
R Projects

by Joseph Schmuller, PhD

Library of Congress Control Number: 2017964027

ISBN: 978-1-119-44618-7; 978-1-119-44617-0 (ebk); 978-1-119-44616-3 (ebk)

Manufactured in the United States of America

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

R Projects For Dummies

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: The Tools of the Trade . 5
CHAPTER 1: R: What It Does and How It Does It . 7
CHAPTER 2: Working with Packages . 31
CHAPTER 3: Getting Graphic . 43

Part 2: Interacting with a User . 77
CHAPTER 4: Working with a Browser . 79
CHAPTER 5: Dashboards — How Dashing! . 107

Part 3: Machine Learning . 143
CHAPTER 6: Tools and Data for Machine Learning Projects . 145
CHAPTER 7: Decisions, Decisions, Decisions . 167
CHAPTER 8: Into the Forest, Randomly . 185
CHAPTER 9: Support Your Local Vector . 201
CHAPTER 10: K-Means Clustering . 221
CHAPTER 11: Neural Networks . 237

Part 4: Large(ish) Data Sets . 253
CHAPTER 12: Exploring Marketing . 255
CHAPTER 13: From the City That Never Sleeps . 275

Part 5: Maps and Images . 291
CHAPTER 14: All Over the Map . 293
CHAPTER 15: Fun with Pictures . 305

Part 6: The Part of Tens . 319
CHAPTER 16: More Than Ten Packages for Your R Projects . 321
CHAPTER 17: More than Ten Useful Resources . 327

Index . 331

INTRODUCTION . 1
About This Book .2

Part 1: The Tools of the Trade .2
Part 2: Interacting with a User . 2
Part 3: Machine Learning .2
Part 4: Large(ish) Data Sets .2
Part 5: Maps and Images .2
Part 6: The Part of Tens .3

What You Can Safely Skip .3
Foolish Assumptions .3
Icons Used in This Book .3
Beyond the Book .4
Where to Go from Here .4

PART 1: THE TOOLS OF THE TRADE . 5

CHAPTER 1: R: What It Does and How It Does It . 7
Getting R .7
Getting RStudio .8
A Session with R .11

The working directory .11
Getting started .12

R Functions .15
User-Defined Functions .16
Comments .18
R Structures .18

Vectors .18
Numerical vectors .19
Matrices .21
Lists .24
Data frames .25

Of for Loops and if Statements .28

CHAPTER 2: Working with Packages . 31
Installing Packages .31
Examining Data .33

Heads and tails .33
Missing data .33
Subsets .34

R Formulas .35
More Packages .36
Exploring the tidyverse .37

Contents

CHAPTER 3: Getting Graphic . 43
Touching Base .43

Histograms .44
Density plots .45
Bar plots .47
Grouping the bars .49
Quick Suggested Project .51
Pie graphs .53
Scatterplots .53
Scatterplot matrix .55
Box plots .56

Graduating to ggplot2 .57
How it works .58
Histograms .59
Bar plots .61
Grouped bar plots .62
Grouping yet again .64
Scatterplots .67
The plot thickens .68
Scatterplot matrix .72
Box plots .73

PART 2: INTERACTING WITH A USER . 77

CHAPTER 4: Working with a Browser . 79
Getting Your Shine On .79
Creating Your First shiny Project .80

The user interface .83
The server .84
Final steps .85
Getting reactive .86

Working with ggplot .89
Changing the server .90
A few more changes .92
Getting reactive with ggplot .94

Another shiny Project .96
The base R version .97
The ggplot version .104

Suggested Project .106

CHAPTER 5: Dashboards — How Dashing! . 107
The shinydashboard Package .107
Exploring Dashboard Layouts .108

Getting started with the user interface .109
Building the user interface: Boxes, boxes, boxes110

Lining up in columns .117
A nice trick: Keeping tabs .121
Suggested project: Add statistics .125
Suggested project: Place valueBoxes in tabPanels126

Working with the Sidebar .126
The user interface .128
The server .131
Suggested project: Relocate the slider .133

Interacting with Graphics .135
Clicks, double-clicks, and brushes — oh, my! 135
Why bother with all this? .138
Suggested project: Experiment with airquality141

PART 3: MACHINE LEARNING . 143

CHAPTER 6: Tools and Data for Machine Learning Projects 145
The UCI (University of California-Irvine) ML Repository146

Downloading a UCI dataset .146
Cleaning up the data .148
Exploring the data .150
Exploring relationships in the data .152

Introducing the Rattle package .157
Using Rattle with iris .159

Getting and (further) exploring the data .159
Finding clusters in the data .162

CHAPTER 7: Decisions, Decisions, Decisions . 167
Decision Tree Components .167

Roots and leaves .168
Tree construction .168

Decision Trees in R .169
Growing the tree in R .169
Drawing the tree in R .171

Decision Trees in Rattle .173
Creating the tree .174
Drawing the tree .175
Evaluating the tree .176

Project: A More Complex Decision Tree .177
The data: Car evaluation .177
Data exploration .179
Building and drawing the tree .180
Evaluating the tree .181
Quick suggested project: Understanding the
complexity parameter. .181

Suggested Project: Titanic .182

CHAPTER 8: Into the Forest, Randomly . 185
Growing a Random Forest .185
Random Forests in R .187

Building the forest .187
Evaluating the forest .189
A closer look .190
Plotting error .191
Plotting importance .193

Project: Identifying Glass .194
The data .194
Getting the data into Rattle .195
Exploring the data .196
Growing the random forest .198
Visualizing the results .198

Suggested Project: Identifying Mushrooms .200

CHAPTER 9: Support Your Local Vector . 201
Some Data to Work With .201

Using a subset .202
Defining a boundary .202
Understanding support vectors .203

Separability: It’s Usually Nonlinear .205
Support Vector Machines in R .207

Working with e1071 .207
Working with kernlab .212

Project: House Parties .214
Reading in the data .216
Exploring the data .217
Creating the SVM .218
Evaluating the SVM .220

Suggested Project: Titanic Again .220

CHAPTER 10: K-Means Clustering . 221
How It Works .221
K-Means Clustering in R .223

Setting up and analyzing the data .223
Understanding the output .224
Visualizing the clusters .225
Finding the optimum number of clusters .226
Quick suggested project: Adding the sepals229

Project: Glass Clusters .231
The data .231
Starting Rattle and exploring the data .232
Preparing to cluster .233

Doing the clustering .234
Going beyond Rattle .234

Suggested Project: A Few Quick Ones .235
Visualizing data points and clusters .235
The optimum number of clusters .236
Adding variables .236

CHAPTER 11: Neural Networks . 237
Networks in the Nervous System .237
Artificial Neural Networks .238

Overview .238
Input layer and hidden layer .239
Output layer .240
How it all works .240

Neural Networks in R .241
Building a neural network for the iris data frame 241
Plotting the network .243
Evaluating the network .244
Quick suggested project: Those sepals .245

Project: Banknotes .245
The data .245
Taking a quick look ahead .246
Setting up Rattle .247
Evaluating the network .249
Going beyond Rattle: Visualizing the network249

Suggested Projects: Rattling Around .251

PART 4: LARGE(ISH) DATA SETS . 253

CHAPTER 12: Exploring Marketing . 255
Project: Analyzing Retail Data .255

The data .256
RFM in R .257

Enter Machine Learning .265
K-means clustering .265
Working with Rattle .267
Digging into the clusters .268
The clusters and the classes .270
Quick suggested project .271

Suggested Project: Another Data Set .272

CHAPTER 13: From the City That Never Sleeps . 275
Examining the Data Set .275
Warming Up .276

Glimpsing and viewing .276
Piping, filtering, and grouping .277
Visualizing .279
Joining .280
Quick Suggested Project: Airline names .283

Project: Departure Delays .283
Adding a variable: weekday .283
Quick Suggested Project: Analyze weekday differences 284
Delay, weekday, and airport .285
Delay and flight duration .287

Suggested Project: Delay and Weather .289

PART 5: MAPS AND IMAGES . 291

CHAPTER 14: All Over the Map . 293
Project: The Airports of Wisconsin .293

Dispensing with the preliminaries .293
Getting the state geographic data. .294
Getting the airport geographic data .295
Plotting the airports on the state map .298
Quick Suggested Project: Another source of airport
geographic info .299

Suggested Project 1: Map Your State .299
Suggested Project 2: Map the Country .299

Plotting the state capitals .301
Plotting the airports .302

CHAPTER 15: Fun with Pictures . 305
Polishing a Picture: It’s magick! .305

Reading the image .306
Rotating, flipping, and flopping .307
Annotating .308
Combining transformations .309
Quick suggested project: Three F’s .309
Combining images .310
Animating .311
Making your own morphs .312

Project: Two Legends in Search of a Legend .313
Getting Stan and Ollie .313
Combining the boys with the background .314
Explaining image_apply() .314
Getting back to the animation .316

Suggested Project: Combine an Animation with a Plot316

PART 6: THE PART OF TENS . 319

CHAPTER 16: More Than Ten Packages for Your R Projects 321
Machine Learning .321
Databases .322
Maps .322
Image Processing. .324
Text Analysis .324

CHAPTER 17: More than Ten Useful Resources . 327
Interacting with Users .327
Machine Learning .328
Databases .328
Maps and Images .329

INDEX . 331

Introduction 1

Introduction

If you’re like me, you think the best way to learn is by doing. Don’t just read
about something — practice it! If you want to be a builder, then build. If you
want to be a writer, then write. If you want to be a carpenter, then carpenter.

(Yes, that noun and verb are the same. Carpent is not a word.)

I based this book on that learning-by-doing philosophy. My objective is for you to
expand your R skill set by using R to complete projects in a variety of areas, and to
learn something about those areas, too.

Even with those noble intentions, a book like this one can fall into a trap. It can
quickly become a cookbook: Use this package, use these functions, create a
graphic — and presto, you’ve finished a project and it’s time to move on.

I didn’t want to write that book. Instead, beginning in Part 2 (which is where the
projects start), each chapter does more than just walk you through a project. First,
I show you some background material about the subject area, and then (in most
chapters) you work through a scaled-down project in that area to get your feet
wet, and then you complete a larger project.

But a chapter doesn’t end there. At the end of each chapter, you’ll find a Suggested
Project that challenges you to apply your newly minted skills. For each of those,
I supply just enough information to get you started. (Wherever necessary, I include
tips about potential pitfalls.)

Along the way, you’ll also encounter Quick Suggested Projects. These are based on
tweaks to projects you’ve already completed, and they present additional chal-
lenges to your growing skill set.

One more thing: Every subject area could be the basis for an entire book, so I can
only scratch the surface of each one. Chapter 17 directs you toward resources that
provide more information.

2 R Projects For Dummies

About This Book
I’ve organized this book into six parts.

Part 1: The Tools of the Trade
Part 1 is all about R and RStudio. I discuss R functions, structures, and packages,
and I show you how to create a variety of graphics.

Part 2: Interacting with a User
The projects begin in Part 2, where you learn to create applications that respond
to users. I discuss the shiny package for working with web browsers, and the
shinydashboard package for creating dashboards.

Part 3: Machine Learning
This is the longest part of the book. I begin by telling you about the University of
California–Irvine Machine Learning Repository, which provides the data sets for
the projects. I also discuss the rattle package for creating machine learning
applications. The projects cover decision trees, random forests, support vector
machines, k-means clustering, and neural networks.

Part 4: Large(ish) Data Sets
The two projects in Part 4 deal with larger data sets than you encounter earlier in
the book. The first project is a customer segmentation analysis of over 300,000
customers of an online retailer. A follow-up analysis applies machine learning.
The second project analyzes a data set of more than 500,000 airline flights.

Part 5: Maps and Images
Two projects are in Part 5. The first is to plot the location (along with other infor-
mation) of airports in one of the US states. The second shows you how to combine
an animated image with a stationary one.

Introduction 3

Part 6: The Part of Tens
The first chapter in Part 6 provides information about useful packages that can
help you with future projects. The second tells you where to learn more about the
subject areas of this book.

What You Can Safely Skip
Any reference book throws a lot of information at you, and this one is no excep-
tion. I intended it all to be useful, but I didn’t aim it all at the same level. So if
you’re not deeply into the subject matter, you can avoid paragraphs marked with
the Technical Stuff icon, and you can also skip the sidebars.

Foolish Assumptions
I’m assuming that you

 » Know how to work with Windows or the Mac. I don’t spell out the details of
pointing, clicking, selecting, and other actions.

 » Can install R and RStudio (I show you how in Chapter 1), and follow along with
the examples. I use the Windows version of RStudio, but you should have no
problem if you’re working on a Mac.

Icons Used in This Book
You’ll find icons in all For Dummies books, and this one is no exception. Each one
is a little picture in the margin that lets you know something special about the
paragraph it sits next to.

This icon points out a hint or a shortcut that helps you in your work and makes
you an all-around better person.

This one points out timeless wisdom to take with you as you continue on the path
to enlightenment.

4 R Projects For Dummies

Pay attention to this icon. It’s a reminder to avoid something that might gum up
the works for you.

As I mention in the earlier section “What You Can Safely Skip,” this icon indicates
material you can blow past if it’s just too technical. (I’ve kept this information to
a minimum.)

Beyond the Book
In addition to what you’re reading right now, this product comes with a free
access-anywhere Cheat Sheet that presents a selected list of R functions and
describes what they do. To get this Cheat Sheet, visit www.dummies.com and type
R Projects For Dummies Cheat Sheet in the Search box.

Where to Go from Here
You can start the book anywhere, but here are a couple of hints. Want to introduce
yourself to R and packages? You’ll find the info in Chapters 1 and 2. Want to start
with graphics? Hit Chapter 3. For anything else, find it in the table of contents or
in the index and go for it.

If you’re a cover-to-cover reader, turn the page. . . .

http://www.dummies.com

CHAPTER 1 R: What It Does and How It Does It 7

Chapter 1
R: What It Does
and How It Does It

S
o you’re ready to journey into the wonderful world of R! Designed by and for
statisticians and data scientists, R has a short but illustrious history.

In the 1990s, Ross Ihaka and Robert Gentleman developed R at the University of
Auckland, New Zealand. The Foundation for Statistical Computing supports R,
which is growing more popular by the day.

Getting R
If you don’t already have R on your computer, the first thing to do is to download
R and install it.

You’ll find the appropriate software on the website of the Comprehensive
R Archive Network (CRAN). In your browser, type this web address if you work in
Windows:

cran.r-project.org/bin/windows/base

 » Getting R and RStudio on your
computer

 » Plunging into a session with R

 » Working with R functions

 » Working with R structures

8 PART 1 The Tools of the Trade

Type this one if you work on the Mac:

cran.r-project.org/bin/macosx

Click the link to download R. This puts a win.exe file in your Windows computer
or a pkg file in your Mac. In either case, follow the usual installation procedures.
When installation is complete, Windows users see two R icons on their desktop,
one for 32-bit processors and one for 64-bit processors (pick the one that’s right
for you). Mac users see an R icon in their Application folder.

Both addresses provide helpful links to FAQs. The windows-related one also has
the link Installation and Other Instructions.

Getting RStudio
Working with R is a lot easier if you do it through an application called RStudio.
Computer honchos refer to RStudio as an IDE (Integrated Development Environment).
Think of it as a tool that helps you write, edit, run, and keep track of your R code, and
as an environment that connects you to a world of helpful hints about R.

Here’s the web address for this terrific tool:

www.rstudio.com/products/rstudio/download

Click the link for the installer for your computer’s operating system — Windows,
Mac, or a flavor of Linux — and again follow the usual installation procedures.

In this book, I work with R version 3.4.0 and RStudio version 1.0.143. By the time
you read this, later versions of both might be available.

After you finish installing R and RStudio, click on your brand-new RStudio icon to
open the window shown in Figure 1-1.

The large Console pane on the left runs R code. One way to run R code is to type it
directly into the Console pane. I show you another in a moment.

The other two panes provide helpful information as you work with R. The
Environment/History pane is in the upper right. The Environment tab keeps track
of the things you create (which R calls objects) as you work with R. The History tab
tracks R code that you enter.

http://www.rstudio.com/products/rstudio/download

CHAPTER 1 R: What It Does and How It Does It 9

Get used to the word object. Everything in R is an object.The Files/Plots/Packages/
Help pane is in the lower right. The Files tab shows files you create. The Plots tab
holds graphs you create from your data. The Packages tab shows add-ons (called
packages) that have downloaded with R. Bear in mind that downloaded doesn’t
mean “ready to use.” To use a package’s capabilities, one more step is necessary,
and trust me — you’ll want to use packages.

Figure 1-2 shows the Packages tab. I discuss packages later in this chapter.

The Help tab, shown in Figure 1-3, links you to a wealth of information about R
and RStudio.

To tap into the full power of RStudio as an IDE, click the icon in the upper right
corner of the Console pane. That changes the appearance of RStudio so that it
looks like Figure 1-4.

FIGURE 1-1:
RStudio,

immediately after
you install it and
click on its icon.

10 PART 1 The Tools of the Trade

The Console pane relocates to the lower left. The new pane in the upper left is the
Scripts pane. You type and edit code in the Scripts pane by pressing Ctrl+R
(Command+Enter on the Mac), and then the code executes in the Console pane.

Ctrl+Enter works just like Ctrl+R. You can also highlight lines of code in the Scripts
pane and select Code ➪ Run Selected Line(s) from RStudio’s main menu.

FIGURE 1-3:
The RStudio

Help tab.

FIGURE 1-2:
The RStudio

Packages tab.

CHAPTER 1 R: What It Does and How It Does It 11

A Session with R
Before you start working, select File ➪ Save As from the main menu and then save
your work file as My First R Session. This relabels the tab in the Scripts pane with
the name of the file and adds the .R extension. This also causes the filename
(along with the .R extension) to appear on the Files tab.

The working directory
What exactly does R save, and where does R save it? What R saves is called the
workspace, which is the environment you’re working in. R saves the workspace in
the working directory. In Windows, the default working directory is

C:\Users\<User Name>\Documents

On a Mac, it’s

/Users/<User Name>

FIGURE 1-4:
RStudio after you

click the icon in
the upper right

corner of the
Console pane.

12 PART 1 The Tools of the Trade

If you ever forget the path to your working directory, type

> getwd()

in the Console pane, and R returns the path onscreen.

In the Console pane, you don’t type the right-pointing arrowhead at the begin-
ning of the line. That’s a prompt.

My working directory looks like this:

> getwd()

[1] "C:/Users/Joseph Schmuller/Documents

Note the direction the slashes are slanted. They’re opposite to what you typically
see in Windows file paths. This is because R uses \ as an escape character — whatever
follows the \ means something different from what it usually means. For example,
\t in R means Tab key.

You can also write a Windows file path in R as

C:\\Users\\<User Name>\\Documents

If you like, you can change the working directory:

> setwd(<file path>)

Another way to change the working directory is to select Session ➪ Set Working
Directory ➪ Choose Directory from the main menu.

Getting started
Let’s get down to business and start writing R code. In the Scripts pane, type

x <- c(5,10,15,20,25,30,35,40)

and then press Ctrl+R.

That puts this line into the Console pane:

> x <- c(5,10,15,20,25,30,35,40)

As I say in an earlier Tip paragraph, the right-pointing arrowhead (the greater-
than sign) is a prompt that R puts in the Console pane. You don’t see it in the
Scripts pane.

CHAPTER 1 R: What It Does and How It Does It 13

Here’s what R just did: The arrow-sign says that x gets assigned whatever is to
the right of the arrow-sign. Think of the arrow-sign as R’s assignment operator. So
the set of numbers 5, 10, 15, 20 . . . 40 is now assigned to x.

In R-speak, a set of numbers like this is a vector. I tell you more about this concept
in the later section “R Structures.”

You can read that line of code as “x gets the vector 5, 10, 15, 20.”

Type x into the Scripts pane and press Ctrl+R, and here’s what you see in the
 Console pane:

> x

[1] 5 10 15 20 25 30 35 40

The 1 in square brackets is the label for the first line of output. So this signifies
that 5 is the first value.

Here you have only one line, of course. What happens when R outputs many values
over many lines? Each line gets a bracketed numeric label, and the number
 corresponds to the first value in the line. For example, if the output consists of
23 values and the eighteenth value is the first one on the second line, the second
line begins with [18].

Creating the vector x causes the Environment tab to look like Figure 1-5.

Another way to see the objects in the environment is to type ls() into the Scripts
pane and then press Ctrl+R. Or you can type > ls() directly into the Console pane
and press Enter. Either way, the result in the Console pane is

[1] "x"

FIGURE 1-5:
The RStudio

Environment tab
after creating the

vector x.

14 PART 1 The Tools of the Trade

Now you can work with x. First, add all numbers in the vector. Typing sum(x) in
the Scripts pane (be sure to follow with Ctrl+R) executes the following line in the
Console pane:

> sum(x)

[1] 180

How about the average of the numbers in vector x?

That would involve typing mean(x) in the Scripts pane, which (when followed by
Ctrl+R) executes

> mean(x)

[1] 22.5

in the Console pane.

As you type in the Scripts pane or in the Console pane, you see that helpful infor-
mation pops up. As you become experienced with RStudio, you learn how to use
that information.

Variance is a measure of how much a set of numbers differ from their mean. Here’s
how to use R to calculate variance:

> var(x)

[1] 150

What, exactly, is variance and what does it mean? (Shameless plug alert.) For the
answers to these and numerous other questions about statistics and analysis, read
one of the most classic works in the English language: Statistical Analysis with R For
Dummies (written by yours truly and published by Wiley).

After R executes all these commands, the History tab looks like Figure 1-6.

FIGURE 1-6:
The History tab,

after creating and
working with a

vector.

CHAPTER 1 R: What It Does and How It Does It 15

To end a session, select File ➪ Quit Session from the main menu or press Ctrl+Q. As
Figure 1-7 shows, a dialog box opens and asks what you want to save from the ses-
sion. Saving the selections enables you to reopen the session where you left off the
next time you open RStudio (although the Console pane doesn’t save your work).

Moving forward, most of the time I don’t say “Type this code into the Scripts pane
and press Ctrl+Enter” whenever I take you through an example. I just show you
the code and its output, as in the var() example.

Also, sometimes I show code with the > prompt, and sometimes without. Gener-
ally, I show the prompt when I want you to see R code and its results. I don’t show
the prompt when I just want you to see R code that I create in the Scripts pane.

R Functions
The examples in the preceding section use c(), sum(), and var(). These are three
functions built into R. Each one consists of a function name immediately followed
by parentheses. Inside the parentheses are arguments. In the context of a function,
argument doesn’t mean “debate” or “disagreement” or anything like that. It’s the
math name for whatever a function operates on.

Sometimes a function takes no arguments (as is the case with ls()). You still
include the parentheses.

The functions in the examples I showed you are pretty simple: Supply an argu-
ment, and each one gives you a result. Some R functions, however, take more than
one argument.

FIGURE 1-7:
The Quit R

Session
dialog box.

16 PART 1 The Tools of the Trade

R has a couple of ways for you to deal with multi-argument functions. One way is
to list the arguments in the order that they appear in the function’s definition.
R calls this positional mapping.

Here’s an example. Remember when I created the vector x?

x <- c(5,10,15,20,25,30,35,40)

Another way to create a vector of those numbers is with the function seq():

> y <- seq(5,40,5)

> y

[1] 5 10 15 20 25 30 35 40

Think of seq() as creating a “sequence.” The first argument to seq() is the num-
ber to start the sequence from (5). The second argument is the number that ends
the sequence — the number the sequence goes to (40). The third argument is the
increment of the sequence — the amount the sequence increases by (5).

If you name the arguments, it doesn’t matter how you order them:

> z <- seq(to=40,by=5,from=5)

> z

[1] 5 10 15 20 25 30 35 40

So when you use a function, you can place its arguments out of order, if you name
them. R calls this keyword matching. This comes in handy when you use an R func-
tion that has many arguments. If you can’t remember their order, use their names,
and the function works.

For help on a particular function — seq(), for example — type ?seq. When you
run that code, helpful information appears on the Help tab and useful information
pops up in a little window right next to where you’re typing.

User-Defined Functions
R enables you to create your own functions, and here are the fundamentals on how
to do it.

CHAPTER 1 R: What It Does and How It Does It 17

The form of an R function is

myfunction <- function(argument1, argument2, ...){

 statements

 return(object)

}

Here’s a function for dealing with right triangles. Remember them? A right tri-
angle has two sides that form a right angle, and a third side called a hypotenuse.
You might also remember that a guy named Pythagoras showed that if one side
has length a and the other side has length b, the length of the hypotenuse, c, is

c a b2 2

So here’s a simple function called hypotenuse() that takes two numbers a and b,
(the lengths of the two sides of a right triangle) and returns c, the length of the
hypotenuse:

hypotenuse <- function(a,b){

 hyp <- sqrt(a^2+b^2)
 return(hyp)

}

Type that code snippet into the Scripts pane and highlight it. Then press Ctrl+Enter.
Here’s what appears in the Console pane:

> hypotenuse <- function(a,b){

+ hyp <- sqrt(a^2+b^2)
+ return(hyp)
+ }

Each plus sign is a continuation prompt. It just indicates that a line continues from
the preceding line.

And here’s how to use the function:

> hypotenuse(3,4)

[1] 5

Writing R functions can encompass way more than I’ve shown you here. To learn
more, take a look at R For Dummies, by Andrie de Vries and Joris Meys (Wiley).

18 PART 1 The Tools of the Trade

Comments
A comment is a way of annotating code. Begin a comment with the # symbol,
which, as everyone knows, is called an octothorpe. (Wait. What? “Hashtag?” Get
atta here!) This symbol tells R to ignore everything to the right of it.

Comments help someone who has to read the code you’ve written. For example:

hypotenuse <- function(a,b){ # list the arguments

 hyp <- sqrt(a^2+b^2) # perform the computation
 return(hyp) # return the value

}

Here’s a heads-up: I don’t typically add comments to lines of code in this book.
Instead, I provide detailed descriptions. In a book like this, I feel it’s the best way
to get the message across.

R Structures
As I mention in the “R Functions” section, earlier in this chapter, an R function
can have many arguments. An R function can also have many outputs. To under-
stand the possible inputs and outputs, you must understand the structures that R
works with.

Vectors
The vector is the fundamental structure in R. I show it to you in earlier examples.
It’s an array of elements of the same type. The data elements in a vector are called
components.

To create a vector, use the function c(), as I do in the earlier example:

x <- c(5,10,15,20,25,30,35,40)

In the vector x, of course, the components are numbers.

In a character vector, the components are quoted text strings:

> beatles <- c("john","paul","george","ringo")

CHAPTER 1 R: What It Does and How It Does It 19

It’s also possible to have a logical vector, whose components are TRUE and FALSE, or
the abbreviations T and F:

> w <- c(T,F,F,T,T,F)

To refer to a specific component of a vector, follow the vector name with a brack-
eted number:

> beatles[2]

[1] "paul"

Within the brackets, you can use a colon (:) to refer to two consecutive
components:

> beatles[2:3]

[1] "paul" "george"

Want to refer to nonconsecutive components? That’s a bit more complicated, but
doable via c():

> beatles[c(2,4)]

[1] "paul" "ringo"

Numerical vectors
In addition to c(), R provides two shortcut functions for creating numerical vec-
tors. One, seq(), I showed you earlier:

> y <- seq(5,40,5)

> y

[1] 5 10 15 20 25 30 35 40

Without the third argument, the sequence increases by 1:

> y <- seq(5,40)

> y

 [1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[20] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

On my screen, and probably on yours too, all the elements in y appear on one line.
The printed page, however, is not as wide as the Console pane. Accordingly,
I separated the output into two lines and added the R-style bracketed number [20]
to the beginning of the second line.

20 PART 1 The Tools of the Trade

R has a special syntax for creating a numerical vector whose elements increase by 1:

> y <- 5:40

> y

 [1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[20] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Another function, rep(), creates a vector of repeating values:

> quadrifecta <- c(7,8,4,3)

> repeated_quadrifecta <- rep(quadrifecta,3)

> repeated_quadrifecta

 [1] 7 8 4 3 7 8 4 3 7 8 4 3

You can also supply a vector as the second argument:

> rep_vector <-c(1,2,3,4)

> repeated_quadrifecta <- rep(quadrifecta,rep_vector)

The vector specifies the number of repetitions for each element. So here’s what
happens:

> repeated_quadrifecta

 [1] 7 8 8 4 4 4 3 3 3 3

The first element repeats once; the second, twice; the third, three times; and the
fourth, four times.

You can use append() to add an item at the end of a vector:

> xx <- c(3,4,5)

> xx

[1] 3 4 5

> xx <- append(xx,6)

> xx

[1] 3 4 5 6

and you can use prepend() to add an item at the beginning of a vector:

> xx <- prepend(xx,2)

> xx

[1] 2 3 4 5 6

CHAPTER 1 R: What It Does and How It Does It 21

How many items are in a vector? That’s

> length(xx)

[1] 5

Matrices
A matrix is a 2-dimensional array of data elements of the same type. You can have
a matrix of numbers:

5 30 55 80

10 35 60 85

15 40 65 90

20 45 70 95

25 50 75 100

or a matrix of character strings:

“john” “paul” “george” “ringo”

“groucho” “harpo” “chico” “zeppo”

“levi” “duke” “larry” “obie”

The numbers are a 5 (rows) X 4 (columns) matrix. The character strings matrix is
3 X 4.

To create this particular 5 X 4 numerical matrix, first create the vector of numbers
from 5 to 100 in steps of 5:

> num_matrix <- seq(5,100,5)

Then you use R’s dim() function to turn the vector into a 2-dimensional matrix:

> dim(num_matrix) <- c(5,4)

> num_matrix

 [,1] [,2] [,3] [,4]

[1,] 5 30 55 80

[2,] 10 35 60 85

[3,] 15 40 65 90

[4,] 20 45 70 95

[5,] 25 50 75 100

22 PART 1 The Tools of the Trade

Note how R displays the bracketed row numbers along the side, and the bracketed
column numbers along the top.

Transposing a matrix interchanges the rows with the columns. The t() function
takes care of that:

> t(num_matrix)

 [,1] [,2] [,3] [,4] [,5]

[1,] 5 10 15 20 25

[2,] 30 35 40 45 50

[3,] 55 60 65 70 75

[4,] 80 85 90 95 100

The function matrix() gives you another way to create matrices:

> num_matrix <- matrix(seq(5,100,5),nrow=5)

> num_matrix

 [,1] [,2] [,3] [,4]

[1,] 5 30 55 80

[2,] 10 35 60 85

[3,] 15 40 65 90

[4,] 20 45 70 95

[5,] 25 50 75 100

If you add the argument byrow=T, R fills the matrix by rows, like this:

> num_matrix <- matrix(seq(5,100,5),nrow=5,byrow=T)

> num_matrix

 [,1] [,2] [,3] [,4]

[1,] 5 10 15 20

[2,] 25 30 35 40

[3,] 45 50 55 60

[4,] 65 70 75 80

[5,] 85 90 95 100

How do you refer to a specific matrix component? You type the matrix name and
then, in brackets, the row number, a comma, and the column number:

> num_matrix[5,4]

[1] 100

To refer to a whole row (like the third one):

> num_matrix[3,]

[1] 45 50 55 60

CHAPTER 1 R: What It Does and How It Does It 23

and to a whole column (like the second one):

> num_matrix[,2]

[1] 10 30 50 70 90

Although it’s a column, R displays it as a row in the Console pane.

BUT BEAR IN MIND . . .
As I mention, a matrix is a 2-dimensional array. In R, however, an array can have more
than two dimensions. One well-known set of data (which I use as an example in
Chapter 3) has three dimensions: Hair Color (Black, Brown, Red, Blond), Eye Color
(Brown, Blue, Hazel, Green), and Gender (Male, Female). So this particular array is
4 X 4 X 2. It’s called HairEycColor and it looks like this:

> HairEyeColor
, , Sex = Male

 Eye
Hair Brown Blue Hazel Green
 Black 32 11 10 3
 Brown 53 50 25 15
 Red 10 10 7 7
 Blond 3 30 5 8

, , Sex = Female

 Eye
Hair Brown Blue Hazel Green
 Black 36 9 5 2
 Brown 66 34 29 14
 Red 16 7 7 7
 Blond 4 64 5 8

Each number represents the number of people in this group who have a particular
combination of hair color, eye color, and gender — 16 brown-eyed, red-haired females,
for example. (Why did I choose brown-eyed, red-haired females? Because I have the
pleasure of looking at an extremely beautiful one every day!)

How would I refer to all the females? That’s

HairEyeColor[,,2]

24 PART 1 The Tools of the Trade

Lists
In R, a list is a collection of objects that aren’t necessarily the same type. Suppose
you’re putting together some information on the Beatles:

> beatles <- c("john","paul","george","ringo")

One piece of important information might be each Beatle’s age when he joined the
group. John and Paul started singing together when they were 17 and 15, respec-
tively, and 14–year-old George joined them soon after. Ringo, a late arrival,
became a Beatle when he was 22. So

> ages <- c(17,15,14,22)

To combine the information into a list, you use the list() function:

> beatles_info <-list(names=beatles,age_joined=ages)

Naming each argument (names, age_joined) causes R to use those names as the
names of the list components.

And here’s what the list looks like:

> beatles_info

$names

[1] "john" "paul" "george" "ringo"

$age_joined

[1] 17 15 14 22

R uses the dollar sign ($) to indicate each component of the list. If you want to
refer to a list component, you type the name of the list, the dollar sign, and the
component name:

> beatles_info$names

[1] "john" "paul" "george" "ringo"

And to zero in on a particular Beatle, like the fourth one? You can probably figure
out that it’s

> beatles_info$names[4]

[1] "ringo"

CHAPTER 1 R: What It Does and How It Does It 25

R also allows you to use criteria inside the brackets. For example, to refer to mem-
bers of the Fab Four who were older than 16 when they joined:

> beatles_info$names[beatles_info$age_joined > 16]

[1] "john" "ringo"

Data frames
A list is a good way to collect data. A data frame is even better. Why? When you
think about data for a group of individuals, you typically think in terms of
rows that represent the individuals and columns that represent the data variables.
And that’s a data frame. If the terms data set or data matrix come to mind, you’ve
got the right idea.

Here’s an example. Suppose I have a set of six people:

> name <- c("al","barbara","charles","donna","ellen","fred") and that I have
each person’s height (in inches) and weight (in pounds):

> height <- c(72,64,73,65,66,71)

> weight <- c(195,117,205,122,125,199)

I also tabulate each person’s gender:

> gender <- c("M","F","M","F","F","M")

Before I show you how to combine all these vectors into a data frame, I have to
show you one more thing. The components of the gender vector are character
strings. For purposes of data summary and analysis, it’s a good idea to turn them
into categories — the Male category and the Female category. To do this, I use the
factor() function:

> factor_gender <-factor(gender)

> factor_gender

[1] M F M F F M

Levels: F M

In the last line of output, Levels is the term that R uses for “categories.”

The function data.frame() works with the vectors to create a data frame:

> d <- data.frame(name,factor_gender,height,weight)

> d

 name factor_gender height weight

26 PART 1 The Tools of the Trade

1 al M 72 195

2 barbara F 64 117

3 charles M 73 205

4 donna F 65 122

5 ellen F 66 125

6 fred M 71 199

Want to know the height of the third person?

> d[3,3]

[1] 73

How about all the information for the fifth person:

> d[5,]

 name factor_gender height weight

5 ellen F 66 125

Like lists, data frames use the dollar sign. In this context, the dollar sign identifies
a column:

> d$height

[1] 72 64 73 65 66 71

You can calculate statistics, like the average height:

> mean(d$height)

[1] 68.5

As is the case with lists, you can put criteria inside the brackets. This is often done
with data frames, to summarize and analyze data within categories. To find the
average height of the females:

> mean(d$height[d$factor_gender == "F"])

[1] 65

The double equal sign (==) in the brackets is a logical operator. Think of it as “if
d$factor_gender is equal to “F”.

The double equal sign (a == b) distinguishes the logical operator (“if a equals b”)
from the assignment operator (a=b; “set a equal to b”).

CHAPTER 1 R: What It Does and How It Does It 27

Yes, I know — I went through an involved explanation about factor() and how
it’s better to have categories (levels) than character strings, and then I had to put
quote marks around F inside the brackets. R is quirky that way.

If you’d like to eliminate $ signs from your R code, you can use the function
with(). You put your code inside the parentheses after the first argument, which
is the data you’re using.

For example,

> with(d,mean(height[factor_gender == "F"]))

is equivalent to

> mean(d$height[d$factor_gender == "F"])

How many rows are in a data frame?

> nrow(d)

[1] 6

And how many columns?

> ncol(d)

[1] 4

To add a column to a data frame, I use cbind(). Begin with a vector of scores:

> aptitude <- c(35,20,32,22,18,15)

Then add that vector as a column:

> d.apt <- cbind(d,aptitude)

> d.apt

 name factor_gender height weight aptitude

1 al M 72 195 35

2 barbara F 64 117 20

3 charles M 73 205 32

4 donna F 65 122 22

5 ellen F 66 125 18

6 fred M 71 199 15

28 PART 1 The Tools of the Trade

Of for Loops and if Statements
Like many programming languages, R provides a way to iterate through its struc-
tures to get things done. R’s way is called the for loop. And, like many languages,
R gives you a way to test against a criterion: the if statement.

The general format of a for loop is

for counter in start:end{

 statement 1

 .

 .

 .

statement n

}

As you might imagine, counter tracks the iterations.

The simplest general format of an if statement is

if(test){statement to execute if test is TRUE}

else{statement to execute if test is FALSE}

Here’s an example that incorporates both. I have one vector xx:

> xx

[1] 2 3 4 5 6

And another vector yy with nothing in it at the moment:

> yy <-NULL

I want the components of yy to reflect the components of xx: If a number in xx is
an odd number, I want the corresponding component of yy to be "ODD", and if the
xx number is even, I want the yy component to be "EVEN".

How do I test a number to see whether it’s odd or even? Mathematicians have
developed modular arithmetic, which is concerned with the remainder of a division
operation. If you divide a by b and the result has a remainder of r, mathematicians
say that “a modulo b is r.” So 10 divided by 3 leaves a remainder of 1, and 10 mod-
ulo 3 is 1. Typically, modulo gets shortened to mod, so that would be “10 mod
3 = 1.”

CHAPTER 1 R: What It Does and How It Does It 29

Most computer languages write 10 mod 3 as mod(10,3). (Excel does that, in fact.).
R does it differently: R uses the double percent sign (%%) as its mod operator:

> 10 %% 3

[1] 1

> 5 %% 2

[1] 1

> 4 %% 2

[1] 0

I think you’re getting the picture: if xx[i] %% 2 == 0, then xx[i] is even. Oth-
erwise, it’s odd.

Here, then, is the for loop and the if statement:

for(i in 1:length(xx)){

if(xx[i] %% 2 == 0){yy[i]<- "EVEN"}

else{yy[i] <- "ODD"}

}

> yy

[1] "EVEN" "ODD" "EVEN" "ODD" "EVEN"

CHAPTER 2 Working with Packages 31

Chapter 2
Working with Packages

A package is a collection of functions and data that augments R. If you’re
looking for data to work with, you’ll find many data frames in R packages.
If you’re looking for a specialized function that’s not in the basic R instal-

lation, you can probably find it in a package.

Installing Packages
As the Packages tab (in the Files/Plots/Packages/Help/Viewer pane of RStudio)
shows, many packages come with the basic R installation, but if you want to work
with them, you have to install them. This means putting them in a directory called
the library. To get one of these comes-with-basic-R packages into the library, you
click the Packages tab. Figure 2-1 shows this tab.

Scroll down until you find the package you’re looking for. For this example, I work
with the datasets package.

I click the check box next to datasets, and this line appears in the Console pane:

> library("datasets", lib.loc="C:/Program Files/R/R-3.4.0/library")

This tells you the datasets package is installed. For information on what’s in this
package, click on datasets in the Packages tab. (You can do this before you install or
after.) Information about the package appears on the Help tab, as Figure 2-2 shows.

 » Installing packages

 » Examining data

 » Exploring a tidy little universe

32 PART 1 The Tools of the Trade

If you have a package downloaded but not installed, you can use library() to put
it in the library:

> library(MASS)

This is also called attaching the package, and it’s equivalent to checking the check
box on the Packages tab.

FIGURE 2-1:
The Packages tab

in RStudio.

FIGURE 2-2:
The Help tab,
after clicking

datasets on
the Packages tab.

CHAPTER 2 Working with Packages 33

Examining Data
Let’s take a look at one of the data frames in datasets. The data frame airquality
provides measurements of four aspects of air quality (ozone, solar radiation,
 temperature, and velocity) in New York City over the 153 days from May 1, 1973, to
September 30, 1973.

Heads and tails
To get an idea of what the data look like, I can use the function head() to show the
first six rows of the data frame:

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

and tail() to show the final six:

> tail(airquality)

 Ozone Solar.R Wind Temp Month Day

148 14 20 16.6 63 9 25

149 30 193 6.9 70 9 26

150 NA 145 13.2 77 9 27

151 14 191 14.3 75 9 28

152 18 131 8.0 76 9 29

153 20 223 11.5 68 9 30

Missing data
Notice the NA in each output. This means that a particular data entry is missing, a
common occurrence in data frames. If you try to find the average of, say, Ozone,
here’s what happens:

> mean(airquality$Ozone)

[1] NA

34 PART 1 The Tools of the Trade

You have to remove the NAs before you calculate, and you do that by adding an
argument to mean():

> mean(airquality$Ozone, na.rm=TRUE)

[1] 42.12931

The rm in na.rm means “remove,” and = TRUE means “get it done.”

Subsets
Sometimes you’re interested in part of a data frame. For example, in airquality,
you might want to work only with Month, Day, and Ozone. To isolate those col-
umns into a data frame, use subset():

> Month.Day.Ozone <- subset(airquality,

 select = c(Month,Day,Ozone))

> head(Month.Day.Ozone)

 Month Day Ozone

1 5 1 41

2 5 2 36

3 5 3 12

4 5 4 18

5 5 5 NA

6 5 6 28

The second argument, select, is the vector of columns you want to work with.
You have to name that argument because it’s not the second argument in the defi-
nition of subset().

The subset() function also allows you to select rows. To work with the ozone data
from August, add as the second argument the criterion for selecting the rows:

> August.Ozone <- subset(airquality, Month == 8, select = c(Month,Day,Ozone))

> head(August.Ozone)

 Month Day Ozone

93 8 1 39

94 8 2 9

95 8 3 16

96 8 4 78

97 8 5 35

98 8 6 66

CHAPTER 2 Working with Packages 35

R Formulas
Suppose I’m interested in how the temperature varies with the month. Having
lived through many Mays through Septembers in my hometown, my guess is that
the temperature generally increases in this data frame from month to month. Is
that the case?

This gets into the area of statistical analysis, and at a fairly esoteric level. This
book, strictly speaking, is not about statistics, so I’ll just touch on the basics here
to show you another R capability — the formula.

In this example, we would say that Temperature depends on Month. Another
way to say this is that Temperature is the dependent variable and Month is the
independent variable.

An R formula incorporates these concepts and serves as the basis for many of R’s
statistical functions and graphing functions. This is the basic structure of an
R formula:

function(dependent_var ~ independent_var, data = data.frame)

Read the tilde operator (~) as “depends on.”

Here’s how I address the relationship between Temp and Month:

> analysis <- lm(Temp ~ Month, data=airquality)

The name of the function lm() is an abbreviation for linear model. This means
that I expect the temperature to increase linearly (at a constant rate) from month
to month. To see the results of the analysis, I use summary():

> summary(analysis)

Call:

lm(formula = Temp ~ Month, data = airquality)

Residuals:

 Min 1Q Median 3Q Max

-20.5263 -6.2752 0.9121 6.2865 17.9121

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.2112 3.5191 16.541 < 2e-16 ***

36 PART 1 The Tools of the Trade

Month 2.8128 0.4933 5.703 6.03e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.614 on 151 degrees of freedom

Multiple R-squared: 0.1772, Adjusted R-squared: 0.1717

F-statistic: 32.52 on 1 and 151 DF, p-value: 6.026e-08

Whoa! What does all that mean? For the complete answer, see the book shame-
lessly plugged in Chapter 1. Right now, I’ll just tell you that the Estimate for
Month indicates that temperature increases at a rate of 2.8128 degrees per month
between May and September. Along with the Estimate for (Intercept), I can
summarize the relationship between Temp and Month as

Temp Month58 2112 2 8128. .

where Month is a number from 5 to 9.

You might remember from algebra class that when you graph this kind of equa-
tion, you get a straight line — hence the term linear model. Is the linear model a
good way to summarize these data? The numbers in the bottom line of the output
say that it is, but I won’t go into the details.

The output of summary() (and other statistical functions in R) is a list. (See
Chapter 1.) So if you want to refer to the Estimate for Month, that’s

> s <- summary(analysis)

> s$coefficients[2,1]

[1] 2.812789

More Packages
Members of the R community create and contribute useful new packages to the
Comprehensive R Archive Network (CRAN) all the time. So you won’t find every R
package on the RStudio Packages tab.

When you find out about a package that you think might be helpful, it’s easy to install
it in your library. I illustrate by installing tidyverse, a package (consisting of other
packages!) created by R megastar Hadley Wickham to help you manage your data.

One way to install it is via the Packages tab. (Refer to Figure 2-1.) Click the Install
icon in the upper left corner of the tab. This opens the Install Packages dialog box,
shown in Figure 2-3.

CHAPTER 2 Working with Packages 37

In the Packages field, I’ve typed tidyverse. Click Install, and the following line
appears in the Console pane:

> install.packages("tidyverse")

It’s difficult to see this line because lots and lots of other things happen immedi-
ately in the Console pane and in onscreen status bars. The process might seem to
stall temporarily, but be patient.

When the downloading is finished, tidyverse and a number of other packages
appear on the Packages tab. Click the check box next to tidyverse, and R installs
most of them in the library.

Exploring the tidyverse
Let’s take a look at some of the wonders of the tidyverse. One of the component
packages is tidyr. One of its extremely useful functions is called drop_na(). The
name tells you it deletes data frame rows that have missing data.

Here, I’ll show you:

> aq.no.missing <-drop_na(airquality)

> head(aq.no.missing)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

8 19 99 13.8 59 5 8

FIGURE 2-3:
The Install

Packages dialog
box.

38 PART 1 The Tools of the Trade

Compare this with

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

Another tidyverse package is called tibble. This package has functions that help
you modify data frames. For example, I have a data frame that shows the revenue
in millions of dollars for five industries connected with outer space. The data are
for the years 1990–1994:

> space.revenues

 1990 1991 1992 1993 1994

Commercial Satellites Delivered 1000 1300 1300 1100 1400

Satellite Services 800 1200 1500 1850 2330

Satellite Ground Equipment 860 1300 1400 1600 1970

Commercial Launches 570 380 450 465 580

Remote Sensing Data 155 190 210 250 300

The first column has the row names (rather than row numbers) as the identifiers
for the rows. You can do something like this:

> space.revenues["Satellite Services",2]

[1] 1200

which is equivalent to this:

> space.revenues[2,2]

[1] 1200

But it’s more productive (for analysis and graphing) to turn those identifiers into
a named column. The tibble function rownames_to_column() does just that:

> revenues.industry <- rownames_to_column(space.revenues, var="Industry")

Now I have a column called Industry:

> revenues.industry

 Industry 1990 1991 1992 1993 1994

1 Commercial Satellites Delivered 1000 1300 1300 1100 1400

CHAPTER 2 Working with Packages 39

2 Satellite Services 800 1200 1500 1850 2330

3 Satellite Ground Equipment 860 1300 1400 1600 1970

4 Commercial Launches 570 380 450 465 580

5 Remote Sensing Data 155 190 210 250 300

Why did I do that? Glad you asked. That little trick enables me to reshape the data.

Here’s what I mean. The revenues.industry data frame is in wide format. The
revenues are in multiple columns. Many R analysis and graphics functions prefer
to see the data in long format, in which all revenues are stacked into one column.

Think of revenue as a dependent variable. If the revenue values are stacked into
one column, it’s easy to see how each revenue value depends on the combination
of the other variables (Industry and Year) in its row. Long format looks like this:

> long.revenues

 Industry Year Million_Dollars

1 Commercial Satellites Delivered 1990 1000

2 Satellite Services 1990 800

3 Satellite Ground Equipment 1990 860

4 Commercial Launches 1990 570

5 Remote Sensing Data 1990 155

6 Commercial Satellites Delivered 1991 1300

7 Satellite Services 1991 1200

8 Satellite Ground Equipment 1991 1300

9 Commercial Launches 1991 380

10 Remote Sensing Data 1991 190

11 Commercial Satellites Delivered 1992 1300

12 Satellite Services 1992 1500

13 Satellite Ground Equipment 1992 1400

14 Commercial Launches 1992 450

15 Remote Sensing Data 1992 210

16 Commercial Satellites Delivered 1993 1100

17 Satellite Services 1993 1850

18 Satellite Ground Equipment 1993 1600

19 Commercial Launches 1993 465

20 Remote Sensing Data 1993 250

21 Commercial Satellites Delivered 1994 1400

22 Satellite Services 1994 2330

23 Satellite Ground Equipment 1994 1970

24 Commercial Launches 1994 580

25 Remote Sensing Data 1994 300

40 PART 1 The Tools of the Trade

How do I accomplish this format change? A tidyr function called gather() does
the trick. Here’s how to reshape revenues.industry into long.revenues:

long.revenues <- gather(revenues.industry,Year,Million_Dollars,2:6)

The first argument to gather() is the data frame to reshape, the second is the
name of the new column in which to gather existing columns, the third is the new
name for the dependent variable, and the fourth is the sequence of columns to
gather from.

Had I not used rownames_to_column() earlier, all of this would have been difficult
to do.

If it’s ever necessary to go in the opposite direction (from long format to wide
format), the tidyr function spread() handles it:

> spread(long.revenues,Year,Million_Dollars)

 Industry 1990 1991 1992 1993 1994

1 Commercial Launches 570 380 450 465 580

2 Commercial Satellites Delivered 1000 1300 1300 1100 1400

3 Remote Sensing Data 155 190 210 250 300

4 Satellite Ground Equipment 860 1300 1400 1600 1970

5 Satellite Services 800 1200 1500 1850 2330

Another prominent package in the tidyverse is called dplyr. This one is also for
data manipulation. One of its functions, filter(), returns rows that meet a con-
dition or a set of conditions. For example, if I want to have just the rows in long.
revenue that hold information for Satellite Services, I write:

> filter(long.revenues,Industry == "Satellite Services")

 Industry Year Million_Dollars

1 Satellite Services 1990 800

2 Satellite Services 1991 1200

3 Satellite Services 1992 1500

4 Satellite Services 1993 1850

5 Satellite Services 1994 2330

Suppose I want the data for the first day of each month in the airquality data
frame:

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 NA 286 8.6 78 6 1

3 135 269 4.1 84 7 1

CHAPTER 2 Working with Packages 41

4 39 83 6.9 81 8 1

5 96 167 6.9 91 9 1

How would I do that?

I’ve given you only a taste of the tidyverse. Possibly the most widely used
tidyverse package is ggplot2, and I tell you about that one in Chapter 3.

