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Multiple factor analysis (MFA) enables users to analyze tables of individuals and 
variables in which the variables are structured into quantitative, qualitative, or mixed 
groups. Written by the co-developer of this methodology, Multiple Factor Analysis 
by Example Using R brings together the theoretical and methodological aspects 
of MFA. It also includes examples of applications and details of how to implement 
MFA using an R package (FactoMineR).

The first two chapters cover the basic factorial analysis methods of principal 
component analysis (PCA) and multiple correspondence analysis (MCA). The next 
chapter discusses factor analysis for mixed data (FAMD), a little-known method 
for simultaneously analyzing quantitative and qualitative variables without group 
distinction. Focusing on MFA, subsequent chapters examine the key points of MFA 
in the context of quantitative variables as well as qualitative and mixed data. The 
author also compares MFA and Procrustes analysis and presents a natural extension 
of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of 
matrix calculation and metric spaces used in the book.

FEATURES

•	 Covers the theory and application of the MFA method

•	 Shows how to implement MFA using the R package FactoMineR

•	 Discusses how FAMD takes into account quantitative and qualitative variables 
within one single analysis

•	 Describes how HMFA is used in surveys organized into themes and sub-themes

•	 Provides the data and R scripts on the author’s website
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Preface

Due to the extensive field of application, multiple factor analysis (MFA) is
widely used today. This book is the first comprehensive account of the method
in English: it brings together the theoretical and methodological aspects with
application examples and details of how to implement them using an R pack-
age (FactoMineR).

In the same way as for principal component analysis (PCA) or multiple
correspondence analysis (MCA), MFA is applied to tables in which a set of
individuals (one individual = one row) is described by a set of variables (one
variable = one column). The particularity of MFA lies in the fact that within
the active variables, it can account for a group structure defined by the user.
Such data tables are called individuals × variables organised into groups.

This data format is widely used, firstly because it corresponds to the user’s
approach when designing data collection. For example, someone designing
an opinion poll organises the questionnaire into themes, each of which is
then developed using several questions (the questions are the variables and
the themes the groups of variables). This structure must of course be present
when analysing the results of the poll. Secondly, it is widespread because users
often want to bring together data collected for the same statistical individuals
but in different contexts (for example, geographical or temporal). Thus, in
the food industry, for a given set of products, we often have sensory profiles
from tastings conducted in different countries. These sets of data need to be
analysed simultaneously while at the same time preserving their individuality
both during the statistical analysis and the interpretation phase.

Experience in working with many diverse users has shown that multiple
tables are in fact the standard data format used today. Along with this complex
structure (into groups of variables), the nature of the data is also complex as
the variables can be quantitative or qualitative. It is therefore necessary for
users to have access to a methodology for analysing individuals × variables
tables in which the variables are structured into quantitative, qualitative or
mixed groups. This is precisely the field of application of MFA.

MFA is the result of joint research by Brigitte Escofier and Jérôme Pagès in
the early 1980s. This method is now well established if we consider the wide
range of software available. To name but a few software packages including
an MFA procedure: FactoMiner (R Package) ade4 (R Package), SPAD, Uniwin
(Statgraphics) and XLStat.

Having achieved widespread availability of the method, and with the data
format justifying its implementation, one question remains: what exactly does

xiii
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‘account for a group structure of the variables in an overall analysis’ mean?
In other words, why do we not simply conduct, for example, a principal
component analysis and take the group structure of the variables into account
solely during interpretation? We might summarise by saying that this book
answers this question first and foremost.

The first two chapters look back at basic factorial analysis methods for
individuals × variables tables, PCA and MCA.

Chapter 3 presents Factor Analysis of Mixed Data (FAMD), a little-known
method for simultaneously analysing quantitative and qualitative variables
without group distinction. FAMD contains the technical elements required
for taking into account both types of variables within one single analysis.

The following chapters, numbered 4 to 9, describe multiple factor analysis.
The first four look in turn at the key points of MFA in the context of quantitative
variables. In addition, one chapter is given over to qualitative and mixed data.
Finally, one chapter compares MFA and Procrustes analysis.

Chapter 10 presents a natural extension of MFA: hierarchical MFA (HMFA).
In this method, the variables are not structured by a simple partition, but
by a hierarchy. A typical example of these data is surveys, for which the
questionnaire is organised into themes and subthemes.

The final chapter presents several elements of matrix calculation and metric
spaces used in the book in the form of two technical appendices.

***

To conclude this work, it gives me great pleasure to thank Sophie Puyo and
Magalie Houée-Bigot, the statistical engineers who were responsible for the
majority of the layout for this book. I also thank Eric Matzner-Løber, editor
for the French version of this book for his contributions. Thanks also go to
Rob Calver at Chapman & Hall for his friendly assistance. A special mention
goes to Rebecca Clayton for her invaluable help in translating from the French
to the English version. I would also finally like to thank my wife Annie who
brightens my life and therefore, indirectly, this book.

***

The data and the R scripts used in this book are available on the website of
the applied mathematics department at Agrocampus Ouest.

Chapters 3, 8 and 9 are adapted from works first published in the Revue de
Statistique Appliquée (Journal of Applied Statistics, which ceased publication in
2006). This is an excellent occasion to thank Pierre Cazes, director of the jour-
nal, first for his enthusiastic reception of the work and then for his continued
encouragement concerning the adaptation of the book.

Thanks also go to Richard Delécolle and his talent for calligraphy.



1
Principal Component Analysis

Principal component analysis (PCA) is the most widely used factorial method.
It is applied to tables in which a set of (statistical) individuals is described by a
set of quantitative variables. In this chapter, we present a detailed description
of this method, both in theory and in practice. This is the perfect opportunity
to introduce a number of concepts used to analyse multiple tables, but also
apply to simple ones. This enables the reader to see the specificities of multiple
factor analysis (MFA) better.

Vocabulary: Factor Analysis or Factorial Analysis?

Both families of methods are very similar, which explains the confusion be-
tween the two names. Roughly, we can say that factor analysis is based on
a model whereas factorial analysis is purely exploratory. Typically, principal
component analysis is a factorial analysis. The same is true of correspondence
analysis and all the methods presented in this book. In this case, why do we
say multiple factor analysis? It is simply a mistranslation of a method originally
introduced in French under the name Analyse factorielle Multiple. Now, mul-
tiple factor analysis is widespread and, in our opinion, changing its name to
multiple factorial analysis would lead to yet more confusion.

1.1 Data, Notations

We start by studying a table with the following characteristics:

– Each row represents a statistical individual; we denote I the number
of individuals. I also designates the set of individuals. Using the same
letter to designate both the set and its cardinal is not confusing as the
meaning is always clear from the context.

– Each column represents a quantitative variable; K represents the
number of variables (as well as the set of variables).

– At the intersection of row i and column k, is xik , the (numerical) value
of individual i for variable k.

Let us add two classical notations:

x̄k : Mean of variable k; this is not used much as the variables are generally
centred, but it can sometimes be useful for the centring to appear
explicitly;

sk : The standard deviation of variable k.

1
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xk

Quantitative variables

1 k K

1

Individuals i xik

I
Mean

Standard deviation sk

FIGURE 1.1
Data structure and notations.

These notations are brought together in Figure 1.1
An endless variety of data can be analysed using PCA. In the following

paragraphs, we use an example which is both rich and easy to understand. We
have the final Baccalaureate grades for 909 high school students specialising
in science (I = 909), for 5 given subjects (K = 5): mathematics, physics, natural
sciences, history–geography and philosophy.

1.2 Why Analyse a Table with PCA?

Let us go back to the previous example. Generally, once the means have been
examined, the aim of studying such a table statistically is to investigate the stu-
dents’ ‘within-subject’ and ‘between-subjects’ diversity. This diversity must
first be examined by subject using indicators (mainly standard deviations)
and graphs (mainly boxplots and histograms).

The choice of PCA is mainly motivated by two objectives:

1. We consider the students not in terms of one specific grade or another,
but in terms of overall grades, which we refer to as their ‘school
profile.’ We then study the diversity of these profiles (overall, rather
than grade by grade). In PCA, this profile diversity is studied by
highlighting their principal dimensions of variability. Therefore, in
the example, we can expect the principal dimension of variability to
oppose good students (those who have good grades in all subjects)
with bad students (those who have bad grades in all subjects).

2. We are interested in the relationships between variables. In PCA,
we only examine linear relationships; the intensity of this type of
relationship between two variables is measured by the correlation
coefficient, as usual. In addition, these relationships are studied us-
ing synthetic variables (known as principal components). These are
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linear combinations of initial variables which are as closely related
as possible (defined later) to these initial variables. Ideally, each syn-
thetic variable is closely correlated to one group of variables alone,
and uncorrelated with the others, thus identifying groups of variables
(correlated within-group and uncorrelated between-groups).

We show that these synthetic variables coincide (defined later) with the
dimensions of variability as seen above. This therefore shows that the two
objectives are closely linked, or are even two aspects of the same question.
This can be illustrated in the context of the example: saying that the princi-
pal dimension of variability opposes good and bad students (studying the
individuals via their school profiles) is equivalent to saying that all of the
variables (that is, the grades) are positively correlated two by two (studying
relationships between variables).

This idea may seem obvious: the rows and the columns of a table are two
aspects of the same reality (that is to say the table itself). This is the origin
of the term duality (the dual nature) often used to designate this relationship
between these two aspects, on the one hand, and between the coordinates of
rows and columns given by PCA. This relationship is no less fundamental: it
helps us to understand better what it is we’re looking for; it also illustrates
the suitability of the PCA for a very general issue, such as analysing a table.
In addition, it must be noted that we also find this duality (of issues and
results) in all factorial analyses, in particular those studied in this book, PCA,
multiple correspondence analysis (MCA), factorial analysis of mixed data
(FAMD), MFA and hierarchical multiple factor analysis (HMFA).

1.3 Clouds of Individuals and Variables

Cloud of Individuals N I

We associate individual i with its profile {xik; k = 1, K }. Point Mi corresponds
to this profile in R

K , in which each dimension represents a variable (see
Figure 1.2). R

K is said to be the individuals’ space. Set I of points i makes
up a cloud denoted NI . In addition, each individual is attributed the weight
pi so

∑
i pi = 1 (generally pi = 1/I ).

The centre of gravity for cloud NI (denoted G I , also known as the mean
point), has the coordinates {x̄k; k = 1, K }. When the variables are centred, as
is always the case in PCA, the origin of the axes in R

K is positioned in G I

(additional information on centring data is given in Section 1.4).
In cloud NI , the squared distance between two individuals, i and l, is

expressed:

d2(i, l) =
∑

k

(xik − xlk)2.
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FIGURE 1.2
The cloud of individuals.

This quantity measures the discrepancy between the profiles of individuals
i and l. Studying the individuals’ variability means studying these distances,
the whole set of which determines the shape of cloud NI . This variability can
also be dealt with using the distances between each point Mi and the mean
point G I . Therefore, for individual i :

d2(i, G I ) =
∑

k

(xik − x̄k)2.

This distance measures the ‘peculiarity’ of the individual i (how it differs
from others). The set of these individual peculiarities makes up the overall
variability of the data. To measure this overall variability, the squares of the
distances to the mean point are aggregated in order to obtain the total inertia
of NI (with respect to G I ). Thus

Total inertia of NI /G I =
∑

i

pi d2(i, G I ) =
∑

k

∑

i

pi (xik − x̄k)2 =
∑

k

Var[k].

This total inertia is equal to the sum of the K variances, denoted Var[k].
Thereby, when the variables are reduced, it is equal to the number of variables.
This clearly shows, in the centred-reduced case but also in general, that, in
PCA, it is not the total inertia itself which is interesting but rather the way
in which it is distributed. We also observe this property in MCA and MFA.
We obtain the same total inertia in aggregating the squares of the between-
individuals distances, a perspective used at the beginning of this section. The
variance of variable k, based on the deviations between individuals, is thus
expressed:

Var[k] = 1
2

∑

i

∑

l

pi pl(xik − xlk)2.
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FIGURE 1.3
The cloud of variables. A: centred data; B: centred and reduced data. θk j is the angle formed by
the two vectors representing variables k and j (

−−→
OMk and

−−−→
OMj ).

By combining the two previous equations, we obtain:

Total inertia of NI /G I = 1
2

∑

i,l

pi pl

∑

k

(xik − xlk)2 = 1
2

∑

i,l

pi pld2(i, l).

This shows that the inertia of NI represents the individuals’ variability both
from the point of view of their deviation from the centre of gravity and from
the point of view of the between-individuals distances.

Cloud of Variables NK

To variable k, we attribute its values for all of the individuals studied
{xik; i = 1, I }. This set corresponds to point Mk (and to vector vk) in space
R

I , in which each dimension corresponds to an individual. R
I is called the

variables’ space or, more generally, the space of functions on I (a function on I
attributes a numerical value to each individual i). The set of points Mk con-
stitutes the cloud of variables denoted NK (see Figure 1.3).

When the variables are centred, as is always the case in PCA, this space has
two remarkable properties.

1. The cosine of the angle θk j formed by the two variables k and j is
equal to their correlation coefficient. This geometrical interpretation
of the correlation coefficient justifies the use of this space to study the
relationships between variables. It also explains that we represent
variable k by the vector linking the origin to point Mk .

2. The distance between Mk and O is equal to the variance of variable k.
Interpreting a variance as a squared length is extremely valuable in
statistics. Note: a centred-reduced variable has a length of 1; cloud
NK is then situated on a hypersphere (with a radius of 1).
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To obtain these two properties, it is necessary, when calculating a distance
in R

I , to attribute to each dimension i the weight pi of the corresponding
individual. Thus, we obtain:

d2(O, Mk) =
∑

i

pi (xik − x̄k)2 = Var[k].

This way of calculating the distance (also known as the metric) in R
I is

therefore linked to the weights of the individuals. We say that the weights
on the individuals induce a metric in the space of functions on I . To get a
feel for this, we consider the equivalence between two rigorously identical
individuals of the same weight p on the one hand, and only one of these two
individuals with the weight 2p.

Usually, the weights pi are organised on the diagonal of a matrix denoted D
of size ( I, I ), with the extra-diagonal terms being null. Matrix D is diagonal,
which explains the origin of the term diagonal metric.

The metric defined in this way is Euclidean (that is, it is associated with a
scalar product). By denoting 〈u, v〉D the scalar product in R

I between vectors
v and w (the letter D refers to the use of weights pi ), we therefore obtain:

〈−−→
OMk,

−−→
OMj

〉

D
=

∑

i

pi (xik − x̄k)(xi j − x̄ j ) = Covariance[k, j].

This clearly shows that it is the centring which makes it possible to interpret
this scalar product as a covariance. If, in addition, the variables are reduced,
this scalar product is therefore equal to the cosine of the angle θk j between−−→
OMk and

−−→
OMj and is interpreted as the correlation coefficient.

The above relationships are expressed as follows, denoting v′ the transpose
vector of v and vk the kth column of X:

d2(O, Mk) = ||vk ||2D = v′
k Dvk .

The total inertia of cloud NK in R
I , with respect to the origin O, is easy to

calculate as the variables all have an equal weight of 1.

Inertia(NK /O) =
∑

k

1 d2(O, Mk) =
∑

k

Var[k].

This total inertia is equal to those of cloud NI in R
K : the number K of variables

in the centred-reduced case. This highly important property contributes to the
duality between the table’s rows and columns. Analysing the diversity of the
individuals’ profiles (cloud NI ) or the correlations between variables (cloud
NK ) means examining clouds with the same inertia, a property induced by
the fact that the points of one are the same as the dimensions of the space
within which the other evolves.
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1.4 Centring and Reducing

In PCA, the data table is always centred, as denoted by

xik ← xik − x̄k ,

where xik designates the general term of the analysed table.
Within space R

K , centring is geometrically interpreted as the positioning
of the origin of the axes to the mean point G I : this operation does not alter
the shape of the studied cloud NI . Within the space R

I , centring is interpreted
as the projection of NK on the subspace orthogonal to the first bisector (the
bisector is the line containing the constant functions).

Let us outline the proof of this second result, which is widely used in statis-
tics. Let 1 be the vector of R

I (belonging to the first bisector), all the compo-
nents of which have a value of 1. With the metric D, this is a unit vector. Let
1⊥ be the subspace of R

I , supplementary orthogonal of 1. Vector v (mean v̄)
of R

I can be decomposed into its projection on 1 (denoted P1(v)) and on 1⊥

(denoted P1⊥ (v)). Thus
P1⊥ (v) = v − P1(v).

It is easy to show that P1(v) is the constant vector for which each component
has a value of v̄. The value to the right of the = sign is therefore the centred
variable v. Thus, in PCA, cloud NK evolves within 1⊥, a subspace of dimension
I − 1.

When the variables are not expressed in the same units, the data must be
reduced as follows,

xik ← xik − x̄k

sk
.

The PCA is then said to be standardised (if the data are only centred, the
PCA is said to be unstandardised). When the variables are expressed in the
same units, the opportunity to reduce must be discussed on a case-by-case
basis. In practice, unless there is a specific reason, users tend to reduce the
data because, as we show, this balances the influence of each variable.

Within the space of individuals, reduction is interpreted geometrically as
taking the standard deviation sk as a unit of measurement for variable k.
Within the variables’ space, this means representing variable k by the unit
vector for the direction linking O to Mk . The cloud NK is therefore situated
on a hypersphere with a radius of 1 (see Figure 1.3B).

1.5 Fitting Clouds NI and NK

If we could visualise clouds NI and NK perfectly, as is possible in the case of
two dimensions, we would be able to answer most of our questions; examining
NI would show the multidimensional variability of the individuals, and NK
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FIGURE 1.4

Fitting of individual i in R
K .

would show the correlations between all of the variables taken two by two. But
beyond three dimensions, the shape of the cloud becomes inaccessible to our
senses. The aim of factorial methods in general, here of PCA, is to give, in a low-
dimensional space, an approximate image of a cloud of points evolving within
a high-dimensional space. This is often referred to as dimension reduction. We
instead use the term fitting, which is widely used in statistics.

1.5.1 General Principles and Formalising Criteria

In factorial analysis, fitting a cloud means projecting it onto a set of orthogonal
axes of maximum inertia.

Fitting NI in R
K

By denoting us a unit vector of the axis of rank s (in R
K ) and Hs

i the projection
of point Mi on us , the criterion satisfied by us is

∑

i

pi (OHs
i )2 maximum,

with the constraint of being orthogonal to s −1 directions already found, thus

us⊥ut for t < s.

We therefore first look for u1, the direction of maximum inertia, then u2,
the direction of maximum inertia orthogonal to u1, and so on. The us axes are
taken two by two to make up the factorial planes, particularly the first one (u1,
u2). Figure 1.4 illustrates this fitting. H1

i (H2
i , respectively) is the projection of

Mi on u1 (u2, respectively), axis of rank 1 (rank 2, respectively). By combining
the two coordinates of these projections, we obtain the projection, denoted
H1,2

i , of Mi on the plane P1,2 generated by u1 and u2.
Matrix Formalisation. We denote X the data table with dimensions (I , K ).

||OHs
i || is obtained by the scalar product between us and the data vector i ,

that is to say the ith row of X. These projections (or more precisely their
coordinates) are organised in vector Fs , of dimension I . Thus

Fs = Xus .



Principal Component Analysis 9

Expressing it in this way highlights the fact that Fs is a linear combina-
tion of initial variables, in which vector us contains the coefficients of this
combination.

With the weights pi (organised in diagonal matrix D), the criterion (to be
maximised) is expressed:

F ′
s DFs = u′

s X′ DXus .

In X′ DX, we recognise the correlation matrix when the variables are stan-
dardised, and the covariance matrix when they are simply centred.

Fitting NK in R
I

By denoting vs a unit vector on the axis of rank s (in R
I ), and Hs

k the projection
of point Mk on vs , the criterion satisfied by vs is:

∑

k

(OHk
s )2 maximum,

with vs⊥vt for t < s.

Matrix Formalisation. The coordinate of projection Hs
k is obtained by the scalar

product between vs and the column-vector of X containing the data of variable
k (vector here denoted vk) 1. Accounting for metric D, we obtain:

OHs
k = 〈vk, vs〉D = v′

k Dvs .

The coordinates of the projections Hs
k are organised in vector Gs of dimen-

sion K . Thus

Gs = X′ Dvs .

The criterion is expressed:

G ′
s Gs = v′

s DXX′ Dvs .

In XX′, we recognise the matrix of scalar products between individuals.

1.5.2 Interpreting Criteria

In R
K , due to the centring, the origin is at the mean point of cloud NI . The

criterion is then interpreted as the variance of projections. Within this space,
we are therefore looking for the dimensions of maximum variance (or vari-
ability). This corresponds perfectly to the initial objective of describing the
individuals’ variability.

1For simplicity’s sake, we use the same letter, v, to designate a standardised principal component
(vs or vt) or an initial variable (vk ). They are indeed vectors of the same space and the indices, as
well as the context, remove any ambiguity.
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As the vectors us are orthogonal, the projection variances can be accumu-
lated from one axis to another. If we add together these variances for all the
axes, we obtain the total inertia of cloud NI . The issue we initially put for-
ward was to study the variability of individuals, or in other words, this total
inertia. Unlike analyses conducted variable by variable, this approach is mul-
tidimensional insomuch as it decomposes this same total inertia by favour-
ing the dimensions of R

K (that is, linear combinations of variables) which
express the majority of this variability.

In R
I , the origin of the axes is not located at the centre of gravity of NK : in

this space, the criterion is not interpreted in the same way as in R
K . When

the variables are centred-reduced, OHs
k is the cosine of the angle between vs

and
−−→
OMk , and is therefore interpreted as the correlation coefficient (denoted

r (k, vs)) between variable k and vs . The criterion to be maximised is therefore
expressed:

∑

k

[r (k, vs)]2.

This criterion can be interpreted as an indicator of the relationship between
the function (on I ) vs , and on the other hand the set of K initial variables (it is
worth 0 if vs is uncorrelated with each of the K variables). It expresses that v1
is the function on I (we show that this function is a linear combination of the
initial variables) which is the most closely related (in terms of this criterion) to
the initial variables. In the same way, v2 is the function on I , uncorrelated to v1,
which is the most closely related to K and so on. This does indeed correspond
to the initial objective of searching for synthetic variables.

When the variables are not reduced, OHs
k is the covariance between k and

vs , and the criterion can be expressed:
∑

k

Var[k][r (k, vs)]2.

Thus, an unstandardised PCA can be considered as a PCA on centred-
reduced data in which each variable is attributed the same weight as its vari-
ance. This point of view is valuable when deciding whether to reduce the
data.

1.5.3 Solution

In the Individuals’ Space
In R

K , we are looking for us which maximises the quantity

F ′
s DFs = u′

s X′ DXus,

with the following norm and orthogonality constraints:

||us ||2 = u′
sus = 1 and 〈us, ut〉D = u′

sut = 0 for t < s.
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It can be shown that the vector us for which we searched verifies

X′ DXus = λsus with λs = F ′
s DFs = u′

s X′ DXus .

Thus, us is the unit eigenvector associated with the eigenvalue λs of X′ DX,
as the eigenvalues are ranked in descending order (they are equal to the
inertia that we want to maximise). As usual, by matrix diagonalisation, we
designate the procedure which calculates all of a matrix’s eigenvalues and
eigenvectors. The PCA is therefore based on diagonalising the correlation
matrix in standardised cases and the covariance matrix if not.

Once the vector us has been obtained, the coordinates of the projection of
individuals on the axis of rank s are obtained by

Fs = Xus .

Vector Fs , which contains the coordinates of the individuals on the axis of
rank s, is known as the principal component of rank s (or the factor on I of
rank s). Because it is a linear combination of (centred) initial variables, Fs is
centred. It is easy to demonstrate that the variance of Fs is equal to λs .

Finally, we obtain
∑

s

λs = trace(X′ DX) =
∑

k

Var[k].

The idea of decomposing the total inertia of NI into privileged dimensions
can be clearly seen here.

In the Variables’ Space
In R

I endowed with the metric D, we are looking for vs which maximises

v′
s DXX′ Dvs,

with the following norm and orthogonality constraints

||vs ||2D = v′
s Dvs = 1,

〈vs, vt〉D = v′
s Dvt = 0 for t < s.

It can be shown that the vector vs for which we searched verifies:

XX′ Dvs = λsvs with λs = v′
s DXX′ Dvs .

Thus, vs is the unit eigenvector associated with the eigenvalue λs of XX′ D,
as the eigenvalues are ranked in descending order (they are equal to the inertia
we want to maximise). It should be noted that vs is a linear combination of
initial variables (in Section 1.5.4 we show that its coefficients are in X′ Dvs).
Here we are close to the perspective of R

K previously mentioned about Fs (as
a combination of variables). The relationship between Fs and vs is formalised
in Section 1.5.4.
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Once the vector vs has been obtained, the coordinates of the projection of
variables on the axis of rank s are obtained by

Gs = X′ Dvs .

Vector Gs , which contains the coordinates of the K variables on the axis of
rank s, is known as the factor on K of rank s.

1.5.4 Relationships Between the Analyses of the Two Clouds

From the equation which yields the solution of the fitting in R
K :

X′ DXus = λsus ,

we deduce:

XX′ DXus = λs Xus

or

XX′ DFs = λs Fs .

This illustrates two essential results.

1. λs , here defined as the eigenvalue of X′ DX, is also the eigenvalue
of XX′ D, therefore justifying the use of the same notation for the
eigenvalues from analyses of NI and NK . Thus, the projected inertia
of NI on us (in R

K ) is equal to the projected inertia of NK on vs (in R
I ).

We already saw that these two clouds have the same total inertia, a
property which we classify under the term duality. Here, duality is
considerably enriched.

2. If we retain all the eigenvalues, diagonalising XX′ D yields a perfect
representation of the cloud of individuals (in its principal axes rather
than in the basis of initial variables). This matrix therefore contains
all the information, in terms of the shape of the cloud of individuals,
and can thus represent it. This property is used (in MFA; see Chapter
7) to compare the clouds of points representing the same individuals
in different spaces; indeed, the matrices XX′ D of the different clouds
have the same dimensions and are thus comparable with one another.

Vector Fs , like vs , is an eigenvector of XX′ D associated with the eigenvalue
of rank s. The difference between the two is that vs is standardised (vs is said
to be the standardised principal component) thus

vs = 1√
λs

Fs = 1√
λs

Xus .

This relationship shows that the direction u1 of R
K which best expresses

the variability of NI , corresponds to the ‘best’ synthetic variable v1 (element
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of R
I ). Here, in the results of the PCA, we can see the intrinsic duality of

the objectives. If a direction (us) of R
K expresses a great deal of inertia, the

distribution of the individuals in this direction (Fs) is similar to that of many
of the variables (r2(Fs, k) is high for many k) and Fs can be considered a
synthetic variable.

We can continue this reasoning by switching the roles played by the rows
and the columns. In order to do this, we bring together the coordinates of the
variables (projected) on vs in vector Gs (of dimension K ) thus (see the end of
Section 1.5.3)

Gs = X′ Dvs .

