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Preface

The lattice package is software that extends the R language and environment
for statistical computing (R Development Core Team, 2007) by providing
a coherent set of tools to produce statistical graphics with an emphasis on
multivariate data. It is modeled on the Trellis suite in S and S-PLUS R©. From
the user’s point of view, it is a self-contained system that is largely independent
of other graphics facilities in R. This book is about lattice, and is primarily
intended for (1) both long-time and new R users looking for a powerful system
to produce conventional statistical graphics, (2) existing lattice users willing
to learn a little bit of R programming to gain increased flexibility, and (3)
developers who wish to implement new graphical displays building on the
infrastructure already available in lattice.

Why lattice?

Graphics can effectively complement statistical data analysis in various ways.
Successful graphics arise from a combination of good design and good imple-
mentation. In this day and age, implementation is almost exclusively driven
by computers. There is no lack of software tools that allow their users to con-
vert data into graphics; lattice is yet another candidate in this ever-widening
pool.

What makes lattice stand out? A good general-purpose tool should not get
in the way of the user, yet it should be flexible enough to enable most tasks
(without undue difficulty), whether it be standard, slightly out of the ordinary,
or entirely novel. lattice tries to meet this standard by being a high-level tool
that produces structured graphics, while retaining flexibility by systematically
decoupling the various elements of a display; the individual elements have
well thought-out defaults, but these can be overridden for detailed control.
The end-product is a system that allows the creation of common statistical
graphics, often with fairly complex structure, with very simple code. At the
same time, it allows various degrees of customization, without requiring undue
effort.
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What to expect from this book

It is easy to get started with lattice, but the transition from seemingly simple
to more sophisticated use can be difficult without an appreciation of how
the different components and their defaults interact with each other. This
appreciation can only come from experience, but it is hoped that this book
can ease the transition to some extent.

The book started out as a manual for lattice, and was not intended to offer
qualitative guidelines about the effective design of statistical graphics. This
plan was abandoned quite early on; a static book is not the ideal vehicle for
documenting an evolving system, and it is hard to look at and change bits and
pieces of a picture without discussing its merits and drawbacks. In the end,
this book consists of some comments on graphical design, some interesting
(one would hope) examples, and large doses of lattice code and wisdom. It
is still a book that is primarily about software; the code in the book is at
least as important as the pictures. No code is hidden in this book, and if
there is one key message that the reader should expect to take away, it is
that lattice allows the creation of complex displays using relatively little code.
This economy may not be appealing to everyone, but it is what I liked most
about the Trellis system, and what has driven much of the development of
lattice beyond the original goal of compatibility with Trellis. The other key
idea that is difficult to communicate in function documentation, and one that
is addressed in this book, is that of interrelationships between the different
components of lattice, and how they can be effectively exploited.

What not to expect from this book

This book is not an exhaustive manual for lattice. Most functions in lattice are
described to some extent in this book, but it does not serve as the definitive
reference. There are two reasons for this. First, there are many features in
lattice that are obscure and of very limited use, and do not justify detailed
discussion. Second, lattice is an evolving system, and any attempt to document
it exhaustively is sure to get out of date quickly. All functions in lattice come
with online documentation, which should be used as the definitive reference.

How to read this book

That depends to a large extent on the reader. Those new to lattice should
start with Chapter 1 to get a feel for what lattice is all about. Chapter 2
gives a more thorough, and sometimes quite technical, overview of the lattice
model. Intermediate to advanced readers should find this chapter instructive.
Beginners are encouraged to go through it as well, but should be prepared
to encounter parts they find difficult, and skip them without getting bogged
down; things should become clearer after gaining some practical experience.
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The rest of Part I describes the various high-level functions in lattice. These
chapters can be read in any order. Not much is said about the design of these
graphics as they are standard, and most of the focus is on the software imple-
mentation. The level is basic for the most part; however, a few examples do
go into some detail for the sake of taking a discussion to its natural conclu-
sion. Again, beginners should be prepared to skip these parts during a first
reading. Part II is more of a reference, going into the nitty-gritty details of
lattice. A basic understanding of all the chapters is important to get the most
out of lattice, but is not essential for casual use. These chapters too can be
read in any order, for the most part, and the reader should feel free to pick
and choose. The final two chapters, in Part III, deal with extensions to lattice,
and are primarily intended for future developers. Of course, they can still be
useful to the casual reader for the examples they provide.

It is important to realize that lattice is a complicated piece of software,
and it is unrealistic to expect full mastery of it after one reading. The key to
“getting it” is practical experience, and the best way to gain that experience
is to try out the code. All the code in this book, along with the figures they
produce, is available from the supporting Web site

http://lmdvr.r-forge.r-project.org/

A critical aspect of graphics that is hard to communicate in a book is its
iterative nature; graphics that are presented to an audience is rarely the result
of a first attempt. This process is reflected in some of the examples in this
book, but many others have silently omitted many intermediate steps. One
can get a sense of these missing steps by asking: “What is the purpose of this
particular argument?” In other words, trying out variations of the code should
be an integral part of the learning process.

The final thing to remember is that all this is the means to an end, namely,
producing effective visualizations of data. Software can help, but the ultimate
decisions are still the responsibility of the user. For those looking for guidance
on how to create effective graphs, the work of Edward R. Tufte, William S.
Cleveland, and of course John W. Tukey, are invaluable resources.

Color

Color can be an important factor in the visual impact of a graphic. Most figures
in this book are black and white, but a few color plates are also included. Of
these, some have the corresponding black and white versions as well, and
have been chosen to highlight the impact of color. Others are solely available
in color, as their black and white versions are of little or no use. Color versions
of all figures are available on the book’s Web site.

Prerequisites

No prior experience with lattice is required to read this book, but basic fa-
miliarity with R, and in particular the ability to use its online help system, is
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assumed. The first chapter of Dalgaard (2002) should suffice for the most part.
Relatively advanced concepts such as generic functions and method dispatch
are relevant, but can be ignored for casual use (these concepts are briefly
introduced where relevant, but not at any deep level). No familiarity with
traditional R graphics is presumed. Knowledge of the grid package can be
beneficial, but is not essential.

Several R packages are used in this book. lattice itself should come with
all recent installations of R, and it should be sufficient to type

> library("lattice")

at the R prompt to start using it. Other packages used explicitly (not counting
further dependencies) are grid, latticeExtra, copula, ellipse, gridBase, flowViz,
flowCore, hexbin, locfit, logspline, mapproj, maps, MASS, MEMSS, mlmRev, and
RColorBrewer. All of these may not be of interest (some are required just for
one or two examples); type

> help("install.packages")

to learn how to install the packages you need from CRAN.1 flowCore, flowViz,
and hexbin are Bioconductor packages, and may be installed by typing

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("flowCore", "flowViz", "hexbin"))

A bit of history

The design of S graphics has been heavily influenced by the principles of graph
construction laid out in The Elements of Graphing Data (Cleveland, 1985).
This influence carries over to Trellis graphics, which incorporates further ideas
(notably multipanel conditioning and banking) presented in Visualizing Data
(Cleveland, 1993). Trellis graphics was first implemented in the S system, and
has been available in S-PLUS for several years.

The name Trellis refers both to the general ideas underlying the system, as
well as the specific implementation in S. The lattice package is an independent
implementation of Trellis graphics (in the first sense), with an API closely
modeled on the one in S. Unlike the S version, which is implemented using
traditional graphics, lattice uses Paul Murrell’s grid package, which provides
more flexible low-level tools.

Although modeled on it, the lattice API is not identical to that of the
Trellis suite in S. Some of the differences are due to the choice of grid as the
underlying engine, but many are intentional. Still, where possible, effort has
been made to allow Trellis code written in S to run with minimal modification.
Consequently, writings about the original Trellis suite mostly apply to lattice
as well. This includes the wealth of resources at the Trellis Web site at Bell
Labs:
1 The Comprehensive R Archive Network, http://cran.r-project.org
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http://netlib.bell-labs.com/cm/ms/departments/sia/project/trellis/

However, the converse is not true. lattice has been extended beyond the original
API in various ways, and is now at a point where it is difficult to partition
its feature set into S-compatible ones and additional enhancements. For this
reason, this book makes no attempt to distinguish between these, and presents
Trellis graphics solely as implemented in the lattice package.

Caveats and alternatives

No system is perfect for all uses, and lattice is no exception. Trellis is a “high-
level” paradigm by design, and lattice imposes considerable structure on the
displays it creates. lattice allows a lot of wiggle room within these constraints
while retaining its stylistic consistency and simple user interface, but this is
not always enough. Fortunately, R provides excellent facilities for creating new
displays from scratch, especially using the grid package. lattice itself is imple-
mented using grid, and can benefit from the use of low-level facilities provided
by it. Even for high-level graphics, R provides various alternatives. The tra-
ditional graphics system includes many high-level tools, which although not
as proficient in dealing with multivariate data, often provide a richer set of
options. Murrell (2005) gives a comprehensive overview of both traditional R
graphics and grid graphics (as well as a brief introduction to lattice). The vcd
package, inspired by Friendly (2000), provides many useful tools for categor-
ical data, often with Trellis-style conditioning. Another high-level alternative
is Hadley Wickham’s ggplot2 (formerly ggplot) package, modeled on the ap-
proach of Wilkinson (1999), which is philosophically rather different from the
Trellis approach. Like lattice, vcd and ggplot are also implemented using grid.

One thing R currently has virtually no support for is interactive graphics.
Fortunately, some R packages provide interfaces to external systems that are
better, notably rgl (OpenGL) and rggobi (GGobi). The playwith package written
by Felix Andrews provides a modicum of interactivity within the R graphics
framework, and works well with displays produced by lattice.
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1

Introduction

The traditional graphics subsystem in R is very flexible when it comes to
producing standard statistical graphics. It provides a collection of high-level
plotting functions that produce entire coherent displays, several low-level rou-
tines to enhance such displays and provide finer control over the various el-
ements that make them up, and a system of parameters that allows global
control over defaults and other details. However, this system is not very pro-
ficient at combining multiple plots in a page. It is quite straightforward to
produce such plots; however, doing so in an effective manner, with properly
coordinated scales, aspect ratios, and labels, is a fairly complex task that is
difficult even for the experienced R user. Trellis graphics, originally imple-
mented in S, was designed to address this shortcoming. The lattice add-on
package provides similar capabilities for R users.

The name “Trellis” comes from the trellislike rectangular array of panels
of which such displays often consist. Although Trellis graphics is typically
associated with multiple panels, it is also possible to create single-panel Trellis
displays, which look very much like traditional high-level R plots. There are
subtle differences, however, mostly stemming from an important design goal
of Trellis graphics, namely, to make optimum use of the available display
area. Even single-panel Trellis displays are usually as good, if not better,
than their traditional counterparts in terms of default choices. Overall, Trellis
graphics is intended to be a more mature substitute for traditional statistical
graphics in R. As such, this book assumes no prior knowledge of traditional R
graphics; in fact, too much familiarity with it can be a hindrance, as some basic
assumptions that are part and parcel of traditional R graphics may have to be
unlearned. However, there are many parallels between the two: both provide
high-level functions to produce comprehensive statistical graphs, both provide
fine control over annotation and tools to augment displays, and both employ
a system of user-modifiable global parameters that control the details of the
display. This chapter gives a preview of Trellis graphics using a few examples;
details follow in later chapters.

tuhocr
Highlight



2 1 Introduction

1.1 Multipanel conditioning

For the examples in this chapter, we make use of data on the 1997 A-level
chemistry examination in Britain. The data are available in the mlmRev pack-
age, and can be loaded into R using the data() function.

> data(Chem97, package = "mlmRev")

A quick summary of the A-level test scores is given by their frequency table1

> xtabs(~ score, data = Chem97)

score

0 2 4 6 8 10

3688 3627 4619 5739 6668 6681

Along with the test scores of 31,022 students, the dataset records their gender,
age, and average GCSE score, which can be viewed as a pre-test achievement
score. It additionally provides school and area-level information, which we ig-
nore. In this chapter, we restrict ourselves to visualizations of the distribution
of one continuous univariate measure, namely, the average GCSE score. We
are interested in understanding the extent to which this measure can be used
to predict the A-level chemistry examination score (which is a discrete grade
with possible values 0, 2, 4, 6, 8, and 10).

1.1.1 A histogram for every group

One way to learn whether the final A-level score (the variable score) depends
on the average GCSE score (gcsescore) is to ask a slightly different question:
is the distribution of gcsescore different for different values of score? A
popular plot used to summarize univariate distributions is the histogram.
Using the lattice package, which needs to be attached first using the library()
function, we can produce a histogram of gcsescore for each score, placing
them all together on a single page, with the call

> library("lattice")

> histogram(~ gcsescore | factor(score), data = Chem97)

which produces Figure 1.1. There are several important choices made in the
resulting display that merit attention. Each histogram occupies a small rec-
tangular area known as a panel. The six panels are laid out in an array, whose
dimensions are determined automatically. All panels share the same scales,
which make the distributions easy to compare. Axes are annotated with tick
marks and labels only along the boundaries, saving space between panels. A
strip at the top of each panel describes which value of score that panel rep-
resents. These features are available in all Trellis displays, and are collectively
1 Throughout this book, we make casual use of many R functions, such as data()

and xtabs() here, without going into much detail. We expect readers to make
use of R’s online help system to learn more about functions that are unfamiliar
to them.
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Figure 1.1. A conditional histogram using data on students attempting the A-level
chemistry examination in Britain in 1997. The x-axis represents the average GCSE
score of the students, and can be viewed as a prior achievement variable. The dif-
ferent panels represent subsets of students according to their grade in the A-level
examination, and may be viewed as the response. Strips above each panel indicate
the value of the response.

known as multipanel conditioning. These choices are intended to make the de-
fault display as useful as possible, but can be easily changed. Ultimate control
rests in the hands of the user.

1.1.2 The Trellis call

Let us take a closer look at the histogram() call. As the name suggests, the
histogram() function is meant to create histograms. In the call above, it has
two arguments. The first (unnamed) argument, x, is a “formula” object that
specifies the variables involved in the plot. The second argument, data, is a
data frame that contains the variables referenced in the formula x.

The interpretation of the formula is discussed in more generality later, but
is important enough to warrant some explanation here. In the formula

~ gcsescore | factor(score)

factor(score) (the part after the vertical bar symbol) is the conditioning
variable, indicating that the resulting plot should contain one panel for each
of its unique values (levels). The inline conversion to a factor is related to how
the value of the conditioning variable is displayed in the strips; the reader is
encouraged to see what happens when it is omitted. There can be more than
one conditioning variable, or none at all.
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Figure 1.2. Conditional density plots. The data and design are the same as those
in Figure 1.1, but histograms are replaced by kernel density estimates.

The part of the formula to the left of the conditioning symbol | specifies
the primary variable that goes inside each panel; gcsescore in this case. What
this part of the formula looks like depends on the function involved. All the
examples we encounter in this chapter have the same form.

1.1.3 Kernel density plots

Histograms are crude examples of a more general class of univariate data sum-
maries, namely, density estimates. densityplot(), another high-level func-
tion in the lattice package, can be used to graph kernel density estimates. A
call that looks very much like the previous histogram() call produces Fig-
ure 1.2.

> densityplot(~ gcsescore | factor(score), data = Chem97,

plot.points = FALSE, ref = TRUE)

There are two more arguments in this call: ref, which adds a reference line
at 0, and plot.points, which controls whether in addition to the density,
the original points will be plotted. Displaying the points can be informative
for small datasets, but not here, with each panel having more than 3000
points. We show later that ref and plot.points are not really arguments
of densityplot(), but rather of the default panel function, responsible for
the actual plotting inside each panel.
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Figure 1.3. Grouped density plots. The density estimates seen in Figure 1.2 are
now superposed within a single panel, forcing direct comparison. A legend on the
top describes the association between levels of the grouping variable (score in this
case) and the corresponding line parameters.

1.2 Superposition

Figures 1.1 and 1.2 both show that the distribution of gcsescore is gener-
ally higher for higher score. This pattern would be much easier to judge if
the densities were superposed within the same panel. This is achieved by us-
ing score as a grouping variable instead of a conditioning variable2 in the
following call, producing Figure 1.3.

> densityplot(~ gcsescore, data = Chem97, groups = score,

plot.points = FALSE, ref = TRUE,

auto.key = list(columns = 3))

The auto.key argument automatically adds a suitable legend to the plot.
Notice that it was not necessary to convert score into a factor beforehand;
this conversion is done automatically. Another important point is that just as
with variables in the formula, the expression specified as the groups argument
was also evaluated in Chem97 (the data argument). This is also true for another
special argument, subset, which we learn about later.

An important theme in the examples we have seen thus far is the abstrac-
tion used in specifying the structure of a plot, which is essentially defined
by the type of graphic (histogram, density plot) and the role of the variables
involved (primary display, conditioning, superposition). This abstraction is
fundamental in the lattice paradigm. Of course, calls as simple as these will
not always suffice in real life, and lattice provides means to systematically

2 This distinction between grouping and conditioning variables is specific to graphs.
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control and customize the various elements that the graphic is comprised of,
including axis annotation, labels, and graphical parameters such as color and
line type. However, even when one ends up with a seemingly complex call, the
basic abstraction will still be present; that final call will be typically arrived
at by starting with a simple one and incrementally modifying it one piece at
a time.

1.3 The “trellis” object

Most regular R functions do not produce any output themselves; instead,
they return an object that can be assigned to a variable, used as arguments in
other functions, and generally manipulated in various ways. Every such object
has a class (sometimes implicit) that potentially determines the behavior of
functions that act on them. A particularly important such function is the
generic function print(), which displays any object in a suitable manner.
The special property of print() is that it does not always have to be invoked
explicitly; the result of an expression evaluated at the top level (i.e., not inside
a function or loop), but not assigned to a variable, is printed automatically.
Traditional graphics functions, however, are an exception to this paradigm.
They typically do not return anything useful; they are invoked for the “side
effect” of drawing on a suitable graphics device.

High-level functions in the lattice package differ in this respect from their
traditional graphics analogues because they do not draw anything themselves;
instead, they return an object, of class “trellis”. An actual graphic is created
when such objects are “printed” by the print() method for objects of this
class. The difference can be largely ignored, and lattice functions used just as
their traditional counterparts (as we have been doing thus far), only because
print() is usually invoked automatically. To appreciate this fact, consider the
following sequence of commands.

> tp1 <- histogram(~ gcsescore | factor(score), data = Chem97)

> tp2 <-

densityplot(~ gcsescore, data = Chem97, groups = score,

plot.points = FALSE,

auto.key = list(space = "right", title = "score"))

When these commands are executed, nothing gets plotted. In fact, tp1 and
tp2 are now objects of class “trellis” that can, for instance, be summarized:

> class(tp2)

[1] "trellis"

> summary(tp1)

Call:

histogram(~gcsescore | factor(score), data = Chem97)

Number of observations:

factor(score)
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0 2 4 6 8 10

3688 3627 4619 5739 6668 6681

As noted above, the actual plots can be drawn by calling print():

> print(tp1)

This may seem somewhat unintuitive, because print() normally produces
text output in R, but it is necessary to take advantage of the automatic print-
ing rule. The more natural

> plot(tp1)

has the same effect.

1.3.1 The missing Trellis display

Due to the automatic invocation of print(), lattice functions usually work
as traditional graphics functions, where graphics output is generated when
the user calls a function. Naturally, this similarity breaks down in contexts
where automatic printing is suppressed. This happens, as we have seen, when
the result of a lattice call is assigned to a variable. Unfortunately, it may also
happen in other situations where the user may not be expecting it, for example,
within for() or while() loops, or inside other functions. This includes the
source() function, which is often used to execute an external R script, unless
it is called with the echo argument set to TRUE. As with regular (non-graphics)
R calls, the solution is to print() (or plot()) the result of the lattice call
explicitly.

1.3.2 Arranging multiple Trellis plots

This object-based design has many useful implications, chief among them
being the ability to arrange multiple lattice displays on a single page. Mul-
tipanel conditioning obviates the need for such usage to a large extent, but
not entirely. For example, in Figure 1.4 we directly contrast the conditional
histograms and the grouped density plots seen before. This is achieved by
specifying the subregion to be occupied by a graphic on the fly when it is
drawn, using optional arguments of the plot() method. Although this is one
of the most common manipulations involving “trellis” objects explicitly, it is
by no means the only one. A detailed discussion of “trellis” objects is given in
Chapter 11.

1.4 Looking ahead

We have encountered two lattice functions in this chapter, histogram() and
densityplot(). Each produces a particular type of statistical graphic, help-
fully hinted at by its name. This sets the general trend: the lattice user inter-
face principally consists of these and several other functions like these, each
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> plot(tp1, split = c(1, 1, 1, 2))

> plot(tp2, split = c(1, 2, 1, 2), newpage = FALSE)
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Figure 1.4. The conditional histogram and the grouped density plot of gcsescore
by score, combined in a single figure. The comparison clearly illustrates the useful-
ness of superposition; the pattern of variance decreasing with mean that is obvious
in the density plot is easy to miss in the histogram.



1.4 Looking ahead 9

Function Default Display

histogram() Histogram
densityplot() Kernel Density Plot
qqmath() Theoretical Quantile Plot
qq() Two-sample Quantile Plot
stripplot() Stripchart (Comparative 1-D Scatter Plots)
bwplot() Comparative Box-and-Whisker Plots
dotplot() Cleveland Dot Plot
barchart() Bar Plot
xyplot() Scatter Plot
splom() Scatter-Plot Matrix
contourplot() Contour Plot of Surfaces
levelplot() False Color Level Plot of Surfaces
wireframe() Three-dimensional Perspective Plot of Surfaces
cloud() Three-dimensional Scatter Plot
parallel() Parallel Coordinates Plot

Table 1.1. High-level functions in the lattice package and their default displays.

intended to produce a particular type of graphic by default. The full list of
high-level functions in lattice is given in Table 1.1. Chapters 3 through 6 focus
on the capabilities of these high-level functions, describing each one in turn.
The functions have much in common: they each have a formula interface that
supports multipanel conditioning in a consistent manner, and respond to a
number of common arguments. These common features, including the basics
of multipanel conditioning, are described briefly in Chapter 2, and in further
detail in Chapters 7 through 12. lattice is designed to be easily extensible using
panel functions; some nontrivial examples are given in Chapter 13. Extensions
can also be implemented as new high-level functions; Chapter 14 gives some
examples and provides pointers for those who wish to create their own.



2

A Technical Overview of lattice

This chapter gives a broad overview of lattice, briefly describing the most
important features shared by all high-level functions. Some of the topics cov-
ered are somewhat technical, but they are important motifs in the“big picture”
view of lattice, and it would hinder rather than help to introduce them later
at arbitrary points in the book. For readers that are new to lattice, it is rec-
ommended that they give this chapter a cursory overview and move on to the
subsequent chapters. Each of the remaining chapters in Part I can be read,
for the most part, directly after Chapter 1, although some advanced examples
do require some groundwork laid out in this chapter. This nonlinear flow is
inconvenient for those new to lattice, but it is somewhat inevitable; one should
not expect to learn all the complexities of Trellis graphics in a first reading.

2.1 Basic usage

Strictly speaking, all high-level functions in lattice are generic functions, and
suitable methods can be written for particular classes. In layman’s terms, this
means that the code that gets executed when a user calls such a function
(e.g., dotplot()) will depend on the arguments supplied to the function. In
practice, most such methods are simple wrappers to the “formula” method
(i.e., the function that gets executed when the first argument is a “formula”
object), because it allows for the most flexible specification of the structure
of the display. Other methods can be valuable, as we see in later chapters. In
this chapter, we restrict our attention to the “formula” methods.

2.1.1 The Trellis formula

The use of formulae is the standard when it comes to specifying statistical
models in the S language, and they are the primary means of defining the
structure of a lattice display as well. A typical Trellis formula looks like
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y ~ x | a * b

The tilde (~) is what makes it a“formula” object, and is essential in any Trellis
formula. Equally important is the vertical bar (|), which denotes conditioning.
Variables (or more precisely, terms) to the right of the conditioning symbol
are called conditioning variables, and those to the left are considered primary
variables. A Trellis formula must contain at least one primary variable, but
conditioning variables are optional. The conditioning symbol | must be omit-
ted if there are no conditioning variables. There is no limit on the number of
conditioning variables that can be specified, although the majority of actual
use is covered by up to two. Conditioning variables may be separated by *
or +; unlike many modeling functions, these are treated identically in lattice.
The conditioning part of the formula has the same interpretation for all lattice
functions, whereas that for the first part may vary by function. Thus,

~ x

and

log(z) ~ x * y | a + b + c

are both valid Trellis formulae (although not in all high-level functions). As
the last example suggests, the formula can involve terms that are expressions
involving one or more variables. After evaluation, all terms in the formula
have to have the same length.

2.1.2 The data argument

Apart from specifying the structure of the display, use of a formula also allows
one to separately specify, as the data argument, an object containing variables
referenced in the formula. This is similar to other formula-based interfaces
in R,1 and reduces the temptation to use attach() (which is fraught with
pitfalls) by obviating the need to repeatedly refer to the data source by name.2

The data argument occupies the second position in the list of arguments in
all high-level lattice functions, and is often not named in a call.

A less obvious implication of having a separate data argument is that
methods can extend the types of objects that can act as a data source. The
standard “formula” methods allow data to be data frames, lists, or environ-
ments (see ?eval). In Chapter 14, we show how other types of objects may
be used.

2.1.3 Conditioning

The case where the Trellis formula does not have any conditioning variables
is fairly straightforward. To give analogies with base graphics functions, his-
togram(~ x) is similar to hist(x), xyplot(y ~ x) is similar to plot(x, y)

1 With the same caveats, briefly described in Section 10.1.
2 An alternative is to use with(), which is sometimes more convenient.
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or plot(y ~ x), and so on. The rest of this chapter primarily deals with the
situation where we do have one or more conditioning variables. In the first
case, we can simply pretend to have one conditioning variable with a single
level.

Conditioning variables are most often categorical variables, or factors in R
parlance. They can also be shingles, which provide means to use continuous
variables for conditioning.

Factors have a set of levels, representing its possible values. Each unique
combination of the levels of the conditioning variables determines a packet,
consisting of the subset of the primary variables that correspond to that com-
bination.3 It is possible for a packet to be empty if the corresponding combina-
tion of levels is not represented in the data. Each packet potentially provides
the data for a single panel in the Trellis display, which consists of such panels
laid out in an array of columns, rows, and pages. Choosing a proper layout is
critical in obtaining an informative display; lattice tries to make the default
choice as useful as possible, and provides ways to customize it.

Although packets are defined entirely by the formula, it is possible to omit
or repeat certain levels of the conditioning variables when displaying a“trellis”
object, in which case the corresponding packets may be omitted or repeated
as well. Examples of these can be found in Figures 2.2 and 11.4.

2.1.4 Shingles

Multivariable relationships often involve many continuous variates, and the
ability to condition on them is useful. Shingles afford a very general means
to do so. The simplest possible approach to using a numeric variable for con-
ditioning is to treat each of its unique values as a distinct level. This is, in
fact, the default behavior in lattice. However, this is often unhelpful when the
number of unique values is large. Another standard way to convert a contin-
uous variate into an ordinal categorical variable is to discretize it, that is, to
partition its range into two or more non-overlapping intervals, and replace
each value by only an indicator of the interval to which it belonged. Such
discretization can be performed by the R function cut().

Shingles encompass both these ideas and extend them by allowing the
intervals defining the discretization to overlap.4 The intervals can be single
points, or have no overlap, thus reducing to the two approaches described
above. Each such interval is now considered a “level” of the shingle. Clearly,
the level of a particular observation is no longer necessarily unique, as it can
fall into more than one interval. This is not a hindrance to using the shingle

3 Strictly speaking, a vector of subscripts indicating which rows in the original
data contribute to the packet is also often part of the packet, although this is an
irrelevant detail in most situations.

4 Shingles are named after the overlapping pieces of wood or other building material
often used to cover the roof or sides of a house.
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as a conditioning variable; observations that belong to more than one level of
the shingle are simply assigned to more than one packet.

This still leaves the issue of how best to choose the intervals that define
a shingle, given a continuous variate. Cleveland (1993) suggests the “equal
count” algorithm, which given a desired number of levels and amount of over-
lap, chooses the intervals so that each interval has roughly the same number of
observations. This algorithm is used by the equal.count() function in the lat-
tice package to create shingles from numeric variables. Shingles are discussed
further in Chapter 10.

2.2 Dimension and physical layout

Multipanel conditioning can be viewed as an extended form of cross-tabulation,
naturally conferring the concept of dimensions to“trellis” objects. Specifically,
each conditioning variable defines a dimension, with extents given by the num-
ber of levels it has.

Consider the following graph, which uses data from a split-plot experiment
(Yates, 1935) where yield of oats was measured for three varieties of oats and
four nitrogen concentrations within each of six blocks.

> data(Oats, package = "MEMSS")

> tp1.oats <-

xyplot(yield ~ nitro | Variety + Block, data = Oats, type = "o")

Although we do not formally encounter the xyplot() function until later,
this is fairly typical usage, resulting in a scatter plot of yield against nitrogen
concentration in each panel. The display produced by plotting tp1.oats is
given in Figure 2.1. There are two conditioning variables (dimensions), with
three and six levels. This is reflected in

> dim(tp1.oats)

[1] 3 6

> dimnames(tp1.oats)

$Variety

[1] "Golden Rain" "Marvellous" "Victory"

$Block

[1] "I" "II" "III" "IV" "V" "VI"

These properties are shared by the cross-tabulation defining the conditioning.

> xtabs(~Variety + Block, data = Oats)

Block

Variety I II III IV V VI

Golden Rain 4 4 4 4 4 4

Marvellous 4 4 4 4 4 4

Victory 4 4 4 4 4 4
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Figure 2.1. A Trellis display of the Oats data. The yield of oats is plotted against
nitrogen concentration for three varieties of oats and six blocks. This is an example
of a split-plot design. See help(Oats, package = "MEMSS") for more details about
the experiment.
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This cross-tabulation, with suitable modifications for shingles to account for
the fact that packets may overlap, is in fact printed when a “trellis” object is
summarized:

> summary(tp1.oats)

Call:

xyplot(yield ~ nitro | Variety + Block, data = Oats, type = "o")

Number of observations:

Block

Variety I II III IV V VI

Golden Rain 4 4 4 4 4 4

Marvellous 4 4 4 4 4 4

Victory 4 4 4 4 4 4

It is possible to extract subsets of such objects in a natural way, treating them
as arrays with the appropriate dimensions; for example,

> summary(tp1.oats[, 1])

Call:

xyplot(yield ~ nitro | Variety + Block, data = Oats, type = "o",

index.cond = new.levs)

Number of observations:

Block

Variety I

Golden Rain 4

Marvellous 4

Victory 4

The corresponding plot is shown in Figure 2.2. This view of a “trellis” object
implies a linear ordering of the packets in it, similar to the ordering of ele-
ments in general arrays in R. Specifically, the order begins with the packet
corresponding to the first index (level) of each dimension (conditioning vari-
able) and proceeds by varying the index of the first dimension fastest, then
the second, and so on. This order is referred to as the packet order.

Another array-like structure comes into play when a “trellis” object is
actually displayed, namely, the physical layout of the panels. Whereas the
number of dimensions of the abstract object is arbitrary, a display device is
conventionally bound to two dimensions. Trellis displays, in particular, choose
to divide the display area into a rectangular array of panels. An additional
dimension is afforded by spreading out a display over multiple pages, which
can be important in displays with a large number of combinations. All high-
level lattice functions share a common paradigm that dictates how this layout
is chosen, and provides common arguments to customize it to suit particular
situations. Once the layout is determined, it defines the panel order, that is,
the sequential order of panels in the three-way layout of columns, rows, and
pages. The eventual display is created by matching packet order with panel
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Figure 2.2. A Trellis display of a subset of a“trellis” object. The display represents
the bottom row of Figure 2.1.

order.5 The rest of this section discusses details of how the layout is controlled,
and the choice of aspect ratio, which is closely related.

2.2.1 Aspect ratio

The aspect ratio of a panel is the ratio of its physical height and width. The
choice of aspect ratio often plays a crucial role in determining the effectiveness
of a display. There is no general prescription for choosing the aspect ratio,
and one often needs to arrive at one by trial and error. In certain situations,
a good aspect ratio can be automatically determined by the 45◦ banking rule,
which is derived from the following idea. Consider a display, such as the Oats
example above, where the changes in successive values (represented by line
segments) contain information we wish to perceive. For a non-zero change, the
corresponding line grows steeper as the aspect ratio increases, and shallower as
it decreases. Cleveland et al. (1988) note that this information is best grasped
when the orientation of such line segments is close to 45◦, and recommend an
algorithm that can be used to select an aspect ratio automatically based on
this criterion. When the aspect = "xy" argument is specified in a high-level
call, this 45◦ banking rule is used to compute the aspect ratio (see Chapter 8
for details). The aspect argument can also be an explicit numeric ratio, or
the string "iso", which indicates that the number of units per cm (i.e., the

5 For the record, this can be changed; see ?packet.panel.default for details.
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relation between physical distance on the display and distance in the data
scale) should be the same for both axes. This is appropriate in situations
where the two scales have the same units, for example, in plots of spatial
data, or plots of ROC curves where both axes represent probability.

2.2.2 Layout

A good choice of layout needs to take the aspect ratio into account. To make
this point, let us look at Figure 2.3, which is produced by updating6 Figure 2.1
to use an aspect ratio chosen by the 45◦ banking rule. As we can see, the
default display does not make effective use of the available space. This is
related to the rules that determine the default layout.

A Trellis display consists of several panels arranged in a rectangular ar-
ray, possibly spanning multiple pages. The layout argument determines this
arrangement. For an exact specification, layout should be a numeric vector
giving the number of columns, rows, and pages in a multipanel display. Un-
less one wants to restrict the number of pages, the third element need not be
specified; it is automatically chosen to accommodate all panels. The coordi-
nate system used by default is like the Cartesian coordinate system: panels
are drawn starting from the lower-left corner, proceeding first right and then
up. This behavior can be changed by setting as.table = TRUE in a high-level
lattice call,7 in which case panels are drawn from the upper-left corner, going
right and then down.

If there are two or more conditioning variables, layout defaults to the
lengths of the first two dimensions, that is, the number of columns defaults
to the number of levels of the first conditioning variable and the number of
rows to the number of levels of the second conditioning variable (consequently,
the number of pages is implicitly the product of the number of levels of the
remaining conditioning variables, if any). This is clearly a sensible default,
even though it is responsible for the somewhat awkward display in Figure 2.3.

The obvious way to “fix” Figure 2.3 is to switch the order of the condi-
tioning variables. This can be done by regenerating the “trellis” object, or by
simply transposing the existing one using

> t(tp1.oats)

However, we use another approach that makes use of a special form of the
layout argument. The first element of layout can be 0, in which case its
second element is interpreted as (a lower bound on) the total number of panels
per page, leaving the software free to choose the exact layout. This is done
by considering the aspect ratio and the device dimensions, and then choosing
the layout so that the space occupied by each panel is maximized. The result
of using this on our plot of the Oats data is given in Figure 2.4, where much
better use is made of the available space.
6 The update() function is formally discussed in Chapter 11.
7 Chapter 7 describes how to change the default for as.table globally.
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> update(tp1.oats,

aspect="xy")
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Figure 2.3. The display in Figure 2.1 updated to use the 45◦ banking rule to
choose an aspect ratio. Although it is now easier to assess the changes in yield, the
default layout results in considerable wastage of the available display area. This can
be rectified using the layout argument, as we show in our next attempt.
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> update(tp1.oats, aspect = "xy",

layout = c(0, 18))

nitro

yi
el

d

60

80

100

120

140

160

0.0 0.2 0.4 0.6

●
●

●

●

Golden Rain
I

●

●

●

●

Marvellous
I

0.0 0.2 0.4 0.6

●

●

●

●

Victory
I

●

●

●

●

Golden Rain
II

0.0 0.2 0.4 0.6

●

●
●

●

Marvellous
II

●

●

●
●

Victory
II

●

●

●

●

Golden Rain
III

●

●
●

●

Marvellous
III

●
●

●

●

Victory
III

●

●

● ●

Golden Rain
IV

●

●

●

●

Marvellous
IV

60

80

100

120

140

160

●

●

●

●

Victory
IV

60

80

100

120

140

160

●
●

●

●

Golden Rain
V

0.0 0.2 0.4 0.6

●

●

●

●

Marvellous
V

●

●

●

●

Victory
V

0.0 0.2 0.4 0.6

●

●
●

●

Golden Rain
VI

●
●

●
●

Marvellous
VI

0.0 0.2 0.4 0.6

●

●

●

●

Victory
VI

Figure 2.4. The display in Figure 2.3 updated to use an unconstrained layout. The
aspect ratio calculated by the banking rule is taken into account when computing
the layout, resulting in larger panels than before. However, there are now multiple
blocks in each row of the layout, with no visual cue drawing attention to this fact.
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> update(tp1.oats, aspect = "xy", layout = c(0, 18),

between = list(x = c(0, 0, 0.5), y = 0.5))
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Figure 2.5. Figure 2.4 updated to put spacing between appropriate columns and
rows, providing a visual cue separating panels into groups of blocks. This is possible
because the layout happens to have exactly two blocks in every row; that is, none
of the blocks spans multiple rows.
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If there is only one conditioning variable with n levels, the default value of
layout is c(0,n), thus taking advantage of this automatic layout computa-
tion. When aspect = "fill" (the default in most cases), this computation
is carried out with an initial aspect ratio of 1, but in the eventual display the
panels are expanded to fill up all the available space.

2.2.3 Fine-tuning the layout: between and skip

The between argument can be a list, with components x and y (both usually
0 by default) which are numeric vectors specifying the amount of blank space
between the panels (in units of character heights). x and y are repeated to
account for all panels in a page, and any extra components are ignored. This
is often useful in providing a visual cue separating panels into blocks, as in
Figure 2.5.

Another argument useful in fine-tuning the layout is skip, which is speci-
fied as a logical vector (default FALSE), replicated to be as long as the number
of panels. For elements that are TRUE, the corresponding panel position is
skipped; that is, nothing is plotted in that position. The panel that was sup-
posed to be drawn there is now drawn in the next available panel position,
and the positions of all the subsequent panels are bumped up accordingly.
This is often useful for arranging plots in an informative manner.

2.3 Grouped displays

Trellis graphics is intended to foster easy and effective visualization of multi-
variate relationships in a dataset. As we saw in Chapter 1, a powerful construct
that forces direct comparison is superposition, where data associated with dif-
ferent levels of a grouping variable are rendered together within a panel, but
with different graphical characteristics. For example, different curves could be
drawn in different color or line type, or points could be drawn with different
symbols. Superposition is usually more effective than multipanel conditioning
when the number of levels of the grouping variable is small. For many lattice
functions, specifying a groups argument that refers to a categorical variable
is enough to produce a “natural” grouped display.

We have seen grouped displays in Chapter 1. Perhaps the most well-known
example in the context of Trellis graphics is Figure 1.1 from Cleveland (1993),
which is recreated in Figure 2.6 using the following code.

> dotplot(variety ~ yield | site, barley,

layout = c(1, 6), aspect = c(0.7),

groups = year, auto.key = list(space = "right"))

The plot is a visualization of data from a barley experiment run in Minnesota
in the 1930s (Fisher, 1971), and discussed extensively by Cleveland (1993). The
plot effectively combines grouping and conditioning to highlight an anomaly
in the data not easily noticed otherwise.
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Figure 2.6. A multiway dot plot of data from a barley experiment run in Minnesota
in the 1930s. Yield is plotted for several varieties of barley, conditioned on six sites.
Different symbols are used to differentiate the year. The grouping and conditioning
combine to highlight an anomaly in the data from Morris. Another subtle choice
that enhances the effectiveness of the display is the ordering of the panels (sites)
and the y variable (variety).
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2.4 Annotation: Captions, labels, and legends

In Figure 2.6, as in Chapter 1, we have annotated the display by adding a
legend, or key, that explains the correspondence of the different symbols to the
respective levels of the grouping variable. Such legends are natural in grouped
displays, but are not drawn by default. Usually, the simplest (although not
the most general) way to add a suitable legend to a grouped display is to
set draw.key = TRUE in the call. Often the key thus produced needs minor
tinkering to get a more desirable result; this can be achieved by specifying
auto.key as a list with suitable components. Generally speaking, legends can
be placed in any of the four sides of a display, in which case enough space is
automatically allocated for them. Alternatively, they can be placed anywhere
inside the display, in which case no extra space is left, and the user has to
make sure that they do not interfere with the actual display.

Other common means of annotating a display are to add meaningful cap-
tions and labels. Just as with traditional high-level graphics functions, most
lattice functions allow the addition of four basic captions: a main title at the
top (specified by the argument main), a subtitle at the bottom (sub), an x-
axis label just below the x-axis (xlab), and a y-axis label to the left of the
y-axis (ylab). xlab and ylab usually have some sensible defaults, whereas the
other two are omitted. These labels are usually text strings, but can also be
“expression” objects,8 or for more generality, arbitrary grid objects (grobs).
Another type of annotation directly supported by lattice functions is through
the page argument. If specified, it has to be a function, and is called after
each page is drawn. It can be used, for example, to mark the page numbers
in a multipage display.

A full discussion of these annotation facilities is given in Chapter 9. Here,
in Figure 2.7, we present one simple example with various labels and a legend.
However, to fully appreciate even this simple example, we need to learn a little
about how legends are specified.

2.4.1 More on legends

The construction of legends is a bit more involved than text labels, because
they potentially have more structure. A template rich enough for most legends
is one with (zero, one, or more) columns of text, points, lines, and rectangles,
with suitably different symbols, colors, and so on. Such legends can be con-
structed using the draw.key() function, which can be indirectly used to add
a legend to a plot simply by specifying a suitable list as the key argument in
a high-level lattice function. To construct this list, we need to know what goes
into the legend. The one in Figure 2.7 has a column of text with the levels of
Variety, and a column of points with the corresponding symbols.
8 Expressions, as typically produced by the expression() function, can be used

to produce LATEX-like mathematical annotation, as described in the help page
?plotmath.



2.4 Annotation: Captions, labels, and legends 27

Yield of three varieties of oats

A 3 x 4 split−plot experiment with 6 blocks

Nitrogen concentration (cwt/acre)

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

60

80

100

120

140

160

0.0 0.2 0.4 0.6

●
●

●

●

I

0.0 0.2 0.4 0.6

●

●

●

●

II

0.0 0.2 0.4 0.6

●

●

●

●

III

0.0 0.2 0.4 0.6

●

●

● ●

IV

0.0 0.2 0.4 0.6

● ●

●

●

V

0.0 0.2 0.4 0.6

●

●
●

●

VI

Golden Rain
Marvellous
Victory

●

Figure 2.7. An alternative display of the Oats data. Variety is now used as a
grouping variable, and a legend describes the association between its levels and the
corresponding plotting characters. Various other labels are also included.

Here we run into a problem. The symbols and colors used by default in
a lattice display are not determined until the plot is actually drawn, so that
the current graphical settings can be taken into account (see Chapter 7 for
details). For example, most plots on the pages of this book are black and white,
but a reader trying to reproduce them will most likely do so interactively on a
computer terminal, and will see them in color. In other words, when making
the call to xyplot(), we do not know what the graphical parameters in the
plot, and hence the legend, are going to be. A clumsy solution, used to produce
Figure 2.7, is to bypass the problem by explicitly specifying the colors and
symbols in the call itself.

> key.variety <-

list(space = "right", text = list(levels(Oats$Variety)),

points = list(pch = 1:3, col = "black"))

> xyplot(yield ~ nitro | Block, Oats, aspect = "xy", type = "o",

groups = Variety, key = key.variety, lty = 1, pch = 1:3,

col.line = "darkgrey", col.symbol = "black",

xlab = "Nitrogen concentration (cwt/acre)",

ylab = "Yield (bushels/acre)",

main = "Yield of three varieties of oats",

sub = "A 3 x 4 split-plot experiment with 6 blocks")

In most cases, a better solution is to use the auto.key argument, which we
have already encountered on a couple of occasions. Chapter 9 examines this
problem in more detail and explains the precise role of auto.key.
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2.5 Graphing the data

At the end of the day, the usefulness of a statistical graphic is determined
by how it renders the information it is supposed to convey. Multipanel con-
ditioning, if used, imposes some preliminary structure on a Trellis display by
systematically dividing up the data in a meaningful way. After determining
these data subsets (packet) and their layout, they next need to be graphed.
This involves a graphical encoding of the data, typically with a rendering of
the relevant axes (tick marks and labels) to provide a frame of reference. For
multipanel displays, an additional element describing each panel, specifically
the associated levels of the conditioning variables, is necessary. This is done
using strips, which can be customized or completely omitted by specifying a
suitable strip (and in some cases strip.left) argument to any high-level
lattice function (see Section 10.7 for details).

A fundamental assumption made in the Trellis design is that the nature of
the graphical encoding will be repetitive; that is, the same procedure will be
used to visualize each packet. This permits a decoupling of the procedures that
draw the data and the axes, which can then be controlled separately. Recall
that each panel in the display has an associated packet, a subset of the entire
data. The exact form of a packet will depend on the high-level function used.
Given the prescription for the graphic, a packet determines the data rectangle,
a two-dimensional region enclosing the graphic. For example, in a bivariate
scatter plot this is usually a rectangle defined by the range of the data; for a
histogram, the horizontal extent of the data rectangle is the minimal interval
containing all the bins, and the vertical scale ranges from 0 at the bottom to
the height of the highest bin (which would depend on the type of histogram
drawn) at the top. Another possibly relevant piece of information determined
by the packet is a suitable aspect ratio for this data rectangle. In all lattice
displays, these pieces of information are computed by the so-called prepanel
function, which is discussed in detail in Chapter 8. Note that this view is
not entirely satisfactory, as for some displays (e.g., scatter-plot matrices using
splom() and three-dimensional scatter plots using cloud()) the usual axes
have no meaning and the data display procedure itself has to deal with scales.