To search for R packages and functions that might suit your needs, visit
www.rdocumentation.org. How many packages are available? As I write this,
over 14,000! By the time you read this, that number will surely be higher.

http://www.rdocumentation.org/

CHAPTER 3 Getting Graphic 43

Chapter 3
Getting Graphic

From its very beginnings, R has been about data visualization as much as data
analysis. That’s because a good graph enables an analyst to spot trends and
make predictions. Graphics also help you present your ideas to others. And as

you’ll see, graphics are the lifeblood of the projects in this book.

The R community has developed a considerable number of graphics packages. In
this chapter, I introduce you to the two most widely used ones: the base graphics
package that comes with your R installation and ggplot2, which is part of the
tidyverse package I discuss in Chapter 2. As we get into the projects, I use other
packages as necessary.

Touching Base
Base R enables you to develop a wide variety of graphs. Its general format for cre-
ating (most) graphics is

graphics_function(data, argument1, argument2, ...)

That’s pretty much it!

After you create a graph in RStudio, click the Zoom icon on the RStudio Plots tab
to open the graph in a larger window. The graph is clearer in the Zoom window
than it is on the Plots tab.

 » R Base graphics

 » Kicking it up a notch with ggplot2

44 PART 1 The Tools of the Trade

Histograms
One way of finding trends in data is to examine the frequencies of values.
A histogram — a plot that shows values of a variable and how many times each one
occurs in a data frame — is a quick and easy way to do this. For example, one of
the variables (columns) in the airquality data frame in the datasets package
(see Chapter 2) presents daily temperatures from May 1 to September 30, 1973, in
New York City.

> library(datasets)

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

I create a histogram to show the frequencies of the temperatures. To do this, I use
the hist() function:

> hist(airquality$Temp)

The result is the graph in Figure 3-1.

FIGURE 3-1:
Histogram of

temperatures in
the airquality

data frame.

CHAPTER 3 Getting Graphic 45

I can make the graph a bit more viewer friendly by changing the x-axis to “Tem-
perature (Degrees Fahrenheit)” and the title to “Temperatures in New York City
May 1 – September 30, 1973.” To do that, I add arguments to hist(). To change the
x-axis, I add the xlab argument; to change the title, I add the main argument:

> hist(airquality$Temp,xlab="Temperature (Degrees

Fahrenheit)",main="Temperatures in New York City May 1 - September 30, 1973")

This produces Figure 3-2.

When you’re creating a histogram, R figures out the optimum number of columns
for a nice-looking appearance. In this example, R decided that 9 is a good number.
You can vary the number of columns by adding an argument called breaks and
setting its value. R doesn’t always give you the value you set. Instead, it produces
something close to that value and tries to maintain a good appearance. Add this
argument, set its value (breaks = 4, for example), and you’ll see what I mean.

Density plots
Another way to show histogram information is to think in terms of probabilities
rather than frequencies. So instead of the frequency of temperatures between 60
and 70 degrees, you graph the probability that a temperature selected from the
data is in that range. To make this happen, add

probability = TRUE

FIGURE 3-2:
The histogram,

with a friendlier
title and an x-axis.

46 PART 1 The Tools of the Trade

to the arguments. Now the R code looks like this:

> hist(airquality$Temp,xlab="Temperature (Degrees

Fahrenheit)",main="Temperatures in New York City May 1 - September 30, 1973",

probability = TRUE)

The result appears in Figure 3-3. The y-axis shows Density — a concept related to
probability — and the graph is called a density plot. Think of density as the height
of a rectangle whose area represents probability.

After you create the graph, you can use an additional function called lines() to
add a line to the density plot:

> lines(density(airquality$Temp))

The graph now looks like Figure 3-4. (Adding a line is a great way to summarize
information and possibly spot trends.)

In base R graphics, you can create a graph and then start adding to it after you see
what the initial graph looks like. If you ever watched the old TV show The Joy of
Painting, you’ll remember that Bob Ross would paint a picture of a lake and then
start adding trees and mountains. It’s something like that.

FIGURE 3-3:
Density plot of

temperatures in
the airquality

data frame.

CHAPTER 3 Getting Graphic 47

Bar plots
A histogram shows frequencies when the variable on the x-axis is numerical (like
temperature). When the entries on the x-axis are categories, the appropriate way
to present frequencies is called a bar plot.

Illustrative data come from Cars93, a data frame in the MASS package presenting
data on 93 models of 1993 cars. It has 27 columns. I won’t show you all the data,
but here are the first three columns in the first six rows:

> library(MASS)

> head(Cars93[1:3])

 Manufacturer Model Type

1 Acura Integra Small

2 Acura Legend Midsize

3 Audi 90 Compact

4 Audi 100 Midsize

5 BMW 535i Midsize

6 Buick Century Midsize

To show the frequency of each Type of car, I create a bar plot. I first have to create
a table of the frequencies. The table() function does that:

> table(Cars93$Type)

Compact Large Midsize Small Sporty Van

 16 11 22 21 14 9

FIGURE 3-4:
Density plot with

an added line.

48 PART 1 The Tools of the Trade

The barplot() function draws the plot

> barplot(table(Cars93$Type))

that you see in Figure 3-5.

I can add some arguments to barplot() to augment the plot. Notice that the bar
for Midsize extends beyond the y-axis upper limit (20). To correct for this, I add
this argument:

ylim = c(0,25)

And to add labels for the axes, I add

xlab = "Type"

ylab = "Frequency"

On graphs like this, I prefer a solid x-axis. To draw one, the argument is

axis.lty = "solid"

Finally, I can increase the spacing between bars by adding

space = .5

FIGURE 3-5:
Initial bar plot of

Type in the
Cars93

data frame.

CHAPTER 3 Getting Graphic 49

So the function

> barplot(table(Cars93$Type),ylim=c(0,25),xlab="Type", ylab="Frequency", axis.

lty="solid",space=.5)

produces the graph in Figure 3-6.

As an exercise, make a bar plot that shows these data for cars made in the
USA. Begin with the filter() function I describe in Chapter 2:

> library(dplyr)

> USA.Cars93 <- filter(Cars93,Origin == "USA")

and then create a bar plot. Next, complete the same steps for non-USA cars, and
compare. You might also try to create some bar plots for Cylinders.

Grouping the bars
You’ve probably seen bar plots where each point on the x-axis has more than one
bar. Figure 3-7 shows an example. The bar plot shows the frequency of eye color
for four hair colors in 313 female students. The data is from the HairEyeColor
data set I mention in the sidebar in Chapter 1. This type of plot is called a grouped
bar plot.

FIGURE 3-6:
Augmented bar

plot of Type in
the Cars93 data

frame.

50 PART 1 The Tools of the Trade

How does the base R graphics package deal with that? I begin by isolating
the female data in the HairEyeColor data set, which lives in the datasets
package:

> library(datasets)

> females <- HairEyeColor[,,2]

> females

 Eye

Hair Brown Blue Hazel Green

 Black 36 9 5 2

 Brown 66 34 29 14

 Red 16 7 7 7

 Blond 4 64 5 8

To begin producing Figure 3-7, I have to specify the colors in the bars and in the
legend:

> color.names = c("black","grey40","grey80","white")

A word about those names: You can combine grey with any number from 0 to 100
to create a color — "grey0" is equivalent to "black" and "grey100" is equivalent
to "white".

FIGURE 3-7:
Grouped bar plot
of Eye Color and
Hair Color in 313
female students.

CHAPTER 3 Getting Graphic 51

Now I turn once again to the barplot() function. Interestingly, if I use females
as the first argument for barplot(), R draws a plot with Eye Color on the x-axis
(rather than Hair Color, as in Figure 3-7). To reverse that, I use t() to interchange
(transpose, in other words) the rows and columns (see Chapter 1):

> t(females)

 Hair

Eye Black Brown Red Blond

 Brown 36 66 16 4

 Blue 9 34 7 64

 Hazel 5 29 7 5

 Green 2 14 7 8

The function that produces the bar plot is

> barplot(t(females),beside=T,ylim=c(0,70),xlab="Hair Color",ylab="Frequency of

Eye Color", col=color.names,axis.lty="solid")

beside=T tells R to plot the bars, well, beside each other. (Try it without this argu-
ment and watch what happens.) ylim insures that no bar will rise above the high-
est value on the y-axis. col=color.names supplies the colors named in the
vector.

The plot isn’t complete without the legend (the box that tells you which plot col-
ors correspond to which eye colors):

> legend("top",rownames(t(females)),cex =0.8,fill=color.names,title="Eye Color")

The first argument puts the legend at the top of the plot, and the second argument
provides the names. The third argument specifies the size of the characters in the
legend — .08 means “80% of the normal size.” The fourth argument gives the
colors for the color swatches, and the fifth, of course, provides the title.

Quick Suggested Project
Think you’ve got it? Try completing the same steps for the Males data.

52 PART 1 The Tools of the Trade

LEGENDARY COLORS
I use shades of gray for the colors because the book you’re holding is in black-and-
white. It would be cool if the colors in the plot and the legend (at least somewhat)
matched the actual eye colors.

Try making this happen. Set up a vector with the names of those colors.

Warning: As wonderful as hazel eyes are (and I know, because I have a pair of them),
“hazel” is not a color name in R. You’ll probably have to use a shade of green instead.
You can look through all 657 color names in R:

> colors()

Or you can make it easy on yourself by using the search function grep() to find just the
colors with green in their names:

> colors()[grep("green",colors())]

QUICK SUGGESTED PROJECT:
GROUPING REVISITED
At the end of the preceding section, I suggest that you look at the Cars93 data frame
and create a bar plot for the Type of USA cars and another for non-USA cars and then
compare the two.

This comparison is a natural for a grouped bar plot. So here’s another quick suggested
project for you. You won’t need the whole Cars93 data frame, so use subset() to
create a data frame consisting of just Type and Origin. (For a refresher on subset(),
see Chapter 2.). The subset data frame (I called it Type.Origin) should look like this:

> head(Type.Origin)

 Type Origin

1 Small non-USA

2 Midsize non-USA

3 Compact non-USA

4 Midsize non-USA

5 Midsize non-USA

6 Midsize USA

CHAPTER 3 Getting Graphic 53

Pie graphs
Another way to show frequency information is to represent the whole set of data
as a pie, and the categories as slices of the pie. The size of a slice represents the
proportion of the pie associated with that category. Going back to Cars93,

> library(MASS)

> pie(table(Cars93$Type))

draws Figure 3-8.

Scatterplots
It’s often the case that you want to visualize the relationship between two vari-
ables, like Wind and Temp in airquality. The scatterplot is the graph for that, as
Figure 3-9 shows.

The plot() function draws this graph:

> library(datasets)

> plot(airquality$Wind,airquality$Temp, pch=16,xlab = "Wind Velocity (MPH)",

ylab ="Temperature (Fahrenheit)", main = "Temperature vs Wind Velocity")

Your final bar plot should look like this figure:

54 PART 1 The Tools of the Trade

The first two arguments are the variables. The third argument, pch = 16, specifies
black as the color of the little circles that represent the data points. Omitting this
argument leaves the circles open (like little o’s). Think of pch as plot character. The
remaining arguments add the axis labels and the title.

If you prefer to use a formula that shows Temp dependent on Wind, here’s how to
code it (and draw the same scatterplot):

> plot(airquality$Temp ~ airquality$Wind, pch=16,xlab = "Wind Velocity

(MPH)",ylab ="Temperature (Fahrenheit)", main = "Temperature vs Wind

Velocity")

FIGURE 3-8:
Pie chart for Type

in the Cars93
data frame.

FIGURE 3-9:
Temperature
versus Wind

Velocity in the
airquality
data frame.

CHAPTER 3 Getting Graphic 55

By the way, if you like, take another look at the analysis in the “R Formulas” sec-
tion in Chapter 2, and do that same analysis on the relationship between Temp and
Wind. That Chapter 2 analysis is on the relationship between Temp and Month.
What would a scatterplot of that relationship look like?

Scatterplot matrix
Base R provides a nice way to show relationships among more than two variables.
For example, I might want to examine how Ozone, Temp, and Wind are related in
airquality. “Examining how they are related” means looking at all the pairwise
relationships among the three.

The scatterplot matrix, as shown in Figure 3-10, shows all this.

The names of the variables, of course, are in the boxes along the main diagonal.
The other boxes show scatterplots. Each scatterplot shows the relationship
between the variable in its row (on the x-axis) and the variable in its column (on
the y-axis). For example, in the first row and second column, the scatterplot
shows Ozone on the x-axis and Temp on the y-axis. In the second row and first
column, it’s Temp on the x-axis and Ozone on the y-axis.

FIGURE 3-10:
Scatterplot matrix

of Ozone, Wind,
and Temp in the

airquality
data frame.

56 PART 1 The Tools of the Trade

To create the matrix, I begin by taking a subset of airquality that holds the data
only for the variables I’m interested in:

> Ozone.Temp.Wind <- subset(airquality,select = c(Ozone,Temp,Wind))

> head(Ozone.Temp.Wind)

 Ozone Temp Wind

1 41 67 7.4

2 36 72 8.0

3 12 74 12.6

4 18 62 11.5

5 NA 56 14.3

6 28 66 14.9

Then I use the pairs() function to draw the matrix:

> pairs(Ozone.Temp.Wind)

Box plots
Brainchild of famed statistician John Tukey, the box plot is a quick and easy way to
visualize data. Figure 3-11 shows a box plot of the relationship between Temp and
Month in airquality. (Compare with that scatterplot I suggested you try.)

What do those boxes and lines represent? Each box represents a group of numbers.
The leftmost box, for example, represents temperatures in May. The black solid
line inside the box is the median, the temperature that divides the lower half of the
temperatures from the upper half. The lower and upper edges of each box are

FIGURE 3-11:
Box plot of Temp
versus Month in

the airquality
data frame.

CHAPTER 3 Getting Graphic 57

called hinges. The lower hinge represents the lower quartile, the temperature below
which 25 percent of the temperatures fall. The upper hinge represents the upper
quartile, the temperature that exceeds 75% of the temperatures.

The dotted lines sticking out of the hinges are called whiskers. (Some refer to this
type of graph as a box-and-whiskers plot.) The whiskers include data values out-
side the hinges. The upper whisker boundary is either the maximum value or the
upper hinge plus 1.5 times the length of the box, whichever is smaller. The lower
whisker boundary is either the minimum value or the lower hinge minus 1.5 times
the length of the box, whichever is larger. Data points outside the whiskers are
outliers. Figure 3-11 shows one outlier for June and two for July.

For this box plot, I use a formula to show that Temp is the dependent variable and
Month is the independent variable:

> boxplot(Temp ~ Month, data=airquality, xaxt = "n")

The third argument, xaxt = n, suppresses the labels that would ordinarily appear
on the x-axis (5, 6, 7, 8, and 9, which represent the months in the data frame).
Instead, I use the function axis():

> axis(1, at=1:5,labels=c("May","June","July","August", "September"))

to have the month names be the x-axis labels.

Graduating to ggplot2
Though the base R graphics toolset offers a nice variety of plots, ggplot2 provides
many more possibilities. A component of Hadley Wickham’s tidyverse package,
ggplot2 is based on a concept called grammar of graphics (represented by the gg in
the package name). This is also the title of a book by graphics guru Leland Wilkin-
son that is the source of the concepts for this package.

First, some background: A grammar is a set of rules for combining things. In Eng-
lish grammar, the things are words, phrases, and clauses. English grammar tells
you how to combine these components to produce valid (grammatical, in other
words) sentences.

In the same way, a “grammar of graphics” is a set of rules for combining graphics
components to produce graphs. Wilkinson proposed that all graphs have underlying
common components — like data, a coordinate system (the familiar x- and y- axes,
for example), statistical transformations (like frequency counts), and objects within
the graph (dots, bars, lines, or pie slices, for example), to name a few.

58 PART 1 The Tools of the Trade

Just as combining words and phrases produces grammatical sentences, combining
graphics components produces graphs. And just as some sentences are grammati-
cal but make no sense (“Courageous bananas dream extraterrestrial paradigms.”),
some ggplot2 creations are beautiful graphs that might not be useful. It’s up to
the writer/speaker to make sense for an audience, and it’s up to the graphics
developer to create useful graphs for people who use them.

How it works
In ggplot2, Wickham’s implementation of Wilkinson’s grammar is an easy-to-
learn structure for R graphics code.

A graph starts with the function ggplot(), which takes two arguments. The first
argument is the source of the data. The second argument maps the data compo-
nents of interest into components of the graph. That argument is a function called
aes(), which stands for aesthetic mapping. Each argument to aes() is called an
aesthetic.

For example, if I’m creating a histogram of Temp in the airquality data frame,
I want Type on the x-axis. The code looks like this:

ggplot(airquality, aes(x=Temp))

All that does is specify the foundation for the graph — the data source and the
mapping. If I type that code into the Scripts window and press Ctrl+R, all I would
have is a blank grid with Temp on the x-axis.

Well, what about the histogram? To add it to the foundation, I add another func-
tion that tells R to plot the histogram and take care of all the details. The function
I add is called a geom function (geom is short for geometric object).

These geom functions come in a variety of types: ggplot2 supplies one for almost
every graphing need, and provides the flexibility to work with special cases. For a
histogram, the geom function is geom_histogram(). For a bar plot, it’s geom_bar().
For a point, it’s geom_point().

To add a geom to ggplot, I use a plus sign:

ggplot(airquality, aes(x=Temp)) +
 geom_histogram()

That’s just about it, except for any finishing touches to the graph’s appearance.
To modify the appearance of the geom, I add arguments to the geom() function. To

CHAPTER 3 Getting Graphic 59

modify the background color scheme, I can add one or more theme() functions. To
add labels to the axes and a title to the graph, I add the function labs().

So, the overall structure for a ggplot graph is

ggplot(data_source, aes(map data components to graph components)) +
 geom_xxx(arguments to modify the appearance of the geom) +
 theme_xxx(arguments to change the overall appearance) +
 labs(add axis-labels and a title)

It’s like building a house: The ggplot() function is the foundation, the geom()
function is the house, theme() is the landscaping, and labs() puts the address on
the door. Additional functions are available for modifying the graph.

Still another way to look at ggplot (and more in line with mainstream thinking)
is to imagine a graph as a set of layers. The ggplot() function provides the first
layer, the geom function the next, and so on.

Make sure you have ggplot2 installed (see Chapter 2 for more on that) so that you
can follow along, and let’s move on.

Histograms
In this section, I give you the example I hinted at in the preceding section — a
histogram for Temp in the airquality data frame. When it’s done, it will look like
Figure 3-12.

FIGURE 3-12:
Histogram of
Temp in the

airquality data
frame, plotted

in ggplot.

60 PART 1 The Tools of the Trade

I begin with the foundation:

ggplot(airquality,aes(x=Temp)) +

As I say in the preceding section, aes() maps Temp in the data frame to the x-axis
in the graph. Wait a minute. Doesn’t anything map to the y-axis? Nope. That’s
because this is a histogram and nothing in the data explicitly provides a y-value
for each x. So I can’t say “y =” in aes(). Instead, I let R do the work to calculate
the heights of the bars in the histogram.

Now for the house:

 geom_histogram()

These two lines of code produce Figure 3-13 — a far cry from the finished
product.

The first thing to do is modify the appearance of the bars. Each bar is called a bin,
and by default, ggplot uses 30 of them. After plotting the histogram, ggplot dis-
plays in the Console window a message that advises experimenting with binwidth
(which, unsurprisingly, specifies the width of each bin). So I add binwidth = 5 as
an argument to geom_histogram():

 geom_histogram(binwidth = 5)

FIGURE 3-13:
Initial histogram

of Temp.

CHAPTER 3 Getting Graphic 61

How do I get the bars to have the same colors as in Figure 3-13? Add two more
arguments — one for the color of the bar boundaries (color) and one for the color
inside the bars (fill):

 geom_histogram(binwidth=5,color = "black",fill="grey80")

What about the background? That’s landscaping. Adding a theme function called
theme_bw() makes the background white:

 theme_bw()

And labs() adds the axis labels and the title:

 labs(x = "Temperature (Fahrenheit)",y="Frequency", title= "Temperatures in the

airquality Data Frame")

Putting all these lines together (with the plus signs!):

ggplot(airquality,aes(x=Temp)) +
 geom_histogram(binwidth=5,color = "black",fill="grey80") +
 theme_bw() +
 labs(x = "Temperature (Fahrenheit)",y="Frequency", title= "Temperatures in the

airquality Data Frame")

produces Figure 3-12.

Bar plots
Drawing a bar plot in ggplot2 is a bit easier than drawing one in base R: It’s not
necessary to create a table of frequencies in order to draw the graph.

As in the example in the preceding section, I don’t specify an aesthetic mapping
for y. This time, the geom function is geom_bar(), and ggplot2 works with the
data to draw the plot:

library(MASS)

ggplot(Cars93,aes(x=Type)) +
 geom_bar()+
 labs(y="Frequency",title="Car Type and Frequency in Cars93")

The result is Figure 3-14. Try a little landscaping, if you like. (You can add theme
functions to the end of the code.)

62 PART 1 The Tools of the Trade

Grouped bar plots
Taking the plot from the preceding example and splitting the data into Origin
(USA versus non-USA) is what I suggest you do in the earlier sidebar “Grouping
revisited.” This, remember, is called a grouped bar plot, and it’s fairly straightfor-
ward in ggplot2. Here’s how to do it.

First, for convenience I created Type.Origin:

> Type.Origin <- subset(Cars93,select=c("Type","Origin"))

> head(Type.Origin)

 Type Origin

1 Small non-USA

2 Midsize non-USA

3 Compact non-USA

4 Midsize non-USA

5 Midsize non-USA

6 Midsize USA

I begin the graphing with ggplot(), and this time I add a second aesthetic to
aes() :

ggplot(Type.Origin,aes(x=Type,fill=Origin))

As before, aes() maps Type into the x-axis. The second argument to aes(), fill,
maps Origin into the colors that will fill the bars. Now, you might be thinking,
“Wait a second. Shouldn’t a mapping that specifies the colors of the bars go into

FIGURE 3-14:
Bar plot for Type

in the Cars93
data frame.

CHAPTER 3 Getting Graphic 63

geom_bar()?” And you’d be right: Another way to specify the color inside the bar
is to add aes(fill=Origin) as an argument to geom_bar().

But I have other arguments to add to geom_bar():

geom_bar(position="dodge",color="black")

The value for the first argument is a cute name that means the bars “dodge” each
other and line up side by side. It’s analogous to “beside=T” in base R. The second
argument sets the color for the borders of each bar.

I still have to specify the range of colors for the bars, and the function scale_
fill_grey() handles that task:

scale_fill_grey(start=0,end=1)

The two arguments indicate that the colors start with black and end with white.

Here’s the whole thing:

ggplot(Type.Origin, aes(x=Type, fill=Origin))+
 geom_bar(position="dodge",color="black")+
 scale_fill_grey(start=0,end=1)

And that code results in Figure 3-15. Feel free to add axis labels and a title, and to
use theme functions to modify the graph’s appearance.

FIGURE 3-15:
Grouped bar plot

of Type and
Origin in the
Cars93 data

frame.

64 PART 1 The Tools of the Trade

Two things to note in Figure 3-15: First, ggplot2 kindly supplies the legend. Sec-
ond, compare Figure 3-15 with the base R version shown in the figure in the ear-
lier “Grouping revisited” sidebar. Base R and ggplot have different ways of
dealing with a frequency of zero (Large non-USA cars). For the Large cars, the
base R version shows a bar for the USA and no bar for the non-USA, and the USA
bar for Large is the same width as all the others. Not so in the ggplot version:
With no non-USA bar to take up any space, the USA bar for Large is twice as wide
as the others.

Grouping yet again
In each of the preceding examples, it hasn’t been necessary to map anything to
the y-axis. The data are instances of each category, and ggplot() counts the fre-
quency of each instance as it does its work.

But sometimes the frequencies have already been counted. Earlier in this chapter,
I used:

> females

 Eye

Hair Brown Blue Hazel Green

 Black 36 9 5 2

 Brown 66 34 29 14

 Red 16 7 7 7

 Blond 4 64 5 8

What happens then?

First of all, females is in wide format. Unlike base R, the ggplot2 package requires
data in long format. In Chapter 2, I mention the tidyr function gather(), which
reshapes wide-format data frames into long format.

In this case, I can’t use that function because females is a matrix (see Chapter 1),
not a data frame. The R function data.frame() turns its argument into a data
frame. So can I just use data.frame() to turn this matrix into a data frame and
then reshape?

As it turns out, it’s easier than that. Applying the data.frame() function to
females directly turns this matrix into a long-format data frame:

> females.df <- data.frame(females)

> females.df

 Hair Eye Freq

1 Black Brown 36

CHAPTER 3 Getting Graphic 65

2 Brown Brown 66

3 Red Brown 16

4 Blond Brown 4

5 Black Blue 9

6 Brown Blue 34

7 Red Blue 7

8 Blond Blue 64

9 Black Hazel 5

10 Brown Hazel 29

11 Red Hazel 7

12 Blond Hazel 5

13 Black Green 2

14 Brown Green 14

15 Red Green 7

16 Blond Green 8

Now I’m ready to roll. Here’s the code for the stacked bar plot:

ggplot(females.df, aes(x=Hair,y = Freq, fill=Eye))+
 geom_bar(position="dodge",color="black",stat="identity")+
 scale_fill_grey(start=0,end=1)

It looks just like the code in the preceding section, except for two important
additions:

In ggplot(), I’ve added an aesthetic for the y-axis. It’s the second argument:

ggplot(females.df, aes(x=Hair,y = Freq, fill=Eye))

And in geom_bar(), I’ve added the argument stat = “identity”:

 geom_bar(position="dodge",color="black",stat="identity")

This lets ggplot() know that this graph is based on explicit data values. So stat=
“identity” means, “Use the given numbers as the data, and don’t bother to tally
the frequencies of the instances.”

The result is shown in Figure 3-16.

With all the info I’ve given you about using bar plots for frequency data in ggplot2,
you might be wondering, “Where’s the scoop on how to draw pie charts?” I pur-
posely left that out. It’s way easier in base R. Trust me.

66 PART 1 The Tools of the Trade

FIGURE 3-16:
Stacked bar plot
of females.df.

SUGGESTED PROJECT: GROUPING
ONE MORE TIME
Here’s a project that incorporates knowledge from Chapters 1, 2, and 3. The objective is
to produce a grouped bar plot that looks like this:

CHAPTER 3 Getting Graphic 67

Scatterplots
As I mention earlier in this chapter, a scatterplot is a great way to show the rela-
tionship between two variables, like Wind and Temp in the airquality data frame.

If you’ve been following along, the grammar of this will be easy for you:

ggplot(airquality, aes(x=Wind,y=Temp))+
 geom_point()

Figure 3-17 shows the scatterplot.

The data come from LifeCycleSavings, a data frame in the datasets package. This data
frame contains data for 55 countries. Use head() and subset() to create this data
frame:

 pop15 pop75

Australia 29.35 2.87

Austria 23.32 4.41

Belgium 23.80 4.43

Bolivia 41.89 1.67

Brazil 42.19 0.83

Canada 31.72 2.85

Then use row_names_to_column() to create

 Country pop15 pop75

1 Australia 29.35 2.87

2 Austria 23.32 4.41

3 Belgium 23.80 4.43

4 Bolivia 41.89 1.67

5 Brazil 42.19 0.83

6 Canada 31.72 2.85

Here, pop15 means “Percent of population under 15 years old,” and pop75 means
“Percent of population over 75 years old.”

Before you start plotting, use gather() to put the data into long format, and use
Percent as the name of the dependent variable. Then use ggplot(), geom_bar(),
and scale_fill_grey() as in the bar plot examples. Hint: To make the labels in the
legend look like the ones in the figure, add the argument labels =c(“Under 15”,
“Over 75”) to scale_fill_grey().

68 PART 1 The Tools of the Trade

The plot thickens . . .
I can use the color of the points in the scatterplot to represent a third variable. In
addition to Wind and Temp, I want to represent Ozone. If an ozone level for a par-
ticular day is less than or equal to the median ozone level, I’ll call that level “Low”.
Otherwise, I’ll call it “High”. One point-color will represent “High”, and another
will represent “Low”. Figure 3-18 shows what I’m talking about.

FIGURE 3-17:
Wind versus
Temp in the
airquality
data frame.

FIGURE 3-18:
Scatterplot of
Wind versus

Temp, with the
dot color

representing
Ozone_Level.

CHAPTER 3 Getting Graphic 69

I begin by using the tidyr function drop.na() to eliminate all NA values:

> library(tidyr)

> aq.no.NA <- drop_na(airquality)

Next, I calculate the median ozone level:

> median.Ozone <- median(aq.no.NA$Ozone)

My next objective is to add a column called Ozone_Level to the aq.no.NA data
frame. Each entry in this column will be either High or Low. I start that off by cre-
ating an Ozone_Level vector:

> Ozone_Level <- NULL

And then I use an if statement inside a for loop (see Chapter 1) to populate that
vector:

for(i in 1:nrow(aq.no.NA)){

 if (aq.no.NA$Ozone[i] <= median.Ozone){

 Ozone_Level[i] <- "Low"}

 else{Ozone_Level[i] <- "High"}

}

Finally, I use cbind() (see Chapter 1) to add the Ozone_Level vector as a column
to aq.no.NA:

aq.Ozone.Level <- cbind(aq.no.NA, Ozone_Level)

The first six rows of the new aq.Ozone.Level data frame look like this:

> head(aq.Ozone.Level)

 Ozone Solar.R Wind Temp Month Day Ozone_Level

1 41 190 7.4 67 5 1 High

2 36 118 8.0 72 5 2 High

3 12 149 12.6 74 5 3 Low

4 18 313 11.5 62 5 4 Low

7 23 299 8.6 65 5 7 Low

8 19 99 13.8 59 5 8 Low

This is the data frame I use in the scatterplot. The first statement, as always,
involves ggplot() and aes():

ggplot(aq.Ozone.Level, aes(x=Wind,y=Temp,color=Ozone_Level))

70 PART 1 The Tools of the Trade

That last argument to aes() maps Ozone_Level to the color of the points in
the plot.

In the next statement:

geom_point(size=3)

I add size=3 to make the points larger and easier to see. Experiment with other
values for size to see what happens.

The final statement

scale_color_grey(start=0,end=1)

makes the point colors black and white.

Here’s the code that produces Figure 3-18:

ggplot(aq.Ozone.Level, aes(x=Wind,y=Temp,color=Ozone_Level))+
 geom_point(size=3)+
 scale_color_grey(start=0,end=1)

TEMPERATURE, WIND, AND OZONE
The pattern in the scatterplot in Figure 3-18 strongly suggests a relationship among the
three variables. The black points are predominantly in the upper left; the white points,
in the lower right. How would we analyze this relationship without transforming Ozone
into Ozone_Level? In Chapter 2, I show how to analyze the relationship between Temp
(a dependent variable) and Month (an independent variable). Here, I extend the analysis
to two independent variables (Wind and Ozone) rather than one:

> aq.analysis <- lm(Temp ~ Wind + Ozone, data= aq.Ozone.Level)

If you run that code and then this:

> summary(aq.analysis)

you see a table much like the one in Chapter 2, in the section about R formulas. If the
last number in the bottom line (it’s called p-value) is smaller than .05, statisticians
would say the relationship is statistically significant, which is another way of saying that
the observed relationship among the variables is probably not due to chance. Try it and
see what happens.

CHAPTER 3 Getting Graphic 71

What’s that? You want to plot all those variables on a 3-dimensional scatterplot? Okay.
Just because you asked, here’s how to create one that looks like the scatterplot in this
figure:

You can’t do it in ggplot2. Instead, you have to install a package called scatter
plot3d. (Other packages are also available for drawing 3-dimensional scatterplots.)

On the Packages tab, click Install. In the Install Packages dialog box, type scatterplot3d
and then click Install. After the package downloads, find it in the Packages tab and click
its check box, or type

>library(scatterplot3d)

The code for the 3d scatterplot is

with(aq.Ozone.Level,

(scatterplot3d(Wind ~ Temp + Ozone, pch = 19)))

The with statement keeps you from having to add the name of the data frame (along with
a dollar sign, $) to each variable. (See Chapter 1.) The first argument to scatterplot3d()
shows the relationship I mention earlier in this sidebar. The second argument specifies
that the plot characters are black. You can add arguments to modify the appearance of
the plot.

72 PART 1 The Tools of the Trade

Scatterplot matrix
A matrix of scatterplots shows the pairwise relationships among more than two
variables. Figure 3-10, earlier in this chapter, shows how the base R pairs()
function renders this kind of matrix.

First, I create a subset of aq.no.NA (the airquality data frame after omitting all
NA entries):

aq.subset <- subset(aq.no.NA,select = c(Ozone,Wind,Temp,Solar.R))

The ggplot2 package doesn’t have a function for a scatterplot matrix. GGally, a
package built on ggplot2, provides ggpairs() to get the job done. To get GGally,
first make sure ggplot2 is installed. Then, on the Packages tab, select Install and
type GGally in the Install Packages dialog box, and click Install. When it appears
on the Packages tab, click its check box.

Then I use ggpairs()

> library(ggplot2)

> library(GGally)

> ggpairs(aq.subset)

to produce the scatterplot matrix in Figure 3-19.

FIGURE 3-19:
Scatterplot matrix

rendered in
GGally, which is

built on ggplot2.

CHAPTER 3 Getting Graphic 73

The main diagonal features density plots of the variables. (See the “Density plots”
section, earlier in this chapter.) Below the main diagonal, each item is a scatter-
plot that represents the relationship between the variable in its row and the vari-
able in its column.

Above the main diagonal, each entry is a correlation coefficient — a statistic that
summarizes the relationship between the variable in its row and the variable in its
column. A correlation coefficient can range between –1.00 and 1.00. A positive
coefficient (like .699 between Temp and Ozone) indicates a direct relationship: As
one variable increases, the other increases. A negative coefficient (like –.612
between Wind and Ozone) indicates an inverse relationship: As one variable
increases, the other decreases.

Box plots
Statisticians use box plots to quickly show how groups differ from one another.
I fully explain this type of plot in the earlier “Box plots” section in this chapter.
As in that section, I plot Temp against Month in the airquality data frame.

The ggplot() function is

ggplot(airquality, aes(x=as.factor(Month),y=Temp))

Whoa! What’s that as.factor() in the first aesthetic mapping? In the Month vari-
able in the data frame, the numbers 5–9 represent May–September. Thus,
ggplot() interprets Month as a numerical variable. For the ggplot2 box plot, this
is a no-no: The x variable has to be a categorical variable, also known as a factor.
(See the section about data frames in Chapter 1). This means that the values of
Month have to be categories rather than numbers.

To get ggplot() to treat Month as a factor (and each month as a category), I use
the as.factor() function.

R honchos would say that I used as.factor() to “coerce Month into a factor.”

What’s the geom function? You can probably figure out that it’s

geom_boxplot()

74 PART 1 The Tools of the Trade

These two lines of code

ggplot(airquality, aes(x=as.factor(Month),y=Temp)) +
 geom_boxplot()

produce Figure 3-20.

I can add some functions to spiff up the graph and produce Figure 3-21.

To visualize all the data points, I add

geom_point()

To change the axis names, it’s

labs(y="Temperature",x="Month")

FIGURE 3-20:
Box plot for Temp

versus Month
in ggplot2.

CHAPTER 3 Getting Graphic 75

To change the x-axis labels from 5–9 to May–September, I use a function called
scale_x_discrete():

scale_x_discrete(labels=c("May","June","July","August", "September"))

The whole megillah is

ggplot(airquality, aes(x=as.factor(Month),y=Temp)) +
 geom_boxplot()+
 geom_point()+
 labs(y="Temperature",x="Month")+
 scale_x_discrete(labels=c("May","June","July","August", "September"))

In contrast with the base R box plot, the lines perpendicular to the whiskers are
missing from the ggplot version. You can add them, but it’s a bit more trouble
than it’s worth.

FIGURE 3-21:
Embellished box

plot for Temp
versus Month.

76 PART 1 The Tools of the Trade

SUGGESTED PROJECT: WANT TO BOX?
If you’d like to get started on a box plot of your own, check out the anorexia data
frame in the Mass package. This data frame holds the data for 72 anorexia patients,
each of whom completed one of three treatments. The variables (columns) are the type
of treatment (which is a factor, so don’t use as.factor()), pre-treatment weight, and
post-treatment weight. Use ggplot() to draw a box plot of the pre-treatment weight
data. It should look like this:

Then, if you’re feeling ambitious, draw another box plot for the post-treatment weight
data. Feeling even more ambitious? Plot post-treatment weight minus pre-treatment
weight, and label the y-axis Weight Change (lbs). Which treatment appears to be the most
effective? With the limited amount of analysis I’ve shown you (the lm() and summary()
functions), are the differences among the three treatments “statistically significant?

CHAPTER 4 Working with a Browser 79

Chapter 4
Working with a Browser

As I emphasize in Chapter 3, R is rich with opportunities for visualizing
data. In this chapter, I show how to create R applications whose visualiza-
tions depend on user input. I also show how to present these applications

in a browser so that web users can interact with them. Putting an R application in
a browser is a great way to share data and analyses. And you don’t have to know
HTML or JavaScript to get the job done!

Getting Your Shine On
A creation of RStudio honchos, shiny is the package that enables interactive,
browser-based R applications. Use RStudio to install it in the usual way. On the
Packages tab, click Install and then type shiny into the Install Packages dialog
box. After the package finishes downloading, click the check box next to shiny on
the Packages tab, or type

> library(shiny)

A couple of words about architecture before I move on and show how to create
your first shiny project. Behind any web page with a shiny app is a computer that
serves that page. The computer is running the R code (also known as a script) that
creates the page. Though the computer can be a server that operates via the cloud,
for the apps I show you in this chapter, the server is your laptop.

 » Introducing shiny

 » Looking at a simple shiny project

 » Developing your project

 » Coming up with a more complex
project

80 PART 2 Interacting with a User

Creating Your First shiny Project
A shiny application is a directory that contains a file with R code. So, in your
working directory (see Chapter 1), create a new directory called shinydir1.

RStudio gives you an easy way to do this: With the shiny package installed, select
File ➪ New File ➪ Shiny Web App.

This menu command opens the New Shiny Web Application dialog box, shown in
Figure 4-1.

In the Application Name box, I enter a descriptive name for the app I’m about to
create. I’m creating an interactive histogram that shows random sampling from a
uniform distribution, so I type UniformRandom (no spaces!). For the Application
Type option, I leave the Single File (app.R) radio button selected.

Finally, I create the directory. I click the Browse button to open the Choose Direc-
tory dialog box, which you see in Figure 4-2.

FIGURE 4-1:
The New Shiny

Web Application
dialog box.

FIGURE 4-2:
The Choose

Directory
dialog box.

CHAPTER 4 Working with a Browser 81

In this dialog box, I create a new folder called shinydir1 and click Select Folder.
This closes the Choose Directory dialog box. Back in the New Shiny Web Applica-
tion dialog box, I click Create.

After you complete these steps, you’ll notice that the tab in the Scripts pane is now
titled app.R. Every shiny app tab is labeled app.R. (Different app.R applications
reside in different directories.) You’ll also notice that an R script for a sample
shiny app appears in the pane. Figure 4-3 shows you what I mean.

As the comment lines in the Scripts pane tell you, you can run this sample app by
clicking the Run App button at the top of the pane. I’ll leave it to you to run this
application and see how the application reflects the code.

In this section, however, I delete the sample code and develop a similar (but
somewhat more elaborate) application that teaches you some additional R skills as
I explore shiny’s capabilities. With the Scripts pane active, I press Ctrl+A and
press Delete. Now I have an empty Scripts pane.

The code for a shiny app has two main components: a user interface and a server.

The first order of business is to create a function that defines the user interface —
the page that the user sees and interacts with. The fundamental structure of this
script is

ui <- type_of_page()

Several types of pages are possible. Arguments in the parentheses determine the
appearance and functionality of the page.

FIGURE 4-3:
The Scripts pane

after clicking
Create in the New

Shiny Web
Application
dialog box.

82 PART 2 Interacting with a User

Then you create a set of instructions for the server to execute when the user inter-
acts with the user interface. One way to begin is

server <- function(input,output){}

Inside the curly brackets, put the instructions you create.

Finally, the function

shinyApp(ui=ui, server=server)

ties together the ui and the server into a shiny application.

In the early days of shiny, it was necessary to create one file for the user interface
and another for the server (including the shinyApp() function) and to store both
in the directory. You can still do that (by choosing the Multiple File radio button
in the New Shiny Web Application dialog box). Nowadays, only one file is neces-
sary, and that’s the way I do it in this chapter.

Figure 4-4 shows what your first shiny project looks like when all the pieces are
in place.

FIGURE 4-4:
Your first

shiny project.

CHAPTER 4 Working with a Browser 83

It’s a simple app, and it’s typical of first projects with this package. The user
manipulates a slider to determine the number of values to sample in a uniform
distribution. The minimum value of the distribution is 0, and the maximum
value is 1.

The histogram shows the results of the sampling. The minimum number of values
is 25, the maximum number is 1,000, and the default is 500. Figure 4-4 shows the
app in a window that RStudio opens.

To see the app in a browser, click Open in Browser in the upper left corner. (Spoiler
alert: It looks pretty much the same.) As we proceed, I show you shiny apps in
RStudio windows because they look better in the confines of the pages you’re
reading. Just bear in mind that it’s easy enough to see the browser version by
clicking Open in Browser.

The user interface
First things first. To define the user interface, I specify the type of page. For this
application, I want a page that changes with the width of the browser: If I make
the browser narrower, for example, I want the appearance of the page to change
accordingly. This type of page is fluid, so the function that creates it is called
fluidPage():

ui <- fluidPage()

And that’s the beginning of the user interface.

Next, I need a function that defines the slider and the input (the result of moving
the slider) and another function that sets up the output. I put those two functions
inside the parentheses.

For the slider, it’s

sliderInput(inputId = "number",

 label = "Select a number",

 value = 500, min = 25, max = 1000)

The first argument establishes an identifier for the number the user selects by
moving the slider. In the upcoming server() function, I refer to it as input$number.

The second argument adds the instruction above the slider. The remaining argu-
ments set the default number, the minimum number, and the maximum number
of values to sample from the uniform distribution.

84 PART 2 Interacting with a User

Finally, I reserve an area for the output:

plotOutput("hist")

At this point, the app doesn’t know what kind of output to plot. All it knows is that
"hist" is the name of the output.

The user interface code is

ui <- fluidPage(

 sliderInput(inputId = "number",

 label = "Select a number",

 value = 500, min = 25, max = 1000),

 plotOutput("hist")

)

Think of sliderInput() as an input function and plotOutput() as an output
function.

What does this code actually do? In the Scripts pane, highlight fluidPage() and
all its arguments (don’t include ui <- in your highlighting). Then press Ctrl+R to
run the highlighted code. The result? A lot of HTML in the Console pane. This
shows you that the user interface code generates a web page.

The server
As I point out earlier in this chapter, the starting point for the server is

server <- function(input,output){}

The first thing to put in the curly brackets is an R expression that represents the
output. In the user interface, the name of the output is "hist". Here in the output,
I refer to it as output$hist.

That expression receives the value of a function called renderPlot(), which,
unsurprisingly, renders the plot.

A word about renderPlot(). The syntax of this function is

renderPlot({})

Inside renderPlot’s curly brackets, you add as many lines of code as necessary to,
well, render the plot. In this application, the base R graphics function hist() does
the honors, as described in Chapter 3:

CHAPTER 4 Working with a Browser 85

server <- function(input, output) {

 output$hist <- renderPlot({ hist(runif(input$number,min=0,max=1),xlab="Value",

main=paste(input$number,"random values between 0 and 1"))

 })

 }

That first argument to hist() is runif(). Do not pronounce it “run if”! It’s not a
run statement combined with an if statement or anything like that. Instead, think
of the r as random and unif as uniform. This is R’s way of saying, “Randomly sam-
ple from a uniform distribution.” (The correct pronunciation is “r unif.”) How
would R say, “Randomly sample from a normal distribution”? If you guessed
rnorm() you’re absolutely right.

The first argument to hist() indicates that the data for the histogram comes
from a random sample of values from a uniform distribution. How many values
are in the sample? input$number, that’s how many. The next two arguments to
runif() set the distribution’s minimum value to 0 and its maximum value to 1.

Now for the remaining arguments for hist(). If you’ve completed the examples
in Chapter 3, you’ll remember that xlab labels the x-axis, and main provides a
title. Within main, I use the paste() function to add the value of input$number to
the beginning of the title. The result is that the histogram title (as well as the
histogram) changes each time the user moves the slider to a new number.

Final steps
To tie the user interface to the server, I add

shinyApp(ui = ui, server = server)

The entire script (including the library() function at the beginning) is

library(shiny)

ui <- fluidPage(

 sliderInput(inputId = "number",

 label = "Select a number",

 value = 500, min = 25, max = 1000),

 plotOutput("hist")

)

server <- function(input, output) {

 output$hist <- renderPlot({ hist(runif(input$number,min=0,max=1),

xlab="Value",main=paste(input$number,"random values between 0 and 1"))

 })

 }

shinyApp(ui = ui, server = server)

86 PART 2 Interacting with a User

Save the code (press Ctrl+S or choose File ➪ Save) and then click the Run App but-
ton. That opens the display shown earlier, in Figure 4-4, and puts this in the
Console pane:

> runApp('shinydir1/UniformRandom')

Listening on http://127.0.0.1:3328

The second line means that R is waiting for the user to do something. (Move the
slider, in other words.) The URL on your machine will no doubt be different from
the one on mine.

To end the session with the application, press Esc or close the RStudio window
that shows the page. You can also click the little red stop sign in the upper right
corner of the Console pane.

Getting reactive
I can write the server in a different way. Instead of this:

server <- function(input, output) {

 output$hist <- renderPlot({ hist(runif(input$number,min=0,max=1),xlab="Value",

main=paste(input$number,"random values between 0 and 1"))

 })

 }

I can write this:

server <- function(input, output) {

 histdata <- reactive({

 runif(input$number,min=0,max=1)

 })

 output$hist <- renderPlot({

 hist(histdata(),xlab="Value",

 main=paste(input$number,"random values between 0 and 1")

)

 })

}

It accomplishes the same thing. Why bother setting a variable called histdata for
the runif() function? And what’s that reactive({}) deal? And, finally, why do I
have parentheses after histdata in the first argument to the hist() function?

CHAPTER 4 Working with a Browser 87

Creating the histdata variable enables me to use the results of sampling from the
uniform distribution for additional outputs — not just for the histogram. For
example, I might want to add the data’s mean, median, and standard deviation to
the shiny app. I show you how to do that in just a moment.

What about reactive({})? To make the shiny app responsive to user input, I
have to create histdata in a reactive context so that the variable can react to the
input (when the user moves the slider to change the value of input$number, in
other words). Accordingly, reactive({}) provides that context.

“But wait a second,” you might exclaim. “In the original version, I was able to
explicitly use runif() in renderPlot({}). Why is that?” Because renderPlot({})
is a reactive context. (The curly brackets are a giveaway.) For that reason, changes
in input$number show up as changes in the histogram plot. If renderPlot({}) is
the only reactive context I use, it’s not necessary to have another reactive context
and create histdata.

In shiny, every render function is a reactive context.

Now for the parentheses next to histdata in hist(). When I create a reactive
variable like histdata, I create an object I can call to see whether changes have
occurred (in this case, to input$number), and it returns the changes. If it’s callable
and it returns something, it’s a function, and to indicate that, I add the parenthe-
ses. So histdata is the reactive variable I define here, and when I use it again, it’s
histdata(). Got it?

I can’t emphasize this enough: When you create a variable in a reactive context,
you must add the parentheses whenever you use it. Forgetting to do that is the biggest
roadblock when you’re starting out with shiny.

Now my objective is to create a shiny app that shows not just the histogram of the
sample from the uniform distribution but also the sample mean, median, and
standard deviation. The app will look like Figure 4-5. The mean, median, and
standard deviation are below the histogram, to the left.

In the user interface, I have to create space for those three items. Each one is a
textOutput, so I add these three lines to the user interface:

 textOutput("mean"),

 textOutput("median"),

 textOutput("sd")

88 PART 2 Interacting with a User

Of course, I also have to make changes to the server. Remember, I add

histdata <- reactive({

 runif(input$number,min=0,max=1)

 })

at the beginning of the server code.

For the textOutputs, I add

output$mean <- renderText({paste("Mean =",round(mean(histdata()),3)

)

 })

output$median <- renderText({paste("Median =",round(median(histdata()),3)

)

 })

 output$sd <- renderText({paste("Standard Deviation =",round(sd(histdata()),3)

)

 })

FIGURE 4-5:
The shiny app
with the mean,

the median, and
the standard

deviation.

CHAPTER 4 Working with a Browser 89

The whole thing is

library(shiny)

ui <- fluidPage(

 sliderInput(inputId = "number",

 label = "Select a number",

 value = 500, min = 25, max = 1000),

 plotOutput("hist"),

 textOutput("mean"),

 textOutput("sd")

)

server <- function(input, output) {

 histdata <- reactive({

 runif(input$number,min=0,max=1)

 })

 output$hist <- renderPlot({

 hist(histdata(),xlab="Value",

 main=paste(input$number,"random values between 0 and 1")

)

 })

 output$mean <- renderText({paste("Mean =",round(mean(histdata()),3)

)

 })

 output$median <- renderText({paste("Median =",round(median(histdata()),3)

)

 })

 output$sd <- renderText({paste("Standard Deviation =",round(sd(histdata()),3)

)

 })

}

shinyApp(ui = ui, server = server)

Working with ggplot
If you’ve read Chapter 3, you know that I’m a huge fan of the ggplot2 package. I
hope you become one, too. In this section, I show you how to use ggplot functions
to create the first version of the app from the preceding section. When it’s done,
it will look like Figure 4-6. (As in the preceding section, I show the app in an
RStudio window. Click Open in Browser to see it in your browser.)

90 PART 2 Interacting with a User

To get started, I follow the steps in the preceding section to create a new applica-
tion called UniformRandomggplot in a new directory called shinydir2. Again, I
delete the sample code and begin the coding with these two lines:

library(ggplot2)

library(shiny)

The user interface code remains the same as in the preceding section’s first version:

ui <- fluidPage(

 sliderInput(inputId = "number",

 label = "Select a number",

 value = 500, min = 1, max = 1000),

 plotOutput("hist")

)

Changing the server
The function that does the plotting has to change. Instead of a base R function,
I’m going to put ggplot() into renderPlot()’s curly brackets. Recall from
Chapter 3 that ggplot() has to have a data frame as its first argument. So I can’t
just pass runif(input$number, min = 0, max=1) as an argument to ggplot().

FIGURE 4-6:
The first version

of the shiny
app from the

preceding
section, rendered

in ggplot2.

CHAPTER 4 Working with a Browser 91

Instead, I have to turn the sample of input$number values into a data frame, and
here’s how I do it:

df <- data.frame(runif(input$number, min=0,max=1))

That would be the first line of code I put into renderPlot()’s curly brackets.

The second argument to ggplot() is aes(), which maps the values in the data
frame into the x-axis of the histogram. This means I have to have a name for the
column of values in the df data frame:

colnames(df)<-c("Value")

Take another look at Chapter 1 if that looks strange to you. That’s the second line
of code in the curly brackets.