By expressing vs in terms of us and by using the fact that us is the eigenvector
of X′ DX associated with the eigenvalue λs , we obtain:

Gs = 1√
λs

X′ DXus =
√

λsus .

This relationship shows that, up to a coefficient, the coordinates of the K
variables on vs (in R

K ) are the coefficients of the linear combination of variables
defining us (in R

I ). This relationship is vital in the interpretation of axes.
Indeed, we can consider two possible ways of interpreting linear combinations
of variables:

1. The coefficients which define the combination
2. The initial variables to which this combination is linked

The previous relationship shows that these two approaches lead to the same
result.

The relationships linking Fs and vs on the one hand and Gs and us , belong to
the aforementioned duality relationships (and indeed are the most remarkable
elements of this duality): the projection of NI on the one hand and NK are the
two sides of the same analysis. They can be summarised by saying that the
factorial axes of one space are the factors of the other.

We can also link factors together. By expressing Gs in terms of Fs , we obtain

Gs = 1√
λs

X′ DFs .

For the kth coordinate, this equation is written

Gs(k) = 1√
λs

∑

i

pi xik Fs(i).

This result was already mentioned: in the case of standardised PCA, the coor-
dinate of variable k (on vs) is the correlation coefficient between itself and Fs .

By expressing Fs in terms of Gs , we obtain

Fs = 1√
λs

XGs .
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variable k

r(k, F1)

r(k, F2)

F1

F2

v1

v2

v4
v3

FIGURE 1.5
Correlation circle. r : correlation coefficient.

For the kth row, this equation is written

Fs(i) = 1√
λs

∑

k

xik Gs(k).

Along the axis of rank s, individuals have higher coordinates when they
have high values for variables which are positively correlated to Fs and low
values for variables which are negatively correlated to Fs (the and is shown
in as users often ignore this second part). This property is commonly used
(though often implicitly) in interpreting factorial planes. In this format, these
relationships of duality are known as transition relations (understood from
one space to the other), a term which was historically introduced within the
context of correspondence analysis.

1.5.5 Representing the Variables

In standardised PCA, the ‘universally’ accepted representation is that of cor-
relation circles, in which the coordinate of variable k on the axis of rank s is
the correlation coefficient between this variable and the principal component
Fs (see Figure 1.5). In standardised PCA, this representation coincides with
the projection of cloud NK .

This representation can be used to identify quickly which variables are the
most closely correlated with each axis, either positively or negatively. When
a variable presents its two coordinates scarcely different from 0 (that is, when
it is close to the origin), it is orthogonal to the factorial plane. Additional
information on this representation is given in Section 1.6.3.

In unstandardised PCA, the correlation circle and the projection of NK do
not coincide because, in the second case, the projection of a variable on an
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axis is interpreted as covariance. In such cases, analysis is therefore (slightly)
more complicated.

Finally, both in standardised and unstandardised PCA, we might consider
representing variable k on axis s by its coefficient in the linear combination
which defines axis s, that is to say the kth component of us . The previous
section shows that, axis by axis, this representation is proportional to the
projection of NK with coefficient 1/

√
λs .

However, the kth component of us is equal to the projection (on us) of the
unit vector representing variable k in R

K . This is why some users superim-
pose this representation on that of the individuals, thus supplemented with
a projection of the base vectors (of R

K ) on the same subspace. In practice,
this representation has the major drawback of not being able to incorporate
supplementary variables.

1.5.6 Number of Axes

In R
K , there is a maximum of K orthogonal axes. Furthermore, to represent

a set of I points perfectly, at most I − 1 axes (the origin is in G I ) are needed.
The maximum number of axes (with an inertia of positive value) is therefore
min{I − 1, K }.

In R
I , as the variables are centred, they are in a space of I − 1 dimension

(in which there is a maximum of I − 1 orthogonal axes). Furthermore, the
K variables generate a subspace with at most K dimensions. Again here,
the maximum number of axes of inertia with a positive value is therefore
min{I − 1, K }.

1.5.7 Vocabulary: Axes and Factors

The term axis is not ambiguous: it represents a direction in a space. But the
word factor is used with different meanings in different fields; for example, in
R software, it refers to a qualitative variable.

This book uses the concept of factor as introduced by J.-P. Benzécri. When
projecting a set of points on an axis, the coordinates of the projected points are
brought together in a vector which we refer to as a factor. Thus, in R

K space,
we project the set I of individuals on the axis of rank s and the coordinates
of the projections are brought together in the vector denoted Fs ; Fs is known
as the factor on I of rank s. In space R

I , the projection on axis s of all the
K variables leads to vector Gs which is therefore the factor on K of rank
s. Due to transition relations, the factor Fs (and Gs , respectively) calculated
in R

K (and R
I , respectively) is collinear with the axis of rank s in R

I (and
R

K , respectively) on which the variables (and individuals, respectively) are
projected. In summary, we can say that, in factorial analysis, the factors in one
space are the axes in the other.

In PCA, Fs is known as the principal component. The squared norm of
Fs is equal to the sth eigenvalue. When Fs is standardised, it is called the
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standardised principal component: it is the vector vs in R
I on which variables are

projected. Often, we extend the name principal component to all the factors on
I , regardless of the method (MCA, FAMD, etc.) that produced it.

1.6 Interpretation Aids

1.6.1 Percentage of Inertia Associated with an Axis

By dividing the projected inertia of cloud NI (or NK ) onto the axis of rank s (λs)
by the total inertia (equal to K in standardised PCA), we obtain the percentage
of inertia associated with an axis; this percentage is used to measure:

– The quality of representation of clouds (NI or NK ) by the axis of rank s

– The relative importance of axis s (compared to the other axes)

The percentage of inertia does not measure the advantage of a given axis
for the user, firstly because it must be compared to the possible number
of axes with an inertia of positive value. Thus, for example, 70% will not
be considered in the same way if it is the result of the analysis of a table
with the dimensions (5, 4) or (50, 40). In concrete terms, in standardised PCA,
the percentage of inertia of an axis can be compared to what it would be in
the case of absence of structure in the data (spherical cloud of individuals,
with no particular direction of extension, or variables uncorrelated two by
two, which amounts to the same thing) or 100/K which corresponds to an
eigenvalue of 1. Consequently, we must approach with caution when faced
with an axis associated with an eigenvalue of less than 1, which represents
less variability than one single initial variable.

In the same context, we can simulate tables (with fixed dimensions) from
independent variables. We thus obtain a distribution of the first eigenvalue
in which we can situate a first observed eigenvalue. To do this, we apply
a common (unilateral) test approach, with the following H0 hypothesis: the
data stem from a process in which the variables are independent. Concretely,
tables were drawn up to give the 95% quantile of the distributions of the
first eigenvalue for different values of I and K . Even if, in a given case, this
hypothesis does not have a clear meaning, the value of such a table is always
useful, at least for information.

The percentages of inertia can be added over several axes; by adding these
percentages for the first two axes for example, we measure:

– The representation quality of clouds (NI or NK ) by the first plane
– The relative importance of the first plane (compared with other

planes, or with axes considered individually)
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1.6.2 Contribution of One Point to the Inertia of an Axis

Case of an Individual
In the maximised quantity (projected inertia of NI ), we can individualise
the role of each individual, known as their contribution. This contribution is
generally expressed as a percentage (of total inertia) thus, for individual i and
the axis of rank s,

Contribution(i, s) = Projected inertia of point i on s
Projected inertia of NI on s

= pi (OHs
i )2

λs
.

The notion of contribution is important in order to identify specific sit-
uations in which one axis arises from very few individuals, or one single
individual. That said, with that in mind, when individuals are of the same
weight, it is sufficient to look at the individuals on the factorial plane. Measur-
ing contribution is therefore only truly useful when the weights of individuals
are different.

Case of a Variable
In centred-reduced cases, the ‘raw’ contribution (that is, not expressed as a
percentage of total inertia) of variable k on the inertia of axis of rank s is equal
to the square of its correlation coefficient with the principal component Fs

and is therefore read directly on the correlation circle. This is not the case in
unstandardised PCA as the raw contribution is then a covariance. In this case,
the two types of graphs (projection of NK and correlation circle) are required
for interpretation. This is one of the reasons why unstandardised PCA is
considered to be (slightly) more complicated to interpret than standardised
PCA.

Comment. For a given axis, the contributions can be added together to rep-
resent the contribution of a subset of individuals or a subset of variables.

1.6.3 Quality of Representation of a Point by an Axis

A point (individual i or variable k) can be attributed the percentage of inertia
introduced in Section 1.6.1 for a cloud. We thus measure the quality of repre-
sentation (of the inertia) of a point by an axis. Thus, for an individual i and
axis of rank s (see Figure 1.4):

Qlt(i, s) = Projected inertia of i on us

Total inertia of i
= (OHs

i )2

(OMi )2 = cos2(
−−→
OMi , us).

For one point, this indicator can be added over a number of axes (in the same
way as inertia percentages), making it possible to measure the representation
quality of a point by a plane, for example.

In the case of variable k (whether the PCA is standardised or not), this
indicator can be confused with the squared correlation coefficient between
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k and the principal component of rank s (already denoted r (k, Fs)2). In the
correlation circle representation, the quality of representation of a variable by
the plane is evaluated visually by the distance between the point representing
the variable (generally the end of an arrow) and the correlation circle. It is
therefore not necessary to draw up indicator tables for the variables’ quality
of representation.

Thus, in Figure 1.5, variables v1 and v2 are well represented and the angle
which they form gives a good idea of the correlation coefficient (close to 1).
However, variables v3 and v4 are poorly represented and we can infer nothing
from their proximity on the graph.

In practice, for the individuals, this indicator is mainly used to select a
few individuals with the aim of illustrating an axis: if an individual is well
represented by the axis, its ‘particularity’ (that is to say its deviation from the
mean point) mainly refers to the axis and it will be easy to link its coordinate
(on this axis) with its data.

1.7 First Example: 909 Baccalaureate Candidates

Here we comment on the results of the standardised PCA conducted on the
aforementioned table of the five grades received on the Baccalaureate by 909
students. Table 1.6 given at the end of the chapter brings together the data for
a number of individuals mentioned in the text and on the graphs. Compared
to the data files, this table is transposed in order to write the complete labels
of the variables.

1.7.1 Projected Inertia (Eigenvalues)

With 5 variables and 909 individuals, there are a maximum of 5 factorial axes
of nonzero inertia (see Section 1.5.6). The decrease in eigenvalues (see Table 1.1
along with Figure 1.6) reveals a predominant factor. Moreover, only the first
eigenvalue has a value of more than 1. For this reason, we might think that
only the first axis should be retained for interpretation. In fact, we retain more:

TABLE 1.1
Bacc. PCA. Eigenvalues and Percentages of Inertia

Axis Eigenvalue Percentage of Inertia Cumulative Percentage

1 2.4081 48.16 48.16
2 0.9130 18.26 66.42
3 0.6623 13.25 79.67
4 0.6419 12.84 92.51
5 0.3747 7.49 100.00
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FIGURE 1.6
Bacc. PCA. Barplot of eigenvalues.

this is an interesting feature of this example, which is food for thought on how
to select the axes to retain for interpretation.

1.7.2 Interpreting the Axes

Having checked the regular shape of the cloud of individuals on the factorial
planes (in other words, that no axis comes from a small number of individuals
alone, in which case the interpretation would be conducted first in terms of
the individuals), we can make interpretations using the correlation circles (see
Figure 1.7).

The first axis is a size effect: all the variables are positively correlated with
one another and thus with the first principal component; this axis opposes the
students who obtained high grades in all subjects (such as 264) and those who
obtained low grades in all subjects (such as 863). This axis can be interpreted
as the general level (of the student), or the general average. Indeed, if we calculate
the general average (without coefficients) of the five subjects, we observe a
correlation coefficient of .9992 between this average and the first principal
component, thus validating the interpretation.

The second axis opposes scientific subjects (maths and physics) with literary
subjects (philosophy and history–geography), and at the same time, the students
with a scientific profile, that is, subjects having higher grades in the scientific
subjects than in literary subjects (such as 850), with the students with a literary
profile (such as 46).

The simplest way to reach this interpretation is to consider the coordinate
of a variable (on the axis of rank s) as its coefficient (up to the coefficient√

λs) in the linear combination defining us (see Section 1.5.4); here, for axis 2:
u2 = 0.5 maths + 0.42 physics – 0.50 history–geography – 0.47 philosophy –
0.14 natural sciences, which can be assimilated with:

ũ2 = 1
2

(maths + physics) − 1
2

(hist–geo + philosophy)
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FIGURE 1.7
Bacc. PCA. Representation of individuals and variables on three factorial planes; a few individuals
are represented by their ordinal number in the file.
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This clearly shows that the students with a positive coordinate for the sec-
ond axis do not have a high grade (in itself) in scientific subjects but have a
higher grade in scientific subjects than in literary subjects (for example, com-
pare 253 and 264: the scientific profile of 253 can in part be attributed to the
low grade in philosophy).

If we calculate the linear combination of the variables defined by ũ2, we
obtain a new variable whose correlation coefficient with the second principal
component (F2) is worth 0.963, thus validating the interpretation.

The third principal component is essentially correlated with the grade in
natural sciences, which is the subject the least well represented on the first
plane. We could therefore name this axis Specificity of natural sciences. It is
important to differentiate between this axis and the natural sciences variable
itself, as here we must reason ‘orthogonally to axes 1 and 2.’ In other words,
this axis opposes the students (such as 566) who obtained a high grade in
natural sciences (high compared to their other grades) with those (such as 557)
who scored low in this subject (low compared to their other grades). Again,
we consider the linear combination corresponding to the third vector (in R

K )
u3:

u3 = 0.72 natural sciences − (0.13 maths + 0.14 physics + 0.29 history–
geography + 0.16 philosophy),

which we could assimilate with:

0.7 [natural sciences - 1
4 (maths + physics + history–geography + philoso-

phy)].

If we apply this last formula to the data, we obtain a new variable for
which the correlation coefficient with F3 is worth .9700, thus validating the
interpretation.

The fourth axis confronts philosophy and history–geography. These two vari-
ables appear closely linked on the first plane, a relationship which partic-
ipates both in the size effect and the notion of literary profile. Here, our
position is at a constant general level and at a constant (scientific versus
literary) profile, and we highlight profiles which are either philosophy-
oriented or history–geography-oriented. If we calculate the philosophy − history–
geography variable, we observe a correlation coefficient of 0.9864 between
this variable and the fourth principal component (F4). As an example, to
illustrate this fourth principal component, we could compare students 807
and 253.

The fifth axis confronts maths with physics, therefore the students who ob-
tain a higher grade in maths than in physics (such as 238 or 419) with students
with the opposite characteristic (such as 557 and 807). Applying the same
reasoning as for the fourth axis to this fifth axis leads to the calculation of
the physics − maths difference; the correlation coefficient between the vari-
able resulting from this difference and the fifth principal component is worth
.9884.
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1.7.3 Methodological Remarks

Interpretability and Percentage of Inertia
Thus, in this analysis, all of the axes can be clearly interpreted. This is therefore
an unusual case, which clearly highlights two important points:

1. PCA can be seen as a base change (to examine the variability of indi-
viduals beginning with the dimensions with the greatest inertia); in
the most common applications, we use only the first axes of the new
base, reducing the visibility of this point of view.

2. The interpretability of an axis is not necessarily associated with high
inertia; here, the fifth axis is both clear (its interpretation is simple and
the position of the individuals can be easily linked to the data) and
marginal (it represents very little variability: the maths and physics
grades are correlated (r = .62) and the deviation between the two
corresponds to little variability).

Two Readings of the Correlation Circle
In the representation of variables, the coordinate of variable k along the axis
of rank s can be considered in two different ways (see Section 1.5.4):

1. The correlation coefficient between variable k and principal compo-
nent Fs

2. The coefficient of variable k in the linear combination defining axis
us in R

K (up to the coefficient
√

λs)

Generally, the first approach is favoured. In this example, we mainly used
the second, which is better suited to situations in which the linear combi-
nations of variables can be interpreted easily. To do this, the variables must
be expressed in the same units. It must be noted that the linear combina-
tions presented above were calculated from raw variables, which yields a
more striking interpretation. To better ‘fit’ the PCA, it is possible to apply
these combinations to the centred-reduced variables, which does not change
much in these data where the standard deviation varies only slightly from one
variable to another (by doing this, the correlation coefficients between these
combinations and the principal components increase slightly in four out of
five cases).

In practice, a significant advantage of the first approach is that it can also be
applied to (quantitative) supplementary variables (see the following section).

Validating the Interpretation
Analysing the representations of active variables led to interpretations in the
form of combinations of initial variables. Then, in order to validate these
interpretations, we calculate these combinations. This yields new variables
which we introduce as supplementary elements. We describe this technique
in detail in the next section. This practice is very general: the interpretation
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of an axis often suggests calculating combinations (which may or may not
be linear) of variables, or introducing new variables, in order to validate the
interpretation.

PCA and Synthetic Visualisation
PCA is mainly used to obtain a synthetic view of a data table; we ‘re-
place’ the initial variables K with two or three synthetic variables (the
principal components). This point of view is called dimension reduction.
However, in this example, it is tempting to retain the five axes as all five
can be easily interpreted. As we start with only five variables, there is
no dimension reduction and, from this ‘countable’ perspective, there is no
synthesis.

Nevertheless, even if we retain all five axes, it is more interesting (in our
opinion) to comment on the PCA than on the initial variables. We let you as
the reader judge for yourself, but would like to draw your attention to two
points. Unlike the initial variables, the principal components are:

1. Organised into a hierarchy (in descending order of variance)
2. Uncorrelated with one another

1.8 Supplementary Elements

An element, be it an individual or a variable, is said to be supplementary if
it does not participate in constructing the axes on which it is represented. In
practice, factorial analysis is almost always performed with supplementary
elements, and in particular, supplementary variables. When faced with an
available set of variables, the decision to consider a given variable as either
active or supplementary is not always easy and the objectives of the analysis
must be precisely specified. In real cases, the easiest approach is to reason in
terms of individual profiles, and to ask oneself which variables participate in
creating this profile.

Let us look back at the example of the 909 students. For these students we
have access to:

– Baccalaureate grades for five subjects
– Five grades for these five subjects obtained during the school year,

here called year grades

– The high school, a qualitative variable with 23 categories

The high school variable, being qualitative, cannot be active. In any case,
we are studying school profiles and of course the high school is not part of
that. Nonetheless, we do not believe this variable should be eliminated, as
it is interesting to link the principal dimensions of variability of the school
profiles with the high schools (see the following section).
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There are three options for the other variables:

1. Define the school profiles from the Baccalaureate grades alone, for
example, because they are more rigorously comparable from one stu-
dent to another when we consider all high schools together, or simply
because the Baccalaureate grades are the principal object of the study;
retaining the year grades as supplementary means linking them to
the principal dimensions of variability of the Baccalaureate profiles
in order to enrich the interpretation (in concrete terms, in-depth in-
terpretation of one dimension of variability of Baccalaureate grades
will vary depending on whether it is closely correlated with the year
grades, or not at all).

2. Define the school profile from the year profiles alone, for example,
because the students’ work during the year is the main object of the
study; therefore retaining the Baccalaureate grades as supplementary
means associating them with the principal dimensions of variability
of the ‘year’ profiles.

3. Define the school profile from the set of 10 grades because we are not
focussing on one subset.

In the example, the projection of year grades yields the graphs in Figure 1.8.
On the first plane, the year grades closely follow Baccalaureate grades. This
is not the case (or only very slightly) for the following axes. This suggests that
the commentaries of the first axes refer to students’ ‘structural’ profiles (a high
grade is associated with a ‘long-term’ aptitude) and those of the following axes
refer to ‘temporary’ profiles (a high grade corresponds to temporary success
such as luck, cramming, etc.).

From this we retain:

– The need to specify the (active/supplementary) status chosen for each
variable

– The advantage of the notion of individuals’ profiles to make this
choice; that is to say to connect it directly to the precise objective of
the analysis

– The meaning of the supplementary status of a variable: link the vari-
able to the principal dimensions of variability of the profiles

Remark
In R

I , projecting a variable y on the plane defined by the first two axes (v1 and
v2) means estimating the parameters of the multiple linear regression model
expressing y in terms of v1 and v2. Indeed, as v1 and v2 are uncorrelated, their
coefficients in the multiple regression are the same as those of the simple
regression. And, when the (explanatory and response) variables are centred
and reduced, the latter are equal to their correlation coefficient with y (which
is why this coefficient is denoted r ).
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FIGURE 1.8
Bacc. PCA. Right: representations from Figure 1.7 to which we have added year grades as sup-
plementary variables. Left: representation of high schools as their students’ centres of gravity.
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1.9 Qualitative Variables in PCA

Principle
PCA is designed to analyse several quantitative variables simultaneously.
Thus, qualitative variables cannot intervene as active (elements). However,
qualitative variables can be introduced as supplementary (elements), that
is to say, linked to principal components. In concrete terms, introducing a
supplementary qualitative variable in PCA can occur as described below.

On factorial planes, we can identify individuals by a symbol designating
their category for a variable; in the Baccalaureate data, this means representing
students by the numbers given to their high school, for example. This makes
it possible to analyse precisely (visualising both between-high schools and
within-high school variability) the relationship between a qualitative variable
and the principal components (a level of precision which is indeed rarely
necessary), but it makes it possible to study only a single variable at a time.

On the factorial planes, we can also represent the centres of gravity of
individuals presenting the same category of a variable (for all the categories
of all the variables); this procedure is less precise than that detailed above (it
does not visualise within-high school variability) but it is used to visualise
the categories of multiple qualitative variables at once.

Intuitively, a quantitative variable and a qualitative variable are linked if
the individuals of the same class (a class gathers the individuals having the
same category for the qualitative variable) have similar values for the quan-
titative variable. More precisely, we decompose the variability of the quanti-
tative variable according to the partition defined by the qualitative variable.
We therefore obtain the equation of the analysis of variance which, in our
language, can be expressed (in which case we call it Huygens’ theorem):

Total inertia = between-classes inertia + within-class inertia

The squared correlation ratio divides between-inertia by total-inertia. This
is the percentage of inertia ‘explained’ by the qualitative variable.

Therefore, the overall intensity of the relationship between a qualitative
variable q and a principal component Fs can be measured by the squared
correlation ratio between q and Fs . We can then construct a representation
of the variables using this measurement as a coordinate. This representation
is particularly useful when there are a large number of qualitative variables,
which is not the case in the example of Baccalaureate grades. It is described
in more detail later and illustrated in multiple correspondence analysis (see
Figure 2.3).

The significance of this relationship can be measured using the p-value as-
sociated with the overall F test of the factor effect in the one-way analysis
of variance ‘explaining’ component Fs using variable q . As in a regular anal-
ysis of variance, this overall test is a prerequisite to detailed examination of
the categories outlined below. When there are a high number of qualitative
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TABLE 1.2
Bacc. PCA. Indicators of the Relationship Between the High School Variable,
and the Principal Components and Initial Variablesa

PCA (Factor) p-Value η2 Variable Label p-Value η2

F5 2.28E-21 0.156 Hist.-Geo. year 9.85E-28 0.187
F3 5.20E-15 0.123 Hist.-Geo. Bacc. 6.65E-18 0.138
F1 2.67E-12 0.108 Philo. year 2.71E-17 0.135
F2 5.60E-09 0.088 Maths Bacc. 3.89E-16 0.129
F4 2.58E-07 0.078 Bacc 5.02E-11 0.100

Nat. Sciences Bacc. 1.06E-10 0.099
Phys. year 1.90E-08 0.085
Physics Bacc. 4.02E-08 0.083
Philosophy Bacc. 7.41E-08 0.081
Cont. Bacc. 1.08E-05 0.067
Nat. Sciences year 1.82E-05 0.065
Maths year 4.78E-05 0.062

a These indicators are calculated from the analysis of variance explaining a
principal component, or an initial variable, from the high school. The p-value
is that of F of the overall high school effect.

variables, it can be used to rank them in hierarchical order for each principal
component.

The significance of the deviation, along axes of rank s, between (the centre
of gravity of the individuals which carry) category j (of variable q ) and the
origin of the axes (the mean point G I ) can be evaluated in many ways. One
helpful way is to use the p-value associated with the coefficient of category j
in the analysis of variance mentioned above. An indicator like this is essential
to accompany the representation of the centres of gravity of these categories
as it takes into account, in addition to the deviation from the origin of the axes
(the coordinate), the within-category variability as well as the frequency of
categories (one same coordinate can be significant if it corresponds to a large
frequency and not significant otherwise).

Baccalaureate Grades Example
The indicators between the (qualitative) high school variable and the principal
components are brought together in Table 1.2.

All of the p-values for the PCA factors are highly significant: the high school
variable is undoubtedly linked to all of the dimensions from the PCA. The
percentages of variance explained by the high school may seem weak, but we
must consider the context. For a given subject, we ‘know’ that, independently
of the high school, there will be a great difference between the students’ levels.
The ‘temporary’ variability related to a specific exam is added to the ‘struc-
tural’ individual variability. The resulting individual variability is important.
Where does the high school effect come from in this case? Such an effect may,
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TABLE 1.3
Bacc. Statistics for Students from High School 2a

Grade High School 2 Average General Average p-value

Maths Bacc. 11.737 13.207 0.117
Physics Bacc. 13.684 11.002 0.001
Maths year 10.456 10.950 0.493
Physics year 12.148 11.166 0.082

a Averages, in mathematics and physics, and p-value of the corre-
sponding coefficients in the analysis of variance.

for example, be due to a selective entrance exam or students being more or
less well prepared for the exam. When we take all of these factors into account,
the observed percentages (between 7.8% and 15.6%) could be considered as
being rather high.

Due to this set of significant relationships, we examine the relationships
between the high schools and the initial variables. We highlight the same
indicator values: overall, the high school explains 10% of the variability of
each of the grades on the Bacc.

More precisely, each high school is represented on each factorial plane
as its students’ centre of gravity (see Figure 1.8). For example, according
to its position on the plane (1,5), high school 2 (S2) is medium from the
point of view of the overall set of results of its students, but very unusual
from the point of view of the pair (mathematics, physics): its students scored
much higher in physics than in mathematics, as verified and specified in
Table 1.3.

Axis 5 presents a specific interest, as it is the last and is associated with
an eigenvalue (0.38) of much less than 1; we have already shown (see
Section 1.7.3) that its clear interpretation suggests it should be retained for
comment despite its low inertia. This decision is backed up by its strong
relationship with the high school variable.

