categorized as interpreted and compiled. Interpreted (scripting)
languages (such as Python, Perl, R, and Ruby) use an interpreter program to
run programs in one step, when the user is executing the program. Compiled
languages (such as C, C++, and Java) use a two-step approach; the first step,
compilation, runs during code development, and produces an executable
file that contains only machine code. This file is then executed by the user.
Both types of languages are widely used in bioinformatics. While compiled
languages are generally more difficult to learn and time consuming to use
than their counterparts, the programs usually run faster because the code
is translated in advance. This makes compiled languages more suitable for
processing large datasets or performing complex or repetitive calculations.
Interpreted languages are easier to learn and use, especially for beginners;
for processing small datasets or relatively simple tasks, the difference in exe-
cution speed is negligible, while the advantage in development time can be
significant.

Biologists with no programming experience should consider using a
widely used interpreted language such as Python or Perl. Both languages
have a large user-based community, reference materials, and high-quality
third-party libraries for a wide range of application domains. Another
widely used, more domain-specific language for data analysis is R. R is
a language of choice for many statisticians and bioinformaticians because
of built-in data structures that are suitable for data analysis and a large
number of libraries for complex statistical analyses and graphics. Biologists
who work on high-throughput data analysis, such as microarrays and next-
generation sequencing, may need to use libraries written in R or to run the
analysis in R environments. Therefore, a knowledge of both R and Python or
Perl languages is strongly encouraged.

While academia in particular has a culture of developing tools from
scratch even when alternatives are available, this practice is increasingly
challenging because pipelines are now too complex for a single novice pro-
grammer to develop quickly and accurately [11]. Third-party libraries are
developed by programmers other than the developers of the language itself,
and extend the language with custom written functions. For example, biolo-
gists who want to develop a bioinformatics web application can use Django,
a Python third-party library that already contains most of the code required
to build a Web application. The use of libraries is encouraged because they

198 Implementing Reproducible Research

reduce errors in a program (i.e., a new programmer need not develop code
that is susceptible to bugs when polished, well-tested code is already avail-
able). It also reduces program size, which increases maintainability (the
programmer’s ability to fix bugs and update code as upgrades to software
and scientific methods become available). Many libraries are actively main-
tained, developed, and used by a community of programmers and scientists;
therefore, they are well-tested and fairly reliable. Many libraries also support
users via tutorials, online web forums, and mailing lists.

7.3.3 Good Programming Practices

Just as biologists follow standard lab practices in the wet lab, they should
follow standard computational practices when writing code. For example,
biologists frequently write short scripts to perform simple tasks. While writ-
ing a script, the meaning of each command and program logic is easy to
understand. However, after a month or two, it can be nontrivial to deter-
mine the code function, inputs, etc., that were once so clear. Furthermore, as
scripts change over time, multiple versions of each script may be scattered
over multiple computers. This problem is akin to a biologist performing a
quick procedure at the bench, and not taking the time to clean up or write
down the procedure in detail.

In this section, we discuss basic programming practices that help pro-
grammers organize their code and make their scripts more reusable for other
projects. We also introduce version control software, which facilitates code
distribution among collaborators.

7.3.3.1 Code Documentation

All code should be documented in plain English. The main purpose is to
inform users about code function, expected input and output, and usage
details, which are collectively called a code description. This is similar to lab-
oratory equipment being packaged with standard operating procedures and
troubleshooting guides that are available to biologists using the equipment.
The programmer should remember that just as the wet-lab biologist will be
more interested in using an instrument to do an experiment than opening
the control panel and tracing circuits, so will users be focused on using a
program to process data rather than reading source code, and should write
the documentation accordingly.

Professional programmers conventionally write a code description at the
beginning of each short program. Code descriptions should be short, provid-
ing maximum information in a minimum of words. For simple scripts, this
may be two lines: one for the description and one to describe the usage. Some
people might include the name of the author, date created, and date modi-
fied in the code description; however, when using a version control system
(introduced later in this section), this practice is redundant.

Reproducible Bioinformatics Research for Biologists 199

When beginning programmers graduate to bundling scripts, programs,
and libraries together, they should add a README file, which is a text
file containing documentation for the entire code repository. The file usu-
ally includes the name of the author, contributors, installation, usage, and
licenses for all programs in the repository.

Code readability is important. Experienced programmers customarily
use two practices to improve readability: descriptive variable/function
names and concise but clear comments. For example, a new programmer
might write the following code and comment (comment shown in italics):

x += 1 # add 1 to x

Readers with minimal knowledge of Python will recognize that 1 is added to
a variable x. The comment does not provide any information about the pur-
pose of the statement or describe x. Instead, the code should be commented
like this:

x += 1 # increase the count of DNA sequences read in

This way, a reader will quickly understand that x is the number of DNA
sequences read and the number is being incremented by one. A more useful
way to write this statement is

sequence_count += 1 # increase the number of DNA\
sequences read by one

After choosing a more descriptive variable name, the comment is now
largely redundant and could even be omitted. This is a simple example of
how code readability can be improved by choosing appropriate variable
names and commenting code sparingly.

7.3.3.2 Managing Code/Text with a Version Control System

A common change tracking nightmare is when a programmer creates a script
and sends a copy to a collaborator, who we will call Adam. After a period
of time, Adam finds a bug in the first version of the script and informs the
author. The author fixes the bug and sends Version 2 to Adam, not knowing
that Adam previously sent Version 1 to other collaborators, Beth and Celia,
who are not privy to Version 2 and therefore are likely to have unknow-
ingly generated erroneous results with it. Further, Adam may inadvertently
confuse Version 1 with Version 2 because the script name is the same for
both and the only difference is in the code, which Adam cannot or does
not read. Later, Beth (with Version 1) might try to compare results on a
similar dataset with Adam’s results from Version 2, and spend consider-
able time tracking down the reason for the differences. This would result in

200 Implementing Reproducible Research

(at best) a rediscovery of the bug and (at worst) attempts to publish the erro-
neous comparison in a journal. The author, who has meanwhile upgraded to
Version 5, is unaware of anything except that Adam was sent Version 2
a long time ago. This convoluted comedy of errors is one reason why a
technique known as version control is essential in collaborations.

A version control system (VCS) is a program that tracks changes made
to a file or set of files in a specified directory and records them on a central
server. Users can add, remove, or edit files and the version control program
will compare each file with the previous version and record the differences.
For a single programmer, a VCS can be a rigorous, efficient electronic note-
book of changes to a program: as the programmer creates/updates scripts,
with a simple command, each change is meticulously recorded, dated, and
archived. For a team of programmers, a VCS is a group notebook, distri-
bution tool, and collaboration aid. Each programmer can access the latest
version of the code and make changes. If multiple changes are made by
different programmers to the same file(s), the changes are noted and auto-
matically merged if possible. Conflicts (in which two programmers modify
the same line or region of code) are flagged for manual resolution. For non-
programmers, a VCS is a useful means of obtaining up-to-date software
tools, as the VCS usually contains the most recently updated version of the
software. Users can download code from the VCS and know exactly which
version they are downloading.

Note: VCSs are also commonly used when collaborators are writing a paper
using LaTeX or a similar document markup language. Each collaborator has imme-
diate access to the most recent version of the paper, can make changes directly to the
document, and commit them, as opposed to trading various versions via email or
having one author decipher scribbled-on printouts.

This is particularly useful when a research lab has one programmer and
multiple users because the programmer can create/edit scripts in the VCS and
then users can check that VCS to determine if they need to download new/up-
dated tools. When publishing computational analyses, study authors can note
the version numbers of the scripts used so biologists wishing to reproduce the
study can be given the correct version. Also, when the programmer leaves the
lab, the latest versions of the tools are in the VCS so a newly hired replacement
can immediately access and start maintaining the code.

Note: While setting up a VCS will require an initial investment of time, subse-
quent use is usually limited to a few simple commands. Some VCSs also include a
GUI to help beginners and nonprogrammers use the system.

Some major version control systems (SVN, Git, Mercurial, etc.) are asso-
ciated with websites that host repositories for free. For example, Github.com
hosts more than 200,000 free code repositories for open-source projects.
These can be accessed freely from any part of the world. Using Github
simplifies distribution because individual research labs do not need to con-
stantly update lab websites with the latest version of a program; they can
point lab members, collaborators, and blog readers to the online repository

Reproducible Bioinformatics Research for Biologists 201

that the lab programmers are already updating. It is becoming common
to publish a link to a GitHub repository to fulfill bioinformatic journals’
requirement of open access software, which is advantageous because the site
is separate from university or business websites that may change over time.

Note: Biologists who prefer to keep their code for internal use only can set up
Git or Mercurial to work locally only, pay Github for private repositories, or use
Bitbucket. Alternatively, they can set up their own secure server (or have a network
administrator set it up) and use Git or Subversion (SVN).

7.3.3.2.1 Real-World Example

In our lab, every programmer has a Github.com account for their projects.
Some projects on Github are also linked to the lab repository https://github.
com/ged-lab, which serves as the main repository for all source code and
other materials written by lab members. We include a link to the main
repository in each publication so anyone can download our source code
and materials for using or reproducing results without first contacting us.
In addition, anyone who finds a bug or wants to contribute to the project
can do so by simply cloning the project, editing or adding code, and submit-
ting a request to merge a change to the project. This opens up opportunities
for improving the quality of scientific software as well as collaboration. This
method has been proven quite successful in the open-source community.

7.3.3.3 Basic Code Testing

Roughly 1–10 programming errors occur per thousand lines of code [5,12].
In this section, we discuss two techniques to help programmers find obvious
bugs upfront: assert statements and doctests. We introduce more advanced
tools such as unit tests and automatic testing systems in Section 7.5.

7.3.3.3.1 Assert Statements

The purpose of an assert statement is to compare a calculated value with
an expected value and return true or false based on a programmer-defined
condition. Assert statements can be used to test if code works as expected.
They are particularly handy when testing edge cases such as when a user uses
unexpected parameters or data files in unrecognized formats. For example,
if we write a function count_gc in Python that returns the number of G and C
nucleotides in a sequence, we could use assert statements to test the function:

assert count_gc("ATGTC") == 2

assert count_gc("ATTTTA") == 0

assert count_gc("") == None

The first line tests whether the count_gc function correctly counts the number
of Gs and Cs in the normal case or a mix of all four nucleotides. The second

https://github.com/ged-lab
https://github.com/ged-lab

202 Implementing Reproducible Research

line tests if the function can correctly handle a calculation where there are
no Gs or Cs present, which is also expected to be a common case. It is good
programming practice to always test cases where zero is the expected result
to ensure that it is correctly calculated and reported. The third line tests if the
function recognizes that it has been passed an empty sequence and correctly
reports an error; None is a defined value in Python that indicates “no result.”
In Python, a programmer can also specify an error message if an assert state-
ment fails:

assert count_gc("") == None, "Empty sequence, should

return None"

In this case, if the function does not return None, the assert statement fails
and prints “Empty sequence, must return None” on the computer screen.
This error message alerts the programmer that the count_gc function is not
handling the case correctly.

Theoretically, assert statements should check all possible input values;
however, this is not usually practical. In the aforementioned example, it
would be impossible to generate every possible sequence that a user may
input to the function. Therefore, a programmer will usually design a rep-
resentative set of input data to systematically test the code. The previous
example demonstrated this by testing both common and uncommon cases.
The more assert statements added, the more likely an existing error will be
found.

Note: Assert statements are also useful when the programmer is modifying the
code later. Well-tested programs can be more easily modified and extended because
the tests ensure that changes that break the existing code are more likely to be
immediately discovered.

7.3.3.3.2 Doctest

Doctest is a useful feature in Python and several other languages that helps
the programmar document and test his or her code simultaneously. This is
particularly useful when writing documentation for developers planning to
use or extend functions because the doctests can ensure that the documen-
tation examples are correct. Basically, doctest compares output from the
Python interpreter with user-defined output. The test fails if they do not
match. The doctest for the previous function would look like this:

>>>count_gc("ATGTC")
2
>>>count_gc("ATTTTA")
0

>>>count_gc("")

None

Reproducible Bioinformatics Research for Biologists 203

7.3.3.4 Code Testing in Real Life

Effective testing catches errors. However, the human programmer can
almost never consider and write tests for all possible ways of breaking code
when he or she is developing the first version of a program; bugs are both
inevitable and common. Therefore, writing tests should be incremental; each
newly discovered bug should prompt the addition of a new test.

Tests are useful on many levels, but some programmers still do not write
tests [11]. One reason is that test writing is not formally taught in most under-
graduate computer science courses and therefore many programmers, let
alone biologists, lack the required knowledge or experience. Another reason
is because it is time consuming and not considered a critical path activity
[9,13]. Rigorous tests may contain more lines of code than the actual code.
However, there is some evidence that programmers who write tests spend
less time debugging and produce higher quality code (see Chapter 12 of [1]).
Moreover, time spent repeating an analysis because of a bug is usually far
costlier than time spent writing tests.

7.3.4 A Solid Foundation

For many biologists, the guidelines introduced in Sections 1.2 and 1.3 are suf-
ficient to build a strong foundation for reproducible computational research.
Beginners should be ready to investigate the tutorials and resources listed
at the end of the chapter to build knowledge and experience with the
command-line interface: the new benchtop with open access, high-quality
UNIX tools for data processing (without programming), simple bash scripts
to generate reproducible procedures and optimize parameters, and text
editors/IDEs to create and manipulate files across platforms. Intermediate
users will be able to investigate various programming languages to find
the one with the most high-quality libraries and support for their research
area, document their code so it can be easily read and understood by other
researchers, use a version control system as an electronic notebook and up-
to-date distribution system for their evolving code, and write systematic tests
to catch bugs early in the development and analysis process.

For most biologists, effectively using already developed software
pipelines and writing small scripts to port data between them or processing
large results files with UNIX tools is all they will need to complement their
bench work. By incorporating these tools into their computational research
and observing the computational lab safety practices, biologists can work
effectively on the new benchtop, produce timely, accurate results that are
simple to repeat with bash scripts or short, well-tested programs, and can
distribute their programs per journal requirements using online version con-
trol so the research community can spend less time reinventing and fixing
code and more time advancing science.

204 Implementing Reproducible Research

7.4 Advanced

Once a biologist has built a strong foundation for reproducible computa-
tional research, he or she may wish to progress to more complicated anal-
yses, which accordingly require more complex calculations. The resulting
programs can contain hundreds or thousands of lines of code, more instruc-
tions than a single human can keep in his or her head. An eager biologist who
has been developing scripts with less than 50 lines may jump in and create a
single file of several hundred lines. However, once a program has advanced
beyond the simple script, new programming practices need to be followed
to produce usable and maintainable code. This is analogous to chemists run-
ning a small reaction in the lab vs. chemical engineers scaling up a reaction
to run in a chemical plant; process and resource management become signif-
icantly more important. As in the previous sections, these practices facilitate
reproducibility, productivity, and frequently help maintain the program-
mer’s sanity. In this section, we will discuss modularity (the practice of
writing code in small blocks), refactoring/optimizing code performance for
use with modern huge datasets, and using the IPython notebook as an inter-
active notebook/computing environment for integrating different programs
and platforms and performing a complex analysis from start to finish.

Biologists/bioinformaticians grapple with a major problem before they
start designing a new program: absence of detailed program specifications
[13]. In the bioinformatics lab, programmers frequently have only a piece of
the problem laid before them and minimal input from lab members. Bioin-
formaticians need to quickly develop a program that reads in data, performs
a calculation, and writes results so lab members will react to the results, try
to validate them, mention specifications/expectations that were not stated
initially, or rethink the problem. The programmer is then expected to refine
the program and show new results to solicit more feedback iteratively.

Productivity is the key to using this evolutionary approach to prob-
lem solving. Writing robust, reusable, and maintainable code is traded
for writing code quickly because the programmer assumes that most code
will be modified or discarded during the development process. Therefore,
biologists/bioinformaticians should write code that is (1) functional, (2)
readable, and (3) testable. Functionality is most important because if code
does not work, then it is considered worthless [9]. Readability is necessary
so the code can be understood by all programmers and users on the project.
Testability is required because larger programs have more ways to break and
therefore even more tests are needed.

7.4.1 Modularity

The first good practice for writing high-quality large programs is to divide
code into small modules. A module is generally a small block of code that

Reproducible Bioinformatics Research for Biologists 205

performs one specific task such as reading FASTA files, ensuring that a
DNA sequence contains only the characters A, C, G, and T, or calculating
the average of a set of numbers. The short scripts produced by intermediate
biologists/bioinformaticians can easily be converted into modules; experi-
enced software developers frequently write scripts that are simultaneously
both. The purpose of creating modules is to take advantage of all the tools and
practices discussed in Section 7.3. It is also easier for a programmer to write
logical and organized code when creating several small modules and linking
them together than when writing one long linear program. These modules
can then be bundled together to form a programmer’s custom library. A large
program ideally should consist of a main program file that accepts user input
and then passes it through a series of modules or library functions.

There are several additional advantages to this practice:

1. Simplify and speed up programming. For example, a program may
need to read several FASTA files to function. In a linear program, the
code to load a file would need to be copied and pasted several times,
which decreases the readability of the code. If the program is modu-
lar, the programmer need only create one module in the library and
then reference it as many times as needed in the main program.

2. Library modules are easier to maintain. In a long, linear program
that reads multiple files, if a bug is found when reading the first
FASTA file, then the error is likely to be in all instances of the code.
Novice programmers frequently only fix those instances where an
obvious error is shown, leaving silent errors in other parts of the
program. In the modular example, the bug is fixed once in the mod-
ule. Similarly, the module need only be tested once whereas good
testing of a linear program would require many more tests.

3. Modules are easier to reuse for other projects. Once a programmer
has written and tested a module and added it to his or her custom
library, it can be used for all future projects. If the program is lin-
ear, the programmer must copy and paste lines of code from an old
program to a new one, and then diligently test the code, or the pro-
grammer will need to reinvent the wheel by writing fresh code to
load FASTA files for each new program.

4. The programmer can easily combine custom modules and third-
party libraries to quickly and efficiently create large programs.

5. A team of programmers can easily collaborate on a large program
when each of them is writing/testing different modules.

7.4.2 Code Refactoring

Refactoring is the process of changing a program so the code is different but
the results are same. This is similar to changing a wet-lab procedure so it

206 Implementing Reproducible Research

uses fewer consumables, less dangerous chemicals, and less time while still
generating a result of similar quality. Once a programmer has a well-tested
program that produces the desired results, he or she can refactor the code
so it is more readable and simpler, with emphasis on the readability. Before
beginning, test codes should be written to ensure that the code still runs
properly after refactoring and the code itself should be self-documenting (see
Section 7.3).

When refactoring, there are several preferred practices:

1. Remove programming language-specific idioms or overly complex
statements to increase readability. Many programming languages
have similar structures and syntaxes (i.e., a Perl statement can be
read by a C++ programmer as long as it does not use Perl-specific
syntax). Also, overly complex statements tend to contain errors.

2. Divide large functions or modules into smaller ones. As discussed
in the modularity section, smaller modules are easier to code, test,
and reuse.

3. Remove dead/obsolete code. Because of the evolutionary pro-
cess discussed previously, nonfunctional code from earlier versions
might be lurking in the code. Removing obsolete lines will both
increase readability and ensure that compute resources are not
wasted on useless processing.

7.4.3 Code Optimization

As mentioned previously, interpreted languages are often used to develop
bioinformatics software because they reduce development time with the
acceptable trade-off that they are slower than compiled languages. In some
cases, however, performance is critical and the program may be consid-
ered useless if it cannot achieve a particular speed. Optimization involves
identifying the bottlenecks (the slowest sections) and modifying them to use
different algorithms or compiled languages. This is similar to a wet-lab bio-
chemist taking a multistep synthetic pathway, determining the rate-limiting
steps, and either substituting those steps with new reactions or using cata-
lysts. Generally, only the bottlenecks should be optimized; opening one or
a few bottlenecks is usually sufficient to achieve the desired performance
without spending time optimizing the entire program. The bottlenecks can
be found using a tool called a profiler, which reports the time and the number
of times a particular function or a method is called. Examples of a profiler are
GNU gprof for C/C++ and profile, cProfile, and pstats module for Python.

Note: Some common bottlenecks in bioinformatics programs involve loading data
multiple times, unnecessary reading/writing data to disk, and inefficient searching
using nested loops. These can often be solved by using more efficient algorithms
or data structures. Novice programmers are prone to writing algorithms that mimic

Reproducible Bioinformatics Research for Biologists 207

how a human would perform a task instead of harnessing the abilities of the computer
and the specific programming language. Consultation with other bioinformaticians
or with an online forum is a good path to improving code efficiency or solving specific
problems.

Optimization depends on the languages being used. For a bioinformatics
program written in Perl or Python, a bottleneck function can be rewritten
in a compiled language like C++ or Fortran, and then wrapped so the inter-
preted language can use it. This method can increase performance by several
magnitudes, although poorly written code in a compiled language may not
function as well as well-written code in a scripting language. Experienced
bioinformaticians utilize data structures and libraries that are built into the
scripting and compiled languages, which have been optimized by profes-
sional software developers. For example, in Python, many built-in data
structures and functions are actually implemented in C and wrapped so they
can be called using Python code. A biologist/bioinformatician need only find
an appropriate method that has already been optimized and implemented in
a compiled language.

7.4.4 Research Documentation

As stated previously, a complete bioinformatic analysis usually consists
of running several third-party software packages, scripts that port data
between them, and visualization tools to represent the final results. To
reproduce the results, a biologist must repeat every step in the analysis in
the correct order with the appropriate parameters. Until recently, provid-
ing a complete set of instructions was not trivial. Because the biologist/
bioinformatician is frequently using an evolving procedure, the bookkeep-
ing required for recording detailed procedures can become complicated.
Fortunately, scientists and companies have developed tools to simplify
the process, allowing researchers to conduct computational analyses while
simultaneously building the final set of instructions. In this section, we intro-
duce the IPython Notebook, which has become popular due to its support of
Python, shell commands, and R (a statistics and graphing language).

7.4.4.1 IPython Notebook

IPython Notebook is a combined electronic notebook and programming/
computing environment. Users can create a notebook for a project and link
all scripts, programs, and shell commands, and parameters used to the note-
book, including the order in which they are to be run. Users can then run the
analysis from start to finish in the notebook and view/save output at each
step as well as add textual notes and comments. This high level of organiza-
tion can boost biologists/bioinformaticians’ productivity while giving them
the tools to run and rerun their analyses reproducibly. A single click will run
an entire pipeline, expediting parameter optimization, replicate runs, and

208 Implementing Reproducible Research

reruns after fixing bugs. Automating the process in the notebook minimizes
mistakes from typos and other human errors. Moreover, IPython Notebook
can be run on a remote server, making it suitable for computer clusters or
cloud computing systems. The notebook can be distributed to collaborators
who can rerun all commands and see identical results on their computer
without the programmer writing any additional documentation.

The notebook is not efficient for running processes that require days to finish.
Therefore, we write shell scripts to perform the laborious number-crunching and use
the notebook for everything else.

The IPython Notebook is built on top of IPython, an advanced Python
shell for interactive Python programming, but can support many more pro-
gramming languages. For example, with the rmagic plugin and Python
RPy2 library, users can use R libraries such as those from Bioconductor
(see Resources) and store the results in Python data structures, which can
be further analyzed with Python. This feature reduces the number of steps in
data transformation, which is a common problem in bioinformatics research.
Another useful feature of IPython Notebook is an in-line plot, which allows
users to use Matplotlib library or R to make and visualize a plot, and then
save it in IPython Notebook with comments and code to create an executable
document. Finally, the notebook is stored as a plain text file that can be ver-
sion controlled and distributed as discussed earlier. IPython has many more
plugins and shortcuts that support scientific computing analyses. Following
is an example of boosting productivity by using a shortcut:

>>> expression_values =!cut -f 2 expression.dat # read in\
a value from the second column of a text file

Expression values are contained in expression.dat, and cut is used to
select the second data column (-f 2). This data is then assigned to the Python
list variable expression_values for later use. Running this single line in the
notebook can take the place of running the cut command at the command
line, saving the results to a file, opening that file in Python, reading the data,
and then assigning it to the list variable. Throughout this chapter we have
emphasized the idea that biologists/bioinformaticians can benefit greatly
by utilizing existing well-tested tools as opposed to reinventing the wheel.
IPython has been used by many scientists for several years; therefore, it is not
surprising that there are many commands, shortcuts, and plugins that per-
form common tasks elegantly, accurately, and expeditiously. IPython also
allows users to create their own plugins to extend its functionality.

Note: Similar “notebook”-like tools exist for R, as well.

7.4.4.1.1 Real-World Example

The senior author (C. Titus Brown, MSU) used the IPython notebook
to complete parts of a bioinformatics analysis for a recent manuscript,

Reproducible Bioinformatics Research for Biologists 209

available at https://github.com/ged-lab/2012-paper-diginorm.git. The
author also provides a tutorial on running the pipeline and reproducing the
results using IPython notebook at http://ged.msu.edu/angus/diginorm-
2012/pipeline-notes.html. The analysis was tested on Amazon cloud service
with ami-61885608, which has all the required programs preinstalled. Any-
one can follow the pipeline and use the notebook to reproduce the analysis
from start to finish with identical results with minimal effort.

At the NIH Cloud Computing for the Microbiome workshop in 2012, a
team of researchers from different backgrounds used IPython notebook and
StarCluster as collaboration tools to produce publishable results in record
time [28].

7.5 Related Topics

For biologists/bioinformaticians who have progressed through sections
(Sections 7.2 through 7.4), we briefly describe more advanced computing
topics that can facilitate accurate, efficient computational research.

7.5.1 Using Online Resources

A wide range of topics relevant to programming, bioinformatics, and data
analysis are discussed online in blogs, web forums, and Twitter. Perhaps the
single most useful approach to problem solving available is to do an online
search for your problem; if it is a problem or bug that has been encountered
in a popular piece of software, a solution will almost certainly have been
posted.

Two particularly useful web forums for bioinformatics are BioStars and
Seqanswers. We strongly suggest that novice bioinformaticians search these
forums for discussions of tools. Both of these forums also support ask-
ing questions, and the online bioinformatics community is generally very
friendly and willing to help; we encourage you to first search to see if some-
one has already asked your question, and if not, to then post the question on
one or both of these forums.

7.5.2 Advanced Tools

7.5.2.1 Regular Expressions

Regular expressions are tools for searching text for a particular pattern of
letters/numbers/symbols. For example, a bioinformatician can search for
short DNA sequence motifs in a data file with an unstructured or unusual
format. Regular expressions have their own syntax for defining a specific

https://github.com/ged-lab/2012-paper-diginorm.git
http://ged.msu.edu/angus/diginorm-2012/pipeline-notes.html
http://ged.msu.edu/angus/diginorm-2012/pipeline-notes.html

210 Implementing Reproducible Research

pattern, which to the casual eye can look like an unintuitive shell language.
For example, logy\b defines a pattern for a word that ends with logy,
matching biology, physiology, technology, etc. In programming, regular
expressions are used to concisely and quickly search for patterns in data.

7.5.2.2 Debuggers

Code frequently contains errors or bugs that cause unexpected results. While
syntax errors will be caught by the interpreter or compiler, logic errors often
go undetected. A debugger allows programmers to interact with their pro-
gram by running and pausing execution, stepping in and out of functions
or loops, and changing values in variables during execution to locate a bug.
Most programming languages have at least one debugger. GDB is a standard
GNU/Linux debugger that can be used with most compiled programming
languages. Moreover, major IDEs such as Eclipse and Netbeans have built-in
debuggers with GUIs.

7.5.2.3 Unit Tests and Automated Testing

Unit testing consists of writing code that tests individual units of a program,
such as functions or modules. Each subunit is tested in isolation; therefore,
tests on a given subunit will not be affected by bugs from other subunits.
This procedure helps locate errors in a large program. Unit testing libraries
are available for most major languages and help users create test suites. Some
libraries also provide a test runner to run tests automatically. An impor-
tant advantage of automatic testing is that users can test the program to
ensure that the installation process is bug-free. Unit testing also promotes a
test-driven development process, which helps guarantee that every function
works as expected and tests are written for every function in a program.

7.5.2.3.1 Real-World Example

In our lab, large programming projects have separate folders for test code.
However, each project uses different libraries for testing; for example,
Gimme (https://github.com/likit/gimme) uses a Python unittest module
whereas khmer (http://github.com/ged-lab/khmer.git) uses user-defined
functions, which are recognized and run by the nosetest module. Instruc-
tions for automatically running tests are included in the corresponding
README files.

7.5.3 Advanced Programming Topics

7.5.3.1 Object-Oriented Programming Paradigm

Object-oriented programming (OOP) is a standard programming paradigm
that creates “objects,” which usually consist of data and specific methods for

https://github.com/likit/gimme
http://github.com/ged-lab/khmer.git

Reproducible Bioinformatics Research for Biologists 211

operating on that data. This is useful when a large program needs to have
standardized methods for data-processing but also uses several different
types of data. In addition, objects can be reused or extended without rewrit-
ing them from scratch. This practice has been extensively used throughout
the software industry and in scientific programming because it promotes
code maintenance and expansion.

7.5.3.2 Algorithms and Data Structures

Most major languages used in scientific computing provide libraries sup-
porting well-optimized algorithms and data structures. However, using a
preimplemented algorithm without understanding the underlying concepts
is unsafe. Most algorithms have strengths and weaknesses that should be
evaluated based on the specific application. Basic knowledge of algorithms
will help biologists make a correct decision.

7.5.3.3 Compiled Languages

While time consuming, learning a compiled language such as C/C++ gives
insight into how a computer functions because it requires machine-based
knowledge. Scripting languages are designed to abstract away many low-
level details to improve programmer productivity. As a result, it also
abstracts away important concepts of computing such as memory manage-
ment. A basic understanding of how to program in a compiled language
will help biologists write better code using scripting languages because of
a greater understanding of the underlying mechanisms. In addition, many
bioinformatics software packages still use code in compiled languages to do
rapid processing.

7.6 Conclusion

The general problem in the bioinformatics field is not an absence of tools
and good practices, but rather that many researchers lack knowledge and
training with them [31]. Embedded in a scientific culture that is relatively
inexperienced with good computational practices, many biologists make
their first foray into bioinformatics with only intuition and the Internet to
guide them. The tools and practices discussed here are intended to help those
biologists build a solid foundation in reproducible computational research.
Because it would be impossible to condense several years of scientific com-
puting and data analysis training into a single book chapter, we have focused
on describing those tools and practices that are particularly useful for novice
bioinformaticians, emphasizing their contribution to productivity and

212 Implementing Reproducible Research

reproducibility, with the intention of giving biologists the introduction they
need to then seek specific information and step-by-step tutorials elsewhere.

Investing in learning computational tools and practices will yield incal-
culable return over the course of a biologist’s career. With the enormous
potential for discovery available in this era of Big Data, datasets can be
expected to continue expanding. A biologist who starts learning and apply-
ing general tools and good computing practices now will eventually save
years of time. Moreover, the biologist who invests time in writing tests, using
version control, and automating/distributing analyses in the IPython Note-
book will both be compliant with journal and granting agency policies for
distributing code and avoid the aggravation of other scientists repudiating
his or her unreproducible results.

While the list of tools and practices to learn might seem overwhelming
to biologists with no prior computational experience, we encourage them
to take a systematic approach to the education process. Just as a wet-lab
researcher is trained on one instrument at a time, practices using it for his
or her current project, and then moves on to more complicated methods,
so too can he or she learn computational techniques. Installing software for
running a command-line interface and looking through a text file of data is
a good start. This simple task can build confidence with using the command
line, and soon the biologist will be ready to learn simple grep commands to
make looking through that text file easier and faster. Each skill will build
upon the last, and the biologist will soon be applying these skills to his or
her research, finding experiments where a new option or tool will accu-
rately process data in seconds that would otherwise have required hours of
mind-numbing clicking. Once the biologist gains experience with the begin-
ner tools and practices, he or she will be ready to tackle the intermediate
(Section 7.3), and the tools and practices described will seem like a natu-
ral progression. As the biologist becomes a more practiced bioinformatician
with a well-stocked toolbox, so too will his or her research advance.

A single biologist using good computational tools and practices can pro-
duce a lifetime of biological breakthroughs and innovation. A team of skilled
biologists can work in parallel to push the limits of biological knowledge
in a particular area by several lifetimes. As more biologists practice repro-
ducible computational research, the sheer breadth and depth of their work
will collectively move the entire field of biology into a new era of scientific
discovery.

Acknowledgments

The authors thank Greg Wilson, Steve Haddock, Hans Cheng, Randy Olson,
Eric McDonald, Jason Pell, and Cari Hearn for reviewing early drafts of this
manuscript.

Reproducible Bioinformatics Research for Biologists 213

This chapter is maintained online at http://reproducibility.idyll.org/,
where it is being continuously modified and updated by the authors and
members of the scientific community. Readers are encouraged to visit the
associated forum and leave questions/comments.

Available Resources

Books

UNIX/Linux Tools

• Haddock & Dunn Practical Computing for Biologists.
• Newham, Cameron Learning the bash Shell [O’Reilly].
• Robbins, Arnold and Dougherty, Dale sed & awk [O’Reilly].
• Cameron, Debra et al. Learning GNU Emacs [O’Reilly].
• Robbins, Arnold et al. Learning the vi and Vim Editors [O’Reilly].
• Neil, Drew Practical Vim: Edit Text at the Speed of Thought [Pragmatic

Bookshelf].
• Chacon, Scott Pro Git [Apress].

Python

• Campbell, Gries, Montojo and Wilson An Introduction to Computer
Science Using Python [Pragmatic Bookshelf].

• Lutz, Mark Learning Python [O’Reilly].
• Model, L Mitchell Bioinformatics Programming Using Python

[O’Reilly].
• Vaingast, Shai Beginning Python Visualization [Apress].
• Arbuckle, Daniel Python Testing: Beginner’s Guide [Packtpub].

Others

• Joe Pitt-Francis, Jonathan Whiteley Guide to Scientific Computing in
C++ [Springer].

• James Tisdall Beginning Perl for Bioinformatics [O’Reilly].
• James Tisdall Mastering Perl for Bioinformatics [O’Reilly].
• Ellie Quigley Perl by Example [Prentice Hall].
• Peter Cooper Beginning Ruby [Apress].
• Joseph Adler R in a Nutshell [O’Reilly].
• Peter Dalgaard Introductory Statistics with R [Springer].
• Paul Teetor R Cookbook [O’Reilly].

http://reproducibility.idyll.org/

214 Implementing Reproducible Research

Online Resources

UNIX/Linux Tools

• GNU Operating System
http://www.gnu.org

• Cygwin (Linux emulator for Windows)
http://www.cygwin.com

• MSYS+MinGW
http://www.mingw.org/wiki/MSYS

• Vi and Vim
http://www.vim.org/index.php

• Emacs
http://www.gnu.org/software/emacs/

• Github: Git online repository
http://github.com

• Git tutorial
http://git-scm.com

• Mercurial
http://mercurial.selenic.com/

• SVN
http://subversion.apache.org

Python

• Python: Python official website
http://python.org

• Python style guide
http://www.python.org/dev/peps/pep-0008/

• The Zen of Python: A guideline for Python coding
http://www.python.org/dev/peps/pep-0020/

• Learn programming by visualizing code execution
http://www.pythontutor.com/

• Python doctests
http://docs.python.org/library/doctest.html

• Python unittest
http://docs.python.org/library/unittest.html

• IPython: Advanced Python shell
http://ipython.org

• Scipy: Scientific tools for Python
http://www.scipy.org/

• Matplotlib: Python plotting library
http://matplotlib.org/

• Python: Speed and performance tips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips

Reproducible Bioinformatics Research for Biologists 215

• Performance analysis of Python programs
http://www.doughellmann.com/PyMOTW/profile/

R

• R Official website
http://www.r-project.org/

• Rseek: Search engine for R related materials
http://rseek.org

• Bioconductors: R packages for bioinformatics
http://bioconductor.org

Web Forums

• BioStars: Bioinformatics answers
http://www.biostars.org/

• Seqanswers: Bioinformatics answers
http://seqanswers.com

• Stack overflow: General programming
http://stackoverflow.com/

Others

• Software carpentry: Online training
http://software-carpentry.org

• Rosalind: Learning Bioinformatics
http://rosalind.info/problems/as-table/

• Reproducible research
http://reproducibleresearch.net

• Analyzing next-generation sequencing data
http://bioinformatics.msu.edu/ngs-summer-course-2012

References

1. A. Oram and G. V. Wilson, editors. Making Software: What Really Works,
and Why We Believe It. O’Reilly, Farnham U.K., 2011.

2. D. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley, A. Chakravarti,
A. G. Clark, F. S. Collins et al. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061–1073, Oct 2010.

3. W. J. Ansorge. Next-generation DNA sequencing techniques. N Biotech-
nol, 25(4):195–203, Apr 2009.

216 Implementing Reproducible Research

4. No authors listed. The ENCODE (ENCyclopedia Of DNA Elements)
project. Science, 306(5696):636–640, Oct 2004.

5. B. Boehm, H. D. Rombach, and M. V. Zelkowitz, editors. Foundations
of Empirical Software Engineering: The Legacy of Victor R. Basili. Springer,
Berlin, Germany, 2005.

6. W. Bialek and D. Botstein. Introductory science and mathematics educa-
tion for 21st-century biologists. Science, 303(5659):788–790, Feb 2004.

7. F. S. Collins, M. Morgan, and A. Patrinos. The Human Genome Project:
Lessons from large-scale biology. Science, 300(5617):286–290, Apr 2003.

8. D. Heaton, J. C. Carver, R. Barlett, K. Oakes, and L. Hochstein,
The relationship between development problems and use of software
engineering practices in computational science and engineering: A
survey. Website, 2012. http://www.software.ac.uk/sites/default/files/
softwarepractice2012_submission_10.pdf

9. D. Kelly and R. Sanders. Assessing the Quality of Scientific Software.
Website, 2008. http://secse08.cs.ua.edu/Papers/Kelly.pdf

10. S. A. Forbes, N. Bindal, S. Bamford, C. Cole, C. Y. Kok, D. Beare,
M. Jia et al. COSMIC: Mining complete cancer genomes in the Cata-
logue of Somatic Mutations in Cancer. Nucleic Acids Res, 39(Database
issue):D945–D950, Jan 2011.

11. G. Wilson. Where’s the real bottleneck in scientific computing? Am Sci,
94(1):5, 2006.

12. D. C. Ince, L. Hatton, and J. Graham-Cumming. The case for open
computer programs. Nature, 482(7386):485–488, Feb 2012.

13. J. Segal. Some problems of professional end user developers. IEEE Sym-
posium on Visual Languages and Human-Centric Computing, Coeur d’Alène,
ID, 2007.

14. E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody,
J. Baldwin, K. Devon et al. Initial sequencing and analysis of the human
genome. Nature, 409(6822):860–921, Feb 2001.

15. C. M. Lewis, A. Obregon-Tito, R. Y. Tito, M. W. Foster, and P. G. Spicer.
The Human Microbiome Project: Lessons from human genomics. Trends
Microbiol, 20(1):1–4, Jan 2012.

16. E. R. Mardis. Anticipating the 1,000 dollar genome. Genome Biol, 7(7):112,
2006.

17. G. Miller. Scientific publishing. A scientist’s nightmare: Software prob-
lem leads to five retractions. Science, 314(5807):1856–1857, Dec 2006.

18. A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz.
Research priorities. Shining light into black boxes. Science, 336(6078):
159–160, April 2012.

19. R. M. Myers, J. Stamatoyannopoulos, M. Snyder, I. Dunham, R. C.
Hardison, B. E. Bernstein, T. R. Gingeras et al. A user’s guide to the
encyclopedia of DNA elements (ENCODE). PLoS Biol, 9(4):e1001046,
Apr 2011.

http://www.software.ac.uk/sites/default/files/softwarepractice2012_submission_10.pdf
http://www.software.ac.uk/sites/default/files/softwarepractice2012_submission_10.pdf
http://secse08.cs.ua.edu/Papers/Kelly.pdf

Reproducible Bioinformatics Research for Biologists 217

20. NIAID and NHGRI. Eukaryotic Pathogen and Disease Vector
Sequencing Project. Website, 2012. http://www.niaid.nih.gov/
labsandresources/resources/dmid/gsc/pathogen/Pages/default.
aspx

21. NIEHS. Environmental Genome Project. Website, 2012. http://egp.gs.
washington.edu/

22. NIH. Centers for Mendelian Genomics. Website, 2012. http://www.
genome.gov/27546192

23. NIH. Clinical Sequencing Exploratory Research. Website, 2012. http://
www.genome.gov/27546194

24. NIH. International HapMap Project. Website, 2012. http://hapmap.ncbi.
nlm.nih.gov/

25. No authors listed. Free Software Foundation. Website, 2012. http://
www.fsf.org/

26. US Department of Energy. Human Genome Project Information.
Website, 2012. http://www.ornl.gov/sci/techresources/Human_
Genome/home.shtml

27. P. Pevzner and R. Shamir. Computing has changed biology–biology
education must catch up. Science, 325(5940):541–542, Jul 2009.

28. B. Ragan-Kelley, W. A. Walters, D. McDonald, J. Riley, B. E. Granger,
A. Gonzalez, R. Knight, F. Perez, and J. G. Caporaso. Collabora-
tive cloud-enabled tools allow rapid, reproducible biological insights.
ISME J, 7(3): 461–464, Oct 2012.

29. B. J. Strasser and M. O. Dayho. Collecting, comparing, and comput-
ing sequences: The making of Margaret O. Dayho’s Atlas of Protein
Sequence and Structure, 1954–1965. J Hist Biol, 43(4):623–660, 2010.

30. Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt
Davis, Richard T. Guy, Steven H. D. Haddock, Katy Huff, Ian Mitchell,
Mark Plumbley, Ben Waugh, Ethan P. White, and Paul Wilson. Best
practices for scientific computing. arXiv, abs/1210.0530, 2012.

31. Z. Merali ...why scientific programming does not compute. Nature,
467:775–777, Oct 2010.

32. I. B. Zhulin. It is computation time for bacteriology! J Bacteriol, 191(1):
20–22, Jan 2009.

http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/pathogen/Pages/default.aspx
http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/pathogen/Pages/default.aspx
http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/pathogen/Pages/default.aspx
http://egp.gs.washington.edu/
http://egp.gs.washington.edu/
http://www.genome.gov/27546192
http://www.genome.gov/27546192
http://www.genome.gov/27546194
http://www.genome.gov/27546194
http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://www.fsf.org/
http://www.fsf.org/
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

8
Reproducible Research for Large-Scale Data
Analysis

Holger Hoefling and Anthony Rossini

CONTENTS

8.1 Introduction . 220
8.1.1 Disclaimer . 220
8.1.2 Punchline . 220
8.1.3 Audience . 220
8.1.4 Project . 221
8.1.5 Outline . 222

8.2 Literate Programming and Reproducible Research . 223
8.2.1 Literate Programming and Its Relationship to

Reproducible Research . 223
8.2.2 Approaches for Literate Coding . 225
8.2.3 Tools for Literate Statistical Analysis . 225

8.3 Experiences and Recommendations for Practical
Literate Coding . 226
8.3.1 Multiple Reports and Presentations . 227
8.3.2 Tables/Figures and Listings. 227
8.3.3 Execution of Code. 228
8.3.4 Cooperation with Other Team Members . 229
8.3.5 Our Implementation . 230

8.4 Additional Tools in Use in Our Project and Other
Considerations . 231
8.4.1 Code Execution . 232
8.4.2 Report Generation . 232
8.4.3 Version Control System . 233
8.4.4 How to Ensure Future Availability of Software 234
8.4.5 Alternatives to Literate Programming . 235

8.5 Discussion . 235
8.5.1 Improvements for the Future . 236

8.5.1.1 Microsoft Office . 236
8.5.1.2 Table Support . 237
8.5.1.3 Headers and Footers . 237

8.5.2 Summary . 238
References . 238

219

220 Implementing Reproducible Research

8.1 Introduction

8.1.1 Disclaimer

The opinions expressed in this chapter are solely those of the authors and
not necessarily those of Novartis. Novartis does not guarantee the accuracy
or reliability of the information provided herein.

8.1.2 Punchline

We report on the experiences of applying and adapting the literate statistical
analysis methodology [6,7] to the work activities surrounding the statisti-
cally oriented components of a large-scale corporate research and develop-
ment project. This complex, multiyear, multiclient/stakeholder, multidata
analyst (with team members and clients mixed across multiple continents)
presented challenges to the assigned data analysis workgroup in terms of
accomplishing the data analysis using the standard available programming
tools. The difficulties in planning this project prodded the data analysis
workgroup (statisticians and bioinformaticians) to explore alternative group
working practices both at the beginning and with respect to changes during
the study. These explorations were constrained by the realization that there
were to be more than one data analyst and more than one client specifying
the form of results over the project lifecycle. There was also a requirement
to ensure documentation and reproducibility of prior and ongoing results
across the group and to ensure comparability and, when possible, coherency
of results across subprojects and deliverables, some of which originated from
completely different motivations.

Our conclusion from this experiment was close to what we had hoped
to achieve—computationally driven research and development, of a large
enough scale to require a disparate and heterogeneously formed and spa-
tially located data analysis workgroup, can be made reasonably transparent
and reproducible through application of appropriate work practices. In our
situation, this would be assured of taking place through the application of
LSA methodologies. However, the final form that the steady-state work pro-
cess and environment took was very different than what we had originally
intended and hoped for. The major goal of this chapter is to communicate the
overall experience, the challenges, and the lessons that we learned, in the hope
that we might influence, both internally and externally, thinking surrounding
the development of appropriate toolchains and work practices for large-scale
computationally reproducible and transparent statistical activities.

8.1.3 Audience

Writing such an article always poses a certain challenge with respect to
the intended audience, which is certainly also true in our case. As we

Reproducible Research for Large-Scale Data Analysis 221

are reporting on an especially large-scale project in the context of literate
programming (LP), a certain familiarity with these tools is helpful in under-
standing the particular challenges involved. Our report will likely be the
most useful for people attempting or contemplating, making their research
more reproducible, or who have some experience in generating small-scale
reports.

Therefore, in order to learn the most from this article, a limited famil-
iarity with an LP tool is assumed, but we will not assume any additional
knowledge about other tools we will be using. Our initial selection of a
toolchain consisted of R for the statistical programming, org-mode for the
source documentation, HTML and LATEX for communication–artifact genera-
tion, Git for recording and sharing, and Emacs (for ESS and org-mode) as the
programming environment. These tools were dictated by local conditions;
others can easily be substituted and justified based on technical, cultural,
practical, and religious reasons.

8.1.4 Project

We need to start at the beginning in order to understand the contrast to how
we think and would proceed in the present time. The work-practice philos-
ophy that we originally intended to adhere to, originating when the project
had just a single data analyst and two stakeholders, was that there should be
an evolving LP-based scientific technical report. From this technical report,
all of the communications and deliverables would be generated, from the
initial to the final. Very idealistic indeed!

Having tangible research results be understandable and completely
reproducible is the focus of this chapter, and for us, this means the tech-
nical report. Derived from this are a range of “advertisements” and artifacts,
including journal articles, presentations, and smaller communications that
originate from the material generated for the technical report and that should
also be generated in a reproducible and transparent manner. Reflecting back
on that, it seems like a grand and unachievable goal!

We knew at onset some of the final data analysis deliverables, and there
were guidelines and suggestions regarding the shell format that would be
suitable. These artifacts would include core interim results on the observa-
tional study and a final report on the study. We also knew that there could be
the potential for other communication deliverables, depending on requests
and intermediate findings. These could include typical internal corporate
presentations to other teams in the division, presentations to groups within
the corporation but outside the division, communications to senior division
management teams on findings and status, as well as internal and exter-
nal scientific communications on findings (or lack there-of) in journals and
conferences.

The core activities of this project consisted of statistical and bioinformatic
analyses of an observational trial of a few hundred subjects, with the goal

222 Implementing Reproducible Research

to support research and development of a prognostic molecular diagnostic.
In addition to standard clinical trial demographic and health-status informa-
tion, there were approximately 100 GB of raw data across a range of “-omic”
technologies, including mRNA, SNP, and a few other similar genetic and
genomic molecular diagnostic-appropriate readouts, with multiple types
(and times) for samples per subject.

The data collection for this project covered several years with one early
interim analysis, study monitoring reports, and a final analysis. For the final
analysis, the time frame available was roughly 3 months, after which the
results had to be presented. In our team, three people were “resourced” to
make the analysis possible with the given amount of time. They were split
over two locations on different continents, with e-mail and telephone being
the most common forms of communication. In addition, external consul-
tants were hired that worked semi-independently to provide a certain level
of outside validation of the results, apply their own novel methodologies,
and contribute their expertise.

The data analysis methods employed for this project were too compu-
tationally and memory intensive for a standard single/dual-core desktop
machine. However, they were still small enough so that a few well-equipped
powerful servers could handle the tasks.

The people coming into the project had a diverse background in terms of
their work practices (computer programming development environments).
The project manager was an experienced user of org-mode in Emacs and
version control systems. However, the other team members had previously
used vi or similar basic text editors and had only limited experience with
version control. As an additional hurdle, the external consultant resisted and
did not use our recommended tools, making exchange of code and results
more difficult and time consuming than anticipated.

Team members typically supported a few completely different projects
concurrently, so one assumption that we wanted to assess was whether we
could devise an approach that minimized the ramp-down and start-up time
required in switching between projects. We also hoped to better document
the different contacts, requests, and information originated from the greater
project team. Finally, there needed to be a common place for project plan-
ning, task responsibility, and time lines. Unfortunately, this last component
never really got off the ground.

8.1.5 Outline

In the following sections, we will discuss our setup, mainly with respect to
how we documented our code and ensured reproducibility. In the form as
we describe here, some of the discussion only applies for projects such as
ours—for example, large-scale exploratory research. Especially for smaller
projects or reports, other conclusions could be drawn and some of the needs,
assumptions, observations, and issues we describe in the succeeding text

Reproducible Research for Large-Scale Data Analysis 223

will not hold. We will still focus mainly on our project as a complicated case
for reproducible research and thus in our mind also more instructive for
practices that can be universally applied in the settings of large-scale data
analysis challenges.

As in our project we used LP, we will briefly introduce it and its
“extension” toward reproducible research, LSA. Our experiences using this
approach in our project will be outlined and discussed. We introduce some
other tools that we used to solve our challenges and finally end with a
discussion of reproducible research tools and other remaining issues.

The reader should note that we do not claim that our solution is the
only possible one. Other users in similar circumstances may find other
approaches more practical and useful. Nonetheless, we think that many peo-
ple will find our experiences and insights valuable for their own projects in
order to support selection of an efficient and productive setup without losing
time for experimentation.

8.2 Literate Programming and Reproducible Research

At the beginning of 2011, we started out with a set of tools and work
instructions for performing reproducible research in the context of statisti-
cal and bioinformatic analysis, and our initial setup was strongly motivated
by the theory of LSA. Over the course of the last 2 years, we have tuned,
refined, and experimented with this setup on a number of projects that were
relatively diverse, from relatively small dataset with a set of well-defined
analyses to exploratory analysis on large-scale data as mentioned earlier.

It was our intention at the beginning to use LSA as the central tool for
reproducible research for every aspect of the analysis, that is, the documen-
tation and writing of code, the execution of code, as well as the generation
of the final reports. Over time, it became clear that especially for the more
exploratory and large-scale projects, LSA has a number of drawbacks and
other tools commonly used in software development are, in our opinion,
better suited for this area. However, before going into more detail here, let
us review some history.

8.2.1 Literate Programming and Its Relationship to Reproducible Research

LP originated with the WEB system in the early 1980s for the development
of TEX [1] and, since then, has been extended to other application domains.
Some subsequent implementations target support for specific languages,
such as CWEB, while others are language independent, such as Spiderweb,
noweb, and nuweb. The original intent of the documents written in this lit-
erary style was to document the implemented computer program algorithm

224 Implementing Reproducible Research

in a mathematically reasonable way, as well as automate indices and simi-
lar structural guides to the program structure. To this end, natural language
describing the logic of the analysis steps is being mixed with code chunks
performing the actual operations. In order to execute the code and produce
the final results, the code chunks are put together in a certain defined way
to produce the source code (“tangled”) and the documentation is extracted
as well (“weaved”). This way, one ends up with one file containing the
documentation and a set of files with the source code.

In LP, the natural language is the central point, and the documentation
and ordering of the code chunks is written in a way that follows the human
thought process rather than the usual flow of a program. This way, the code
is supposed to be more understandable for human readers. Another impor-
tant aspect is that, other than in the case of most programming languages,
the code is located in a single file, organized by sections relating to the log-
ical components of the project. This setup can be very helpful for following
the underlying logic of the analysis; however, as such it is not sufficient to
ensure reproducibility of a result. In the strict sense, LP only documents the
code in a certain way and structures it according to a more “literal” thought
process. For this setting, several frameworks exist that implement LP in a
language agnostic manner. Here, we only want to mention noweb [5] as one
of the several examples. noweb has a very simple syntax, can contain code of
any programming language, and export the weaved documentation into sev-
eral output formats, among them LATEX and HTML. Its usage is very simple
as it essentially only has the two commands tangle and weave (with several
customization parameters).

After the introduction of LP, it was extended to LSA [6,7], which is the
process of ensuring that data analysis is clear and transparent in terms of
describing the exact computer programs used for generation of results. We
assume that such clarity and transparency are sufficient for reproducibility.
As such, its main focus is not the computational and mathematical imple-
mentation as with LP, but the whole statistical analysis. This ranges from
the origins of the data, the employed statistical methods with caveats and
assumptions, the code and programs used, to the results of the analysis and
their interpretation. LSA is a reproducible research method in that it ensures
that the computations are clearly defined and reproducible; however, it goes
beyond mere reproducibility in that it should show the approach, assump-
tions, and results in a clearly expressed and detailed manner. While ESS
(Emacs mode for programming in R) provided editing support for such prac-
tices starting in 1997, the first software tool to incorporate these principles in
a direct and automated fashion in the statistical domain was Sweave [2].

On a purely practical level, in addition to allowing the mixing of code
and natural language as in LP, LSA also intends for tables and figures that
are the results of the code to be imported back into the document. It concen-
trates more on the data analysis as a whole instead of just the programming
of computer code and the corresponding computational and mathematical

Reproducible Research for Large-Scale Data Analysis 225

aspects. This provides the basis for a system that allows to ensure that the
analysis is completely reproducible as well as easy to understand. In LSA,
the whole document is usually written with the final report in mind as it
is essentially the weaved documentation together with the inserted results.
As such, similar to LP, it is usually contained in a single file or, for larger
projects, split up by sections. This way of writing is designed to ensure that
the flow of code follows the narrative of the final report and it furthermore
intended that the code chunks should be kept short so that their behavior is
explained by the surrounding text. Of course, in some situations, the report
does not conform to this structure. In order to accommodate this, it is also
possible (depending on the implementation) not to export the documenta-
tion of certain sections and/or even reorder sections from the original LSA
document. All in all, LSA has a lot of flexibility but many challenges that we
will discuss later. First, we want to talk about the literary style of our LSA
document and the software tools we use.

8.2.2 Approaches for Literate Coding

As with literary styles, there are many different styles in which literate cod-
ing can be done. The particular one used for a project depends on the require-
ments of the project itself as well as the background of the researchers. For
example, in a consulting project, it would be important to make notes about
the initial conversations, the analysis plan, preprocessing of the data, the
actual analysis, and the conclusions. In other situations such as knowledge
transfer, a different approach is needed. There, a higher emphasis on previ-
ous state of the art on the problem in question and the newly added methods
would be needed. In the analysis of a clinical trial for submission purposes,
special attention would have to be paid to the analysis plan, any transforma-
tion of the data, and very detailed descriptions of the analysis methods.