2.5.1 Scales and axes

For a single-panel display, one can proceed to draw the axes and the graphic
once the data rectangle and aspect ratio are determined. However, for mul-
tipanel displays, there needs to be an intermediate step of combining the
information from different packets. A common aspect ratio is chosen by some
form of averaging if necessary. There are three alternative rules available to
determine the scales. The default choice is to use the same data rectangle for
each panel, namely, the smallest rectangle that encloses all individual data
rectangles. This allows easy visual comparison between panels without con-
stantly having to refer to the axes. This choice also allows the panels to share a
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Figure 2.8. A bar chart summarizing the fate of passengers of the Titanic, classified
by sex, age, and class. The plot is dominated by the third panel (adult males) as
heights of the bars encode absolute counts, and all panels have the same limits.

common set of tick marks and axis labels along the boundary, saving valuable
space. Sometimes this is not satisfactory because the ranges of the data in
different packets are too different. If the data do not have a natural baseline
and the relevant comparison is essentially done in terms of differences, it often
suffices to have different scales as long as the number of units per cm is the
same. The third choice, mainly useful for qualitative comparisons, is to allow
completely independent scales, in which case the data rectangle for each panel
is determined just by the corresponding packet. All these choices can be made
selectively for either axis. The choice of which rule to use is controlled by the
scales argument, which can also be used to control other aspects of axis an-
notation, such as the number of tick marks, position and labels of ticks, and
so on. More directly, the arguments xlim and ylim allow explicit specification
of the data rectangle, overriding the default calculations. This is an important
and extensive topic, and is given due consideration in Chapter 8. We give one
simple example here.

The Titanic dataset provides (as a four-dimensional array) a cross-
tabulation of the fates of 2201 passengers of the famous ship, categorized
by economic status (class), sex, and age. To use the data in a lattice plot, it
is convenient to coerce it into a data frame. Our first attempt might look like
the following, which produces Figure 2.8.

> barchart(Class ~ Freq | Sex + Age, data = as.data.frame(Titanic),

groups = Survived, stack = TRUE, layout = c(4, 1),

auto.key = list(title = "Survived", columns = 2))
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Figure 2.9. Survival among different subgroups of passengers on the Titanic, with
a different horizontal scale in each panel. This emphasizes the proportion of survivors
within each subgroup, rather than the absolute numbers. The proportion of survivors
is smallest among third-class passengers, although the absolute number of survivors
is not too low compared to the other classes.

All this plot really tells us is that there were many more males than females
aboard (particularly among the crew, which is the largest group), and that
there were even fewer children; which, although true, is unremarkable. The
point we really want to make is that the“save women and children first”policy
did not work as well for third-class passengers. This is more easily seen if we
emphasize the proportions of survivors by allowing independent horizontal
scales for different panels. Figure 2.9 is created using

> barchart(Class ~ Freq | Sex + Age, data = as.data.frame(Titanic),

groups = Survived, stack = TRUE, layout = c(4, 1),

auto.key = list(title = "Survived", columns = 2),

scales = list(x = "free"))

2.5.2 The panel function

Once the rest of the structure (layout, data rectangles, annotation) is in place,
packets are plotted in the appropriate panel. The actual plotting is done by
a separate function, known as the panel function and specified as the panel
argument, that is executed once for every panel with the associated data
packet as its arguments. Each high-level lattice function has its own default
panel function. By convention, the name of this function is given by “panel.”
followed by the name of the high-level function. For example, the default panel
function for barchart() is called panel.barchart, that for histogram() is
panel.histogram, and so on. The remaining chapters in Part I describe the
various high-level functions and their default panel functions in greater detail.
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A lot can be achieved by the default panel functions, but one is not re-
stricted to them by any means. In fact, it is the ability to define custom panel
functions that allows the user to create novel Trellis displays easily, a process
described in depth in Chapter 13. Even when predefined panel functions are
adequate, an understanding of this process can greatly enhance the ability to
use them effectively. For this reason, we spend some time here exploring this
aspect. Readers new to R and lattice may want to skip the next part on first
reading if they find it confusing.

2.5.3 The panel function demystified

Panel functions are, first and foremost, functions. This may sound obvious, but
the concept of functions as arguments to other functions is often difficult to
grasp for those not used to functional languages. To fix ideas, let us consider
the call that produced Figure 2.9. As we plan to experiment just with the
panel function, there is no point in repeating the full call every time. So, we
save the object in a variable and use the update() method to manipulate it
further.

> bc.titanic <-

barchart(Class ~ Freq | Sex + Age, as.data.frame(Titanic),

groups = Survived, stack = TRUE, layout = c(4, 1),

auto.key = list(title = "Survived", columns = 2),

scales = list(x = "free"))

Figure 2.9 can be reproduced by printing this object.

> bc.titanic

Because the default panel function for barchart() is panel.barchart(), this
is equivalent to

> update(bc.titanic, panel = panel.barchart)

which has the same effect as specifying panel = panel.barchart in the orig-
inal call. Note that the result of the call to update(), which is itself an object
of class “trellis”, has not been assigned to a variable and will thus be printed
as usual. The variable bc.titanic remains unchanged. To make more explicit
the notion that panel is a function, we can rewrite this as

> update(bc.titanic,

panel = function(...) {

panel.barchart(...)

})

Although this does nothing new, it illustrates an important feature of the
S language whose significance is easy for the beginner to miss; namely the
... argument. Complicated functions usually achieve their task by calling
simpler functions. The ... argument in a function is a convenient way for it
to capture arguments that are actually meant for another function called by it,
without needing to know explicitly what those arguments might be. This trick
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Figure 2.10. A modified version of Figure 2.9, with vertical reference lines added
in the background. This is achieved using a custom panel function.

is very useful in lattice calls, because often one wants not to replace the panel
function, but to add to it. A typical example is the addition of reference lines.
The function panel.grid(), which is one of many utility functions in lattice,
can be used to draw such reference lines as follows to produce Figure 2.10.

> update(bc.titanic,

panel = function(...) {

panel.grid(h = 0, v = -1)

panel.barchart(...)

})

Thanks to the ... argument, we used panel.barchart() without even know-
ing what arguments it accepts. It should also be noted that without the call
to panel.barchart() in our custom panel function, only the reference lines
would have been drawn.

Most default panel functions are designed to be quite flexible by them-
selves, and simple variations can frequently be achieved by changing one or
more of their arguments. Suppose that we want to remove the black borders of
the bars in Figure 2.10, which do not really serve any purpose as the bars are
already shaded. Most panel functions have arguments to control the graphical
parameters they use; in panel.barchart(), the border color is determined
by the border argument (as described in the documentation). Thus, to make
the borders transparent, we can use

> update(bc.titanic,

panel = function(..., border) {

panel.barchart(..., border = "transparent")

})
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Figure 2.11. Another version of Figure 2.9 with the borders of the bars made
transparent. This can be achieved using a custom panel function, but a simpler
alternative is to specify a border argument to barchart() which is passed on to
panel.barchart().

which produces Figure 2.11. Once again, we make use of panel.barchart()
without needing to know what its arguments are, except for the one we wanted
to change.

This brings us to a simple, but extremely useful feature of high-level lattice
functions. All of them have a ... argument, and will thus accept without com-
plaint any number of extra named arguments. After processing the arguments
it recognizes itself, a high-level function will collect all remaining arguments
and pass them on to the panel function whenever it is called. The implication
of this is that arguments that are intended for panel functions can be given
directly to the high-level function. This panel function can of course be the
default one, in which case the user does not even have to specify the panel
function explicitly. Thus, an alternative way to produce Figure 2.11 is

> update(bc.titanic, border = "transparent")

We have already used this feature several times so far, and do so extensively
in the next few chapters as well.

2.6 Return value

As briefly discussed in Chapter 1, high-level lattice functions do not draw any-
thing themselves, instead returning an object of class“trellis”. In this chapter,
we have made use of this fact several times without drawing attention to it,
especially when calling the convenient update() method to make incremental
changes to such objects. We learn more about “trellis” objects in Chapter 11.



3

Visualizing Univariate Distributions

Visualizing the distribution of a single continuous variable is a common
graphical task for which several specialized methods have evolved. The dis-
tribution of a random variable X is defined by the corresponding cumulative
distribution function (CDF) F (x) = P (X ≤ x). For continuous random vari-
ables, or more precisely, random variables with an absolutely continuous CDF,
an equivalent representation is the density f(x) = F ′(x). One is often also
interested in the inverse of F , the quantile function. R provides these func-
tions for many standard distributions; for example, pnorm(), dnorm(), and
qnorm() give the distribution, density, and quantile functions, respectively, for
the normal distribution. Most of the visualization methods discussed in this
chapter involve estimating these functions from data. In particular, density
plots and histograms display estimates of the density f , and quantile plots
and box-and-whisker plots are based on (partial) estimates of F or its inverse.

Although the mathematical relationships between the theoretical con-
structs are well-defined, there are no natural relationships between their
standard estimates. Furthermore, the task of visualization comes with its own
special rules; two plots with exactly the same information can put visual em-
phasis on entirely different aspects of that information. Thus, the appropriate-
ness of a particular visualization depends to a large extent on the purpose of
the analysis. We discuss the merits of different visualizations as we encounter
them, but it is helpful to keep this background in mind when reading about
them.

3.1 Density Plot

As we have already seen, using the Chem97 dataset in Chapter 1, the densi-
typlot() function produces kernel density plots. In that example, the densi-
ties estimated for the six score groups were all unimodal (i.e., they had one
peak), and differed from each other essentially in their location, variability,
and skewness (i.e., the first three moments). This is a common scenario in



36 3 Visualizing Univariate Distributions

eruptions

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

●● ●● ●● ●●● ●● ● ●● ●●●
●● ●●● ●●

●●● ●● ●● ●● ●●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●
● ● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ● ●● ● ●● ●●●

● ●●● ●● ●● ●●● ●● ●● ●● ●●●
●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●●● ● ●● ● ●●● ●● ● ●●● ●● ●

Figure 3.1. A kernel density plot of eruption times of the Old Faithful geyser. All
optional arguments retain their defaults; in particular, the Gaussian kernel is used
to compute the estimated density, and the raw data values are plotted with slight
jittering.

many statistical analyses, but better graphical tools than density plots exist
for it, as we show later in this chapter. Density plots are, however, particularly
useful for detecting bimodality or multimodality.

Our first example uses the faithful dataset (Azzalini and Bowman, 1990;
Härdle, 1990), a favorite in density estimation literature. The dataset records
the duration of eruptions of the Old Faithful geyser in Yellowstone National
Park, and the waiting time to the next eruption, over a period of a few days in
1985. We only look at the distribution of the durations. Figure 3.1 is produced
by

> densityplot(~ eruptions, data = faithful)

By default, along with the estimated density, the points are plotted with some
vertical jittering to address overplotting and ties. The plot.points argument
can be used to change it to a “rug” as in the next example, or omit the points
entirely.

There is a variety of approaches to density estimation, of which only the
one implemented in the R function density() is available through the default
panel function panel.densityplot(). It is fairly simple to implement other
approaches, and we show an example in Figure 13.3. density() itself comes
with several arguments to control the calculations, and these can be supplied
directly to densityplot(). The two most important arguments are kern,
which specifies the “kernel” used, and bw, which determines the bandwidth.
The default kernel used in Figure 3.1 was the Gaussian. In Figure 3.2, we use
the rectangular kernel instead, with a fixed bandwidth rather than a data-
dependent one.

> densityplot(~ eruptions, data = faithful,

kernel = "rect", bw = 0.2, plot.points = "rug", n = 200)
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Figure 3.2. Another kernel density plot of the Old Faithful eruption times, this
time using the rectangular kernel and a predetermined bandwidth. This is also known
as an averaged shifted histogram (Scott, 1985), because it can be obtained as the
average of all histograms with a fixed bin width.

Other kernel and bandwidth options are described in the help page for den-
sity().

3.2 Large datasets

The datasets we have encountered so far are fairly small. Even the Chem97
data, the largest we have seen, has only around 30,000 observations. Modern
datasets, for example, those that arise from high-throughput biological assays,
can easily exceed these sizes by many orders of magnitude. In this paradigm,
careful thought is required about the storage of such data, as well as their
analysis, including visualization. As a representative example, we use data
from a flow cytometry (FCM) experiment. As we are primarily interested in
issues related to visualization, we will use, for the most part, a small subset
of the data that can be conveniently manipulated in the familiar data frame
form. We briefly discuss the important practical issues of storage and efficiency
in Chapter 14.

The full dataset (Rizzieri et al., 2007; Brinkman et al., 2007) originated
from a collection of weekly peripheral blood samples obtained from several
patients following allogeneic blood and marrow transplant. The goal of the
study was to identify cellular markers that would predict the development of
graft-versus-host disease (GvHD). Samples were taken at various time points
before and after transplantation. Our “toy” example, available in the lattice-
Extra package as the gvhd10 dataset, represents samples obtained from one
patient at seven time points. The blood samples were labeled with four differ-
ent fluorescent probes to identify targeted biomarkers and a flow cytometer
was used to determine fluorescent intensity for individual cells. The number
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Figure 3.3. Kernel density plots of forward scatter (FSC) measurements of cells
taken from a single transplant patient at different time points, on a logarithmic scale.
The numbers in the strips represents days past transplant, with negative numbers
representing days prior to it. FSC measurements are a surrogate for cell size.

of cells measured varied between approximately 4500 and 25,000 in the seven
samples.

Flow cytometry data have their own special set of complexities that make
analysis challenging. A full discussion of these complexities is beyond the scope
of this book, but one important feature is that observations usually represent
a mixture of multiple cell populations, not all of which are of interest. This is
usually reflected in the marginal densities of individual marker intensities. In
Figure 3.3, we look at densities of forward scatter, a measure of cell size, in
blood samples taken at different time points.

> library("latticeExtra")

> data(gvhd10)

> densityplot(~log(FSC.H) | Days, data = gvhd10,

plot.points = FALSE, ref = TRUE, layout = c(2, 4))

As the number of points is large, we do not plot them, instead adding a
reference line. Other than this, the size of the dataset causes no problems
in visualization, although the step of computing the density itself is more
intensive.
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3.3 Histograms

Histograms are also density estimates, somewhat cruder than kernel density
estimates and possessing worse theoretical properties, but invaluable in the
days before computers were ubiquitous. Histograms are created by dividing
up the range of the data into non-overlapping bins, usually of the same length,
and counting the number of observations that fall in them. Each bin is then
represented by a rectangle with the bin as its base, where the height of the
rectangle is computed to make its area equal the proportion of observations in
that bin. This is formally known as the density histogram, because the result is
a true probability density whose total area equals one. Other popular variants
are the relative frequency histogram, where heights are relative frequencies,
and the frequency histogram, where the heights are frequency counts within
each bin. As long as all the bins have the same width, the heights in the three
cases are multiples of each other (i.e., the corresponding histograms have the
same shape but different y-scales). Unequal bin widths are rarely used outside
introductory statistics textbooks. In Figure 3.4, we use the lattice function
histogram() to present the same data as Figure 3.3. The type argument is
used to compute the heights as density rather than the default of relative fre-
quency. The number of bins (intervals) is increased to 50 because the number
of observations is fairly large.

> histogram(~log2(FSC.H) | Days, gvhd10, xlab = "log Forward Scatter",

type = "density", nint = 50, layout = c(2, 4))

This rendering emphasizes a feature not as obvious in the density plot, namely,
that there is a fairly distinct lower bound for the observations, below which the
density drops quite abruptly. This is an inherent limitation of kernel density
estimates. Some alternative density estimation techniques can address this
limitation if the bound is known in advance.

Despite this apparent advantage, it is rather difficult to justify the use
of histograms in preference to density plots. For one thing, histograms are
rather sensitive to the choice of bin locations; we would prefer estimates that
depended more on the data and less on arbitrary parameter choices. Kernel
density estimates can be viewed as a natural generalization of histograms that
removes some of this arbitrariness, at least when the bins are of equal size.
Specifically, consider a histogram with fixed bin width h. The histogram is
entirely defined by the location of the left endpoint of any one bin, which
is arbitrary. The averaged shifted histogram (ASH; Scott, 1985) removes this
arbitrariness by defining the estimated density at a point x as the average
value at x of all possible density histograms with bin width h. It can be eas-
ily shown that the estimate thus obtained is identical to the kernel density
estimate computed using the rectangular kernel, as in Figure 3.2. Density
plots are also preferable from the visualization perspective as they lend them-
selves more easily to superposition, as we have seen in Chapter 1. Histograms
are nonetheless popular, not least because they are easier to explain to non-
statisticians.
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Figure 3.4. Histograms of log-transformed forward scatter measurements for dif-
ferent visits of a patient, with the same layout as Figure 3.3. A distinct lower bound
for the measured values stands out much more clearly.

3.4 Normal Q–Q plots

A common task when analyzing continuous univariate data is to compare them
to a theoretical distribution. Density estimates emphasize local features such
as modes, but are not ideal for judging global features. The most commonly
used tool for this job is the theoretical quantile–quantile (Q–Q) plot, which
graphs quantiles of the observed data against similar quantiles of a probability
distribution conjectured to be a reasonable match. For a good fit, a Q–Q
plot is roughly linear, with systematic deviations suggesting a lack of fit.
This is related to a well-known result from probability theory, that for a
continuous random variable X with distribution function F , F (X) has the
uniform distribution U(0, 1), which in turn has a linear distribution function.
Q–Q plots are particularly effective because the human eye finds it easier to
perceive deviations from a straight line than from a curve.

We continue with the Chem97 example from Chapter 1. The lattice func-
tion qqmath() can be used to create Q–Q plots comparing univariate data to
a theoretical distribution. In principle, Q–Q plots can use any theoretical dis-
tribution. However, it is most common to use the normal distribution, which
is the default choice in qqmath(). Figure 3.5 is produced by
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Figure 3.5. Normal Q–Q plots of average GCSE score for different final scores in
the A-level chemistry exam. The systematic curvature in the Q–Q plot is indicative
of a left-skewed distribution.

> qqmath(~ gcsescore | factor(score), data = Chem97,

f.value = ppoints(100))

The formula and the data argument used should need no explanation. The
other argument, f.value, tells qqmath() to use only 100 quantiles in each
panel, instead of the default of as many quantiles as there are data points
(which in this example would give more than 3000 points in each panel).

Figure 3.5 clearly shows systematic convexity, which is consistent with a
left-skewed distribution. If we study the plot closely, we can confirm what we
observed in Figure 1.3, that higher score is associated with higher gcsescore,
and that the variance of gcsescore decreases with score (reflected in the
decreasing slope of the Q–Q plots). This is clearer if we superpose the Q–Q
plots in a single panel as we did with density plots in Chapter 1. Figure 3.6
is produced by

> qqmath(~ gcsescore | gender, Chem97, groups = score, aspect = "xy",

f.value = ppoints(100), auto.key = list(space = "right"),

xlab = "Standard Normal Quantiles",

ylab = "Average GCSE Score")

We have also added gender as a conditioning variable and specified aspect
= "xy", which chooses an aspect ratio using the 45◦ banking rule.
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Figure 3.6. Normal Q–Q plots of average GCSE score by gender, grouped by final
score. The aspect ratio has been chosen automatically using the 45◦ banking rule.
The systematic curvature is still visible, and superposition now makes it easier to
compare slopes, suggesting a systematic change in variance.

3.4.1 Normality and the Box–Cox transformation

The normal distribution plays an important role in many statistical analy-
ses, and nice theoretical results follow if we can assume normality and equal
variance, neither of which hold in our example. However, simple power trans-
formations often improve the situation considerably. The Box–Cox transfor-
mation (Box and Cox, 1964) is a scale- and location-shifted version of the
power transformation, given by

fλ(x) =
xλ − 1

λ

for λ �= 0, with f0(x) = log x. This formulation has the advantage of being
continuous with respect to the “power” λ at λ = 0. The “optimal” Box–Cox
transformation can be computed by the boxcox() function in the MASS pack-
age (Venables and Ripley, 2002). A plot of the profile log-likelihood function
as a function of λ can be obtained using (result not shown)

> library("MASS")

> Chem97.pos <- subset(Chem97, gcsescore > 0)

> with(Chem97.pos,

boxcox(gcsescore ~ score * gender, lambda = seq(0, 4, 1/10)))

One record with a gcsescore of 0 has to be omitted from the calculations. In
this case, the optimal power is computed as λ = 2.34. We can visually confirm
the success of this transformation using a Q–Q plot of the transformed values,
shown in Figure 3.7.
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Figure 3.7. Normal Q–Q plots of transformed GCSE score. The transformation
appears to have rectified most of the systematic departures from normality and
homoscedasticity.

> Chem97.mod <- transform(Chem97, gcsescore.trans = gcsescore^2.34)

> qqmath(~ gcsescore.trans | gender, Chem97.mod, groups = score,

f.value = ppoints(100), aspect = "xy",

auto.key = list(space = "right", title = "score"),

xlab = "Standard Normal Quantiles",

ylab = "Transformed GCSE Score")

3.4.2 Other theoretical Q–Q plots

Although less common, distributions other than the normal can also be an
appropriate choice as the source of the theoretical quantiles. For example,
one standard choice is the uniform distribution, in which case the resulting
Q–Q plot is related to the empirical distribution function of the data (see Fig-
ure 3.9). If the user is roughly familiar with the shape of common distribution
functions, such plots can serve to suggest a good model for the data.

The primary use of quantile plots, however, is as a tool to compare two
distributions, and its power comes from the fact that the human eye can bet-
ter perceive deviations from a straight line than from a curve. To use this fact
effectively, the two sets of quantiles compared using a Q–Q plot should arise
from the same“expected”distribution. Viewed as a hypothesis test, this means
that under the null hypothesis, the distributions compared are effectively the
same (up to location and scale); a perceived departure from linearity in the
Q–Q plot would lead to a rejection of the null hypothesis. Thus, if the data
were expected to come from a certain distribution (not necessarily normal),
it would be appropriate to compare against that distribution. One situation
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where this arises naturally is in simulation studies comparing the empirical
and theoretical properties of the sampling distribution of some statistic. Such
plots can also serve to demonstrate interesting properties of theoretical distri-
butions; see Figure 10.5 for an example involving the exponential distribution.

3.5 The empirical CDF

A discussion of Q–Q plots would be incomplete without a mention of the
empirical cumulative distribution function (ECDF). From a theoretical point
of view, the ECDF is the non-parametric maximum likelihood estimate of
the cumulative distribution function F . Trellis plots of the the ECDF can be
produced by the ecdfplot() function in the latticeExtra package. Figure 3.8
is produced by

> library("latticeExtra")

> ecdfplot(~ gcsescore | factor(score), data = Chem97,

groups = gender, auto.key = list(columns = 2),

subset = gcsescore > 0, xlab = "Average GCSE Score")

The subset argument is used to remove a single outlier, shrinking the range
of the data considerably.

Leaving aside certain technicalities that are largely irrelevant for visualiza-
tion, the ECDF is closely related to a theoretical Q–Q plot with the uniform
distribution as a reference, the difference being that the x- and y-axes are
switched. An equivalent Q–Q plot, shown in Figure 3.9, is produced by

> qqmath(~ gcsescore | factor(score), data = Chem97, groups = gender,

auto.key = list(points = FALSE, lines = TRUE, columns = 2),

subset = gcsescore > 0, type = "l", distribution = qunif,

prepanel = prepanel.qqmathline, aspect = "xy",

xlab = "Standard Normal Quantiles",

ylab = "Average GCSE Score")

It is easy to see that a normal Q–Q plot, or any other theoretical Q–Q plot
for that matter, can be obtained by transforming the x-axis of a uniform Q–Q
plot by a suitable theoretical quantile function. Similar transformations can
be applied to an ECDF plot, but this is less common.

3.6 Two-sample Q–Q plots

Q–Q plots can also be used to directly compare two sets of observations. In
theory, these are not much different from Q–Q plots against a theoretical
distribution; quantiles from one sample are plotted not against corresponding
quantiles from a theoretical distribution, but against those from the other
sample. Two-sample Q–Q plots are are created by the qq() function. The
formula defining such plots may seem somewhat unusual at first, but is natural
when the data are stored in a single data frame, and extends naturally to the
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Figure 3.8. Empirical CDF plots of average GCSE scores by final score and gen-
der. The empirical CDF is the non-parametric maximum likelihood estimate of the
distribution function F .
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Figure 3.9. Uniform Q–Q plots of average GCSE scores. Modulo certain techni-
calities, these can be viewed as the inverse of ECDF plots, with the x- and y-axes
switched. Neither are particularly useful as diagnostics for lack of fit, but can be
used for comparing multiple distributions.
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Figure 3.10. Two sample Q–Q plots comparing average GCSE score by gender
(which conveniently has two levels), after conditioning on final score. The Q–Q plots
are linear, but fall slightly above the diagonal and have slope less than 1 (except for
the first panel), suggesting that the distributions of GCSE score are similar, with a
higher mean and lower variance for females compared to males. An overall upward
shift across panels is also apparent.

bwplot() function, which we encounter soon. Specifically, the formula has the
form y ~ x, where x is a numeric vector that consists of both samples, and
y is a factor of the same length as x with exactly two levels defining the two
samples. Figure 3.10 shows a Q–Q plot comparing gcsescore for males and
females after conditioning on score.

> qq(gender ~ gcsescore | factor(score), Chem97,

f.value = ppoints(100), aspect = 1)

The two axes correspond to quantiles of the two samples. By default, both
axes have the same limits, and a diagonal line is added for reference. In this
case, the scatter in each panel is linear, but above the diagonal and not quite
parallel to it. This suggests that the distributions are similar except for a scale
and location change, with gcsescore values for females being slightly higher
and less variable given a final score. A useful variant of this plot can be seen
in Figure 11.5.
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3.7 Box-and-whisker plots

Two-sample quantile plots can effectively compare two samples at a time, but
they do not generalize to more. A matrix of pairwise quantile plots can in prin-
ciple compare multiple samples, but takes up too much space and can be hard
to interpret. A well-known graphical method for comparing multiple samples
is the box-and-whisker plot (Tukey, 1977). Many variants exist, but essentially
each distribution is summarized by five quantiles; three quartiles that define
the“box”and two extremes that define the“whiskers”. The bwplot() function
produces box-and-whisker plots with a syntax similar to qq(). We illustrate
its use by continuing with the Chem97 example. Figure 3.11 is produced by

> bwplot(factor(score) ~ gcsescore | gender, data = Chem97,

xlab = "Average GCSE Score")

Unlike the qq() call, the variable defining the samples, factor(score) in this
case, has more than two levels. For every level, a box-and-whisker plot of the
corresponding gcsescore values is drawn, allowing us to directly compare the
median, indicated by a filled black dot, and the 25th and 75th quantiles, which
determine the range of the box. In some variants, the whiskers extend to the
minimum and maximum of the data, but conventionally they are limited to
a multiple of the length of the box. This multiple is related to the normal
distribution, and points beyond the whiskers, which are plotted explicitly, are
thought of as potential outliers; a large number of these indicate tails that are
heavier than the normal distribution. These details are controlled by the coef
and do.out arguments of panel.bwplot(). In Figure 3.11, the asymmetry
in the distribution of gcsescore is immediately apparent by looking at the
whiskers and the putative outliers, although it is not as clear from the boxes
alone.

The next example illustrates the importance of good choices of layout and
conditioning. A slightly different version of the previous plot is produced by

> bwplot(gcsescore^2.34 ~ gender | factor(score), data = Chem97,

varwidth = TRUE, layout = c(6, 1),

ylab = "Transformed GCSE score")

The result is shown in Figure 3.12. Although it presents essentially the same
data subsets as Figure 3.11 (after applying the optimal Box–Cox transforma-
tion to the gcsescore values), it orders and orients the boxes differently; in
particular, it enables all pairwise comparisons by forcing a common gcsescore
axis, and emphasizes the differences across gender by placing them together.
The varwidth argument is used to make the widths of the boxes related to
sample size, although in this case there is little discernible difference as the
sample sizes are all of the same order.

3.7.1 Violin plots

In a sense, the preceding plots summarize all the interesting characteristics of
the conditional distribution of gcsescore. This usually holds whenever the
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Figure 3.11. Comparative box-and-whisker plots of average GCSE score by final
score, conditioned on gender. Systematic skewness and heteroscedasticity, the pri-
mary messages of the normal Q–Q plots seen earlier, are readily apparent in this
more compact representation as well.
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Figure 3.12. Comparative box-and-whisker plots of transformed GCSE scores,
representing the same subsets in a slightly different layout. This version highlights a
pattern not easily seen in the earlier plots, namely, that boys tend to improve more
from bad GCSE scores than girls. This is a good illustration of how layout might
affect the information that can be gleaned from a graphic.
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Figure 3.13. Box-and-whisker plots comparing the distribution of log forward
scatter values in the gvhd10 data across time. The multimodality of the distributions,
obvious in Figures 3.3 and 3.4, cannot be detected in this encoding.

distribution of interest is unimodal and close to normal. However, box-and-
whisker plots can be misleading otherwise. In Figure 3.13, we consider the
gvhd10 data again, this time using a box-and-whisker plot to summarize the
distribution of log(FSC.H) across Days.

> bwplot(Days ~ log(FSC.H), data = gvhd10,

xlab = "log(Forward Scatter)", ylab = "Days Past Transplant")

A comparison with Figures 3.3 and 3.4 clearly shows the limitation of this
display. A useful alternative that retains the compact structure of a box-and-
whisker plot as well as the details of a density plot is the so-called violin plot
(Hintze and Nelson, 1998). Figure 3.14 is produced by

> bwplot(Days ~ log(FSC.H), gvhd10,

panel = panel.violin, box.ratio = 3,

xlab = "log(Forward Scatter)",

ylab = "Days Past Transplant")

This uses the predefined panel function panel.violin() which can be used
as a drop-in replacement for panel.bwplot().
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Figure 3.14. A modified version of Figure 3.13, with box-and-whisker plots re-
placed by violin plots. The bimodal nature of the distributions is readily apparent.

3.8 Strip plots

Box-and-whisker plots summarize the data using a few quantiles, and possibly
some outliers. This summarizing can be important when the number of ob-
servations is large. When the number of observations per sample is small, it is
often sufficient to simply plot the sample values side by side in a common scale.
Such plots are known as strip plots, also referred to as univariate scatter plots.
They are in fact very similar to the bivariate scatter plots we encounter in
Chapter 5, except that one of the variables is treated as a categorical variable.

Here, we show a couple of examples using the quakes dataset, which
records the location (latitude, longitude, and depth) and magnitude of several
seismic events near Fiji since 1964. To get a sense of the relationship between
magnitude and depth, we might compare the depth values for different mag-
nitudes. Only a few discrete values of magnitude are recorded, and it can be
treated as a factor. The call

> stripplot(factor(mag) ~ depth, quakes)

produces Figure 3.15. There is no particular reason to put the categorical
variable on the vertical axis; in fact, the reverse would be the better choice
here if we are to have a short wide plot. Figure 3.16 is produced by

> stripplot(depth ~ factor(mag), quakes,

jitter.data = TRUE, alpha = 0.6,

xlab = "Magnitude (Richter)", ylab = "Depth (km)")
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Figure 3.15. Strip plot of depths of the epicenters of seismic events near Fiji, as
recorded in the quakes dataset. Depths are plotted (on the x-axis) by magnitude of
the events on the Richter scale.

Figure 3.16. Strip plot of epicenter depths by earthquake magnitude, with axes
switched. Overplotting is alleviated by jittering the points as well as making them
partially transparent.
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where additionally we make use of the alpha argument to make points semi-
transparent1 and the jitter.data argument to randomly displace the points
horizontally, both of which help alleviate the effect of overlap.2 Both plots
suggest a weak relationship between depth and magnitude, but the primary
visual effect is the clustering of the depth values into two groups, with a gap
around 400 km. It is natural to wonder whether this is merely a consequence of
some form of spatial clustering of the locations. We follow up on this question
in subsequent chapters.

Strip plots can also be used to study residuals from factorial model fits.
Figure 3.17, which plots the square roots of the absolute residuals from an
additive model fit to the barley data, is a variant of the spread–location plot
(Cleveland, 1993), designed to detect unusual patterns in the variability of
residuals.

> stripplot(sqrt(abs(residuals(lm(yield~variety+year+site)))) ~ site,

data = barley, groups = year, jitter.data = TRUE,

auto.key = list(points = TRUE, lines = TRUE, columns = 2),

type = c("p", "a"), fun = median,

ylab = expression(abs("Residual Barley Yield")^{1 / 2}))

The call used to produce this plot is somewhat involved, and uses some facts
we have not yet encountered. Rather than going into the details now, we wait
until we have learned more and analyze the call in Chapter 10.

3.9 Coercion rules

Both the stripplot() and bwplot() functions expect one of the axes to
represent a categorical variable. As with conditioning variables, this can be
either a factor or a shingle, and the same coercion rules apply when necessary;
that is, a character vector is interpreted as a factor, and a numeric vector as
a shingle. The choice of which variable to use as the categorical one is simple
when exactly one of the x and y variables is numeric and the other is a
factor or shingle. When the choice is ambiguous, the default is to choose the y
variable. In all cases, the automatic choice can be overridden by specifying a
horizontal argument in the high-level call: TRUE to have y as the categorical
variable, FALSE to have x instead. This choice primarily affects the display
produced by the panel function, but also has a subtle effect on axis annotation;
by default, for the categorical variable, the axis label is omitted, tick marks
are suppressed and the labels do not alternate. These rules also apply to the
dotplot() and barchart() functions discussed in the next chapter.

1 Note that semi-transparency is not supported on all devices.
2 Both alpha and jitter.data are actually passed on to the panel function
panel.stripplot().
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Figure 3.17. A spread–location plot of residuals from a main effects model fit to the
barley data. The points denote square roots of absolute residuals, jittered horizon-
tally. The lines join the medians of the points within each subgroup, with systematic
change in the location indicating a corresponding change in the spread (variance) of
the original residuals. It is clear that the model is not entirely appropriate, although
the cause is not obvious.

3.10 Discrete distributions

The graphical techniques described in this chapter are designed for contin-
uous random variables. Discrete distributions do not have a density in the
conventional sense, but are defined by the analogous probability mass func-
tion (p.m.f.). The cumulative distribution function F is still well-defined, as
is the quantile function F−1 up to certain mathematical caveats. In terms
of visualization, this means that density plots and histograms are not really
meaningful for discrete data, although Q–Q plots are. The non-parametric max-
imum likelihood estimator of a p.m.f. is the (relative) frequency table. As with
other tables, these can be visualized using bar charts and dot plots (Chapter 4),
which serve as a substitute for density plots and histograms; in fact, bar charts
are often loosely referred to as histograms, although we prefer not to confuse
the two. As with its continuous analogues, bar charts are not very effective
tools for judging the goodness of fit of a reference distribution. An innova-
tive visualization for that purpose is Tukey’s hanging rootogram (Cleveland,
1988); we do not encounter them in this book, but Trellis rootograms can be
created by the rootogram() function in the latticeExtra package.

The distinction between continuous and discrete distributions is sometimes
unclear. The gcsescore variable in the Chem97 serves as a good case in point;
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the 31,022 values, ranging from 0 to 8 with a resolution of three digits after
the decimal point, have only 244 unique values. Figure 4.8 in the next chapter,
which treats the variable as discrete, reveals an apparent rounding artifact;
this is also noticeable in some of the displays we have already seen, but only
if we know what we are looking for. Note in particular the ECDF plot in
Figure 3.8, which is simply a cumulative version of the bar chart in Figure 4.8,
up to differences in conditioning. This emphasizes the important point that
two graphical encodings with the same “information” can put visual emphasis
on entirely different aspects of that information.

Some distributions are neither continuous nor discrete, but a mixture of the
two. These are mostly irrelevant in practical data analysis, with the important
exception of censoring. Formally, censoring refers to the situation where only
the range (most commonly an upper or lower bound) of an observation is
known and not its exact value. Often, the fact that an observation is censored
is also known, and this can be taken into account during analysis. In other
cases, however, censored values may be silently encoded as the bound (which
may be the limit of a measuring instrument, for instance), leading to a discrete
point mass in an otherwise continuous distribution. Such situations are often
hard to identify graphically with density plots or bar charts; the best bet is
the Q–Q plot as F and F−1 are still well-defined even though the density and
p.m.f. are not. Censoring effects can be seen in Figure 10.4.

3.11 A note on the formula interface

We end this chapter with a remark on the formula interface. Although the
lattice interface is similar in many ways to the one used in statistical mod-
eling functions in S and R, the interpretation of terms in the formula differs
substantially; in fact, the interpretation is not even consistent across lattice
functions. A generally helpful rule is the following: given a formula such as
y ~ x, the y variable will be plotted on the y-axis and the x variable on the
x-axis. The exception to this rule is qq(). Similarly, most functions with a
formula of the form ~ x plot x on the x-axis, with the exception of qqmath()
and the yet to be seen splom() and parallel(). Formulae in the trivariate
functions described in Chapter 6 have the form z ~ x * y, where again a
similar association holds with certain caveats. The upshot is that there is no
single rule that governs all uses; the formula interface should be simply viewed
as a convenient language that defines the structure of a lattice graphic, and is
to be interpreted only in the context of that particular graphic.
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Displaying Multiway Tables

An important subset of statistical data comes in the form of tables. Tables
usually record the frequency or proportion of observations that fall into a par-
ticular category or combination of categories. They could also encode some
other summary measure such as a rate (of binary events) or mean (of a con-
tinuous variable). In R, tables are usually represented by arrays of one (vec-
tors), two (matrices), or more dimensions. To distinguish them from other
vectors and arrays, they often have class “table”. The R functions table()
and xtabs() can be used to create tables from raw data.

Graphs of tables do not always convey information more easily than the
tables themselves, but they often do. The barchart() and dotplot() func-
tions in lattice are designed to display tabulated data. As with other high-level
functions, the primary formula interface requires the data to be available as a
data frame. The as.data.frame.table() function can be used for converting
tables to suitable data frames. In addition, there are methods in lattice that
work directly on tables. We focus on the latter in this chapter; examples using
the formula interface can be found in Chapter 2.

4.1 Cleveland dot plot

Dot plots (Cleveland, 1985) provide simple and effective graphical summaries
of tables that are perhaps less often used than they should be. For illustration,
we use the VADeaths data, which is a cross-classification of death rates in the
U.S. state of Virginia in 1940 by age and population groups (Molyneaux et al.,
1947).

> VADeaths

Rural Male Rural Female Urban Male Urban Female

50-54 11.7 8.7 15.4 8.4

55-59 18.1 11.7 24.3 13.6

60-64 26.9 20.3 37.0 19.3
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Figure 4.1. Dot plots of death rates (per 1000) in Virginia in 1940, cross-tabulated
by age and demographic groups.

65-69 41.0 30.9 54.6 35.1

70-74 66.0 54.3 71.1 50.0

The VADeaths object is of class “matrix”.

> class(VADeaths)

[1] "matrix"

We can check what methods are available for the dotplot() function using

> methods("dotplot")

[1] dotplot.array* dotplot.default* dotplot.formula*

[4] dotplot.matrix* dotplot.numeric* dotplot.table*

Non-visible functions are asterisked

As we can see, there is a method for “matrix” objects, which we can use
directly in this case. The corresponding help page can be viewed by typing
help(dotplot.matrix). Figure 4.1 is produced by

> dotplot(VADeaths, groups = FALSE)

which uses one additional argument to disable grouping. As is almost in-
evitable with a first attempt, there is much scope for improvement. The de-
fault label on the horizontal axis says Freq, even though the table values are
not frequencies. More importantly, this display does not easily allow us to
compare the rates for males and females, as they are displayed in different
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columns. One way to rectify this is to force the display to have one column.
To prevent the panels from getting too flattened, we add an explicit aspect
ratio. Because rates have a well-defined origin (0), it may also be interesting
to make a judgment about their relative magnitude, and not just their differ-
ences. To this end, we ask for the points to be joined to a baseline using the
type argument. Figure 4.2 is produced by

> dotplot(VADeaths, groups = FALSE,

layout = c(1, 4), aspect = 0.7,

origin = 0, type = c("p", "h"),

main = "Death Rates in Virginia - 1940",

xlab = "Rate (per 1000)")

Even more direct comparison can be achieved using superposition, which is in
fact the default in this dotplot() method. By omitting the groups = FALSE
argument, we can plot rates for all the population groups in a single panel, but
with different graphical parameters. The following call produces Figure 4.3.

> dotplot(VADeaths, type = "o",

auto.key = list(lines = TRUE, space = "right"),

main = "Death Rates in Virginia - 1940",

xlab = "Rate (per 1000)")

4.2 Bar chart

Bar charts (along with pie charts1) are among the most popular graphical
representations of tables. However, they are less useful than dot plots in most
situations. A bar chart analogous to the dot plot in Figure 4.1 is produced by

> barchart(VADeaths, groups = FALSE,

layout = c(1, 4), aspect = 0.7, reference = FALSE,

main = "Death Rates in Virginia - 1940",

xlab = "Rate (per 100)")

The resulting plot, shown in Figure 4.4, conveys exactly the same information
with some additional and redundant graphical structure. In fact, bar charts
can actually mislead when the“origin”is arbitrary, as they convey the incorrect
impression that the quantity encoded by the length (or area) of the bar has
some meaning. Another popular but questionable practice is to add confidence
intervals to bar charts; dot plots with confidence intervals are almost invariably
easier to interpret.

One variant of the bar chart does encode more information than a dot
plot could. A grouping variable can be incorporated in a bar chart display
either by plotting the bars for the various groups side by side or by stacking
1 lattice does not contain a function that produces pie charts. This is entirely by

choice, as pie charts are a highly undesirable form of graphical representation (see
Cleveland (1985) for a discussion), and their use is strongly discouraged.
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Figure 4.2. Dot plot of death rates in Virginia in 1940, arranged in a single column
layout with more informative labels. The origin is included in the plot, and points
are joined to it to enable comparison of absolute rates.
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Death Rates in Virginia − 1940
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Figure 4.3. Death rates in Virginia in 1940, with population groups superposed
within a single panel. Points within a group are joined to emphasize group member-
ship. This plot suggests that the rates are virtually identical in the rural female and
urban female subgroups, with a systematic increase among rural males and a further
increase for urban males. This pattern is hard to see in the multipanel versions.

them on top of each other. The first case is similar to a grouped dot plot
and contains no extra information. In the second case, a stacked bar chart,
the total length of each bar encodes the marginal totals, in addition to the
lengths of the component bars, which breaks up this total according to the
grouping variable. We have seen stacked bar charts previously in Chapter 2
(e.g., Figure 2.9). For another example, consider the data in Table 4.2, based
on a survey of doctorate degree recipients in the United States who went on
to pursue a postdoctoral position. The data are available in the latticeExtra
package.

> data(postdoc, package = "latticeExtra")

Stacked bar charts are generally produced by adding a stack = TRUE argu-
ment to barchart(), but this is unnecessary for the “table” method as it is
the default. A stacked bar chart of the postdoc data, shown in Figure 4.5, is
produced by

> barchart(prop.table(postdoc, margin = 1), xlab = "Proportion",

auto.key = list(adj = 1))

The data plotted are proportions, computed by prop.table(), as these are
the quantities of interest; the counts could have been plotted as well, but
that would not have told us much except that the “Biological Sciences” field
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Figure 4.4. Bar charts of Virginia death rates by population group, in a layout sim-
ilar to the dot plots in Figure 4.1. This encoding contains more graphical structure,
but no more information.
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Expected Work Training Other
or with Outside Employment

Additional Specific PhD Not
Training Person Field Available Other

Biological Sciences 6404 2427 1950 1779 602
Chemistry 865 308 292 551 168

Earth, Atm., & Ocean Sciences 343 75 75 238 80
Engineering 586 464 288 517 401

Medical Sciences 205 137 82 68 74
Physics & Astronomy 1010 347 175 399 162

Social & Behavioral Sciences 1368 564 412 514 305
All Postdoctorates 11197 4687 3403 4406 1914

Table 4.1. Reasons for choosing a postdoctoral position after graduating from U.S.
universities, by different fields of study.

contributes the majority of postdocs. We also make the levels of the grouping
variable right-justified in the legend using the auto.key argument.

A multipanel dot plot encoding the same information can be produced by

> dotplot(prop.table(postdoc, margin = 1), groups = FALSE,

xlab = "Proportion",

par.strip.text = list(abbreviate = TRUE, minlength = 10))

creating Figure 4.6. Even though the stacked bar chart is more concise, it is not
necessarily better if one is primarily interested in comparing the proportions of
reasons across fields. The bar chart encodes this quantity using length, whereas
the dot plot does so using relative position which is more easily judged by the
human eye.

4.2.1 Manipulating order

A point worth making in the context of this example is the importance of visual
order. In many situations, the levels of a categorical variable have no natural
order; this is true for both margins of the postdoc table. Often, choosing the
order in which these levels are displayed based on the data can significantly
increase the impact of the display. An effective order is usually obtained by
sorting levels by the value of a corresponding continuous response, or perhaps
a summary measure when multiple observations or multiple responses are
involved. Facilities available in lattice that aid such reordering are discussed,
along with examples, in Chapter 10. Unfortunately, our example is slightly
complicated by the fact that the responses are proportions that add up to
one for each field of study, making it difficult to find a common order that is
appropriate for all panels.