Generally, a significant relationship between a principal component and
an illustrative variable is a strong argument for not simply considering this
component as noise. This is not a very strong argument in the particular
case of the high school variable in this example, as this variable is linked
to all of the initial variables. Nonetheless, it must be noted that the high
school variable is most closely related to precisely this fifth principal com-
ponent. Furthermore, the high schools which are the best characterised by
this axis (2, 7, 20, 18) have only a small number of students (19, 11, 19, 20)
which very probably correspond to one single class; a situation in which the
high school effect could in fact be expressing a ‘teacher’ effect. These clues
are given merely as an example; they illustrate how PCA in general, and
particularly supplementary qualitative variables, can help in exploring data
tables.
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TABLE 1.4
The Six Orange Juices Studied

n◦ Brand Origin Type

P1 Pampryl Other Ambient
P2 Tropicana Florida Ambient
P3 Fruvita Florida Refrigerated
P4 Joker Other Ambient
P5 Tropicana Florida Refrigerated
P6 Pampryl Other Refrigerated

1.10 Second Example: Six Orange Juices

The following data are the subject of many different analyses in this book.
There are two objectives to the following example: to illustrate an interpretive
approach using a small example, and to give a first glimpse of these data to
appreciate better the more detailed analyses which are made in subsequent
chapters.

Six pure orange juices (see Table 1.4) were chosen from the leading brands on
the market (in 1997) which exist both as refrigerated (fr; in the store, these juices,
which are less pasteurised, must be kept refrigerated) and ambient (amb; in
the store, these juices are presented on normal shelves at room temperature).
Three of these juices are made with Florida oranges (both Tropicana juices
and the Fruvita juice).

These six juices were subjected to eight chemical measurements: two pH
measurements, titre, citric acid, sugars and vitamin C. A total of 96 student en-
gineers from a higher education establishment specialising in the food indus-
try, who were used to tasting products and who were orange-juice drinkers,
each described these six products according to seven descriptors: odour inten-
sity, odour typicity, taste intensity, pulpy characteristic, sweetness, sourness
and bitterness. They also expressed an overall hedonic evaluation. The data
table (represented transposed in Table 1.5) confronts the six orange juices in
the rows with, in the columns, the 8 + 7 + 1 quantitative variables to which
we add two qualitative variables, each with two categories: origin (Florida/
other) and type (ambient/refrigerated).

Our first look at this focuses on the chemical variables. For a given product,
its values for the eight measurements make up its chemical profile. To highlight
the principal dimensions of variability for these chemical profiles, we perform
a PCA in which the chemical measurements are introduced as active.

The sensory descriptors are introduced as supplementary with the aim of
answering the question: are the principal dimensions of variability (of chem-
ical data) related to sensory descriptors? Moreover, introducing the origin
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TABLE 1.5
Orange Juice. Chemical and Sensory Data

P1 P2 P3 P4 P5 P6 Average

Glucose (g/L) 25.32 17.33 23.65 32.42 22.70 27.16 24.76
Fructose (g/L) 27.36 20.00 25.65 34.54 25.32 29.48 27.06
Sucrose(g/L) 36.45 44.15 52.12 22.92 45.80 38.94 40.06
Raw pH 3.59 3.89 3.85 3.60 3.82 3.68 3.74
Refined pH 3.55 3.84 3.81 3.58 3.78 3.66 3.70
Titre 13.98 11.14 11.51 15.75 11.80 12.21 12.73
Citric acid 0.84 0.67 0.69 0.95 0.71 0.74 0.77
Vitamin C 43.44 32.70 37.00 36.60 39.50 27.00 36.04
Odour intensity 2.82 2.76 2.83 2.76 3.20 3.07 2.91
Odour typicity 2.53 2.82 2.88 2.59 3.02 2.73 2.76
Pulp 1.66 1.91 4.00 1.66 3.69 3.34 2.71
Taste intensity 3.46 3.23 3.45 3.37 3.12 3.54 3.36
Sourness 3.15 2.55 2.42 3.05 2.33 3.31 2.80
Bitterness 2.97 2.08 1.76 2.56 1.97 2.63 2.33
Sweetness 2.60 3.32 3.38 2.80 3.34 2.90 3.06
Overall evaluation 2.68 3.01 3.27 2.67 2.97 2.65 2.87

and the type of juice makes it possible to link these dimensions to these two
variables. (Is the principal dimension of the chemical variability of the juices
related to their origin? To their type?) The results of this PCA are presented
in Figures 1.9 and 1.10.

Dim 1 (77.66%)

Dim 2 (13.74%)

Odour intensity

Odour typicity

Pulpy

Taste intensity

Sour

Bitter

Sweet

Overall evaluation

Dim1 (77.66%) 

Dim 2 (13.74%)

Glucose

Fructose

Saccharose
Raw pH

Refined pH

Titre
Citric acid

Vitamin C

FIGURE 1.9
Orange Juice. PCA. Representation of active (left) and supplementary variables (right) on the
first plane.
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Dim 1 (77.66%)

Dim 2 (13.74%)

P1 Pampryl amb.

P2 Tropicana amb.

P3 Fruvita fr.

P4 Joker amb.

P5 Tropicana  fr.

P6 Pampryl fr.

Florida

Other

Ambient

Refrigerated

FIGURE 1.10
Orange Juice. PCA. Representation of the individuals and categories of the supplementary qual-
itative variables (in italics).

The first plane expresses 91.4% of the inertia, and we must limit ourselves
to this.

The first axis is predominant (77.68%). It opposes the two pH measurements
with the titre and the citric acid. Here this corresponds to juices 2, 3 and 5, with
low acidity, in opposition with the other more acidic juices. The distribution
of sugars is related to this acidity. The nonacidic juices are proportionally
richer in sucrose. This opposition between sugars is related to the hydrolysis
of sucrose (in glucose and fructose), hydrolysis which is accentuated in acidic
environments. This axis can be summarised by ‘acidity’. It is related to the
juices’ origins: the Florida juices are less acidic than the others. The second
axis corresponds to vitamin C.

The representation of sensory variables shows a strong relationship be-
tween (measured) acidity and sensory description. The chemically acidic
juices (4, 1, 6) are perceived as sour, but also bitter and not sweet. Conversely,
the juices which are chemically not very acidic (2, 3, 5) are perceived as not
sour but also not bitter, and sweet. Finally, the overall evaluation is closely
related to the first factor: overall, the tasters preferred the sweet juices with
low sourness and bitterness.

1.11 PCA in FactoMineR

The factorial methods described in this book are available in the R package
FactoMineR. It is possible to use them directly, using lines of code, or by using
R Commander. We begin by presenting the latter technique which is simple
but, of course, less flexible. To illustrate our ideas we use the Baccalaureate
data analysed previously in this chapter. These data were imported, either us-
ing the importation menu in FactoMineR or using the read.table function
(see below).
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FIGURE 1.11
Main PCA menu in the drop-down FactoMineR menu.

Drop-Down Menu in R Commander

Main Menu (See Figure 1.11)

1. The (quantitative) active variables are selected in the main window.
They are not necessarily adjacent. By default, all the (quantitative)
variables are active.

2. By default there are no quantitative supplementary variables. By us-
ing the drop-down menu, we ignore the quantitative variables in the
file which are not selected as active. This button opens a menu to
choose the quantitative supplementary variables (in the same way as
we select active variables in 1).

3. By default, all the individuals are active. This button opens a win-
dow containing the list of individuals in which the supplementary
individuals are chosen.

4. In R terminology, the qualitative variables are called factors. By default
there are no qualitative supplementary variables. This button opens a
window containing the list of qualitative variables (a list here reduced
to the High School variable). In this list, we choose the qualitative
variables to introduce as supplementary. By using the drop-down
menu, we ignore the qualitative variables in the file which are not
selected.
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FIGURE 1.12
Graphical options window.

5. Open the window as seen in Figure 1.12.
6. Here we can select the results tables to be exported and specify a ‘.csv’

file name (Excel-compatible file type) in which all of these tables will
be brought together.

7. Reducing (here namedscale) the variables means conducting a stan-
dardised PCA (the default option). By not reducing the data, we ob-
tain a unstandardised PCA, in which each variable is attributed a
weight equal to its variance.

8. Used to perform a clustering (Ward’s method) from factorial coordi-
nates, this sequence makes it possible to produce results using both
those of the clustering and those of the PCA (such as a factorial plane
in which the individuals are colour-coded according to which group
they belong to by the partition defined from the hierarchical tree).
This sequence of a classification following a factor analysis is avail-
able for all the factorial methods in FactoMineR. It is illustrated in
MFA (Chapter 4).

Graphical Options (See Figure 1.12)

1. The elements represented on this type of graph can be the active
and/or supplementary individuals and/or the barycentres of the in-
dividuals presenting one single category.

2. The elements can be labelled. In the example, the individuals are
shown simply with a point whereas the high schools are labelled.



34 Multiple Factor Analysis by Example Using R

3. Different kinds of points can be attributed different colours.
4. Each individual (that is, its point and/or label) can be attributed a

colour representing the category of a qualitative variable (here a dif-
ferent colour for each high school).

5. On the graphs we can choose to show only the closest variables to
the correlation circle (that is, the most well represented) which can be
very useful when there are many of them.

6. and 7. It is possible to label and colour the variables in the same way
as the individuals.

Examples of Commands

The working directory is the one containing the data file under the name
Bac.csv. These data are imported into R (in the file, or data.frame, Bac) by

> Bac=read.table("Bac.csv",header=TRUE,sep=";",dec=",",
+ row.names=1)

Edit the first two rows of the file to check the import.

> Bac[1:2,]

HighSchool MAT PHY NS HG PHI mat3t phy3t sn3t hg3T phi3T
1 L_4 11 12 10 7 5 12.50 9.83 12.60 10.63 9.70
2 L_4 15 12 10 11 13 13.47 11.13 10.83 11.33 10.23

The data are in theBacdata-frame. The eleven columns are in the following
order: the high school, the five Baccalaureate grades, and the five year grades.

The PCA (PCA function) on the Baccalaureate grades alone can be launched
by choosing the default options. By default, all the available (quantitative)
variables are active. This is why, in this command, the variables are restricted
to columns 2 to 6.

> res=PCA(Bac[,c(2:6)])

The fileres contains all of the results tables. By default, the basic graphs are
displayed: representation of the individuals and variables on the first plane.
We obtain other graphs using the plot.PCA function; for example, to obtain
the representation of the variables on plane (3,4):

> plot.PCA(res,axes=c(3,4),choix="var")

To introduce the year grades (quantitative variables in columns 6 to 10) and
thehigh school (qualitative variable in the first column) as supplementary:

> res=PCA(Bac,quanti.sup=c(7:11),quali.sup=1)
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All of the qualitative variables must be explicitly declared as supple-
mentary. The presence of an undeclared qualitative variable will lead to
an error message. The individuals and the barycentres associated with the
categories evolve within the same space and, by default, are represented
simultaneously.

By default, the active and supplementary quantitative variables are rep-
resented simultaneously (see Figure 1.8, right). In order to obtain a graph
featuring the barycentres of the categories alone (see Figure 1.8, left), we sim-
ply hide (invisible) the individuals.

> plot.PCA(res,axes=c(1,2),choix="ind",invisible="ind")

To group together the results tables in a single .csv file:

> write.infile(res,file ="Output_ACP_Bac.csv")

To obtain Table 1.3, we calculate the centred and reduced data table using the
scale function (result in Bac_CR).

> Bac_CR=scale(Bac3[,2:11])*sqrt(909/908)

Remark
In the scale function, the variance used is the estimation of the population
variance (denoted σ̂ 2). Thus

σ̂ 2 = 1
I − 1

∑

i

(xi − x̄)2 = I − 1
I

Var [x] .

To use the sample variance (denoted Var[x]), we therefore have to multiply
the result of the scale function by

√
I/( I − 1).

This makes it possible to edit the centred-reduced data of individuals 46
and 238, for example:

> Bac_CR[c(46,238),]

Table 1.6 contains the transpose data (t function) rounded to two decimal
places (round function) and limited to a set of individuals, the rank of which
we put in a vector (called list_ind_etiq).

> list_ind_etiq=c(46,238,264,253,419,557,566,638,807,850,863)
> round(Bac_CR_t[,list_ind_etiq],2)

To obtain Table 1.4, we use the catdes function (category description)
accessible in the FactoMineR menu, or using the command:

> results=catdes(Bac,num.var=1)
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This function links a qualitative variable to each of the other variables in
the file. Table 1.2 (right) is in:

> results$quanti.var

To obtain Table 1.2 (left), we apply the catdes function to the principal com-
ponents. In order to do this, we concatenate (cbind function) the file of the
individuals from the PCA (res$ind$coord) to the raw data:

> Tout=cbind(Bac,res$ind$coord)

We check the operation by listing the columns of the data.frame Tout.

> colnames(Tout)
[1]"HighSchool" "MAT" "PHY" "SN" "HG" "PHI" "mat3t" "phy3t" "sn3t"
[10] "hg3T" "phi3T" "Dim.1" "Dim.2" "Dim.3" "Dim.4" "Dim.5"

Then we apply catdes, discarding the initial variables (from 2 to 11).

> results=catdes(Tout[,c(1,12:16)],num.var=1)

Table 1.4 (left) is in

> results$quanti.var

Script for Analysing the Orange Juice Data

Below is the script relating to Section 1.10. It contains some elements of R
which are useful in factor analysis.

# Import and verification
> Orange=read.table("Orange5.csv",header=TRUE,sep=";",dec=",",
+ row.names=1)
> summary(Orange)

# PCA with the only active variables (Baccalaureate grades)
> res<-PCA(Orange[,1:18],quanti.sup=c(11:18),quali.sup=c(1,2))

# Figures 1.9 and 1.10
# Representation of individuals and then variables
# The cex argument modifies the font size of the labels
# The command x11() opens a new window

> plot.PCA(res,choix="ind",col.quali="black",cex=1.3)
> x11()
> plot.PCA(res,choix="var",cex=1.3,invisible="quanti.sup")
> x11()
> plot.PCA(res,choix="var",cex=1.3,invisible="var",
+ col.quanti.sup="black")
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2
Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is the factorial method adapted to
tables in which a set of individuals is described by several qualitative vari-
ables. It can be presented in many different ways. In France, following the
work of L. Lebart, the most common is to focus on the similarities with cor-
respondence analysis, a method designed to study the relationship between
two qualitative variables. In the perspective of simultaneously processing
quantitative and qualitative variables for the same individuals, which is one
of the strengths of multiple factor analysis (MFA), it is important to focus
on the similarities between principal component analysis (PCA) and MCA.
This is presented in this section. In the presentation chosen for this chapter,
which follows that of PCA as closely as possible, we nonetheless do not come
to the conclusion that MCA is simply a specific case of PCA. They are in-
deed two entirely distinct methods belonging to the same family: factorial
analyses.

2.1 Data

The data are made up of a set of I individuals each described by a set of J
qualitative variables. The structure of the raw data table is identical to that of
the table used for PCA:

– Each row i corresponds to a (statistical) individual.
– Each column j corresponds to a (qualitative) variable.
– At the intersection of row i and column j , we find the value of variable

j for individual i . Compared to PCA, the difference here is that this
value is not quantitative: it is the category possessed by i for variable
j (see Figure 2.1).

The most common example of this type of data, which will often serve as a
reference, is that of a survey. The statistical individuals are the people ques-
tioned and the variables are the questions themselves. Thus, for the question,
“What kind of job do you do?” participants respond by choosing from a set
of predefined responses, for example: {manual labourer, employee, senior
management, etc}.

39
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In practice, in the questionnaires, the response categories for a given ques-
tion are often ranked. Thus, in an opinion poll, a classic approach is to offer a
set of statements (in surveys, it is called a battery of items): for each statement,
the participant must express his or her agreement or disagreement using a
scale identified by a set of ordinate categories. For example:

Express your agreement or disagreement with the following statement. All
nuclear power plants should be closed.

1. Totally disagree
2. Disagree
3. Agree
4. Totally agree

We could consider variables like this to be quantitative: that is to say, a de-
gree of agreement ranging from 1 (totally disagree) to 4 (totally agree). In an
example, we show the advantage of considering them as qualitative.

2.2 Complete Disjunctive Table

The table described in the previous section corresponds to a table of data
as it should be entered into software. Another way of representing the data
is a table crossing the individuals in rows with the categories in columns
featuring, at the intersection of row i and column k (belonging to variable j),
value yik which is:

– 1 if individual i possesses category k (of variable j)
– 0 in all other cases

This table is not explicitly calculated by the user, but the MCA is based on
it. It is known as a complete disjunctive table (and denoted CDT; see Figure 2.1):
if we consider the yik relative to any individual and any variable, these values
always contain one 1 (complete) and only one 1 (disjunctive). Furthermore,
we denote:

– J the number of variables
– K j the number of categories of variable j

– K the total number of categories: K = ∑
j K j

– pk the proportion of individuals possessing category k: pk =
1/I

∑
i yik

Until now, we have implicitly considered that all the individuals are at-
tributed the same weight (1/I , concretely, to obtain a total sum of weights
equal to 1). This is indeed the case in the great majority of applications but
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FIGURE 2.1
Condensed coding table (left) and complete disjunctive table (CDT, right). xi j : Category of j
possessed by i . yik = 1 if i possesses the category k (of j) and 0 in all other cases. Row l:
Numerical example with K j = 5 and xi j = 2.

there is nothing to prevent us from attributing each individual a specific
weight pi . In this case, quantity pk must account for them: pk = ∑

i pi yik

Quantity pk can thus be interpreted as the weight of the set of individuals
with category k. This justifies our choice to use the same letter p for the
weight of an individual (pi ) as for a set of individuals (pk). To simplify our
presentation, we mostly examine cases in which the individuals have the
same weights (thus considering pk as a proportion).

The columns of this table are known as indicators (or indicator functions).
They have a remarkable property which is highly important in MCA: the sum
of the indicators for a given variable is a constant function (equal to 1). The
result is that the column margin (a column for which the term i is the sum
of terms for row i) is a constant function equal to J, the number of variables.
The row margin, on the other hand, contains the category frequencies.

2.3 Questioning

Our example is a classic case: data from an opinion poll. The first step is
to examine the frequencies in the different categories. First and foremost,
the investigator will be interested in the answers to specific questions such
as how many people like a given politician or how many students found a
given course (statistics) useful, and so on. The second stage is to examine the
relationships between pairs of variables. We might ask questions such as are
favourite politicians linked to given professions or are attitudes to nuclear
power related to attitudes to justice. The contingency table, constructed by
crossing the responses to two questions, is the most common tool for analysing
surveys and opinion polls.

These first two steps can be used to study the variability of respondents
from both a one-dimensional and two-dimensional point of view. They are
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analogous with histograms and scatter plots for quantitative variables. Then,
it is necessary to go further: as with PCA for quantitative variables, the main
aim of MCA is to study the variability of the individuals from a multidimen-
sional perspective.

With this in mind, we consider each participant from the point of view of all
of his or her responses, which we can call their response profile. As for PCA, the
diversity of these profiles will be studied using their principal dimensions of
variability. At this general level, the objectives of PCA and MCA are identical.

Similarly, as in PCA, we are also interested in the relationships between the
variables. However, the variables are qualitative: not all of a relationship can
be summarised by an indicator such as the correlation coefficient, even in a
first approach (the relationship indicators between two qualitative variables
only measures the intensity or the significance of the relationship, but tells
us nothing about the nature of the link). We must visualise the associations
between categories: for example, the relationship between the variables eye
colour and hair colour is characterised by the privileged association between
the categories blue eyes and blonde hair; among other things, people with blue
eyes more often have blonde hair than other people; blondes more often have
blue eyes than other people. The most important elements of the results of an
MCA lie in the graphical representation in which each category is represented
by a point, and the proximity between two points expresses a privileged
association between the two corresponding categories.

Also as in PCA, this overall visualisation of the relationships will be estab-
lished from the synthetic quantitative variables used to construct the factorial
planes. As in PCA, aside from their usefulness in representing categories, the
search for synthetic variables can be an objective in itself. This perspective is
less obvious in MCA as these synthetic variables are not of the same type as
the variables that they synthesise. In concrete terms, a set of qualitative vari-
ables is summarised using quantitative variables by associating a coefficient
to each category and, for each individual, calculating the sum of the coeffi-
cients for each of the categories it possesses. The difficulty is in choosing the
coefficients. In factorial analysis, the main idea is to choose synthetic variables
with the greatest possible variance.

2.4 Clouds of Individuals and Variables

Let us consider the complete disjunctive table. By following the approach used
in PCA, we construct the cloud of rows (individuals) and of the columns (cat-
egories) for this table. The analogy with PCA is clearly seen when considering
each column of the CDT as an indicator variable.

As in PCA, the data table must be transformed prior to the analysis. Indeed,
in the raw CDT, the possession of a category k by an individual i induces
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the value yik = 1. However, this category k does not characterise individual
i in the same way, depending on its frequency in the sample population:
specifically, from the point of view of the analyst, possession of a rare category
characterises an individual more than a frequent category. This is the origin
of the idea behind relativising yik by the frequency of category k, which can
be performed by transforming yik as follows:

xik ← yik/pk .

With this transformation, possession of category k induces, for individual i ,
a value of xik equal to, for example:

– 1 if k is possessed by all individuals
– 2 if k is possessed by half the population
– 4 if k is possessed by a quarter of the population

Furthermore, the mean for each column k is worth 1. As the columns must
be centred, the final transformation is expressed:

xik ← yik/pk − 1.

In this chapter we present MCA from the unstandardised PCA of xik .

2.4.1 Cloud of Individuals

We consider all the data for individual i : {xik ; k = 1, K }. This individual can
be represented by a point in space R

K (known as the individuals’ space). We
thus construct the cloud of individuals denoted NI . By default, this cloud is
centred (the origin is at the centre of gravity). Each individual i is attributed
the weight pi so

∑
i pi = 1; this weight is generally constant, pi = 1/I .

In defining distance in R
K , we must specify which weight is attributed

to each dimension, that is to say, to each category. In MCA, this weight is
proportional to the frequency of the category, thus taking into account the
constraint according to which the sum of all weights is 1: the weight of cate-
gory k = mk = pk/J .

This counterbalancing is ‘natural’ if we consider a category as the set of indi-
viduals which possesses it, a valuable point of view for analysing the results,
as we show later. The direct justification for counterbalancing in this way is
clearer in the categories’ space (the categories’ weights in this space induce
the metric within R

K ). Indirect justifications lie in the positive properties of
the MCA.

Distance Between an Individual i and the Centre of Gravity of NI

The centre of gravity of NI is denoted G I .

d2(i, G I ) =
∑

k

pk

J

(
yik

pk
− 1

)2

= 1
J

∑

k

yik

pk
− 1.
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This distance takes into account the not null coefficients yik for individual
i , induced by the categories it possesses. The mean of these coefficients (more
precisely its deviation from the value 1) indicates the extent to which the
individual i presents rare categories. The more rare categories it presents, the
farther it is from the origin (and thus the more unusual it is; a satisfactory
interpretation of a distance from the origin).

Total Inertia of NI (With Respect to GI )

Total Inertia (NI /G I ) =
∑

i

pi d2(i, G I ) = K
J

− 1.

The total inertia of the cloud depends not on the content of the data table
but on one aspect of its format: the mean number of categories per variable.
This result is the same as that of standardised PCA, in which the total inertia
is equal to the number of variables (and therefore does not depend on the
content of the table).

Distance Between Two Individuals i and l

d2(i, l) =
∑

k

pk

J

(
yik

pk
− ylk

pk

)2

=
∑

j

I
J

∑

k∈K j

pk

(
yik

pk
− ylk

pk

)2

.

The last term identifies the contribution of variable j to the distance between
i and l. If individuals i and l present the same category for variable j , this
contribution is worth 0. Otherwise, by denoting k (and, respectively, h), the
category possessed by i (and, respectively, l), it has a value of

1
J

(
1
pk

+ 1
ph

)

.

Thus, two individuals are all the more distant when they possess different
categories for a large number of variables, and particularly when these cate-
gories (thus possessed by only one of the two) are rare. This distance is more
than satisfactory.

Remark
The distance between two individuals i and l can also be expressed:

d2(i, l) =
∑

k

J
pk

( yik

J
− ylk

J

)2
= 1

J

∑

k

1
pk

(yik − ylk)2 .

We reach this relationship when, as is usually the case, we present MCA
from correspondence analysis: the data are transformed into profiles and the
category k is attributed to the inverse of its weight. The PCA of xik does indeed
yield the same results as the MCA.
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2.4.2 Cloud of Categories

We keep in mind that a category, as a column of a CDT, can be considered
as an indicator variable. After the transformation and centring introduced in
the previous section, column k of the analysed table X is no longer exactly
an indicator but differs only slightly as it is a function constant on the classes
of the partition of the individuals associated with k (partition made up of
two classes, that of individuals possessing k and that which groups the others
together).

The categories, as columns of X, can thus be plunged into the space of
functions on I (often known as the variables’ space and denoted R

I ) identical
to that introduced in PCA: each dimension corresponds to an individual;
the weights of the individuals define the (diagonal) metric; the categories
make up cloud NK ; being centred, they belong to the subspace orthogonal
to constant functions. Each category is attributed a weight proportional to
its frequency, thus for category k, pk/J . This weight must be the same as
that of the category in the definition of the distance in the individuals’ space.
In the following analysis, a direct justification of this weight is to favour
the categories which concern a great number of individuals. The properties
induced by these weights provide indirect justifications.

The categories are not reduced. The variance of category k, equal to the
squared distance to the origin O due to the centring, is worth:

Var [k] = d2(k, O) =
∑

i

pi

(
yik

pk
− 1

)2

= 1
pk

− 1.

A category possessed by all of the individuals lies at the origin. Otherwise,
the less frequently it occurs, the farther it is from the origin. However, in the
factorial analysis of NK , the categories intervene through their inertia. The
influence of frequency pk of category k thus intervenes on two levels:

1. That of the weight, which increases with pk

2. That of the distance to the origin, which decreases with pk

The inertia (with respect to O) of category k is worth

Inertia (k/O) = pk

J
d2(k, O) = 1 − pk

J
.

Finally, the rarer they are, the greater influence categories have. This result
is fairly natural: in differentiating between individuals, very frequent cate-
gories are not of particular interest; very rare categories draw attention to
the individuals who possess them. However, within the context of an overall
study aiming to highlight general phenomena, focussing on a succession of
individual cases is rather awkward. This is the reason for grouping together
rare categories with others (for example, for an item such as that mentioned in
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Section 2.1, if it is rarely used, we group together the extreme category totally
agree with the category agree).

It must be noted, in passing, that the total inertia of NK , obtained by adding
together the inertias for all categories, is equal to that of NI , which is an ele-
ment of the duality between the two clouds shown in the case of quantitative
variables. Thus,

Inertia (NK /O) =
∑

k

inertia(k/O) =
∑

k

1 − pk

J
= K

J
− 1.

The following property is extremely important: the centre of gravity of the
categories of one given variable lies at the origin of the axes. Indeed, the ith
coordinate of this centre of gravity for variable j , is worth:

∑

k∈K j

pk

J

(
yik

pk
− 1

)

= 1
J

⎡

⎣
∑

k∈K j

yik −
∑

k∈K j

pk

⎤

⎦ = 1
J

(1 − 1) = 0.

Thus, the centre of gravity of the whole of cloud NK itself lies at the origin of
the axes. Thus, in MCA, both clouds NI and NK are centred.