In our case, the plan was to do an exploratory/signature development
analysis of high-dimensional genomic data. Therefore, the main parts of our
documentation concentrated on the preprocessing of the data, univariate and
multivariate analysis of the genomic markers, and the production of tables
and figures for the report. As the code used in the analysis was quite exten-
sive, a major goal for the literary style that we use is to make orientation in
the code base easier.

8.2.3 Tools for Literate Statistical Analysis

The requirements on the tools for LSA are somewhat higher than those used
for LP due to necessary processing of the code and the importing of the
results. Sweave was the first that implemented this concept, based on the LP
system CWEB. It allows R (or S) code to be mixed with LATEX documents,
executes the code, imports results (output and plots), and then converts
the resulting LATEX file with the output into ps, dvi, or pdf file (and other

226 Implementing Reproducible Research

options such as exporting to HTML are also possible). Afterward, it has been
extended to other languages (such as SAS), but the standard version is very
closely linked with R and LATEX. There are several other tools of a similar type
available, building and improving on the earlier ideas. An example for this
is the R package knitr, which is also explained in a chapter in this book.

Instead of these, we decided on using org-mode, an Emacs mode that
was originally written for organizing notes, tracking to-do items, agendas,
etc. Later, an option to include source code and execute it was added, mak-
ing it into a tool for LSA. With respect to programming languages, it is not
restricted to any one in particular; code blocks can be written in a wide
variety, among them R, SAS, Python, and Perl (more can be seen on the org-
mode manual). This is very convenient when more than one programming
language has to be used (which was not the case for us). It also provides a
good programming environment, as Emacs has specialized modes for edit-
ing many languages and org-mode allows the user to treat every code block
essentially as a separate file for editing purposes. Other than Sweave and
knitr, which can be written, edited, and used in many editors, org-mode
is strictly restricted to Emacs, which may be quite a high hurdle in some
cases—although one that is worthwhile to climb over in our opinion. Of
course, at this point, we do not want to hide the strong affinity of one of
the authors of this article to ESS, the statistics mode in Emacs, which may
also have played a role in the choice of tools.

Overall, all of these LSA tools would have done a roughly equivalent job
for our project, given that we were using R. However, for someone who is
not averse to Emacs and wants flexibility, org-mode is a good choice. Knitr on
the other hand is well integrated into RStudio and Sweave has a lot of support
due to its long history.

Apart from org-mode in Emacs, we used R as our programming language
of choice due to its great package support in biostatistics and bioinformatics
as well as because all members of the team were already fairly comfortable
with it. In the following, we will take our choice of programming language
as a given. Subsequently, the article will concentrate on discussing LP and
LSA in the context of R and our solutions to some issues; however, we think
that it will similarly apply to many other languages that are used for data
analysis as well.

8.3 Experiences and Recommendations for Practical
Literate Coding

As we already mentioned earlier, we were determined to adhere to the strat-
egy outlined by LSA, that is, to write programs that follow our flow of
thought, not the requirements of the programming language. So we tried

Reproducible Research for Large-Scale Data Analysis 227

to write a lot of documentation that was interspersed with code blocks that
implemented the steps we described verbally before. The intention also was
to use org-mode to execute all code blocks directly in the org-document and
write the final report at the same time, which was to be generated out of the
same document.

8.3.1 Multiple Reports and Presentations

In a project such as this, usually there are several different “advertisements”
that are required during the development phase as well as at the end. These
usually take the form of interim and final reports as well as presentations. In
addition to the final report, a technical report may be produced that contains
more details on the results and techniques. In the spirit of LSA, all of these
documents and presentations should be generated using the same source
document.

In case of a single output document, this is relatively simple and it is here
that the big advantage of automatic report generation is best illustrated. In
addition to every update to the results being immediately included in the
final output, the origin of every table or figure is also easily traceable as it is
only necessary to look at the code at that position of said table or figure. All in
all, it is very simple and allows for easy reproducibility and understanding.

However, meeting these requirements is already much more difficult
when both, a report and a presentation, have to be produced. In terms of
their formatting, literary style and amount of information included, they are
so different that they have to be written separately. However, how should
the code then be kept close to figures and tables in several “advertisements”
at the same time? Either, the code would have to be duplicated as well (which
would be extremely hard to maintain) or at least some of the advertisement
would be produced without the corresponding code. In the latter case, the
immediate question arises as to why the code should not be kept separate
completely—however, still written using LP.

A related issue was the organization of the code base. The logical orga-
nization of code does not necessarily correspond to the outline of the related
report. Some parts of the codebase do not correspond directly with any
report section at all (e.g., the preprocessing). In these cases, it is not clear
if it is an advantage to order the code so that it corresponds to the outline of
the report as it can be directly related to the text or if it is a disadvantage as it
breaks a very logical approach for a programmer to think about the problem.

8.3.2 Tables/Figures and Listings

The most important direct contributions of a statistical analysis to an arti-
cle or report usually come in the form of tables and figures that summarize
the results. LSA allows for these to be directly included in the final doc-
ument without the need to explicitly save them to disk and import them.

228 Implementing Reproducible Research

This approach is very much in the spirit of LSA as it forces the code that
generates the figure or the table to be exactly where it will be placed in the
report. From a practical point of view, however, this also entails some prob-
lems. As they are not necessarily written to disk, the tables and figures may
only be available in the final report. So every time the analyst wants to look
at the details of the results in R, the particular code chunk has to be evaluated
interactively—and possibly, very many others. Furthermore, if the same out-
put is to be used at other places (e.g., a PowerPoint presentation), it would
have to be copied out of the final report, which could be potentially diffi-
cult or degrade the quality (e.g., on a plot). For these reasons, we decided
to write out all tables and figures to disk. This, of course, does not pre-
vent a user from including a table or figure into a report from its location on
disk—but the direct connection between the code and the imported results
has been severed. This is especially the case in the context of projects with
a very large number of predefined tables, figures, and listings (TFL) or in
data-driven, exploratory analysis that produce many TFLs, the exact nature
of which is unclear at the beginning of the project. In these circumstances, it
is usually the case that many more figures and tables are being created then
should/could be included in the final report and only a representative plot
or a subset a table is finally used in the end. Therefore, writing out all of them
to disk is essential to be able to evaluate all results later.

8.3.3 Execution of Code

One of the major obstacles to using LSA tools for large-scale projects is the
execution of the code. Sweave, knitr, and org-mode are set up to tangle out
the code and then execute all code blocks in a document every time the doc-
ument is being exported into a pdf. For projects where the code has a short
run-time, this is fine. However, for computationally intensive projects, it is
a much bigger problem. Executing all code may take many days, so that
the execution of all parts as intended in these tools becomes infeasible. This
problem has of course already been recognized with some solutions devel-
oped and implemented, including the caching of results of code blocks and
reexecution of code blocks only if changes have occurred. These are good
approaches, but they certainly fall short in some areas, for example, when
it comes to complex dependency structures between code chunks, displays,
and changes in the input data.

Taking a step back and evaluating the problem, it becomes clear that it is
a rather old and well solved already. What is needed is essentially a make-
file that controls the execution of the various code blocks, knows about the
dependencies between the code chunks and the underlying data, and only
reexecutes those code parts where truly something has changed—either in
terms of input data, the code itself, or the underlying software (R or the
packages). Of course, a system similar to a “make” program could also be

Reproducible Research for Large-Scale Data Analysis 229

included as well in org-mode or Sweave. However, this would just require
the duplication of well-maintained and tested make programs. Furthermore,
using a make program that is external to the LP framework also has the
added advantage of allowing an outside user to execute the code without
having to know how to use the literate analysis framework, overall lowering
the barrier for entry (at least if they know how to use make).

8.3.4 Cooperation with Other Team Members

Finally, there are certain issues with the key output of the whole work—the
final report. Its review by people outside of the data analysis workgroup
can be a challenge if tools that are outside of the usual MicrosoftTM office
products are used. In cross functional teams (e.g., on clinical trials), project
managers or clinicians regularly review the reports before they are officially
approved. Most of these report, however, are usually written in Microsoft
Word or similar word-processing software. During the iterative review pro-
cess, changes are commonly written directly into the final report, allowing
the reviewer direct control of their intended revisions and comments. This
becomes problematic with the automatic generation of reports into pdf files
or HTML pages, as changing the report actually does not change the source
code. The source code, however, is in these cases written in a form most
nontechnical people are not comfortable with. For example, in Sweave, the
report is commonly written in LATEX—which as a markup language few peo-
ple are familiar with. But even for org-mode, which is much simpler and
could be edited with any text editor with minimal knowledge, giving access
to the org-document can be an issue as other team members are not used to
the format or tools (Emacs in particular) and can be frustrated by “content
over presentation” challenges. In the end, we settled on providing every-
one with the pdf file and asked for comments to be inserted into the pdf.
While this is an overall acceptable solution, it does certainly require more
time from the analysis team as they have to make all changes themselves
and essentially copy and paste the input from other team members back into
the org-mode document. This of course makes it a lot harder to know what
the comments and changes were and it is very easy to lose track of who the
comments originated from. It is furthermore also not really satisfactory to
the commenters, as they lose direct control over what they want to say.

From a practical perspective, the workflow is a lot less convenient than
with standard word processors. Inserting comments into a pdf is not gen-
erally supported by pdf readers, much less directly editing the text in the
pdf itself. Second, Microsoft Word has a sophisticated “track change” mode
that makes it very easy to see who has made which alterations in a docu-
ment. While some of this functionality can also be found in other tools, we
are not aware of anything as comfortable, easy to use, and well known by all
members in such a diverse team as found our actual research project.

230 Implementing Reproducible Research

Another challenge we faced is that in large commercial organizations,
certain standards are mandated by corporate policy and must be followed
for efficiency reasons. It may be necessary that reporting documents have
a certain file type (e.g., docx)—or even be produced by a specific pro-
gram (e.g., Microsoft Word) using specialized, restricted formatting options
and/or specific templates. Similar requirements may hold for presentations.
Even if there is no strict requirement, it is fairly common that other people
reuse a few slides from old presentations, for example, to give an overview
on the current stage of all programs in a department. In such a case, it
quickly becomes inconvenient when different tools have been used, mak-
ing the copying cumbersome, say when reusing formatted text from a pdf
presentation in PowerPoint.

8.3.5 Our Implementation

In the end, we decided to largely split the code from the final report for
these reasons and have one org-document with the code of the project and
a separate document with the final report. This approach has the advantage
that in the code org-file, it is easier to focus on the code itself during pro-
gramming and concentrate on its sensible ordering and a reasonable level
of comments. Of course, this approach somewhat deviates from the philos-
ophy of LSA. However, the disadvantages are mainly that it is somewhat
harder to link a table or figure in the final report back to the code that pro-
duced it. This can be addressed by, for example, inserting the name of the
script that produced the object in the footer of the plot or the caption of
the table.

Another area where we deviated from the principle of LP is the length
of the code blocks. In particular, and this also may just be the authors
preference, we found it difficult to follow a program that heavily inter-
sperses verbal text and code blocks that are not self-contained, making it
overall harder to read than a single code block with a “sufficient” amount
of comments in it. The main reason for this is that for short, not self-
contained blocks, the dependencies were not immediately clear, that is,
can it be executed on its own or do several other code blocks have to be
executed first—and if yes, which? In an LP framework, a code block is
intended to be tangled out with all other code blocks before execution. From
looking at the org-document, it is hard to see, however, which other of
the potentially hundreds of code blocks are also strictly needed to be exe-
cuted first (e.g., to provide needed data or some preprocessing step) and
which blocks are not needed. This becomes even more complicated when
several hierarchical levels are used to structure the analysis (e.g., Level 1:
preprocessing, with level 2 subheading for mRNA, SNP, methylation, and
miRNA). In the end, we decided to go with an approach that is somewhat
closer to the traditional programming practice but incorporates some aspects
of LP:

Reproducible Research for Large-Scale Data Analysis 231

• The whole analysis was written in one single org-mode document
using different level headings to structure the analysis into logical
parts.

• Functions that are reused at different parts of the code are to be writ-
ten into separate code chunks and documented there. They should
be tangled out into separate code files so that script files can load
these functions as needed.

• Code chunks should be self-contained and if possible not be split.
Each code chunk should either be a function that is used by some
other code chunk (and loaded there as a library) or be self-contained
in the sense that, at the beginning, all necessary data are loaded and
processed and the results written out at the end.

• The code chunks should, if possible, not be longer than 100 lines.
• Where possible, functions should be written in abstract form and

loaded as a library.
• If a code chunk is split because it is long and easier to document

and understand in several parts, these parts should not span several
sections of the code.

• Before each code chunk, a short description of the task to be done
should be provided.

• Each self-contained code chunk should be tangled out into a sepa-
rate file.

This way, we want to get the best of both worlds, the traditional pro-
gramming practice as well as the advantages of LP. The code and script
files when tangled out are each relatively short and perform a specific
task that can be understood, if necessary, without the org-mode docu-
ment and can also be executed independently as well. On the other hand,
org-mode provides us with an easy way to structure all these files, giving
an outline of the project that can easily be followed as well as additional
documentation and explanations that would not easily fit into any single
code file.

8.4 Additional Tools in Use in Our Project and Other
Considerations

Aside from the issues with the LSA framework discussed earlier, there are
several other connected aspects that we would like to discuss, namely, how
to ensure reproducible execution of (long running) code, the usage of version
control systems, the availability of the software used in the future, as well as
alternatives to the LP style we used for documentation.

232 Implementing Reproducible Research

8.4.1 Code Execution

Considering the discussion earlier and taking into account the computation
time of some of our analyses (about 24 h for parts), it was very important to
have a more robust way of only executing the parts that have really changed.
There, we used a make program. Originally intended for the compilation of
software projects, it is just as useful for executing scripts in R in batch mode.
In our case, the input to a script was usually a source or derived dataset; the
outputs were tables, figures, or derived datasets. Different script files would
depend on each other through their derived data. These dependencies can be
entered into the makefile—the instructions for executing all files—and this
way, it can be ensured that only those part of the scripts are executed for
which the script itself or some input into the script has changed.

This approach did not work as smoothly as intended at the beginning.
First, when tangling out code blocks into files, the timestamps on the corre-
sponding files always got reset to the newest date. As most make programs
use the timestamp of the files to decide if something has changed, the stan-
dard make programs would decide to reexecute all code after each tangling.
This would, of course, defy a large part of the purpose of using a make
program in the first place. After some investigation, we found that a make
program exists that does not rely on timestamps and instead on hash codes
of the files. This way, only the part of the code gets executed for which the
dependencies have really changed and not just the timestamp. The make
program we used is called makepp [3] and is free, mature, available on a
large number of platforms, has a rich feature set, and performed well in our
project.

Second, this approach using makefiles works best if the analysis can be
broken up into self-contained parts with limited run-time. Therefore, as
much as was feasible, we saved intermediate results of our analysis and
broke up our analysis into smaller script files that only depended on inter-
mediate output of previous scripts. This way, reexecution could be limited
to parts of the analysis that changed, and it also became easier to under-
stand the underlying code. And if at some points it really was not possible
to reduce the run-time of a script, we used dedicated packages like R.cache,
which provide reliable caching (if used correctly) in R itself rather than in the
LSA toolset.

8.4.2 Report Generation

Of course, with every report being contained in a separate document, the
question of the reproducibility of all the included figures and tables remains.
In order to ensure that all these results are updated when the code is exe-
cuted and some data has changed, the documents have to be written in a way
so that automatically the new output is being used. This is easily achieved,

Reproducible Research for Large-Scale Data Analysis 233

for example, using LATEX, as figures as well as tables can be imported from
external files—although with tables it specifically has to be in a LATEX-
conforming format. Another option is to write the report documents again in
org-mode (without the source code), as similarly to LATEX, it can also import
results from files. Each of these methods can export the final report into
several formats, including HTML, pdf, and open-source word-processing
formats. When including the compilation of these files in the makefile, even
all reports get reproduced upon execution.

8.4.3 Version Control System

When several people collaborate on a project, managing changes to the code
or final document becomes quickly difficult and error prone without a ver-
sion control system (or a rudimentary, specialized version of it such as track
changes in Word). For version control systems, essentially two different
main types are available—client–server and distributed systems. One of the
most well-known open-source client–server systems is Subversion, but there
are many others, both commercial and open source. Examples of distributed
systems are mercurial, bazaar, and git, among others.

In our project, we decided to use git for reasons that are mostly related to
it being a distributed system and any of the others mentioned earlier would
have been an adequate replacement. For a client–server model, the server
has to be set up, made constantly available, and has to be maintained even
after the end of the project for archiving purposes. In large organizations,
additional hurdles exist if an internal server has to be accessible from the
outside for external collaborators—in fact, standard operating procedures
(SOPs) and security concerns make this almost impossible in some organi-
zations. Distributed systems do not face many of these challenges as they
have lower requirements. A central server is not necessary as each user has
a complete copy of the repository on their own drive. In order to exchange
code, only a shared file system is needed, which in many organizations is
already the case and is centrally provided and maintained. This also makes
external collaboration easier as solutions for exchanging data with someone
outside a company usually exist as well. Aside from these advantages, the
user does not have to be online to commit a change to the repository, and
as a “commit” is only a local operation on the users file system, it is usually
very fast. The same is true for creating branches, which can be very use-
ful for organizing development in different parts of the project when used
correctly.

Another problem in a large-scale project is the organization of the source
data. Due to its size, checking it into repositories in the usual manner may not
be possible or even desirable. However, data can also change over time and
if code is written for a particular version of the data, this should be tracked as
well. Furthermore, including the data in the repository would make it easier

234 Implementing Reproducible Research

to copy it to other people and ensure that it is in the correct place. Depending
on its size, making one copy available for every user may be impossible and
then it should not be included in the repository. Our case of about 100 GB
was the borderline in that respect. We decided to include it in git using the
git-annex extension, making it available in a similar way as the code to all
users. However, this brought its own set of problems. An alternative to this
approach would have been to keep all source data in a single directory (with
possible subdirectories) and making it available to everyone else on the same
machine using symlinks, only copying it if it is needed on other machines.
Of course, this way, different versions of the data are not associated with the
appropriate code. To our knowledge, there is no system that would serve
every situation well, and every project has to find a way to manage these
problems taking the particular circumstances into account.

8.4.4 How to Ensure Future Availability of Software

The issue of software availability in the future is an important and difficult
problem for projects with life spans across multiple software generations,
which is fairly common in the health-care sector and its regulatory restric-
tions. If one wants to ensure that the results can be reproduced even years
later, many challenges can occur, especially for large-scale projects with
many dependencies. Today, open-source analysis software (e.g., R) have
new versions being published every 6 months or so, which are not always
backward compatible. Additionally, very often additional libraries, pack-
ages, or modules are needed to complete an analysis, which are regularly
updated as well. In our case, we are using R ([4], version 2.14.0) and over
40 external packages from CRAN and Bioconductor. Especially for Biocon-
ductor packages, it is very important that the version of R and the version
of a package are compatible as otherwise unexpected errors can occur.
However, these issues generally occur in any computational environment,
and it is important to ensure that the right software version together with
correct versions of supporting packages is saved for future use.

Another source of difficulty can come from the choice of parallelization
framework, which can be deeply embedded in the operating system and in
general be difficult to store for the future. For example, if Sun Grid Engine is
used for parallelization—should its version be stored with the project? What
about dependencies? In case of Linux—as source or a package? Are compil-
ers necessary for compiling the source with all libraries? Should the whole
Linux distribution on which it was run be stored as well? As we can see, this
can quickly become very complicated. If one wants to address most/all of
these concerns, using a separate virtual machine for the project is probably
the easiest and most comprehensive option.

In our case, we contended ourselves with storing the source versions of
the packages we used and documented the version of R, but did not go so
far to develop a complete virtual machine.

Reproducible Research for Large-Scale Data Analysis 235

8.4.5 Alternatives to Literate Programming

In our discussion earlier, the issues are mainly related to literate statistical
analyses rather than LP in a strict sense, and throughout the project, we
adhered to this concept. Indeed, it was very useful to have all code in one file
and the organizational features of org-mode complemented this framework
very well.

However, we still want to mention other techniques that can be used,
specifically documentation generators (DGs). They are available for many
programming languages and provide automatic tools to extract comments
from the source code (usually written in a special format or at certain places)
and collate them into a documentation document for the software project
in various formats such as HTML or pdf. These can come in the form of
built-in systems such as javadoc for java but efforts to provide a general
framework across a large number of different programming languages exist
as well (Doxygen is an example of such a project).

These differences also have implications for the tools that are used for
LP versus DGs. Using documentation extraction tools only imposes mini-
mal requirements on the tools or workflow used by a software developer. In
general, any development environment is compatible with DGs as they only
extract comments that are already supported in the programming language
used. In order to use a DG, the user only has to change the style of comment-
ing to conform to the DG, and everything else is done by a postprocessor
that is used on the source code. Such systems are also available for statistical
data analysis projects. For the statistical programming language R, the pack-
age Roxygen ports the Doxygen tool to R and provides other useful features
for understanding a codebase apart from the documentation generation. Of
course, the documentation is not in the format of a normal analysis report
nor does it contain any results of the analysis. Therefore, the final report
has to be written separately. Furthermore, DGs do not provide for a direct
way to order the source code of separate files into a logical ordering. Thus,
while such an approach is certainly appealing to a software developer due
to the low overhead and little changes to the normal workflow, it goes only
partway toward a full LP project and does not provide the internal logical
structure.

8.5 Discussion

LSA is well established for small-scale projects (e.g., articles and homework)
and works very well in these areas. However, its usability in large-scale sta-
tistical projects has not been thoroughly discussed to our knowledge, and
with this article, we want to contribute our experience in such a setting.

236 Implementing Reproducible Research

At the beginning of our project, we had every intention to follow the
philosophy of LSA very closely. However, during the course of the analysis,
we found that very strictly adhering to it comes with its own set of problems
and pitfalls as described earlier, and we found it to be practically impossible
in a project such as ours. Overall, we found that LP is a very good way
of structuring a large source codebase and document it at the same time.
However, its extensions for reproducible research as implemented in many
LSA tools were a lot more problematic, and after some experimenting, we
relaxed or abandoned many of them.

Reproducibility of a project can also be achieved with LP but without
the other features in LSA tools discussed earlier. Instead, we used a way of
ensuring reproducibility that does not rely on a single tool but instead on a
set of tools that is build up in a modular fashion:

• Org-mode for code development and documentation (can be
replaced by Sweave, knitr, many IDEs + document generators)

• Any make-program to ensure reproducible execution of code (com-
patible with the tool earlier)

• Org-mode for dynamic report generation (again, can be exchanged
against LATEX or knitr)

• Any version control to follow the history of the code

Overall, we have gained valuable insight into how to do reproducible
research for large exploratory projects and will continue to use these tools in
the future. One takeaway message however also is that, despite reproducible
research being discussed for over a decade in the statistical community, there
are still a number ways the experience could be improved from a practical
level.

8.5.1 Improvements for the Future

8.5.1.1 Microsoft Office

Although it is not so much the case in the informatics/engineering/
statistical community where LP and other reproducible research tools origi-
nated from, Microsoft Word and its document formats doc and docx are the de
facto standards for writing reports in many fields in academia and even more
so outside of academia. The situation is similar for presentations, where
PowerPoint is in a similar role. However, support for these formats has been
somewhat lackluster. Exporting to Word is often only possible through the
“Open Document Format for Office Applications” that is mostly natively
supported by open-source word processors. Exporting a presentation writ-
ten in LATEX or org-mode to PowerPoint is even more difficult. Working
in a big company where these formats are the de facto standard is a big
impediment for reproducible research.

Reproducible Research for Large-Scale Data Analysis 237

From our perspective, useful solution would be tools that can dynami-
cally insert figures and tables into Word as well as PowerPoint documents.
Some support like this is already possible (e.g., in R through the R2wd
package), but they usually rely on Word/PowerPoint being available on
the same computer (and therefore, these solutions do not work in a Linux
environment). If they would be more widely available, cross platform, and
easier to use, this would be a big step forward in our mind.

8.5.1.2 Table Support

Another issue that appeared is the support for tables in different document
formats. First, let’s look at the situation for graphics. There, support for
PNG as well as JPEG graphics is relatively universal, both for creating them
as output in data analysis languages such as SASTM, R, or MATLAB�, as
well as including them into reports in Word, LATEX, HTML, etc. Using JPEG
for photo-like images (smooth contrasts) and PNG for figures and plots
(sharp contrasts) covers most needs for graphical output.

The situation is very different for tables. There, each document format
has essentially its own way of describing tables but the support between
them is rather poor. Directly including, for example, an HTML table into
a LATEX document or vice versa is not possible. Other possibilities, such as
reStructuredText are also usually not supported. For Microsoft Word and
PowerPoint, the situation is pretty much the same. To be sure, some tools
exist that can convert between these formats (although we did not investigate
how reliable they are), but this still requires to have several different versions
of the same table on disk in order to be flexible w.r.t. the final report format.

In R, this can be a problem as there is no universal table format that can
be used and easily exported to most others. Instead, it is up to each package
author to support different output formats, and depending on your applica-
tion, you may be lucky that, for example, org-mode or reStructuredText is
supported—or not.

Of course, we also do not have a simple solution for these problems,
but feel that improving this situation would certainly benefit reproducible
research activities overall.

8.5.1.3 Headers and Footers

In the preceding sections, we have talked a lot about different ways of mak-
ing research reproducible. One component of this is to allow a reader who
sees some output (table or figure) to easily figure out which code produced
it and thereby go back and check how the results come about. LSA does this
by keeping the output and code closely associated, but it is also possible in
LATEX and org-mode by backtracking the name of the imported object to its
source code.

Of course, if a figure is copied from one presentation to the next by some-
one, this link is broken and retracing the steps becomes a lot more difficult.

238 Implementing Reproducible Research

A very simple method of addressing this is to put a header and footer on each
output that specifies the source code file that produced it and other informa-
tion such as research program and date. Software such as SAS has very good
support for these concepts, allowing for header, footers, and titles on figures
as well as tables.

This is not the case in R. As mentioned earlier, a standard table format
with these features is not available, and most packages that use tables at most
give the option for a caption, but not a title, nor header or footer. The situa-
tion is similar for plots. Of course, it is not hard to add a header or a footer on
a plot, but the lack of native support discourages its general use and impedes
widespread availability. In our opinion, native support for these simple con-
cepts in R would be the lowest hanging fruit to achieve if not reproducibility,
then at least better traceability for results in the statistics community.

8.5.2 Summary

All in all, we have successfully used LP with data analysis tools to make
large-scale, corporate, exploratory data analysis reproducible. Although the
experience was not smooth, there is no good reason not to make research
reproducible, even for large projects. In fact, we have had the experience
where a colleague’s use of literate techniques allowed for weeks of work to be
reproduced in hours, with a large-scale project being pulled from an unsuc-
cessful result to an extremely powerful and commercially viable result, and
that has further driven our motivation toward making these work practices
efficient.

We hope that our discussion will help some readers who contemplate
using reproducible research more in their own analyses.

References

1. D. E. Knuth. Literate Programming. Number 27 in CSLI Lecture Notes.
Center for the Study of Language and Information, Stanford, CA, 1992.

2. F. Leisch. Sweave, Part i: Mixing R and LATEX: A short introduction to
the Sweave file formate and corresponding R functions. R News, 2:28–31,
2002.

3. D. Pfeiffer. Makepp: A compatible but reliable and improved replace-
ment for make. http://makepp.sourceforge.net. Version 2.0. (Accessed
on 2012.)

4. R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2011.

http://makepp.sourceforge.net

Reproducible Research for Large-Scale Data Analysis 239

5. N. Ramsey. Noweb—A simple, extensible tool for literate programming.
http://www.cs.tufts.edu/nr/noweb. (Accessed on 2012.)

6. A. Rossini. Literate statistical practice. In Proceedings of the 2nd Interna-
tional Workship on Distributed Statistical Computing (DSC 2001), Technis-
che Universität Wien, Vienna, Austria, 2001. http://www.ci.tuwien.ac.
at/Conference/DSC.html

7. A. Rossini and F. Leisch. Literate statistical practice. UW Biostatistics
Working Paper Series 194, University of Washington, Seattle, WA March
2003.

http://www.cs.tufts.edu/nr/noweb
http://www.ci.tuwien.ac.at/Conference/DSC.html
http://www.ci.tuwien.ac.at/Conference/DSC.html

9
Practicing Open Science

Luis Ibanez, William J. Schroeder, and Marcus D. Hanwell

CONTENTS

9.1 Introduction . 242
9.1.1 Evolution of Scientific Community. 243
9.1.2 Sharing Is Essential . 244
9.1.3 Reproducibility and Open Source . 245
9.1.4 In Pursuit of Open Science. 246
9.1.5 Organization . 247

9.2 Open Data . 247
9.2.1 Plan to Share Data . 248
9.2.2 Data-Centric Computing. 249

9.3 Open Source . 250
9.3.1 Version Control and Provenance . 250
9.3.2 Automated Testing . 252
9.3.3 Unit Testing . 253
9.3.4 Code Review . 255

9.4 Open Access . 256
9.4.1 Open-Access Journals . 257
9.4.2 Versioning Documents . 257
9.4.3 Open Reviews . 257

9.5 Open Standards. 258
9.6 Open Science Platform. 260

9.6.1 Midas Platform . 260
9.6.2 CMake-Based Software Process. 260

9.6.2.1 Overview . 264
9.6.2.2 Unit Testing. 265
9.6.2.3 Examples of Code Review . 267

9.6.3 Insight Journal . 267
9.6.3.1 Practical Details . 270
9.6.3.2 Community Involvement . 271
9.6.3.3 Data Concerns . 271

241

242 Implementing Reproducible Research

9.6.4 Scalable Computing . 273
9.6.4.1 High-Performance Computing . 273
9.6.4.2 Science as a Service . 275

9.7 Challenges . 277
References . 279

9.1 Introduction

Science is a system for gathering knowledge and developing explanations
and predictions about the universe in which we live. A central tenet of
this system is that something is known only when multiple, independent
observers agree on a common experience. That is, experiences (which are
more commonly called experiments) are reproducible. As such, the scientific
method is by definition open; it is only when independent parties precisely
replicate an experience that experimental results are considered valid.

Despite this basic and obvious tenet of openness, the pressure to close
science is growing. Due to the exceptional innovative power of science, com-
mercial interests, and personal career pursuits, many scientists and research
institutions are heading down the path of secrecy and strong protective
measures. In addition, publishers that garner financial benefit from con-
trolling the dissemination of scientific knowledge have been reluctant to
openly share information and are under increasing financial pressure to pro-
tect what they consider their intellectual property. Consequently, one of the
tragedies of the current era is that the term “open” must be prepended to
science despite the fact that openness is a fundamental requirement of the
scientific method. Open science is a redundant, descriptive phrase, yet it has
become necessary to remind ourselves that we must maintain openness if we
are to effectively practice science.

Countering the pressure to close science is of course the emergence of
the Internet. This ongoing web revolution has given rise to near-zero-cost
methods of disseminating information, meaning that the ability to share the
results of scientific research has been greatly enhanced. It is more than a
simple matter of playing nice and sharing with others, the increasing com-
plexity of modern science demands sharing and collaboration, since large
teams with multidisciplinary expertise are required to address current chal-
lenges and gather advanced knowledge (see Section 9.1.2). Thus, it may be
that scientific progress will stall without greater openness, and scientists will
have no choice but to share, and share more effectively.

The conflict between sharing and secrecy has been present since the ear-
liest days of scientific practice. Some scientists have routinely hidden or
encoded their data and often released it only as necessary to support their
work or once personal career achievement was assured. However, it is clear

Practicing Open Science 243

that the practice of science is changing rapidly, with key players such as
publishers and societies, as well as scientists themselves, under significant
pressure to change their ways. Thus, the conflict is taking on deeper mean-
ing and is nothing less than a revolutionary reevaluation of how we practice
science.

9.1.1 Evolution of Scientific Community

As the scientific method was developed, the demands of reproducibility, and
hence the need to share information, quickly gave rise to scientific societies
and publications. For example, the Royal Society was established in 1660
with the enviable motto (translated from Latin) “Take nobody’s word for it.”
Effectively, the role that this society and the many following it took was one
of community building. Early on, meetings were held in which experiments
were jointly performed (the earliest form of peer review), and eventually
results were codified, published, and shared. Given the technology of the
time, this process rapidly evolved into a journal-based system in which com-
munications between scientists were collected and distributed (for a fee) to
subscribing recipients (see Figure 9.1).

Fast forwarding to the current day, scientific publishing has grown into
a multibillion dollar industry. It has served science well over the centuries
by gathering information and sustaining scientific communities, including
sponsoring conferences and facilitating the peer-review process. However,
the Internet has unleashed new ways to grow and support communities;
as a result, the publishers are feeling the inevitable financial pressures and
demands for process change. The current, ponderous model of peer-review
and paper-centric publication has been viewed by many, as far too slow, and
limited in the amount of information that is conveyed. The main deficiency
is that journal articles do not always provide the information necessary to
reproduce a result.

Scientists Letters

Royal
Society

Experiment
replication Transactions Peer-review

Publisher

Journals

Scientists Papers

FIGURE 9.1
The evolution of the practice of the scientific method, from a society-oriented process of review-
ing and verifying reproducibility (left) to today’s peer-review-based publishing process (right).
Without openness, the peer-review process cannot verify reproducibility.

244 Implementing Reproducible Research

The notion of what is a scientific community is also changing rapidly.
Conventional publishers might choose to maintain their old ways (and profit
margins) if they had a choice, but with the low cost of exchanging informa-
tion and serving communities, it is clear that change will continue unabated.
In the end, the publishers will only survive by returning to their roots: serv-
ing the scientific community. This may mean taking a supportive role by
adopting new methods for curating, organizing, and coordinating scien-
tific knowledge, as well as continuing the support of communities through
various interaction forums, in particular, conferences, data hosting, and
repositories, to name a few. In the mean time, many scientists and insti-
tutions are taking matters into their own hands and using reproducible
methods such as those described in this chapter to further the reach of
science.

9.1.2 Sharing Is Essential

Scientists are taught that the scientific method rests on three pillars of prac-
tice: experimentation, theory, and computation. Recently a fourth pillar
has been proposed, data-intensive computing [1], although many consider
it part of the computational pillar. Until recently, the standard publish-
ing model that uses written articles to describe experimental apparatus,
articulate theory, and codify computation was reasonably sufficient to sup-
port reproducibility and therefore scientific progress. Unfortunately, this
model is no longer adequate: the complexity of experiment, theory, and
computation is such that a brief paper cannot even begin to capture the
detail necessary to describe an experiment to the point where it could be
reproduced by a third party.

Consider a paper in computer science, an area in which the authors are
familiar. A typical eight-page paper, or even an extended paper, can never
describe the nuance behind complex algorithms. For example, an advanced
algorithm may require many dozens of control parameters, not to mention
internal data structures that can greatly affect performance and accuracy.
In our experience, we have found that actually reproducing such an algo-
rithm may require years of effort, and in doing so, we invariably fall back on
the help of the original author who sheds light on “implementation details”
that are frequently omitted in journal articles. The time demands to verify
reproducibility are so large, that if we as authors were to reimplement algo-
rithms for research purposes, it is unlikely that we would find the time to
develop our own line of research. As a result, many experiments are never
reproduced (especially in peer-reviewed documents), with the additional
burden on researchers who spend inordinate time reimplementing what has
been done before, due to lack of access to the original software implementa-
tion of published works. Thus, without the necessary sharing, the scientific
endeavor is choking on complexity and resting on unstable foundations.

Practicing Open Science 245

There are further, selfish motivations to practice openness: there is correl-
ative evidence supporting the notion that sharing furthers a scientific career.
Recently, [2] posted an article that suggests that sharing materials results in
greater citation of the published material. Further, some argue persuasively
that collaborative teams who, by definition, share information are the future
of science [3].

9.1.3 Reproducibility and Open Source

The goal of this chapter is quite practical: to share some of the methods that
we use in our practice of science to ensure reproducibility and encourage
community building. To that end, we have learned much from our partici-
pation in various open-source projects, of which we are all developers and
contributors. Indeed, the principles and practices of scientific reproducibility
have been imprinted within the DNA of the open-source movement since its
inception. This is no coincidence; it is the consequence of the fact that the
open-source movement originated in an academic environment and more
specifically it was kindled in research laboratories. In open-source commu-
nities, reproducibility is ensured through the practices of code review, unit
testing, continuous integration, public documentation, open mailing lists,
and forums. In this chapter, we show how these methods, and extensions to
them, can be used in the practice of science.

In general, open-source communities are far ahead of most scientific com-
munities when it comes to the practice of reproducibility. In large part, this
is due to the rapid evolution of the open-source movement in response to
the growth of the Internet and the web. In the meantime, most of the scien-
tific community has remained constrained by the limitations of a process
entrenched in practices that date back to the introduction of the printing
press.

One of the goals of this chapter is to describe how the practices of
open-source communities are being brought back to mainstream scientific
research. This is based on many years of work developing open-source
software for scientific applications. During this time, we have regularly inter-
acted with scientific research teams, providing software engineering support
for them, bringing their algorithmic implementations up to the standards
expected in modern software engineering, particularly with regard to test-
ing, and facilitated the reuse of their software and data, through widespread
sharing of resources.

These practical experiences are presented here with the aim of encour-
aging the scientific community to adopt them in their daily work. Such
adoption typically involves working at several levels simultaneously. We
have found that it is important to work in parallel at the following levels:

• Cultural
• Rewards/recognition

246 Implementing Reproducible Research

• Career building
• Funding
• Technical training

A common hurdle to adopting open-source principles is the confusion that
individuals and organizations face when classifying their challenges. For
example, it is common to find that a technical difficulty can be misinterpreted
as a cultural challenge or that a disincentive in the funding space is mischar-
acterized as a technical problem. As we go through the topics in this chapter,
we will attempt to properly identify the challenges and opportunities in the
adoption of reproducibility verification and how they relate to the specific
levels listed earlier.

9.1.4 In Pursuit of Open Science

The open science movement is, at its core, an attempt to correct behaviors in
the scientific community and return to an environment where reproducibil-
ity is again at the center of scientific research activities. Practicing open
science requires four fundamental ingredients:

• Open data
• Open source
• Open access
• Open standards

Each one of these ingredients is necessary to realize the core aims of sharing
results and stimulating scientific progress. Open data provides the opportu-
nity for verification, analysis, and subsequent publication of scientific results
in new forms. Open source embodies scientific methods, so that new com-
putational processes can be independently examined, reviewed, and reused.
Open access facilitates the review and validation of research processes and
results. Finally, open standards, while not absolutely essential to open sci-
ence, simplify the process of exchanging data, methods, and publications
thereby accelerating the research process.

We see a broader role for open science and its impact on society. The
web is opening up new lines of communication, providing access to scientific
results that can be viewed by virtually anyone with an Internet connection.
This includes the general public who often have strong interest in scien-
tific research, for example, when learning about current medical treatments.
However, current practices such as pay walls and overly aggressive data
rights limitations are impeding realization of its full potential. The current
situation requiring authors to sign away copyrights to publishers, despite
the fact that results are often produced with the support of public funding,
simultaneously represents an impediment to progress as well as a signifi-
cant public subsidy to narrow business interests. Instead, permissive data

Practicing Open Science 247

rights using open licenses, such as CC0 or CC-BY, are necessary to return the
spirit of community to science and ensure its role as an effective driver of
innovation and major contributor to societal progress.

9.1.5 Organization

This chapter is organized into two major parts. With the introduction behind
us, the first part consists of four sections discussing in general terms issues
relating to open data, open-source, open access, and open standards. Next,
the second part (in Section 9.6) elucidates specific tools and practices that
the authors use in their daily practice of science. Naturally, this section has
a strong software orientation as the authors are computational scientists
(of sorts) by training. However, as science is becoming ever more com-
putationally driven, we hope this material will be of interest to scientists
of all persuasions. Finally, we conclude with a brief section on the future
challenges of practicing open science.

9.2 Open Data

To a significant extent, the scientific method concerns itself with gather-
ing, analyzing, and deriving data, partially to perform the essential work
of acquiring knowledge but also to buttress explanations and support pre-
dictions. Data play different roles in each of the three scientific pillars of
experiment, theory, and computation and naturally support each during
the process of scientific investigation. For example, gathering data through
experiments or direct measurement is necessary to subsequent data analysis,
typically to develop theories of causality and correlation. On the other hand,
theories are used to inform computation, which generates predictive output
data, which is typically compared to experimental results to falsify [4] theo-
ries and refine computational models. Thus, data serve as the focal point in the
scientific workflow, and unfettered access to it is required for the scientific process to
proceed efficiently. Without such open access to data, the power of science to
produce knowledge, and thereby drive innovation and economic progress,
is severely impeded.

Despite the obvious necessity of unfettered access to data in order to
support the scientific process, there are several powerful forces that create
barriers. Many scientists place career goals above sharing, as a valuable data
set may generate an important body of work and hence citations. Some sci-
entists also insist on withholding data (at least for a short period) while they
verify its correctness (and hence preserve their reputation). While these rea-
sons certainly have merit in the real world, it is easy for them to become

248 Implementing Reproducible Research

unbalanced behaviors that significantly impede scientific progress or, in the
worst case, violate the core principle of reproducibility.

Finally, commercial interests represent another set of growing pres-
sures to withhold data or impede its reuse: data can be withheld because
it is deemed valuable, or copyright may be used to limit its distribu-
tion. What is unfortunate about these barriers is that, not only do they
interfere with potentially specialized lines of research, but they all pre-
vent large-scale meta-analysis across potentially thousands of data sets. For
example, consider the case of automated access followed by statistical anal-
ysis over dozens of disparate data sets from a variety of sources. Having
to formally request access to data one instance at a time is not feasible;
automated meta-analysis depends on ready access and, to a lesser extent,
open APIs (see Section 9.5). Furthermore, restrictive licensing can prevent
derived data sets from being published (or severely limit the breadth of the
source data).

9.2.1 Plan to Share Data

Until recently, the central role of data was implicit to the scientific process.
Data was modest in size and could be exchanged among the community
through tabulation of published results. Then, in the very recent past, data
grew significantly in size. This has led to significantly more complex data
sharing, requiring computers and associated storage media, such as tapes,
floppy disks, and hard drives, to exchange information. At about this time,
scientific publications began referring to external data sets; and now, with
the advent of the Internet, these data could be placed on a public site and
distributed across the scientific community. While this process continues
today, the sharing process implicitly depends on the scale of the data.
Modest-sized data can be exchanged and, if necessary, reacquired (if sci-
entists decide not to share it) at reasonable cost. However, this process is
changing rapidly as data size increases—it is becoming increasingly hard
to exchange large data, and the reacquisition of data is often prohibitively
expensive.

Consider the current state of affairs. The cost to acquire data or generate
(simulate/calculate) data on a supercomputer can be extremely expensive.
For example, the original cost to sequence the human genome was nearly
one billion dollars. The size of data is growing rapidly too, with terabyte data
sets becoming common and with petabyte data sets emerging (and exascale
is on the horizon). At this scale, data is too large to easily exchange (the copy
operation can take weeks or months even with high-bandwidth links) and
too expensive to reacquire. Thus, the costs and practical data transfer con-
siderations are driving science in a direction that absolutely demands better
sharing of data. In the past, data was exchanged by researchers who felt the
ethical obligation to share information for the purposes of advancing science.

Practicing Open Science 249

Unfortunately, data was occasionally withheld, or publication delayed, for
the purposes of validation, or worse yet, due to competitive career moti-
vations. On a small scale, this had modest impact on the advancement of
science; however, at the current scale, sharing data has become vital to sci-
entific progress. In our opinion, it is imperative that scientists include data
sharing plans as part of future funding proposals; indeed, many US federal
organizations have put in place requirements for such plans. This is the case
for the National Institutes of Health [5], for example.

9.2.2 Data-Centric Computing

The practical concerns related to the cost, size, and scale of “big data,”
combined with the philosophical motivations to publish scientific materials
across the larger community, have led to new models of data distribu-
tion and curation. Data-centric computing [1] is one such response. In this
approach, data is central to the workflow (Figure 9.2); once acquired, gen-
erated, or computed, the data are left in place in a “central” repository (in
practice, the data repository can be distributed across the web depending on
where it is acquired or computed). Access to the data is enabled through the
web. Client–server architectures are employed wherein the server resides
directly alongside the data, and clients are used to access, analyze, visualize,
organize, and otherwise curate data. In addition, it is expected that extended

Viewer

Data repository

Digital journal Plug-ins

FIGURE 9.2
Data-driven scientific process. Data, once acquired or generated, are rarely moved. Rather
visualization, analysis, and journaling process orbit the data repository. This requires special
architectures (e.g., client–server) and to locate the computational resources close to the data.

250 Implementing Reproducible Research

research teams are working together on the data, meaning that simultaneous
data access and collaboration must be supported.

The point here is that these data repositories represent significant sci-
entific resources, and the work flow inevitably revolves around them.
The scale of the data is so vast that multiple collaborative teams are
required to ferret out useful information. With the expense and complex-
ity of data, these data must be recognized as resources that are readily
shared and are accessed through means of open standards and programming
models.

9.3 Open Source

Much of today’s science depends on computation, which to ensure
reproducibility must be completely defined. Due to the complexity of com-
putational methods, it is no longer possible for brief descriptions or pseu-
docode in a publication to properly characterize methods. The demands
of reproducibility and hence open science require full disclosure, which
means providing source code, execution parameters, and the computational
environment—everything required to exactly reproduce an experiment.

A large portion of the practice of open science has been informed by the
open-source movement. In this section, we describe the various methods
used by open-source communities to ensure reproducibility. In particular,
we focus on access to software through version control systems (VCSs)
automated testing to ensure reproducibility and systems for code review to
validate the correctness of the software.

9.3.1 Version Control and Provenance

Carefully tracking changes to scientific data, methods, and publications is
essential to the scientific process, especially as part of the verification of
reproducibility. This curation of scientific resources is also fundamental for
educating future scientists, who will have the opportunity to inspect in great
detail how particular experiments were performed in the past. In the open-
source world, the ability to track changes is referred to as version or revision
control.

Version control has been at the heart of the open-source software move-
ment since its earliest days. Initially, version control was crudely imple-
mented as a collection of tools to create patches on top of the original
files, e-mail them, and apply the patches on the receiving end. Source code
was freely available, approaches could be discussed, and changes proposed
via these patches, clearly indicating changes made to the original. As this
practice became widespread, more sophisticated tools were developed, but

Practicing Open Science 251

at their core, they were designed around moving patches more efficiently
over the available transport options. Today, we are fortunate to have a wide
array of sophisticated version control systems available, with many powerful
and open-source systems under active development.

One of the most popular version control systems is Git, a project initiated
by Linus Torvalds to manage the flow of patches produced by Linux kernel
developers. It is perhaps one of the most sophisticated, offering a vast array
of options that can be daunting for novices. It is part of a new generation
of version control systems, called distributed version control systems (DVCSs).
The major improvement over previous systems is that users can “clone” a
repository to receive a full copy of the source code and all of the changes that
were ever applied to it. This is in stark contrast to many alternative, central-
ized version control systems such as revision control system (RCS), version
control system (VCS), and Subversion in which developers receive only the
tip of the current branch and only the central repository server contains the
complete history of the project.

There are many advantages to DVCS, one of the most important being
the ability to easily create a local directory that can then be initialized and
placed under version control, and then readily shared with others. New files
can be locally committed and their contents stored. Later, when changes are
made, these can be recorded in the form of patches applied to the origi-
nal, giving the author total freedom to look at all previous versions of a
given file. If the project grows, then sharing the project along with its his-
tory is simple, whereas centralized version control systems require up front
planning and coordination with the central repository maintainer. Another
important advantage to DVCS is that the source and all history can eas-
ily be mirrored at multiple locations, with private branches that can later
be published in public repositories for all to see. This allows for work to
take place in private when necessary, which can later be shared with full
history.

Another often overlooked, but powerful capability of version control sys-
tems is the ability to track code provenance. Not only are the files and all
modifications stored, the date and time of each modification is stored along
with the author and a message detailing the reason(s) for the change. This
tracking is implemented in the form of commits, which mark events in which
a particular set of changes were applied to the content of the repository.
Particular points in history can be tagged to indicate major events such as
software releases and signed using encrypted keys to assure that a particular
tag was signed by a given person using a cryptographically secure signa-
ture. Due to the nature of systems such as Git that uses special hashes to
establish the identity of a commit, it is possible to detect alterations to previ-
ous commits that the signed commit depends upon, thus offering high levels
of data integrity. It is not necessary to compare all files against a known
good copy, just the hash of the commits you have to a signed copy that
you trust. This offers a desirable degree of data provenance, using openly

252 Implementing Reproducible Research

verified algorithms for establishing data integrity, that is difficult to obtain
with other approaches.

9.3.2 Automated Testing

Moment of Zen:
What scientists call: Experiments
Open-source developers call: Tests

In this section, we equate the scientific concept of performing an experiment
with the open-source practice of running a test. In today’s world of scientific
computational research, these two actions are one and the same.

The scientific principle of verification of reproducibility is implemented in
open-source communities by relying on automated processes. The reason
is simply that software systems have a natural tendency to develop into
large and complex systems. In such an environment, the informal notion that
We attempt to replicate today an experiment that we did yesterday, cannot be left
to the fallibility of good intentions; it must be formalized.

The bottom line is that we are forced by practical necessity to script auto-
mated processes that can be run repeatedly. This is because the accumulation
of the things that we did yesterday, and the ones done the day before, and the day
before that one, rapidly become a combination of thousands of experiments.
Attempting to repeat them by manual execution guided with notes or plain
memory, simply does not scale and discourages practitioners from actually
running all the experiments.

Automation not only makes reproducibility practical, it also makes it
reliable. By capturing the process describing how to repeat an experiment,
automation forces the practitioner to script every single detail that is rele-
vant to its execution. This means leaving nothing to informal processes, local
idiosyncrasies, or good intentions.

The practical way to encourage developers and researchers to automate
their tests is to ask them to run them on a daily basis. With a set of even tens
of experiments that must be run every day, a methodology to automatically
run these experiments emerges quickly. This is an example of how a cultural
requirement leads to technical adoption. Unfortunately, the converse is also
true. That is, in a laboratory environment that does not automate its exper-
iments, the staff quickly grow accustomed to not running the experiments
on a regular basis, reinforced by the excuse that it will simply take too long
to, do it. While there are other more urgent tasks to tend to, automated tests
will be neglected. This chicken and egg problem can be solved by working
first at the cultural level and developing a sense of reputation and pride in
the craftsmanship of being the one who runs their experiments daily.

Developers’ reputations are built in open-source communities through
practices of transparency, peer review, and accountability in a meritocratic
process.

Practicing Open Science 253

Transparency is achieved by publishing, on public websites, daily test
results. It quickly becomes obvious who does and who does not run
tests on a regular basis.

Peer review is performed by the larger developer community, who rou-
tinely scan test results as part of their daily software development
work. The more formal practice of code review drills down into the
changes that another developer may have made to the system (a
prerequisite of code review is that all tests are run). During this exer-
cise, it is easy to expose whether the original developers actually ran
the tests before and after making changes. When a reviewer finds
that a developer failed to run the tests, it is culturally expected that
a public admonishment is in order. This is typically done in a cor-
dial way, and sometimes with a humorous tone. The intention is not
to provoke a confrontation, but to enforce a social norm. Not run-
ning tests in an open-source community is simply a bad etiquette.
It is frowned upon, the same way as if you were to sneeze on a
colleague’s sandwich.

Accountability is a follow to the transparency and peer-review practices
in open-source communities. It comes down to the implicit rule that
if you broke it, you fix it, as a way of redeeming your reputation, with
the caveat that if someone else fixes it for you first, then your rep-
utation is damaged and the reputation of the person who fixed it is
enhanced.

The combination of social, cultural, and technical practices builds an envi-
ronment in which to be a good member of the community, tests are diligently
maintained and run frequently. As a consequence, the testing process is
automated in such a way that they can be run with minimal effort.

The notion that a gradual system of sanctions must be implemented in
order to enforce compliance with community-established rules is one of the
elements that Elionor Ostrom (Nobel Laureate in Economics 2009) identified
as a result of studying self-governing communities who manage common
resources in fields as diverse as fisheries, underground water basins, forests,
and irrigation systems. Her contention is that a gradual system of sanc-
tions is essential for the successful self-governance of the Commons, in the
absence of government intervention or the use of property systems [6]. These
are indeed the conditions under which both open-source communities and
scientific communities operate on a regular basis.

9.3.3 Unit Testing

Unit testing is the translation of the principle of Occam’s razor to the daily
practice of software development. In particular, it is the quest for the mini-
mal explanation for a given behavior. The goal of unit testing is to empower
developers to rapidly pinpoint the root cause of problems in the software.

254 Implementing Reproducible Research

In particular, it is important to not rely on complex tests that involve the
execution of thousands of sections of the software project. Otherwise, when
a complex test fails, it is extremely difficult to figure out the root causes of
the failure.

Unit testing takes the approach of verifying the correctness of the most
basic components of the system, and in the process, to build confidence in the
behavior of each component to the point where it is possible to rapidly locate
which one of the many pieces of a software package is causing a problem.

Unit testing is not just a software practice—it is a state of mind. The
practice is motivated by the same principles at the core of the quest for repro-
ducibility verification in the domain of scientific research: Acceptance of the
fact that errors are ubiquitous. Therefore, the only way to keep errors at bay is
to continuously set traps for them at every corner of every experiment. The
presumption is that errors are indeed present, and therefore, it is important to
put in place tests that check for the presence of errors at every point in the
process. It is the continuous failure to find errors, combined with the thorough-
ness of the testing efforts, that builds confidence in the correctness of the
overall process.

The daily practice of unit testing also leads to the principle of decompo-
sition, by which complex problems are partitioned into smaller units, and
then those units are implemented and tested independently. This practice
leads to better-designed software, which is clearly organized and easy to
maintain. Requiring unit testing as a cultural practice forces developers to
stay away from building large and complex pieces of monolithic software
and to instead modularize their designs and build more general, robust, and
reusable components.

Practitioners who employ unit testing write the test at the same time they
write the code, in a rapid iterative process. They start with an empty piece
of code, and then write a test for the first minimal feature. The tests will at
first fail, given that the feature is not yet implemented. The developer will
then implement the feature and bring it to the level where it passes the test.
Note that it is important to ensure that the test fails prior to implementing
the feature, thereby validating the test itself.

The successful practice of unit testing is closely tied to the application of
agile methodologies in software development (see Section 9.6.2). The prac-
tice of unit testing requires that one writes features in small incremental
cycles, designing, implementing, testing the code, and then iterating back
to revisit the design.

This way of working is conceptually no different from what any experi-
mental researcher should do on a regular basis, for example, checking that
the chemical reactions that they are about to use are pure enough, verifying
that the thermometer to be used in an experiment is actually in a working
state and correctly calibrated, and, overall, ensuring that the experiment
is performed in a controlled environment with as few uncertainties and
systematic errors as possible.

Practicing Open Science 255

9.3.4 Code Review

Code review is a fundamental practice of quality control in which developers
review the changes made by their peers, in the quest to spot potential errors
and unnecessary features and ensure consistency with the overall design and
style of a project. There are different methodologies for implementing code
reviews, but many elements remain common.