Now I can start on the plot:

ggplot(df,aes(x=Value))+

And I can add the histogram

geom_histogram(color = "black", fill = "grey80")+

and some landscaping:

labs(y="Frequency",title = paste(input$number,"random values from 0 to 1"))

Altogether, the code for the server looks like this:

server <- function(input, output) {

output$hist <- renderPlot({

 df <- data.frame(runif(input$number, min=0,max=1))

 colnames(df)<-c("Value")

 ggplot(df,aes(x=Value))+
 geom_histogram(color = "black",fill="grey80")+
 labs(y="Frequency",

title = paste(input$number,"random values from 0 to 1"))

 })

}

Remember to add

shinyApp(ui = ui, server = server)

92 PART 2 Interacting with a User

With the code for the user interface (including the two library() functions) and
the server (and shinyApp()) saved in shinydir2, click the Run App button to pro-
duce what you see in Figure 4-5.

A few more changes
In the Console pane, this line appears each time you move the slider:

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

This indicates that R has taken a guess about how to render the appearance of the
histogram. Specifically, R takes a shot at the binwidth — the width of each bar.
(See Chapter 3.) Some modifications eliminate the guesswork.

I add a slider that enables the viewer to set the binwidth. To the user interface, I
insert this code between the first sliderInput() and plotOutput():

sliderInput(inputId = "binwidth",

 label = "Select a binwidth",

 value = .05, min = .01, max = .10),

The first argument sets the identifier for this particular input, the second puts a
label above the slider. The third gives the starting binwidth, the fourth gives the
minimum binwidth, and the fifth gives the maximum binwidth.

The (approximate) number of rendered bars is the range of values (1.00) divided
by the selected binwidth. So the starting value (.05) produces 20 (ish) bars.

Changes to the title argument in the labs() function in the server add the bin-
width information to the histogram title:

labs(y="Frequency",

title = paste(input$number,"random values from 0 to 1 with binwidth

=",input$binwidth))

The whole megillah is shown here:

library(ggplot2)

library(shiny)

ui <- fluidPage(

 sliderInput(inputId = "number",

 label = "Select a number",

 value = 500, min = 1, max = 1000),

CHAPTER 4 Working with a Browser 93

 sliderInput(inputId = "binwidth",

 label = "Select a binwidth",

 value = .05, min = .01, max = .10),

 plotOutput("hist")

)

server <- function(input, output) {

 output$hist <- renderPlot({

 df <- data.frame(runif(input$number, min=0,max=1))

 colnames(df)<-c("Value")

 ggplot(df,aes(x=Value))+
 geom_histogram(binwidth=input$binwidth,

 color = "black",fill="grey80")+
 labs(y="Frequency",

title = paste(input$number,"random values from 0 to 1 with

binwidth =",input$binwidth))

 })

}

shinyApp(ui = ui, server = server)

Press Ctrl+S to save it all in the shinydir2 directory, and then run the app to pro-
duce the display in Figure 4-7.

FIGURE 4-7:
Adding a slider

to enable the
selection of

binwidth.

94 PART 2 Interacting with a User

Getting reactive with ggplot
To add the mean, median, and mode to the display you see in Figure 4-7 — the
idea here is that it should match what you see in Figure 4-5 — I first add the
textOutputs to the user interface, as before:

textOutput("mean"),

textOutput("median"),

textOutput("sd")

Things start to get a bit tricky in the server because I have to do two things: Use
reactive({}) to create a variable for runif(), and create a data frame for
ggplot(). Why is this tricky? Because in the simpler version with just the plot and
not the statistics, I was able to accomplish both at once inside the reactive context
of renderPlot():

df <- data.frame(runif(input$number, min=0,max=1))

In this version, however, I have to create the variable in a reactive context outside
renderPlot({}) (so that I can use that variable to calculate the mean, median,
and standard deviation), and the data frame inside renderPlot({}) so that
ggplot() can use it.

Here’s the variable (histdata) in reactive({}):

server <- function(input, output) {

 histdata <- reactive({(runif(input$number, min=0,max=1))

 })

And here’s the data frame (df) inside renderPlot({}):

 output$hist <- renderPlot({

 df <-data.frame(histdata())

 colnames(df)<-c("Value")

 ggplot(df,aes(x=Value))+
 geom_histogram(binwidth=input$binwidth,

 color = "black",fill="grey80")+
 labs(y="Frequency",

 title = paste(input$number,"random values from 0 to 1 with binwidth =",

input$binwidth))

CHAPTER 4 Working with a Browser 95

And finally, here are the output$s:

output$mean <- renderText({paste("Mean =",round(mean(histdata()),3)

)

 })

 output$median <- renderText({paste("Median =",round(median(histdata()),3)

)

 })

 output$sd <- renderText({paste("Standard Deviation =",round(sd(histdata()),3)

)

 })

Yes, I’m going to harp on this: Notice that after I define histdata in reactive({}),
it’s histdata() whenever I use it again.

Make those changes and run the app. It should look like Figure 4-8:

FIGURE 4-8:
The ggplot2

version of the
first shiny app,

with statistics
added.

96 PART 2 Interacting with a User

Another shiny Project
In this section, I move from a shiny app based on random sampling to an app
based on data. The data that forms the basis of this project is in the data frame
airquality, which lives in the datasets package.

As I mention in Chapter 2, this data frame holds data for temperature, wind veloc-
ity, solar radiation, and ozone for New York City for May–September 1973. To
refresh your memory, here are the first six rows of the data:

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

HOW DOES ALL THIS WORK, REALLY?
When you drive, do you have to know the inner workings of your car’s engine? Do you
have to know exactly how your refrigerator keeps your food cold? If you answered yes
to at least one of those questions, this sidebar is for you. Even if you didn’t, you might
still want to read it.

I hate to break this to you, boys and girls, but like computer animation, reactivity is an
illusion. In computer animation, nothing moves across the screen: Instead, one pixel
turns off, another turns on, and the illusion is that the pixel has moved from the first
pixel’s location to the second.

Likewise, in reactivity, it is not the case that the app only monitors the user and
that when the user makes a change to the input (like moving the slider to change
input$number), the output (like the plot in output$hist) changes accordingly. Instead,
the server constantly recomputes everything in the app every few microseconds. So if
the user moves the slider, for example (or changes the input in some other way), within
microseconds the output updates.

Wait a (micro) second. Suppose the user doesn’t make a change. Then what?
Recomputation takes place anyway. It’s just that everything recomputes its previous
results, and it looks like the app hasn’t changed at all. Bear in mind that whether or not
the user does anything, recomputing is always going on in the background.

The illusion is that the user’s action immediately causes the app’s reaction. And, like
computer animation, that’s a pretty useful illusion!

CHAPTER 4 Working with a Browser 97

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

The objective is an app that shows a scatterplot of two user-selected variables
(excluding Month and Day) along with statistical summaries (correlation and
regression) of the relationship between the variables. I show you how to create
two versions: one in base R graphics and the other in ggplot.

The base R version
Figure 4-9 shows the finished product. The user selects an x-variable from one
drop-down menu, and a y-variable from the other. The application then produces
a scatterplot, which contains the regression line that summarizes the relationship
between the two variables. The first line of the scatterplot title includes the
selected variables. The second line shows the correlation coefficient (r) between
the two, along with the equation of the regression line in the plot.

I begin by using File ➪ NewFile ➪ Shiny Web App to create a new app called
AirQuality in a new directory called shinydir3. I delete the sample code.

The first thing is to attach the library that contains the data frame:

library(datasets)

FIGURE 4-9:
A shiny app for
the airquality

data frame.

98 PART 2 Interacting with a User

I’ll have to clean up the data by eliminating missing values. The function that does
that, drop_na(), lives in the tidyr package, so I add

library(tidyr)

I describe drop_na() in Chapter 2.

One more package, tibble, supplies a useful function called rownames_to_
column(), which I also describe in Chapter 2. I use it here in a moment, so I add
its package:

library(tibble)

Next, I delete the missing values from airquality:

aq.no.missing <-drop_na(airquality)

The newly created data frame aq.no.missing is the one I use going forward.

The next task is to provide a set of options for the x-variable menu and for the
y-variable menu. The options, of course, are the same for both variables. I create
the vector:

options <- c("Ozone (parts per billion)" = "Ozone",

 "Solar (Langleys)" = "Solar.R",

 "Wind (MPH)" = "Wind",

 "Temperature (F)" = "Temp")

Each term of the vector is a pair. The first element of each pair is the label that
appears on the drop-down menu. The second element is the name of the variable
in aq.no.missing that the first element connects to.

What is a langley? Used as a measure of solar radiation, one langley is one small
calorie per square centimeter of irradiated area. What’s a small calorie? The
amount of energy required to raise 1 gram of water by 1 degree Celsius. (A thou-
sand of them make up each calorie you count in food.) Aren’t you glad you asked?

Take another look at Figure 4-7. Notice that the names in the plot title and on the
axes are the labels from the drop-down menus, not variable names from the data
frame. I think this makes the whole thing more informative. How do I get this
done?

First, I turn the options vector into a data frame:

df.options <-data.frame(options)

CHAPTER 4 Working with a Browser 99

Here’s what that data frame looks like:

> df.options

 options

Ozone (parts per billion) Ozone

Solar (Langleys) Solar.R

Wind (MPH) Wind

Temperature (F) Temp

For this data frame to be useful, the row names on the left have to constitute a
data column, so

df.lv <-rownames_to_column(df.options)

makes that happen. I use lv in the new data frame name to denote label (the
name that appears on the menu) and value (the corresponding variable name in
the data frame). To complete this data frame, I name its columns:

colnames(df.lv) <- c("label","value")

This data frame now looks like this:

> df.lv

 label value

1 Ozone (parts per billion) Ozone

2 Solar (Langleys) Solar.R

3 Wind (MPH) Wind

4 Temperature (F) Temp

On to the user interface:

ui <- fluidPage(

 selectInput("X", "X Variable:",

 options),

 selectInput("Y", "Y Variable:",

 options),

 plotOutput("scatter")

)

100 PART 2 Interacting with a User

Once again, it’s a fluid page. Each selectInput() is a drop-down menu. The first
argument is its name, the second argument is its onscreen label, and the third is
the options vector that presents the choices. And plotOutput() sets aside the
space for the plot.

Now for the server. The overall structure of the server, remember, is

server <- function(input,output) { }

The first item between the brackets assigns the user selections input$X and
input$Y to a data frame I call selections. I do this in a reactive context (see the
earlier section “Getting reactive”):

selections <- reactive({

 aq.no.missing[, c(input$X, input$Y)]

 })

Here I go again: I’ve created selections in a reactive context (within
reactive({}), in other words), and the next time I use it, I have to refer to it as
selections().

The comma within the square brackets means “all rows in the aq.no.missing
data frame.” The second expression c(input$X, input$Y) limits those rows to
just the variables the user has selected. The result is that I can now refer to all
rows in the first selected variable as

selections()[,1]

and to all the rows in the second as

selections()[,2]

which I will do almost immediately. Stay tuned.

The next item in the server is the output function, whose overall structure is

output$scatter <- renderPlot({})

The code for rendering the output goes between the curly brackets.

And now, as promised, I use those references to the two selected variables. I assign
the first user selection to a variable called x_column:

x_column <- selections()[,1]

CHAPTER 4 Working with a Browser 101

and the second to y_column:

y_column <- selections()[,2]

The correlation coefficient is

correlation <-cor(x_column,y_column)

and the regression is

regression <- lm(y_column ~ x_column)

To put the equation of the regression line into the title, I have to know its inter-
cept (where the line meets the y-axis) and its slope (how slanted it is). In base
R graphics, I also have to have those pieces of information to plot the regression
line.

The result of a regression analysis is a list. For a regression analysis of Temp
dependent on Wind, for example, part of that list looks like this:

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 91.0305 2.3489 38.754 < 2e-16 ***

Wind -1.3318 0.2226 -5.983 2.84e-08 ***

To retrieve the intercept from the list, the expression is

intercept <- regression$coefficients[1]

And to retrieve the slope, it’s

slope <- regression$coefficients[2]

(For the full skinny on correlation and regression, see the book I shamelessly
plugged earlier.)

Two more pieces of information and I’m ready to plot. So far, the R code has
worked with the variable names that correspond to the user selections, like Wind
and Temp. In the plot, remember, I want to use the names on the menus — Wind
(MPH) and Temperature (F) — for the title and for the axis labels.

102 PART 2 Interacting with a User

So I’m looking for the label names that correspond to the selected variable names.
Here’s where that df.lv data frame comes into play. For the label for the x-variable,
I’m looking for

X_Label <- df.lv$label[whose corresponding df.lv$value matches input$X]

Fortunately, R provides a neat little trick that fills the bill. It’s a function called
which(), and here’s how to use it:

X_Label <- df.lv$label[which(df.lv$value == input$X)]

And for the label for the y-variable, it’s

Y_Label <- df.lv$label[which(df.lv$value == input$Y)]

And now, here’s the plot() function:

plot(x=x_column,y=y_column,xlab = X_Label,ylab = Y_Label,

 cex.axis = 1.5,cex.lab = 1.5, pch = 20, cex = 2,

 main = paste(Y_Label,"vs",X_Label,

 "\n r =",round(correlation,3),"

 Y' =",round(intercept,3),"+",round(slope,3),"X"),
 cex.main=1.8)

The first two arguments, x and y, are the variables to plot. The next two, xlab and
ylab, are the titles for the axes. The cex.axis argument specifies the size of the
numbers on the axes, and cex.lab is the size of the axes labels. The value 1.5
means “1.5 times the normal size of a character.” The next argument, pch, means
that the plot character is a filled circle, and its size, cex, is 2.

The argument main is the title. I use paste() to put Y_Label and X_Label into the
title. \n means to continue on the next line, where I paste the rounded correlation
(rounded to three places) as well as the rounded intercept and the rounded slope
into the regression equation. The size of the title, cex.main, is 1.8.

One more function draws the regression line:

abline(intercept,slope)

Here’s the whole thing, including the shinyApp() function at the end:

library(datasets)

library(tidyr)

library(tibble)

CHAPTER 4 Working with a Browser 103

aq.no.missing <-drop_na(airquality)

options <- c("Ozone (parts per billion)" = "Ozone",

 "Solar (Langleys)" = "Solar.R",

 "Wind (MPH)" = "Wind",

 "Temperature (F)" = "Temp")

df.options <-data.frame(options)

df.lv <-rownames_to_column(df.options)

colnames(df.lv) <- c("label","value")

ui <- fluidPage(

 selectInput("X", "X Variable:",

 options),

 selectInput("Y", "Y Variable:",

 options),

 plotOutput("scatter")

)

server <- function(input, output) {

 selections <- reactive({

 aq.no.missing[, c(input$X, input$Y)]

 })

 output$scatter <- renderPlot({

 x_column <- selections()[,1]

 y_column <- selections()[,2]

 correlation <-cor(x_column,y_column)

 regression <- lm(y_column ~ x_column)

 intercept <- regression$coefficients[1]

 slope <- regression$coefficients[2]

 X_Label <- df.lv$label[which(df.lv$value == input$X)]

 Y_Label <- df.lv$label[which(df.lv$value == input$Y)]

 plot(x=x_column,y=y_column,xlab = X_Label,ylab = Y_Label,

 cex.axis = 1.5,cex.lab = 1.5, pch = 20, cex = 2,

 main = paste(Y_Label,"vs",X_Label,

104 PART 2 Interacting with a User

 "\n r =",round(correlation,3),"

 Y' =",round(intercept,3),"+",round(slope,3),"X"),
 cex.main=1.8)

 abline(intercept,slope)

 })

}

shinyApp(ui = ui, server = server)

Save the file, and run the app!

The ggplot version
Rendered in ggplot(), this app looks like Figure 4-10.

The code is the same as in the base R version, except that I have to add

library(ggplot2)

to the beginning, and of course I have to change the plotting function in
output$scatter.

FIGURE 4-10:
The app from
the preceding

section, rendered
in ggplot.

CHAPTER 4 Working with a Browser 105

Instead of plot(), I begin with ggplot():

ggplot(selections(),aes(x=x_column,y=y_column))+

The first argument is the data frame that supplies the data, and aes() then maps
the first selected variable to x, and the second selected variable to y.

Next, I add geom_point() to specify that I want points to appear in the plot:

geom_point(size=3) +

and the argument shows how big the points should be.

Adding a labs() function renders the x-axis, y-axis, and title:

 labs(x = X_Label,y = Y_Label,

 title = paste(Y_Label,"vs",X_Label,

 "\n r = ",round(correlation,3)," Y' =",round(in

tercept,3),"+",round(slope,3),"X"))+

To set the sizes of the fonts, I use a theme() function:

 theme(axis.title.x = element_text(size=18),

 axis.text.x = element_text(size=17),

 axis.title.y = element_text(size=18),

 axis.text.y = element_text(size=17),

 plot.title = element_text(hjust = 0.5,size=20))+

In plot.title, hjust =0.5 centers the title.

Finally, geom_smooth() plots the regression line:

 geom_smooth(method="lm",col="black")

The first argument specifies a linear model (linear regression, in this example),
and the second makes the line black. Notice that, unlike in base R, it’s not neces-
sary to specify the slope or the intercept.

The shadow around the regression line in Figure 4-10 represents the standard error
of estimate — a measure of variability around the line. The tighter the shadow, the
better the fit of the line to the data. (Note what happens when the x-variable and
the y-variable are the same.). To eliminate the shadow, add se=FALSE as an argu-
ment to geom_smooth().

106 PART 2 Interacting with a User

Here’s the entire set of functions for the ggplot version:

ggplot(selections(),aes(x = x_column,y = y_column))+
 geom_point(size=3) +
 labs(x = X_Label,y = Y_Label,

 title = paste(Y_Label,"vs",X_Label,

 "\n r = ",round(correlation,3),"

 Y' =",round(intercept,3),"+",round(slope,3),"X"))+
 theme(axis.title.x = element_text(size=18),

 axis.text.x = element_text(size=17),

 axis.title.y = element_text(size=18),

 axis.text.y = element_text(size=17),

 plot.title = element_text(hjust = 0.5,size=20))+
 geom_smooth(method="lm",col="black")

Substitute this set of functions for the plot() function and abline() in the base
R version, save, and run the application.

Suggested Project
Feeling adventurous? Take what you learned in this last project and try it out on a
different data frame. It’s a great way to build up your skill set.

I suggest Cars93, which lives in the MASS package. I use it in some examples in
Chapter 3. Just to refresh your memory, this data frame provides information on a
number of variables (way more than four!) for 93 models of cars from 1993.

Good luck!

CHAPTER 5 Dashboards — How Dashing! 107

Chapter 5
Dashboards — How
Dashing!

Adashboard is a collection of graphics that make it easy for a user to access
and understand information. Think about the dashboard in a car: It shows
how fast the car is moving, how much gas is in the tank, the temperature,

and a number of other pieces of information that help a driver understand the
state of a car at any moment.

In this chapter, I show you how to use R to create dashboards that show multiple
pieces of information about data.

The shinydashboard Package
In Chapter 4, I introduce you to shiny, a package for creating interactive applica-
tions in R. Like shiny, the shinydashboard package is a creation of the same folks
who brought us RStudio. As its name indicates, it has all the elements of shiny
(like user interface, server, and reactivity), and you use it to create dashboards. If,
as you work with this package, you get the idea that a dashboard is a shiny app on
steroids, you’ve pretty much got it.

Here’s what I mean. Figure 5-1 shows a dashboard I created in shinydashboard. It
shows a random sample from a uniform distribution with values between 0 and 1,

 » Introducing shinydashboard

 » Exploring dashboard layouts

 » Creating a dashboard

108 PART 2 Interacting with a User

and it shows the mean, median, and standard deviation of the sample. The user
moves a slider to set the sample size. It’s the same example I use to introduce
shiny in Chapter 4. Compare this figure with Figure 4-5 and you’ll see that this
app presents the same information, but in a snazzier way.

How do you create something like this? Read on.

Exploring Dashboard Layouts
The first step in creating a dashboard is to install the shinydashboard package.
On the Packages tab in RStudio, click Install. In the Install Packages dialog box,
type shinydashboard and then click Install.

After the package installation is finished, check its box on the Packages tab. Make
sure the box next to shiny on the Packages tab is also checked.

Select File ➪ New File ➪ Shiny Web App from the main menu.

Doing this opens the New Shiny Web Application dialog box. Type Dashboard-
Development (or another descriptive title) in the Application Name box. Use the
Browse button to open the Choose Directory dialog box and create a new directory
for the app. In the new file, clear out all the sample code.

FIGURE 5-1:
First shiny app
from Chapter 4

rendered in
shinydash

board.

CHAPTER 5 Dashboards — How Dashing! 109

Getting started with the user interface
A dashboard user interface consists of a header, a sidebar, and a body. In
shinydashboard code, that looks like this:

library(shinydashboard)

ui <- dashboardPage(

 dashboardHeader(title = "This is the Header"),

 dashboardSidebar(),

 dashboardBody()

)

I add a server

server <- function(input, output) {}

and the shinyapp() function:

shinyApp(ui, server)

With all this code typed into the new DashboardDevelopment file, clicking the Run
App button creates the screen you see in Figure 5-2.

FIGURE 5-2:
The beginning

of a shiny
dashboard
dashboard.

110 PART 2 Interacting with a User

Building the user interface:
Boxes, boxes, boxes . . .
The user interface so far, of course, doesn’t allow a user to do anything. In
shinydashboard, you use boxes to build the user interface. I add them inside a
fluidRow (something like fluidPage in a shiny app; see Chapter 4) in dash
boardBody() — one box for the slider and one box for the plot:

 dashboardBody(

 fluidRow(

 box(

 title = "Select a Number",

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(

 title = "Histogram",

 plotOutput("hist", height = 250))

)

)

Notice the label argument to sliderInput(). I don’t want a label in the slider,
but omitting the argument results in an error message.

The height argument in plotOutput() sets a height for the graph inside the box,
not for the entire box.

I also have to add code to the server to render the plot:

server <- function(input, output) {

 output$hist <- renderPlot({})

}

Running this app produces the elements for the screen shown in Figure 5-3.

The app still doesn’t do anything. If you’ve read Chapter 4, you know what’s com-
ing next in the way of code.

I use reactive({}) to set a variable (histdata) for the results of random sam-
pling from a uniform distribution whose values are between 0 and 1:

histdata <- reactive({runif(input$number,min=0,max=1)})

CHAPTER 5 Dashboards — How Dashing! 111

And, in order to draw the graph of the sample, I add hist() and appropriate argu-
ments to renderPlot({}):

output$hist <- renderPlot({

 hist(histdata(),xlab="Value",

main=paste(input$number,"random values between 0 and 1"))

 })

The first argument in hist is the variable I just set within reactive({}) (along
with parentheses!), and the next two add the x-axis title and the main title.

Here’s all the code at this point:

library(shinydashboard)

ui <- dashboardPage(

 dashboardHeader(

 title = "Uniform Distribution"

),

 dashboardSidebar(),

 dashboardBody(

 fluidRow(

FIGURE 5-3:
Adding a slider

and a plot.

112 PART 2 Interacting with a User

 box(

 title = "Select a Number",

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(title = "Histogram",

 plotOutput("hist", height = 250))

)

)

)

server <- function(input, output) {

 histdata <- reactive({runif(input$number,min=0,max=1)})

 output$hist <- renderPlot({

 hist(histdata(),xlab="Value",

 main=paste(input$number,"random values between 0 and 1"))

 })

 }

shinyApp(ui, server)

Notice that in dashboardHeader() I changed the title to "Uniform Distribution".
This code produces the functionality in Figure 5-4. Moving the slider now changes
the histogram and the heading just above it.

Each box can have a status. Although it’s not strictly necessary, I assign a warning
status to the slider, and a primary status to the plot:

 box(title = "Select a Number",

 status="warning",

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(title = "Histogram",

 status="primary",

 plotOutput("hist", height = 250))

)

Each status is associated with a color, so this change adds a little color to the box
edges: yellow for the slider (although it looks more like gold) and light blue for the
plot.

CHAPTER 5 Dashboards — How Dashing! 113

The other possible statuses and their associated colors are success (green), info
(aqua), and danger (red). (No shades of gray here. Sorry.)

I add more color to those boxes by setting the background argument for each box:

 box(title = "Select a Number",

 background ="yellow",

 status="warning",

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(title = "Histogram",

 background ="light-blue",

 status="primary",

 plotOutput("hist", height = 250))

)

I’d like the two boxes to be the same height (it’s good user interface design). I’ve
already set the height of the plot to 250 (pixels). Do I set the height of the slider
to 250? Nope. The value of height in plotOutput() is the height of the plot, not
the height of the box that contains it. The box adds an extra 62 pixels (discovered

FIGURE 5-4:
Adding

functionality.

114 PART 2 Interacting with a User

via trial-and-error), so if I set the height of the slider to 312, the two boxes
match up:

box(title = "Select a Number",

 background ="yellow",

 status="warning",

 height = 312,

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

After all these changes, the developing dashboard looks like Figure 5-5.

All that’s left is to add the boxes for the mean, median, and standard deviation. In
shinydashboard, boxes that show values are called, appropriately enough,
 valueBoxes. So in the user interface, I add

 valueBoxOutput("meanBox"),

 valueBoxOutput("medianBox"),

 valueBoxOutput("sdBox")

And in the server, I add functions that render the valueBoxes. Just as renderPlot()
provides the reactive context for rendering the plot, you can probably guess that

FIGURE 5-5:
The dashboard,

after adding
status and

background and
changing

the height of
the slider.

CHAPTER 5 Dashboards — How Dashing! 115

renderValueBox() provides the reactive context for rendering the valueBox, and
valueBox() does the rendering:

 output$meanBox <- renderValueBox({

 valueBox(

 round(mean(histdata()),3),"Mean",

 color = "navy"

)

 })

 output$medianBox <- renderValueBox({

 valueBox(

 round(median(histdata()),3),"Median",

 color = "aqua"

)

 })

 output$sdBox <- renderValueBox({

 valueBox(

 round(sd(histdata()),3), "Standard Deviation",

 color = "blue"

)

 })

For each valueBox(), the first argument is the value in the box (the statistic
rounded to three decimal places), which appears as a kind of title, the second is
the subtitle, and the third, of course, is the color.

The whole code is shown here:

library(shinydashboard)

ui <- dashboardPage(

 dashboardHeader(

 title = "Uniform Distribution"

),

 dashboardSidebar(),

 dashboardBody(

 fluidRow(

 box(

 title = "Select a Number",

116 PART 2 Interacting with a User

 background = "yellow",

 status="warning",

 height = 312,

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(title = "Histogram",

 background = "light-blue",

 status="primary",

 plotOutput("hist", height = 250))

),

 valueBoxOutput("meanBox"),

 valueBoxOutput("medianBox"),

 valueBoxOutput("sdBox")

)

)

server <- function(input, output) {

 histdata <- reactive({runif(input$number,min=0,max=1)})

 output$hist <- renderPlot({ hist(histdata(),xlab="Value",main=paste

(input$number,"random values between 0 and 1"))

 })

 output$meanBox <- renderValueBox({

 valueBox(

 round(mean(histdata()),3),"Mean",

 color = "navy"

)

 })

 output$medianBox <- renderValueBox({

 valueBox(

 round(median(histdata()),3),"Median",

 color = "aqua"

)

 })

CHAPTER 5 Dashboards — How Dashing! 117

 output$sdBox <- renderValueBox({

 valueBox(

 round(sd(histdata()),3), "Standard Deviation",

 color = "blue"

)

 })

 }

shinyApp(ui, server)

Click Run App and you’ll see a dashboard that looks just like Figure 5-1.

Lining up in columns
So the dashboard in Figure 5-1 shows two rows of boxes. How about arranging the
boxes in columns? I can put the slider and the plot in one column and the statistics
boxes in another. Figure 5-6 shows what I mean.

FIGURE 5-6:
The dashboard,
with the boxes

in columns.

118 PART 2 Interacting with a User

To get this done, I keep everything in a fluidRow(), and within the row I add a
column() that encompasses the boxes for that column. Here’s the overall struc-
ture, with some lines of code omitted for clarity:

fluidRow(

 column(

 box(... This is the slider ...),

 box(... This is the plot ...)

),

 column(

 valueBoxOutput("meanBox"),

 valueBoxOutput("medianBox"),

 valueBoxOutput("sdBox")

)

)

Column-based layouts require specifications for width. I have to specify the width
of each column and the width of each box in that column. Remember when I
specified height (of the slider and the plot) in pixels? When I specify width, it’s
measured in columns.

Wait. What? I’m dealing with columns and the measurement unit of their width
is . . . columns?

Yes, it’s a bit confusing. Keep in mind that the dashboardBody is divided into 12
“columns.” Each column I create can take up a number of those 12 dashboardBody
columns.

For example, if I want the first column (the one with the slider and the plot) to
take up six of those columns, and the second column (with the statistics boxes) to
take up four of those columns, I add the width argument to each one:

CHAPTER 5 Dashboards — How Dashing! 119

fluidRow(

 column(width = 6

 box(... This is the slider ...),

 box(... This is the plot ...)

),

 column(width = 4

 valueBoxOutput("meanBox"),

 valueBoxOutput("medianBox"),

 valueBoxOutput("sdBox")

)

)

But wait — there’s more: I also have to specify the width of each box. For each
box, I add width=NULL:

fluidRow(

 column(width = 6

 box(... This is the slider ... width = NULL),

 box(... This is the plot ... width = NULL)

),

 column(width = 4

 valueBoxOutput("meanBox", width = NULL),

 valueBoxOutput("medianBox", width = NULL),

 valueBoxOutput("sdBox", width = NULL)

)

)

120 PART 2 Interacting with a User

Why didn’t I specify width in the first (row-based) layout? I could have, but
default values kicked in very nicely. In the first row, each of the two boxes takes
up half the 12 columns (so each width is 6). In the second row, each of the three
boxes takes up one third of the 12 columns (so each width is 4). If I add another
box to the second row . . . it goes into the next row.

So the code for the dashboardBody() is

dashboardBody(

 fluidRow(

 column(width=6,

 box(

 title = "Select a Number",

 solidHeader = TRUE,

 background = "yellow",

 status="warning",

 width = NULL,

 height = 312,

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(title = "Histogram",

 solidHeader=TRUE,

 background = "light-blue",

 status="primary",

 width = NULL,

 plotOutput("hist", height = 250))

),

 column(width = 4,

 valueBoxOutput("meanBox",width = NULL),

 valueBoxOutput("medianBox",width = NULL),

 valueBoxOutput("sdBox",width = NULL)

)

)

)

This code, along with the rest of the user interface and everything else, produces
the screen you see in Figure 5-6.

CHAPTER 5 Dashboards — How Dashing! 121

A nice trick: Keeping tabs
Another type of dashboard box acts like a box full of tabbed documents. It’s called
tabBox and I show how to use it in Figure 5-7. I’ve put the mean and the median
valueBoxOutputs in separate tabs in a tabBox called Central Tendency. In this
context, a tabbed document is called a tabPanel. I’ve put the standard deviation
valueBoxOutput and a new variance valueBoxOutput in separate tabPanels in a
tabBox called Variability. Clicking a tabPanel reveals its associated statistical
value.

As you can see in the figure, the statistical values are in text rather than in value
Boxes. So I work with textOutput() in the user interface and renderText() in the
server.

To construct this version, I add this code to the user interface:

tabBox(

 title = "Central Tendency",

 id = "tabs1", height = 150, width = NULL,

 tabPanel("Mean",

h2(textOutput("meantext")),width = NULL),

 tabPanel("Median", h2(textOutput("mediantext")),width = NULL)

),

FIGURE 5-7:
The dashboard,
with tabBoxes
labeled Central
Tendency and

Variability.

122 PART 2 Interacting with a User

 tabBox(

 title = "Variability",

 id = "tabs2", height = 150, width = NULL,

 side = "right",

 tabPanel("Variance",

h2(textOutput("vartext")),width = NULL),

 tabPanel("Standard Deviation", h2(textOutput("sdtext")),width = NULL)

Each tabBox has a title, an id, a height, and a width. The important action is in
the tabPanels. Each one has a textOutput and each textOutput has an id (like
"meantext") so that the server can track it.

Pay close attention to a particular aspect of each tabPanel — the h2() that sur-
rounds each textOutput(). The h2() comes from HTML. It sets the font size of its
argument by declaring the argument to be a “level 2 heading.” So it’s a nice, quick
way to increase the font size of the textOutput. If I don’t do this, the font is very
small. You might try experimenting with h1() and h3().

In the second tabBox, I added side = "right" to show you an alternative layout
for the title and the tabPanels. I recommend that you pick one tabBox layout and
stick to it.

I won’t be using the valueBoxOutputs, so I delete them.

To the server, I add

output$meantext <-renderText({

paste("Mean =",round(mean(histdata()),3))})

output$mediantext <-renderText({

paste("Median =",round(median(histdata()),3))})

 output$vartext <-renderText({

paste("Variance =",round(var(histdata()),3))})

 output$sdtext <-renderText({

paste("Standard Deviation =",

round(sd(histdata()),3))})

And I delete all the renderValueBox({}) functions.

CHAPTER 5 Dashboards — How Dashing! 123

Do I also need render({}) functions for the tabBoxes? Not in this case. If each
tabPanel in the first tabBox, for example, just contains some unique text that I
want to show, I’d add that text as an argument in each tabPanel and add

output$tabs1Selected <- renderText({

 input$tabs1

 })

to the server. But that’s not necessary here.

Just to clarify, the whole set of code is shown here:

library(shinydashboard)

ui <- dashboardPage(

 dashboardHeader(

 title = "Uniform Distribution"

),

 dashboardSidebar(),

 dashboardBody(

 fluidRow(

 column(width=6,

 box(

 title = "Select a Number",

 solidHeader = TRUE,

 background = "yellow",

 status="warning",

 width = NULL,

 height = 312,

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25, max = 1000)),

 box(title = "Histogram",

 solidHeader=TRUE,

 background = "light-blue",

 status="primary",

 width = NULL,

 plotOutput("hist", height = 250))

),

124 PART 2 Interacting with a User

 column(width = 6,

 tabBox(

 title = "Central Tendency",

 id = "tabs1", height = 120, width = NULL,

 tabPanel("Mean",

h2(textOutput("meantext")),width = NULL),

 tabPanel("Median",

h2(textOutput("mediantext")),width = NULL)

),

 tabBox(

 title = "Variability",

 id = "tabs2", height = 120, width = NULL,

 side = "right",

 tabPanel("Variance",

h2(textOutput("vartext")),width = NULL),

 tabPanel("Standard Deviation", h2(textOutput("sdtext")),width = NULL)

)

)

)

)

)

server <- function(input, output) {

 histdata <- reactive({runif(input$number,min=0,max=1)})

 output$hist <- renderPlot({

 hist(histdata(),xlab="Value",

main=paste(input$number,"random values between 0 and 1"))

 })

 output$meantext <-renderText({

paste("Mean =",round(mean(histdata()),3))})

 output$mediantext <-renderText({

paste("Median =",round(median(histdata()),3))})

 output$vartext <-renderText({

paste("Variance =",round(var(histdata()),3))})

CHAPTER 5 Dashboards — How Dashing! 125

 output$sdtext <-renderText({

paste("Standard Deviation =",

round(sd(histdata()),3))})

 }

shinyApp(ui, server)

Click Run App for a dashboard that looks (and acts) like the dashboard shown in
Figure 5-7.

Suggested project: Add statistics
One way to sharpen your shinydashboard skills is to extend this tabbed version.
Add a tabBox that provides statistics for the appearance of the histogram. The
statistics are called skewness (how weighted the histogram is to the left or the
right), and kurtosis (how peaked or how flat the histogram is). Functions for these
statistics live in a package called moments.

When you’re done, your dashboard should look similar to Figure 5-8.

FIGURE 5-8:
The dashboard,

with a tabBox for
statistics that
describe the
histogram’s

appearance.

126 PART 2 Interacting with a User

Move the slider and check the resulting values for skewness and kurtosis against
the appearance of the histogram. You might just get a feel for what those two
statistics are all about!

Suggested project: Place valueBoxes
in tabPanels
It’s possible to render the statistics in the tabPanels in a different way. Instead of
textOutput you can use valueBoxes, as in the original, nontabbed version. The
idea is to move each valueBox inside a tabPanel. Your finished product should
look like Figure 5-9. If you’re feeling ambitious, add the Appearance tabBox from
the previous suggested project!

Working with the Sidebar
In this section, I show you some more shinydashboard features, beginning with
the sidebar. Similar to the tabbed boxes I show you earlier, the sidebar is a way of
navigating through content. Click a sidebar menu item and its corresponding con-
tent appears.

FIGURE 5-9:
The dashboard,

with statistics
presented in

valueBoxes in
the tabPanels.

CHAPTER 5 Dashboards — How Dashing! 127

I create a dashboard with two content-screens. The first is a repeat of the first
version of sampling from a uniform distribution, with statistics presented in
valueBoxes. The second involves sampling from a standard normal distribution
(mean = 0, standard deviation = 1). In this one, the statistics appear in another
kind of box: the infoBox. Clicking icons on the sidebar navigates between the
sections.

The first screen, shown in Figure 5-10, looks very much like Figure 5-1. The only
difference is in the sidebar. The sidebar has a Square icon that represents the uni-
form distribution, and a Bell icon that represents the standard normal distribu-
tion. (See what I did there?). Also, I changed the title of the whole thing to
Sampling.

Figure 5-11 shows the second screen. The slider is a bit different, and the graph is
a density plot rather than a histogram. (See Chapter 3.) The statistics, as I mention
earlier, are in infoBoxes.

I begin the project by selecting File ➪ New File ➪ Shiny Web App from the main
menu in order to create a new file called sidebarDevelopment in a new
directory.

FIGURE 5-10:
The first screen of

the dashboard,
showing sampling

from a uniform
distribution.

128 PART 2 Interacting with a User

The user interface
The best way to start off the user interface is to show you its overall structure:

 ui <- dashboardPage(

 dashboardHeader(

 title = "Sampling"

), # dashboardHeader

 dashboardSidebar(

 sidebarMenu(

 menuItem(... Uniform distribution stuff ...),

 menuItem(... Standard Normal Distribution stuff ...)

) # sidebarMenu

), # dashboardSidebar

 dashboardBody(

 tabItems(

 tabItem(... Uniform distribution stuff ...),

 tabItem(... Standard Normal Distribution stuff ...)

FIGURE 5-11:
The second

screen of the
dashboard,

showing sampling
from a standard

normal
distribution.

CHAPTER 5 Dashboards — How Dashing! 129

) # tabItems

) # dashboardBody

) # dashboardPage

The close parentheses can get a bit confusing (trust me!), so I added comments
where I thought they’d help.

The first difference from the earlier projects in this chapter, of course, is
the sidebarMenu() in dashboardSidebar(). The sidebarMenu consists of
menuItems.

The second difference is the tabItems() in dashboardBody(). As you can see,
tabItems() consists of, well, tabItems. Each tabItem corresponds to a menuItem,
which is why clicking a menuItem causes tabItem content to appear.

Here’s the sidebarMenu():

sidebarMenu(

 menuItem("Uniform Distribution", tabName = "uniform", icon = icon("square")),

 menuItem("Normal Distribution", tabName = "normal",

icon = icon("bell-o"))

)

For each menuItem, the first argument is the text that appears on the menu, the
second is the name that will also appear in the corresponding tabItem, and the
third is the icon() function that renders the icon in the menu. These icons (like
“square” and “bell-o”) are special characters that you can find at http://
fontawesome.io/icons.

Here is tabItems(), along with its component tabItems:

tabItems(

 tabItem(

tabName = "uniform",

 fluidRow(

 box(

 title = "Select a Number",

 solidHeader = TRUE,

 background = "yellow",

http://fontawesome.io/icons/
http://fontawesome.io/icons/

130 PART 2 Interacting with a User

 status="warning",

 height = 312,

 sliderInput(inputId = "number",

 label = "",

 value = 500, min = 25,

 max = 1000)),

 box(title = "Histogram",

 solidHeader=TRUE,

 background = "light-blue",

 status="primary",

 plotOutput("hist", height = 250)),

 valueBoxOutput("meanBox"),

 valueBoxOutput("medianBox"),

 valueBoxOutput("sdBox")

)

),

 tabItem(tabName = "normal",

 fluidRow(

 box(title = "Select a Number",

 solidHeader = TRUE,

 collapsible = TRUE,

 status="warning",

 sliderInput(inputId = "normnumber",

 label = "",

 value = 500, min = 25,

 max = 1000)),

 box(title = "Density Plot",

 solidHeader=TRUE,

 background = "light-blue",

 status="primary",

 plotOutput("density", height = 250)),

 infoBoxOutput("meanInfoBox"),

CHAPTER 5 Dashboards — How Dashing! 131

 infoBoxOutput("medianInfoBox"),

 infoBoxOutput("sdInfoBox")

)

)

The first tabItem (tabName = "uniform") is just a rehash of the first project: the
slider, histogram, and statistics in valueBoxes.

The second tabItem (tabName="normal") shows some new features. First, notice
collapsible = TRUE in the box that creates the slider. This creates the little
minus sign in the upper right corner of the slider. (Refer to Figure 5-11.) Clicking
it collapses the slider and turns the minus sign into a plus sign. And this tabItem
features infoBoxes rather than valueBoxes.

The server
The server code begins with reactive({}) functions for the uniform distribution
and for the standard normal distribution:

histdata <- reactive({runif(input$number,min=0,max=1)})

densitydata <- reactive({rnorm(input$normnumber)})

Next are the functions for rendering the histogram:

output$hist <- renderPlot({

 hist(histdata(),xlab="Value",

 main=paste(input$number,

 "random values between 0 and 1"))

 })

and for rendering the density plot:

 output$density <- renderPlot({

 hist(densitydata(),xlab="Value",

 main=paste("standard normal distribution \n",

 input$normnumber,"random values"),

 probability=TRUE)

 lines(density(densitydata()))

If the hist() function for the density plot looks strange to you, go back and reread
the first section of Chapter 3. The probability=TRUE argument puts density on
the y-axis, and the lines() function adds the line for the density plot.

132 PART 2 Interacting with a User

Next, I add the render({}) functions for the valueBoxes:

output$meanBox <- renderValueBox({

 valueBox(

 round(mean(histdata()),3),"Mean",

 color = "navy"

)

 })

 output$medianBox <- renderValueBox({

 valueBox(

 round(median(histdata()),3),"Median",

 color = "aqua"

)

 })

 output$sdBox <- renderValueBox({

 valueBox(

 round(sd(histdata()),3), "Standard Deviation",

 color = "blue"

)

 })

and add the render({}) functions for the infoBoxes:

output$meanInfoBox <- renderInfoBox({

 infoBox("Mean",

 round(mean(densitydata()),3),

 icon=icon("align-center"),

 color = "navy")

 })

 output$medianInfoBox <- renderInfoBox({

 infoBox(icon=icon("area-chart"), "Median",

 round(median(densitydata()),3),

 color = "aqua")

 })

 output$sdInfoBox <- renderInfoBox({

 infoBox("Standard Deviation",

 round(sd(densitydata()),3),icon=icon("scribd"),

 fill = TRUE,

 color = "blue")

 })

CHAPTER 5 Dashboards — How Dashing! 133

In the third infoBox, I show what happens if fill=TRUE.

I’m not sure that the icons I used are the most appropriate. Perhaps you can find
some better ones.

It’s okay to use icons in the valueBoxes. I just chose not to.

Putting all this code between the curly brackets in

server <- function(input, output) {}

and adding

shinyApp(ui, server)

at the end, and adding

library(shinydashboard)

at the beginning produces the framework for Figures 5-10 and 5-11 when I click
Run App.

Suggested project: Relocate the slider
The sidebar can have more than just menuItems. For example, you can put a slider
or other kinds of input in the sidebar, and that’s what this suggested project is all
about.

Suppose the objective is to see what a specific sample size looks like from a uni-
form distribution and compare with a standard normal distribution. The user
selects a number from a slider in the sidebar and then uses the sidebar menu to
see the uniform distribution results or the standard normal distribution results.
The dashboard looks like Figure 5-12 with Uniform Distribution selected.

Figure 5-13 shows the dashboard with Normal Distribution selected.

Give it a try. You’ll have to come up with values for width and height for the side-
bar and its slider, and for each plot, to make your dashboard look like Figures 5-12
and 5-13. You’ll also have to adjust some aspects of the slider’s appearance.

134 PART 2 Interacting with a User

FIGURE 5-12:
The dashboard,

with the slider
in the sidebar
and Uniform
Distribution

selected.

FIGURE 5-13:
The dashboard,

with Normal
Distribution

selected.

CHAPTER 5 Dashboards — How Dashing! 135

Interacting with Graphics
In the projects I’ve shown you so far in this chapter, plot changes follow user
interactions with components like sliders or drop-down menus. In this section, I
reverse the process: When the dashboard opens, a plot appears, the user interacts
with the plot, and other user interface components change.

As you learn how to make this happen, you’ll see some additional dashboard and
graphics capabilities along the way.

Clicks, double-clicks, and brushes — oh, my!
To this point, all I’ve done with plotOutput() is set the height and width of the
plot. The plotOutput() function offers more possibilities: It takes arguments
called click, dblclick, hover, and brush.

Brush? What’s that? If you’ve ever dragged the mouse while you pressed and then
released the left mouse button (and I know you have!), you’ve brushed. A joke
about doing this after every meal suggests itself, but I won’t pursue it.

I can set the click argument to a value like "single_click". When I click the
plot, the plot sends the xy-coordinates of the click to the server. The values of
those coordinates are stored in input$single_click. The dblclick argument
works the same way: If I set dblclick to "double_click" and click a point twice
in rapid succession, the plot sends the coordinates to the server, and the values
are stored in input$double_click. You can probably figure out how hover works.

The brush argument works a bit differently. When you brush across the plot, you
create, in effect, a box. Four pairs of xy-coordinates define the box: xmin, ymin
(the lower left corner), xmax, ymax (the upper right corner), xmin, ymax (the
upper left corner), and xmax, ymin (the lower right corner). Setting brush to
"brushed" and dragging the mouse and then releasing the mouse button sends
xmin, xmax, ymin, and ymax to the server. I get to those values via input$brushed.

To show you all this in action, I work with a data frame called UScereal in the
MASS package. This data frame holds nutritional information (and some other
stuff) for about 65 brands of cereal sold in the United States. The initial of each
cereal manufacturer (Kellogg’s, Post, General Mills, Quaker Oats, Ralston Purina,
and Nabisco) represents the manufacturer’s name.

Figure 5-14 shows a dashboard with a plot that presents Calories versus Proteins
(gm) of each cereal. The measurements are per portion, and a portion is 1 cup
(240 ml). I thought it would add pizazz to the graph if each data point identifies
the manufacturer — hence, all the letters inside the plot.

136 PART 2 Interacting with a User

Below the plot is a box that shows the coordinates for the different types of mouse
interactions. Here’s how to do it:

As usual, I begin the project by selecting File ➪ New File ➪ Shiny Web App to create
a new file called mouseActions in a new directory.

I start with the libraries:

library(shinydashboard)

library(MASS)

Next comes the user interface:

ui <- dashboardPage(

 dashboardHeader(title="Mouse Interactivity"),

 dashboardSidebar(collapsed=TRUE),

 dashboardBody(

 fluidRow(

 plotOutput("CerealPlot",

 click = "single_click",

 dblclick = "double_click",

FIGURE 5-14:
Data on US

cereals, showing
interaction

with the plot.

CHAPTER 5 Dashboards — How Dashing! 137

 hover = "hovering",

 brush = "brushing"

),

 box((verbatimTextOutput("coords")),width =8)

)

)

)

The box toward the end of the code holds the coordinates for the mouse actions.
Its output method — verbatimTextOutput — is a quick way of presenting the
values. This saves me from putting the values in valueBoxes or in infoBoxes.

And finally, the server, which begins with the function for rendering the plot:

server <- function(input, output) {

 output$CerealPlot <- renderPlot({

 plot(x=UScereal$protein, y=UScereal$calories,

 xlab="Protein (gm)",

 ylab="Calories",

 pch=as.character(UScereal$mfr))

 })

The last argument, pch, puts those manufacturer initials in the plot.

The next reactive context renders the coordinate values:

output$coords <- renderText({})

The renderText({}) function is for rendering character strings, like the coordi-
nate values.

Three functions are placed between the curly brackets of renderText({}). The
first is for the coordinates that click, dblclick, and hover return:

xy_points <- function(datapoints) {

 if(is.null(datapoints)) return("\n")

 paste("x =", round(datapoints$x, 2), " y =", round(datapoints$y, 2), "\n")

 }

If the user hasn’t performed a particular action, the function returns a newline
character. Ultimately, the function outputs rounded values of the x-coordinate
and the y-coordinate.

138 PART 2 Interacting with a User

The second function is for the four coordinates that a brush produces:

xy_points_range <- function(datapoints) {

 if(is.null(datapoints)) return("\n")

 paste("xmin =", round(datapoints$xmin, 2),

" xmax =", round(datapoints$xmax, 2),

 " ymin =", round(datapoints$ymin, 2),

" ymax =", round(datapoints$ymax, 2))

 }

The third function puts the coordinate values on the screen:

paste0(

 "single click: ", xy_points(input$single_click),

 "double click: ", xy_points(input$double_click),

 "hovered over: ", xy_points(input$hovering),

 "brushed box: ", xy_points_range(input$brushing)

)

For the third function, paste0() works a little better than paste().

With those three functions inside the curly brackets of renderText({}), and with
the close curly bracket for server({})and withshinyApp(ui = ui, server =
server) at the end, clicking Run App produces the dashboard shown in Figure 5-15.
You can click, double-click, hover, and brush to watch the effects on the coordinate
values. One helpful feature is that the coordinates are in terms of the units on the
axes, not in terms of pixels.

Why bother with all this?
Interacting with the data points on a plot is a great way to select data points and
then render the rows of selected data in a table. Figure 5-15 shows a dashboard
that presents data resulting from a single click on the plot. The click was on the
cluster of data points above the 4 on the x-axis.

The coding for this is, believe it or not, easier than for the immediately preceding
section. What makes the data row rendering possible is a neat little function called
nearPoints(). This function takes the coordinates of the click and finds the rows
in the associated data frame.

CHAPTER 5 Dashboards — How Dashing! 139

I’ll tell you all about it, but first here’s the beginning of the code for the dashboard
in Figure 5-15:

library(shinydashboard)

library(MASS)

ui <- dashboardPage(

 dashboardHeader(title="Clicking"),

 dashboardSidebar(collapsed=TRUE),

 dashboardBody(

 fluidRow(

 plotOutput("CerealPlot",

 click = "single_click"

),

 box((verbatimTextOutput("coords")),width =12)

)

)

)

The server code is

server <- function(input, output) {

 output$CerealPlot <- renderPlot({

FIGURE 5-15:
Clicking the plot
causes the rows
of selected data

to appear.

140 PART 2 Interacting with a User

 plot(x=UScereal$protein, y=UScereal$calories,

xlab="Protein(gm)",ylab="Calories",

pch=as.character(UScereal$mfr))

 })

 output$coords <- renderPrint({

 nearPoints(UScereal, input$single_click,

xvar = "protein", yvar = "calories",

threshold=20)

 })

}

The renderPrint({}) function is for printable output, like the rows of the data
frame.

The first argument to nearPoints() is the name of the data frame. The second is
the user input. Next come the names of the x- and y-variables in the plot. The
final argument, threshold, specifies the maximum number of pixels from the
click to include:

Add

shinyApp(ui = ui, server = server)

and that’s all there is to it.

The nearPoints() function also works with dblclick and hover.

Brushing proceeds in a similar way. The only difference is that brushing requires
brushedPoints(), which works very much like nearPoints().