It seems helpful to evaluate the relative positions of categories, or in other
words, the shape of cloud NK . Following the PCA analogy suggests calculat-
ing the correlation coefficients between indicators. This unusual case of the
correlation coefficient (called the point-biserial correlation coefficient) is not
easy to interpret directly. Thus, in MCA, we are more interested in the dis-
tance between categories. When applied to categories k and h, this distance
is expressed (where pkh is the proportion of individuals who possess k and h
simultaneously):

d2(k, h) =
∑

i

pi

(
yik

pk
− yih

ph

)2

= pk + ph − 2pkh

pk ph
.

In the last expression, the numerator represents the proportion of individuals
who possess one, and only one, of the categories k and h. The denominator
relativises (standardises?) this proportion by those of categories k and h taken
separately (a same number of individuals possessing one and only one of the
two categories k and h ‘distances’ yet the farther these two categories the
rarer they are). The distance between two categories is therefore interpreted
intuitively.

2.4.3 Qualitative Variables

Up until now, the qualitative variables have only been considered through
their categories. It is clear that the categories play a central role in the MCA
approach: an individual is characterised by the categories it possesses; the
relationship between two qualitative variables is analysed through the as-
sociations between their categories. It is no less important to note that the
variables as such influence interpretation.
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In R
I , variable j is first represented by its K j categories. Prior to centring, the

categories of a given variable are orthogonal two by two (the corresponding
scalar products are null); they thus generate a subspace of K j dimensions.
This subspace is that of linear combinations of the indicators of j , therefore
functions (defined) on I which are constant within the classes of the partition
(of I ) defined by j .

All of these subspaces share the axis of constant functions (for which the
unit vector, which is made up only of ones, has already been denoted 1).
After centring (which consists of projecting NK on the subspace orthogonal
to 1), the subspace associated with each variable j is of the dimension K j − 1:
it contains the centred functions constant within the classes of the partition
defined by j .

The total inertia of the K j categories k of variable j is worth:

Inertia of categories of j/O =
∑

k∈K j

1 − pk

J
= K j − 1

J
.

This inertia is even greater when the variable possesses many categories.
Firstly, this result can be awkward as the user does not always control the
number of categories of the variables; for example, the variable gender has
two categories (man and woman) whereas the variable region has 21 cate-
gories (in France). Naturally, the user does not wish to make regions 20 times
more important than gender. In fact, inertia (K j − 1)/J for variable j must
be viewed in terms of the dimension (K j − 1) of the subspace generated by
(the categories of) variable j : the higher the inertia, the more it is distributed
according to a high number of dimensions. More precisely, as shown later,
the inertia of the categories of variable j is constant (and equal to 1/J ) in the
projection in whichever direction of the subspace they generate.

Thus, in researching the first axis of inertia, no one variable is favoured.
However, the gender variable can only be strongly related to one single axis
(therefore opposing men and women) whereas the region variable can be
related to many (20) dimensions (opposing, for example, north and south, east
and west, Brittany and Normandy, etc.). This fully justifies the proportionality
of the total inertia of one variable with the number of categories.

If we project category k (of variable j) on a centred unit vector v of R
I (of

which the ith coordinate vi is the value of function v for individual i), the
length of this projection is worth (where v̄k is the average of function v for
individuals possessing category k):

〈k, v〉 =
∑

i

1
I

(
yik

pk
− 1

)

vi = v̄k .

This result is widely used in MCA and is also true when the individuals
have different weights. Until now, we have considered a category essentially
as a (indicator) variable. At this point, we encounter the second point of view,
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previously mentioned regarding the attribution of weights to categories: a
category can be considered as the set of individuals which possess it. What is
remarkable is that this second point of view, which naturally appears in the
individuals’ space, here appears in the space of functions (defined) on I .

Now, we project all of the categories k of variable j (denoted K j ) onto v.
The inertia of these projections is worth:

Projected inertia of K j on v = 1
J

∑

k

pk v̄2
k .

= between-class inertia of j = 1
J

η2 ( j, v) .

Up to the 1/J coefficient, this inertia is equal to the between-class inertia of the
v function when considering the partition of individuals defined by variable
j . As the total inertia of v is worth 1, this between-class inertia can be seen
as the percentage of inertia (of v) ‘explained’ by qualitative variable j . It is
thus equal to the squared correlation ratio between qualitative variable j and,
on the other hand, quantitative function v. This indicator, denoted η2 ( j, v), is
the classical measurement of the relationship between a quantitative variable
and a qualitative variable. It can be shown that this indicator is interpreted
geometrically as the squared cosine of the angle between quantitative variable
v and the subspace generated by qualitative variable j .

This is a notable result. It shows that, within the same space of functions
on I , it is useful to immerse both quantitative and qualitative variables as
the measurement of (the intensity of) the relationship between two variables
of different types is expressed simply in this space. This is the keystone of
simultaneously analysing these two types of variables (as we do in factorial
analysis of mixed data, FAMD, and of course in MFA); it offers a geometric
framework for synthesising a set of qualitative variables by one (or a small
number of) quantitative variable(s).

2.5 Fitting Clouds NI and NK

As in PCA, the two clouds NI and NK are each projected onto a series of
orthogonal axes of maximum inertia.

2.5.1 Cloud of Individuals

Applying this procedure to the cloud of individuals is justified in the same way
as in PCA: as cloud NI is centred, the inertia of its projection in a given direction
u measures the variance of the projected points. If we consider the coordinate
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of the projection of i on u as the value of i for the (linear) combination of initial
variables defined by u, this inertia is the variance of this combination.

From a technical viewpoint, the only difference when compared with PCA
is that, when calculating a distance in R

K , the dimensions are attributed a
weight (pk/J for dimension k). In other words, space R

K is endowed with
a (diagonal) Euclidian metric which is not the usual metric. If we organise
these weights on the diagonal of a square matrix M, of dimension K , the
scalar product between the two vectors u and v of R

K is expressed:

〈u, v〉M = u′Mv =
∑

k

pk

J
ukvk .

We thus deduce:

‖u‖2
M = 〈u, u〉M = u′Mu =

∑

k

pk

J
u2

k .

With these notations, along with those for PCA (see Section 1.5.1), the factor
on I of rank s (vector for which the ith coordinate is that of the projection of
i on us , denoted Fs) is expressed:

Fs = XMus .

The projected inertia of NI on us is expressed (the weights pi of the individuals
are organised on the diagonal of the diagonal matrix D of dimension I ):

F ′
s DFs = u′

s MX′ DXMus .

The only real difference when compared with PCA is the presence of the
weight of each dimension of R

K through matrix M. We are looking for a
sequence of orthogonal axes with maximum inertia. For the direction of rank
s, the criterion is expressed:

F ′
s DFs maximum

with norm and orthogonality constraints:

‖us‖2
M = u′

s Mus = 1 and 〈us, ut〉M = u′
s Mut = 0 for t < s.

It can be shown that vector us verifies

X′ DXMus = λsus

with

λs = F ′
s DFs = us MX′ DXMus .

As in PCA, the results of the MCA are based on diagonalisation. The eigen-
vectors define the axes on which cloud NI is projected; the eigenvalues corre-
spond to the projected inertias. Similarly to PCA, the Fs vectors are sometimes
referred to as principal components.
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2.5.2 Cloud of Categories

Again here, as in PCA, we project cloud NK onto a sequence of orthogonal axes
of maximum inertia. However, the properties of cloud NK vary depending on
which of the two analyses is used. In MCA, the projected inertia of categories
K j of a given variable j on a unit vector v is proportional to the squared
correlation ratio between j and v. Therefore, the projected inertia of NK is
worth

Projected inertia of NK on v = 1
J

∑

j

η2 ( j, v).

Thus, the factors (on I ) of the MCA are the functions on I which are the most
closely linked to the initial variables (in terms of the average of the squared
correlation ratios). This property is highly important for two reasons:

1. It validates the process as a whole (application of the factorial method-
ology to the recoded CDT).

2. It draws yet another parallel between PCA and MCA (in PCA each
factor on I , that is to say each principal component, maximises the
sum of the squared correlation coefficients between itself and the
initial variables).

Expressing eigenvalues as averages of correlation ratios makes their inter-
pretation useful independently of the percentage of inertia. The maximum
value 1 corresponds to a dimension shared by all of the subspaces created
by the variables. In concrete terms, this dimension is associated with a syn-
thetic partition (of individuals) in the sense that whatever the variable, if two
individuals possess the same category, they belong to the same class of the
synthetic partition. This is only possible if the qualitative variables are closely
linked with one another: the categories of each variable can be merged so
that the new J variables thus defined might be identical. The eigenvalue λs

therefore measures the intensity of the relationships (between the variables)
expressed by the axis of rank s.

The matrix formalisation of this approach in R
I uses that of the PCA (in R

I )
with, in addition, the weights of the columns taken into account (organised
on the diagonal of matrix M). Gs = X′ Dvs groups together the coordinates of
the K categories along the axis of rank s (of unit vector vs). We are looking for
vs which maximises the variance of these coordinates (in MCA, cloud NK is
centred thus making it possible to interpret inertia with respect to the origin
as a variance; this is not the case in PCA) thus

G
′
s MGs = v′

s DXMX′ Dvs

with norm and orthogonality constraints:

‖vs‖2
D = v

′
s Dvs = 1 and 〈vs, vt〉D = v′

s Dvt = 0 for t < s.
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It is shown that vs verifies

XMX′ Dvs = λsvs

with λs = G ′
s MGs = v′

s DXMX′ Dvs .

Thus vs is the unit eigenvector associated with the eigenvalue λs of XMX′ D;
the eigenvalues correspond to the projected inertias and are ranked in de-
scending order.

2.5.3 Relationships Between the Two Analyses

As in PCA, the solution in R
K is expressed:

X′ DXMus = λsus

that leads to

XMX′ DXMus = λs XMus .

Thus, as Fs = XMus :

XMX′ DFs = λs Fs .

Fs , the sth factor on I , is, like vs , an eigenvector of XMX′ D associated with
the eigenvalue λs . These two vectors are collinear. The squared norm of Fs is
λs and vs is standardised. Thus

vs = 1√
λs

Fs .

The linear combination of categories, as a vector of R
K on which NI is projected

(that is, us), yields a function on I (Fs) collinear to vector vs of R
I on which

NK is projected.
This result clearly expresses the duality between the two analyses: the func-

tion on I the most closely related (in terms of the average of the squared
correlation ratios) to all of the variables corresponds to the dimension of max-
imum variability of the cloud of individuals. This is the same as in PCA (if we
replace correlation ratio with correlation coefficient). This is the basis for simulta-
neously interpreting the representations of NI and NK . In MCA, this duality
is expressed in a particularly remarkable way. In calculating Gs , we express
the link between vs and Fs , thus

Gs = X′ Dvs = 1√
λs

X′ DFs .

For the kth coordinate, we obtain (as Fs is centred):

Gs (k) = 1√
λs

1
pk

∑

i

pi yik Fs(i).
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Therefore, up to a coefficient, the coordinate of category k on the axis of rank
s (in R

I ) is equal to the mean of the coordinates (in R
K ) of the individuals

possessing category k.
This property is vital to interpretation: the user is more likely to consider a

category as a centre of gravity of the individuals than as a (projected) indicator.
Concretely, the proximity on a factorial plane between categories k and h is
interpreted as a profile similarity between the individuals possessing category
h and those possessing category k. This similarity is automatic when these two
categories are possessed by the same individuals (thus ensuring proximity
between the corresponding indicators) but can be observed differently (the
case of the two neighbouring categories of a given variable, for example,
the age ranges 60–65 years and 65–70 years; no individual possesses both
categories at once, but we might think that those which possess one have the
same response profile as those possessing the other).

As in PCA, we use this reasoning by switching the roles of the rows and
the columns.

In R
I , vector vs verifies

XMX′ Dvs = λsvs .

Hence

X′ DXMX′ Dvs = λs X′ Dvs .

But Gs = X′ Dvs . Therefore

X′ DXMGs = λs Gs .

Gs is an eigenvector of X′ DXM associated with the eigenvalue λs and is
therefore collinear to us ,

Gs =
√

λsus .

This property is used to express Fs according to Gs . Thus

Fs = XMus = 1√
λs

XMGs .

Hence, for the coordinate of row i along us (Gs is centred):

Fs (i) = 1√
λs

1
J

∑

k

yik Gs(k).

Thus, up to a coefficient, the coordinate of individual k on the axis of
rank s (in R

K ) is equal to the mean of the coordinates (in R
I ) of the cate-

gories it possesses. This relationship and the previous one (expressing Gs(k)
according to Fs(i)) are known as transition relations as they express the coor-
dinates of the points in one space (RI or R

K ) according to the coordinates of
the points in the other space.
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2.6 Representing Individuals, Categories and Variables

Representing Individuals and Categories
In MCA, transition relations are particularly simple and suggest superimpos-
ing the representations of individuals and categories. They can therefore be
expressed as follows. Along each axis, up to a coefficient:

– An individual is at the barycentre of the categories it possesses.
– A category is at the barycentre of the individuals that possess it.

This is why the term barycentric properties is used for transition relations (we
also say quasi-barycentric to refer to the fact that the categories are barycentres
only up to a coefficient).

In the practice of MCA, for example, in opinion poll data processing, the
individuals are often numerous and anonymous (the only thing we know
about them are their answers). Thus, the cloud of individuals is only consulted
for its general appearance, with attention focused on the representation of the
categories. With this in mind, some users prefer to represent categories by
their exact barycentres.

Representing the Variables
Particularly when there are a high number of variables, considering the vari-
ables is useful prior to considering the categories. Some questions users
might want to know the answers to are which variables are most closely
related to a given axis, and which variables contributed most to a given
axis.

Thanks to the correlation ratio (between variable j and the factor on I of
rank s) it is possible to answer these two questions as its square (already
denoted η2 ( j, Fs)) measures both:

– The intensity of the relationship between variable j and the factor of
rank s

– The contribution of variable j to the inertia of dimension s (see ex-
pression of this inertia according to η2 ( j, Fs))

These coefficients can be represented by a graph in which the coordinate of
variable j along direction s is η2 ( j, Fs). Such a graph, an example of which
is given in Figure 2.3, highlights those variables most closely linked to one
of the two axes or to both of them. As the coordinates are between 0 and 1,
the points are situated within a square (with sides with a length of 1), which
is why this graph is called the relationship square. It must be noted that we
can also represent quantitative variables on this graph by using the squared
correlation coefficients as coordinates (between these variables and the factors
Fs). Other properties of this relationship square are described in the context
of MFA (Chapter 7).
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Number of Axes
In R

K , it is possible to find K orthogonal axes. But, in MCA, the K j categories
of variable j are linked by a relationship (their sum counterbalanced by the
weights of the categories is null). From this point of view, the maximum
number of axes is K − J. In addition, cloud NI is made up of I points; at most
I − 1 axes are necessary in order to represent them perfectly. Finally, in MCA,
the maximum number of axes with not-null inertia is min {I − 1, K − J }.

In R
I , the categories, being centred, are situated within a subspace of dimen-

sion I − 1. Furthermore, after centring, each variable j generates a subspace
of dimension K j − 1. All of the variables therefore generate a subspace with
a maximum dimension of K − J. Finally, again we find that in MCA, the
maximum number of axes with nonzero inertia is min {I − 1, K − J }.

2.7 Interpretation Aids

The interpretation aids presented for PCA (Section 1.6) can be directly applied
to MCA.

Percentage of Inertia Associated with an Axis
Inertia itself (associated with an axis), as a mean of squared correlation ratios,
has already been discussed. The percentage of inertia, as in all factorial anal-
ysis, measures the representation quality of the whole cloud (NI or NK ) by an
axis or plane.

In practice, compared to PCA, MCA generally leads to:

– Smaller percentages of inertia
– A smoother decrease of these percentages

When faced with such a result, users accustomed to working with PCA
are often disappointed, in particular by the low percentages of inertia. This
point requires some clarification. Everything stems from the fact that each
qualitative variable (with K j categories) corresponds to a subspace (of K j

dimensions). We can get a feeling for these low percentages by considering
the limit case in which all the variables are identical to one another. In such a
case:

– PCA yields a first axis associated with a percentage of inertia of 100%
(and thus 0 for all following axes).

– MCA yields K j − 1 axes across which the 100% of inertia is evenly
distributed.

Thus, for example, in the presence of variables with five categories, the
percentage of inertia associated with the first axis cannot exceed 25%. More
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generally, we can calculate the ratio between the upper limit of projected
inertia (1) and the total inertia (K j − 1 = 4 in this example).

Contributions

The same comments can be made about the contribution of an individual
in MCA as in PCA. The contributions of the variables have already been
discussed. The contribution (denoted CTRs (k)) of a category k (to the inertia
of axis of rank s) can be considered in two different ways. From its definition
in space R

I ,

CTRs (k) = pk

J
Gs(k)2,

in R
K we obtain (by denoting F̄s(k) the coordinate of the barycentre of the

individuals possessing the category k):

CTRs (k) = 1
J

1
λs

pk F̄s(k)2.

The contribution of a category k can therefore also be expressed in R
K : it

is proportional to the inertia of the barycentre of the individuals possess-
ing category k. This point of view enhances the interpretation of the MCA
criterion in R

K . Until now, we have aimed to express the maximum variabil-
ity of the individuals by a reduced number of dimensions. If, within R

K , we
consider the cloud of barycentres associated with the categories, it appears
that the axes of the MCA also separate these barycentres ‘at best’.

Supplementary Elements
In practice, as for PCA, MCA is almost always performed using supplemen-
tary elements. Introducing supplementary individuals or qualitative variables
(and therefore categories) is not particularly problematic. Apart from the fact
that they do not participate in constructing the axes, these elements are pro-
cessed in the same way as the active elements.

Moreover, we can introduce supplementary quantitative variables in MCA.
In such cases, we calculate the correlation coefficients between these variables
and the factors on I . As in PCA, the variables are then represented in the
correlation circle. They can also be represented in the relationship square (see
Section 2.6).

2.8 Example: Five Educational Tools Evaluated by 25 Students

2.8.1 Data

For a first look at the method, it is best to apply it to a small dataset which will
lead to clear interpretations. In order to do this, we constructed a small table
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TABLE 2.1
Educational Tools. Raw data

N◦Ind. Text Animation Films Class Book Exercise Book

1 1 1 1 1 1
2 2 2 1 1 2
3 1 2 2 2 1
4 2 2 2 2 1
5 3 2 3 1 2
6 1 1 1 5 4
7 2 1 1 4 4
8 3 3 3 1 2
9 3 3 3 2 1
10 2 2 2 4 3
11 1 1 2 5 5
12 1 2 1 5 5
13 3 3 3 3 3
14 3 4 4 2 2
15 3 4 5 2 1
16 5 4 4 1 1
17 4 4 4 2 2
18 3 3 3 5 4
19 4 5 5 2 2
20 4 4 4 3 4
21 4 4 4 4 4
22 5 5 5 4 4
23 5 4 5 5 5
24 5 4 5 5 5
25 5 5 4 5 5

which is the result of a survey of 25 students about their opinion concerning
the usefulness of educational tools available to them.

There are five tools: three of them are components of an online class, that
is to say a text, animations and films describing software use. There are also
two books, one a class textbook and the other a book of exercises. We asked
students to evaluate the usefulness of each of these five tools on a five-point
scale ranging from 1 = useless to 5 = very useful. The raw data table is made
up of I = 25 rows and J = 5 columns (see Table 2.1). Here the variables are
considered to be qualitative; the table is therefore analysed using MCA.

The categories of these variables are ordered. As previously mentioned, this
type of variable (often known as an ordinal variable) can also be considered
quantitative and can therefore be analysed by a PCA. At the end of this chapter,
we will make some comparisons between these two points of view, using this
dataset.

Finally, it must be noted that, in practice, the number of individuals in this
study (25) is not sufficient for performing MCA. This is because studying
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FIGURE 2.2
Ed. Tools. MCA. Eigenvalues.

relationships between qualitative variables requires more individuals than
when studying relationships between quantitative variables. To get a good
idea of this, let us consider the contingency table confronting two variables.
In the example, no matter which pair of variables we are considering, the
table has 25 cells. It is clear that 25 individuals are not sufficient to identify
‘stable’ irregularities in the distribution of these individuals over the 25 cells (it
is these irregularities that show the notable associations between categories,
which are at the heart of the relationship between qualitative variables). That
being said, as our objective is to illustrate the method by connecting the results
of an MCA to the raw data, this ‘instability’ is not problematic (especially as
the data chosen to illustrate the MCA do not result from a real survey).

2.8.2 Analyses and Representations

The decrease of the eigenvalues (see Figure 2.2) clearly suggests retaining the
first two axes for interpretation. The first two eigenvalues are similar: the first
plane formed by the first two axes is stable rather than the axes themselves.

The percentages of inertia associated with these first two axes (15.92% and
15.42%) may seem low to PCA users. However, when we consider the number
of categories for each variable, we know that this percentage cannot exceed
25%. As the first two eigenvalues themselves (0.64 and 0.62) are means of
squared correlation ratios, they can be considered as high: each of the first
two factorial dimensions is closely related to all of the variables.

If we decompose this inertia according to the variables, we obtain (up to
the coefficient J = 5) the squared correlation ratios between the factors on I
and the variables (see Figure 2.3). We can clearly see that the first two axes
are dominated by the three components of the online classes and that the two
books only intervene in forming the first axis.

Representing Individuals
The representation suggests a tripolar structure (see Figure 2.3, right); the first
axis separates individuals {5, 8, 9, 13, 18} from the others. The second axis
separates the remaining individuals into two distinct groups.
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Ed. Tools. MCA, first plane. Relationship square (left). Representation of individuals (right).

Representing Categories
As the categories of a given variable are ordered, we highlight this information
by connecting them (in order) on the graph (the broken line thus obtained is
often called the trajectory).

We begin by commenting on axis 2, which is the simplest (see Figure 2.4).
Indeed it highlights a ‘linear’ relationship between the three components of
the online class: axis 2 organises the students from those who judged these
three components as useless (example: n◦1) to those who judged them to
be very useful (example: n◦ 22). This dimension, which we could summarise
as being the attitude to online classes, is not related to opinions about the
books.

The first axis, however, opposes:

– For the online class, average categories with extreme categories
– For the books, categories quite useful and very useful with the others

As is (almost) always the case, it is concrete to reason in terms of the in-
dividuals (this is particularly true in this example where the distribution of
individuals is discontinuous). The first axis therefore identifies individuals
5, 8, 9 and 13 who expressed average opinions about the online classes and
negative or average judgements about the books. Opposite, we find the indi-
viduals who found the books very useful but whose opinions were divided
concerning the online class, with some finding it useful (21 to 25) whereas the
others did not (6, 7, 11 and 12).

Despite its small size, this example clearly illustrates the results of the MCA
that the users need: a representation of the individuals emphasising the princi-
pal dimensions of their variability, a representation of categories emphasising
their most remarkable associations and a tool for describing the relationships
between qualitative variables.
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Ed. Tools. MCA. Representation of categories on the first plane.

2.8.3 MCA/PCA Comparison for Ordinal Variables

The categories of the variables in these data are ordered. As we have already
said, this characteristic is sufficiently common to warrant further comment;
in particular, such variables can also be considered as quantitative and thus
processed using a PCA. This example is the opportunity to compare these
two approaches.

PCA only considers linear relationships. In the space of functions on I (RI ),
a quantitative variable is represented by a vector; the relative positions of two
variables is limited to their angle (the cosine of which geometrically represents
the correlation coefficient). In MCA, qualitative variables are represented by
the same number of points as of categories. The relative positions of two
variables can be of various patterns. This corresponds well to the notion of
relationships between qualitative variables which are much more complex, or
from another point of view, much richer, than the linear relationships between
quantitative variables.

In MCA, emphasising nonlinear relationships is characterised in concrete
terms by:

– Irregular deviations between consecutive categories in a general
monotone pattern; this is the case for the components of the online
class of which categories 2 and 4 are much closer to the correspond-
ing extreme categories (1 and 5) than to the central category 3; this
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TABLE 2.2
Ed. Tools. Burt Tablea

Tex1 Tex2 Tex3 Tex4 Tex5 Ani1 Ani2 Ani3 Ani4 Ani5 Fil1 Fil2 Fil3 Fil4 Fil5 Lco1 Lco2 Lco3 Lco4 Lco5

Ani1 3 1 0 0 0 4 0 0 0 0 

Ani2 2 3 1 0 0 0 6 0 0 0 

Ani3 0 0 4 0 0 0 0 4 0 0 

Ani4 0 0 2 3 3 0 0 0 8 0 

Ani5 0 0 0 1 2 0 0 0 0 3 

Fil1 3 2 0 0 0 3 2 0 0 0 5 0 0 0 0 

Fil2 2 2 0 0 0 1 3 0 0 0 0 4 0 0 0 

Fil3 0 0 5 0 0 0 1 4 0 0 0 0 5 0 0 

Fil4 0 0 1 3 2 0 0 0 5 1 0 0 0 6 0 

Fil5 0 0 1 1 3 0 0 0 3 2 0 0 0 0 5 

Lco1 1 1 2 0 1 1 2 1 1 0 2 0 2 1 0 5 0 0 0 0 

Lco2 1 1 3 2 0 0 2 1 3 1 0 2 1 2 2 0 7 0 0 0 

Lco3 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 2 0 0 

Lco4 0 2 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 4 0 

Lco5 3 0 1 0 3 2 1 1 2 1 2 1 1 1 2 0 0 0 0 7 

Lex1 2 1 2 0 1 1 2 1 2 0 1 2 1 1 1 2 4 0 0 0 

Lex2 0 1 3 2 0 0 2 1 2 1 1 0 2 2 1 3 3 0 0 0 

Lex3 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 

Lex4 1 1 1 2 1 2 0 1 2 1 2 0 1 2 1 0 0 1 3 2 

Lex5 2 0 0 0 3 1 1 0 2 1 1 1 0 1 2 0 0 0 0 5 

a juxtaposition of tables crossing variables pairwise.

‘isolation’ of category 3 stems from the fact that, for the components
of the online classes, these categories are almost systematically asso-
ciated with one another (in comparison, category 1 is associated with
2 and 4 with 5).

– Convergences between extreme categories (1 and 5) of a variable
which are associated in the same way with the categories of another
question; this, for example, is the case of exercise_book_5 (Exe5) which
is associated as much with category 1 as for 5 for the text component
of the online class.

We can easily find the origins of these representations by examining tables
crossing variables pairwise (see Table 2.2).

The representations of individuals and variables on the first plane of the
PCA performed on these same data (see Figure 2.5) show:

– A strong correlation between the components of the online class; the
students who find one component useful (and, respectively, useless)
generally find the other components useful (and, respectively, use-
less).

– A strong correlation between the two books; the students who find
one book useful (and, respectively, useless) generally find the other
book useful (and, respectively, useless).
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FIGURE 2.5
Ed. Tools. PCA. Representation of individuals (left) and variables (right).

– No correlation between the online class and the books.

This example clearly illustrates that which we can expect from the two ap-
proaches. As expected, the linear relationships between the variables appear
more clearly in PCA, but the nonlinear aspects are absent.