One form of code review, which is used in many software projects,
unfolds by having developers perform reviews in an ad hoc fashion with
heavy reliance on the version control system. Review often takes place after
changes are merged with the main code base, producing a stream of revision
control commits. Developers subscribe to a mailing list that sends an e-mail
with the contents of each commit made to the repository. Developers take
time to read through these commits, checking those relevant to them and
either fixing any problems they notice or e-mailing reviews to the relevant
development list (or via private e-mail channels). This form of code review is
quite common in projects using centralized version control systems for those
developers who have commit rights.

Another form of review that has been employed for decades is the
practice of e-mailing patches to a development mailing list for review. Devel-
opers then respond with high-level reviews and/or line-by-line comments
and then iterate and modify the patch until it is deemed ready for commit.
This practice not only serves to foster higher code quality, but it educates
new developers in the expected code style, pitfalls, and common practice
of the software project. Several variations of this basic procedure include
attaching patches to bug reports, performing review in the bug tracking
system, or using dedicated code review platforms where patches can be
uploaded.

With DVCSes, an alternative model has emerged. Distributed version
control enables a developer to develop in a new, private development branch
and to apply a sequence of changes to that branch in the form of commits.
Developers can create as many of these branches as they wish. Given that
every branch contains an independent history of the project, this mechanism
enables developers to undertake modifications to the project without inter-
fering with the work of other developers, yet with the ability to share their
work with any of their peers. The developer can also push branches of their
choosing to multiple remote locations.

Software tools for code review, such as Gerrit, support remote repository
locations where branches are pushed with proposed changes. These changes
can then be displayed in a web application for the entire community to see,
with an associated set of access control lists specifying permissions for devel-
opers of the project. Developers are then able to work freely on their code as
they normally would, and when the code is ready to be merged into the
main code base, or reviewed by a wider audience, it is pushed to Gerrit.
Once pushed, Gerrit reviewers can be assigned to a topic, and the system

256 Implementing Reproducible Research

will notify them. They can then make general comments about a commit or
comment on particular lines with questions or comments. These comments
are seen by all users of the system, along with the author of the topic. The
author can then respond to the review, possibly uploading edited versions
of their commits, until the code is approved.

Once the code is approved, it is given a score indicating approval; this
is also recorded using a mechanism recently added to Git called notes and
uploaded along with the changes when they are merged. This creates a per-
manent record of who reviewed the changes along with links back to the
review. If bugs are later found, it is possible to go back to the original
review if more detail is desired beyond what was recorded in the version
control system. The code review process can also be significantly enhanced
using various automated build, test, and analysis techniques (such as those
described later based in Section 9.6.2). Pretesting before committing to the
main branch enables developers to assess proposed changes before inclusion
into the system proper.

The use of code review can seem like an unnecessary drain on resources,
but it is usually much cheaper to review and catch mistakes before they are
merged than to track them down afterwards. If good tests are written and
careful code review is performed, it is much easier to bring new develop-
ers into a project and empower them to make significant changes with less
concern for inadvertently breaking the system. Often, new developers fail
to adhere to established practices, which if caught in an initial code review
can be corrected very early on. If such problems are missed, weeks or even
months of development effort may pass before the errors are detected and
fixed, with the added cost that a good deal of the development that happened
in the meantime will also have to be corrected to conform with expected
standards.

9.4 Open Access

The public dissemination of scientific knowledge is essential to promot-
ing social and technical progress. Making the results of scientific research
readily available to other research groups (and the public at large) stim-
ulates fact-based discussion, facilitates verification of reproducibility, and
empowers others to build upon previous results. Public dissemination also
fulfills an educational role, by enabling interested parties to become famil-
iar with research without requiring direct participation in scientific process.
The assumption that scientific literature is only intended for the scientific
community is one that does not acknowledge the responsibility that scien-
tific research has to society at large, particularly in the cases where research
has been made possible using public funding. For example, patient advocacy

Practicing Open Science 257

groups are requesting greater access to the results of medical research; they
argue persuasively that when research is paid for with public funds, the
results need to be available to the public.

9.4.1 Open-Access Journals

When many people think of open science and initiatives to promote it, open-
access journals are typically first on the list. Open-access journals are defined
as scholarly journals available online “without financial, legal, or techni-
cal barriers other than those inseparable from gaining access to the internet
itself” [7]. For many, open access simply means publishing the results of
scientific research in journal form, paying for publication either by charg-
ing the author(s) a fee to publish or asking the authors to absorb the cost by
self-archiving (or publishing) journal articles on their own website. Open-
access journals are becoming quite popular, and there has been a flurry of
new journals in the last few years [8].

While an important first step, this simple view of open access as an open
journal does a disservice to the cause of open science. Publishing a journal
article, no matter how easy the access nor small the cost, does not guaran-
tee reproducibility. Without associated data (open data) and methods (open
source), experiments described in an article typically cannot be easily repro-
duced. Thus, many open-access journals also require submission of data and
source code (see Section 9.6.3 later in this chapter for more details).

There are other interesting features that open-access journals provide
including version control and review, as described in the following sub-
sections. Another important aspect that is often neglected is the choice
of licensing, where some open-access journals prevent commercial use, or
derivative work, thereby blocking important reuse of published articles.

9.4.2 Versioning Documents

Similar to the arguments made in the previous section on software testing
(Section 9.3.2), errors are pervasive and to be expected throughout complex
endeavors such as scientific research. Accepting this reality, and control-
ling it, requires a continuous process aimed at identifying and correcting
errors. Consequently, the venues used for sharing scientific information and
disseminating results must provide mechanisms for capturing community
feedback, tracking changes, and providing access to current documents as
well as the previous versions.

9.4.3 Open Reviews

The open-minded experimentation around open-access journals offers an
opportunity to reconsider many of the long-standing practices of scientific

258 Implementing Reproducible Research

publishing, some of which have become long time traditions and deserve to
be revisited given the emergence of the web.

One of the key aspects in which open-access journals can improve com-
munications in the scientific community is the modification of the typical
publishing workflow. In traditional journals, publication is delayed until
after articles have been vetted by reviewers. This painstaking process can
take years from the time of first submission to the time of publication. This
delay greatly diminishes the value of the final publication, particularly in
topics that are related to the rapidly evolving domain of computational
research. The traditional review process also privatizes the conversation
between the authors and reviewers, and by doing so deprives the community
of valuable discussions and from the benefit of observing scientific discourse.

An alternative to the traditional closed-door, anonymous peer-review
process is the practice of open reviews. This is a practice inspired by the
self-regulation and self-certification processes that many online communi-
ties have adopted to curate their materials and to perform quality control on
their content [9].

Open reviews blur the distinction between readers and reviewers, since
they both have access to exactly the same amount of material. A reviewer is
simply a reader who feels compelled and motivated to provide feedback to
the authors. This is in contrast to traditional reviews that are performed by
a select group of individuals who are considered to be experts in a domain.
The notion of a peer in an open-source community is anyone who participates
distinctions are made based on contributions, and authority is defined by
meritocratic recognition.

Open reviews more directly honor the concept of peer review by empow-
ering all our peers, not only a narrow group of selected experts, to share their
views on the content of published materials. By not relying on the authority
of experts, open reviews are better aligned with the tenet of the scientific
method: “to withstand the domination of authority and to verify all statements by
an appeal to facts determined by experiment.” [10].

9.5 Open Standards

Open science is usually described as requiring three basic components: open
data, open access, and open source. Providing these elements is enough to
reproduce an experiment assuming that all information is provided. How-
ever, many practitioners of open science also advocate for a another element:
open standards. If reproducibility is the goal, why is this additional element
important?

There are several answers to this question. Pragmatically, using stan-
dards, or helping to create them, is an indication that a researcher is earnest

Practicing Open Science 259

about sharing and hence practicing open science. It may be true that open
data, access, and source enable reproducibility; they do not necessarily make
it easy. Using standards generally results in more efficient science as infor-
mation can be readily accessed and analyzed, making life easier for other
researchers. Open standards also enable large-scale analysis in which mul-
tiple contributions are combined to form new insights or build new tools.
Consider the following examples: standards simplify access to multiple data
sets from different research groups that can be combined to support analy-
sis of larger information pools. Open document repositories can be analyzed
(using methods from text analysis) to identify emerging concepts and deter-
mine relationships between lines of research; such information is important
to science as well as investors and technology managers. And finally, well-
designed and implemented code can be reused and combined to build
powerful and useful software.

There is another way in which open standards support the scientific mis-
sion. That is, to ensure reproducibility, it is important to run experiments
under controlled conditions. Therefore, open standards can also be thought
of as data, software systems, and/or publications that are certified at a
known state. This enables researchers to build on well-defined foundations;
thus, a particular open standard specifies one of the components composing
the environment of an experimental process, for example, standard data sets,
software libraries, and even computing platforms. Such control is necessary
when comparing algorithms or otherwise evaluating the performance of a
computational system. For that matter, even supporting laboratory software
used to acquire data may produce different results under the same condi-
tions if not carefully controlled. Therefore, using open standards can remove
experimental uncertainty.

It is not possible to say exactly what standards to use. Different research
fields, ontologies, data composition, and software systems require different
standards to support research and foster sharing. Moreover, as knowledge
expands, standards must evolve as well. Therefore, the use of standards is
a delicate balance between the demands of innovation and the requirements
of sharing. However, it is important to distinguish between standards that
are open and those that are not.

Open standards promote sharing and support the scientific mission.
Many nonopen standards (which may claim to be open) permit reasonable
and nondiscriminatory patent licensing fees that erect barriers to sharing and
hence reproducibility. Generally, open standards are developed by collabo-
rative teams, use permissive licensing free of licensing entanglements, are
thoroughly documented with reference implementations, and are meant to
be widely used [11]. An interesting twist to some forms of open standards
licensing is that predatory embrace-and-extend tactics may be prohibited to
prevent organizations with influential control over a market or technology
area to game implementations and impose restrictions on how others use
the standards [12].

260 Implementing Reproducible Research

9.6 Open Science Platform

In the previous sections, we described many of the motivations and basic
concepts that drive the practice of open science. In this section, we provide
concrete details of several key components that constitute our daily practice
and workflow.

9.6.1 Midas Platform

As discussed earlier in this chapter, data-centric computing is critical to the
practice of open science (Section 9.2.2). For many of our applications, we
use the Midas platform [13,14], which is an integrated, open-source toolkit
that enables the rapid creation of customized, integrated applications with
web-enabled data storage and management, advanced visualization, and
processing (see Figure 9.3). The Midas platform is implemented as a mod-
ular PHP framework with a variety of backend databases (in particular
PostgreSQL, MySQL, and nonrelational) that scales well to large data.

The Midas platform system can be installed and deployed without any
customization; it has been designed with this capability in mind. Given that
data-centric computing depends on diverse workflows and it is generally
custom integrated depending on the needs of a project, there is no single
solution that fits all possible applications. Therefore, the Midas platform
supports additional extension mechanisms such as plug-ins and layouts to
facilitate customization.

Some example customization efforts have led to the implementation of
several different types of document database (see Figure 9.3) including the
Optical Society of America’s Interactive Science Publishing system [15] and
the Insight Journal (described later in Section 9.6.3). The publication database
is a specialization of the platform to support academic publications, for
example, at the Surgical Planning Lab at Harvard Brigham and Women’s
Hospital, the NA-MIC project [16] uses the publication database to host
content (papers, data, and images) from all contributors to the project [17].
The publication database is a digital repository for scientific papers and a
computational infrastructure intended to facilitate the outreach activities of
scientists. It provides a streamlined way to upload, present, and share the
research and publishing activity from an institution. This is an example of a
resource that can be used to implement institutional repositories and provide
the mechanisms for practicing open access.

9.6.2 CMake-Based Software Process

As described earlier, the effective practice of open source depends on a rig-
orous software process. Our process relies heavily on the CMake, CPack,

Practicing Open Science 261

Digital storage
Online reporting

Interactive visualization

(a)

(b)

(c)

MIDAS

Server-side processing

FIGURE 9.3
(a) Midas is an open-source platform supporting data-centric computing. It has been used in
a variety of data-intensive applications, ranging from (b) publication databases (which include
data and images) to (c) advanced volume rendering.

262 Implementing Reproducible Research

Build, test,
and package

Community
review

Developers
and usersSoftware

repository

FIGURE 9.4
A closed-loop software process depends on the CMake family of tools. CMake is used to build
software across multiple platforms. CTest tests software on a particular client platform; CDash
receives such test results and displays them on a web-based dashboard visible to the com-
munity. Finally, CPack is used to package and distribute code and executables for multiple
platforms.

CTest, and CDash family of tools [18], which we have organically developed
and refined over many years of developing large-scale open-source projects.
In addition, we prefer the Git DVCS, although we continue to use SVN (and
other VCS such as CVS when necessary). Basically, the software process
we use is highly automated, closed-loop, and convergent (Figure 9.4)—this
is vital to ensuring the stability of the software. As shown in the figure,
the software repository is constantly monitored for additions, and when
changes occur, the software is tested and the results displayed on a software-
quality dashboard (Figure 9.5). Developers and users monitor the dashboard
and correct any errors as necessary, pushing code changes to the reposi-
tory and completing the cycle. The process runs continuously and hence
ensures reproducibility and informs users of the system of problems in a
timely manner.

In the following section, we describe the software process in more detail.
Along the way, we refer to several systems including the Visualization
Toolkit (VTK) [19] and the Insight Segmentation and Registration Toolkit
(ITK) [20]. These are examples of large-scale software systems that rely on
formal code review, with active communities of thousands of members, and
decades of use.

Practicing Open Science 263

FI
G

U
R

E
9.

5
A

po
rt

io
n

of
a

C
D

as
h

d
as

hb
oa

rd
(f

ro
m

th
e

Pa
ra

V
ie

w
op

en
-s

ou
rc

e
pr

oj
ec

t)
.T

he
d

as
hb

oa
rd

co
lo

r
co

d
es

er
ro

rs
an

d
w

ar
ni

ng
s

an
d

is
he

av
ily

hy
pe

rl
in

ke
d

to
pr

ov
id

e
ac

ce
ss

in
to

th
e

in
pu

ta
nd

ou
tp

ut
of

th
e

bu
ild

pr
oc

es
s.

264 Implementing Reproducible Research

9.6.2.1 Overview

CMake is an open-source tool for building complex software systems across
multiple computing platforms. As the platform consists of various combina-
tions of operating system, hardware, and system libraries, CMake manages
this complexity in a relatively transparent way. Using CMake requires spec-
ifying dependencies on third-party packages and selecting options to enable
or disable certain features and behaviors of the software package in question.
By embedding this information in CMake scripts, it is possible to standardize
the process of configuration for many different platforms and to store such
rules along with the source code.

CMake itself does not perform builds, but instead focuses on the config-
uration process that will produce standardized builds. In particular, CMake
generates native project build files according to the platform, for example,
Unix Makefiles, XCode, Visual Studio, Ninja, or Eclipse. In this way, the
rules written in build system files are carried along with the project and are
maintained and tracked in the same version control system that the project
uses.

The use of CMake facilitates the sharing of software for scientific research
by empowering developers to configure software to run on a variety of
platforms that range from embedded systems and laptops through to super-
computers. Examples of packages that use CMake include KDE, LAPACK,
CLAPACK, ParaView, Trilinos, VTK, and ITK, which are a few of the
thousands of software projects using CMake [21].

CTest is a companion tool to CMake; it is also open source and is dis-
tributed as part of the CMake package. The goal of CTest is to facilitate
the process of running tests and reporting their outcomes to centralized
sites. The daily use of CTest is quite simple. It is reduced to scripting the
command-line instructions that one would have used to run the test man-
ually. However, in the process of scripting it, the developer must face the
following questions:

• Where is the input data?
• Where to generate the output data?
• What parameters are necessary to execute programs?

The fact that open-source developers confront these questions on a daily
basis forces them to be quite organized and methodical. They must figure
out how to refer to data regardless of the particular computer system, that is,
being used to run the test.

A key entry in the driving CMakeLists.txt file are the commands that
describe tests that will be run later with CTest. A typical entry looks like

add_test(executable input1 input2 output
parameter1 parameter2)

Practicing Open Science 265

This includes the location and identification of the input data and the
fully defined set of parameters required to run the test. It turns out that this
also provides documentation for the test itself, at a level of granularity that
is rarely found in scientific publications.

CDash is a web tool that collects and summarizes the results of the CTest
testing process across multiple platforms. The project dashboard (Figure 9.5)
provides a rich set of hyperlinks that supports rapid navigation through
the output of the build process, and even into the source code if necessary.
Hence, compile errors, or test failures, are easy to find and analyze. There are
also many filtering options that make it possible to, for example, determine
exactly when a test started failing, which, in combination with the informa-
tion provided by the revision control system to track changes in the code, is
invaluable when determining what change caused a failure displayed on the
dashboard.

Finally, CPack is used to automatically package and distribute software
releases across multiple operating systems. This greatly simplifies the release
process and enables frequent, rapid releases of software. This supports the
open-source tenet of “release early, release often” by which software is often
released on a daily basis.

9.6.2.2 Unit Testing

Unit testing is a software engineering practice that focuses on creating tests
for the smallest possible functional units of the software being developed.
This makes it possible to locate errors with a high granularity when they are
introduced into the software.

In the particular case of ITK and VTK, which are object-oriented C++
libraries, the practice of unit testing is tightly coupled with the design and
implementation of classes and their methods. In ITK, we start by writing an
empty C++ class with something similar to the following pseudocode:

class itkNewImageFilter
{
public:
};

and a test for it in the simple form

int main(int argc, char *argv[])
{
itkNewImageFilter filter;

return 0;
}

266 Implementing Reproducible Research

Then we would add a piece to the test:

int main(int argc, char *argv[])
{
itkImage inputImage;
itkNewImageFilter filter;
filter->SetInput(inputImage);
return 0;
}

and then proceed to implement such method in the class:

class itkNewImageFilter
{
public:
void SetInput(itkImage image)

{ this->SetInternalImage = image; }
};

This may appear to be an agonizingly slow way to write software, but in
practice, it is the fastest way to write software that does not have to be rewrit-
ten. It is a common mistake for developers to go in long stretches of writing
hundreds or even thousands of lines of code and then, as an afterthought,
attempt to write tests for them. The consequence is that by the time they
start writing tests, they have already introduced many bugs and inconsis-
tencies in their code. Such defects now have to be found and fixed through
the much more expensive and laborious process of detective work. The aver-
age density of errors in the software industry is one bug for every thousand
lines of code∗ [22].

This is with the caveat that during the debugging process, new bugs will
possibly be introduced. It is known that about 50% of all bugs are introduced
while the developer is trying to fix other bugs [23]. These second-generation
bugs are the beginning of a nearly endless task, because, again, attempts to
fix either one of those bugs will, half of the time, introduce third-generation
bugs, and so on. The mathematically inclined readers would already be
estimating that one original bug becomes

∑
1 + 1

2 + 1
4 + 1

8 · · · bugs.
The methodical process described is at the same level of rigor that

one would expect from any well-trained experimental researcher. There-
fore, there should not be any objections to the cultural adoption of these
practices when developing software for research applications. To put it
bluntly: if a research software developer does not have the discipline to
write unit tests, then they are also likely to lack the discipline to be a

∗ The average bug density of open-source projects is 0.45 defects per thousand lines of code [22].

Practicing Open Science 267

well-qualified experimental researcher. Once again, this is not a technical
challenge but rather a cultural challenge. To incentivize reproducibility in
scientific research, it is therefore necessary to work simultaneously on mul-
tiple fronts. In particular, providing technical tools, while at the same time
ensuring specific behaviors are celebrated or condemned through the culture
of a community.

9.6.2.3 Examples of Code Review

The ITK and VTK projects use Gerrit (which depends on the DVCS Git)
along with a simple evaluation script to quickly check a proposed change
for basic correctness. Meaning, the script enforces certain guidelines such as
style and naming conventions including inappropriate white space, appro-
priate line length and termination delimiters, and hard-coded path names.
In addition to these checks, the events generated by Gerrit are monitored by
another system, which submits a build request to an automated build farm
if a developer is in the core group of developers. This initial build request
may be a subset of the entire test suite in order to enable a quick turnaround.
This build test utilizes a system called CDash@Home to request a build of
the proposed change on Linux, Windows, and Mac OS X [24,25] systems.
Hence, the automated check-in evaluation process not only verifies that the
project successfully builds on these common computing platforms but also
runs some quick tests and submits the results (Figure 9.6).

As a result of this initial smoke test, reviewers can view the build on
the set of core-supported platforms and compilers to check for any serious
regressions, freeing them to concentrate on reviewing the substance of the
change. Once merged into the main development branch, a larger number
of machines download the new version of the code and proceed to perform
more comprehensive tests. This practice of reviewing and testing of patches
before they are even merged into the main code base enables us to maintain
much higher stability on the main development branch than was previously
possible and also better engages the community in the maintenance effort.
The result is to significantly blur the once sharp line between committer (a
developer with commit rights) and budding contributor (someone who is
just beginning to learn and contribute to a project).

9.6.3 Insight Journal

The Insight Journal is an open technical journal built on the principles of
open access, open data, and open source [26]. This online journal focuses
on the domain of medical image computing and enforces the verification of
reproducibility for all contributed articles. The Insight Journal went online in
2005, thanks to generous funding from the National Library of Medicine at
the National Institutes of Health. The journal began as an effort to facilitate
the sharing of image analysis algorithms in support of the ITK community.

268 Implementing Reproducible Research

Contributors and reviewers

Kitware

Gitorious

Github

Read-only
mirrors

Merge into
‘master’

Code
review

Gerrit code review

Login to review.source. kitware.com

Content
checks

CDash
@Home

Git
‘master’

tip

Nightly CDash testing

FIGURE 9.6
Graphical overview of the software process that incorporates Gerrit for code review,
CDash@Home for pretesting, and CDash for nightly testing. Note the difference between those
with write access and those without is reduced.

Today, there are several derivatives of the Insight Journal, such as the VTK
Journal, the Midas Journal, and the OSEHRA Technical Journal, in use by other
communities.

The creation of the Insight Journal was a response of the ITK developer
community to the finding that a large number of papers published in the
medical imaging field were not reproducible. While this is unfortunately
common across other disciplines too, it was particularly frustrating to the
development team of the ITK open-source software library. Initially, the
team naively believed that published papers would have an associated open
implementation necessary to produce useful results. Unfortunately, the cul-
ture of openness and verification in the open-source world collided with
the failure of reproducibility that too often occurs in scientific research. The
ITK development team found that for many algorithms, their publication
in journals were too often just general guidelines to the overall flow of the
algorithm and that the authors failed to provide a reproducible implemen-
tation covering all facets of the technique necessary to implement a working
implementation.

Practicing Open Science 269

From this experience, the community decided to create a journal of the
type that would have been useful to the initial development of ITK. Such
an ideal journal would require article submissions that included functioning
source code, as well as tests and examples demonstrating the use of the code.
These tests and examples further required the inclusion of all input data;
and to support comparisons, the inclusion of the output data generated by
running the contributed code. Finally, for each run of a test or an example,
the article would include a full specification of the parameters necessary for
it to run. The whole submission package, including the article, source code,
tests, and data, would be available in its entirety to reviewers and readers
of the journal under permissive licenses enabling them to download, use,
modify, and redistribute the materials from the journal without having to
involve the legal departments of their respective institutions. Based on these
requirements, the Insight Journal was created.

The Insight Journal, and other similar open-access journals, fills a gap in
the practice of scientific research by providing a venue where practitioners
can share working versions of research code in a usable way. Despite the
fact that the journal does not fit the traditional academic publishing model,
which is mostly oriented to support career evaluations, it has become a key
element of the ITK ecosystem. Running continuously for 7 years, it has (at
the time of this writing)

• 3904 registered subscribers
• 540 published articles
• 821 reviews

The usefulness of the journal, as a vehicle for sharing contributions with
peers, has been found to be extraordinary, although it currently does little
to help academics score points essential for progression and tenure. How-
ever, since it enforces the verification of reproducibility, it is a real scientific
journal that successfully facilitates communication across the research com-
munity, accelerating scientific progress by minimizing publication delays
and providing an environment necessary for subscribers to use it in their
own research. It is quite common for rapid dialogues to emerge between
researchers and for members of the community to express appreciation at
finding leading-edge computational tools, with associated data and docu-
mentation, which address their current challenges.

One of the major features of the journal is that it takes advantage of the
near-zero costs to store and transmit data in today’s networked world. In
particular, it has eliminated most of the publishing restrictions that many tra-
ditional journals have inherited from the age of the printing press, including
page limits, restrictions on number and type of figures, problems updat-
ing revisions, use of color, limitations on supplemental materials, and long
turnaround cycles.

270 Implementing Reproducible Research

9.6.3.1 Practical Details

The journal follows well-established practices of open-source communities
that are rooted in continuous openness and transparency and in particular
heeds the mantra release early, release often. As a result, papers are published
within 24 h of submission, allowing time only to remove spam submissions,
followed by an open review process that is publicly visible to the entire com-
munity. This public process elevates the civility of the review dialogue while
greatly accelerating access to the material contributed by the authors.

When we began designing the Insight Journal in 2005, one of the first con-
cerns we had can be described this way: We are inviting people on the Internet to
send us arbitrary source code that we are going to compile and run on our machines.
It did not take long before we realized that an encapsulated environment
was required to run these source code contributions in a secure way. The
solution was implemented using the Xen virtualization platform [27], along
with a process to launch a virtual machine on demand whenever an article
was received by the journal. Thus, a web-based frontend triggers a request
to launch a preconfigured virtual machine with the installed software tools
and platforms required to run the code accompanying the submission. For
example, the preconfigured VM has several recent versions of ITK, VTK, and
CMake installed. A mechanism is provided to authors to specify the versions
of ITK, VTK, and CMake required to build their submitted code. Automated
scripts then take the source code from the submitted article package, copy it
into the virtual machine, expand it, configure it, build it, and run the tests
submitted by the authors. The results of the submitted tests are then posted
as an initial, automatic review to the journal. In this way, readers are primed
with the initial information as to whether the journal infrastructure was able
to build and replicate the results that the original authors described in the
submission.

Given that the authors can also submit revisions to their articles, along
with modifications to the code and data (without having to go through edi-
torial hurdles), the entire process unfolds in a rapid and agile manner. As
soon as an article is submitted, notification is sent to all subscribers (about
3900 people), and to the ITK community mailing list (over 2300 people). The
article is then made available for download, including the PDF document,
all source code, test code, examples, and input data required to verify the
content of the submission, as well as the output data resulting from execut-
ing the software on the input data. The goal is to facilitate reproducibility in
a very pragmatic way, empowering any reader of the Insight Journal with the
ability to rerun the experiments described in the article, with minimal effort,
and verify or build upon the research described.

Any subscriber to the journal is able to contribute reviews to the article.
The reviews are nonanonymous and are posted publicly. This spurs an open
conversation in which the reviewer and the author(s) exchange views and
ideas, point out errors, and suggest areas that could be improved. The entire

Practicing Open Science 271

community benefits from being exposed to the conversation captured within
the journal website. By encouraging all members of the scientific community
to participate, we cultivate an engaged and participatory community where
we all share the responsibility and the opportunities for moving the science
forward.

9.6.3.2 Community Involvement

From its inception, the Insight Journal encouraged authors to submit revi-
sions of their papers, with corrections and ongoing improvements. Being
free of the limitations of publishing on physical paper, we had the ability
to correct any errors by simply allowing and encouraging authors to submit
subsequent modified versions of their PDF documents and/or their source
code, data, and configuration. This created a working environment suitable
for spurring collaboration across the community.

The process was quite successful, and as the journal became more pop-
ular, readers and authors started to have conversations that led to improve-
ments in the source code contributions. As this happened, it rapidly became
evident that the process of uploading modified versions of the articles and
source code, even though it was far more flexible than the traditional paper-
based publishing venues, was too cumbersome when compared to other
well-known agile open-source processes. More specifically, open-source
projects routinely make modifications to their source code using version
control systems (see Section 9.3.1). To honor this tradition, a second genera-
tion of the Insight Journal was put in place,∗ where every code contribution
submitted to the Journal was automatically inserted into a back-end Git
repository.†

The Insight Journal has dramatically collapsed the time from submission
to publication, which has been enthusiastically embraced by the commu-
nity. What used to be an arduous publication cycle of 2–5 years, now takes
minutes with full disclosure. Not only is the code available almost immedi-
ately, but it is stored in an infrastructure that permits further development,
improvement, and maintenance of the data, publication, and code.

9.6.3.3 Data Concerns

As the Insight Journal was adopted by the ITK community, it became clear
that sharing data was more challenging than first thought and required sub-
sequent modifications to the sharing process. Initially, we made it clear that
licensing restrictions were to be minimal. We prefer that data are licensed
using CC0 and similar nonreciprocal licensing models. One of our goals is

∗ http://www.kitware.com/blog/home/post/167.
† https://github.com/midas-journal.

http://www.kitware.com/blog/home/post/167.
https://github.com/midas-journal.

272 Implementing Reproducible Research

to open up whole new fields of data reuse and meta-analyses. For exam-
ple, we envision large analyses traversing hundreds or thousands of papers
(and their data) to spot wider trends that the original researchers may have
overlooked. This requires published work that uses open-access licenses and
enables data mining with semantic meaning encoded and provides open
APIs using open standards such as REST and XML/JSON to encode the
results.

In addition, there were challenges managing data. Some of the issues we
addressed include

• Large data set size
• Collections with a large number of data sets
• Limitations on access

To address those issues, the ITK community created a data access solution
based on the Midas platform (see Section 9.6.1). Some of the more important
features include

• Data revision control, based on content
• An API for downloading data on demand
• A mechanism for uniquely identifying data sets to be downloaded
• A mechanism for sharing data stored on local disks (for perfor-

mance)

This collection of features enabled complex computational research scenarios
such as the following:

• A research group gathers a data collection and uploads it to a
database.

• The upload process generates unique identifiers for every data set,
based on its content.

• A second research group decides to use this collection as input for a
data analysis task.

• CMake scripts are written, which refer to the specific data sets to
be used as input, and assign them to the specific executables of a
computational experiment.

• An experiment is run by this second research group, which auto-
matically downloads the data shared by the first research group and
uses it as input to its computation.

• Finally, a third research group takes the source code and con-
figuration provided by the second research group and replicates
their experiment by building executables from the source code and
downloading the original data shared by the first group.

Practicing Open Science 273

With this infrastructure, it is possible to take a set of algorithms and run them
rapidly on multiple data collections, a task that could have conceivably taken
years of effort in the absence of such a computational platform employing the
principles of open source, open access, open data, and open standards.

9.6.4 Scalable Computing

Modern science relies heavily on computation. Analytical processes can be
used to tease relationships from data. Often, theories are simulated on a com-
puter and compared with experimental results. Even the process of acquiring
measurements relies heavily on computers: consider the image and signal
processing that goes into observing stellar phenomena.

In our practice of open science, we do not rely on any single approach
to perform computation. Typically, we employ open-source systems like
Midas, VTK, and ITK to build custom applications. However, there are
certain systems that we use when data becomes large and complex, or we
need extra computing resources. We describe these systems in the following
section.

9.6.4.1 High-Performance Computing

Throughout the world, researchers are increasingly turning to high-
performance computing (HPC) to conduct their work. More often than not,
this means making use of dedicated HPC resources that often have unusual
computing environments. One of the major challenges is developing cross
platform software that can run on these often specialized platforms. For
example, some supercomputers do not provide graphics hardware, which
means that applications that depend on OpenGL have to use software ren-
dering. Further, the individual nodes of an HPC resource often run a limited
version of the operating system (typically Linux), and as a result, significant
work is necessary to port code designed for off-the-shelf desktop operating
systems to work on such resources. These and other challenges are only
going to become more pronounced as HPC moves toward exascale com-
puting [28], in an environment where computational FLOPS are cheap (e.g.,
millions of computing cores) and I/O and data transfer are expensive (in
terms of performance and energy costs).

The inherent complexity and challenges of HPC means that open-source
software is essential to advancing the state of the art. There are several
reasons for this:

• Open-source software can be more easily adapted to HPC platforms.
There are minimal licensing issues and software engineers have full
access to the code, which they can modify to fit to the platform.

• Problems can be more easily discovered and corrected since the
code is not hidden. Debugging tends to be much easier. This is

274 Implementing Reproducible Research

particularly important as advanced parallel-computing algorithms
use complex distributed and shared-memory techniques to maxi-
mize the performance of HPC resources.

• Computing time on these machines is typically limited and expen-
sive, therefore carefully controlled, which makes verification of the
correct operation of the code more important than ever.

• Commercial code is often licensed on a per CPU-core basis (or sim-
ilar). With an explosion in the number of computing cores, the
pricing model of commercial software causes dramatic increases in
cost. In contrast, open-source software does not carry this burden.

In the following, we describe some of the HPC software that we use in
our practice of open science. All of the open-source systems listed in the
following use permissive, nonreciprocal BSD licenses.

VTK is a C++ toolkit (wrapped in Python, Java, and Tcl languages)
developed by a large community of international contributors. It originated
as companion software to a book on 3D visualization [19]. Now, nearly
20 years old (development started in 1993) with millions of lines of code,
it has served as a foundational computing tool for 3D graphics, scientific
and data visualization, computational geometry, human–computer interac-
tion, informatics, image and volume analysis, engineering simulation, and
more. The system is inherently portable and has been run on systems rang-
ing from the Raspberry Pi to some of the largest supercomputers (at the scale
of hundreds of thousands of processors).

ParaView is an open-source, large-scale parallel visualization applica-
tion leveraging VTK to provide visual data analysis for many data sources,
including computational fluid dynamics, medical computing, engineer-
ing simulation, combustion, point clouds (from LIDAR or other imaging
sources), climate simulation, and video processing [29]. ParaView employs
an advanced client–server computing architecture that enables lightweight
clients to connect with computing and/or graphics servers residing on an
HPC platform. Typically run using distributed, parallel computing model, it
can also leverage large shared-memory parallel systems.

ParaViewWeb is a client application providing a collaborative, remote web
interface for 3D visualization using the ParaView server [30]. It also pro-
vides a JavaScript API for ParaView scripting, features, and capabilities.
ParaViewWeb has been designed so that advanced visualization tools can be
easily integrated into a web page, and multiple viewers can simultaneously
view, interact with, and collaborate around data (Figure 9.7).

Catalyst is a data analysis and visualization library designed to be tightly
coupled with simulation codes [31]. It was created in response to the unfor-
tunate reality that HPC systems produce too much data to be fully captured
(due to IO and disk limitations); thus, co-processing systems like Cata-
lyst are embedded into the computing process to analyze and extract only

Practicing Open Science 275

FIGURE 9.7
ParaViewWeb enables advanced, large data visualization capabilities through web clients,
which in turn coordinate with a ParaView server that may reside on an HPC system. It also
supports collaboration across multiple, simultaneous viewers.

essential data during computation. This also makes it possible to monitor
long running analyses and control them during execution.

MoleQueue is an auxiliary application used to launch, monitor, and
control HPC resources. Managing HPC systems is still a challenging task
and MoleQueue makes it much easier by abstracting many of the differ-
ences between remote resources [32] and providing a simple API for client
applications on the local desktop machine.

9.6.4.2 Science as a Service

In recent years, cloud computing has become an increasingly important part
of scientific computing. Compared with HPC, cloud computing systems are
quite similar in that the resources are time limited, and they often run a
lean operating system. Thus, to create appropriate computational resources,
distributed memory approaches must generally be employed. Indeed, one
popular open-source package for scientific computing on the Amazon EC2
offering is StarCluster, which simplifies the process of configuring and

276 Implementing Reproducible Research

deploying a Sun Grid Engine cluster on the Amazon platform that closely
resembles a typical batch-scheduled HPC platform.

Once deployed, similar approaches to HPC can be used to schedule jobs
and communicate between nodes. The communication between nodes is
typically slower than purpose-built supercomputers, but time can be more
easily purchased, and in some cases, the elasticity of the resource can be
an enormous asset. Going forward, it is clear that the cloud will be a
major part of the market for reproducible science, offering some unique
opportunities.

Cloud providers, such as Amazon and Rackspace, make it relatively
easy to customize the operating system running on one cloud instance and
then deploy clones of it on one or more instances. These images can be
shared publicly with others, enabling developers to produce pristine refer-
ence images of a full operating system where correct operation of the code
has been tested. This means that others are able to verify results by purchas-
ing time on the platform, deploying an instance with the reference image,
and duplicating the reported results. When coupled with open-source codes
and the Linux operating system, there is no restriction on distribution and
even nonexperts have the opportunity to use complex codes where compi-
lation, configuration, and deployment can take significant amounts of time
and have now been made available to them ready to use.

The current widespread availability of cloud computing resources pro-
vides the opportunity to implement a reproducibility verification compu-
tational platform in a highly scalable way, without having to own and
maintain the resources. By taking advantage of the network effects and
the economies of scale, a full-fledged scientific computational platform is
available at a cost that is very close the marginal cost of using the raw
computational resources. A new scale of scientific research is made pos-
sible by these platforms, which will empower the computational research
community to ask ambitious questions without having to add to their bud-
get the full cost of large-scale resources. Large computational experiments
are no longer the exclusive privilege of institutions that can afford the
acquisition, installation, and maintenance of large computational resources
such as clusters and supercomputers. Instead, it is now available to any-
one, for the cost of the resources that are actually used during a given
experiment.

As a result, another interesting development enabled by open science on
the cloud is the development of a commercial marketplace for science [33].
The computational platform can be offered as a service to verify the repro-
ducibility of reported results provided by a neutral third party. Such an
approach is a complement to the [34], where a market-based system has
been put in place to enable interested parties to contract services to replicate
experiments from a set of trusted service providers. By delegating the exper-
imental verification to organizations that have the suitable infrastructure,

Practicing Open Science 277

and that have a good reputation of being neutral and objective, opens
up new possibilities in the practice of verification of experimental results,
at a lower cost, thanks to a better allocation of resources and an open
marketplace.

A typical scenario is for a pharmaceutical company to contract a repro-
ducibility verification service provider to reproduce a set of bioinformatics
experiments that they may have come across in a scientific publication. The
original authors would have made available, as part of their publication, all
the materials required to replicate their computational experiments, includ-
ing the source code, data, and configuration parameters. The verification
provider, who has a preconfigured and scalable computational platform, can
then proceed to rerun those experiments and report back to its customer on
the outcomes of these experiments. In terms of computational costs, the cus-
tomer would only have to cover the cost of cloud resource usage incurred
during the execution of the experiments, with no need to own and maintain
the full computational platform.

At Kitware, we are currently experimenting with these and a variety
of other open science practices in the cloud. We envision providing our
advanced, open-source software tools to host data, support data-centric
computing, and facilitate the sharing of scientific knowledge.

9.7 Challenges

The advent of the scientific method in the seventeenth century has enriched
society in profound ways, from improving health to providing a multitude of
goods and services to offering fundamental insights into the workings of the
physical universe. Open science ensures that this legacy of innovation and
understanding continues to address the challenges facing us in the twenty-
first century and beyond. However, supporting open science comes at a
significant cost; ensuring reproducibility requires resources for sharing and
to nurture communities. Additionally, guaranteeing reproducibility in an
ever-changing computing environment is difficult. And finally, with human
reputation, recognition, and achievement on the line, we need to rethink the
ways that scientists are evaluated and rewarded. These topics are addressed
in the following paragraphs.

As described earlier, the size of data produced in science is growing at
an enormous rate. Billions of dollars are spent to acquire or compute it;
hence, it represents a scarce resource that cannot be easily replaced. Once
it is collected, large data is expensive to store, provide access to, move,
and analyze. In the past, data were often tabulated in paper publications
and stored in a library; now, sophisticated data centers (including in some

278 Implementing Reproducible Research

cases HPC support to process it) are required. This poses a problem in that
very few institutions have the computing resources, or the wherewithal,
to support such large-scale, data-intensive science. Fortunately, computing
solutions are emerging (such as Amazon’s EC2, EBS, and Glacier), but it
remains to be seen whether commercial vendors are committed in the long-
term to supporting scientific data. Supporting aging data is problematic as
the justification for maintaining it wanes with the perception of declining
value.

Another insidious problem is the shifting sands of the computing envi-
ronment. Whether it is old software written in a programming language that
has evolved or become obsolete or the computing platform (on which the
software executes) that includes the operating system, software libraries, and
hardware, computing environments change rapidly and play a major role in
the reproducibility challenge. It is conceivable that software and data written
in a certain era may no longer execute on future platforms. While open stan-
dards and commitment to backward compatibility do much to address this
problem, computing environments have become so complex that it is hard
to imagine indefinitely maintaining a reproducible configuration. Proposed
solutions go so far as to propose virtual machines that are stored along with
scientific software; however, there is no guarantee that future platforms will
support existing VMs, and future computing architectures may be drastically
different including high degrees of parallelism and based on distributed web
resources.

Despite these technical obstacles, the biggest challenge may be address-
ing the entrenched scientific institution, social norms, and the way its various
members and organizations interoperate. As described previously, the scien-
tific publishing community is under siege due to their out-of-touch business
model in the era of the Internet. Yet bigger issues remain including the
tendency of some scientist’s to be overly protective of their work (mostly
due to the way they are evaluated for career rewards), which interferes
with collaboration and community formation. This, despite the fact that the
scale of scientific problems demands broader, collaborative expertise, and
with strong evidence suggesting that sharing can be beneficial. Consider the
open arXiv preprint server and open access PLoS journals that are examples
of influential and successful scientific communities and Steve Lawrence’s
recent article in Nature that shows strong correlation between open access
and the number of citations [2].

The scientific method has evolved over centuries of practice and has the
enviable feature that it is self-correcting, with committed and passionate
practitioners. Thus, despite these challenges, we are optimistic about the
future of open science and the likelihood that its practice will be more open
and collaborative than ever before. This optimism must also be tempered
with the realization that changes of this magnitude can be generational, with
new researchers quickly seeing the value of sharing if appropriate credit can
be obtained when seeking career progression.

Practicing Open Science 279

References

1. J. Gray. Chapter E-Science: A transformed scientific method. In The
Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research,
Redmond, WA, 2009.

2. S. Lawrence. Free online availability substantially increases a paper’s
impact. http://www.nature.com/nature/debates/e-access/Articles/
lawrence.html (Accessed December 2, 2013).

3. A. Donald, In science today, a genius never works alone. http://
www.guardian.co.uk/commentisfree/2013/feb/03/teamwork-science-
transforming-the-world

4. K. Popper. Conjectures and Refutations: The Growth of Scientific Knowledge,
2nd edn. Routledge, London, UK, 2002.

5. NIH Data Sharing Policy and Implementation Guidance. http://grants.
nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm

6. E. Ostrom. Governing the Commons: The Evolution of Institutions for Collec-
tive Action. Cambridge University Press, 1990.

7. Open Access Overview. http://www.earlham.edu/~peters/fos/
overview.htm

8. Directory of Open Access Journals. http://www.doaj.org/doaj?
func=home&uiLanguage=en (Accessed December 2, 2013).

9. Wikipedia Editorial Oversight and Control. http://en.wikipedia.org/
wiki/Wikipedia:Editorial_oversight_and_control

10. History of the Royal Society. http://royalsociety.org/about-us/history
(Accessed December 2, 2013).

11. Open Standards. http://en.wikipedia.org/wiki/Open_standard
12. B. Perens. Is opendocument an open standard? Yes! http://www.

dwheeler.com/essays/opendocument-open.html
13. J. Jomier, S.R. Aylward, C. Marion, J. Lee, and M. Styner. A digital

archiving system and distributed server-side processing of large
datasets. Proc. SPIE, 7264, 18, 2009.

14. J. Jomier, S. Jourdain, U. Ayachit, and C. Marion. A digital archiving sys-
tem and distributed server-side processing of large datasets. Proceedings
of SPIE. 7264, 726413, 2009.

15. OSA Interactive Science Publication. http://www.opticsinfobase.org/
isp.cfm

16. National Alliance of Medical Image Computing NA-MIC. http://na-
mic.org

17. The Publication Database hosted by SPL http://www.na-mic.org/
publications

18. K. Martin and W. Hoffman. Mastering CMake. Kitware, Inc., New York,
2009.

19. The Visualization Toolkit VTK. http://www.vtk.org

http://www.nature.com/nature/debates/e-access/Articles/lawrence.html
http://www.nature.com/nature/debates/e-access/Articles/lawrence.html
http://www.guardian.co.uk/commentisfree/2013/feb/03/teamwork-science-transforming-the-world
http://www.guardian.co.uk/commentisfree/2013/feb/03/teamwork-science-transforming-the-world
http://www.guardian.co.uk/commentisfree/2013/feb/03/teamwork-science-transforming-the-world
http://grants.nih.gov/grants/policy/data{_}sharing/data{_}sharing{_}guidance.htm
http://grants.nih.gov/grants/policy/data{_}sharing/data{_}sharing{_}guidance.htm
http://www.earlham.edu/~peters/fos/overview.htm
http://www.earlham.edu/~peters/fos/overview.htm
http://www.doaj.org/doaj?func=home{&}uiLanguage=en
http://www.doaj.org/doaj?func=home{&}uiLanguage=en
http://en.wikipedia.org/wiki/Wikipedia:Editorial{_}oversight{_}and{_}control
http://en.wikipedia.org/wiki/Wikipedia:Editorial{_}oversight{_}and{_}control
http://royalsociety.org/about-us/history
http://en.wikipedia.org/wiki/Open{_}standard
http://www.dwheeler.com/essays/opendocument-open.html
http://www.dwheeler.com/essays/opendocument-open.html
http://www.opticsinfobase.org/isp.cfm
http://www.opticsinfobase.org/isp.cfm
http://na-mic.org
http://na-mic.org
http://www.na-mic.org/publications
http://www.na-mic.org/publications
http://www.vtk.org

280 Implementing Reproducible Research

20. Insight Segmentation and Registration Toolkit ITK. http://www.itk.org
21. CMake Programming Language Statistics. http://www.ohloh.net/

languages/cmake (Accessed December 2, 2013).
22. Coverity scan: 2011 open source integrity report. http://

softwareintegrity.coverity.com/coverity-scan-2011-open-source-
integrity-report-registration.html (Accessed February 10, 2013).

23. Capers J. Quality quest. CIO, February 1995.
24. The CDash@Home Cloud. http://www.kitware.com/source/home/

post/21
25. Code Review, Topic Branches and VTK. http://kitware.com/source/

home/post/ 62.
26. The Insight Journal. http://www.insight-journal.org/
27. Xen virtualization platform. The Xen Project. http://www.xen.org/
28. DOE Office of Science. The opportunities and challenges of exascale com-

puting. http://science.energy.gov/~/media/ascr/ascac/pdf/reports/
exascale_subcommittee_report.pdf,2010 (Accessed December 2, 2013).

29. J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large
data visualization. In C.D. Hansen and C.R. Johnson, eds., Visualization
Handbook. Elsevier, San Diego, CA, 2004.

30. ParaViewWeb. http://www.paraview.org/Wiki/ParaViewWeb
31. Catalyst: Scalable in-situ analysis. http://catalyst.paraview.org/

(Accessed December 2, 2013).
32. MoleQueue HPC Resource Manager. http://wiki.openchemistry.org/

MoleQueue
33. Renee DiResta. Science as a service. http://radar.oreilly.com/2013/01/

science-as-a-service.html
34. Exchange Reproducibility Initiative. https://www.scienceexchange.

com/reproducibility

http://www.itk.org
http://www.ohloh.net/languages/cmake
http://www.ohloh.net/languages/cmake
http://softwareintegrity.coverity.com/coverity-scan-2011-open-source-integrity-report-registration.html
http://softwareintegrity.coverity.com/coverity-scan-2011-open-source-integrity-report-registration.html
http://softwareintegrity.coverity.com/coverity-scan-2011-open-source-integrity-report-registration.html
http://www.kitware.com/source/home/post/21
http://www.kitware.com/source/home/post/21
http://kitware.com/source/home/post/
http://kitware.com/source/home/post/
http://www.insight-journal.org/
http://www.xen.org/
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/exascale{_}subcommittee{_}report.pdf, 2010
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/exascale{_}subcommittee{_}report.pdf, 2010
http://www.paraview.org/Wiki/ParaViewWeb
http://catalyst.paraview.org/
http://wiki.openchemistry.org/MoleQueue
http://wiki.openchemistry.org/MoleQueue
http://radar.oreilly.com/2013/01/science-as-a-service.html
http://radar.oreilly.com/2013/01/science-as-a-service.html
https://www.scienceexchange.com/reproducibility
https://www.scienceexchange.com/reproducibility

10
Reproducibility, Virtual Appliances, and
Cloud Computing

Bill Howe

CONTENTS

10.1 Introduction . 282
10.2 Background on Cloud Computing and Virtualization 283
10.3 Related Approaches and Examples. 283

10.3.1 Other Uses of Virtual Machines . 286
10.3.2 Toward Services Instead of Artifacts . 287

10.4 How Cloud Computing Can Improve Reproducibility 287
10.4.1 Capturing More Variables . 287
10.4.2 Fewer Constraints on Research Methods . 288
10.4.3 On-Demand Backups . 289
10.4.4 Virtual Machines as Citable Publications . 289
10.4.5 Code, Data, Environment, Plus Resources . 289
10.4.6 Automatic Upgrades . 289
10.4.7 Competitive, Elastic Pricing . 290
10.4.8 Reproducibility for Complex Architectures 290
10.4.9 Unfettered Collaborative Experiments . 290
10.4.10 Data-Intensive Computing . 291
10.4.11 Cost Sharing . 291
10.4.12 Foundation for Single-Payer Funding . 291
10.4.13 Compatibility with Other Approaches . 292

10.5 Remaining Challenges . 292
10.5.1 Cost . 292
10.5.2 Culture . 292
10.5.3 Provenance . 293
10.5.4 Reuse . 293

10.6 Nonchallenges . 293
10.6.1 Security . 293
10.6.2 Licensing . 294
10.6.3 Vendor Lock-In and Long-Term Preservation 294

References . 295

281

282 Implementing Reproducible Research

In many contexts, virtualization and cloud computing can mitigate the chal-
lenges of computational reproducibility without significant overhead to the
researcher.

10.1 Introduction

Science in every discipline increasingly relies on computational and data-
driven methods. Perhaps paradoxically, these in silico experiments are
often more difficult to reproduce than traditional laboratory techniques.
Software pipelines designed to acquire and process data have complex
version-sensitive interdependencies, their interfaces are often complex and
underdocumented, and the datasets on which they operate are frequently
too large to efficiently transport.

At the University of Washington eScience Institute, we are exploring the
role of cloud computing in mitigating these challenges. A virtual machine
(VM) can snapshot a researcher’s entire working environment, including
data, software, dependencies, notes, logs, and scripts. Snapshots of these
images can be saved, hosted publicly, and cited in publications. This
approach not only facilitates reproducibility, but incurs very little overhead
for the researcher. Coupled with cloud computing, either commercial or
taxpayer-funded [17], experimenters can avoid allocating local resources to
host the VM, large datasets and long-running computations can be man-
aged efficiently, and costs can be partially shared between producer and
consumer.

In many cases, the application of virtualization to support reproducible
research does not require any significant change to the researchers’ work-
flow: the same experiments can be conducted in the virtual environment
as in the physical environment, using the same code, data, and environ-
ment. When the experiments are complete, the experimenter will save a
snapshot of the VM, make it publicly available, and cite it in all appropri-
ate papers. Readers of the paper who wish to reproduce the results can
launch their own instance of the author’s virtual appliance, incurring no
additional cost to the author (and, we will argue, only minimal cost to
the reproducer), and reexecute the experiments. Further, new experiments,
modifications, and extensions implemented by the reproducer can be saved
in a new VM image and reshared as desired. The consequences and ben-
efits of this basic model, as well as discussion of adaptations to support
more complicated reproducibility scenarios, is the subject of this chapter.
We provide examples from the literature of how this approach can signifi-
cantly improve reproducibility with minimal additional effort and that this
approach is largely complementary to other technologies and best practices

Reproducibility, Virtual Appliances, and Cloud Computing 283

designed to improve reproducibility. We will conclude with the remaining
challenges to be overcome to fully realize this model.

10.2 Background on Cloud Computing and Virtualization

A VM provides a complete interface to a physical computer in software.
This interface allows a complete operating system and any other software
to run within a managed “virtual” software environment without requiring
any direct access to the underlying “host” computer. A VM along with an
operating system and other software can be stored, transported, and man-
aged as a single file called an “image.” The use of virtualization helps solve
problems in a variety of areas technique can be applied to a huge num-
ber of problems: software can be tested on N different platforms without
having to purchase and maintain N different computers. In a data center,
if a physical machine fails, the VM can be migrated elsewhere, in some
cases without interruption. Software developed for Windows can be used
in a Linux environment, without complicated dual-boot scenarios. In the
enterprise, IT departments can upgrade thousands of desktop environments
by distributing a new VM image nching new VMs rather than physically
installing software on each machine individually. In this chapter, we focus
on using VMs to distribute software. This mechanism allows users to skip
the installation step entirely—an attractive option for software with many
complex dependencies.

Computing resources offered on demand, elastically, over the Internet—
cloud computing—affords even more use cases for virtualization. Amazon
Web Services (AWS), for example, allows VMs to be shared among users and
launched on Amazon’s hardware—users rent not only the software but the
hardware on which to run it. This model has been wildly successful, allowing
customers to get out of the business of administering computing resources
and focus entirely on their business or their research.

10.3 Related Approaches and Examples

Lincoln Stein cogently argued why cloud computing and virtualization will
be transformative for genome informatics [32]:

Cloud computing . . . creates a new niche in the ecosystem for
genome software developers to package their work in the form of vir-
tual machines. For example, many genome annotation groups have

284 Implementing Reproducible Research

developed pipelines for identifying and classifying genes and other func-
tional elements. Although many of these pipelines are open source,
packaging and distributing them for use by other groups has been
challenging given their many software dependencies and site-specific
configuration options. In a cloud computing environment these pipelines
can be packaged into virtual machine images and stored in a way that lets
anyone copy them, run them and customize them for their own needs,
thus avoiding the software installation and configuration complexities.

Stein’s argument focuses on the cloud’s role for distributing software rather
than distributing and reproducing specific experimental results, but the
mechanisms are closely related. Dudley and Butte articulate the connection
between cloud computing and reproducible research [11] and argue that
the need for specialized, nonstandard software motivates the need to share
complete operating environments (“whole system snapshot exchange”) as
opposed to packaged tools. Dudley and Butte consider many of the issues
we discuss in this chapter: reproducibility in the context of large datasets and
specialized computational environments and the economics of long-term
preservation.

As Stein and others predicted, the use of VMs for the purposes of soft-
ware dissemination is becoming commonplace in the life sciences [1,4,9,18].
For example, the CloVR project provides a set of metagenomic analysis tools
and a browser-based graphical dashboard for interacting with them [14].
Both the tools and the dashboard are distributed as a VM, reducing installa-
tion effort for the client, eliminating the need for installation documentation
by the providers, and trivially providing cross-platform support. Examples
in other fields are emerging as well: the CernVM [31] simplifies the process
to set up and run high-energy physics codes and now supports all experi-
ments associated with the Large Hadron Collider [19], as well as many other
experiments.

These applications of virtualization and cloud computing for tool deliv-
ery can help improve reproducibility by encouraging standardization on
particular tools. However, new experiments tend to require new software
that has not yet been packaged into clean reusable components. In this chap-
ter, we consider the role of VMs and cloud computing even in these “early
stage” software situations: ad hoc software to demonstrate experimental
results as opposed to engineered software intended for long-term reuse.