One solution is to use a different order for each panel. This is not par-
ticularly difficult to achieve, but involves several concepts we have not yet
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Figure 4.5. A stacked bar chart showing the proportion of reasons for choosing a
postdoc by field of study. Because the bars encode proportions, their lengths add up
to one within each field. Comparison is done through lengths (except for the first and
last group), which is less effective than comparison through position. Notice the long
labels on the vertical axis, for which enough space has been allocated automatically.
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Figure 4.6. Reasons for choosing a postdoc position; an alternative visualization
using multipanel dot plots. Although the display is less compact, it makes compar-
ison within fields easier. Long axis labels are not uncommon in situations such as
these, therefore the labels are all shown on one side by default to save space. The
strip labels have been abbreviated as they would not have fit in the available area.
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encountered. We give the solution here for the sake of completeness, and refer
the reader to later chapters for details. Figure 4.7 is produced by

> dotplot(prop.table(postdoc, margin = 1), groups = FALSE,

index.cond = function(x, y) median(x),

xlab = "Proportion", layout = c(1, 5), aspect = 0.6,

scales = list(y = list(relation = "free", rot = 0)),

prepanel = function(x, y) {

list(ylim = levels(reorder(y, x)))

},

panel = function(x, y, ...) {

panel.dotplot(x, reorder(y, x), ...)

})

The critical additions in this call are the use of the index.cond argument and
the reorder() function, both of which are discussed in Chapter 10. The order
of the fields is changed inside the panel function, and a corresponding change
is required in the prepanel function to ensure that the axis labels match. We
also need to specify an appropriate scales argument to allow panels to have
independent axis annotation. Details about these arguments can be found in
Chapter 8.

4.2.2 Bar charts and discrete distributions

As mentioned in Chapter 3, bar charts can be viewed as analogues of density
plots or histograms for discrete distributions. In the examples we have seen
so far, the data come in the form of a table. When only raw data are avail-
able, frequency tables can be easily constructed with the xtabs() function.
Consider the following two-way table of gcsescore by gender derived from
the Chem97 data.

> gcsescore.tab <- xtabs(~gcsescore + gender, Chem97)

We might attempt to produce a bar chart directly from this table, but this
will not give us the result we want; because gcsescore is now interpreted as
a categorical variable, its levels will be plotted as equispaced integers2 and
not as the original numeric values. Additionally, barchart() will print the
labels for every level of gcsescore, causing substantial overlap. In this case,
it is easier to first manipulate the data, after converting the table into a data
frame, and then use the xyplot() function, which does not require either of
the variables to be categorical. The next chapter discusses xyplot() in detail;
here we use the convenient type argument to create Figure 4.8.

> gcsescore.df <- as.data.frame(gcsescore.tab)

> gcsescore.df$gcsescore <-

as.numeric(as.character(gcsescore.df$gcsescore))

> xyplot(Freq ~ gcsescore | gender, data = gcsescore.df,

type = "h", layout = c(1, 2), xlab = "Average GCSE Score")

2 To be precise, the numeric codes in the underlying representation of a “factor”.
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Figure 4.7. Yet another visualization of reasons for choosing a postdoc. Both
margins have been ordered by the response (proportions within field): the panels
(reasons) are ordered by the median proportion over all fields, and fields are ordered
by proportion within each panel. Reordering often makes it easier to see patterns in
the data when there is no intrinsic order.
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Figure 4.8. A bar chart of sorts, visualizing the frequency table of average GCSE
score by gender. The main differences from a conventional bar chart are that the
x-axis is continuous and the“bars”are actually zero-width lines. Apart from showing
that girls tend to do better than boys on the GCSE, the most interesting feature
of the display is the spikes of high frequencies for certain values, most noticeable
for whole numbers. At first glance, this might appear to be some sort of rounding
error. In fact, the artifact is due to averaging; most of the GCSE score values are
the average of 8, 9, or 10 scores, where the total scores are integers.

Note that the use of barchart() is perfectly reasonable when the number of
levels is small; for example, Figure 4.9 is produced by

> score.tab <- xtabs(~score + gender, Chem97)

> score.df <- as.data.frame(score.tab)

> barchart(Freq ~ score | gender, score.df, origin = 0)

4.3 Visualizing categorical data

Tables are examples of the more general class of categorical data. Specialized
visualization methods for such data exist, but are less well known compared
to methods for continuous data. Support for visualizing categorical data in
lattice is limited to dot plots and bar charts, and those interested in such data
are strongly encouraged to look at the vcd package, which implements many
techniques described by Friendly (2000).
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Figure 4.9. Bar chart displaying the frequency distribution of final score in the
A-level chemistry examination, by gender.
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Scatter Plots and Extensions

The scatter plot is possibly the single most important statistical graphic. In
this chapter we discuss the xyplot() function, which can be used to produce
several variants of scatter plots, and splom(), which produces scatter-plot
matrices. We also include a brief discussion of parallel coordinates plots, as
produced by parallel(), which are related to scatter-plot matrices in terms
of the kinds of data they are used to visualize, although not so much in the
actual visual encoding.

A scatter plot graphs two variables directly against each other in a Carte-
sian coordinate system. It is a simple graphic in the sense that the data are
directly encoded without being summarized in any way; often the aspects that
the user needs to worry about most are graphical ones such as whether to join
the points by a line, what colors to use, and so on. Depending on the purpose,
scatter plots can also be enhanced in several ways. In this chapter, we go over
some of the variants supported by panel.xyplot(), which is the default panel
function for both xyplot() and splom() (under the alias panel.splom()).

5.1 The standard scatter plot

We continue with the quakes example from Chapter 3. We saw in Figure 3.16
that the depths of the epicenters more or less fall into two clusters. The lati-
tude and longitude are also recorded for each event, and together with depth
could provide a three-dimensional view of how the epicenters are spatially dis-
tributed. Of course, scatter plots can only show us two dimensions at a time.
As a first attempt, we could divide up the events into two groups by depth
and plot latitude against longitude for each. Figure 5.1 is created using the
by now familiar formula interface.

> xyplot(lat ~ long | cut(depth, 2), data = quakes)

The cut() function is used here to convert depth into a discrete factor by
dividing its range into two equal parts. There does indeed seem to be some



68 5 Scatter Plots and Extensions

long

la
t

−35

−30

−25

−20

−15

−10

165 170 175 180 185

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●●
●
●●
●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

(39.4,360]

165 170 175 180 185

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

● ●●

●

●

●●

●

●

●
●●

●●

●

●

●●●

●

●

●

●●●

●

●●

●

●●

●

●

●
●

●

●●
●

●●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
● ●

●

●

●

●●
●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

(360,681]

Figure 5.1. Scatter plots of latitude against longitude of earthquake epicenters,
conditioned on depth discretized into two groups. The distribution of locations in
the latitude–longitude space is clearly different in the two panels.

differentiation in the two parts; the cluster of locations towards the upper-left
corner all but disappears in the second panel. The other cluster also appears
to shrink, but it is not immediately clear if there is a spatial shift as well.

For our second attempt, we make several changes. We discretize the depth
values into three groups instead of two, hoping to discern some finer patterns.
We use a variant of the default strip function so that the name of the condi-
tioning variable is included in the strips. We change the plotting symbol to
dots rather than circles. Because the two axes have the same units (degrees),
we constrain the scales to be isometric by specifying aspect = "iso", which
forces the aspect ratio to be such that the relationship between the physical
and native coordinate systems (the number of data units per cm) is the same
on both axes (of course, this does not account for the locations falling on
a sphere and not a plane). Finally, and perhaps most important, we add a
common reference grid to all three panels. Figure 5.2 is produced by

> xyplot(lat ~ long | cut(depth, 3), data = quakes,

aspect = "iso", pch = ".", cex = 2, type = c("p", "g"),

xlab = "Longitude", ylab = "Latitude",

strip = strip.custom(strip.names = TRUE, var.name = "Depth"))

Thanks to the reference grid, careful inspection now confirms a subtle but
systematic spatial pattern; for example, consider the neighbourhood of the
(185,−20) grid location in the three panels. Grids and other common (not
data driven) reference objects are often invaluable in multipanel displays.

As we have seen in other contexts, superposition offers more direct between
group comparison when it is feasible. In Figure 5.3 we show a grouped display
with a slight variation; we discretize depth into three groups as before, but



5.1 The standard scatter plot 69

Longitude

La
tit

ud
e

−35

−30

−25

−20

−15

−10

165 170 175 180 185

 : Depth (39.4,253]

165 170 175 180 185

 : Depth (253,467]

165 170 175 180 185

 : Depth (467,681]

Figure 5.2. A slight variant of the previous plot. Depth is now discretized into
three groups, a smaller plotting character reduces overlap, and a reference grid makes
it easier to see trends across panels. In addition, the aspect ratio is such that the
scales are now“isometric” (i.e., the number of data units per cm is the same on both
axes). This aspect ratio is retained even when an on screen rendering is resized.

use equispaced quantiles as breakpoints, ensuring that all three groups have
roughly the same number of points.

> xyplot(lat ~ long, data = quakes, aspect = "iso",

groups = cut(depth, breaks = quantile(depth, ppoints(4, 1))),

auto.key = list(columns = 3, title = "Depth"),

xlab = "Longitude", ylab = "Latitude")

Although these examples all consistently hint at a certain spatial pattern,
they all discretize the continuous depth variable. An obvious extension to
this idea is to encode depth by a continuous gradient of some sort; color and
symbol size are the most common choices. The human eye does not make
very good quantitative judgments from such encodings, but relative ordering
is conveyed reasonably well. In Figure 5.4, we use shades of grey to encode
depth. There is no built-in support to achieve this in xyplot(), and we need
to first create a suitable vector of colors to go with each observation. To this
end, we use cut() again to convert depth into an integer code that is used to
index a vector of colors.

> depth.col <- grey.colors(100)[cut(quakes$depth, 100, label = FALSE)]

We also reorder the rows to ensure that shallower points are plotted after
deeper points; this requires us to reorder the color vector as well to keep the
association between rows and colors valid. Figure 5.4 is produced by

> depth.ord <- rev(order(quakes$depth))

> xyplot(lat ~ long, data = quakes[depth.ord, ],
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Figure 5.3. Scatter plots of latitude against longitude of earthquake epicenters.
Depth, discretized into three slightly different groups, is now indicated using different
plotting symbols within a single panel.
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aspect = "iso", type = c("p", "g"), col = "black",

pch = 21, fill = depth.col[depth.ord], cex = 2,

xlab = "Longitude", ylab = "Latitude")

This simple approach works in this case; however, it does not generalize to
multipanel displays. Attempting to add a conditioning variable will lead to
the same color vector being used in each panel, thus losing the correspondence
between colors and rows in quakes.

5.2 Advanced indexing using subscripts

Fortunately, this is a common enough situation that a standard solution exists.
It does, however, require the use of a simple panel function, and the reader is
encouraged to revisit Section 2.5.3 before proceeding.

Our goal in this section is to create a multipanel version of Figure 5.4. A
natural choice for a conditioning variable is mag, which gives the magnitude of
each earthquake on the Richter scale, as we may be interested in knowing if the
location of a quake has any relation to its magnitude. As mag is a continuous
variable, we need to discretize it, just as we did with depth. However, this
time, instead of cut(), we use equal.count() to create a shingle.

> quakes$Magnitude <- equal.count(quakes$mag, 4)

> summary(quakes$Magnitude)

Intervals:

min max count

1 3.95 4.55 484

2 4.25 4.75 492

3 4.45 4.95 425

4 4.65 6.45 415

Overlap between adjacent intervals:

[1] 293 306 217

As mentioned in Chapter 2, shingles are generalizations of factors for contin-
uous variables, with possibly overlapping levels, allowing a particular obser-
vation to belong to more than one level. The equal.count() function creates
shingles with overlapping levels that each have roughly the same number of
observations (hence the name equal.count). The newly created Magnitude
variable can now be used as a conditioning variable. By default, the intervals
defining levels of a shingle relative to its full range are indicated by a shaded
rectangle in the strip. To produce Figure 5.5, we use a call similar to the last
one (this time creating a data frame with the desired row order beforehand),
but with an explicit panel function.

> quakes$color <- depth.col

> quakes.ordered <- quakes[depth.ord, ]

> xyplot(lat ~ long | Magnitude, data = quakes.ordered, col = "black",

aspect = "iso", fill.color = quakes.ordered$color, cex = 2,
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Figure 5.4. Latitude and longitude of earthquake epicenters, with the continuous
depth variable encoded by fill color. A legend that describes the association between
grey levels and the depths they represent would be a useful addition, but this is
slightly more difficult. We show an example of such a legend in Figure 5.6.
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panel = function(x, y, fill.color, ..., subscripts) {

fill <- fill.color[subscripts]

panel.grid(h = -1, v = -1)

panel.xyplot(x, y, pch = 21, fill = fill, ...)

},

xlab = "Longitude", ylab = "Latitude")

Before looking at the panel function, note the argument fill.color which
contains the vector of colors corresponding to rows of the full data frame. As
explained in Section 2.5.3, xyplot() will pass this argument on to the panel
function as it does not recognize it itself. Thus, every time the panel function
gets executed, it has access to the full vector of colors.

The problem of course is that the x and y values in the panel function
only represent the subset of rows in that panel and not the full data. To use
the colors correctly, we need to extract the colors associated with this subset
from the full color vector fill.color. This is where the subscripts argu-
ment comes in. Along with other arguments, xyplot() can provide the panel
function with an argument called subscripts containing a vector of integer
indices that give the row numbers of the corresponding primary variables (x
and y in this case). In other words, the correct color vector to go with x and y
in a panel is fill.color[subscripts]; this fact is used in the panel function
above to obtain the correct colors.

While we are discussing subscripts, we should note that the groups
argument, already used in many examples, is essentially no different from the
fill.colors argument used above; it simply gets passed on to the panel
function in its entirety. The only thing special about groups, other than the
fact that certain panel functions treat it specially, is that it gets evaluated in
data. This is not true for other arguments, which is why we had to specify
fill.colors explicitly as quakes.ordered$color. In fact, we can simply
replace all references to fill.color by groups and obtain the same results,
as in the following call that produces Figure 5.6,1 with a slightly different
color calculation that uses the convenient level.colors() function.

> depth.breaks <- do.breaks(range(quakes.ordered$depth), 50)

> quakes.ordered$color <-

level.colors(quakes.ordered$depth, at = depth.breaks,

col.regions = grey.colors)

> xyplot(lat ~ long | Magnitude, data = quakes.ordered,

aspect = "iso", groups = color, cex = 2, col = "black",

panel = function(x, y, groups, ..., subscripts) {

fill <- groups[subscripts]

panel.grid(h = -1, v = -1)

panel.xyplot(x, y, pch = 21, fill = fill, ...)

},

legend =

1 Of course, the name groups is misleading in this example, and in any case this
will not work when there are two or more variables to pass. See Figure 9.2 for
such an example.
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Figure 5.5. A multipanel version of Figure 5.4, conditioning on overlapping subsets
of magnitudes.
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type Effect Panel function

"p" Plot points
"l" Join points by lines
"b" Both points and lines
"o" Points and lines overlaid
"S", "s" Plot as step function
"h" Drop lines to origin (“histogram-like”)
"a" Join by lines after averaging panel.average()

"r" Plot regression line panel.lmline()

"smooth" Plot LOESS smooth panel.loess()

"g" Plot a reference grid panel.grid()

Table 5.1. The effect of various values of the type argument in panel.xyplot().
For some values, the effect will also depend on the value of the horizontal argu-
ment, as seen in Figure 5.7. Effects can be (and usually are) combined by specifying
type as a vector. The actual rendering for some of these effects is performed by
other specialized panel functions, and having access to them through the type argu-
ment is simply a convenience. The type argument also works for grouped displays
transparently; when the groups argument is specified, panel.xyplot automatically
calls another specialized panel function, panel.superpose(), to handle the necessary
details.

list(right =

list(fun = draw.colorkey,

args = list(key = list(col = grey.colors,

at = depth.breaks),

draw = FALSE))),

xlab = "Longitude", ylab = "Latitude")

Here, to make things interesting, we have also added a color key linking the
colors to the depth values. This is somewhat nontrivial because xyplot()
does not explicitly support such legends. What we have done, in fact, is to
use a very general feature of lattice where an arbitrary legend can be specified
in terms of a function that creates it. In this case, the relevant function is
draw.colorkey(), which is called with arguments key and draw as specified
in the call above. To learn more about this feature, consult Chapter 9 and the
online documentation.

5.3 Variants using the type argument

As we have already seen, the type argument can be used to add a reference
grid to each panel. It can also be used for a variety of other enhancements. Al-
though it is typically supplied directly to xyplot(), it is actually an argument
of the default panel function panel.xyplot(). Valid values of type and their
effects are summarized in Table 5.1 and Figure 5.7. Its most common use is as
type = "l" to plot lines instead of points (e.g., for time-series data). It is of-
ten supplied as a vector, in which case the effects of the individual components
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Figure 5.6. Variant of Figure 5.5, with a key describing the encoding of depth by
fill color.
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Figure 5.7. The effect of various values of type when specified as an argument to
xyplot(), as well as dotplot(), stripplot(), and splom(). In each of these cases,
type is eventually passed on to panel.xyplot() which does the actual plotting.
Some of the types (e.g., "s", "S", and "a") sort the data first. The step types "s"

and "S" differ from each other by whether the first move is vertical or horizontal. The
behavior for some types depends on the value of horizontal; this is more relevant for
dotplot() and stripplot() where horizontal is set to TRUE automatically when
the y variable is a factor. An example can be seen in Figure 4.2. The "a" type can
be useful in creating interaction plots in conjunction with a groups argument.

are combined (except in certain grouped displays; see Figure 5.12). Some of
the values (e.g., "r", "g", and "smooth") simply cause other predefined panel
functions to be called, and are provided as a convenience. As an example,
consider another dataset on earthquakes, this one available in the MEMSS
package, consisting of seismometer measurements of 23 large earthquakes in
North America (Joyner and Boore, 1981).

> data(Earthquake, package = "MEMSS")

Ignoring the fact that multiple measurements are recorded from each earth-
quake, we wish to explore how the maximum horizontal acceleration at a mea-
suring center (accel) depends on its distance from the epicenter (distance).
It is fairly common to include a reference grid and a LOESS smooth (Cleveland
and Devlin, 1988; Cleveland and Grosse, 1991) in such scatter plots. Without
using the type argument, we could call

> xyplot(accel ~ distance, data = Earthquake,

panel = function(...) {

panel.grid(h = -1, v = -1)

panel.xyplot(...)
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Figure 5.8. Scatter plot of acceleration versus distance in the Earthquake data,
with a reference grid and a LOESS smooth. The asymmetry in the distribution of
points on both axes, with only a few large values, suggests that a transformation is
required.

panel.loess(...)

},

xlab = "Distance From Epicenter (km)",

ylab = "Maximum Horizontal Acceleration (g)")

This produces Figure 5.8. It is clear that transforming the data should improve
the plot, and because both quantities are positive, we try plotting them on
a logarithmic scale next in Figure 5.9. This time, however, we use the type
argument instead of a custom panel function to get the equivalent result.

> xyplot(accel ~ distance, data = Earthquake,

type = c("g", "p", "smooth"),

scales = list(log = 2),

xlab = "Distance From Epicenter (km)",

ylab = "Maximum Horizontal Acceleration (g)")

This approach allows for concise and more readable code. It also avoids the
concept of a panel function, which can be daunting for R beginners, while
exposing some of its power. Of course, the disadvantage is that one is limited
to the functionality built in to panel.xyplot(). Figure 5.10, produced by the
following call, splits the data into three panels depending on the magnitude of
the quakes, adds a common reference regression line to each panel, and uses
an alternative smoothing method from the locfit package (Loader, 1999).

> library("locfit")

> Earthquake$Magnitude <-

equal.count(Earthquake$Richter, 3, overlap = 0.1)
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Figure 5.9. Scatter plot of acceleration versus distance on a logarithmic scale.
The relationship between the variables is much more obvious in this plot. The axis
labeling could be improved; this issue is taken up in Chapter 8.

> coef <- coef(lm(log2(accel) ~ log2(distance), data = Earthquake))

> xyplot(accel ~ distance | Magnitude, data = Earthquake,

scales = list(log = 2), col.line = "grey", lwd = 2,

panel = function(...) {

panel.abline(reg = coef)

panel.locfit(...)

},

xlab = "Distance From Epicenter (km)",

ylab = "Maximum Horizontal Acceleration (g)")

This simple yet useful plot would not have been possible without a custom
panel function.

5.3.1 Superposition and type

The type argument is useful in grouped displays as well. By default, it is inter-
preted just as described earlier; each component of type is used for each level
of groups, with different graphical parameters. However, this is not always
the desired behavior. Consider the SeatacWeather dataset in the latticeExtra
package, which records daily temperature and rainfall amounts at the Seattle–
Tacoma airport in the U.S. state of Washington over the first three months
of 2007.

> data(SeatacWeather, package = "latticeExtra")

Suppose that we wish to plot the daily minimum and maximum temperatures
as well as the daily rainfall in a single plot, with one panel for each month.
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Figure 5.10. Scatter plots of acceleration by distance conditioned on earthquake
magnitude. The common reference line makes it easier to see the shift across panels.
The smooths are computed and plotted by the panel.locfit() function in the locfit
package.

Getting all the variables into a single panel is simple if we use the extended
formula interface described in Chapter 10; Figure 5.11 is produced by

> xyplot(min.temp + max.temp + precip ~ day | month,

ylab = "Temperature and Rainfall",

data = SeatacWeather, type = "l", lty = 1, col = "black")

The lty and col arguments are explicitly specified to prevent panel.xyplot()
from using different ones for the three groups, which does not really help in
this example. There are two problems with this plot. First, the rainfall mea-
surements are in a completely different scale. Second, even though this is not
obvious from Figure 5.11, most of the rainfall measurements are 0, which is
special in this context, and joining the daily rainfall values by lines does not
reflect this point. The first problem can only be solved by rescaling the rainfall
values for the purpose of plotting (this brings up the issue of axis labeling,
which we deal with later). As for the second problem, type = "h" seems to
be the right solution. Thus, we would like to use type = "l" as before for
the first two groups (min.temp and max.temp), and type = "h" for the third
(precip). This can be achieved using the distribute.type argument2 which,
when TRUE, changes the interpretation of type by using the first component
for the first level of groups, the second component for the second level, and
so on. Figure 5.12 is produced by

> maxp <- max(SeatacWeather$precip, na.rm = TRUE)

> xyplot(min.temp + max.temp + I(80 * precip / maxp) ~ day | month,

data = SeatacWeather, lty = 1, col = "black",

2 As with type, this can be supplied directly to xyplot(), which will pass it to
panel.superpose() through panel.xyplot(). See ?panel.superpose for further
details.
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Figure 5.11. Daily meteorological data recorded at the Seattle–Tacoma airport.
This figure represents an unsuccessful first attempt to incorporate both rainfall and
temperature measurements in a single graphic. The problems arise because the units
of rainfall and temperature are different, and the ranges of their numeric values are
also different. In addition, type = "l" is not quite the right choice for rainfall.
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Figure 5.12. Daily rainfall and temperature in Seattle. The rainfall values have
been rescaled to make their numeric range comparable to that of the temperature
values. The distribute.type argument is used to change the interpretation of type.

ylab = "Temperature and Rainfall",

type = c("l", "l", "h"), distribute.type = TRUE)

This still leaves the issue of axis labeling, as Figure 5.12 gives us no infor-
mation about what the precipitation amounts actually are. A quick-and-dirty
solution is to create a fake axis inside using a panel function; the middle panel
representing February conveniently has some space on the right that can be
used for this purpose. Figure 5.13 is produced by adding a suitable panel
function to the previous call.3

3 panel.number() is a convenient accessor function described in Chapter 12.
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Figure 5.13. A variant of Figure 5.12 that includes a crude axis representing
rainfall amounts.

> update(trellis.last.object(),

ylab = "Temperature (Fahrenheit) \n and Rainfall (inches)",

panel = function(...) {

panel.xyplot(...)

if (panel.number() == 2) {

at <- pretty(c(0, maxp))

panel.axis("right", half = FALSE,

at = at * 80 / maxp, labels = at)

}

})

The techniques outlined in Chapter 8 can be adapted to obtain a more sys-
tematic solution, perhaps by having the temperature axis on the left and the
rainfall axis on the right. It should be noted, however, that using a common
axis to represent multiple units is generally a bad idea, and should be avoided
unless there is strong justification.

5.4 Scatter-plot variants for large data

Näıve scatter plots can easily become useless as the number of plotted points
increases, causing overplotting. A simple but often effective remedy is to use
partially transparent points (as in Figure 3.16); regions with extensive over-
plotting end up being darker than sparser regions. There are three problems
with this solution: not all graphics devices in R support partial transparency,
output files in vector formats such as PDF can still end up being large to
the point of being impractical, and the solution is not scalable in the sense
that with a large enough number of points, overplotting is likely to obscure
patterns even with partially transparent points.
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Figure 5.14. A large dataset visualized using hexagonal binning. Each panel vi-
sualizes the bivariate distribution of two measurements on cells in blood samples
obtained from a blood and marrow transplant patient, taken before and after the
transplant. The panels for days 6 and 13 show a large population not seen in the
other days.

There are a number of approaches that attempt to deal with this problem,
but none are implemented in the default panel function panel.xyplot().
In other words, any solution needs to be implemented separately as a custom
panel function. One popular approach is to use hexagonal binning (Carr et al.,
1987), where the x–y plane is tiled using hexagons which are then colored (or
otherwise decorated) to indicate the number of points that fall inside. A panel
function implementing this approach is available in the hexbin package (Carr
et al., 2006), and can be used to visualize the gvhd10 data encountered in
Chapter 3 as follows.

> library("hexbin")

> data(gvhd10, package = "latticeExtra")

> xyplot(asinh(SSC.H) ~ asinh(FL2.H) | Days, gvhd10, aspect = 1,

panel = panel.hexbinplot, .aspect.ratio = 1, trans = sqrt)

The result is shown in Figure 5.14. The asinh() transformation is largely sim-
ilar to log(), but can handle negative numbers as well. The call is somewhat
unwieldy, and can be misleading in the sense that grey levels do not necessar-
ily represent the same number of points in a bin in each panel. A high-level
function called hexbinplot(), defined in the hexbin package, provides a better
interface that addresses this problem and also supports the automatic creation
of meaningful legends. An example is given in Figure 14.4.
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Figure 5.15. A scatter-plot matrix of the USArrests data. The UrbanPop variable
records the percentage of urban population. The remaining variables record the
number of arrests per 100,000 population for various violent crimes.

5.5 Scatter-plot matrix

Scatter-plot matrices, produced by splom(), are exactly what the name sug-
gests; they are a matrix of pairwise scatter plots given two or more variables.
Conditioning is possible, but it is more common to call splom() with a data
frame as its first argument. Figure 5.15 is a scatter-plot matrix of the USAr-
rests dataset, which contains statistics on violent crime rates in the 50 U.S.
states in 1973. It is produced by

> splom(USArrests)

For conditioning with a formula, the primary variables are specified as ~x,
where x is a data frame. Figure 5.16 is produced by

> splom(~USArrests[c(3, 1, 2, 4)] | state.region,

pscales = 0, type = c("g", "p", "smooth"))

The individual scatter plots are drawn by panel.splom(), which is an alias
of panel.xyplot() and thus honors the same arguments; in particular, it
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Figure 5.16. Scatter-plot matrices of the USArrests data, conditioned on ge-
ographical region. The columns have been reordered to make UrbanPop the first
variable. Reference grids and LOESS smooths have been added as well.

interprets the type argument in the same manner. The pscales argument is
used to suppress the axis labeling. Note that USArrests and state.region
are separate datasets, and can be used together only because they record
their data in the same order (alphabetically by state name). The subplots for
different levels of state.region are slightly separated by default; the amount
of separation can be customized using the between argument.

The concept of the panel function is somewhat confusing for splom(). By
analogy with other high-level functions, the panel function should be the one
that handles an entire packet (in this case, a conditional data frame subset)
and is responsible for the individual scatter plots as well as their layout, in-
cluding the names of the columns and the axis labeling along the diagonal.
In practice, this is instead referred to as the superpanel function, and the
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panel function is the one that renders the individual scatter plots. The su-
perpanel function is specified as the superpanel argument, which defaults
to panel.pairs() and is seldom overridden. panel.pairs() allows different
panel functions to be used for entries above and below the diagonal, and also
allows a user-supplied function for the diagonal blocks. The help page for
panel.pairs() describes these and other features in detail. In particular, the
pscales and varnames arguments can be used to customize the contents of
the diagonal panels relatively easily.

The next example illustrates the use of pscales and varnames. The
mtcars dataset (Henderson and Velleman, 1981) records various character-
istics of a sample of 32 automobiles (1973–1974 models), extracted from the
1974 Motor Trend magazine. Figure 5.17 is a scatter-plot matrix of a subset
of the variables recorded, with the number of cylinders as a grouping variable.
The varnames argument is used to specify more informative labels for the
variables.

> splom(~data.frame(mpg, disp, hp, drat, wt, qsec),

data = mtcars, groups = cyl, pscales = 0,

varnames = c("Miles\nper\ngallon", "Displacement\n(cu. in.)",

"Gross\nhorsepower", "Rear\naxle\nratio",

"Weight", "1/4 mile\ntime"),

auto.key = list(columns = 3, title = "Number of Cylinders"))

Note the use of a data argument, where the data frame specified inline in the
formula is evaluated. Specifying each variable by name is not always conve-
nient, and one might prefer the equivalent specification

> splom(~mtcars[c(1, 3:7)], data = mtcars, groups = cyl)

In this case, although groups is evaluated in data, mtcars[c(1, 3:7)] is
not. If, as here, there are no conditioning variables, yet another alternative
that avoids data altogether is

> splom(mtcars[c(1, 3:7)], groups = mtcars$cyl)

The appropriate choice in a given situation is largely a matter of taste.

5.5.1 Interacting with scatter-plot matrices

Scatter-plot matrices are useful for continuous multivariate data because they
show all the data in a single plot, but they only show pairwise associations
and are not particularly helpful in detecting higher-dimensional relationships.
However, the layout of the scatter-plot matrix makes it an ideal platform for
interactive exploration. In particular, the processes of“linking”and“brushing”,
where interactively selecting a subset of points in one scatter plot highlights
the corresponding points in all the other scatter plots, can be extremely effec-
tive in finding hidden relationships. Such interaction with the output produced
by splom() is possible, although the capabilities are greatly limited by the
underlying graphics system. An example can be found in Chapter 12, which
discusses the facilities available for interacting with lattice displays.
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Figure 5.17. A scatter-plot matrix of a subset of the mtcars dataset, using the
number of cylinders for grouping. As is often the case, using colors (rather than
plotting characters) to distinguish between group levels is much more effective. For
comparison, a color version of this plot is also available (see color plates).

5.6 Parallel coordinates plot

Like scatter-plot matrices, parallel coordinates plots (Inselberg, 1985;
Wegman, 1990) are hypervariate in nature, that is, they show relationships
between an arbitrary number of variables. Their design is related to univariate
scatter plots; in fact, they are basically univariate scatter plots of all variables
of interest stacked parallel to each other (vertically in the implementation in
lattice), with values that correspond to the same observation linked by line
segments. In other words, the combination of values defining each observation
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can be decoded by tracing the corresponding“polyline” through the univariate
scatter plots for each variable. Parallel coordinates plots can be created using
the parallel() function in lattice. The primary variable in parallel() is a
data frame, as in splom(), and the formula is interpreted in the same manner.
Figure 5.18 shows a parallel coordinates plot of a subset of the columns in the
mtcars data, using the number of cylinders as a conditioning variable, and
the number of carburetors as a grouping variable. The plot is produced by

> parallel(~mtcars[c(1, 3, 4, 5, 6, 7)] | factor(cyl),

mtcars, groups = carb, layout = c(3, 1),

auto.key = list(space = "top", columns = 3))

It is common to scale each variable individually before plotting it, but this
can be suppressed using the common.scale argument of panel.parallel().

Static parallel coordinates plots, as implemented in lattice, are not particu-
larly useful. They allow pairwise comparisons only between variables that are
adjacent. They do not make high-dimensional relationships easy to see; even
bivariate relationships between adjacent variables are not always apparent.
One point in their favor is that they often make multidimensional clusters
easy to see; for example, we can see differences both between panels and be-
tween groups in Figure 5.18. This aspect translates to large datasets (if we
are careful), as we show in our next example, which is a parallel coordinates
plot of the first five columns of one sample in the gvhd10 dataset. Figure 5.19
is produced by

> parallel(~ asinh(gvhd10[c(3, 2, 4, 1, 5)]), data = gvhd10,

subset = Days == "13", alpha = 0.01, lty = 1)

The resulting plot clearly shows multiple high-dimensional clusters; however,
the carefully chosen order of variables plays an important role in enabling this
“discovery”. As with scatter-plot matrices, their hypervariate nature makes
parallel coordinates plots ideal candidates for dynamic linking and brushing.
Unfortunately, lattice provides no facilities for such manipulation.
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Figure 5.18. A parallel coordinates plot of the mtcars data, featuring both con-
ditioning and grouping variables. The groups are not easily distinguishable in this
black and white display; color would have been much more effective. Systematic mul-
tidimensional differences in the polyline patterns can be seen both between panels
and between groups within panels.
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Figure 5.19. Parallel coordinates plot of one sample from the gvhd10 dataset. The
dataset is moderately large, and the display consists of 9540 polylines. The lines
are partially transparent, largely alleviating potential problems due to overplotting.
This also serves to convey a sense of density, because regions with more line segments
overlapping are darker.



6

Trivariate Displays

Trivariate displays encode three primary variables in a panel. There are four
high-level functions in lattice that produce trivariate displays: cloud() creates
three-dimensional scatter plots of unstructured trivariate data, whereas
levelplot(), contourplot(), and wireframe() render surfaces or two-
dimensional tables evaluated on a systematic rectangular grid. Of these,
cloud() and wireframe() are similar in that they both create two-dimensional
projections of three-dimensional constructs, and they share several common
arguments that control the details of the projection.

6.1 Three-dimensional scatter plots

We begin with cloud(), which produces three-dimensional scatter plots. Most
of the discussion in this section about projection and how to control it in
cloud() applies to wireframe() as well. We continue with the quakes exam-
ple from the previous chapter. In Figure 5.6, we looked at a two-dimensional
scatter plot of lat and long, with depth coded by grey level. The natural
next step is to look at these in three dimensions. Figure 6.1 is produced by

> quakes$Magnitude <- equal.count(quakes$mag, 4)

> cloud(depth ~ lat * long | Magnitude, data = quakes,

zlim = rev(range(quakes$depth)),

screen = list(z = 105, x = -70), panel.aspect = 0.75,

xlab = "Longitude", ylab = "Latitude", zlab = "Depth")

As before, we use the shingle Magnitude as a conditioning variable. The first
part of the formula has a structure that is different from the ones we have
encountered before. It has the form z ~ x * y, where z is the term plotted on
the vertical axis, and x and y are plotted on the x- and y-axes. An equivalent
form is z ~ x + y. This interpretation is also shared by the other high-level
functions discussed in this chapter.

The cloud() function works by projecting points in three dimensions onto
the two-dimensional display area. This is a fairly standard operation, and the
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Figure 6.1. A three-dimensional scatter plot of earthquake epicenters in terms
of latitude, longitude, and depth. Arrows indicate the direction in which the axes
increase; the one for the depth is misleading because zlim has been reversed. A
shingle derived from earthquake magnitude is used as a conditioning variable.

procedure is roughly as follows.1 The first step is to determine a bounding
box in three dimensions. By default, it is defined by the range of the data
in each of the dimensions, but this can be changed by the xlim, ylim, and
zlim arguments. The data are next centered and scaled, separately for each
dimension. The center of the scaled bounding box is the origin, and the lengths
of each side are usually the same. The latter can be controlled by the aspect
argument, which in cloud() is a numeric vector of length 2. aspect[1] gives
the ratio of the length of the scaled bounding box along the y-axis and that
along the x-axis. Similarly, aspect[2] gives the ratio of lengths along the z-
and x-axes. Note that this use of aspect is different from the normal use,
which is to determine the aspect ratio of the panel. That purpose is served by
the panel.aspect argument in this case.

The final step is to compute the two-dimensional projection. This is essen-
tially defined by a viewpoint or “camera position” in three-dimensional space,
in terms of the scaled coordinate system. Instead of being specified directly,

1 These details are not strictly necessary for casual use, but are helpful in under-
standing some of the arguments we encounter later.
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this viewpoint is determined by two arguments, screen and distance. screen
defines the direction of the viewing point with respect to the origin, and dis-
tance the distance from it, determining the amount of perspective.

The direction is defined as a series of rotations of the bounding box. The
viewpoint is initially set to a point on the positive z-axis, so that the pos-
itive x-axis points towards the right of the page, the positive y-axis points
towards the top, and the positive z-axis is perpendicular to the page pointing
towards the viewer. The bounding box, along with the data inside, can be
rotated along any of these axes, one at a time, as many times as desired. The
rotations are specified through the screen argument, which should be a list
of named values, with names x, y, and z (each repeated 0 or more times),
containing the amount of rotation in degrees. In the example above, we have
screen = list(z = 105, x = -70), which means that the bounding box
was first rotated 105 degrees along the z-axis, followed by a rotation of −70
degrees along the x-axis. An alternative is to specify a 4 × 4 transformation
matrix R.mat in homogeneous coordinates, to be applied to the data before
screen rotates the view further. We do not go into the details of homoge-
neous coordinates as they are largely irrelevant; the important thing to know
is that it is the de facto standard for specifying three-dimensional transfor-
mations and can thus be used to import a transformation from a different
projection system. For example, the traditional graphics function persp()
uses a different set of arguments to define a viewpoint, but its return value is
a transformation matrix suitable for use as the R.mat argument. Conversely,
the ltransform3dMatrix() function in lattice computes a suitable transfor-
mation matrix given a screen specification.

The other component defining the projection is perspective. Projections
can be orthogonal, characterized by the feature that lines parallel in three-
dimensional space remain parallel in the projection. Such plots can be obtained
by setting the perspective argument to FALSE. Perspective projections are
usually preferable, as they are a closer representation of how we view three-
dimensional objects; specifically, distant objects are smaller and parallel lines
appear to converge at a finite “horizon”. The amount of perspective is deter-
mined by the distance argument, which is inversely related to the distance
of the viewpoint from the center of the bounding box. Reasonable values of
distance are between 0 and 1. Orthogonal projection can be thought of as
viewing from an infinite distance,2 and distance = 0 is equivalent to per-
spective = FALSE.

We have already seen some of these arguments used in the previous exam-
ple. We see a couple of new ones in the following call that produces Figure 6.2.

> cloud(depth ~ lat * long | Magnitude, data = quakes,

zlim = rev(range(quakes$depth)), panel.aspect = 0.75,

screen = list(z = 80, x = -70), zoom = 0.7,

2 Through an infinitely powerful telescope that magnifies the view to fit our screen.
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Figure 6.2. Another look at the locations of earthquake epicenters, from a different
viewing direction and a few other variations. Together with Figure 6.1, this plot
suggests that most of the epicenters are located along one of two distinct planes in
three-dimensional space.

scales = list(z = list(arrows = FALSE, distance = 2)),

xlab = "Longitude", ylab = "Latitude",

zlab = list("Depth\n(km)", rot = 90))

In both examples, zlim is specified as an inverted range, so that depth values
increase downward rather than upward. The scales are by default annotated
by arrows indicating directions of the bounding box axes (which in the case of
the z-axis in our example does not match the direction of the data axis). In the
second example, we have used the zoom argument to shrink the plot slightly
to make room for the axis labels, and the scales argument to replace the
z-axis arrow by labeled tick marks. The default plotting character is a three-
dimensional crosshair of sorts, consisting of three intersecting line segments,
each parallel to one of the axes. The lengths of the segments are constant in
three-dimensional space, but in a perspective projection the projected lengths
depend on depth (those closer to the viewer are longer). In theory, this serves
as a depth cue, although the benefits are negligible in practice. Other plot-
ting characters can be specified using the pch argument, but the perspective
transformation is not applied to them.
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6.1.1 Dynamic manipulation versus stereo viewing

Projection-based three-dimensional displays benefit greatly from the ability to
interactively manipulate details of the projection, such as the viewing direc-
tion. Not all features of the data are equally emphasized from all viewpoints,
and it is extremely helpful to be able to choose one interactively. Unfortu-
nately, lattice is implemented using a primarily static graphics paradigm, and
support for interactive manipulation is sketchy at best. Even non-interactive
manipulation, such as producing an animation by systematically moving the
viewpoint in small increments, is helpful as the sense of motion it generates is
a powerful cue for depth perception. This is possible with lattice in principle,
but rendering is currently too slow for it to be practical. When such interac-
tion is desired, alternative visualization systems such as GGobi (Swayne et al.,
2003) and the OpenGL-based rgl package can prove to be much more effective
unless lattice features such as conditioning are critical.

A couple of simple tricks can alleviate these problems to some extent. To
get a comprehensive picture of the data, one can simultaneously view them
from several angles. And although motion is not an option for static displays,
stereo viewing can be almost as effective, although it does take some getting
used to. The basic idea of stereo viewing is to simulate binocular vision by
looking at two slightly different pictures through the two eyes; in particular,
the one viewed by the right eye should be based on a viewpoint that is slightly
to the right of the viewpoint defining the one seen by the left eye. In terms of
the interface described above, this means that the “right eye” plot should be
rotated clockwise along the y-axis by a small amount.

We combine both these ideas in Figure 6.3. Because the previous two plots
suggest no strong dependence of the distribution of epicenters on earthquake
magnitudes, we drop the conditioning variable. Our goal is thus to plot a
packet containing the same data several times from different viewpoints. One
way to implement this is to create separate“trellis” objects for each viewpoint
and plot them one by one on the same page. A slightly less obvious approach,
used here, is to take advantage of the indexing semantics of “trellis” objects.
As we saw in Chapter 2, “trellis” objects can be indexed just as regular R
arrays. In particular, an index can be repeated to repeat packets. We start by
creating an object containing the data.

> p <-

cloud(depth ~ long + lat, quakes, zlim = c(690, 30),

pch = ".", cex = 1.5, zoom = 1,

xlab = NULL, ylab = NULL, zlab = NULL,

par.settings = list(axis.line = list(col = "transparent")),

scales = list(draw = FALSE))

Next, we repeat it a suitable number of times and update it with a layout and
a panel function that chooses a viewpoint depending on the position of the
panel in the layout. Figure 6.3 is produced by
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> npanel <- 4

> rotz <- seq(-30, 30, length = npanel)

> roty <- c(3, 0)

> update(p[rep(1, 2 * npanel)],

layout = c(2, npanel),

panel = function(..., screen) {

crow <- current.row()

ccol <- current.column()

panel.cloud(..., screen = list(z = rotz[crow],

x = -60,

y = roty[ccol]))

})

The current row and column are determined inside the panel function using
the functions current.row() and current.column(), which we encounter
more formally in Chapter 13. Rows in the figure represent different viewing
directions, and columns differ by a small (three degrees) rotation along the
y-axis. Viewing the result in stereo is somewhat nontrivial, but gets easier
after the first time. The trick is to focus the eyes beyond the page, so that the
figures on the left and the right column merge together. This process can be
catalyzed by using a home-grown stereo viewer; roll up two pieces of paper
tightly enough so that only one panel can be seen through each, then use one
with each eye to look at different panels.

6.1.2 Variants and panel functions

Just as with other high-level functions, the default panel function in cloud()
supports some variants of the standard display shown above, and the option
of a user-supplied panel function provides further flexibility. In particular, the
groups argument produces grouped displays as usual, and the type argument
can be used to join the points by lines (type = "l"). Another useful value
of type is type = "h", which causes points to be joined to a “base” plane by
vertical lines. Later in this chapter, we show how this feature could be used
to create a three-dimensional bar chart of sorts. It can also be useful when
absolute (rather than relative) values are being compared, as lengths are easier
to compare than position after projection. In the following example, we plot
the estimated population density in U.S. states (excluding Alaska and Hawaii)
in 1975 as a function of their geographical “center”. The data are available in
separate R datasets, which we first need to collect together.

> state.info <-

data.frame(name = state.name, area = state.x77[, "Area"],

long = state.center$x, lat = state.center$y,

population = 1000 * state.x77[, "Population"])

> state.info$density <- with(state.info, population / area)

Figure 6.4 is produced by

> cloud(density ~ long + lat, state.info,

subset = !(name %in% c("Alaska", "Hawaii")),
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Figure 6.3. Unconditional three-dimensional scatter plots of earthquake epicenters,
from different viewing directions. The rows represent different viewpoints, whereas
columns differ only by a small rotation along the y-axis, simulating the difference
between the positions of the left and right eyes. It is possible to achieve the illusion of
depth by focusing the eyes on a point beyond the page and merging the two columns.
The effect is often hard to achieve the first time, and it may help to look at the two
columns separately through two pieces of rolled-up paper, creating a crude stereo
viewer of sorts.
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Figure 6.4. Population densities of U.S. states in 1975. Technically, the display is
a three-dimensional scatter plot of densities on the z-axis plotted against approxi-
mate geographical centers of the states on the x–y plane. Line segments joining the
points to their projections on the x–y plane encode the densities by length, making
comparison easier. Although the overall spatial pattern is easily identifiable, it is
difficult to associate the line segments with individual states. The aspect ratio could
also be improved.

type = "h", lwd = 2, zlim = c(0, max(state.info$density)),

scales = list(arrows = FALSE))

A much more useful version of this plot is given in Figure 6.5, where state
boundaries have been added to the bottom plane to serve as a reference.
Creating such a plot is not difficult if we have access to state boundary data,
but it requires some concepts we have not yet encountered; for this reason,
the code to produce Figure 6.5 is postponed until Chapter 13.