It should be noted that the percentage of inertia associated with the first
plane varies considerably from one analysis to the other (31.33% in MCA;
94.16% in PCA). PCA users may believe they have accurately described the
variability of their data, but this will not be the case for those using MCA.
However, the MCA plane is richer than that of PCA. This is because in PCA
we are limited to linear relationships and in this case the first plane of this
PCA gives a near-perfect image of these data. The context of MCA is wider-
reaching. This can be illustrated with a simple example: it is better to have
31.33% of four million euros than 94.16% of only one million (1 and 4 are
the dimension of the subspace generated by one variable in each of the two
cases).

However, the plane of the PCA is valuable precisely because of its minimal-
ist nature. We show in Section 8.4 how MFA can provide a method uniting
the advantages of both approaches.

2.9 MCA in FactoMineR

To illustrate this application, we use the Educational tools data. The variables
are introduced twice, both as qualitative and as quantitative. In order to work
with a more general dataset, a qualitative variable (which is supplementary)
is added (the discretised sum of the five grades called Class-Grade: A, B, C,
D, E).
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FIGURE 2.6
Main MCA window in the drop-down FactoMineR menu.

Drop-Down Menu in R Commander

The window which appears when we select MCA is reproduced in Figure 2.6.
The comments are the same as those made for PCA.

– 1. (Qualitative) active variables are selected in the main window. They
are not necessarily adjacent in the table. If nothing is selected, all of
the (qualitative) variables are active and the quantitative variables
are ignored.

– 2, 3 and 4. By default there are no supplementary elements. By using
the drop-down menu, we ignore the variables in the file which are
not selected as active or supplementary.

– 5. Open the window as seen in Figure 2.7.
– 6. Select the results tables to be listed and specify a .csv file name in

which all of these tables will be brought together.
– 7. Used to conduct a clustering of individuals (Ward’s method) from

factorial coordinates, this clustering following a factorial analysis is
available for all the factorial methods. It is illustrated for MFA in
Chapter 4.

FactoMineR offers three types of graph for MCA (see Figure 2.7).

1. This is the classic graph for MCA which can contain both the indi-
viduals and the categories of the qualitative variables (known in R as
factors), no matter whether they are active or supplementary.
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MCA Graphical options window.

2. These three types of elements can be selected and labelled (or not)
independently. Often, it is not useful to label the individuals, and the
general shape of the cloud they form is sufficient.

3. Attribution of colours to the types of elements to be represented.
4. The quantitative variables, always supplementary in MCA, are repre-

sented using their correlation coefficients with the factors. The result
is a correlation circle which is read in exactly the same way as in PCA
for the supplementary variables.

5. The relationship square (see Figure 2.3) is used to represent the quali-
tative variables themselves simultaneously (via their correlation ratio
with the factors), rather than their categories, along with the quanti-
tative variables (via their correlation coefficient).

6 and 7. The different types of variables can be individually selected,
labelled and coloured.

Examples of Commands

The data are in the file E_tools.csv. For the sake of verification, the names
of the variables are listed in the order of the file, by:

> Tools=read.table("E_tools.csv",sep=";",header=TRUE,
+ row. names=1)



64 Multiple Factor Analysis by Example Using R

> colnames(Tools)

[1] "Text" "Animation" "Film"
[4] "Class.book" "Exercise.book" "Score.A.E."
[7] "Text.qt" "Animation.qt" "Film.qt"
[10] "Class.book.qt" "Exercise.book.qt"

We compile a new data.frame (named Outils_MCA) containing only the
five first columns of Outils, using the command

> Tools_MCA=Tools[,1:5]

Using this selection, it is possible to apply the MCA to the data.frame
Outils_MCA with all of the default options (which is not possible with Out-
ils due to the presence of quantitative variables which we do not want to
include in this first analysis). Thus

> res=MCA(Tools_MCA)

This command is used to display basic graphs (individuals, categories
and variables on the first plane) and generates all of the results tables (co-
ordinates, contributions, and so on, for the individuals, categories and so
forth) in the res list. This is an MCA-class list, an attribute recognised by the
generic plot function. In practice, there is therefore no difference between
creating the graphs using the plot.MCA function introduced below, and the
generic plot function (as long as the FactoMineR package has been loaded,
of course). All of these tables can be exported in a .csv file using the following
command.

> write.infile(res,file ="Output_MCA_Tools.csv")

It is also possible to specify the columns to be selected in the MCA
function.

> res=MCA(Tools[,1:5])

The graphs are created using a function specific to MCA: plot.MCA. This
function constructs the type of graph required to suit the elements to be rep-
resented, elements defined by the choix argument, thus:

1. Choix="ind". Usual graph: individuals + categories (active and
supplementary)

2. Choix="quanti.sup". Correlation circle for the quantitative vari-
ables (which must be supplementary)

3. Choix="var". Relationship square
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By default, all of the selected elements (individuals and variables) are la-
belled. Thus, the relationship square (see Figure 2.3 on the left) is obtained
by

> plot(res,choix="var")

Elements can be removed from the selection using the argument invisi-
ble; the graph of individuals alone (see Figure 2.3 on the right) is obtained by

> plot.MCA(res,choix="ind",invisible="var")

The parameter label can be used to label only certain elements; to obtain
the graph of labelled categories, when the individuals are not labelled:

> plot.MCA(res,choix="ind",label="var")

Now let us apply the MCA to the entire Tools table. The qualitative sup-
plementary variables must be identified as such (otherwise they are consid-
ered active) as must the quantitative supplementary variables (otherwise they
generate an error message).

> res=MCA(Tools,quali.sup=6,quanti.sup=c(7:11))

By default, this command displays all of the basic graphs: individuals (ind),
categories (var), quantitative variables (quanti.sup; correlation circles) and
all of the variables (var; relationship square).

The plot.MCA function has many options. For example, representing the
individuals alone, coloured according to the (qualitative) variable n◦6, using
the argument habillage (hab=6), and so on:

> plot.MCA(res,choix="ind",invisible=c("var","quali.sup"),
+ hab=6)

The following command displays the relationship square (choix =
"var") for active variables alone (invisible = c("quanti.sup",
"quali.sup")).

> plot.MCA(res,choix="var",invisible=c("quanti.sup","quali.
+ sup"))

It can often be handy to represent the eigenvalues as a barplot. Figure 2.2
was obtained using the command:

> barplot(res$eig[,1],names=1:20,cex.names=0.8)

The eigenvalues are in the first column of res.mca$eig. The names ar-
gument contains the names of the bars (here the rank of the axis) whereas
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cex.names changes the size of the letters for the bar names (here, this is
reduced so as to display the name of each bar without creating an excessively
large graph). If we only want to display the first ten eigenvalues:

> barplot(res.mca$eig[1:10,1],names=1:10)

Figure 2.4 is obtained by displaying an active window with the positions of
the points via plot.MCA. In this window, we add the lines (using the points
function).

In the res list produced by the MCA, the coordinates of the categories are
in res$var$coord. These categories are ranked according to the variable
and, within each variable, in alphabetical order. In this example, this means
ranking them by degree of usefulness in ascending order (from fil1–useless
films – to fil5 – very useful films). In order to link the categories of a given
variable in their natural order, we indicate their coordinates in the points
function and use the argument type = "o" to display the points and to
connect them. Thus, to connect the categories of the first variable (Text):

> plot(res,choix="ind",invisible="ind")
> points(res$var$coord[1:5,1],res$var$coord[1:5,2],type="o")

To connect those of the second variable (rows 6 to 10):

> points(res$var$coord[6:10,1],res$var$coord[6:10,2],type="o")



3
Factorial Analysis of Mixed Data

The need to introduce simultaneously quantitative and qualitative variables
(known as mixed data) as active elements of one factorial analysis is com-
mon. The usual methodology is to transform the quantitative variables into
qualitative variables, breaking down their variation interval into classes, and
submitting the resulting homogeneous table to a multiple correspondence
analysis (MCA). This methodology is relatively easy to implement and is
used whenever there are enough individuals; generally more than 100, a limit
below which MCA results are not very stable.

In two cases, there are advantages to conserving the quantitative variables:

1. When the number of qualitative variables is very low compared
to quantitative variables: thus, we might think twice about recod-
ing 20 quantitative variables with the sole aim of introducing one
single qualitative variable

2. When there are only a small number of individuals

The method we present here stems from two different origins. In 1979,
Brigitte Escofier suggested introducing quantitative variables in MCA (thanks
to appropriate coding). In 1990, Gilbert Saporta suggested introducing qual-
itative variables in principal component analysis (PCA) thanks to a specific
metric. In reality, these two different approaches yield the same results. The
resulting factor analysis presents a sufficient number of positive properties
and application potential to justify the status of a separate method: factorial
analysis of mixed data (FAMD).

3.1 Data, Notations

We have I individuals. Each individual i is attributed a weight pi such as∑
i pi = 1. To simplify matters, except when explicitly stated, we suppose that

the individuals are of the same weight, thus pi = 1/I ∀i . These individuals
are described by:

– K1 quantitative variables {k = 1, K1}; these variables are standard-
ised (centred and reduced); this is not merely for convenience but is
necessary due to the presence of two types of variables.
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K1 quantitative
variables 

(standardised)

Q qualitative 
variables

(condensed coding)

Q qualitative variables = K2 indicators
(complete disjunctive coding)

1
q

Q
1 kq K2

1 k q Q 1 kqk11 Kq

1

i xik xiq

I

yikq

FIGURE 3.1
Data structure and principal notations. xik : Value of i for variable (centred-reduced) k; xiq : Cate-
gory of i for variable q; yikq: 1 if i possesses kq of variable q and otherwise 0.

– Q qualitative variables {q = 1, Q}; the q th variable presents Kq cate-
gories {kq = 1, Kq }; the overall number of categories is

∑
q Kq = K2;

we denote pkq the proportion of individuals possessing category kq .

Let K = K1 + K2 the total number of quantitative variables and indicator
variables.

These notations can be brought together in the table in Figure 3.1 in which
the qualitative variables appear both in their condensed form and in their
complete disjunctive form.

3.2 Representing Variables

Let R
I be the space of functions on I . This space is endowed with the diagonal

metric of the weights of the individuals, denoted D:

D(i, j) =
{

0 if j �= i
pi if j = i

Generally the individuals have the same weights: D = (1/I ) Id (where Id

is the identity matrix of appropriate dimensions).
As in standardised PCA, the quantitative variables are represented by vec-

tors with a length of 1.
As in MCA, variable q is represented by cloud Nq of its centred indicators

Kq . This cloud generates subspace Eq of dimension Kq − 1; Eq is the set
of centred functions constant on the classes of the partition defined by q .
For Nq to possess the same inertial properties as in an MCA, if we perform
an unstandardised PCA on it, the indicator kq must be divided by pkq and
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attributed a weight pkq (strictly speaking, obtaining the exact inertia of the
MCA requires the weight pkq /J (see Section 2.4.1). Dividing by J ‘averages’
the inertias according to the number of variables, which is undesirable here
as the qualitative variables are confronted with quantitative variables the
inertias of which are not averaged).

Specifically, by proceeding in this way, we obtain a fundamental property
of MCA: the projected inertia of Nq on a centred variable y is equal to the
squared correlation ratio η2(q , y) between q and y.

When looking for direction v of R
I which maximises the projected inertia

of cloud NK (made up of the quantitative variables and the indicators), we
maximise the criterion:

∑

k∈K1

r2 (k, v) +
∑

q∈Q

η2 (q , v) .

This is the starting point of the method put forward by Gilbert Saporta in
1990. Geometrically, as variables k are standardised, the projection coordinate
of variable k on v is worth cos(θkv) = r (k, v), where θkv is the angle between
vectors k and v. Similarly, as v is centred, η2(q , y) = cos2(θqv) where θqv is the
angle between v and its projection on Eq . The criterion is thus expressed:

∑

k∈K1

cos2 θkv +
∑

q∈Q

cos2 θqv.

This is the starting point of the method put forward by Brigitte Escofier in
1979.

The influence of a variable must be explained according to the dimension
of the subspace it generates. Thus, in space R

I :

– A quantitative variable is represented by a vector associated with an
inertia of 1.

– A qualitative variable with Kq categories is represented by Kq vec-
tors generating a subspace Eq of dimension Kq − 1, all of which are
associated with an inertia of Kq − 1.

As in MCA the total inertia of a qualitative variable increases the more
categories there are. However, when projected on whichever dimension of Eq ,
this inertia is worth 1. In this way, when searching for directions of maximum
inertia, these two types of variables are balanced, which is highlighted by one
or another of the two expressions of the criterion below.

3.3 Representing Individuals

The dimensions of space R
K are quantitative variables K1 and indicators K2.

Its diagonal Euclidian metric is the column weights (1 for the quantitative
variables and pkq for the categories).
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The distance between individuals i and l is expressed:

d2 (i, l) =
∑

k∈K1

(xik − xlk)2 +
∑

q∈Q

∑

k∈Kq

pkq

(
yikq

pkq

− ylkq

pkq

)2

.

The quantitative variables contribute to this distance in exactly the same
way as in a PCA on these variables alone (see Section 1.3); the qualitative
variables contribute to this distance (up to 1/Q coefficient) as they do in the
MCA of these variables alone (see Section 2.4). One specific important case is
that of the distance between an individual and the cloud’s centre of gravity.
This centre of gravity lies at the origin O when the variables are centred, as as-
sumed for quantitative variables. For the MCA-coded indicators, accounting
for division by pkq , the mean of column kq is worth 1 (see Section 2.4).

Finally, we obtain:

d2 (i, O) =
∑

k∈K1

x2
ik +

∑

q∈Q

∑

kq ∈Kq

pkq

(
yikq

pkq

− 1
)2

=
∑

k∈K1

x2
ik +

∑

q∈Q

1 − pq (i)

pq (i)
,

where we denote q (i) the category of variable q possessed by i , and pq (i) the
proportion associated with q (i).

It is then necessary to ensure the balance between the influence of the two
types of variables in these relationships. It is natural to measure the influence
of a variable by its contribution to the inertia of all of the points. The consid-
erations established in R

I are transposed in R
K by duality. Particularly, in the

subspace of R
K generated by Kq categories of variable q , the projection of the

cloud of individuals has an inertia of Kq − 1 distributed isotropically in all
directions of this subspace of dimension Kq − 1.

As in all factorial analyses we represent:

– The cloud of individuals by its projection on its axes of inertia (we
denote Fs(i) the projection of individual i on the axis of rank s).

– The quantitative variables by their correlation coefficient with the
factors Fs .

– The categories of qualitative variables by the centres of gravity
of the corresponding individuals. We denote Fs(kq ) the coordinate
of the projection, on the axis of rank s, of the centre of gravity of the
individuals possessing category k of variable q .

3.4 Transition Relations

Here we apply the general formulae for PCA (see Section 1.5.4) to the encoded
table as indicated in Section 3.2.
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Relationships from R
K Toward R

I

Let Gs(k) be the coordinate of column k on the axis of rank s.
Case of a quantitative variable:

Gs (k) = 1√
λs

∑

i

pi xik Fs (i) = r (k, Fs) .

Case of a category kq of variable q with a relative frequency of pkq :

Gs
(
kq

) = 1√
λs

1
pkq

∑

i

pi yikq Fs(i) = 1√
λs

Fs(kq ),

where Fs(kq ) is the coordinate, along the axis of rank s, of the centre of gravity
of individuals with category (kq ). As in MCA, up to the 1/

√
λs coefficient, the

coordinate of a category as an indicator (that is to say in R
I ), is equal to that

of the barycentre of the individuals which possess it (in R
K ).

Relationship from R
I Toward R

K

This relationship is fundamental in MCA as it expresses the position of an
individual according to the categories which it possesses. It is rarely explicit
in PCA but it underlies interpretation. For FAMD, it is expressed:

Fs(i) = 1√
λs

∑

k∈K1

xik Gs(k) + 1√
λs

∑

kq ∈K2

pkq

(
yikq

pkq

− 1
)

Gs(kq ).

The first member is that of PCA (see Section 1.5.4). It expresses that an
individual lies on the side of the variables for which it has an above average
value, and opposite variables for which it carries a below average value. The
second member is that of MCA, up to the 1/Q coefficient (see Section 2.5.3).
It can be expressed according to Fs(kq ), thanks to the above equation relating
Gs(kq ) with Fs(kq ):

1
λs

∑

kq ∈K2

(
yikq − pkq

)
Fs(kq ) = 1

λs

∑

kq ∈K2

yikq Fs(kq ).

The latter equation expresses that an individual is, up to the λs coefficient,
at the barycentre of the categories it possesses (with these categories them-
selves the barycentres of individuals).

Remark
In the transition relation expressing the coordinate of an individual according
to those of the categories, the coefficient is:

–
√

λs if the categories are represented by the projection of the indicators
(in R

I )
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– λs if the categories are represented by the centres of gravity of the
individuals possessing the same category (in R

K )

Finally, an individual is found both on the side of the quantitative variables
for which it has a high value, and on the side of the categories it possesses.

3.5 Implementation

The simplest solution is to use an FAMD program such as theFAMD function of
the FactoMineR package or the AFMD function in UNIWIN Plus. Otherwise,
an FAMD can be performed from a regular PCA program. In order to do this,
the quantitative variables must first be centred and reduced as we use un-
standardised PCA. The qualitative variables appear through their indicators
in which yikq (= 0 or 1) is divided by √pkq . Dividing by √pkq , rather than pkq

as indicated in Section 3.2, makes it possible to use the metric identity in R
K

(most PCA programs do not permit another metric). Moreover, it is not nec-
essary to centre the data, as this will be done by PCA programs. PCAs such
as this directly provide the representations of individuals and quantitative
variables. To obtain the representation of the categories’ centres of gravity,
the qualitative variables need to be introduced as supplementary.

3.6 Example: Biometry of Six Individuals

To illustrate FAMD, we use a small and simple dataset. Six individuals are
described by two uncorrelated quantitative variables (height and weight) and
one qualitative variable (hair colour, with three categories) connected to the
first two. The data are brought together in Table 3.1.

TABLE 3.1
Biometry Dataa

Hair Colour Height Weight CR Height CR Weight

a Blonde 1 1 −1.464 −1.225
b Blonde 2 2 −0.878 0.000
c Brown 3 3 −0.293 1.225
d Brown 4 3 0.293 1.225
e Black 5 2 0.878 0.000
f Black 6 1 1.464 −1.225

Mean 3.5 2 0 0
Standard Deviation 1.708 0.816 1 1

a CR: centred-reduced.



Factorial Analysis of Mixed Data 73

TABLE 3.2
Biometry. Relationship Matrixa

Hair Colour Height Weight

Hair Colour 2
Height 0.9143 1
Weight 0.7500 0 1
a Each number, except the diagonal, is the squared correlation coef-

ficient or correlation ratio according to the nature of the variables
involved. Diagonal: 1 for the quantitative variables; number of cat-
egories minus 1 for the qualitative variable.

Table 3.2, known as the relationship matrix, brings together the relationship
measurements between the variables taken two by two. These measurements
are:

– The squared correlation coefficient in the case of two quantitative
variables. The height and weight variables are orthogonal (r2 = 0).

– The squared correlation ratio in the case of a quantitative variable
and a qualitative variable. Hair colour is related to both height and
weight; it is most closely related to height (.9143 > .7500), which can
be read in the data as such: for example, both blondes and those
with black hair have identical mean weights but are of very different
average height.

– φ2 (= χ2/I ) in the case of two qualitative variables; here, this only
concerns the diagonal term corresponding to hair colour. This is the
number of categories minus 1.

As expected given the way the data were constructed, the first plane ex-
presses almost all (95.56%) of the inertia (first row of Table 3.3).

Whatever the axis, its inertia is distributed equally between a quantitative
variable and the qualitative variable. This example clearly illustrates:

TABLE 3.3
Biometry. FAMD.a

F1 F2 F3 F4

% of inertia 48.91 46.65 3.35 1.10
Eigenvalue 1.96 1.87 0.13 0.04
Hair Colour 0.98 0.93 0.07 0.02
Height 0.98 0 0 0.02
Weight 0 0.93 0.07 0
a Inertia decomposed by axis and by variable.
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– The effectiveness of FAMD in dealing with the crucial issue of bal-
ancing the two types of variables

– The fact that a quantitative variable cannot be closely linked to more
than a single axis (as in PCA) whereas a qualitative variable can be
closely linked to (number of categories – 1) axes (as in MCA)

Figure 3.2 represents the relative positions of the variables and axes in R
I .

Due to the orthogonality between height and weight, the axes are situated on
the bisector of the angle formed by a quantitative variable and its projection on
the plane generated by the qualitative variable. This figure clearly illustrates
the geometric interpretation of the FAMD in the space of functions on I and
how the balance is achieved between the two types of variable.

The (absolute) contribution of a variable to the inertia of an axis is also
interpreted as a measurement of the relationship between the variable and
the axis (squared correlation, ratio or coefficient according to the nature of
the variable). These inertias can be represented in the graph known as the
relationship square (see Figure 3.3, left) which shows that:

– The first factor results from the variables height and colour.
– The second factor results from the variables weight and colour.
– In both cases the contributions are balanced between the two vari-

ables.
– In both cases, the factor is closely linked to each of the two variables.

With this general framework defined, interpreting Figures 3.3 and 3.4 is
easy in this simple case. The first axis opposes small blondes and tall people
with black hair. These two groups of individuals are light and oppose the
heavy, brown-haired individuals on the second axis.

3.7 FAMD in FactoMineR

The Biometry data (see Table 3.1) illustrates this analysis.

Height

Weight

F1

F2
Hair colour

FIGURE 3.2

Biometry. FAMD. Representation of variables and axes in R
I.
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FIGURE 3.3
Biometry. FAMD. Relationship square (left) and representation of individuals (right).

Drop-Down Menu in R Commander

Main Menu (see Figure 3.5)

1. Window in which the active quantitative variables are selected.
2. Window in which the active qualitative variables (factors) are se-

lected.
3. Buttons for opening windows to select supplementary elements.
4. Opens the graph window (see Figure 3.6).
5. The output options make it possible, if need be, to avoid displaying

the results concerning individuals (which is vital when there are a
large number of them) and to save all of the results in a csv file.

6. A clustering (Ward’s method) can be performed from the factorial
coordinates.

Graphical Options (see Figure 3.6)

The FAMD function produces three types of graph.

– Graph of individuals (and categories).

– 1 and 2. Used to select and label the types of elements to be
represented (almost) independently.

– 3. Individuals can be attributed specific colours according
to their category of a qualitative variable, either active or
supplementary. Here, only one variable is available: colour
(of hair).

– Graph of variables (relationship square).

– 4. The colours of different types of variables can be managed
independently.
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FIGURE 3.4
Biometry. FAMD. Representation of quantitative variables (left) and categories of the quantitative
variable (right).
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FIGURE 3.5
FAMD main window.
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FIGURE 3.6
FAMD Graphical options window.

– Graph of quantitative variables (correlation circle).

– 5. The colours of different types of quantitative variables can
be managed independently.

– 6. Used to select a type of quantitative variables to be repre-
sented.

Examples of Commands

The data are imported and listed for verification.

> biometry=read.table("biometry.csv",sep=";",dec=",",

+ header=TRUE, row.names=1)

> biometry

Hair.colour Height Weight

a blonde 1 1
b blonde 2 2
c brown 3 3
d brown 4 3
e black 5 2
f black 6 1
>

The FAMD can be launched by choosing all of the default options.

> res=FAMD(biometry)
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In this case, all of the variables are active, both quantitative and qualitative.
All of the results tables are saved in the output file (res). The four graphs
in this chapter (individuals, categories, relationship square and correlation
circle; Figures 3.3 and 3.4) are displayed by default.

The graphs are obtained using a function specific to FAMD: plot.FAMD.
The type of graph is determined by the type of elements to be represented as
specified in the choix argument: ind for individuals and categories, group
for relationship square, and var for correlation circle. The following com-
mand displays the individuals (choix="ind") and only the individuals
(invisible="quali") by colouring them according to their category for
the first variable (argument habillage: hab=1).

> plot.FAMD(res,axes=c(1,2),choix="ind",hab=1,invisible="quali")

To obtain Table 3.1, we centre and reduce the quantitative variables (scale
function; see comment in Section 1.11); the result is saved in the tab3_1
matrix.

> tab3_1=scale(biometry[,2:3])*sqrt(6/5)

Finally, tab3_1 is horizontally concatenated with the raw data by

> cbind(biometry,tab3_1)

The relationship matrix (see Table 3.2) is in res$var$Lg.
To construct Table 3.3, the eigenvalues and percentages of inertia, which are

in the first two columns of res$eig, are saved and transposed (t function),
in the tab3_3 matrix.

> tab3_3=t(res$eig[,c(2,1)])

This table is concatenated with res$var$coord which contains the iner-
tias of the variables along axes; we select the first four axes, as those which
follow have null inertia.

> round(rbind(tab3_3[,1:4],res$var$coord[,1:4]),2)



4
Weighting Groups of Variables

This chapter is the first devoted to multiple factor analysis (MFA). MFA is
applied to tables in which a set of individuals is described by several sets
of variables. The key points of this method are dealt with in succession over
four chapters. The first aims to balance the groups in an overall analysis by
weighting the variables. This characteristic of MFA is vital, in the sense that
it is the source of many properties of this method.

4.1 Objectives

In order to keep things simple, we here deal with standardised quantitative
variables. As the table to be analysed is an individuals × variables table, the
two main issues associated with it are that of principal component analysis
(PCA), that is to say:

1. A representation of the variability of individuals. This is done using
the principal dimensions of this variability.

2. A representation of the correlation between variables constructed us-
ing synthetic variables (the principal components).

The partition of the variables (into groups) does not appear at this general
level. We therefore need to specify the influence of the group structure on the
issue at hand. The fundamental idea is that identifying groups among the
variables more or less explicitly implies a balance between them (the precise
meaning of which still needs to be determined). Indeed, what can be said
about an analysis such as this which, for example, might highlight a first
factor depending primarily on one group alone? Is this factor not merely the
result of an especially high inertia for this group of variables? In this case
it is not particularly noteworthy. However, if the inertia of the groups has
been balanced (in a sense defined hereafter), users would be able to interpret
the impossibility in these data of displaying a direction of high inertia to
which the different groups contribute (more or less) equally. Without getting
into the technical details, which we do later, we can already specify what we
expect from such a balance. We can approach this issue from many different
perspectives. As we work within the context of factorial analysis, we focus
our attention on the inertia of the clouds studied.

79
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K1 1
1 j J

Variables 1 K 1 k Kj 1 KJ
1

Indiv. i xik

I X1X1 XJ

Groups

FIGURE 4.1
Table with variables organised into groups.

Notations. We use the notations from PCA (see Figure 4.1): (i, I) for the
individuals, (k, K) for the variables and pi for the weight of individual i
(
∑

i pi = 1). These are completed by the notations related to the groups:

j: Index of the current group
J: Number of groups (or set of groups)

K j : number of variables of group j (or the set of these variables) and
K = ∑

j K j .
Xj : Subtable containing the data from group j alone

The total inertia of the cloud of individuals (identical to that of the cloud of
variables) can be expressed, highlighting the role of each group of variables
(the data are centred) thus

∑

i

pi d2(O, i) =
∑

i

pi

∑

k

x2
ik =

∑

j

∑

k∈K j

∑

i

pi x2
ik =

∑

j

∑

k∈K j

Var[k].