In these situations, we can put current approaches to reproducibility into
four categories: researchers can simply post their raw code and data on the web
and rely on the published paper for documentation. This approach requires
very little investment from the researcher, although they still need to find a
place to host their materials. The effort required by the reproducer is signifi-
cant, however, and this approach is generally not seen as sufficient (although
it is still arguably an improvement over common current practices, where the
code is simply not made available at all).

Reproducibility, Virtual Appliances, and Cloud Computing 285

Beyond just posting the code and data, experiments and software can
be equipped with extensive documentation for recreating the original exper-
imental environment. This approach requires significant up-front effort by
the experimenter but can improve long-term reusability and will typical
improve near-term reproducibility as well. Brown et al. emphasize the use
of source control repositories and explicit documentation for reproducibility
and include instructions for reproducing results with every paper [7]. Their
argument is that complete instructions for reproducing the environment can
be more robust than providing a single instance of a working environment.
However, reconstruction of the software environment typically requires a
different set of skills than simply reproducing the experiments: installation of
software using Linux package managers, the use of version control software,
the configuration of environment variables, and sometimes familiarity with
relatively advanced Linux tools such as screen [8]. As a result, this approach
restricts reproducibility to those who have similar technical expertise to the
authors. We conjecture that of those who wish to reproduce the results pub-
lished in this way, some nonzero fraction will be unable or unwilling to do
so due to the additional overhead of configuring the environment. But per-
haps more significantly, Brown et al. are exemplars in providing thorough,
clear, and accurate instructions for reproducing their results. For authors
who are unable to justify the cost of this effort given that long-term reusabil-
ity may or may not be one of their goals, virtualization offers a low-overhead
“minimum bar” for reproducibility. Further, virtualization is entirely com-
plementary to this documentation-oriented approach: a working example
environment disseminated as a VM provides a means of checking that you
have followed the authors, instructions properly and provides redundancy
in case the instructions are incomplete.

A third approach is to adopt some kind of controlled environment in which
to conduct your experiment that simplifies the metadata capture, prove-
nance, logging, and dissemination process. These environments may be
scientific workflow systems [16,35,36,38] or an augmented programming
environments [10,28]. But in each case, the environment restricts the lan-
guage, programming style, or libraries to which the researcher has access.
Projects with specialized needs (large datasets, combinations of languages
and libraries) may not be able to tolerate these restrictions, or the cost of
reengineering the experiment to conform to the provided environment may
make the value proposition unclear. We will discuss these solutions in more
detail later in the chapter.

The fourth approach, described in this chapter, is to use VMs to capture
and publish the code, data, and experimental environment.

Figure 10.1 illustrates how these four approaches compare in relative
effort for the experimenter, those who wish to reproduce the experiments
(left-hand plot) and those who wish to reuse and extend the experimental
software (right-hand plot). Posting raw code and data requires little effort
from the experimenter (lower half of each plot) but requires significant effort

286 Implementing Reproducible Research

Effort
required by

experimenter
Low

High

Low High

Virtual
machines

Controlled
environments

Raw code
and data

Extensive
documentation

Low High

Virtual
machines

Controlled
environments

Raw code
and data

Extensive
documentation

Effort required by those who
reuse and extend the results

Effort required by those who
only reproduce the experiments

FIGURE 10.1
These four approaches to disseminating science software vary in the effort required by the origi-
nal experimenter, those who wish to directly reproduce the results and those who wish to reuse
and extend the software for other purposes. VMs incure very little overhead for the original
experimenter and support direct reproducibility but are not sufficient for long-term extensi-
bility. For extensibility, complete documentation is generally required, though some scientific
workflow systems and other controlled environments offer a possible solution.

from both reproducers and extenders. Augmenting the code with documen-
tation requires more up-front effort from the experimenter, and reproducers
are required to reestablish the original environment from scratch, a task they
may or may not possess the skills to do. However, this approach is criti-
cal to support those who wish to reuse and extend the software and adapt
it for their own projects—there is no “shortcut” for software reuse. For the
extenders, this documentation significantly reduces the effort required. Con-
trolled environments also require some up-front effort but can significantly
reduce the effort required by both reproducers and extenders. Finally, VMs
impose very little overhead on the experimenter, and direct reproducibility
of results is straightforward, but an undocumented VM with all software
preinstalled does very little to support long-term reusability and extensi-
bility, perhaps offering only a small improvement over providing the raw
code and data. These approaches are not mutually exclusive; releasing a VM
demonstrating particular results along with complete documentation for the
requisite software is an appropriate strategy [8].

10.3.1 Other Uses of Virtual Machines

Beside reproducibility, the creation and exchange of VMs has other bene-
fits for scientific knowledge sharing. First, VMs are also increasingly used
to distribute software for educational purposes. Sorin Mitran at the Univer-
sity of Washington uses VMs in classes ranging from nontechnical first-year
seminars to graduate classes to package the software environment for teach-
ing scientific computing.∗ He finds that “using VMs allows a class to

∗ http://mitran.web.unc.edu/teaching/.

Reproducibility, Virtual Appliances, and Cloud Computing 287

concentrate on the math and programming as opposed to installing all the
utilities that come together to solve a problem.” Second, VMs can be used
to deliver custom prototypes and proofs of concept. Paradigm 4, the com-
pany that develops and distributes the SciDB database engine [33], routinely
uses Amazon Machine Images (AMI) for customer projects. They develop
a prototype on behalf of a customer and deliver it as an AMI, allowing the
customer to reproduce results by running the scripts developed by P4. This
approach provides a “try before you buy” mechanism that allows customers
to experiment with the system without investing IT resources to install the
software locally. Another facet of reproducibility exercised by the SciDB sys-
tem is to adopt a “no overwrite” philosophy for operation of the system—all
results are derived from previous results, affording complete reproducibility
and provenance.

10.3.2 Toward Services Instead of Artifacts

A VM avoids the need to install unfamiliar software on a potentially new
platform but still presumes that the reproducer can navigate your exper-
imental environment and operate your code. Increasingly, we see bioin-
formatics tools exposed as a service, where users can interact with a web
interface instead of the “raw” scripts and files. In the future, we can imagine
publishing scripts as web-based interfaces directly, without going through
an engineering project to do so. This kind of capability is among the goals
of the HUBZero project [22].∗ Instances of the HUBZero framework for spe-
cific domains, for example, NanoHUB in the area of nanotechnology, allow
analysis routines to be uploaded to a server, attached to simple graph-
ical interfaces for passing parameters and viewing results, and executed
remotely. We are evolving toward a “standard pipeline” of computational
science that can expose an experimental result as a reusable and reproducible
tool in a matter of hours.

10.4 How Cloud Computing Can Improve Reproducibility

10.4.1 Capturing More Variables

VMs allow researchers to share the entire context of their environment—
data, code, logs, usage history, intermediate results, figures, notes, failed
experiments, operating system configuration details, and more. Shar-
ing at this level of abstraction mitigates most portability issues encoun-
tered when trying to install, configure, and run someone else’s software.

∗ http://hubzero.org/.

288 Implementing Reproducible Research

The experimenter need not repackage their code for multiple platforms,
and the reproducer need not install additional software or debug portability
problems.

The VM provides an exact replica of the original “laboratory” com-
plete with all variables—controlled and uncontrolled—intact. The success
of reproducibility is not contingent on the experimenter’s awareness and
explicit control of every variable that might have influenced the outcome
(library versions, operating system versions, subtle bugs). The analogy is a
“crime scene”: keep everything pristine so investigators can reconstruct the
events that led to your paper.

10.4.2 Fewer Constraints on Research Methods

In many cases, no changes are required to your research methodology to
use a VM (except for a one-time cost of establishing a virtual environ-
ment in which to work). You are free to use whatever operating system,
languages, libraries, tools, conventions, and practices you see fit. Except
for experiments requiring specialized hardware or large external datasets
(cases we will consider later), any experiments that can be run on a local
machine can also be run on a VM in the cloud. Other proposals to enhance
reproducibility rely on the experimenter adopting some form of managed
environment: language extensions and packages [27], technology-assisted
metadata and documentation conventions [13,23,30], or scientific workflow
systems with visual programming environments and advanced provenance
features [3,20]. These systems offer enormous benefits in certain contexts,
but they put significant constraints on the experimenter’s research method-
ology: a particular language must be used, a particular programming style
must be adopted, existing code must be ported to a workflow environment,
or a particular documentation convention must be adopted.

In those contexts where these approaches are feasible, we advocate
their use—they are generally compatible with (and complementary to) vir-
tualization. Also, virtualization alone provides no support for managing
provenance, typechecking workflows, generating documentation, or most
other features provided by, say, scientific workflow systems. However, we
contend that there will always be experiments performed (and data stored)
outside the jurisdiction of any managed environment. Rather than ignore
this data or rely on fiat, our approach is to cast a wide net to capture all data,
all dependencies, and all possible variables.

The freedom to mix and match a variety of tools, to throw out one solu-
tion and rebuild another from scratch, and to reexecute one’s experiment
over and over at essentially zero cost are strengths of computational science
that are not shared by most laboratory techniques. We should be conserva-
tive about sacrificing these properties by artificially constraining which tools
can be used and how they may be combined.

Reproducibility, Virtual Appliances, and Cloud Computing 289

10.4.3 On-Demand Backups

Snapshots of VMs, saved at regular intervals or on demand, offer a com-
prehensive (though noisy) laboratory notebook with minimal overhead. The
entire state of the experiment, including controlled and uncontrolled vari-
ables, is saved and is immediately accessible. Returning to a previous state
in the project involves identifying the appropriate snapshot and launching
the VM. The overhead of saving many copies of nearly identical VMs is
increasingly mitigated by deduplication and delta techniques [34]. Search
and management services for a large set of related VMs are also beginning
to emerge [2].

10.4.4 Virtual Machines as Citable Publications

VMs hosted on AWS, unlike those created and managed locally, are given
a unique and permanent identifier that can be referenced in papers with no
additional work by the experimenter. Concerns about longevity and preser-
vation of public cloud resources can be addressed over time and need not be
considered a limitation in the near term (we will discuss preservation and
longevity issues in more detail in the next section).

10.4.5 Code, Data, Environment, Plus Resources

So far, all the reasons we have described apply to virtualization alone,
whether or not the cloud is involved. Virtualization certainly predated cloud
computing and has been used regularly in a variety of computing con-
texts for many years. However, only a public cloud computing environment
(whether commercial or taxpayer-funded) provides not only the VM, but a
host in which to run it that is identical to the original authors. An experi-
ment with any significant resource requirements cannot be fully reproduced
by simply downloading the VM to run on one’s laptop. For example, de novo
assembly tasks for analyzing short read *omics sequences typically use
graph-based methods that require significant memory resources [39]. Such
techniques are difficult to replicate in local environments, especially by small
labs or individual researchers who cannot absorb significant investments in
hardware. Cloud computing provides a common platform for anyone to use
to reproduce experiments, at a cost that scales elastically with the resources
required to run it. Sharing VMs via the cloud provides access to not only the
code, data, and environment used by the experimenter but a carbon copy of
the computing resources to run them.

10.4.6 Automatic Upgrades

Data and code hosted in the cloud automatically benefits from technology
advancements with no additional effort from the experimenter or those who

290 Implementing Reproducible Research

wish to reproduce their results. For example, VM images can be launched
using new instance types—with, say, more memory, more cores, or special
hardware∗—as they become available. Additionally, cloud providers such
as Amazon routinely release new capabilities. Consider Elastic MapReduce,†

a new parallel processing framework natively deployed in AWS that can be
applied to any data stored in their Simple Storage Service (S3). This software
need not be installed or configured prior to use.

10.4.7 Competitive, Elastic Pricing

The prices of one EC2 compute unit, one gigabyte of RAM, and one terabyte
of storage have all dropped over 50% in most usage scenarios since AWS was
first released [15]. These price drops are automatically applied for all users,
and in some cases, retroactively. The price drops generally reflect the falling
cost of hardware and new economies of scale realized in the design of AWS.

10.4.8 Reproducibility for Complex Architectures

Computational experiments increasingly involve complex architectures,
consisting of multiple servers interacting in application-specific ways:
database servers [6], many-core architectures [12], and specialized resources
such as GPGPUs [21]. In these cases, the code and the data are not enough.
Reproducers need access to the specific hardware platforms or application
architectures used in the experiment. The only choices are to document the
platform carefully and hope those who wish to reproduce your results can
build an appropriate environment from scratch or to provide outside access
to one’s own environment. AWS and other public cloud providers offer
native facilities for precisely this purpose. Amazon’s CloudFormation ser-
vice allows configurations of related VMs to be saved and deployed as a
single unit, making such complex architectures significantly easier to repro-
duce.‡ Moreover, specialized hardware including GPGPUs and clusters with
fast interconnects are now available on AWS.

10.4.9 Unfettered Collaborative Experiments

Two researchers at different institutions cannot typically work in the same
development environment without one institution provisioning accounts, a
process that undermines security and often takes weeks. A shared instance
launched in the cloud provides “neutral territory” for developers to work
in a common environment while maintaining local security. Reproducible

∗ http://aws.amazon.com/ec2/.
† http://aws.amazon.com/elasticmapreduce/.
‡ http://aws.amazon.com/cloudformation/.

http://aws.amazon.com/ec2/.
http://aws.amazon.com/elasticmapreduce/.
http://aws.amazon.com/cloudformation/.

Reproducibility, Virtual Appliances, and Cloud Computing 291

experiments can therefore be shared among multiple researchers, potentially
reducing the number of independent verifications of the same result.

10.4.10 Data-Intensive Computing

As science becomes increasingly data-intensive, reproducibility requires
shared access to large datasets. Downloading large datasets to one’s local
environment to reproduce experiments simply cannot scale as datasets grow
beyond a few terabytes. The only viable solution is to bring the computation
to the data rather than bring the data to the computation. Unless each exper-
imenter is equipped to open one’s own environment to outside usage, the
public cloud becomes the only platform that can both host the data and host
the computation.

10.4.11 Cost Sharing

Reproducibility necessarily involves consideration of costs. By hosting data
and code in the public cloud, the costs are shared by both the experimenter
and those who wish to reproduce their results. In the simplest case, the
experimenter incurs only the minimal costs of a single VM image: a 30 GB
image will cost less than US$3.00 a month under most usage scenarios. Those
wishing to reproduce the results launch their own instances from this image,
incurring all relevant costs themselves. In more complex circumstances, the
experimenter may need to pay storage costs to host large datasets. In some
circumstances, Amazon and other cloud providers offer free hosting of pub-
lic datasets in the interest of attracting traffic to their services, and online
data markets are emerging that can more effectively share data storage costs
between producers and consumers [5].

10.4.12 Foundation for Single-Payer Funding

Federal funding agencies require a data management plan to accompany
all proposals [25]. Hosting one’s research output in the public cloud lays
a foundation for a single-payer system where NSF, NIH, and other agen-
cies work directly with cloud providers to pay the costs of hosting scientific
data. Individual investigators can put their research grants fully into sci-
ence rather than having to plan, design, and implement a sustainable data
management strategy. This approach also neatly solves a current obstacle
to the uptake of cloud computing: universities inadvertently subsidize local
deployments of hardware by charging large indirect cost rates on every dol-
lar spent on “services,” including cloud computing. Capital expenditures,
including computing infrastructure, are ironically not subject to this over-
head, despite incurring significant ongoing costs to the university in the form
of power, cooling, space, and maintenance. By passing these funds directly
from the funding agencies to the cloud providers, no overhead is charged.

292 Implementing Reproducible Research

10.4.13 Compatibility with Other Approaches

The approach we advocate—performing one’s computational experiments
inside VMs hosted in the public cloud—is compatible with and complemen-
tary to other approaches. If researchers begin to converge on a particular
language, framework, workflow engine, file format, or coding convention,
then these shared a VMs will become increasingly easier to (re)use. But it is
unlikely that the VMs will become obsolete. We argue that there will always
be exceptional circumstances that require an unconstrained programming
environment, and VMs provide a “catch all” solution for such exceptions.

10.5 Remaining Challenges

Cloud computing offers a compelling approach to improving reproducibility
in computational research, but there are risks and obstacles.

10.5.1 Cost

The economics favor a shift toward cloud computing in many situations, but
not all. Storage in particular is still too expensive for science use cases, hav-
ing been designed for a nearly opposite set of requirements: high availability,
low latency, high-frequency access by a large number of concurrent users. In
contrast, most science use cases need to store large amounts of data for use
by relatively few individuals who can typically tolerate delays in accessing
data or even occasional outages. In some cases, even lost data can be toler-
ated (e.g., simulations can be reexecuted). In return for this tolerance, they
expect prices to approximate the cost of the raw disks, which is dropping
precipitously.

There are three mitigating factors to this problem: First, there are pro-
grams to host public data at no charge.∗ Second, centralization in the cloud
lays a foundation for a single-payer system to pay directly for publicly
funded research, as we argued in the previous section. Third, the require-
ments for scientific data storage are not dissimilar from those of archival
applications, suggesting that the cloud providers will soon offer lower-cost
services with the performance characteristics described [14].

10.5.2 Culture

A more difficult problem to solve is one of culture. Researchers are
accustomed to the “ownership” of laboratory equipment, and computing
infrastructure is considered just a new form of such equipment. There is

∗ http://aws.amazon.com/publicdatasets/.

http://aws.amazon.com/publicdatasets/.

Reproducibility, Virtual Appliances, and Cloud Computing 293

skepticism (and sometimes outright misunderstanding) of the cost, reliabil-
ity, security, and longevity of cloud systems. This difficulty will diminish
over time as computing is increasingly considered a utility (akin to power,
telephone, or Internet) and less of a specialized solution designed expressly
for one’s unique requirements.

The implicit subsidies for purchasing and maintaining local hardware
in the university context, as we considered earlier, must also be eliminated
before cloud computing will be fully competitive.

10.5.3 Provenance

There is no de facto method of storing and querying the history of activity
within a VM, apart from primitive methods provided by the guest operating
system. Reasoning about the sequence of steps that led to a particular result
is the real goal of reproducing another’s work, and tools to manipulate the
provenance of results are key enabler [24].

10.5.4 Reuse

A VM alone offers no assistance in reusing or extending software for new
purposes. A preinstalled, preconfigured environment simplifies the direct
reproducibility of specific commands but is a relatively opaque represen-
tation of the underlying technique and implementation. As illustrated in
Figure 10.1, other techniques make different trade-offs in attempting to min-
imize effort for the experimenter and the consumers of their work, but we
find that reproducibility can and should be separable from the far more
general software engineering problem of reuse. In fact, demanding that
all experimental results also deliver effective reusability may be harmful:
researchers will tend to over-rely on existing, standard tools and services
if they know that new tools will be difficult to properly publish.

10.6 Nonchallenges

Not all concerns about the application of cloud computing for scientific
research are warranted in practice.

10.6.1 Security

Perceived security limitations of cloud-based systems are largely untenable.
At the physical layer, it is not controversial to claim that the security of
the data centers owned and managed by Microsoft, Amazon, and Google
is more secure than the server room in a university lab. At the virtual layer,

294 Implementing Reproducible Research

the system in the cloud is no less and no more vulnerable to attacks from the
external Internet than local systems: firewalls are still enabled. Other poten-
tial vulnerabilities, such as those arising from the hypervisor itself, have had
no significant impact on the uptake of cloud computing in the enterprise,
and it is difficult to argue that science data—mandated to be made public by
funding agencies—are substantially more sensitive.

For sensitive data (HIPAA, ITAR, etc.), the cloud may or may not be
appropriate for a given institution or application. Exemplar applications
demonstrating the feasibility of cloud computing for applications involving
sensitive data do exist, however,∗ and the federal government is a significant
customer.†

10.6.2 Licensing

Licensing issues may seem to complicate the use of public cloud infrastruc-
tures, but the problems appear to be transient. In some cases, licensing
issues may actually be simpler in the cloud due to the rigorous adminis-
trative control of the underlying infrastructure, aggregate buying power of
large cloud vendors, and the payment infrastructure already integrated. For
example, one can rent fully licensed VMs equipped with Mathematica,‡ and
MathWorks offers a variety of demonstrations of using MATLAB� with
AWS.§

10.6.3 Vendor Lock-In and Long-Term Preservation

Dependencies on commercial providers of goods and services are ubiquitous
in all areas of science, but dependencies on vendors of computing infras-
tructure receive significantly more scrutiny. We have encountered enough
instances of inaccessible data locked in university-owned resources that the
service level agreements (SLAs) and relative mature infrastructure offered
by cloud providers appear significantly more reliable for long-term access.
In addition to commercial providers, open-source and taxpayer-funded
efforts, sometimes modeled after AWS but designed expressly for research,
are also emerging [17,26,29]. Moreover, high-performance computing facil-
ities are increasingly interested in supplying cloud-like facilities, especially
virtualization and on-demand provisioning [37].

The long-term role of cloud computing in the sciences is still evolving,
but there appear to be immediate benefits for reproducibility in using and
sharing virtual environments for computational experiments. Informed by

∗ http://aws.amazon.com/about-aws/whats-new/2009/04/06/whitepaper-hipaa/.
† http://fedcloud.gov.
‡ http://www.wolfram.com/news/cloudcomputing.html.
§ http://aws.typepad.com/aws/2008/11/parallel-comput.html.

http://aws.amazon.com/about-aws/whats-new/2009/04/06/whitepaper-hipaa/
http://fedcloud.gov.
http://www.wolfram.com/news/cloudcomputing.html.
http://aws.typepad.com/aws/2008/11/parallel-comput.html.

Reproducibility, Virtual Appliances, and Cloud Computing 295

these benefits, the University of Washington eScience Institute emphasizes
cloud computing as a key strategy in enabling the next generation of rigorous
and reproducible computational science.

References

1. E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and
J. Taylor. Galaxy cloudman: Delivering cloud compute clusters. BMC
Bioinformatics, 11(Suppl. 12):S4, 2010.

2. G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang. Virtual
machine images as structured data: The mirage image library. In Pro-
ceedings of the 3rd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’11, USENIX Association, Berkeley, CA, 2011, pp. 22–22.

3. E. Andersen, S. P. Callahan, D. A. Koop, E. Santos, C. E. Scheidegger,
H. T. Vo, J. Freire, and C. T. Silva. Vistrails: Using provenance to stream-
line data exploration. In Poster Proceedings of the International Workshop on
Data Integration in the Life Sciences (DILS), Philadelphia, PA, 2007, p. 8.
Invited for oral presentation.

4. S. Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala, D. Riley,
C. Arze, J. White, O. White, and W. F. Fricke. Clovr: A virtual machine
for automated and portable sequence analysis from the desktop using
cloud computing. BMC Bioinformatics, 12(1):356, 2011.

5. M. Balazinska, B. Howe, and D. Suciu. Data markets in the cloud: An
opportunity for the database community. PVLDB, 4(12):1482–1485, 2011.

6. BioSQL. 2011, http://biosql.org (Accessed on May, 2013.)
7. C. T. Brown. Our approach to replication in computational science.

http://ivory.idyll.org/blog/replication-i.html (Accessed on May, 2013.)
8. C. T. Brown, A. Howe, Q. Zhang, A. B. Pyrkosz, and T. H. Brom.

Running the diginorm paper script pipeline. http://ged.msu.edu/
angus/diginorm-2012/pipeline-notes.html (Accessed on May, 2013.)

9. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman,
E. K. Costello, N. Fierer et al. QIIME allows analysis of high-throughput
community sequencing data. Nature Methods, 7(5):335–336, 2010.

10. A. Davison. Automated capture of experiment context for easier repro-
ducibility in computational research. Computing in Science and Engineer-
ing, 14(4):48–56, 2012.

11. J. T. Dudley and A. J. Butte. In silico research in the era of cloud
computing. Nature Biotechnology, 28(11):1181–1185, 2010.

12. F. J. Esteban, D. Daz, P. Hernndez, J. A. Caballero, G. Dorado, and
S. Glvez. Direct approaches to exploit many-core architecture in bioin-
formatics. Future Generation Computer System, 29(1):15–26, 2013.

http://biosql.org
http://ivory.idyll.org/blog/replication-i.html
http://ged.msu.edu/angus/diginorm-2012/pipeline-notes.html
http://ged.msu.edu/angus/diginorm-2012/pipeline-notes.html

296 Implementing Reproducible Research

13. M. Gavish and D. Donoho. Three dream applications of verifiable
computational results. Computing in Science and Engineering, 14(4):26–31,
2012.

14. J. Hamilton. Internet scale storage. Keynote presentation, SIGMOD 2011,
Athens, Greece, 2011.

15. B. Howe. Cloud economics: Visualizing AWS prices over time. http://
escience.washington.edu/blog/cloud-economics-visualizing-aws-
prices-over-time, 2010. (Accessed on May, 2013.)

16. The Kepler Project. http://kepler-project.org
17. J. Klinginsmith, M. Mahoui, and Y. M. Wu. Towards reproducible

escience in the cloud. In CloudCom2011, IEEE, Athens, Greece, December
2011.

18. K. Krampis, T. Booth, B. Chapman, B. Tiwari, M. Bicak, D. Field, and
K. E. Nelson. Cloud biolinux: Pre-configured and on-demand bioin-
formatics computing for the genomics community. BMC Bioinformatics,
13:42, 2012.

19. Large Hadron Collider (LHC). 2013, http://lhc.web.cern.ch (Accessed
on May, 2013.)

20. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank,
M. Jones, E. Lee et al. Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and Experience, 18(10):
1039–1065, 2006.

21. S. F. Mahmood and H. Rangwala. GPU-Euler: Sequence assembly using
GPGPU. In HPCC, Banff, Alberta, Canada, 2011, pp. 153–160.

22. M. McLennan and R. Kennell. Hubzero: A platform for dissemination
and collaboration in computational science and engineering. Computing
in Science and Engineering, 12(2):48–53, 2010.

23. L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska et al. The open provenance model core specification
(v1.1). Future Generation Computer Systems, 27(6):743–756, June 2011.

24. K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer. Provenance for the
cloud. In Proceedings of the 8th USENIX Conference on File and Stor-
age Technologies, FAST’10, USENIX Association, Berkeley, CA, 2010,
pp. 15–14.

25. NSF data management plan requirements. http://www.nsf.gov/eng/
general/dmp.jsp

26. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The eucalyptus open-source cloud-
computing system. In Cloud Computing and Its Applications (CCA ’08),
Chicago, IL, 2008.

27. R. Peng. Caching and distributing statistical analyses in R. Journal of
Statistical Software, 26(7):1–24, 2008.

28. R. D. Peng. Reproducible research and biostatistics. Biostatistics,
10(3):405–408, 2009.

http://escience.washington.edu/blog/cloud-economics-visualizing-aws-prices-over-time
http://escience.washington.edu/blog/cloud-economics-visualizing-aws-prices-over-time
http://escience.washington.edu/blog/cloud-economics-visualizing-aws-prices-over-time
http://kepler-project.org
http://lhc.web.cern.ch
http://www.nsf.gov/eng/general/dmp.jsp
http://www.nsf.gov/eng/general/dmp.jsp

Reproducibility, Virtual Appliances, and Cloud Computing 297

29. San Diego supercomputing center cloud storage services. https://cloud.
sdsc.edu

30. E. Schulte, D. Davison, T. Dye, and C. Dominik. A multi-language
computing environment for literate programming and reproducible
research. Journal of Statistical Software, 46(3):1–24, 2012.

31. B. Segal, P. Buncic, C. Aguado Sanchez, J. Blomer, D. Garcia Quintas,
A. Harutyunyan, P. Mato et al. LHC cloud computing with CernVM.
In Proceedings of the 13th International Workshop on Advanced Computing
and Analysis Techniques in Physics Research, Jaipur, India, February 22–27,
2010.

32. L. Stein. The case for cloud computing in genome informatics. Genome
Biology, 11(5):207, 2010.

33. M. Stonebraker. Scidb: An open-source dbms for scientific data. ERCIM
News, 2012(89), 2012.

34. P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta
compression techniques for efficient live migration of large virtual
machines. Virtual Execution Environments, 46:111–120, 2011.

35. The Taverna Project. 2009. http://taverna.sourceforge.net (Accessed on
May, 2013.)

36. The Triana Project. 2012. http://www.trianacode.org (Accessed on May,
2013.)

37. U.S. Department of Energy Office of Science Office of Advanced Scien-
tific Computing Research (ASCR), December 2011.

38. The VisTrails Project. 2013. http://www.vistrails.org (Accessed on May,
2013.)

39. D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read
assembly using de bruijn graphs. Genome Research, 18(5):821–829, 2008.

https://cloud.sdsc.edu
https://cloud.sdsc.edu
http://taverna.sourceforge.net
http://www.trianacode.org
http://www.vistrails.org

11
The Reproducibility Project: A Model of
Large-Scale Collaboration for Empirical
Research on Reproducibility

Open Science Collaboration∗

CONTENTS

11.1 Current Incentive Structures Discourage Replication 301
11.2 Publishing Incentives Combined with a Lack of Replication

Incentives May Reduce Reproducibility . 303
11.3 Reproducibility Project . 304

11.3.1 Project Design . 305
11.3.2 Maximizing Replication Quality . 306

11.4 What Can and Cannot Be Learned from the
Reproducibility Project . 308
11.4.1 Of the Studies Investigated, Which of Their Conclusions

Are True? . 309
11.4.2 Of All Published Studies, What Is the Rate of

True Findings?. 309
11.4.3 What Practices Lead to More Replicable Findings? 312
11.4.4 Summary . 313

11.5 Coordinating the Reproducibility Project . 313
11.5.1 Clear Articulation of the Project Goals and Approach 314
11.5.2 Modularity . 314
11.5.3 Low Barrier to Entry . 314
11.5.4 Leverage Available Skills . 315
11.5.5 Collaborative Tools and Documentation . 315
11.5.6 Light Leadership with Strong Communication 316
11.5.7 Open Practices . 317
11.5.8 Participation Incentives . 317

11.6 Conclusion. 318
Endnote . 318
References . 320

∗ See Endnote at the end of the chapter for a listing of authors.

299

300 Implementing Reproducible Research

The goal of science is to accumulate knowledge that answers questions such
as “How do things work?” and “Why do they work that way?” Scientists
use a variety of methodologies to describe, predict, and explain natural phe-
nomena. These methods are so diverse that it is difficult to define a unique
scientific method, although all scientific methodologies share the assump-
tion of reproducibility (Hempel and Oppenheim, 1948; Kuhn, 1962; Popper,
1934/1992; Salmon, 1989).

In the abstract, reproducibility refers to the fact that scientific findings are
not singular events or historical facts. In concrete terms, reproducibility—
and the related terms repeatability and replicability—refers to whether
research findings recur. “Research findings” can be understood narrowly or
broadly. Most narrowly, reproducibility is the repetition of a simulation or
data analysis of existing data by reexecuting a program (Belding, 2000). More
broadly, reproducibility refers to direct replication, an attempt to replicate
the original observation using the same methods of a previous investigation
but collecting unique observations. Direct replication provides information
about the reliability of the original results across samples, settings, mea-
sures, occasions, or instrumentation. Most broadly, reproducibility refers to
conceptual replication, an attempt to validate the interpretation of the original
observation by manipulating or measuring the same conceptual variables
using different techniques. Conceptual replication provides evidence about
the validity of a hypothesized theoretical relationship. As such, direct repli-
cation provides evidence that a finding can be obtained, and conceptual
replication provides evidence about what it means (Schmidt, 2009).

These features of reproducibility are nested. The likelihood of direct repli-
cation is constrained by whether the original analysis or simulation can be
repeated. Likewise, the likelihood that a finding is valid is constrained by
whether it is reliable (Campbell et al., 1963). All of these components of
reproducibility are vitally important for accumulating knowledge in science,
with each directly answering its own specific questions about the predic-
tive value of the observation. The focus of the present chapter is on direct
replication.

An important contribution of direct replication is to identify false-
positives. False-positives are observed effects that were inferred to have
occurred because of features of the research design but actually occurred
by chance. Scientific knowledge is often gained by drawing inferences about
a population based on data collected from a sample of individuals to make
inferences about the population as a whole. Since this represents an exam-
ple of induction, the knowledge gained in this way is always uncertain.
The best a researcher can do is estimate the likelihood that the research
findings are not a product of ordinary random sampling variability and
provide a probabilistic measure of the confidence they have in the result.
Independently reproducing the results reduces the probability that the orig-
inal finding occurred by chance alone and, therefore, increases confidence in
the inference. In contrast, false-positive findings are unlikely to be replicated.

The Reproducibility Project 301

Given the benefits of direct replication to knowledge building, one might
expect that evidence of such reproducibility would be published frequently.
Surprisingly, this is not the case. Publishing replications of research proce-
dures is rare (Amir and Sharon, 1990; Makel et al., 2012; Morrell and Lucas,
2012; Open Science Collaboration, 2012). One recent review of psychologi-
cal science estimated that only 0.15% of published studies were attempts to
directly replicate a previous finding (Makel et al., 2012). As a consequence,
there is a proliferation of scientific findings, but little systematic effort to ver-
ify their validity, possibly leading to a proliferation of irreproducible results
(Begley and Ellis, 2012; Prinz et al., 2011). Despite the low occurrence of
published replication studies, there is evidence that scientists believe in the
value of replication and support its inclusion as part of the public record. For
example, a survey of almost 1300 psychologists found support for reserving
at least 20% of journal space to direct replications (Fuchs et al., 2012).

In this chapter, we first briefly review why replications are highly valued
but rarely published. Then we describe a collaborative effort—the Repro-
ducibility Project—to estimate the rate and predictors of reproducibility in
psychological science. We emphasize that, while a goal of direct replication
is to identify false-positive results, it does not do so unambiguously. Direct
replication always includes differences in sample, setting, or materials that
could be theoretically consequential boundary conditions for obtaining the
original result. Finally, we detail how we are conducting this project as a
large-scale, distributed, open collaboration. A description of the procedures
and challenges may assist and inspire other teams to conduct similar projects
in other areas of science.

11.1 Current Incentive Structures Discourage Replication

The ultimate purpose of science is the accumulation of knowledge. The
most exciting science takes place on the periphery of knowledge, where
researchers suggest novel ideas, consider new possibilities, and delve into
the unknown. As a consequence, innovation is a highly prized scientific
contribution, and the generation of new theories, new methods, and new
evidence is highly rewarded. Direct replication, in contrast, does not attempt
to break new ground; it instead assesses whether previous innovations are
accurate. As a result, there are currently few incentives for conducting and
publishing direct replications of previously published research (Nosek et al.,
2012).

Current journal publication practices discourage replications (Collins,
1985; Mahoney, 1985; Schmidt, 2009). Journal editors hope to maxi-
mize the impact of their journals and are inclined to encourage contri-
butions that are associated with the greatest prestige. As a consequence,

302 Implementing Reproducible Research

all journals encourage innovative research, and few actively solicit repli-
cations, whether successful or unsuccessful (Neuliep and Crandall, 1990).
An obvious response to these publication practices is to create journals
devoted to publishing replications or null results. Of multiple attempts to
start such a journal over the last 30 years, success is fleeting. Several ver-
sions exist today (e.g., http://www.jasnh.com/; http://www.jnr-eeb.org/;
http://www.journalofnullresults.com/), but challenges remain: journals
that publish what no other journal will publish ensures their low status
(Nosek et al., 2012). It is not in a scientist’s interest to publish in low-status
journals.

Because prestigious journals do not provide incentives to publish repli-
cations, researchers do not have a strong incentive to conduct them
(Hartshorne and Schachner, 2012a; Koole and Lakens, 2012). Scientists make
reasonable assessments of how they should spend their time. Publication
is the central means of career advancement for scientists. Given the choice
between replication and pursuing novelty, career researchers can easily con-
clude that their time should be spent pursuing novel research. This may be
especially true for researchers that do not yet have academic tenure.

Complicating matters is the presence of additional forces rewarding pos-
itive over negative results. A common belief is that it is easier to obtain a
negative result erroneously than it is to obtain a positive result erroneously.
This is true when using statistical techniques and sample sizes designed to
detect differences (Nickerson, 2000) and when designs are underpowered
(Cohen, 1962; Lipsey and Wilson, 1993; Sedlmeier and Gigerenzer, 1989).
Although both of these features are common, researchers can design studies
so that they will be informative no matter the outcome (Greenwald, 1975).
There are many reasons why a null result may be observed erroneously such
as imprecise measurement, poor experimental design, or other forms of ran-
dom error (Greenwald, 1975; Nickerson, 2000). There are also many reasons
why a positive result may be observed erroneously such as introducing arti-
facts into the research design (Rosenthal and Rosnow, 1960), experimenter
bias, demand characteristics, systematic apparatus malfunction, or other
forms of systematic error (Greenwald, 1975). Further, false-positives can be
inflated through selective reporting and adventurous data analytic strate-
gies (Simmons et al., 2011). There is presently little basis other than power of
research designs to systematically prefer positive results compared to neg-
ative results. Decisions about whether to take a positive or negative result
seriously are based on evaluation of the research design, not the research
outcome.

Layered on top of legitimate epistemological considerations are
cultural forces that favor significant (Fanelli, 2010, 2012; Greenwald, 1975;
Sterling, 1959) and consistent (Giner-Sorolla, 2012) results over inconsistent
or ambiguous results. These incentives encourage researchers to obtain and
publish positive, significant results and to suppress or ignore inconsistencies
that disrupt the aesthetic appeal of the findings. As examples, researchers

The Reproducibility Project 303

might decide to stop data collection if preliminary analyses suggest that
the findings will be unlikely to reach conventional significance, examine
multiple variables or conditions and report only the subset that “worked,”
accept those studies that confirm the hypothesis as effective designs, and
dismiss those that do not confirm the hypothesis as pilots or methodologi-
cally flawed because they fail to support the hypothesis (LeBel and Peters,
2011). These practices, and others, can inflate the likelihood that the results
are false-positives (Giner-Sorolla, 2012; Ioannidis, 2005; John et al., 2012;
Nosek et al., 2012; Schimmack, 2012; Simmons et al., 2011). This is not to say
that researchers engage in these practices with deliberate intent to deceive
or manufacture false effects. Rather, these are natural consequences of moti-
vated reasoning (Kunda, 1990). When a particular outcome is better for the
self, then decision making can be influenced by factors that maximize the
likelihood of that outcome. Researchers may tend to carry out novel sci-
entific studies with a confirmatory bias such that they—without conscious
intent—guide themselves to find support for their hypotheses (Bauer, 1992;
Nickerson, 1998).

11.2 Publishing Incentives Combined with a Lack of Replication
Incentives May Reduce Reproducibility

The strong incentives to publish novel, positive, and clean results may lead
to problems for knowledge accumulation. For one, the presence of these
incentives leads to a larger proportion of false-positives, which produces a
misleading literature and makes it more likely that future research will be
based on claims that are actually false. Any individual result is ambiguous;
but because the truth value of a claim is based on the aggregate of individ-
ual observations, ignoring particular results undermines the accuracy of a
field’s collective knowledge. This occurs both by inflating the true size of the
effect and by concealing potential limitations to the effect’s generalizability.
Knowing the rate of false-positives in the published literature would clarify
the magnitude of the problem and indicate whether significant intervention
is needed. However, there is very little empirical evidence on the rate of
false-positives. Simulations, surveys, and reasoned arguments provide some
evidence that the false-positive rate could be very high (Greenwald, 1975;
Hartshorne and Schachner, 2012a; Ioannidis, 2005). For example, asking
psychologists about the proportion of research findings that would be repro-
duced from their journals in a direct replication yielded an estimate of 53%
(Fuchs et al., 2012). The two known empirical estimates of nonrandom sam-
ples of studies in biomedicine provide disturbing reproducibility estimates
of 25% or less (Begley and Ellis, 2012; Prinz et al., 2011). There are few other
existing attempts to estimate the rate of false-positives in any field of science.

304 Implementing Reproducible Research

The theme of this chapter is reproducibility, and the focus of this section
is on the primary concern of irreproducibility: that the original results
are false. Note, however, that the reproducibility rate is not necessarily
equivalent to the false-positive rate. The maximum reproducibility rate is
1 minus the rate of false-positives tolerated by a field. The ubiquitous alpha
level of 0.05 implies a false-positive tolerance of 5%, meaning a reproducibil-
ity rate of 95%. However, in practice, there are many reasons why a true
effect may fail to replicate. A low-powered replication, one with an insuffi-
cient number of data points to observe a difference between conditions, can
fail for mathematical rather than empirical reasons.

The reproducibility rate can be lowered further for other reasons. Impre-
cise reporting practices can inadvertently omit crucial details necessary
to make research designs reproducible. Description of the methodology—
a core feature of scientific practice—may become more illustrative than
substantive. This could be exacerbated by editorial trends encouraging short-
report formats (Ledgerwood and Sherman, 2012). Even when the chance to
offer additional online material about methods occurs, it may not be taken.
For example, a Google Scholar search on articles published in Psychologi-
cal Science—a short-report format journal—for the year 2011 revealed that
only 16.8% of articles included the phrase “supplemental material” denoting
additional material available online, even without considering whether or
not that material gave a full accounting of methods. As a consequence, when
replication does occur, the replicating researchers may find reproduction of
the original procedure difficult because key elements of the methodology
were not published. This makes it difficult both to clarify the conditions
under which an effect can be observed and to accumulate knowledge.

In sum, both false-positives and weak methodological specification are
challenges for reproducibility. The current system of incentives in science
does not reward researchers for conducting or reporting replications. As a
consequence, there is little opportunity to estimate the reproducibility rate,
to filter out those initial effects that were false-positives, and to improve
specification of those initial effects that are true but specified inadequately.
The Reproducibility Project examines these issues by generating an empirical
estimate of reproducibility and identifying the predictors of reproducibility.

11.3 Reproducibility Project

The Reproducibility Project began in November 2011 with the goal of empir-
ically estimating the reproducibility of psychological science. The concept
was simple: Take a sample of findings from the published literature in
psychology and see how many of them could be replicated. The implemen-
tation, however, is more difficult than the conception. Replicating a large

The Reproducibility Project 305

number of findings to produce an estimate of reproducibility is a mammoth
undertaking, requiring much time and diverse skills. Given the incentive
structures for publishing, only a person who does not mind stifling their own
career success would take on such an effort on their own even if they valued
the goal. Our solution was to minimize the costs for any one researcher by
making it a massively collaborative project.

The Reproducibility Project is an open collaboration to which anyone can
contribute according to their skills and available resources. Project tasks are
distributed among the research team, minimizing the demand on each indi-
vidual contributor but still allowing for a large-scale research design. As of
this writing (March 2013), 118 researchers have joined the project, a com-
plete research protocol has been established, and more than 50 replication
studies are underway or completed. The project, though incomplete, has
already provided important lessons about conducting such large-scale, dis-
tributed projects. The remainder of this chapter describes the design of the
project, what can be learned from the results, and the lessons for conducting
a large-scale collaboration that could be translated to similar efforts in other
disciplines.

11.3.1 Project Design

To estimate the rate and predictors of reproducibility in the psycholog-
ical sciences, we selected a quasi-random sample of studies from three
prominent psychological journals (Journal of Personality and Social Psychology;
Journal of Experimental Psychology: Learning, Memory, and Cognition; and Psy-
chological Science) from the 2008 publication year—a year far enough in the
past that there is evidence for variation in impact of the studies and vari-
ability in independent replication attempts and not so far in the past that
original materials would not be available. Studies were selected for repli-
cation as follows: Beginning with the first issue of 2008, the first 30 articles
that appeared in each journal made up the initial sample. As project mem-
bers started attempting to replicate studies, additional articles were added
to the eligible pool in groups of 10. This strategy minimized selection biases
by having only a small group of articles available for selection at any one
time while maintaining a sufficient number of articles so that interested
replication teams could find tasks that match their resources and expertise.

Each article in the sampling frame was reviewed with a standard coding
procedure∗. The coding procedure documented (1) the essential descrip-
tors of the article such as authors, topic, and main idea; (2) the key finding
from one of the studies and key statistics associated with that finding such

∗ Linked resources are also available via the Reproducibility Project’s page on the Open
Science Framework website: http://openscienceframework.org/project/VMRGu/wiki/
home.

http://openscienceframework.org/project/VMRGu/wiki/home.
http://openscienceframework.org/project/VMRGu/wiki/home.

306 Implementing Reproducible Research

as sample size and effect size; (3) features of the design requiring special-
ized samples, procedures, or instrumentation; and (4) any other unusual or
notable features of the study. This coding provided the basis for researchers
to rapidly review and identify a study that they could potentially repli-
cate. Also, coding all articles from the sampling frame will allow systematic
comparison of the articles replicated with those that were available but not
replicated.

Most articles contain more than one study. Since the Reproducibility
Project is concerned with the state of replicability in general, a single key
finding was sampled from a single study. By default, the last study reported
in a given article was the target of replication. If a replication of that study
was not feasible, then the second to the last study was considered. If no
studies were feasible to replicate, then the article was excluded from the
replication sample. A study was considered feasible for replication if its
primary result could be evaluated with a single inference test and if a repli-
cation team on the project had sufficient access to the study’s population
of interest, materials, procedure, and expertise. Although every effort is
made to make the sample representative, study designs that are difficult to
reproduce for practical reasons are less likely to be included. In psychol-
ogy, for example, studies with children and clinical samples tend to be more
resource intensive than others. Likewise, it is infeasible to replicate some
study designs with large samples, many measurements over time, a focus
on one-time historical events, or expensive instrumentation. It is not obvi-
ous whether studies with significant resource challenges would have more
or less reproducible findings as compared to those that have fewer resource
challenges.

11.3.2 Maximizing Replication Quality

A central concern for the Reproducibility Project was the quality of replica-
tion attempts. Sloppy, nonidentical, or underpowered replications would
be unlikely to replicate the original finding, even if that original finding
was true. While these are potential predictors of reproducibility, they are
not particularly interesting ones. As a consequence, the study protocol
involved many features to maximize quality of the replications. As a first
step, each replication attempt was conducted with a sufficient number of
observations so that replications of true findings would be likely. For each
eligible study, a power analysis was performed on the effect of interest from
the original study. The power analysis determined the samples necessary
for 80%, 90%, and 95% power to detect a statistically significant effect the
same size as the prior result using the same analytic procedures. Replica-
tion teams planned their sample size aiming for the highest feasible power.
All studies were designed to achieve at least 80% power, and about three-
fourths of the studies conducted to date have an anticipated power of 90% or
higher.

The Reproducibility Project 307

In another step to maximize replication quality, replication teams con-
tacted the original authors of each study to request copies of project materials
and clarify any important procedures that did not appear in the original
report (http://bit.ly/rpemailauthors). As of this writing, authors of every
original article have shared their materials to assist in the replication efforts,
with one exception. In the exceptional case, the original authors declined
to share all materials that they had created and declined to disclose the
source of materials that they did not own so that the replication team could
seek permission for their use. Even so, a replication attempt of that study is
underway with the replication team using its own judgment on how to best
implement the study.

Next, for all studies, the replication team developed a research methodol-
ogy that reproduced the original design as faithfully as possible. Methodolo-
gies were written following a standard template and included measurement
instruments, a detailed project procedure, and a data analysis plan. Prior
to finalizing the procedure, one or two Reproducibility Project contribu-
tors who were not a part of the replication team reviewed this proposed
methodology. The methodology was also sent to the original authors for
their review. If the original authors raised concerns about the design qual-
ity, the replication teams attempted to address them. If the design concerns
could not be addressed, those concerns were documented as a priori con-
cerns raised by the original authors. The evaluations of the original authors
were documented as endorsing the methods of the replication, raising con-
cerns based on informed judgment or speculation (which are not part of
the published record as constraints on the design), raising concerns that are
based on published empirical evidence of the constraints on the effect, or
no response. This review process minimized design deficiencies in advance
of conducting the study and also obtained explicit ratings of the design
quality in advance. These steps should make it easier to detect post hoc
rationalization if the replication results violate researchers’ expectations.

Some studies that were originally conducted in a laboratory were
amenable to replication via the Internet. Using the web is an excellent
method for recruiting additional power for human research, but it could
also alter the likelihood of observing the original effects. Thus, we label
such studies “secondary replications.” These studies remained eligible to be
claimed for “primary replications”—doing the study in the laboratory fol-
lowing the original demonstration. As of this writing, there were more than
10 secondary web replications underway in addition to the more than 50 pri-
mary replications. This provides an opportunity to evaluate systematically
whether the change in setting affects reproducibility.

Upon finalization, the replication methodology was registered and added
to an online repository. At this point, data collection could start. After
data collection, the replication teams conducted confirmatory analyses fol-
lowing the registered methodology. The results and interpretation were
documented and submitted to a team member (who was not part of the

308 Implementing Reproducible Research

replication team) for review. In most cases, an additional attempt was made
to contact the authors of the original study in order to share the results of
the replication attempt and to consult with them as to whether any part
of the data collection or data analysis process may have deviated from that of
the original study. Finally, the results of the replication attempt were written
into a final manuscript, which was logged in the central project repository.
As additional replication attempts are completed, the repository is updated
and a more complete picture of the reproducibility of the sample emerges
(http://openscienceframework.org/project/EZcUj/).

The project is ongoing. In principle, there need not be an end date. Just
as ordinary science accumulates evidence about the truth value of claims
continuously, the Reproducibility Project could accumulate evidence about
the reproducibility, and ultimately truth value, of its particular sample of
claims continuously. Also, new resources provide opportunities to improve
and enlarge the sample of replication studies. For example, in February 2013,
the project received a grant of more than $200,000 to support replication
projects. The project team formed a committee and grant application process
to encourage more researchers to join the project and strengthen the study.
Eventually, the collaborative team will establish a closing date for replication
projects to be included in an initial aggregate report. That aggregate report
will provide an estimate of the reproducibility rate of psychological science
and examine predictors of reproducibility such as the publishing journal, the
precision of the original estimate, and the existence of other replications in
the published literature.

11.4 What Can and Cannot Be Learned from the
Reproducibility Project

The Reproducibility Project will produce an estimate of the reproducibil-
ity rate of psychological science. In fact, it will produce multiple estimates,
as there are multiple ways to conceive of evaluating replication (Open Sci-
ence Collaboration, 2012). For example, a standard frequentist solution is to
test whether the effect reaches statistical significance with the same ordinal
pattern of means as the original study. An alternative approach is to eval-
uate whether the meta-analytic combination of the original observation and
replication produces a significant effect. A third possibility is to test whether
the replication effect is significantly different from the original effect size
estimate. Each of these will reveal distinct reproducibility rates, and each
offers a distinct interpretation. Notably, none of the possible interpretations
will answer the question that is ultimately of interest: At what rate are the
conclusions of published research true?

The Reproducibility Project 309

11.4.1 Of the Studies Investigated, Which of Their Conclusions Are True?

The relationship between the validity of a study’s results and the validity of
the conclusions derived from those results is, at best, indirect. Replication
only addresses the validity of the results. If the original authors used flawed
inferential statistics, then replicating the result may say nothing of the accu-
racy of the conclusion (e.g., Jaeger, 2008). Similarly, if the study used a
confounded manipulation, and that confound explains the reported results
rather than the original interpretation, then the interpretation is incorrect
regardless of whether the result is reproducible. More generally, replica-
tion cannot help with misinterpretation Piaget’s (1952, 1954) demonstrations
of object permanence and other developmental phenomena are among the
most replicable findings in psychology. Simultaneously, many of his inter-
pretations of these results appear to have been incorrect (e.g., Baillargeon
et al., 1985).

Reinterpretation of old results is the ordinary process of scientific
progress. That progress is facilitated by having valid results to reinterpret.
Piaget’s conclusions may have been overthrown, but his empirical results
still provide the foundation for much of developmental psychology. The
experimental paradigms he designed were so fruitful, in part, because the
results they generate are so easily replicated. In this sense, reproducibility is
essential for theoretical generativity. The Reproducibility Project offers the
same contribution as other replications toward increasing confidence in the
truth of conclusions. Findings that replicate in the Reproducibility Project are
ones that are more likely to replicate in the future. The aggregate results will
provide greater confidence in the validity of the findings, whether or not the
conclusions are correct.

11.4.2 Of All Published Studies, What Is the Rate of True Findings?

It is of great importance to know the rate of valid findings in a given field.
Even under the best of circumstances, at least some findings will be false
due to random chance or simple human error. While there is a concern that
science may be far from the ideal (e.g., Ioannidis et al., 2001), there are little
systematic data in any field and hardly any in psychology. There are at least
two barriers to obtaining empirical data on the rate of true findings. The first
is that accumulating such data across a large sample of findings requires a
range of expertise and a supply of labor that is difficult to assemble. In that
respect, one of the contributions of the Reproducibility Project is to show
how this can be accomplished. The second is that, as discussed earlier, failure
to replicate a result is not synonymous with the result being a false-positive.

The Reproducibility Project attempts to minimize the other factors that
are knowable and undesirable (e.g., low power and poor replication design)
and to estimate the influence of others. There are three possible interpreta-
tions of a failure to replicate the results of an original study:

310 Implementing Reproducible Research

Interpretation 1: The original effect was false. The original result could
have occurred by chance (e.g., setting alpha = 0.05 anticipates a 5%
false-positive rate), by fraud, or unintentionally by exploiting flexible
research practices in design, analysis, or reporting (Greenwald, 1975;
John et al., 2012; Simmons et al., 2011).

Interpretation 2: The replication was not sufficiently powered to detect the true
effect (i.e., the replication is false). Just as positive results occur by chance
when there is no result to detect (alpha = 0.05), negative results occur
by chance when there is a result to detect (beta or power). Most
studies are very underpowered (Lipsey and Wilson, 1993; Sedlmeier
and Gigerenzer, 1989; see Cohen, 1962, 1992). Adequate power is
a necessary feature of fair replication attempts. The Reproducibil-
ity Project sets 80% as the baseline standard power for replication
attempts (Cohen, 1988) and encourages higher levels of power when-
ever possible. The actual power of our replications can be used as a
predictor of reproducibility in the analytic models and as a way to
estimate the false-negative rate among replications. For example, an
average power of 85% across replications would lead us to expect a
false-negative rate of 15% on chance alone.

Interpretation 3: The replication methodology differed from the original
methodology on unconsidered features that were critical for obtaining the
true effect. There is no such thing as an exact replication. A replication
necessarily differs somehow, or else it would not be a replication.
For example, in behavioral research, even if the same participants
are used, their state and experience differ. Likewise, even if the
same location, procedures, and apparatus are used, the history and
social context have changed. There are infinite dimensions of sample,
setting, procedure, materials, and instrumentation that could be con-
ditions for obtaining an effect. Keeping with the principle of Occam’s
razor, these variables are assumed irrelevant until proven otherwise.
Indeed, if an effect is interpreted as existing only for the original cir-
cumstances, with no explanatory value outside of that lone occasion,
its usefulness for future research and application is severely limited.
Consequently, authors almost never exhaustively report procedural
details when writing about effects.

Part of standard research practice is to understand the conditions necessary
to elicit an effect. Does it depend on the color of the walls? The hardness of
the pencils used? The characteristics of the sample? The context of measure-
ment? How the materials are administered? There is an infinite number of
possible conditions, and a smaller number of plausible conditions, that could
be necessary for obtaining an effect.

A replication attempt will necessarily differ in many ways from the orig-
inal demonstration. The key question is whether a failure to replicate could

The Reproducibility Project 311

plausibly be attributed to any of these differences. The answer may rest upon
what aspect of the original effect each difference violates:

1. Published constraints on the effect: Does the original interpretation
of the effect suggest necessary conditions that are not part of the
replication attempt? If the original interpretation is that the effect
will only occur for women, and the replication attempt includes
men, then it is not a fair replication. The existing interpretation
(and perhaps empirical evidence) already imposes that constraint.
Replication is not expected. Replication teams avoid violating these
constraints as much as possible in the Reproducibility Project. Offer-
ing original authors an opportunity to review the design provides
another opportunity to identify and address these constraints. When
the constraints cannot be addressed completely, they are docu-
mented as potential predictors of reproducibility.