For a dashboard like the one shown in Figure 5-16, the only changes I make to the
code are

dashboardHeader(title="Brushing"),

and

plotOutput("CerealPlot",

 brush = "brushing"

),

CHAPTER 5 Dashboards — How Dashing! 141

in the user interface, and

brushedPoints(UScereal, input$brushing, xvar = "protein", yvar = "calories")

in the renderPrint({}) function in the server.

Figure 5-16 shows the result, including a brush box and the selected data.

Suggested project: Experiment
with airquality
The airquality data frame, which you find in the datasets package, provides a
nice data set to experiment with. I’ve used it before. Just to refresh your memory,
here are the first six rows:

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

FIGURE 5-16:
Using a brush
(mouse-drag

and release) to
select data.

142 PART 2 Interacting with a User

For a dashboard with brushing capability, your project should look like
Figure 5-17.

FIGURE 5-17:
A brush-capable

dashboard for
the airquality

data frame.

CHAPTER 6 Tools and Data for Machine Learning Projects 145

Chapter 6
Tools and Data for
Machine Learning
Projects

Machine learning (ML) is the application of artificial intelligence (AI) to
statistics and statistical analysis. ML techniques automate the search for
patterns in data. Sometimes, the objective is to figure out a rule for clas-

sifying individuals based on their characteristics: For example, does a particular
X-ray mean the X-rayed person is sick or well? Is a particular flower a member of
one species or another?

In other efforts, the objective is prediction: Given a sequence of stock market data,
will the market go up or down? Given the last three days of weather data, will it
rain tomorrow or not?

Think of the characteristics of the X-rays or flowers (or the stock market or
weather) as inputs. Think of the targets (sick or well, rain or shine) as outputs. The
learner sees the inputs and their associated outputs and has to come up with some
function or rule that characterizes the linkage. Then, when faced with a new input,
the learner can apply what it has learned and classify the input (or make a predic-
tion) accordingly.

 » Types of machine learning

 » Working with the UCI Machine
Learning repository

 » Understanding the iris dataset

 » Introducing the rattle package

 » Using rattle with the iris dataset

146 PART 3 Machine Learning

Learning a function or rule that links inputs with outputs is called supervised
learning.

If the outputs are categories (sick or well, rain or shine), this is a classification
problem. If the set of outputs is continuous, it’s regression.

In another type of learning, the learner receives a set of inputs and the goal is to
use the inputs’ characteristics to find a structure for the set — to partition the set
into subsets, in other words. No specific target outputs are involved.

Early zoologists faced this type of problem. They learned enough about the char-
acteristics of animals to partition “vertebrates” (animals with backbones) into
“mammals,” “reptiles,” “amphibians,” “birds,” and “fish.” Then when they
encountered a new animal, they could observe its characteristics and assign it to
the appropriate subset. (I’m guessing that assigning whales, bats, dolphins, and
duck-billed platypuses to “mammals” might have been a bit dicey at first.)

Discovering the structure in a set of inputs is called unsupervised learning.

In any event, an ML technique does its work without being explicitly programmed.
It changes its behavior on the basis of experience, with the goal of becoming
increasingly accurate.

The UCI (University of California-Irvine)
ML Repository

For this book’s machine learning projects, I work with datasets that reside in the
Machine Learning Repository at the University of California-Irvine (home of the
Anteaters!). You’ll find this repository at

http://archive.ics.uci.edu/ml/index.php

Downloading a UCI dataset
Many (but not all) of the UCI datasets are in comma-separated value (CSV) for-
mat: The data are in text files with a comma between successive values. A typical
line in this kind of file looks like this:

5.1,3.5,1.4,0.2,Iris-setosa

http://archive.ics.uci.edu/ml/index.php

CHAPTER 6 Tools and Data for Machine Learning Projects 147

This is the first line from a well-known dataset called iris. The rows are mea-
surements of 150 iris flowers — 50 each of three species of iris. The species are
called setosa, versicolor, and virginica. The data are sepal length, sepal width, petal
length, petal width, and species. One typical ML project is to develop a mechanism
that can learn to use an individual flower’s measurements to identify that flower’s
species.

What’s a sepal? On a plant that’s in bloom, a sepal supports a petal. On an iris,
sepals look something like larger petals underneath the actual petals. In that first
line of the dataset, notice that the first two values (sepal length and width) are
larger than the second two (petal length and width).

You can find iris in numerous places, including the datasets package in base
R. The point of this exercise, however, is to show you how to get and use a dataset
from UCI.

So, to get the data from the UCI ML repository, point your browser to

http://archive.ics.uci.edu/ml/datasets/Iris

Click on the Data Set Description link. This opens a page of valuable information
about the data set, including source material, publications that use the data, col-
umn names, and more. In this case, this page is particularly valuable because it
tells you about some errors in the data (which I show you how to fix).

Returning to the previous page, click on the Data Folder link. On the page that
opens, click the iris.data link. This opens the page that holds the dataset in CSV
format.

To download the dataset, I use the read.csv() function. I can do this in several
ways. To accomplish everything at once — to use just one function to read the file
into R as a dataframe complete with column names — use this code:

iris.uci <- read.csv(url("http://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"),

header=FALSE, col.names = ("sepal.length","sepal.

width","petal.length","petal.width",

"species"))

The first argument is the web address of the dataset. The second indicates that the
first row of the dataset is a row of data and does not provide the names of the col-
umns. The third argument is a vector that assigns the column names. The column
names come from the Data Set Description web page. That page gives class as the
name for the last column, but I decided that species is correct. (And that’s the
name in the iris dataset in the datasets package.)

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

148 PART 3 Machine Learning

If you think that’s a little too much to put in one function, here’s another way:

 iris.uci <- read.csv(url("http://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.data"), header=FALSE)

colnames(iris.uci)<-c("sepal.length","sepal.width","petal.length","petal.

width","species")

I prefer still another way. With the dataset web page open, I press Ctrl+A to select
everything on the page, and I press Ctrl+C to put all the data on the clipboard. Then

iris.uci <- read.csv("clipboard", header=FALSE,

col.names=

c("sepal.length","sepal.width","petal.length","petal.width","species"))

gets the job done. This way, I don’t have to deal with the web address.

Cleaning up the data
Here are the first six rows of the dataframe:

> head(iris.uci)

 sepal.length sepal.width petal.length petal.width species

1 5.1 3.5 1.4 0.2 Iris-setosa

2 4.9 3.0 1.4 0.2 Iris-setosa

3 4.7 3.2 1.3 0.2 Iris-setosa

4 4.6 3.1 1.5 0.2 Iris-setosa

5 5.0 3.6 1.4 0.2 Iris-setosa

6 5.4 3.9 1.7 0.4 Iris-setosa

Correcting errors
On the Data Set Description web page under Relevant Information, this message
appears (after some other stuff):

The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa" where the
error is in the fourth feature.

The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors
are in the second and third features.

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

CHAPTER 6 Tools and Data for Machine Learning Projects 149

Here is the 35th sample:

> iris.uci[35,]

 sepal.length sepal.width petal.length petal.width species

35 4.9 3.1 1.5 0.1 Iris-setosa

To change the fourth feature to 0.2, type this code into RStudio and run it:

> iris.uci[35,4]=0.2

And now it’s correct:

> iris.uci[35,]

 sepal.length sepal.width petal.length petal.width species

35 4.9 3.1 1.5 0.2 Iris-setosa

The 38th sample is

> iris.uci[38,]

 sepal.length sepal.width petal.length petal.width species

38 4.9 3.1 1.5 0.1 Iris-setosa

This code changes the second and third features to 3.6 and 1.4:

> iris.uci[38,2:3]= c(3.6,1.4)

So the 38th sample is now

> iris.uci[38,]

 sepal.length sepal.width petal.length petal.width species

38 4.9 3.6 1.4 0.1 Iris-setosa

Eliminating the unnecessary
In the species column, every entry begins with Iris-. I’d like to eliminate it from
every entry. I do that with a function called mapvalues() that lives in the plyr
package. Its usage is pretty straightforward:

library(plyr)

iris.uci$species <- mapvalues(iris.uci$species, from =

 c("Iris-setosa","Iris-versicolor", "Iris-virginica"), to =

c("setosa", "versicolor", "virginica"))

150 PART 3 Machine Learning

After running this code, the head of iris.uci is

> head(iris.uci)

 sepal.length sepal.width petal.length petal.width species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Exploring the data
It’s a good idea to explore the data and develop a sense of familiarity with it. One
quick way to explore the data is to use the summary() function:

> summary(iris.uci)

 sepal.length sepal.width petal.length petal.width species

 Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

 Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50

 Mean :5.843 Mean :3.054 Mean :3.759 Mean :1.199

 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

This gives you an idea of each variable’s range (Max – Min), and central tendency
(Median and Mean). You can quickly see that sepals are both longer and wider than
petals, as I mention earlier.

The Summary statistics provide information about the distributions. To visualize
and compare the distributions of the variables, one strategy is to plot a few histo-
grams together to come up with what you see in Figure 6-1.

Here’s how to plot those distributions:

par(mfrow=c(2,2))

for(i in 1:4){hist(iris.uci[,i],xlab=colnames(iris.uci[i]), cex.lab=1.2,

main="")}

The par() function is a pretty hot item in base R graphics. It allows me to set (find
out the values of) the parameters of a plot. It’s so rich in possibilities that I could
write a chapter or so just on how this function works. Instead, I’ll spare you all
the details and show you how I apply this function as needed. Here, the mfrow
argument divides the screen into two rows and two columns so that the sepal

CHAPTER 6 Tools and Data for Machine Learning Projects 151

variables are in one row and the petal variables are in the other. (Think of mfrow
as “multiple figures by row.”)

The for loop goes through the first four columns of the dataframe and draws a
histogram for each one, labelling the x-axis with the column name. The cex.lab
argument enlarges the axis labels slightly and the main="" argument eliminates
the default title from each histogram.

The histograms show that the petal variables are skewed and the sepal variables
are more symmetrical.

To put the two sepal variables into one column and the two petal variables into
another, the par() function is

par(mfcol=c(2,2))

Quick suggested project: Density plots
Here’s a neat little exercise to strengthen your graphics skillset (and your for loop
skills): Turn these histograms into density plots. (See Chapter 3 to find out how.)
Your finished product should look like Figure 6-2.

The density plots are another way of showing the symmetry and the skewness in
the variables.

FIGURE 6-1:
The distributions

of the variables in
iris.uci.

152 PART 3 Machine Learning

Exploring relationships in the data
Iris-related ML projects are all about using the relationships among the variables
to correctly classify individual flowers. So in addition to summaries and graphics
of each variable, I want to look at the relationships among the variables and how
those relationships change across the species.

Base R graphics
A scatterplot matrix visualizes those intervariable relationships. (See Chapter 3.)
Figure 6-3 shows the base R version of that matrix for iris.uci.

I eliminated the lower panel of the matrix because it shows the same data as the
upper half but with x and y variables interchanged. I put a legend in that area. The
legend indicates that black represents setosa, gray represents versicolor, and white
represents virginica. Before I tell you how I did all this, let’s take a look at the
graph and try to understand what it’s saying.

The main diagonal cells, of course, have the names of the variables. Each non-
main-diagonal cell represents the relationship between the variable in the cell’s
row and the variable in the cell’s column. So the cell in row 1, column 2 plots the
relationship between sepal.length and sepal.width. The cells in column 5 show
the relationships between each of the four measured variables and species. In
effect, they show the distributions of the measurements within each species.

FIGURE 6-2:
Density plots for
the variables of

iris.uci.

CHAPTER 6 Tools and Data for Machine Learning Projects 153

The cells that plot pairwise relationships among the four numeric variables seem
to show that the setosas (the black-filled points) are separate and distributed
somewhat differently than the other two species. The least amount of overlap in
versicolor and virginica appears (to me, anyway) to be in petal.length versus
petal.width. As for the cells in column 5, petal.length and petal.width seem
to have the least amount of overlap across the species. By that, I mean that the
range of one species has less extension into the range of another. All this suggests
that petal.length and/or petal.width might provide a strong basis for a process
that has to learn how to assign irises to their proper species.

To create the scatterplot matrix, I use the pairs() function:

pairs(iris.uci,lower.panel=NULL,cex=2,pch=21,cex.labels = 2,

 bg = c("black","grey","white")[iris.uci$species])

The first argument is the dataframe; the second eliminates the lower panel. The
third expands the plot character to twice its size, and the fourth specifies a filled
circle as the plot character. The fifth argument doubles the size of the labels in the
main diagonal so that you can read them more easily. The final argument is the
business end of the whole thing: This one assigns the colors black, gray (excuse

FIGURE 6-3:
Scatterplot matrix
for the iris.uci

dataframe
rendered
in base R.

154 PART 3 Machine Learning

me — grey), and white to the three iris species. And bg indicates that those colors
are the background colors (the fill colors, in other words) for the plot characters.

Adding the legend is a bit tricky. In effect, it’s adding a plot to an existing plot.
First, I use par():

par(xpd=NA)

Think of par() as setting up a region in the center of the scatterplot matrix. It’s
called the clipping region, and it’s smaller than the matrix. The xpd argument
determines where I can add the next plot — in this case, the legend — to the clip-
ping region. It can take one of three values: TRUE, FALSE, or NA. Without belaboring
the point, NA means that I can put the legend anywhere. (For more on clipping, see
the nearby sidebar “More on Clipping.”)

Here’s the legend() function:

legend("bottomleft", inset=c(-.5,0), legend=levels(iris.uci$species),

 pch=21,pt.bg=c("black","grey","white"),pt.cex=2,

 y.intersp=.2,cex=1.5,bty="n")

The first argument is the location of the legend. The second, inset, is its location
relative to the clip region. The negative number for the first argument means
that it’s to the left of the clipping region, and the 0 means that it’s at the bottom.
The third argument specifies the terms that appear in the legend. (It’s unusual for
an argument to have the same name as its function, but there you have it.) I could
have used a vector of the species names, but this way is much cooler.

The next three arguments pertain to the symbol in the legend: pch = 21 specifies
a filled circle; the pt.bg argument gives the fill colors; pt.cex = 2 doubles the
size of the filled circle.

The value of the next argument, y.intersp, shrinks the space between lines of the
legend. Without this argument, the legend spreads all over the page. Then cex
increases the font size of the text in the legend, and bty=”n” means no border
around the legend.

Running those three functions produces the plot shown in Figure 6-3. I supplied
the values for the arguments based on resolution and screen size, so your plot
might look a little different from mine. Feel free to change the values as needed.

CHAPTER 6 Tools and Data for Machine Learning Projects 155

The ggplot version
As a fan of ggplot, I have to show you how to do all this the ggplot way.
Figure 6-4 shows you a ggplot-rendered scatterplot matrix.

Gorgeous, isn’t it? Again, before I show you how to create this, I tell you what it
all means. The species correspond to black for setosa, gray for versicolor, and lighter
gray for virginica. The first four main diagonal cells show density plots for the
three species for each variable. The fifth is a histogram of the species. The bottom
row presents histograms that correspond to the density plots.

MORE ON CLIPPING
Here’s an exercise to help you understand clipping, par(), and xpd a little better, but
first you have to complete the project in the earlier section “Quick suggested project:
Density plots.” In that one, I ask you to turn four histograms into four density plots. (See
Figure 6-2.) Without totally letting the cat out of the bag, you have to use the lines()
function to visualize each density plot after you create each histogram. Inside the for
loop, just before you call lines(), insert par(xpd=NA) and note what happens to the
ends of the density-plot lines when you run the code. Then change NA to FALSE and
note the effects on the line-ends, and, finally, change to TRUE and see what happens.

FIGURE 6-4:
Scatterplot matrix

for iris.uci
rendered in

ggplot.

156 PART 3 Machine Learning

The main diagonal cells and the bottom-row cells clearly show how setosa differs
from the other two species with respect to the two petal variables. The scatterplots
in each cell visualize the relationship between the cell’s row variable and the cell’s
column variable. These relationships also show the difference between setosa and
the other two species.

Above the main diagonal, each cell in columns 2–4 shows the correlation between
its row variable and its column variable. Each cell also shows the correlation for
each species. It’s instructive to note that the individual correlations can vary
greatly from the overall correlation.

The fifth column’s first four cells are box plots for the three species with respect
to each variable. The box plots show the species overlap for the two sepal vari-
ables, and little overlap for the petal variables. As is the case with the base R ver-
sion, the emerging picture is that the petal variables are the stronger indicators of
species membership.

On to plot creation. It would be great if ggplot2 had a function called ggpairs()
that aesthetically maps color to species and, like pairs() in base R, renders the
matrix for you. It doesn’t, but a package called GGally does, and this package is
based on ggplot2. To load it, select the Packages tab and click Install. In the Install
Packages dialog box, type GGally. After it downloads, find GGally on the Packages
tab and click its check box. Then this code

library(ggplot2)

library(GGally)

ggpairs(iris.uci, aes(color = species))

creates a perfectly usable scatterplot matrix. It’s usable on your screen, that is. The
default colors wouldn’t show up well on the black-and-white page you’re read-
ing, so I had to change the color scheme to the grey scale you see in Figure 6-4. If
you’re interested in how I did this, see the nearby sidebar “Three shades of grey.”

You’ll find some of these data exploration techniques in the ML package I show
you in the next section. So why did I show them to you here? Two reasons:

 » It’s a good idea to know how to use R to explore data.

 » The package I show you uses these R functions to implement some of its
exploration techniques. This way, you’ll know where these techniques
come from.

CHAPTER 6 Tools and Data for Machine Learning Projects 157

Introducing the Rattle package
R has numerous functions and packages that deal with ML. Data science honcho
Graham Williams has created Rattle, a graphical user interface (GUI) to many of
these functions. I use Rattle for this book’s ML projects.

THREE SHADES OF GREY
To create Figure 6-4 with black, gray, and lighter gray as the species colors, I first have to
create the plot matrix:

library(ggplot2)

library(GGally)

plot.matrix <-ggpairs(iris.uci,aes(color= species))

Why do I assign the plot matrix to the variable on the left? Because I have to go through
the matrix, cell by cell, and change the default colors to grey scale. Using the variable
name makes it easy to do that.

To go through the matrix. I use a for loop embedded in another for loop. The first
loop deals with the rows, the second with the columns. Thus, the code goes through
each cell in the first row, then each cell in the second, and so on:

for(i in 1:5) {

 for(j in 1:5){

 plot.matrix[i,j] <- plot.matrix[i,j] +
 scale_color_grey() +
 scale_fill_grey()

 }

 }

The code inside the embedded for-loop makes the changes. In the cells above the
main diagonal, scale_color_grey() changes the colors of the correlation coefficients
and their associated species names. In the cells below the main diagonal, scale_
color_grey() changes the colors of the points in each scatterplot. The scale_fill_
grey() function changes the fill colors of the density plots in the main diagonal, the
histograms in the bottom row, and the boxplots in the fifth column.

Finally,

plot.matrix

puts the plot on the screen.

158 PART 3 Machine Learning

Much of what Rattle does depends on a package called RGtk2, which uses R func-
tions to access the Gnu Image Manipulation Program (GIMP) toolkit. (GIMP is a
widely used open source image editor.) So the first thing to do is download and
install this package. On the Packages tab, click Install. In the Install Packages dia-
log box, type RGtk2 and click Install. After the download finishes, find RGtk2 on
the Packages tab and click its check box.

Now do the same for Rattle: On the Packages tab, click Install. In the Install
Packages dialog box, type rattle and click Install. When the download finishes,
find Rattle on the Packages tab and click its check box.

In R Studio’s Script panel, type

rattle()

and then press Ctrl+R to run. Figure 6-5 shows the window that opens. The
 window might not be visible at first — it might have opened behind other
windows, for example — so you might have to hunt around for it, but you’ll find
it. Expand it to make it look like Figure 6-5.

The main panel presents a welcome message and some info about Rattle. The
menu bar at the top features Project (for starting, opening, and saving Rattle

FIGURE 6-5:
The Rattle

window.

CHAPTER 6 Tools and Data for Machine Learning Projects 159

projects), Tools (a menu of choices that correspond to buttons and tabs), Settings
(that deal with graphics), and Help.

The row below the menu bar holds icons, the most important of which is Execute.
The idea is to look at each tab and make selections, and then click Execute to carry
out those selections. (If you’re a Trekkie, think of clicking the Execute icon as
Captain Picard saying “Make it so!”)

The next row holds the tabs. The first tab (on the left) is for Data. This tab pres-
ents the welcome message and, more importantly, allows you to choose the data
source. The Explore tab is for — you guessed it — exploring data. The Test tab
supplies two-sample statistical tests. If you have to transform data, the Trans-
form tab is for you. The Cluster tab enables several kinds of cluster analysis, a type
of unsupervised learning. The Associate tab sets you up with association analysis,
which identifies relationships between variables. The Model tab provides several
kinds of ML, including decision trees, support vector machines, and neural net-
works. The next tab allows you to Evaluate your ML creation. The Log tab tracks
your interactions with Rattle as R script, which can be quite instructive if you’re
trying to learn R.

Remember that Rattle is a GUI to R functions for some complex analyses, and you
can’t always know in advance what those functions are or which packages they
live in. Accordingly, a frequent part of the interaction with Rattle is a dialog box
that opens and says that you have to install a particular package, and asks whether
you want to install it. Always click Yes.

Using Rattle with iris
So I downloaded the iris data set from the UCI ML Repository, cleaned it up a bit,
and explored it. Then I installed Rattle. Now I put Rattle to work.

Getting and (further) exploring the data
The first thing to do is bring the dataset into Rattle. On the Data tab, I select the
source by clicking the radio button next to R Dataset. This causes a Data Name box
to open just below the radio buttons.

Clicking the down arrow on the Data Name box opens a drop-down menu, as
shown in Figure 6-6.

On the menu, I click iris.uci. Next, I click the Execute icon. This causes the Data
tab to look like Figure 6-7.

160 PART 3 Machine Learning

FIGURE 6-6:
The dropdown

menu in the Data
Name box on the
Rattle data tab.

FIGURE 6-7:
The Rattle Data
tab, after loading

the iris.uci
dataframe.

CHAPTER 6 Tools and Data for Machine Learning Projects 161

Notice the check box next to Partition. This partitions the data into a training set,
a validation set, and a test set, which are required for many types of ML. For what
I’m about to do, though, that’s not necessary. I’m just going to quickly show you
some of Rattle’s capabilities by doing a hierarchical clustering analysis to look at
the structure of the data set. So I uncheck that check box.

Notice also the variable names and the selected radio buttons in the main panel.
As you can see, Rattle has a pretty good idea about the types of data in this
data set.

Now for some exploration. Clicking the Explore tab shows the page you see in
Figure 6-8.

To explore the distributions of the variables, I click the Distributions radio button,
and the tab looks like Figure 6-9.

A Rattle plot shows up on the RStudio Plots tab. For an expanded version, click
on Zoom.

FIGURE 6-8:
The Rattle
Explore tab.

162 PART 3 Machine Learning

Clicking all the Box Plot check boxes (and then clicking Execute) results in the plot
shown in Figure 6-10.

As before, the plots show least variability and least overlap in the petal variables.

If I clear those check boxes and then select the Pairs check boxes, I get a scatter-
plot matrix that looks very much like Figure 6-4 (but without the fifth row and
the fifth column).

I leave it to you to explore the rest of the Explore tab.

Finding clusters in the data
Now for some ML. In subsequent chapters, I provide detailed explanations of ML
techniques, but here I show you just the superficial aspects of a hierarchical clus-
ter analysis, a type of unsupervised learning that, as I mention earlier, finds the
underlying structure in the data set. The analysis reveals the structure as a set of
clusters organized in a hierarchy. I’m cheating a bit here because I know the
structure: It’s three species and, as data exploration suggests, setosa somehow is
different from versicolor and virginica.

FIGURE 6-9:
The Rattle

Explore tab, with
the Distributions

radio button
selected.

CHAPTER 6 Tools and Data for Machine Learning Projects 163

We might guess, then, that the observations form “clusters” on the basis of their
species. So that’s three clusters.

What’s the “hierarchy”? The overlap between versicolor and virginica in the scat-
terplots (and their separation from setosa) suggests that they form a “higher-
order” cluster, leaving out setosa. Then, at a higher level, setosa forms a cluster
with the other two, resulting in one big cluster that represents the whole data set.
That’s the hierarchy.

Or, looking at it another way, the data set partitions into two clusters: one con-
sisting of versicolor and virginica and the other consisting of just setosa. The first
cluster then breaks down into two clusters, one for each species perhaps.

It’s simple for the iris data set because everything is pretty much cut-and-dried.
With a larger data set that has more variables and more categories, things can get
pretty complicated and this type of analysis can reveal unanticipated structures.

To do the hierarchical clustering, I select the Cluster tab and click the Hierarchical
radio button. Clicking Execute makes the Cluster tab look like Figure 6-11.

In the Clusters box, I change the number to 3 and click Execute. (I said I was
cheating, remember?) I’d like a picture of the hierarchical clustering I describe
earlier, and that appears in a picture called a dendrogram. (In Greek, dendro means
“tree.”) So I click Dendrogram and the result is shown in Figure 6-12.

FIGURE 6-10:
Rattle-rendered
box plots for the

four numeric
variables in
iris.uci.

164 PART 3 Machine Learning

Think of this as a tree on its side, and think of the individual observations as the
roots. (In my city, which just went through a major hurricane, that’s not an
uncommon sight!) Two parallel lines joined by a perpendicular line at their ends
represents a cluster. At one level, you can see three clusters and numerous clusters
below (to the left of) them. Two of the clusters join at a higher (more rightward)
level. And then at the highest level, you can see the third cluster joining them.

With the Cluster box default value of 10, the dendrogram looks similar to
Figure 6-12.

FIGURE 6-11:
Performing
hierarchical
clustering in

Rattle.

FIGURE 6-12:
Dendrogram for

the iris.uci
data set.

CHAPTER 6 Tools and Data for Machine Learning Projects 165

LOOKING AT THE RATTLE LOG
As I mention earlier in this chapter, the Log tab shows your interactions with Rattle as
R code. Here’s a good example of working with the Rattle log.

In the hierarchical clustering analysis, click on Data Plot. You see a plot that looks very
much like Figure 6-3. To find the code that produced this plot, select the Log tab and
scroll down until you find this:

plot(crs$dataset[, c(1:4)], col=cutree(crs$hclust,3))

Copy and paste that line into the RStudio Script panel and then press Ctrl+R to run it.

On the Plots tab, you see the same scatterplot matrix, but without the title. The plotting
characters aren’t filled, and their border colors (black, red, and green) are the colors of
the clusters to which Rattle has assigned them. (I don’t show you this, because the red
and green border colors would be hard to distinguish on a black-and-white page.)

To make the matrix look more like Figure 6-3, change cr$dataset[, c(1:4)] to
cr$dataset[, c(1:5)]. This change adds the fifth row and the fifth column.

Add the argument lower.panel=NULL to eliminate everything below the main
 diagonal. Then add plot character arguments so that the code is

plot(crs$dataset[, c(1:5)], col=cutree(crs$hclust, 3), lower.panel=NULL,

pch=21,cex=2,

 bg = c("black","grey","white")[iris.uci$species])

Now the border color of each character corresponds to its assigned cluster, and its fill color
corresponds to its species. If you run this code, you see that in the scatterplots, some of
the plot characters have red borders and are filled with gray and some red-border charac-
ters are filled with white. In the fifth column, all points in the rightmost group should have
green borders, but some have red borders. What does all this tell us? That the clustering
isn’t perfect! That is, the three clusters do not correspond exactly with the three species.

Poking around in the Rattle log was a pretty good idea!

The Rattle Evaluation tab has procedures for evaluating your ML creations, and
I discuss them in subsequent chapters.

166 PART 3 Machine Learning

It’s tempting to say that the three clusters correspond to the three species. But do
they really? A quick glance at the dendrogram shows that the three possibly-
corresponding-to-the-species clusters don’t appear to have equal numbers of
observations at their lowest levels. So maybe the cluster-species correspondence
isn’t exact. Also, see the nearby sidebar “Looking at the Rattle log.”

Where do the numbers on the Height axis come from? What’s the rule for admit-
ting an observation to a cluster? Or for joining one cluster to another? Important
questions all, but my objective here is just to acquaint you with Rattle.

As was the case with Explore, feel free to look at the remaining options on this tab.

CHAPTER 7 Decisions, Decisions, Decisions 167

Chapter 7
Decisions, Decisions,
Decisions

A decision tree is a graphical way of representing knowledge. As its name
implies, it’s a tree-like structure that shows decisions about something,
and it’s useful in many fields, from management to medicine.

Think of a decision tree as a way to structure a sequence of questions and possible
answers. One prominent use of a decision tree is to show the flow of decision-
making to a nontechnical audience.

Decision Tree Components
Figure 7-1 shows a decision tree for classifying irises along with decision tree
terminology. You might recall from Chapter 6 that the iris dataset (downloaded
from the UCI Machine Learning (ML) Repository and designated as iris.uci)
consists of 150 rows and 5 columns. The 150 rows represent individual flowers,
with 50 each of the setosa, versicolor, and virginica species. The five columns are
sepal.length, sepal.width, petal.length, petal.width, and species.

The decision tree is really an upside down tree, and it consists of nodes and
branches. Each node presents a question (like petal.length < 2.6, and the question

 » Finding out about decision trees

 » Creating a decision tree for the
iris dataset

 » Working with a decision tree for
the Acute inflammations dataset
from UCI

168 PART 3 Machine Learning

mark is implicit), and branches emanating from the node represent possible
answers (yes/no, for example).

(Alternative branches remind me of something the late, great Yogi Berra reputedly
said: “When you come to a fork in the road, take it.” Not entirely relevant, but
I can’t write a book without quoting Yogi Berra.)

Roots and leaves
The tree starts from a top-level node called the root and ends in bottom-level
nodes called leaves. (I told you it was upside down.) Each leaf contains a category —
in this case, a particular species of iris.

A node that branches to a node below it is the parent of the one below. The lower
node on a branch is the child of the one above it. So a root has no parents and a leaf
has no children. An internal node has at least one child.

Think of a sequence of branches from the root to a leaf as a classification rule. In
Figure 7-1, one rule is, “If an iris’s petal length is greater than or equal to 2.6 and
its petal width is less than 1.8, then the iris is a versicolor.”

A decision tree with categories in the leaves is called a classification tree. A decision
tree with numerical values (like “predicted miles per gallon” or “predicted length
of hospital stay”) in the leaves is called a regression tree.

Tree construction
If you had to build a decision tree based on the iris.uci data frame, how would
you do it? In effect, the job is to create a series of yes/no questions that split the
data into smaller and smaller subsets until you can’t split the subsets any more.

FIGURE 7-1:
A decision tree

for classifying
irises.

CHAPTER 7 Decisions, Decisions, Decisions 169

So you’d examine the variables and find for one of them a value that splits the data
into two subsets, perhaps one that has all the setosa and the other that has all the
rest. Let’s call them A and B.

How about splitting them further? If you were careful, you’d find a value such that
A had two subsets (A1 and A2), one of which (A1) contained all the setosa and the
other (A2) containing nothing. Because A2 has no members, you can’t split it any
more. So A is a leaf.

Now look at B. This one holds all the non-setosa irises. The same variable (or
 perhaps another one) might hold the key to a productive split into B1 and B2. That
split value (whatever the variable and whatever the value) probably won’t put all
versicolor into B1 and all virginica into B2.

Why? You might remember from Chapter 6 that data exploration revealed some
overlap between these two species regardless of the variable. So the split won’t be
perfect, but it might put the vast majority of one species in B1 (along with a tiny
group of miscategorized cases) and the vast majority of the other in B2 (again,
with a tiny group of miscategorized cases). Ideally, the miscategorizations are so
few that you can’t split any further. So B1 and B2 are leaves.

This is called recursive partitioning, and you could go through the data and do all
this manually.

Or you could use R.

Decision Trees in R
R has a package that uses recursive partitioning to construct decision trees. It’s
called rpart, and its function for constructing trees is called rpart(). To install
the rpart package, click Install on the Packages tab and type rpart in the Install
Packages dialog box. Then, in the dialog box, click the Install button. After the
package downloads, find rpart in the Packages tab and click to select its check box.

Growing the tree in R
To create a decision tree for the iris.uci data frame, use the following code:

library(rpart)

iris.tree <- rpart(species ~ sepal.length + sepal.width + petal.length + petal.
width, iris.uci, method="class")

170 PART 3 Machine Learning

The first argument to rpart() is a formula indicating that species depends on
the other four variables. [The tilde (~) means “depends on.” See the section
“R Formulas” in Chapter 2.] The second argument is the data frame you’re using.
The method = “class” argument (it’s the third one) tells rpart() that this is a
classification tree. (For a regression tree, it’s method = “anova”.)

You can abbreviate the whole right side of the formula with a period. So the short-
hand version is

species ~ .

The left side of the code, iris.tree, is called an rpart object. So rpart() creates an
rpart object.

At this point, you can type the rpart object

iris.tree

and see text output that describes the tree:

n= 150

node), split, n, loss, yval, (yprob)

 * denotes terminal node

1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)

 2) petal.length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *

 3) petal.length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)

 6) petal.width< 1.75 54 5 versicolor (0.00000000 0.90740741 0.09259259) *

 7) petal.width>=1.75 46 1 virginica (0.00000000 0.02173913 0.97826087) *

The first line indicates that this tree is based on 150 cases. The second line pro-
vides a key for understanding the output. The third line tells you that an asterisk
denotes that a node is a leaf.

Each row corresponds to a node on the tree. The first entry in the row is the node
number followed by a right parenthesis. The second is the variable and the value
that make up the split. The third is the number of classified cases at that node. The
fourth, loss, is the number of misclassified cases at the node. Misclassified?
Compared to what? Compared to the next entry, yval, which is the tree’s best
guess of the species at that node. The final entry is a parenthesized set of
 proportions that correspond to the proportion of each species at the node.

CHAPTER 7 Decisions, Decisions, Decisions 171

You can see the perfect classification in node 2, where loss (misclassification)
is 0. By contrast, in nodes 6 and 7 loss is not 0. Also, unlike node 2, the
 parenthesized proportions for nodes 6 and 7 do not show 1.00 in the slots that
represent the correct species. So the classification rules for versicolor and virginica
result in small amounts of error.

Drawing the tree in R
Now you plot the decision tree, and you can see how it corresponds to the rpart()
output. You do this with a function called prp(), which lives in the rpart.plot
package.

The rpart package has a function called plot.rpart(), which is supposed to plot
a decision tree. My version of R can’t find it. It can find the function’s documenta-
tion via ?plot.rpart but it can’t find the function. Weird. It’s enough to make me
plotz (which in another language means something like “implode and explode
simultaneously”).

With rpart.plot installed, here’s the code that plots the tree shown in
Figure 7-2:

library(rpart.plot)

prp(iris.tree,type=2,extra="auto",nn = TRUE,branch=1,varlen=0,yesno=2)

FIGURE 7-2:
Decision tree for

iris.uci,
created by

rpart() and
rendered by

prp().

172 PART 3 Machine Learning

The first argument to prp() is the rpart object. That’s the only argument that’s
necessary. Think of the rpart object as a set of specifications for plotting the tree.
I’ve added the other arguments to make the plot prettier:

 » type = 2 means “label all the nodes”

 » extra = “auto” tells prp() to include the information you see in each
rounded rectangle that’s in addition to the species name

 » nn = TRUE puts the node-number on each node

 » branch = 1 indicates the lines-with-corners style of branching shown in
Figure 7-2. These are called “square-shouldered branches”, believe it or not.
For slump-shouldered branches (I made that up) try a value between 0 and 1

 » varlen=0 produces the full variable names on all the nodes (instead of names
truncated to 8 characters)

 » yesno=2 puts yes or no on all the appropriate branches (instead of just the
ones descending from the root, which is the default). Note that each left
branch is yes and each right branch is no

At the root node and the internal node, you see the split. The rounded rectangle at
each node shows a species name, three proportions, and the percentage of the
data encompassed at that node.

At the root, the proportions are .33 for each species, and 100 percent of the data is
at the root. The split (petal.length < 2.4) puts 33 percent of the data at the
setosa leaf and 67 percent at the internal node. The setosa leaf shows the propor-
tions 1.00, .00, and .00, indicating that all the cases at that leaf are perfectly
classified as setosas.

The internal node shows .00, .50, and .50, which means none of these cases are
setosas, half are versicolor, and half are virginica. The internal node split
(petal.width < 1.8) puts 36 percent of the cases into the versicolor leaf and the
31 percent of the cases into the virginica leaf. Already this shows a problem: With
perfect classification those percentages would be equal, because each species
shows up equally in the data.

On the versicolor leaf, the proportions are .00, .91, and .09. This means 9 percent
of cases classified as versicolor are actually virginica. On the virginica leaf, the pro-
portions are .00, .02, and .98. So 2 percent of the cases classified as virginica are
really versicolor.

CHAPTER 7 Decisions, Decisions, Decisions 173

Bottom line: For the great majority of the 150 cases in the data, the classification
rules in the decision tree get the job done. But the rules aren’t perfect, which is
typically the case with a decision tree.

Decision Trees in Rattle
Rattle provides a GUI to R’s tree-construction and tree-plotting functions. To
use this GUI to create a decision tree for iris.uci, begin by opening Rattle:

library(rattle)

rattle()

I’m assuming that you’ve downloaded and cleaned up the iris dataset from the
UCI ML Repository and called it iris.uci. I mention that at the beginning of this
chapter, and I walk you through all the download and cleanup steps in Chapter 6.

On Rattle’s Data tab, in the Source row, click the radio button next to R Dataset.
Click the down arrow next to the Data Name box and select iris.uci from the
drop-down menu. Then click the Execute icon in the upper left corner. Your screen
should look like Figure 6-7, in Chapter 6.

If you haven’t downloaded the UCI iris dataset and you just want to use the iris
dataset that comes with base R, click the Library radio button. Then click the down
arrow next to the Data Name box and select

iris:datasets:Edgar Anderson's iris data

from the drop-down menu. Then click Execute.

I recommend downloading from UCI, though, to get the hang of it. Downloading
from the UCI ML Repository is something you’ll be doing a lot.

Still on the Data tab, select the Partition check box. This breaks down the dataset
into a training set, a validation set, and a test set. The default proportions are
70 percent training, 15 percent validation, and 15 percent test. The idea is to use
the training set to construct the tree and then use the test set to test its classifica-
tion rules. The validation set provides a set of cases to experiment with different
variables or parameters. Because I don’t do that in this example, I set the
 percentages to 70 percent training, 0 percent validation, and 30 percent test.

174 PART 3 Machine Learning

The Seed box contains a default value, 42, as a seed for randomly assigning the
dataset rows to training, validation, or testing. Changing the seed changes
the randomization.

Creating the tree
Decision tree modeling resides on the Model tab. It opens with Tree selected.
Figure 7-3 shows this tab.

A number of onscreen boxes provide access to rpart()’s arguments. (These are
called tuning parameters.) Moving the cursor over a box opens helpful messages
about what goes in the box.

For now, just click Execute to create the decision tree. Figure 7-4 shows what then
happens on the Model tab.

The text in the main panel is output from rpart(), with a few more arguments
than I use earlier in this chapter. It looks a lot like the output I show you earlier,
with some extra info. Note that the tree is based on the 105 cases (70 percent

FIGURE 7-3:
The Rattle
Model tab.

CHAPTER 7 Decisions, Decisions, Decisions 175

of 150) that constitute the training set. Unlike the tree created earlier, this one just
uses petal.length in its splits.

The rest of the output is from a function called printcp(). The abbreviation cp
stands for complexity parameter, which controls the number of splits that make
up the tree. Without delving too deeply into it, I’ll just tell you that if a split adds
less than the given value of cp (on the Model tab, the default value is .01), rpart()
doesn’t add the split to the tree. For the most complex tree possible (with the
largest number of possible splits, in other words), set cp to .00. (See the section
“Quick Suggested Project: Understanding the complexity parameter,” toward the
end of this chapter.)

Drawing the tree
Clicking the Draw button produces the decision tree shown in Figure 7-5, rendered
by prp(). The overall format of the tree is similar to the tree shown earlier, in
 Figure 7-2, although the details are different and the boxes at the nodes have
fill color.

FIGURE 7-4:
The Rattle

Model tab, after
creating a

decision tree for
iris.uci.

176 PART 3 Machine Learning

Evaluating the tree
The idea behind evaluation is to assess the performance of the tree (derived from
the training data) on a new set of data. This is why I divided the data into a
 Training set and a Testing set.

To see how well the decision tree performs, select the Evaluate tab. Figure 7-6
shows the appearance of the tab after I’ve clicked Execute with the default set-
tings (which are appropriate for this example).

The results of the evaluation for the 45 cases in the Testing set (30 percent of 150)
appear in two versions of an error matrix. Each row of a matrix represents the
actual species of the flower. Each column shows the decision tree’s predicted spe-
cies of the flower. The first version of the matrix shows the results by counts; the
second, by proportions.

Correct identifications are in the main diagonal. So in the first matrix, the cell in
row 1, column 1 represents the number of times the decision tree correctly classi-
fied a setosa as a setosa (17). The zeros in the other two cells in row 1 indicate no
misclassified setosas.

FIGURE 7-5:
A decision tree
for iris.uci,

based on a
training set of

105 cases.

CHAPTER 7 Decisions, Decisions, Decisions 177

The cell in row 2, column 3 shows that the tree incorrectly classified three virginicas
as versicolors. The fourth column shows that the error rate is 20 percent (3/(12 + 3)).

Row 3 shows no misclassifications, so dividing the 20 percent by 3 (the number of
categories) gives the averaged class error you see at the bottom of the figure. The
overall error is the number of misclassifications divided by the total number of
observations.

Project: A More Complex Decision Tree
The decision tree for the iris dataset is pretty straightforward and yields a rela-
tively low error rate. The following sections lay out a project that results in a more
complex tree.

The data: Car evaluation
In the UCI ML Repository, you’ll find the Car Evaluation dataset. It lives at
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

As the dataset’s description tells you, the designers created the dataset to demon-
strate expert system technology, so it’s a bit on the “artificial” side. I use it here
to give you some practice creating decision trees. The idea is that, given a set of
cars’ attributes and their values, the decision is whether a specific car is unaccept-
able, acceptable, good, or very good.

FIGURE 7-6:
The Rattle

Evaluate tab,
after evaluating

the decision tree
for iris.uci.

http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

178 PART 3 Machine Learning

The attributes and their values are

 » buying (the purchase price): v-high, high, med, low

 » maint (the cost of maintaining the car): v-high, high, med, low

 » doors: 2, 3, 4, more

 » persons: 2, 4, more

 » lug_boot (size of the trunk): small, med, big

 » safety (estimated safety of the car): low, med, high

Click the Data Folder link and, on the new page that appears, click the car.data
link to open the CSV data file. Using my preferred method of putting the data into
an R data frame, press Ctrl+A to highlight the entire page and then Ctrl+C to copy
it to the clipboard.

Then the line

car.uci <- read.csv("clipboard",header=FALSE)

creates the data frame for this project. Now it’s time to name the columns:

colnames(car.uci) = c("buying","maintenance","doors","persons","lug_boot",

"safety", "evaluation")

The Data Set Description refers to the target as class, but I think evaluation is
more to the point. Just as a check on what the data looks like, type:

head(car.uci)

Running that command produces:

 buying maintenance doors persons lug_boot safety evaluation

1 vhigh vhigh 2 2 small low unacc

2 vhigh vhigh 2 2 small med unacc

3 vhigh vhigh 2 2 small high unacc

4 vhigh vhigh 2 2 med low unacc

5 vhigh vhigh 2 2 med med unacc

6 vhigh vhigh 2 2 med high unacc

With Rattle installed,

library(rattle)

rattle()

CHAPTER 7 Decisions, Decisions, Decisions 179

opens the Rattle screen. On the Data tab, select the R Dataset radio button. Click
the down arrow next to the Data Name box, and select car.uci from the
drop-down menu. Check the Partition check box to partition the data into a train-
ing set, a validation set, and a test set. After you click the Execute icon, the Data
tab looks like the one shown in Figure 7-7.

Data exploration
Figure 7-8 shows the result of using the Explore tab to show the distribution of
the evaluations in car.uci. The vast majority of the cars, as you can see, are
“unacceptable.” The Explore tab allows a variety of data explorations, and
I encourage you to examine other aspects of the data.

FIGURE 7-7:
The Rattle Data

tab, after
acquiring the
car.uci data

frame.

FIGURE 7-8:
The distribution

of evaluations in
the car.uci data

frame.

180 PART 3 Machine Learning

Building and drawing the tree
On the Model tab, clicking Execute harnesses the rpart() function to create the
decision tree. I use the default values in the boxes on this tab. The main panel
shows the resulting description of the nodes, as shown in Figure 7-4 for iris.uci.

It’s all quite detailed, and sifting through all the minutia would be a chore. Instead,
I draw the tree. In this case, clicking the Draw button results in a lot of nodes, each
with a small font that’s difficult to read. If I enlarge the font, the whole thing
becomes a mishmash.

Here’s where the Log tab comes in handy. Selecting the Log tab and doing a bit of
scrolling shows that Rattle uses rpart() to create the decision tree in a variable
called crs$rpart. Instead of Rattle’s function for rendering the tree (it’s called
fancyRpartPlot()), I use prp(), which is in the rpart.plot package:

library(rpart.plot)

prp(crs$rpart, cex=1,varlen=0,branch=0)

The result is shown in Figure 7-9.

FIGURE 7-9:
The decision tree

for car.uci,
rendered in
rpart().

CHAPTER 7 Decisions, Decisions, Decisions 181

This is a plainer-looking tree than the Rattle function renders, with no colors
and little information in the nodes, but everything is easier to see. The first argu-
ment to prp() is the Rattle-created decision tree, and the second enlarges the
font. The third argument, varlen = 0, prints the full name of each attribute and
value (rather than truncating), and branch = 0 provides the branch style shown
in the figure.

Evaluating the tree
On the Evaluate tab, click the Testing radio button to evaluate the decision tree
against the Testing dataset. Clicking Execute produces the error matrices shown
in Figure 7-10.

The numbers in the first matrix are counts; the numbers in the second are
 proportions of the sample. The numbers on the main diagonal are correct
 classifications, and the others are errors.

The tree does a nice job with the most frequent categories (unacceptable and
acceptable), and not quite as well on the other two (good and very good).
The overall error rate is 6.9 percent.

Quick suggested project: Understanding
the complexity parameter
Rattle is a terrific teaching tool. In this little two-part project, you can use Rattle
to help wrap your brain around the complexity parameter (cp) and what it entails.

FIGURE 7-10:
Error matrices for

the car.uci
decision tree.

182 PART 3 Machine Learning

The default value of the cp is .01. To tell you how to calculate cp is beyond the
scope of this book. To paraphrase what I say earlier in this chapter, just think of
cp as the “minimum benefit” that a split must add to the tree. If the split doesn’t
yield at least that much benefit (the value of cp), rpart() doesn’t add it.

What happens if you set cp to .00? You get no restrictions on what a split must
add. Hence, you wind up with the most complex tree possible. So here’s the first
part of this quick project: Set cp to .00 and Execute, and then use

library(rpart.plot)

prp(crs$rpart, cex=1,varlen=0,branch=0)

to draw the tree. Compare it with Figure 7-9. More complex, right? Evaluate this
tree against the Testing set, and look at the overall error rate. Compared to the
original error rate (6.9 percent), is the extra complexity worth adding?

The second part of this project is to move in the other direction. Set cp to a
higher value, like .10. This makes it restrictive to add a split. Click Execute. Then
draw the tree. It looks way less complex than with cp = .01, doesn’t it? Evaluate
against the Testing set. How about that overall error rate?

On a live tree that grows outdoors in your garden, what do you call the process of
cutting branches to make the tree look better? Does pruning sound familiar? That’s
also the name for eliminating splits to make a decision tree less complex (which
is what increasing the cp does).

Suggested Project: Titanic
A dataset that’s often used to illustrate ML concepts is the information about pas-
sengers on the Titanic’s disastrous voyage in 1912. The target variable is whether
the passenger survived. You can use this data to create a decision tree.

The data resides in an R package called titanic. If it’s not already on the Packages
tab, click Install. In the Install Packages dialog box, type titanic and click the
Install button. After the package downloads, find it on the Packages tab and select
its check box.

In the titanic package, you’ll find titanic_train and titanic_test. Don’t be
tempted to use one as the training set and the other as the test set for this particular
application of Rattle. The titanic_test set doesn’t include the Survived variable,
so it’s not usable for testing a decision tree the way I lay out the process here.

CHAPTER 7 Decisions, Decisions, Decisions 183

Instead, create the data frame like this:

library(titanic)

titanic.df <- titanic_train

Then use Rattle’s Data tab to read in the dataset. Figure 7-11 shows what the Data
tab looks like after a few modifications.

What are those modifications? First, a rule of thumb: If a variable is categoric and
has a lot of unique values (and if it’s not already classified as an Ident (identifier)),
click its Ignore radio button. Also, when first encountering this dataset, Rattle
thinks Embarked is the target variable. Use the radio buttons to change Embarked
to Categoric and to change Survived to Target.

Good luck!

FIGURE 7-11:
The Rattle Data

tab, after
modifying the
titanic.df

dataset.

CHAPTER 8 Into the Forest, Randomly 185

Chapter 8
Into the Forest,
Randomly

In Chapter 7, I help you explore decision trees. Suppose a decision tree is an
expert decision-maker: Give a tree a set of data, and it makes decisions about
the data. Taking this idea a step further, suppose you have a panel of experts —

a group of decision trees — and each one makes a decision about the same data.
One could poll the panel to come up with the best decision.

This is the idea behind the random forest — a collection of decision trees that you
can poll, and the majority vote is the decision.

Growing a Random Forest
So how does all this happen? How do you create a forest out of a dataset? Well,
randomly.

Here’s what I mean. In Chapter 7, I discuss the creation of a decision tree from a
dataset. I use the rattle package to partition a data frame into a training set, a
validation set, and a test set. The partitioning takes place as a result of random
sampling from the rows in the data frame. The default condition is that rattle
randomly assigns 70 percent of the rows to the training set, 15 percent to the vali-
dation set, and 15 percent to the test set.

 » Looking at random forests

 » Growing a random forest for irises

 » Developing a random forest
for glass identification

186 PART 3 Machine Learning

The random row selection proceeds from a seed value, whose Rattle default is 42.
This produces the 70 percent of the observations for creating the decision tree.
What happens if I change the seed value? The result is a different 70 percent of the
sample and (potentially) a different tree. If I change the seed again and again and
produce a decision tree each time (and save each tree), I create a forest.

Figure 8-1 illustrates this concept. The trees provide decision rules for the
iris.uci data frame, which I show you in Chapter 6. To refresh your memory, the
data are measurements of the length and width of petals and sepals in 150 irises.
They consist of 50 each of the setosa, versicolor, and virginica species. Given a flow-
er’s measurements, a tree uses its decision rules to determine the flower’s species.
I added .uci to the data frame’s name to indicate that I downloaded it from the
Machine Language Repository of the University of California-Irvine. A little data
clean-up was necessary, which is a topic you can find in Chapter 6.

Notice that each tree has its own decision rules, and that the splits aren’t all based
on the same variables. Instead of having only one tree decide a flower’s species,
I can have all three of them make the determination. If they don’t all reach the
same decision, the majority rules.