In this way, the contribution of group j to the total inertia of the cloud of in-
dividuals is equal to the sum of variances of the variables of this group. With
standardised variables, this contribution is equal to its number of variables:
the influence of a group depends first and foremost on the number of vari-
ables. This result has led many authors to suggest standardising (at 1) this
contribution (which we obtain by attributing each variable a weight equal to
the inverse of the number of variables of the group to which it belongs).

However, aside from the notion of inertia, the above approach does not
take into account the factorial analysis approach, that is to say the search
for directions of maximum inertia. With this in mind, we express the criteria
maximised by the first axis, highlighting the contribution of each group of
variables. Reasoning based on the cloud of variables itself is more direct.
Denoting Hs

k the projection of variable k on the axis of rank s, the criterion
associated with the axis of rank s is expressed:

∑

k

(
OHs

k

)2 =
∑

j

∑

k∈K j

(
OHs

k

)2
.
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TABLE 4.1
Data (a) and Correlation Matrix (b)

V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

1 1 1 1 1 1 V1 1
2 1 1 −1 0 0 V2 0 1
3 1 −1 1 0 0 V3 0 0 1
4 1 −1 −1 1 1 V4

√
2/2 0 0 1

5 −1 1 1 −1 −1 V5
√

2/2 0 0 1 1
6 −1 1 −1 0 0
7 −1 −1 1 0 0
8 −1 −1 −1 −1 −1

a b

The contribution of a group of variables is here the sum of the projected
inertias for the variables belonging to this group. We may want to harmonise
these contributions directly rather than indirectly as in the previous approach.
Indeed, in this new approach, harmonising the total inertias of the groups
(for example, at 1) provides an upper limit to the contribution of a group in
constructing an axis. However, if the total inertia of a group is equal to one,
this limit can only be reached by a one-dimensional group. We may want the
balance between the groups to lie within a limit (for contribution) which can
be reached by each group (whether this limit is actually reached of course
depends on the data).

4.2 Introductory Numerical Example

We illustrate these considerations using an example and reasoning in the
variables’ space (RI ). Within this space, the variables of group j make up a
cloud denoted N j

K . We analyse the inertia of these clouds N j
K .

Let us consider eight individuals described by two groups of variables (see
Table 4.1). Group 1, {V1, V2, V3}, is made up of three uncorrelated variables
(in this group we recognise the complete experimental design for three factors
with two levels but these factors are here considered quantitative). Group 2,
{V4, V5}, is made up of two identical variables, correlated with only one
variable from group 1 (V1). Table 4.2A brings together the results of the PCA
of Table 4.1 which deal with the variables and the first axis. This first axis is
mainly due to group 2: the relative contribution of its variables to axis 1 is
72.36%. Therefore, in this example (which, it is true, is custom designed), the
smallest group has the greatest influence on the first axis.

In this way we illustrate the shortcoming of the notion of total inertia in
defining the influence of a group: the distribution of this inertia must also be
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TABLE 4.2
Coordinates and Contributions of the Variablesa

A Coordinate Contribution Contribution (%)

V1 0.85 0.72 27.64
V2 0 0 0
V3 0.00 0.00 0
V4 0.97 0.95 36.18
V5 0.97 0.95 36.18
Total 2.62 100
B Coordinate Contribution Contribution (%)

V1 0.811 0.66 18.38
V2 0 0 0
V3 0 0 0
V4 0.99 0.97 27.21
V5 0.99 0.97 27.21
V6 0.99 0.97 27.21
Total 3.581 100
a For the first axis of the PCA of Table 4.1 A or Table 4.1 in which

we added variable V6 identical to V4 and V5 (B).

taken into account. In the example, group 2 has a total inertia of 2, concentrated
in only one direction. Group 1 has a higher total inertia (3) but this inertia is
equally distributed in a three-dimensional subspace. Factorial analysis, which
looks for directions of high inertia is, by definition, sensitive to the distribution
of inertia within the groups; this is why we must account for this distribution
when looking for a balance between groups. Here we find the idea mentioned
in the initial issue of taking into account the statistical method when balancing
the groups.

By balancing the total inertia of each group, we reinforce the influence
of group 2 on the first axis: the contribution of this group to this axis then
increases to 81.62% (see Table 4.2B; in this example, weighting by the total
inertia (3) is obtained by introducing variable V6, identical to V4 and V5
and using a usual PCA program). Although this example was chosen for
its simplicity, it is not unrealistic: just imagine any situation in which one
group is reduced to a single variable when the other has several. In such
cases, weighting by total inertia would lead to a first axis almost equal to the
variable of the group which has only one.

4.3 Weighting Variables in MFA

Taking into account the distribution of inertia in such a way that it can be
applied no matter how many variables there are, means considering the
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TABLE 4.3
Coordinates and Contributions of the Variablesa

Label Weight Coordinate Contribution Contribution (%)

V1 1 0.924 0.854 50
V2 1 0 0 0
V3 1 0 0 0
V4 0.5 0.924 0.427 25
V5 0.5 0.924 0.427 25
Total 1.707 100
a For the first axis of MFA applied to Table 4.1.

principal direction of inertia alone (every group has one). For a given group
j , this means attributing a weight to each variable with these two features:

1. This weight is the same for each variable in the group; in this way we
do not distort the distribution of inertia within each group j .

2. Maximum axial inertia is equal to 1 (this inertia is the first eigenvalue
of the separate PCA for group j accounting for the weights). In order
to do this, we attribute each variable in group j the weight 1/λ

j
1

where λ
j
1 is the first eigenvalue of the separate PCA for group j . The

PCA of the full table with these weights is the core of the MFA.

In the example, this means attributing a weight of 1 to each variable in
group 1 and a weight of 1–2 to each variable in group 2. The coordinates and
contributions of the variables associated with the first axis of the MFA are
brought together in Table 4.3. In this analysis, the groups’ contributions to
the first axis (that is to say the sums of the contributions of the variables of a
given group) are identical. Weighting has worked perfectly.

Figure 4.2 geometrically represents the relative positions (in R
I ) of the first

factor of the three analyses mentioned and the variables which contributed to
their construction. The first factor of usual PCA is more ‘attracted’ by group
2 (V4, V5) than by group 1. This attraction is reinforced with the weighting
balancing the total inertias and is cancelled in MFA.

In practice, the influence of weighting on the construction of the first axis
in MFA is highly changeable depending on the data; this influence increases
along with the difference between the first eigenvalues of the PCAs. But in
any case, standardising the maximum axial inertia of each group induces
properties which are highly valuable in the interpretation phase.

What about the subsequent axes in MFA? Table 4.4 brings together the
inertias of the two groups of variables from Table 4.1, in MFA and in the
separate PCAs.

It shows that axes 2 and 3 of the MFA are generated by group 1 alone. This
is not contradictory to the desire to balance the groups: a multidimensional
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V4 F1 PCA balanced global inertiasV5

F1 MFA

EV1V2V3

FIGURE 4.2

Representation in R
I of the variables from Table 4.1 and the first standardised factors of the

analyses. EV1V2V3: subspace generated by the three variables of group 1. As the graph suggests,
V1 is collinear to the projection of V4 on EV1V2V3.

group (group 1) is expected to contribute strongly to more dimensions than
a one-dimensional group.

This idea also appears in multiple correspondances analysis (MCA). A qual-
itative variable with many categories has great inertia (equal to the number
of categories minus 1), but this inertia is distributed isotropically in a high-
dimensional subspace (the number of dimensions is equal to the number of
categories minus 1). A variable like this alone cannot generate the first axis,
but it can play a role in several axes. This relationship (between MFA and
MCA) is not mere chance: this property of MCA inspired the weighting in
MFA.

Weighting by maximum axial inertia can be applied directly to groups of
unstandardised variables. Therefore, it is possible to account simultaneously
for groups made up of standardised or unstandardised variables. The Orange
Juice dataset provides a good example of this: some sensory scientists analyse
products × descriptors tables using unstandardised PCA (to attribute more
importance to the descriptors which vary greatly from one product to an-
other). The user who adopts this point of view is led to perform an MFA in

TABLE 4.4
Total Inertia Decomposition in MFA and in the Separate PCAs

Total Inertia Axis 1 Axis 2 Axis 3 Axis 4

Separate Analyses
Group 1 3 1 1 1 0
Group 2 2 2 0 0 0
MFA
Total 4 1.71 1 1 0.29
Group 1 3 0.85 1 1 0.15
Group 2 1 0.85 0 0 0.15
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FIGURE 4.3
Duality between clouds of individuals and variables; clouds complete (NI , NK ) or restricted to
group of variables j (N j

I , N j
K ).

which the sensory group is composed of unstandardised variables and the
chemical group of standardised variables. By weighting the variables in such
a way as to standardise (to 1) the maximum axial inertia of each group, these
two types of variables can be simultaneously introduced as active within one
analysis.

In the individuals’ space R
K , the attribution of weights to the variables

induces a specific metric: in calculating a distance, each variable of group j
intervenes with a weight of 1/λ

j
1. Thus, by highlighting part of group j within

the distance between individual i and the origin O:

d2(O, i) =
∑

j

1

λ
j
1

∑

k∈K j

x2
ik
.

The part of group j in d2(O, i) is interpreted geometrically as the squared
distance between the origin and the projection of i (denoted i j ) on the subspace
generated by variables of group j (denoted R

K j ). Individuals’ space R
K is the

direct sum of (sub)spaces R
K j and we can write:

d2(O, i) =
∑

j

d2(O, i j ).

To interpret in R
K the property of weighting the variables introduced in R

I ,
it is important to consider all points i j associated with group j : {i j , i = 1, I }
(see Figure 4.3). They make up the cloud denoted N j

I , the projection of
cloud NI on the subspace generated by the variables of group j . This cloud
is linked to cloud N j

K (of the variables of group j in R
I ) by relationships of

duality. Thus, these two clouds have:

– The same total inertia
– The same inertia projected on the principal dimension of inertia of

rank s, particularly the first of these, λ
j
1
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TABLE 4.5
Orange Juice Total Inertiaa

Total Inertia F1 F2 F1 (%) F2 (%)

1 PCA Chemical 8 6.212 1.1 77.66 13.74
2 PCA Sensory 7 4.744 1.333 67.77 19.05
3 PCA All 15 9.801 1.886 65.34 12.57
4 Chemical Group 8 5.727 0.691 58.43 36.65
5 Sensory Group 7 4.075 1.194 41.57 63.35
6 MFA 2.763 1.785 0.365 64.6 13.21
7 Chemical Group 1.286 0.891 0.099 49.92 27
8 Sensory Group 1.476 0.894 0.266 50.08 73
a In four analyses, decomposed onto the first two axes and by group when

appropriate.

The weighting of the variables introduced in R
I induces the following prop-

erty in R
K : the projection of the cloud of individuals on the subspace generated

by the variables of group j has a maximum axial inertia of 1. Thus, in R
K , the

weighting of the variables is represented by a balance between the groups of
variables in the shape of cloud NI :

– Not in the overall distances between individuals (which would mean
a balance between the total group inertias)

– But rather in the absence of a very high direction of inertia which
would be the prerogative of a single group

In the individuals’ space, duality induces the effect of weighting described
in R

I : in comparison with a one-dimensional group of variables, a multidi-
mensional group will not be favoured in the construction of the first axis of
inertia, but will influence a greater number of axes.

4.4 Application to the Six Orange Juices

We apply the different methods to the Orange Juice data (see Section 1.10).
Table 4.5 summarises the principal decompositions of inertia.

Rows 1 and 2. The two groups present a first predominant axis. This pre-
dominance is greater in the chemical group (77.66% versus 67.77), which, along
with a higher number of variables (8 versus 7), leads to a greater eigenvalue
(6.212 versus 4.744).

Rows 3, 4 and 5. This higher maximum axial inertia in group 1 induces, in the
usual PCA applied to these two groups, a greater contribution of group 1 to the
first axis (58.43% versus 41.57). The first eigenvalue of this PCA is extremely
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FIGURE 4.4
Orange Juice. MFA. Representation of the individuals and variables on the first plane.

high (9.801) compared to the first eigenvalues of the separate PCAs; it is close
to the maximum possible (10.956) which would have been reached if the first
principal components (F1) of the separate PCAs had been collinear.

Rows 6, 7 and 8. In MFA, the contributions to the first axis of each of the
two groups of variables are almost identical (49.92 and 50.08): here weighting
has played its role perfectly. The first eigenvalue can be considered rather
high: 1.785, a value close to the maximum possible 2 (which would have been
reached if the first principal components (F 1) of the separate PCAs had been
collinear) than to the minimum 1 (which corresponds to cases where each
variable of group 1 is uncorrelated with each variable of group 2).

In this case, reading the representation of individuals and variables is the
same as for PCA. The first plane expresses a high percentage of inertia (77.81%)
justifying our choice to limit ourselves to this plane, at least in this method-
ological presentation.

The first axis (see Figure 4.4) separates juices P1, P4 and P6 from the other
three. According to the representation of variables, these three juices are char-
acterised, relative to the other three:

– From a sensory perspective by a sour, bitter and unsweet taste, and
an atypical odour

– From a chemical perspective by a low pH, a high glucose and fructose
content and a low sucrose content

The other three juices, P2, P3 and P5, present the opposite characteristics.
This axis could be summarised by the opposition soft juices ⇔ hard juices; this
opposition coincides with the origin of the juices, with the ‘soft’ juices from
Florida.

The second axis does not seem so easy to interpret. However, the second
bisector practically coincides with the pulpy variable. On the plane of indi-
viduals, this second bisector corresponds exactly to the opposition between
the refrigerated (P3, P4 and P6) and ambient juices. This relationship between
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the type of juice and the pulpy characteristic seems to result from a choice
made by juice manufacturers because this characteristic cannot be explained
by the level of pasteurisation. However, the relationship between odour in-
tensity and this bisector (that is to say the fact that the refrigerated juices have
a stronger odour) is perhaps linked to pasteurisation level.

The relationships between the variables illustrated by the correlation circles
requires some comment.

The relationship between the three sugars and the pH is related to the
hydrolysis of sucrose (in glucose and fructose) favoured in an acidic environ-
ment.

We cannot interpret the position of sweet from the opposition between the
sugars inasmuch as each sugar leads to a sensation of sweetness. This is why
we chose to add them together. We therefore obtain a total sugars variable
which, introduced as supplementary, shows a correlation coefficient of 0.1182
with the first principal component. Therefore, in these data, this variable is
not related to the hard ⇔ soft opposition. Amongst other things, its correlation
coefficient with the characteristic sweet is 0.1856; we must therefore search for
the origin of this sweetness elsewhere.

From a sensory point of view, the first axis evokes the notion of taste bal-
ance (we perceive the tastes simultaneously and therefore these perceptions
are not independent). This context suggests that, in these data, a strong sen-
sation of sweetness is more closely related to an absence of sourness than
to a high amount of sugar. The total quantity of sugar also strongly influ-
ences this interpretation as it varies from 81 g/L to 101 g/L, a variation which
can be considered weak due to the average content (and which is therefore
hardly perceptible). As these levels are high, it can be said that, in these data,
the ‘hardness’ (sourness + bitterness) of certain juices masks the influence of
sugar.

The representation of individuals and variables is therefore interpreted in
the same way as in PCA. The only difference, but only compared to standard-
ised PCA, is that the presence of weights for the variables implies that it is
not possible to interpret the correlation circle in terms of the contribution of
the variables. Users who want to visualise these contributions will need to
construct a supplementary graph.

4.5 Relationships with Separate Analyses

We have already insisted on the need to connect the inertias from the MFA
and those in the separate PCAs (see Tables 4.4 and 4.5). It is also useful to
connect the factors of the MFA with those of the separate PCAs (also known
as partial axes), both to understand better the effects of weighting and to enrich
interpretation of the analyses. In order to do this, the latter are projected as
supplementary variables (see Figure 4.5).
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FIGURE 4.5
Orange Juice. MFA. Representation of the first factors of the separate PCAs.

The first factor of the MFA is closely related to the first factor of each group:
the principal dimension of sensory variability is correlated with the first
dimension of chemical variability and the first factor of the MFA is some kind
of compromise between these two directions. The value of this first factor is
thus reinforced.

The second factor is closely correlated with the second principal sensory
component, which suits the high dimensionality of this group compared with
that of the chemical group: MFA weighting standardises the first direction of
inertia alone. Finally, the first plane of the MFA is very similar to the first plane
of the separate PCA of the sensory group.

Another aspect of the confrontation between the factors of the MFA on
the one hand and the principal components of the separate PCAs lies in the
representation quality of the variables of each group (that is to say N j

K ) in
each analysis. We thus calculate the (projected inertia)/(total inertia) ratio for
each N j

K in the MFA. Therefore, for group j and axis s (of the MFA):

⎡

⎣
∑

k∈K j

(
OHs

k

)2

⎤

⎦ 1
∑

t λ
j
t

.

These values are to be confronted with the percentages of inertia of the sep-
arate PCAs. In the example (see Table 4.6), on the first plane of the MFA,
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TABLE 4.6
Orange Juice. MFAa

F1 F2 Plane (1,2)

Chemical 69.21 7.66 76.86
Sensory 60.58 18.06 78.64
a Representation quality of the groups of variables on the first

plane (in R
I ).

the representation quality of the sensory variables is 78.64%. This value can
be compared with the percentage of inertia of the first plane of the PCA for
the sensory group (86.81%; see Table 4.5); the difference between the two can
be considered as the price of going from an optimal representation of the
single sensory group to an optimal representation of the two groups. In this
example, we can consider this difference to be small.

It must be noted that we do not change the analysis by replacing a group of
variables by all of the principal components of the separate analyses (either
unstandardised, or standardised and attributed a weight equal to their inertia
taking into account the inertia of the weighting of the MFA). These principal
components can thereby be considered as active variables. In particular, their
projected inertia can be interpreted as a contribution. These contributions,
divided by the total inertia of the axes of MFA, are given in Table 4.7.

The contributions complement the correlation circle (see Figure 4.5) as it
does not feature the weights. In this example, these contributions clearly show
the essential role of the second component of the sensory group for the inertia
of axis 2 of the MFA.

TABLE 4.7
Orange Juice. MFAa

Factor on I Weight F1 MFA F2 MFA

F 1 PCA Chemical 1.000 49.632 1.089
F 2 PCA Chemical 0.177 0.004 17.683
F 3 PCA Chemical 0.059 0.205 3.967
F 1 PCA Sensory 1.000 49.890 1.530
F 2 PCA Sensory 0.281 0.047 70.180
F 3 PCA Sensory 0.173 0.106 1.136
a Contribution (in %) of the factors of the separate analyses. Weight:

eigenvalues, of the separate PCAs, divided by the first of them.
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4.6 Conclusion

In this example, the effect of weighting as a balancing factor between the
groups is not excessive as the first eigenvalue varies only slightly from one
group to another. Consequently, for this dataset, PCA and MFA generate
similar axes. But when the first eigenvalue differs greatly from one group to
another, this weighting plays a vital role.

However, setting the maximum axial inertia to 1 makes it easier to read the
indicators of inertia (see rows 6, 7 and 8 of Table 4.5), which are vital later on.
But especially, the advantage of the MFA lies in all of the aspects and are dealt
with in the following chapters. In this case, from here on in, the simplified
representation of the factors of the separate analysis illustrates the advantage
of accounting for structuring the variables into groups. For example, say-
ing that the principal dimension that we present (that of the MFA) is very
close to the principal dimension of each group increases the usefulness of the
results.

1 2
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4 5

6

9

7 8

10

FIGURE 4.6
Main MFA window in FactoMineR (via R Commander).
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FIGURE 4.7
Orange Juice. Tree created by the AHC applied to the factors of the MFA. Partitioning into two
classes was chosen by clicking at the desired hierarchical level. In the insert (top right), the
diagram of inertia differences associated with the nodes helps in choosing the cutting level.

4.7 MFA in FactoMineR (First Results)

Here we use the Orange Juice data (see Table 1.5) composed of, in order, the
eight chemical variables, the seven sensory descriptors, the overall evaluation
and the two qualitative variables (origin and then type).

Drop-Down Menu in R Commander

1. Active quantitative groups. Here, the two groups (chemical and sen-
sory) have already been defined (see point 3 below).

2. Supplementary quantitative groups. Here, the overall evaluation has
been introduced as a supplementary group (with one single variable).
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3. The “add quanti group” button opens the window in Figure 4.9.
4, 5, 6. Define qualitative groups (see Chapter 8 on qualitative variables).
7. Brings up the list of individuals to select supplementary individuals.

By default, all the individuals are active.
8. Opens the graphical options window, Figure 4.10.
9. By default, the program lists all the results tables. This window is

used to list just some of them and, if desired, to export them in a csv
file.

10. It is possible to follow this up with an ascending hierarchical clas-
sification (AHC; Ward’s method) from the factorial coordinates (in
the same way as following any factorial analysis). The MFA thus acts
as preprocessing, first by balancing the groups of variables and then
by ranking the factors in order to select the first ones. There are two
important characteristics of the AHC in FactoMineR (HCPC function):

1. A representation of the hierarchical tree which makes it pos-
sible to choose a cutting level (and therefore a partition of
the individuals) interactively (by clicking on an aggregation
level; see Figure 4.7).

2. A representation of the hierarchical tree associated with the
factorial representation (see Figure 4.8).
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FIGURE 4.8
Orange Juice. Tree from Figure 4.7 associated with the first plane of the MFA.
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FIGURE 4.9
Window for defining the groups.

Defining the Groups (See Figure 4.9)

1. A name can be attributed to each group. This name is used in the
tables and graphs.

2. The group’s status (active/supplementary) is defined for each group
independently (and thus independently of the order of the variables
in the file).

3. (For groups of quantitative variables only) The choice of whether to
reduce the data is made for each group independently. It is therefore
possible to introduce, within the same analysis, groups which are
reduced and groups which are not. Weighting makes this statistically
possible. A concrete example would be to introduce the same data
twice, once reducing them and the other time without doing so. In
this case, MFA is used to compare standardised and unstandardised
PCA on the same data.

4. The window lists all of the quantitative variables. The group’s vari-
ables are selected from this list (they are not necessarily consecutive
in the file). When one group is constructed, its variables remain in
the list and are thus eligible for another group. It is therefore pos-
sible to introduce one variable in several groups, which is useful in
methodological studies such as that mentioned in 3 (comparison be-
tween standardised and unstandardized PCA) or when we want to
compare groups with slightly different compositions (having several
variables in common).

Graphical Options (See Figure 4.10)

1 and 2. The graph of individuals (see Figure 4.4, left) can contain par-
tial individuals (Chapter 5) as well as the categories of qualitative
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FIGURE 4.10
Graphical options window.

variables (Chapter 8). The presence and labelling of these three types
of elements are managed independently.

3. Each individual can be coloured according to a qualitative variable,
if appropriate. The ‘By group’ and ‘By individual’ options mainly
concern partial individuals (Chapter 5).

4. See Chapter 5.
5. See Chapter 7.
6. The partial axes are the axes of separate analyses (see Figure 4.5). By

default, the first five axes are represented. Different colours can be
attributed to the axes according to groups.

7, 8, 9. The graph of quantitative variables (see Figure 4.4, right) contains
the active and/or illustrative quantitative variables (9). It is generally
helpful to colour them according to the group to which they belong
(8). When there are a large number of variables, it is helpful (7) either
not to label them in order to focus on the general shape of the cloud,
or to select those which are best represented.

Command Examples

The data are found in the file OrangeGB.csv which is imported and for
which we check the first 18 columns by
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> orange=read.table("OrangeGB.csv",sep=";",dec=",",header=TRUE,
+ row.names=1)
> attributes(orange[,1:18])
$names
[1] "Origin" "Type" "Glucose"
[4] "Fructose" "Saccharose" "Raw.pH"
[7] "Refined.pH" "Titre" "Citric.acid"

[10] "Vitamin.C" "Odour.intensity" "Odour.typicity"
[13] "Pulpy" "Taste.intensity" "Sour"
[16] "Bitter" "Sweet" "Overall.evaluation"

$class
[1] "data.frame"

$row.names
[1] "P1 Pampryl amb." "P2 Tropicana amb." "P3 Fruvita fr."
[4] "P4 Joker amb." "P5 Tropicana fr." "P6 Pampryl fr."

In this chapter, we only account for the chemical and sensory variables. We
therefore work with the data.frame orange1 obtained by

> orange1=orange[,3:18]

To perform the MFA on a data.frame, the variables of a given group must be
adjacent in the file. This is the case here. We comment hereafter the following
command performing MFA:

> ResAFM=MFA(orange1,group=c(8,7,1),type=c("s","s","s"),
+ name.group=c("Chemical","Sensory","Overall evaluation"),
+ num.group.sup=3)

group=c(8,7,1): there are three groups made up of the first eight variables,
the following seven and the last, respectively. The groups are numbered in
the order of their variables within the data.

type=c("s","s","s"): For all three groups the variables need to be
centred and reduced ("s" for scale; or, "c" simply to centre).
num.group.sup=3: The third group is supplementary. By default, all the

groups are active.

By default this command creates all of the graphs for the first two axes,
particularly that of the individuals (see Figure 4.4, left), that of the ac-
tive quantitative variables (see Figure 4.4, right) and that of the partial
axes (see Figure 5.4 to which we add the supplementary variable overall
evaluation).

The ResMFA list contains all of the results tables. These tables are exported
into a csv file as follows.

> write.infile(ResMFA,file="ResMFA.csv")
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The graphs are obtained using the plot.MFA function, devoted to MFA.
The default options are often sufficient, at least at first. The representation of
the quantitative variables for all groups on the first plane is obtained by

> plot.MFA(ResMFA,choix="var")

The following command:

> plot.MFA(ResMFA,axes=c(3,4),choix="var",
+ invisible="quanti.sup",hab="group")

represents on the plane (3,4) the only active variables (invisi-
ble="quanti.sup") coloured (argument habillage shortened to hab)
according to the group to which they belong (hab="group").

Other objects can be represented using the argument choix, equal to ind
for the individuals and to axes for the partial axes.

To display the eigenvalues in a bar plot (six individuals and thus at most
five nonzero eigenvalues):

> barplot(ResMFA$eig[,1],names=1:5)

Table 4.5

Users often want to generate a specific table bringing together scattered re-
sults. This is the case for Table 4.5, which is given below as an example.

We initialise a matrix (8, 5) named tab4_5.

> tab4_5=matrix(nrow=8,ncol=5)

Row and column names are chosen:

> row.names(tab4_5)=c("PCA Chemical","PCA Sensory","PCA All",
+ "Group Chemical","Group Sensory","MFA",
+ "Group Chemical","Group Sensory")
> colnames(tab4_5)=c("Global inertia","F1","F2","F1%","F2%")

The first five elements of column 1 are specified:

> tab4_5[1:5,1]=c(8,7,15,8,7)

Rows (3, 4, 5) of the PCA on the 15 variables require this PCA to be per-
formed.