2. Constraints on the effect, identified a priori: An infinitely precise
description requires infinite journal space, and thus every method
section is necessarily an abridged summary. Thus, there may be
design choices that are known (to the original experimenters, if
to no one else) to be crucial to obtaining the reported results, but
not described in print. By contacting the original authors prior
to conducting the replication attempt, the Reproducibility Project
minimizes this flaw in the published record.

3. Constraints on the effect, identified post hoc: Constraints identified
beforehand are distinct from the reasoning or speculation that
occurs after a failed replication attempt. There are many differences
between any replication and its original, and subsequent investi-
gation may determine that one of these differences, in fact, was
crucial to obtaining the original results. That is, the original effect
is not reproducible as originally interpreted but is reproducible
with the newly discovered constraints. The Reproducibility Project
only initiates this process: For studies that do not replicate, inter-
ested researchers may search for potential reasons why. This might
include additional studies that manipulate the factors identified as
possible causes of the replication failure. Such research will produce
a better understanding of the phenomenon.

4. Errors in implementation or analysis for the original study, replication
study, or both: Errors happen. What researchers think and report
that they did might not be what they actually did. Discrepancies
in results can occur because of mistakes. There is no obvious differ-
ence between “original” or “replication” studies in the likelihood of
errors occurring. The Reproducibility Project cannot control errors
in original studies, but it can make every effort to minimize their
occurrence in the replication studies. For example, it is conceivable

312 Implementing Reproducible Research

that the Reproducibility Project will fail to replicate studies because
some team members are incompetent in the design and execution
of the replication projects. While this possibility cannot be ruled
out entirely, procedures including carefully detailed experimental
protocols minimize its impact and maximize the likelihood of iden-
tifying whether competence is playing a role. Moreover, features of
the replication team (e.g., relevant experience, degrees, publishing
record) can be used as predictors of reproducibility.

The key lesson from this section is that failure to replicate does not unam-
biguously suggest that the original effect is false. The Reproducibility Project
examines all of the possibilities described earlier in its evaluation of repro-
ducibility. Some can be addressed effectively with design. For example, all
studies will have at least 80% power to detect the original effect, and the
power of the test will be evaluated as a predictor for likelihood of repli-
cation. Also, differences between original and replication methods will be
minimized by obtaining original materials whenever possible and by collab-
orating with original authors to identify and resolve all possible published
or a priori identifiable design constraints. Finally, original authors and other
members of the collaborative team review and evaluate the methodology
and analysis to minimize the likelihood of errors in the replications, and
the designs, materials, and data are made available publicly in order to
improve the likelihood of identifying errors. Notwithstanding the ambigu-
ity surrounding the interpretation of a replication failure, the key value of
replication remains: as data accumulate, the precision of the effect estimate
increases.

11.4.3 What Practices Lead to More Replicable Findings?

Perhaps the most promising possible contribution of the Reproducibility
Project will be to provide empirical evidence of the correlates of repro-
ducibility or to make a more informed assessment of the reproducibility
of existing results. Researchers have no shortage of hypotheses as to what
research practices would lead to higher replicability rates (e.g., LeBel and
Paunonen, 2011; LeBel and Peters, 2011; Nosek and Bar-Anan, 2012; Nosek
et al., 2012; Vul et al., 2009). Without systematic data, there is no way to test
these hypotheses (for discussion, see Hartshorne and Schachner, 2012a,b).
Note that this is a correlational study, so it is possible that some third fac-
tor, such as the authors’ conscientiousness, is the joint cause of both the
adoption of a particular research practice and high replicability. However,
the lack of a correlation between certain practices and higher replicability
rates is—assuming sufficient statistical power and variability—more directly
interpretable, suggesting that researchers should look elsewhere for methods
that will meaningfully increase the validity of published findings.

The Reproducibility Project 313

11.4.4 Summary

Like any research effort, the most important factor for success of the Repro-
ducibility Project is the quality and execution of its design. The quality of the
design, execution of replications, and ultimate interpretations of the find-
ings will define the extent to which the Reproducibility Project can provide
information about the reproducibility of psychological science. As with all
research, that responsibility rests with the team conducting the research.
The last section of this chapter summarizes the strategies we are pursuing to
conduct an open, large-scale, collaborative project with the highest-quality
standards that we can achieve (Open Science Collaboration, 2012).

11.5 Coordinating the Reproducibility Project

The success of the Reproducibility Project hinges on effective collaboration
among a large number of contributors. In business and science, large-scale
efforts are often necessary to provide important contributions. Sending an
astronaut to the moon, creating a feature film, and sequencing the human
genome are testaments to the power of collaboration and social coordina-
tion. However, most large-scale projects are highly resourced with money,
staff, and administration in order to assure success. Further, most large-scale
efforts are backed by leadership that has direct control over the contrib-
utors through employment or other strong incentives, giving contributors
compelling reasons to do their part for the project.

The Reproducibility Project differs from the modal large-scale project
because it started light on resources and light on leadership. Most con-
tributors are donating their time and drawing on whatever resources they
have available to conduct replications. Project leaders cannot require action
because the contributors are volunteers. How can such a project succeed?
Why would any individual contributor choose to participate?

The Reproducibility Project team draws its project-design principles from
open-source software communities that developed important software such
as the Linux operating system and the Firefox web browser. These communi-
ties achieved remarkable success under similar conditions. In this section, we
describe the strategies used for coordinating the Reproducibility Project so
that other groups can draw on the project design to pursue similar scientific
projects. An insightful treatment of these project principles and strategies is
provided in Michael Nielsen’s (2011) book Reinventing Discovery.

The challenges to solve are the following: (1) recruiting contributor, (2)
defining tasks so that contributors know what they need to do and can do
it, (3) ensuring high-quality contributions, (4) coordinating effectively so
that contributions can be aggregated, and (5) getting contributors to follow

314 Implementing Reproducible Research

through on their commitments. The next sections describe the variety of
strategies the project uses to address these challenges.

11.5.1 Clear Articulation of the Project Goals and Approach

Defining project goals is so obvious that it is easy to overlook. Prospec-
tive contributors must know what the project will accomplish (and how) to
decide whether they want to contribute. The Reproducibility Project’s pri-
mary goal is to estimate the reproducibility of psychological science. It aims
to accomplish that goal by conducting replications of a sample of published
studies from major journals in psychology. The extent to which prospective
contributors find the goal and approach compelling will influence the like-
lihood that they volunteer their time and resources. Further, once the team
is assembled, a clear statement of purpose and approach bonds the team
and facilitates coordination. This goal and approach is included in every
communication about the Reproducibility Project.

11.5.2 Modularity

Even though potential contributors may find the project goal compelling,
they recognize that they could never conduct so many replications by them-
selves. The Reproducibility Project’s goal of replicating dozens of studies
is appealing because it has the potential to impact the field, but actually
replicating those many studies is daunting. One solution is crowdsourc-
ing (Estellés-Arolas and González-Ladrón-de-Guevara, 2012), in which work
is decomposed into smaller, modular tasks that are distributed across
volunteers.

Modularity is the extent to which a project can be separated into indepen-
dent components and then recombined later. Also, if contributors are highly
dependent on each other, then the time delay is multiplicative: delay by one
affects all. The Reproducibility Project is highly modularized. Individuals
or small teams conduct replications independently. Some replications are
completed very rapidly, others over a longer time scale. Barriers to progress
are isolated to the competing schedules and responsibilities of the small
replication teams.

Besides accelerating progress, modularizing is attractive to volunteer
contributors because they have complete control over the extent and nature
of their participation. Modularization is useful, but it will provide limited
value if there are only a few contributors. One way for crowdsourcing to
overcome this problem is to have a low barrier to entry.

11.5.3 Low Barrier to Entry

Breaking up a large project into pieces reduces the amount of contribu-
tion required by any single contributor. For volunteers with busy lives,

The Reproducibility Project 315

this is vital. The Reproducibility Project encourages small contributions so
that contributors can volunteer their services incrementally without incur-
ring inordinate costs to their other professional responsibilities or allowing
unfulfilled commitments to impede workflow.

Even with effective modularization, prospective contributors may have
difficulty in estimating the workload required when making the initial com-
mitment to contribute. Uncertainty itself is a formidable barrier to entry.
The Reproducibility Project provides specific documentation to reduce this
barrier. In particular, prospective contributors can review studies available
for replication in a summary spreadsheet, consult with a team member
whose role is to connect available studies to new contributors with appro-
priate skills and resources, and review the replication protocol that provides
instruction for every stage of the process. Effective supporting material and
personnel simplify the process of joining the project.

11.5.4 Leverage Available Skills

Collaborations can be particularly effective when they incorporate
researchers with distinct skill sets. A problem that is very difficult for a
nonexpert may be trivial for an expert. Further, there are many poten-
tial contributors that do not have resources or skills to do the central task:
conducting a replication. In any large-scale project, there are additional
administrative, documentation, or consulting tasks that can be defined and
modularized. The Reproducibility Project has administrative contributors
with specified roles and contributors who assist by documenting and coding
the studies available for replication. There are also consultants for common
issues such as data analysis.

11.5.5 Collaborative Tools and Documentation

As a distributed project, the Reproducibility Project coordination must
embrace asynchronous schedules. Communication among the entire
team occurs via an e-mail LISTSERV (https://groups.google.com/group/
openscienceframework?hl=en) that maintains a record of all communica-
tions. New ideas, procedural issues, project plans, and task assignments are
discussed on the LISTSERV. Decisions resulting from team discussion are
codified in project documentation that is managed with Google Docs and
the Open Science Framework (OSF; http://openscienceframework.org/).

Print documentation is extensive, as it is the primary means of provid-
ing individual contributors with knowledge of (1) what is happening in the
project, (2) their role in the project, and (3) what they must do to fulfill
their role. The project documentation defines the overall objective of the
project, tables of subgoals and actions necessary to achieve them, proto-
cols for conducting a replication project, and templates for communicating
results. This workflow is designed to maximize the quality of the replication,

https://groups.google.com/group/openscienceframework?hl=en
https://groups.google.com/group/openscienceframework?hl=en

316 Implementing Reproducible Research

make explicit the standards and expectations of each replication, and mini-
mize the workload for the individual contributors. With a full specification
of the workflow, templates for report writing, and material support for cor-
respondence with original study authors, the replicating teams can smoothly
implement the project’s standard procedures and focus their energies on
the unique elements of the replication study design and data collection to
conduct the highest-quality replication possible.

Unlike modular replications, administrative tasks require frequent and
timely upkeep and can impact the workflow of other team members. Thus,
although initially run by volunteers, dedicated administrative support was
needed as the project increased in scale. Together, documentation and
dedicated administrators provide continuity in the projects’ objectives and
methods across time and individual replication teams.

The highly defined workflow also makes it easy to track progress of one’s
own replication—and those of others. Each stage of the project has explicitly
defined milestones, described in the project’s researcher guide, and team
members denote on the project tracksheet when each stage is completed. At
a glance, viewers of the tracksheet can see the status of all projects. Besides its
information value, tracking progress provides normative information for the
research teams regarding whether they are keeping up with the progress of
other teams. Without that information, individual contributors would have
little basis for social comparison and also little sense of whether the project
as a whole is making progress.

11.5.6 Light Leadership with Strong Communication

Large-scale, distributed projects flounder without leadership. However,
leadership cannot be overly directive when volunteers staff the project.
Project leaders are responsible for facilitating communication and discussion
and then guiding the team to decisions and action. Without someone taking
responsibility for the latter, projects will stall with endless discussion and no
resolution.

To maximize project investment, individual contributors should have
the experience that their opinions about the project design matter and can
impact the direction of the project. Simultaneously, there must be sufficient
leadership to avoid having each contributor feel like they shoulder inor-
dinate responsibility for decision making. Contributors vary in the extent
to which they desire to shape different aspects of the project. Some have
strong opinions about the standard format of the replication report; others
would rather step on a nail than spend time on that. To balance this, the
Reproducibility Project leadership promotes open discussion without requir-
ing contribution. Simultaneously, leadership defines a timeline for decision
making, takes responsibility for reviewing and integrating opinions, and
makes recommendations for action steps.

The Reproducibility Project 317

11.5.7 Open Practices

The Reproducibility Project is an open project. This means that anyone can
join, that expectations of contributors are defined explicitly in advance, and
that the project discussion, design, materials, and data are available pub-
licly. Openness promotes accountability among the team. Individuals have
made public commitments to project activities. This transparency minimizes
free-riding and other common conflicts that emerge in collaborative research.
Openness also promotes accountability to the public. Replication teams are
trying to reproduce research designs and results published by others. The
value of the evidence accumulated by the Reproducibility Project relies on
these replications being completed to a high standard. Making all project
materials available provides a strong incentive for the replication teams to do
an excellent job. Further, openness increases the likelihood that errors will
be identified and addressed. In addition to public accessibility, the Repro-
ducibility Project builds in error checking by requiring each replication team
to contact original authors to invite critique of their study design prior to data
collection and by having members review and critique each others’ project
reports.

11.5.8 Participation Incentives

Why participate in a large-scale project? What is in it for the individual
contributor? The best designed and coordinated project will still fail if con-
tributors have no reason to participate voluntarily. The Reproducibility
Project has a variety of incentives that may each have differential impact on
individual contributors. For one, many contributors have an intrinsic interest
in the research questions the project has set out to answer or, more generally,
view the project as an important service to the field.

Another class of incentives is experiential. Some contributors want to
belong to a large-scale collaboration, try open science practices, or conduct a
direct replication. For some, this may be for the pleasure of working with
a group or trying something new. For others, this may be conceived as
a training opportunity. Other incentives are the more traditional academic
rewards. The most obvious is publication. Publication is the basis of reward,
advancement, and reputation building (Collins, 1985). Contributors to the
Reproducibility Project earn coauthorship on publication about the project
and its findings. The relative impact for each individual contributor is most
certainly reduced by the fact that there are many contributors. However, the
nature of the research question, the scale of the project, and (in our humble
brag opinion) quality of the endeavor mean that the project may have a high
impact on psychology and science more generally. While no contributor will
establish a research career using publications with the Open Science Collabo-
ration exclusively, authorship on an important, high-profile project provides

318 Implementing Reproducible Research

an added bonus for the more intrinsic factors that motivate contributions to
the Reproducibility Project.

11.6 Conclusion

The Reproducibility Project is the first attempt to systematically and empir-
ically estimate the reproducibility of a subdiscipline of science. It draws
on the lessons of open-source projects in software development: leveraging
individuals’ opinions about how things should be done while providing
strong coordination to enable progress. What will be learned from the
Reproducibility Project is still undetermined. But if the current progress is
any indicator, the high investment of its contributors and the substantial
interest and attention by observers suggest that the Reproducibility Project
could provide a useful initial estimate of the reproducibility of psychological
science and perhaps inspire other disciplines to pursue similar efforts.

Systematic data on replicability do not exist. The Reproducibility Project
addresses this shortcoming. If large numbers of findings fail to replicate, that
will strengthen the hand of the reform movements and lead to a significant
reevaluation of the literature. If most findings replicate satisfactorily—as
many as would be expected given our statistical power estimates—then that
will suggest a different course of action. More likely, perhaps, is that the
results will be somewhere in between and will help generate hypotheses
about particular practices that could improve or damage reproducibility.

We close by noting that even in the best of circumstances, the results
of any study—including the Reproducibility Project—should be approached
with a certain amount of skepticism. While we attempt to conduct replica-
tion attempts that are as similar as possible to the original study, it is always
possible that “small” differences in method may turn out to be crucial. Thus,
while a failure to replicate should decrease confidence in a finding, one does
not want to make too much out of a single failure (Francis, 2012). Rather, the
results of the Reproducibility Project should be understood as an opportu-
nity to learn whether current practices require attention or revision. Can we
do science better? If so, how? Ultimately, we hope that we will contribute to
answering these questions.

Endnote

1. Alexander A. Aarts, Nuenen, the Netherlands; Anita Alexander,
University of Virginia; Peter Attridge, Georgia Gwinnett College;

The Reproducibility Project 319

Štìpán Bahník, Institute of Physiology, Academy of Sciences of the
Czech Republic; Michael Barnett-Cowan, Western University; Eliz-
abeth Bartmess, University of California, San Francisco; Frank A.
Bosco, Marshall University; Benjamin Brown, Georgia Gwinnett Col-
lege; Kristina Brown, Georgia Gwinnett College; Jesse J. Chandler,
PRIME Research; Russ Clay, University of Richmond; Hayley Cleary,
Virginia Commonwealth University; Michael Cohn, University of Cal-
ifornia, San Francisco; Giulio Costantini, University of Milan–Bicocca;
Jan Crusius, University of Cologne; Jamie DeCoster, University of Vir-
ginia; Michelle DeGaetano, Georgia Gwinnett College; Ryan Donohue,
Elmhurst College; Elizabeth Dunn, University of British Columbia;
Casey Eggleston, University of Virginia; Vivien Estel, University of
Erfurt; Frank J. Farach, University of Washington; Susann Fiedler,
Max Planck Institute for Research on Collective Goods; James G. Field,
Marshall University; Stanka Fitneva, Queens University; Joshua D.
Foster, University of South Alabama; Rebecca S. Frazier, University
of Virginia; Elisa Maria Galliani, University of Padova; Roger Giner-
Sorolla, University of Kent; R. Justin Goss, University of Texas at
San Antonio; Jesse Graham, University of Southern California; James
A. Grange, Keele University; Joshua Hartshorne, M.I.T.; Timothy B.
Hayes, University of Southern California; Grace Hicks, Georgia Gwin-
nett College; Denise Humphries, Georgia Gwinnett College; Georg
Jahn, University of Greifswald; Kate Johnson, University of Southern
California; Jennifer A. Joy-Gaba, Virginia Commonwealth University;
Lars Goellner, University of Erfurt; Heather Barry Kappes, London
School of Economics and Political Science; Calvin K. Lai, Univer-
sity of Virginia; Daniel Lakens, Eindhoven University of Technology;
Kristin A. Lane, Bard College; Etienne P. LeBel, University of West-
ern Ontario; Minha Lee, University of Virginia; Kristi Lemm, Western
Washington University; Melissa Lewis, Reed College; Stephanie C. Lin,
Stanford University; Sean Mackinnon, Dalhousie University; Heather
Mainard, Georgia Gwinnett College; Nathaniel Mann, California State
University, Northridge; Michael May, University of Bonn; Matt Motyl,
University of Virginia; Katherine Moore, Elmhurst College; Stephanie
M. Müller, University of Erfurt; Brian A. Nosek, University of Virginia;
Catherine Olsson, M.I.T.; Marco Perugini, University of Milan–Bicocca;
Michael Pitts, Reed College; Kate Ratliff, University of Florida; Frank
Renkewitz, University of Erfurt; Abraham M. Rutchick, California
State University, Northridge; Gillian Sandstrom, University of British
Columbia; Dylan Selterman, University of Maryland; William Simp-
son, University of Virginia; Colin Tucker Smith, University of Florida;
Jeffrey R. Spies, University of Virginia; Thomas Talhelm, University of
Virginia; Anna van ’t Veer, Tilburg University; Michelangelo Vianello,
University of Padova.

320 Implementing Reproducible Research

References

Amir, Y. and Sharon, I. (1990). Replication research: A “must” for the scien-
tific advancement of psychology. Journal of Social Behavior and Personality,
5, 51–69.

Baillargeon, R., Spelke, E. S., and Wasserman, S. (1985). Object permanence
in five-month-old infants. Cognition, 20, 191–208.

Bauer, H. H. (1992). Scientific Literacy and the Myth of the Scientific Method.
Chicago, IL: University of Illinois Press.

Begley, C. G. and Ellis, L. M. (2012). Raise standards for preclinical cancer
research. Nature, 483, 531–533. doi:10.1038/483531a.

Belding, T. C. (2000). Numerical replication of computer simulations: Some
pitfalls and how to avoid them. arXiv preprint nlin/0001057.

Campbell, D. T., Stanley, J. C., and Gage, N. L. (1963). Experimental and Quasi-
Experimental Designs for Research (pp. 171–246). Boston, MA: Houghton
Mifflin.

Cohen, J. (1962). The statistical power of abnormal-social psychological
research: A review. Journal of Abnormal and Social Psychology, 65, 145–153.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.
Collins, H. M. (1985). Changing Order. London, U.K. Sage.
Estellés-Arolas, E. and González-Ladrón-de-Guevara, F. (2012). Towards an

integrated crowdsourcing definition. Journal of Information Science, 38(2),
189–200.

Fanelli, D. (2010). “Positive” results increase down the hierarchy of the
sciences. PLoS ONE, 5(4), e10068. doi:10.1371/journal.pone.0010068.

Fanelli, D. (2012). Negative results are disappearing from most disciplines
and countries. Scientometrics, 90, 891–904. doi:10.1007/s1192-011-0494-7.

Francis, G. (2012). Publication bias and the failure of replication in experi-
mental psychology. Psychonomic Bulletin and Review, 19, 975–991.

Fuchs, H., Jenny, M., and Fiedler, S. (2012). Psychologists are open to
change, yet wary of rules. Perspectives on Psychological Science, 7, 634–637.
doi:10.1177/1745691612459521.

Giner-Sorolla, R. (2012). Science or art? How esthetic standards grease the
way through the publication bottleneck but undermine science. Perspec-
tives on Psychological Science, 7, 562–571. doi:10.1177/1745691612457576.

Greenwald, A. G. (1975). Consequences of prejudice against the null hypoth-
esis. Psychological Bulletin, 82, 1–20.

Hartshorne, J. K. and Schachner, A. (2012a). Tracking replicability as a
method of post-publication open evaluation. Frontiers in Computational
Neuroscience, 6(8), 1–13. doi:10.3389/fncom.2012.0008.

The Reproducibility Project 321

Hartshorne, J. K. and Schachner, A. (2012b). Where’s the data? The Psycholo-
gist, 25, 355.

Hempel, C. G. and Oppenheim, P. (1948). Studies in the logic of explanation.
Philosophy of Science, 15, 135–175.

Ioannidis, J. P. A. (2005). Why most published research findings are false.
PLoS Medicine, 2(8), e124. doi:10.1371/journal.pmed.0020124.

Ioannidis, J. P. A., Ntzani, E. E., Trikalinos, T. A., and Contopoulos-
Ioannidis, D. G. (2001). Replication validity of genetic association studies.
Nature Genetics, 29, 306–309.

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (trans-
formation or not) and towards logit mixed models. Journal of Memory and
Language, 59, 434–446. doi: 10.1016/j.bbr.2011.03.031.

John, L., Loewenstein, G., and Prelec, D. (2012). Measuring the preva-
lence of questionable research practices with incentives for truth-telling.
Psychological Science, 23, 524–532. doi: 10.1177/0956797611430953.

Koole, S. L. and Lakens, D. (2012). Rewarding replications: A sure and simple
way to improve psychological science. Perspectives on Psychological Science,
7, 608–614. doi:10.1177/1745691612462586.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago, IL: Univer-
sity of Chicago Press.

Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin,
108, 480–498. doi:10.1037/0033-2909.108.3.480.

LeBel, E. P. and Paunonen, S. V. (2011). Sexy but often unreliable: Impact
of unreliability on the replicability of experimental findings involving
implicit measures. Personality and Social Psychology Bulletin, 37, 570–583.

LeBel, E. P. and Peters, K. R. (2011). Fearing the future of empirical psy-
chology: Bem’s (2011) evidence of psi as a case study of deficiencies
in modal research practice. Review of General Psychology, 15, 371–379.
doi:10.1037/a0025172.

Ledgerwood, A. and Sherman, J. W. (2012). Short, sweet, and problem-
atic? The rise of the short report in psychological science. Perspectives on
Psychological Science, 7, 60–66. doi:10.1177/1745691611427304.

Lipsey, M. W. and Wilson, D. B. (1993). The efficacy of psychological,
educational, and behavioral treatment: Confirmation from meta-analysis.
American Psychologist, 48, 1181–1209. doi:10.1037/0003-066X.48.12.1181.

Mahoney, M. J. (1985). Open exchange and epistemic process. American
Psychologist, 40, 29–39.

Makel, M. C., Plucker, J. A., and Hagerty, B. (2012). Replications in psychol-
ogy research: How often do they really occur? Perspectives on Psychological
Science, 7, 537–542. doi:10.1177/1745691612460688.

Morrell, K. and Lucas, J. W. (2012). The replication problem and its
implications for policy studies. Critical Policy Studies, 6, 182–200.
doi:10.1080/19460171.2012.689738.

322 Implementing Reproducible Research

Neuliep, J. W. and Crandall, R. (1990). Editorial bias against replication
research. Journal of Social Behavior and Personality, 5, 85–90.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in
many guises. Review of General Psychology, 2, 175–220.

Nickerson, R. S. (2000). Null hypothesis significance testing: A review of
an old and continuing controversy. Psychological Methods, 5(2), 241–301.
doi:10.1037/1082-989X.5.2.241.

Nielson, M. (2011). Reinventing discovery: The new era of networked
science. Princeton University Press.

Nosek, B. A. and Bar-Anan, Y. (2012). Scientific utopia: I. Opening sci-
entific communication. Psychological Inquiry, 23(3), 217–243. doi:1080/
1047840X.2012.692215.

Nosek, B. A., Spies, J. R., and Motyl, M. (2012). Scientific utopia:
II. Restructuring incentives and practices to promote truth over pub-
lishability. Perspectives on Psychological Science, 7, 615–631. doi:10.1177/
1745691612459058.

Open Science Collaboration. (2012). An open, large-scale collaborative effort
to estimate the reproducibility of psychological science. Perspectives on
Psychological Science, 7, 657–660. doi:10.1177/1745691612462588.

Piaget, J. (1952). The Origins of Intelligence in Children. New York: Interna-
tional University Press.

Piaget, J. (1954). The Construction of Reality in the Child. New York: Basic.
Popper, K. (1934/1992). The Logic of Scientific Discovery. New York: Rout-

ledge.
Prinz, F., Schlange, T., and Asadullah, K. (2011). Believe it or not: How much

can we rely on published data on potential drug targets? Nature Reviews
Drug Discovery, 10, 712–713. doi:10.1038/nrd3439-c1.

Rosenthal, R. and Rosnow, R. L. (1960). Artifact in Behavioral Research.
New York: Academic Press.

Salmon, W. (1989). Four Decades of Scientific Explanation. Minneapolis, MN:
University of Minnesota Press.

Schimmack, U. (2012). The ironic effect of significant results on the credibility
of multiple-study articles. Psychological Methods, 17, 551–566.

Schmidt, S. (2009). Shall we really do it again? The powerful concept of repli-
cation is neglected in the social sciences. Review of General Psychology, 13,
90–100. doi:10.1037/a0015108.

Sedlmeier, P. and Gigerenzer, G. (1989). Do studies of statistical power have
an effect on the power of studies? Psychological Bulletin, 105, 309–316.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011). False-positive
psychology: Undisclosed flexibility in data collection and analysis allows
presenting anything as significant. Psychological Science, 22, 1359–1366.
doi:10.1177/0956797611417632.

The Reproducibility Project 323

Sterling, T. D. (1959). Publication decisions and their possible effects on
inferences drawn from tests of significance—Or vice versa. Journal of the
American Statistical Association, 54, 30–34.

Vul, E., Harris, C., Winkielman, P., and Pashler, H. (2009). Puzzlingly
high correlations in fMRI studies of emotion, personality, and social cog-
nition. Perspectives in Psychological Science, 4, 274–90. doi:10.1111/j.1745-
6924.2009.01125.x.

12
What Computational Scientists Need to Know
about Intellectual Property Law: A Primer

Victoria Stodden∗

CONTENTS

12.1 Introduction . 325
12.2 Publishing the Research Article . 327
12.3 Publishing Scientific Software, Code, and Tools . 330
12.4 Publishing Datasets and “Raw Facts” . 334
12.5 Citation. 336
12.6 Conclusion. 337
References . 337

12.1 Introduction

Data and code are becoming as important to research dissemination as the
traditional manuscript. For computational science, the evidence is clear: it
is typically impossible to verify scientific claims without access to the code
and data that generated published findings. Gentleman and Lang [1] intro-
duced the notion of the “research compendium” as the unit of scholarly
communication, a triple including the explanatory narrative, the code, and
the data used in deriving the results. One of the reasons for including the
code and data is to facilitate the production of really reproducible research, a
phrase coined by Jon Claerbout in 1991† to mean research results that can

∗ Victoria thanks an anonymous reviewer for many extremely helpful comments. This research
was supported by Alfred P. Sloan Foundation award number PG004545, Facilitating Trans-
parency in Scientific Publishing and NSF award number 1153384, EAGER: Policy Design for
Reproducibility and Data Sharing in Computational Science.

† See http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible for the Stanford
Exploration Project’s pioneering recommendations for reproducible research.

325

http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible

326 Implementing Reproducible Research

be regenerated from the available code and data. Claerbout’s approach was
paraphrased by Donoho and Buckheit [2] as follows:

The idea is: An article about computational science in a scientific publica-
tion is not the scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development environ-
ment and the complete set of instructions which generated the figures.

Enabling computational replication typically means supplying the data, soft-
ware, and scripts, including all parameter settings, which produced the
results [3,4]. This approach runs headlong and unavoidably into current
intellectual property law, which creates a stumbling block rather than an
impassable barrier to the dissemination of really reproducible research. In
this chapter, I describe these intellectual property stumbling blocks to the
open sharing of computational scientific knowledge and present solutions
that coincide with long-standing scientific norms. In Section 12.2, I motivate
scientific communication as a narrative with a twofold purpose: to commu-
nicate the importance of the findings within the larger scientific context and
to provide sufficient information that the results may be verified by others
in the field. Sections 12.3 and 12.4 then discuss intellectual property barriers
and solutions that enable code and data sharing, respectively. Each of these
three research outputs, the research article, the code, and the data, requires
different legal analyses and action in the scientific context as described in the
following. The final section discusses citation for digital scholarly output,
focusing on code and data.

A widely accepted scientific norm, as labeled by Robert K. Merton,
is communism or communalism [5]. By this, Merton meant that property
rights in scientific research extend only to the naming of scientific discov-
eries (Arrow’s impossibility theorem, e.g., named for its originator Kenneth
Arrow), and all other intellectual property rights are given up in exchange for
recognition and esteem. This notion, at least in the abstract, underpins the
current system of publication and citation that forms the basis for academic
promotion and reward.

Computational science today is facing a credibility crisis: without access
to the code and data that underlie scientific discoveries, published findings
are all but impossible to verify [4]. Reproducible computational science has
attracted attention since Claerbout wrote some of the first really reproducible
manuscripts in 1992.∗ More recently, a number of researchers have adopted
reproducible methods [2,6,7] or introduced them in their role as journal edi-
tors [8–10]. This chapter discusses how intellectual property law applies to
data in the context of communicating scientific research.

∗ See http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible.

http://sepwww.stanford.edu/doku.php?id=sep:research:reproducible.

What Computational Scientists Need to Know 327

12.2 Publishing the Research Article

Scientific publication has taken the well-recognized form of the research
article since 1665 with the first issue of the Philosophical Transactions of the
Royal Society of London.∗ This section motivates the sharing of the research
paper and discusses the clash that has arisen between the need for scientific
dissemination and modern intellectual property law in the United States.

Scientific results are described in the research manuscript, including their
derivation and context, and this manuscript is typically published in an
established academic journal. It is of primary importance that the body of
scientific knowledge, today comprised primarily of journal publications, has
as little error as possible. This is in part accomplished through peer review
and in part through the very act of publication and permitting a wide audi-
ence access to the work. The recognition that the scientific research process
is error prone, that error can creep in anywhere and from any source, is cen-
tral to the scientific method, and wider access to the findings increases the
chances that errors will be caught.

The second reason property rights have been deemphasized in scientific
research is the idea that scientific knowledge about our world, such as phys-
ical laws, mathematical theorems, or the nature of biological functions, is to
be discovered, rather than invented or created, and these discoveries belong
to all of humanity. This is not to say that scientific discovery is not a creative
act, quite the contrary, but that the underlying scientific fact is a public good,
a facet of our world not subject to ownership. This is the underlying rationale
behind US federal government grants of over $40 bil- lion dollars for scien-
tific research in 2012 [11]. This vision is also reflected both in the widespread
understanding of scientific facts as “discoveries” and not “inventions” and
in current intellectual property law, which does not recognize a scientific
discovery as rising to the level of individual ownership, unlike an invention
or other contribution. We will see this notion rise again in the discussion on
scientific data:

Copyright law in the United States originated in the Constitution, stating
that “The Congress shall have Power . . . To promote the Progress of Sci-
ence and useful Arts, by securing for limited Times to Authors and Inventors
the exclusive Right to their respective Writings and Discoveries.”† Through
a series of subsequent laws, copyright has come to assign a specific set of
rights to authors of original expressions of ideas by default. In the context
of scientific research, this means that the written description of a finding is

∗ For a brief history, see http://rstl.royalsocietypublishing.org/ including an image of the first
issue with the endearing title “Philosophical Transactions Giving Some Account of the Present
Undertakings, Studies, and Labours of the Ingenious in Many Considerable Parts of the
World.”

† US Const. art. I, §8, cl. 8.

http://rstl.royalsocietypublishing.org/

328 Implementing Reproducible Research

automatically copyrighted by the author(s) (how copyright applies to data
and code is discussed in the following two sections). Copyright secures
exclusive rights vested in the author to both reproduce the work and pre-
pare derivative works based upon the original. There are exceptions and
limitations to this power, such as fair use, but these do not provide for
an intellectual property framework for scientific knowledge that matches
long-standing scientific norms of openness, access, and transparency.

Intellectual property law, and its interpretation by academic and
research institutions, means that authors have copyright over their research
manuscripts. Copyright can be transferred to others, and the copyright hold-
ers can grant permissions for use to others as they see fit. In a system
established many decades ago, journals typically request that copyright be
assigned to the publisher for free, rather than remain with the authors, as a
condition of publication. Many journals have a second option for authors if
they request it, where copyright remains with the author, but permission is
granted to the journal to publish the article.∗ If copyright was transferred,
access to the published article usually involves paying a fee to the publisher.
Typically, scientific journal articles are available only to the privileged few
affiliated with a university library that pays the journal subscription fees,
and articles are otherwise offered for a surcharge of about $30 each. Authors
of scientific articles, and the owners of copyright, typically transfer copyright
to publishers as a condition of publication.

Publishing scientists today have other options. A transformation is
underway that has the potential to make scientific knowledge openly and
freely available. The open-access movement has established ways of publish-
ing that secure long-term public access to the research article. This may still
involve the journal requesting a transfer of copyright to them, and it usu-
ally involves an upfront fee to compensate the journal for the loss of revenue
from library subscriptions and article purchases.

This transformation started in 1991 when Paul Ginsparg, professor of
Physics at Cornell University, set up an open repository called arXiv.org
(pronounced “archive”) for physics articles awaiting journal publication. In
the biosciences, the Public Library of Science (PLoS) was launched 2000.† They
publish under a new model, open-access publishing, which publishes scien-
tific articles by charging the authors the costs upfront, typically about $2000
per article, and making the published papers freely available online.‡

On balance openly available articles appear to be cited at higher rates
than those behind subscription paywalls [12,13]. There are steps a researcher

∗ See, for example, Science Magazine’s alternative license at http://www.sciencemag.org/site/
feature/contribinfo/prep/lic_info.pdf (last accessed January 29, 2013).

† See http://blogs.plos.org/plos/2011/11/plos-open-access-collection-%E2%80%93-
resources-to-educate-and-advocate/ for a collection of articles on Open Access.

‡ See http://www.plos.org/publish/pricing-policy/publication-fees/ for up-to-date pricing
information.

http://www.sciencemag.org/site/feature/contribinfo/prep/lic{_}info.pdf
http://www.sciencemag.org/site/feature/contribinfo/prep/lic{_}info.pdf
http://blogs.plos.org/plos/2011/11/plos-open-access-collection-{%}E2{%}80{%}93-resources-to-educate-and-advocate/
http://blogs.plos.org/plos/2011/11/plos-open-access-collection-{%}E2{%}80{%}93-resources-to-educate-and-advocate/
http://www.plos.org/publish/pricing-policy/publication-fees/

What Computational Scientists Need to Know 329

can take when publishing a manuscript, to help maximize the future access
to their article. First, a researcher can request the alternative copyright agree-
ment that gives the journal permission to publish the article but leaves
copyright with the author. Another approach is to use the SPARC adden-
dum, to retain rights to post the article on the author’s webpage, in scholarly
repositories, or more widely on the Internet.∗ The SPARC addendum, for
example, ensures the right of the author to retain the following:

1. The rights to reproduce, to distribute, and to publicly display the
article in any medium for noncommercial purposes.

2. The right to prepare derivative works from the article.
3. The right to authorize others to make any noncommercial use of the

article so long as the author receives credit as author and the journal
in which the article has been published is cited as the source of first
publication of the article. For example, the author may make and
distribute copies in the course of teaching and research and may post
the article on personal or institutional websites and in other open-
access digital repositories.

These are valuable rights authors likely wish to retain so they can reuse their
own work and share with others, and this can be accomplished by using
the The Scholarly Publishing and Academic Resources Coalition (SPARC)
addendum with the traditional publisher’s agreement.

A second option is choosing to publish in open-access journals. This is
a personal decision for the authors as journal impact factor is often tied
to career advancement, but open-access journals like PLoS ONE have been
gaining in prestige.†

When publishing in an open-access journal, authors are sometimes asked
to designate a Creative Commons license for their article. Authors can also
find themselves confronted with this choice when depositing to a repository,
or even when posting the article on their own webpage, depending on the
downstream use they wish to permit. Creative Commons licenses are very
useful for researchers, and I will discuss their various licensing options. In
the Creative Commons sense, “license” is the term used to mean that an
owner gives advance permission for use of his or her copyrighted works.
Although related, this is a different sense of the term than, say, a software
license or patent license that is paid for and permits use of the software or
patent for a period of time. In this case, license refers to the granting of cer-
tain uses by the copyright holder in advance—without charge to anyone—so
there is no need to contact the copyright holder to request permission.

∗ See http://www.arl.org/sparc/author/addendum.shtml.
† See http://scholarlykitchen.sspnet.org/2011/06/28/plos-ones-2010-impact-factor/ for recent

impact factor information.

http://www.arl.org/sparc/author/addendum.shtml.

330 Implementing Reproducible Research

Creative Commons has provided documents (licenses) that encode cer-
tain terms of use in formal legal language, making it easy for researchers and
others to grant permission for use of their work if they happen to want what
these licenses provide. The most basic Create Commons license is “CC-BY,”
and essentially, it permits unrestricted downstream use so long as attribution
is given to the original author. Note that in this case, the author is also the
copyright holder. Licensing options that grant permission for use can only
be applied by the copyright holder (or with the copyright holder’s permis-
sion), so think carefully before signing your copyright over to other entities,
such as journals.

CC-BY is the closest permission structure to that which scientists and
researchers are used to—essentially saying, use my work however you wish,
butmakesureyoucreditme.∗ CreativeCommons, however, designedlicenses
with a broader community in mind and offers other licensing options. For
certain specialized scientific research, these may be useful, so I touch on
them here for completeness, but each option adds further restrictions over
CC-BY that I believe should be outweighed by their benefits over CC-BY.
CreativeCommonshaslicensesthatrestrictdownstreamusetononcommercial
purposes only (NC), which forbid the creation of derivative works (ND), and
direct downstream users as to what license they must use on their work (SA).
The simplest choice that matches scientific community norms is CC-BY.

With broader sharing of publications, scientific knowledge could be
spread more widely, more mistakes caught, and the rate of scientific progress
improved. In addition, more downstream activity would be encouraged,
such as technological development, industry growth, and further scientific
discoveries [14,15]. Open archiving is mandated by the National Insti-
tutes for Health (NIH), where published articles arising from NIH-funded
research must be deposited in PubMed Central† within 12 months of publica-
tion. On February 22, 2013, this was extended to all federal funding agencies
through an executive memorandum released by the Office of Science and
Technology Policy in the Whitehouse.‡ To maximize access, we need a
streamlined and uniform way of managing copyright over scientific publica-
tions, and also copyright on data and code, as discussed in the next section.

12.3 Publishing Scientific Software, Code, and Tools

The computational steps taken to arrive at a result are often complex enough
that their complete communication is prohibitive in a typical scientific

∗ See http://creativecommons.org/licenses/by/3.0/.
† PubMed Central is located at http://www.ncbi.nlm.nih.gov/pmc/.
‡ See http://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-

federally-funded-research.

http://creativecommons.org/licenses/by/3.0/.
http://www.ncbi.nlm.nih.gov/pmc/.
http://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research.
http://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research.

What Computational Scientists Need to Know 331

publication. This is a key reason for releasing the code that contains all
the steps, instructions, data calls, and parameter settings that generated
the published findings. Of the three digital scholarly objects discussed in
this chapter, the code has the most complex interactions with intellectual
property law since it is both subject to copyright and patent.

Software is considered an original expression of an underlying idea, and
therefore it is subject to copyright. As discussed in the previous section,
copyright adheres by default—a programmer who does nothing other than
write software will produce code copyrighted to herself.∗ The algorithm or
methods that the code implements are not subject to copyright themselves,
but copyright adheres to the code that implements the algorithm or methods.
The effect of copyright in this case is the prohibition on others to reproduce
or modify the code† (see Box 12.1).

BOX 12.1 INSET: COPYRIGHT IN A NUTSHELL

The original expression of ideas falls under copyright by default (text,
code, figures, tables, original selection, and arrangement of data)

Subject to some exceptions and limitations, copyright secures exclu-
sive rights vested in the author to

1. Reproduce the work
2. Prepare derivative works based upon the original

Copyright is of limited but long duration, generally life of the author plus
70 years, and is subject to exceptions and limitations such as fair use.

Copyright works counter to long-standing scientific norms that encourage
reuse and verification of results. This means running the code on a differ-
ent system (reproducing) or adapting the code to a new problem (reusing).
Authors must grant permission to others to use their code in these ways. The
Creative Commons licenses discussed in the previous section were created
for digital artistic works, and they are not suitable for code and so cannot
solve our problem. There are, however, a great number of open licenses for
software that permit authors to give permission for replication and reuse.
Software exists primarily in two forms: source and compiled, and the trans-
mission of the complied form alone is not sufficient for scientific purposes.

∗ Although the exception in academic research, the copyright can initially go to an employer or
commissioning party under the “work made for hire” doctrine.

† There are exceptions and limitations to copyright, such as fair use, but these do not extend
to scientific scholarly objects and how researchers would typically use them. From a compu-
tational researcher’s perspective, these exceptions and limitations should not be relied on to
provide sufficient access and affirmative steps such as licensing should be taken. For more on
fair use, see http://www.copyright.gov/fls/fl102.html and [16,17].

http://www.copyright.gov/fls/fl102.html

332 Implementing Reproducible Research

Communication of the source code, whether intended to be compiled or not,
is essential to understanding and reusing scientific code. In the context of
scientific research, source code is often in the form of scripts, for example,
in MATLAB� or Python, which execute in association with an installed
package and are not compiled.

There are several open licenses for code that place few restrictions
on reuse beyond attribution, creating an intellectual property framework
resembling conventional scientific norms. The (Modified) Berkeley Software
Distribution (BSD) license, for example, permits the downstream use, copy-
ing, and distribution of either unmodified or modified source code, as long
as the license accompanies any distributed code and the previous authors’
names are not used to promote any modified downstream software. The
license is brief enough it can be included here:

Copyright (c) 〈YEAR〉, 〈OWNER〉
All rights reserved.

Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the pre-
vious copyright notice, this list of conditions, and
the following disclaimer.

• Redistributions in binary form must reproduce the
previous copyright notice, this list of conditions,
and the following disclaimer in the documentation
and/or other materials provided with the distribu-
tion.

• Neither the name of the 〈ORGANIZATION〉 nor the names
of its contributors may be used to endorse or promote
products derived from this software without specific
prior written permission.

This text is followed by a disclaimer releasing the author from liability for
use of the code. The Modified BSD license is very similar to the MIT license,
with the exception that the MIT license does not include a clause forbidding
endorsement. The Apache 2.0 license is also commonly used to specify terms
of use on software. Like the Modified BSD and MIT licenses, the Apache
license requires attribution, but it differs in that it permits users to exercise
patent rights that would otherwise only extend to the original author, so
that a patent license is granted for any patents needed for use of the code
(probably a fairly obscure situation for academic research). The Apache 2.0
license further stipulates that the right to use the software without patent
infringement will be lost if the downstream user sues the licensor for patent
infringement. Attribution under Apache 2.0 requires that any modified code

What Computational Scientists Need to Know 333

carries a copy of the license, with notice of any modified files and all copy-
right, trademark, and patent notices that pertain to the work be included.
Attribution can also be done in the notice file. The Reproducible Research
Standard [18,19] recommends using one of these three licenses or a similar
attribution license for scripts and software released as part of a scientific
research compendium.

Patents are a second form of intellectual property that can create a barrier
to the open sharing of scientific codes. Columbia University, for example,
states in its Faculty Handbook that

. . . the University and a member of the faculty may expect and require
of one another cooperation in the development and exploitation of con-
ceptions . . . In particular, the University will advise a faculty member
about securing a patent, and will participate with him or her in seeking
patent protection, in every way compatible with their several capacities
and common interests. . . . The obligations of a faculty member include
the execution of an assignment or a patent, and of rights thereunder, in
appropriate circumstances.∗

There are exceptions, but this expectation of patenting is typical in academic
research institutions.

Patenting is often viewed as a method of enabling access, especially by
institutional technology transfer offices, to technology that would other-
wise remain inaccessible in academic institutions and research journals. In
the case of software, patents add a layer of complexity, and possible fees,
to the scientific notion of reproducibility of results. Reproducibility implies
the open availability of the software that permits replication along with the
published results (Gentleman and Lang’s research compendium introduced
previously in this chapter). Researchers seeking a patent appear to be reluc-
tant to release their code publicly, possibly for fear of creating “prior art”
and thus creating a barrier to patent granting, or a perceived loss of rev-
enue from researchers who would like to use their software for research
purposes [20].

Neither of these reasons should prevent a patent-seeking researcher from
making his or her code publicly and openly available. Under US law, an
inventor or rights holder can apply for a patent on a published invention, so
long as it is within 1 year of disclosure.† A dual system of patent licensing
for industry application can coexist with openly downloadable software for
academic research purposes. If a researcher feels inclined to pursue a patent
on software, he or she should ensure that academic researchers are able to
openly and easily download the software, without going through a patent

∗ See http://www.columbia.edu/cu/vpaa/handbook/appendixd.html (last accessed February
12, 2013).

† This is known as a “statutory bar” to an otherwise valid patent.

http://www.columbia.edu/cu/vpaa/handbook/appendixd.html

334 Implementing Reproducible Research

licensing process (even one without a fee) in accordance with the Principle
of Scientific Licensing, which states [18]:

Principle of Scientific Licensing: Legal encumbrances to the dissemina-
tion, sharing, use, and re-use of scientific research compendia should
be minimized, and require a strong and compelling rationale before
application.

Code can be made available in a dedicated code repository such as GitHub,
BitBucket, SourceForge, or RunMyCode [7].∗ All will provide links to the
stored code, permitting it to be associated with the manuscript and data. This
theme of accessibility of research compendia continues in the next section
with a discussion on publishing the data associated with scientific findings.

12.4 Publishing Datasets and “Raw Facts”

Data are understood as integral in the communication of computational find-
ings, part of the research compendium introduced earlier in the chapter. Data
can refer to an input into scientific analysis, such as a publicly available
dataset like those at Data.gov† or those gathered by researchers in the course
of the research, or it can refer to the output of computational research, as
is the case in computational simulations. In short, it is typically an array of
numbers or descriptions, to which analysis and interpretation is applied. It
does not include computer code, discussed in the previous section.

In 1991, the US Supreme Court held in Feist v. Rural Telephone Ser-
vice Co. that raw facts are not copyrightable but the original “selection and
arrangement” of these raw facts may be.‡§ The Supreme Court has not made
a ruling concerning intellectual property in data since, and modern compu-
tational research may create a residual copyright in a particular dataset, if
original selection and arrangement of facts takes place. Collecting, cleaning,
and readying data for analysis is often a significant part of scientific research
and arguably could be considered “original selection and arrangement” in
the sense of Feist.

The Reproducible Research Standard recommends therefore releasing data
under a Creative Commons CC0, or “no rights reserved” publication, in part

∗ See https://github.com/, https://bitbucket.org/, http://sourceforge.net/, and http://www.
runmycode.org/.

† See https://explore.data.gov/.
‡ Copyright does extend to databases under European intellectual property law. This is a key

distinction between European and US intellectual property systems in the context of scientific
research.

§ See Feist Publications v. Rural Telephone Service Co., 499 U.S. 360 (1991).

What Computational Scientists Need to Know 335

because of the possibility of such a residual copyright existing in the dataset.∗
The public domain certification means that as the dataset author, and poten-
tial copyright holder, you will not exercise any rights you may have in the
dataset that may derive from copyright (or any other ownership rights).
A public domain certification also means that as the author, you are relying
on downstream users to cite and attribute your work appropriately. For this
reason, a specific citation recommendation should be included with the
dataset, suggesting to downstream users that they cite any use of the dataset
itself.

Datasets may have barriers to reuse and sharing that do not stem
from intellectual property law, such as confidentiality of records, privacy
concerns, and proprietary interests from industry or other external collab-
orators that may assert ownership over the data. Good practice suggests
planning for maximal data release at the time of publication at the begin-
ning of a research collaboration, whether it might be with industrial partners
who may foresee different uses for the data than supporting reproducible
research or with scientists subject to a different intellectual property frame-
work for data, such as those in Europe.

Datasets should be made available in recognized repositories for the field,
if they exist, and conform to any established standards for formats, meta-
data, or exposition. If recognized repositories don’t exist, both the DataVerse
Network and Dryad will host datasets from any field, for example, and pro-
vide association with the manuscript and code through persistent links.†

They are able to accommodate access restriction on the datasets, due to
privacy concerns or other constraints. A number of federal funding agen-
cies have data sharing requirements in their grant guidelines. The National
Science Foundation grant guidelines state that

Investigators are expected to share with other researchers, at no more
than incremental cost and within a reasonable time, the primary data,
samples, physical collections and other supporting materials created or
gathered in the course of work under NSF grants.‡

Similarly, the NIH grant guidelines state that

The NIH expects and supports the timely [no later than the acceptance for
publication of the main findings from the final data set] release and shar-
ing of final research data from NIH-supported studies for use by other
researchers.§

∗ See http://creativecommons.org/about/cc0 for further details on the CC0 license.
† See http://thedata.org/ and http://datadryad.org/.
‡ See http://www.nsf.gov/pubs/policydocs/pappguide/nsf11001/aag_6.jsp.
§ The NIH data sharing guidelines apply to grants greater than $500,000. See http://grants.nih.

gov/grants/guide/notice-files/NOT-OD-03-032.html.

http://creativecommons.org/about/cc0
http://thedata.org/
http://datadryad.org/.
http://www.nsf.gov/pubs/policydocs/pappguide/nsf11001/aag{_}6.jsp.

336 Implementing Reproducible Research

These guidelines have been minimally enforced, but this may change. The
February 22, 2013, Executive Memorandum mentioned previously requires
federal funding agencies to develop enforceable open data plans.

12.5 Citation

The research article, code, and data are shared with the hope that they
will be used by other researchers. Citation of data and software use is not
standard in the computational sciences and must become so. Aside from
being a plagiarism violation [21], using uncited code and data is poor sci-
entific practice, and it impedes both transparency in research and rewards
for scientific contributions [22]. When sharing code or data, it is helpful to
provide citation information both to guide downstream users and to remind
users that citation is expected.

Throughout this chapter, the use of open attribution-only licensing has
been recommended, but it is worth commenting on the relationship between
this legal concept and traditional academic citation. They are not identical. In
the case of open software licensing as discussed in this chapter, attribution
generally refers to listing contributions and authors in a file that accompa-
nies the software. This is important for provenance and transparency, but
doesn’t satisfy citations standards used in academic rewards. Some open
licenses require this type of attribution, but it must be noted that additional,
not legal, citation should take place to satisfy scientific norms. Any software
use should receive a scientific citation in the list of references, on a par with
referenced publications. A footnote mentioning the software use is not ade-
quate. The content of this citation should include, at minimum, the author(s),
the software version, the location of the code on the Internet, the date of
software release, and the data of software access. If the authors suggest fur-
ther citation information, for example, a report describing the software, this
should be cited.

In the case of Creative Commons attribution licensing, the two concepts
lie slightly closer. Section 4(b) of the CC-BY 3.0 license states that

If You Distribute . . . the Work or any Adaptations . . . , You must . . . keep
intact all copyright notices for the Work and provide, reasonable to the
medium or means You are utilizing: (i) the name of the Original Author
. . . (ii) the title of the Work . . . (iii) to the extent reasonably practicable,
the URI, if any. . . and (iv) . . . in the case of an Adaptation, a credit iden-
tifying the use of the Work in the Adaptation. . . . The credit required by
this Section 4 (b) may be implemented in any reasonable manner. . . ∗

∗ Note that CC-BY 4.0 has now been publicly released for comment. http://creativecommons.
org/weblog/entry/36713.

http://creativecommons.org/weblog/entry/36713.
http://creativecommons.org/weblog/entry/36713.

What Computational Scientists Need to Know 337

Arguably, what is “reasonable to the medium” in the research context is
scientific citation. The CC-BY license is most likely to be applied to the
research paper itself, for which citation practices exist, but if applied to
text describing data selection and arrangement, for example, it could be
interpreted as requiring standard scientific citation. Hopefully the research
community quickly adopts practices that include code and data citation as
standard, and legal requirements remain a last resort.

12.6 Conclusion

The current set of scientific norms evolved over hundreds of years to max-
imize the integrity of our stock of scientific knowledge. They espouse
standards of independent verification and transparency and publication of
research findings to disseminate the knowledge widely. Current scientific
practice has not kept up with technological advancement, meaning much
of the published computational findings are unreplicable since the source
code and data are not made conveniently and routinely available. To make
reproducibility possible in today’s computational research environment, the
communication of new types of scholarly objects, for example, a digital
research paper, code, or data, requires engaging intellectual property law. In
this chapter, I have traced how intellectual property law interacts with digital
scholarly communication, through both the relevant aspects of the copyright
and patent systems, for scholars sharing really reproducible computational
research.

For broad reuse, sharing, and archiving of code to be a commonly
accepted practice in computational science, it is important that open licenses
be used that minimize encumbrances to access and reuse, such as attribution-
only licenses like the MIT license or the Modified BSD license or the Creative
Commons attribution license. A collection of code with an open licensing
structure permits archiving, persistence of the code, and research on the
code base itself, just as is the case for collections of research articles. For
these reasons, as well as the integrity of our body of scholarly knowledge,
it is essential to address the barriers created by current intellectual property
law in such a way that access and reuse are promoted and preserved and
future research encouraged.

References

1. R. Gentleman and D. T. Lang. Statistical analyses and repro-
ducible research, 2004. http://biostats.bepress.com/bioconductor/
paper2/ (Accessed January 23, 2014.)

http://biostats.bepress.com/bioconductor/paper2/
http://biostats.bepress.com/bioconductor/paper2/

338 Implementing Reproducible Research

2. D. Donoho and J. Buckheit. WaveLab and reproducible research,
Stanford University, Department of Statistics Technical Report 474, 1995.