Now imagine hundreds of these trees, all created from the same data frame.
In this setup, though, I randomly sample rows from the 70 percent of the rows

FIGURE 8-1:
Three

Rattle-produced
decision trees for

the iris.uci
data frame.

CHAPTER 8 Into the Forest, Randomly 187

designated as the training set, rather than create a new training set each time, as
in the preceding example.

And then I add one more dimension of randomness: In addition to random selec-
tion of the data frame rows, suppose I add random selection of the variables to
consider for each split of each decision tree.

So, here are two things to consider each time I grow a tree in the forest:

 » For the data, I randomly select from the rows of the training set.

 » For each split, I randomly select from the columns. (How many columns do I
randomly select each time? A good rule of thumb is the square root of the
number of columns.)

That’s a huge forest, with a lot of randomness! A technique like this one is useful
when you have a lot of variables and relatively few observations (lots of columns
and not so many rows, in other words).

R can grow a random forest for you.

Random Forests in R
R has a package for creating random forests. If you guessed that it’s called
randomForest, you’re right. Its function for creating the random forest is
called . . . wait for it . . . randomForest().

If this package is already on the Packages tab, select its check box and you’re in
business. If it isn’t on the tab, select the Install tab, and in the Install Packages
dialog box, type randomForest and click the Install button. When the package
finishes downloading, find its check box on the Packages tab and click it.

Building the forest
With the randomForest check box selected, here’s how to create a 500-tree forest
for the iris.uci data frame. First, you create a training set consisting of 70 per-
cent of the rows randomly selected from the data frame. For this task, you use the
sample() function. First, however, you set the seed for the randomization, like this:

set.seed(810)

188 PART 3 Machine Learning

The seed is the number that starts off the randomization in sample(). You don’t
have to do this, but if you want your numbers to come out like mine, set the seed
to the same number as mine.

If you want the randomization to take place the same way each time you use
sample(), you have to set the seed every time.

Now for the sampling:

training.set = sample(nrow(iris.uci),0.7*nrow(iris.uci))

The first argument of sample() is the number of rows in the data frame; the
second argument is how many of the rows to randomly sample.

You can use sample() with or without replacement. “Without replacement” is
the default condition. This means that once you randomly select an item for the
sample, you don’t put it back (“replace it”) into the set of items you’re sampling
from. “With replacement” means that you put it back and you can possibly select
it again and again for this sample. For this to happen, add replacement = TRUE
as an argument.

Then use randomForest():

iris.forest <- randomForest(formula =

 species ~ petal.length + petal.width + sepal.length + sepal.width,
 data = iris.uci, ntree = 500, subset=training.set,

 importance = TRUE)

In this straightforward example, the first argument is a formula indicating that
species depends on the other four variables, the second is the data frame, and
the third is the number of trees to create. The next-to-last one is the subset of
the data for creating each tree. And the last argument, importance, tells the
function that you want to examine the importance of each variable in creating
the forest. (I talk about importance a bit more in the upcoming section
“A closer look.”)

As is the case with many R functions, this is only the bare minimum. Lots of other
arguments are available for randomForest().

CHAPTER 8 Into the Forest, Randomly 189

Evaluating the forest
Let’s take a look at how well the forest does its job. The line

print(iris.forest)

produces this result:

Call:

 randomForest(formula = species ~ petal.length + petal.width + sepal.length +
sepal.width, data = iris.uci, ntree = 500, importance = TRUE, subset =

training.set)

Type of random forest: classification

 Number of trees: 500

No. of variables tried at each split: 2

 OOB estimate of error rate: 6.67%

Confusion matrix:

 setosa versicolor virginica class.error

setosa 36 0 0 0.00000000

versicolor 0 32 2 0.05882353

virginica 0 5 30 0.14285714

The first few lines, of course, echo the function call and then present descriptive
information about the tree. Notice that the default number of variables tried at
each split is the square root of the number of independent variables. In this case,
that happens to be 2. You can vary this by setting a value for a randomForest()
argument called mtry (for example, mtry = 3).

Finally, the confusion matrix (see Chapter 7) shows the actual species of each iris
(in the rows) and the species as identified by the forest (in the columns). The
numbers of correct identifications are in the main diagonal, and errors are in the
off-diagonal cells. The forest mistakenly identified 2 versicolor as virginica and
5 virginica as versicolor. The error rate is 6.67 percent. This is the off-diagonal total
(5 + 2 = 7) divided by the total number of observations (36 + 32 + 30 + 5 + 2 = 105,
and the 105 is 70 percent of 150). So the forest is accurate 93.33 percent of the
time — which is pretty good!

Um, what does the OOB represent? OOB stands for out of bag. In the random forest
world, a bag is the part of the training set that went into creating the decision tree.

190 PART 3 Machine Learning

The OOB (out of bag) estimate, then, is based on testing the forest on data not
included in the bag.

A closer look
The product of randomForest() is an object, and it has a set of attributes. Here are
the attribute names:

> names(iris.forest)

 [1] "call" "type" "predicted" "err.rate" "confusion" "votes"

 [7] "oob.times" "classes" "importance" "importanceSD" "localImportance"

"proximity"

[13] "ntree" "mtry" "forest" "y" "test" "inbag"

[19] "terms"

Some, like ntree, are short and sweet and identify inputs to randomForest().
Others provide a huge amount of information: err.rate, for example, shows the
error rates for every tree in the forest. Still others, for this example, are NULL.

It’s instructive to examine importance:

> round(iris.forest$importance,2)

 setosa versicolor virginica MeanDecreaseAccuracy MeanDecreaseGini

petal.length 0.31 0.29 0.28 0.29 30.31

petal.width 0.34 0.30 0.27 0.30 30.91

sepal.length 0.03 0.01 0.04 0.03 6.17

sepal.width 0.01 0.00 0.01 0.01 1.83

I rounded to two decimal places so that this example could all fit nicely on the
printed page. The first three columns show the relative importance of each vari-
able for identifying each species. Without going into exactly how this is calculated,
relative importance means how much each variable contributes to accuracy for
identifying a species. Consistent with the overall impression of the iris data (refer
to Chapter 6), the two petal variables add the most.

The measure in the fourth column is based on rearranging the values of a variable
and seeing how the rearrangement affects performance. If the variable is not
important, rearranging its values does not decrease the forest’s accuracy. If it is
important, the accuracy does decrease — hence the name, MeanDecreaseAccuracy.
Again, the two petal variables are the most important.

The fifth column looks at importance in a different way: If you don’t use the for-
est, what are the chances that you misclassify an iris if you just select a species for
it at random? That’s called the gini index. The numbers in the fifth column

CHAPTER 8 Into the Forest, Randomly 191

represent the reduction in the gini (that is, in the misclassification) by using the
row variable in a split; randomForest() measures this for each variable over all
the trees in the forest, resulting in the numbers in the fifth column. Once again, the
petal variables are the most important: Using them in splits (as variables in a tree,
in other words) provides the largest decreases in misclassification.

You get this entire set of importance statistics only if you set importance=TRUE
when you use randomForest().

Plotting error
With random forests, one useful plot is to show how the error rates change as the
forest encompasses progressively more trees. Sometimes, this plot can give you
an idea of the optimal number of trees.

First, I used plot():

plot(iris.forest, col = "black")

Had I not added col = black to plot(), the default colors would have been too light
and too difficult to distinguish from one another on this black-and-white page.

Then I added legend():

legend("topright", legend=c(levels(iris.uci$species),"OOB"),

 lty = c("dashed","dotted","dotdash","solid"),

 cex=.8,bty = "n")

To differentiate among the levels of species, I maintained the plot() default
linetypes (lty) and included them as part of the legend. I used the output of
print(iris.tree) as a guide to match lty with species (and with OOB).

The last two arguments deal with the legend’s overall appearance. cex = .8 con-
tracts the text size and with it the entire legend so that the legend doesn’t obstruct
the top line in the plot. bty = “n” removes the border from the legend, which also
contributes to the ease of seeing the top line.

The result is shown in Figure 8-2.

With fewer than 100 trees, the plot looks something like a forkful of angel hair
pasta. To turn the magnifying glass on the graph between 1 and 100 trees, I added
the xlim argument to plot():

plot(iris.forest, col = "black",xlim = c(1,100))

192 PART 3 Machine Learning

And the result is shown in Figure 8-3.

To examine the data behind these plots, take a look at the 500 rows of
iris.forest$err.rate.

FIGURE 8-2:
iris.forest

error rates as a
function of the

number of trees
in the forest.

FIGURE 8-3:
iris.forest
error rates for
1 to 100 trees.

CHAPTER 8 Into the Forest, Randomly 193

Plotting importance
Another useful plot visualizes the MeanDecreaseAccuracy and MeanDecreaseGini
of the variables. A ggplot2-based Rattle function called ggvarImp() does this
for you:

library(ggplot2)

library(rattle)

ggVarImp(iris.forest)

The result of this function is the good-looking graph shown in Figure 8-4,
and it reflects the importance-related numbers I discuss in the earlier section
“A closer look.”

In the projects in this chapter and in Chapter 7, the target is a categorical variable.
It’s also possible for the target to be a numeric variable, (in which case regression
is involved), but I don’t get into that topic in this book.

FIGURE 8-4:
The plot of

 importance of
the variables in
iris.forest.

194 PART 3 Machine Learning

Project: Identifying Glass
In this section, I show you how to use the rattle package to grow a random forest
for a domain that’s more complex than iris species.

In criminological investigations, it’s often important to properly identify glass at
crime scenes so that it can serve as evidence. So this random forest identifies
where a glass fragment came from (building window, vehicle window, or head-
lamp, for example), based on a physical property (refractive index — how much it
bends light passing through it) and chemical properties (amount of sodium, mag-
nesium, and aluminum it contains, for example).

The data
The data are in a dataset from the UCI ML Repository. You’ll find the data set at

https://archive.ics.uci.edu/ml/datasets/glass+identification

Navigate to the Data Folder and click glass.data, a text file of comma-separated
variables. My preferred method of putting the data into R is to press Ctrl+A to
highlight everything and then press Ctrl+C to copy it all to the clipboard. Then

glass.uci <- read.csv("clipboard",header = FALSE)

creates a data frame, and

colnames(glass.uci)<-c("ID","RI","Na","Mg","Al","Si","K","Ca","Ba","Fe","Type")

LOOKING AT THE RULES
If you want to look at the decision rules for individual trees, a function called
printRandomForests() is the one for you. This function lives in the rattle package.
With rattle downloaded, these two lines:

library(rattle)

printRandomForests(iris.forest, models=c(1,500))

print the rules that the first tree and the 500th tree use to decide an iris’s species. I don’t
print the rules here because each tree uses a lot of them. Give it a try!

https://archive.ics.uci.edu/ml/datasets/glass+identification

CHAPTER 8 Into the Forest, Randomly 195

assigns the names to the columns. The first of these names, ID, is an identifier for
the piece of glass, and the second is the glass fragment’s refractive index. The last
one, Type, is the target variable. All the ones in between are the chemical elements
that constitute the glass.

I have one more thing to do before I get down to business. At the moment, the
levels of Type (the target variable) are numbers. Instead, I want to give them
informative names. To do this, I use mapvalues(), which lives in the plyr library:

library(plyr)

glass.uci$Type <- mapvalues(glass.uci$Type,

 from = c(1,2,3,5,6,7),

 to = c("bldg_windows_float","bldg_windows_non_float",

 "vehicle_windows_float","containers","table

ware","headlamps"))

The terms float and non_float refer to the process for making a window.
The “float” process produces near-optical quality glass; “non-float” glass is
lower quality.

Notice that the from vector does not include 4. This is because the corresponding
type (vehicle_windows_non_float) is not in the dataset.

The names for the columns and for the Type levels are at the URL for this
dataset.

Getting the data into Rattle
Rattle is a graphical user interface (GUI) to many R machine learning functions.
With the rattle package downloaded, entering

library(rattle)

rattle()

opens the Rattle Data tab. First, I load the glass.uci data frame into Rattle and
click the R Dataset radio button, which opens the Data Name box. Then I click the
down arrow next to the Data Name box and select glass.uci from the drop-down
menu. Next, I click the Execute icon in the upper left corner. Figure 8-5 shows the
appearance of the Data tab after I complete these steps.

196 PART 3 Machine Learning

Exploring the data
Next, a little data exploration. To examine the distribution of Type, I click the
Explore tab and clear the Group By box (whose default selection is Type). Then I
click the Bar Plot check box next to Type, toward the bottom of the window.
 Figure 8-6 shows how the Explore tab looks after I do this.

Clicking Execute produces the bar plot shown in Figure 8-7. As you can see, one of
the Type-names (bldg_windows_float) got crowded out of the x-axis. The figure
shows that the two building window types are the most frequent in the data frame.

The summary indicates that the random forest has an OOB error rate of
25.5 percent. It identifies headlamps most accurately and does a so-so job on the
two types of building windows. The vehicle windows? Not so much. So it would be
a good idea to exercise some caution if you use this random forest for glass iden-
tification, because its overall accuracy is 74.5 percent. If you select the Evaluate
tab and evaluate against the Validation set and then against the Test set, you’ll
find similar results.

FIGURE 8-5:
The rattle Data

tab after selecting
glass.uci and

clicking Execute.

CHAPTER 8 Into the Forest, Randomly 197

FIGURE 8-6:
The Rattle

Explore tab, after
clearing the

Group By box
and selecting the

Bar Plot check
box for Type.

FIGURE 8-7:
The distribution

of Type in the
glass.uci data

frame.

198 PART 3 Machine Learning

Growing the random forest
On the Model tab, I select the Forest radio button and click Execute. Rattle creates
the forest and prints the summary shown on the Model tab in Figure 8-8.

Visualizing the results
To help you visualize the results, I begin with the plot of variable importance.
When you click the Importance button on the Model tab, Rattle plots what you
see in Figure 8-9. As the figure shows, for identifying most types of glass, Mg
(Magnesium) content is the most important variable, as is the case for
MeanDecreaseAccuracy and for MeanDecreaseGini.

The plot of error rates isn’t nearly as easy on the eyes. Pressing the Error button
on the Model tab produces a plot of the error rates with progressively more trees,
similar to Figure 8-2. I don’t show you this plot, because it’s a mishmash. The
legend won’t help you decipher it, because the legend’s linetype colors don’t
appear to match up with the legend’s text colors.

FIGURE 8-8:
Summary of the

random forest for
glass.uci.

CHAPTER 8 Into the Forest, Randomly 199

This is one of those extremely rare occasions when looking at the data might be
more helpful than looking at a graph. Let’s say I want to examine the error rates
for the OOB and for the first three variables in the 30th through 35th trees. (Why
not all the variables? Because I want the output to fit neatly on this page!)

The Rattle Log tells you that the random forest is in an object called crs$rf. As
I mention earlier in this chapter, the error rates for a random forest are in an
attribute called err.rate. For all error rates for all trees, I use crsrferr.rate.
To round them to two decimal places, it’s round(crsrferr.rate, 2). For the
30th to 35th trees, the function call becomes round(crsrserr.rate[30:35,],2).
And, to limit the output to just the OOB and the first three variables, I use:

> round(crsrferr.rate[30:35,1:4],2)

 OOB bldg_windows_float bldg_windows_non_float containers

[1,] 0.28 0.22 0.28 0.2

[2,] 0.29 0.24 0.26 0.2

[3,] 0.27 0.24 0.24 0.2

[4,] 0.28 0.24 0.22 0.2

[5,] 0.29 0.26 0.26 0.2

[6,] 0.30 0.26 0.28 0.2

FIGURE 8-9:
The plot of

variable
importance for
glass.forest.

200 PART 3 Machine Learning

Suggested Project: Identifying Mushrooms
If you’re the outdoorsy type, you probably encounter mushrooms growing in the
wild. As you might know, some mushrooms are edible, and others are most defi-
nitely not(!)

The UCI ML repository has a dataset of mushrooms with lots and lots of instances
(8,124 of them) and 22 attributes. The target variable indicates whether the mush-
room is edible (e) or poisonous (p). You’ll find it at

https://archive.ics.uci.edu/ml/datasets/mushroom

You create an R data frame by navigating to the Data Folder, finding the .csv data
file, and then pressing Ctrl+A to select all data and Ctrl+C to copy it to the clipboard.
Then this line does the trick:

mushroom.uci <- read.csv("clipboard", header=FALSE)

A word of advice: The attribute names are long and involved, so for this project
only, don’t bother naming the columns unless you really and truly want to. Instead,
use the default V1, V2, and so on that R provides. Also, and this is important, after
you put the data into Rattle, you’ll see that Rattle makes a guess about the tar-
get variable. Its guess, V23, is wrong. The real target variable is V1. So click the
appropriate radio buttons to make the changes.

Finally, unlike the datasets I’ve used so far, this one has missing values. They’re
all in V12 (2,480 of them), denoted by a question mark. To deal with this, select
the Rattle Transform tab and click the radio button for Impute and the radio but-
ton for Zero/Missing. Click V12 and then Execute. This substitutes Missing for the
question mark. (Spoiler alert: With this data frame, it doesn’t make much differ-
ence whether you do this or not.)

When you create the forest, you should have a confusion matrix with just two rows
and two columns. You’ll be pleasantly surprised by the OOB error rate!

https://archive.ics.uci.edu/ml/datasets/mushroom

CHAPTER 9 Support Your Local Vector 201

Chapter 9
Support Your Local
Vector

Classification is an important part of machine learning (ML). One important
classifying technique is the support vector machine (SVM). So, what exactly is
an SVM and how does it work?

Some Data to Work With
To introduce the SVM, I use the iris data set, which I first discuss in Chapter 6.
It provides four measurements on each of 150 irises, with 50 flowers in each of
three species.

This data set is useful for examples whose objective is to use the measurements
(petal width and length, sepal width and length) as a means of identifying a
flower’s species. Though one species (setosa) is distinct from the other two (versicolor
and virginica), those other two aren’t completely distinct from one another.

In preceding chapters, I tell you how to work with iris.uci, a data set down-
loaded from the UCI ML repository and subsequently cleaned up. In this chapter,
I describe how to work with the iris data set that comes with R.

 » Working with a support vector
machine (SVM)

 » Using SVMs in R

 » An SVM for congressional voting

202 PART 3 Machine Learning

Using a subset
To make things a bit easier to follow, I start with a subset of the iris data set.
I call it set.vers because it consists of only the setosa and versicolor species — in
other words, everything except virginica:

set.vers <-subset(iris, Species != "virginica")

Figure 9-1 shows a scatterplot of set.vers with Petal.Length on the x-axis and
Petal.Width on the y-axis. Black circles represent setosa, and white circles repre-
sent versicolor. If you want to know how to use ggplot to create a graph like this
one, see the following sidebar, “Plotting (two-thirds of) the irises.”

Defining a boundary
The two species shown in Figure 9-1 occupy quite different areas in the plot, don’t
they? Apparently, it’s pretty easy to tell them apart. In fact, you could add a
boundary line between the two areas, as shown in Figure 9-2, that nicely divides
the plot. Any flower to the right and above the line is a versicolor, and any flower
to the left and below the line is a setosa. The line is called a separation boundary.

When you can draw a line like this one for the separation boundary, the data are
said to be linearly separable.

FIGURE 9-1:
Petal.Width

versus Petal.
Length in the

set.vers data
frame.

CHAPTER 9 Support Your Local Vector 203

Understanding support vectors
Having an infinite number of separation boundaries is possible. Truthfully, I eye-
balled this one. But Figure 9-3 shows what the separation boundary is supposed
to do. The two dotted lines in the figure represent the margin, which is the dis-
tance between the separation boundary and its nearest points.

FIGURE 9-2:
Petal.Width

versus Petal.
Length with a

separation
boundary.

FIGURE 9-3:
Margin and

support vectors
for the separation

boundary.

204 PART 3 Machine Learning

The optimal separation boundary is the one that maximizes that distance.
The lines from the two nearest points to the separation boundary are called
support vectors.

The term support vectors often refers only to the points rather than the lines.

The optimal separation boundary is the one that results in the fewest support vec-
tors. Why? If fewer data points are near the boundary (meaning fewer support
vectors), the boundary works better at classifying the data.

PLOTTING (TWO-THIRDS OF) THE IRISES
Here’s how to use ggplot to create a graph like the one shown earlier, in Figure 9-1:

library(ggplot2)

ggplot(set.vers, aes(x=Petal.Length,y=Petal.Width,color=Species)) +
 geom_point(size=4) +
 scale_color_manual(values = c("black","white"))+
 geom_point(shape=1,size=4,color="black")+
 theme(panel.grid.major = element_blank(), panel.grid.minor =

element_blank())

Let’s look at these lines one by one. The first line, of course, supplies the ggplot2
package. The second, the ggplot() function, lays the foundation for the whole thing.
Its first argument is the data frame, and its second is the aesthetic mapping of the data
elements to the graphical elements: the variables for the axes and the variable for the
color. The next line, geom_point(), specifies the graphical elements to add to the plot
(along with their size).

The next, scale_color_manual(), changes the point fill-colors from the default colors
(which wouldn’t be distinguishable on this page) to black and white.

The next line is yet another geom_point() function. Why another one? That’s a little
trick. The second geom_point() function overlays a graphical character with a black
border on top of each one that the first geom_point() created. In other words, this
trick adds a border to each circle in the plot. It’s a bit unnecessary when the fill is black,
too, but you get the idea.

The final line removes the grid lines from the plot.

Think you’ve got it? Then here’s a quick project for you: Take a shot at Figure 9-4,
described in the following section.

CHAPTER 9 Support Your Local Vector 205

In the simple 2-variable case I present here, the separation boundary is a straight
line. With more variables, it’s a hyperplane.

Whether it’s a line or a hyperplane, how do you find this all-important separation
boundary, which separates the data into classes? Support vectors get the job done.
The idea is to find points, like the two shown earlier, in Figure 9-3, that result in
support vectors and then use the support vectors to define the separation
boundary.

So you have to have something that, in effect, searches for support vectors. That
something is the support vector machine. Before I discuss SVMs, I have to tell you
a little more about separability, as described in the following section.

Separability: It’s Usually Nonlinear
How many data sets are perfectly linearly separable, like set.vers? Not many. In
fact, here’s vers.virg, the two-thirds of the irises that aren’t setosa:

vers.virg <- subset(iris, Species !="setosa")

Figure 9-4 shows the plot of Petal.Width versus Petal.Length for this data
frame. You can clearly see the slight overlap between species, and the resulting
nonlinear separability.

FIGURE 9-4:
Petal.Width

versus Petal.
Length in the

vers.virg data
frame, showing

nonlinear
separability.

206 PART 3 Machine Learning

How can a classifier deal with overlap? One way is to permit some misclassification —
some data points on the wrong side of the separation boundary.

Figure 9-5 shows what I’m talking about. I’ve eyeballed a separation boundary
with the versicolor on the left and (most) virginica on the right. The figure shows
five virginica to the left of the boundary. This is called soft margin classification.

As I eyeballed the boundary, I tried to minimize the miscalculations. As you exam-
ine the data points, perhaps you can see a different separation boundary that
works better — one that has fewer misclassifications, in other words. An SVM
would find the boundary by working with a parameter called C, which specifies the
number of misclassifications the SVM is willing to allow.

Soft margin classification and linear separability, though, don’t always work with
real data, where you can have all kinds of overlap. Sometimes you find clusters of
data points from one category inside a large group of data points from another
category. When that happens, it’s often necessary to have multiple nonlinear
 separation boundaries, as shown in Figure 9-6. Those nonlinear boundaries
define a kernel.

An SVM function typically offers a choice of several ways to find a kernel. These
choices have names like “linear,” “radial,” “polynomial,” and “sigmoid”.

FIGURE 9-5:
Soft margin

classification in
the vers.virg

data frame.

CHAPTER 9 Support Your Local Vector 207

The underlying mathematics is pretty complicated, but here’s an intuitive way to
think about kernels: Imagine Figure 9-4 as a page torn from this book and lying
flat on the table. Suppose that you could separate the data points by moving them
in a third dimension above and below the page — say, the versicolor above and the
virginica below. Then it would be easy to find a separation boundary, wouldn’t it?
Think of kerneling as the process of moving the data into the third dimension.
(How far to move each point in the third dimension? That’s where the complicated
mathematics comes in.) And the separation boundary would then be a plane,
not a line.

Support Vector Machines in R
Two prominent R packages deal with SVM. One is called e1071, and the other is
kernlab. I show you how to work with both of them in this section.

Working with e1071
To get going with the e1071 package, click the Install button on the Packages tab
in RStudio. In the Install Packages dialog box, type e1071 and click Install. After
the package downloads, click its check box on the Packages tab.

FIGURE 9-6:
A kernel in the

vers.virg data
frame.

208 PART 3 Machine Learning

Why the cryptic package name? Its authors were in the probability theory group in
the Department of Statistics at the Vienna University of Technology, and e1071
was the University’s designation for the group.

The e1071 package provides R functions for a variety of ML techniques, but I only
touch on SVM as I create one for the vers.virg data frame.

Creating the data frame
I’ll use the data from vers.virg to train an SVM, but I have to take an extra step
to create a working data frame.

Wait a sec. A “working data frame?” Isn’t vers.virg already a data frame? Yes, it
is. But if I don’t take an extra step, weird things happen. Specifically, if I train an
SVM on vers.virg, it thinks setosa is available as a species even though it’s not in
any row. This can affect the accuracy of the SVM. Apparently, SVM software con-
siders the set (the iris data frame) that the subset came from.

So the plan here is to create a .csv (comma-separated variable) text file and then
read that text file back into R and convert it to a data frame. That way, the new
data frame has exactly the same data as vers.virg, but it’s not the product of
subset().

The first step is

write.csv(vers.virg,"vvcsv")

The second argument is the name of the newly created .csv file.

Next, you navigate to the file, open it, and then press Ctrl+A to highlight every-
thing in it. Then you press Ctrl+C to copy it all to the clipboard. This code reads it
back into a new data frame called vvx:

vvx <-read.csv("clipboard",header=TRUE,sep=",")

Here are the first six rows:

 X Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 51 7.0 3.2 4.7 1.4 versicolor

2 52 6.4 3.2 4.5 1.5 versicolor

3 53 6.9 3.1 4.9 1.5 versicolor

4 54 5.5 2.3 4.0 1.3 versicolor

5 55 6.5 2.8 4.6 1.5 versicolor

6 56 5.7 2.8 4.5 1.3 versicolor

CHAPTER 9 Support Your Local Vector 209

Separating into training and test sets
The first thing to do when training an SVM is to split the data frame into a training
set and a test set. A neat little function called sample.split() takes care of this,
but you first have to install its package, which is called catools. Once it’s down-
loaded and installed, here’s how to split the data:

set.seed(810)

svm_sample = sample.split(vvx$Species,SplitRatio = .75)

If you’d like to reproduce my results, set the seed to the same number I did. I set
sample.split() so that 75 percent of the observations in vvx are in svm_sample,
and 25 percent are not. So the training set is

training.set = subset(vvx,svm_sample == TRUE)

and the test set is

test.set = subset(vvx,svm_sample == FALSE)

Training the SVM
Now I show you how to use svm() to train the SVM on the training set:

svm_model <- svm(Species ~ Petal.Width + Petal.Length, data=training.set,
 method="C-classification", kernel="linear")

The first argument shows that Species depends on Petal.Width and Petal.
Length. I did this to stay consistent with Figures 9-1 through 9-6. The next argu-
ment specifies the data to use.

The third argument, method, says that this is a classification. The final argument
specifies the type of kernel. I mention earlier in this chapter that several types are
possible. The one I use here is the simplest.

After running this code, you examine the SVM:

> svm_model

Call:

svm(formula = Species ~ Petal.Width + Petal.Length, data = training.set, method =
"C-classification",

 kernel = "linear")

210 PART 3 Machine Learning

Parameters:

 SVM-Type: C-classification

 SVM-Kernel: linear

 cost: 1

 gamma: 0.5

Number of Support Vectors: 16

The important item is the last line, which tells you that the SVM found 16 support
 vectors in its quest to find a boundary that classifies each iris as versicolor or virginica.

Plotting the SVM
At this point, it’s a good idea to visualize the SVM. You can use plot() to do that:

plot(svm_model, data = training.set[, c(4, 5, 6)]

 formula= Petal.Width ~ Petal.Length)

The first argument is the SVM, and the second supplies the data for the plot: the
last three columns of the training set. The last argument, formula, specifies the
variables to include in the plot. This formula puts Petal.Width on the y-axis and
puts Petal.Length on the x-axis.

The code produces a nice-looking plot, as you can see when you run it. To make
everything look nicer on this page, though, I added a couple of touches, and the
result is shown in Figure 9-7. (If you’re interested, see the following sidebar,
“The extra touches for the SVM plot.”)

FIGURE 9-7:
Plotting the SVM

for the vvx
training set,

e1071 version.

CHAPTER 9 Support Your Local Vector 211

In the figure, O represents a data point, and X represents a support vector. Points
in the darker gray area represent irises classified as versicolor, and points in the
lighter gray area are irises classified as virginica.

The nonlinear separation boundary, as you can see, is a jagged edge. Black
points (virginica) are predominantly in the lighter area, and gray points (versicolor)
are predominantly in the darker area. Predominantly, of course, doesn’t mean
“always.” Some of the support vector points are misclassified — a few gray Xs are
in the lighter area, and a few black Xs are in the darker area.

Testing the SVM
How does this SVM perform? A function called predict() provides a vector of
predicted classifications based on the SVM. First, use predict() to test its
 classifications of the flowers in the training set:

pred.training <-predict(svm_model,training.set)

The overall average performance is the mean of the vector of predictions:

> mean(pred.training==training.set$Species)

[1] 0.9473684

Notice that you have to specify Species in the mean() function.

THE EXTRA TOUCHES FOR THE SVM PLOT
Here’s the code that produced what you see in Figure 9-7:

plot(svm_model, data = training.set[, c(4, 5,6)], formula=Petal.

Width~Petal.Length,

 dataSymbol = "O", svSymbol = "X",

 symbolPalette = palette(c("gray95","gray0")), color.palette = gray.

colors)

The dataSymbol argument specifies an uppercase O as the character for the data
points, and the svSymbol argument specifies an uppercase X as the character for the
support vectors. (The defaults are these letters in lowercase.) The symbolPalette
argument renders the colors for the symbols, and color.palette renders the colors
for the category areas.

212 PART 3 Machine Learning

How about on the flowers in the test set?

> pred.test <-predict(svm_model,test.set)

> mean(pred.test==test.set$Species)

[1] 0.9583333

It’s highly accurate on both sets.

Quick suggested project 1: Using all the variables
In the earlier section “Training the SVM,” the formula I use in the svm()
function is

Species ~ Petal.Width + Petal.Length

What happens if you include Sepal.Width and Sepal.Length? The formula then
would be

Species ~ .

The period, as I point out in Chapter 7, means “include all the variables.”

How many support vectors result? What’s the effect on performance?

Quick suggested project 2: Working with kernels
In the earlier section “Separability: It’s Usually Nonlinear,” I talk about kernels
and try to give you an intuitive understanding of what they’re about. To get a little
more of a feel for kernels, train the SVM with the Polygon, Radial, and Sigmoid
options, test each SVM, and then plot the results for each one.

Quick suggested project 3: Classifying all the irises
To simplify the discussion of SVMs, I limited the examples to two classes by tak-
ing subsets of the iris data frame. SVMs, however, are not limited to two classes.

Instead of vers.virg, use the entire iris data frame. Remember to split iris into
a training set and a test set and then train the SVM on the training set. How many
support vectors result? How does the SVM perform on the test set?

Working with kernlab
On the Packages tab, click the Install button. In the Install Packages dialog box,
type kernlab and click Install. When the package has downloaded, click its check
box on the Packages tab.

CHAPTER 9 Support Your Local Vector 213

The kernlab SVM function is called ksvm(). I show you how to use it here on the
training set and then on the test set I already created. Here’s the code to train
an SVM:

kern_svm <-ksvm(Species ~ Petal.Width + Petal.Length, training.set,
kernel="vanilladot")

The first argument is the formula that indicates Species is dependent on
Petal.Width and Petal.Length (again, to stay consistent with Figures 9-1
through 9-6). The second argument shows the source of the data (the training set
you create in the preceding section). In the third argument (kernel),
"vanilladot" is kernlab’s name for a linear kernel.

Running kern_svm results in:

> kern_svm

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

 parameter : cost C = 1

Linear (vanilla) kernel function.

Number of Support Vectors : 16

Objective Function Value : -12.3997

Training error : 0.065789

The results (16 support vectors) match up with e1071’s svm() function.

With respect to performance on the training set, running predict() yields this:

> pred.test <- predict(kern_svm,training.set)

> mean(pred.test == training.set$Species)

[1] 0.9342105

which corresponds to 1-kern_sym$error (that is, to 1 minus the Training error
of 0.065789 in the output of kern_sym).

The accuracy on the test set is

> pred.test <- predict(kern_svm,test.set)

> mean(pred.test == test.set$Species)

[1] 0.9583333

214 PART 3 Machine Learning

You use plot() to visualize the SVM:

plot(kern_svm,data=training.set, formula=Petal.Width ~ Petal.Length)

Figure 9-8 shows the resulting plot. The triangles are versicolor, the circles are
virginica, and the filled-plot characters are the support vectors. Unlike in the e1071
plot, no legend explains the classification.

Project: House Parties
SVMs work well when you have to classify individuals on the basis of many
features — usually, way more than in the iris data frame. In this section, I tell
you how to create an SVM that identifies the party affiliations of members of the
1984 U.S. House of Representatives. The target variable is whether the congress-
person is a Republican or a Democrat, based on their votes on 16 issues of that
time. The issues range from water-project cost sharing to education spending.

Nine votes are possible, but they are aggregated into the three classes y (yea),
n (nay), or ? (vote not registered). (Usually, a question mark (?) signifies missing
data, but not in this case.)

FIGURE 9-8:
Plotting the SVM

for the vvx
training set,

kernlab version.

CHAPTER 9 Support Your Local Vector 215

Here are a couple of cautions to bear in mind:

 » The name of each issue does not provide enough information to understand
the entirety of the issue. Sometimes the associated bill has such convoluted
wording that it’s hard to tell what a y or n vote means.

 » Nothing here is intended as an endorsement or a disparagement of any
position or of either party. This is just a machine learning exercise.

You’ll find the Congressional Voting Records data set in the UCI ML repository.
The URL is

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

From this page, navigate to the Data Folder and then to the data. Press Ctrl+A to
highlight all the data, and then press Ctrl+C to copy it all to the clipboard. Then
this code

house <- read.csv("clipboard",header=FALSE)

turns the data into a data frame. At this point, the first six rows of the data
frame are

> head(house)

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17

1 republican n y n y y y n n n y ? y y y n y

2 republican n y n y y y n n n n n y y y n ?

3 democrat ? y y ? y y n n n n y n y y n n

4 democrat n y y n ? y n n n n y n y n n y

5 democrat y y y n y y n n n n y ? y y y y

6 democrat n y y n y y n n n n n n y y y y

A look at the variable names (in the data set description) shows that most of them
are pretty long (like anti-satellite-test-ban). Typing them takes a lot of time,
and assigning them short abbreviations might not be much more informative
than V15 or V16. So just change V1 to Party:

colnames(house)[1] = "Party"

I use the kernlab package to create the SVM. More specifically, I use the rattle
package, which provides a GUI to kernlab.

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

216 PART 3 Machine Learning

Reading in the data
With the rattle package installed,

rattle()

opens the Data tab. To read in the data, follow these steps:

1. Click the R Dataset radio button to open the Data Name box.

2. Click that box’s down arrow and select House from the menu that
appears.

3. Click to select the check box next to Partition, and then click the Execute
button in the upper left corner of the window.

4. Click the Target radio button for Party and the Input radio button for V17,
and then click the Execute icon again.

The Rattle Data tab should now look like Figure 9-9.

FIGURE 9-9:
The rattle Data

tab, after
selecting and

modifying the
house data

frame.

CHAPTER 9 Support Your Local Vector 217

Exploring the data
Next, you’ll want to explore the data. The first thing to look at is a distribution of
party affiliation. Here’s how:

1. On the Explore tab, click the Distributions radio button and the check
box next to Party.

2. In the Group By box, select blank (the first choice) so that this box is
empty.

Figure 9-10 shows what the Explore tab looks like after all this takes place.

3. Click Execute.

That last step produces what you see in Figure 9-11, which shows the distribu-
tion of Republicans and Democrats in the data frame.

FIGURE 9-10:
The rattle

Explore tab, set
up to plot a

distribution of
party affiliation.

218 PART 3 Machine Learning

Creating the SVM
On to the SVM. Follow these steps:

1. On the Model tab, click the SVM radio button.

2. In the Kernel box, click the down arrow and then select Linear
(vanilladot) from the menu that appears.

Figure 9-12 shows the Explore tab after these choices are made.

3. Click the Execute icon.

Clicking Execute changes the screen to look like Figure 9-13, showing the
results of the SVM. The machine found 34 support vectors and produced a
Training error of .016447.

FIGURE 9-11:
The distribution

of Republicans
and Democrats in

the house data
frame.

CHAPTER 9 Support Your Local Vector 219

FIGURE 9-12:
The rattle

Model tab, set up
to create an SVM

for the house
data frame.

FIGURE 9-13:
The results of the

SVM for the
house data

frame.

220 PART 3 Machine Learning

Evaluating the SVM
To evaluate the SVM against the Testing set, complete these steps:

1. Click to select the Evaluate tab.

2. For Type, click the Error Matrix radio button.

3. For Data, click the Testing radio button.

4. Click Execute to produce the screen shown in Figure 9-14.

The SVM incorrectly classifies 2 of the 40 Democrats as Republicans, for an
overall error rate of 3 percent (2 out of 66 errors) and an average class error
rate of 2.5 percent (the average of 5 percent and 0 percent). Pretty impressive.

Suggested Project: Titanic Again
As I mention at the end of Chapter 7, the data set of Titanic survival information is
frequently used for ML demonstrations. It’s a pretty good one for SVM.

For the details on using the data, take a look at the final section of Chapter 7. Pay
close attention to the modifications I lay out in that section.

When you get to the Model tab, try creating the SVM with different kernel types
and note the effect on training error.

FIGURE 9-14:
Evaluating the

SVM against the
Testing set.

CHAPTER 10 K-Means Clustering 221

Chapter 10
K-Means Clustering

In unsupervised learning, a machine learning (ML) process looks for structure in
a data set. The objective is to find patterns, not make predictions. One way to
structure a data set is to put the data points into subgroups called clusters. The

trick is to find a recipe for creating the clusters. One such recipe is called k-means
clustering.

How It Works
To introduce k-means clustering, I show you how to work with the iris data
frame, as I have in previous chapters. This is the iris data frame that’s in the
base R installation. Fifty flowers in each of three iris species (setosa, versicolor, and
virginica) make up the data set. The data frame columns are Sepal.Length, Sepal.
Width, Petal.Length, Petal.Width, and Species.

For this discussion, you’re concerned with only Petal.Length, Petal.Width, and
Species. That way, you can visualize the data in two dimensions.

Figure 10-1 plots the iris data frame with Petal.Length on the x-axis, Petal.
Width on the y-axis, and Species as the color of the plotting character. (For the
ggplot details, see the later sidebar “Plotting the irises”.)

In k-means clustering, you first specify how many clusters you think the data fall
into. In Figure 10-1, a reasonable assumption is 3 — the number of species.

 » Mastering k-means clustering

 » k-means clustering irises in R

 » k-means clustering the glass
data set

222 PART 3 Machine Learning

The next step is to randomly assign each data point (corresponding to a row in the
data frame) to a cluster. Then find the central point of each cluster. ML honchos
refer to this center as the centroid. The x-value of the centroid is the mean of the
x-values of the points in the cluster, and the y-value of the centroid is the mean
of the y-values of the points in the cluster.

The next order of business is to calculate the distance between each point and its
centroid, square that distance, and add up the squared distances. This sum-of-
squared-distances-within-a-cluster is better known as the within sum of squares.

Finally, and this is the crucial part, the process repeats until the within sum of
squares for each cluster is as small as possible: in other words, until each data
point is in the cluster with the closest centroid.

It’s also possible to calculate a centroid for the entire set of observations. Its
x-coordinate is the average of every data point’s x-coordinate (Petal.Length, in
this example), and its y-coordinate is the average of every data point’s
y-coordinate (Petal.Width, in this example). The sum of squared distances from
each point to this overall centroid is called the total sum of squares. The sum of
squared distances from each cluster centroid to the overall centroid is the between
sum of squares.

The ratio (between sum of squares)/(within sum of squares) is a measure of how well
the k-means clusters fit the data. A higher number is better.

FIGURE 10-1:
Two dimensions
of the iris data

frame.

CHAPTER 10 K-Means Clustering 223

If these sum-of-squares ring a bell, you’ve most likely heard of a statistical
analysis technique called analysis of variance. If the ratio of those two sums of
squares sounds familiar, you might remember that, in another context, that
ratio’s square root is called the correlation coefficient.

K-Means Clustering in R
The R function kmeans() handles k-means clustering. It comes with the base R
installation, so no additional package download is necessary.

Setting up and analyzing the data
For k-means clustering with the iris dataset (using Petal.Length and
Petal.Width), here’s the code:

set.seed(810)

If you want to replicate my results, set the seed (for the random selection of sets
that kicks off the whole thing) to the same number I did:

kmi <- kmeans(iris[,3:4],centers=3,nstart=15)

The first argument to kmeans() is the data (Columns 3 and 4 of the iris data
frame). The second argument specifies the number of clusters, and the third
 indicates the number of random sets to choose at the beginning of the process.

THAT DISTANCE THING
“The distance between each point and its centroid”? How do you calculate that?

The most common way to do this is called Euclidean distance, and just because you
asked, here’s how to find it. If the coordinates of a point are xp and yp and the
 coordinates of the centroid are xc and yc, the distance d between them is

d yx x yp c p c
2 2

With more than two dimensions, the equation gets a little hairier, but the principle is the
same. And non-Euclidean distance measures (with names like Minkowski and city-block)
are variations on this theme.

224 PART 3 Machine Learning

Understanding the output
Here are the results:

> kmi

K-means clustering with 3 clusters of sizes 52, 50, 48

Cluster means:

 Petal.Length Petal.Width

1 4.269231 1.342308

2 1.462000 0.246000

3 5.595833 2.037500

Clustering vector:

 [1] 2

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

 [59] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3

[117] 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3

Within cluster sum of squares by cluster:

[1] 13.05769 2.02200 16.29167

 (between_SS / total_SS = 94.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

"betweenss" "size"

[8] "iter" "ifault"

The first output line tells you the number of flowers in each cluster. Because
they’re not all 50, they don’t match up perfectly with the species.

The Cluster means show you the centroid coordinates for each cluster. The order-
ing of the clusters is arbitrary: It’s based on the random selection at the start of
the process. For example, as Figure 10-1 shows, the setosa are in the leftmost
region of the plot, leading to the expectation that they might be Cluster 1. kmeans()
has assigned setosa to Cluster 2, however.

You can verify the centroids for Cluster 2 (and that Cluster 2 is the setosa) by
calculating

mean(iris$Petal.Length[iris$Species == "setosa"])

mean(iris$Petal.Width[iris$Species == "setosa"])

CHAPTER 10 K-Means Clustering 225

This doesn’t work for the other two species because they don’t perfectly corre-
spond to Clusters 1 and 3. (Pretty close, though.)

The next output section, Clustering vector, shows the cluster assigned to each
flower in the data frame.

The next-to-last section shows the within sum of squares for each cluster and
the ratio of the between sum of squares to the total sum of squares. The ratio,
94.3 percent, indicates that the clustering scheme is a good fit with the data.

The final section is a bit more important than it looks at first glance. It shows the
names of attributes that are available as a result of the k-means clustering. This
list tells you how to retrieve the attributes. If, for some reason, you want to retrieve
the Clustering vector (as mentioned in the later sidebar “Plotting the irises”),
that’s kmi$cluster. Try it, if you don’t believe me. Another important one, as
you’ll see, is tot.withinss, which is the sum of the withinss for each cluster:

> kmi$tot.withinss

[1] 31.37136

> sum(kmi$withinss)

[1] 31.37136

How, exactly, do the clusters match up with the species? To answer this question,
you have to sum up the data points in each cluster and the data points in each
 species and cross-tabulate. (For example, how many versicolor are in each
cluster?) The table() function does all this:

> table(kmi$cluster,iris$Species)

 setosa versicolor virginica

 1 0 48 4

 2 50 0 0

 3 0 2 46

So kmeans() put 2 versicolor in Cluster 3, and 4 virginica in Cluster 1.

Visualizing the clusters
How does the clustering look? Figure 10-2 shows you. (For the coding details on
how to create this figure, see the later sidebar “Plotting the irises”.)

226 PART 3 Machine Learning

It’s pretty close to the plot in Figure 10-1, but it’s not exact. If you’re sharp-eyed,
perhaps you can see the six flowers in Figure 10-1 that are classified differently in
Figure 10-2. Notice in this figure that no flowers are intermingled with others:
The cluster boundaries are pretty clear.

Finding the optimum number of clusters
At the beginning of this discussion, you might have just assumed that 3 was the
“best” number of clusters. Three species, three clusters — short and sweet. But is
this really the case?

Remember that k-means clustering minimizes the within sum of squares for each
cluster. Another way to say this is that k-means clustering minimizes the total of
the within sums of squares. So one way to select the optimum number is to use
kmeans() for a range of different values for centers (the number of clusters),
retrieve the associated tot.withinss for each one, and compare. (The trivial
solution, of course, is to have as many clusters as data points. If each data point
has its own, personal cluster, the within sums of squares are all zero.)

To help with the comparison, I’ll draw a graph. I’ll put the number of clusters on
the x-axis and the total within sum of squares on the y-axis. A statistician looking
at that graph would look for an “elbow,” or a drop in the tot.withinss followed
by a leveling-out in which further reduction in the tot.withinss is minimal. That
elbow represents the optimum number of clusters.

To run kmeans() on 2 to 15 clusters, you use a for-loop. You begin by creating an
empty vector that will eventually hold all total.withinss values:

FIGURE 10-2:
K-means

clustering the
iris data frame,

with three
clusters.

CHAPTER 10 K-Means Clustering 227

totwss <- NULL

The for loop is

for (i in 2:15){

totwss <- append(totwss,kmeans(iris[,3:4],centers=i)$tot.withinss)

 }

The loop adds (appends) each new tot.withinss value to the end of the totwss
vector.

The code for the plot is

plot(x=2:15, y=totwss, type="b", xlab="Clusters", ylab= "Total Within SS")

The type = “b” argument specifies that both lines and points appear in the graph.
The plot appears in Figure 10-3.

The graph does show an elbow with three clusters, but after five clusters the graph
shows another drop-off. What looks like another elbow appears with six clusters
and then total within sum of squares looks pretty stable.

So here’s the clustering with six clusters:

set.seed(810)

kmi6 <-kmeans(iris[,3:4],centers=6,nstart=15)

FIGURE 10-3:
Total within sum

of squares versus
Clusters for

k-means
clustering of the
iris data frame.

228 PART 3 Machine Learning

Here are some selected results:

K-means clustering with 6 clusters of sizes 11, 50, 27, 19, 21, 22

Cluster means:

 Petal.Length Petal.Width

1 6.354545 2.127273

2 1.462000 0.246000

3 4.485185 1.407407

4 3.773684 1.152632

5 5.028571 1.766667

6 5.559091 2.145455

Within cluster sum of squares by cluster:

[1] 1.689091 2.022000 1.232593 2.224211 1.449524 2.407727

 (between_SS / total_SS = 98.0 %)

Most of the time, analysts look for the solution with the fewest clusters. Is the
almost 4 percent improvement in the between/total ratio (over three clusters)
enough to justify the additional three clusters? Hmm

The answer lies in whether you can make sense of the clusters. Can you attach a
meaningful name to each one?

A plot might help. Figure 10-4 shows what the clustering looks like. (Again,
 coding details are in the later sidebar “Plotting the irises”.)

FIGURE 10-4:
K-means

clustering the
iris data frame,
with six clusters.

CHAPTER 10 K-Means Clustering 229

The clusters are pretty distinct. The setosa, as always, form their own group in the
lower left area. The cluster in the upper right area consists of virginica, but not all
the virginica. Are these “large” virginica? How about the next cluster to the left?
Are they “small” virginica? Large versicolor? A mixture of the two? What about the
other three clusters?

A table can be helpful:

> table(kmi6$cluster,iris$Species)

 setosa versicolor virginica

 1 0 0 11

 2 50 0 0

 3 0 26 1

 4 0 19 0

 5 0 5 16

 6 0 0 22

Most of the versicolor are in Clusters 3 and 4, and most of the virginica are in 1, 5,
and 6. And so . . .?

The bottom line: Numbers and graphs don’t tell the entire story. We can use
 statistical techniques to suggest possible explanations, but that takes us only so
far. Nothing can substitute for knowledge of the content area. A botanist would be
able to tell you how to name these clusters in a meaningful way, and perhaps come
up with a sensible way of deciding on the number of clusters in the first place.

In my humble opinion, then, this technique works best if you have some knowl-
edge about an area and want to understand more about the structure of a data set
in that area.

Quick suggested project: Adding the sepals
In the examples so far in this chapter, I’ve confined the variables to just Petal.
Length and Petal.Width. What happens if the k-means clustering also includes
Sepal.Length and Sepal.Width? (To make this happen, change iris[,3:4] to
iris[,1:4] in the arguments to kmeans(). And don’t forget that first comma in
the brackets!)

How does adding the sepal variables affect the clustering for the 3-cluster case?
For the 6-cluster case? How about the optimum number of clusters? What do the
plots of the 3-cluster case and the 6-cluster case look like with the sepal variables
included?

230 PART 3 Machine Learning

PLOTTING THE IRISES
If you’ve read the first sidebar in Chapter 9, “Plotting (two-thirds of) the irises,” you’re
familiar with the ideas explained in this sidebar. In fact, this sidebar is that one on
 steroids. Here, I show you how to plot Figures 10-1, 10-2, and 10-4. For all of them,
assume that the package ggplot2 is installed.

Figure 10-1 plots the iris data frame with Petal.Length on the x-axis, Petal.Width
on the y-axis, and Species as the color of the data points. Here’s the code:

ggplot(iris, aes(x=Petal.Length,y=Petal.Width,color=Species))+
 geom_point(size=4)+
 scale_color_manual(values=c("grey0","grey65","grey100"))+
 geom_point(shape=1,size=4,color="black")

The first line, ggplot(), specifies the data and maps variables in the data to aspects
of the plot. The second line, geom_point(), adds the data points to the plot and speci-
fies their size. If I just stop here, I get a nice-looking graph whose default colors wouldn’t
show up well on this black-and-white page.

Instead of the default colors, the third line indicates the colors to use in the data points.
The first species is colored in grey0, which is black. The second is in grey65, which is a
shade of gray. The third is in grey100, which is white.

The final line, another geom_point(), is a trick that adds a border to each data point.
It superimposes an unfilled data point with a border onto each data point already in
the graph.

Figure 10-2 plots the iris data frame in the same way, but this time the data-point
colors represent the three clusters stored in kmi. So I have to change the color
 mapping in the ggplot() statement. How do I retrieve each flower’s cluster from the
clustering results? As I point out in the earlier “Output” section, kmi$cluster returns
the Clustering vector, which is exactly what I need here.