6.2 Surfaces and two-way tables

The remaining trivariate functions in lattice are primarily intended for ren-
dering surfaces and other array-like data, where the z-values are evaluated
on a regular rectangular grid defined by the x- and y-values. In other words,
the z-values form a matrix (at least conceptually), and the x- and y-values
represent rows and columns of that matrix. Before going into the details of the
individual functions, we discuss situations where they might be appropriate
and how to prepare data for use with them.
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Figure 6.5. An improved version of Figure 6.4. A map of state boundaries on the
x–y plane provides a useful visual reference. The aspect ratio is now more natural,
and the distracting bounding box has been removed, along with the panel border.

6.2.1 Data preparation

Surfaces are different from other array-like data, as they are in principle
smooth, or at least continuous, and can be abstractly represented as a func-
tion of two variables. However, they are conveniently represented as matrices
containing evaluations of the function on a grid. Tables, on the other hand,
are inherently discrete, and two-dimensional tables in particular are natu-
rally represented as matrices. The visualization functions we discuss, namely
wireframe(), levelplot(), and contourplot(), do not respect the distinc-
tion between surfaces and tables, and the user should be careful to use them
in ways suitable for the data.

Before getting to the visualization step, one often has to preprocess the
data to get them into a suitable form. We look at some typical examples
before using them in plots. The most convenient situation is when the data
are already evaluated on a grid, perhaps in the form of a matrix. Our first
example, familiar to many R users, is the volcano data, which records the
elevation of Maunga Whau (Mt. Eden), one of several extinct volcanos in the
Auckland region, on a 10 m by 10 m grid. The data are in the form of a matrix,
and there are no conditioning variables. Our next example is a correlation
matrix, derived from data on car models on sale in the United States in 1993.
The data are available in the MASS package.

> data(Cars93, package = "MASS")

> cor.Cars93 <-

cor(Cars93[, !sapply(Cars93, is.factor)], use = "pair")
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We exclude the categorical variables, although some of them could have been
used for conditioning. Our third example is a multiway frequency table, using
the Chem97 data again. We create a frequency table of score by gcsescore
(discretized into ten equally sized groups) and gender.

> data(Chem97, package = "mlmRev")

> Chem97$gcd <-

with(Chem97,

cut(gcsescore,

breaks = quantile(gcsescore, ppoints(11, a = 1))))

> ChemTab <- xtabs(~ score + gcd + gender, Chem97)

This of course creates a three-dimensional array, with the third dimension
(gender) a natural conditioning variable. As with other lattice functions, it is
helpful to convert this to a data frame, to be used with a formula. This can
be done using the as.data.frame.table() function.3

> ChemTabDf <- as.data.frame.table(ChemTab)

Our last example is somewhat longer, and involves evaluating fitted regres-
sion surfaces on a regular grid. We use the environmental dataset (Bruntz
et al., 1974; Cleveland, 1993), which consists of daily measurements of ozone
concentration, wind speed, temperature, and solar radiation in New York City
for 111 days in 1973. We fit regression models which predict ozone concentra-
tion, an indicator of smog, using the other measurements as predictors. As in
the original analysis, we use cube root of ozone concentration as the response.

> env <- environmental

> env$ozone <- env$ozone^(1/3)

For purposes of conditioning, we could also create shingles from the predictors.
For example, Radiation is used as a conditioning variable below to create the
three-dimensional scatter plots in Figure 6.6.

> env$Radiation <- equal.count(env$radiation, 4)

> cloud(ozone ~ wind + temperature | Radiation, env)

A scatter-plot matrix is another useful visualization of the data; Figure 6.7 is
produced by

> splom(env[1:4])

We next fit four regression models. The first model is a standard linear re-
gression model. The remaining three are non-parametric; two are variants of
LOESS (Cleveland and Devlin, 1988; Cleveland and Grosse, 1991), and the
third uses local regression (Loader, 1999) from the locfit package.

> fm1.env <- lm(ozone ~ radiation * temperature * wind, env)

> fm2.env <-

loess(ozone ~ wind * temperature * radiation, env,

3 This also works for matrices such as volcano, although they can be used directly
as well.
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Figure 6.6. Conditional three-dimensional scatter plots showing the relationship
among four continuous variables. The fourth variable, radiation, is used for condi-
tioning.
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Figure 6.7. A scatter-plot matrix of ozone concentration, radiation, temperature,
and wind speed. Neither this plot nor Figure 6.6 fully captures the four-dimensional
relationship, but both are useful nonetheless. For our purposes, the most important
feature is the correlation in certain pairwise scatter plots. For example, wind speed
and temperature are negatively correlated, so there are no observations with high
temperature and high wind speed.
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span = 0.75, degree = 1)

> fm3.env <-

loess(ozone ~ wind * temperature * radiation, env,

parametric = c("radiation", "wind"),

span = 0.75, degree = 2)

> library("locfit")

> fm4.env <- locfit(ozone ~ wind * temperature * radiation, env)

Our eventual goal is to display the fitted regression surfaces. To do so, we
first need to evaluate the predicted ozone concentrations on a regular grid of
predictor values. There are three predictors, and we can only use two to define
a surface, we therefore use one as a conditioning variable. We first create the
vectors of values for each predictor that define the margins of the grid.

> w.mesh <- with(env, do.breaks(range(wind), 50))

> t.mesh <- with(env, do.breaks(range(temperature), 50))

> r.mesh <- with(env, do.breaks(range(radiation), 3))

The expand.grid() function can construct a full grid, in the form of a data
frame, from these margins.

> grid <-

expand.grid(wind = w.mesh,

temperature = t.mesh,

radiation = r.mesh)

The final step is to add columns in this data frame representing each of the
fitted models. This can be easily done using the predict() methods for each
of the fits.

> grid[["fit.linear"]] <- predict(fm1.env, newdata = grid)

> grid[["fit.loess.1"]] <- as.vector(predict(fm2.env, newdata = grid))

> grid[["fit.loess.2"]] <- as.vector(predict(fm3.env, newdata = grid))

> grid[["fit.locfit"]] <- predict(fm4.env, newdata = grid)

We now use these examples to create some plots.

6.2.2 Visualizing surfaces

We begin with the last example. Figure 6.8 is created with

> wireframe(fit.linear + fit.loess.1 + fit.loess.2 + fit.locfit ~

wind * temperature | radiation,

grid, outer = TRUE, shade = TRUE, zlab = "")

As with cloud(), the formula has the form z ~ x * y, but it is assumed in
this case that x and y define a regular grid. Wind speed and temperature are
used here as the x and y variables, and radiation as a conditioning variable.
In this example, the formula actually contains four z variables separated by
+ signs. Normally, these would be used for grouping within each panel (as
explained in Chapter 10), but the outer = TRUE argument causes them to
be used for conditioning. By plotting all the fits together, we can compare
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Figure 6.8. Wireframe plots of the fitted regression surfaces. Rows represent four
different regression models and columns represent four levels of radiation; each panel
graphs the surface representing predicted ozone concentration as a function of tem-
perature and wind speed for a fixed level of radiation. The four models give widely
inconsistent results when wind and temperature are both low or both high (the cor-
ners closest to and farthest from the viewer); these are regions where there are few
actual observations.
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Figure 6.9. False-color level plots of fitted regression surfaces, in the same layout
as Figure 6.8. This representation is independent of viewing direction, and eas-
ily conveys relative order between two points. Magnitudes of changes are harder
to interpret without constantly referring to the color key. The choice of color can
be important; in particular, greyscale gradients can only change in one direction,
whereas true color gives more options. See the color plates for a color version of this
figure.
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their global characteristics. In each case, the predicted ozone levels generally
increase with radiation. What is different is the behavior of the fitted surfaces
as both wind speed and temperature increase. The reason for this can be
understood if we look back at Figures 6.6 and 6.7; there are practically no
observed data points with high values of both wind speed and temperature,
and thus any regression fit will be unreliable in this region.

The levelplot() function has an interface identical to that of wire-
frame(), and works on the same type of data. However, instead of using
projections, it uses a false-color gradient to encode the z variable. Figure 6.9
presents the same data as Figure 6.8 and is created by

> levelplot(fit.linear + fit.loess.1 + fit.loess.2 + fit.locfit ~

wind * temperature | radiation,

data = grid)

Yet another function with the same interface is contourplot(), which instead
of using colors, draws contour lines. Generally, the contours are labeled by the
level (value of the z variable) they represent, which may be preferable if the
exact values are important; the disadvantage to this approach is that one
cannot use too many levels, as then the labels tend to overlap. Figure 6.10 is
created by

> contourplot(fit.locfit ~ wind * temperature | radiation,

data = grid, aspect = 0.7, layout = c(1, 4),

cuts = 15, label.style = "align")

All three functions have methods that work directly on a matrix. The following
calls illustrate their use with the volcano data. The resulting plots are shown
together in Figure 6.11.

> levelplot(volcano)

> contourplot(volcano, cuts = 20, label = FALSE)

> wireframe(volcano, panel.aspect = 0.7, zoom = 1, lwd = 0.5)

Note that the default of the aspect argument is different for these methods.

6.2.3 Visualizing discrete array data

Our other examples, a correlation matrix and a frequency table, represent
data that are discrete in nature. wireframe() and contourplot(), which are
designed for continuous surfaces, should not be used for such data. However,
levelplot() can still be used, as we do in Figure 6.12, where grey levels are
used to represent pairwise correlations between various continuous character-
istics of several passenger car models for sale in the United States in 1993.
Plots of correlation matrices are similar to scatter-plot matrices in structure,
with individual scatter plots replaced by scalar summaries, namely the corre-
lations. Figure 6.12 is produced by

> levelplot(cor.Cars93,

scales = list(x = list(rot = 90)))



106 6 Trivariate Displays

wind

te
m

pe
ra

tu
re

60

70

80

90

5 10 15 20

2.0

2.5

3.0
3.5

4.0
4.5

5.0
radiation

60

70

80

90
2.

0

2.5

3.0

3.5

3.5
4.0

4.5

radiation

60

70

80

90

1.5

2.0

2.5

3.0

3.5
4.0

4.5

5.0

5.
0

5.0
5.5

6.0
6.5

radiation

60

70

80

90

2.0

2.5

3.0

3.
5

4.
04.

5

4.55.
0

5.0

5.5

5.5

6.0

radiation

Figure 6.10. Contour plots of fitted regression surfaces. The design is similar to
level plots, but shows the boundaries between levels rather than the levels themselves
(although both can be combined in a single display). Contours can be labeled with
the values they represent, enabling more direct decoding of the z variable. The
density (closeness) of contour lines gives a sense of how fast the surface changes.
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Figure 6.11. Visualizations of the topography of Mt. Eden, an extinct volcano
in the Auckland region. The elevation values are stored as a matrix in the volcano

dataset, which is used in the “matrix” methods for levelplot(), contourplot(),
and wireframe() to produce the displays here.
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Figure 6.12. A correlation matrix derived from the Cars93 data, visualized as a
false-color image with grey levels encoding correlation. It would have been useful to
be able to detect zero correlation easily, but this is not possible using grey levels
alone. In addition, the order of rows and columns is arbitrary, making it difficult to
see any patterns.

In this example, the order of rows and columns is arbitrary, and as with other
types of plots, reordering them in a systematic manner can be helpful. One
simple way to reorder rows or columns of a matrix is to first cluster them, and
then order them in a manner consistent with the clustering. In the following
example, we do so using the hclust() function. We also specify an explicit
vector of levels where the colors change, instead of using the range of the
correlations.

> ord <- order.dendrogram(as.dendrogram(hclust(dist(cor.Cars93))))

> levelplot(cor.Cars93[ord, ord], at = do.breaks(c(-1.01, 1.01), 20),

scales = list(x = list(rot = 90)))

The resulting plot is shown in Figure 6.13. Other displays of correlation matri-
ces, such as those described by Friendly (2002), can be produced from similar
data using custom panel functions; two examples can be seen in Figures 13.5
and 13.6.

The frequency table derived from the Chem97 data can be similarly visual-
ized using levelplot(). It is often helpful to encode frequencies after taking
their square root. To do so with a color gradient, we must also modify the
color key to reflect this transformation. Figure 6.14 is produced by

> tick.at <- pretty(range(sqrt(ChemTabDf$Freq)))

> levelplot(sqrt(Freq) ~ score * gcd | gender, ChemTabDf,
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Figure 6.13. A slightly modified version of Figure 6.12, with rows and columns
reordered according to a hierarchical clustering. Similar columns are now easily
identifiable. This does not address the problem of emphasizing strength and direction
of correlation separately, which is considered later in Chapter 13.

shrink = c(0.7, 1), aspect = "iso", colorkey =

list(labels = list(at = tick.at, labels = tick.at^2)))

In addition to a color gradient, this example also encodes the z-values using
the size of the rectangles. The details are controlled by shrink, which is an
argument of the default panel function panel.levelplot().

Although wireframe() is unsuitable for discrete data, they can still be
plotted in a three-dimensional projection using cloud(), ignoring the regular
structure in the x- and y-values. For example, the following code would create
a three-dimensional bar chart of sorts where frequencies are encoded by line
segments.

> cloud(Freq ~ score * gcd | gender, data = ChemTabDf, type = "h",

aspect = c(1.5, 0.75), panel.aspect = 0.75)

We do not show the results of this call, but instead use the panel.3dbars()
function available in the latticeExtra package to create more “solid” versions
of the bars. Figure 6.4 is produced by

> library("latticeExtra")

> cloud(Freq ~ score * gcd | gender, data = ChemTabDf,

screen = list(z = -40, x = -25), zoom = 1.1,

col.facet = "grey", xbase = 0.6, ybase = 0.6,

par.settings = list(box.3d = list(col = "transparent")),

aspect = c(1.5, 0.75), panel.aspect = 0.75,

panel.3d.cloud = panel.3dbars)
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Figure 6.14. False color plots of a table derived from the Chem97 data, showing
the relationship between score and gcsescore, conditioning on gender. Counts are
encoded by grey level as well as size of the rectangles. As with Figure 6.9, using
color instead of grey levels considerably increases the usefulness of the display; in
particular, the rectangles on the lower-left and upper-right corners are almost the
same color as the background, making them difficult to see.

Note that we have specified a panel.3d.cloud argument rather than a
panel argument; this is because the panel function in cloud() and wire-
frame() are responsible for computing the projections and drawing the bound-
ing box, a task we normally wish to leave unchanged. The data-dependent
part of the display is the responsibility of the panel.3d.cloud argument
(panel.3d.wireframe for wireframe()) of panel.cloud(), and this is the
piece we replace in our example.

6.3 Theoretical surfaces

The methods we used to plot regression surfaces using wireframe() can be
easily adapted to mathematical surfaces. For our next example, we consider
four bivariate copulas (Nelsen, 1999), which are essentially joint distributions
on the unit square with uniform marginals. Our goal is to plot the correspond-
ing density functions, as computed by the dcopula() function in the copula
package (Yan and Kojadinovic, 2007). We start, as before, by defining a grid
and adding columns to it:

> library("copula")

> grid <-

expand.grid(u = do.breaks(c(0.01, 0.99), 15),

v = do.breaks(c(0.01, 0.99), 15))
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Figure 6.15. A three-dimensional bar chart showing the same data as Figure 6.14.
The usefulness of such plots, compared to level plots, is questionable, as the informa-
tion perceived depends to a considerable extent on choices that are not data-related,
such as the viewing direction.

> grid$frank <- with(grid, dcopula(frankCopula(2), cbind(u, v)))

> grid$gumbel <- with(grid, dcopula(gumbelCopula(1.2), cbind(u, v)))

> grid$normal <- with(grid, dcopula(normalCopula(.4), cbind(u, v)))

> grid$t <- with(grid, dcopula(tCopula(0.4), cbind(u, v)))

Figure 6.16 is now produced by

> wireframe(frank + gumbel + normal + t ~ u * v, grid, outer = TRUE,

zlab = "", screen = list(z = -30, x = -50), lwd = 0.5)

The densities appear almost flat, as the vertical axis is dominated by changes
close to the corners, even though we left out the corners themselves. In
Figure 6.17, we try plotting the log-transformed densities, with better results.

> wireframe(frank + gumbel + normal + t ~ u * v, grid, outer = TRUE,

zlab = "", screen = list(z = -30, x = -50),

scales = list(z = list(log = TRUE)), lwd = 0.5)

Instead of transforming each term in the formula separately, we use the scales
argument, which is described in detail in Chapter 8. Needless to say, these
surfaces can also be visualized using levelplot().

6.3.1 Parameterized surfaces

The surfaces we have seen thus far are defined as z = f(x, y), where x and
y vary over a continuous interval, approximated by a discrete grid. A more
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Figure 6.16. A wireframe plot representing the probability density function of
four copulas. The surfaces appear to be largely flat because some of the densities
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Figure 6.17. Figure 6.16 rerendered with log densities on the z-axis. The surfaces
are now much easier to compare.

general way of representing surfaces is to parameterize them as functions of
the form

f : [ 0, 1] × [ 0, 1] −→ R
3

where every point on the surface corresponds to a point (u, v) on the unit
square, with coordinates in three-dimensional space given by

f(u, v) = (x(u, v), y(u, v), z(u, v))

A simple example of a parameterized surface is a sphere, which can be repre-
sented by the equations

x(θ, φ) = cos θ cos φ

y(θ, φ) = sin θ cos φ

z(θ, φ) = sinφ

where θ, φ ∈ [−π, π] can be thought of as longitude and latitude, respectively
(we use this interpretation later to create Figure 13.9). The domain here is not
the unit square, but this can be easily rectified by a simple scale and location
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shift. A somewhat more complicated, but fairly well-known example is the
“figure 8” immersion of the Klein bottle, with a possible parameterization
given by

x = cos u
(
r + cos

u

2
· sin tv − sin

u

2
· sin 2tv

)

y = sinu
(
r + cos

u

2
· sin tv − sin

u

2
· sin 2tv

)

z = sin
u

2
· sin tv + cos

u

2
· sin tv

with u, v ∈ [ 0, 2π], where r controls the thickness of the loops, and t gives
the number of twists.

One interesting (although of little value in practical data analysis) feature
of wireframe() is that it can draw parameterized surfaces. Such plots are
created using the familiar formula z ~ x * y, but require x, y, and z to
be all matrices with the same dimensions, representing coordinates of the
parameterized surface evaluated over a grid of (u, v)-values. The following
sequence of calls sets up the pieces required to create such matrices for the
parameterization given above.

> kx <- function(u, v)

cos(u) * (r + cos(u/2) * sin(t*v) - sin(u/2) * sin(2*t*v))

> ky <- function(u, v)

sin(u) * (r + cos(u/2) * sin(t*v) - sin(u/2) * sin(2*t*v))

> kz <- function(u, v)

sin(u/2) * sin(t*v) + cos(u/2) * sin(t*v)

> n <- 50

> u <- seq(0.3, 1.25, length = n) * 2 * pi

> v <- seq(0, 1, length = n) * 2 * pi

> um <- matrix(u, length(u), length(u))

> vm <- matrix(v, length(v), length(v), byrow = TRUE)

> r <- 2

> t <- 1

Figure 6.18 is now created with

> wireframe(kz(um, vm) ~ kx(um, vm) + ky(um, vm), shade = TRUE,

screen = list(z = 170, x = -60),

alpha = 0.75, panel.aspect = 0.6, aspect = c(1, 0.4))

6.4 Choosing a palette for false-color plots

Level plots encode a quantitative variable by using a color gradient (or grey
levels) to represent numeric values. It is common to include a color key that
maps the colors to the values they represent, but one should not expect to be
able to use it to make accurate quantitative judgments. Rather, the primary
usefulness of level plots is in judging patterns in the variability. A good choice
of colors is often critical in how well a particular display serves this purpose.
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Figure 6.18. A shaded wireframe plot of the “figure 8” immersion of the Klein
bottle, created using the parameterized form given in the text. The name comes
from the interpretation of the object as a Möbius strip with the usual cross-section
(a line segment) replaced by a double loop (like the number 8).

As a case in point, consider the USAge.df dataset available in the latticeExtra
package, which records estimated population by age and sex in the United
States between 1900 and 1979.

> data(USAge.df, package = "latticeExtra")

> str(USAge.df)

’data.frame’: 12000 obs. of 4 variables:

$ Age : num 0 1 2 3 4 5 6 7 ...

$ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 1 1 1 1 ...

$ Year : num 1900 1900 1900 1900 1900 1900 1900 1900 ...

$ Population: num 0.919 0.928 0.932 0.932 0.928 0.921 0.911 0.899 ..

The dataset is large, with interesting local features. We look at some subsets
of the data later in Chapter 10; here we consider a visualization of the full
dataset using a level plot. In the following call, we use a gradient that is derived
from a color palette designed by Cynthia Brewer (Harrower and Brewer, 2003;
Neuwirth, 2007).

> library("RColorBrewer")

> brewer.div <-

colorRampPalette(brewer.pal(11, "Spectral"),

interpolate = "spline")

> levelplot(Population ~ Year * Age | Sex, data = USAge.df,

cuts = 199, col.regions = brewer.div(200),

aspect = "iso")
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The result, shown in Figure 6.19 along with other color plates, contains a
small fluctuation around 1918 for males aged 22 or thereabouts. Unfortunately,
neither the default black and white theme nor the default color theme will
work well to highlight this feature. The palette used is by no means the only
suitable choice; for example, the gradient produced by terrain.colors()
also performs well in this case. The important point here is not that certain
schemes are better than others, rather, it is that different color gradients
emphasize different ranges of the data. One should keep this fact in mind
when using color to encode numeric values.
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Graphical Parameters and Other Settings

In the second part of this book, we take a detailed look at features that are
common to all high-level lattice functions, providing a uniform interface to
control their output. We start, in this chapter, by describing the system of
user settable graphical parameters and other global options.

Graphical parameters are often critical in determining the effectiveness
of a plot. Such parameters include obvious ones such as colors, symbols, line
types, and fonts for the various elements of a graph, as well as more subtle ones
such as the length of tick marks or the amount of space separating different
components of the graph. The parameters used in lattice displays are highly
customizable. Many of them can be controlled directly by specifying suitable
arguments in a high-level function call. Most derive their default values from
a system of common global settings that can also be modified by the user.
The latter approach has two primary benefits: it allows good global defaults
to be specified, and it provides a consistent “look and feel” to lattice graphics
while letting the user retain ultimate control.

Not all parameters of interest are graphical. For example, a user may dislike
the default argument value as.table = FALSE (which orders panels starting
from the lower-left corner rather than the upper-left one), and wish to change
the default globally rather than specify an additional argument in every call.
Several such non-graphical parameters can be customized, through a slightly
different system of global options. Both these systems are discussed in this
chapter.

7.1 The parameter system

In this section, we present some essential background information about the
graphical parameter system. The parameters that are actually available for
use and their effect are detailed in the next section.
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7.1.1 Themes

Choosing good graphical parameters is a nontrivial task. For grouped displays
in particular, one needs colors, plotting characters, line types, and so on, that
mesh well together, yet are distinctive enough that each stands out from the
others. Furthermore, a choice of colors that is good for points and lines may not
be good as a fill color (e.g., for bar charts). The settings system in lattice allows
the user to specify a coherent collection of graphical parameters, presumably
put together by an expert,1 to be used as a common source consistently across
all high-level plots. Such collections of parameters are henceforth referred to
as themes.

Unfortunately, it is even harder to find a single theme that is optimal for
all display media, to say nothing of individual tastes. Color is vastly more ef-
fective than plotting characters or line types in distinguishing between groups;
however, black and white printing is often considerably cheaper. Even when
available, a good choice of colors for printing may not be as good for viewing
on a computer monitor or an overhead projector as these involve fundamen-
tally different physical mechanisms; colors in print are produced by subtract-
ing basic colors, whereas color on monitors and projectors is produced by
adding basic colors. Furthermore, the same specification may produce differ-
ent actual colors on different hardware, sometimes because of the hardware
settings, sometimes simply because of differences in the hardware.

7.1.2 Devices

In traditional S graphics, no special consideration was given to the target
media. Following the original Trellis implementation in S, lattice attempts
to rectify this situation, although not with unqualified success, by allowing
graphical settings to be associated with specific devices. As the reader should
already know, R can produce graphics on a number of output devices. Each
supported platform has a native screen device,2 as well as several file-based
devices. The latter include vector formats such as PDF, Postscript R©, SVG
(scalable vector graphics), and EMF (on Windows), as well as bitmap formats
such as JPEG and PNG. lattice allows a different theme to be associated with
each of these devices.

Unfortunately, this does not really solve the problem of settings specific
to target media. It is common for PDF documents to be viewed on a screen
or projected (especially presentation slides) as well as printed. It is also fairly
common practice to print a graphic displayed on the screen using dev.print()
and related functions, often via a GUI menu, which simply recreates the graph
1 We do not discuss how one might design an effective collection of settings, as that

is beyond the scope of this book. See Ihaka (2003) for a helpful discussion of colors
in presentation graphics. The packages RColorBrewer and colorspace provide some
useful tools for working with color.

2 Typically one of x11, quartz, and windows.
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without changing the settings to match the target device. Thus, the availability
of device-specific settings is only beneficial if the user is disciplined enough,
and such settings are possibly confusing for the casual user. For this reason, all
devices currently use a common color theme by default, with the exception of
postscript, which uses a black and white theme. It is possible for the user to
associate other themes as the default for specific devices, and a procedure to
do so is outlined later in this chapter. Even if one is not interested in device-
specific themes, it is helpful to keep the preceding discussion in mind when
reading the rest of this section.

7.1.3 Initializing a graphics device

In traditional R graphics, devices are initialized by calling the corresponding
device function (e.g., pdf(), png(), etc.). If a plotting function is called with
no open device, the one specified by getOption("device") (typically the
native screen device) is opened automatically. This works for lattice plots
as well, as long as one is content using the default theme. However, for finer
control over the theme used, it is more convenient to initialize a device through
the wrapper function trellis.device(). It has the following arguments.

device
This argument determines the device that will be opened (unless new =
FALSE). It can be specified either as a device function (e.g., pdf) or as the
name of such a function (e.g., "pdf"). By default, getOption("device")
is used.

color
Every device has a default theme associated with it, which can be mod-
ified fully or partially via the theme argument described below, or after
the device is opened. This default theme can be one of two choices, one
color and one black and white. The color argument is a logical flag that
determines this choice; it defaults to FALSE for postscript devices, and to
TRUE for all others.

theme
This argument allows modifications to the default theme to be specified.
Details are given below. This argument defaults to
lattice.getOption("default.theme").

new
This is a logical flag indicating whether a new device should be initial-
ized. It only makes sense to set this to FALSE when one wishes to reset
the currently active device’s theme to the settings determined by other
arguments. An alternative is to use the trellis.par.set() function de-
scribed later.
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retain
This is also a logical flag. Once a device is open, its settings can be mod-
ified. When another instance of the same device is opened later using
trellis.device(), the settings for that device are usually reset to its
defaults. This can be prevented by specifying retain = TRUE. Note that
settings for different devices are always treated separately, that is, open-
ing a postscript() device does not alter the pdf() settings (but it does
reset the settings of any postscript device that is already open).

A theme (as in the theme argument above) can be specified either as a
list containing parameter values, or a function that produces such a list when
called. The structure of the list is discussed a little later. If theme is a function,
it will not be supplied any arguments, but the device is guaranteed to be open
when it is called, so one may use the .Device variable inside the function
to ascertain what device has been opened. Note that theme only modifies
the theme determined by other arguments, and need not contain all possible
parameters.

One important difference between calling a device function such as pdf()
directly, and calling it through trellis.device(), is that the latter resets
the device theme to the initial defaults, undoing any prior changes (unless
retain = TRUE). This is often the easiest way to recover from experiments
with settings that have gotten out of hand.

7.1.4 Reading and modifying a theme

Most elements of a lattice graphic can be controlled by some theme parameter.
Of course, one must know which one for this fact to be useful. Once a device is
open, the theme associated with it can be queried and modified using the func-
tions trellis.par.get() and trellis.par.set(). This is best illustrated
by an example. Consider Figure 7.1, which gives an alternative visualization
of the VADeaths dataset, similar to Figure 4.2. The plot is produced by

> vad.plot <-

dotplot(reorder(Var2, Freq) ~ Freq | Var1,

data = as.data.frame.table(VADeaths),

origin = 0, type = c("p", "h"),

main = "Death Rates in Virginia - 1940",

xlab = "Number of deaths per 100")

> vad.plot

Because the absolute rates are encoded by a line “dropping” down to the
origin, the light grey reference lines are now somewhat redundant. Let us try,
as an exercise, to remove them from the graph. The parameters in a theme are
generally identified by names descriptive of their use, and the parameters of
the reference line happen to be determined by the settings named "dot.line".

> dot.line.settings <- trellis.par.get("dot.line")

> str(dot.line.settings)
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Figure 7.1. A dot plot of death rates in Virginia in the year 1940 across population
groups, conditioned on age groups. The rates are encoded by length as well as
position, through line segments joining the points to the origin.

List of 4

$ alpha: num 1

$ col : chr "#E6E6E6"

$ lty : num 1

$ lwd : num 1

As the output of str() suggests, the result is a list of graphical parameters3
that control the appearance of the reference lines. The simplest way to omit
the reference lines is to make them transparent. This can be done by modifying
the dot.line.settings variable and then using it to change the settings:

> dot.line.settings$col <- "transparent"

> trellis.par.set("dot.line", dot.line.settings)

While we are at it, let us also double the thickness of the lines being shown,
whose parameters are obtained from the "plot.line" settings:

> plot.line.settings <- trellis.par.get("plot.line")

> str(plot.line.settings)

List of 4

$ alpha: num 1

$ col : chr "#000000"

$ lty : num 1

$ lwd : num 1

3 Where possible, lattice follows the standard naming conventions for graphical
parameters: col for color, lty for line type, lwd for line width, pch for plot-
ting character, and cex for character size. Fonts can be controlled by font, or
fontface and fontfamily for finer control. In addition, alpha is used for par-
tial transparency (often referred to as alpha-channel transparency for historical
reasons) on devices that support it. See the ?par help page for further details,
including valid ways to specify color and line type.
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Figure 7.2. Death rates in Virginia. An alternative version of Figure 7.1 with a
slightly modified theme. The reference lines, which are mostly redundant, have been
removed, and the widths of the line segments have been doubled.

> plot.line.settings$lwd <- 2

> trellis.par.set("plot.line", plot.line.settings)

We can now simply replot the previously saved object to produce Figure 7.2.

> vad.plot

An alternative solution that does not require the settings to be modified is
to write a suitable panel function. Even though this is not necessary in this
example, it is instructive as an illustration of how theme parameters might
provide defaults in a panel function.

> panel.dotline <-

function(x, y,

col = dot.symbol$col, pch = dot.symbol$pch,

cex = dot.symbol$cex, alpha = dot.symbol$alpha,

col.line = plot.line$col, lty = plot.line$lty,

lwd = plot.line$lwd, alpha.line = plot.line$alpha,

...)

{

dot.symbol <- trellis.par.get("dot.symbol")

plot.line <- trellis.par.get("plot.line")

panel.segments(0, y, x, y, col = col.line, lty = lty,

lwd = lwd, alpha = alpha.line)

panel.points(x, y, col = col, pch = pch,

cex = cex, alpha = alpha)

}

This panel function explicitly draws the line segments and points to create
the display. Thanks to lazy evaluation, the default parameters are obtained
from the theme active when the panel function is called. This panel function
can now be used in a call such as
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> update(vad.plot, panel = panel.dotline)

It is left as an exercise to the reader to verify that the thickness of the lines in
the resulting plot depends on whether the "plot.line" settings were modified
beforehand.

7.1.5 Usage and alternative forms

Both trellis.par.get() and trellis.par.set() apply to the theme as-
sociated with the currently active device. trellis.par.get(), called with a
name argument, returns the associated parameters as a list. When called with-
out a name argument, it returns the full list of settings. trellis.par.set()
can be called analogously with arguments name and value, as shown above.
However, this is not its only valid form. More than one parameter can be set
at once as named arguments, so the two trellis.par.set() calls earlier can
be replaced by the single call

> trellis.par.set(dot.line = dot.line.settings,

plot.line = plot.line.settings)

In fact, the replacements may be “incomplete”, in the sense that only com-
ponents being modified need to be supplied. In other words, the above is
equivalent to

> trellis.par.set(dot.line = list(col = "transparent"),

plot.line = list(lwd = 2))

Finally, any number of parameters can be supplied together as a list, for
example,

> trellis.par.set(list(dot.line = list(col = "transparent"),

plot.line = list(lwd = 2)))

This last option is a convenient way to specify a complete user-defined theme,
that is, a subcollection of parameters that provides an alternative look and
feel. This is in fact the form that the theme argument in trellis.device()
must take when it is a list, and the same applies to its return value when
theme is a function.

7.1.6 The par.settings argument

As noted above, trellis.par.set() modifies the current theme. Often, one
wants to associate specific parameter values with a particular call rather than
globally modify the settings. This can be achieved using the par.settings
argument in any high-level lattice call. Whenever the resulting object is plot-
ted, whether immediately or later with a different theme active, these settings
are temporarily in effect for the duration of the plot, after which the settings
revert to whatever they were before. For example, the following will re-create
Figure 7.2 with or without the earlier calls to trellis.par.set().
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> update(vad.plot,

par.settings = list(dot.line = list(col = "transparent"),

plot.line = list(lwd = 2)))

This paradigm is particularly useful, in conjunction with the auto.key argu-
ment, for grouped displays with non-default graphical parameters. The con-
venience function simpleTheme() can often be used to create a suitable value
for par.settings with little effort.

7.2 Available graphical parameters

As explained in the previous section, the graphical parameter system can be
viewed as a collection of named settings, each controlling certain elements in
lattice displays. To take advantage of the system, either by modifying themes
or by using them as defaults in custom panel functions, the user must know
the names and structures of the settings available. The full list is subject to
change, but the most current list can always be obtained by inspecting the
contents of a theme, for example, using

> names(trellis.par.get())

Most of these settings have a common pattern: their value is simply a list of
standard graphical parameters such as col, pch, and so on. Figure 7.3 lists
these settings along with their component parameters.

These settings can be broadly divided into two types based on their pur-
pose. Some are intended to control elements common to most lattice displays.
These include

par.xlab.text, par.ylab.text, par.main.text, par.sub.text
which control the various labels (in addition, par.zlab.text controls the
z-axis label in cloud() and wireframe()),

strip.background, strip.shingle, strip.border
which control certain aspects of the strips through the default strip func-
tion strip.default(), and

axis.text, axis.line
which control the appearance of axes.

Other settings are meant for use by panel functions. Some of these have very
specific targets; for example,

box.dot, box.rectangle, box.umbrella
are used by panel.bwplot(),

dot.line, dot.symbol
are used by panel.dotplot(),
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Figure 7.3. The standard graphical settings (at the time of writing). Each set-
ting has a specific purpose, and consists of one or more graphical parameters. The
parameter names (col, pch, etc.) follow the usual R conventions for the most part.
The fontface and fontfamily parameters may be used for finer control over fonts
wherever font is allowed (see ?gpar in the grid package).



128 7 Graphical Parameters and Other Settings

● ● ● ● ● ● ●

● ● ● ● ● ● ●

superpose.symbol superpose.line strip.background strip.shingle

●

●

●

●

●

dot.[symbol, line]

●

box.[dot, rectangle, umbrella]

Hello

World

add.[line, text] reference.line

●●
●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

plot.[symbol, line] plot.shingle[plot.polygon] histogram[plot.polygon] barchart[plot.polygon]

superpose.polygon regions

Figure 7.4. A graphical summary of the black and white theme used throughout
this book, as produced by show.settings(). The other primary built-in parameter
scheme available in lattice is the color scheme used for the color plates, which is
also the default on all screen devices. Most use of color can be justified by one of
two purposes; first, to distinguish data driven elements from non-data elements such
as axes, labels and reference lines, and second, to distinguish between levels of a
grouping variable in superposed displays. In the default black and white theme, the
first goal is largely ignored, and the second is achieved using different symbols and
line types (and grey levels when necessary). A summary of the default color theme
is shown in the color plates.

plot.line, plot.symbol
are used (for the most part) by panel.xyplot(), panel.densityplot(),
and panel.cloud(),

plot.polygon
is used by panel.histogram() and panel.barchart(),

box.3d
is used by panel.cloud() and panel.wireframe(), and

regions, shade.colors
are used by panel.levelplot() and panel.wireframe().
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Other settings are more general purpose. For example,

superpose.symbol, superpose.line, superpose.polygon
are used for grouped displays in various contexts, whereas

reference.line, add.line, add.text
are meant for secondary elements in a display, and are used in helper panel
functions such as panel.grid() and panel.text().

The show.settings() function produces a graphical display summarizing a
theme, as seen in Figure 7.4. A color version, summarizing the default color
theme, is also shown in the color plates. Further details can usually be inferred
from the setting names and the online documentation, and are not discussed
here.

7.2.1 Nonstandard settings

Some settings do not fall into the pattern described above and deserve a
separate discussion.

clip
This parameter controls clipping separately for panels and strips. The
default is

clip = list(panel = "on", strip = "on")

that is, graphical output produced by the panel and strip functions will
be clipped to the extent of the panel and strip regions.

fontsize
This parameter controls the baseline font size (before cex is applied) for
all text and points in the plot.

grid.pars
This parameter is initially unset, but can be used to specify global defaults
for parameters of the underlying grid engine that cannot be otherwise spec-
ified. Examples include lex and lineend. A full list can be found on the
?gpar help page in the grid package.

layout.heights, layout.widths
These parameters control the amount of vertical and horizontal space allo-
cated for the rows and columns that make up the layout of a lattice display.
At the time of writing, every page of a lattice plot has rows allocated for
(from top to bottom)
1. A main label
2. A legend (key)
3. A common axis at the top (for relation = "same")
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4. One or more strips (one for each row of panels)
5. One or more panels
6. Axes at the bottom of each panel (e.g., for relation = "free")
7. Spaces for the between argument
8. A common axis at the bottom (for relation = "same")
9. An xlab below the panel(s)

10. A key at the bottom
11. A sub-title
Of course, not all these components are used in every plot. The layout also
includes rows that are just for spaces (padding) between components. All
these rows have a default height, and the layout.heights parameter can
be used to specify multipliers for the default. The exact names and their
current settings can be obtained by

> str(trellis.par.get("layout.heights"))

List of 18

$ top.padding : num 1

$ main : num 1

$ main.key.padding : num 1

$ key.top : num 1

$ key.axis.padding : num 1

$ axis.top : num 1

$ strip : num 1

$ panel : num 1

$ axis.panel : num 1

$ between : num 1

$ axis.bottom : num 1

$ axis.xlab.padding: num 1

$ xlab : num 1

$ xlab.key.padding : num 1

$ key.bottom : num 1

$ key.sub.padding : num 1

$ sub : num 1

$ bottom.padding : num 1

For example, all the components with a name ending in “padding” can be
set to 0 to make the layout as little wasteful of screen real estate as possi-
ble, while still allocating the minimum amount required for labels, legends,
and the like. Some components, such as panel, strip, and between, are
replicated for a display with multiple rows, and these components can be
specified as a vector to achieve interesting results. The layout.widths
parameter similarly controls the widths of columns in the layout; we leave
the details for the reader to figure out.

axis.components
This parameter can be used to control the amount of space allocated for
axis tick marks. It is rarely useful in practice.
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7.3 Non-graphical options

A second set of settings is also maintained by lattice; these can be queried and
modified using the functions lattice.getOption() and lattice.options(),
which are analogous in behavior to getOption() and options(). These set-
tings are global (not device-specific) and typically not graphical in nature,
and primarily intended as a developer tool that allows experimentation with
minimal code change. Because of its limited usefulness to the casual user,
we do not discuss the available options extensively; the interested reader can
find out more by inspecting the result of lattice.options() and reading the
corresponding help page.

7.3.1 Argument defaults

One use of lattice.options() that is worth mentioning is in determining
global defaults. The default layout in a lattice display counts rows from the
bottom up, as in a graph, and not from the top down, as in a table. This is
contrary to what many users expect. This behavior can be easily altered by
specifying as.table = TRUE in a high-level call, but one might prefer to set a
global preference instead by changing the default. This can be achieved with

> lattice.options(default.args = list(as.table = TRUE))

Default values can be set in this manner for several high-level arguments,
including aspect, between, page, and strip. Some arguments in other func-
tions also derive their defaults from settable options. The most useful of these
is the theme argument of trellis.device(), which obtains its default from
lattice.getOption("default.theme").

7.4 Making customizations persistent

Customized themes can be made to persist across sessions using the R startup
mechanism (see ?Startup). There are two ways to do this, depending on
whether lattice is automatically loaded during startup. In either case, the idea
is to specify a default for the theme argument of trellis.device() through
the options mechanism. Other options can be set at the same time. If lattice
is to be loaded on startup, the following code might be included in .First()
to change the default of as.table to TRUE and to make the standard color
theme the default for all devices.

lattice.options(default.args = list(as.table = TRUE))

lattice.options(lattice.theme = standard.theme("pdf"))

A more sophisticated approach is to set a hook function that will be called
only when lattice is attached through a call to library() or require().
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setHook(packageEvent("lattice", "attach"),

function(...) {

lattice.options(default.args = list(as.table = TRUE))

lattice.options(default.theme =

function() {

switch(EXPR = .Device,

postscript = ,

pdf = standard.theme(color = FALSE),

standard.theme("pdf", color = TRUE))

})

})

In this case the default theme is a function rather than a list, which uses the
standard black and white theme as default for the pdf() and postscript()
devices, and the standard color theme for all others.
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Plot Coordinates and Axis Annotation

In this chapter, we discuss how the coordinate system for each panel is deter-
mined, how axes are annotated, and how one might control these in a lattice
display. Control is possible at several levels, with a trade-off between the de-
gree of control desired and the amount of effort required to achieve it.

8.1 Packets and the prepanel function

The controls discussed in this chapter can be broadly classified into two
groups. Those in the first group relate to the determination of the coordi-
nate system and axis limits for the panels (the rectangular regions within
which graphics are drawn). Those in the second are concerned with how this
coordinate system is described in the plot, typically through the use of tick
marks and labels outside the panels. A grasp of the process determining the
panel limits is essential to understand both sets of controls.

As described in Chapter 2, each combination of levels of the conditioning
variables defining a “trellis” object gives rise to a packet. Loosely speaking,
a packet is the data subset that goes into a panel representing a particular
combination. Not all packets in a “trellis” object need end up in a plot of the
object, and some may be repeated; however, a panel’s limits are always deter-
mined by the entire collection of packets, and two panels with the same packet
will have identical limits. In other words, limits are a property of packets, not
panels. The rules determining these limits are described next.

Each panel area is a rectangular region in the Euclidean plane, and is
defined completely by a horizontal and a vertical interval.1 Even when the data
being plotted are not intrinsically numeric (e.g., a categorical variable such as

1 This is technically true even for functions such as cloud() and splom(), which are
clearly different from other high-level functions, and bypass the controls described
here. For these functions, scales and axis annotation are effectively controlled by
the corresponding panel functions.
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variety of oats), low-level plotting routines used to create the display require a
numeric coordinate system. We refer to this as the native coordinate system of
a panel. Given a packet, the prepanel function is responsible for determining a
minimal rectangle in the native coordinate system that is sufficient to display
that packet. It is implicitly assumed that any larger rectangle will also be
sufficient for this purpose. Note that the minimal rectangle may depend not
only on the packet but also on how it will eventually be displayed; for example,
the maximum height of a histogram will differ greatly depending on whether it
is a frequency, density, or relative frequency histogram, and to a lesser extent
on the choice of bins.

Each high-level function comes with a default rule determining this mini-
mal rectangle, and the prepanel argument gives the user further control. The
rules governing the use of this argument are somewhat involved, and although
the details are important, they are not immediately relevant. For the moment,
assume that we have a rule to determine a minimal rectangle for each packet.
A fuller discussion of the prepanel argument is postponed until later in this
chapter.

8.2 The scales argument

8.2.1 Relation

There are three alternative schemes that prescribe, depending on how the
panels are to relate to each other in the Trellis display, how the set of minimal
rectangles collectively determines the final rectangles for each packet. The
most common situation is to require all panels to have the same rectangle. This
is achieved by choosing that common rectangle to be the one that minimally
encloses all the individual rectangles. The second option is to allow completely
independent rectangles, in which case the minimal rectangles are retained
unchanged for each packet. The third option is to allow separate rectangles
for each packet, but require their widths and heights (in the respective native
coordinate systems) to be the same, with the intent of making differences
comparable across panels, even if absolute positions are not (see Figure 10.6
for an example). In this case, each rectangle is expanded to make it as wide
as the widest and as tall as the tallest rectangles. These rules can be selected
by specifying scales = "same", scales = "free", and scales = "sliced",
respectively, in any high-level lattice call.

The description above is an oversimplification because in practice we often
want to specify the relation between panels separately for the horizontal and
vertical axes. This too can be achieved through the scales argument; for
example,

scales = list(x = "same", y = "free")

leads to a common horizontal range and independent vertical ranges. More
generally, the scales argument can also be used to specify a variety of other
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control parameters. In its general form, scales can be a list containing com-
ponents called x and y, affecting the horizontal and vertical axes, each of
which in turn can be lists containing parameters in name = value form. Pa-
rameters can also be specified directly as components of scales, in which case
they affect both axes. For parameters specified both in scales and the x or
y components, the values in the latter are given precedence.

As illustrated above, both scales and its x and y components can be a
character string specifying the rule used to determine the packet rectangles.
In the presence of other control parameters, this is no longer possible, and
the string needs to be specified as the relation component. Thus, scales =
"free" is equivalent to scales = list(relation = "free"), and

scales = list(x = "same", y = "sliced")

is equivalent to

scales = list(x = list(relation = "same"),

y = list(relation = "sliced"))

Two other possible components of scales are involved in determining the
panel coordinates, namely, limits and axs. It is difficult to discuss the pur-
pose of these controls without first describing the prepanel function. For this
reason, their discussion is likewise postponed until later in this chapter. Most
other components of scales affect the drawing of tick marks and labels to
annotate the axes. These are described next.