3. G. King. Replication, Replication. PS: Political Science and Politics 28:
443–499, 1995. Copy at http://j.mp/jCyfF1 (Accessed January 23, 2014.)

4. D. Donoho, A. Maleki, M. Shahram, I. Ur Rahman, and V. Stodden.
Reproducible research in computational harmonic analysis. Computing
in Science and Engineering 11: 8–18, January 2009.

5. R. K. Merton. The normative structure of science, in: R. K. Merton, ed.,
The Sociology of Science: Theoretical and Empirical Investigations, Chicago,
IL: University of Chicago Press, OCLC 755754, p. 267, 1973.

6. D. Donoho, V. Stodden, and Y. Tsaig. About SparseLab, 2007. See
http://sparselab.stanford.edu.. (Accessed January 23, 2014.)

7. V. Stodden, C. Hurlin, and C. Perignon. RunMyCode.Org: A novel
dissemination and collaboration platform for executing published
computational results. eSoN IEEE eScience Conference, Chicago, IL,
2012. Available at http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2147710 (Accessed January 23, 2014.)

8. Journal of Experimental Linguistics, Linguistic Society of America,
http://elanguage.net/journals/jel (Accessed January 23, 2014.)

9. Biostatistics. Oxford Press. http://biostatistics.oxfordjournals.org/
(Accessed January 23, 2014.)

10. R. Trivers. Fraud, Disclosure, and Degrees of Freedom in Science, May
20, 2012. Available at http://www.psychologytoday.com/blog/the-
folly-fools/201205/fraud-disclosure-and-degrees-freedom-in-science
(Accessed January 23, 2014.)

11. Budget of the U.S. Government, Budget of the United States Gov-
ernment, Fiscal Year 2012. Available at http://www.gpo.gov/fdsys/
search/pagedetails.action?packageId=BUDGET-2013-BUD (Accessed
January 23, 2014.)

12. Y. Gargouri, C. Hajjem, V. Larivière, Y. Gingras, L. Carr et al.
Self-selected or mandated, open access increases citation impact for
higher quality research. PLoS ONE 5(10): e13636. doi:10.1371/journal.
pone.0013636, 2010.

13. M. McCabe. Online access and the scientific journal market: An
economist’s perspective, national academies of science report. Avail-
able at http://sites.nationalacademies.org/PGA/step/PGA_058712
(Accessed January 23, 2014.)

14. V. Stodden. Innovation and growth through open access to scientific
research: Three ideas for high-impact rule changes, in: Rules for Growth:
Promoting Innovation and Growth Through Legal Reform, Kansas City,
MO: The Kauffman Task Force on Law, Innovation, and Growth, ed.
February, 2011.

15. V. Stodden. Open science: Policy implications for the growing
phenomenon of user-led scientific innovation. Journal of Science Commu-
nication 9(1), 2010.

http://j.mp/jCyfF1
http://sparselab.stanford.edu.
http://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=2147710
http://papers.ssrn.com/sol3/papers.cfm?abstract{_}id=2147710
http://elanguage.net/journals/jel
http://biostatistics.oxfordjournals.org/
http://www.psychologytoday.com/blog/the-folly-fools/201205/fraud-disclosure-and-degrees-freedom-in-science
http://www.psychologytoday.com/blog/the-folly-fools/201205/fraud-disclosure-and-degrees-freedom-in-science
http://www.gpo.gov/fdsys/search/pagedetails.action?packageId=BUDGET-2013-BUD
http://www.gpo.gov/fdsys/search/pagedetails.action?packageId=BUDGET-2013-BUD
http://sites.nationalacademies.org/PGA/step/PGA_058712

What Computational Scientists Need to Know 339

16. W. Fisher III. Reconstructing the fair use doctrine. Harvard Law Review,
101(8): 1659–1795, June 1988.

17. P. A. David. The economic logic of ‘Open Science’ and the balance
between private property rights and the public domain in scientific
data and information: A primer. SIEPR Discussion Paper No 02-30, 2005.
http://ideas.rhttp://www.nap.edu/openbook.php?record_id=10785&
page=19 (Accessed January 23, 2014.)

18. V. Stodden. Enabling reproducible research: Licensing for scientific
innovation. International Journal of Communications Law and Policy 13:
1–25, 2009.

19. V. Stodden. The legal framework for reproducible research in the
sciences: Licensing and copyright. IEEE Computing in Science and
Engineering 11(1): 35–40, January 2009.

20. V. Stodden. The scientific method in practice: Reproducibility in the com-
putational sciences, MIT Sloan Research Paper No. 4773-10. Available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1550193.

21. National Research Council. Responsible Science, Volume I: Ensuring
the Integrity of the Research Process. Washington, DC: The National
Academies Press, 1992.

22. National Research Council. For Attribution—Developing Data Attribution
and Citation Practices and Standards: Summary of an International Workshop.
Washington, DC: The National Academies Press, 2012.

http://ideas.rhttp://www.nap.edu/openbook.php?record_id=10785&page=19
http://ideas.rhttp://www.nap.edu/openbook.php?record_id=10785&page=19
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1550193

Part III

Platforms

13
Open Science in Machine Learning

Mikio L. Braun and Cheng Soon Ong

CONTENTS

13.1 Introduction . 343
13.2 What Is Machine Learning? . 345

13.2.1 Supervised, Unsupervised, and Reinforcement Learning 347
13.2.2 Role of the Dataset . 348
13.2.3 Applied Statistics, Data Mining, and Artificial

Intelligence . 349
13.3 Machine Learning and Reproducibility . 349

13.3.1 Openness . 350
13.4 Open-Source Software . 351

13.4.1 Open-Source Licenses . 352
13.4.2 Open-Source Collaboration Model . 353
13.4.3 Machine Learning and Open-Source Software 355

13.5 Open Access . 357
13.6 Open Data . 357

13.6.1 Machine Learning Dataset Repositories . 358
13.6.2 Business Models around Machine Learning Datasets 359

13.7 Future Challenges . 360
13.7.1 Interoperability and Standards . 360
13.7.2 Automation vs. Flexibility . 362
13.7.3 Nonstatic Data . 363

13.8 Outlook . 363
Acknowledgments . 363
References . 364

13.1 Introduction

The advent of Big Data has resulted in an urgent need for flexible analy-
sis tools. Machine learning addresses part of this need, providing a stable
of potential computational models for extracting knowledge from the flood
of data. In contrast to many areas of the natural sciences, such as physics,
chemistry, and biology, machine learning can be studied in an algorithmic

343

344 Implementing Reproducible Research

and computational fashion. In principle, machine learning experiments can
be precisely defined, leading to perfectly reproducible research. In fact, there
have been several efforts in the past of frameworks for reproducible exper-
iments [3,13,15,30]. Since machine learning is a data-driven approach, we
need to have access to carefully structured data [25], that would enable direct
comparison of the results of statistical estimation procedures. Some headway
has been seen in the statistics and bioinformatics community. The success of
R and Bioconductor [8,9] as well as projects such as Sweave [15] and Org-
mode [29] have resulted in the possibility to embed the code that produces
the results of the paper in the paper itself. The idea is to have a unified
computation and presentation, with the hope that it results in reproducible
research [14,24].

Machine learning is an area of research that spans both theoretical and
empirical results. For methodological advances, one key aspect of repro-
ducible research is the ability to compare a proposed approach with the
current state of the art. Such a comparison can be theoretical in nature,
but often a detailed theoretical analysis is not possible or may not tell the
whole story. In such cases, an empirical comparison is necessary. To produce
reproducible machine learning research, there are three main requirements
(paraphrased from [32]):

1. Software (possibly open source) that implements the method and
produces the figures and tables of results in the paper

2. Easily available (open) data on which the results are computed
3. A paper (possibly open access) describing the method clearly and

comprehensively

The approach taken by projects that embed computation into the description
may not be suitable for the machine learning community, as the datasets may
be large and computations may take significant amounts of time. Instead
of a unified presentation and computation document, we propose to have
independent interacting units of software, data, and documentation of the
scientific result.

Motivated by the ideals of the free and open-source software movement
and current trends for open access to research, we flavor our advocacy for
reproducible research with that of open science. It has been shown that
researchers who are not experts are likely to find solutions to scientific prob-
lems [7]. Corresponding to the three requirements for reproducible research
earlier, we advocate open-source software, open data, and open access to
research. Open-source software enables nonexperts to use the same tools
that engineers in professional organizations use. Open data enable non-
experimentalists access to measurements made under difficult and expen-
sive experimental conditions. Open access to research publications enables
nonspecialists to obtain the same information that scientists in well-funded

Open Science in Machine Learning 345

institutions can discover. The long-term goal is to make (often publicly
funded) results freely available to the general public to maximize the
potential impact of the scientific discoveries.

In recent years, there has been a move in machine learning to open sci-
ence. The theoretical contributions are freely available in an open access
journal, the Journal of Machine Learning Research, and from the proceedings of
several conferences. This journal also now accepts submissions to a special
section on open-source software. Furthermore, there is an active community
on mloss.org that provides a collection of open-source software projects in
machine learning. For empirical data, there have been several recent projects
such as mldata.org, mlcomp.org, tunedit.org, and kaggle.com, which pro-
vide a more computational focus than the earlier efforts such as the UCI
machine learning database. We envision that in the future there will be inter-
dependent units of software, data, and documentation that interact based on
common protocols.

In the rest of this chapter, we will relay our design choices and expe-
riences in organizing open-source software in machine learning and open
access to machine learning data. We briefly introduce the area of machine
learning and how to make it reproducible. After identifying similarities and
differences between reproducible research and open science, we advocate
open-source software and open data. Finally, we discuss several issues that
have arisen, such as standards for interoperability, and the trade-off between
automation and flexibility.

13.2 What Is Machine Learning?

Lying at the intersection of computation, mathematics and statistics,
machine learning aims to build predictive models from data. It is the design
and development of algorithms that allow computers to evolve behaviors
based on empirical data.∗ A more precise definition is given by [18]: “A
computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.” Refer to Figure 13.1 for
an illustration for supervised learning. The generality of the approach has
found application in various fields such as bioinformatics, social network
analysis, and computer vision. It is particularly useful when there are rel-
atively large amounts of data, and the desired outcomes are well defined.
For example, in bioinformatics, given the genome sequence of a particular
individual one might be interested to predict whether this person is likely to

∗ http://en.wikipedia.org/wiki/Machine_learning.

http://en.wikipedia.org/wiki/Machine_learning.

346 Implementing Reproducible Research

3. Evaluate performance
on test set

Prediction error
on training set

2. Train a classifier

1. Training data

Prediction errors

FIGURE 13.1
The different stages in a supervised learning application. The learning data are presented as
training dataset. On this training set, a classifier is trained to separate the two classes. Already
on the training set, the classifier might choose the predict different labels than the ones that are
specified if it assumes that there is noise in the dataset. The classifier is eventually evaluated on
an independent test set not available at training. This test set is used to estimate the expected
test error on unseen examples. Again, depending on the level of noise, the test error might be
nonzero for the optimal decision boundary. However, if the test error is much larger than the
training error, one says that the learning method has overfitted to the training data.

get a certain disease. Instead of more traditional approaches in biochemistry
of building mechanistic models of the process at hand, machine learning
directly tries to infer the prediction rule (diseased or not) from the data using
statistical methods. Naturally, expert domain knowledge is captured in this
process by constructing features from the known contributing factors of the
disease. There are numerous books describing machine learning in great
depth [1,2,16,18,21,28], and this section focuses on how machine learning
algorithms interact with experimental data, and how it is often used in the
natural sciences.

While the techniques of machine learning are widely applicable to
data-rich applications, machine learning researchers tend to focus on the

Open Science in Machine Learning 347

methodological questions. Experiments in computational science generally
have the following workflow [17]:

1. Preprocessing of data, using knowledge of the measurement process
to remove artifacts.

2. Feature construction and selection, aiming to capture the contribut-
ing factors.

3. Model construction and parameter estimation from training data,
resulting in a predictor. This is often called “training” or “learning.”

4. Preparation of test data. This is often done in parallel to the prepa-
ration of the training data above.

5. Evaluation and validation of estimated predictor on the test data.

While each step in this workflow is crucial to the success of the data anal-
ysis approach, machine learning tends to focus on step 3: choosing the
right computational representation of the problem and estimating the model
parameters from available data. One key characteristic of machine learning
approaches is the focus on “generalization error,” which is the estimated
performance of the trained method on future data. This emphasis on future
data is important because many machine learning approaches are so flexible
that they could exactly explain all the training data while capturing nothing
about the underlying process. This behavior is called “overfitting.” Hence,
the importance of steps 4 and 5 in the aforementioned workflow, in check-
ing the performance of the trained method on data that was not used during
training. Steps 1 and 2 in the aforementioned process require close collabo-
ration with domain experts, and it remains an open question whether this
creative process of converting human intuition into precise representations
on the computer can be fully automated.

13.2.1 Supervised, Unsupervised, and Reinforcement Learning

Machine learning problems can be broadly categorized into three approaches,
depending on the type of problem that needs to be solved:

• Supervised learning
• Unsupervised learning
• Reinforcement learning

Supervised learning is used when the training data consists of examples of
the input features along with their corresponding target values. For exam-
ple, disease classification uses the genome sequence as input features, and
the target value is a simple binary “yes/no” label. Depending on the type
of label required by the problem, this results in classification, regression, or

348 Implementing Reproducible Research

structured prediction. Note that it is often advantageous to consider a rep-
resentation of input features that are more amenable to computation. In the
aforementioned example, since there are many common sections between
the genomes of different individuals, the whole genome sequence may be
processed to identify relevant mutations and the mutations are used as fea-
tures instead. In recent years, many robust and efficient methods have been
developed for this well-specified problem.

In other applications, training data may not have corresponding labels.
This more exploratory mode of learning is called unsupervised learning and
is often used to discover structure within the data. The scientist may be
interested in discovering groups of similar examples (called clustering),
determining the distribution of the data (called density estimation), or find-
ing low-dimensional representations (called principle component analysis or
manifold learning). In contrast to supervised learning, unsupervised learn-
ing methods do not depend on manual human annotation to obtain the target
outputs. This allows a higher degree of automation in the data generation
process, but the final evaluation of the method and the results becomes con-
siderably more difficult. Naturally, there has been a spectrum of approaches,
collectively called semisupervised learning [5], which try to combine the
benefits of both supervised and unsupervised methods.

The aforementioned approaches, including the computational science
workflow, assume a “passive” application of machine learning. First, the
data are collected, then the computational approach is applied to analyze
the resulting data. However, data collection may be expensive or difficult,
and furthermore the experiment may include choosing different conditions.
Approaches called active learning and reinforcement learning are concerned
with finding suitable actions to take in a given situation. For example, a clas-
sifier may actively choose which individuals it would like to obtain a label
for during training. Or a robot may choose the action of moving to a new
location before collecting more data. As will be discussed later, these more
interactive data collection paradigms pose novel conceptual challenges to
reproducible research.

13.2.2 Role of the Dataset

The dataset plays an important role in machine learning because it typically
tackles problems where a formal explanation of the data analysis task is not
possible. One could even say that this is one of the distinguishing features of
the machine learning approach.

In theoretical computer science, for instance, problems are typically for-
mally defined. An introductory problem taught in basic computer science
courses is the problem of finding the shortest path in a graph. This can be
precisely defined in mathematical terms, and the value of the shortest path
can be formally verified. This means that for a given algorithm one can prove
that it indeed solves the problem. In addition, one may also prove theorems

Open Science in Machine Learning 349

about other aspects of the shortest path problem like the time it takes to
compute a solution.

For many machine learning problems, such a definition may not be pos-
sible. Consider the problem of handwritten character recognition where the
goal is to correctly classify images of handwritten digits. The problem here
is that there is no formal specification of what exactly the handwritten,
digitized image of a character looks like. The performance of the machine
learning algorithm can only be measured relative to the collected dataset,
which is in the aforementioned example the set of images of handwritten
numbers.

13.2.3 Applied Statistics, Data Mining, and Artificial Intelligence

As with any human defined separation between fields, what is labeled as
machine learning [1,2,16,18,21,28] instead of applied statistics, data mining
or artificial intelligence, tends to have more to do with the community that a
researcher belongs to than any particular technical difference. Nevertheless,
we shall attempt to outline some general trends in the different communities
in this section. It also serves as a brief guide to further literature for interested
readers.

Applied statistics [4,6,10,34] tends to focus more on theoretical under-
standing of the statistical properties, and traditionally has been focused
on regression-type estimation problems. Data mining [22,36] has a more
business-oriented origin, and has historically been focused on finding rela-
tionships in data in an unsupervised learning fashion. One example is
association rule mining, which discovers interesting relations between items
in databases, and has been popular in market basket analysis. In contrast to
machine learning, data mining aims to discover structure in a given dataset,
which makes evaluation of the discovery more challenging as it is hard to
know the true structure in a given dataset.

Machine learning is often considered to be a subfield of artificial intelli-
gence [12,27] where artificial intelligence is concerned with the study and
construction of computer algorithms that exhibit intelligent behavior. In
addition to learning, there is significant research on reasoning and planning,
which has traditionally been based on mathematical logic. In many real-
world problems, such as commuting to work, the solution involves multiple
steps that have to be in a particular order.

13.3 Machine Learning and Reproducibility

When it comes to reproducibility, an interesting aspect in machine learn-
ing is that reproducibility can be achieved to a higher degree by automation
than in other sciences. The reason is that all components of the research are

350 Implementing Reproducible Research

available on a computer. Unlike, say, experimental biology, where one has to
physically construct an experiment, machine learning is mostly about data.

As explained in the previous section, machine learning is concerned with
creating learning methods that perform well on certain application prob-
lems, and that can be verified independently by third parties. Therefore, a
research result consists of the method found, the dataset it has been evalu-
ated on, and a full description of the experimental setup, including feature
extraction and estimation of free model parameters. Requiring reproducibil-
ity therefore implies requiring publication of the method, the data, and the
experimental set up.

In statistics and for easily computable problems, there has been sig-
nificant progress in reproducible research that follows the vein of literate
programming [13]. The proposal is to embed the code for calculating the
results of the paper directly in the paper itself, hence simplifying manage-
ment of code and data, and significantly improving reproducibility of the
paper’s results. In recent years, there has been a trend in machine learning
to analyze large scale data, where a significant investment in time and com-
putational infrastructure is required to produce the results reported in the
paper. The model of embedding code and data into the generation of a PDF
paper does not scale to such issues, and a restructuring of what is means to
have reproducible results is required.

Since data mining has traditionally been applied to business intelligence
problems, it has been difficult to obtain access to such private and sensitive
data. In artificial intelligence, similar to the challenges faced when trying
to reproduce research in reinforcement learning, there are open questions
on how to compare and validate solutions. We will discuss this further in
Section 13.7.

For machine learning, we believe that by adopting the procedures and
concepts of open source, open data, and open access, one can create an envi-
ronment that supports reproducibility, encourages collaboration between
researchers, and removes many of the limitations and delays inherent in the
current scientific environment (Figure 13.2).

13.3.1 Openness

The idea of open-source software, which emerged in the 1980s, has interest-
ing connections to the problem of reproducibility, although its motivations
and goals are ultimately different. Open source is less about reproducibility,
but more an attempt to create a process for collaborative software creation,
which is not so different from the way science is organized.

Open-source software was the first in a whole series of movements about
openness to ease collaboration. Originally, open-source software emerged
as a countermovement to the increasingly commercial nature of writing soft-
ware. Software essentially became trade secrets. While open-source software
was first restricted to academia, it eventually became a widely accepted

Open Science in Machine Learning 351

Open
source

Open
science

Open
access

Open
data

FIGURE 13.2
Open science = Open-source software + Open access papers + Open data.

alternative to commercial closed source software. The Linux operating sys-
tem has helped a lot in this respect as it was one of the first large-scale pieces
of software completed in this way.

The open-source model for collaboration has since been copied in other
areas as well, of which the open data, open access, and open research move-
ments are the most relevant for our current discussion. As we will discuss
in much more detail in the context of open source in the next chapter, the
main aspect of these approaches is to create the legal and organizational
foundations for collaborative research. The licenses are just one facet of this
approach.

So openness is not mainly about reproducibility, but about collaboration.
To achieve reproducibility, it would suffice to publish the relevant pieces of
information under a classical copyright license, which would allow others to
reproduce the results, but would not allow them to directly reuse the code
and data.

One could argue whether openness is required for scientific progress,
but we believe that the community processes that come with openness sig-
nificantly simplify scientific collaboration and therefore help to speed up
scientific progress as a whole.

13.4 Open-Source Software

The basic idea of open-source software is very simple, programmers or users
can read, modify, and redistribute the source code of a piece of software.

352 Implementing Reproducible Research

TABLE 13.1

Attributes of Open-Source Software

1. Free redistribution
2. Source code
3. Derived works

4. Integrity of the author’s source code
5. No discrimination against persons or groups

6. No discrimination against fields of endeavor
7. Distribution of license

8. License must not be specific to a product
9. License must not restrict other software

10. License must be technology-neutral

Source: Open Source Initiative. http://www.opensource.org/
docs/osd.

The underlying idea is both to make software freely available and to estab-
lish a collaborative community where people contribute to software they
find interesting, weeding out bugs if they can, without relying on a software
company to take care of this.

The Open Source Initiative (OSI) has compiled a definition of open source
according to the criteria listed in Table 13.1. Note that this includes not dis-
criminating against certain persons or groups (e.g., by restricting the use
to certain countries) or uses (e.g., to include nonacademic uses). Software
that violates any of these requirements is not considered open source. For
example, software projects that restrict usage to “noncommercial use only”
or “research only” violates OSI definitions and should not be labeled open
source.

13.4.1 Open-Source Licenses

Since traditional copyright is the default in most country jurisdictions,
open-source software has to come with an explicit copyright license that
gives permissions for others to exercise the exclusive rights of copyright.
This permission is sometimes given under certain terms and conditions.
Since individual licenses might be hard and costly to enforce, people have
quickly begun to use a number of standard licenses. Organizations like the
Free Software Foundation (www.fsf.org) have also stepped in to defend the
GPL, LGPL, and AGPL licenses to set a legal precedent.

Table 13.2 collects key features of these licenses. A detailed comparison
of the different styles of licenses is beyond the scope of this chapter, and
the interested reader is referred to other resources [20]. The main differ-
ences to consider is whether one wants to ensure that derived work is again
open source or not. Also note that there is always the option of releasing
the software under a different license by the authors themselves. That way,

http://www.opensource.org/docs/osd.
http://www.opensource.org/docs/osd.
www.fsf.org

Open Science in Machine Learning 353

TABLE 13.2

The Rights of the Developer to Redistribute a Modified Product

License Apache BSD/MIT GPL LGPL MPL/CDDL CPL/EPL

Reciprocity No No Yes Maybe No No
Modification release No No Yes Yes Yes Yes

Patent Yes No No No Yes Yes
Jurisdiction Silent Silent Silent Silent California New York
Freedom PR Free PR PR Free PR

A comparison of open-source software licenses listed as “with strong communities” on http://
opensource.org/licenses/category. The reciprocity term of GPL states that if derivative works
from a GPLed licensed software are distributed in binary form, then the recipient of the binary
form must also be given the source code of the derivative work licensed under the same
GPL license. Other important questions are whether the source code to modifications must
be released (Modification release); whether it provides an explicit license of patents covering
the code (Patent); the legal jurisdiction the license falls under (Jurisdiction); freedom to adapt
license terms (Freedom) (PR = Permission Required from license drafter). Apache: License
used by the Apache web server; BSD: License under which the BSD Unix variant is released;
MIT: developed by the MIT; GPL/LGPL: (lesser) GNU General Public License; MPL: License
used by the Mozilla web browser; CDDL: Common Development and Distribution License
developed by Sun Microsystems based on the MPL; CPL: Common Public License published
by IBM; EPL: Eclipse Public License used by the Eclipse Foundation, derived from the CPL.

for example, companies can buy software from the authors by paying for an
alternative software license.

Another complication in choosing the right license is that some licenses
are not compatible with one another in the sense that one cannot combine
two pieces of software that have conflicting licenses because it would then
be impossible to satisfy both licenses at the same time.

Generally speaking, the BSD/MIT style licenses are the most admissi-
ble. They basically state that you are free to reuse the software as long as
the original copyright notices and the license stay intact. The GNU Public
License (GPL) requires that any derivative work is also published under the
GPL. Variants of this exist like the Lesser GPL (LGPL), which just linking by
a non-LGPLed work against a LGPLed library without modifying the library
is not defined as a derived work, or the Affero GPL, which even extends the
notion of derived work to include software that uses the original software
over some sort of network interface communication.

13.4.2 Open-Source Collaboration Model

As discussed in Section 13.3.1, while openness and reproducibility are not
equivalent, the open-source software movement has developed a number of
standards and processes that are also relevant for reproducible research.

http://opensource.org/licenses/category
http://opensource.org/licenses/category

354 Implementing Reproducible Research

Commit

CloneCode

Core
developers

DVCS

DVCS

+

Derived work

Put into
repository

Source code with license
that allows reuse

Code

Pull request or
difference by e-mail

Bug fixes
new features

FIGURE 13.3
An overview of the open-source collaboration model. The source code is released with a license
that permits collaboration. Typically, the source code is put into a distributed version control
system (DVCS) that tracks changes and lets people access the source code more easily. A group
of core developers (also known as “committers”) control which changes are incorporated in the
main code base. Other users can clone the source code, for example, to fix bugs. Changes are
offered to the core developers in the form of so-called pull requests, or by e-mail. The source
code can be incorporated into other projects that may again be published under an open-source
model.

One important component of open source, which is often overlooked, is
that open source is not simply a publishing model but comes with a commu-
nity that emphasizes collaborative work. The book by Raymond [26] gives a
good overview over this matter. Figure 13.3 illustrates this process.

Since the source code is freely available and may be modified by others,
in principle anyone with the necessary skill and motivation is able to con-
tribute to a project. The level of involvement ranges from fixing minor bugs,
to proposing new features, and finally joining the project as a main devel-
oper. In order to control the overall direction and consistency and quality
of the source code, projects are typically organized into different layers of
users. The way this typically works is that anyone may suggest minor fixes
or additions, but only a selected number of people are able to actually push
changes to the main source tree. Such users are called “committers” from
the technical term for adding a revision to a source control system. Within
the inner circle, any kind of organization is possible from strictly hierarchical
organizations to more or less egalitarian organizations.

Source code version control systems play an important role to facili-
tate collaboration in open-source projects. Two major categories of them
are available today: centralized and distributed. A source code version con-
trol system is a database that tracks the changes to source code such that
one can always revert changes or go back in time to earlier versions easily.

Open Science in Machine Learning 355

Typical examples are CVS (www.nongnu.org/cvs) or subversion (subversion.
apache.org).

One restriction of these systems is that there is only one central database
or repository to track the changes that makes coordination in large mul-
timodule projects difficult. Distributed version control systems (for exam-
ple, git git-scm.com, mercurial mercurial.selenic.com, or bazaar bazaar.
canonical.com) remove this restriction by making it easy to set up local copies
of existing repositories (this act is often referred to as “cloning”). People
can locally work on the code and offer their changes for integration with
the main repository (a process often called “pull request”). In addition, a
number of web services exist to give a more user-friendly web interface
to these version control systems for managing collaborators, controlling
access rights, and organizing software projects. Examples include source-
forge (sourceforge.net), github (github.com), Google code (code.google.
com), bitbucket (bitbucket.org), and many others.

Open-source software goes beyond simply making source code available.
By publishing the full source codes used in a scientific study, reproducibil-
ity can be supported in significant ways. But there are more benefits from
the open-source approach, which we will discuss in the context of machine
learning.

13.4.3 Machine Learning and Open-Source Software

By making machine learning methods available to others by source code,
fair comparison of methods is much easier. Instead of having to reconstruct
algorithms from the descriptions in the papers, one can simply reuse existing
software. Just as in open source, exposing all the details of the computation
also helps to uncover problems in the methods much more quickly. Adopt-
ing an open-source approach can help to transfer research results to distant
academic disciplines or even the industry much faster because people can
build on existing software and integrate them in their own products.

The open-source approach has the potential to further transform the
way scientists collaborate because it allows people to share their work
much sooner. Traditionally, researchers keep their results private until they
are published, based on the misconceived fear that others may steal their
results. This often leads to significant delays because the review process
takes months, sometimes years until a paper is published. Adopting an open-
source approach, researchers could put their work in progress into a version
control system that would track individual contributions of researchers and
also provide timestamps to resolve precedence between different research
groups. Using the open-source collaboration model brings us eventually to
the open research approach where all work in progress is made public to
invite collaboration already at an early stage.

www.nongnu.org/cvs
subversion.apache.org
subversion.apache.org
git-scm.com
mercurial.selenic.com
bazaar.canonical.com
bazaar.canonical.com
sourceforge.net
github.com
code.google.com
code.google.com
bitbucket.org

356 Implementing Reproducible Research

A number of different initiatives have been started in recent years to sup-
port the use of open-source software in machine learning. These efforts are
a first step toward making it easier and more rewarding for researchers to
publish their code under an open-source license.

Originally started as the Machine Learning Tools Satellite Workshop in
December 2005, researchers in the machine learning community first came
together a day before the annual Neural Information Processing Systems Con-
ference (nips.cc) to discuss possible ways to support machine learning. A
year later, a second workshop took place at the NIPS conference, with a
closing discussion that led to the position paper “The need for open source
software in machine Learning” [31]. Among the obstacles identified against
machine learning open-source software was that writing software is not con-
sidered a scientific contribution in academic circles, and hence there is no
incentive for researchers to publish source code. Furthermore, researchers
may not be good programmers, and there is entrenched behavior of review-
ers accepting papers that may not be reproducible, where the sloppiness
may hide more subtle problems. For more industrial laboratories, there is a
common misconception among management that open-source software con-
flicts with commercial interests. In fact, open-source software is commercial
software [35], particularly in terms of the federal regulations in the United
States.

To recognize the contribution of good software in academic currency, a
special machine learning open-source software track at the Journal of Machine
Learning Research (JMLR), and a community website mloss.org where peo-
ple can register their machine learning open-source software projects, were
created. The main motivation for the special track at the JMLR was to give
people a way to publish software. Otherwise, it would not seem wise to
spend a significant time on publishing software because this effort is not
captured in the usual metric used to measure scientific productivity.

As of November 2013, 501 projects are listed on mloss.org, and the JMLR
has published 55 papers on the special MLOSS track, which demonstrates
that the initiative has been very well received by the community. So far,
the initiative has been highly successful, but has focused mostly on the
“method” side of the problem to make machine learning research more
reproducible. Unfortunately, there has been little interaction in terms of com-
mon standards and interfaces that would make it much easier to exchange
pieces of software.

One problem is also that an open-source project has a much different life
cycle than a scientific publication. The main difference is that once a paper
is published, although one usually continues to research on the topic, the
publication stays fixed. A successful open source software project, on the
other hand, lives on and ideally attracts an active user and developer base.
The problem is that an open-source project can require a significant amount
of work to keep running, which is then not reflected in the aforementioned
publication model.

nips.cc
mloss.org
mloss.org

Open Science in Machine Learning 357

13.5 Open Access

In recent years, it has become accepted that open access is a desirable and
viable publication model for papers. Open access benefits researchers, insti-
tutions, nations, and society as a whole. For researchers, it brings increased
visibility, usage and impact for their work. Institutions enjoy the same ben-
efits as researchers but in aggregated form. Countries also benefit because
open access increases the impact of the research in which they invest pub-
lic money and therefore there is a better return on investment. Society
as a whole benefits because research is more efficient and more effective,
delivering better and faster outcomes for us all (www.openoasis.org).

Not only is open access a desirable avenue for research output, but it is in
fact practical and economically viable. Enabled by low-cost distribution on
the Internet, open access literature is digital, online, free of charge, and free of
most copyright and licensing restrictions. For example, Creative Commons
(creativecommons.org) lays out a flexible range of protections and freedoms
for authors, artists, and educators. Many journals (more than 8000 according
to www.doaj.org) have adopted the open access model. In fact, NIH supports
open access to research funded via its grants, but the publishers are fighting
back.

As mentioned in the introduction, machine learning has multiple open
access publication venues, including its flagship journal the Journal of
Machine Learning Research, and the proceedings of conferences such as the
International Conference on Machine Learning (ICML), Neural Information Pro-
cessing Systems (NIPS), the Conference on Uncertainty in Artificial Intelligence
(UAI), and the International Conference on Artificial Intelligence and Statistics
(AISTATS).

13.6 Open Data

Based on the model provided by open-source software and open access
papers, the approach has been extended to other areas, most notably
Open Data (opendatacommons.org). As mentioned earlier, datasets are very
important in machine learning because they define learning problems that
cannot be defined formally. A new well-designed dataset has the potential
to spark a completely new line of research.

Historically, machine learning publications mostly focused on new data
analysis methods, therefore datasets were often compiled or used for
publications that presented new methods. Another typical way to publish
datasets consists in organizing a challenge. Here, the challenge organizer

www.openoasis.org
creativecommons.org
www.doaj.org
opendatacommons.org

358 Implementing Reproducible Research

puts together a dataset, keeping part of the data private and inviting oth-
ers to develop methods for their datasets during a given challenge runtime.
Afterward, the methods are ranked on the private data based on the pub-
lished performance measure. The top performing methods are often invited
to publish in a special issue of a journal, or in a workshop.

Over time, such datasets are often collected in dataset repositories with
the goal of making it easier to find relevant datasets and existing results.
However, there still is not an open exchange in the same way as there is with
source code.

Part of this problem might be that while authorship is usually clear with
source code, the number of people involved in data acquisition is often
much larger, and often more interdisciplinary. Privacy and legal considera-
tions may be much more complex for data related to people such as medical
information.

13.6.1 Machine Learning Dataset Repositories

Recall that open science consists of three components: open-source soft-
ware, open access papers, and open data. While mloss.org provides the
“method” software, the actual experimental protocols for a particular paper
are not available, and neither is the data used for producing the results and
figures.

Several repositories focusing on machine learning datasets exist, for
example, the UCI machine learning repository (archive.ics.uci.edu/ml), or
the DELVE repository (www.cs.toronto.edu/~delve). These sites have quite
a long history, the DELVE site being run since 1995. Both sites host a
number of standard benchmark sets which have been used in hundreds of
publications.

Still, both sites do not allow for the level of interactivity that would be
require to become a main repository for open data exchange. Both sites
are rather static, one cannot simply add a dataset. The sites contain mostly
datasets that are generally considered to be too easy, with the focus lying
mostly on regression and binary classification. DELVE in particular has been
mostly unmaintained in the last few years.

When designing mldata.org, we had the goals in mind to create a com-
munity run website where people can publish datasets. The website has
mechanisms to stimulate interaction between users, such as tagging, discus-
sions, and ratings. The whole dataset can be edited in a wiki-like fashion,
such that the community can continually improve the archived data.

Another goal was to provide standardized means for benchmarking. The
DELVE repository has been rather ambitious in this respect, but to our
knowledge, it is currently referred to only for the datasets. As we will discuss
in more depth in Section 13.7, building and establishing a standard frame-
work for benchmarking datasets is a difficult task, but this problem has to be
solved ultimately to make machine learning research reproducible.

archive.ics.uci.edu/ml
www.cs.toronto.edu/~delve
mldata.org

Open Science in Machine Learning 359

Our website mldata.org supports four kinds of information: raw datasets,
learning tasks, learning methods, and challenges. A raw dataset is just some
data, while the learning task also specifies the input and output variables and
the cost function used in evaluation. A learning method is the description
of a full learning pipeline, including feature extraction and learner. One can
upload predicted labels for a dataset and a task to create a solution entry that
automatically evaluates the error on the predicted labels. Finally, a number
of learning tasks can be grouped to create a challenge.

Most of these data are text. We did not attempt a full formal specification
of the learning method, but as a first step, we defined a general file exchange
format for supervised learning based on HDF5, a structured compressed file
format. It is similar to an archive of files but has additional structure on the
level of the files, such that users can directly store and access matrices, or
numerical arrays. Using the specified file format is not mandatory, but using
it unlocks a number of additional features like a summary of the dataset and
converting the dataset into a number of other formats.

The website went live in 2007. To jump start the community, we
uploaded hundreds of freely available datasets. So far, our experience with
the website is mixed. As we will discuss in the final section of this chapter,
achieving an acceptable level of interoperability has to be balanced against
the complexity of the system. Here, we are still in a process to find the
optimal mix.

13.6.2 Business Models around Machine Learning Datasets

In recent years, other approaches to disseminating datasets have also
arrived. The idea is less about open data and providing a service to academia,
but more about building a platform between researchers who know data
analysis methods on companies that have interesting data.

These recent approaches are often organized around competitions, where
the datasets and prize money are provided by companies. One example is
kaggle (kaggle.com), where companies can set up their own competition.
Such websites became quite popular after the famous Netflix Prize chal-
lenge (www.netflixprize.com). Netflix, a provider of streaming video, set
up a competition where the person who could improve over Netflix existing
recommendation algorithm would win one million dollars.

However, the Netflix Prize also highlights some of the dangers of com-
petitions based on live business data. Netflix was eventually sued over
privacy concerns. Using competition data, researchers seemed to be able to
de-anonymize the datasets by correlating the data with other sites. Netflix
finally chose not to run a second competition [11].

Ultimately, such changes can also be seen as a cheap way for companies
to outsource data analysis work to graduate students in machine learning
and related fields. For competitions with many participants, the final prize

mldata.org
kaggle.com
www.netflixprize.com

360 Implementing Reproducible Research

money might be significantly less than what would have to be paid for the
joint work of all participants.

13.7 Future Challenges

We have discussed an approach to support reproducible research in the
area of machine learning based on adopting concepts and processes from
open-source software and extensions. We believe that the combination of
open-source software, open data, and open access leads to an environment
where researchers can efficiently exchange their results and reuse the work
of others. Still, a large number of challenges still exist that we will discuss in
the following.

13.7.1 Interoperability and Standards

Due to the reasons mentioned earlier, it is desirable to have independent
units of data, software, and computational resources that interact with one
another. Furthermore, within a particular application pipeline, different
parts of the pipeline such as the feature construction and classifier train-
ing may be provided by code from different software projects. One major
challenge when building a long workflow is to ensure that when replacing a
feature construction method with a novel approach, the whole pipeline still
functions as expected. This requirement goes beyond simple replicability,
but it is necessary in order to build large complex systems capable of solving
real-world problems. To achieve this, the community would have to agree
on certain standards or protocols of communication between the different
parts of a data processing pipeline.

As mentioned before, mloss.org and mldata.org are only first steps
toward the goal of open science in machine learning. We briefly review
several other projects that work toward the same goals.

In the area of statistics, a lot of integration has already been realized
in the form of the R programming language (r-project.org). R is an open-
source reimplementation of the commercial S programming language and
is similar in scope to other data analysis centered programming language
environments like the commercial MATLAB� or the Python-based scipy. It
provides specialized data types for dealing with all kinds of data and comes
with a large library of standard statistical and data analysis functions, as
well as libraries for plotting and visualization. In addition, it has a central
package repository called CRAN (cran.r-project.org) which makes it very
easy for researchers to publish their code and for others to install and use
it (Figure 13.4).

mloss.org
mldata.org
r-project.org
cran.r-project.org

Open Science in Machine Learning 361

Code

Bundle code
and document

R environment

Code+

Sweave

TeX

Docs

Package

Build reusable
Publish

module
CRAN

Install

>

Data

FIGURE 13.4
Overview of the R environment. R provides a very rich environment for data analysis, but one
of the main strengths of the system is the central package repository called CRAN, which allows
users to publish their code together with documentation and datasets easily, which can then be
installed painlessly by other users. Another component are libraries like Sweave or knitr, which
let users combine code and the LATEX code used to typeset document to achieve a very high level
of integration and reproducibility.

In statistics, R is the de facto standard, meaning that practically all papers
also publish their methods in high-quality code, often including datasets as
well. R also comes with very good documentation support, generating code
that can be used with the LATEX typesetting system, including example code
snippets. It is also possible to package datasets together with the code that is
a very good way to publish moderately sized datasets.

Finally, there are also the Sweave project, (www.statistik.lmu.de/
~leisch/Sweave/) and knitr (yihui.name/knitr) which are systems where
you can combine R code with the LATEX code to typeset your paper such
that the paper itself is turned into the code to produce your analysis results,
leading to a very high level of reproducibility.

The success of R hinges on the homogeneity of the research commu-
nity. For machine learning, the set of tools, programming languages, and
approaches has always been too diverse to be integrated in the same tight
fashion easily. For example, for real-time, or large-scale applications, the
performance of R is insufficient. Therefore, while the R example shows
the benefit of a tightly integrated infrastructure adopted by the majority of
the community, achieving this complexity for other areas will typically be
much more challenging.

www.statistik.lmu.de/~{}leisch/Sweave/
www.statistik.lmu.de/~{}leisch/Sweave/
yihui.name/knitr

362 Implementing Reproducible Research

For machine learning, one would have to integrate different program-
ming languages like MATLAB, Python, C, or Java, support different data
formats and data storage backends like databases, files, web services, and
also different operating systems.

One way to approach this problem is to develop formal abstractions and
descriptions to encode feature preprocessing and other operations and to
provide an interface that others can plug into. Two examples of currently
active projects are the ExpML project by Vanschoren et al. [33], who have
developed an XML schema for doing exactly this. The goal is to provide sup-
port for this XML schema in the major existing machine learning platforms
such that experiment descriptions can be automatically executed. The project
is also working on setting up an experiment repository in the same sense
as mldata.org and mloss.org. Other examples are tunedit.org and mlcomp.
org. These websites provide computing facilities for people to run their
methods on datasets and to collect benchmark results for a large number
of algorithms.

Another project is the “Protocols and Structures for Inference” project by
Mark Reid (psi.cecs.anu.edu.au), which also defines an interface language
for common machine learning interactions. Here, the focus is less on repro-
ducibility and open data, but more on laying the groundwork for improved
interoperability between the different pieces of code.

13.7.2 Automation vs. Flexibility

From our experience building mldata.org, we observed the following unfor-
tunate trade-off between automation and flexibility: We built an general
representation of tabular style data in HDF5 that captures many different
possible feature types, such as categorical, real valued, or strings. Using this
HDF5 representation, we could easily automate conversion between several
popular machine learning formats such as csv files, libsvm formats, and
MATLAB binaries. However, this led to a large proportion of the datasets
on mldata.org being of tabular form, and many users assumed that this was
the only acceptable structure.

On the other hand, mldata.org also accepts any file format as a dataset.
This flexibility means that we are unable to automatically convert between
formats that are convenient for different programming languages, and the
dataset is then less appealing to users.

In general, there is always the danger to create something so complex and
complicated to make the system practically unusable. A formal description
of a machine learning experimental setup quickly evolves to become a full
domain-specific language (DSL), just another programming language for the
user to learn.

One way to approach this dilemma is to focus on common cases and sim-
ple examples first, to keep the system simple and user-friendly. However,
there will always be cases that cannot be represented in such a system.

mldata.org
mloss.org
tunedit.org
mlcomp.org
mlcomp.org
psi.cecs.anu.edu.au
mldata.org

Open Science in Machine Learning 363

13.7.3 Nonstatic Data

In traditional machine learning settings, data are considered in a “batch,”
that is, the whole dataset is available and is fixed. However, in many recent
application areas such as social network analysis, there is a stream of data,
and the corresponding research area of online learning that continuously
updates the predictor has emerged. Defining reproducibility in such a setting
is challenging.

Furthermore, in the setting of reinforcement learning, the algorithm has a
choice of which data to receive and may even intervene in the environment.
Apart from highly contrived simulated examples, it is an open problem on
how to define reproducibility in such a setting.

13.8 Outlook

An open letter to the US congress signed by 25 Nobel laureates in 2004 states:
“Open access truly expands shared knowledge across scientific fields, it is
the best path for accelerating multi-disciplinary breakthroughs in research.”
This sentiment has extended to open data in recent years, quoting the Open
Knowledge Foundation [19]: “The more data is made openly available in
a useful manner, the greater the level of transparency and reproducibility
and hence the more efficient the scientific process becomes, to the benefit
of society.” In a data-driven field such as machine learning, the easy avail-
ability of methods and data are cornerstones of reproducibility and scientific
progress.

We believe that open source goes way beyond simply making your
source code available to others under a license that invites collaboration,
but is in fact a whole process for open collaboration, not unlike science.
Science has always favored open collaboration through publication of sci-
entific results. Isaac Newton is attributed with the famous quote “If I have
seen further it is by standing on the shoulders of giants.”, which reflects
the importance of sharing scientific results to accelerate scientific growth.
The open science model poses an interesting inspiration to transform the
scientific progress in the information age.

Acknowledgments

The authors thank Luis Ibanez and Lydia Knüfing for useful comments and
criticisms, which resulted in significant improvements in the chapter.

364 Implementing Reproducible Research

References

1. D. Barber. Bayesian Reasoning and Machine Learning. Cambridge Univer-
sity Press, New York, 2012.

2. C. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

3. J.B. Buckheit and D.L. Donoho. Wavelab and reproducible research.
Technical Report, Stanford, CA, 1995.

4. P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data.
Springer, Heidelberg, Germany, 2011.

5. O. Chapelle, B. Schölkopf, and A. Zien, eds. Semi-Supervised Learning.
MIT Press, Cambridge, MA, 2006.

6. B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Taylor &
Francis, Boca Raton, FL, 1994.

7. J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds. Perspectives on Free
and Open Source Software. MIT Press, Cambridge, MA, 2007.

8. R. Gentleman. Reproducible research: A bioinformatics case study. Stat
Appl Genet Mol Biol, 4(1):1034, 2005.

9. R. Gentleman and D.T. Lang. Statistical analyses and reproducible
research. Technical Report 2, Bioconductor Project Working Papers,
2004. http://biostats.bepress.com/biconductor/paper2 (Accessed
November 29, 2013).

10. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, New York, 2001.

11. N. Hunt. Netflix prize update. http://blog.netflix.com/2010/03/this-is-
neil-huntchief-product-officer.html, March 2010. (Accessed November
29, 2013).

12. M. Hutter. Universal Artificial Intelligence: Sequential Decisions Based on
Algorithmic Probability. Springer, Berlin, Germany, 2010.

13. D.E. Knuth. Literate programming. Comput J, 27(2):97–111, 1984.
14. J. Kovacevic. How to encourage and publish reproducible research.

IEEE International Conference on Acoustics, Speech and Signal Processing,
4:iv-1273–iv-1276, 2007.

15. F. Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. Härdle, W. and Rönz, B. (Eds.) COMSTAT, Proceedings in
Computational Statistics, Physika Verlag, Heidelberg, Germany, 2002.

16. S. Marsland. Machine Learning: An Algorithmic Perspective. CRC Press,
Boca Raton, FL, 2009.

17. J.P. Mesirov. Accessible reproducible research. Science, 327:415–416,
2010.

18. T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.
19. J.C. Molloy. The open knowledge foundation: Open data means better

science. PLoS Comput Biol, 9(12):e1001195, 2011.

http://biostats.bepress.com/biconductor/paper2

Open Science in Machine Learning 365

20. A. Morin, J. Urban, and P. Sliz. A quick guide to software licensing for
the scientist-programmer. PLoS Comput Biol, 8(7):e1002598, 07 2012.

21. K.P. Murphy. Machine Learning: a Probabilistic Perspective. MIT Press,
Cambridge, MA, 2012.

22. R. Nisbet, J. Elder IV, and G. Miner. Handbook of Statistical Analysis and
Data Mining Applications. Academic Press, Amsterdam, the Netherlands,
2009.

23. Open Source Initiative. The Open Source Definition. http://www.
opensource.org/docs/osd (Accessed November 29, 2013).

24. R.D. Peng. Reproducible research in computational science. Science,
334:1226–1227, 2011.

25. C.E. Rasmussen, R.M. Neal, G. Hinton, D. van Camp, M. Revow,
Z. Ghahramani, R. Kustra, and R. Tibshirani. Delve-Data for Evaluat-
ing Learning in Valid Experiments. http://www.cs.toronto.ca/~delve
(Accessed November 29, 2013).

26. E.S. Raymond. The Cathedral and the Bazaar. O’Reilly Media, 1999.
27. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 3rd

edn. Prentice Hall, Upper Saddle River, NJ, 2009.
28. B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press,

Cambridge, MA, 2002.
29. E. Schulte, D. Davison, T. Dye, and C.N Dominik. A multi-language

computing environment for literate programming and reproducible
research. J Stat Software, 46(3):1–24, 2012.

30. M. Schwab, M. Karrenbach, and J. Claerbout. Making scientific compu-
tations reproducible. Comput Sci Eng, 2(6):61–67, 2000.

31. S. Sonnenburg, M.L. Braun, C.S. Ong, S. Bengio, L. Bottou, G. Holmes,
Y. LeCun et al. The need for open source software in machine learning.
J Mach Learn Res, 8:2443–2466, 2007.

32. V. Stodden. The legal framework for reproducible research in the sci-
ences: Licensing and copyright. IEEE Comput Sci Eng, 11(1):35–40, 2009.

33. J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes. Experiment
databases—A new way to share, organize and learn from experiments.
Mach Learn, 87(2):127–158, 2012.

34. L. Wasserman. All of Statistics. Springer, New York, 2004.
35. D.A. Wheeler. Open source software is commercial. Software Tech

News, Data & Analysis Center for Software, Department of Defence,
USA, 14(1):16–19, 2011.

36. I.H. Witten, E. Frank, and M.A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Amsterdam,
the Netherlands, 2011.

http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd
http://www.cs.toronto.ca/~delve

14
RunMyCode.org: A Research-Reproducibility
Tool for Computational Sciences

Christophe Hurlin, Christophe Pérignon, and Victoria Stodden

CONTENTS

14.1 Introduction . 367
14.2 Why (Not) Sharing Code and Data . 370
14.3 Why Make Code Executable in the Cloud?. 371
14.4 Example of Computational Science: Economics . 372
14.5 How Does RunMyCode.org Work? . 373
14.6 Partnerships and Expansion . 380
References . 381

14.1 Introduction

Research reproducibility can be vastly improved by the open availability of
the code and data that generated the results. In this chapter, we present a
new web-based tool that aims to improve reproducibility in computational
sciences. The RunMyCode.org website gives published articles a companion
webpage from which visitors can (1) download the associated code and data
and (2) execute the code in the cloud directly through the RunMyCode.org
website. This permits results to be verified through the companion webpage
or on a user’s local system. RunMyCode.org also permits a user to upload
their own data to the companion webpage to check the code by running it on
novel datasets.

We present the structure of the RunMyCode.org system in Figure 14.1.
Researchers provide the code and data associated with their publication.
Users can either use the data provided by the researchers or provide their
own. Then the code and data are sent to the cloud. When the computation is
done, the results are sent back to the user.

The RunMyCode concept can be viewed as an attempt to provide, on
a large scale, an executable paper solution. The difference between this

367

368 Implementing Reproducible Research

FIGURE 14.1
The RunMyCode system. Note: Researchers provide the code and data associated with their
publication. Users can also provide their own data, which are sent to the cloud along with the
computer code. When ready, the results are sent back to the user.

and the executable paper approach proposed by the scientific publishers
(see, for instance, Elsevier’s Executable Paper Grand Challenge, 2011,
http://www.executablepapers.com) is that the companion webpage is not
encapsulated within the text of a scientific publication. In that sense, a com-
panion webpage can be considered as providing additional material for a
scientific publication, in particular the digital objects that permit verification
and replication of the published computational results.

Of course, being able to reproduce the main findings of scientific papers
is important for the scientific community itself, but it also matters for the
credibility of science in society. Furthermore, reproducibility is of primary
importance for governments and corporations since it is a necessary con-
dition to convert scientific ideas into economic growth. We summarize in
Figure 14.2 how the RunMyCode website can improve transfer of technol-
ogy from the academia to society (students, corporations, administrations,
general public, etc.). A key feature of the website is to reduce the technical
cost for users to access and use a new scientific technique.

RunMyCode has three main objectives. The first is to allow researchers
to quickly disseminate the results of their research to an international audi-
ence through an online service. This should lead to a notably increase
in the citations of certain academic articles. Second, RunMyCode aims to

http://www.executablepapers.com

RunMyCode.org 369

RESEARCHERS

STUDENTS GENERAL PUBLIC

ADMINISTRATIONS

OTHER RESEARCHERS COMPANIES

FIGURE 14.2
Improving transfer of technology. Note: The RunMyCode website aims to improve transfers
of technology within academia (researchers to researchers and researchers to students), from
the academia to companies, as well as from the academia to society (administrations, general
public).

provide a very large community of users—potentially beyond the academic
sphere—with the ability to use the latest scientific methods in a user-friendly
environment, for their own data and parameter values. To date, such
analyses were impossible for users without the necessary computing skills
to implement the methods in specific software. Third, it allows members
of the academic community (researchers, editors, referees, etc.) to replicate
scientific results and to demonstrate their robustness.

RunMyCode is an international academic project founded by economics
and statistics professors from Columbia University, HEC Paris, and Uni-
versity of Orléans (France) and engineers from CNRS (the French National
Science Foundation). RunMyCode is incorporated as a non-for-profit scien-
tific association and is funded by universities, national research agencies,
and foundations.

The rest of our chapter is structured as follows. In Section 14.2, we explain
why researchers should share their code and data and why they often do
not. We explain in Section 14.3 why, on top of sharing code and data, making
code running in the cloud is a further step toward full reproducibility. We
then take economics as an example of computational science (Section 14.4)
and we discuss the case of code and data sharing in this fields, as well as

370 Implementing Reproducible Research

executable code. Section 14.5 focuses more specifically on RunMyCode and
on its functioning, while Section 14.6 mentions several potential partnerships
and further developments for the RunMyCode initiative.

14.2 Why (Not) Sharing Code and Data

There are many good reasons to share the code and data associated with a
scientific paper. Lerner and Tirole (2002) show that in the context of open
source, researchers can benefit from enhancement of their reputation and
that of their potential value on the labor market. The availability of data
and codes is related not only to the reproducibility issue but also to the
dissemination and exploitation of academic research. Having access to such
resources improves the visibility of articles and their impact on both scien-
tific community and nonacademic sphere. A recent example is the V-Lab
(Volatility Lab) website launched in 2012 by Nobel laureate Robert Engle
at New York University in order to ease the diffusion of the systemic risk
measures proposed by Engle and his coauthors.

However, in practice, most researchers are still reluctant to share their
code and data. Borgman (2007) identifies four major factors preventing
systemic disclosure of code and data: (1) lack of incentives (citations or pro-
motion), (2) the effort required to clean data and codes, (3) the creation
of a competitive advantage over other fellows, and (4) intellectual prop-
erty issues. Similar impediments for reproducibility have been identified
in previous work (Stodden 2010) in a survey of 723 American academic
researchers. In her study, the main factors restraining researchers from mak-
ing computer codes available are the time for documenting and preparing
the codes (77% of subjects), the idea of having to answer questions from pos-
sible users (52%), and having no direct benefits (44%). A possible loss in
future publications was also indicated as a subsequent factor by 30% of the
researchers. Finally, in some research area, a significant fraction of research
is conducted using proprietary data. For instance, Glandon (2010) report
that 28% of the articles published in the top economics journal, the American
Economic Review, used confidential data.