> resPCA=PCA(orange[,1:15])

Row 3. The eigenvalues of the PCA are in resPCA$eig:

> tab4_5[3,2:5]=c(t(resPCA$eig[1:2,1]),t(resPCA$eig[1:2,2]))
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Rows 4 and 5, columns 4 and 5. The contributions of the variables are in
resPCA$var$contrib; they must be added together by group.

> tab4_5[4,4:5]=apply(resPCA$var$contrib[1:8,1:2],MARGIN=2,
+ FUN=sum)
> tab4_5[5,4:5]=apply(resPCA$var$contrib[9:15,1:2],MARGIN=2,
+ FUN=sum)

Rows 4 and 5, columns 2 and 3. The inertia is determined by multiplying
the percentage by the eigenvalue.

> tab4_5[4:5,2]=tab4_5[4:5,4]*resPCA$eig[1,1]/100
> tab4_5[4:5.3]=tab4_5[4:5.5]*resPCA$eig[2.1]/100

The separate PCAs of each group (rows 1 and 2) are listed via the MFA in
ResMFA$separate.analyses, with the eigenvalues given in $eig :

> tab4_5[1,2:5]=c(t(ResMFA$separate.analyses$Chemical$eig
+ [1:2,1]), t(ResMFA$separate.analyses$Chemical$eig[1:2,2]))
> tab4_5[2,2:5]=c(t(ResMFA$separate.analyses$Sensory$eig
+ [1:2,1]), t(ResMFA$separate.analyses$Sensory$eig[1:2,2]))

Row 6. The eigenvalues of the MFA are in ResMFA$eig:

> tab4_5[6,2:5]=c(t(ResMFA$eig[1:2,1]),t(ResMFA$eig[1:2,2]))

Rows 6, 7, 8, column 1. The overall inertia of a group in the MFA is a direct
result of the number of variables (the variables are reduced) and weighting
(by the first eigenvalue):

> tab4_5[7:8,1]=tab4_5[1:2,1]/tab4_5[1:2,2]
> tab4_5[6,1]=tab4_5[7,1]+tab4_5[8,1]

Rows 7 and 8. The inertias of the variables cumulated by group are in
ResMFA$group; the raw inertias are in coord (this term is explained in
Chapter 7) and the percentages in contrib:

> tab4_5[7:8,2:3]=c(t(ResMFA$group$coord[,1]),
+ t(ResMFA$group$coord [,2]))
> tab4_5[7:8,4:5]=c(t(ResMFA$group$contrib[,1]),
+ t(ResMFA$group$contrib[,2]))

For the listing, we reduce the number of decimal places.

> tab4_5[,2:3]=round(tab4_5[,2:3],3)
> tab4_5[,4:5]=round(tab4_5[,4:5],2)
> tab4_5[1:5,1]=round(tab4_5[1:6,1],0)
> tab4_5[6:8,1]=round(tab4_5[7:8,1],3)
> tab4_5

The display in R uses the same number of decimal places in each column,
which here is three for column 1. However, the different number of decimal
places requested for this column is respected in the exportation in the .csv file.
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Simplified Output

The MFA produces many results tables. The summary.MFA function sum-
marises the main tables. The following command generates these tables in
the SorMFA text file.

summary(ResMFA,nbelements=Inf,file="SorMFA")

This function exists for all factorial analyses in FactoMineR.





5
Comparing Clouds of Partial Individuals

Much multiple factor analysis (MFA) use involves comparing subtables, each
made up of a group of variables. One aspect of this comparison was de-
scribed in the previous chapter that of the factors of separate analyses. Here
we deal with the aspect that undoubtedly contributes the most to the richness
of MFA results: comparing clouds of individuals each associated with one of
the groups of variables.

5.1 Objectives

A row of a data table in which we only consider the data relative to a single
group of variables is known as a partial individual. Thus, partial individual i
corresponding to group j , denoted i j , is made up of all of the values of{

xik; k ∈ K j
}

. The set of partial individuals
{

i j , i ∈ I
}

associated with group
j makes up partial cloud N j

I . This cloud of individuals is analysed when
conducting a principal component analysis (PCA) of the data of the single
group j . It evolves in the space generated by the variables of group j alone:
R

K j . In MFA we therefore have to consider J + 1 clouds of individuals: the J
partial clouds to which we add cloud NI , a cloud we can consider ‘overall’ (as
opposed to partial) evoking the fact that it is associated with the whole set of
(active) data. In practice, however, we designate it a mean cloud, in reference
to one of its geometric properties.

The comparison of partial clouds is the geometric translation of the question
of whether two individuals i and l which are similar in terms of group j are
also similar in terms of group g.

Thus, when considering the groups of sensory and chemical variables in
the example of the six orange juices, we might ask ourselves the following
questions:

– Overall, do two orange juices which are similar from a chemical point
of view also have the same sensory profile?

– Are there any juices which have a ‘mean’ chemical profile and an
unusual sensory profile? Could such a discrepancy arise from, for
example, a chemical characteristic which was not measured, an in-
teraction between chemical characteristics (on perception) or some

101
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FIGURE 5.1
Three individuals (A, B, C) according to two groups of variables: biometry (1) and grades (two
variations: 2 and 3).

other factor? Users expect statistics to identify such discrepancies so
that they might then be interpreted.

We can illustrate our expectations when comparing (the shape of) partial
clouds by using a small example of data chosen for its simplicity. For three
students (A, B and C), we have biometric measurements (height and weight)
and exam grades (French and maths). As both groups are two-dimensional, it
is possible to represent partial clouds graphically, with the visual examination
acting as a statistical analysis (see Figure 5.1).

In the first case (graphs 1 and 2), the graphs show a similar shape for the
two clouds. In each, students B and C are very similar and A is particular.
According to the graphs, A is both tall and heavy, and has a ‘scientific profile’
(good at maths, bad at French).

In the second case (graphs 1 and 3), in contrast, the graphs show partial
clouds of different shapes. For the biometric measurement, A is particular
(tall and heavy) whereas for the grades it is B (‘scientific profile’) which is
different.

More generally, we compare N j
I in terms of their shape (we define the shape

of a cloud of points by all of its interpoint distances).
Direct visual comparison of these clouds is easy, in theory, if they are each

only defined by two variables. But even in this case, if there are many in-
dividuals and/or groups, a graphical tool can be useful. Procrustes analysis
provides such a graphical tool. This method:

– After standardisation by the total inertia (if appropriate)
– Superimposes the configurations
– Turns them one by one, operating symmetries where appropriate,

in order to bring closer (when possible) the partial points related to
one individual (known as homologous points); elementary rotation
which fits one cloud to another is known as Procrustes rotation.
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FIGURE 5.2
Procrustes analysis of the data in Figure 5.1. A: graphs 1 and 2; B: graphs 1 and 3.

We thus obtain a superimposed representation of partial clouds highlight-
ing the similarities and differences in shape between the clouds as well as
possible (that is to say in terms of a given criterion).

The results of the Procrustes analysis applied to the two above cases are
given in Figure 5.2. In the first case, the similarity of the shapes of the two
clouds is clear.

Chapter 9 gives more information on Procrustes analysis. In the present
chapter, references to Procrustes analysis are useful for defining our objective:
to construct graphs featuring partial points, or in other words, each individual
as seen by each group of variables. This chapter describes MFA’s solution to
this problem.

5.2 Method

The individuals’ space R
K can be seen as a direct sum of spaces R

K j :

R
K = J⊕

j=1
R

K j .

Space R
K j used above to define N j

I is isomorphic to subspace R
K j of R

K (see
Figure 5.3). In MFA, R

K is endowed with the diagonal metric M containing
the opposite of the first eigenvalue of the separate PCAs for the groups of
variables (in R

K j ). This metric, being constant within a group of variables,
does not question this isomorphism.

Table Xj contains the coordinates of NI in subspace R
K j of R

K . As subspaces
R

K j are orthogonal by construction, cloud N j
I is the orthogonal projection of
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The partial cloud N j
I in R

K j and in R
K .

NI on R
K j . We denote X̃ j the matrix Xj with added 0 to be the dimension of X,

that is to say the matrix of the coordinates of N j
I in R

K (variables are centred).
Figure 5.4 illustrates the relative positions of NI and N j

I in the borderline case
of two groups each containing one variable.

The complete individual i is the ‘sum’ of partial individuals i j . In the graphs,
it is helpful to feature i at the centre of gravity of the J points i j . Also, in
practice, clouds N j

I are dilated with the J coefficient to generate the graphs.
This is why i is known as a mean individual.

In this space, the representation of the individuals is obtained (in MFA) by
a weighted factorial analysis of NI . The representation of N j

I is obtained by
projecting (N j

I ) on the main axes of NI . This procedure has several important
properties for the user.

Property 1
This representation is obtained by projection, a common approach for users
of factorial analysis. The geometric interpretation is clear and poses no algo-
rithimic problems.

V1

V2

i1

i2

i

FIGURE 5.4
Complete (i) and partial (i1 and i2) representations of the same individual i . The first (and,
respectively, second) group is reduced to variable V1 (and V2, respectively). From the coordinates
of i , partial individuals are dilated with the J coefficient.
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Property 2
This representation uses factorial axes NI which have already been inter-
preted. NI and N j

I are analysed within the same context. This is highly im-
portant for users and in practice proves a decisive advantage (compared to a
methodology implementing different methods and thus generating different
factorial planes depending on the various aspects of an issue):

– Firstly in terms of time and energy spent on the interpretation (only
one system of axes is interpreted)

– Then in terms of conclusions: when faced with many planes of rep-
resentation from which one should we draw our conclusions? That
of the weighted PCA on NI or that of the Procrustes analyses on N j

I ?

Property 3
Using the principal axes of NI induces relations of duality (also known as
transition relations) between what is happening in R

K on the one hand, and
in R

I . This property is described below.
Let F j

s be the vector of the coordinates of points i j on the axis of rank s. By
definition:

F j
s = X̃ j Mus .

Due to duality (in the weighted PCA of NI ) :

us = 1√
λs

Gs .

By combining these two equations, we obtain:

F j
s = 1√

λs
X̃ j MGs .

The coordinates of the partial points can therefore be calculated from the
variables’ coordinates. This relationship, for partial individual i j , is expressed
very simply due to the unusual structure of matrix X̃ j which contains only 0,
except for the data related to group j . Therefore, by denoting the coordinate
of i j on us by either F j

s (i) or Fs
(
i j

)
:

F j
s (i) = Fs

(
i j) = 1√

λs

1
√

λ
j
1

∑

k∈K j

xik Gs (k) .

Thus, for the axis of rank s, up to a coefficient (the same for all the individuals),
the coordinate of i j is the mean of the coordinates of the variables of group
j weighted by the values (centred and generally reduced) of i for these vari-
ables (these weights can also be negative). In other words, partial individuals
(relative to group j) are on the side of the variables (of group j) for which
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they have a high value, and opposite those variables (of group j) for which
they have a low value. This relationship is the restriction to the variables of
group j of one of the usual transition relations of the weighted PCA of NI

(see Section 1.5.4). This is the origin of the term partial transition relations, a
property vital for interpreting the analyses.

If we express the usual transition relation (for point i and therefore all of
the variables), we easily obtain

Fs (i) =
∑

j

Fs
(
i j) = 1

J

∑

j

J Fs
(
i j) .

Therefore, by dilating the partial points (with J coefficient), point i appears
at the barycentre of J partial points i j , which makes it much easier to read
the graphs. It must be noted that, when calculating this barycentre, all of the
J partial individuals {i j ; j = 1, J } are of the same weight, which is logical
given the desire to balance out the influence of the groups (the weight of the
variables has been taken into account in calculating the coordinate of i j ).

Naturally, the symmetric transition relation, which expresses the coordinate
of a variable of group j in terms of the coordinates of the partial individuals
i j , does not exist (such a relation only exists in the PCA of group j) and
indeed would be undesirable as it is incompatible with a representation of
the variables of different groups on one single graph.

5.3 Application to the Six Orange Juices

For the mean individuals, Figure 5.5 is exactly the same as Figure 4.4 (the per-
centages of inertia, which only concern these mean individuals, are therefore
identical). The partial clouds are projected onto the same factorial plane. To
make it easier to read, the partial individuals are connected by a line to their
corresponding mean individual. The resulting representation is known as a
star graph and for both groups is limited to segments linking corresponding
partial points.

Interpretations are mostly based on partial transition relations. They can
be used to compare the partial points related to a given group directly (their
coordinates are calculated from the same variables).

As an example, let us compare juices 1 and 4 which, according to their mean
point, can be considered equally ‘hard’. It is possible to study this similarity
more closely in Figure 5.5.

– From a chemical point of view, juice 4 is ‘harder’ than juice 1. This can
also be seen in the data (see Table 1.5). Aside from a slightly lower
pH for juice 1, the other variables show that juice 4 is much harder
(much higher levels of citric acid, glucose and fructose; higher titre;
lower level of sucrose).
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FIGURE 5.5
Orange Juice. MFA. Superimposed representation of partial clouds and the mean cloud (left).
The label of a partial point is limited to the group label (Chem and Senso). Representation of
variables, right (idem Figure 4.4).

– From a sensory point of view, juice 1 is ‘harder’ than juice 4. This
observation can easily be checked in the data, with juice 1 being per-
ceived as much more sour, more bitter and less sweet than juice 4.

The comparison of partial points related to a given group poses no prob-
lem as the partial transition relation is applied in exactly the same way as
the transition relation in PCA. However, there is no property which makes
it possible directly to compare partial points related to different groups inas-
much as they result from weighted means of different points (representing
different variables). In such comparisons, it is therefore vital to check the
data for the observations made from the factorial planes. However, when
the groups’ contributions to an axis are similar, as is the case for the first axis
in the example, the visual impressions are generally confirmed by the data.
Thus, Figure 5.5 suggests that the chemical hardness of juice 4 is more note-
worthy than the sensory hardness of juice 1. This is indeed what we find in
the values of the variables associated with hardness, which are more extreme
for the chemical variables of juice 4 than for the sensory variables of juice 1.

We often want to compare partial points that are linked to the different
groups but related to one specific individual. The graph suggests that, from the
point of view of the two groups of variables, juice 1 is more homogeneous than
juice 4, ‘homogeneous’ in the sense that the chemical and sensory hardness
of juice 1 are situated closer together compared to juice 4 (high in both cases).

5.4 Interpretation Aids

It becomes difficult to analyse visually the superimposed representation of
partial clouds when there are many individuals and/or groups. In such cases,
it is vital to have access to indicators to select remarkable situations axis by
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axis. A series of indicators can be obtained by decomposing the inertia of the
cloud bringing together all of the partial points.

We denote NJ
I the cloud of all partial points (for all individuals and all

groups) {i j ; i = 1, I ; j = 1, J }. Thus: NJ
I = U

j
N j

I .

We can also consider partitioning NJ
I into I classes in which the same class is

attributed the J partial points associated with a given individual. We denote
NJ

i the cloud of partial points associated with individual i. Thus: NJ
I = U

i
NJ

i .

For each axis (of rank s), we apply Huygens’ theorem to this second par-
tition, decomposing total inertia (with respect to the origin O) into between-
class and within-class inertia. The class mean points make up cloud NI .
The within-class inertia is that of NJ

i relative to their centre of gravity. Thus
(to simplify the equations we do not mention the rank s of the axis):

Inertia[NJ
I /O] = Inertia[NI /O] +

∑

i

Inertia[NJ
i / i].

The within-class inertia of NJ
i measures the heterogeneity, along an axis us ,

of the partial points associated with individual i . By dividing it by the within-
class inertia NJ

I , we obtain the (relative) contribution of individual i to this
within-class inertia (for axis s). By ranking these contributions in ascending
order (for each axis), we obtain:

– At the beginning, the individuals whose partial points are homoge-
neous for the axis in question. These individuals successfully repre-
sent the similarities between N j

I , particularly if they are far from the
origin. We select some of these to illustrate the interpretation.

– At the end, the individuals whose partial points are heterogeneous
for the axis in question. They highlight differences between N j

I which
is an aspect of the variability of the data.

When there are a lot of individuals, the ranked lists (by axis) are essential
in order to be able to select which individuals to examine first.

Table 5.1 brings together the contributions to the within-class inertia of the
six juices. In this very small dataset, the table is not useful for interpretation
(visual analysis is sufficient) and is given for information only. We can see:

– For the first axis, the heterogeneity of juices 2, 4 and 5; the homogene-
ity of juice 3; and the greater heterogeneity of juice 4 compared to
juice 1 (described earlier)

– For the second axis, the extreme heterogeneity of juice 4

When there are more than two active groups, it can be interesting to
decompose this within-individual inertia by group of variables. We thus ob-
tain the contributions of the partial individuals to the within inertia. This
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TABLE 5.1
Orange Juice. MFA. Within-Individual Inertias of the Super-
imposed Representation of Partial Cloudsa

Axis 1 Axis 2

P3 Fruvita fr. 0.47 P1 Pampryl amb. 0.38
P6 Pampryl fr. 5.36 P3 Fruvita fr. 6.15
P1 Pampryl amb. 14.43 P6 Pampryl fr. 11.93
P2 Tropicana amb. 25.19 P2 Tropicana amb. 16.22
P4 Joker amb. 26.74 P5 Tropicana fr 25.35
P5 Tropicana fr. 27.81 P4 Joker amb. 39.97

100 100
a For each axis, these inertias are ranked in ascending order.

makes it possible to detect individuals which, for a group of variables, lie
in an unusual position in the corresponding partial cloud compared to that
which they occupy in the other partial clouds. The list of these inertias
ranked in descending order is an original tool for describing the variabil-
ity of a dataset which can be used to detect some anomalies and/or errors.
In the case of two groups, these inertias are equal to half of the previous
inertias.

If we consider all of the individuals, we can calculate the usual ratio for
each axis:

Between-class inertia
Total inertia

= Inertia of NI

Inertia of NJ
I

.

We thus obtain an overall indicator of the similarity between the structures
of partial clouds highlighted by a given axis.

In the example (see Table 5.2), these values clearly suggest considering the
first two axes in the interpretation, which was not the case for the eigenvalues.
The second axis shows a similarity between the two partial clouds (high [Be-
tween inertia/Total Inertia] ratio: .6990, a far greater value than those which
follow) which seems noteworthy even though it corresponds to a weak direc-
tion of inertia for NI (low eigenvalue: .3651, barely higher than the following
values).

TABLE 5.2
Orange Juice. MFA. (Between Inertia)/(Total Inertia)
Ratio Associated with the Superimposed Represen-
tation

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5

0.8964 0.6990 0.2046 0.3451 0.4874
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Remark
The inertias of partial points cannot be added together from one axis to the
other.

5.5 Distortions in Superimposed Representations

5.5.1 Example (Trapeziums Data)

We use a small example bringing together the coordinates of two trapeziums
(see Table 5.3 and Figure 5.6) to illustrate our argument. Four individuals are
described by two groups, each made up of two uncorrelated variables. These
two variables are the same from one group to another: the only difference is the
variance of the second (Y1 and Y2), which is accounted for in the analyses by not
standardising the variables. These variables therefore play the role of principal
components of separate analyses and their variances that of the corresponding
eigenvalues. This is an unusual dataset as the principal components of the
separate analyses are identical.

TABLE 5.3
Trapeziums Dataset

X1 Y1 X2 Y2

a 0 0 0 0
b 10 1 10 2
c 10 3 10 6
d 0 4 0 8
Variance 25 2.5 25 10

2
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100
0
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b
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d
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Y2

2
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100
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b

c
d

X1

Y1

FIGURE 5.6
Trapeziums. Individuals represented for each group of variables.
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TABLE 5.4
Trapeziums. Variances of the First Two Factorsa

F1 F2 F2/F1

Separate PCA group 1 25 2.5 0.1
Separate PCA group 2 25 10 0.4
MFA Mean Cloud 2 0.5 0.25
MFA Partial Cloud Group 1 2 0.08 0.04
MFA Partial Cloud Group 2 2 1.28 0.64
a In the groups analysed separately and in the representations created

by the MFA. Column F 2/F 1 divides the variance of the second di-
mension to that of the first. This is in some ways a shape coefficient
expressing the (horizontal) extension of the cloud.

Unsurprisingly (see Table 5.4 and Figure 5.7), the first axis of the MFA coin-
cides with the two variables X1 and X2 and is associated with an eigenvalue
of 2. The second (and final) axis coincides with the two variables Y1 and Y2
and is associated with an eigenvalue of 0.5; hereafter, the detailed calculus
(where λ j

s is the eigenvalue of rank s for the separate PCA of group j):

0.5 = 2.5
25

+ 10
25

= λ1
2

λ1
1

+ λ2
2

λ2
1
.

The average configuration of individuals (see Figure 5.7) is as we expect.
The variance ratio between the first and second axes is, for the average con-
figuration, the average of that for each of the separate configurations. Thus

0.5
2

= 1
2

(
2.5
25

+ 10
25

)

.

In the superimposed representation of the partial clouds (see Figure 5.7 and
Table 5.5), we can see that the first axis is identical for the two partial clouds.
The second axis shows the same opposition between individuals {a, b} on the
one hand and {c, d}, but more obviously for group 2. This corresponds to the
variance of Y2 (= 10), which is higher than that of Y1 (= 2.5).

However, when we compare the representations of partial clouds in the
MFA (see Figure 5.7) with their exact image (see Figure 5.6), we can see that
the variance ratios between the two axes do not correspond. The raw data
clearly show that cloud 1 has a longer shape than cloud 2. The same applies
for the representation of partial clouds, but the proportions are not retained
exactly. This visual impression can be quantified by comparing F 2/F 1 ratios
(see Table 5.4). Compared with the raw data, the cloud of partial individuals
for group 1 (and 2, respectively) is longer (and shorter, respectively). Thus,
for a given axis, the representation of partial individuals in MFA respects the
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TABLE 5.5
Trapeziums. MFAa

F1
1 F1

2 F2
1 F2

2

a 1.4142 0.3578 1.4142 1.4311
b −1.4142 0.1789 −1.4142 0.7155
c −1.4142 −0.1789 −1.4142 −0.7155
d 1.4142 −0.3578 1.4142 −1.4311
Variance 2.00 0.08 2.00 1.28
a Coordinates of the partial individuals. F 1

2 : Coordinates of the partial
individuals of group 1 according to axis 2.
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FIGURE 5.7
Mean individuals (left); mean and partial individuals (right).

relative positions of the partial points for a given group but in some ways
caricatures or accentuates the differences in variability from one group to the
other.

This result is general. As the dataset is small and has a particular structure,
it is possible, in this specific case, to provide an exact geometric representation
of it.

5.5.2 Geometric Interpretation

In R
K (see Figure 5.8), projected on the subspace generated by Y1 and Y2 (the

only dimensions with nonzero inertia once the first axis has been ‘removed’),
cloud NI is aligned along the axis generated by u2 = Y1+2Y2, this axis being the
second factorial axis. The high variance of Y2 induces its greatest coefficient in
u2. In R

I , vectors Y1 and Y2 are collinear and thus equal to the second factorial
axis. Y2, being twice as long as Y1, has a coordinate which is also twice as
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FIGURE 5.8

Duality relationship between the coordinates of u2 (second factorial axis in R
K ) and those of Y1

and Y2 along v2 (in R
I ).

big. Here we illustrate the relationship of duality in PCA (see Section 1.5.4)
connecting the coordinates (in R

I ) of the variables projected on vs (brought
together in Gs) and the coordinates of us (in R

K ); that is to say:

us = 1√
λs

Gs .

Figure 5.9 illustrates the functioning of the superimposed representation
(of the partial clouds) in MFA. The partial points are obtained by project-
ing the mean cloud on Y1 (c1, d1) and on Y2

(
c2, d2

)
. In accordance with the

data, the inertia of N1
I is lower than N2

I (Var [Y2] = 4 Var [Y1]). These clouds
are then projected on u2. As u2 is closer to Y2 than to Y1, the projection re-
duces the inertia of N1

I more than that of N2
I (in the ratio of 1 to 4). Finally, the

ratio between the variances of F 1
2 and F 2

2 (that is to say between the partial
representations of groups 1 and 2 along the second axis) is 1 to 16.

The mechanism in MFA which reinforces the differences in inertia between
partial clouds axis by axis is thus clarified: a partial cloud with low inertia will
influence the factorial axis less and will therefore be tighter in the projection
on this axis.

Remark
For point i of NI to lie (in the graphs provided by the programs) at the centre of
gravity of the corresponding partial points

{
i j : j = 1, J

}
, the partial points

need to be dilated with the J coefficient. As this coefficient is the same for
all of the groups, it does not change the relative inertias of the clouds. This
barycentric property is vital to the interpretation. It is therefore not possible to



114 Multiple Factor Analysis by Example Using R

Y1

Y2

c

d

u2

c2

c1 d1

d2

RK

FIGURE 5.9
The partial clouds and their superimposed representation. As these clouds are symmetric with
respect to the origin, we look only at individuals c and d.

reduce the distortion mentioned above (for example, by differentially dilating
the partial clouds), which would mean this barycentric property would be lost.

Conclusion. For the superimposed representation we must remember that the
distances between partial points are only easily interpretable for a given group
of variables (expressed by the partial transition relation). From one group to
the other, the distances between partial points of different groups are only
meaningful if the corresponding partial clouds have comparable inertias (for
the studied axes or planes).

5.5.3 Algebra Approach

Notations (Reminders and Additions)
Let xik be the general term of table X of (I , K ) juxtaposing tables Xj in the
rows. Let mk be the weight attributed to variable k, M the diagonal matrix of
(K , K ) containing all of mk , and Mj the diagonal matrix (K j , K j ) containing
weights mk for the variables of group j . To simplify matters, here we attribute
the same weight to all individuals.

Let Wj = Xj Mj X′
j be the scalar product matrix (between individuals) as-

sociated with the j th table.
The MFA is based on a weighted PCA of table X. We denote us the unit

vector of the sth axis of inertia of mean cloud (us ∈ R
K ), Fs the associated

principal component, vs the associated standardised principal component
(Fs and vs ∈ R

I ), λs the associated eigenvalue and S the number of nonzero
eigenvalues.

Let Z be matrix (I , I ) the columns of which are the standardised eigenvec-
tors of XMX′ ranked by decreasing eigenvalue; the S first columns of Z are
the vs . We obtain Z′ Z = ZZ′ = identity.

The coordinate of partial individual i j along the axis of rank s in the MFA
is denoted Fs(i j ) = F j

s (i). F j
s is the vector containing these I coordinates.
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Furthermore, we denote Gs(k) the coordinate of variable k along axis s (in R
I )

and λ j
s the sth eigenvalue of the separate PCA of group j .

Reconstitution of Nj
I

The coordinates of the projection of N j
I on us are brought together in F j

s ; F j
s

is related to vs (see Section 5.2):

F j
s = 1√

λs
X̃ j MGs = 1√

λs
X̃ j MX′vs = 1√

λs
Wj vs .