8.2.2 Axis annotation: Ticks and labels

Axis annotation is ultimately performed by the so-called axis function, which
defaults to axis.default(), but can be overridden by the user. Other impor-
tant functions under user control are ones that automatically determine tick
mark locations and labels when these are not explicitly specified by the user.
These functions, described later in this chapter, allow detailed control over
axis annotation. However, such control is usually unnecessary, because some
degree of control is already provided by components of the scales argument.
We now list these components, noting that they apply only as long as the
default axis annotation functions are used.

log
This parameter controls whether the data will be log-transformed. It can
be a scalar logical, and defaults to FALSE, in which case no transforma-
tion is applied. If log = TRUE, the data are log-transformed with base
10. Other bases can be specified using a numeric value such as log = 2.
The natural logarithm can be specified by log = "e". The choice of base
does not alter the panel display, but can affect the location and ease of
interpretation of the tick marks and labels. The log component is ignored
with a warning in certain situations (e.g., for factors).
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A non-default value of log has two effects. First, the relevant primary
variable is suitably transformed. This happens before it is passed to the
prepanel and panel functions, which are in fact never aware of this trans-
formation.2 Second, this affects how the default axis labels are determined.
Specifically, pretty tick mark locations are chosen in the transformed scale,
but the labels nominally represent values in the original scale by taking
the form base^at,3 where at represents tick mark locations in the trans-
formed scale.

draw
This parameter must be a scalar logical (TRUE or FALSE). If it is FALSE,
the axes are not drawn at all, and the parameters described below have
no effect.

alternating
This parameter is applicable only if relation = "same". In that case,
axes are not drawn separately for all panels, but only along the “bound-
ary” of the layout. In other words, axes are drawn only along the bottom
(respectively, top) of panels in the bottom- (top-) most row and the left
(right) of panels in the left- (right-) most column.4 Axis annotation can
consist of tick marks and accompanying labels. The tick marks are always
drawn (unless suppressed by other parameters), but labels can be omitted
in a systematic manner using the alternating parameter. Specifically,
alternating can be a numeric vector, each of whose elements can be 0,
1, 2, or 3. When it applies as a parameter in the x (respectively, y) com-
ponent of scales, it is replicated to be as long as the number of columns
(rows) in the layout. The values are interpreted as follows: for a row with
value 0, labels are not drawn on either side (left or right); for value 1,
labels are only drawn on the left; for value 2, labels are only drawn on the
right; and finally, for value 3, labels are drawn on both sides. Similarly,
for columns, values of 1 and 2 lead to labels on the bottom and top, 3 to
labels on both sides, and 0 to labels on neither.

alternating can also be a logical scalar. alternating = TRUE is equiv-
alent to alternating = c(1, 2) and alternating = FALSE to alter-
nating = 1. This explains the name of the parameter; alternating =
TRUE causes labels to alternate between bottom (left) and top (right) in
successive columns (rows). This is the default for numeric axes, where it

2 For example, panel.lmline() will fit a linear regression to the transformed values,
which may not be what one expects.

3 This is clearly not the best solution, but determining nice tick mark locations
on a logarithmic scale is a difficult problem. See later sections for examples of
alternatives.

4 As a special case, axes are also drawn on the right of the last panel on the page,
even if it is not in the rightmost column.
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helps avoid overlapping labels in adjacent panels.

tick.number
This parameter acts as a suggested number of tick marks. Whether it will
be used at all depends on the nature of the relevant variable; for example,
it is honored for numeric (continuous) axes, but ignored for factors and
shingles, because there is no reasonable basis for the selective omission of
some labels in those cases.

at
The automatic choice of tick mark locations can be overridden using the
at parameter. When relation = "same", at should be a numeric vector
specifying the tick mark locations, or NULL, which is equivalent to at =
numeric(0). When relation = "free" or "sliced", at can still be a
numeric vector (in which case it is used for all panels), but can also be
a list. This list should be exactly as long as the number of packets. Each
element can be a numeric vector or NULL. Alternatively, it could also be
logical (both TRUE and FALSE are acceptable), in which case that partic-
ular packet falls back to the default choice of at.

The numeric locations of the tick marks must be specified in the native
coordinates of the panel. This is true whether or not the axis is numeric.
For factors and shingles, the ith level is usually encoded by the value i.

labels
By default, labels are chosen automatically to correspond to the at val-
ues. This default choice can be overridden using the labels parameter.
Like at, it can be a vector, or a list when relation is not "same". La-
bels can be character strings as well as “expressions”, allowing LATEX-like
mathematical annotation (see ?plotmath). If a component is logical, the
default rule is used to determine labels for that packet. If the lengths of
corresponding components of at and labels do not match, the result is
undefined.

abbreviate
This is a logical flag, indicating whether the labels should be abbreviated
using the abbreviate() function. Thic can be useful for long labels (e.g.,
for factors), especially on the x-axis.

minlength
This is passed on to the abbreviate() function if abbreviate = TRUE.

format
This is used as the format for “POSIXct” variables. See ?strptime for a
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description of valid values.

tck
This parameter controls the length of tick marks, and is interpreted as a
numeric multiplier for the default length. If tck = 0, ticks are not drawn
at all. Negative values cause tick marks to face inwards, which is generally
a bad idea, but is sometimes desired as a matter of style. tck can be a
vector of length 2, in which case the first element affects the left (respec-
tively, bottom) axis and the second affects the right (top) axis.

rot
This parameter can be used to specify an angle (in degrees) by which the
axis labels are to be rotated. It can be a vector of length 2, to control left
and right (bottom and top) axes separately.

font, fontface, fontfamily
These parameters specify the font for axis labels.

cex, col, alpha
These parameters control other characteristics of the axis labels. cex is a
numeric multiplier to control character sizes. Like rot, it can be a vector
of length 2, to control left and right (bottom and top) axes separately. col
controls color and alpha controls partial transparency on some devices.

col.line, alpha.line, lty, lwd
These parameters control graphical characteristics of the tick marks. Note
that col.line does not affect the color of panel boundaries, which may
lead to unexpected results. However, parameters for tick marks and panel
boundaries both default to the "axis.line" settings (see Chapter 7 for de-
tails), whereas parameters for labels default to the "axis.text" settings.
Together, this gives explicit control over each component individually.

8.2.3 Defaults

The defaults for the components of scales may be different for different
high-level functions. This is achieved through a special argument called de-
fault.scales which the casual user should not be concerned about except to
realize the role it plays in determining the defaults. Any parameter specified
in default.scales serves as the default value of the corresponding parameter
in scales.5 For the more common parameters, the global defaults (used when
no value is specified in either scales or default.scales) are

5 One important point to note is that parameters specific to a particular axis in de-

fault.scales can only be overridden by a similarly specific parameter in scales.
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relation = "same"

log = FALSE

draw = TRUE

alternating = TRUE

tick.number = 5

abbreviate = FALSE

minlength = 4

tck = 1

format = NULL

Most other parameters are graphical parameters that default to the settings
active during plotting. One special case is rot, which defaults to 0 if rela-
tion = "same", but for other values of relation, it defaults to 0 for the x
component and 90 for the y component.

default.scales is used primarily in situations where one of the axes
generally represents a categorical variable (factor or shingle). For such axes,
the defaults change to

tck = 0

alternating = FALSE

rot = 0

so that tick marks are omitted, the location of the labels do not alternate
(saving space if the labels are long), and the labels are not rotated even when
relation is not "same". In splom(), draw defaults to FALSE, and much of the
functionality of scales is accomplished instead by the pscales argument of
panel.pairs().

8.2.4 Three-dimensional displays: cloud() and wireframe()

The normal interpretation of“horizontal”and“vertical”axes makes no sense in
the cloud() and wireframe() functions. There, the scales argument instead
controls how the bounding box is annotated. As before, components can be
specified directly, or in the x, y, or z components for specific axes. Many of
the same parameters apply in this case, whereas many do not (and several
should, but currently have no effect). There are two new parameters.

arrows
This parameter controls whether the annotation will be in the form of
tick marks and labels, or just as an arrow encoding the direction of the
axis. An arrow is used if arrows = TRUE (the default), and tick marks and
labels are drawn otherwise. Both can be suppressed with draw = FALSE.
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distance
Labels describing the axes (xlab, ylab, and zlab) are drawn along edges
of the bounding box. This parameter controls how far these labels are
from the box. distance should be a scalar if it is specified in axis-specific
components, but if specified as a component of scales directly, it should
be (and is recycled if not) a vector of length 3, specifying distances for the
x, y, and z labels.

8.3 Limits and aspect ratio

8.3.1 The prepanel function revisited

As briefly mentioned earlier, the prepanel function is responsible for deter-
mining a minimal rectangle big enough to contain the graphical encoding of
a given packet. Because this graphic is produced by the panel function, the
prepanel function has to be chosen in concordance with it, and may in princi-
ple require all the information available to the panel function. For this reason,
the prepanel function is usually called with exactly the same arguments6 as
the panel function, once for every packet. An important distinction is that the
prepanel function is called as part of the process creating the “trellis” object,
whereas the panel function is only called during plotting.

The return value of the prepanel function determines the minimal bound-
ing rectangle for a packet, but it can also affect the axis labels and aspect
ratio. In full generality, the return value can be a list consisting of compo-
nents xlim, ylim, xat, yat, dx, and dy. Each high-level function has a default
rule to calculate these quantities, so a user-specified prepanel function is not
required to return all of these components; any missing component will be
replaced by the corresponding default. The interpretation and effect of these
components are described below.

xlim, ylim
These components together define a minimal bounding rectangle for the
graphic to be created by the panel function given the same data packet.
Two general forms are acceptable: a numeric vector of length 2 (as re-
turned by range() for numeric data), and a character vector of arbitrary
length (as returned by levels() for a factor). The first form is typical for
numeric and date–time data, and xlim (or ylim, as the case may be) is
interpreted as the horizontal (vertical) range of the rectangle. The second
form is typical for factors, and is interpreted as a range containing c(1,
length(xlim)), with the character vector determining labels at tick po-
sitions 1, 2, . . . , length(xlim). If no other explicit specification of limits
is made (e.g., through the high-level arguments xlim and ylim, or the

6 Actually, some arguments may be dropped if the function does not accept them,
and the list may be different for prepanel and panel functions.
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limits component of scales), then the actual limits of the panels are
guaranteed to contain the limits returned by the prepanel function.

The prepanel function is responsible for providing a meaningful return
value for these components when the data contain missing or infinite val-
ues, or when they are empty (zero length). When nothing else is appro-
priate, xlim and ylim should be NA.

The limits returned by the prepanel function are usually extended (or
padded) by a certain amount (configurable through lattice.options()),
to ensure that points on or near the boundary do not get clipped. This
behavior may be suppressed by specifying axs = "i" as a component of
scales. The default behavior corresponds to axs = "r".

xat, yat
When xlim (or ylim) is a character vector, this is taken to mean that
the scale should include the first n integers, where n is the length of xlim
(ylim). The elements of the character vector are used as the default labels
for these n integers. Thus, to make this information consistent between
panels, the xlim or ylim values should represent all the levels of the cor-
responding factor, even if some are not used within that particular panel.
To make relation = "free" or relation = "sliced" behave sensibly
in such cases, an additional component xat (yat) may be returned by the
prepanel function, which should be a subset of 1:n, indicating which of
the n values (levels) are actually represented in the panel.

dx, dy
The dx and dy components are numeric vectors of the same length, to-
gether defining slopes of line segments used for banking computations
when aspect = "xy", as described below.

8.3.2 Explicit specification of limits

The axis limits computed through the above mechanism can be overridden us-
ing the xlim and ylim arguments in high-level lattice functions. These should
not be confused with the xlim and ylim components in the return value of
prepanel, although they serve the same purpose and have the same valid
forms. Specifically, the xlim and ylim arguments can either be numeric vec-
tors of length 2, specifying an interval, or a character vector of length n, in
which case the numeric data range is taken to be the interval [1, n ] with a
suitable padding. As with the at and labels parameters of scales, xlim and
ylim can also be specified on a per-packet basis when relation = "free". In
this case, they have to be lists, with each component a numeric or character
vector as above, or NULL in which case the default limits are used for the corre-
sponding packet. The value of xlim or ylim is ignored when the corresponding
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Figure 8.1. Rerendering of Figure 3.16, plotting the depth of earthquake epicenters
against their magnitudes. The orientation of the y-axis has been reversed, so that
depth now increases downwards.

relation = "sliced". Alternatively, explicit limits can be specified as the
limits components of scales. scales$x$limits is interpreted as xlim and
scales$y$limits as ylim.

Although numeric limits usually take the form c(minimum, maximum), this
is not required. Limits in reverse order cause the corresponding axis to be
reversed as well. For example, recall Figure 3.16, where depth was plotted on
the vertical axis of a strip plot. Because depth is measured downwards from
sea-level, it might be more natural to plot depth as increasing downwards in
the graphic as well. This can be achieved with

> stripplot(depth ~ factor(mag), data = quakes, jitter.data = TRUE,

ylim = c(690, 30),

xlab = "Magnitude (Richter scale)")

An alternative that does not require knowing the data range beforehand is to
make use of a custom prepanel function. Figure 8.1 is produced by

> stripplot(depth ~ factor(mag), data = quakes, jitter.data = TRUE,

scales = list(y = "free", rot = 0),

prepanel = function(x, y, ...) list(ylim = rev(range(y))),

xlab = "Magnitude (Richter scale)")

Note that this will not work when relation = "same", because in that case
the process of combining limits from different packets makes the final limit
sorted (even though there is only one packet in this example).
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8.3.3 Choosing aspect ratio by banking

Statisticians are used to thinking in terms of invariance under scale and loca-
tion changes, and often pay little attention to the unit of data being graphed.
Although it usually makes no difference to the graphical encoding of the data,
it is easy to see that the choice of units (including the choice of a base when
taking logarithms) affects how the scales are annotated, indirectly affecting
how easy it is to visually decode coordinates in the graphic. A less well-
understood factor is the choice of physical units, that is, how much space (in
centimeters, say) a plot will occupy on the display medium (computer mon-
itor, paper, etc.). This is partly important because display media have finite
physical resolution, and lines or points too close to each other will obscure
patterns in the data. However, this problem is obvious when it occurs, and
steps can be taken to rectify it. A more subtle feature is the ratio between
physical units in the vertical (y) and horizontal (x) directions in a graphic,
also known as the aspect ratio.

The importance of the aspect ratio has been noted by several authors (see
Cleveland et al., 1988). In many situations, a satisfactory aspect ratio can only
be found by trial and error. An exact aspect ratio, in the form of a numeric
scalar, can be specified as the aspect argument. aspect can also be one of the
character strings "fill", "iso", and "xy". When aspect = "fill", panels
expand to fill up all available space.7 When aspect = "iso", the aspect ratio
is chosen so that the relationship between the physical and data scales (units
per cm) is the same on both axes. When aspect = "xy", the aspect ratio is
chosen using the 45◦ banking algorithm described by Cleveland et al. (1988),
based on their observation that judgments about small changes in slope are
made most accurately when the slopes are close to 45◦. The exact calculations
are performed by the banking() function,8 assuming that the relevant slopes
in the plot are defined by the dx and dy components returned by the prepanel
function.

The default banking computation to choose the aspect ratio is particularly
useful with time-series data, where order is important and the slopes of line
segments joining successive points are meaningful. The following example uses
the biocAccess dataset from the latticeExtra package, which records the num-
ber of hourly access requests to the http://www.bioconductor.org Web site
during the months of January through May of 2007. Figure 8.2 is produced
by

> data(biocAccess, package = "latticeExtra")

> xyplot(counts/1000 ~ time | equal.count(as.numeric(time),

9, overlap = 0.1),

biocAccess, type = "l", aspect = "xy", strip = FALSE,

7 If necessary, initial layout calculations assume aspect = 1 in this case.
8 Actually, the function that performs the banking calculations is user-settable, and

is obtained as lattice.getOption("banking"). The default is banking(), but
this can be overridden to implement more sophisticated approaches to banking.
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ylab = "Numer of accesses (thousands)", xlab = "",

scales = list(x = list(relation = "sliced", axs = "i"),

y = list(alternating = FALSE)))

Apart from banking, this example also illustrates the use of a date–time object
as a primary variable, which affects how the x-axis is annotated.

For unordered data, the dx and dy components computed by the default
prepanel function are less useful, and alternative computations may be more
appropriate in some situations. For example, one might want to bank based
on the slopes of a smoothed version of the data. This can be done using a
custom prepanel function that computes a suitable smooth and returns dx
and dy values computed from the smoothed curve. Such a prepanel function
is available in lattice for LOESS smoothing, and is called prepanel.loess().
It can be used, with the Earthquake dataset, to produce Figure 8.3 as follows.

> data(Earthquake, package = "MEMSS")

> xyplot(accel ~ distance, data = Earthquake,

prepanel = prepanel.loess, aspect = "xy",

type = c("p", "g", "smooth"),

scales = list(log = 2),

xlab = "Distance From Epicenter (km)",

ylab = "Maximum Horizontal Acceleration (g)")

Two other predefined prepanel functions are available in lattice. These are
prepanel.lmline(), which is similar to prepanel.loess(), but fits a sim-
ple linear regression model instead, and prepanel.qqmathline(), used with
qqmath(), which fits a line through the first and third quartile pairs.

8.4 Scale components and the axis function

Although the scales argument can contain parameters affecting both, axis
annotation is in principle distinct from the determination of panel coordinates.
Low-level control over annotation, beyond what is possible with scales, is
provided through two mechanisms. The first is a pair of functions, supplied as
the xscale.components and yscale.components arguments, that compute
tick mark positions and labels. The second is the axis function, specified as
the axis argument, that actually renders the annotation. The axis function
typically uses the results of xscale.components and yscale.components as
well as scales, but is not required to do so. Using custom replacements for
xscale.components or yscale.components while retaining the default axis
function has the advantage that the right amounts of space for the tick marks
and labels are automatically allocated.

8.4.1 Components

One situation where the default choice of tick marks and labels can clearly be
improved is when using logarithmic scales. We continue with the Earthquake
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Figure 8.2. The hourly number of accesses to the http://www.bioconductor.org

Web site during January through May of 2007. The aspect ratio has been chosen
automatically using the 45◦ banking rule. The time axis has been split up into
intervals to make use of the space available; such “cut-and-stack” plots are often
useful with time-series data, and we encounter them again in Chapter 10. Figure 14.2
gives a more informative visualization of these data that makes effective use of some
preliminary numerical analysis.
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Figure 8.3. Rerendering of Figure 5.9, with automatically chosen aspect ratio. The
predefined prepanel function prepanel.loess() is used, so that slopes of the LOESS
smooth are used for the banking calculations. Note that the determination of the
aspect ratio is unrelated to the display itself; if the type argument is omitted from
the call, the display will not include the smooth, but the aspect ratio will remain
unchanged.

example, with both x- and y-axes logarithmic, and try out some alternative
ideas, implemented using the component functions. We only consider loga-
rithms taken with base 2, but this can be adjusted as necessary.

Both xscale.components and yscale.components must return a list,
with components bottom and top for the former, and components left and
right for the latter, in addition to a component num.limit giving the numer-
ical range of the limits as a vector of length 2. Details on the exact form of
these components are not described here, but are available in the help page for
xscale.components.default(). One interesting fact is that unlike scales,
these allow the tick mark lengths to be vectorized, thus making major and
minor tick marks possible.

In the following custom yscale.components function, we use the default
components as a starting point, which allows us to bypass the uninteresting
minutiae. We intend to have different labels on the two sides, so we next
make the right component a copy of left. For both these components, the
locations of the labels are kept unchanged, but the labels are modified. The
labels on the left are turned into expressions, which leads to powers of 2
being rendered as superscripts. The labels on the right are converted into
values in the original scale, possibly as fractions for negative powers, using
the fractions() function from the MASS package. The final function is

> yscale.components.log2 <- function(...) {

ans <- yscale.components.default(...)
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ans$right <- ans$left

ans$left$labels$labels <-

parse(text = ans$left$labels$labels)

ans$right$labels$labels <-

MASS::fractions(2^(ans$right$labels$at))

ans

}

A more ambitious approach is to determine tick mark locations afresh in the
original scale, ignoring the default computations. We can adapt the axTicks()
function for this purpose, to define a new function called logTicks, which
takes a numeric range lim, and returns locations within the range that take
the form i × 10j , where i takes the values specified in the loc argument.

> logTicks <- function (lim, loc = c(1, 5)) {

ii <- floor(log10(range(lim))) + c(-1, 2)

main <- 10^(ii[1]:ii[2])

r <- as.numeric(outer(loc, main, "*"))

r[lim[1] <= r & r <= lim[2]]

}

This in turn can be used to define a custom xscale.components function:

> xscale.components.log2 <- function(lim, ...) {

ans <- xscale.components.default(lim = lim, ...)

tick.at <- logTicks(2^lim, loc = c(1, 3))

ans$bottom$ticks$at <- log(tick.at, 2)

ans$bottom$labels$at <- log(tick.at, 2)

ans$bottom$labels$labels <- as.character(tick.at)

ans

}

Note that it suffices to change the bottom component, as the top component
takes the same value by default. Both these custom replacements are used
below to produce Figure 8.4.

> xyplot(accel ~ distance | cut(Richter, c(4.9, 5.5, 6.5, 7.8)),

data = Earthquake, type = c("p", "g"),

scales = list(log = 2, y = list(alternating = 3)),

xlab = "Distance From Epicenter (km)",

ylab = "Maximum Horizontal Acceleration (g)",

xscale.components = xscale.components.log2,

yscale.components = yscale.components.log2)

As noted earlier, the component functions allow tick mark lengths to be vec-
torized, making it fairly easy to add minor tick marks. Figure 8.5 gives an
example of this feature, using a variant of the custom components function
used earlier.

> xscale.components.log10 <- function(lim, ...) {

ans <- xscale.components.default(lim = lim, ...)

tick.at <- logTicks(10^lim, loc = 1:9)
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Figure 8.4. Fancy labels for logarithmic axes (compare with the axis annotation
in Figure 8.3). The alternating parameter has been used to force axis labels on
both the left and right sides simultaneously. The annotation is usually the same on
both sides, but is different in this example where a user-supplied function has been
used to compute the tick mark positions and labels.

tick.at.major <- logTicks(10^lim, loc = 1)

major <- tick.at %in% tick.at.major

ans$bottom$ticks$at <- log(tick.at, 10)

ans$bottom$ticks$tck <- ifelse(major, 1.5, 0.75)

ans$bottom$labels$at <- log(tick.at, 10)

ans$bottom$labels$labels <- as.character(tick.at)

ans$bottom$labels$labels[!major] <- ""

ans$bottom$labels$check.overlap <- FALSE

ans

}

> xyplot(accel ~ distance, data = Earthquake,

prepanel = prepanel.loess, aspect = "xy",

type = c("p", "g"), scales = list(log = 10),

xlab = "Distance From Epicenter (km)",

ylab = "Maximum Horizontal Acceleration (g)",

xscale.components = xscale.components.log10)

Notice that logarithms are taken with base 10 in this example; the only effect
this has on the panel display is to change the location of the reference grid
lines.

8.4.2 Axis

Changing the components is not always enough, and sometimes one may want
to take full control of axis drawing. One situation where this might be useful
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Figure 8.5. Another example of custom axis annotation: logarithmic axes with
major and minor tick marks.

is when a single axis is used to represent multiple scales. Figure 8.6 plots
a time-series of yearly temperatures in New Haven, CT, and annotates the
temperature axis in both Celsius and Fahrenheit scales. This can be done
using the following axis function, which uses pretty() to generate nice tick
mark locations and panel.axis() (twice, in different colors) for the actual
rendering. The same axis function must render the time axis as well, which
our custom axis function handles simply by calling axis.default().

> axis.CF <- function(side, ...) {

if (side == "right") {

F2C <- function(f) 5 * (f - 32) / 9

C2F <- function(c) 32 + 9 * c / 5

ylim <- current.panel.limits()$ylim

prettyF <- pretty(ylim)

prettyC <- pretty(F2C(ylim))

panel.axis(side = side, outside = TRUE, at = prettyF,

tck = 5, line.col = "grey65", text.col = "grey35")

panel.axis(side = side, outside = TRUE, at = C2F(prettyC),

labels = as.character(prettyC),

tck = 1, line.col = "black", text.col = "black")

}

else axis.default(side = side, ...)

}

Figure 8.6 is produced by

> xyplot(nhtemp ~ time(nhtemp), aspect = "xy", type = "o",

scales = list(y = list(alternating = 2, tck = c(1, 5))),

axis = axis.CF, xlab = "Year", ylab = "Temperature",
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Figure 8.6. A custom axis function, providing calibration of temperature in both
the Celsius and Fahrenheit scales. A legend has been added to describe the colors
(see Chapter 9). Note the use of tck in scales. This affects the allocation of space
for the tick marks and labels, which would otherwise need to be done manually.

main = "Yearly temperature in New Haven, CT",

key = list(text = list(c("(Celsius)", "(Fahrenheit)"),

col = c("black", "grey35")), columns = 2))

One important point is that the axis function is called multiple times for each
panel (once for each side), so careless use can easily lead to confusion. It should
also be noted that the features discussed in the last section are fairly recent
additions to lattice. Consequently, they are perhaps not as well thought out
as the more traditional parts of the API, and some details may need to be
changed in the future.
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Labels and Legends

In this chapter, we discuss annotation of lattice displays by adding labels and
legends. As usual, there are various levels of control available to the user,
with corresponding differences in the amount of work involved. Most common
needs for annotation are satisfied by various labels giving descriptive names
for the variables and titles for the entire plot. Legends are usually needed
to explain the correspondence between varying graphical parameters such as
color, plotting character, and so on, and the quantitative information they
represent.

9.1 Labels

Most high-level lattice functions allow four standard labels: main, sub, xlab,
and ylab. Apart from their positions, they are treated identically for the most
part.1 They can be specified as a character string, as an expression (in which
case they are interpreted as LATEX-like markup, see ?plotmath), or as a list.2 In
the first two cases, the string or expression is used as the label. The label can be
a vector, in which case the components are evenly spread out (this allows row-
or column-specific labels). In the third case, when xlab, ylab, and so on, are
lists, the label can be specified as the label component. Other components,
usually graphical parameters, but possibly ones controlling placement, are
passed on to the grid function textGrob() to construct a suitable label. The
label component can be omitted from the list, in which case the default label
is used.

By default, main and sub are omitted in most displays, and xlab and ylab
default to something appropriate, usually the expression for the corresponding
variable in the formula, except when they are factors, in which case the label
is omitted. Type

1 cloud() and wireframe() interpret xlab and ylab differently, and allow a zlab.
2 For more flexibility, they can also be specified as an arbitrary grob.
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> demo("labels", package = "lattice")

to see some usage examples.

9.2 Legends

Legends, also called keys, usually serve to clarify the meaning of different
graphical parameters (symbols, colors, etc.) used in a graphic. They are par-
ticularly important in grouped displays (where data from different groups
are superposed within panels) and displays where a color gradient encodes
a numeric variable (e.g., false-color level plots of three-dimensional surfaces).
Legends can also be useful in other contexts; common examples are ones iden-
tifying orientation or scale in maps.

In some ways, legends are a weak point in the Trellis design. In the uses
described above, as in most other uses, a legend describes features of the
display created by the panel function. However, the Trellis model of separating
the control of different elements of a display does not include any formal
mechanism for direct communication between the processes controlling the
panel display and the legend. Consequently, the only general approach that
allows useful legends to be created automatically is to have both processes
draw from a common source of information. For the collection of high-level
functions built into the lattice package, this works reasonably well through the
use of the auto.key and colorkey arguments. To understand these arguments
though, we must first discuss the underlying processes that generate legends.

9.2.1 Legends as grid graphical objects

Although this fact is not overly emphasized in this book, the lattice package
uses the low-level tools provided by the grid package to do all rendering. This
choice is nowhere as important as it is in the context of legends. grid allows
the creation of sophisticated “graphical objects” (grobs) that can not only be
plotted, but also queried to determine their width and height. This is impor-
tant in order to allocate the right amount of space for them, especially for
legends, because they may have quite arbitrary structure. For full generality,
legends in a lattice plot can be specified as arbitrary grobs. For most purposes,
it suffices to use the predefined functions draw.key() and draw.colorkey(),
which both produce specialized and highly structured grobs of a certain kind.
As we soon show, the user needs no knowledge of grid or grobs to use these
functions.

The draw.key() function

The draw.key() function accepts an argument called key and returns a grob.3

The grob represents a legend containing a series of components laid out in the
3 It can also draw the grob, a fact we use to create Figure 12.1.
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form of a table, possibly divided into multiple blocks. The components can
be text, points, lines, or rectangles. These can appear in an arbitrary order,
and each component can be repeated or be completely absent. The legend can
also have a title.

All this can be achieved through the key argument, which must be a list.
All its components must be named, of which the names text, points, lines,
and rectangles may be repeated. Each component named text contributes
a column of text in the legend, each component named points contributes a
column of points, and so on, in the order in which they appear in key. Each of
these components must be lists, containing zero or more graphical parameters
specified as vectors. The only special cases are the text components, which
must have a vector of character strings or expressions as their first component.

Graphical parameters are usually specified as components of the text,
points, lines, and rectangles lists. They can also be specified directly as
components of key, but with lower precedence. Valid graphical components
are cex, col, lty, lwd, font, fontface, fontfamily, pch, adj, type, size,
angle, and density, although not all of these apply to all components. Most
of these parameters are standard, with the following exceptions.

adj
This parameter controls justification of text. Meaningful values are be-
tween 0 (left justified) and 1 (right justified).

type
This parameter is only relevant for lines; "l" results in a plain line, "p"
produces a point, and "b" and "o" produce both together.

size
This parameter determines the width of rectangles and lines in character
widths.

angle, density
These parameters are included for compatibility with S-PLUS code, but
are currently unimplemented. They are intended to control the details of
cross-hatching in rectangles.

Unless otherwise specified (see rep below), it is assumed that all columns
(except the text ones) will have the same number of rows. This common
number is taken to be the largest of the lengths of the graphical components,
including the ones specified directly in key. For a text component, the number
of rows is the length of its first component, which must be a character or
expression vector. Several other components of key affect the final legend, as
described next.

rep
This can be a scalar logical, defaulting to TRUE, in which case all non-text
columns in the key are replicated to be as long as the longest. This can be
suppressed by specifying rep = FALSE, in which case the length of each
column will be determined by components of that column alone.
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divide
When type is "b" or "o" in a lines component, each line is divided by
these many point symbols.

title
A character string or expression giving a title for the key.

cex.title
A cex factor for the title.

lines.title
Amount of vertical space allocated for the title, in multiples of its own
height. Defaults to 2.

transparent
A scalar logical, indicating whether the key area should have a transparent
background. Defaults to FALSE, but see the next entry.

background
The background color for the legend, which defaults to the default back-
ground setting. Note that this default is often "transparent", in which
case transparent = FALSE will have no visible effect.

border
This can either be a color for the border, or a scalar logical. In the latter
case, the border color is black if border = TRUE, and no border is drawn
if it is FALSE (the default).

between
This can be a numeric vector giving the amount of blank space (in terms
of character widths) surrounding each column. The specified width is split
equally on both sides of a column.

padding.text
This indicates how much space (padding) should be left above and below
each row containing text, in multiples of the default. This padding is in
addition to the normal height of any row that contains text, which is the
minimum amount necessary to contain all the text entries.

columns
The name of this parameter is somewhat misleading, because it specifies
not the number of columns in the key, but rather the number of column-
blocks into which the key is to be divided. Specifically, rows of the key are
divided into these many blocks, which are then drawn side by side.

between.columns
Space between column blocks, in addition to between.

The draw.colorkey() function

The draw.colorkey() function is in many ways much simpler. It too accepts
an argument called key, and produces a grob that represents a color gradient,
along with tick marks and labels that provide calibration for the colors. The
legend is defined by the following components of key.



9.2 Legends 155

space
The intended location of the key, possible values being "left", "right"
(the default), "top", and "bottom". This only affects the grob to the
extent that it determines the orientation of the color gradient (vertical in
the first two cases, horizontal in the last two) and the location of the tick
marks relative to the gradient (always facing “outwards”).

col
The vector of colors used in the legend. The number of colors actually
shown is one less than length(at) (see below); col is replicated if it is
shorter, and a subset chosen by sampling linearly if longer. The same rule is
used by panel.levelplot() and panel.wireframe() when appropriate.

at
It is always assumed that the colors supplied represent discrete bins along
some numeric interval (although the tick mark labels can be manipulated
to suggest otherwise). at is a numeric vector defining these bins. Specifi-
cally, they determine where the colors change, and must be in ascending
order. There is no requirement for the at values to be equispaced.

labels
This can be a character vector (or expression) for labeling the at values,
but this use is unusual. More commonly, labels is a list, which itself has
one or more of the components at, labels, cex, col, font, fontface,
and fontfamily. This works much as does scales (see Chapter 8), in the
sense that the at and labels components, defining the tick mark locations
and labels, are determined automatically if unspecified.

tick.number
Suggested number of ticks, used when the tick mark locations are unspec-
ified.

width
A multiplier to control the width, or rather the thickness, of the key. When
the key is horizontal (space is "top" or "bottom"), this actually controls
the height.

height
One interesting feature of the grobs produced by draw.colorkey() is that
they are “expandable” in one direction; the color bar does not have an
absolute length, but expands to fit in the space available. This component
determines what proportion of the available space the legend will occupy.
As with width, the name of this component is misleading when space is
"top" or "bottom".

9.2.2 The colorkey argument

A color gradient as produced by draw.colorkey() is only relevant for two
high-level lattice functions: levelplot() and wireframe() (the latter only
when drape = TRUE). For these functions, the legend can be controlled by the
colorkey argument. The legend can be suppressed with colorkey = FALSE,
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and enabled with colorkey = TRUE, the latter being the default whenever a
color gradient is used. Alternatively, colorkey can be a list, in which case
it is used as the key argument in draw.colorkey(). The most common use
of this is to change the location of the legend, for example, with colorkey
= list(space = "top"). The only component of key without a reasonable
default in draw.colorkey() is at, which in the case of levelplot() and
wireframe() defaults to the corresponding at argument in the high-level
function. Adding a color key in other high-level functions is possible, but
more involved, as we have seen in Figure 5.6.

9.2.3 The key argument

Unlike draw.colorkey(), which is designed for a fairly specific purpose,
draw.key() is intended to be quite general. The key argument, accepted
by all high-level functions (including levelplot() and wireframe()), allows
legends produced by draw.key() to be added to a plot. Such a key argu-
ment can be a list as accepted by draw.key(), with the following additional
components also allowed.

space
This specifies the intended location of the key, possible values being
"left", "right", "top" (the default), and "bottom".

x, y, corner
These components specify an alternative positioning of the legend in-
side the plot region. x and y determine the location of the corner of the
key given by corner. Common values of corner are c(0, 0), c(1, 0),
c(1,1), and c(0,1), which denote the corners of the unit square, but
fractional values are also allowed. x and y should be numbers between 0
and 1, giving coordinates with respect to either the whole display area,
or just the subregion containing the panels. The choice is controlled by
lattice.getOption("legend.bbox"), which can be "full" or "panel"
(the default).

Figure 8.6 gives an example of a simple but nontrivial legend produced using
the key argument, as does Figure 9.2 later in this chapter. These examples
demonstrate the flexibility of draw.key(). However, in practice, most legends
are associated with a grouping variable, supplied as the groups argument. The
generality of draw.key() is unnecessary for such legends, which typically have
exactly one column of text (containing the levels of groups), and at most one
column each of points, lines, or rectangles. Furthermore, if the different graph-
ical parameters associated with different levels of groups are obtained from
the global settings, the contents of these columns are also entirely predictable.

One way to create such standard legends is to use the Rows() function,
which is useful in extracting a subset of graphical parameters suitable for use
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as a component in key. Consider the Car93 dataset, which contains informa-
tion on several 1993 passenger car models (Lock, 1993; Venables and Ripley,
2002), and can be loaded using

> data(Cars93, package = "MASS")

For our first example, we plot the midrange price against engine size, condi-
tioning on AirBags, with Cylinders as a grouping variable. To make things
interesting, we leave out the level "rotary", which is represented only once
in the data:

> table(Cars93$Cylinders)

3 4 5 6 8 rotary

3 49 2 31 7 1

As the first five levels of Cylinders are plotted, we can extract the corre-
sponding default graphical settings as

> sup.sym <- Rows(trellis.par.get("superpose.symbol"), 1:5)

> str(sup.sym)

List of 6

$ alpha: num [1:5] 1 1 1 1 1

$ cex : num [1:5] 0.7 0.7 0.7 0.7 0.7

$ col : chr [1:5] "#000000" "#000000" "#000000" ...

$ fill : chr [1:5] "#EBEBEB" "#DBDBDB" "#FAFAFA" ...

$ font : num [1:5] 1 1 1 1 1

$ pch : num [1:5] 1 3 6 0 5

This can now be used in a call to xyplot() to produce Figure 9.1.

> xyplot(Price ~ EngineSize | reorder(AirBags, Price), data = Cars93,

groups = Cylinders, subset = Cylinders != "rotary",

scales = list(y = list(log = 2, tick.number = 3)),

xlab = "Engine Size (liters)",

ylab = "Average Price (1000 USD)",

key = list(text = list(levels(Cars93$Cylinders)[1:5]),

points = sup.sym, space = "right"))

This computation can be simplified using a convenience function called sim-
pleKey(), which returns a list suitable for use as the key argument. The first
argument to simpleKey() (text) must be a vector of character strings or ex-
pressions, giving the labels in the text column. It can also be given logical ar-
guments points, lines, and rectangles specifying whether a corresponding
column will be included in the key; if TRUE, the graphical parameters for the
corresponding component are constructed using calls to trellis.par.get()
and Rows() as above. The settings "superpose.symbol" is used for points,
"superpose.line" for lines, and "superpose.polygon" for rectangles.
Further arguments to simpleKey() are simply retained as elements of the list
returned. Thus, an alternative call producing Figure 9.1 is

> xyplot(Price ~ EngineSize | reorder(AirBags, Price), data = Cars93,

groups = Cylinders, subset = Cylinders != "rotary",
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Figure 9.1. Average (of basic and premium) price of cars plotted against engine
size. The data are separated into panels representing number of airbags (ordered by
mean price), and the number of cylinders is used as a grouping variable within each
panel.

scales = list(y = list(log = 2, tick.number = 3)),

xlab = "Engine Size (liters)",

ylab = "Average Price (1000 USD)",

key = simpleKey(text = levels(Cars93$Cylinders)[1:5],

space = "right", points = TRUE))

9.2.4 The problem with settings, and the auto.key argument

This approach, although appearing to be effective at first glance, breaks down
if we consider the possibility of changes in the settings. As we saw in Chapter 7,
presentation of a graphic is not entirely defined by its contents; that is, the
same “trellis” object can be plotted multiple times using different themes,
resulting in the use of different graphical parameters. This is especially relevant
for grouped displays, where color might be used to distinguish between groups
when available, and other parameters such as plotting character and line type
used otherwise. This choice is determined by the theme in use when the object
is plotted, and thus, it is impossible to determine the legend prior to that point.
The problem with the approach described above, using simpleKey(), is that
the legend is instead determined fully when the object is created.

The solution is to postpone the call to simpleKey() until plotting time.
This can be achieved through the auto.key argument, which can simply be a
list containing arguments to be supplied to simpleKey(). Thus, yet another
call that produces Figure 9.1 is
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> xyplot(Price ~ EngineSize | reorder(AirBags, Price), data = Cars93,

groups = Cylinders, subset = Cylinders != "rotary",

scales = list(y = list(log = 2, tick.number = 3)),

xlab = "Engine Size (liters)",

ylab = "Average Price (1000 USD)",

auto.key = list(text = levels(Cars93$Cylinders)[1:5],

space = "right", points = TRUE))

This version will update the legend suitably when the resulting object is plot-
ted with different themes. In fact, the auto.key approach allows for more
intelligent defaults, and it is usually possible to omit the text component
(which defaults to the group levels) as well as the points, lines, and rec-
tangles components (which have function-specific defaults). One can simply
use auto.key = list(space = "right") in the above call, or even auto.key
= TRUE which would use the default space = "top". Unfortunately, in both
these cases, the omitted level ("rotary") will be included in the legend.

9.2.5 Dropping unused levels from groups

For conditioning variables and primary variables that are factors, levels that
are unused after the application of the subset argument in a high-level call
are usually omitted from the display. It is difficult to do the same with unused
levels of groups. This is a consequence of the design; groups is passed to the
panel function as a whole, and appropriate panel-specific subsets are extracted
using the subscripts argument. subscripts refers to rows in the original
data before applying subset, and so, groups must also be available in its
entirety. Dropping levels inside the panel function is not an option, as some
levels may be present in some panels, but not in others.

This behavior can sometimes be frustrating, and often the simplest solution
is to subset the data beforehand, possibly using the subset() function. One
more operation is required to omit the unused levels, as subset() does not do
so itself. In the following call, which is yet another way to produce Figure 9.1,
this is done inline when specifying groups.

> xyplot(Price ~ EngineSize | reorder(AirBags, Price),

data = subset(Cars93, Cylinders != "rotary"),

groups = Cylinders[, drop = TRUE],

scales = list(y = list(log = 2, tick.number = 3)),

xlab = "Engine Size (liters)",

ylab = "Average Price (1000 USD)",

auto.key = list(space = "right"))

Many other examples that use auto.key can be found throughout this book.

9.2.6 A more complicated example

Although rare, there are nonetheless occasions where auto.key is not suf-
ficient. We finish this section with one such example, where two grouping
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Figure 9.2. An alternative to Figure 9.1, with both Cylinders and AirBags now
used as grouping variables, encoded by different graphical attributes (plotting char-
acter and fill color). The associated legend has to be constructed explicitly using the
key argument.

variables are used concurrently, with levels distinguished by varying two dif-
ferent graphical parameters. In particular, our goal is to produce an alter-
native form of Figure 9.1, where in addition to Cylinders, AirBags is also
a grouping variable rather than a conditioning variable. Consequently, the
legend must contain two columns of text, one for each grouping variable, of
different lengths. Figure 9.2 is produced by the following code.

> my.pch <- c(21:25, 20)

> my.fill <- c("transparent", "grey", "black")

> with(Cars93,

xyplot(Price ~ EngineSize,

scales = list(y = list(log = 2, tick.number = 3)),

panel = function(x, y, ..., subscripts) {

pch <- my.pch[Cylinders[subscripts]]

fill <- my.fill[AirBags[subscripts]]

panel.xyplot(x, y, pch = pch,

fill = fill, col = "black")

},

key = list(space = "right", adj = 1,

text = list(levels(Cylinders)),

points = list(pch = my.pch),

text = list(levels(AirBags)),

points = list(pch = 21, fill = my.fill),

rep = FALSE)))
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The use of with() allows us to refer to elements of Cars93 by name inside
the panel function.

9.2.7 Further control: The legend argument

Legends produced by draw.key() can be quite general, but they are ulti-
mately limited in scope. The legend argument, although more involved in its
use, provides far greater flexibility. This flexibility is afforded by the ability to
specify the legend as an arbitrary grob, or alternatively a function, called at
plotting time, that produces a grob. We give an example illustrating the use
of this feature, but do not discuss it in much detail as it is rarely useful to the
casual user. Details can be found in the online documentation.

Our example is a heatmap, which is a graphical representation of a hier-
archical clustering of rows and/or columns of a matrix. We consider again the
USArrests dataset, which tabulates the number of arrests for various crimes
in 1973 per 100,000 residents in the 50 U.S. states. Our goal is to cluster the
states, which can be done with the hclust() function.

> hc1 <- hclust(dist(USArrests, method = "canberra"))

> hc1 <- as.dendrogram(hc1)

We coerce the result to a “dendrogram” object before manipulating it further.
The next step is to find a permutation of the states that arranges them in
the “right” order; there is more than one such permutation, and we determine
one that retains grouping by region (given by the state.region dataset) as
much as possible.

> ord.hc1 <- order.dendrogram(hc1)

> hc2 <- reorder(hc1, state.region[ord.hc1])

> ord.hc2 <- order.dendrogram(hc2)

We are now almost ready to draw our heatmap. Our first attempt might be

> levelplot(t(scale(USArrests))[, ord.hc2])

where the states are reordered, each variable is scaled to make the units com-
parable, and the data matrix is transposed to produce a tall (rather than wide)
display. Of course, this will not show the actual clustering, which is where the
legend argument comes in. The lattice package has no built-in support for
plotting dendrograms, but it does allow new legends to be designed and used.
The dendrogramGrob() function in the latticeExtra package conveniently pro-
duces a grob representing a given dendrogram, and can be used as follows to
produce Figure 9.3.

> library("latticeExtra")

> region.colors <- trellis.par.get("superpose.polygon")$col

> levelplot(t(scale(USArrests))[, ord.hc2],

scales = list(x = list(rot = 90)),

colorkey = FALSE,

legend =

list(right =
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list(fun = dendrogramGrob,

args =

list(x = hc2, ord = ord.hc2,

side = "right", size = 10, size.add = 0.5,

add = list(rect =

list(col = "transparent",

fill = region.colors[state.region])),

type = "rectangle"))))

Here, the normal color key is disabled as the units lose their meaning after
scaling. Instead, we put in the dendrogram as the legend on the right side. The
specification of legend is fairly simple in an abstract sense; it is a list with a
component right indicating that the legend should be placed to the right of
the panel(s), which in turn consists of components fun, which is a function
that returns a grob, and args, which is a list of arguments supplied to fun.
For the interpretation of the arguments provided to dendrogramGrob(), see
the corresponding help page.