RunMyCode.org solves several of the problems given earlier, confronting
computational scientists in 2007–2008 who wish to engage in reproducible
research. It removes the difficulty of hosting the code and data, it removes
the difficulty of installing and running (even correct) code on a local com-
puter system, and by providing the ability for users to execute the code in the
cloud, it minimizes the amount of support coders and authors are asked to
supply. RunMyCode.org also provides suggested citations, to help encour-
age a reward system that encourages code and data release, by giving credit
for these scientific contributions. RunMyCode.org provides a public date of

RunMyCode.org 371

creation of the companion webpage, helping to ensure primacy to those who
release code and data and encourage attribution. Perhaps most importantly,
RunMyCode.org provides a central field-independent platform to facilitate
both code and data sharing and the verification of published computational
results.

14.3 Why Make Code Executable in the Cloud?

We argue that sharing code and data would be a significant step toward
research reproducibility. However, it may not be a sufficient one. A fur-
ther step would be to make code running in the cloud. To make our point,
we present a landmark experiment conducted by researchers in economics.
McCullough et al. (2006) aimed to reproduce the results of the 266 papers
published in the Journal of Money, Credit and Banking between 1996 and 2003.
The replication team only had to use online material associated with the
266 papers available on the journal website, which had a data availability
requirement. Out of the 266 papers, 193 of them contain an empirical section
and, as such, should have data and/or code provided by their authors, in
compliance with journal policy. In reality, 35% of the papers had no online
material whatsoever, 5% had data but no code, and 4% had code written
in languages not supported by the replication team. Other research con-
firms this is not a situation unique to economics (see Alsheikh-Ali et al. 2011,
Tenopir et al. 2011, and Savage and Vickers 2009).

The main finding of this chapter is that a small fraction of the papers with
available data and code were reproduced to their full extent. Hence, shar-
ing code and data may not always be a sufficient condition for engaging in
reproducible research. Indeed, only 14 articles (7% of the sample) have been
reproduced. Several reasons can explain this extremely low reproducibility
rate. First, the authors of the original papers were not always careful enough
when preparing the final version of the code and data uploaded on the jour-
nal website. Hence, this material is hard to use and results hard to reproduce.
Second, there is typically very little and often no explanation on how to use
the online material (e.g., no readme file). This is due, in part, to the fact that
the editorial boards provided no strict guidelines about the code and data
submission process.

The case for executable script has recently been made in biostatistics
(Peng 2011). Indeed, in the journal Biostatistics, each article receives a mark
mentioned on the first page. “D” and “C” stand for available data and code,
respectively, whereas “R” signifies a reproducible article. In the latter case,
a “reproducibility review” (execution of the code on the original data) has
been performed by the editor on the request of the author. The journal hence
identifies four levels of reproducibility, from nonreproducibility to “gold

372 Implementing Reproducible Research

standard”: (1) publication only; (2) publication and code; (3) publication,
code, and data; and (4) publication and executable code and data.

14.4 Example of Computational Science: Economics

RunMyCode.org was first launched in economics and there are several
reasons for that. Over the last few decades, economics has become more
empirical and data-driven. Furthermore, economics is nowadays a highly
computational discipline, far ahead of many other social sciences. Numeri-
cal computation is now ubiquitous in modern economics: statistical analysis,
estimation, optimization, simulation, numerical equation solving, and the
entire spectrum of econometrics. Barrou (2008) reports that the fraction of
theoretical papers published in the top economics journal, American Economic
Review, dropped from 70% in the 1970s to 20% in the recent years. Further
evidence is provided in the survey of Kim et al. (2006) of all the articles with
more than 500 citations from top economics and management journals. They
show that at the beginning of the 1970s, 77% of these papers were theoretical
and 11% empirical. By the end of the 1990s, the proportions were reversed:
11% theoretical vs. 60% empirical.

Another reason that contributed to the development of an executable-
code platform is the fact that scripts and data tend to be smaller than in many
other computational sciences. There are some recent exceptions though in
economics with datasets of several terabytes of high-frequency financial
transaction data or shopper data at retailers.

Since the 2000s, mainly top-ranked economics journals, such as American
Economic Review and Econometrica, have created data and code/script archiv-
ing systems. However, as noted by McCullough and Vinod (2003), sharing
code and data have remained on a voluntary basis for a while. In 2004, the
chief editor of the American Economic Review, Ben Bernanke, decided to make
mandatory data and code submission after publication. Glandon (2010) stud-
ies the performance of this policy in 2007–2008 and shows that only 79% of
the published papers could be replicated without contacting the authors.
Another scientific policy recommendation would be to require the code
and data associated with a scientific work prior to its publication (without
making them publicly available yet).

While discussions among economics journals focused on disclosure of
scripts and/or data, we are aware of only one paper advocating executable
scripts. In a pioneering article, Phillips (2003), one of the best econometri-
cians in the world, describes an Internet service for automatic forecasting
similar in some respects with the RunMyCode companion website concept.
Phillips anticipates that the future of economic forecasting is in automatic
Internet-based econometric modeling, which he calls Interactive Econometric

RunMyCode.org 373

Web Service (IEWS). Phillips imagined a web interface on which different
forecasting methods are presented. The user is allowed to choose the param-
eters and options. The results are executed on a local server and displayed
in the webpage as tables and graphs. He then summarizes the advantages of
his IEWS:

Perhaps the main advantage of econometric web services of this kind is
that they open up good practice econometric technique to a community
of users, including unsophisticated users who have little or no knowl-
edge of econometrics and no access to econometric software packages.
Much as users can presently connect to financial web sites and see graph-
ics of financial asset prices over user-selected time periods at the click
of a mouse button, this software and econometric methodology make it
possible for users to perform reasonably advanced econometric calcula-
tions in the same way. The web service can be made available on a 24/7
basis so that people can perform online calculations in presentations and
lectures.

Phillips (2003), The Law and Limits of Econometrics, p. 25

Phillips’ paper has been a major source of inspiration for the RunMyCode
project. The companion website proposed by RunMyCode can be seen as a
generalization of Phillips’ IEWS.

14.5 How Does RunMyCode.org Work?

RunMyCode is based on the concept of a companion webpage associated
with a scientific publication. It allows people to run online computer scripts
associated with an article, the results being automatically displayed to
the user as a SaaS (software as a service), or to download the script and
demo data directly. The companion webpage is thought of as a frame of
the scientific publication making it possible to both download the research
resources associated with publications and to simply use them through the
web to check the robustness, performance, and reproducibility of the results.

An example of a companion website is presented in Figure 14.3. A sci-
entific paper’s companion webpage on RunMyCode.org is structured as
follows. The upper panel displays information about the paper, including
a direct link to the pdf file and the abstract, and the authors. The interme-
diate panel contains information about the coders (i.e., the researchers who
wrote the code and who may not be the original authors of the paper) along
with a description of the goal of the code. The lower panel allows the user to
upload the data, select models, and set parameters values. Finally, the green
RunMyCode button launches the computation.

374 Implementing Reproducible Research

FIGURE 14.3
Example of a scientific paper’s companion webpage on RunMyCode.org.

RunMyCode.org.

RunMyCode.org 375

As shown in Figure 14.1, RunMyCode plays the role of an intermedi-
ary between the researchers offering the code (which may, in some cases,
be different from the authors of the publication) and the users (researchers,
students, public administration, private firms, etc.). RunMyCode allows
researchers to create a custom companion webpage online without any par-
ticular computing skills. This is a six-step process, each of them requiring the
author to give some information about the publication and the coauthors, as
well as a clear description of the variables and input parameters of the com-
puter code. The author can declare five types of inputs: scalar, vector, matrix,
text, choice list, and file (in this case, he or she defines the type of file, such
as an image file). For any other type of inputs, the author is asked to give
particular recommendation to our technical team. In contrast, no informa-
tion about the output is required: the companion webpage reproduces the
output of the computer code (tables, figures, numerical values, text, image,
etc.) as it would appear on the researcher’s personal computer. The final task
of the researcher is to preview and validate their companion webpage.

The RunMyCode back end can take scripts or code, where the code needs
to be compiled before execution and scripts are interpreted at runtime only
and need not to be compiled. Currently, it is possible to create a compan-
ion webpage from code written in C++, Fortran, MATLAB�, R, and RATS.
More software will be added in the near future, especially Python.

Note that the creation of a companion webpage does not typically require
any modification to the original script/code and as such requires no addi-
tional effort from the researcher. The source scripts are simply encapsulated
and sometimes transformed into an executable on the RunMyCode system.
For instance, MATLAB scripts are compiled and then run with the MATLAB
Compiler Runtime (MCR). The MCR is a stand-alone set of shared libraries
that enables the execution of compiled MATLAB applications that do not
have MATLAB installed. For other software (for instance, specific econo-
metric software such as RATS), the scripts cannot be transformed into an
executable file. In this case, the script is simply used in batch mode. The
source codes are compiled according to the recommendation provided by
the author, and when the code uses some specific libraries, we use exactly the
same libraries. RunMyCode runs in the Linux environment. If a code runs on
a specific Windows system, we emulate a virtual machine (Windows) with
the same environment as that used by the author.

During this process (called preproduction), we may introduce some addi-
tional instructions in the original script if necessary in order to (1) link it with
the inputs provided by the companion websites and (2) format the results in
a pdf file. Indeed, once the job is executed, a posttreatment is done from the
raw results issued from the software. This posttreatment is done with LaTeX:
all the numerical results (tables) and all the comments (text) produced by the
codes are automatically saved in tex format. An automatic program compiles
these results to produce a pdf file. The visual results (figure) are saved in an

376 Implementing Reproducible Research

eps format and included in the LaTeX file during the posttreatment process.
Currently, they are published in the same pdf file as the other numerical
results. In the future, we plan to improve this mechanism in order to produce
the results and the figure in html.

During this preproduction process, we check the code to ensure that
the required inputs match the descriptions and constraints provided by the
author. Note that this is not a scientific validation. We only check for typical
bugs (infinite loops) for the duration of the computing process and for secu-
rity (malicious codes). Note that RunMyCode is responsible for the security
of the codes that are submitted to our cloud provider. But, the cloud provider
has also its own security rules that are not specific to RunMyCode.

Once the website is created, it enters the validation stage. First, the
authors or coders validate it. Then, the editorial team checks whether the
topic complies with the editorial policy of the website, similar to arXiv, for
example, or any peer-reviewed academic journal. Finally, a technical vali-
dation of the code is undertaken, which focuses on its robustness, security,
CPU requirements, and computing time.

Once the validation step is completed, the code is uploaded on the cloud
and the companion webpage goes online. Companion websites can be found
directly on the web, through any search engine, or starting from the RunMy-
Code website. Each contributor within RunMyCode is given a unique profile
called a “coder page.” This permits the researcher to find and connect with
people working on similar or other interesting problems. Most importantly,
it offers various statistics on the visibility of their websites: number of visits,
number of executions of the code, number of downloads, etc.

Developing the concept of executable papers is an important issue nowa-
days for the major scientific editors worldwide. PDF publications can no
longer be considered as the ultimate stage in scientific research. For example,
two major conferences called “Beyond the PDF” were organized in 2011 and
2013.∗ As another example, Reed Elsevier issued a call for tenders in 2010, for
the executable paper concept. Its objective was to find ways to easily repli-
cate the results of scientific publications. Nevertheless, to our knowledge, no
functional form of the executable paper concept has been proposed so far
and no published article describes or proposes such services in economics
and management.

As an illustration, we show in Figure 14.4 how a specific result can be
reproduced with a RunMyCode companion website. Consider a given study
in which one of the key results is a plot of the value of a Y variable that
depends on an X variable. With the companion website, one can reproduce
the result published in the original paper using the same parameter values as
in the paper (n = 100 in this example). However, as shown in Figure 14.4, one
can also launch the computation using different parameter values (n = 50)

∗ See https://sites.google.com/site/beyondthepdf/ and http://www.force11.org/
beyondthepdf2.

https://sites.google.com/site/beyondthepdf/
http://www.force11.org/beyondthepdf2.
http://www.force11.org/beyondthepdf2.

RunMyCode.org 377

FIGURE 14.4
Reproduced and generalized computational results.

and see whether the key result is robust to a change in the value of one or
several parameters.

Figure 14.5 gives a representation of the RunMyCode system.
RunMyCode is based on a cloud computing architecture type and a mes-

sage routing mechanism built on message-oriented middleware (MOM). The
message includes the data and all the parameters needed to run the script on
the cloud. For all the applications, cloud facilities are provided by the French
National Research Agency (CNRS)’s TGE Adonis. The management of the
jobs is done through the distributed task manager (DTM) application pro-
vided by the TGE Adonis (CNRS). DTM is a lightweight tool for submitting
and monitoring jobs through a local batch scheduler, gLite grid, and local
Linux/Unix host. Jobs in DTM may consist of one or several tasks. The Run-
MyCode jobs are registered and then they are executed by DTM jobs agents
in SGE or grid. Once the posttreatment is ended, the website receives the
information and displays the results to the user. If the user is still on the
companion website, he or she can display the results by clicking on the but-
ton “view” of his or her computing queue. If the user browses other sites, or
if he or she is logged out, he or she can retrieve his or her results on the tab
“past results.”

There is no mechanism to check if the code halts in a reasonable time,
since the length of the process may vary with the inputs or parameter
choices provided by the user. In order to ensure that no process will hog
the computational resources, we only fix a limit in terms of CPU time (10 h).

378 Implementing Reproducible Research

FI
G

U
R

E
14

.5
R

un
M

yC
od

e
sy

st
em

w
or

kf
lo

w
.

RunMyCode.org 379

Currently, each job is submitted to a specific node of the computing cloud
and so we do not use parallelization at this point. Because of this, the current
architecture of RunMyCode generally does not provide better time perfor-
mances that the user would have on his or her personal computer or personal
system. On the contrary, the performance is generally worse due to the task
scheduler, the check on the inputs, etc. But, improvement of compute time is
on our working agenda (Box 14.1).

BOX 14.1 WHAT DO I NEED TO CREATE A COMPANION
WEBSITE?

The making of a companion website is the following. Users will be
able to generate automatically their own companion website from their
computer codes. They follow the following process:

1. Computer
code created by the coder

2. Step-by-step
protocol (see below)

3. Companion
website automatically generated

In the step-by-step protocol, the coder provides information about (1)
the scientific paper, (2) the coders, (3) the code and the software, (4) the
inputs (e.g., variables), and (5) the outputs. The first step requires very
standard information about the publication: the name of the authors,
the affiliations, the abstract, the DOI or the link to the publication
(published article or working paper), some key words, etc. The second
step consists in listing the authors of the codes or the scripts. In order
to avoid confusion with the authors of the scientific publication, we
introduce use the term “coders.” Indeed, the coders may not be the
authors of the publication, which is actually generally the case. The third
step consists of declaring the main information about the code or the
scripts. The coder has to upload all the required files (main codes and

(continued)

380 Implementing Reproducible Research

BOX 14.1 (continued)

subfiles or library), eventually in zip format, for the execution. We also
ask for some information about the software used (the list is currently
limited to MATLAB, C, R, Fortran, C++, Python, or RATS, although if
the software can run on a Linux system, RunMyCode can probably sup-
port it), the version, the architecture (32 or 64 bit), and the compiler (for
the codes only). The coder has also to provide a description of the goal of
the code that will be displayed on the companion website. This descrip-
tion may be different from the abstract of the paper and may be designed
to give all the required information to the future user of the companion
website. The coder has also the possibility of uploading a pdf file if this
description is longer than 800 characters. Finally, the coder could also
provide a copy of the results (pdf file) obtained with the demo data.

The fourth step is the most crucial. The coder is asked to describe all
the inputs of the codes. For each input, the coder has to declare the type
(scalar, text, vector, matrix, choice list, or file), the label that it will be
displayed on the companion website, and the name of this variable in
the code/script. The application checks in the main code if this name is
present. Then, for each input, the coder has to provide a value (for the
scalar or text types) or a set of demo data. The coder could also provide a
text description of these inputs and these demo data. These descriptions
will be displayed on the companion website. Then, the coder gets a first
visualization of the input form of his or her future companion website:
each type of input is associated to a particular object (box for the scalar
and text, choice list, etc.). He or she has the possibility to design this form
by dragging and dropping all these objects.

The last step consists in declaring the outputs. This step is very lim-
ited, since by default, RunMyCode will reproduce the same presentation
of the results (tables, figures, etc.) as that the user would obtain on his
or her personal computer. All these inputs are included in a pdf file.
So this last step is only devoted to the cases where the code produces
some numerical data useful to the user. In this case, the coder declares
the name and the label of all the corresponding variables in the code. The
results contained in these variables will be stored in a csv file and can be
downloaded by the user.

14.6 Partnerships and Expansion

To develop its operations, RunMyCode is currently partnering with scien-
tific publishers, scientific association, editorial boards of scientific journals,

RunMyCode.org 381

conference and workshop organizers, pdf archives, and digital archiving
services.

References

Alsheikh-Ali, A.A., W. Qureshi, M.H. Al-Mallah, and J.P.A. Ioannidis (2011)
Public availability of published research data in high-impact journals.
PLoS ONE 6(9): e24357. doi:10.1371/journal.pone.0024357.

Barrou, V. (2008) L’économie expérimentale: Un nouvel outil pour les SES?,
Idées économiques et sociale, 3:48–56. doi: 10.3917/idee.153.0048.

Borgman, C.L. (2007) Scholarship in the Digital Age: Information, Infrastructure,
and the Internet. MIT Press.

Elsevier’s Executable Paper Grand Challenge (2011). http://www.
executablepapers.com

Glandon, P. (2010) Report on the American Economic Review Data Avail-
ability Compliance Project, http://www.aeaweb.org/aer/2011_Data_
Compliance_Report.pdf

Kim, E.H., A. Morse, and L. Zingales (2006) What has mattered to economics
since 1970?. The Journal of Economic Perspectives 20(4): 189–202.

Lerner, J. and J. Tirole (2002) Some simple economics of open source. Journal
of Industrial Economics 50(2): 197–234.

McCullough, B.D., K.A. McGeary, and T. Harrison (2006) Lessons from the
JMCB archive. Journal of Money, Credit and Banking 38(4): 1093–1107.

McCullough, B.D. and H.D. Vinod (2003) Verifying the solution from a
nonlinear solver: A case study. American Economic Review, 93(3): 873–892.

Peng, R.D. (2011) Reproducible research in computational science. Science
334: 1226–1229.

Phillips, P.C.B. (2003) Law and limits of econometrics. The Economic Journal
113: 26–52.

Savage, C.J. and A.J. Vickers (2009) Empirical study of data shar-
ing by authors publishing in PLoS Journals. PLoS ONE 4(9): e7078.
doi:10.1371/journal.pone.0007078.

Stodden, V (2010) The scientific method in practice: Reproducibility in the
computational sciences. MIT Sloan School Working Paper 4773-10. Avail-
able at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1550193

Tenopir, C., S. Allard, K. Douglass, A.U. Aydinoglu, L. Wu et al. (2011) Data
sharing by scientists: Practices and perceptions. PLoS ONE 6(6): e21101.
doi:10.1371/journal.pone.0021101.

http://www.executablepapers.com
http://www.executablepapers.com
http://www.aeaweb.org/aer/2011{_}Data{_}Compliance{_}Report.pdf
http://www.aeaweb.org/aer/2011{_}Data{_}Compliance{_}Report.pdf

15
Open Science and the Role of Publishers in
Reproducible Research

Iain Hrynaszkiewicz, Peter Li, and Scott Edmunds

CONTENTS

15.1 Evolution of Policies on Open Access and Open Data
in the Life Sciences . 384
15.1.1 Open-Access Publishing, BioMed Central, and the

Literature as a Resource for Science . 384
15.1.2 Licensing the Literature for Reuse. 385

15.2 Publisher-Community Policies Supporting Reproducible
Research . 387
15.2.1 Supplementary Materials . 387
15.2.2 Journal and Publisher Policies on Data Sharing 388

15.3 Field-Specific Policies, Standards, and Challenges . 392
15.3.1 Data Sharing in Genomics . 392

15.3.1.1 Sequencing Data Standardization . 393
15.3.1.2 Source Code . 394

15.3.2 MIBBI, BioSharing, and Data Interoperability 395
15.4 Toward Reproducible Research Licensing of Content in

Open-Access Journals. 397
15.4.1 Defining Data . 398

15.5 Community–Publisher Collaborations and Tools for
Reproducible Research . 400
15.5.1 LabArchives and BioMed Central . 400
15.5.2 GitHub and BioMed Central . 401
15.5.3 Data Publication, Data Citation, and GigaScience 402
15.5.4 GigaScience and Adventures in Data Citation. 403
15.5.5 Use of the Cloud as a Reproducibility and Reviewing

Environment . 404
15.5.6 Workflow Systems . 406

15.6 Role of the “Reproducible Research Publisher” of the Future 407
15.7 Summary . 409
References . 410

383

384 Implementing Reproducible Research

15.1 Evolution of Policies on Open Access and Open Data
in the Life Sciences

When we read about the claims made in scientific papers, we tend to believe
that they have been written by their authors in good faith. The process of
science therefore demands the highest ethics and quality in order for the
content of a scientific paper to be taken at face value. However, the increasing
number of retractions in the scientific literature suggests that peer review is
not of sufficient rigor to assess whether the results reported in papers can in
fact be reproduced.1 It is often only the results and conclusions of a study
that are examined, while the methodology, raw data, and the source code
used to generate the results of a paper are usually not fully evaluated.

15.1.1 Open-Access Publishing, BioMed Central, and the Literature
as a Resource for Science

Openness enables reproducibility, and reproducible computational research
requires openness in all products of research. Open data and code must
be supported by full and accurate descriptions of the experiments as ini-
tially proposed (protocols) and as eventually carried out (methods and
results).2 Openness in scientific papers (journal articles) is encompassed by
open-access publishing.

Open access to scholarly articles is generally achieved through two mech-
anisms. First, scholars or their institutions can “self-archive” and share
peer-reviewed prepublication versions of papers, which have been accepted
for publication in journals. This happened before, and after, digital scholar-
ship was possible and is known as “green” open access. Second, scholars can
publish their papers in open-access journals, known as gold open access,3

which is the focus of this section. The first free-to-access online journals
emerged soon after the introduction of the World Wide Web,4 but charac-
teristics of open-access publishing in the twenty-first century have helped
the literature itself to become a scientific resource.

Open access to journal articles enables them to be read online without a
subscription, but open access is about more than accessibility. Open access to
journal articles is also about reusability, which means considering the format
in which the literature is available and the copyright license under which
it is published. This emerged from three overlapping definitions of open
access resulting from three influential meetings (in Budapest, February 2002;
Bethesda, June 2003; and Berlin, October 2003), which subsequently released
public statements.3 The Budapest definition states: “By ‘open access’ to this
literature, we mean its free availability on the public internet, permitting any
users to read, download, copy, distribute, print, search, or link to the full
texts of these articles, crawl them for indexing, pass them as data to software,

Open Science and the Role of Publishers in Reproducible Research 385

or use them for any other lawful purpose, without financial, legal, or techni-
cal barriers other than those inseparable from gaining access to the internet
itself.”5 This is the most pertinent definition when deriving reproducibility
from the published literature. The Budapest, Bethesda, and Berlin (BBB) def-
initions of open access unified policies on copyright in scholarly works and
unified practices in how electronic literature should be formatted and struc-
tured. These policies and practices had already been put into practice, in
2000, by the first commercial open-access publisher BioMed Central and the
full-text open-access repository funded by the National Institutes of Health
(NIH), PubMed Central.

The idea for creating an online, open-access life-science publisher
emerged in 1998 from a meeting between the publishing entrepreneur
Vitek Tracz, chairman of the Science Navigation Group in London,
United Kingdom, and David Lipman, director of the National Cen-
ter for Biotechnology Information (NCBI) in the United States. Lip-
man’s responsibilities include infrastructure for the implementation of
data-sharing policies in genomics—databases such as GenBank—and the
bibliographic database PubMed. After Lipman discussed the idea with
the then director of the NIH Harold Varmus, a proposal emerged for
E-BIOMED, an NIH-sponsored free, full-text research publishing platform.6

However, a large research funder’s potential conflict of interest in becoming,
or being seen to be, a publisher meant that the NIH could only ever provide
a repository for full-text open-access articles originally published elsewhere.
As a result, BioMed Central was conceived as a publisher of online biology
and medical journals to support deposition of content in the repository. The
repository was launched, as PubMed Central, in February 2000.7 BioMed
Central began accepting its first submissions in May 2000, with an inclusive
editorial and peer-review policy focusing on scientific accuracy rather than
interest, including publication of negative results and single experiments.8

Both PubMed Central and BioMed Central publish the full text of arti-
cles in an open standardized XML format with a document type definition
(DTD) to enable efficient filtering and querying of content. This approach,
under open access, enables the rapid development of computational analysis
tools—so the literature itself becomes a scientific resource.

15.1.2 Licensing the Literature for Reuse

Efficient reuse of published research requires that the appropriate legal
tools—copyright licenses—be put in place by publishers and rights hold-
ers. Legal restrictions, engrained in traditional copyright transfer agree-
ments, on the sharing and reuse of the products of scientific research
are another barrier to reproducibility. In its first author license agree-
ment, BioMed Central authors retained copyright in their work, with the
publisher acting as a provider of layout, archiving, and peer-review coor-
dination services. Authors were free to redistribute their work as they

386 Implementing Reproducible Research

wished, with the only requirement being attribution of the original pub-
lisher. This was—and generally still is—in contrast to the traditional model
of science publishing, where researchers typically work for several years
on a piece of research and then hand exclusive rights to display and dis-
tribute that work to a publisher who controls access to the work. In 2004,
BioMed Central’s license agreement was made consistent with the Creative
Commons Attribution License9 (CC-BY), which has emerged as the gold
standard for licensing journal articles under an open-access model in STM
publishing.

There are several derivatives of the Creative Commons Attribution
License, with CC-BY being the most liberal. The only requirement for shar-
ing, redistribution, reproduction, remixing, reuse, and translation of content
published under CC-BY is attribution of the original author who retains
copyright. The use of CC-BY for papers fits with the reproducible research
standard proposed by Stodden10 and is compatible with scientific norms as
citation practices ensure that reuses of scientific media, such as descriptive
text within papers, and images, are credited to the original author(s). Less
liberal derivatives of CC-BY, such as CC-BY-NC, which restricts commer-
cial reuse, are discouraged for open-access publishing but are used by a
number of publishers. As Mike Carroll, who sits on the board of Creative
Commons, explains: “Granting readers full reuse rights unleashes the full
range of human creativity to translate, combine, analyze, adapt, and pre-
serve the scientific record.” Commercial use restrictions also affect authors
who, for example, could not upload images to Wikipedia if they published
their research in a journal, which restricts commercial use. Also, commercial
organizations can assist with the preservation of content (e.g., if a publisher
went out of business and a new commercial publisher wished to republish
content to make it available to readers). It is presumed that some publishers
restrict commercial use to protect revenue streams from services such as the
sale of reprints and the future development of commercially valuable text-
mining applications.11 However, publishers permitting commercial reuse
of content and gaining commercially from CC-BY content are not mutually
exclusive.

The Open Access Scholarly Publishers Association (OASPA), which
includes many traditionally subscription-based publishers who have set up
open-access journals, sets standards for content licensing. OASPA strongly
encourages the use of CC-BY “to fully realize the potential of open access
to research literature.”12 CC-BY-NC is the least liberal license permitted
for membership of OASPA. It was reported in 2012 that 17% of the schol-
arly literature published in 2011, and indexed by the largest citation and
abstract database Scopus, was published as open access.13 Scholarly pub-
lishing is growing, but open access is growing faster than publishing under
the subscription model.14 These are promising developments for promoting
barrier-free reproducible science, which uses the published literature as a
resource.

Open Science and the Role of Publishers in Reproducible Research 387

15.2 Publisher-Community Policies Supporting
Reproducible Research

15.2.1 Supplementary Materials

Online publishing in journals enables the publication of more than just dig-
itized paper-based documents. Many journals include supplementary mate-
rials, which are referred to as additional files by BioMed Central. Despite the
fact that supplementary materials can be limited to relatively small file sizes
since publishers typically allow files of only 10–20 MB each to be included
with online articles, reproducibility is enabled when these files contain data
and code supporting the reported results in a paper. In principle, any file for-
mats can be uploaded for publication, but formats that facilitate reuse—open
formats that are not platform specific and are viewable using freely available
tools—are generally preferred to proprietary file formats.15

Online supplementary materials have been a subject of debate in schol-
arly publishing, particularly in 2010 when the Journal of Neuroscience
announced it would no longer accept supplementary material.16 The main
reason stated by the Journal—not wanting to overburden peer reviewers—
was honorable, but misguided when considered in the context of online-only
journals. Although the vital services provided by a limited number of peer
reviewers should be used as efficiently as possible, the expectation that every
reviewer should reanalyze a dataset provided as an additional file is unreal-
istic. Journal editors often invite reviewers with specific expertise pertaining
to certain parts of a paper, such as a particular statistical technique. Making
data and code available as supplementary material promotes transparency
and reproducibility, enabling reviewers to analyze data if they or the edi-
tor feels it is essential to editorial decision making.17 In response to this
debate, BioMed Central amended the peer reviewer guidelines on all its jour-
nals to clarify this expectation of peer reviewers receiving manuscripts with
additional files. Reviewers are not expected to reanalyze all supporting data
unless the editor or reviewer feels a more detailed analysis is necessary.18

Another reason for not publishing supplementary materials was put for-
ward by Lab Times19—preventing detailed methods and important tables
being removed from the main article—However, online-only (open-access)
journals rarely have restrictions on the length of research articles, the number
of references, figures, and tables.

Supplementary materials do not replace the need for data archiving in
specialized repositories since supplementary materials can have significant
limitations on size and rarely enable datasets and other digital research
objects to be independently harvestable, discoverable, and citable. However,
data repositories do not yet exist for all experimental data types and scientific
domains, so journals can assure online permanence of content by playing an
important “stopgap” role20 by making available reproducible materials.

388 Implementing Reproducible Research

15.2.2 Journal and Publisher Policies on Data Sharing

Science policies, such as for the availability of data in public databases, can
be enforced iteratively by funders, peer reviewers, editors, and the wider
scientific community. However, journals can act as a last line of enforcement.
Given scientists must “publish or perish,” the prospect of being rejected for
publication can in principle be a powerful way to change authors’ behavior—
such as with regard to data sharing.

The data availability policies for different types of data and materials in
the 50 journals with the highest impact factor in 2007 have been catalogued
(Figure 15.1) and their effectiveness evaluated.

Of the 50 journals, 44 had statements about data sharing in their infor-
mation for authors. Ioannidis and colleagues looked at the first 10 research
papers published in each journal in 2009 and checked if the supporting data
were subject to a data-sharing policy. Of 351/500 papers, which were sub-
ject to a data-sharing policy, 208 of these did not fully adhere to the policy.
Nondeposition of microarray data in a public database was the most com-
mon violation. They found that 47 papers deposited full primary raw data
online, but these included none of those papers not subject to data avail-
ability policies.21 Another study, assessing the sharing of psychological data
subject to a policy of authors agreeing to share data with other scientists
on request had a 25% rate of compliance.22 Improvements in how com-
munity and journal policies on data availability are enforced are clearly
needed, although the results of the Ioannidis study support previous find-
ings that journal policies on data sharing lead to at least some increase in data
sharing.23

There are several different approaches to journal data-sharing policies:

1. Data sharing implied by submission (e.g., BioMed Central jour-
nals): The minimum requirement for BioMed Central’s journals is
that submission of a manuscript implies “readily reproducible mate-
rials described in the manuscript, including all relevant raw data,
will be freely available to any scientist wishing to use them for non-
commercial purposes.”24 Where databases exist and communities
require it, such as for genetic sequence data, public data sharing as
a condition of publication applies.

2. Data sharing as a condition of publication (e.g., Nature, PLOS):
Nature requires that authors “make materials, data and associated
protocols promptly available to readers without undue qualifica-
tions in material transfer agreements” and that supporting data be
available to editors and peer reviewers. Nature also specifies how it
deals with infringements to the policy, which includes publishing
corrections or refusing publication.25 PLOS’s policy states: “Publi-
cation is conditional upon the agreement of the authors to make
freely available any materials and information described in their

Open Science and the Role of Publishers in Reproducible Research 389

FI
G

U
R

E
15

.1
B

re
ak

d
ow

n
of

jo
ur

na
l

po
lic

ie
s

fo
r

pu
bl

ic
d

ep
os

it
io

n
of

ce
rt

ai
n

d
at

a
ty

pe
s,

sh
ar

in
g

of
m

at
er

ia
ls

an
d

/
or

pr
ot

oc
ol

s,
an

d
w

he
th

er
th

is
is

a
co

nd
it

io
n

fo
r

pu
bl

ic
at

io
n

an
d

pe
rc

en
ta

ge
of

pa
pe

rs
w

it
h

fu
lly

d
ep

os
it

ed
d

at
a.

(A
va

ila
bl

e
un

d
er

C
C

-B
Y

,r
ep

ro
d

uc
ed

fr
om

A
ls

he
ik

h-
A

li,
A

.A
.e

t
al

.,
P

LO
S

O
N

E
,6

(9
),

e2
43

57
,2

01
1.

)

390 Implementing Reproducible Research

publication that may be reasonably requested by others for the pur-
pose of academic, non-commercial research.”26 Compliance with
the policy is taken into account in editorial decisions, and correc-
tions will be published or publications withdrawn if noncompliance
is discovered retrospectively. Also, PLOS encourages readers to
contact them if they encounter difficulty in obtaining materials sup-
porting published papers and have retracted at least one paper in
cases where data reanalysis revealed less than complete support for
the published conclusions.27

3. Reproducible research, or data-sharing, statements in published
papers (e.g., Annals of Internal Medicine, BMJ): Since 2007, Annals
of Internal Medicine has required all authors of original research to
state in their published article their willingness to share their study
protocol, statistical code used to generate the results, and the dataset
from which the results were derived.2 In 2010, the BMJ emulated
this policy28 (which itself was inspired by the American Journal of
Epidemiology29) and began requiring data-sharing statements in pub-
lished research papers. In these cases, sharing of materials is not
required, but transparency about whether the materials are avail-
able is required—so readers and reviewers can take this into account
when judging the merits of the article. BMJ announced in October
2012, however, a stronger policy for clinical trials of drugs or devices
where it would only publish these studies when there is evidence of
data sharing.30

4. “Availability of supporting data” statement and link to dataset(s)
(BioMed Central journals): As of 2012, nearly 50 BioMed Central
journals encourage or require authors to include a persistent link
in their papers to the data supporting the results of their study.
This standard article section, “Availability of supporting data,”
aims to address several challenges in linking data to publications—
functionality, credit, and consistency. While statements in papers
about what reproducible materials are available are useful for read-
ers and reviewers, BioMed Central’s approach focuses instead on
evidence of data sharing, where it exists, by providing functional
links between papers and datasets. The aim is to enhance the scien-
tific record by enabling easier discovery of reproducible materials.
The policy also encourages persistent identifiers for datasets to be
formally cited in the article’s reference list, helping to increase
the potential for gaining academic credit for data sharing through
citation. Linking articles to supporting data has happened since
papers and data have been available online, but the approach—
including where links are placed in papers—can differ between
journals and, sometimes, between different papers in the same jour-
nal. The “Availability of supporting data” section accommodates

Open Science and the Role of Publishers in Reproducible Research 391

different types of repository and persistent identification formats
provided a unique link to the dataset is provided in the http://
format. Digital object identifiers (DOIs), handles and GenBank iden-
tifiers, for example, can all be expressed in this format. However, the
majority of the 50 journals encourage rather than require authors to
link their papers to supporting data. For a journal to require per-
manent links to data for every article, there must be an appropriate
data repository for every type of data, which conceivably could be
described in the journal—a challenge for broad-scope journals in life
sciences.

5. Open data as a condition of publication: In 2011, a number of
evolutionary biology journals, including The American Naturalist,
Evolution, and Molecular Ecology, collectively adopted a Joint Data
Archiving Policy (JDAP). This policy requires, “as a condition for
publication, that data supporting the results in the paper should be
archived in an appropriate public archive.” The Dryad repository31

rapidly emerged as the repository of choice for implementing the
JDAP. Dryad is also partnered with journals in other areas of life
science research when there is a need for “idiosyncratic,” “orphan,”
or unstructured data, which are not accommodated by structured
databases such as GenBank.32 Under the JDAP, all data supporting
accepted peer-reviewed papers are deposited in Dryad including
spreadsheets, images or maps, alignments, and character matrices.
Files up to 1 GB in size can be uploaded through Dryad’s web-
based submission system. All data packages are released to the
public domain under the Creative Commons “no rights reserved”
CC0 waiver, so they can be reused with the minimum of restrictions
(as “open data”; see following text). Exceptions to conforming to the
JDAP can be granted for sensitive information—including locations
of endangered species and human subjects data.

6. Open data as a condition of submission (e.g., F1000Research): The
journal F1000Research, which covers all of life sciences and began
publishing in 2012, has a policy that “all primary research articles
should include the submission of the data underlying the results.”
Similar to other approaches earlier, data must be deposited in a
public repository where one exists. Unlike other journals, however,
where there is no public repository for data, the journal requires
that authors transfer their supporting data to the journal. This is a
mandatory policy with the only exception being where patient pri-
vacy may be put at risk by data sharing. Data can then be deposited,
on the authors’ behalf, in the FigShare33 general data repository and
integrated—with data file viewers in line—with their published arti-
cle. Like Dryad, FigShare (and F1000Research) uses the CC0 waiver
for public datasets.

http:// format
http:// format

392 Implementing Reproducible Research

Of the various approaches to journals implementing data sharing, evidence
published in 201334 found that the most effective way for a journal to
ensure datasets supporting publications are available is to have a mandatory
data availability policy and require a data-sharing statement. This is more
effective than having no policy, a policy of recommending data sharing, or
having a mandatory policy but not requiring a data-sharing statement.

15.3 Field-Specific Policies, Standards, and Challenges

15.3.1 Data Sharing in Genomics

Genomics is often highlighted as an area of biology that leads the way in
data access and standardization. The growth of this field has been driven
by the huge technological advances in DNA sequencing and the massive
investment in the human genome project (HGP) and other “megasequenc-
ing” projects. This huge pool of genomics data is made freely available
to the community by a data-sharing infrastructure called the International
Nucleotide Sequence Database Collaboration (INSDC).35 It evolved from the
bulletin boards and e-mail lists that were forums for electronic communica-
tion of sequencing information in the early 1980s. NCBI at the US National
Library of Medicine,36 the European Nucleotide Archive (ENA) EMBL-Bank
at the European Bioinformatics Institute (EBI) in the United Kingdom, and
the DNA Database of Japan (DDBJ) in 1987 formed a three-party partner-
ship that persists to this day.37 Combining forces has allowed the databases
to federate, standardize, and mirror nucleotide sequencing data. This gave
them more power to lobby publishers (see open letter to journal editors from
the INSDC38) and data producers for mandatory data submission policies.
This has been particularly successful in getting most publishers to require
in their instructions for authors that deposition of the types of data that the
INSDC databases handle—in particular raw sequencing data and genome
assemblies—is a requirement of publication.

While there were arguments over the free access to genomics data during
the battles between the public and commercial HGPs, the data were eventu-
ally released into the public domain.39 Since the HGP was publicly funded
and to prevent any particular center from establishing a privileged position
in the exploitation and control of sequence information, data were required
to be made public as soon as possible. With the public repository infrastruc-
ture already available from the INSDC, it was logical to do this through their
databases.40

Rules to formalize and speed up these genomics data-sharing conven-
tions were formalized at a meeting in Bermuda in 1996. But as sequencing
continued to get faster and cheaper for subsequent genomes after the HGP,
the risk of scientists with no role in producing original sequences publishing
a paper before the sequencing center releasing the data increased.41 Conflicts

Open Science and the Role of Publishers in Reproducible Research 393

were building between sequencing centers and the communities wanting to
use these data over the timing of the release of data, and there were also con-
cerns whether journals may prejudice the publication of complete, annotated
genomes after a preliminary release of data.42 To address these fears and
incentivize the continued release of data, a compromise was made regarding
the assignment of credit and priority to publish. To do this, all of the various
stakeholders involved including representatives of sequencing centers, data
users, journals, and funders met in Fort Lauderdale in 2003 to update these
policies.

The Fort Lauderdale agreement,43 rather than a set of binding rules, was
set up as an “agreement” in a similar way that giving scientific attribu-
tion and credit through citation is more of a courtesy than anything legally
binding. Making this a system of “tripartite responsibility,” it asked data
producers, users, and funders to follow these guidelines and asked the
journal editors present to assist in its implementation. Those carrying out
whole-genome shotgun sequencing projects were asked to deposit raw data
within 1 week of production and deposit whole-genome assemblies in a pub-
lic nucleotide sequence database as soon as possible after the assembled
sequence met a set of quality evaluation criteria. As an incentive and pro-
tection for the data producers to do this, data users were permitted to use
the unpublished data for all purposes, with the sole exception of publication
of the results of a complete genome sequence assembly or other large-scale
analysis in advance of the sequence producer’s initial publication. Following
these guidelines, most of the large funders and centers producing sequenc-
ing data worked these instructions into their data release policies, and most
scientific journals now make efforts to ensure that genomics research can
only be published if the supporting sequence data were available in one of
the INSDC databases. This was followed in 2009 by the Toronto Interna-
tional Data Release Workshop that recommended extending the policies for
genomics to the increasing number of fields producing large-scale data.44

Post Fort Lauderdale and Toronto, adherence and compliance to these
guidelines has been mixed, but these agreements are still seen as a success
compared to the rest of biology. Engaging all of the various stakeholders
enabled a carrot and stick approach, with data centers incentivized to release
their data early with the protection of having priority to publish the first
study and funders and journals insisting upon compliance by including it
in their policies. As more of an informal “gentleman’s agreement” than a
legal framework, it has been hard to give teeth to these policies, although
compliance of published articles depositing sequencing data in GenBank has
still been estimated to be up to 90% in 2006.45

15.3.1.1 Sequencing Data Standardization

As well as making data publicly available, it is also essential to provide
enough information to guide data integration, comparative studies, and

394 Implementing Reproducible Research

knowledge generation. The interoperability and usability of data is essential
to enable its reuse, and the development of community-wide standards for
capturing and exchanging metadata is important to unite groups and enable
collective change. One group that has taken responsibility to help enable
this in genomics is the genomic standards consortium (GSC). Having rich
and standardized contextual information is particularly important for envi-
ronmental metagenomics, and the GSC has been particularly involved in
producing standards for the wider genomics community to be able to com-
bine and integrate their datasets. The GSC was established in 2005 to produce
minimum information standards and checklists for describing genomes and
metagenomes.46 It has since become an open-membership working body
with the goal of standardizing the description of genomes and the exchange
and integration of genomic data.47 Following on from their “minimum infor-
mation about a genome sequence” (MIGS) and “minimum information about
a metagenome sequence” (MIMS) checklists, the GSC produced the min-
imum information about any (x) sequence (MIxS) framework that builds
upon their previous checklists, but on top of a sharing of a central set of core
descriptors, which allows communities to build and add specific modules
on top of it.48 The use of MIxS standards seems to have the most use and
uptake in the environmental metagenomics community, but the GSC have
worked closely with the INSDC and a number of other databases to recog-
nize these standards and support submission of compliant datasets. The GSC
has also set up its own journal, Standards in Genomic Sciences, which was the
first journal to require MIGS for the publication of all genome paper.49

15.3.1.2 Source Code

Postgenomic science typically contains a data-processing component, which
is responsible for the analysis of data after it has been generated by assays of
biological samples obtained from laboratory experimentation.50 The reality
of science in modern-day biology is that such data analyses cannot be repro-
duced based on the information made available in the published paper. This
was comprehensively shown by Ioannidis et al.51 who evaluated a set of
18 microarray studies and found only 2 studies that could be reproduced in
principle.51 In addition to raw data not being made available, the published
information provided insufficient knowledge, such as software version and
parameterization details, about how data analyses were carried out and
subsequently stopped results from being reproduced.

Bioinformatics data analyses involve a series of processing steps on data
involving the use of specific functions or command line applications. The
reproducibility of such data analyses can be facilitated if the source code
of applications and how they are combined in a script are made available
during peer review. To this end, there have been a number of calls for pub-
lishers to take on this responsibility to facilitate reproducibility of research
findings reported in their journal papers.52,53 Some publishers have started

Open Science and the Role of Publishers in Reproducible Research 395

to address these issues including the enforcement of source code availability
with manuscript submissions. For example, Biostatistics published by Oxford
Journals publishes papers on statistical methods with applications to human
health and disease. Biostatistics encourages authors of their accepted papers
to make their work reproducible by others by enabling them to submit their
code (and data) to the journal to be hosted as supporting online material.
Furthermore, authors can request a reproducibility review of their analy-
ses, which involves the “associate editor for reproducibility” running the
submitted code on the data and verifying that the code produces the results
published in the article.54 Articles with accompanying data or code receive
a “D” or “C” kite-mark, respectively, while those that have passed the
reproducibility review receive an “R.” PLOS advocates making source code
accessible in an open-source manner in research articles involving the use
of software.26 Conditions of this policy include ensuring that methods are
described with a level of detail such that the results can be reproduced by
reviewers and readers. This involves a requirement for documentation and a
dataset to be made available for using the software with example parameter-
ization. PLOS also asks for source code to be deposited in an open software
archive, such as SourceForge or GitHub, and be included as part of the sub-
mission with an open-source license. A similar policy is enforced by the
Journal of Open Research Software, which is published by Ubiquity Press in col-
laboration with the Software Sustainability Institute. This journal publishes
peer-reviewed reports of research software and where to find it in a public
code repository under an Open Source Initiative (OSI)-compliant license, or
the Creative Commons CC0 waiver.

BioMed Central supports the publication of source code along with sci-
entific papers through its editorial policies and in particular through its
journals Source Code for Biology and Medicine55 and GigaScience (discussed in
more detail later). These journals hope that this form of code dissemination
can lead to shortened times required for solving computational problems for
which there is limited source code availability or software resources and,
in time, serve as a repository for source code with applications in the life
sciences. While the standard policy of many BioMed Central journals encour-
ages rather than requires OSI compliance, Source Code for Biology and Medicine
launched an ongoing collection of software papers56–58 in 2012, which aims
for the highest standards of reproducibility. This “Open Research Com-
putation” collection59 requires source code to be made available under an
OSI-compliant license, and the peer-review process, developed by the series’
editor Cameron Neylon, assesses the quality of documentation and testing
of the software and aims for a very high level of unit test coverage.

15.3.2 MIBBI, BioSharing, and Data Interoperability

After sequencing, the functional genomics and transcriptomic communities
have been particularly successful in formulating and building community

396 Implementing Reproducible Research

standards and data-sharing resources. With the growth of the use of
microarray-based technologies and platforms in the late 1990s, it was impor-
tant to develop standards and infrastructure to enable sharing and reuse of
these data. The Microarray Gene Expression Data Society (now the Func-
tional Genomics Data Society) filled much of this role, publishing their
“minimum information about a microarray experiment” (MIAME) standard
in 2001.60 The MIAME checklist has been a model for other communities,
and after the development of many other “minimal information” standards
for other communities such as Proteomics (MIAPE: the minimum infor-
mation about a proteomics experiment), the MIBBI portal was created.61

In 2012, the MIBBI portal comprised 35 bioscience projects. MIAME has
been the most widely adopted, with over 70% of journals with the highest
impact factors including the requirement to deposit data in a MIAME com-
pliant format in a public repository.21 Standardized, simple tab-delimited,
spreadsheet-based formats such as MAGE-TAB62 have aided submission to
databases, and in the decade after their creation, huge amounts of data reuse
have been enabled, through meta-analyses.63

Outside of the omics fields, rates of data deposition are much lower
with, for example, only 4% of evolutionary biology studies using the
TreeBASE repository for phylogenetic trees,64 although most of these fields
have not (until with the arrival of general purpose repositories such as
Dryad31) had stable homes for their data. One reason may be the diffuse
and confusing infrastructure for data sharing, with thousands of biological
databases and hundreds of terminologies and reporting guidelines avail-
able.65 Aiming to be a “one-stop shop” and centralized portal for bioscience
data policies, reporting standards and links, and building from the MIBBI
projects, BioSharing66 has extensive web-based catalogues and a commu-
nication forum to connect the research community, funding agencies, and
publishers. Journals, including BMC Research Notes through a special issue
on data standards in life sciences,65 are participating in the development of
standards and tools to support data sharing.

While MIBBI-style checklists61 help standardize data collection in par-
ticular fields, moving between fields and techniques data interoperability
becomes increasingly difficult and hinders multidisciplinary research. One
attempt at dealing with and integrating the increasing number of categories
of comparative omics data types is the biological observation matrix (BIOM)
format: a file format for representing arbitrary observations by sample con-
tingency tables with associated sample and observation metadata.67 A much
broader community effort is the ISA (“Investigation–Study–Assay”) frame-
work, a group of open-source tools and formats to aid standards-compliant
collection, curation, local management, and reuse of datasets.68 With a list
of conversion tools and templates, ISA-Tab files can be submitted to a grow-
ing number of international public repositories such as PRIDE (proteomics),
ArrayExpress (transcriptomics), Metabolights (metabolomics), and the ENA
(sequencing data).69

Open Science and the Role of Publishers in Reproducible Research 397

15.4 Toward Reproducible Research Licensing of Content in
Open-Access Journals

Legal restrictions on data sharing and reuse, including copyright and materi-
als transfer agreements, are complex and internationally heterogeneous and
are barriers to reproducibility. Being able to build on previous findings and
reuse data to drive new discoveries freely, without legal or other impedi-
ments, ensure society gains the maximum benefit from scientific endeavors.
These ideals are set out in the Panton Principles for Open Data in Science,
which were published in February 2010.70 Under these principles, data
should be placed explicitly in the public domain with a public domain license
or waiver of rights, such as Creative Commons CC0, which permits all reuses
including commercial use and preservation.

CC0 is recommended for data rather than attribution licenses such as
CC-BY. Licenses that legally require attribution can be prohibitive when
integrating data from very large numbers of different sources, as unman-
ageable legal requirements to provide attribution in the form of links can be
created. CC0 helps address this “attribution stacking” problem by enabling
rights holders to waive legal requirements for attribution. Rather than being
a license—a means for an author or rights holder to assert their rights over
works—a waiver is a mechanism for a rights holder to give up their rights.
Moreover, CC0 is universal and irrevocable (widely recognized as covering
all types of data and all legal domains, in perpetuity), interoperable (it is
human and machine readable ensuring unambiguous expression of rights),
and simple. Waiving rights in data means making individual requests for
reuse and transfer agreements are unnecessary, increasing efficiency as
scientists can focus on science rather than legal matters.71

Whether copyright actually applies to data is questionable and depends
on the jurisdiction. Copyright cannot generally be expressed in facts—and
data are numerical representations of fact—only the ways in which they are
presented. This holds for US law and, with the exception of databases, in
much of the EU also. In contrast, in Australia, copyright could exist in data,
where the law focuses on originality rather than creativity. These interna-
tional legal differences lead to ambiguity about the legal status of content,
which might ultimately only be resolved in case of legal challenge in court.
Being explicit about the legal status of data through an appropriate license
or waiver at the outset avoids these potential problems. Other legal tools
for dedicating data to the public domain include the Open Data Commons
Public Domain dedication and License (PDDL), which is compatible with
CC0.72 Analogous to the BBB definitions on open access to papers, open
data are about more than accessibility. “Open data” must be “freely avail-
able on the public internet permitting any user to download, copy, analyse,
re-process, pass them to software or use them for any other purpose without

398 Implementing Reproducible Research

financial, legal, or technical barriers other than those inseparable from gain-
ing access to the internet itself.”73 To achieve this in journal publishing, CC0
or an equivalent legal tool must be applied to the data within (e.g., in tables)
or included as additional files with journal articles.

BioMed Central was among the first public supporters of the Panton
Principles for Open Data in Science, but putting them into practice at an
established publisher had to be done in careful consultation with the scien-
tific community. Between 2010 and 2012, BioMed Central published several
statements and contacted hundreds of its journal editors to seek their opin-
ions on applying CC0 to data in peer-reviewed journals. Also, in 2011,
BioMed Central formed a publishing open data working group comprised
of authors, editors, funders, librarians, legal experts, and other publishers—
stakeholders in publishing scientific research data. The consensus of the
working group was agreement that a variable license agreement—with
CC0 applying to data and CC-BY to papers—could be implemented from
submissions received after a specific date.

In September 2012, BioMed Central published in BMC Research Notes a
paper describing and making the case for implementing CC0 for data in
its journals,74 which described the practical, legal, technical, and cultural
implications. This included a new license statement for all published arti-
cles, as a model that could be adopted by many publishers. This new license
statement, which is both human and machine readable, includes the CC-BY
license and, for data, the CC0 waiver. To help determine scientists’ opinions
on changing the authors’ default license agreement, BioMed Central held a
2-month public consultation75 in September–November 2012. Respondents
to the consultation (n = 42) were six to one in favor of implementing CC0,
although there were a number of questions and concerns to emerge from the
consultation (see Table 15.1).

15.4.1 Defining Data

Included in BioMed Central’s publishing open data working group meet-
ing were representatives from Nature Publishing Group and Faculty of 1000,
publishers that, in 2013 and 2012, respectively, implemented CC0 policies
for some of their publications. The EMBO Journal releases any files labeled
“Source Data,” “Dataset,” or “Resource” under CC0.76 Faculty of 1000’s
F1000Research journal, which began publishing in 2012, publishes open-
access articles under a CC-BY license and makes all data associated with
articles available under CC0. This approach was implemented in Septem-
ber 2013 by BioMed Central, and was supplemented with author guide-
lines, practical examples, and frequently asked questions informed by the
outcomes of their public consultation.77

The EMBO Journal policy makes specifically tagged parts of the pub-
lished work available under CC0. This makes the legal status of some content
clearer but means that data within published articles—such as numerical

Open Science and the Role of Publishers in Reproducible Research 399

TABLE 15.1

Questions Raised in Response to BioMed Central’s Public Consultation on Creative
Commons CC0 for Data Published Peer-Reviewed Open-Access Journals and the
Publisher’s Responses to Them

Question/Concern Summary Response

Will commercial
organizations benefit
from use of public
domain data?

The CC-BY license already permits commercial use. There are wider
benefits to the economy from commercial organizations gaining from
open data. Companies including GSK have released some of their data
under CC0 to stimulate scientific innovation.

Will plagiarism
increase?

Plagiarism has increased with digital access to content regardless of
content licenses. Processes (e.g., peer review) and tools (e.g.,
CrossCheck), which detect plagiarism, are agnostic of content licenses.

Will patient privacy be
put at risk?

Changing the license of content does not change the accessibility of
human subjects data, which are already being published open access and
therefore must already be anonymized before publication.

Will articles receive
fewer citations?

Attribution (a legal requirement of copyright) and citation
(a scholarly cultural norm that ensures scientists receive credit for their
discoveries) can sometimes be achieved in the same way, but the
practices serve different purposes (see table in [http://www.
biomedcentral.com/1756-0500/5/494] for practical examples).
Removing the legal right of attribution—engrained in a CC-BY
license—for reproducing, adapting, or copying a scholarly work does
not remove the cultural expectation that scientists should cite one
another’s work when building on previous findings.

What is the incentive
for the original data
owner to make their
data open?

Although it has not been empirically studied, public domain dedication
maximizes the potential for data discovery and reuse, suggesting that
open licensing might increase individual credit and citations. Sharing
data underlying scientific journal articles increases citation share,
increases reproducibility of results, and is associated with authors
producing more publications. Data supporting publications and placed
in the public domain in fields lacking combinable datasets promote
collaboration and furthers scientific progress.

Will authors need to
publish more data
than they did
previously?