Does this mean that I just change color=Species to color=kmi$cluster? Not quite.
The clusters, remember, are numbers (1, 2, 3). The species are names (“setosa,” “ virginica,”
“versicolor”). ggplot() thinks that the numbers represent values of a continuous
numeric variable, not names, like the species. This doesn’t fly with scale_color_
manual(), which maps colors onto category names, not numbers. So I have to somehow
turn the cluster numbers into categories. Fortunately, the as.factor() function does
just that. The change to the code, then, is color = as.factor(kmi$cluster).

One more change: If I change only color and nothing else, the title of the legend is
as.factor(kmi$cluster), and no one wants that. So I add the argument

CHAPTER 10 K-Means Clustering 231

Project: Glass Clusters
In this section, I show you a project that’s more complex than clustering irises.
The basis for this project is a data set I use in Chapter 8, in the section “Project:
Identifying Glass.” As a refresher, the data are measurements of chemical and
physical properties of 149 pieces of glass. Each piece comes from one of six types
(windows or headlamps, for example). Correctly identifying the source of a glass
fragment can be a crucial part of a criminal investigation.

The objective here, however, is not identification. The idea is to find structure
within the data set: What types of glass are similar to one another? What types are
different?

The distinction between “learning to correctly identify” and “learning the struc-
ture of” is the distinction between supervised learning and unsupervised learning.

The data
As in previous ML projects, the data comes from the UCI ML repository. You’ll
find this data set at https://archive.ics.uci.edu/ml/datasets/glass+
identification.

Navigate to the Data Folder. Then click glass.data, which is a text file of comma-
separated variables. Press Ctrl+A to highlight everything, and press Ctrl+C to put
it all on the clipboard.

name=”Cluster” to the scale_color_manual() function to retitle the legend. Here’s
the code, with the changes in bold:

ggplot(iris, aes(x=Petal.Length,y=Petal.Width,color=as.factor(kmi$cluster)))+
 geom_point(size=4)+
 scale_color_manual(name="Cluster",values=c("grey0","grey65","grey100"))+
 geom_point(shape=1,size=4,color="black")

You can probably figure out how to plot Figure 10-4. The code is the same as for
Figure 10-2, but for Figure 10-4 the results of the 6-cluster k-means clustering are in
kmi6. Change the color argument in ggplot() accordingly. The values argument in
scale_color_manual() is

values=c("grey0","grey20","grey40","grey60","grey80","grey100")

https://archive.ics.uci.edu/ml/datasets/glass+identification
https://archive.ics.uci.edu/ml/datasets/glass+identification

232 PART 3 Machine Learning

The following command brings the data into R as a data frame:

glass.uci <- read.csv("clipboard",header = FALSE)

I still need the header, and that’s

colnames(glass.uci)<-c("ID","RI","Na","Mg","Al","Si","K","Ca","Ba","Fe","Type")

The first column, ID, is an identifier for the piece of glass, and the second is the
glass fragment’s refractive index (how much it bends light that passes through
it). The last one, Type, is unsurprisingly, the type of glass. All the ones in the
middle are the chemical elements in the glass.

The levels of Type are numbers. To give them informative names, I use a plyr
function called mapvalues():

library(plyr)

glass.uci$Type <- mapvalues(glass.uci$Type,

 from = c(1,2,3,5,6,7),

 to = c("bldg_windows_float","bldg_windows_non_float",

 "vehicle_windows_float","containers","tabl

eware","headlamps"))

float and non_float are processes for making a window: “float” produces
near-optical-quality glass, and “non-float” glass is lower-quality.

The from vector does not include 4, because the corresponding type
(vehicle_windows_non_float) is not in the data set.

I didn’t make up the names for the columns and for the Type levels. They’re at the
URL for this data set.

Starting Rattle and exploring the data
If you’ve read Chapter 8, you’ve already seen this part of the movie: Rattle
 provides a GUI (graphical user interface) to ML-related functions and enables you
to work with those functions in a convenient way. kmeans() is one of those
functions.

With the rattle package downloaded,

library(rattle)

rattle()

CHAPTER 10 K-Means Clustering 233

opens the Rattle Data tab. From here on, I summarize the steps. For a fuller
exposition, including figures, see the section “Getting the data into Rattle” in
Chapter 8.

1. To load the data set into rattle, click the R Dataset radio button and
select glass.uci from the Data Name box’s drop-down list.

2. Click the Execute button in the upper left corner of the window.

3. Click the Explore tab to take a look at the data.

As in Chapter 8, one way to start is to look at the distribution of glass types.

4. Clear the Group By box, and check the box next to Type.

5. Click Execute for the bar plot shown in Figure 8-7 (over in Chapter 8).

Preparing to cluster
Should I show you how to use all nine numeric variables to form the clusters? I’m
going to cheat a bit and ask you to look at the analysis in Chapter 8. Figure 8-9
(refer to Chapter 8) shows how much each variable contributes to the random for-
est in that example. The plot for MeanDecreaseAccuracy shows that Mg (Magne-
sium content), RI (refractive index), and Al (Aluminum content) are the three
most prominent variables. That sounds like a good starting point.

So, back to the Data tab. After you make the appropriate selections among the
radio buttons to ignore all but RI, Mg, and Al, the Data tab looks like Figure 10-5.
You click Execute to register these selections.

FIGURE 10-5:
Setting up the

variables for
k-means

clustering of the
glass.uci data

frame.

234 PART 3 Machine Learning

Doing the clustering
On to the Cluster tab. In the Clusters box, I used the arrows to select 6, and I typed
810 into the Seed box just to be consistent with what I did earlier in this chapter.
(Type the same number in that box if you want the same results as mine.) In the
Runs box, I used the arrows to select 15 (again, for consistency with what I did
earlier). After I made these selections and clicked Execute, the Data tab looks like
Figure 10-6. rattle shows you the cluster sizes (how many observations are in
each cluster), the mean of each variable, the cluster centers (the coordinates of
each cluster’s centroid), and the within sum of squares for each cluster.

Going beyond Rattle
The Rattle output tells quite a bit about the clusters. Clicking the Data button
reveals even more. It’s possible to use R functions, as described earlier in this
chapter, to find out still more about the k-means clustering that rattle
constructed.

If I click the Log tab, I find that the k-means clustering is stored in a variable
called crs$kmeans. This enables me to find out the between-sum-of-squares-
to-total-sum-of-squares ratio:

> crs$kmeans

FIGURE 10-6:
Setting up the

k-means
clustering for

the glass.uci
data frame.

CHAPTER 10 K-Means Clustering 235

The relevant line of the output is

(between_SS / total_SS = 87.6 %)

which is a pretty high ratio.

How about the amounts of the different types of glass in each cluster? That’s the
province of the table() function. Set the first argument to the cluster vector, and
the second argument to the glass type:

> table(crs$kmeans$cluster,glass.uci$Type)

 bldg_windows_float bldg_windows_non_float containers

 1 17 3 0

 2 0 1 5

 3 0 8 1

 4 0 0 2

 5 0 4 5

 6 53 60 0

 headlamps tableware vehicle_windows_float

 1 1 0 5

 2 11 4 0

 3 0 0 0

 4 12 0 0

 5 3 5 0

 6 2 0 12

Cluster 6 looks like a windows cluster; clusters 2 and 4, like headlamps clusters.
I can’t see any other explanatory labels jumping out, but if I knew more about
glass, perhaps I could. Maybe you can.

Suggested Project: A Few Quick Ones
Three quick projects suggest themselves, as described next.

Visualizing data points and clusters
Want to sharpen your ggplot skills? Take a look at the earlier sidebar “Plotting the
irises” and use the code ideas to create a graph of the glass.uci data frame: Put
RI on the x-axis, Mg on the y-axis, and Type as the color. Then create the same kind
of plot but with the k-means clusters (stored in crs$kmeans$cluster) as the color.

236 PART 3 Machine Learning

If you don’t feel like using ggplot to create the second graph, you can have Rattle
do it for you: On the Cluster tab, click the Data button. Rattle plots a matrix that
contains all possible pairwise plots, including RI versus Mg.

The optimum number of clusters
Six glass types, six clusters. Seems like a natural, right? Maybe, maybe not.
 Modify the code in the earlier section “Finding the optimum number of clusters”
to plot the total within sum of squares versus clusters to find the “right” number
for this data frame. (Don’t forget to reset totwss to NULL!)

Is the optimum number really 6? If not, retry with the number the plot suggests
and then complete the two analyses (ratio and table) from earlier in this section,
and note any changes from using six clusters.

Adding variables
The preceding two projects stress R functions rather than Rattle. But Rattle
makes it quick and easy to modify the clustering process. For example, Ca (cal-
cium content) is another variable that shows up prominently in Figure 8-9 (refer
to Chapter 8). Use the Rattle Data tab to add that variable. (Don’t forget to click
Execute.) How does that affect the k-means clustering?

CHAPTER 11 Neural Networks 237

Chapter 11
Neural Networks

Neural networks are a popular form of supervised machine learning. They’re
popular because they’re widely applied in an array of areas, like speech
recognition and image processing. Investors rely on these networks to

recognize patterns in the stock market and decide whether to buy or sell. As the
name indicates, their design reflects the structure and function of the nervous
system.

Networks in the Nervous System
The nervous system consists of cells called neurons. Figure 11-1 shows a neuron
on the left connected to three neurons on the right. The neuron on the left
receives, through its dendrites, messages from other neurons. This neuron pro-
cesses what it receives, and the result becomes a signal it sends along its axon.
Through connections called synapses (yes, each one is a tiny gap), the signal
passes to the neurons on the right.

Each right-side neuron can receive inputs from several neurons. Each one puts
together all its inputs and in turn passes a signal to still other neurons. Ultimately,
a message arrives in the brain. The brain interprets the message.

 » Neural networks defined

 » Why and when to use neural
networks

 » A neural network for the iris
dataset

 » The nnet package

 » Neural networks in Rattle

238 PART 3 Machine Learning

One theory holds that if one neuron continually sends messages to another, the
connection between them grows stronger. According to this theory, the adjust-
ment of the connection strengths among neurons is what learning is all about.

Artificial Neural Networks
I’ve oversimplified the workings of the nervous system. Discovering exactly how
the neurons process inputs and send messages has sometimes been the basis for
winning the Nobel prize.

My description, though, does sketch out the basis for the artificial neural net-
works in the world of machine learning (ML).

Overview
An ML neural network consists of simulated neurons, often called units, or nodes,
that work with data. Like the neurons in the nervous system, each unit receives
input, performs some computation, and passes its result as a message to the next
unit. At the output end, the network makes a decision based on its inputs.

Imagine a neural network that uses physical measurements of flowers, like irises,
to identify the flower’s species. The network takes data like the petal length and
petal width of an iris and learns to classify an iris as either setosa, versicolor, or
virginica. In effect, the network learns the relationship between the inputs (the
petal variables) and the outputs (the species).

FIGURE 11-1:
Neurons in the

nervous system.

CHAPTER 11 Neural Networks 239

Figure 11-2 shows an artificial neural network that classifies irises. It consists
of an input layer, a hidden layer, and an output layer. Each unit connects with
every unit in the next layer. Numerical values called weights are on each connec-
tion. Weights can be positive or negative. To keep the figure from getting
 cluttered, I only show the weights on the connections from the input layer to
the hidden layer.

Input layer and hidden layer
The data points are represented in the input layer. This one has one input unit (I1)
that holds the value of petal length and another (I2) that holds the value of petal
width (refer to Figure 11-2). The input units send messages to another layer of
four units, called a hidden layer. The number of units in the hidden layer is arbi-
trary, and picking that number is part of the art of neural network creation.

Each message to a hidden layer unit is the product of a data point and a connection
weight. For example, H1 receives I1 multiplied by w1 along with I2 multiplied
by w2. H1 processes what it receives.

What does “processes what it receives” mean? H1 adds the product of I1 and w1 to
the product of I2 and w2. H1 then has to send a message to O1, O2, and O3.

What is the message it sends? It’s a number in a restricted range, produced by
H1’s activation function. Three activation functions are common. They have exotic,
math-y names: hyperbolic tangent, sigmoid, and rectified linear unit.

FIGURE 11-2:
An artificial

neural network
that learns to
classify irises.

240 PART 3 Machine Learning

Without going into the math, I’ll just tell you what they do. The hyperbolic
 tangent (known as tanh) takes a number and turns it into a number between
–1 and 1. Sigmoid turns its input into a number between 0 and 1. Rectified linear
unit (ReLU) replaces negative values with 0.

By restricting the range of the output, activation functions set up a nonlinear
relationship between the inputs and the outputs. Why is this important? In most
real-world situations, you don’t find a nice, neat linear relationship between what
you try to predict (the output) and the data you use to predict it (the inputs).

One more item gets added into the activation function. It’s called bias. Bias is a
constant that the network adds to each number coming out of the units in a layer.
The best way to think about bias is that it improves the network’s accuracy.

Bias is much like the intercept in a linear regression equation. Without the inter-
cept, a regression line would pass through (0,0) and might miss many of the
points it’s supposed to fit.

To summarize: A hidden unit like H1 takes the data sent to it by I1 (Petal length)
and I2 (Petal width), multiplies each one by the weight on its interconnection
(I1 × w1 and I2 × w2), adds the products, adds the bias, and applies its activation
function. Then it sends the result to all units in the output layer.

Output layer
The output layer consists of one unit (O1) for setosa, another (O2) for virginica, and
another (O3) for versicolor. Based on the messages they receive from the hidden
layer, the output units do their computations just as the hidden units do theirs.
Their results determine the network’s decision about the species for the iris with
the given petal length and petal width. The flow from input layer to hidden layer
to output layer is called feedforward.

How it all works
Where do the interunit connection weights come from? They start out as numbers
randomly assigned to the interunit connections. The network trains on a data set
of petal lengths, petal widths, and the associated species. On each trial, the
 network receives a petal length and a petal width and makes a decision, which it
then compares with the correct answer. Because the initial weights are random,
the initial decisions are guesses.

Each time the network’s decision is incorrect, the weights change based on how
wrong the decision was (on the amount of error, in other words). The adjustment

CHAPTER 11 Neural Networks 241

(which also includes changing the bias for each unit) constitutes “learning.” One
way of proceeding is to adjust the weights from the output layer back to the hid-
den layer and then from the hidden layer back to the input layer. This is called
backpropagation because the amount of error “backpropagates” through the
layers.

A network trains until it reaches a certain level of accuracy or a preset number of
iterations through the training set. In the evaluation phase, the trained network
tackles a new set of data.

This three-layer structure is just one way of building a neural network, and it is
what I cover in this chapter. Other types of networks are possible.

Neural Networks in R
R has a couple of packages that enable you to create neural networks like the one
I describe in the preceding section. In this section, however, I deal with the nnet
package.

On the Packages tab, click Install to open the Install Packages dialog box. In the
dialog box, type nnet and click the Install button. When the package finishes
downloading, click its check box on the Packages tab.

Building a neural network for
the iris data frame
To introduce nnet, I begin with the iris data frame, which comes with R. This data
frame consists of 150 rows and 5 columns. Each row provides measurements of
sepal length, sepal width, petal length, and petal width of an iris whose species is
either setosa, versicolor, or virginica. Fifty of each species are in the data frame.

In this section, I use the nnet() function to build a neural network that does what
I describe in the preceding section: It learns to identify an iris’s species based on
its petal length and petal width.

The first thing to do is create a training set and a test set. I do this with a function
called sample.split(), which is part of the caTools package. So, on the Packages
tab, click Install to open the Install Packages dialog box. Type caTools in the
 dialog box and click the Install button. After the package downloads, click its
check box on the Packages tab.

242 PART 3 Machine Learning

Set the seed to this number if you want to reproduce my results:

set.seed(810)

With caTools installed, this line partitions the iris data frame into a 70-30 split,
maintaining the original proportions of the Species in each piece:

sample = sample.split(iris$Species, SplitRatio = .70)

sample is a vector of 150 instances of TRUE (the data frame row is in the
70 percent) or FALSE (the data frame row is not in the 70 percent).

To create the training set and the test set, use the following:

iris.train = subset(iris, sample == TRUE)

iris.test = subset(iris, sample == FALSE)

One of the things I like most about R is its consistency. To create a model, whether
it’s linear regression, analysis of variance, k-means clustering — or whatever —
the general format is

object.name <- function.name(dependent.variable ~ independent.variable(s), data,

 other stuff)

And that’s the way to create a neural network with the nnet package’s nnet()
function:

nni <- nnet(Species ~ Petal.Length + Petal.Width, iris.train, size=4)

The first argument to nnet() is the formula that relates Species to Petal.Length
and Petal.Width. The second argument is the training data, and the third is the
number of units in the hidden layer. (Many more arguments are available for this
function.)

After running the nnet() function, what are the final adjusted weights? To find
out, I use the summary() function:

> summary(nni)

Neural Network build options: softmax modelling.

In the following table:

 b represents the bias associated with a node

 h1 represents hidden layer node 1

CHAPTER 11 Neural Networks 243

 i1 represents input node 1 (i.e., input variable 1)

 o represents the output node

Weights for node h1:

 b->h1 i1->h1 i2->h1

-17.92 6.14 6.67

Weights for node h2:

 b->h2 i1->h2 i2->h2

 0.59 -0.09 -0.50

Weights for node h3:

 b->h3 i1->h3 i2->h3

-32.96 1.98 24.58

Weights for node h4:

 b->h4 i1->h4 i2->h4

 11.95 -5.01 -2.53

Weights for node o1:

 b->o1 h1->o1 h2->o1 h3->o1 h4->o1

 20.62 -19.43 39.61 -30.52 27.84

Weights for node o2:

 b->o2 h1->o2 h2->o2 h3->o2 h4->o2

 1.01 2.16 54.41 -13.16 3.25

Weights for node o3:

 b->o3 h1->o3 h2->o3 h3->o3 h4->o3

-20.63 15.79 -93.39 45.34 -30.47

Take a look at h1 (H1 in Figure 11-2). Its bias is –17.92, the weight on its connec-
tion from I1 (shown in Figure 11-2 as w1) is 6.14, and the weight on its connection
from I2 (w2 in the Figure) is 6.67.

Plotting the network
To visualize all this, I could go back to Figure 11-2 and add all the weights. Or,
I could let R do all the work. A terrific package called NeuralNetTools provides
plotnet(), which does the job quite nicely. To install it, follow the procedure
I describe earlier in this chapter: On the Packages tab, click Install to open the
Install Packages dialog box. In the dialog box, type NeuralNetTools and click
the Install button. After the package downloads, click its check box on the
 Packages tab.

244 PART 3 Machine Learning

With NeuralNetTools installed, this line produces what you see in Figure 11-3.

plotnet(nni)

The figure doesn’t show the weights explicitly, but instead represents them
graphically. A black line represents a positive weight; a gray line represents a
negative weight. The thicker the line, the higher the numerical value. Notice also
that the diagram shows B1, which applies the biases to the Hidden units, and B2,
which applies the biases to the Output units. (To omit those from the plot, I would
add the argument bias=FALSE to plotnet()).

Evaluating the network
How well does the network perform? I use the predict() function (which is in the
nnet package) to find out. The line

predictions <- predict(nni,iris.test,type = "class")

creates a vector of predictions based on the neural network nni, one prediction for
each row of the iris.test data frame I created earlier. The type= “class” argu-
ment indicates that the neural network decided on a classification for each iris.

Now I use the table() function to set up a confusion matrix — a table that shows
actual values versus predicted values:

table(iris.test$Species,predictions)

FIGURE 11-3:
The neural net for

iris.train,
rendered by
plotnet().

CHAPTER 11 Neural Networks 245

The first argument is the species of the irises in the test set; the second is the vec-
tor of predictions. Here’s the matrix:

 predictions

 setosa versicolor virginica

 setosa 15 0 0

 versicolor 0 14 1

 virginica 0 2 13

The columns are the predicted species, and the rows are the correct species. The
numbers in the main diagonal are the correct classifications, and the numbers
off the main diagonal are errors. The network misclassified one versicolor as a
virginica, and two virginica as versicolor. The overall error rate is 6.7 percent (3/45),
which is quite accurate.

Quick suggested project: Those sepals
As in previous chapters where I use the iris data frame, I used just the two petal
variables in the example. And, as in previous chapters, I suggest that you include
the sepal variables and create the neural network again. All you have to do is
change the formula in the first argument to nnet(). Any effect on the network’s
performance? How about if you change the maximum number of iterations? What
happens to the confusion matrix? What happens if you do it all over again with
just the sepal variables?

Project: Banknotes
One popular application of neural networks is image classification. The idea is to
represent an image as a set of mathematical characteristics, and each image is a
member of a category. The characteristics are inputs to a network; the categories
are the outputs. The network learns the relationship between the image charac-
teristics and the image categories and can then classify new images it hasn’t
trained on.

The data
One area for image classification is the detection of counterfeit currency. A data
set in the UCI ML repository provides the opportunity to try out a neural network

246 PART 3 Machine Learning

for just that purpose. It’s the banknote+authentication data set, and you’ll
find it at

https://archive.ics.uci.edu/ml/datasets/banknote+authentication

The data are four measures of digital images of 1,372 authentic and fraudulent
banknotes.

Three of the four measures are based on some complicated mathematics, called
wavelet transformation, applied to each image. The transformation produces a
 distribution of “wavelets.” The three measures are the variance, skewness, and
kurtosis of each image’s wavelet distribution. The fourth measure is called
entropy, which is a measure of how “busy” an image is. A solid black square is a
low-entropy image, my cluttered-up desk is a high-entropy image.

Navigate to the Data Folder and click on the link to the text file. When the text file
opens, press Ctrl+A to highlight the entire file, and then press Ctrl+C to copy it all
to the clipboard.

These lines of code produce a data frame:

banknote.uci <- read.csv("clipboard",header=FALSE)

colnames(banknote.uci) <- c("Variance","Skewness","Kurtosis","Entropy","Class")

The last column, Class, indicates whether the banknote is real or fraudulent. The
possible values are 0 and 1. The data set’s web page doesn’t say which is which.
(I assume 1 = real, but I could be wrong.)

Taking a quick look ahead
In the iris example, the output layer has three units, one for each species. In this
example, two outcomes are possible: 0 and 1. Does this mean two units in the
output layer for this neural network? Nope. In this example, I’ll have one output
unit that returns a value, and that value represents the network’s decision.

At this point, I visualize the data set to get a feel for the numbers I’ll be dealing
with. I use ggplot techniques that I outline in Chapter 10. (Go back and take a look
at the “Plotting the irises” sidebar.) Picking two input variables arbitrarily —
Kurtosis and Entropy as the x- and y-variables, respectively, and Class as the
color — creates the result shown in Figure 11-4. From this viewpoint, the classes
don’t appear to be highly separable. Other viewpoints are possible. (As an exercise,
plot other pairs of variables to see these other viewpoints.)

CHAPTER 11 Neural Networks 247

Setting up Rattle
Rattle provides a GUI to the nnet package and is useful for creating neural
 networks of the type I deal with in this example: two possible outputs mapped
into one output unit. This is the optimum type of output layer for rattle. Follow
these steps:

1. With the rattle package installed, type rattle().

Doing so opens the rattle Data tab.

2. To read the banknote.uci data frame into rattle, click the R Dataset
radio button and then select banknote.uci in the Data Name box.

3. Click the check box next to Partition and change the accompanying box
from 70/15/15 to 70/30.

This creates a training set of 70 percent of the data and a test set of the
remaining 30 percent.

4. Click Execute.

The Data tab now looks like Figure 11-5.

5. On the Model tab, click the Neural Net radio button.

6. In the Hidden Layer Nodes box, I type 3.

You can pick a different number, if you like.

7. Click Execute.

The Model tab looks like Figure 11-6.

FIGURE 11-4:
Entropy and

Kurtosis in the
banknote.uci

data frame.

248 PART 3 Machine Learning

I show you this kind of output earlier, in the section “A neural network for the
iris data frame.” The table shows the weights for the connections to the Hidden
units and to the Output unit, as well as the biases. The exceptionally low Sum of
Squares Residual tells you that the network is exceptionally accurate, as you can
see in the next section.

FIGURE 11-5:
The rattle Data
tab, after reading
in the banknote.
uci data frame.

FIGURE 11-6:
The rattle

Model tab,
after creating

the neural
network for the
banknote.uci

data frame.

CHAPTER 11 Neural Networks 249

Evaluating the network
I click the Evaluate tab and ensure that the Error matrix radio button is selected
and that the Testing radio button is selected. Clicking Execute creates a confusion
matrix based on the Testing set. The output looks like this:

Error matrix for the Neural Net model on banknote.uci [test] (counts).

 Predicted

Actual 0 1 Error

 0 225 0 0.0

 1 1 186 0.5

Error matrix for the Neural Net model on banknote.uci [test] (proportions):

 Predicted

Actual 0 1 Error

 0 54.6 0.0 0.0

 1 0.2 45.1 0.5

Overall error: 0.3%, Averaged class error: 0.25%

As you can see, the network misclassified just one case. Looks like a pretty good
network!

Going beyond Rattle: Visualizing
the network
My version of Rattle, 5.1.0, does not have a way to plot the network. Perhaps by
the time you read this book, a newer version will have that capability.

But that’s okay. Designer Graham Williams had the foresight to enable users to
tailor Rattle’s outputs for their own purposes. To find what I need, I click the
Log tab.

Scrolling through the tab reveals that Rattle has stored the neural network in an
object called crs$nnet. To see what the network looks like, I use the plotnet()
function from the NeuralNetTools package:

plotnet(crs$nnet)

This code produces the neural network shown in Figure 11-7.

250 PART 3 Machine Learning

As I mention earlier in this chapter, black lines represent positive connection
weights, and gray lines represent negative connection weights. The thickness of a
line reflects its numerical value. B1 applies biases to the hidden units, and B2
applies biases to the output units.

Another NeuralNetTools tool, olden(), plots the importance of each variable.
Applying this function to the network

olden(crs$nnet)

produces what you see in Figure 11-8. Apparently, Kurtosis and Variance are the
most important variables for this neural network.

FIGURE 11-7:
The neural

network for the
banknote.uci

data frame.

FIGURE 11-8:
Bar plot of the
importance of

each variable in
the neural

network.

CHAPTER 11 Neural Networks 251

Suggested Projects: Rattling Around
One benefit of Rattle is that it allows you to easily experiment with whatever it
helps you create. In the project in the earlier section “Project: Banknotes,” try
varying the number of hidden units and noting the effect on performance. Another
possibility is to vary the inputs. For example, the olden() function showed
Kurtosis and Variance as the most important variables. Suppose those are the
only two inputs. What happens then?

Here’s another little project for you. You’ll learn more about neural networks if
you can see how the network error rate decreases with the number of iterations
through the training set.

So the objective is to plot the error rate for the banknote.uci network as a func-
tion of the number of iterations through the training data. You should expect to
see a decline as the number of iterations increases.

The measure of error for this little project is root mean square error (RMSE), which
is the standard deviation of the residuals. Each residual is the difference between
the network’s decision and the correct answer. You’ll create a vector that holds the
RMSE for each number of iterations and then plot the vector against the number
of iterations.

So the first line of code is

rmse <- NULL

Next, click the rattle Log tab and scroll down to find the R code that creates the
neural network:

crs$nnet <- nnet(as.factor(Class) ~ .,

 data=crs$dataset[crs$sample,c(crs$input, crs$target)],

 size=3, skip=TRUE, MaxNWts=10000, trace=FALSE, maxit=100)

The values in the data argument are based on Data tab selections. The skip argu-
ment allows for the possibility of creating skip layers (layers whose connections
skip over the succeeding layer). The argument of most interest here is maxit,
which specifies the maximum number of iterations.

Copy this code into RStudio.

Set maxit to i, and put this code into a for-loop in which i goes from 2 to 90.

252 PART 3 Machine Learning

The residuals are stored in crs$nnet$residuals. The RMSE is
sd(crs$nnet$residuals). Use that to update rmse:

rmse <- append(rmse,sd(crs$nnet$residuals))

So the general outline for the for-loop is

for (i in 2:90){crs$nnet <- create the neural net with maxit=i)

 update the rmse vector }

(This for-loop might take a few more seconds to run than you’re accustomed to.)

Finally, use the plot() function to plot RMSE on the y-axis and to plot iterations
on the x-axis:

plot(x=2:90, y=rmse, type="b", xlab="Iterations", ylab= "Root Mean Square")

Your plot should look like the one shown in Figure 11-9.

Here’s one more suggested project: Take another look at the code for creating
crs$nnet. Does anything suggest itself as something of interest that relates to
RMSE? Something you could vary in a for-loop while holding maxit constant?
And then plot RMSE against that thing? Go for it!

FIGURE 11-9:
Root mean

square error
and iterations

in neural
 networks for the
banknote.uci

data frame.

CHAPTER 12 Exploring Marketing 255

Chapter 12
Exploring Marketing

If a business can classify its customers according to how frequently they buy,
how recently they bought, and how much they spend, its marketers can target
those customers and communicate with them appropriately. A recent customer

who buys frequently and spends a lot of money would receive a different type of
communication than one who rarely buys, spends little, and hasn’t bought
 anything for a long time.

Project: Analyzing Retail Data
First used in the direct mail industry over 40 years ago, a popular type of market-
ing analysis depends on recency (the date of a customer’s most recent purchase),
frequency (how often the customer purchases), and money (how much the cus-
tomer spends).

Named in order of each element’s importance, this is called an RFM analysis.
Recency is the most important because the more recently a customer has bought,
the more likely he will again: The longer it takes for him to return to a business,
the less likely he will. And customers who buy more frequently are more likely to
again, as are customers who spend more.

One way to proceed is to divide the data into quintiles (fifths) for each variable
(R, F, and M), and assign a score from 1 (lowest 20 percent) through 5 (highest
20 percent) to each customer for R, for F, and for M.

 » Introducing RFM analysis

 » Analyzing the data set

 » Understanding the results

 » Applying machine learning

256 PART 4 Large(ish) Data Sets

With a coding scheme like this one, 125 RFM scores are possible (555 through 111).
RFM analysis segments these possibilities into five classes, with Class 1 as the
least valuable customers and Class 5 the most valuable.

Dividing the data into fifths is an arbitrary (and, apparently, the most popular)
way to proceed. A business can divide its data into fifths, fourths, thirds, or what-
ever suits its purpose. Also, a business can use business rules to create its seg-
ments (defining a high-frequency customer as someone who has bought at least
four times in the past two weeks, for example).

The data
RFM depends on data for individual transactions. The data have to include, at the
very least, an invoice number, customer identification number, purchase date,
and purchase amount.

The data set for this project holds information for transactions on a British online
retail shopping site. The customers are multinational. The transactions occurred
between January 12, 2010, and September 12, 2012. It’s on the UCI ML Repository,
and you can find it here:

http://archive.ics.uci.edu/ml/datasets/online+retail

After pointing your browser to this URL, follow these steps to read the data set
into R:

1. Navigate to the Data Folder and download the spreadsheet that contains
the data.

2. Open the spreadsheet.

You see that the column names are InvoiceNo, StockCode, Description,
Quantity, InvoiceDate, UnitPrice, CustomerID, and Country.

Next, you have to complete a couple of steps to read the data into R. The
process is a bit roundabout, but it’s reliable and fast, and it gets the job done.

3. Save the spreadsheet as a CSV (comma-separated values) file.

4. Open the CSV file, press Ctrl+A to highlight everything, and then press
Ctrl+C to copy to the clipboard.

5. In RStudio, use the read.csv() function to read the data into R:

retailonline.uci <- read.csv("clipboard",header = TRUE, sep="\t")

http://archive.ics.uci.edu/ml/datasets/online+retail

CHAPTER 12 Exploring Marketing 257

The first argument tells the function to take the data from the clipboard, the
second one indicates that the first row contains the column names, and
the third one shows that the character that separates values is the tab (not
the comma, in this case).

I prefer this method to read.xlsx().

RFM in R
A package called didrooRFM provides the function findRFM() that works on data
like the Online Retail data set. To download the package, click Install on the Pack-
ages tab to open the Install Packages dialog box. Type didrooRFM into the dialog
box and click the Install button.

After the package downloads, click its check box on the Packages tab.

Preparing the data
The function findRFM() requires a data frame that has Invoice Number, Customer
ID, Invoice Date, and Amount (in that order). Unfortunately, the Amount column is
missing from retailonline.uci. To create it, I multiply each row’s Quantity by
its UnitPrice:

retailonline.uci$Amount <- retailonline.uci$Quantity * retailonline.

uci$UnitPrice

Here are the first six rows of the data frame with columns 2 and 3 omitted so that
everything fits neatly on the page:

> head(retailonline.uci[,-c(2,3)])

 InvoiceNo Quantity InvoiceDate UnitPrice CustomerID Country Amount

1 536365 6 12/1/2010 8:26 2.55 17850 United Kingdom 15.30

2 536365 6 12/1/2010 8:26 3.39 17850 United Kingdom 20.34

3 536365 8 12/1/2010 8:26 2.75 17850 United Kingdom 22.00

4 536365 6 12/1/2010 8:26 3.39 17850 United Kingdom 20.34

5 536365 6 12/1/2010 8:26 3.39 17850 United Kingdom 20.34

6 536365 2 12/1/2010 8:26 7.65 17850 United Kingdom 15.30

Next, I create a data frame that holds the required columns. The documentation
video for findRFM() specifies that InvoiceNo should be a unique value for each
transaction. In this data frame, however, each row represents a purchased item
that can be part of a transaction. Accordingly, the InvoiceNo column has duplica-
tion: The first six rows, in fact, are all part of the same transaction.

258 PART 4 Large(ish) Data Sets

You can find that findRFM() video by typing ?findRFM. A link to the video appears
in the Help documentation.

In the data frame I’m about to show you how to create, each invoice number
 covers an entire transaction, and the transaction’s Amount is the total of the
amounts for each item in the transaction.

So you create the data frame in two parts and then merge the two parts. The first
part is a data frame that has a unique Invoice Number associated with the
Customer ID and the Invoice Date. The function unique() does the work. It pulls
the relevant information from columns 1, 7, and 5 in retailonline.uci:

firstPart <- unique(retailonline.uci[,c(1,7,5)])

> head(firstPart)

 InvoiceNo CustomerID InvoiceDate

1 536365 17850 12/1/2010 8:26

8 536366 17850 12/1/2010 8:28

10 536367 13047 12/1/2010 8:34

22 536368 13047 12/1/2010 8:34

26 536369 13047 12/1/2010 8:35

27 536370 12583 12/1/2010 8:45

The second part provides the total of all the Amounts in each transaction. For this,
you use the helpful aggregate() function. The idea is to aggregate all the Amounts
associated with an Invoice Number by adding them up:

secondPart <- aggregate(list(Amount=retailonline.uci$Amount),

by=list(InvoiceNo=retailonline.uci$InvoiceNo), FUN=sum)

The first argument shows what you’re aggregating (Amount); the second shows
what you’re aggregating over (InvoiceNo); and the third specifies that summa-
tion is the way you’re aggregating. You use list() to create the column names in
the aggregation (which is a data frame). Here’s what the aggregation looks like:

> head(secondPart)

 InvoiceNo Amount

1 536365 139.12

2 536366 22.20

3 536367 278.73

4 536368 70.05

5 536369 17.85

6 536370 855.86

CHAPTER 12 Exploring Marketing 259

To produce the data frame for findRFM(), you merge the two parts:

dataRFM <- merge(firstPart,secondPart, by = "InvoiceNo")

It looks like this:

> head(dataRFM)

 InvoiceNo CustomerID InvoiceDate Amount

1 536365 17850 12/1/2010 8:26 139.12

2 536366 17850 12/1/2010 8:28 22.20

3 536367 13047 12/1/2010 8:34 278.73

4 536368 13047 12/1/2010 8:34 70.05

5 536369 13047 12/1/2010 8:35 17.85

6 536370 12583 12/1/2010 8:45 855.86

One issue remains: InvoiceDate is not in the proper format for findRFM(). It has
the date in slash format along with time in hours and minutes. The function
 prefers R’s date format without the time information.

The easiest way to reformat InvoiceDate appropriately is to use as.Date():

dataRFM$InvoiceDate <- as.Date(dataRFM$InvoiceDate, format = "%m/%d/%Y")

The second argument to as.Date() lets the function know the format of the date
it’s operating on. The uppercase Y indicates that the year appears as four digits.
(For two digits, as in 12/1/10, it’s a lowercase y.)

After the reformat, the data frame looks like this:

> head(dataRFM)

 InvoiceNo CustomerID InvoiceDate Amount

1 536365 17850 2010-12-01 139.12

2 536366 17850 2010-12-01 22.20

3 536367 13047 2010-12-01 278.73

4 536368 13047 2010-12-01 70.05

5 536369 13047 2010-12-01 17.85

6 536370 12583 2010-12-01 855.86

One more bit of clean-up, and you’re done with data prep. It’s a good idea to
eliminate missing data, so here goes:

dataRFM <- na.omit(dataRFM)

The data frame is ready for analysis.

260 PART 4 Large(ish) Data Sets

Doing the analysis
Now you apply the findRFM() function:

resultsRFM <-findRFM(dataRFM,recencyWeight = 4, frequencyWeight = 4,

monetoryWeight = 4)

The first argument is the data frame. The next three arguments are the weights
(multipliers) to apply to the Recency score, the Frequency score, and the Monetary
score. (Yes, I know: The last argument should be monetary, not monetory. Let it
go.) You can use any weights you like to reflect the importance you attach to each
variable. I just use the default values (4) here and show you the argument names
and their order.

Examining the results
When the findRFM() function finishes its work, it produces Figure 12-1, a histo-
gram that shows the distribution of final weighted scores.

FIGURE 12-1:
Distribution of
final weighted

scores after
findRFM()

analyzes the
online retail data.

CHAPTER 12 Exploring Marketing 261

How about a look at the data frame that the function creates?

Here are the first four columns (and the first six rows):

> head(resultsRFM[,c(1:4)])

A tibble: 6 x 4

 CustomerID MeanValue LastTransaction NoTransaction

 <chr> <dbl> <date> <int>

1 12347 592.3920 2011-12-07 5

2 12352 155.5114 2011-11-03 7

3 12353 89.0000 2011-05-19 1

4 12354 1079.4000 2011-04-21 1

5 12357 6207.6700 2011-11-06 1

6 12358 584.0300 2011-12-08 2

This is the CustomerID along with the data that lead to the RFM scores: MeanValue
(the average amount the customer spent per transaction), the LastTransaction
date, and NoTransaction (the number of transactions). The next three columns
are the percentiles of each of these pieces of data. I won’t show those. (You can
take a look, if you like.) These lead in turn to the next three columns: the Monetary,
Frequency, and Recency scores. Here they are, along with the FinalCustomer
Class, which is in the final column:

> head(resultsRFM[,c(1,8:10,16)])

A tibble: 6 x 5

 CustomerID MonetoryScore FrequencyScore RecencyScore FinalCustomerClass

 <chr> <dbl> <dbl> <dbl> <chr>

1 12347 5 5 5 Class-5

2 12352 2 5 3 Class-3

3 12353 1 1 1 Class-1

4 12354 5 1 1 Class-2

5 12357 5 1 4 Class-3

6 12358 5 2 5 Class-4

For this function, the class is apparently the rounded average of the RFM scores.

The classes represent the RFM segmentation of the customers from most valuable
(like Customer #12347) to least valuable (like Customer #12353).

One result of interest is the distribution of classes. To visualize this distribution,
you first use the table() function to tabulate the frequency in each class:

tblClass <- table(resultsRFM$FinalCustomerClass)

262 PART 4 Large(ish) Data Sets

The table is

> tblClassss

Class-1 Class-2 Class-3 Class-4 Class-5

 611 1129 973 603 56

And then you use barplot():

barplot(tblClass)

The result is shown in Figure 12-2, a visualization of the RFM segmentation of the
customers. As you can see, Class 5 customers are pretty rare.

In my discussion of findRFM()’s output, I left out Columns 5–7 and Columns
11–15. Feel free to examine on your own.

Taking a look at the countries
Most commercial marketing data sets include demographic information about the
customers. Combined with RFM analysis, that information can be the basis for
some powerful marketing.

The only demographic data in this data set is the customer’s country. It might be
instructive to see the distributions of the classes in the countries.

FIGURE 12-2:
The distribution
of classes in the

retail.uci
data frame.

CHAPTER 12 Exploring Marketing 263

To see how the RFM data connect with the countries, you have to add Country into
the resultsRFM data frame. Remember that the findRFM() function assigns RFM
scores to each CustomerID, so each row in resultsRFM holds a unique CustomerID.
To connect Country with this data frame, then, you have to create a data frame
that connects each CustomerID with its Country and then merge that data frame
with resultsRFM.

To create the data frame that associates each CustomerID with its Country,
you eliminate the duplicated CustomerID rows in retailonline.uci. You use
!duplicated() to do that:

retail.nondup<- retailonline.uci[!duplicated(retailonline.

uci$CustomerID),c(7,8)]

Specifying Columns 7 and 8 in c(7,8) limits the new data frame to just
Customer ID and Country. Here’s what the data frame looks like:

> head(retail.nondup)

 CustomerID Country

1 17850 United Kingdom

10 13047 United Kingdom

27 12583 France

47 13748 United Kingdom

66 15100 United Kingdom

83 15291 United Kingdom

Next, merge retail.nondup with selected columns of resultsRFM:

RFMCountry <-merge(resultsRFM[,c(1,8:10,16)],retail.nondup, by="CustomerID")

I change to shorter column names so that I can show you the data frame on this
page:

colnames(RFMCountry) <- c("ID","Money","Frequency","Recency","Class","Country")

And here it is:

> head(RFMCountry)

 ID Money Frequency Recency Class Country

1 12347 5 5 5 Class-5 Iceland

2 12352 2 5 3 Class-3 Norway

3 12353 1 1 1 Class-1 Bahrain

4 12354 5 1 1 Class-2 Spain

5 12357 5 1 4 Class-3 Switzerland

6 12358 5 2 5 Class-4 Austria

264 PART 4 Large(ish) Data Sets

Now you can use table() to examine the distribution of Class for each Country:

> table(RFMCountry$Country,RFMCountry$Class)

 Class-1 Class-2 Class-3 Class-4 Class-5

 Australia 2 2 1 2 0

 Austria 2 2 3 2 0

 Bahrain 1 0 0 0 0

 Belgium 4 6 4 3 0

 Canada 1 2 0 0 0

 Channel Islands 0 3 3 2 0

 Cyprus 2 1 2 0 0

 Czech Republic 0 0 1 0 0

 Denmark 1 5 2 0 0

 EIRE 0 0 1 1 1

 European Community 0 1 0 0 0

 Finland 0 1 2 2 1

 France 6 17 30 16 3

 Germany 7 24 16 30 1

 Greece 0 2 1 0 0

 Hong Kong 0 0 0 0 0

 Iceland 0 0 0 0 1

 Israel 0 1 0 0 0

 Italy 1 7 2 2 0

 Japan 2 1 1 1 1

 Lebanon 0 1 0 0 0

 Lithuania 1 0 0 0 0

 Malta 0 2 0 0 0

 Netherlands 2 2 3 0 1

 Norway 0 0 5 1 0

 Poland 1 2 1 0 0

 Portugal 3 4 3 4 0

 Singapore 0 0 0 1 0

 Spain 2 6 11 2 0

 Sweden 0 3 3 0 1

 Switzerland 1 5 9 3 0

 United Kingdom 572 1026 869 530 46

 Unspecified 0 2 0 0 0

 USA 0 1 0 1 0

CHAPTER 12 Exploring Marketing 265

Obviously, most of the business comes from the United Kingdom. The rest of
Europe combines to provide a distant second. It’s difficult to make any conclu-
sions from the small non-UK samples, but a quick look shows that the classes
seem to be distributed similarly throughout the countries. Perhaps adding post-
2011 data would shed some light on intercountry differences.

Enter Machine Learning
Creating classes from RFM scores is one way to segment customers. Another is to
use machine learning to discover structure in the data and use that structure as
the basis for customer segmentation.

K-means clustering
K-means clustering, which I discuss in Chapter 10, is an applicable machine
learning technique. The idea behind k-means clustering is to find subgroups in
data. The subgroups are called clusters.

Provide a set number of clusters, and a clustering procedure guesses which cluster
each data point belongs to. The clustering procedure calculates the distance from
each data point to the center of its cluster (known as the centroid), squares the
distance, and adds up all the squared distances for each cluster. Each cluster thus
has its own sum of squared distances, also known as a within sum of squares.
Adding those up over all the clusters produces a total within sum of squares.

The clustering procedure repeats (and potentially reassigns data points to differ-
ent clusters) until the within sum of squares is as small as possible for each clus-
ter, and the total within sum of squares is a minimum. When this happens, each
data point is in the cluster with the closest centroid.

How many clusters should you specify? One way to find out is to carry out the
clustering procedure on the data and use a range of possibilities for the number of
clusters. After each procedure finishes, calculate the total within sum of squares.
Generally, the total within sum of squares decreases as the number of clusters
increases. The objective is to find the number of clusters above which little or no
reduction in total within sum of squares occurs.

That’s what I do with the RFM data. Each data point (corresponding to a cus-
tomer) appears as a Recency score, a Frequency score, and a Monetary score.

266 PART 4 Large(ish) Data Sets

I follow this procedure in Chapter 10. I begin by showing you how to initialize a
vector called totwss, which will hold the values of total within sum of squares:

totwss <- NULL

A for loop carries out the clustering procedure for cluster amounts from 2 to 15,
and appends the resulting total within sum of squares to totwss. The kmeans()
function does the clustering:

for (i in 2:15){

 totwss <- append(totwss,kmeans(resultsRFM[,8:10],centers=i)$tot.withinss)

}

Columns 8–10 in resultsRFM hold the variables of interest. The centers = i
argument sets the number of clusters, and $totwithinss holds the total within
sum of squares for a clustering solution. After each k-means procedure ends,
append() puts the total within sum of squares on the end of the totwss vector.

Finally, you plot total within sum of squares against number of clusters:

plot(x=2:15, y=totwss, type="b", xlab="Clusters", ylab= "Total Within SS")

The plot() function produces Figure 12-3. After 11 clusters, the total within sum
of squares seems to not decrease appreciably, suggesting that 11 is a good number
of clusters for this data set. This is a judgement call, and you might see it differ-
ently. Incidentally, one business analytics website (www.Putler.com/rfm-
analysis) advocates for just that many customer segments.

FIGURE 12-3:
Total within sum

of squares versus
number of

clusters for
k-means

clustering of the
resultsRFM
data frame.

https://www.putler.com/rfm-analysis/
https://www.putler.com/rfm-analysis/

CHAPTER 12 Exploring Marketing 267

Working with Rattle
Rattle provides a GUI to the kmeans() function. If you’ve worked through the
chapters in Part 2, you have this package downloaded and all you have to do is
click its check box on the Packages tab. If not, click Install on the Packages tab to
open the Install Packages dialog box. Type rattle into the dialog box and click the
Install button. After the package downloads, select its check box on the Packages
tab and you’re ready to roll.

This command opens the Rattle GUI Data tab:

rattle()

Click the R Dataset radio button and then select resultsRFM from the drop-down
menu in the Data Name box. You click Execute to read the data frame. When the
variable names appear on the Data tab, leave the Ident radio button for CustomerID
as is, but select the Ignore radio button for all other variables except MonetoryScore,
FrequencyScore, and RecencyScore. If the Partition box is selected, deselect it.
Because you clicked those radio buttons, click Execute again. After all this, the
screen looks like Figure 12-4.

FIGURE 12-4:
The rattle Data

tab, after
selecting the
variables for

k-means
clustering.

268 PART 4 Large(ish) Data Sets

Next, you open the Cluster tab, and with the KMeans radio button selected, use the
arrow in the Clusters box to set 11 as the number of clusters. Make sure that the
Rescale box is deselected. Then click Execute. Figure 12-5 shows the appearance of
the Data tab after all these actions.

The first couple of lines show the number of data points in each of the 11 clusters.
The next lines present the mean for each variable. The table shows the centroids
for each cluster.

Digging into the clusters
The Log tab reveals that Rattle stores the results of the k-means clustering in an
object called crs$kmeans. Working with attributes of this object allows you to go
beyond the Rattle results.

For example, you can treat the table of centroids as the R, F, and M values of each
cluster. That table is in crs$kmeans$centers. It’s easier to work with those values
if you round them off and turn the table into a data frame. Strictly speaking, you

FIGURE 12-5:
The Data tab,

after executing
the selections for

k-means
clustering of the

resultsRFM
data frame.

CHAPTER 12 Exploring Marketing 269

first have to turn the table into a matrix and then into a data frame. The function
as.data.frame.matrix() does all that in one fell swoop:

rounded.clusters <- as.data.frame.matrix(round(crs$kmeans$centers))

> rounded.clusters

 MonetoryScore FrequencyScore RecencyScore

1 3 2 4

2 2 5 5

3 5 1 2

4 4 1 4

5 4 5 5

6 4 4 3

7 1 1 4

8 3 4 2

9 1 1 2

10 1 4 2

11 4 1 1

With the numbers in a data frame, I can manipulate them and get a sense of what
the clusters mean. The cluster numbers are arbitrary: The customers in cluster 1
aren’t necessarily more valuable than the customers in cluster 11. So you can use
some rules of thumb to reorder them and see what shakes out.

As I mention earlier, experience indicates that recency is most important (a more
recent customer is more likely to repeat), followed by frequency (a frequent cus-
tomer is more likely to repeat), followed by money.

Here’s how to sort the clusters by recency, then by frequency, and then by money:

with(rounded.clusters, rounded.clusters[order(-RecencyScore,-FrequencyScore,

-MonetoryScore),])

I suggest using with() so that in the order() function you don’t have to use
arguments like rounded.clusters$RecencyScore. The order() function speci-
fies the order of the rows. The minus sign (–) in front of each argument means
“in descending order.” Running that code produces this:

 MonetoryScore FrequencyScore RecencyScore

5 4 5 5

2 2 5 5

1 3 2 4

4 4 1 4

7 1 1 4

6 4 4 3

270 PART 4 Large(ish) Data Sets

8 3 4 2

10 1 4 2

3 5 1 2

9 1 1 2

11 4 1 1

With this ordering, the most valuable customers are in Cluster 5, and the least
valuable are in Cluster 11. Cluster 5 customers are apparently frequent and recent
buyers whose spending is at the second-highest level. Cluster 11 customers spend
as much as Cluster 5 customers, but not recently and not frequently. How would
marketers communicate with each group?

I leave it to you to interpret the other clusters.

The clusters and the classes
I’m curious to know how the RFM analysis compares with the clustering. How do
the clusters line up with the classes?

Each customer’s assigned cluster is in crs$kmeans$cluster, and the assigned
class is in resultsRFM$FinalCustomerClass. So this table tells the tale:

> table(Cluster=crs$kmeans$cluster,Class=resultsRFM$FinalCustomerClass)

 Class

Cluster Class-1 Class-2 Class-3 Class-4 Class-5

 1 0 214 67 0 0

 2 0 0 205 61 0

 3 0 239 163 0 0

 4 0 0 185 20 0

 5 0 0 47 430 56

 6 0 0 103 92 0

 7 0 169 22 0 0

 8 0 52 124 0 0

 9 528 63 0 0 0

 10 0 78 57 0 0

 11 83 314 0 0 0

The table shows Class 5 customers all in Cluster 5, which ranked highest among
the clusters. (That they’re both “5” is a coincidence.) Cluster 11 (the lowest-
ranked) consists entirely of Class 1 and Class 2 customers.