Writing a function such as dendrogramGrob() requires familiarity with the
grid package.4 For those interested in traveling that road, dendrogramGrob()
can serve as a useful template.

9.3 Page annotation

Another form of annotation is available through the page argument to a high-
level plot, which must be a function that is executed once for every page, with
the page number as its only argument. The function must use grid-compliant
plotting commands (which include lattice panel functions), and is called with
the whole display area as the default viewport and the native coordinate
system set to the unit square [ 0, 1] × [ 0, 1]. An obvious use of this argument
is to add page numbers to multipage lattice plots; for example, as

page = function(n) {

panel.text(lab = sprintf("Page %d", n), x = 0.95, y = 0.05)

}

Such a function could be set as the global default:

> lattice.options(default.args = list(page = function(n) {

panel.text(lab = sprintf("Page %d", n), x = 0.95, y = 0.05)

}))

in which case all subsequent lattice plots would include a page number. An-
other possible use of page is to perform some interactive task after a page is
drawn, such as placing a legend by clicking on a location in the display area;
an example is shown in Figure 12.1.

4 In particular, making sure that the legend“expands” to exactly fit the panel, even
when the plot is resized, involves the concepts of frames and packing.
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Figure 9.3. A heatmap created with the standard levelplot() function along
with a nonstandard legend representing a hierarchical clustering. The thin strip at
the root of the dendrogram represents a grouping of the states based on geograph-
ical location (south, northeast, etc.). Unlike the standard heatmap() function, this
implementation puts no restrictions on the aspect ratio.
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Data Manipulation and Related Topics

Now that we have had a chance to look at several types of lattice plots and
ways to control their various elements, it is time to take another look at the
big picture and introduce some new ideas. This chapter may be viewed as a
continuation of Chapter 2; the topics covered are slightly more advanced, but
generally apply to all lattice functions.

10.1 Nonstandard evaluation

Variables in the Trellis formula (along with those in groups and subset,
if supplied) are evaluated in an optional data source specified as the data
argument. This is usually a data frame, but could also be a list or environment.
(Other types of data sources can be handled by writing new methods, as we see
in Chapter 14.) When a term in the formula (or groups or subset) involves a
variable not found in data, special scoping rules apply to determine its value;
it is searched for in the environment of the formula, and if not found there, in
the enclosing environment, and so on. In other words, the search does not start
in the environment where the term is being evaluated, as one might expect. If
no data argument is specified in a lattice call, the search for all variables starts
in the environment of the formula. This behavior is similar to that in other
formula-based modeling functions (e.g., lm(), glm(), etc.), and is commonly
referred to as “standard nonstandard evaluation”.

This is not an entirely academic issue. There are situations where this non-
standard scoping behavior is desirable, and others where it gives “unexpected”
results. To get a sense of the issues involved, consider the following example
where we revisit the choice of an optimal Box–Cox transformation for the
gcsescore variable in the Chem97 data (Figure 3.7). Instead of choosing the
transformation analytically, we might simply try out several choices and visu-
alize the results. We might do this by first defining a function implementing
the Box–Cox transformation
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> boxcox.trans <- function(x, lambda) {

if (lambda == 0) log(x) else (x^lambda - 1) / lambda

}

which is then used to create a multipage PDF file.

> data(Chem97, package = "mlmRev")

> trellis.device(pdf, file = "Chem97BoxCox.pdf",

width = 8, height = 6)

> for (p in seq(0, 3, by = 0.5)) {

plot(qqmath(~boxcox.trans(gcsescore, p) | gender, data = Chem97,

groups = score, f.value = ppoints(100),

main = as.expression(substitute(lambda == v,

list(v = p)))))

}

> dev.off()

In this example, the variable p in the formula is not visible in the data ar-
gument, and according to the nonstandard evaluation rules, it is searched for
(and found) in the environment in which the formula was defined. This is the
right thing to do in this case; we would not have wanted to use any other
variable named p that might have been visible in the environment where the
terms in the formula are actually evaluated. On the other hand, someone used
to the standard lexical scoping behavior in R might think that the following
is a reasonable alternative.

> form <- ~ boxcox.trans(gcsescore, p) | gender

> qqboxcox <- function(lambda) {

for (p in lambda)

plot(qqmath(form, data = Chem97,

groups = score, f.value = ppoints(100),

main = as.expression(substitute(lambda == v,

list(v = p)))))

}

> qqboxcox(lambda = seq(0, 3, by = 0.5))

However, this will either fail because p is not found, or worse, use the wrong
value of p. Of course, this is a rather artificial and perhaps not very convinc-
ing example. Most of the real problems due to nonstandard evaluation arise
when trying to implement new wrapper functions with similar semantics, es-
pecially because the nonstandard evaluation rules also apply to the groups
and subset arguments. One standard solution is outlined in the final example
in Chapter 14.

10.2 The extended formula interface

We have already encountered the Titanic dataset in Chapter 2. To use the
data in a lattice plot, it is convenient to coerce them into a data frame, as we
do here for the subset of adults:
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Freq

1st

2nd

3rd

Crew

0 200 400 600 800

Male

0 200 400 600 800

Female

Survived
No Yes

Figure 10.1. A bar chart showing the fate of adult passengers of the Titanic.

> Titanic1 <- as.data.frame(as.table(Titanic[, , "Adult" ,]))

> Titanic1

Class Sex Survived Freq

1 1st Male No 118

2 2nd Male No 154

3 3rd Male No 387

4 Crew Male No 670

5 1st Female No 4

6 2nd Female No 13

7 3rd Female No 89

8 Crew Female No 3

9 1st Male Yes 57

10 2nd Male Yes 14

11 3rd Male Yes 75

12 Crew Male Yes 192

13 1st Female Yes 140

14 2nd Female Yes 80

15 3rd Female Yes 76

16 Crew Female Yes 20

This form of the data is perfectly suited to our purposes. For example, Fig-
ure 10.1 can be produced from it by

> barchart(Class ~ Freq | Sex, Titanic1,

groups = Survived, stack = TRUE,

auto.key = list(title = "Survived", columns = 2))

Unfortunately, data may not always be as conveniently formatted. For exam-
ple, these data could easily have been specified in the so-called “wide” format
(as opposed to the “long” format above):
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> Titanic2

Class Sex Dead Alive

1 1st Male 118 57

2 2nd Male 154 14

3 3rd Male 387 75

4 Crew Male 670 192

5 1st Female 4 140

6 2nd Female 13 80

7 3rd Female 89 76

8 Crew Female 3 20

This format is particularly common for longitudinal data, where multiple ob-
servations (e.g., over time) on a single experimental unit are often presented in
one row rather than splitting them up over several rows (in which case covari-
ates associated with the experimental units would have to be repeated). The
formula interface described in Chapter 2 is not up to handling the seemingly
simple task of reproducing Figure 10.1 from the data in the wide format.

The traditional solution is to transform the data into the long format
before plotting. This can be accomplished using the reshape() function; in
fact, our artificial example was created using

> Titanic2 <-

reshape(Titanic1, direction = "wide", v.names = "Freq",

idvar = c("Class", "Sex"), timevar = "Survived")

> names(Titanic2) <- c("Class", "Sex", "Dead", "Alive")

Unfortunately, reshape() is not the simplest function to use, and as this kind
of usage is common enough, lattice provides a way to avoid calling reshape()
by encoding the desired transformation within the formula. In particular, the
part of the formula specifying primary variables (to the left of the conditioning
symbol) can contain multiple terms separated by a + symbol, in which case
they are treated as columns in the wide format that are to be concatenated
to form a single column in the long format. Figure 10.2 is produced by

> barchart(Class ~ Dead + Alive | Sex, Titanic2, stack = TRUE,

auto.key = list(columns = 2))

Notice that the new factor implicitly created (to indicate from which column
in the wide format a row in the long format came) has been used for grouping
without any explicit specification of the groups argument. This is the default
behavior for high-level functions in which grouped displays make sense. One
may instead want to use the new factor as a conditioning variable; this can be
done by specifying outer = TRUE in the call. In either case, the subscripts
argument, if used in a custom panel function, refers to the implicitly reshaped
data.

An alternative interpretation of such formulae that avoids the concept of
reshaping is as follows: the formula y1 + y2 ~ x | a should be taken to
mean that the user wishes to plot both y1 ~ x | a and y2 ~ x | a, with
outer determining whether the plots are to use the same or separate panels.
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Figure 10.2. An alternative formulation of Figure 10.1, using data in the wide
format. The plots are identical, except for the legend and the x-axis label.

This behavior is distributive, in the sense that the formula y1 + y2 ~ x1 +
x2 will cause all four combinations (y1 ~ x1, y1 ~ x2, y2 ~ x1, and y2 ~
x2) to be displayed. To interpret y1 + y2 as a sum in the formula, one can
use I(y1 + y2), which suppresses the special interpretation of +.

For another example where the use of the extended formula interface arises
naturally, consider the Gcsemv dataset (Rasbash et al., 2000) in the mlmRev
package.

> data(Gcsemv, package = "mlmRev")

The data record the GCSE exam scores of 1905 students in England on a
science subject. The scores for two components are recorded: written paper
and course work. The scores are paired, so it is natural to consider a scatter
plot of the written and coursework scores conditioning on gender. Figure 10.3
is produced by

> xyplot(written ~ course | gender, data = Gcsemv,

type = c("g", "p", "smooth"),

xlab = "Coursework score", ylab = "Written exam score",

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.rug(x = x[is.na(y)], y = y[is.na(x)])

})

where we use the predefined panel function panel.rug()1 to encode the scores
for cases where one component is missing (these would otherwise have been
omitted from the plot). This plot clearly suggests an association between the

1 See Chapter 13 for a full list of predefined panel functions.
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Figure 10.3. A scatter plot of coursework and written exam scores on a science
subject, conditioned on gender. Scores missing in one variable are indicated by“rugs”.

two scores. In the next plot, we ignore the pairing of the scores and look at
their marginal distributions using a Q–Q plot. Figure 10.4 is produced by

> qqmath(~ written + course, Gcsemv, type = c("p", "g"),

outer = TRUE, groups = gender, auto.key = list(columns = 2),

f.value = ppoints(200), ylab = "Score")

This plot emphasizes two facts about the marginal distributions: boys tend
to do slightly better than girls in the written exam whereas the opposite is
true for coursework, and although the written scores fit a normal distribution
almost perfectly, the coursework scores do not. In fact, the distributions of
coursework scores have a positive probability mass at 100 (one might say
that the “true” scores have been right censored), more so for girls than boys.
Neither of these facts are unexpected, but they are not as obvious in the
previous scatter plot.

10.3 Combining data sources with make.groups()

By itself, the formula interface is not flexible enough for all situations, and
one often needs to manipulate the data before using them in a lattice call. One
common scenario is when datasets of different lengths need to be combined.
All terms in the Trellis formula (even in the extended form) should have the
same length after evaluation. This restriction is naturally enforced when data
is a data frame, but there is no explicit check for other data sources. This can
sometimes be an issue if one is careless, especially with “univariate” formu-
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Figure 10.4. Normal quantile plots of written exam and coursework scores, grouped
by gender. The distributions of written exam scores are close to normal, with males
doing slightly better. The distributions of coursework scores are skewed, with several
full scores for females (note that only a subset of quantiles has been plotted), who
do considerably better. The comparison is visually more striking when color is used
to distinguish between the groups.

lae as used in Q–Q plots and histograms. To make this point, consider this
somewhat artificial example: Among continuous probability distributions, the
exponential distribution is unique in having the property (often referred to as
the memoryless property) that left truncation is equivalent to an additive shift
in the induced distribution. To demonstrate this using a Q–Q plot, we gen-
erate truncated and untruncated observations from the standard exponential
distribution.

> x1 <- rexp(2000)

> x1 <- x1[x1 > 1]

> x2 <- rexp(1000)

In view of the preceding discussion, one might be tempted to try something
along the lines of

> qqmath(~ x1 + x2, distribution = qexp)

to create a grouped theoretical Q–Q plot, but this produces the wrong output
because x1 and x2 are not of equal length. The correct approach is to combine
the vectors and form a suitable grouping variable, as in

> qqmath( ~ c(x1, x2), distribution = qexp,

groups = rep(c("x1", "x2"), c(length(x1), length(x2))))

This is of course tedious, even more so when there are more objects to com-
bine. A utility function designed for such situations is make.groups(), which
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Figure 10.5. Theoretical quantile plot comparing the untruncated and truncated
(at 1) exponential distributions. The plot illustrates the use of make.groups() as
discussed in the text.

combines several vectors, possibly of different lengths, into a single data frame
with two columns: one (data) concatenating all its arguments, the other
(which) indicating from which vector an observation came. For example, we
have

> str(make.groups(x1, x2))

’data.frame’: 1772 obs. of 2 variables:

$ data : num 2.31 2.35 2.49 1.51 ...

$ which: Factor w/ 2 levels "x1","x2": 1 1 1 1 1 1 1 1 ...

We can thus produce Figure 10.5 with

> qqmath(~ data, make.groups(x1, x2), groups = which,

distribution = qexp, aspect = "iso", type = c("p", "g"))

Multiple data frames with differing number of rows can also be combined using
make.groups(), provided they have conformable columns. As an example,
consider the beavers dataset (Reynolds, 1994; Venables and Ripley, 2002),
which actually consists of two data frames beaver1 and beaver2, recording
body temperature of two beavers in north-central Wisconsin every ten minutes
over a period of several hours.

> str(beaver1)

’data.frame’: 114 obs. of 4 variables:

$ day : num 346 346 346 346 346 346 346 346 ...

$ time : num 840 850 900 910 920 930 940 950 ...

$ temp : num 36.3 36.3 36.4 36.4 ...

$ activ: num 0 0 0 0 0 0 0 0 ...

> str(beaver2)
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’data.frame’: 100 obs. of 4 variables:

$ day : num 307 307 307 307 307 307 307 307 ...

$ time : num 930 940 950 1000 1010 1020 1030 1040 ...

$ temp : num 36.6 36.7 36.9 37.1 ...

$ activ: num 0 0 0 0 0 0 0 0 ...

We can combine these in a single data frame using

> beavers <- make.groups(beaver1, beaver2)

> str(beavers)

’data.frame’: 214 obs. of 5 variables:

$ day : num 346 346 346 346 346 346 346 346 ...

$ time : num 840 850 900 910 920 930 940 950 ...

$ temp : num 36.3 36.3 36.4 36.4 ...

$ activ: num 0 0 0 0 0 0 0 0 ...

$ which: Factor w/ 2 levels "beaver1","beaver2": 1 1 1 1 1 1 1 1 ...

The time of each observation is recorded in a somewhat nonstandard manner.
To use them in a plot, one option is to convert them into hours past an
arbitrary baseline using

> beavers$hour <-

with(beavers, time %/% 100 + 24*(day - 307) + (time %% 100)/60)

The range of this new variable is very different for the two beavers (the two
sets of measurements were taken more than a month apart), so plotting them
on a common axis does not make sense. We could of course measure hours
from different baselines for each beaver, but another alternative is to allow
different limits using

> xyplot(temp ~ hour | which, data = beavers, groups = activ,

auto.key = list(text = c("inactive", "active"), columns = 2),

xlab = "Time (hours)", ylab = "Body Temperature (C)",

scales = list(x = list(relation = "sliced")))

The result is shown in Figure 10.6. This is a natural use of "sliced" scales,
as we want differences in time to be comparable across panels, even though
the absolute values have no meaningful interpretation.

10.4 Subsetting

As with other formula-based interfaces in R (such as lm() and glm()), one can
supply a subset argument to choose a subset of rows to use in the display. If
specified, it should be an expression, possibly involving variables in data, that
evaluates to a logical vector. The result should have the same length as the
number of rows in the data, and is recycled if not. For example, the graphic in
Figure 10.1 (which uses only the subset of adults) could have been obtained
directly from the full Titanic data by
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Figure 10.6. Body temperature of two beavers (over time) in north-central Wiscon-
sin. The plotting symbols indicate periods of outside activity, which clearly affects
body temperature.

> barchart(Class ~ Freq | Sex, as.data.frame(Titanic),

subset = (Age == "Adult"), groups = Survived, stack = TRUE,

auto.key = list(title = "Survived", columns = 2))

Subsetting becomes more important for larger datasets. To illustrate this, let
us consider the USAge.df dataset in the latticeExtra package, which records
estimated population2 of the United States by age and sex for the years 1900
through 1979.

> data(USAge.df, package = "latticeExtra")

> head(USAge.df)

Age Sex Year Population

1 0 Male 1900 0.919

2 1 Male 1900 0.928

3 2 Male 1900 0.932

4 3 Male 1900 0.932

5 4 Male 1900 0.928

6 5 Male 1900 0.921

Figure 10.7 plots the population distribution for every tenth year starting with
1905:

> xyplot(Population ~ Age | factor(Year), USAge.df,

groups = Sex, type = c("l", "g"),

auto.key = list(points = FALSE, lines = TRUE, columns = 2),

aspect = "xy", ylab = "Population (millions)",

subset = Year %in% seq(1905, 1975, by = 10))

2 Source: U.S. Census Bureau, http://www.census.gov.
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Figure 10.7. U.S. population distribution by gender, every ten years from 1905
through 1975.

The “baby boom” phenomenon of the late 1940s and 1950s is clearly appar-
ent from the plot. It is clearer in the next representation, where each panel
represents a specific age, and plots the population for that age over the years.
Figure 10.8 is produced by

> xyplot(Population ~ Year | factor(Age), USAge.df,

groups = Sex, type = "l", strip = FALSE, strip.left = TRUE,

layout = c(1, 3), ylab = "Population (millions)",

auto.key = list(lines = TRUE, points = FALSE, columns = 2),

subset = Age %in% c(0, 10, 20))

In particular, the panel for age 0 represents the number of births (ignoring
immigration, which is less important here than in the older age groups). A
closer look at the panel for 20-year-olds shows an intriguing dip in the male
population around 1918. To investigate this further, the next plot follows the
population distribution by cohort; Figure 10.9 conditions on the year of birth,
and is produced by

> xyplot(Population ~ Year | factor(Year - Age), USAge.df,

groups = Sex, subset = (Year - Age) %in% 1894:1905,

type = c("g", "l"), ylab = "Population (millions)",

auto.key = list(lines = TRUE, points = FALSE, columns = 2))
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Figure 10.8. U.S. population by age over the years. The bottom panel gives the
(approximate) number of births each year, clearly showing the baby boom after
World War II. The top panel, which gives the population of 20-year-olds, shows a
temporary drop in the male population around 1918.

Unlike in the previous plots, no individual is counted in more than one
panel. The signs of some major event in or around 1918 is clear, and a closer
look suggests that its impact on population varies by age and sex. The most
natural explanation is that the fluctuation is related to the United States
joining World War I in 1917; however, there is no similar fluctuation for World
War II. As it turns out, armed forces stationed overseas were excluded from
the population estimates for the years 1900-1939, but not for subsequent years.

10.4.1 Dropping of factor levels

A subtle point that is particularly relevant when using the subset argument
is the rule governing dropping of levels in factors. By default, levels that are
unused (i.e., have no corresponding data points) after subsetting are omitted
from the plot. This behavior can be changed by the drop.unused.levels ar-
gument separately for conditioning variables and panel variables. The default
behavior is usually reasonable, but the ability to override it is often helpful
in obtaining a more useful layout. Note, however, that levels of a grouping
variable are never dropped automatically. This is because unlike variables in
the formula, subsetting of groups is done inside panel functions, and drop-
ping levels in this case may inadvertently lead to inconsistency across panels
or meaningless legends. A possible workaround is described in Chapter 9 in
the context of the auto.key argument.
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Figure 10.9. U.S. population by cohort (birth year), showing the effect of age
and sex on the temporary drop in population in 1918. The use of broken lines
for females leads to unequal visual emphasis on the two groups that is completely
artificial; compare with the color version of this figure, which is included among the
color plates.

10.5 Shingles and related utilities

We have briefly encountered shingles previously in Chapter 2. In this section,
we take a closer look at the facilities available to construct and manipu-
late shingles. As an example, we use the quakes dataset, and look at how
the number of stations reporting an earthquake is related to its magnitude.
Figure 10.10 is produced by

> xyplot(stations ~ mag, quakes, jitter.x = TRUE,

type = c("p", "smooth"),

xlab = "Magnitude (Richter)",

ylab = "Number of stations reporting")

Subject to certain assumptions, we might expect the counts to have a Poisson
distribution, with mean related to earthquake magnitude. The documentation
of the dataset notes that there are no quakes with magnitude less than 4.0 on
the Richter scale, but a closer look at Figure 10.10 also reveals that there are
none with less than ten reporting stations. This truncation makes it harder to
decide whether the the expected count is a linear function of the magnitude,
although the shape of the LOESS smooth for magnitude greater than 4.5
supports that conjecture. Another implication of the Poisson model is that the
variance of the counts increases with the mean. We use shingles to investigate
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Figure 10.10. Number of stations recording earthquakes of various magnitudes.
Earthquakes with less than ten stations reporting are clearly omitted from the data,
which possibly explains the curvature in the LOESS smooth.

whether this seems to be true.3 First, we construct a shingle from the numeric
mag variable using the equal.count() function.

> quakes$Mag <- equal.count(quakes$mag, number = 10, overlap = 0.2)

This creates a shingle with ten levels, each represented by a numeric inter-
val. The endpoints of the intervals are determined automatically (based on
the data) so that roughly the same number of observations falls in each. The
overlap argument determines the fraction of overlap between successive lev-
els; in this case, 20% of the data in each interval should also belong to the
next. The overlap can be negative, in which case there will be gaps in the
coverage. It is also possible to create shingles with the intervals explicitly spec-
ified, using the shingle() function, as we soon show. The resulting levels and
the corresponding frequencies can be inspected by summarizing the shingle:

> summary(quakes$Mag)

Intervals:

min max count

1 3.95 4.25 191

2 4.05 4.35 230

3 This is by no means the only way to do so.
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3 4.25 4.45 186

4 4.35 4.55 208

5 4.45 4.65 208

6 4.55 4.75 199

7 4.65 4.85 163

8 4.75 5.05 166

9 4.85 5.25 173

10 5.05 6.45 151

Overlap between adjacent intervals:

[1] 145 85 101 107 101 98 65 101 72

The nominal goals of having an equal number of observations in each level
and an overlap of 20% between successive intervals have not quite been met,
but this is a consequence of heavy rounding of the magnitudes, with only 22
unique values. A character representation of the levels, useful for annotation,
is produced by

> as.character(levels(quakes$Mag))

[1] "[ 3.95, 4.25 ]" "[ 4.05, 4.35 ]" "[ 4.25, 4.45 ]"

[4] "[ 4.35, 4.55 ]" "[ 4.45, 4.65 ]" "[ 4.55, 4.75 ]"

[7] "[ 4.65, 4.85 ]" "[ 4.75, 5.05 ]" "[ 4.85, 5.25 ]"

[10] "[ 5.05, 6.45 ]"

A visual representation of the shingle can be produced using the plot()
method4 for shingles. This actually creates a “trellis” object, which we store
in the variable ps.mag for now instead of plotting it.

> ps.mag <- plot(quakes$Mag, ylab = "Level",

xlab = "Magnitude (Richter)")

Next, we create another “trellis” object representing a box-and-whisker plot
with stations on the y-axis and the newly created shingle on the x-axis.

> bwp.quakes <-

bwplot(stations ~ Mag, quakes, xlab = "Magnitude",

ylab = "Number of stations reporting")

Finally, we plot these “trellis” objects together to produce Figure 10.11.

> plot(bwp.quakes, position = c(0, 0, 1, 0.65))

> plot(ps.mag, position = c(0, 0.65, 1, 1), newpage = FALSE)

Without the plot of the shingle, we would not be able to associate a level of
the shingle to the numeric interval it represents. An alternative is to manually
annotate the shingle levels, as in Figure 10.12, which is produced by

> bwplot(sqrt(stations) ~ Mag, quakes,

scales =

list(x = list(limits = as.character(levels(quakes$Mag)),

rot = 60)),

4 See ?plot.shingle for details.
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Figure 10.11. A box-and-whisker plot of the number of stations recording earth-
quakes, with a shingle representing the earthquake magnitudes. A plot of the shingle
at the top gives the association between levels of the shingle and the corresponding
ranges of magnitude on the Richter scale.
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Figure 10.12. A variant of Figure 10.11. The y-axis now plots the square root of
the number of stations reporting, and the range of each level of the shingle is given
in the form of axis labels.

xlab = "Magnitude (Richter)",

ylab = expression(sqrt("Number of stations")))

where we additionally plot the number of reporting stations on a square root
scale. The square root transformation is a standard variance stabilizing trans-
formation for the Poisson distribution (Bartlett, 1936), and does seem to work
reasonably well, given the omission of quakes reported by less than ten sta-
tions.

It is more common to use shingles as conditioning variables. In that case,
the interval defining a level of the shingle is indicated relative to its full range
by shading the strip region. If the exact numeric values of the interval are
desired, one can add a plot of the shingle as in Figure 10.11. Another option
is to print the numeric range inside each strip using a suitable strip function,
as in the following call which produces Figure 10.13.

> qqmath(~ sqrt(stations) | Mag, quakes,

type = c("p", "g"), pch = ".", cex = 3,

prepanel = prepanel.qqmathline, aspect = "xy",

strip = strip.custom(strip.levels = TRUE,

strip.names = FALSE),

xlab = "Standard normal quantiles",

ylab = expression(sqrt("Number of stations")))

The strip.custom() function used in this example is explained later in this
chapter.
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Figure 10.13. A normal quantile plot of the (square root of the) number of stations
reporting earthquakes. The conditioning variable is a shingle, with numerical range
shown in the strips. The truncation in the number of stations can be seen in the
first few panels.

10.5.1 Coercion to factors and shingles

There are certain situations where lattice expects to find a “categorical vari-
able” (i.e., either a factor or a shingle). This most obviously applies to condi-
tioning variables; numeric variables are coerced to be shingles, and character
variables are turned into factors. This coercion rule also applies in bwplot(),
as well as a few other high-level functions, such as stripplot() and bar-
chart(), which expect one of the axes to represent a categorical variable. If
numeric variables are given for both axes, the choice of which one to coerce
depends on the value of the horizontal argument.

This behavior can be frustrating, because there are occasions where we
want a numeric variable to be used as a categorical variable in the display,
yet retain the numeric scale for spacing and axis annotation. For example,
we might want a plot with the same structure as Figure 10.10, but with the
jittered point clouds for each value of mag replaced by a box-and-whisker
plot. Unfortunately, attempting to do so with bwplot() will fail; the display
produced by

> xyplot(stations ~ mag, quakes,

panel = panel.bwplot, horizontal = FALSE)

will represent mag as a shingle with unique values equally spaced along the
x-axis, and we will lose information about gaps in their values. One solution
is to create a factor or shingle explicitly with empty levels. A simpler option
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Figure 10.14. Box-and-whisker plots of number of reporting stations by magnitude
of earthquakes. This time, the x variable is not a shingle, but the actual magnitude.

is not to use bwplot() at all, but instead use xyplot(), and borrow the panel
function panel.bwplot(). Figure 10.14 is produced by

> xyplot(sqrt(stations) ~ mag, quakes, cex = 0.6,

panel = panel.bwplot, horizontal = FALSE, box.ratio = 0.05,

xlab = "Magnitude (Richter)",

ylab = expression(sqrt("Number of stations")))

We need to tweak the box.ratio argument to account for the fact that suc-
cessive boxes are not as far away from each other as panel.bwplot() expects.

10.5.2 Using shingles for axis breaks

Although shingles are commonly used for conditioning, they can be put to
other interesting uses as well. In particular, a numeric variable can be used
both in its original form (as a primary variable) and as a shingle (as a con-
ditioning variable) in conjunction with the relation specification to create
(possibly data-driven) scale breaks. As an example, consider the population
density in the 50 U.S. states, based on population estimates from 1975:

> state.density <-

data.frame(name = state.name,

area = state.x77[, "Area"],

population = state.x77[, "Population"],

region = state.region)

> state.density$density <- with(state.density, population / area)
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We can produce a Cleveland dot plot of the raw densities using

> dotplot(reorder(name, density) ~ density, state.density,

xlab = "Population Density (thousands per square mile)")

producing Figure 10.15. The plot is dominated by a few states with very
high density, making it difficult to assess the variability among the remain-
ing states. This kind of problem is usually alleviated by taking a logarithmic
transformation, as we do later in Figures 10.19 through 10.21. However, an-
other option is to create a break in the x-axis. There is achieved by creating
a shingle, using the shingle() constructor, with suitable intervals specified
explicitly.

> state.density$Density <-

shingle(state.density$density,

intervals = rbind(c(0, 0.2),

c(0.2, 1)))

This shingle can now be used as a conditioning variable to separate the states
into two panels. Figure 10.16 is created using

> dotplot(reorder(name, density) ~ density | Density, state.density,

strip = FALSE, layout = c(2, 1), levels.fos = 1:50,

scales = list(x = "free"), between = list(x = 0.5),

xlab = "Population Density (thousands per square mile)",

par.settings = list(layout.widths = list(panel = c(2, 1))))

where the x-axis is allowed to be different for the two panels, and additionally
the panel with more states is further emphasized by making it wider.

10.5.3 Cut-and-stack plots

Another use of shingles that is similar in spirit is to create so-called “cut-and-
stack” plots (Cleveland, 1993). Time-series data are often best viewed with a
low aspect ratio because local features are usually of more interest than overall
trends. A suitable aspect ratio can usually be determined automatically using
the 45◦ banking rule (aspect = "xy"), but this generally results in a short
wide plot that does not make use of available vertical space. An easy way to
remedy this is to divide up (cut) the time range into several smaller parts
and stack them on top of each other. Shingles are ideal for defining the cuts
because they allow overlaps, providing explicit continuity across panels. In
fact, if we use the equal.count() function to create the shingle, all we need
to specify is the number of cuts and the amount of overlap, as we did in
Figure 8.2. We can wrap this procedure in a simple function:

> cutAndStack <-

function(x, number = 6, overlap = 0.1, type = "l",

xlab = "Time", ylab = deparse(substitute(x)), ...) {

time <- if (is.ts(x)) time(x) else seq_along(x)

Time <- equal.count(as.numeric(time),

number = number, overlap = overlap)
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Figure 10.15. Estimated population density in U.S. states, 1975. A few extreme
values dominate the plot.
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Figure 10.16. Estimated population density in U.S. states, with a break in the
x-axis.
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xyplot(as.numeric(x) ~ time | Time,

type = type, xlab = xlab, ylab = ylab,

default.scales = list(x = list(relation = "free"),

y = list(relation = "free")),

...)

}

We can then use this to create a cut-and-stack plot of a time-series object
(class “ts”) or any other numeric vector. Figure 10.17 is produced by

> cutAndStack(EuStockMarkets[, "DAX"], aspect = "xy",

scales = list(x = list(draw = FALSE),

y = list(rot = 0)))

An alternative approach is presented in Chapter 14.

10.6 Ordering levels of categorical variables

Unlike ordinal categorical variables and numeric variables (and by extension
shingles), levels of nominal variables have no intrinsic order. An extremely
important, but rarely appreciated fact is that the visual order of these levels in
a display has considerable impact on how we perceive the information encoded
in the display. By default, when R creates factors from character strings, it
defines the levels in alphabetical order (this can be changed using the levels
argument to the factor() constructor), and this order is retained in lattice
plots. In most cases, reordering the levels based on the data, rather than
keeping the original arbitrary order, leads to more informative plots.

This fact plays a subtle but important role in the well-known barley dot
plot shown in Figure 2.6. In this plot, the levels of variety, site, and year were
all ordered so that the median yield within level went from lowest to highest.
We reproduce this plot in Figure 10.18 alongside a slightly different version
where the levels of site and variety are ordered alphabetically. Although the
switch in direction at Morris, the primary message from the plot, is clear in
both plots, the one on the right makes it easier to convince ourselves that the
likely culprit is simply a mislabeling of the year for that one site, and no more
elaborate explanation is required.

Reordering levels of a factor with respect to the values of another variable
is most easily done using the reorder() function.5 We have already used
reorder() in Chapter 4 to produce Figure 4.7, and earlier in this chapter when
looking at dot plots of population densities in the United States. Continuing
with the latter example, we can create a dot plot with log densities on the
x-axis using

5 reorder() is a generic function, and documentation for the method we are inter-
ested in can be accessed using ?reorder.factor.
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Figure 10.18. A grouped dot plot of the barley data with default (alphabetical
by levels) and median (Figure 2.6) ordering. The ordered version makes it easier to
convince ourselves that switching the year labels for Morris is enough to “fix” the
data.
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> dotplot(reorder(name, density) ~ 1000 * density, state.density,

scales = list(x = list(log = 10)),

xlab = "Density (per square mile)")

Taking logarithms alleviates the problem with Figure 10.15, and is generally
preferable over artificial axis breaks. The inline call to reorder() creates a
new factor with the same values and the same levels as name, but the levels
are now ordered such that the first level is associated with the lowest value of
density, the second with the next lowest, and so on. In this example there
is exactly one value of density associated with each level of name, but this
will not be true in general. In the following call, we reorder the levels of the
region variable, a geographical classification of the states, again by density.

> state.density$region <-

with(state.density, reorder(region, density, median))

Because there are multiple states for every region, we need to summarize
the corresponding densities before using them to determine an order for the
regions. The default summary is the mean, but here we use the median instead
by specifying a third argument to reorder().

Our eventual goal is to use region as a conditioning variable in a dot plot
similar to the last one, but with states grouped by region. To do so, we first
need to ensure that the levels of name for states within a region are contiguous,
as otherwise they would not be contiguous in the dot plot.6 This is achieved
simply by reordering their levels by region. We would also like the states
to be ordered by density within region, so we end up with another call to
reorder() nested within the first one (this works because the original order
is retained in case of ties).

> state.density$name <-

with(state.density,

reorder(reorder(name, density), as.numeric(region)))

We need to convert the region values to their numeric codes as the step of
averaging would otherwise cause an error. Finally, we can use these reordered
variables to produce the dot plot in Figure 10.20, with relation = "free"
for the y-axis to allow independent scales for the different regions:

> dotplot(name ~ 1000 * density | region, state.density,

strip = FALSE, strip.left = TRUE, layout = c(1, 4),

scales = list(x = list(log = 10),

y = list(relation = "free")),

xlab = "Density (per square mile)")

This still leaves room for improvement; the panels all have the same physical
height, but different numbers of states, resulting in an odd looking plot. We
could rectify this by changing the heights of the panels, as we did for widths in
Figure 10.16. A convenience function that does this automatically, by making

6 Factors are simply converted to the underlying numeric codes when they are
plotted, and the codes are defined by the order of their levels.
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Figure 10.19. Population density in U.S. states, on a log scale. Comparing to
Figure 10.15, we see that the states with the highest density no longer seem unusual
compared to the rest. On the other hand, Alaska stands out as a state with unusually
low density. Such judgments would have been harder if the states were not reordered.
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Figure 10.20. Population densities in U.S. states by region, with a different y-axis
in each panel. Because the y variable is a factor, the scale calculations treat its
values as the corresponding numeric codes; consequently, reordering of the levels is
especially important. To appreciate this fact, the reader is strongly encouraged to
try the call without reordering.
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physical heights proportional to data ranges, is available in the latticeExtra
package. Figure 10.21 is created by calling

> library("latticeExtra")

> resizePanels()

immediately after the previous dotplot() call. The inner workings of re-
sizePanels() is explained in Chapter 12.

Another mode of automatic reordering is afforded by the index.cond ar-
gument, which we have used before without explanation to produce Figure 4.7.
It implements a slightly different approach: it only reorders conditioning vari-
ables, and does so by trying to reorder packets based on their contents. To
illustrate its use, consider the USCancerRates dataset in the latticeExtra pack-
age, which records average yearly deaths due to cancer in the United States
between the years 1999 and 2003 at the county level. We plot the rates for
men and women against each other conditioning by state, and order the pan-
els by the median of the difference in the rates between men and women.
Figure 10.22 is produced by

> data(USCancerRates, package = "latticeExtra")

> xyplot(rate.male ~ rate.female | state, USCancerRates,

aspect = "iso", pch = ".", cex = 2,

index.cond = function(x, y) { median(y - x, na.rm = TRUE) },

scales = list(log = 2, at = c(75, 150, 300, 600)),

panel = function(...) {

panel.grid(h = -1, v = -1)

panel.abline(0, 1)

panel.xyplot(...)

},

xlab = "Deaths Due to Cancer Among Females (per 100,000)",

ylab = "Deaths Due to Cancer Among Males (per 100,000)")

In general, index.cond can be a function, with a scalar numeric quantity as
its return value, that is called with the same arguments as the panel function.
When there is exactly one conditioning variable, its levels are reordered to
put these return values in increasing order. For more than one conditioning
variable, the order of each is determined by averaging over the rest.

10.7 Controlling the appearance of strips

Each panel in a multipanel lattice display represents a packet defined by a
unique combination of levels of one or more conditioning variables. The pur-
pose of the strips that typically appear above each panel is to indicate this
combination. The contents of a strip can be customized using the strip ar-
gument. Strips can be placed to the left of each panel too, and these are
controlled by the strip.left argument.

Both these arguments can be logical, with the corresponding strips sup-
pressed if they are FALSE (strip.left is FALSE by default). The default
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Figure 10.21. A variant of Figure 10.20, with panel heights varying by number of
states.
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Figure 10.22. Annual death rates due to cancer (1999–2003) in U. S. counties by
state for men and women, ordered by mean difference. A closer look reveals that the
rate for women does not vary much across states, and the ordering is largely driven
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Figure 10.23. Normal Q–Q plots of average GCSE scores grouped by gender,
conditioning on the A-level chemistry examination score, illustrating the use of a
non-default strip annotation style. Another built-in style can be seen in Figure 11.5.

behavior can be changed by specifying the strip argument as a function
that performs the rendering. One predefined function that can serve as a
suitable strip function is strip.default(), which is used when strip is
TRUE. strip.default() has several arguments that control its behavior,
and these are often used to create variants. For example, one argument of
strip.default() is style, which determines how the levels of a factor are
displayed on the strip. We might define a new strip function as

> strip.style4 <- function(..., style) {

strip.default(..., style = 4)

}

When called, this function will call strip.default() with whatever argu-
ments it received, with the exception of style, which will be changed to 4.
This can be used to produce Figure 10.23 with

> data(Chem97, package = "mlmRev")

> qqmath(~gcsescore | factor(score), Chem97, groups = gender,

type = c("l", "g"), aspect = "xy",

auto.key = list(points = FALSE, lines = TRUE, columns = 2),

f.value = ppoints(100), strip = strip.style4,

xlab = "Standard normal quantiles",

ylab = "Average GCSE score")
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Because it is common to create custom strip functions in this manner, a
convenient generator function called strip.custom() is provided by lattice.
strip.custom() is called with a subset of the arguments of strip.default()
and produces another function that serves as a strip function by calling
strip.default() after replacing the relevant arguments with their new val-
ues. Thus, an alternative call that produces Figure 10.23 is

> qqmath(~gcsescore | factor(score), Chem97, groups = gender,

type = c("l", "g"), aspect = "xy",

auto.key = list(points = FALSE, lines = TRUE, columns = 2),

f.value = ppoints(100), strip = strip.custom(style = 4),

xlab = "Standard normal quantiles",

ylab = "Average GCSE score")

where the user-defined strip function is concisely specified inline. A full list of
the arguments that can be manipulated in this manner (and their effect) is
given in the help page for strip.default(). The above description applies
to strip.left as well. Strips on the left can be useful when vertical space is
at a premium, as in Figure 10.17. It is rarely useful to have both sets of strips
(however, see Figure 11.6 and the accompanying discussion).

Another argument that indirectly controls the contents of the strip is
par.strip.text, which is supplied directly to a high-level call. It is usually a
list containing graphical parameters (such as col and cex) that are meant to
control the appearance of the strip text. In practice, the list is passed on to
the strip function, which may or may not honor it (the default strip function
does). In addition to graphical parameters, par.strip.text can also contain
a parameter called lines, which specifies the height of each strip in multiples
of the default. The following example illustrates its use in conjunction with a
custom strip function that does not depend on strip.default().

> strip.combined <-

function(which.given, which.panel, factor.levels, ...) {

if (which.given == 1) {

panel.rect(0, 0, 1, 1, col = "grey90", border = 1)

panel.text(x = 0, y = 0.5, pos = 4,

lab = factor.levels[which.panel[which.given]])

}

if (which.given == 2) {

panel.text(x = 1, y = 0.5, pos = 2,

lab = factor.levels[which.panel[which.given]])

}

}

> qqmath(~ gcsescore | factor(score) + gender, Chem97,

f.value = ppoints(100), type = c("l", "g"), aspect = "xy",

strip = strip.combined, par.strip.text = list(lines = 0.5),

xlab = "Standard normal quantiles",

ylab = "Average GCSE score")

The lines component is used to halve the height of the strip, which would
normally have occupied enough space for two strips. The actual strip function
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Figure 10.24. A variant of Figure 10.23, with gender now a conditioning variable
as well, using a completely new strip function that incorporates both conditioning
variables in a single strip.

is fairly transparent once we are told two facts: the strip functions for both
conditioning variables use a common display area, and the native scale in the
strip region is [ 0, 1 ] in both axes. The resulting plot is shown in Figure 10.24.

10.8 An Example Revisited

Most of the examples we have seen in this book are designed to highlight some
particular feature of lattice. Real life examples are typically more complex,
requiring the use of many different features at once. Often, this simply results
in a longer call. However, because of the way the various features of lattice
interact, it is often possible to achieve fairly complex results with relatively
innocuous looking code. To be able to write such code, one needs a familiarity
with lattice that can only come from experience. We end this chapter with
a study of one such example in some detail, with the hope that it will give
the reader a sense of what can be achieved. The example is one we have
encountered before; it was used to produce Figure 3.17:

> stripplot(sqrt(abs(residuals(lm(yield ~ variety+year+site)))) ~ site,

data = barley, groups = year, jitter.data = TRUE,

auto.key = list(points = TRUE, lines = TRUE, columns = 2),

type = c("p", "a"), fun = median,

ylab = expression(abs("Residual Barley Yield")^{1 / 2}))

The plot is based on the residuals from a linear model fit. Specifically, the
square root of the absolute values of the residuals are plotted on the y-axis
against one of the predictors (site) on the x-axis, with another predictor
(year) used for grouping. The residuals are represented by points that are
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jittered horizontally to alleviate overlap, and lines joining their medians are
added to summarize the overall trend. A legend describes the association
between the graphical parameters used to distinguish levels of year and the
actual levels.

To understand how we ended up with this call, let us consider how we
might approach the task of producing the plot given this verbal description.
The first step would be to fit an appropriate model, in this case

> fm <- lm(yield ~ variety + year + site, data = barley)

from which we could extract the residuals using

> residuals(fm)

Thus, the formula and data in the call might have been

> stripplot(sqrt(abs(residuals(fm))) ~ site, data = barley)

This is perfectly acceptable, but it runs the risk of a mismatch in the data
used in the model fit and the plot. We instead choose to incorporate the model
within the Trellis formula; the model is fit as part of the data evaluation step.

The next concern is the main display, which is controlled by the panel
function. In this case, the display should consist of the (jittered) points for
each group, along with a line joining the medians. Jittering is supported by the
default panel function panel.stripplot(), through the jitter.data argu-
ment. However, a look at the help page for panel.stripplot() indicates no
obvious way to add the lines, suggesting that we might need to write our own
panel function. The predefined panel function panel.average() is ideal for
our task; it even has an argument (fun) that can be used to specify the func-
tion that is used to compute the “average”. Thus, our custom panel function
might look like

panel = function(x, y, jitter.data, ...) {

panel.stripplot(x, y, jitter.data = TRUE, ...)

panel.average(x, y, fun = median, ...)

}

Now, according to Table 5.1, panel.average() can be invoked through
panel.xyplot() by including "a" in the type argument. In addition, the
help page for panel.stripplot() notes that it passes all extra arguments to
panel.xyplot(). Add to this the fact that arguments unrecognized by strip-
plot() are passed along to the panel function, and we end up not requiring
an explicit panel function at all, as long as we add the suitable arguments
(jitter.data, type, and fun) to the high-level call. This also magically makes
the adjustments required to accommodate the groups argument. Of course,
such convenient panel functions are not always available, but they are often
enough to make this approach useful.

The final piece that completes the plot is the legend. We make use of the
auto.key argument, described in Chapter 9, which works by taking advantage
of the fact that the default plotting symbols and line types are obtained from
the global parameter settings. Since the output of stripplot() does not
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Figure 10.25. A spread–location plot of the barley data after “fixing” the Morris
anomaly; compare with Figure 3.17.

normally contain lines, they are not included in the default legend, and we
need to explicitly ask for them. Also notable is the use of expression() to
specify the y-axis label. This is an example of the LATEX-like mathematical
annotation (Murrell and Ihaka, 2000) that can be used in place of plain text
in most situations.7 In Figure 10.25, we redraw Figure 3.17, after switching
the values of year for the observations from Morris using

> morris <- barley$site == "Morris"

> barley$year[morris] <-

ifelse(barley$year[morris] == "1931", "1932", "1931")

The call to produce the plot remains otherwise unchanged.

7 See ?plotmath for a general description of these capabilities.
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Manipulating the “trellis” Object

The Trellis paradigm is different from traditional R graphics in an important
respect: high-level “plotting” functions in lattice produce objects rather than
any actual graphics output. As with other objects in R, these objects can be
assigned to variables, stored on disk in serialized form to be recovered in a
later session, and otherwise manipulated in various ways. They can also be
plotted, which is all we want to do in the vast majority of cases. Throughout
this book, we have largely focused on this last task. In this chapter, we take a
closer look at the implications of the object-based design and how one might
take advantage of it.