A change in license will not require authors to publish more of their data.
It only affects data that authors (already) choose to submit to journals for
open-access publication and does not require release of any other data or
a change in license of any data not submitted to the journal. Authors,
editors, and their communities remain in control of what content they
publish.

What if authors are not
allowed, by their
funders or employers,
to use CC0 for any of
their published work?

Where there are legitimate reasons for authors being unable to apply CC0
to their published data, then it is possible to opt out and use a
nonstandard license. This already happens in journal publishing, such as
when figures, tables, or charts are reproduced, with permission, in
journal articles from other sources. Some research funders have
agreements with publishers to use a nonstandard copyright statement in
open-access articles.

Source: Hrynaszkiewicz, I., Busch, S., and Cockerill, M. J. Licensing the future: Report on
BioMed Central’s public consultation on Open Data in peer-reviewed journals. BMC
Research Notes (in press).

http://www.biomedcentral.com/1756-0500/5/494
http://www.biomedcentral.com/1756-0500/5/494

400 Implementing Reproducible Research

tables, bibliographic data, and machine-harvestable data that could be
obtained by text mining—are not covered by the CC0 policy. Data are dif-
ficult to define, with liberal definitions specifying data are anything, which
can exist digitally to, the more relevant for science, “qualitative or quantita-
tive attributes of a variable or set of variables. Data are typically the results
of measurements and can be the basis of graphs, images, or observations of
a set of variables,” according to Wikipedia. The approach to implementing
CC0 favored by BioMed Central and F1000Research applies CC0, more gener-
ally, to all “data” without the use of specific tags. This gives those publishing
and reusing data flexibility and recognizes the differing definitions of, and
needs for, data, in different types of research.

While there are a number of file types, which obviously pertain to data,
comprehensively defining them is not feasible. However, practical examples
are beneficial for interpreting the policy, and Table 15.2 (reproduced with
permission from BioMed Central’s proposed author guidelines on its open
data policy) provides some examples of data associated with journal articles.

15.5 Community–Publisher Collaborations and Tools for
Reproducible Research

15.5.1 LabArchives and BioMed Central

Considering the ease with which anyone can share and publish content on
the web using freely available tools independently of publishers, publish-
ers need to innovate to continue to add value to scientific communication.
Integrating with scientists’ online data management workflows and tools is
a way to speed the dissemination of research, and workflow publication has
been proposed as a role of publishers in the future.78 Scientists are increas-
ingly using electronic, often cloud-based, applications to store, manage,
and share with collaborators their data and documents such as in electronic
lab notebooks (ELNs). BioMed Central partnered with the ELN provider
LabArchives in 2012 to enable more reproducible research by making more
datasets supporting peer-reviewed publications available, openly licensed
and permanently linked to publications.79 As part of this partnership,
BioMed Central authors are entitled to a free version of LabArchives’ ELN,
which includes 100 MB of file storage (the standard free edition included 25
MB of storage). The BioMed Central authors’ edition of the software80 acts as
a personal or private file store and as a personal data repository for publish-
ing scientific data and partially integrates scientific data management with
manuscript preparation and submission to journals. Integration is achieved
through the inclusion of manuscript templates conforming to journal style
and links through to journal submission systems, from within the ELN.

Open Science and the Role of Publishers in Reproducible Research 401

TABLE 15.2

Examples of Data Associated with Journal Articles

Format Explanation

Material submitted as additional files (supplementary material)

Domain-specific
datasets, supplied as
additional files

Many domain-specific standards exist for the sharing of scientific
datasets. Biosharing.org provides a useful catalogue of such
standards. Many of these standards are based around XML,
such as Gating-ML for flow cytometry experimental
descriptions or MAGE-ML for microarray gene expression data.

Comma-separated
values

CSV is a simple open tabular format used commonly for
columnar data.

XLS/XLSX XLS and XLSX are file formats used by Microsoft Excel. XLSX is
a more modern, XML-based file format, and unlike the
proprietary XLS format, it is an ISO standard (ISO/IEC 29500).

RDF RDF is standard for representing knowledge and conceptual
relationships using subject–predicate–object expressions
(triples), which are widely used in modeling biological systems.

Material contained within the full text of papers

Tables Individual data elements, predominantly numbers, organized in
columns and rows are a representation of facts and should be
considered data.

Bibliographic data Factual information, which identifies a scientific publication
including authors, titles, publication date, and identifiers,
should be considered open. Applies to individual articles and
their reference lists.

Graphs and graphical
data points

Software can harvest data points underlying graphs and charts,
and graphs and other figures are often visual representations of
data.

Frequency of specific
words, names, and
phrases in article text
and their association
to others

This information is frequently identified through text mining, for
example, the frequency of particular gene and protein names
and their potential associations with one another.

LabArchives can act as data publishing platform because datasets and other
files can be shared publicly and assured permanence with the assignment of
a DOI. LabArchives, also, helps enable maximum reuse by assigning the CC0
waiver to files that are assigned a DOI through its software. The assignment
of DOIs means datasets are persistently identified and permanently linkable
to journal publications and independently citable.

15.5.2 GitHub and BioMed Central

In 2013, BioMed Central announced a collaboration with the social cod-
ing repository, GitHub.81 Many scientists—particularly bioinformaticians,

402 Implementing Reproducible Research

one of BioMed Central’s largest author groups—were already using GitHub
for a variety of scientific activities beyond sharing of code before this
partnership. However, scientists’ uses of GitHub were happening inde-
pendently of input from the GitHub training team, who had little direct
experience of scientists’ uses of their services. Scientists regularly use
GitHub to, for example, publicly share their papers, author documents
collaboratively, and version control their work. This three-way collabo-
ration between a journal publisher, code repository, and a group of sci-
entists (authors) enables sharing, documentation, and definition of good
practices of using GitHub for science. Innovative uses of GitHub can
make science more reproducible and research more transparent, and doc-
umenting these use cases to encourage wider adoption will further enable
reproducibility.82

15.5.3 Data Publication, Data Citation, and GigaScience

With all of the challenges and difficulties of making data publicly avail-
able in as usable form as possible, data producers rarely receive the credit
they deserve for the time and effort spent creating these resources. There
has been much talk from data producers about the need for new mecha-
nisms of incentive and credit, and the Toronto data workshop covered some
of these issues, stating that “Data producers benefit from creating a citable
reference, as it can later be used to reflect impact of the data sets.”44 Jour-
nal editorials following this discussed the need for a means of accreditation
and a standardized tag for data that could be searched and recognized by
both funding agencies and employers, providing recognition for those who
share and enabling tracking of the downstream use and utility of data.83

Founded in December 2009, DataCite is an international partnership set up
to build a global citation framework for research data, leveraging the DOI
system best known for its use in unambiguously identifying online pub-
lications. DataCite aims to enable researchers to find, access, and reuse
datasets with ease.84 With the aim to increase acceptance of research data
as legitimate, citable contributions to the scholarly record, this infrastructure
has already enabled the formation of a number of data publication plat-
forms. The environmental sciences have been publishing datasets with DOIs
for over a decade in the PANGAEA data repository,85 but since the launch
of DataCite, new repositories such as Dryad,31 Figshare,33 and the Giga-
Science database86 have utilized DataCite’s DOI services and infrastructure.
Data have historically only been searchable via DataCite’s search engine
and Application programming interface (API), but with the launch of the
Thomson Reuters data citation index in October 2012, it is now possible to
track and follow the downstream use and citation of these datasets. This is
critical for those that believe data generated in the course of research are just
as valuable to the ongoing academic discourse as papers and monographs.87

Open Science and the Role of Publishers in Reproducible Research 403

15.5.4 GigaScience and Adventures in Data Citation

GigaScience is a journal published by the BGI and BioMed Central that was
launched in 2011 to provide a home for large-scale studies in biology and
biomedicine. The GigaScience database implemented a new publication for-
mat by utilizing BGI’s computational resources. The database, GigaDB, is
able to host supporting data, from publications in the journal, of over 100 GB
in size—as well as release previously unpublished BGI datasets.86 DataCite
DOIs are used to integrate datasets into the references of articles, and this
has allowed GigaScience to experiment with the release of BGI datasets in a
citable form before publication of analyses of the datasets.88

GigaScience has a policy in which all materials including the source code
used for data analyses are submitted along with a manuscript for review and
reproduction. Furthermore, a data analysis platform has been developed to
support readers in the reuse and reproduction of the data analyses published
in their journal articles as executable pipelines (see Section 15.5.6). There is
extra effort required from developers to make the source code reusable and
this may prohibit their release. This issue is being addressed at GigaScience
by exploring how the source code can also be issued with DOIs, thereby
enabling reuse metrics to be calculated for code and credit received by their
developers.

The first published dataset to be published by GigaScience was the
genome of the deadly 2001 E. coli 0104:H4 that caused an outbreak that killed
50 people in Europe.89 Researchers at the BGI collaborated with the Univer-
sity Medical Center Hamburg-Eppendorf to rapidly sequence the genome
of the pathogen. Due to the unusual severity of the outbreak, it was clear
that the usual scientific procedure of producing data, analyzing it slowly,
and then releasing it to the public after a potentially long peer-review proce-
dure would have been unhelpful. By releasing and announcing via Twitter
the first 0104:H4 genomic data before it had even finished uploading to
NCBI and promoting its use and release, a huge community of microbial
genomicists around the world took up the challenge to study the organ-
ism collaboratively. Once a GitHub repository had been created to provide a
home to these analyses and data, groups around the world started produc-
ing and posting their own annotations and assemblies within 24 h. Releasing
the data under a CC0 waiver (used by GigaDB) allowed truly open-source
analysis, and other groups and GitHub members followed suit in releas-
ing their work in this way. This “crowdsourcing” approach substantially
aided in limiting the health crisis, with strain-specific diagnostic primers dis-
seminated within 5 days of the release of the sequence data, and the draft
unassembled genome sequence data subsequently enabled the development
of a bactericidal agent to kill the pathogen.90 It also brought to light a poten-
tially useful way of scientifically addressing similar outbreaks in the future.
Additionally, results of these open-source analyses were published in the
New England Journal of Medicine a few months later, showing that journals

404 Implementing Reproducible Research

do not have a problem with the release of data in this citable manner, and
data citation can complement traditional forms of academic credit.91 When
the Royal Society published their “Science as an Open Enterprise” report,
this project, and the E. coli genome sequenced, was highlighted on the front
cover of the report and cited as an example of “The power of intelligently
open data.”92 A subsequent study on the genomics of ash dieback disease, a
fungal pathogen rapidly destroying ash trees and woodland biodiversity in
Europe, also followed this open-source/GitHub-based approach.93

15.5.5 Use of the Cloud as a Reproducibility and Reviewing Environment

The rise of cloud computing brings new opportunities to increase trans-
parency for data-intensive science. The use of virtualization and virtual
machines where the whole state of a computer can be saved and transported
to another host computer allows operating systems, pipelines, and tools to
be easily deployed and replicated wholesale by potentially any researcher
without concern for the underlying hardware, which brings unprecedented
opportunities to aid reproducible research. Another advantage is the abil-
ity to take and exchange “snapshots,” where the computer system used
by researchers to produce experimental results is copied in their entirety
into a single digital image that can be exchanged with other researchers.
Doing this, researchers are able to obtain precise replicas of a computa-
tional system used to produce published results and have the ability to
restore this system to the precise state of when the experimental results were
generated.94

The use of virtual machines and the cloud as a reproducibility environ-
ment has historically been limited by the cost of computing and storage
that needs to be paid to the provider.95 But as these costs continue to fall,
a growing number of projects are starting to take advantage of this func-
tionality. The best example to date has been from the ENCODE consortium,
where in September 2012, they simultaneously published their first 30 papers
cataloguing functional DNA elements in over 100 cell types, all based on ter-
abytes of shared data and huge numbers of tools and pipelines developed
from 1600 experiments.96 Needing to coordinate and share these resources
among nearly 450 authors in more than 30 institutions across the world
was a major challenge, and the ability to share this information in an easily
reproducible manner was a boon to the authors, reviewers, and eventually
downstream users of these resources. Complex computational methods are
very hard to track in all their detail, and the ENCODE virtual machine pro-
vides all of the methodological details explicitly in a package that will last at
least as long as the open VirtualBox virtualization format they used.

Accompanying the supplementary material from the main ENCODE
integrative analysis, publication in Nature was a set of code bundles that pro-
vide the scripts and processing steps corresponding to the methodology used

Open Science and the Role of Publishers in Reproducible Research 405

in the analyses associated with the paper.97 The analysis group established
an ENCODE analysis virtual machine instance of the software containing
the functioning analysis data and code, where each analysis program has
been tested and run. Where possible, the virtual machines were used to
reproduce stages of the analysis performed to generate the figures, tables,
or other information; however, in some cases, this was not possible in steps
involving highly parallelized processing within a specialized multiprocessor
environment. In these cases, a partial example was implemented leaving it
to the reader to decide whether and how to scale to a full analysis. It cost
around $5000 dollars, paid to Amazon Web Services (AWS), to run during
the writing and review process (although it was nowhere near fully utilized
and could have been cheaper with more efficient code integration and test-
ing). After publication, it was possible to examine the figures in the Amazon
cloud, and the virtual machines remained freely available for interested par-
ties to work with and run the data and tools used by the project.98 The aim of
providing these virtual machines was not to produce a portable and reusable
piece of software for every aspect of this analysis, since bugs may be present
in the code, but to provide a completely transparent way of sharing the
methods. These unprecedented levels of transparency give users more confi-
dence to utilize the tools when they have the code that actually executes and
produces the published result in a controlled environment.

Demonstrating the utility and reproducibility of cloud computing for
microbiome research, an application combining a number of metagenomics
resources such as QIIME, the IPython collaborative notebook, and StarClus-
ter for setting up preconfigured clusters on EC2 was made reproducible
using an Amazon machine image (AMI) containing all the necessary bio-
logical libraries and IPython/StarCluster support. Including the Amazon
machine identifier used for the analyses published in ISME Journal allowed
anyone with an Amazon account to repeat their analysis or modify it to
address related questions.99

Another example of using the cloud as a reproducibility platform was
the Sequence Squeeze challenge organized by the Pistoia Alliance (a pre-
competitive alliance of research groups, pharmaceutical companies, and
scientific societies) and Eagle Genomics.100 With the aim of outsourcing
innovation in a public competition to build better FASTQ compression
algorithms—a task of urgency due to the explosive growth of sequenc-
ing data—the competition gathered over 100 entries from data experts
from around the world. Using publicly available test data from the 1000
genomes project,101 with sponsorship covering cloud charges, the con-
test was AWS based and entries were submitted as AWS S3 buckets.
All entries needed to be under an open-source Berkeley Software Dis-
tribution (BSD) license with code available in Sourceforge. The winning
entry from James Bonfield achieved a compression ratio of 11.4%, and the
resulting tools from a number of the competing entries have already been
published.102,103

406 Implementing Reproducible Research

15.5.6 Workflow Systems

Analyses of genomics data that use a sequential series of computational tools
can be implemented using a generic programming language such as Perl
or R. They may also be constructed using a desktop workflow application,
which provides a graphical user interface for composing pipelines based on
a palette of computational tools. Examples of open-source workflow applica-
tions include Taverna,104 Kepler,105 and Knime106 and commercial variants,
for example, Pipeline Pilot.107 Workflows written using such software can
be saved in a machine-readable format with information on how it has been
parameterized, which allows it to be reexecuted to reproduce the results of
an analysis for a given dataset.

Galaxy is a workflow system, which has become popular for the analysis
of next-generation sequence (NGS) data.108 It comes with a large set of NGS
data analysis tools for use in constructing workflows, which is achieved with
a web-based interface via drop-down menus. GigaScience is using Galaxy
for delivering reproducibility by using this computational platform to reim-
plement the data processing described in GigaScience papers as executable
workflows.109 Research involving the use of Galaxy pipelines has been
extensively published in journal articles, some of which have made their
pipeline data available as online supplemental information in the form of
published pages on Galaxy servers. For example, Miller et al.111 investigated
the evolutionary relationships of the polar bear with brown and black bears
and have provided the Galaxy workflows for analyzing genomic data used
to generate some of the results reported in their accompanying paper.123,124

In accordance with its open-data policy, all GigaScience workflows will
be made freely available using myExperiment, an online repository for
workflows, which has recently been integrated with the Galaxy workflow
system.125 myExperiment has tentatively been used to host workflows to
be cited in the scientific literature, thereby providing more explicit docu-
mentation of data analyses in a form that can be executable by a particular
workflow system. For example, journals published by BioMed Central have
published papers, which have included citations of workflows stored in
myExperiment.110,111

Since workflow systems allow data analyses to be recorded and subse-
quently used to reproduce results, they can be expected to play an impor-
tant role in facilitating data reproducibility in scientific papers. Mesirov53

described a reproducible research system (RRS), a paradigm for a com-
puter application that enables computational data analyses to be reproduced
and embedded within papers.53 An RRS consists of two components. First,
a reproducible research environment (RRE) provides an integrated infras-
tructure for producing and working with reproducible research and has
the functionality to automatically track the provenance of data, analy-
ses, and results and to package them for redistribution. Second, a repro-
ducible research publication environment (RRPE) component would act as

Open Science and the Role of Publishers in Reproducible Research 407

a document-preparation system that is responsible for embedding compu-
tation into the document, allowing it to be accessible from the paper by its
readers. A number of applications have explored this type of functionality
such as the Collage Authoring Environment, which enables researchers to
seamlessly embed chunks of executable code and data into scientific pub-
lications in a form of collage items and to facilitate repeated execution of
such codes on underlying computing and data storage resources.112 Utopia
Documents is an exciting project, which has developed an interactive PDF
reader. This application provides access to information from various online
data sources, such as PubMed and Mendeley, about specific terms or phrases
selected by the viewer. In the future, it is feasible to see PDFs of scientific
papers linking out to workflows and data such as those created by Giga-
Science, to view how results of such papers have been generated as and when
reading the document.

15.6 Role of the “Reproducible Research Publisher” of the Future

With more and more areas of research following genomics’ lead and becom-
ing increasingly data-intensive, there are enormous challenges, and equally
enormous opportunities, to change publishing from being based on static
papers to more interactive and dynamic in silico packages. A body of
research consists of the scientific paper plus its data, methods, and tools,
together with the people who have undertaken this research. These com-
ponents are resources that collectively make up a research object.113 The
EU-funded Workflow4Ever project114 is addressing how such resources can
be described and aggregated electronically, shared, and discovered. A set
of software tools will be developed by this project for creating, manag-
ing, and storing research objects. In addition, a collection of best practices
will be delivered for the creation and manipulation of research objects. The
“reproducible research publisher” of today, and the future, should aspire to
collaborate and integrate with initiatives such as Workflow4Ever.

The increasing size and rate of growth of the body of published
research,115 combined with the ever-increasing amounts of data required
to support publications, brings challenges to the hosting and filtering of
content. The rise of open access and open data provides new opportuni-
ties to mine and analyze the literature and, coupled with semantic and
data mining techniques,116 make it more possible to discover and reuse
information. However, providing data and text mining enhancements of
value to both readers and reusers (researchers and their software) of the
literature is challenging for commercial publishers’ business models. Prod-
ucts such as BioMed Central’s Cases Database117—a semantically enriched
database of peer-reviewed medical case reports aimed at researchers,

408 Implementing Reproducible Research

clinicians, regulators, and patients—show how semantic enrichment of the
literature can work commercially, however.

Only in the second decade of the twenty-first century are groups start-
ing to truly embrace online publication and break out of historically static
formats, with interactive PDFs118 and integration of data with research
articles. Improvements made to searching and filtering published research
combined with increased data publication demonstrate that it is also possi-
ble to change the perception and size of what is a publishable unit. On top
of publishing data separately from analyses, it should also be possible to
publish workflows and computerized methods as citable objects, allowing
different combinations of executable, citable objects to be run against each
other to produce novel results. Publishing smaller self-contained objects pro-
vides new forms of credit and incentives to release work quicker, allowing
microattribution119 or even nanopublications.120

We envision that this increasing computerization of papers will promote
data reproducibility and new forms of knowledge discovery. It will become
increasingly important for the system of peer review to keep up with this
explosive growth of supporting data. Intelligent use of tools designed to
visualize and assess data quality, integration with virtual machines and
workflow systems, and easier-to-use systems promoting and aiding data
interoperability and curation will be central to progress.121

To quote Cameron Neylon, who set out the challenges ahead in 2012,

We need more than just reproducible computational research, we des-
perately need a step change in our expectations and in the incentives for
communicating research in a reproducible form more generally. We need
educators and the materials to support them in raising awareness and
experience. And we need the development of policy and standards that
help us move towards a world where reproducibility and replicability
are minimum standards not aspirations.122

Scholarly communication is a slow-moving field with paper-based journals
remaining and digitized documents usually representing little advance over
letters exchanged between scholars in the seventeenth century. Pragmati-
cally, we need stepwise changes in the scholarly communication system that
involve developing existing platforms and integrating them with other com-
monly used tools for science. We need to better integrate the process of doing
science with the process of communicating and evaluating science. There are
promising collaborations between publishers and services upstream of paper
submission (LabArchives, Figshare, GitHub) and downstream of paper pub-
lication (Mekentosj’s Papers software was acquired by Springer, owner of
BioMed Central, in 2012). We also need to make the data already pub-
lished in journals more reusable. Simple enhancements will have an impact,
such as tagging and classification of, and searching within, published data
files. These will aid human and machine search, discovery, and integration
of supplementary data. The ability to retrospectively associate data objects

Open Science and the Role of Publishers in Reproducible Research 409

with published papers—dynamically and transparently adjust the scien-
tific record—and the ability to link research objects in a manner that goes
beyond hyperlinking through linked data (resource description framework
[RDF]-based) approaches74 should also be considered.

However, technology is just part of the solution. Journal, funder, and
community policies, while of varying effectiveness, as we have described,
are still important. We therefore need better, more automated, and scalable
ways to check compliance with journal and community policies on the avail-
ability of materials for reproducible research and more automated ways to
attach the right licenses and metadata to published objects, across all content
disseminated by the reproducible research publishers of the future.

15.7 Summary

Reproducible computational research is and will be facilitated by the wide
availability of scientific data, literature, and code, which is freely accessi-
ble and, furthermore, licensed such that it can be reused, integrated, and
built upon to drive new scientific discoveries without legal impediments.
Scholarly publishers have an important role in encouraging and mandat-
ing the availability of data and code according to community norms and
best practices and developing innovative mechanisms and platforms for
sharing and publishing products of research, beyond papers in journals.
Open-access publishers, in particular the first commercial open-access pub-
lisher BioMed Central, have played a key role in the development of policies
on open access and open data and increasing the use by scientists of legal
tools—licenses and waivers—which maximizes reproducibility. Collabora-
tions, between publishers and funders of scientific research, are vital for the
successful implementation of reproducible research policies. The genomics
and, latterly, other omics communities historically have been leaders in the
creation and wide adoption of policies on public availability of data. This
has been through policies, such as Fort Lauderdale and the Bermuda Prin-
ciples; infrastructure, such as the INSDC databases; and incentives, such
as conditions of journal publication. We review some of these policies and
practices and how these events relate to the open-access publishing move-
ment. We describe the implementation and adoption of licenses and waivers
prepared by Creative Commons, in science publishing, with a focus on
licensing of research data published in scholarly journals and data reposi-
tories. Also, we describe how some publishers are evolving the copyright
system to ensure that published data are in the public domain under the
Creative Commons CC0 waiver. Other cases where CC0 has been success-
fully implemented in science are discussed in particular by BGI, the world’s
largest genomics organization. BGI have developed an advanced platform

410 Implementing Reproducible Research

for publishing executable research objects—including large data packages
and code—which is integrated with open-access article publishing through
GigaScience and its database, GigaDB. We look at journal and publisher poli-
cies, which aim to encourage reproducible research, and the comparative
influence and success of these policies. We discuss specific problems faced
in data sharing and reproducible research such as data standardization and
some of the solutions. Finally, we review the state of the art in scientific
workflows and large-scale computation platforms—including Galaxy and
myExperiment—and how current and future collaborations between the
scientific and publishing communities utilizing these innovative tools will
further drive reproducibility in science.

References

1. Fang, F. C., Steen, R. G., and Casadevall, A. Misconduct accounts
for the majority of retracted scientific publications. Proceedings of
the National Academy of Sciences of the United States of America
109, 17028–17033 (2012). http://www.pnas.org/content/early/2012/
09/27/1212247109. (Accessed date 28th February 2013.)

2. Laine, C., Goodman, S. N., Griswold, M. E., and Sox, H. C. Repro-
ducible research: Moving toward research the public can really trust.
Annals of Internal Medicine 146, 450–453 (2007).

3. Suber, P. What is open access? Open Access (2012). http://mitpress.
mit.edu/sites/default/files/titles/content/9780262517638_sch_0001.
pdf. (Accessed date 28th February 2013.)

4. Suber, P. Open-access timeline (formerly: FOS timeline). http://www.
earlham.edu/~peters/fos/timeline.htm. (Accessed date 28th February
2013.)

5. Bethesda Statement on Open Access Publishing. http://www.earlham.
edu/~peters/fos/bethesda.htm. (Accessed date 28th February 2013.)

6. ebi-PubMed Central: An NIH-operated site for electronic distribution
of life sciences research reports. http://www.nih.gov/about/director/
pubmedcentral/ebiomedarch.htm. (Accessed date 28th February 2013.)

7. Interview with Vitek Tracz: Essential for Science. http://www.
infotoday.com/it/jan05/poynder.shtml. (Accessed date 28th February
2013.)

8. Butler, D. BioMed Central boosted by editorial board. Nature 405, 384
(2000).

9. Haughey, M. Biomed Central using Creative Commons—Creative
Commons (2004). http://creativecommons.org/weblog/entry/4077.
(Accessed date 28th February 2013.)

http://www.pnas.org/content/early/2012/09/27/1212247109
http://www.pnas.org/content/early/2012/09/27/1212247109
http://mitpress.mit.edu/sites/default/files/titles/content/9780262517638{_}sch{_}0001.pdf
http://mitpress.mit.edu/sites/default/files/titles/content/9780262517638{_}sch{_}0001.pdf
http://mitpress.mit.edu/sites/default/files/titles/content/9780262517638{_}sch{_}0001.pdf
http://www.earlham.edu/~peters/fos/timeline.htm
http://www.earlham.edu/~peters/fos/timeline.htm
http://www.earlham.edu/~peters/fos/bethesda.htm
http://www.earlham.edu/~peters/fos/bethesda.htm
http://www.nih.gov/about/director/pubmedcentral/ebiomedarch.htm
http://www.nih.gov/about/director/pubmedcentral/ebiomedarch.htm
http://www.infotoday.com/it/jan05/poynder.shtml
http://www.infotoday.com/it/jan05/poynder.shtml
http://creativecommons.org/weblog/entry/4077

Open Science and the Role of Publishers in Reproducible Research 411

10. Stodden, V. Enabling reproducible research: Licensing for scientific
innovation. International Journal of Communications Law and Policy 13,
2–15 (2009).

11. Carroll, M. W. Why full open access matters. PLoS Biology 9, e1001210
(2011).

12. Redhead, C. Why CC-BY? The Open Access Scholarly Publishers
Association. (2012). http://oaspa.org/why-cc-by/. (Accessed date 28th
February 2013.)

13. Laakso, M. and Björk, B.-C. Anatomy of open access publishing:
A study of longitudinal development and internal structure. BMC
Medicine 10, 124 (2012).

14. Pollock, D. An Open Access Primer—Market Size and Trends. Outsell Inc.,
Burlingame, CA (2009). http://www.outsellinc.com/b2b/products/
873-an-open-access-primer-market-size-and-trends. (Accessed date
28th February 2013.)

15. Genome Biology. Instructions for authors. Software, preparing-
additional-files, preparing-additional-files, preparing-additional-files.
http://genomebiology.com/authors/instructions/software#
preparing-additional-files. (Accessed date 28th February 2013.)

16. Maunsell, J. Announcement regarding supplemental material. Journal of
Neuroscience 30, 10599–10600 (2010).

17. Hrynaszkiewicz, I. and Cockerill, M. In defence of supplemental
data files: Don’t throw the baby out with the bathwater (2010). http://
blogs.openaccesscentral.com/blogs/bmcblog/entry/in_defence_of_
supplemental_data. (Accessed date 28th February 2013.)

18. BioData Mining. Instructions for reviewers. http://www.
biodatamining.org/about/reviewers. (Accessed date 28th February
2013.)

19. Let’s Get Rid of that “Supplemental Data” Madness. . . Lab Times
3 (2010). http://www.lab-times.org/labtimes/issues/lt2010/lt06/lt_
2010_06_3_3.pdf. (Accessed date 28th February 2013.)

20. Piwowar, H. A. Supplementary materials is a stopgap for data
archiving (2010). http://researchremix.wordpress.com/2010/08/13/
supplementary-materials-is-a-stopgap-for-data-archiving/. (Accessed
date 28th February 2013.)

21. Alsheikh-Ali, A. A., Qureshi, W., Al-Mallah, M. H., and Ioannidis,
J. P. A. Public availability of published research data in high-impact
journals. PLOS ONE 6, e24357 (2011).

22. Wicherts, J. M., Borsboom, D., Kats, J., and Molenaar, D. The poor
availability of psychological research data for reanalysis. American
Psychologist 61, 726–728 (2006).

23. Piwowar, H. A. and Chapman, W. W. A review of journal poli-
cies for sharing research data (2008). http://precedings.nature.com/
documents/1700/version/1. (Accessed date 28th February 2013.)

http://oaspa.org/why-cc-by/
http://www.outsellinc.com/b2b/products/873-an-open-access-primer-market-size-and-trends
http://www.outsellinc.com/b2b/products/873-an-open-access-primer-market-size-and-trends
http://genomebiology.com/authors/instructions/software{#}preparing-additional-files
http://genomebiology.com/authors/instructions/software{#}preparing-additional-files
http://blogs.openaccesscentral.com/blogs/bmcblog/entry/in{_}defence{_}of{_}supplemental{_}data
http://blogs.openaccesscentral.com/blogs/bmcblog/entry/in{_}defence{_}of{_}supplemental{_}data
http://blogs.openaccesscentral.com/blogs/bmcblog/entry/in{_}defence{_}of{_}supplemental{_}data
http://www.biodatamining.org/about/reviewers
http://www.biodatamining.org/about/reviewers
http://www.lab-times.org/labtimes/issues/lt2010/lt06/lt{_}2010{_}06{_}3{_}3.pdf
http://www.lab-times.org/labtimes/issues/lt2010/lt06/lt{_}2010{_}06{_}3{_}3.pdf
http://researchremix.wordpress.com/2010/08/13/supplementary-materials-is-a-stopgap-for-data-archiving/
http://researchremix.wordpress.com/2010/08/13/supplementary-materials-is-a-stopgap-for-data-archiving/
http://precedings.nature.com/documents/1700/version/1
http://precedings.nature.com/documents/1700/version/1

412 Implementing Reproducible Research

24. BioMed Central. Availability of supporting data. http://www.
biomedcentral.com/about/supportingdata. (Accessed date 28th Febru-
ary 2013.)

25. Availability of data and materials: Authors and referees @ npg. http://
www.nature.com/authors/policies/availability.html. (Accessed date
28th February 2013.)

26. PLOS ONE: Accelerating the publication of peer-reviewed science.
http://www.plosone.org/static/policies.action#sharing. (Accessed
date 28th February 2013.)

27. Retraction Watch: Study links failure to share data with poor quality
research and leads to a PLOS ONE retraction. http://retractionwatch.
wordpress.com/2013/01/30/study-links-failure-to-share-data-with-
poor-quality-research-and-leads-to-a-plos-one-retraction/. (Accessed
date 28th February 2013.)

28. Groves, T. The wider concept of data sharing: View from the BMJ.
Biostatistics (Oxford, England) 11, 391–392 (2010).

29. Peng, R. D., Dominici, F., and Zeger, S. L. Reproducible epidemiologic
research. American Journal of Epidemiology 163, 783–789 (2006).

30. Godlee, F. Clinical trial data for all drugs in current use. BMJ 345, e7304
(2012).

31. Dryad home. http://datadryad.org. (Accessed date 28th February
2013.)

32. Whitlock, M. C., Mcpeek, M. A., Rausher, M. D., Rieseberg, L.,
and Moore, A. J. Data archiving. American Naturalist 175, 145–146
(2010).

33. FigShare. http://figshare.com. (Accessed date 28th February 2013.)
34. Vines, T. H. Andrew, R. L., Bock, D. G., Franklin, M. T., Gilbert,

K. J., Kane, N. C., Moore, J.-S. et al. Mandated data archiving greatly
improves access to research data. FASEB Journal 27 April (2013).
doi:10.1096/fj.12-218164.

35. International Nucleotide Sequence Database Collaboration (INSDC).
http://www.insdc.org/. (Accessed date 28th February 2013.)

36. DOE Genome Informatics—Announcement II. http://www.bio.net/
bionet/mm/bionews/1994-January/000877.html. (Accessed date 28th
February 2013.)

37. Cochrane, G., Karsch-Mizrachi, I., and Nakamura, Y. The International
Nucleotide Sequence Database Collaboration. Nucleic Acids Research
39, D15–D18 (2011).

38. Open Letter to Journal Editors from the INSDC. http://www.insdc.
org/sites/insdc.org/files/documents/open_letter.txt. (Accessed date
28th February 2013.)

39. Kaiser, J. Genomics. Celera to end subscriptions and give data to public
GenBank. Science New York 308, 775 (2005).

40. Marshall, E. Bermuda rules: Community spirit, with teeth. Science 291,
1192 (2001).

http://www.biomedcentral.com/about/supportingdata
http://www.biomedcentral.com/about/supportingdata
http://www.nature.com/authors/policies/availability.html
http://www.nature.com/authors/policies/availability.html
http://www.plosone.org/static/policies.action{#}sharing
http://retractionwatch.wordpress.com/2013/01/30/study-links-failure-to-share-data-with-poor-quality-research-and-leads-to-a-plos-one-retraction/
http://retractionwatch.wordpress.com/2013/01/30/study-links-failure-to-share-data-with-poor-quality-research-and-leads-to-a-plos-one-retraction/
http://retractionwatch.wordpress.com/2013/01/30/study-links-failure-to-share-data-with-poor-quality-research-and-leads-to-a-plos-one-retraction/
http://datadryad.org
http://figshare.com
http://www.insdc.org/
http://www.bio.net/bionet/mm/bionews/1994-January/000877.html
http://www.bio.net/bionet/mm/bionews/1994-January/000877.html
http://www.insdc.org/sites/insdc.org/files/documents/open{_}letter.txt
http://www.insdc.org/sites/insdc.org/files/documents/open{_}letter.txt

Open Science and the Role of Publishers in Reproducible Research 413

41. Roberts, L. Genome research. A tussle over the rules for DNA data
sharing. Science New York 298, 1312–1313 (2002).

42. Macilwain, C. Biologists challenge sequencers on parasite genome
publication. Nature 405, 601–612 (2000).

43. National Human Genome Research Institute. Data Release Policies
(February 2003). http://www.genome.gov/10506537. (Accessed date
28th February 2013.)

44. Toronto International Data Release Workshop Authors Prepublication
data sharing. Nature 461, 168–170 (2009). (see http://www.nature.com/
nature/journal/v461/n7261/full/461168a.html)

45. Noor, M. A. F., Zimmerman, K. J., and Teeter, K. C. Data sharing: How
much doesn’t get submitted to GenBank? PLoS Biology 4, e228 (2006).

46. Field, D. and Hughes, J. Cataloguing our current genome collection.
Microbiology (Reading, England) 151, 1016–1019 (2005).

47. Field, D. et al. The Genomic Standards Consortium. PLoS Biology
9, e1001088 (2011).

48. Yilmaz, P. et al. Minimum information about a marker gene sequence
(MIMARKS) and minimum information about any (x) sequence (MIxS)
specifications. Nature Biotechnology 29, 415–420 (2011).

49. SIGS instructions to authors. http://www.standardsingenomics.org/
index.php/sigen/pages/view/SIGS_i2a. (Accessed date 28th February
2013.)

50. Illuminating the black box. Nature 442, 1 (2006).
51. Ioannidis, J. P. A. et al. Repeatability of published microarray gene

expression analyses. Nature Genetics 41, 149–155 (2009).
52. Begley, C. G. and Ellis, L. M. Drug development: Raise standards for

preclinical cancer research. Nature 483, 531–533 (2012).
53. Mesirov, J. P. Computer science. Accessible reproducible research.

Science (New York) 327, 415–416 (2010).
54. Peng, R. D. Reproducible research and biostatistics. Biostatistics (Oxford,

England) 10, 405–408 (2009).
55. Source Code for Biology and Medicine. About http://www.scfbm.org/

about. (Accessed date 28th February 2013.)
56. Barton, M. D. and Barton, H. A. Scaffolder—Software for manual

genome scaffolding. Source Code for Biology and Medicine 7, 4 (2012).
57. Grosse-Kunstleve, R. W., Terwilliger, T. C., Sauter, N. K., and Adams,

P. D. Automatic Fortran to C++ conversion with FABLE. Source Code for
Biology and Medicine 7, 5 (2012).

58. Ramirez-Gonzalez, R. H., Bonnal, R., Caccamo, M., and Maclean, D.
Bio-samtools: Ruby bindings for SAMtools, a library for accessing BAM
files containing high-throughput sequence alignments. Source Code for
Biology and Medicine 7, 6 (2012).

59. Open Research Computation collection thematic article series in
Source Code for Biology in Medicine. http://www.scfbm.org/series/
ORC. (Accessed date 28th February 2013.)

http://www.genome.gov/10506537
http://www.nature.com/nature/journal/v461/n7261/full/461168a.html
http://www.nature.com/nature/journal/v461/n7261/full/461168a.html
http://www.standardsingenomics.org/index.php/sigen/pages/view/SIGS{_}i2a
http://www.standardsingenomics.org/index.php/sigen/pages/view/SIGS{_}i2a
http://www.scfbm.org/about
http://www.scfbm.org/about
http://www.scfbm.org/series/ORC
http://www.scfbm.org/series/ORC

414 Implementing Reproducible Research

60. Brazma, A. et al. Minimum information about a microarray experiment
(MIAME)—Toward standards for microarray data. Nature Genetics
29, 365–371 (2001).

61. Taylor, C. F. et al. Promoting coherent minimum reporting guidelines
for biological and biomedical investigations: The MIBBI project. Nature
Biotechnology 26, 889–896 (2008).

62. Rayner, T. F. et al. A simple spreadsheet-based, MIAME-supportive for-
mat for microarray data: MAGE-TAB. BMC Bioinformatics 7, 489 (2006).

63. Engreitz, J. M. et al. ProfileChaser: Searching microarray reposi-
tories based on genome-wide patterns of differential expression.
Bioinformatics (Oxford, England) 27, 3317–3318 (2011).

64. Stoltzfus, A. et al. Sharing and re-use of phylogenetic trees (and
associated data) to facilitate synthesis. BMC Research Notes 5, 574 (2012).

65. BMC Research Notes thematic series on “Data standardization, shar-
ing and publication.” BMC Research Notes (2012). http://www.
biomedcentral.com/bmcresnotes/series/datasharing. (Accessed date
28th February 2013.)

66. BioSharing. http://biosharing.org. (Accessed date 28th February 2013.)
67. McDonald, D. et al. The Biological Observation Matrix (BIOM) format

or: How I learned to stop worrying and love the ome–ome. GigaScience
1, 7 (2012).

68. Sansone, S.-A. et al. Toward interoperable bioscience data. Nature
Genetics 44, 121–126 (2012).

69. ISA tools. Welcome. http://isatab.sourceforge.net/
70. Murray-Rust, P., Neylon, C., Pollock, R., and Wilbanks, J. Pan-

ton Principles, Principles for open data in science (2010). http://
pantonprinciples.org/. (Accessed date 28th February 2013.)

71. Schaeffer, P. Why does Dryad use CC0? Dryad News and Views
http://blog.datadryad.org/2011/10/05/why-does-dryad-use-cc0/.
(Accessed date 28th February 2013.)

72. Open Knowledge Foundation Conformant Licenses. http://
opendefinition.org/licenses/. (Accessed date 28th February 2013.)

73. BioMed Central policies. Access to articles. http://www.
biomedcentral.com/about/access/#opendata. (Accessed date 28th
February 2013.)

74. Hrynaszkiewicz, I. and Cockerill, M. J. Open by default: A proposed
copyright license and waiver agreement for open access research and
data in peer-reviewed journals. BMC Research Notes 5, 494 (2012).

75. Hrynaszkiewicz, I. Help put the open in Open Data and Open Bibliog-
raphy (2012). http://blogs.biomedcentral.com/bmcblog/2012/09/10/
put-the-open-in-opendata/. (Accessed 28th February 2013.)

76. EMBO Journal: Guide for authors. http://www.nature.com/emboj/
about/authors.html. (Accessed 28th February 2013.)

http://www.biomedcentral.com/bmcresnotes/series/datasharing
http://www.biomedcentral.com/bmcresnotes/series/datasharing
http://biosharing.org
http://isatab.sourceforge.net/
http://pantonprinciples.org/
http://pantonprinciples.org/
http://blog.datadryad.org/2011/10/05/why-does-dryad-use-cc0/
http://opendefinition.org/licenses/
http://opendefinition.org/licenses/
http://www.biomedcentral.com/about/access/{#}opendata
http://www.biomedcentral.com/about/access/{#}opendata
 http://blogs.biomedcentral.com/bmcblog/2012/09/10/put-the-open-in-opendata/
 http://blogs.biomedcentral.com/bmcblog/2012/09/10/put-the-open-in-opendata/
http://www.nature.com/emboj/about/authors.html
http://www.nature.com/emboj/about/authors.html

Open Science and the Role of Publishers in Reproducible Research 415

77. Hrynaszkiewicz, I., Busch, S., and Cockerill, M. J. Licensing the
future: Report on BioMed Central’s public consultation on Open
Data in peer-reviewed journals. BMC Research Notes 6, 318 (2013),
doi:10.1186/1756-0500-6-318.

78. Savage, C. J. and Vickers, A. J. Empirical study of data sharing by
authors publishing in PLoS journals. PLOS ONE 4, e7078 (2009).

79. Hrynaszkiewicz, I. LabArchives and BioMed Central: A new platform
for publishing scientific data (2012). http://blogs.openaccesscentral.
com/blogs/bmcblog/entry/labarchives_and_biomed_central_a.
(Accessed 28th February 2013.)

80. LabArchives BioMed Central Edition. http://www.labarchives.com/
bmc. (Accessed date 28th February 2013.)

81. Hrynaszkiewicz, I. Social coding and scholarly communication - open
for collaboration (2013) http://blogs.biomedcentral.com/bmcblog/
2013/02/28/github-and-biomed-central/. (Accessed 28th February
2013.)

82. Ram, K. Git can facilitate greater reproducibility and increased
transparency in science. Source Code for Biology and Medicine 8, 7 (2013).

83. Credit where credit is overdue. Nature Biotechnology 27, 579 (2009).
84. DataCite. http://www.datacite.org. (Accessed 28th February 2013.)
85. PANGAEA: Data Publisher for Earth & Environmental Science. http://

www.pangaea.de. (Accessed 28th February 2013.)
86. Sneddon, T. P., Li, P., and Edmunds, S. C. GigaDB: Announcing the

GigaScience database. GigaScience 1, 11 (2012).
87. Ball, A. and Duke, M. How to cite datasets and link to publications. In

How-to Guides. Edinburgh, UK: Digital Curation Centre (2011). http://
www.dcc.ac.uk/resources/how-guides/cite-datasets. (Accessed 28th
February 2013.)

88. Li, Y. et al. Single-cell sequencing analysis characterizes common and
cell-lineage-specific mutations in a muscle-invasive bladder cancer.
GigaScience 1, 12 (2012).

89. Li, D., Xi, F., Zhao, M., Chen, W., Cao, S., Xu, R., Wang, G. et al. and the
Escherichia coli O104:H4 TY-2482 isolate Genome Sequencing Consor-
tium. Genomic data from Escherichia coli O104:H4 isolate TY-2482. BGI
Shenzhen (2011). http://dx.doi.org/10.5524/100001. (Accessed date
28th February 2013.)

90. Scholl, D., Gebhart, D., Williams, S. R., Bates, A., and Mandrell, R.
Genome sequence of E. coli O104:H4 leads to rapid development of
a targeted antimicrobial agent against this emerging pathogen. PLOS
ONE 7, e33637 (2012).

91. Rohde, H. et al. Open-source genomic analysis of Shiga-toxin–
producing E. coli O104:H4. New England Journal of Medicine 365, 718–724
(2011). doi:10.1056/NEJMoa1107643.

http://blogs.openaccesscentral.com/blogs/bmcblog/entry/labarchives{_}and{_}biomed{_}central{_}a
http://blogs.openaccesscentral.com/blogs/bmcblog/entry/labarchives{_}and{_}biomed{_}central{_}a
http://www.labarchives.com/bmc
http://www.labarchives.com/bmc
http://blogs.biomedcentral.com/bmcblog/2013/02/28/github-and-biomed-central/
http://blogs.biomedcentral.com/bmcblog/2013/02/28/github-and-biomed-central/
http://www.datacite.org
http://www. pangaea.de
http://www. pangaea.de
http://www.dcc.ac.uk/resources/how-guides/cite-datasets
http://www.dcc.ac.uk/resources/how-guides/cite-datasets
http://dx.doi.org/10.5524/100001

416 Implementing Reproducible Research

92. Science as an open enterprise. The Royal Society Science Policy Centre
Report (2012). http://royalsociety.org/uploadedFiles/Royal_Society_
Content/policy/projects/sape/2012-06-20-SAOE.pdf. (Accessed 28th
February 2013.)

93. MacLean, D. et al. Crowdsourcing genomic analyses of ash and ash
dieback—Power to the people. GigaScience 2, 2 (2013). doi:10.1186/
2047-217X-2-2.

94. Dudley, J. T. and Butte, A. J. In silico research in the era of cloud
computing. Nature Biotechnology 28, 1181–1185 (2010).

95. Wilkening, J., Wilke, A., Desai, N., and Meyer, F. Using clouds for
metagenomics: A case study. 2009 IEEE International Conference on
Cluster Computing and Workshops, New Orleans, LA, pp. 1–6 (2009).
doi:10.1109/CLUSTR.2009.5289187.

96. Nature ENCODE: Nature Publishing Group: A landmark in the under-
standing of the human genome. http://www.nature.com/encode/#/
threads. (Accessed 28th February 2013.)

97. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in
the human genome. Nature 489, 57–74 (2012).

98. ENCODE Virtual Machine and Cloud Resource. http://scofield.bx.
psu.edu/~dannon/encodevm/. (Accessed 28th February 2013.)

99. Ragan-Kelley, B. et al. Collaborative cloud-enabled tools allow rapid,
reproducible biological insights. The ISME Journal 7(3), 461–464 (2012).
doi:10.1038/ismej.2012.123.

100. The Pistoia Alliance Sequence Squeeze competition. http://www.
sequencesqueeze.org/. (Accessed 28th February 2013.)

101. Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A,
Brooks LD, et al. (2010). A map of human genome variation from
population-scale sequencing. Nature 467(7319), 1061–73.

102. Jones, D. C., Ruzzo, W. L., Peng, X., and Katze, M. G. Compression
of next-generation sequencing reads aided by highly efficient de
novo assembly. Nucleic Acids Research 40(22), e171 (2012). http://
nar.oxfordjournals.org/content/early/2012/08/14/nar.gks754.long.
(Accessed date 28th February 2013.)

103. Hach, F., Numanagic, I., Alkan, C., and Sahinalp, S. C. SCALCE:
Boosting sequence compression algorithms using locally consistent
encoding. Bioinformatics (Oxford, England) 28(23), 3051–3057 (2012).
http://bioinformatics.oxfordjournals.org/content/early/2012/10/
08/bioinformatics.bts593.short. (Accessed date 28th February 2013.)

104. Hull, D. et al. Taverna: A tool for building and running workflows of
services. Nucleic Acids Research 34, W729–W732 (2006).

105. The Kepler Project. https://kepler-project.org. (Accessed 28th
February 2013.)

106. Knime. http://www.knime.org. (Accessed 28th February 2013.)

http://royalsociety.org/uploadedFiles/Royal{_}Society{_}Content/policy/projects/sape/2012-06-20-SAOE.pdf
http://royalsociety.org/uploadedFiles/Royal{_}Society{_}Content/policy/projects/sape/2012-06-20-SAOE.pdf
http://www.nature.com/encode/{#}/threads
http://www.nature.com/encode/{#}/threads
http://scofield.bx.psu.edu/~dannon/encodevm/
http://scofield.bx.psu.edu/~dannon/encodevm/
http://www.sequencesqueeze.org/
http://www.sequencesqueeze.org/
http://nar.oxfordjournals.org/content/early/2012/08/14/nar.gks754.long
http://nar.oxfordjournals.org/content/early/2012/08/14/nar.gks754.long
http://bioinformatics.oxfordjournals.org/content/early/2012/10/08/bioinformatics.bts593.short
http://bioinformatics.oxfordjournals.org/content/early/2012/10/08/bioinformatics.bts593.short
https://kepler-project.org
http://www.knime.org

Open Science and the Role of Publishers in Reproducible Research 417

107. Pipeline Pilot. http://accelrys.com/products/pipeline-pilot. (Accessed
28th February 2013.)

108. Goecks, J., Nekrutenko, A., and Taylor, J. Galaxy: A comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biology 11, R86
(2010).

109. GigaScience data analysis platform. http://galaxy.cbiit.cuhk.edu.hk.
(Accessed 28th February 2013.)

110. Galaxy. Published Page. Polar-bears. https://main.g2.bx.psu.edu/u/
webb/p/polar-bears. (Accessed 28th February 2013.)

111. Miller, W. et al. Polar and brown bear genomes reveal ancient admix-
ture and demographic footprints of past climate change. Proceedings
of the National Academy of Sciences of the United States of America 109,
E2382–E2390 (2012).

112. Nowakowski, P. et al. The collage authoring environment. Procedia
Computer Science 4, 608–617 (2011).

113. Belhajjame K. C. O. et al. Workflow-centric research objects: A first
class citizen in the scholarly discourse. Workshop on the Future of Schol-
arly Communication in the Semantic Web (SePublica2012), Crete, Greece
(2012). http://users.ox.ac.uk/~oerc0033/preprints/sepublica2012.pdf.
(Accessed date 28th February 2013.)

114. WF4Ever project. http://www.wf4ever-project.org. (Accessed date
28th February 2013.)

115. Gillam, M., Feied, C., Handler, J., and Moody, E. The healthcare
singularity and the age of semantic medicine. The Fourth Paradigm
57–64 (2009). http://research.microsoft.com/en-us/collaboration/
fourthparadigm/4th_paradigm_book_part2_gillam.pdf. (Accessed
date 28th February 2013.)

116. Shotton, D., Portwin, K., Klyne, G., and Miles, A. Adventures in
semantic publishing: Exemplar semantic enhancements of a research
article. PLoS Computational Biology 5, e1000361, (2009).

117. BioMed Central’s Cases Database. http://www.casesdatabase.com.
(Accessed 28th February 2013.)

118. Pettifer, S. et al. Reuniting data and narrative in scientific articles.
Insights 25, 288–293 (2012).

119. Patrinos, G. P. et al. Microattribution and nanopublication as means
to incentivize the placement of human genome variation data into the
public domain. Human Mutation 33, 1503–1512 (2012).

120. Mons, B. et al. The value of data. Nature Genetics 43, 281–283 (2011).
121. Bourne, P. E. What do I want from the publisher of the future? PLoS

Computational Biology 6, e1000787 (2010).
122. Neylon, C. et al. Changing computational research. The challenges

ahead. Source Code for Biology and Medicine 7, 2 (2012).

http://accelrys.com/products/pipeline-pilot
http://galaxy.cbiit.cuhk.edu.hk
https://main.g2.bx.psu.edu/u/webb/p/polar-bears
https://main.g2.bx.psu.edu/u/webb/p/polar-bears
http://users.ox.ac.uk/~oerc0033/preprints/sepublica2012.pdf
http://www.wf4ever-project.org
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th{_}paradigm{_}book{_}part2{_}gillam.pdf
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th{_}paradigm{_}book{_}part2{_}gillam.pdf
http://www.casesdatabase.com

418 Implementing Reproducible Research

123. Galaxy. Published Page. polar-bears at https://main.g2.bx.psu.edu/
u/webb/p/polar-bears.

124. Miller, W. et al. Polar and brown bear genomes reveal ancient admix-
ture and demographic footprints of past climate change. Proceedings
of the National Academy of Sciences of the United States of America 109,
E2382–90 (2012).

125. Goble, C. A. et al. myExperiment: A repository and social network
for the sharing of bioinformatics workflows. Nucleic acids research 38,
W677–82 (2010).

https://main.g2.bx.psu.edu/u/webb/p/polar-bears
https://main.g2.bx.psu.edu/u/webb/p/polar-bears

Implementing
Reproducible
Research

Im
plem

enting R
eproducible

R
esearch

Edited by

Victoria Stodden
Friedrich Leisch
Roger D. Peng

S
todden
Leisch
P
eng

K15945

In computational science, reproducibility requires that researchers
make code and data available to others so that the data can be ana-
lyzed in a similar manner as in the original publication. Code must
be available to be distributed, data must be accessible in a readable
format, and a platform must be available for widely distributing the
data and code. In addition, both data and code need to be licensed
permissively enough so that others can reproduce the work without
a substantial legal burden.

Implementing Reproducible Research covers many of the elements
necessary for conducting and distributing reproducible research. It
explains how to accurately reproduce a scientific result.

Divided into three parts, the book discusses the tools, practices, and
dissemination platforms for ensuring reproducibility in computational
science. It describes:

• Computational tools, such as Sweave, knitr, VisTrails, Sumatra,
CDE, and the Declaratron system

• Open source practices, good programming practices, trends in
open science, and the role of cloud computing in reproducible
research

• Software and methodological platforms, including open source
software packages, RunMyCode platform, and open access
journals

Each part presents contributions from leaders who have developed
software and other products that have advanced the field. These
innovators explore the use of reproducible research in bioinformatics
and large-scale data analyses and offer guidelines on best practices
and legal issues, including recommendations of the Reproducible
Research Standard.

Statistics The R Series

K15945_Cover.indd 1 3/12/14 9:54 AM

	Front Cover
	Contents
	Preface
	Acknowledgment
	Editors
	Contributors
	Part I: Tools
	Chapter 1: knitr: A Comprehensive Tool for Reproducible Research in R
	Chapter 2: Reproducibility Using VisTrails
	Chapter 3: Sumatra: A Toolkit for Reproducible Research
	Chapter 4: CDE: Automatically Package and Reproduce Computational Experiments
	Chapter 5: Reproducible Physical Science and the Declaratron
	Part II: Practices and Guidelines
	Chapter 6: Developing Open-Source Scientific Practice
	Chapter 7: Reproducible Bioinformatics Research for Biologists
	Chapter 8: Reproducible Research for Large-Scale Data Analysis
	Chapter 9: Practicing Open Science
	Chapter 10: Reproducibility, Virtual Appliances, and Cloud Computing
	Chapter 11: The Reproducibility Project: A Model of Large-Scale Collaboration for Empirical Research on Reproducibility
	Chapter 12: What Computational Scientists Need to Know about Intellectual Property Law: A Primer
	Part III: Platforms
	Chapter 13: Open Science in Machine Learning
	Chapter 14: RunMyCode.org: AResearch-Reproducibility Tool for Computational Sciences
	Chapter 15: Open Science and the Role of Publishers in Reproducible Research
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