CHAPTER 12 Exploring Marketing 271

So it looks like the two segmentation schemes are related. To get a definitive
answer (instead of “looks like”), you’d need a statistical analysis.

Is this a good time for statistical analysis? It’s always a good time for statistical
analysis! For a table like this, I show you how to use a statistical test to see whether
the clusters and the classes are independent of one another. Statisticians call this
the null hypothesis. A statistical test tells you how likely it is that “independence”
can explain the data in the table. If that probability turns out to be very small (less
than .05, by convention), you reject the independence explanation.

Here’s another way to look at it: If the clusters and the classes were independent
of one another, the numbers in the table would look different. They would still add
up to the same number of customers and to the same row totals and column totals,
but the numbers inside the table would be distributed differently. The question is,
does the arrangement we have differ significantly from the independence-based
arrangement?

The appropriate statistical test is called chi squared (“chi” is pronounced like the
first syllable of “kayak”). Here’s how to use it:

> chisq.test(table(Cluster=crs$kmeans$cluster, Class=resultsRFM$FinalCustomer

Class))

 Pearson's Chi-squared test

data: table(Cluster = crs$kmeans$cluster, Class = resultsRFM$FinalCustomer

Class)

X-squared = 6261.6, df = 40, p-value < 2.2e-16

The exceptionally low p-value indicates that you can reject the idea that Cluster
and Class are independent of one another. Independence is highly unlikely.
(Shameless plug: For the lowdown on statistical testing see Statistical Analysis with
R For Dummies, written by me and published by Wiley.)

Quick suggested project
If you’d like to explore the Clusters versus Classes table a bit further, download and
install the vcd (visualizing categorical data) package. One function, assocstats(),
provides some additional statistics that you can apply. Another function, assoc(),
produces a nice-looking graphic that spotlights deviations from independence in
the table.

272 PART 4 Large(ish) Data Sets

Suggested Project: Another Data Set
If you’re interested in trying out your RFM analysis skills on another set of data,
this project is for you.

The CDNOW data set consists of almost 70,000 rows. It’s a record of sales at
CDNOW from the beginning of January 1997 through the end of June 1998.

You’ll find it at: https://raw.githubusercontent.com/rtheman/CLV/master/
1_Input/CDNOW/CDNOW_master.txt

Press Ctrl+A to highlight all the data, and press Ctrl+C to copy to the clipboard.
Then use the read.csv() function to read the data into R:

cdNOW <- read.csv("clipboard", header=FALSE, sep = "")

Here’s how to name the columns:

colnames(cdNOW) <- c("CustomerID","InvoiceDate","Quantity","Amount")

The data should look like this:

> head(cdNOW)

 CustomerID InvoiceDate Quantity Amount

1 1 19970101 1 11.77

2 2 19970112 1 12.00

3 2 19970112 5 77.00

4 3 19970102 2 20.76

5 3 19970330 2 20.76

6 3 19970402 2 19.54

It’s less complicated than the Online Retail project because Amount is the total
amount of the transaction. So each row is a transaction, and aggregation is not
necessary. The Quantity column is irrelevant for our purposes.

Here’s a hint about reformatting the InvoiceDate: The easiest way to get it into R
date format is to download and install the lubridate package and use its ymd()
function:

cdNOW$InvoiceDate <-ymd(cdNOW$InvoiceDate)

https://raw.githubusercontent.com/rtheman/CLV/master/1_Input/CDNOW/CDNOW_master.txt
https://raw.githubusercontent.com/rtheman/CLV/master/1_Input/CDNOW/CDNOW_master.txt

CHAPTER 12 Exploring Marketing 273

After that change, here’s how the first six rows look:

> head(cdNOW)

 CustomerID InvoiceDate Quantity Amount

1 1 1997-01-01 1 11.77

2 2 1997-01-12 1 12.00

3 2 1997-01-12 5 77.00

4 3 1997-01-02 2 20.76

5 3 1997-03-30 2 20.76

6 3 1997-04-02 2 19.54

Almost there. What’s missing for findRFM()? An invoice number. So you have to
use a little trick to make one up. The trick is to use each row identifier in the
row-identifier column as the invoice number. To turn the row-identifier column
into a data frame column, download and install the tibble package and use its
rownames_to_column() function:

cdNOW <- rownames_to_column(cdNOW, "InvoiceNumber")

Here’s the data:

> head(cdNOW)

 InvoiceNumber CustomerID InvoiceDate Quantity Amount

1 1 1 1997-01-01 1 11.77

2 2 2 1997-01-12 1 12.00

3 3 2 1997-01-12 5 77.00

4 4 3 1997-01-02 2 20.76

5 5 3 1997-03-30 2 20.76

6 6 3 1997-04-02 2 19.54

Now create a data frame with everything but that Quantity column and you’re
ready.

See how much of the Online Retail project you can accomplish in this one.

Happy analyzing!

CHAPTER 13 From the City That Never Sleeps 275

Chapter 13
From the City That
Never Sleeps

An airline flight generates a lot of data. The data includes identification of
the plane (airline, tail number), identification of the flight (flight number,
date, time, origin, destination), characteristics of the flight (distance, time

in the air, departure delay, arrival delay), and more. For a budding data analyst, a
data set of airline flights presents a treasure trove of opportunities. And that’s
what I show you how to work with in this chapter.

Examining the Data Set
The data set is called flights, and it lives in a package called nycflights13. It
has the data on all domestic flights out of New York City in 2013. On the Packages
tab, click Install to open the Install Packages dialog box. In the dialog box, type
nycflights13 and click the Install button. After the package downloads, select its
check box on the Packages tab. Additional data sets are in this package, and I show
you how to work with them, too.

A number of other packages are important for data manipulation, and they’re part
of a bigger package called tidyverse (see Chapter 2). If you haven’t downloaded

 » Working with the flights data
frame

 » Using tidyverse functions

 » Joining data frames

 » Exploring flight delays

276 PART 4 Large(ish) Data Sets

it already, follow the procedure in the preceding paragraph (and type tidyverse in
the dialog box). Click the tidyverse check box on the Packages tab and you’re ready
for business.

Warming Up
Before I start you out on the project, I walk you through some fundamental skills.
Let me begin with a look at the data.

Glimpsing and viewing
The flights data set has 19 columns, so head(flights) won’t be much help.
Instead, a tidyverse function called glimpse() flips the script, by showing you
the column names in a column and the first few values of each column in a row:

> glimpse(flights,width=50)

Observations: 336,776

Variables: 19

$ year <int> 2013, 2013, 2013, 2013...

$ month <int> 1, 1, 1, 1, 1, 1, 1, 1...

$ day <int> 1, 1, 1, 1, 1, 1, 1, 1...

$ dep_time <int> 517, 533, 542, 544, 55...

$ sched_dep_time <int> 515, 529, 540, 545, 60...

$ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -...

$ arr_time <int> 830, 850, 923, 1004, 8...

$ sched_arr_time <int> 819, 830, 850, 1022, 8...

$ arr_delay <dbl> 11, 20, 33, -18, -25, ...

$ carrier <chr> "UA", "UA", "AA", "B6"...

$ flight <int> 1545, 1714, 1141, 725,...

$ tailnum <chr> "N14228", "N24211", "N...

$ origin <chr> "EWR", "LGA", "JFK", "...

$ dest <chr> "IAH", "IAH", "MIA", "...

$ air_time <dbl> 227, 227, 160, 183, 11...

$ distance <dbl> 1400, 1416, 1089, 1576...

$ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6...

$ minute <dbl> 15, 29, 40, 45, 0, 58,...

$ time_hour <dttm> 2013-01-01 05:00:00, ...

The width argument controls how much of each row to show. If you leave it out,
the output fills out the whole screen (and wouldn’t translate well to this page).

CHAPTER 13 From the City That Never Sleeps 277

Another function, called View(), presents a spreadsheet-like (spreadsheetesque?)
look at the data in the RStudio Script window:

View(flights)

It produces what you see in Figure 13-1.

Piping, filtering, and grouping
Dealing with a data frame often calls for putting multiple commands and func-
tions together. To make that easy to do, R provides the pipe operator, which looks
like this: %>%. You use it to connect one function to the next.

Suppose that I’m interested in the mean and standard deviation of how long
flights from Newark lasted (air_time) in the first five days of January. That’s

Newark_January <- flights %>%

 filter(origin == "EWR" & month == 1 & day <= 5) %>%

 group_by(day)%>%

 summarize(mean=mean(air_time,na.rm=TRUE),

 std_dev=sd(air_time, na.rm=TRUE))

The first line, of course, assigns flights to Newark_January. Read the %>% opera-
tor as “then.”

So then the second line uses filter() to extract just the flights out of Newark
("EWR") and only in January (month == 1) and just the first five days (day <= 5).

Then the third line uses group_by() to group the data by day.

FIGURE 13-1:
View(flights)

puts this
view into

the RStudio
Script window.

278 PART 4 Large(ish) Data Sets

And then the fourth line provides the statistics, omitting the missing data.

The %>% operator works a lot like + does in ggplot.

To render this little structure nicely onscreen, you use the kable() function
(which lives in the knitr package):

> kable(Newark_January,digits=2)

| day| mean| std_dev|

|---:|------:|-------:|

| 1| 166.89| 97.46|

| 2| 159.20| 93.47|

| 3| 151.36| 83.44|

| 4| 143.39| 84.37|

| 5| 157.10| 95.34|

Before going any further, you should know about another statistic: the standard
error of the mean. It’s the standard deviation divided by the square root of the
number of scores that go into calculating the mean. Why is the standard error
important? Think of the air times in Day 1 as a sample drawn from a large popula-
tion. The standard error is a measure of how accurately the sample mean esti-
mates the population mean: The larger the sample, the more accurate the
estimate.

Given the importance of the standard error of the mean, you’d think that base R
would provide a function to calculate it. But it doesn’t. A function called
std.error() is in the plotrix package. Follow the usual steps to download and
install this package. With plotrix installed, you can get the standard error of the
mean by adding a line to summarize():

Newark_January <- flights %>%

 filter(origin == "EWR" & month == 1 & day <= 5) %>%

 group_by(day)%>%

 summarize(mean=mean(air_time,na.rm=TRUE),

 std_dev=sd(air_time, na.rm=TRUE),

 std_err=std.error(air_time, na.rm=TRUE))

and then use kable() once again:

> kable(Newark_January,digits=2)

| day| mean| std_dev| std_err|

CHAPTER 13 From the City That Never Sleeps 279

|---:|------:|-------:|-------:|

| 1| 166.89| 97.46| 5.63|

| 2| 159.20| 93.47| 5.06|

| 3| 151.36| 83.44| 4.59|

| 4| 143.39| 84.37| 4.60|

| 5| 157.10| 95.34| 6.19|

Visualizing
Next, you graph the data, which is always a good thing to do. Figure 13-2 shows
the graph of Newark_January, complete with bars for the standard errors.

You use ggplot() to draw this graph. The first line specifies where the data comes
from and maps day to the x-axis and mean to the y-axis:

ggplot(Newark_January, aes(x=day, y=mean)) +

Next, you add the bars to the plot:

 geom_bar(stat="identity", color="black", fill = "gray100",width=0.4)+

FIGURE 13-2:
Mean flight

duration versus
day in Newark_

January.

280 PART 4 Large(ish) Data Sets

The geom_bar() function usually plots frequency counts. It tries to count fre-
quencies in the data unless you tell it otherwise. Here, the first argument tells
geom_bar() to not count frequencies, and instead use the statistic in the table
(mapped to y) to plot the bars. The color argument sets the border, and fill =
“gray100” fills each bar with white. The last argument, unsurprisingly, sets the
width of each bar.

Next, you add the bars that represent the standard error of the mean:

 geom_errorbar(aes(ymax = mean + std_err, ymin = mean - std_err), width=.05)+

The aesthetic mappings show how high each error bar ascends and how low it
descends.

Finally, you give the y-axis an informative label:

 labs(y="Mean Flight Duration (minutes) from Newark Jan 2013")

The whole megillah is

ggplot(Newark_January, aes(x=day, y=mean)) +
 geom_bar(stat="identity", color="black", fill = "gray100",width=0.4)+
 geom_errorbar(aes(ymax = mean + std_err, ymin = mean - std_err), width=.05)+
 labs(y="Mean Flight Duration (minutes) from Newark Jan 2013")

Whenever you plot a mean, plot its standard error.

Another way to plot the error bars is to just show them coming out of the top
of each bar rather than in both directions. To do that in this example, set ymin =
mean.

Joining
If you’ve ever flown in the US and you’ve checked your baggage, you’ll see what
might look like a strange abbreviation on your baggage tag. Fly to Chicago’s
O’Hare International Airport, for example, and the tag says ORD (which might
confuse you if you’ve ever been to Fort Ord in California).

Assigned by the Federal Aviation Administration (FAA) and other agencies, some
abbreviations are pretty easy to figure out — like JAX, for Jacksonville, Florida, or
JFK, for New York’s John F. Kennedy International Airport. But would you know
off the top of your head that PDL is Hartford, Connecticut? Or that INT is Winston-
Salem, North Carolina? Me, neither.

CHAPTER 13 From the City That Never Sleeps 281

Airport abbreviations are in the origin and dest columns of flights. With only
three origins — EWR (Newark), LGA (LaGuardia), and the aforementioned JFK —
these are easy to remember. What about the destinations?

> glimpse(flights$dest, 60)

 chr [1:336776] "IAH" "IAH" "MIA" "BQN" "ATL" "ORD" ..

IAH? BQN? If I have to look up airport abbreviations whenever I want to explore
data about origins and destinations, I’d waste a lot of time.

Instead, I can let R do the work. One of the data frames in nycflights13 is called
airports, and it holds the abbreviations along with other information about the
airports:

> glimpse(airports,60)

Observations: 1,458

Variables: 8

$ faa <chr> "04G", "06A", "06C", "06N", "09J", "0A9",...

$ name <chr> "Lansdowne Airport", "Moton Field Municip...

$ lat <dbl> 41.13047, 32.46057, 41.98934, 41.43191, 3...

$ lon <dbl> -80.61958, -85.68003, -88.10124, -74.3915...

$ alt <int> 1044, 264, 801, 523, 11, 1593, 730, 492, ...

$ tz <dbl> -5, -6, -6, -5, -5, -5, -5, -5, -5, -8, -...

$ dst <chr> "A", "A", "A", "A", "A", "A", "A", "A", "...

$ tzone <chr> "America/New_York", "America/Chicago", "A...

The abbreviations are in the faa column, and the corresponding names are in the
name column. I don’t know about you, but I would have never guessed that 04G
refers to Lansdowne Airport (Youngstown, Ohio).

But I digress. To let R do the work of finding out which airports correspond to
which abbreviations, you can join the flights data frame with the airports data
frame. Joining takes place by matching a key variable in one data frame with the
corresponding key variable in the other. (It’s something like merge(), which
I describe how to use in Chapter 12.) In this case, the key variables have different
names (dest in flights, faa in airports).

So here’s how to join the flights data frame with the airports data frame.
Without belaboring the point, several types of join operations are possible, but the
inner join best suits our purposes:

flites_dest_names <- flights %>%

 inner_join(airports, by = c("dest" = "faa")) %>%

 rename(dest_airport=name)

282 PART 4 Large(ish) Data Sets

The by argument in inner_join() sets up the equivalence between dest and faa.
The rename() function substitutes a more informative label for name.

To see the new data frame, use the View() function:

View(flites_dest_names)

Running this code produces Figure 13-3. I’ve scrolled to the right so that you can
see the relevant information that the join adds.

I use the new data frame to answer the question, “How many flights left JFK for
Miami or Orlando in February?” Here’s the code:

JFK_Miami_Orlando <- flites_dest_names %>%

 filter(origin == "JFK" &

 (dest_airport == "Miami Intl" | dest_airport == "Orlando Intl")

 & month == 2) %>%

 group_by(carrier) %>%

 summarize(number_of_flights = n())

The filter() function is a bit more complicated than the one I show you earlier
in this chapter. This is due to the “Miami or Orlando” part. The vertical line inside
the parentheses (the ones inside filter(), to be more specific) means or. I group
the results by carrier. The summarize() function uses n() to count the number
of flights.

Here are the results:

> kable(JFK_Miami_Orlando)

|carrier | number_of_flights|

FIGURE 13-3:
The result of

joining flights
with airports:
flites_dest_

names.

CHAPTER 13 From the City That Never Sleeps 283

|:-------|-----------------:|

|AA | 228|

|B6 | 252|

|DL | 196|

Quick Suggested Project: Airline names
It would be more helpful to show the names of the airlines instead of the abbre-
viations in the carrier column. The nycflights13 data set has another data
frame called airlines that shows each abbreviation along with the full name of
the carrier. Join this data frame with flites_dest_names and redo what I just did,
showing the carrier names instead of the abbreviations.

Project: Departure Delays
I don’t know about you, but I’m not a big fan of hustling to the airport to make a
flight, only to find that it’s delayed. So, in this project, I address my pet peeve (and
maybe yours) by taking a look at departure delay data.

Adding a variable: weekday
On which day of the week are the delays longest? To find out, you have to add a
variable that indicates the weekday of a departure. The time_hour column has the
calendar date and the hour for each flight in the data frame. To extract the week-
day, you use the lubridate package’s wday() function.

Here’s an example of how it works on one entry from time_hour:

> wday("2013-01-01 05:00:00")

[1] 3

This function considers Sunday as Weekday 1, so January 1, 2013, was a Tuesday.

You create a new data frame by adding a variable called weekday to flites_dest_
names. To add the variable, you use the intriguingly named mutate() function:

flites_day <- flites_dest_names %>%

 mutate(weekday = wday(time_hour))

284 PART 4 Large(ish) Data Sets

This results in a column of numbers with 1 = Sunday, 2 = Monday, and so forth.
To turn those numbers into the appropriate weekdays, you treat the weekday
numbers as levels of a factor and provide substitute labels for the numbers:

flites_day$weekday <- factor(flites_day$weekday,

 labels = c("Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday"))

The wday() function takes an argument called label. If you set label=TRUE, the
function supplies the weekday names and you don’t have to complete this last
step. I couldn’t get it to work. Maybe you can.

Just to verify:

flites_per_weekday <- flites_day %>%

 group_by(weekday) %>%

 summarize(number_of_flights = n())

> kable(flites_per_weekday)

|weekday | number_of_flights|

|:---------|-----------------:|

|Sunday | 45240|

|Monday | 49626|

|Tuesday | 49362|

|Wednesday | 49016|

|Thursday | 49147|

|Friday | 49221|

|Saturday | 37562|

Quick Suggested Project: Analyze
weekday differences
It looks like you have far fewer flights to choose from on Saturday and Sunday
than on any other day. Are the differences among days significant? Another way
of asking this question: Is number_of_flights independent of weekday? Looking
at it still another way: If the two were independent, you would expect an equal
number of flights for each weekday. Does the data differ significantly from that
pattern?

In Chapter 12, I use chisq.test() to help you answer a similar question. Use that
function here. Remember that what you’re analyzing is flites_per_
weekday$number_of_flights. What can you conclude?

CHAPTER 13 From the City That Never Sleeps 285

Delay, weekday, and airport
Which weekday has the longest average delays? Does it vary with airport of origin?
To find out, you create a data frame called summary_dep_delay:

summary_dep_delay <- flites_day %>%

 group_by(origin, weekday) %>%

 summarize(mean = mean(dep_delay, na.rm = TRUE),

 std_dev = sd(dep_delay, na.rm = TRUE),

 std_err = std.error(dep_delay,na.rm=TRUE))

Applying kable() gives an okay-looking table (try it!), but a graphic shows the
results more clearly. Figure 13-4 shows what I mean.

This bar plot shows that the shortest delays (in 2013) were out of LaGuardia (LGA),
and shortest on Saturdays.

Here’s how to use ggplot() to draw it. You begin as always by specifying the
source of the data and the aesthetic mappings:

ggplot(summary_dep_delay, aes(x=weekday, y=mean, fill=origin)) +

FIGURE 13-4:
Mean departure

delay (min)
versus weekday

and airport of
origin.

286 PART 4 Large(ish) Data Sets

Next, you add the bars:

geom_bar(position="dodge", stat="identity", color="black")+

position = “dodge” means that the bars aren’t stacked on top of one another.
Instead, they “dodge” each other and line up side by side. As I mention earlier in
this chapter, stat = “identity” tells geom_bar() to use the numbers in the table
to plot the bars and to not try to count frequencies in the data. The color argu-
ment sets the border color of each bar.

Now you add some artistic effects to the bars:

scale_fill_manual(name="Airport",values=c("grey40","grey65","grey100"))+

The first argument attaches a title to the legend. The second is a vector of colors
that associate with each origin.

Next, you add the error-bars:

geom_errorbar(aes(ymax=mean+std_err,ymin=mean-std_err), width=.1,
position=position_dodge(.9))+

The first argument, as in the earlier example, sets the upper and lower boundaries
of the error bars. A little experimenting led me to the numbers for the second and
third arguments. With the wrong number in the third argument, the error bar
locations can be way out of whack.

Finally, you add an informative label to the y-axis:

 labs(y="Mean Departure Delay (min)")

Here’s the whole thing:

ggplot(summary_dep_delay, aes(x=weekday, y=mean, fill=origin)) +
 geom_bar(position="dodge", stat="identity",color="black")+
 scale_fill_manual(name="Airport",values=c("grey40","grey65","grey100"))+
 geom_errorbar(aes(ymax=mean+std_err,ymin=mean-std_err), width=.1,

position=position_dodge(.9))+
 labs(y="Mean Departure Delay (min)")

Another way to visualize the data is to create a separate plot for each airport of
origin and show them one above the other. In this kind of arrangement, each plot
is called a facet. Figure 13-5 is a prime example.

CHAPTER 13 From the City That Never Sleeps 287

No new conclusions, just a different way of plotting the data. The code is

ggplot(summary_dep_delay, aes(x=weekday, y=mean)) +
 geom_bar(stat="identity", color="black", fill = "gray65",width=0.3)+
 geom_errorbar(aes(ymax=mean+std_err,ymin=mean-std_err), width=.05)+
 facet_grid(origin ~ .)+
 labs(y="Mean Departure Delay (min)")

The code is a bit different from the earlier plot. Color does not differentiate the
origins in this plot (facet does), so the ggplot() function doesn’t need an aes-
thetic mapping for color. The geom_bar() function is pretty much the same,
except for the addition of a fill and a slight change to the width. Feel free to
modify those, if you like. geom_errorbar() is the same as before, but in this plot,
you don’t have to use the position argument. And you change the width.

I added the facet_grid() function. Its argument arranges the facets vertically. To
arrange them horizontally, the argument would be . ~ origin, but that would
look terrible. Try it, if you don’t believe me. As before, the final line adds the label
for the y-axis.

Delay and flight duration
Can the duration of the flight (air_time in the data frame) somehow influence
departure delay? Why might that happen? With a longer flight duration, is depar-
ture delay likely to be longer or shorter?

FIGURE 13-5:
A facets plot of

mean departure
delay (min)

versus weekday
and airport of

origin.

288 PART 4 Large(ish) Data Sets

First, take a look at some summary statistics for dep_delay and for air_time:

> summary(flites_day$dep_delay)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

 -43.00 -5.00 -2.00 12.71 11.00 1301.00 8214

ANALYZING THE WEEKDAY AND
AIRPORT DIFFERENCES
Are those differences among weekdays significant? How about those differences
among airports of origin? And what about the combination of the two? Does that have
any effect? One way to answer these questions is with an analysis of variance (ANOVA).
The function that performs the ANOVA is called aov(), and here’s how to apply it:

wkdyorgin <- aov(dep_delay ~ weekday * origin, data=flites_day)

To see the results, use summary():

> summary(wkdyorgin)

 Df Sum Sq Mean Sq F value Pr(>F)

weekday 6 2268319 378053 233.26 <2e-16 ***

origin 2 1310239 655120 404.21 <2e-16 ***

weekday:origin 12 405916 33826 20.87 <2e-16 ***

Residuals 320939 520164045 1621

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8214 observations deleted due to missingness

The relevant columns here are F value and Pr(>F). If it’s the case that weekday
means are about the same, the F value for weekday would be around 1.00. As you can
see, the F value is way larger than that. It’s always possible that in reality all the weekday
means are about the same and this data set is a fluke. The Pr(>F) value indicates that
probability, and that probability is microscopically small. Same story for origin.

Figures 13-4 and 13-5 suggest that the pattern of means across weekdays is different
from EWR to JFK to LGA. The weekday:origin row in the summary table verifies this.
The large F value and small Pr(>F) in that row tell you that weekday and origin are
not independent of one another. This non-independence is a statistical characterization
of the difference in appearance across the facets of Figure 13-5.

ANOVA has way more to it than I can go into here. For the full story, take a look at a
book I’m shamelessly plugging. (Okay, just because you asked, it’s Statistical Analysis
with R For Dummies, published by Wiley.)

CHAPTER 13 From the City That Never Sleeps 289

> summary(flites_day$air_time)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

 20.0 81.0 127.0 149.6 184.0 695.0 9365

Looks like they’re on two very different playing fields. One way to reduce the dis-
crepancy is to subtract the mean of dep_delay from each dep_delay and then
divide by dep_delay’s standard deviation. Then follow the same procedure for
each air_time. This is called scaling the data. (If you’ve had a statistics course,
you might remember z-scores, also known as standard scores.)

The scale() function handles the scaling. I use it in a moment.

To address the questions about air_time and dep_delay, you create a regression
line that summarizes the relationship between them (or, more accurately, between
their scaled versions). Regression analysis has a lot of ramifications that I don’t
go into here. That would require a whole separate chapter.

Just for descriptive purposes, I’m concerned about the slope of the regression line.
If that line has a positive slope, departure delay increases as flight time increases.
It the line has a negative slope, departure delay decreases as flight time increases.

Here’s how to construct the regression line between scale(air_time) and
scale(dep_delay):

dlyat <-lm(scale(dep_delay) ~ scale(air_time), data=flites_day)

And here’s how to retrieve the slope of the line:

> dlyat$coefficients[2]

scale(air_time)

 -0.02165165

Yes, it’s a small number, but the negative slope suggests that longer flight dura-
tions are associated with shorter departure delays.

Why might that be?

Suggested Project: Delay and Weather
It’s conceivable that weather conditions could influence flight delays. How do you
incorporate weather information into the assessment of delay?

290 PART 4 Large(ish) Data Sets

Another nycflights13 data frame called weather provides the weather data for
every day and hour at each of the three origin airports. Here’s a glimpse of exactly
what it has:

> glimpse(weather,60)

Observations: 26,130

Variables: 15

$ origin <chr> "EWR", "EWR", "EWR", "EWR", "EWR", "...

$ year <dbl> 2013, 2013, 2013, 2013, 2013, 2013, ...

$ month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

$ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

$ hour <int> 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 1...

$ temp <dbl> 37.04, 37.04, 37.94, 37.94, 37.94, 3...

$ dewp <dbl> 21.92, 21.92, 21.92, 23.00, 24.08, 2...

$ humid <dbl> 53.97, 53.97, 52.09, 54.51, 57.04, 5...

$ wind_dir <dbl> 230, 230, 230, 230, 240, 270, 250, 2...

$ wind_speed <dbl> 10.35702, 13.80936, 12.65858, 13.809...

$ wind_gust <dbl> 11.918651, 15.891535, 14.567241, 15....

$ precip <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

$ pressure <dbl> 1013.9, 1013.0, 1012.6, 1012.7, 1012...

$ visib <dbl> 10, 10, 10, 10, 10, 10, 10, 10, 10, ...

$ time_hour <dttm> 2012-12-31 19:00:00, 2012-12-31 20:...

So the variables it has in common with flites_name_day are the first six and the
last one. To join the two data frames, use this code:

flites_day_weather <- flites_day %>%

 inner_join(weather, by = c("origin","year","month","day","hour","time_hour"))

Now you can use flites_day_weather to start answering questions about
 departure delay and the weather.

What questions will you ask? How will you answer them? What plots will you
draw? What regression lines will you create? Will scale() help?

And, when you’re all done, take a look at arrival delay (arr_delay).

CHAPTER 14 All Over the Map 293

Chapter 14
All Over the Map

As you might have gathered from glancing at this book’s table of contents,
one of R’s major calling cards is its emphasis on visualization. Beginning
with plots of analytic results, R’s graphics capabilities have evolved into

map development.

R graphics honchos have created several ways of drawing maps. In this chapter,
I show you the one that I think is the most straightforward and will get you on the
road to Rtography. (See what I did there?)

Project: The Airports of Wisconsin
The map I show you how to draw in this project appears in Figure 14-1. It shows
the locations of the major airports in Wisconsin, and includes the cities they serve,
the FAA abbreviations, and the number of enplanements (commercial passenger
boardings) in 2013.

Dispensing with the preliminaries
This project requires a package called maps that enables you to draw all kinds of
geographic representations. Another necessary package is ggmap, which enables
you to retrieve geographic information from Google Maps. You also need ggplot2
to do the plotting.

 » Using geographic data

 » Mapping a state

 » Mapping the country

294 PART 5 Maps and Images

On the Packages tab, click Install to open the Install Packages dialog box. In the
dialog box, type maps and click the Install button. After the package downloads,
select its check box on the Packages tab. Follow as many of these steps as neces-
sary for the other two packages.

Getting the state geographic data
First, you have to retrieve the geographic data for Wisconsin. This is a set of lati-
tudes and longitudes for the state map. This happens in two steps. The first step
is to retrieve all data for the United States. The information comes from the maps
package. A ggplot2 function called map_data() puts it in a data frame that
ggplot() can use to create a map:

states <- map_data("state")

Here’s what this data frame looks like:

> head(states)

 long lat group order region subregion

1 -87.46201 30.38968 1 1 alabama <NA>

2 -87.48493 30.37249 1 2 alabama <NA>

3 -87.52503 30.37249 1 3 alabama <NA>

4 -87.53076 30.33239 1 4 alabama <NA>

5 -87.57087 30.32665 1 5 alabama <NA>

6 -87.58806 30.32665 1 6 alabama <NA>

FIGURE 14-1:
The major
airports of
Wisconsin.

CHAPTER 14 All Over the Map 295

You can use this data frame to draw a map of the contiguous United States (as in
Suggested Project 2, later in this chapter), but right now you should concern your-
self only with Wisconsin, and that’s the second step:

Wisconsin <- subset(states, region == "wisconsin")

Getting the airport geographic data
To retrieve the airport geographic data, you start with a list of the airports.
 Wikipedia does the honors:

https://en.wikipedia.org/wiki/List_of_airports_in_Wisconsin

Scroll down the Wikipedia page to the list of airports, as Figure 14-2 shows. The
figure also shows the rows and columns I selected (the part of the table with the
primary airports). Press Ctrl+C to copy the information to the clipboard.

Then read the data into R:

wisc.airports <- read.csv("clipboard", header=FALSE, sep = "\t")

Next, keep the columns for City, FAA Abbreviation, Airport Name, and
Enplanements:

wisc.airports <- wisc.airports[,c(1,2,5,7)]

FIGURE 14-2:
The Wikipedia

page of Wisconsin
airports, with

major airports
selected.

https://en.wikipedia.org/wiki/List_of_airports_in_Wisconsin

296 PART 5 Maps and Images

and then name them, like this:

colnames(wisc.airports) <- c("city","faa","airport","enplanements")

Here’s a glimpse at the data:

> glimpse(wisc.airports,60)

Observations: 8

Variables: 4

$ city <fctr> Appleton, Eau Claire, Green Bay, ...

$ faa <fctr> ATW, EAU, GRB, LSE, MSN, MKE, CWA...

$ airport <fctr> Appleton International Airport, C...

$ enplanements <fctr> 270,633, 21,304, 292,868, 94,047,...

Each column is a factor. For what I show you how to do later, you have to turn the
first three into character columns and the last one into a number. The first three
are easy:

wisc.airports$city <- as.character(wisc.airports$city)

wisc.airports$faa <- as.character(wisc.airports$faa)

wisc.airports$airport <- as.character(wisc.airports$airport)

The last one is a bit more complicated. You first have to use the gsub() function
to remove the comma from each entry (actually, to replace it with nothing) and
then turn the entry into a number:

wisc.airports$enplanements <- as.numeric(gsub(",","",wisc.

airports$enplanements))

To plot the airports, you have to get the latitude and longitude for each one.
A ggmaps function called geocode() gets this done. Give it a place name and
it returns the latitude and longitude: For example,

> geocode("Statue of Liberty")

 lon lat

1 -74.0445 40.68925

Pretty slick, right? (The function also returns the URL of the web page that the
information comes from; I left that out of the example.)

So, to apply this function to wisc.airports$airport:

airport.info <-geocode(wisc.airports$airport)

CHAPTER 14 All Over the Map 297

An error message indicates that the function failed on the airport name for Green
Bay (“Green Bay-Austin Straubel International Airport”), so airport.info looks
like this:

> airport.info

 lon lat

1 -88.51119 44.26029

2 -91.48222 44.86223

3 NA NA

4 -91.26390 43.87526

5 -89.33641 43.13907

6 -87.89665 42.94755

7 -89.67268 44.78420

8 -89.46387 45.62621

To fill in the gaps, try a different name for the Green Bay Airport:

GB <- geocode("Green Bay Airport")

> GB

 lon lat

1 -88.13439 44.48336

And now, this code fills in the blanks:

airport.info[3,] <- GB[1,]

The final step is to bind airport.info to wisc.airports:

wisc.airports <- cbind(wisc.airports,airport.info)

Here’s the result (without column 3 so that it fits neatly on the page):

> wisc.airports[,-3]

 city faa enplanements lon lat

1 Appleton ATW 270633 -88.51119 44.26029

2 Eau Claire EAU 21304 -91.48222 44.86223

3 Green Bay GRB 292868 -88.13439 44.48336

4 La Crosse LSE 94047 -91.26390 43.87526

5 Madison MSN 903155 -89.33641 43.13907

6 Milwaukee MKE 3327536 -87.89665 42.94755

7 Mosinee CWA 119222 -89.67268 44.78420

8 Rhinelander RHI 20414 -89.46387 45.62621

298 PART 5 Maps and Images

Plotting the airports on the state map
Now you can use Wisconsin and wisc.airports to plot the map in Figure 14-1.

Begin with ggplot():

ggplot(data = Wisconsin, aes(x=long,y=lat)) +

The first argument is the geographic data that enables you to plot the map of Wis-
consin, and the second is the aesthetic mappings of longitude to the x-axis and
latitude to the y-axis.

The next line plots the map as a polygon with a black border and white fill:

 geom_polygon(color = "black", fill="white") +

The next three lines add the points, the city names of the cities, and the FAA air-
port abbreviations. The data source for each of these is the wisc.airports data
frame. For these points

 geom_point(data=wisc.airports,aes(x=lon, y=lat, size=enplanements)) +

you should note that longitude in this data frame is lon rather than long as in the
Wisconsin data frame.

For the city names and the FAA abbreviations:

 geom_text(data=wisc.airports, aes(x=lon +.40, y=lat, label=city))+
 geom_text(data=wisc.airports, aes(x=lon +.40, y=lat-.15, label=faa))

The positioning numbers are the result of trying different values. Your ideal num-
bers might be different, depending on your screen resolution.

Here’s the entire code snippet that produces Figure 14-1:

ggplot(data = Wisconsin, aes(x=long,y=lat)) +
 geom_polygon(color = "black", fill="white") +
 geom_point(data=wisc.airports,aes(x=lon, y=lat, size=enplanements)) +
 geom_text(data=wisc.airports, aes(x=lon +.40, y=lat, label=city)) +
 geom_text(data=wisc.airports, aes(x=lon +.40, y=lat-.15, label=faa))

CHAPTER 14 All Over the Map 299

Quick Suggested Project: Another source
of airport geographic info
You use the geocode() function to find the latitude and longitude of each airport.
Can you think of another way to get that information? Perhaps from a data frame
you might have read about in Chapter 13? And maybe use merge()?

Suggested Project 1: Map Your State
What state do you live in? How about a map of the airports in your state, just like
the one I show you how to do for Wisconsin?

That data frame from the maps package has no latitudes and longitudes for the
49th and 50th states. So, if you live in Alaska or Hawaii, adopt another state
temporarily.

Use the map_data() function along with subset() to map your state. You’ll need
the Wikipedia information about airports in your state, and geocode() to get the
airport latitudes and longitudes. Then try your hand with ggplot().

If you live in New York, Virginia, Michigan, Massachusetts, North Carolina, or
Washington state, read the next Suggested Project before you begin.

Suggested Project 2: Map the Country
Earlier, I mention that this code

states <- map_data("state")

is the foundation for mapping the contiguous USA. This project does just that.

First, the USA map. Based on what I already showed you, this should be pretty
straightforward, right? This code produces Figure 14-3:

ggplot(data = states, aes(long,y=lat)) +
 geom_polygon(color = "black", fill="white")

300 PART 5 Maps and Images

Though it’s true that this land was made for you and me, what’s with all those
crisscross lines from California to the New York island, and from the Redwood
Forest to the Gulfstream waters? And more?

The geom_polygon() function uses all the latitude and longitude information to
draw one big polygon.

But the US is not just one big shape with a single border running all the way
around it. New Yorkers know that New York City (except for the Bronx) is not con-
nected by land to the rest of the state. Virginians, Michiganders, Massachusett-
sans (yes, that’s a word), North Carolinians, and Washingtonians know that their
state geographies can’t be captured using a single border line — otherwise, poor
Martha’s Vineyard would be left out in the cold.

So a state (and, of course, the country) can consist of more than one group. The
group column in states captures this. New York has four of them. How many are
in the contiguous United States?

> length(unique(states$group))

[1] 63

Okay, 63 it is. How many are in your state?

FIGURE 14-3:
The contiguous
48 states, with

some unwanted
extras.

CHAPTER 14 All Over the Map 301

The extra lines shown in Figure 14-3 connect all the points into one big polygon,
irrespective of what group they happen to be in. To draw all 63 groups as separate
groups, you have to supply a group aesthetic to geom_polygon():

geom_polygon(color = "black", fill="white",group=states$group)

This code draws the map properly, as Figure 14-4 shows:

ggplot(data = states, aes(long,y=lat)) +
 geom_polygon(color = "black", fill="white",group=states$group)

Plotting the state capitals
The finished product for this map looks like Figure 14-5. The points show the
locations of the state capitals, and the size of each point represents the
population.

In the screen resolution I have to use to create figures, this one looks pretty
squished. To make it less so, I removed the legend that explains the size of the
points. You won’t have to do that, because the figure will probably look better on
your screen.

FIGURE 14-4:
The contiguous

48 states
of the USA.

302 PART 5 Maps and Images

Where do the latitudes and longitudes come from? The maps package has a data set
called us.cities. To start using it, use the data() function:

data(us.cities)

The data frame looks like this:

> head(us.cities)

 name country.etc pop lat long capital

1 Abilene TX TX 113888 32.45 -99.74 0

2 Akron OH OH 206634 41.08 -81.52 0

3 Alameda CA CA 70069 37.77 -122.26 0

4 Albany GA GA 75510 31.58 -84.18 0

5 Albany NY NY 93576 42.67 -73.80 2

6 Albany OR OR 45535 44.62 -123.09 0

A value of 2 in the capital column represents a state capital, as is the case for
Albany, New York. Use that indicator to create a subset of state capitals. When you
do, eliminate the two that are not in the contiguous 48 states.

Take it from here.

Plotting the airports
Figure 14-6 shows the finished map for this one. It plots the locations of the air-
ports in the contiguous 48 states. Adding the FAA abbreviations and other info

FIGURE 14-5:
The state capitals

of the USA.

CHAPTER 14 All Over the Map 303

would just clutter it up, but you can give it a try, if you like. (Don’t bother with
enplanements.)

Where will you get the latitudes and longitudes? If you’ve thought through the
earlier Quick Suggested Project, you know that the answer comes from
Chapter 13.

Also, you have to create a subset of the data that falls within the contiguous
48 states. Limits on latitude and longitude will do this for you. What are those
limits? Figure 14-6 helps you find them. Use the bottom border of the figure to
determine the easternmost longitude and the westernmost longitude. Then use
the left border to determine the northernmost latitude and the southernmost
latitude.

Good luck!

FIGURE 14-6:
Airport locations

in the contiguous
United States.

CHAPTER 15 Fun with Pictures 305

Chapter 15
Fun with Pictures

R is not known as a language for image processing, but its capabilities in that
arena, as in others, are expanding all the time. To get you started with
image processing, I take you through the magick package for manipulating,

modifying, and combining pictures.

Polishing a Picture: It’s magick!
The magick package is a recent development in R, designed to make life easier for
anyone who wants to process images. On the Packages tab, click Install to open
the Install Packages dialog box. In the dialog box, type magick and click the Install
button. When the package finishes downloading, select its check box on the
 Packages tab.

Here’s a good place to find an image to work with www.connectmyapps.com/
Dummies: This URL links to the web page that looks something like Figure 15-1.

I say “something like” because your screen’s resolution is undoubtedly higher
than the resolution I have to use to create screen shots. The web page will look
better on your screen.

 » Exploring the magick package

 » Transforming images

 » Working with animated images

 » Combining stationary images and
animations

http://www.connectmyapps.com/Dummies
http://www.connectmyapps.com/Dummies

306 PART 5 Maps and Images

Anyway, that Dummies Man logo is the image I work with, so here’s how to
download it. Right-click on the logo (not on the picture of the book) and select
Save Image As from the pop-up menu that appears. I save it in my Documents
folder, which is also my working directory for R. The image is called
dummiesman02, and it’s in PNG (Portable Network Graphics) format.

Reading the image
You begin by reading the image into R and turning it into a magick object called
dummy:

dummy <- image_read("dummiesman02.png")

What’s in the object?

> print(dummy)

 format width height colorspace filesize

1 PNG 827 1097 sRGB 46040

Figure 15-2 shows that, in addition to this image information, the image appears
on the Viewer tab.

Obviously, it’s way too big to use for much of anything. To resize it, use
image_resize():

dummy <-image_resize(dummy, "206x274")

The print(dummy) function now produces what you see in Figure 15-3:

FIGURE 15-1:
Part of

www.connect
myapps.com/

Dummies.

http://www.connectmyapps.com/Dummies
http://www.connectmyapps.com/Dummies
http://www.connectmyapps.com/Dummies

CHAPTER 15 Fun with Pictures 307

Rotating, flipping, and flopping
Now that you have a magick object, you can transform it in several ways.

Figure 15-4 show the result of rotating the image 45 degrees:

image_rotate(dummy, 45)

rotating it on a horizontal axis (also known as flipping):

image_flip(dummy)

FIGURE 15-2:
The magick

object dummy on
the RStudio
Viewer tab.

FIGURE 15-3:
The resized

dummy.

308 PART 5 Maps and Images

and rotating it on a vertical axis (also known as flopping):

image_flop(dummy)

Annotating
You can add text to an image in a couple of ways. The following code results in
what you see on the left side of Figure 15-5:

image_annotate(dummy, "I'm smart", size = 50, gravity = "southwest", color =

"gray80")

The right side of Figure 15-5 shows the product of this code:

image_annotate(dummy, "The magick of R", size = 20, color = "gray40",

 boxcolor = "gray90", degrees = 40, location = "+40+150")

Note that the coordinates of location (the starting point of the text box) are in a
string. This is called a geometry string.

FIGURE 15-4:
Rotating, flipping,

and flopping
an image.

FIGURE 15-5:
Two ways to add
text to an image.

CHAPTER 15 Fun with Pictures 309

Combining transformations
In this section, I flop the image, rotate it, give it a light gray background, and then
give it a darker gray border. magick provides two ways of combining these
transformations.

The first (chaining) works like this:

chained.dummy <- image_flop(dummy)

chained.dummy <- image_rotate(chained.dummy,90)

chained.dummy <- image_background(chained.dummy, "gray90", flatten = TRUE)

chained.dummy <- image_border(chained.dummy, "gray50", "10x10"

The second (piping) uses %>% (the pipe operator), which I describe how to use in
Chapter 13. With the tidyverse package loaded, here’s what the code looks like:

piped.dummy <- image_flop(dummy) %>%

 image_rotate(90) %>%

 image_background("gray90", flatten = TRUE) %>%

 image_border("gray50", "10x10")

The second way seems a bit easier to follow.

In both of them, you use flatten = TRUE. What’s that all about? Each image, the
Dummies Man and the background, is in a layer. Flattening combines them into a
single image that has the size of the first image.

Either way you code it, the result is shown in Figure 15-6.

Quick suggested project: Three F’s
You have to love the terminology: First you flopped, and then you flattened. What
does the whole thing look like if you flip, flop, and flatten? Try to envision, and
then verify.

FIGURE 15-6:
Combining image
transformations.

310 PART 5 Maps and Images

Combining images
In addition to combining transformations, magick can combine images. Figure 15-7
shows the Dummies Man pointing to the iris data set I describe how to use in
many of the preceding chapters.

To make this happen, you need a smaller Dummies Man image:

little.dummy <- image_resize(dummy, "103x186")

Next, you need an image of the plot of the iris data set. Just as a refresher, it’s four
measurements of 150 irises, with 50 of each of three species. The measurements
are the length and width of sepals and petals, and the plot in Figure 15-7 shows
petal width and petal length.

Here’s how to save an image of the plot:

ggplot(iris, aes(x=Petal.Length,y=Petal.Width, color=Species))+
 geom_point(size=4)+
 scale_color_manual(values=c("grey0","grey65","grey100"))+
 geom_point(shape=1,size=4,color="black")+
 ggsave("irisplot",device="png",scale=.8)

In a sidebar in Chapter 10 (“Plotting the irises”), I explain the first four lines. The
only new line here is the fifth one: the ggsave() function saves the plot in a PNG
file called iris.plot, at 80 percent of the original plot size.

FIGURE 15-7:
The Dummies

Man, pointing to
the iris data set.

CHAPTER 15 Fun with Pictures 311

You refer to the plot as background and use image_backgroud() to do it:

background <- image_background(iris_plot, "white")

You use the magick function image.composite() to put the background together
with the little.dummy and produce Figure 15-7:

image_composite(image=background, composite_image=image_flop(little.dummy),

offset = "+615+200")

The offset argument positions the flopped little.dummy. The positioning infor-
mation is in a geometric string. Think of the upper left corner as the origin (0,0).
Rightward (the first coordinate) is positive, and downward is positive, too. So this
is 615 pixels to the right and 200 pixels down from the upper left corner.

Animating
Stationary images aren’t the only kind that magick deals with. Animation, in fact,
is a big part of this package. Figure 15-8 shows a gyroscope. When it opens in the
viewer, it’s spinning.

The image comes from this URL:

https://commons.wikimedia.org/wiki/File:Gyroscope_precession.
gif - /media/File:Gyroscope_precession.gif

FIGURE 15-8:
This gyroscope

GIF spins
whenever it

opens on the
Viewer tab.

https://commons.wikimedia.org/wiki/File:Gyroscope_precession.gif#/media/File:Gyroscope_precession.gif
https://commons.wikimedia.org/wiki/File:Gyroscope_precession.gif#/media/File:Gyroscope_precession.gif

312 PART 5 Maps and Images

Right-click the image, select Save Image As from the pop-up menu that appears,
and save it in your Documents folder under its given name: Gyroscopic_preces-
sion. This code makes it a magick object:

gyroscope <- image_read("Gyroscope_precession.gif")

This command

print(gyroscope)

puts it in the viewer and prints 30 rows in the Console window, indicating that
this gif consists of 30 frames. Each frame, of course, is a .gif image with a slightly
different view of the gyroscope. Putting each frame onscreen in rapid succession
gives the illusion of animation.

This command

rev(gyroscope)

reverses the direction of the rotation.

Making your own morphs
You can create your own animations. One possibility is to make one image appear
to gradually become another. This is called morphing, and the magick function that
does this is called image_morph().

A good example is a shrinking Dummies Man:

shrinking.dummy <- image_morph(c(dummy,little.dummy), frames=20)

The first argument is a vector of two images. The first will morph into the second.
The second argument is the number of frames between the two images. The func-
tion creates those frames for you. (How does it do this? Well . . . magickly.)

The image_animate() function puts the animation in the Viewer window:

image_animate(shrinking.dummy, loop = 10)

The loop argument specifies how many times to show the animation. Without
that argument, it just goes on and on.

I can’t show you the morphing in a figure, of course. You’ll just have to try it for
yourself!

CHAPTER 15 Fun with Pictures 313

Project: Two Legends in Search of a Legend
I’ve shown you images, animated images, and combined stationary images. This
project walks you through the next step: Combine an image with an animated
image.

Figure 15-9 shows the end product — the plot of the iris data set with comedy
icons Laurel and Hardy positioned in front of the plot legend. When you open this
combined image in the Viewer, you see Stan and Ollie dancing their little derbies
off. (The derbies don’t actually come off in the animation, but I think you catch
my drift.)

Getting Stan and Ollie
The Laurel and Hardy GIF lives at www.animatedimages.org/img-animated-
dancing-image-0243-79244.htm. Right-click the image and select Save Image As
from the pop-up menu that appears. Save it as animated-dancing-image-0243 in
your Documents folder.

Then read it into R:

l_and_h <- image_read("animated-dancing-image-0243.gif")

Applying the length() function to l_and_h

> length(l_and_h)

[1] 10

FIGURE 15-9:
Laurel and Hardy,

dancing in front
of the legend in

the iris plot.

http://www.animatedimages.org/img-animated-dancing-image-0243-79244.htm
http://www.animatedimages.org/img-animated-dancing-image-0243-79244.htm

314 PART 5 Maps and Images

indicates that this GIF consists of ten frames.

To add a coolness factor, make the background of the GIF transparent before
image_read() works with it. The free online image editor at www.online-image-
editor.com does the job quite nicely.

Combining the boys with the background
If you use the image combination technique from the preceding section, the code
looks like this:

image_composite(image=background, composite_image=l_and_h, offset = "+510+200")

The picture it produces looks like Figure 15-9 but with one problem: The boys
aren’t dancing. Why is that?

The reason is that image_composite() combined the background with just the
first frame of l_and_h, not with all ten. It’s exactly the same as if you had run

image_composite(image=background, composite_image=l_and_h[1],

 offset = "+510+200")

The length() function verifies this:

> length(image_composite(image=background, composite_image=l_and_h,

 offset = "+510+200"))
[1] 1

If all ten frames were involved, the length() function would have returned 10.

To get this done properly, you have to use a magick function called image_apply(),
which I tell you about next.

Explaining image_apply()
So that you fully understand how this important function works, I digress for a
moment and describe an analogous function called lapply().

If you want to apply a function (like mean()) to the variables of a data frame, like
iris, one way to do that is with a for loop: Start with the first column and calcu-
late its mean, go to the next column and calculate its mean, and so on until you
calculate all the column means.

http://www.online-image-editor.com/
http://www.online-image-editor.com/

CHAPTER 15 Fun with Pictures 315

For technical reasons, it’s faster and more efficient to use lapply() to apply
mean() to all the variables:

> lapply(iris, mean)

$Sepal.Length

[1] 5.843333

$Sepal.Width

[1] 3.057333

$Petal.Length

[1] 3.758

$Petal.Width

[1] 1.199333

$Species

[1] NA

A warning message comes with that last one, but that’s okay.

Another way to write lapply(iris, mean) is lapply(iris, function(x)
{mean(x)}).