11.1 Methods for “trellis” objects

The S language features its own version of object-oriented programming. To
make things somewhat complicated, it has two versions of it: the S3 or old-
style version, and the newer, more formal S4 version. The fundamental con-
cepts are similar; objects have classes, and some functions are generic, with
specific methods that determine the action of the generic when its arguments
are objects of certain classes. However, the tools one can use to obtain infor-
mation about a class or methods of a generic function are different. The lattice
package is implemented using the S3 system,1 and the tools we describe in
this section are specific to it.

The objects returned by high-level functions such as xyplot() have class
“trellis”. We can obtain a list of methods that act specifically on “trellis”
objects using

> methods(class = "trellis")

[1] dimnames<-.trellis* dimnames.trellis* dim.trellis*

[4] plot.trellis* print.trellis* summary.trellis*

[7] tmd.trellis* [.trellis* t.trellis*

1 Although it is possible to extend it to S4, as we show in Chapter 14.
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[10] update.trellis*

Non-visible functions are asterisked

The output is useful primarily because it tells us where to look for documen-
tation; for example, the documentation for the dimnames() method can be
accessed by typing

> help("dimnames.trellis")

and that for the [ method by typing

> help("[.trellis")

Note that this does not give a list of all generic functions that can act on
“trellis” objects; for instance, str() is a generic function with no specific
method for “trellis” objects, but a default method exists and that is used
instead. These comments are not specific to the “trellis” class; for example,
we could get a similar list of methods for “shingle” objects with

> methods(class = "shingle")

[1] as.data.frame.shingle* plot.shingle*

[3] print.shingle* [.shingle*

[5] summary.shingle*

Non-visible functions are asterisked

and a list for all methods for the generic function barchart() using

> methods(generic.function = "barchart")

[1] barchart.array* barchart.default* barchart.formula*

[4] barchart.matrix* barchart.numeric* barchart.table*

Non-visible functions are asterisked

As hinted at by the output, most of these methods are not intended to be
called by their full name. The correct usage is described in the respective help
page, or sometimes in the help page for the generic. We now look at some of
these methods in more detail.

11.2 The plot(), print(), and summary() methods

The most commonly used generic function in R is print(), as it is implicitly
used to display the results of many top-level computations. For “trellis” ob-
jects, the print() method actually plots the object in a graphics device. It
is sometimes necessary to use print()2 explicitly, either because automatic
printing would have been suppressed in some context, or to use one of the

2 Or plot(), which is equivalent, except that it does not return a copy of the object
being plotted.
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optional arguments. The most useful arguments of the plot() and print()
methods are described here briefly.

split, position
These two arguments are used to specify the rectangular subregion within
the whole plotting area that will be used to plot the “trellis” object. Nor-
mally the full region is used. The split argument, specified in the form
c(col, row, ncol, nrow), divides up the region into ncol columns and
nrow rows and places the plot in column col and row row (counting
from the upper-left corner). The position argument can be of the form
c(xmin, ymin, xmax, ymax), where c(xmin, ymin) gives the lower-left
and c(xmax, ymax) the upper-right corner of the subregion, treating the
full region as the [ 0, 1 ] × [ 0, 1 ] unit square.

more, newpage
By default, a new “page” is started on the graphics device every time a
“trellis” object is plotted. These two arguments suppress this behavior,
allowing multiple plots to be placed together in a page. Specifying more
= TRUE in a call causes the next “trellis” plot to be on the same page.
Specifying newpage = FALSE causes the current plot to skip the move to
a new page.3

panel.height, panel.width
These two arguments allow control over the relative or absolute widths
and heights of panels in terms of the very flexible unit system in grid. A
full discussion of this system is beyond the scope of this book, but we
show a simple example soon.

packet.panel
This argument is a function that determines the association between
packet order and panel order. The packet order arises from viewing a“trel-
lis” object as an array with margins defined by the conditioning variables,
with packets being the cells of the array. Just as regular arrays in R, this
can be thought of as a vector with a dimension attribute, and the packet
order is the linear order of packets in this vector. On the other hand, the
panel order is the order of panels in the physical layout, obtained by vary-
ing the columns fastest, then the rows, and finally the pages. Specifying
packet.panel allows us to change the default association rule, which is
implemented by the packet.panel.default() function, whose help page
gives further details and examples.

Other arguments of the plot() method are rarely needed and are not dis-
cussed here. Note that just as parameter settings normally specified using
trellis.par.set() can be attached to individual “trellis” objects by adding
a par.settings argument to high-level calls, arguments to the plot method
can also be attached as a list specified as the plot.args argument.
3 The latter is more general, as it allows lattice plots to be mixed with other grid

graphics output. Specifically, newpage must be set to FALSE to draw a “trellis”
plot in a previously defined viewport.
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We have seen the use of the plot() method previously in Figures 1.4
(where the split and newpage arguments were used) and 10.11 (where posi-
tion was used). In the next example, we illustrate the use of more to compare
two common variants of the dot plot. The first step is to create variables
representing suitable “trellis” objects.

> dp.uspe <-

dotplot(t(USPersonalExpenditure),

groups = FALSE,

index.cond = function(x, y) median(x),

layout = c(1, 5),

type = c("p", "h"),

xlab = "Expenditure (billion dollars)")

> dp.uspe.log <-

dotplot(t(USPersonalExpenditure),

groups = FALSE,

index.cond = function(x, y) median(x),

layout = c(1, 5),

scales = list(x = list(log = 2)),

xlab = "Expenditure (billion dollars)")

These are then plotted side by side in a 2× 1 layout to produce Figure 11.1.

> plot(dp.uspe, split = c(1, 1, 2, 1), more = TRUE)

> plot(dp.uspe.log, split = c(2, 1, 2, 1), more = FALSE)

Another useful method for “trellis” objects is summary(). For our next ex-
ample, we create a dot plot similar to the one in Figure 10.21. The response
this time is the Frost variable, which gives the mean number of days with
minimum temperature below freezing between 1931 and 1960 in the capital
or a large city in each U.S. state. We begin by defining a suitable data frame
and then creating a “trellis” object

> state <- data.frame(state.x77, state.region, state.name)

> state$state.name <-

with(state, reorder(reorder(state.name, Frost),

as.numeric(state.region)))

> dpfrost <-

dotplot(state.name ~ Frost | reorder(state.region, Frost),

data = state, layout = c(1, 4),

scales = list(y = list(relation = "free")))

which we then summarize using the summary() method.

> summary(dpfrost)

Call:

dotplot(state.name ~ Frost | reorder(state.region, Frost), data = state,

layout = c(1, 4), scales = list(y = list(relation = "free")))

Number of observations:

reorder(state.region, Frost)
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Figure 11.1. Two common variants of dot plots, showing trends in personal ex-
penditure (on various categories) in the United States. Lines joining the points to a
baseline, as in the plot on the left, are often helpful, but only if a meaningful baseline
is available. In this case, patterns in the data are conveyed better by the plot on the
right, with the data on a logarithmic scale.
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South West Northeast North Central

16 13 9 12

The output gives us the call used to produce the object, but more important in
this case, it gives us the number of observations (and hence, the approximate
range of the y-axis) in each panel. We can use these frequencies to change the
heights of the panels when plotting the object. Figure 11.2 is produced by4

> plot(dpfrost,

panel.height = list(x = c(16, 13, 9, 12), unit = "null"))

This is not exactly what we want, as the actual range of the y-axis will be
slightly different. However, the difference is practically negligible in this case.
The resizePanels() function, used previously to produce Figure 10.21 and
discussed further in the next chapter, does take the difference into account.

11.3 The update() method and trellis.last.object()

Perhaps the most useful method for“trellis” objects after plot() is update(),
which can be used to incrementally change many (although not all) arguments
defining a “trellis” object without actually recomputing the object. We have
seen many uses of update() throughout this book and only give one more
explicit example here.

update() is often useful in conjunction with the trellis.last.object()
function. Every time a“trellis” object is plotted, whether explicitly or through
implicit printing, a copy of the object is retained in an internal environment
(unless this feature is explicitly disabled). The trellis.last.object() func-
tion can be used to retrieve the last object saved. Thus, the following command
will produce Figure 11.3 when issued right after the previous example.

> update(trellis.last.object(), layout = c(1, 1))[2]

This example also illustrates the indexing of “trellis” objects as arrays. The
above call recovers the last saved object using trellis.last.object() and
updates it by changing the layout argument. Because the object had four
packets, this would normally have resulted in a plot with four pages, but the
indexing operator "[" is used to extract just the second packet.5

The indexing of “trellis” objects follows rules similar to those for regular
arrays. In particular, indices can be repeated, causing packets to be repeated
in the resulting plot. A useful demonstration of this feature is given in Fig-
ure 11.4, where a three-dimensional scatter plot with a single packet is dis-
played in multiple panels with gradually changing viewpoints. The figure is
produced by
4 The "null" unit is a special grid unit that asks the panels to be as tall as possible

while retaining their relative heights. Other units such as "inches" or "cm" can
be used to specify absolute heights.

5 The "[" method actually uses the update() method to change the index.cond

argument, but is more intuitive and performs more error checks.
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Figure 11.2. A dot plot similar to Figure 10.21, using the Frost column in the
state.x77 dataset. The heights of panels are controlled using a different method.
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> npanel <- 12

> rot <- list(z = seq(0, 30, length = npanel),

x = seq(0, -80, length = npanel))

> quakeLocs <-

cloud(depth ~ long + lat, quakes, pch = ".", cex = 1.5,

panel = function(..., screen) {

pn <- panel.number()

panel.cloud(..., screen = list(z = rot$z[pn],

x = rot$x[pn]))

},

xlab = NULL, ylab = NULL, zlab = NULL,

scales = list(draw = FALSE), zlim = c(690, 30),

par.settings = list(axis.line = list(col="transparent")))

> quakeLocs[rep(1, npanel)]

The panel function makes use of the panel.number() function to detect which
panel is currently being drawn. This and other useful accessor functions are
described in Chapter 13.

11.4 Tukey mean–difference plot

The Tukey mean–difference plot applies to scatter plots and quantile plots. As
the name suggests, the idea is to start with a set of (x, y) pairs, and plot the
mean (x + y)/2 on the x-axis and the difference x− y on the y-axis. In terms
of plotting, this is equivalent to rotating the (x, y) data clockwise by 45◦. The
mean–difference plot is most useful when the original data lie approximately
along the positive diagonal, as its purpose is to emphasize deviations from that
line. M–A plots, popular in the analysis of microarray data, are essentially
mean–difference plots.

It is fairly simple to create a mean–difference plot using xyplot() af-
ter manually transforming the data. As a convenience, the tmd() function
performs this transformation automatically on “trellis” objects produced by
xyplot(), qqmath(), and qq(). In the following example, we apply it to the
two sample Q–Q plot seen in Figure 3.10. Figure 11.5, produced by

> data(Chem97, package = "mlmRev")

> ChemQQ <-

qq(gender ~ gcsescore | factor(score), data = Chem97,

f.value = ppoints(100), strip = strip.custom(style = 5))

> tmd(ChemQQ)

suggests that the distributions of gcsescore for girls and boys differ consis-
tently in variance except for the lowest score group.
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Figure 11.3. One panel from Figure 11.2, extracted from the underlying “trellis”
object.

Figure 11.4. Varying camera position for a three-dimensional scatter plot of earth-
quake epicenter positions, from bottom left to top right.
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Figure 11.5. Tukey mean–difference plot, derived from the two-sample Q–Q plot
in Figure 3.10.

11.5 Specialized manipulations

The use of strips on top of each panel to indicate levels of conditioning vari-
ables, introduced in the original Trellis implementation in S, was a remarkable
innovation because it allowed multipanel displays with an arbitrary number
of conditioning variables and a layout that is not necessarily tied to the di-
mensions of the conditioning variable.6 This generality sometimes makes it
difficult to implement designs that are perhaps more useful in special cases.
For example, in a multipanel display with exactly two conditioning variables
and the default layout (columns and rows representing levels of the first and
second conditioning variables), one might want to indicate the levels only on
the outer margins, once for each row and column, rather than in all panels.
It is possible to realize such a design with lattice, but this requires far more
detailed knowledge than warranted. Fortunately, the object model used in lat-
tice makes it fairly simple to write functions that implement such specialized
manipulations in a general way. In the next example, we make use of the use-
OuterStrips() function in the latticeExtra package, which implements the
design described above.

6 In contrast, “conditioning plots” as previously implemented in the coplot() func-
tion indicated the association indirectly, and were limited to two conditioning
variables.
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Our example makes use of the biocAccess dataset, encountered previously
in Figure 8.2. Here, we attempt to look at the pattern of access attempts over
a day conditioned on month and day of the week.

> library("latticeExtra")

> data(biocAccess)

> baxy <- xyplot(log10(counts) ~ hour | month + weekday, biocAccess,

type = c("p", "a"), as.table = TRUE,

pch = ".", cex = 2, col.line = "black")

Just for fun, we note using the dimnames() method that the levels of the
month variable are abbreviated month names, and change them to be the full
names.

> dimnames(baxy)$month

[1] "Jan" "Feb" "Mar" "Apr" "May"

> dimnames(baxy)$month <- month.name[1:5]

> dimnames(baxy)

$month

[1] "January" "February" "March" "April" "May"

$weekday

[1] "Monday" "Tuesday" "Wednesday" "Thursday" "Friday"

[6] "Saturday" "Sunday"

Of course, we could also have done this by writing a (fairly complicated) cus-
tom strip function, or more simply by modifying the levels of month before-
hand. Finally, we call the useOuterStrips() function to produce a modified
“trellis” object, which produces Figure 11.6.

> useOuterStrips(baxy)

Although not clear from this example, useOuterStrips() throws an error
unless the requested manipulation is meaningful, and overrides any previously
set layout.

11.6 Manipulating the display

Traditional R graphics encourages, and even depends on, an incremental ap-
proach to building graphs. For example, to create custom axis labels with tra-
ditional graphics, one would first create a plot omitting the axes altogether,
and then use the axis() function, and perhaps the box() function, to anno-
tate the axes manually. Trellis graphics, on the other hand, encourages the
whole object paradigm, and the operation of updating serves as the concep-
tual analogue of incremental changes. The obvious advantage to this approach
is that unlike traditional graphics, lattice displays can automatically allocate
the space required for long axis labels, legends, and the like, because the labels
or legends are known before plotting begins.
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Figure 11.6. The number of hourly accesses to http://www.bioconductor.org,
conditioning on month and day of the week. There is a difference in the patterns in
weekdays and weekends, which can be seen more clearly in Figure 14.2. The strips
have been manipulated so that they appear only on the top and the left of each
column and row, rather than in each panel. This is a useful space-saving device
when exactly two conditioning variables are used in the default layout. A color
version of this plot is also available.
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In some situations however, incremental additions are a necessary part
of the workflow; for example, when one wants to identify and label certain
“interesting”points in a scatter plot by clicking on them. This does not involve
manipulation of the underlying object itself, but rather interaction with its
visual rendering. The interface for such interaction is described in the next
chapter.
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Interacting with Trellis Displays

High-level functions in lattice produce “trellis” objects that can be thought of
as abstract representations of visualizations. An actual rendering of a visual-
ization is produced by plotting the corresponding object using the appropriate
print() or plot() method. In this chapter, we discuss things the user can
do after this plotting has been completed.

One possible approach is to treat the result as any other graphic created
using the grid package, and make further enhancements to the display using
the low-level tools available in grid. In particular, the display consists of a tree
of viewports, and various grid graphical objects (grobs) drawn within them.
The user can move down to any of these viewports and add further objects,
or, less commonly, edit the properties of existing objects. The precise details
of these operations are beyond the scope of this book, but are discussed by
Murrell (2005). In this chapter, we focus entirely on a higher-level interface
in the lattice package for similar tasks, which is less flexible,1 but usually
sufficient. The playwith package (Andrews, 2007) provides a user-friendly GUI
wrapper for many of these facilities.

12.1 The traditional graphics model

In the traditional R graphics model, displays are often built incrementally.
An initial plot is created using a high-level function (such as boxplot()),
and further commands, such as lines() and axis(), add more elements to
the existing display. This approach works because there is exactly one figure
region, and there is no ambiguity regarding which coordinate system is to be
used for additional elements. Things are not as simple in a multipanel Trellis
display, as one needs the additional step of determining to which panel further
increments should apply.

1 In particular, it provides no facilities for editing existing graphical objects in the
manner of grid.edit().



216 12 Interacting with Trellis Displays

The recommended approach in the Trellis system is to encode the display
using the panel function. This ties in neatly with the idea of separating con-
trol over different elements of a display; in this paradigm, the panel function
represents the procedure that visually encodes the data. In some ways, this
takes the incremental approach to the extreme; a panel starts with a blank
canvas, with only the coordinate system set up, and the panel function is re-
sponsible for everything drawn on it. An apparent deficiency of this model is
that the only “data” available to the panel function is the packet produced by
the conditioning process. In practice, further data can be passed in through
the ... argument, and panel-specific parts can be extracted if necessary using
the subscripts mechanism and accessor functions such as packet.number()
and which.packet() (see Chapter 13). A more real deficiency is that this
paradigm does not include any reasonable model for interaction.

12.1.1 Interaction

Native R graphics has rather limited support for interaction, but what it does
have is often useful. The primary user-level functions related to interaction in
traditional R graphics are locator() and identify(). locator() is a low-
level tool, returning locations of mouse clicks, and identify() is a slightly
more specialized function that is used to add text labels to a plot interactively.

The grid analogue of locator() is grid.locator(), which returns the
location of a single mouse click in relation to the currently active viewport.
lattice uses grid.locator() to provide a largely API-compatible analogue of
identify() called panel.identify(), along with a couple of other similar
functions. However, before we can illustrate the use of these functions, we
need some more background on the implementation of lattice displays.

12.2 Viewports, trellis.vpname(), and trellis.focus()

An elementary understanding of grid viewports is necessary to appreciate the
API for interacting with lattice plots. Viewports are essentially arbitrary rec-
tangular regions inside which plotting can take place. For our purposes, their
most important feature is that they have an associated coordinate system.2
The process of plotting a “trellis” object involves the creation of a number
of viewports; for example, every panel, strip, and label has its own viewport.
These viewports are retained after plotting is finished, and the associated
viewport tree (showing the nesting of viewports within other viewports) can
be displayed by calling

> library("grid")

> current.vpTree()

2 Points in this coordinate system can be represented in a variety of units, see ?unit
in the grid package for details.
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To add to the display in a particular viewport (usually one corresponding to
a panel), we need to first make it the active viewport.

Every viewport has a name that can be used to revisit it (using the
grid functions downViewport() and seekViewport()). To make the viewport
names predictable, lattice uses the function trellis.vpname() to create the
relevant names. For example, the names of the x-label viewport and the strip
viewport at column 2 and row 1 might be

> trellis.vpname("xlab", prefix = "plot1")

[1] "plot1.xlab.vp"

> trellis.vpname("strip", column = 2, row = 1, prefix = "plot2")

[1] "plot2.strip.2.1.vp"

where the prefix argument is a character string that potentially allows view-
ports for multiple “trellis” displays on a page to be distinguished from each
other. However, the user does not typically need to know this level of detail
and can instead use the functions trellis.focus() and trellis.unfocus()
to navigate the viewport tree.

The viewport that is active after a “trellis” object has been plotted is
the one in which the plotting started (this is usually the root viewport that
covers the entire device). The trellis.focus() function is used to make a
different viewport in the viewport tree active. For example, the panel viewport
at column 2 and row 1 might be selected by calling

> trellis.focus("panel", column = 2, row = 1)

Most arguments of trellis.vpname() can be supplied to trellis.focus()
directly. In addition, it checks for invalid column and row values and gives
an informative error message if necessary. More important, it makes the most
common uses slightly simpler. With a single panel display, simply calling

> trellis.focus()

with no arguments selects the panel. For a multipanel display (on an interac-
tive screen device), the same call allows the user to choose a panel by clicking
on it. The viewport chosen by trellis.focus() is highlighted by default,
making it easy to identify for further interaction. Many of these details can
be controlled by additional arguments to trellis.focus(). Finally, calling

> trellis.unfocus()

reverts to the original viewport after undoing any highlighting.

12.3 Interactive additions

Once the desired viewport is active, further additions can be made to the
display by making suitable function calls. Such additions usually involve in-
teraction. grid.locator() can be used to identify locations of individual
mouse clicks, which then need to be handled appropriately. A typical use of



218 12 Interacting with Trellis Displays

qnorm

gc
se

sc
or

e

3

4

5

6

7

8

−2 −1 0 1 2

●

●

●
●

●
●●

●●
●●
●●
●●
●●●●

●●●
●●●●●

●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●

●●●●●●
●●●
●●●

●●●●
●●●

●●●
●●

●
●

●

0

●

●
●

●
●
●
●
●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●

●●●
●●●

●
●

●

2

−2 −1 0 1 2

●

●
●

●
●
●●

●●
●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●

●●●
●
●●

●
●

●

4

●

●

●
●

●
●●

●●
●●●

●●
●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●
●●●●●

●●●●
●
●●●

●●
●

●
●

6

−2 −1 0 1 2

●

●
●

●●●●
●●

●●
●●●●

●●●●
●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●
●●●●●●

●●●●●●
●●●●

●●●●● ●

●

8

3

4

5

6

7

8

●

●
●

●
●●

●●
●●●

●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●● ●
●

10

M
F

●

Figure 12.1. A normal quantile plot of gcsescore conditioning on score and
grouping by gender. The legend describing the group symbols has been placed inside
the plot interactively by clicking on the desired position.

this is to place a legend interactively on a plot. For example, the following
code might produce Figure 12.1 after the user clicks on a suitable location.

> data(Chem97, package = "mlmRev")

> qqmath(~ gcsescore | factor(score), Chem97, groups = gender,

f.value = function(n) ppoints(100),

aspect = "xy",

page = function(n) {

cat("Click on plot to place legend", fill = TRUE)

ll <- grid.locator(unit = "npc")

if (!is.null(ll))

draw.key(simpleKey(levels(factor(Chem97$gender))),

vp = viewport(x = ll$x, y = ll$y),

draw = TRUE)

})

In this example, the page argument has been used to encapsulate the process
of asking for a user click and using the result to draw a suitable legend. The
draw.key() function is normally used to construct a legend, as discussed in
Chapter 9, but here it also draws the legend inside a newly created viewport.
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The grid function viewport() is used to create the temporary viewport on the
fly; the new viewport is centered on the location of the mouse click. We did
not need to use trellis.focus() because we were not adding to any specific
panel.

More complicated interaction modes can be built around grid.locator().
lattice provides three (at the time of writing) built-in functions that implement
somewhat specialized forms of interaction. These are panel.identify(),
panel.identify.qqmath(), and panel.link.splom(). We start with an il-
lustration of panel.identify(), which is intended to be used with scatter
plots as produced by xyplot() to add labels to points chosen interactively.
Figure 12.2, showing a scatter plot of the murder rate against life expectancy
in U.S. states with a few states labeled, might be the result of

> state <- data.frame(state.x77, state.region)

> xyplot(Murder ~ Life.Exp | state.region, data = state,

layout = c(2, 2), type = c("p", "g"), subscripts = TRUE)

> while (!is.null(fp <- trellis.focus())) {

if (fp$col > 0 & fp$row > 0)

panel.identify(labels = rownames(state))

}

There are several points that merit explanation in this sequence of calls.
The first is the use of the subscripts = TRUE argument in xyplot() call.
As noted in Section 5.2, panel functions can request an argument called sub-
scripts that would contain the indices defining the rows of the data which
form the packet in a given panel. Our intention is to label points using the
corresponding state names, which are obtained from the row names of the
state data frame. This represents names for all the data points, whereas we
need names that correspond to the states used in individual panels. Obvi-
ously, subscripts gives us the right set of indices to extract the appropriate
subset. Unfortunately, the subscripts are normally not retained if the panel
function does not explicitly have an argument called subscripts. Specifying
subscripts = TRUE in the high-level call forces retention of the subscripts,
and is advisable for any call that is to be followed by interactive additions.

The next point of note is the use of trellis.focus() inside a while()
loop. As mentioned earlier, calling trellis.focus() without arguments al-
lows the user to select a panel interactively. Such a selection can be terminated
by a right mouse button click (or by pressing the ESC key for the quartz
device), in which case trellis.focus() returns NULL. We use this fact to
repeatedly select panels until the user explicitly terminates the process in this
manner. The user could also click outside the panel area, or on an empty
panel; in this case, trellis.focus() returns a list with the row and col
components set to 0 (for a normal selection, these would contain the location
of the selection). We make sure that a valid selection has been made before
we call panel.identify() to interactively label points inside the panel.

The final point is the use of panel.identify() every time a panel is suc-
cessfully selected. When called, it allows the user to click on or near points in
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Figure 12.2. A scatter plot of murder rate versus life expectancy in U.S. states by
region. In each panel, one or more states have been identified (labeled) by interac-
tively selecting the corresponding points.

the selected panel to label them. This process continues until all points are la-
beled, or the process is explicitly terminated. Our call to panel.identify()
specifies only one argument, labels, containing the labels associated with
the full dataset. To make use of these labels, panel.identify() also needs
to know the coordinates of the data points associated with these labels, and
possibly the subscripts that need to be applied before the association is made.
These arguments can be supplied to it as the x, y, and subscripts argu-
ments. When panel.identify() is called after a call to trellis.focus()
(or inside the panel function), these arguments may be omitted; they default
to the corresponding arguments that would have been supplied to the panel
function. Thus, the appropriate choice is made in every panel without ex-
plicit involvement of the user. This automatic selection is made using the
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trellis.panelArgs() function, which in turn uses trellis.last.object()
to retrieve the last “trellis” object plotted. The correct set of arguments is
determined using the accessor function packet.number(). This and other
similar accessor functions are described more formally in Chapter 13.

Our next example illustrates the use of panel.identify.qqmath(), which
is designed to add labels to a quantile plot produced by qqmath(). Figure 12.3
is produced by (after the appropriate pointing and clicking by the user)

> qqmath(~ (1000 * Population / Area), state,

ylab = "Population Density (per square mile)",

xlab = "Standard Normal Quantiles",

scales = list(y = list(log = TRUE, at = 10^(0:3))))

> trellis.focus()

> do.call(panel.qqmathline, trellis.panelArgs())

> panel.identify.qqmath(labels = row.names(state))

> trellis.unfocus()

Most of the remarks concerning the previous example also apply here. Because
the display has only one panel, calling trellis.focus() selects it automat-
ically, and no interaction is required. An interesting addition is the call to
panel.qqmathline(), through do.call(), which causes a reference line to be
added as if panel.qqmathline() had been called as part of the panel func-
tion. This time, the correct panel arguments need to be retrieved explicitly
using trellis.panelArgs(). This approach allows us to make incremental
additions to individual panels of a lattice display, much as with the traditional
graphics model. This facility is sometimes useful, although its regular use is
not recommended as it detracts from the ideal of the “trellis” object as an
abstraction of the entire graphic.

Our last example of interaction involves the panel.link.splom() func-
tion, which is designed to work with displays produced by splom(). When
called, the user can click on a point in any of the subpanels to highlight the
corresponding observation in all subpanels. Figure 12.4 is produced by

> env <- environmental

> env$ozone <- env$ozone^(1/3)

> splom(env, pscales = 0, col = "grey")

> trellis.focus("panel", 1, 1, highlight = FALSE)

> panel.link.splom(pch = 16, col = "black")

> trellis.unfocus()

The trellis.focus() call here explicitly chooses a panel, removing any pos-
sibility of interaction (although this is redundant in this case as there is only
one panel). In addition, setting highlight = FALSE ensures that no decora-
tion is added; without it, the display would have been redrawn when the call
to trellis.unfocus() removed the decoration.
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Figure 12.3. Normal quantile plot of population density in U.S. states. Some states
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Figure 12.4. Interaction with a scatter-plot matrix. Clicking on a point highlights
the corresponding observation in all subpanels.

12.4 Other uses

As we have already seen, it is possible to add pieces to a lattice display non-
interactively after it has been drawn. Such use is often convenient, although
the same effect can usually be achieved with a suitable panel function. Often,
it is useful to simply interrogate a display to obtain information that is not
easily available otherwise. For example, consider Figure 11.2, which is a dot
plot of the mean number of days with minimum temperature below freezing
in the capital or a large city in each U.S. state, conditioning on region. We
reproduce the plot in Figure 12.5, but use the same height for every panel
initially.

> state$name <- with(state,

reorder(reorder(factor(rownames(state)), Frost),

as.numeric(state.region)))
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> dotplot(name ~ Frost | reorder(state.region, Frost), data = state,

layout = c(1, 4), scales = list(y = list(relation="free")))

Now that the graphic has been plotted, we can obtain the physical layout
of panels in the display using the trellis.currentLayout() function (see
Chapter 13)

> trellis.currentLayout()

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

and use it to compute the exact height of each panel in its native coordinate
system:

> heights <-

sapply(seq_len(nrow(trellis.currentLayout())),

function(i) {

trellis.focus("panel", column = 1, row = i,

highlight = FALSE)

h <- diff(current.panel.limits()$ylim)

trellis.unfocus()

h

})

> heights

[1] 16.2 13.2 9.2 12.2

It is now trivial to redraw the plot with the physical heights of the panels
exactly proportional to their native heights, as was the intent of Figure 11.2.
The following produces Figure 12.6.

> update(trellis.last.object(),

par.settings = list(layout.heights = list(panel = heights)))

The resizePanels() function in the latticeExtra package, used for the same
purpose to produce Figure 10.21, is simply this algorithm implemented with
some sanity checks.
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Figure 12.5. Redisplay of Figure 11.2, showing average number of days below
freezing in U.S. states, conditioned on geographical region. Each panel has a different
number of states, but the same physical height.
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Figure 12.6. Updated form of Figure 12.6, with the physical heights of panels
exactly proportional to native heights.
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Advanced Panel Functions

R is a complete programming language that allows, and indeed encourages, its
users to go beyond the canned uses built into the system. The transition from
user to programmer can be intimidating for the beginner to contemplate, but
is almost inevitable after a point. In the context of lattice, this transition is
most often necessitated by a desire to customize the display in small ways,
perhaps just to add a common reference line to all panels. Such customizations
are fairly basic in any serious use of lattice, and we have seen a number of
examples throughout this book. In this chapter, which is meant for the more
advanced user, we take a more formal look at panel functions, give pointers
to the tools that might help in writing new ones, and finally discuss some
nontrivial examples.

13.1 Preliminaries

Panel functions are like any other R function, except that they are expected
to produce some graphical output when they are executed. They typically do
so by calling a series of simpler panel functions, which might be viewed as
building blocks of the complete display. Often, one also needs to manipulate
the data available to the panel function before encoding them in the display.
In this section, we describe the simple low-level panel functions available for
use as building blocks, as well as some other related utilities. We demonstrate
their use in creating data-driven displays in the subsequent sections.

13.1.1 Building blocks for panel functions

As we noted in Chapter 12, lattice is implemented using the low-level tools in
the grid package. This has two important implications in the context of panel
functions. First, lattice panel functions can make full use of grid primitives
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such as grid.points() and grid.text() and all their features. Second, lat-
tice panel functions cannot make use of traditional graphics primitives1 such
as points() and text(). The plotting actions performed by a lattice panel
function can consist entirely of grid function calls; in fact, grid primitives are
more flexible than their traditional counterparts. A full discussion of grid is
beyond the scope of this book, but a detailed exposition can be found in
Murrell (2005) and the online documentation accompanying the grid package.

For those already familiar with traditional graphics, one practical draw-
back of grid is that it has an incompatible interface; that is, to reimplement
a text() call in grid, one cannot simply change the name of the function
to grid.text(); one also needs to modify the argument list. This can be a
nuisance particularly when writing code that is intended for use both in R
and S-PLUS (the latter does not have an implementation of grid). To make
life easier, lattice provides analogues of several traditional graphics primitives;
these are implemented using grid, but are intended to be drop-in replacements
for the corresponding traditional graphics functions. For example,

panel.points() draws points (or lines, depending on the type argument)
with an argument list similar to that of points(),

panel.lines() is analogous to lines(), and draws lines joining specified
data points,

panel.text() is like text() and adds simple text or LATEX-like expressions,
panel.rect() draws rectangles like rect(),
panel.polygon() draws polygons like polygon(),
panel.segments() draws line segments like segments(), and
panel.arrows() draws arrows like arrows(), with a slightly more general

interface.

Needless to say, these functions are less flexible than the underlying grid func-
tions, particularly in the choice of coordinate system. The lattice package also
provides several “utility” panel functions that are not quite as generic, but are
primarily intended for inclusion in other panel functions rather than for use
by themselves. Among these are

panel.fill(), which fills the panel with a given color,
panel.grid(), which draws a reference grid,
panel.abline(), which draws reference lines of various kinds,
panel.curve(), which draws a curve defined by a mathematical expression,

like curve(),
panel.mathdensity(), which draws a probability density function,
panel.rug(), which draws “rugs” like rug(),
panel.loess(), which adds a LOESS smooth of the supplied data,
panel.lmline(), which adds a regression line fit to the data,
panel.qqmathline(), which adds a line through two quantiles of the data

and a theoretical distribution, and is primarily useful with qqmath(),

1 This is not entirely true. See Figure 14.5.
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panel.violin(), which draws violin plots, a useful alternative to box-and-
whisker plots, and

panel.average(), which draws lines after aggregating and summarizing one
variable by the unique levels of another.

Finally, each high-level function has its own panel function that can be reused
in other contexts; these include panel.bwplot() and panel.xyplot(), among
others. The panel.superpose() function is particularly useful for superposed
displays. It conveniently handles separation of graphical parameters and allows
another function to be specified as the panel.groups argument; this function
is used as the panel function for each group and is supplied the appropriate
graphical parameters.

We make no attempt to describe each of these functions in detail, as that
would make this book longer than it already is. Instead, we refer the reader
to their respective help pages.

13.1.2 Accessor functions

In principle, panel functions require no information beyond the data that are
to be graphically encoded in that panel. In particular, it should not need to
know where in the physical layout the current panel is located, nor should
it worry about whether the current axis limits are appropriate for the data
being encoded; it is expected that an appropriate data rectangle (viewport in
grid jargon) with a suitable coordinate system has already been set up, and an
appropriate clipping policy put in place, before the panel function is called.
In practice, however, knowledge of these details can be important. Rather
than supply such information through additional arguments, lattice provides
a system of accessor functions that report the current state of the affairs when
called from inside the panel function (or the strip or axis functions).

current.panel.limits() reports the limits of the current panel (viewport),
typically in the native coordinate system, but possibly in any of the other
systems supported by grid.

packet.number() returns an integer indicating which packet is being drawn.
Packets are counted according to packet order, which is determined by
varying the first conditioning variable the fastest, then the second, and so
on.

panel.number() returns an integer counting which panel is being drawn,
starting from one for the first panel. This is usually the same as the packet
number, but not necessarily so.

trellis.currentLayout() returns a matrix with the same dimensions as the
current layout of panels. The elements of the matrix indicate which packet
(or panel) belongs in which position. For empty positions, the correspond-
ing entry is 0.

current.row(), current.column() return the row or column position of the
current panel in the layout.
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which.packet() returns an integer vector as long as the number of condi-
tioning variables, with each element an integer giving the current level of
the corresponding variable.

These functions can be used while a “trellis” object is being plotted, as well
as afterwards, while interacting with the display using the interface described
in Chapter 12. As before, we refer the reader to the online documentation for
more details.

13.1.3 Arguments

Panel functions are somewhat unusual in that they are rarely called by the
user directly; they are instead called during the process of displaying a “trel-
lis” object. This means, among other things, that the arguments available to
a panel function are fully determined only in that context (recall that argu-
ments supplied to a high-level function and not recognized by it are passed
on to the panel function). To write a generally useful panel function, the
author must take this fact into account. The arguments available will also
depend on the relevant high-level function; for example, a panel function for
xyplot() will expect arguments named x and y containing data, whereas
one for densityplot() will only expect x. Usually, the most effective way
to find out what arguments will be available (and how they should be inter-
preted) is to consult the help page of the default panel function, for example,
panel.densityplot() for densityplot(). Of course, the most reliable way is
to have the arguments listed explicitly; for example, using the panel function

> panel.showArgs <- function(...) str(list(...))

which is a function that simply writes out a compact summary of all its argu-
ments. Not all potential arguments available to a panel function are necessarily
supplied to it; only the ones that match the formal argument list of the panel
function do, unless ... is one of the formal arguments. It is generally good
practice to have a ... argument in panel functions and pass it on to further
plotting functions, as this provides a simple mechanism to propagate graphical
parameters.

One special argument in lattice panel functions is subscripts. If a panel
function has a formal argument named subscripts, it will be called with
subscripts containing the integer indices representing the rows in the original
data (before any effect of subset) that define the packet used in that panel.
Examples demonstrating the use of subscripts can be found in Section 5.2
and Chapter 12.

13.2 A toy example: Hypotrochoids and hypocycloids

Hypotrochoids are geometric curves traced out by a point within a circle that
is rolling along “inside” another fixed circle. (Technically, the fixed circle can
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be smaller, in which case the moving circle is physically outside it. ) They are
examples of a more general class of curves called roulettes, which are generated
by one object rolling along another. Hypotrochoids can be parameterized by
the equations

x(t) = (R − r) cos t + d cos(R − r)
t

r

y(t) = (R − r) sin t − d sin(R − r)
t

r

where R is the radius of the fixed circle, r the radius of the moving circle, and
d is the distance of the point being traced from the center of the latter. We
can write a panel function that traces out this curve (with R fixed at 1) as
follows.

> panel.hypotrochoid <- function(r, d, cycles = 10, density = 30)

{

if (missing(r)) r <- runif(1, 0.25, 0.75)

if (missing(d)) d <- runif(1, 0.25 * r, r)

t <- 2 * pi * seq(0, cycles, by = 1/density)

x <- (1 - r) * cos(t) + d * cos((1 - r) * t / r)

y <- (1 - r) * sin(t) - d * sin((1 - r) * t / r)

panel.lines(x, y)

}

This function has two interesting features; first, it does not have a ... argu-
ment, and second, none of the arguments is essential; even r and d are chosen
randomly if they are missing. We show the implications of this in a moment.

First however, we consider hypocycloids, which are hypotrochoids with
d = r, that is, the point being traced lying on the boundary of the moving
circle. Hypocycloids are usually defined in terms of k = 1/r, and are closed
curves when k is rational, with p “corners” if k is expressed as a ratio of two
coprime integers p/q. We can write a simple wrapper function that draws
hypocycloids as

> panel.hypocycloid <- function(x, y, cycles = x, density = 30) {

panel.hypotrochoid(r = x / y, d = x / y,

cycles = cycles, density = density)

}

where x and y represent q and p. We also need a prepanel function that defines
the rectangle needed to fully contain a circle with unit radius centered at the
origin:

> prepanel.hypocycloid <- function(x, y) {

list(xlim = c(-1, 1), ylim = c(-1, 1))

}

We can use the following code, producing Figure 13.1, to create a series of
hypocycloids by varying the value of p while keeping q fixed.
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q
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Figure 13.1. Hypocycloids with parameter k varying from 11/10, 12/10, . . . , 30/10.

> grid <- data.frame(p = 11:30, q = 10)

> grid$k <- with(grid, factor(p / q))

> xyplot(p ~ q | k, grid, aspect = 1, scales = list(draw = FALSE),

prepanel = prepanel.hypocycloid, panel = panel.hypocycloid)

This example is somewhat unusual in that the panel function is only provided
two scalars at a time, which are used to compute and render a complex curve
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on the fly. Our next example is a whole lot more unusual. Figure 13.2 is
produced by

> p <- xyplot(c(-1, 1) ~ c(-1, 1), aspect = 1, cycles = 15,

scales = list(draw = FALSE), xlab = "", ylab = "",

panel = panel.hypotrochoid)

> p[rep(1, 54)]

The panel function, panel.hypotrochoid(), does not accept arguments
called x and y. Consequently, the x and y data specified in the formula do not
get passed to the panel function at all; their sole purpose is to set up the data
rectangle, avoiding the need for a prepanel function. In fact, the only argu-
ment explicitly passed on to the panel function is cycles, which determines
the range of t that defines the curve. Thus, every time the panel function is
called, a randomly chosen hypotrochoid is drawn. We draw several of them at
once by repeating the first packet several times.

13.3 Some more examples

13.3.1 An alternative density estimate

As a more serious example, consider the problem of density estimation. The
densityplot() function computes and displays density estimates given raw
data, but it is restricted to the kernel density estimation methods implemented
in the density() function. Suppose that we wish instead to use the log-spline
density estimate (Stone et al., 1997) implemented in the logspline package
(Kooperberg, 2007). Because the tools to compute the estimate are already
available, writing a panel function to display it is fairly simple. To make sure
our panels have the right height, we also have to write a suitable prepanel
function.

> library("logspline")

> prepanel.ls <- function(x, n = 50, ...) {

fit <- logspline(x)

xx <- do.breaks(range(x), n)

yy <- dlogspline(xx, fit)

list(ylim = c(0, max(yy)))

}

> panel.ls <- function(x, n = 50, ...) {

fit <- logspline(x)

xx <- do.breaks(range(x), n)

yy <- dlogspline(xx, fit)

panel.lines(xx, yy, ...)

}

We can now use these to produce Figure 13.3 with

> faithful$Eruptions <- equal.count(faithful$eruptions, 4)

> densityplot(~ waiting | Eruptions, data = faithful,

prepanel = prepanel.ls, panel = panel.ls)
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Figure 13.2. A series of hypotrochoids with randomly chosen parameters, remi-
niscent of the popular toy Spirograph R©.
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Figure 13.3. Conditional log-spline density estimates of waiting times before erup-
tions of the Old Faithful geyser, implemented with user-defined prepanel and panel
functions.

13.3.2 A modified box-and-whisker plot

The next example is inspired by Tufte (2001), who describes a few variants
of box-and-whisker plots that are motivated by the goal of reducing “non-
data ink”. In particular, the design we consider graphically summarizes the
distribution of a continuous variable using a dot located at the median, and
a couple of line segments extending from the first and third quartiles to the
corresponding“extremes”; in other words, it is a box-and-whisker plot without
the “box” (see ?boxplot.stats for more concrete definitions). Our intention
is not to comment on the merits of the design (especially because it is used
here somewhat out of context), but simply to illustrate its implementation. A
simple implementation is given by

> panel.bwtufte <- function(x, y, coef = 1.5, ...) {

x <- as.numeric(x); y <- as.numeric(y)

ux <- sort(unique(x))

blist <- tapply(y, factor(x, levels = ux), boxplot.stats,

coef = coef, do.out = FALSE)

blist.stats <- t(sapply(blist, "[[", "stats"))

blist.out <- lapply(blist, "[[", "out")

panel.points(y = blist.stats[, 3], x = ux, pch = 16, ...)

panel.segments(x0 = rep(ux, 2),

y0 = c(blist.stats[, 1], blist.stats[, 5]),

x1 = rep(ux, 2),

y1 = c(blist.stats[, 2], blist.stats[, 4]),

...)

}

It is simple in the sense that it does not deal with “outliers” beyond the
extremes and only produces vertical plots, but it is good enough to produce
Figure 13.4 with

> data(Chem97, package = "mlmRev")

> bwplot(gcsescore^2.34 ~ gender | factor(score), Chem97,
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Figure 13.4. A variant of the standard box-and-whisker plot, showing the distrib-
ution of transformed GCSE scores by gender and the A-level chemistry examination
score. The layout is the same as in Figure 3.12, but the encoding is inspired by an
example from Tufte (2001).

panel = panel.bwtufte, layout = c(6, 1),

ylab = "Transformed GCSE score")

The result can be compared to Figure 3.12, which shows a regular box-and-
whisker plot of the same data in the same layout.

13.3.3 Corrgrams as customized level plots

Corrgrams (Friendly, 2002) are visual representations of correlation matrices.
They share the basic structure of a levelplot, but usually encode correlations
by more than just color or grey level, and reorder the rows and columns by
some measure of similarity. We continue with the example in Figure 6.13 to
demonstrate a couple of variants.

> data(Cars93, package = "MASS")

> cor.Cars93 <-

cor(Cars93[, !sapply(Cars93, is.factor)], use = "pair")

> ord <- order.dendrogram(as.dendrogram(hclust(dist(cor.Cars93))))

Our first panel function uses the ellipse package (Murdoch et al., 2007) to
compute confidence ellipses representing correlation values, and additionally
fills the ellipses with a color or grey level representing the correlation.

> panel.corrgram <-

function(x, y, z, subscripts, at,
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level = 0.9, label = FALSE, ...)

{

require("ellipse", quietly = TRUE)

x <- as.numeric(x)[subscripts]

y <- as.numeric(y)[subscripts]

z <- as.numeric(z)[subscripts]

zcol <- level.colors(z, at = at, ...)

for (i in seq(along = z)) {

ell <- ellipse(z[i], level = level, npoints = 50,

scale = c(.2, .2), centre = c(x[i], y[i]))

panel.polygon(ell, col = zcol[i], border = zcol[i], ...)

}

if (label)

panel.text(x = x, y = y, lab = 100 * round(z, 2), cex = 0.8,

col = ifelse(z < 0, "white", "black"))

}

The panel function does not deal with colors explicitly, relegating that com-
putation to the level.colors() function. Figure 13.5 is produced by

> levelplot(cor.Cars93[ord, ord], at = do.breaks(c(-1.01, 1.01), 20),

xlab = NULL, ylab = NULL, colorkey = list(space = "top"),

scales = list(x = list(rot = 90)),

panel = panel.corrgram, label = TRUE)

Because there is no explicit color specification, the defaults provided by the
theme active during plotting are used. Our second variant is similar, but this
time uses partially filled circles to represent correlations. The circles are drawn
using grid functions grid.polygon() and grid.circle() directly.