This second way comes in handy when the function becomes more complicated.
If, for some reason, you want to square the value of each score in the data set and
then multiply the result by three, and then calculate the mean of each column,
here’s how to code it:

lapply(iris, function(x){mean(3*(x^2))})

In a similar way, image_apply() applies a function to every frame in an animated
GIF. In this project, the function that gets applied to every frame is
image_composite():

function(frame){image_composite(image=background, composite_image=frame,

offset = "+510+200")}

So, within image_apply(), that’s

frames <- image_apply(image=l_and_h, function(frame) {

 image_composite(image=background, composite_image=frame, offset = "+510+200")
})

316 PART 5 Maps and Images

After you run that code, length(frames) verifies the ten frames:

> length(frames)

[1] 10

Getting back to the animation
The image_animate() function puts it all in motion at ten frames per second:

animation <- image_animate(frames, fps = 10)

To put the show on the screen, it’s

print(animation)

All together now:

l_and_h <- image_read("animated-dancing-image-0243.gif")

background <- image_background(iris_plot, "white)

frames <- image_apply(image=l_and_h, function(frame) {

 image_composite(image=background, composite_image=frame, offset = "+510+200")
})

animation <- image_animate(frames, fps = 10)

print(animation)

And that’s the code for Figure 15-9.

One more thing. The image_write() function saves the animation as a handy
little reusable GIF:

image_write(animation, "LHirises.gif")

Suggested Project: Combine an
Animation with a Plot

This suggested project is to replicate the previous project but with a different
background and a different animated GIF. Which plot? Which GIF? You decide.

CHAPTER 15 Fun with Pictures 317

One possibility is to use a map from Chapter 14 as the background. (Perhaps it’s a
map you developed in Chapter 14’s “Suggested Project” section.) Then search the
web for an animated GIF. Because most of the Chapter 14 maps deal with airports,
you might look for a GIF of a plane and put that one on your map. You’ll find a lot
of animated planes here (scroll to the bottom of the web page):

http://bestanimations.com/Transport/Aircraft/Aircraft.html

Finally, use the magick functions to put your background together with your ani-
mation, and then use image_write() to save it as a GIF.

If you decide to use the Wisconsin airport map as the background and Jumbo-
05-june.gif from bestanimations.com, and then save your work as GIF, it just
might look like Figure 15-10.

Good luck!

FIGURE 15-10:
The airports of

Wisconsin, with
an animated

plane.PE and bw:
We eliminate this
following caption

thing, right?

http://bestanimations.com/Transport/Aircraft/Aircraft.html

CHAPTER 16 More Than Ten Packages for Your R Projects 321

Chapter 16
More Than Ten Packages
for Your R Projects

The projects I walk you through in this book are vehicles for sharpening your
R skill set. These projects depend on R packages specialized for the topics
I cover. In this chapter, I tell you about some packages that can serve as the

foundation for additional projects, and for further honing your R skills.

These packages address subject areas I cover in this book, and one area that
I don’t.

Machine Learning
The goal of the caret package is to make it easy for you to work with machine
learning. Consistent with R formula notation, its simple syntax connects with a
huge array of machine learning methods. Additionally, the package offers a num-
ber of data sets to try them out on. If I were writing a book about the gamut of
machine learning, I’d include this package. (In fact, it might cover only this
package.)

 » Machine learning packages

 » Database packages

 » Packages for maps and images

 » Text analysis packages

322 PART 6 The Part of Tens

As its name implies, the neuralnet package is all about neural networks. It goes
beyond nnet (the package that Rattle interfaces with) in allowing more than one
hidden layer and providing a built-in function to visualize the trained network.

Speaking of Rattle, it’s worth your time to take a second look at one of the pack-
ages it interfaces with. The e1071 package, which rattle uses for support vector
machines (see Chapter 9), provides a number of functions for other kinds of
machine learning, including several types of cluster analysis.

Databases
If you’re going to work with large data sets, (say, around 100GB in RAM) the
data.table package is for you. Its syntax is designed to minimize coding time for
operations like subsetting, selecting, joining, and more.

The gdata package has a variety of functions for manipulating data, from medical
unit conversion to pulling out components of date-and-time objects. You’ll also
find functions for manipulating text strings, working with Excel spreadsheets,
and joining data frames. And I’ve just scratched the surface.

Maps
If you progress into mapping beyond Chapter 14, consider the GEOmap package.
This package’s functions perform some pretty advanced topographic and geologi-
cal mapping. You can also test your large-data manipulation skills (and perhaps
use data.table) on its EHB.LLZ data frame, which provides the latitude, longi-
tude, and depth of 119,000 earthquakes.

How does GEOmap work? Very well, thank you. Although its subject matter is
advanced, its syntax is straightforward. For a map of, oh, the whole world, here’s
what you do:

data(worldmap)

plotworldmap(worldmap)

The result is shown in Figure 16-1. Those numbers at the bottom will most likely
look better on your screen.

CHAPTER 16 More Than Ten Packages for Your R Projects 323

To superimpose topography and geology, GEOmap functions work with data from
the geomapdata package.

Okay, so topography and geology might not be your cup of tea. Instead, you’re
interested in plotting maps that show the geographic distribution of a particular
attribute, like rainfall, dental care, or car ownership. In that case, consider the
tmap package. Similar in operation to ggplot, its functions enable you to create
colorful, informative thematic maps. Just for starters, Figure 16-2 shows how the
tmap function qtm() maps the world:

data(World)

qtm(World)

If you’re looking for map-related data to plot, you’ll find quite a bit of it in the
maps package. One data set has latitude, longitude, and population for Canadian
cities. In Chapter 14, you might recall, I use the analogous maps data set for US
cities. Another data set in this package has the info for cities throughout the world.
Still other data sets provide information on ozone concentration in 41 US cities
and on unemployment in US counties.

FIGURE 16-1:
The world, as

mapped by the
GEOmap function

plotworldmap().

324 PART 6 The Part of Tens

Image Processing
If you enjoyed all the things that magick does with images, take a look at what
imager does with photographs. This package gives R programmers access to a
C++-based image processing library called Climage. The range of what imager
functions can do is extensive. A black-and-white page can’t really do justice to it
all, so you’ll just have to take my word for it.

Text Analysis
Text analysis, a topic I don’t cover in this book, is the process of extracting infor-
mation from text that a computer can process. It’s sort of like trying to make order
out of the chaos of written language. In other words, this process turns unstruc-
tured documents into structured data sets.

Like maps and image processing, R isn’t known as a language for text analysis.
But like those two areas, R’s capabilities in this field are constantly expanding.
Here are two packages that are fueling the expansion:

 » koRpus: This package can analyze a text’s readability, its word frequencies (how
many times each word occurs in the text), and its lexical diversity (how many unique
words are in it). The first thing a text analyzer has to do is called tokenizing the text.
This is the process of identifying each word and its part of speech (noun, verb,
and so on.), which then enables statistical analysis of the text. To tokenize properly,
you have to install additional (non-R) software. If all you want to do is distinguish
between words and numbers, koRplus has a built-in tokenize() function.

FIGURE 16-2:
The world, as

mapped by
the tmap

function qtm().

CHAPTER 16 More Than Ten Packages for Your R Projects 325

 » SentimentAnalysis: Sentiment analysis takes text analysis one step further:
This type of analysis extracts attitudes and emotions from text. The aptly
named SentimentAnalysis package provides functions for doing just that.
Its functions use built-in dictionaries to decide whether a text is positive or
negative.

Here’s an example to show you how text analysis works. I copied this from
www.dummies.com.

People are becoming more aware of R every day as major institutions are adopting
it as a standard. Part of its appeal is that it’s a free tool that’s taking the place of
costly statistical software packages that sometimes take an inordinate amount of
time to learn. Plus, R enables a user to carry out complex statistical analyses by
simply entering a few commands, making sophisticated analyses available and
understandable to a wide audience.

This passage comes from promotional material for a book. If I recall correctly, the
book is entitled Statistical Analysis with R For Dummies, but my memory might be a
bit hazy on this.

I store the www.dummies.com sentences as a vector of three strings in an object
called statrfd. Next, I use the analyzeSentiment() function to do the analysis:

sentiment <- analyzeSentiment(statrfd)

The result is a list with a number of properties. The $SentimentGI property shows
this:

> sentiment$SentimentGI

[1] 0.3333333 0.1176471 0.1764706

The three positive numbers indicate that each sentence expresses positive
 sentiment. Just to confirm:

> convertToDirection(sentiment$SentimentGI)

[1] positive positive positive

Levels: negative neutral positive

Try this one on some sentences of your own!

Developers continually add new packages to the Comprehensive R Archive Network
(CRAN). To search CRAN for packages that might interest you, point your browser
to www.rdocumentation.org/.

http://www.dummies.com/
http://www.dummies.com/
http://www.rdocumentation.org/

CHAPTER 17 More than Ten Useful Resources 327

Chapter 17
More than Ten Useful
Resources

In this chapter, I tell you about books and websites that help you learn more
about the areas I cover in this book. Rather than split the information between
websites and books, I thought it best to organize by topic.

Without further ado . . .

Interacting with Users
If you want to delve deeper into R applications that interact with users, start with
this tutorial by shiny guiding force Garrett Grolemund:

https://shiny.rstudio.com/tutorial

For a helpful book on the subject, consider Chris Beeley’s Web Application
 Development with R Using Shiny, 2nd Edition (Packt Publishing, 2016).

 » Shiny-related resources

 » Books and websites on machine
learning

 » Resources for databases, maps,
and images

https://shiny.rstudio.com/tutorial

328 PART 6 The Part of Tens

Machine Learning
For the lowdown on all things Rattle, go directly to the source: Rattle creator
Graham Williams has written Data Mining with Rattle and R: The Art of Excavating
Data for Knowledge Discovery (Springer, 2011). The companion website is here:

https://rattle.togaware.com

The University of California-Irvine Machine Learning Repository plays such a
huge role in the book you’re reading (see Chapters 6–12) that I thought I should
mention it again. Here’s how its creator prefers that I tell you about it:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.
edu/ml]. Irvine, CA: University of California, School of Information and Computer
Science.

Thank you, UCI Anteaters!

If machine learning interests you, take a comprehensive look at the field (under
its other name, “statistical learning”): Gareth James, Daniela Witten, Trevor Hastie,
and Robert Tibshirani’s An Introduction to Statistical Learning with Applications in R
(Springer, 2017).

An Introduction to Neural Networks, by Ben Krose and Patrick van der Smagt, is a
little dated, but you can get it for the low, low price of nothing:

www.infor.uva.es/~teodoro/neuro-intro.pdf

After you download a large PDF, it’s a good idea to upload it into an ebook app, like
Google Play Books. That turns the PDF into an ebook and makes it easier to navi-
gate on a tablet.

Databases
The R-bloggers website has a nice article on working with databases. Check it out
here:

www.r-bloggers.com/working-with-databases-in-r

Of course, R-bloggers has terrific articles on a lot of R-related topics!

https://rattle.togaware.com
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.infor.uva.es/~teodoro/neuro-intro.pdf
https://www.r-bloggers.com/working-with-databases-in-r/

CHAPTER 17 More than Ten Useful Resources 329

I learned quite a bit about RFM (Recency Frequency Money) analysis and customer
segmentation at www.putler.com/rfm-analysis.

I have a feeling you will, too.

Maps and Images
The area of maps is a fascinating one. In Chapter 14, I show you the easiest way to
get started. You might be interested in something at a higher level. If so, read
Introduction to visualising spatial data in R by Robin Lovelace, James Cheshire, Rachel
Oldroyd (and others). You’ll find it at

https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf

David Kahle and Hadley Wickham’s ggmap: Spatial Visualization with ggplot2 is also
at a higher level than Chapter 14 of this book. Point your browser here:

https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

Fascinated by magick? The best place to go is the primary source:

https://cran.r-project.org/web/packages/magick/vignettes/intro.
html - drawing_and_graphics

https://www.putler.com/rfm-analysis/
https://cran.r-project.org/doc/contrib/intro-spatial-rl.pdf
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://cran.r-project.org/web/packages/magick/vignettes/intro.html#drawing_and_graphics
https://cran.r-project.org/web/packages/magick/vignettes/intro.html#drawing_and_graphics

Index 331

Symbols
!duplicated() function, 263
symbol (octothorpe), 18
$ (dollar sign), 24, 26, 27
$SentimentGI property, 325
%% (double percent sign), 29
%>% (pipe operator), 277, 278,

309
() (parentheses), 15, 87
. (period), rpart() function, 170
: (colon), 19
[] (brackets), 19, 22–23, 24–25,

26
~ (tilde operator), 35, 170
+ (plus sign), 58
== (double equal sign), 26

A
activation functions, neural

networks, 239–240
aes() function

grouped bar plots, 62, 65
histograms, 60
overview, 58
random sampling web app, 91
scatterplots, 69–70
web app based on data, 105

aesthetic mapping, 58
aggregate() function, 258
airlines data frame, 283
airports

abbreviations for, 280–283
departure delay data, 285–287,

288
of USA, mapping, 299–303
of Wisconsin, mapping,

293–298

airports data frame, 280–283
airquality data frame

box plots, 56–57, 73–75
dashboard, 141–142
density plots of, 45–47
histogram of, 44–45, 58, 59–61
overview, 33–34
scatterplot matrix, 55–56
scatterplots, 53–55, 67–71
shiny app based, 96–106

analysis of variance (ANOVA),
223, 288

analyzeSentiment() function,
325

animations, 311–317
annotating images, 308
anorexia data frame, 76
aov() function, 288
append() function, 20, 266
applications. See interactive

applications; specific
applications

app.R applications, 81
aq.no.missing data frame, 98
aq.no.NA data frame, 69, 72
arguments, in functions, 15–16.

See also specific arguments
arrays, 23
as.data.frame.matrix()

function, 269
as.Date() function, 259
as.factor() function, 73, 230
assignment operator, 13
assoc() function, 271
Associate tab (Rattle window),

159
assocstats() function, 271
attaching packages, 32

average of numbers in vector,
finding, 14

axis() function, 57
axis.lty argument, barplot()

function, 48

B
background, histogram, 61
background argument, box()

function, 113
backpropagation, in neural

networks, 241
banknote+authentication UCI

data set, 245–252
bar plots, 47–49, 61–62, 285–286
barplot() function, 48–49, 51,

262
base R graphics. See graphics
beside=T argument, barplot()

function, 51
between sum of squares, 222,

225, 234–235
bg argument, pairs() function,

154
bias, in neural networks, 240
bins, histogram, 60
binwidth, 60, 92–93
body, dashboard user interface,

109
box plots
ggplot2 package, 73–75
iris data set relationships,

156
overview, 56–57
Rattle-rendered, 162, 163
Suggested Projects, 76

boxes, dashboard user
interface, 110–117

boxplot() function, 57

Index

332 R Projects For Dummies

brackets ([]), 19, 22–23, 24–25,
26

branch = 0 argument, prp()
function, 181

branch = 1 argument, prp()
function, 172

branches, decision tree,
167–168

Browse button (RStudio), 108
browser-based R applications.

See also random sampling
web app

based on data, 96–106
overview, 79
recomputing in, 96
Suggested Projects, 106

brush argument, plotOutput()
function, 135

brushedPoints() function, 140
brushing graphics, 135, 138,

140, 141, 142
bty = “n” argument, legend()

function, 154, 191
by argument, inner_join()

function, 282
byrow=T argument, 22

C
c() function, 12–13, 18, 19
callable objects, 87
capitals, mapping state, 301–302
Car Evaluation dataset,

decision tree for, 177–182
caret package, 321
Cars93 data frame, 47–49,

52–54, 106
caTools package, 209, 241–242
cbind() function, 27, 69
CDNOW data set, 272–273
centers = i argument,

kmeans() function, 266
centroids, 222, 223, 224–225,

265
cex argument, legend()

function, 154, 191

cex.axis argument, plot()
function, 102

cex.lab argument, for loop,
151

chaining transformations, 309
character strings matrix, 21
character vector, 18
Cheat Sheet, explained, 4
chi squared, 271
child nodes, decision trees, 168
chisq.test() function, 284
Choose Directory dialog box,

80–81, 108
classes, in RFM analysis, 256,

261–262, 264–265, 270–271
classification problems, 146.

See also support vector
machine (SVM)

classification rule, decision
trees, 168

classification tree, 168, 170
click argument, plotOutput()

function, 135
clipping, 154, 155
Cluster tab (Rattle window),

159, 163, 164, 166, 234, 268
clusters, 162–164, 166, 265,

270–271. See also k-means
clustering

Clusters box (Rattle window),
234, 268

col = black to plot()
argument, plot() function,
191

col=color.names argument,
barplot() function, 51

collapsible = TRUE
argument, tabItems()
function, 131

colon (:), 19
color argument, geom_bar()

function, 280, 286
color.palette argument,

plot() function, 211
colors

dashboard box status,
112–113

grey scale, changing graphics
to, 157

grouped bar plots, 50, 61–62
hierarchical cluster analysis,

165
in histograms, 61
k-means clustering, 230–231
in scatterplots, 68, 70
using in graphics, 52

column() function, 118–120
comma-separated value (CSV)

format, 146, 208, 256
comments, 18
complexity parameter (cp), 175,

181–182
Comprehensive R Archive

Network (CRAN), 7–8, 325
confusion matrices, 244–245,

249. See also error matrices
Congressional Voting

Records data set, 214–220
Console pane (RStudio), 8, 9,

10, 12
continuation prompt, 17
correlation coefficient, 73, 101,

223
counter, 28
counterfeit currency, detection

of, 245–252
countries, in Online Retail RFM

analysis, 262–265
criteria, inside brackets, 25, 26
crs$kmeans object, 234,

268–269
crs$nnet object, 249, 252
crs$rf object, 199
customer segmentation. See

RFM analysis

D
danger status, 113
dashboardBody() function,

110, 118, 120, 129
dashboardHeader() function,

112

Index 333

dashboards
boxes, 110–117
columns, 117–120
interacting with graphics,

135–142
overview, 107
shinydashboard package,

107–108
sidebar, 126–134
statistics in, 125–126
Suggested Projects, 125–126
tabs, 121–125
user interface overview, 109

dashboardSidebar() function,
129

data, web app based on
base R version, 97–104
ggplot version, 104–106
overview, 96–97

data frames. See also packages
creating for SVM, 208
creating in reactive context, 94
joining with key variables,

281–283
overview, 25–27
for RFM analysis, 257–259,

263, 268–269
tidyverse packages, 37–41
turning matrices into,

64–66
turning options vector into,

98–99
data() function, 302
Data Name box (Rattle

window), 159, 160
Data Set Description web page,

147, 148–149, 178
data sets, large, 2. See also

flights data set; RFM
analysis

Data tab (Rattle window)
decision trees, 173–174, 179,

183
k-means clustering, 233, 234,

267, 268

neural networks, 247, 248
overview, 159–160
party affiliations SVM, 216
random forest for glass.uci,

195–196
databases, 322, 328–329
data.frame() function, 25–26,

64
datasets package, 31–34, 67.

See also airquality data
frame; HairEyeColor
data set

dataSymbol argument, plot()
function, 211

data.table package, 322
date format, in RFM analysis,

259
dblclick argument,

plotOutput() function,
135

decision rules, 186, 194
decision trees. See also random

forests
complex, 177–182
components of, 167–169
creating, 169–171
overview, 167
plotting, 171–173
Quick Suggested Project,

181–182
in Rattle, 173–177
rules for individual, 194
Suggested Project, 182–183

demographic data, in RFM
analysis, 262–265

dendrogram, 163–164
density plots, 45–47, 127–128,

131, 151–152, 155
departure delay data

flight duration, 287–289
Quick Suggested Project,

284
weekday and airport, 285–287
weekday variable, 283–284

dependent variable, 35, 70

df data frame, 91
df.lv data frame, 102
didrooRFM package, 257
dim() function, 21
direct relationships, 73
directory, shiny apps, 80, 82
distance, Euclidean, 223
dollar sign ($), 24, 26, 27
double equal sign (==), 26
double percent sign (%%), 29
dplyr package, 40–41
drop_na() function, 37–38,

69, 98
duration, flight, 287–289

E
e1071 package, 207–212, 322
EHB.LLZ data frame, 322
elbows, 226, 227
enplanements, 293
entropy, 246
Environment tab (RStudio), 8, 13
error matrices. See also

confusion matrices
for decision trees, 176–177,

181
for random forests, 189,

198–199
error rates, random forests,

191–192
err.rate attribute, 190, 199
escape character, 12
Euclidean distance, 223
Evaluate tab (Rattle window)

decision trees, 176–177, 181
neural networks, 249
overview, 159
party affiliations SVM, 220
random forests, 196
Rattle log, working with,

165
Execute icon (Rattle window),

159

334 R Projects For Dummies

Explore tab (Rattle window)
decision trees, 179
machine learning with Rattle,

161, 162
overview, 159
party affiliations SVM, 217
random forest for glass.uci,

196–197
extra = “auto” argument,

prp() function, 172

F
F value, aov() function, 288
facet_grid() function, 287
facets plot, 286–287
factor() function, 25, 27
factors, 73
feedforward, in neural

networks, 240
female data, HairEyeColor

data set, 50–51
Files tab (RStudio), 9
fill = “gray100” argument,

geom_bar() function, 280
fill argument
aes() function, 62
geom_histogram() function,

61
fill=TRUE argument, infoBox,

133
filter() function, 40–41, 49,

277, 282
findRFM() function, 257–262,

263
flattening images, 309
flights data set

departure delays, 283–289
glimpsing and viewing,

276–277
joining to airports data

frame, 280–283
overview, 275–276
piping, filtering, and grouping,

277–279

Quick Suggested Project, 283
Suggested Project, 289–290
visualizing, 279–280

flipping images, 307–308
flopping images, 307–308
fluid pages, 83–84, 100
fluidPage() function, 83, 84
fluidRow() function, 110, 118
for loops

applying functions to data
frame variables, 314–315

grey scale, changing color
scheme to, 157

k-means clustering, 226–227,
266

machine learning, 151
neural networks, 251–252
overview, 28–29
scatterplots, 69

formula argument, plot()
function, 210

formulas, 35–36, 57
frequencies

in bar plots, 47–49
in grouped bar plots, 49–51,

64–66
in histograms, 44–45
in pie graphs, 53
word, in koRpus package, 324

frequency, RFM analysis, 255,
269

functions, 15–17. See also
packages; specific functions

G
gather() function, 40, 64, 67
gdata package, 322
geocode() function, 296–297,

299
geographic data, for maps,

294–297
geom functions, 58–59
geom_bar() function, 61–62, 65,

67, 280, 286, 287

geom_boxplot() function,
73–74

geom_errorbar() function, 287
geom_histogram() function,

58, 60
geom_point() function, 67, 70,

74, 105, 204, 230
geom_polygon() function,

300–301
geom_smooth() function, 105
GEOmap package, 322–323
geomapdata package, 323
geometry string, 308
GGally package, 72, 156
ggmap package, 293, 296, 329
ggpairs() function, 72, 156
ggplot() function

airports of Wisconsin map,
298, 299

box plots, 73, 76
flights data set, 279,

285–286, 287
grouped bar plot, 62, 65, 67
k-means clustering, 230
overview, 58, 59
random sampling web app,

90–91
scatterplots, 69, 204
web app based on data, 105

ggplot2 package
airports of Wisconsin map,

293, 294
bar plots, 61–62
box plots, 73–76
grammar of graphics, 57–58
grouped bar plots, 62–67
histograms, 59–61
iris data set relationships,

155–157
k-means clustering, 230–231
neural networks, 246–247
overview, 41, 58–59
random sampling web app,

89–95

Index 335

resources for, 329
scatterplot matrix, 72–73
scatterplots, 67–71, 202, 204
web app based on data,

104–106
ggsave() function, 310
ggvarImp() function, 193
GIF animations, 311–317
gini index, 190–191
glass.uci data set

k-means clustering, 231–236
random forest for, 194–199

glimpse() function, 276
Gnu Image Manipulation

Program (GIMP) toolkit, 158
grammar of graphics, 57–58
graphics. See also dashboards;

ggplot2 package;
interactive applications;
maps; specific graphic types

bar plots, 47–49
box plots, 56–57
colors, using in, 52
density plots, 45–47
grammar of, 57–58
grouped bar plots, 49–51,

52–53
histograms, 44–45
iris data set relationships,

152–154
overview, 43
pie graphs, 53
Quick Suggested Project, 51,

52–53
scatterplot matrix, 55–56
scatterplots, 53–55
Suggested Projects, 66–67, 76
user interaction with, 135–142
web app based on data,

97–104
grep() function, 52
grey scale, changing color

scheme to, 157

group aesthetic, geom_
polygon() function, 301

Group By box (Rattle window),
196

group_by() function, 277
grouped bar plots, 49–53,

62–67
gsub() function, 296
gyroscope animation, 311–312

H
h2() function, 122
HairEyeColor data set, 23,

49–51, 64–66
head() function, 33, 67, 178
header, dashboard UI, 109
height argument,

plotOutput() function,
110

help, for functions, 16
Help tab (RStudio), 9, 10, 31, 32
hidden layer, neural networks,

239–240
Hidden Layer Nodes box

(Rattle window), 247
hierarchical cluster analysis,

162–166
high-frequency customer, 256
hinges, in box plots, 57
hist() function, 44–45, 84–85,

111, 131
histdata variable, 86–87, 95,

110
histograms

dashboard user interface,
112–113, 125–126

distributions of variables in,
150–151

ggplot2 package, 58, 59–61
iris data set relationships,

155
overview, 44–45
random sampling web app, 91,

92–93

RFM analysis, 260
shiny apps, 82–83, 87–88
in sidebar, 131

History tab (RStudio), 8, 14
House of Representatives, party

affiliations in, 214–220
hover argument, plotOutput()

function, 135
hyperbolic tangent, 240
hyperplane, 205
hypotenuse, 17

I
icon() function, 129
icons

explained, 3–4
in valueBoxes, 133

if statement, 28–29, 69
image classification, neural

networks for, 245–252
image processing

animating, 311–312
annotating, 308
combined stationary images,

313–316
combining images, 310–311
combining transformations,

309
magick package overview,

305–306
morphing, 312
overview, 305
packages for, 324
Quick Suggested Project, 309
reading image into R, 306–307
resources for, 329
rotating, flipping, and flopping,

307–308
Suggested Project, 316–317

image_animate() function,
312, 316

image_apply() function,
314–316

336 R Projects For Dummies

image_background() function,
311

image_composite() function,
311, 314, 315

image_morph() function, 312
image_resize() function, 306
image_write() function, 316,

317
imager package, 324
importance, random forest

variables, 188, 190, 193,
198, 199

independent variable, 35, 70
infoBoxes, 127, 132–133
inner_join() function,

281–283
input layer, neural networks,

239–240
input$number, random

sampling web app, 83, 85,
91

inputs
in machine learning, 145–146
shiny apps, 83, 85, 87

inset argument, legend()
function, 154

Install Packages dialog box,
36–37

interactive applications. See also
random sampling web app

based on data, 96–106
overview, 2, 79
recomputing in, 96
resources for, 327
Suggested Projects, 106

intercept, 101
internal nodes, decision trees,

168, 172
inverse relationships, 73
iris base R data set

k-means clustering, 221–231
neural network for, 241–245
overview, 147
support vector machine,

201–207, 212

iris.uci data set
cleaning up, 148–150
decision tree components,

167–168
decision tree construction,

168–171
decision trees in Rattle,

173–177
downloading, 147–148, 173
exploring, 150–152
overview, 147
random forests, 186–193
relationships in, exploring,

152–156
using Rattle package with,

159–164, 166
iterations, 28–29

K
kable() function, 278–279, 285
kernel argument
ksvm() function, 213
svm() function, 209

Kernel box (Rattle window),
218

kernels, 206–207, 212
kernlab package, 212–220
key variables, 281–283
keyword matching, 15
k-means clustering

optimum number of clusters,
226–229

output, understanding,
224–225

overview, 221–223
plotting clusters, 225–226,

230–231
practice project, 231–235
Quick Suggested Project, 229
RFM analysis, 265–271
setting up and analyzing data,

223
Suggested Project, 235–236

kmeans() function, 223–225,
226–227, 266

knitr package, 278
koRpus package, 324
ksvm() function, 213
kurtosis, 125–126

L
label argument
sliderInput() function, 110
wday() function, 284

labels =c argument, scale_
fill_grey() function, 67

labs() function, 59, 61, 74, 92,
105

langley, 98
lapply() function, 314–315
large data sets, 2. See also

flights data set; RFM
analysis

learning, machine. See machine
learning (ML) projects

learning-by-doing, 1
leaves, decision tree, 168
legend() function, 154, 191
legends, 51, 152, 154
length() function, 21, 313–314
lexical diversity, koRpus

package, 324
library, putting packages into,

31, 32
library() function, 32
LifeCycleSavings data frame,

67
linear model, 35–36
linearly separable data, 202–203
lines() function, 46–47, 131,

155
list() function, 24, 258
lists, 24–25, 36
lm() function, 35, 76
Log tab (Rattle window)

decision trees, 180

Index 337

k-means clustering, 234, 268
neural networks, 249
overview, 159
random forest for glass.uci,

199
working with, 165

logical operator, 26
logical vector, 19
long format, 39–40, 64
loop argument, image_

animate() function, 312
loss entry, decision tree text

output, 170, 171
lower quartile, in box plots, 57
lower.panel=NULL argument,

plot() function, 165
ls() function, 13
lty argument, legend()

function, 191
lubridate package, 272, 283
lv data frame, 99

M
machine learning (ML) projects.

See also Rattle package;
specific machine learning
types; UCI datasets

hierarchical cluster analysis,
162–166

overview, 2, 145–146
packages for, 321–322
resources for, 328

magick package
animating, 311–312
annotating, 308
combined stationary images,

310–311
combining stationary and

animated images, 313–316
combining transformations,

309
installing, 305
morphing, 312

overview, 305–306
Quick Suggested Project, 309
reading image into R,

306–307
resources for, 329
rotating, flipping, and flopping,

307–308
Suggested Projects, 316–317

main argument
hist() function, 45, 85
plot() function, 102

main="" argument, for loop,
151

map_data() function, 294, 299
maps

airport geographic data,
295–297

combining with animation,
316–317

overview, 2, 293
packages for, 293–294,

322–324
plotting airports on state map,

298
Quick Suggested Project, 299
resources for, 329
state geographic data,

294–295
Suggested Projects, 299–303
of USA, 299–303

maps package, 293, 294, 299,
302, 323

mapvalues() function, 149, 195,
232

margin, separation boundary,
203

marketing analysis. See RFM
analysis

MASS package, 76. See also
Cars93 data frame;
UScereal data frame

matrices, 21–23, 64–66
matrix() function, 22–23
maxit argument, 251

mean, standard error of, 278,
280

mean() function, 14, 26, 34,
211–212, 314–315

median, in box plots, 56
menuItem() function, 129
method = “anova” argument,

rpart() function, 170
method = “class” argument,

rpart() function, 170
method argument, svm()

function, 209
mfrow argument, par()

function, 150–151
misclassification

in decision trees, 169, 170,
171, 176–177

neural networks, 245
in random forests, 190–191
soft margin classification, 206

missing data, in packages, 33–34
ML projects. See machine

learning projects; Rattle
package; specific machine
learning types; UCI datasets

mod operator, 29
Model tab (Rattle window)

decision trees, 174–175, 180
neural networks, 247, 248
overview, 159
party affiliations SVM, 218, 219
random forest for glass.uci,

198
modular arithmetic, 28–29
moments package, 125
money, in RFM analysis, 255,

269
morphing images, 312
mtry argument,

randomForest() function,
189

multi-argument functions, 15–16
mushroom UCI dataset, 200
mutate() function, 283–284

338 R Projects For Dummies

N
n() function, 282
NA, in output, 33–34
naming arguments, 16, 24
nearPoints() function, 138,

140
nervous system, networks in,

237–238
neural networks

building, 241–243
evaluating, 244–245
hidden layer, 239–240
for image classification,

245–252
input layer, 239–240
for iris data frame, 241–245
nervous system networks,

237–238
output layer, 239, 240
overview, 237, 238–239
plotting, 243–244
Quick Suggested Project, 245
Suggested Projects, 251–252
training, 241

neuralnet package, 322
NeuralNetTools package,

243–244, 249–250
neurons, 237–238
New Shiny Web Application

dialog box, 80, 81, 82, 108
nn = TRUE argument, prp()

function, 172
nnet() function, 242
nnet package

building neural network,
241–243

evaluating neural network,
244–245

installing, 241–245
plotting neural network,

243–244
Quick Suggested Projects, 245

nodes
decision tree, 167–168
in ML neural networks, 238

nonlinear separability, 205–207
ntree attribute, for random

forests, 190
null hypothesis, 271
numbers matrix, 21
numerical vectors, 19–21
nycflights13 package, 275,

283, 290. See also flights
data set

O
objects
magick, 306–307
overview, 9
seeing in environment, 13

octothorpe (# symbol), 18
offset argument, image.

composite() function, 311
olden() function, 250, 251
online image editor, 314
Online Retail data set RFM

analysis
data for, 256–257
demographic data, 262–265
doing analysis, 260
examining results, 260–262
preparing data, 257–259

OOB (out of bag) error rate,
189–190, 196, 199

Open in Browser option
(RStudio), 83, 90

optimal separation boundary, 204
optimum number of clusters,

226–229, 236
options vector, 98–99, 100
order() function, 269–270
outliers, in box plots, 57
output

in machine learning, 145–146
random sampling web app,

94–95
shiny app based on data, 100
shiny app user interface, 84

output layer, neural networks,
239, 240, 246, 247

P
packages. See also specific

packages
attaching, 32
databases, 322
defined, 31
downloaded, 9
examining data, 33–34
image processing, 324
installing, 31–32, 36–37
machine learning, 321–322
for maps, 293–294, 322–324
overview, 321
searching for, 41
text analysis, 324–325

Packages tab (RStudio), 9, 10, 31,
36, 187

page types, shiny apps, 81, 83
pairs() function, 56, 72,

153–154
pairwise relationships, 55–56,

72–73, 153
par() function, 150–151, 154,

155
parent nodes, decision trees,

168
parentheses (()), 15, 87
partitioning. See also decision

trees
in machine learning, 146
recursive, 169

party affiliations, SVM
identifying, 214–220

paste() function, 85, 102
paste0() function, 138
pch = 21 argument, legend()

function, 154
pch argument, plot() function,

54, 102
period (.), rpart() function, 170
pie charts, 65
pie graphs, 53, 54
pipe operator (%>%), 277, 278,

309
plot character argument, 54

Index 339

plot() function
k-means clustering, 227, 266
neural networks, 252
random forests, 191
Rattle log, 165
scatterplots, 53–55
shiny apps, 102
support vector machine,

210–211, 214
plotnet() function, 243–244,

249–250
plotOutput() function

dashboards, 110, 113
interacting with graphics, 135
interactive applications, 84,

92, 100
plotrix package, 278
plot.rpart() function, 171
Plots tab (RStudio), 9, 43, 165
plotting. See graphics;

maps; specific graphics;
visualizations

plus sign (+), 58
plyr package, 149, 195, 232
position = “dodge”

argument, geom_bar()
function, 286

positional mapping, 16
Pr(>F) value, aov() function,

288
predict() function, 211, 213,

244
prepend() function, 20
primary status, 112
printcp() function, 175
print(dummy) function,

306–307
print(gyroscope) command,

312
printRandomForests()

function, 194
probabilities, in density plots,

45–47
probability=TRUE argument,

hist() function, 131

Project menu (Rattle window),
158–159

prompt, in Console pane,
12, 15

prp() function, 171–172, 175,
180–181

pruning decision trees, 182
pt.bg argument, legend()

function, 154
pt.cex = 2 argument,

legend() function, 154
p-value, 70

Q
qtm() function, 323, 324
Quick Suggested Projects

decision trees, 181–182
departure delay data, 284
flights data set, 283, 284
graphics, 51, 52–53
image processing, 309
k-means clustering, 229
maps, 299
neural networks, 245
overview, 1
RFM analysis, 271
support vector machine, 212
UCI datasets, 151–152

quintiles, in RFM analysis,
255–256

Quit R Session dialog box, 15

R
R. See also specific R language

parts
downloading and installing,

7–8
overview, 1–4, 7
resources for working with,

327–329
working directory, 11–12
writing code, practicing, 12–15

random forests

creating, 187–188
defined, 185
evaluating, 189–191
overview, 185–187
plotting error, 191–192
plotting importance, 193
Rattle project, 194–199
Suggested Project, 200

random sampling web app
creating, 80–83
with ggplot functions,

89–95
reactive context, 86–89,

94–95
server, 84–85, 90–92
tying user interface to server,

85–86
user interface, 83–84

randomForest() function, 187,
188, 189, 190–191

randomForest package,
187–193

rattle() function, 158
Rattle package

complex decision tree,
178–182

complexity parameter,
181–182

decision trees, 173–177,
185–186

installing, 158, 267
with iris data set, 159–164,

166
k-means clustering, 231–236
log, 165
neural networks, 247–252
overview, 157–159
party affiliations SVM, 215–220
printRandomForests()

function, 194
random forests, 194–200
resources for, 328
RFM analysis, 267–270
Suggested Project, 183

340 R Projects For Dummies

R-bloggers website, 328
reactive context, 86–89, 94–95,

100, 137
reactive({}) function, 87, 94,

110, 131
read.csv() function, 147,

256–257, 272
reading image into R, 306–307
recency, in RFM analysis, 255,

269. See also RFM analysis
recomputing, in apps, 96
rectified linear unit, 240
recursive partitioning, 169. See

also decision trees
refractive index, 232
regression, 101, 102, 146
regression analysis, 101, 289
regression tree, 168, 170
relationships between variables

in box plots, 56–57
in iris data set, exploring,

152–157
in scatterplot matrix, 55–56
in scatterplots, 53–55, 67–71
in UCI datasets, 152–156

relative importance, random
forest, 190

Remember icon, explained, 3
rename() function, 282
render({}) functions, 123, 132
renderPlot() function, 84, 87,

90–91, 94, 111
renderPrint({}) function,

140, 141
renderText() function, 121
renderText({}) function,

137–138
renderValueBox() function,

115
rep() function, 20
replacement argument,

sample() function, 188
Rescale box (Rattle window),

268
reshaping data, 39–40

resultsRFM data frame, 260,
263, 266, 267

retail.nondup data frame, 263
retailonline.uci data set.

See Online Retail data set
RFM analysis

rev(gyroscope) command,
312

RFM (recency, frequency,
money) analysis

data for, 256–257
demographic data, 262–265
doing analysis, 260
examining results, 260–262
k-means clustering, 265–271
overview, 255–256
preparing data, 257–259
Quick Suggested Project, 271
resources for, 329
Suggested Project, 272–273

RGtk2 package, 158
right triangles, hypotenuse of,

17
rnorm() function, 85
root, decision tree, 168, 172
root mean square error (RMSE),

251–252
rotating images, 307–308
round() function, 199
rownames_to_column()

function, 38–39, 40, 67, 98,
273

rows, data frame, 27, 34
rpart() function, 169–170, 174,

175, 180
rpart object, 170, 172
rpart package, 169–171
rpart.plot package, 171–173,

180
RStudio

exploring, 11–15
installing, 8
interface, 8–11
working directory, 11–12
writing code in, 12–15

Run App button (RStudio), 86, 92
runif() function, 85, 86, 94
Runs box (Rattle window), 234

S
sample() function, 187, 188
sample.split() function, 209,

241–242
scale() function, 289
scale_color_grey() function,

157
scale_color_manual()

function, 204, 230–231
scale_fill_grey() function,

63, 67, 157
scale_x_discrete() function,

75
scaling data, 289
scatterplot matrix
ggplot2 package, 72–73
iris data set relationships,

152–157
overview, 55–56
Rattle-rendered, 162

scatterplot3d() function, 71
scatterplot3d package, 71
scatterplots
ggplot2 package, 67–71
iris data set relationships,

156
overview, 53–55
of set.vers subset, 202
shiny app based on data,

97–106
script, defined, 79
Scripts pane (RStudio), 10, 12
se=FALSE argument, geom_

smooth() function, 105
seed

decision trees, 186
random forests, 187–188

Seed box (Rattle window), 234
select argument, subset()

function, 34

Index 341

selectInput() function, 100
selections data frame, 100
SentimentAnalysis package,

325
sepals, 147
separability

linear, 202–203
nonlinear, 205–207

separation boundary, 202–203,
205, 206

seq() function, 15, 19
server

dashboard permitting
interaction with graphics,
137, 139–140

dashboard user interface, 109,
110

random sampling web app,
84–86, 88, 90–92

shiny apps, 79, 81–82, 100
sidebar, 131–133

server() function, 83, 84–85
setting parameters, 150–151
Settings menu (Rattle window),

159
set.vers subset, iris data set,

202
shiny package

data, app based on, 96–106
ggplot functions in apps,

89–95
installing, 79
overview, 79
reactive context, 86–89
resources for, 327
server for app, 84–85
simple project, creating, 80–83
tying user interface to server,

85–86
user interface for app, 83–84

shinyApp() function, 82, 109
shinydashboard package

boxes, 110–117
columns, 117–120

installing, 108
interacting with graphics,

135–142
overview, 107–108
sidebar, 126–134
tabBox, 121–126
user interface, overiew, 109

sidebar
dashboard user interface, 109
overview, 126–128
server, 131–133
Suggested Projects, 133–134
user interface, 128–131

sidebarMenu() function, 129
sigmoid, 240
size argument, geom_point()

function, 70
skewness, 125–126
skip layers, 251
slider

dashboard user interface, 110,
111, 112, 113–114

random sampling web app, 83,
92–93

in sidebar, 127, 131, 133–134
sliderInput() function, 83, 84,

92, 110
slope, 101
small calorie, 98
soft margin classification, 206
space argument, barplot()

function, 48
spread() function, 40
stacked bar plot, 64–65
standard error of estimate, 105
standard error of mean, 278,

280
standard scores, 289
stat argument, geom_bar()

function, 65, 286
state airports, mapping,

293–298
state capitals, mapping, 301–302

statistical analysis, 35–36, 271.
See also specific forms of
analysis

statistically significant
relationship, 70, 76

statistics
dashboard for, 125–126
in sidebar, 127

statrfd object, 325
status, dashboard boxes,

112–113
std.error() function, 278
structure, finding in ML projects,

146, 162–164, 166
structures. See also specific

structures
data frames, 25–27
lists, 24–25
matrices, 21–23
numerical vectors, 19–21
overview, 18
vectors, 18–19

subset() function, 34, 52–53,
67, 299

subsets, data set, 34, 202, 208
success status, 113
Suggested Projects

dashboards, 125–126
decision trees, 182–183
flights data set, 289–290
graphics, 66–67, 76
image processing, 316–317
interactive applications, 106
k-means clustering, 235–236
maps, 299–303
neural networks, 251–252
overview, 1
random forests, 200
RFM analysis, 272–273
sidebar, 133–134
support vector machine, 220

sum() function, 14
summarize() function, 278, 282

342 R Projects For Dummies

summary() function
departure delay data, 288
exploring iris data set with,

150
formulas, 35–36
neural networks, 242–243
statistically significant

relationships, 70, 76
summary_dep_delay data

frame, 285
supervised learning, 146, 231.

See also neural networks
support vector machine (SVM)

data frame, creating, 208
e1071 package, 207–212
iris data set, 201–207
kernlab package, 212–214
nonlinear separability,

205–207
overview, 201
plotting, 210–211, 214
practice project, 214–220
Quick Suggested Projects,

212
separation boundary,

202–203
subset, using, 202
Suggested Project, 220
support vectors, 203–205
testing, 211–212
training, 209–210, 213

support vectors, 203–205
svm() function, 209, 212
svSymbol argument, plot()

function, 211
symbolPalette argument,

plot() function, 211
synapses, 237

T
t() function, 22, 51
tabBox, 121–126
tabItems() function, 129–131

table() function
confusion matrix, setting up,

244–245
k-means clustering, 225, 235
RFM analysis, 261–262, 264
table of frequencies for bar

plot, 47
tabPanel, 121, 122, 123, 126
tail() function, 33
Technical Stuff icon, explained, 4
test set

decision tree, 173, 176, 185
neural networks, 241–242
Rattle window, 174
for SVM, 209, 213

Test tab (Rattle window), 159
testing SVM, 211–212
text, adding to images, 308
text analysis packages, 324–325
textOutput() function, 87–88,

94, 121, 122
theme() functions, 59, 63, 105
theme_bw() function, 61
3-dimensional arrays, 23
3-dimensional scatterplot, 71
threshold argument,

nearPoints() function,
140

tibble package, 38–39, 98, 273
tidyr package, 37–38, 40, 64,

69, 98
tidyverse package

combining transformations,
309

exploring, 37–41
installing, 36–37, 275–276

tilde operator (~), 35, 170
Tip icon, explained, 3
titanic package, 182–183, 220
title argument, labs()

function, 92
tmap package, 323, 324
tokenizing text, 324

Tools menu (Rattle window),
159

total sum of squares, 222, 225,
234–235

total within sum of squares,
265–266

tot.withinss attribute, 225,
226–227

totwss vector, 266
training

neural networks, 241
SVM, 209–210, 213

training set
decision tree, 173, 176, 185,

186–187
neural networks, 241–242
random forests, 187
for SVM, 209, 213

Transform tab (Rattle window),
159, 200

transformations, image, 309
transposing

with barplot() function, 51
matrices, 22

triangles, hypotenuse of, 17
tuning parameters, decision

tree, 174
2-dimensional matrices, 21–23
type = 2 argument, prp()

function, 172
type = “b” argument, plot()

function, 227
type= “class” argument,

predict() function, 244

U
UCI (University of California-

Irvine) datasets. See also
iris.uci data set; Online
Retail data set RFM analysis

banknote+authentication,
245–252

Car Evaluation, 177–182
cleaning up data, 148–150

Index 343

Congressional Voting
Records, 214–220

downloading, 146–148
exploring data, 150–152
exploring relationships in data,

152–156
glass, 194–199, 231–236
mushroom, 200
overview, 146
Quick Suggested Project,

151–152
resources for, 328

UniformRandom app. See
random sampling
web app

UniformRandomggplot app,
90–95

unique() function, 258
units, in ML neural networks,

238
unsupervised learning, 146,

162–164, 166, 221, 231.
See also k-means clustering

upper quartile, in box plots, 57
USA map, 299–303
UScereal data frame,

135–142
us.cities data set, 302
user interaction. See interactive

applications
user interface

dashboard, boxes in,
110–117

dashboard, columns in,
117–120

dashboard, interaction with
graphics in, 136–137

dashboard, overview, 109
dashboard, tabBox in,

121–126
random sampling web app,

83–84, 85–86, 87, 90
shiny apps, 81–82, 99–100
sidebar, 128–131

user-defined functions, 16–17

V
validation set, decision tree,

173, 185
valueBox() function, 115
valueBoxes, 114–115, 126, 127,

132, 133
valueBoxOutput, 121, 122
values argument, scale_

color_manual() function,
231

var() function, 14
variables, creating in reactive

context, 94. See also
relationships between
variables

variance, calculating, 14
varlen = 0 argument, prp()

function, 172, 181
vcd package, 271
vectors

combining into data frame,
25–26

numerical, 19–21
overview, 18–19
shiny app based on data, 98
working with, 13–14

verbatimTextOutput, 137
vers.virg data frame,

208–212
View() function, 277, 282
visualizations. See also graphics;

interactive applications;
maps; specific graphics

decision trees, 171–173
flights data set, 279–280
k-means clustering, 225–226,

228, 230–231, 235–236
neural networks, 243–244,

246–247, 249–250
plotting airports on state map,

298
random forests, 191–192, 193
RFM analysis, 261–262
support vector machine,

210–211, 214

W
Warning icon, explained, 4
warning status, 112
wavelet transformation, 246
wday() function, 283, 284
weather conditions, and flight

delays, 289–290
weather data frame, 290
web applications. See interactive

applications
weekdays, departure delay data

for, 283–287, 288
weights

neural networks, 239, 240–241,
242–243, 244

RFM analysis, 260
which() function, 102
whiskers, in box plots, 57
wide format, 39, 40, 64
width argument
column() function, 118–120
glimpse() function, 276

Wikipedia, airport geographic
data from, 295

Wilkinson, Leland, 57
Wisconsin airports, mapping,

293–298
with() function, 27, 71, 269
within sum of squares, 222, 225,

226, 265, 266
working directory, 11–12
workspace, 11
writing functions, 16–17

X
x argument, plot() function, 102
x_column variable, 100
xaxt = n argument, boxplot()

function, 57
xlab argument
barplot() function, 48
hist() function, 45, 85
plot() function, 102

344 R Projects For Dummies

xlim argument, plot()
function, 191

xpd argument, par() function,
154, 155

Y
y argument, plot() function,

102
y_column variable, 101

yesno=2 argument, prp()
function, 172

y.intersp argument, legend()
function, 154

ylab argument
barplot() function, 48
plot() function, 102

ylim argument, barplot()
function, 48, 51

ymd() function, 272
yval entry, decision tree text

output, 170

Z
Zoom icon (RStudio Plots tab),

43
z-scores, 289

	Brief Contents
	Contents
	--- Tools of the Trade
	R what & how
	Getting R
	Getting RStudio
	A Session with R
	R Functions
	User-Defined Function
	Comments
	R Structures
	Of for Loops and if Statements

	Packages
	Installing Packages
	Examining Data
	R Formulas
	More Packages
	Exploring the tidyverse

	Graphic
	Touching Base
	Graduating to ggplot2

	--- Interacting with User
	Browser
	Getting Your Shine On
	Creating Your First shiny Project
	Working with ggplot
	Another shiny Project
	Suggested Project

	Dashboards
	The shinydashboard Package
	Exploring Dashboard Layouts
	Working with the Sidebar
	Interacting with Graphics

	--- Machine Learning
	Tools & Data for Machine Learning
	The UCI (University of California-Irvine) ML Repository
	Introducing the
	package
	Using
	with

	Decisions
	Decision Tree Components
	Decision Trees in R
	Decision Trees in
	Project: A More Complex Decision Tree
	Suggested Project: Titanic

	Randomly
	Growing a Random Forest
	Random Forests in R
	Project: Identifying Glass
	Suggested Project: Identifying Mushrooms

	Support Vectors
	Some Data to Work With
	Separability: It’s Usually Nonlinear
	Support Vector Machines in R
	Project: House Parties
	Suggested Project: Titanic Again

	K-Means Clustering
	How It Works
	K-Means Clustering in R
	Project: Glass Clusters
	Suggested Project: A Few Quick Ones

	Neural Networks
	Networks in the Nervous System
	Artificial Neural Network
	Neural Networks in R
	Project: Banknotes
	Suggested Projects: Rattling Around

	--- Large Data Sets
	Exploring Marketing
	Project: Analyzing Retail Data
	Enter Machine Learning
	Suggested Project: Another Data Set

	From the City that never sleeps
	Examining the Data Set
	Warming Up
	Project: Departure Delays
	Suggested Project: Delay and Weather

	--- Maps & Images
	All over the Map
	Project: The Airports of Wisconsin
	Suggested Project 1: Map Your State
	Suggested Project 2: Map the Country

	Fun with Pictures
	Polishing a Picture: It’s magick!
	Project: Two Legends in Search of a Legend
	Suggested Project: Combine an Animation with a Plot

	--- Part of Tens
	Packages for R Projects
	Machine Learning
	Databases Maps
	Image Processing
	Text Analysis

	Resources
	Interacting with Users
	Machine Learning
	Databases
	Maps and Images

	Index