> panel.corrgram.2 <-

function(x, y, z, subscripts, at = pretty(z), scale = 0.8, ...)

{

require("grid", quietly = TRUE)

x <- as.numeric(x)[subscripts]

y <- as.numeric(y)[subscripts]

z <- as.numeric(z)[subscripts]

zcol <- level.colors(z, at = at, ...)

for (i in seq(along = z))

{

lims <- range(0, z[i])

tval <- 2 * base::pi *

seq(from = lims[1], to = lims[2], by = 0.01)

grid.polygon(x = x[i] + .5 * scale * c(0, sin(tval)),

y = y[i] + .5 * scale * c(0, cos(tval)),

default.units = "native",

gp = gpar(fill = zcol[i]))

grid.circle(x = x[i], y = y[i], r = .5 * scale,

default.units = "native")

}

}
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Figure 13.5. A corrgram, implemented as a levelplot() with a user-defined panel
function, showing correlations using ellipses.

As before, color is not handled directly by the panel function. This time, how-
ever, we add a col.regions argument to the high-level call to levelplot().

> levelplot(cor.Cars93[ord, ord], xlab = NULL, ylab = NULL,

at = do.breaks(c(-1.01, 1.01), 101),

panel = panel.corrgram.2,

scales = list(x = list(rot = 90)),

colorkey = list(space = "top"),

col.regions = colorRampPalette(c("red", "white", "blue")))
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col.regions is used by levelplot() to define the color key, but is also
passed on to the panel function. From the perspective of the panel function,
this is simply a part of the ... argument and is thus passed on unchanged to
the level.colors() call, which does use it to compute suitable colors. The
resulting display is shown with several other color plates in Figure 13.6.

13.4 Three-dimensional projections

Customizing the panel display in cloud() and wireframe(), the two high-
level functions that make use of three-dimensional projection, is somewhat
more involved. In addition to encoding the packet data, the panel func-
tion in this case is also responsible for drawing the bounding box and any
axis annotation. One is usually interested only in changing the data-driven
part of the display. This part can be controlled separately by specifying the
panel.3d.cloud or panel.3d.wireframe arguments, which are technically
arguments of the default panel function, and default to panel.3dscatter()
and panel.3dwire(), respectively. More details can be found in the help page
for these functions. Here, we give a simple example where a regular wireframe
plot is supplemented by a contour plot “projected” onto the top surface of
the bounding box. This involves computing the locations of the contour lines
in the appropriate three-dimensional coordinate system, projecting it using
ltransform3dto3d(), and drawing it. The following function executes these
steps after calling panel.3dwire() to render the default wireframe display.

> panel.3d.contour <-

function(x, y, z, rot.mat, distance,

nlevels = 20, zlim.scaled, ...)

{

add.line <- trellis.par.get("add.line")

panel.3dwire(x, y, z, rot.mat, distance,

zlim.scaled = zlim.scaled, ...)

clines <-

contourLines(x, y, matrix(z, nrow = length(x), byrow = TRUE),

nlevels = nlevels)

for (ll in clines) {

m <- ltransform3dto3d(rbind(ll$x, ll$y, zlim.scaled[2]),

rot.mat, distance)

panel.lines(m[1,], m[2,], col = add.line$col,

lty = add.line$lty, lwd = add.line$lwd)

}

}

It can now be used in a call to wireframe() to produce Figure 13.7.

> wireframe(volcano, zlim = c(90, 250), nlevels = 10,

aspect = c(61/87, .3), panel.aspect = 0.6,

panel.3d.wireframe = "panel.3d.contour", shade = TRUE,

screen = list(z = 20, x = -60))
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Figure 13.7. A three-dimensional view of the Maunga Whau volcano in Auckland
created using wireframe(), with two-dimensional contours projected onto the top
of the bounding box.

Figure 6.5 is another example of customized three-dimensional displays; the
code to produce it is given later in this chapter.

It should be emphasized that the conventional R graphics model is far
from optimal for three-dimensional displays; apart from the lack of dynamic
manipulation, it has no high-level support for object occlusion, which makes
it difficult to implement even the simplest of designs, such as a scatter plot
combined with a fitted regression surface. Users who regularly work with three-
dimensional displays should consider the rggobi and rgl packages, which pro-
vide interfaces to powerful alternative visualization systems.

13.5 Maps

Choropleth maps use color to encode a continuous or categorical variable on a
map. Although somewhat specialized, choropleth maps are popular and effec-
tive in conveying spatial information. From an implementation perspective,
there is nothing special about these plots; they are simply polygons with fill
color derived from an external variable. The more important considerations
are the practical ones of obtaining boundaries of the polygons defining the
geographical units, and the associated data. In this section, we describe one
approach that can be used to create choropleth maps using lattice, and point
the reader to an alternative approach implemented in the latticeExtra package.

Tools to work with map data are available in the maps package (Becker et al.,
2007) which contains, among other things, predefined boundary databases for
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several geographical units. In our examples, we use the "county" database,
which contains information on counties in the United States. The map() func-
tion normally draws a map of a specified database, but can also be used to
retrieve information about the polygons that define the map.

> library("maps")

> county.map <- map("county", plot = FALSE, fill = TRUE)

The fill argument causes the return value to be in a form that is suitable
for use in polygon() (and hence panel.polygon()); it contains components
x and y which are numeric vectors defining the boundaries, with NA values
separating polygons. It also contains a vector of names for the polygons, which
in this case represent U.S. counties.

> str(county.map)

List of 4

$ x : num [1:90997] -86.5 -86.5 -86.5 -86.6 ...

$ y : num [1:90997] 32.3 32.4 32.4 32.4 ...

$ range: num [1:4] -124.7 -67.0 25.1 49.4

$ names: chr [1:3082] "alabama,autauga" "alabama,baldwin" "alabama,..

- attr(*, "class")= chr "map"

External data can be matched with polygons using these names. Getting the
names into the same form may require some effort; we assume that this has
already been done. Our first example uses the ancestry data in the latticeExtra
package.

> data(ancestry, package = "latticeExtra")

> ancestry <- subset(ancestry, !duplicated(county))

> rownames(ancestry) <- ancestry$county

The data are derived from the U.S. 2000 census, and contain the most fre-
quently reported ancestries in each county. As a first step, we pool the levels
that appear infrequently.

> freq <- table(ancestry$top)

> keep <- names(freq)[freq > 10]

The row names of ancestry match the county names in county.map, and we
use this fact to create a vector of ancestry values matching the map database.

> ancestry$mode <-

with(ancestry,

factor(ifelse(top %in% keep, top, "Other")))

> modal.ancestry <- ancestry[county.map$names, "mode"]

Finally, we use a color palette from the RColorBrewer package to produce
Figure 13.8 (shown among the color plates). Thanks to the form of the value
returned by map(), we can simply use panel.polygon() as our panel function,
with a suitable vector of colors passed in as an argument to the high-level call.
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> library("RColorBrewer")

> colors <- brewer.pal(n = nlevels(ancestry$mode), name = "Pastel1")

> xyplot(y ~ x, county.map, aspect = "iso",

scales = list(draw = FALSE), xlab = "", ylab = "",

par.settings = list(axis.line = list(col = "transparent")),

col = colors[modal.ancestry], border = NA,

panel = panel.polygon,

key =

list(text = list(levels(modal.ancestry), adj = 1),

rectangles = list(col = colors),

x = 1, y = 0, corner = c(1, 0)))

13.5.1 A simple projection scheme

Figure 13.8 plots county boundaries as if they lie on a plane, whereas they
actually lie on a sphere. This is typically addressed by using one of several
cartographic projection schemes, but another alternative is to convert the
polygon boundaries into their three-dimensional representation, and use it in
cloud(). This is demonstrated in the next example. First, we compute the
coordinates of the respective polygons on the globe,

> rad <- function(x) { pi * x / 180 }

> county.map$xx <- with(county.map, cos(rad(x)) * cos(rad(y)))

> county.map$yy <- with(county.map, sin(rad(x)) * cos(rad(y)))

> county.map$zz <- with(county.map, sin(rad(y)))

and then define a panel function that draws polygons from three-dimensional
data.

> panel.3dpoly <- function (x, y, z, rot.mat = diag(4), distance, ...)

{

m <- ltransform3dto3d(rbind(x, y, z), rot.mat, distance)

panel.polygon(x = m[1, ], y = m[2, ], ...)

}

Next, we use these to produce Figure 13.9 (see color plates).

> aspect <-

with(county.map,

c(diff(range(yy, na.rm = TRUE)),

diff(range(zz, na.rm = TRUE))) /

diff(range(xx, na.rm = TRUE)))

> cloud(zz ~ xx * yy, county.map, par.box = list(col = "grey"),

aspect = aspect, panel.aspect = 0.6, lwd = 0.5,

panel.3d.cloud = panel.3dpoly, col = colors[modal.ancestry],

screen = list(z = 10, x = -30),

key = list(text = list(levels(modal.ancestry), adj = 1),

rectangles = list(col = colors),

space = "top", columns = 4),

scales = list(draw = FALSE), zoom = 1.1,

xlab = "", ylab = "", zlab = "")
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The aspect argument is required to ensure that the relative proportions of
the x, y, and z scales are appropriate.

Another example of the use of maps in a three-dimensional display was
given in Figure 6.5. We are finally in a position to understand the call that
produced it. The critical step is to define a function that draws the state
boundaries on the x–y plane.

> library("maps")

> state.map <- map("state", plot=FALSE, fill = FALSE)

> panel.3dmap <- function(..., rot.mat, distance, xlim, ylim, zlim,

xlim.scaled, ylim.scaled, zlim.scaled)

{

scale.vals <- function(x, original, scaled) {

scaled[1] + (x-original[1]) * diff(scaled) / diff(original)

}

scaled.map <- rbind(scale.vals(state.map$x, xlim, xlim.scaled),

scale.vals(state.map$y, ylim, ylim.scaled),

zlim.scaled[1])

m <- ltransform3dto3d(scaled.map, rot.mat, distance)

panel.lines(m[1,], m[2,], col = "grey76")

}

This is then used in combination with the default display to produce the
desired effect.

> cloud(density ~ long + lat, state.info,

subset = !(name %in% c("Alaska", "Hawaii")),

panel.3d.cloud = function(...) {

panel.3dmap(...)

panel.3dscatter(...)

},

type = "h", scales = list(draw = FALSE), zoom = 1.1,

xlim = state.map$range[1:2], ylim = state.map$range[3:4],

xlab = NULL, ylab = NULL, zlab = NULL,

aspect = c(diff(state.map$range[3:4]) /

diff(state.map$range[1:2]), 0.3),

panel.aspect = 0.75, lwd = 2, screen = list(z = 30, x = -60),

par.settings =

list(axis.line = list(col = "transparent"),

box.3d = list(col = "transparent")))

As in the previous example, much of the call is devoted to tweaking the aspect
ratio and other such details.

13.5.2 Maps with conditioning

The use of panel.polygon() as the panel function does not work in multi-
panel choropleth maps. The idea of using the map object as the data, with the
actual variable of interest sneaked in as a color vector, is also somewhat arti-
ficial. A more natural approach is implemented by the mapplot() function in
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the latticeExtra package. We use it to obtain a multipanel choropleth map, this
time visualizing a continuous response, the rate of death from cancer among
males and females. The data are available in the USCancerRates dataset. The
mapproj package (McIlroy et al., 2005) is used to apply a projection directly
in the call to map(). Figure 13.10 (see color plates) is produced by

> library("latticeExtra")

> library("mapproj")

> data(USCancerRates)

> rng <- with(USCancerRates,

range(rate.male, rate.female, finite = TRUE))

> nbreaks <- 50

> breaks <- exp(do.breaks(log(rng), nbreaks))

> mapplot(rownames(USCancerRates) ~ rate.male + rate.female,

data = USCancerRates, breaks = breaks,

map = map("county", plot = FALSE, fill = TRUE,

projection = "tetra"),

scales = list(draw = FALSE), xlab = "",

main = "Average yearly deaths due to cancer per 100000")

This example illustrates an important point, namely, that custom panel func-
tions, although affording tremendous flexibility, are primarily useful in situa-
tions where the role of the variables involved fit into one of a few predefined
models. In the next chapter, we discuss how to develop new high-level display
functions, such as mapplot(), that let us bypass such constraints.
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New Trellis Displays

Each high-level function in lattice is intended to create a certain type of sta-
tistical display by default. Many variations are already built into the default
panel functions and can be activated with additional arguments in a high-level
function call itself. More extensive modifications can be made by writing cus-
tom panel functions, as we have seen throughout this book and particularly
in Chapter 13.

Although panel functions can be used to implement entirely novel visual-
izations, trying to shoehorn such a display into a function intended for another
purpose is mostly useful as a one-off, quick-and-dirty solution. For a system-
atic implementation that could perhaps be used by others, it is often more
sensible to create a new function whose name better reflects the nature of the
visualization. On the other hand, existing function names are sometimes per-
fectly appropriate, and it is the data which are in a form that is not directly
usable. A typical example of this is a univariate time series; there is really
only one choice for the x and y variables in the xyplot() call that produced
Figure 10.17, and the need for a new function to hide the use of a formula
seems wasteful.

Rather than trying to anticipate all potential use cases, lattice provides the
groundwork for further extensions by making use of the object-oriented fea-
tures of R. Each high-level function in lattice is generic, with method dispatch
possible on the first argument x and possibly (using the formal S4 system)
the second argument data. New high-level display functions can be written
either as new methods for existing generic functions, or, if it seems appropri-
ate, as an entirely new function which should itself be generic to allow further
specialized methods. In this chapter, we give examples of both new methods
and new high-level functions implemented using the framework provided by
lattice. These can, it is hoped, serve as models for further extensions.1

1 Note that this is by no means the only way to extend lattice; the Hmisc and nlme
packages are widely used examples that take different approaches.
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14.1 S3 methods

The high-level functions in lattice are generic functions, which means that new
methods can be written to display objects based on their class. Such methods
usually end up calling the corresponding“formula” method after some prelim-
inary processing. They may have different defaults for some arguments, and
even a few new ones. There are a few such methods built into lattice, such as
histogram() and qqmath() methods for numeric vectors, levelplot() and
wireframe() methods for matrices, and (somewhat nontrivial) barchart()
and dotplot() methods for contingency tables as produced by table() or
xtabs().

Here we give as examples two other methods, defined in the latticeExtra
package, for the xyplot() generic. The first is for plotting time-series objects,
and essentially performs the same task as the cutAndStack() function defined
in Section 10.5.3. Figure 14.1 is produced by

> library("latticeExtra")

> xyplot(sunspot.year, aspect = "xy",

strip = FALSE, strip.left = TRUE,

cut = list(number = 4, overlap = 0.05))

This time, there is no need to write a wrapper function, and the cuts are
specified using a new argument that is only meaningful for this method. Our
second example, which is slightly more involved, is also related to time-series
data. The stl() function decomposes a periodic time-series into seasonal,
trend, and irregular components using LOESS (Cleveland et al., 1990). The
result is an object of class “stl”; the xyplot() method for this class is used
below to visualize the decomposition of the biocAccess data seen previously
in Figure 8.2. The data are not in the form of a time-series, so we create one
on the fly. To keep the plot from getting too compressed horizontally, data
from only the first two months are used.

> data(biocAccess, package = "latticeExtra")

> ssd <- stl(ts(biocAccess$counts[1:(24 * 30 * 2)], frequency = 24),

"periodic")

> xyplot(ssd, xlab = "Time (Days)")

The plot shows clear trends of decreased activity during weekends, as well
as regular “seasonal” peaks of activity within each day (which happens to be
caused by a poorly set up mirror).

Both these examples are primarily useful as demonstrations; “stl” objects
have a plot() method that uses traditional graphics to produce an equivalent
visualization, and the zoo package, which deals primarily with time-series data,
has more general xyplot() methods for time-series objects. Other examples
that can serve as prototypes are available in the coda package, and of course
in the lattice package itself.
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Figure 14.1. A cut-and-stack plot of the yearly number of sunspots between 1700
and 1988, created using an xyplot() method for time series data. The aspect ratio,
chosen using the 45◦ banking rule, makes it easy to see that the ascent into peaks
are usually steeper than the descents.

14.2 S4 methods

Although the S3 scheme works well for plotting highly structured objects,
it is insufficient in situations where the flexibility of a formula interface is
desirable, but with data objects that do not fit into the restrictive data frame
paradigm.

This is important, for example, in the context of modern high-throughput
bioinformatics data, where each “response” consists of thousands of measure-
ments on the basic experimental unit, and covariate information on each
experimental unit is stored as “phenotype data”. The Bioconductor project
(Gentleman et al., 2004) handles such data by defining new container classes.
We can use such classes as alternative data sources in lattice methods using
the multiple dispatch facilities in the S4 system.2 In Figure 14.3, we use the

2 In the S3 system, the specific method used when a generic function is called
depends only on the class of one argument. S4 generic functions, on the other
hand, can select methods based on the classes of multiple arguments. This feature
is known as multiple dispatch. The S4 system has many other features not directly
relevant for us; see Chambers (1998) for details.
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Figure 14.2. An STL decomposition of the hourly number of accesses to http:

//www.bioconductor.org over the period of two months, created using an xyplot()

method for “stl” objects. The “trend” is periodic with a dip during weekends. The
“seasonal” component shows the pattern of accesses over a day, with the spikes very
likely due to automated activities such as mirroring.

densityplot() method from the Bioconductor package flowViz (Duong et al.,
2007) that dispatches on a “formula” x and a “flowSet” data.

> library("flowViz")

> data(GvHD, package = "flowCore")

> densityplot(Visit ~ ‘FSC-H‘ | Patient, data = GvHD)

The primary challenge in such examples is not multiple dispatch, but rather
the handling of potentially large datasets. In this example, GvHD is a“flowSet”
object containing data from 35 samples. Two of the variables in the formula
(Patient ID and Visit number) represent phenotype data associated with
the samples. Each sample produces a (on average) 15, 000 × 8 data matrix;
columns in these data matrices (e.g., FSC-H) are the variables we are interested
in visualizing. The näıve approach would be to convert the full data into an
expanded data frame (a“join”operation), but this would produce a data frame
with roughly 15, 000 × 35 rows! The solution used in the flowViz package is
to use only the phenotype data to construct a lattice call; the actual data are
stored in an environment (as part of the design of the“flowSet” class), and the
panel and prepanel functions access only one sample at a time as necessary.
The flowViz package contains several other examples of S4 methods for high-
level lattice functions.
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Figure 14.3. A visualization of the FSC-H channel in the GvHD data, created using
a densityplot() method with signature (x = "formula", data="flowSet"). Each
panel represents one patient, and the estimated densities of FSC-H for multiple visits
are stacked on top of each other within each panel.

14.3 New functions

As we have already seen, existing generic function names may not be mean-
ingful for new visualizations, and a completely new function name is often
warranted. It is not necessary to define these functions as generic, but doing
so has the benefit of encouraging future extensions. With a coordinated choice
of argument names, it also allows multiple methods in multiple packages (per-
haps written by different authors) to be used simultaneously without causing
naming conflicts. We have already seen the mapplot() function in the lattice-
Extra package used to produce Figure 13.10. Another prototypical example is
the hexbinplot() function from the hexbin package, which is used as follows
to produce Figure 14.4.

> library("hexbin")

> data(NHANES)

> hexbinplot(Hemoglobin ~ TIBC | Sex, data = NHANES, aspect = 0.8,

trans = sqrt, inv = function(x) x^2)

The need to add an appropriate legend makes the implementation of hexbin-
plot() particularly instructive; the difficulty arises from the lack of a formal
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Figure 14.4. A conditional plot implementing the hexagonal binning algorithm
of Carr et al. (1987), created using the hexbinplot() function. This example is
somewhat challenging for the Trellis model, as it requires the panels to communicate
information regarding bin counts to the legend.

mechanism to allow the panel function to communicate with the legend. The
form of the legend itself poses another challenge, and requires nontrivial pro-
gramming using grid. The interested reader is referred to the source code of
the hexbin package for details.

14.3.1 A complete example: Multipanel pie charts

Care must be taken when writing new high-level functions to ensure that the
expected nonstandard evaluation behavior is retained. Methods that call other
high-level functions often need to delay the evaluation of certain arguments,
and one way to do so is to make use of match.call() and eval.parent(). For
our final example, we define a new high-level function that explicitly illustrates
this approach.

The lattice package does not have a high-level function to draw pie charts
because the information encoded by a pie chart can be conveyed more ef-
fectively by other graphs. They are a very familiar design nonetheless, and
using the gridBase package (Murrell, 2005), which allows us to combine the
normally incompatible traditional and grid graphics, we write a panel function
that draws pie charts with minimal effort on our part:

> panel.piechart <-

function(x, y, labels = as.character(y),

edges = 200, radius = 0.8, clockwise = FALSE,

init.angle = if(clockwise) 90 else 0,

density = NULL, angle = 45,
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col = superpose.polygon$col,

border = superpose.polygon$border,

lty = superpose.polygon$lty, ...)

{

stopifnot(require("gridBase"))

superpose.polygon <- trellis.par.get("superpose.polygon")

opar <- par(no.readonly = TRUE)

on.exit(par(opar))

if (panel.number() > 1) par(new = TRUE)

par(fig = gridFIG(), omi = c(0, 0, 0, 0), mai = c(0, 0, 0, 0))

pie(as.numeric(x), labels = labels, edges = edges,

radius = radius, clockwise = clockwise,

init.angle = init.angle, angle = angle,

density = density, col = col,

border = border, lty = lty)

}

Because the form of data required by a pie chart is similar to that in a bar
chart, we simply need to define a new function that calls barchart() with a
new default panel function. Such a function is defined as

> piechart <- function(x, data = NULL, panel = "panel.piechart", ...)

{

ocall <- sys.call(sys.parent())

ocall[[1]] <- quote(piechart)

ccall <- match.call()

ccall$data <- data

ccall$panel <- panel

ccall$default.scales <- list(draw = FALSE)

ccall[[1]] <- quote(lattice::barchart)

ans <- eval.parent(ccall)

ans$call <- ocall

ans

}

Although this is not quite the standard way of writing functions in the S
language, it ensures that arguments passed in as part of the ... argument of
piechart() (which may include arguments such as groups and subset which
follow special evaluation rules) are not evaluated prematurely. This function
can now be used to produce Figure 14.5.

> par(new = TRUE)

> piechart(VADeaths, groups = FALSE, xlab = "")

We have ignored our own recommendation in not defining piechart() as
a generic function, but this is easily fixed. Even as it stands, piechart()
calls barchart() with minimal processing of its arguments, and consequently
inherits the method dispatch behavior of barchart().
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Figure 14.5. Conditional pie charts of the VADeaths data, created reusing the tra-
ditional graphics function pie() and the gridBase package. Compare with Figure 4.3,
which presents the same data using a far more effective design.
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W. Härdle. Smoothing Techniques: With Implementation in S. Springer, New
York, 1990.

M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for selecting
colour schemes for maps. Cartographic Journal, 40(1):27–37, 2003.

H. V. Henderson and P. F. Velleman. Building multiple regression models
interactively. Biometrics, 37:391–411, 1981.

J. L. Hintze and R. D. Nelson. Violin plots: A box plot-density trace synergism.
The American Statistician, 52:181–184, 1998.

R. Ihaka. Colour for presentation graphics. Proceedings of DSC, 2003. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
Ihaka.pdf.

A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1
(4):69–91, 1985.

W. B. Joyner and D. M. Boore. Peak horizontal acceleration and velocity
from strong-motion records including records from the 1979 Imperial Valley,
California, earthquake. Bulletin of the Seismological Society of America, 71
(6):2011–2038, 1981.

C. Kooperberg. logspline: Logspline density estimation routines, 2007. R
package version 2.0.4.

C. Loader. Local Regression and Likelihood. Springer, New York, 1999.



References 257

R. Lock. 1993 New car data. Journal of Statistics Education, 1(1):7–7, 1993.
D. McIlroy, R. Brownrigg, and T. P. Minka. mapproj: Map Projections, 2005.

R package version 1.1-7.1.
L. Molyneaux, S. K. Gilliam, and L. C. Florant. Differences in Virginia death

rates by color, sex, age and rural or urban residence. American Sociological
Review, 12(5):525–535, 1947.

D. Murdoch, E. D. Chow, and J. M. F. Celayeta. ellipse: Functions for drawing
ellipses and ellipse-like confidence regions, 2007. R package version 0.3-5.

P. Murrell. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005.
URL http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.
html. ISBN 1-584-88486-X.

P. Murrell and R. Ihaka. An approach to providing mathematical annotation
in plots. Journal of Computational and Graphical Statistics, 9(3):582–599,
2000.

R. B. Nelsen. An Introduction to Copulas. Springer, New York, 1999.
E. Neuwirth. RColorBrewer: ColorBrewer palettes, 2007. R package version

1.0-1.
R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
URL http://www.R-project.org. ISBN 3-900051-07-0.

J. Rasbash, F. Steele, W. Browne, and B. Prosser. A User’s Guide to MLwiN.
Institute of Education, University of London, 2000.

P. S. Reynolds. Time-series analyses of beaver body temperatures. In N.
Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest, and J. Greenhouse,
editors, Case Studies in Biometry, pages 211–228. Wiley-Interscience, 1994.

D. A. Rizzieri, L. P. Koh, G. D. Long, C. Gasparetto, K. M. Sullivan, M. Hor-
witz, J. Chute, C. Smith, J. Z. Gong, A. Lagoo, et al. Partially matched,
nonmyeloablative allogeneic transplantation: Clinical outcomes and immune
reconstitution. Journal of Clinical Oncology, 25(6), 2007.

D. W. Scott. Averaged shifted histograms: Effective nonparametric density
estimators in several dimensions. The Annals of Statistics, 13:1024–1040,
1985.

C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial
splines and their tensor products in extended linear modeling: 1994 Wald
memorial lecture. The Annals of Statistics, 25(4):1371–1470, 1997.

D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: Evolving
from XGobi into an extensible framework for interactive data visualization.
Computational Statistics & Data Analysis, 43(4):423–444, 2003.

E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, second edition, 2001.

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Menlo Park, CA,
1977.



258 References

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,
New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/
MASS4. ISBN 0-387-95457-0.

E. J. Wegman. Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85:664–675, 1990.

L. Wilkinson. The Grammar of Graphics. Springer, New York, 1999.
J. Yan and I. Kojadinovic. copula: Multivariate Dependence with Copula,

2007. R package version 0.5-8.
F. Yates. Complex experiments. Journal of the Royal Statistical Society

(Supplement), 2:181–247, 1935.



Index

.First(), 131

abbreviate(), 137
annotation, 1, 26, 151

axis, see axis annotation
mathematical, see mathematical an-

notation
Arguments
..., 31–33, 216, 232, 233, 241, 253
abbreviate, 137
alpha, 52
as.table, 20, 119, 131
aspect, 19, 24, 41, 68, 92, 105, 131,

141, 143, 184, 245
auto.key, 5, 26, 27, 61, 126, 152, 158,

159, 176, 199
axis, 144
axis.components, 130
between, 24, 85, 130, 131
border, 32, 33
box.ratio, 183
bw, 36
cex, 129
clip, 129
coef, 47
col, 80
col.regions, 240, 241
color, 121
colorkey, 152, 155, 156
column, 217
common.scale, 88
data, 3, 5, 14, 41, 73, 86, 165, 166,

170, 173, 232, 247, 250
default.scales, 138, 139

device, 121

distance, 93

distribute.type, 80, 81

do.out, 47

drape, 155

draw, 75

draw.key, 26

drop.unused.levels, 176

echo, 7

f.value, 41

fill, 243

fontsize, 129

fun, 199

grid.pars, 129

groups, 5, 24, 57, 73, 75, 77, 79, 80,
86, 96, 156, 159, 165, 166, 168,
176, 199, 253

highlight, 221

horizontal, 52, 75, 77, 182

index.cond, 63, 193, 206

jitter.data, 52, 199

kern, 36

key, 26, 75, 129, 130, 152–154, 156,
157, 160

labels, 220

layout, 20, 21, 24, 206

layout.heights, 129, 130

layout.widths, 129, 130

legend, 161, 162

levels, 187

lines, 157

lty, 80

main, 26, 129, 151
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more, 203, 204
name, 125
new, 121
newpage, 203, 204
outer, 102, 168
overlap, 178
packet.panel, 203
page, 26, 131, 162, 218
panel, 30, 31, 110, 130
panel.3d.cloud, 110, 241
panel.3d.wireframe, 110, 241
panel.aspect, 92
panel.groups, 231
panel.height, 203
panel.width, 203
panel.xyplot, 75
par.settings, 125, 126, 203
par.strip.text, 197
pch, 94
perspective, 93
plot.args, 203
plot.points, 4, 36
points, 157
position, 203, 204
prefix, 217
prepanel, 63, 134, 141
pscales, 85, 86, 139
R.mat, 93
rectangles, 157
ref, 4
relation, 129, 130, 190
retain, 122
row, 217
scales, 29, 63, 94, 111, 134–136,

138–142, 144, 146, 150, 155
screen, 93
shrink, 109
skip, 24
space, 159
split, 203, 204
stack, 59
strip, 28, 130, 131, 193, 196
strip.left, 28, 193, 197
style, 196
sub, 26, 130, 151
subscripts, 71, 73, 159, 168, 216,

219, 220, 232
subset, 5, 44, 159, 165, 166, 173, 176,

232, 253

superpanel, 86
text, 157
theme, 121, 122, 125, 131
Titanic, 29
type, 39, 57, 63, 75, 77–81, 85, 96,

146, 199, 230
value, 125
varnames, 86
varwidth, 47
x, 3, 232, 247, 250
xlab, 26, 130, 140, 151
xlim, 29, 92, 141
xscale.components, 144, 146, 147
y, 232
ylab, 26, 140, 151
ylim, 29, 92, 141
yscale.components, 144, 146
zlab, 140, 151
zlim, 92, 94
zoom, 94

argument passing, 33, 73, 199, 232, 252
arranging plots, 7, 179, 203
arrows(), 230
as.data.frame.table(), 55, 100
asinh(), 83
aspect ratio, 19, 28, 42, 57, 68, 92, 99,

143, 144, 184, 245, 249
attach(), 14
averaged shifted histogram, 39
axis(), 211, 215
axis.default(), 135, 149
axis annotation, 2, 28, 81, 94, 133, 135,

173
logarithmic, 144
three-dimensional, 139

axis breaks, 183
axis function, 135
axTicks(), 147

banking, 19, 42, 143–145, 184, 249
banking(), 143
bar charts, 29, 31, 57, 167

three-dimensional, 109
barchart(), 9, 30, 31, 33, 52, 55, 59,

63, 65, 182, 202, 248, 253
bounding box (3-D), 92
box(), 211
box-and-whisker plots, 47, 179, 182, 237
boxcox(), 42
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boxplot(), 215
bwplot(), 9, 46, 47, 52, 182, 183

categorical data, xi, 65
choropleth maps, see maps
Classes

POSIXct , 137
dendrogram , 161
expression , 26
factor , 63
flowSet , 250
formula , 3, 13, 14, 248, 250
matrix , 56, 107
shingle , 202
stl , 248, 250
table , 55, 59
trellis , 6, 7, 15, 16, 18–20, 31, 33, 95,

133, 140, 158, 179, 201–204, 206,
208, 209, 211, 215–217, 221, 232

ts , 187
classes, see object-oriented features
clipping, 129, 141, 231
cloud(), 9, 28, 91, 92, 96, 102, 109, 110,

126, 133, 139, 151, 241, 244
coercion, 52, 182
color, ix, 113, 120
conditioning variable, 3, 14
continuous random variables, 35
contour plots, 98, 241
contourplot(), 9, 91, 99, 105, 107
coplot(), 210
correlation matrices, 105, 238
corrgrams, 238
CRAN, x
cumulative distribution function, 35
current.column(), 96, 231
current.panel.limits(), 231
current.row(), 96, 231
curve(), 230
customizations, see settings

persistent, 131
cut(), 15, 67, 69, 71
cut-and-stack plots, 143, 184, 248
cutAndStack(), 248

data
large, see large data
managing, 14, 98, 165, 249

data(), 2

Datasets
ancestry, 243
barley, 52, 53
beavers, 172
biocAccess, 143, 211, 248
Car93, 157
Cars93, 108, 161
Chem97, 5, 35, 37, 40, 47, 53, 63, 100,

108, 110, 165
Earthquake, 78, 144
environmental, 100
faithful, 36
Gcsemv, 169
GvHD, 250, 251
gvhd10, 37, 49, 83, 88, 90
mtcars, 86–89
Oats, 17, 19, 20, 27
postdoc, 59, 61
quakes, 50, 51, 67, 71, 91, 177
SeatacWeather, 79
state.region, 85, 161
state.x77, 207
Titanic, 166, 173
USAge.df, 114, 174
USArrests, 84, 85, 161
USCancerRates, 193, 246
VADeaths, 55, 56, 122, 254
volcano, 99, 100, 105, 107

data rectangle, 28, 92, 134
dcopula(), 110
dendrogramGrob(), 161, 162
dendrograms, 108, 161
density(), 36, 37, 235
densityplot(), 4, 7, 9, 35, 36, 232, 235,

250, 251
density function, 35
density plots, 4, 24, 35, 235, 249
dev.print(), 120
devices, see graphics devices
dimnames(), 202, 211
discrete distributions, 53
discrete random variables, 63
distribution function, see cumulative

distribution function
dnorm(), 35
do.call(), 221
dotplot(), 9, 13, 52, 55–57, 77, 193,

248
dot plots, 55, 122, 184, 187, 203, 223
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downViewport(), 217
draw.colorkey(), 75, 152, 154–156
draw.key(), 26, 152, 156, 161, 218
dropping unused levels, 159, 176
dynamic manipulation, 95

ecdfplot(), 44
empirical CDF, 44
equal.count(), 16, 71, 178, 184
eval.parent(), 252
expand.grid(), 102
expression(), 26, 200
expressions, see mathematical annota-

tion

factor(), 187
factors, 15
false color level plots, see level plots
for(), 7
formula interface, 3, 13, 54, 166, 170
fractions(), 146

generic functions, see object-oriented
features

getOption(), 131
GGobi, xi
glm(), 165, 173
graphical parameters, 1, 119, 123

specifying, 123
graphical primitives, 229
graphics devices, 120
Grid graphical objects, see grob
Grid graphics, see Packages, grid
grid.circle(), 239
grid.edit(), 215
grid.locator(), 216, 217, 219
grid.points(), 230
grid.polygon(), 239
grid.text(), 230
grob, 26, 151, 152, 154, 155, 161, 162,

215
grouping, see superposition

hclust(), 108, 161
heatmap(), 163
heatmaps, 161
hexagonal binning, 83, 251
hexbinplot(), 83, 251, 252
high-level functions, 1, 9

histogram(), 3, 4, 7, 9, 30, 39, 248
histograms, 2, 39
hypocycloid, 232, 233
hypotrochoid, 232

identify(), 216
indexing, 71, 173, 206
interaction, 86, 211, 216

jittering, 36, 52, 142, 177, 199

kernel density estimate, 36
key, see legends

labels, 26, 151
large data, 37, 49, 82, 88, 249
lattice.getOption(), 131
lattice.options(), 131, 141
layout, 15, 16, 20, 47, see arranging

plots
legends, 26, 75, 148, 152
level plots, 98, 113, 161, 238
level.colors(), 73, 239, 241
levelplot(), 9, 91, 99, 105, 107, 108,

111, 155, 156, 163, 240, 241, 248
levels(), 140
library(), 2, 131
lines(), 215, 230
lm(), 165, 173
locator(), 216
log(), 83
log-spline density estimate, 235
logarithm, see transformations
long format, 166
ltransform3dMatrix(), 93
ltransform3dto3d(), 241

make.groups(), 170–172
map(), 243, 246
mapplot(), 245, 246, 251
maps, 98, 242
match.call(), 252
mathematical annotation, 26, 137, 146,

151, 200
mean–difference plots, 208
methods, see object-oriented features

new, see new methods
multipanel conditioning, 2, 3, 14

native coordinate system, 134
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new displays, 251
new methods, 247
nonstandard evaluation, 165, 252

object-oriented features, 6, 13, 33, 56,
179, 201, 247

OpenGL, xi
options(), 131
orthogonal projection, 93

Packages
coda, 248
colorspace, 120
copula, x, 110
ellipse, x, 238
flowCore, x
flowViz, x, 250
ggplot, xi
ggplot2, xi
grid, x, xi, 26, 127, 129, 151, 152, 162,

203, 206, 215–217, 219, 229–231,
239, 252

gridBase, x, 252, 254
hexbin, x, 83, 251, 252
Hmisc, 247
lattice, 242, 248, 250
latticeExtra, x, 37, 44, 53, 59, 79, 109,

114, 143, 161, 174, 193, 210, 224,
242, 243, 246, 248, 251

locfit, x, 78, 80, 100
logspline, x, 235
mapproj, x, 246
maps, x, 242
MASS, x, 42, 99, 146
MEMSS, x, 77
mlmRev, x, 2, 169
nlme, 247
playwith, xi, 215
RColorBrewer, x, 120, 243
rggobi, xi, 242
rgl, xi, 95, 242
vcd, xi, 65
zoo, 248

packages (installing), x
packet, 15, 28, 73, 95, 133
packet order, 18, 203
packet.number(), 216, 221, 231
packet.panel.default(), 203
panel, 2

panel function, 4, 30, 229, 252
three-dimensional, 96

panel order, 18, 203
panel.3dbars(), 109
panel.3dscatter(), 241
panel.3dwire(), 241
panel.abline(), 230
panel.arrows(), 230
panel.average(), 75, 199, 231
panel.axis(), 149
panel.barchart(), 31–33, 128
panel.bwplot(), 47, 49, 126, 183, 231
panel.cloud(), 110, 128
panel.curve(), 230
panel.densityplot(), 36, 128, 232
panel.dotplot(), 126
panel.fill(), 230
panel.grid(), 32, 75, 129, 230
panel.histogram(), 128
panel.identify(), 216, 219, 220
panel.identify.qqmath(), 219, 221
panel.levelplot(), 109, 128, 155
panel.lines(), 230
panel.link.splom(), 219, 221
panel.lmline(), 75, 136, 230
panel.locfit(), 80
panel.loess(), 75, 230
panel.mathdensity(), 230
panel.number(), 81, 208, 231
panel.pairs(), 86, 139
panel.parallel(), 88
panel.points(), 230
panel.polygon(), 230, 243, 245
panel.qqmathline(), 221, 230
panel.rect(), 230
panel.rug(), 169, 230
panel.segments(), 230
panel.splom(), 67, 84
panel.stripplot(), 52, 199
panel.superpose(), 75, 80, 231
panel.text(), 129, 230
panel.violin(), 49, 231
panel.wireframe(), 128, 155
panel.xyplot(), 67, 75, 77, 78, 80, 83,

84, 128, 199, 231
parallel(), 9, 54, 67, 88
parallel coordinates plots, 87
pdf(), 121, 122, 132
persp(), 93
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perspective projection, 93
pie(), 254
pie charts, 57, 252
piechart(), 253
plot(), 7, 179, 202–204, 206, 215, 248
plot types, 75
plotting

automatic, 6
suppression of, 7

png(), 121
pnorm(), 35
points(), 230
polygon(), 230, 243
postscript(), 122, 132
predict(), 102
prepanel.lmline(), 144
prepanel.loess(), 144, 146
prepanel.qqmathline(), 144
prepanel function, 28, 133, 134, 140, 142
pretty(), 149
primary variable, 4, 14, 168
print(), 6, 7, 202, 203, 215
probability mass function, 53
projection, 91, 241, 244
prop.table(), 59

qnorm(), 35
qq(), 9, 44, 47, 54, 208
qqmath(), 9, 40, 41, 54, 144, 208, 221,

230, 248
quantile function, 35
quantile plots, 40, 43, 170, 171, 181,

196, 218
two-sample, 44, 208

range(), 140
rect(), 230
reorder(), 63, 187, 190
reordering, 61, 108, 187
require(), 131
reshape(), 168
reshaping, 166
residuals (visualizing), 52, 198, 248
resizePanels(), 193, 206, 224
rootogram(), 53
roulettes, 233
Rows(), 156, 157
rug(), 230

S-PLUS, vii, x, 153, 230
S3, 201, 248, 249
S4, 201, 247, 249, 250
scales, 2, 28, 133, 183, 193

combining, 28
scatter-plot matrices, 84, 100, 221
scatter plots, 16, 67, 82, 144, 157, 160,

169, 173, 177, 193, 219
three-dimensional, 91

seekViewport(), 217
segments(), 230
settings

graphical, 27, 119, 158
non-graphical, 131

shingle(), 178, 184
shingles, 15, 71, 177
show.settings(), 128, 129
simpleKey(), 157, 158
simpleTheme(), 126
source(), 7
Spirograph, 232
splom(), 9, 28, 54, 67, 77, 84–86, 88,

133, 139, 221
spread–location plots, 52
square root transformation, 83, 108,

181, 251
stacked bar charts, 59
stereo viewing, 95
stl(), 248
str(), 123, 202
strip plots, 50
strip.custom(), 181, 197
strip.default(), 126, 196, 197
stripplot(), 9, 52, 77, 182, 199
strips, 2, 28, 181, 193, 210
subset(), 159
subsetting, see indexing
summary(), 202, 204
superpanel function, 85
superposition, 5, 24, 79, 156
surfaces, 98, 241

mathematical, 110
parameterized, 111

table(), 55, 248
tables, 55, 98
terrain.colors(), 115
text(), 230
textGrob(), 151
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themes, 120
three-dimensional

plots, 91
projection, see projection

tick marks, 135, 138
major, 146
minor, 146

time-series plots, 143, 148, 174, 175,
184, 248

tmd(), 208
traditional graphics, 1, 6, 120, 211, 215,

230, 252
transformations

Box–Cox, 42, 165
logarithm, 78, 144, 190
power, 42

transparency, 52, 82, 90, 138
“trellis”objects as arrays, 16, 20, 95,

203, 206, 211
Trellis formula, see formula interface
Trellis graphics, x, 1

documentation, x
trellis.currentLayout(), 224, 231
trellis.device(), 121, 122, 125, 131
trellis.focus(), 216, 217, 219–221
trellis.last.object(), 206, 221
trellis.panelArgs(), 221
trellis.par.get(), 122, 125, 157
trellis.par.set(), 121, 122, 125, 203

trellis.unfocus(), 217, 221
trellis.vpname(), 216, 217
Tukey mean–difference plots, see

mean–difference plots

units (grid), 206
univariate distributions, 35, 63
update(), 20, 31, 33, 206
useOuterStrips(), 210, 211

variance stabilizing transformation, 181
viewport(), 219
viewports, 216
violin plots, 47, 49

which.packet(), 216, 232
while(), 7, 219
wide format, 166
wireframe(), 9, 91, 99, 105, 107, 109,

110, 113, 126, 139, 151, 155, 156,
241, 242, 248

wireframe plots, 98, 241
with(), 14, 161

xscale.components.default(), 146
xtabs(), 2, 55, 63, 248
xyplot(), 9, 16, 27, 63, 67, 69, 73, 75,

77, 80, 157, 183, 201, 208, 219,
232, 247–250
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plot.[symbol, line] plot.shingle[plot.polygon] histogram[plot.polygon] barchart[plot.polygon]

superpose.polygon regions

Figure 7.4. Color version. A visual summary of the default color parameter set-
tings, produced by show.settings().
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Figure 3.6. Color version. Grouping by the final A-level chemistry score is indicated
by color, as opposed to plotting character in the black and white version. This makes
the groups much easier to distinguish.



Scatter Plot Matrix
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Figure 5.17. Color version. As with Figure 3.6, the use of color makes the grouping
by number of cylinders visually much more prominent.



Figure 6.9. Color version. Black and white level plots can only show one gradient,
whereas true color allows more choices. Here, the middle of the range is encoded by
white (0 saturation), with gradually strengthening saturation towards the cyan and
magenta hues away from the middle (Cleveland, 1993).
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Figure 6.19. A level plot showing estimated U.S. population (in millions) by age
and year, conditioning on sex. The “baby boom” starting in the late 1940s is quite
prominent. A subtle effect seen in the left panel is the temporary drop among the
young male population in 1918; whether the effect is noticeable depends strongly on
the color scheme used.
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Figure 10.9. Color version. The temporary drop seen in Figure 6.19 is difficult to
miss in this display. Encoding groups by color rather than line type, as in the black
and white version, makes comparison easier and reduces the artificial prominence
given to solid lines over broken line types.
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Figure 11.6. Color version. The use of color allows us to put different emphasis
on the lines and the points.
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Figure 13.6. A corrgram as described by Friendly (2002), showing a correlation
matrix derived from the Cars93 data. In addition to color, correlations are encoded
using the amount of fill-in in circular “Pac-man” symbols.
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Figure 13.8. Modal ancestry (ancestry with the highest frequency) in the U.S.
2000 census, by county. No projection scheme is used, resulting in a somewhat odd-
looking display.
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Figure 13.9. Modal ancestry in the U.S. 2000 census by county, using a three-
dimensional view to account for the fact that county boundaries lie on a sphere. It is
more common to deal with this problem by transforming the boundaries beforehand
using one of many cartographic projections.
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Figure 13.10. Annual death rates due to cancer (1999–2003) in U.S. counties
among men and women. A standard projection scheme implemented in the mapproj
package is used. The false-color levels are associated with the raw death rates in the
color key, but the breakpoints are on a logarithmic scale, resulting in more visual
emphasis on variation at the low end.
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