Let {√λs F j
s ; s = 1, S} be the set of projection coordinates of cloud N j

I (mul-
tiplied by

√
λs). The PCA of the matrix (I , S) with columns {√λs F j

s ; s = 1, S}
is the same as that of table Wj Z (I, I ). This leads to the diagonalisation of the
matrix

Wj ZZ′Wj = Wj Wj ,

whose eigenvectors are the same as for Wj and the eigenvalues the squares
of those of Wj .

Thus, the PCA of {√λs F j
s ; s = 1, K } results in the same factors as those of

Xj , the eigenvalues of this PCA being the squares of those of Xj . From this
perspective, all of F j

s enables us to reconstitute Xj . This reconstitution is not
generally perfect, even if cloud NI is perfectly represented in the MFA as, for
this reconstitution:

• Factors F j
s have already been multiplied by

√
λs (distortion 1).

• The eigenvalues of the resulting reconstitution are the squares of
those of the exact representation (distortion 2).

Numerical Example
In the Trapeziums dataset, the initial variables correspond to the axes of the
MFA. The distortion of cloud N j

I can therefore be illustrated by comparing
the variance of an initial variable of group j (here denoted v j ) and the corre-
sponding variance of factor F j

s . Using the results shown above, we obtain:

Var
[

F j
s

J

√
λs

]

= λs

J 2 Var
[
F j

s

] = (
Var

[
v j])2

.

Here, F j
s is the vector of the coordinates provided by the programs (after the

homothety of ratio J (see Section 5.2)) hence the division by J . The variance
of v j must be considered after the MFA weighting. Thus, by replacing the
symbols in the second equality above by their value of group 1 and axis 2:

0.5
22 0.08 =

(
2.5
25

)2

.
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The squaring accurately illustrates the ‘tightening’ of the dimensions with
low inertia. Furthermore, the effect of eigenvalueλs has until now not attracted
our attention as it is the same for all groups. But factorial planes constructed
from axes with very different inertias can show visible distortions, particularly
when, initially, the corresponding dimensions of a partial cloud have equal
inertias. An example of this is given in Section 9.3.2.

5.6 Superimposed Representation: Conclusion

Superimposed representation is of major interest in applications. In some
cases, it makes it possible to avoid consulting separate analyses. With this
in mind, we have insisted on the distortions linked to this representation. In
sum, along the axis of rank s of the mean cloud, the inertia of the projection
of N j

I tends to be accentuated when the direction of projection corresponds:

– To a low direction of inertia of cloud NI (due to distortion 1); this
distortion is identical for all N j

I

– To a high direction of inertia of N j
I (due to distortion 2); this distortion

varies according to N j
I

In return for this distortion, the superimposed representation of N j
I ben-

efits from a partial transition relation expressing coordinate F j
s (i) of partial

individual i j according to the coordinates Gs(k) of the variables of group j .
This relation makes it possible to take into account individuals which have

data for only certain groups of variables. Such individuals cannot be intro-
duced as active in MFA. However, we can introduce them as supplementary
and represent them as partial points corresponding to the groups for which
they possess data.

In the orange juice example, this would correspond to a juice for which we
know the chemical variables, but which has not been tasted. Therefore, on
the factorial plane of Figure 5.5, we can represent the partial point chemical
for this juice and interpret its position compared to the other chemical partial
points. Concretely, this will be done by completing the missing data using
arbitrary values (for example, the means of the variables) and, in the results,
taking into account only the partial points for which data are available. Here,
MFA offers the opportunity to include data in the analysis that are usually
left out.

5.7 MFA Partial Clouds in FactoMineR

We use the Orange Juice data. We continue the analysis presented in
Section 4.7, explaining characteristics of partial points.
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FIGURE 5.10
Individuals graph window.

The superimposed representation should contain I ( J + 1) points and is
often not easy to read as it stands. It is therefore important to be able to select
the mean and/or partial individuals to be represented. We thus obtain graphs
for the analysis. However, to present the results attractively, graphics software
is required.

The Drop-Down Menu

Figure 5.10 shows the left part of Figure 4.10.

1. The mean and/or partial individuals can be labelled.
2. A colour can be attributed to partial individuals belonging to a given

group or a given individual.
3. Individuals for which we want to represent partial points can be

chosen in advance.
4. This option displays an interactive graph. At first, only the mean

individuals are shown. By clicking on a mean individual, the corre-
sponding partial individuals are shown, and these partial individuals
are linked (by a segment) to their mean point (star graph). By click-
ing on a mean individual for which the partial points are displayed,
the partial points become invisible. In this way, it is possible to work
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step-by-step and visually to select a few notable individuals (which,
for one or two axes, have particularly strong or weak within-class in-
ertia). After working with this graph, it is necessary to close it (right
click and then ‘close’).

5. When the groups of variables are associated with dates, it is useful to
link the partial points (for a given individual) in chronological order.
This is often known as the trajectory. This means the groups are ranked
in chronological order.

Command Lines

There are two specific MFA graph functions. The plot.MFA function has
already been presented. By default, it displays the mean individuals, each
labelled in a different colour:

> plot.MFA(resAFM)

It is helpful to display the partial points without labels, but coloured ac-
cording to their group (here, we use the default values of the arguments axes
and choix:

> plot.MFA(resAFM,axes=c(1,2),choix="ind",hab="group",
+ partial="all")

It is possible to restrict the representation of partial individuals to a few
individuals and to specify their numbers (here the first two individuals).

> plot.MFA(resAFM,axes=c(1,2),choix="ind",hab="group",
+ partial=c(1,2))

Interactive selection of the individuals for which we want to represent par-
tial points (presented in R Commander) can be accessed directly using the
plot.MFApartial function:

> plotMFApartial(resAFM,axes=c(1,2),hab="group")

This command displays the representation of mean individuals. Simply
click on the points to be selected (a second click cancels the selection). When
this option is controlled with Rcmdr, selection must always be explicitly
stopped (right click or tab top left) before attempting to carry out any fur-
ther operations.

Partial points are labelled by concatenating the individual’s and the group’s
labels. Without selection, the resulting graph contains too many labels to be
readable. An example is:

> plot(resAFM,choix="ind",partial="all",lab.par=T,hab="group")
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One option is to display labels specific to a given graph. In order to do this,
we first display a graph with no labels. We then add labels using the text
function in the active window; an example for a graph in black and white
(habillage="none") is:

> plot(resAFM,choix="ind",partial="all",hab="none")

> text(resAFM$ind$coord.partiel[,1],resAFM$ind$coord.

+ partiel[,2],rep(c("Chim","Senso"),6),pos=3,offset=0.5)

The MFA output includes a lot of tables. The values of Table 5.1
are in resAFM$ind$within.inertia; those of Table 5.2 are in re-
sAFM$inertia.ratio.





6
Factors Common to Different Groups
of Variables

Historically, the simultaneous analysis of several groups of variables focused
on looking for factors common to these groups. This is the aim of canonical
analysis, of which there are many variations. This chapter shows how this
point of view is taken into account in multiple factor analysis (MFA) and
how MFA can be considered as a specific canonical analysis. We begin by
describing the objectives corresponding to this new perspective, in particular
the notion of common factor.

6.1 Objectives

A major aspect of studying a table of individuals × variables lies in identifying
relationships between variables. Thus, in the simple case of one group of
quantitative variables, the correlation coefficients between the variables taken
two by two are examined. This analysis can also be conducted with several
groups of variables, in which case we distinguish between between-group
and within-group correlations. However, simultaneously taking into account
several groups of variables implies that we should look at the relationship
between the groups of variables themselves. The details concerning the scope
of such a concept are outlined below.

This is not a new issue: in 1936, H. Hotelling published an article enti-
tled ‘Relationships Between Two Sets of Variables.’ To introduce the issue, he
presented the example of connecting supply and demand for raw materials
in agriculture, highlighting the need to analyse all the raw materials simul-
taneously (for which the supplies on the one hand, and the demands, are
interdependent). At the end of this section we describe the issue analysed by
Hotelling in further detail. Below, however, we look at this problem in what
we consider to be a more natural way, given the exploratory analysis context
of this book.

Let us look back at the case of a single group of quantitative variables.
Beyond the paired correlations, the relationships are studied with principal
component analysis (PCA). The principal components are helpful for repre-
senting the initial variables as they maximise projected inertia. In standardised
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PCA, this criterion is equivalent to the sum of the squared correlation coef-
ficients between the principal component and the initial variables. This is
why the principal components are interpreted as synthetic variables (they
summarise that to which they are closely related).

In order to account for several groups of variables, we might consider imple-
menting a PCA on the whole dataset in order to visualise both between- and
within-group correlations. This was done in Chapter 4 where it was shown
that, to be entirely useful, this analysis supposes that there is a balance be-
tween the groups of variables. In other words, highlighting between-group
correlations from within-group correlations implicitly implies a balance be-
tween the groups of variables.

6.1.1 Measuring the Relationship between a Variable and a Group

Let us look back at the second perspective on a principal component of a stan-
dardised PCA: a component such as this is a synthetic variable closely related
to the initial variables. The simplest extension of the case of several groups
is to look for a variable which is closely related to the groups of variables.
This requires the definition of a measurement of the relationship between a
variable (here that is to say vs , a synthetic variable of rank s) and a group of
variables (already denoted K j ). Denoting such a measurement Lg

(
vs, K j

)
,

the synthetic variable (of rank s) vs must fulfill:

∑

j

Lg(vs, K j ) maximum

with norm constraint ‖vs‖ = 1 and orthogonality constraint (we are, in fact,
looking for a set of synthetic variables) vs⊥vt for t < s.

To ensure the groups are balanced within such a criterion, it is sufficient
that the measure satisfies the following relationship (as the squared correlation
coefficient in standardised PCA):

0 ≤ Lg ≤ 1.

The value 0 indicates a total absence of relationships (in a sense which
still requires clarification); the value 1 indicates a relationship of maximum
intensity (in a sense which still requires clarification).

The references to the criterion of the standardised PCA (expressed as a sum
of squared correlation coefficients) sheds light on what we expect from a bal-
ance between the groups of variables. In PCA, the aim is not to obtain principal
components (synthetic variables) as each is linked in the same way to each
variable (the possibility of obtaining such a principal component depends on
the correlations between initial variables). It is merely required that, prior to
the analysis, no initial variable should be privileged in constructing a prin-
cipal component; this is ensured by equalising the maximum contribution to
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the construction of a principal component for each variable. This is indeed
the case in standardised PCA, and it is precisely this property which should
be transposed when simultaneously analysing several groups of variables.

6.1.2 Factors Common to Several Groups of Variables

Here we are therefore looking for the synthetic variables which are the most
closely linked to the groups of variables. A synthetic variable, that is to say
closely linked to each group, is referred to as a common factor (in that it is
common to all groups). We can also imagine a factor common to only certain
groups and even a factor specific to only one group. This would make it
possible to specify the general objective of studying relationships between
sets of variables: we look for factors which can be:

– Common to all groups of variables
– Common to only some groups
– Specific to one single group

Much as in PCA, once these factors have been obtained, they are studied
using representations:

– Of individuals; fundamentally, a common factor is a structure on all
the individuals; opposing two groups of individuals, for example.

– Of variables (correlation circle); the question is: which variables in
each group correspond (that is to say, are related) to this structure on
the individuals?

6.1.3 Back to the Six Orange Juices

Let us illustrate the concept of common factor using the Orange Juice data (see
Section 1.10) for which we have two groups of variables: the seven sensory
descriptors and the eight chemical measurements. In connecting these two
types of data, we first calculate some between-group correlation coefficients
for which we have an idea prior to the calculation. Thus:

– r (sour taste, pH) = −.85; this result is to be expected: the lower the
pH is, the more acidic the solution and the more we can expect acidic
or sour assessments.

– r (sweet taste, sucrose) = .77, this result is also expected: the higher
the concentration of sucrose is, the more we expect sweet assessments.

It must be specified that these relationships can only be expected with
all other things being equal. But, in these data, we can expect within-group
relationships for two reasons.

(A) The products were chosen according to a technical variable
(pasteurisation level) and their origin (Florida/other). A choice like this will
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lead to correlations between chemical characteristics. Thus, r (pH, sucrose)
= .82: overall, the least acidic juices (chemically) have the highest sucrose
content.

(B) These relationships between chemical characteristics influence several
sensory variables and therefore induce relations between them. But there is
more: even if we ask tasters to give a separate analysis of their perceptions,
these perceptions will always be simultaneous. Considering the taste sensa-
tions only, we first perceive a taste balance, within which we try to evaluate the
basic tastes. As a result, we expect relationships between sensory variables.
Thus, r (sourness, sweetness) = −.90. A first idea is to connect this result to
the relationship mentioned above (pH, sucrose). But we can also consider the
sweet/sour taste balance (to reduce the sourness of a lemon, we often add
sugar). To study the relationship between chemical and sensory data, it be-
comes clear in this example that we need to go beyond paired correlations
(that is to say between a chemical variable and a sensory variable), and to
consider the general chemical and sensory profiles (rather than their sepa-
rate constituent elements). With this in mind, what does the common factor
perspective have to offer?

Considering the between-group and within-group correlations amongst
the four variables mentioned above (pH, sucrose, sweetness and sourness),
the small number of variables (four) which, moreover, are easy to interpret (at
least at first glance), and finally the small number of individuals, we might
think about confronting two classes of three juices each:

1. The two Tropicana and Fruvita; these three juices have a high pH and
a high sucrose content. They are perceived as sweet and slightly sour.

2. The two Pampryl and Joker; these three juices present exactly the
opposite characteristics.

This opposition illustrates the concept of common factor. It is considered
as a common factor in the sense that it is linked to variables from both groups
(of variables). Its main advantage lies in the fact that the description of the
opposition between these two classes (of juices) synthetically presents the
relationships between the variables of the two groups, both between-group
and within-group.

Finally, in this small example (6 individuals, 2 groups of 2 variables each),
it was possible:

– To intuitively highlight this common factor without specific statistical
analysis

– To validate the summary provided by the common factor by directly
analysing all of the correlation coefficients
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Of course this is not the case when there is a large amount of data, which
is why we need a specific statistical method.

In this orange juice example, it was possible to identify a common factor
thanks to the PCA results (see Section 1.10). Therefore, is PCA ‘the’ method
for identifying common factors? No, it is not, as it is subject to an imbalance
between the two groups. Moreover, in the PCA in Chapter 1, only the chemical
variables are active. In this analysis, we first look for the principal dimensions
of chemical variability, and only then do we connect these dimensions to the
sensory variables.

6.1.4 Canonical Analysis

In order to analyse the relationships between two groups of variables,
Hotelling introduces the notion of canonical variables. It simultaneously looks
for:

– A linear combination (denoted u) of the variables from group 1
– A linear combination (denoted v) of the variables from group 2

such as the correlation coefficient between u and v (r (u, v)) is maximised.
u and v are said to be canonical variables, r (u, v) is known as the canoni-
cal correlation coefficient and the approach as a whole is known as canonical
analysis.

Canonical analysis is a method which plays an important theoretical role,
essentially because of the many other statistical methods which can be seen as
specific cases (multiple regression, for example, if one of the groups is reduced
to a single variable), but it is practically never used to process data. We believe
this is because the perspective of looking for a pair of canonical variables, one
in each group, does not naturally coincide with the users’ questions. The
orange juice example highlighted the benefits of another concept: common
factor.

The idea of looking for a function linked as closely as possible to a set of
groups of variables was first introduced by J. D. Carroll in 1968, as a general-
isation of (Hotelling’s) canonical analysis. As many generalisations of canon-
ical analysis were put forward, it is important to specify Carroll’s generalised
canonical analysis (GCA; it is also known as Carroll’s multicanonical analysis).
Due partly to its age and partly to its focus on searching for common factors,
we can consider this analysis as a benchmark method for this issue. Of course
this does not mean other methods cannot be put forward, but they need to be
compared to this one (as we do).

It must nonetheless be noted that in his presentation, Carroll uses that
which we have referred to as common factors as intermediaries for calculations
in order to obtain canonical variables (from a common factor, he deduces
one canonical variable per group). The above presentation of Carroll’s multi-
canonical analysis is therefore our point of view about this method.
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FIGURE 6.1
Geometric interpretation of the multiple correlation coefficient in an unstable situation. cos θ1:
Multiple correlation coefficient between z1 and {a, b1}; Eab1: Subspace generated by a and b1.

6.2 Relationship Between a Variable and Groups of Variables

The classical measurement between a variable z and a group K j is the multi-
ple correlation coefficient (or its square, the determination coefficient, usually
denoted R2) denoted r

(
z, K j

)
. It is the maximum correlation coefficient be-

tween z and a linear combination of variables from group K j . Geometrically
speaking, it is the cosine of the angle between z and its projection on E j ,
the subspace generated by the variables of group K j . This measurement is
systematically used in multiple regression (z being the response variable; K j

containing the predictors) to assess the goodness of fit (of z by a linear combi-
nation of the variables of K j ). This measurement is entirely satisfactory when
the variables K j are not correlated with one another. In practice, we reach this
situation when the variables are predictors constructed from an experimental
design. Otherwise, when the variables are correlated, the subspace generated
by the variables of K j can be highly unstable (for small fluctuations of these
variables) as illustrated in Figure 6.1 in an extreme situation.

In this figure, the group of variables K j contains two variables, a and b,
which are closely correlated. The variability of b is represented by means of
two occurrences of b: b1 and b2.

In the first case (and second, respectively), group K j , thus {a , b1} (and {a ,
b2}, respectively), generates subspace Eab1 (and Eab2 , respectively). Although
b1 and b2 are closely correlated (in other words, the variability of b represented
by the deviation between b1 and b2 is low), the subspaces Eab1 and Eab2 are
very different (the instability of the multiple correlation coefficient stems from
its dependence on these subspaces).

The multiple correlation coefficient between z1 (and z2, respectively) and
{a , b1} (and {a , b2}, respectively) is the cosine of the angle denoted θ1 (and θ2,
respectively) between z1 (and z2, respectively) and its projection on Eab1 (and
Eab2 , respectively).
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Let us examine the relationship between K j and each of the two variables
z1 and z2. These last two variables are nearly orthogonal to each of the vari-
ables of K j . But the multiple correlation coefficient between z1 and K j is
worth:

– Around 1 in the first case (r (z1, {a, b1}) ≈ 1) as θ1, the angle between
z1 and Eab1 , is close to zero degree

– Around 1 in the second case (r (z1, {a, b2}) ≈ 0) as θ2, the angle be-
tween z1 and Eab2 , is close to 90◦

This instability (for a slight fluctuation of b) is also observed for variable z2.
Indeed, r (z2, {a, b1}) ≈ 0 and r (z2, {a, b2}) ≈ 1. These two variables z1 and z2
are both weakly correlated to each of the variables of group K j . A z3 variable
closely correlated to a and b (therefore correlated to b1 and b2) will not be
affected by this instability. This is why we measure the relationship between
a variable z and a group K j , making the group of variables intervene, not only
through the subspaces they generate, but also accounting for the distribution
of variables within this subspace.

From this perspective, we define the measurement (of the relationship)
Lg

(
z, K j

)
as the projected inertia on z of the variables of group K j , inertia

divided by its maximum value (already denoted λ
j
1, the first eigenvalue of the

PCA of K j ). Thus, in the case of standardised variables (denoted vk):

Lg(z, K j ) = 1

λ
j
1

∑

k∈K j

(projected inertia of vk on z) = 1

λ
j
1

∑

k∈K j

r2(z, vk).

We obtain 0 ≤ Lg
(
z, K j

) ≤ 1.
The value 0 is reached when all the vk variables are perfectly uncorrelated

with z. This property is also true for the multiple correlation coefficient. The
difference is that if the r (z, vk) are scarcely different from 0, Lg lies close to 0
whereas the multiple correlation coefficient can be high (see Figure 6.1). The
value 1 is reached if z is equal to the first principal component of K j . This first
principal component has already been interpreted as the function on I which
is the most closely related to the active variables of the PCA.

6.3 Searching for Common Factors

Once the measurement between a variable and a group (of variables) has
been defined, the first part of Carroll’s canonical analysis approach (men-
tioned briefly in the introduction to this chapter) is applied: look for the linear
combination of variables the most closely linked to the set of groups, replac-
ing, in Carroll’s method, the squared multiple correlation coefficient by the
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measurement Lg. The first (common) factor, denoted v1, is variable z which
maximises

∑

j

Lg
(
z, K j

)
with norm constraint: ‖v1‖ 2

D = 1.

As Lg(z, K j ) is equal to the inertia of the variables of K j projected on z (here,
inertia integrates weighting by λ

j
1), this first common factor is the first stan-

dardised principal component of the MFA. The balance of the influence of the
groups, obtained thanks to the MFA’s weighting, makes it possible to interpret
the MFA criterion both as that of a PCA and that of a canonical analysis. This
result is important in more ways than one. In particular, it shows that the two
objectives, studying the variability (including several groups of variables) of
individuals (the objective of PCA) on the one hand, and looking for common
factors (the objective of canonical analysis), are linked to each other, or are
even two aspects of the same issue. This idea has already been seen in the
introduction to this chapter, in which these factors are defined as a structure
on the individuals (the example given is that of the opposition between two
groups each with three orange juices).

Once the first common factor has been found, we look for a second, orthog-
onal to the first, and so on until a sequence of orthogonal factors is found.
These factors are the principal components of the MFA: that of rank s has
already been denoted vs (variance 1) or Fs (variance λs).

6.4 Searching for Canonical Variables

In Carroll’s method, each common factor Fs is attributed a set of J canonical
variables (one for each group of variables). In some ways, these variables
represent the common factor Fs in each group. They are obtained by projecting
Fs onto each of the subspaces generated by the variables of a group. There is
therefore a homogeneity of criteria when searching for common factors and
for canonical variables. In both cases, a group of variables is represented by
the subspace it generates.

We adapt Carroll’s approach by including the characteristics of our point
of view in the canonical analysis, thus:

– Considering each group of variables while taking into account the
distribution of inertia within the subspace it generates

– Highlighting the individuals’ space, which is done when a common
factor is defined as a structure on the individuals

This point of view suggests using the coordinates of the partial individuals
(grouped together in the partial factors denoted F j

s ) as canonical variables.
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Indeed, F j
s is a structure on the individuals defined by group j (cloud N j

I is
projected) and is associated with Fs (N j

I is projected on us). In order to validate
this choice, it must be expressed in space R

I , as is usually the case in canonical
analysis.

Factor F j
s was already expressed (property 3 of Section 5.2) according to the

variables’ coordinates in R
I , thus (reminder: X̃ j is the table Xj complemented

with zeros in order to obtain the same dimensions as the complete table X):

F j
s = 1√

λs
X̃ j MGs .

In the case of standardised variables, the kth coordinate of Gs contains the
correlation coefficient between the kth variable denoted vk and Fs . In such a
case:

F j
s = 1√

λs

1

λ
j
1

∑

k∈K j

r
(

Fs, vk
)

vk .

Thus, F j
s is a function on I which both accounts for the distribution of the

variables of K j (a linear combination of the variables of group K j ) and is
linked to Fs (each variable vk influences F j

s more and more, the more closely
related it is to Fs).

This interpretation of F j
s in R

I validates its choice as a canonical variable in
an approach inspired by that of Carroll. It makes it possible to consider MFA
as a multicanonical analysis.

Remark
The idea of combining variables vk using their correlation coefficient with
variable z as coefficient is found in PLS regression (with just one component)
explaining z in terms of vk .

In practice, as has already been mentioned for the partial clouds, in order
to create the graphs, the F j

s are multiplied by J.

6.5 Interpretation Aids

The canonical analysis perspective suggests two types of supplementary in-
dicators in order to assist in interpreting an MFA.

6.5.1 Lg Relationship Measurement

This is not truly a new indicator but rather an additional interpretation of the
contribution of a group to the inertia of an axis. Thus, Table 4.5 now warrants
the two following comments:
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TABLE 6.1
Orange Juices. MFA. Canonical Correlation Coefficients

Group F1 F2 F3 F4 F5

1: Chemical .9466 .7556 .4407 .4631 .8030
2: Sensory .9469 .9522 .4638 .6941 .5744

– The first factor of the MFA is closely linked to each of the groups in
this way as it represents a high direction of inertia for each group (for
example, Lg(F1, K1) = .891, a value close to the theoretical maximum
of 1).

– The second factor of the MFA is slightly linked to the second group
(Lg(F2, K2) = .266) and hardly related to the first (Lg(F2, K1) = .099).

6.5.2 Canonical Correlation Coefficients

In the original canonical analysis, that of Hotelling, a canonical correlation
coefficient measures the relationship between two canonical variables of the
same rank. This notion is less useful in cases with more than two groups,
particularly in an approach like Carroll’s.

However, it is interesting to evaluate the relationship between a common
factor Fs and its representation F j

s in group j. This relationship indicates how
factor Fs can be considered as ‘belonging’ to group j. In order to do this, for
each rank s we calculate the correlation coefficient between factor Fs and each
canonical variable F j

s .
These coefficients are said to be canonical in MFA. Consulted at the begin-

ning of an interpretation, they guide the user by suggesting the type of each
factor (either common to all groups, or to some of them, or specific to just
one group). Applied to the Orange Juice data, these coefficients are brought
together in Table 6.1.

In the absence of a validation technique, we can only empirically choose a
threshold below which canonical correlation coefficients should be considered
negligible. In practice, we consult these coefficients for a large number of axes,
with those of the highest ranks (almost) certainly corresponding to an absence
of structure; we therefore try to find discontinuity in this distribution.

Table 6.1 suggests this limit should be fixed between .8030 and .9522. This
leads us to considering the first factor as common to two groups and the
second factor as specific to group 2 (sensory).

This interpretation supports:

– The aforementioned relationship measurement Lg, equal to .099 (Ta-
ble 4.5), very low between F2 and group 1

– The eigenvalues of the PCA of group 1 (Table 4.5) which suggest a
one-dimensional group (the first axis accounts for 77.66% of the total
inertia)
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– The representation of the variables on the first plane (see Figure 4.4)
which suggests no chemical interpretation apart from the first axis

Methodological Remark. In practice, we begin to analyse MFA results by ex-
amining the canonical correlation coefficients. If we conclude that there are
no common factors, it is logical to interrupt the analysis: in such cases, the
factors of the separate PCAs will be favoured over the factors (thus specific
to one group) of the MFA.

In the FactoMineR MFA output (namedres, for example), Table 6.1 is found
in res$group$correlation.





7
Comparing Groups of Variables and
Indscal Model

The previous chapters present detailed tools for analysing relationships be-
tween groups of variables, both from the point of view of the variables
(between-group correlations) and the individuals (comparison of partial
clouds). However, when there is a large amount of data (many groups, each
with a lot of variables, and a large number of individuals), more general tools
are required, at least at first, in order to answer questions such as:

– Given two groups of variables, can we consider them to be related?
In other words: overall, are the two associated partial clouds similar?

– As is the case for representations of individuals and variables, is it pos-
sible to generate graphs in which each group is represented by a point,
with the proximity of points j and h indicating a relation/similarity
between groups j and h?

7.1 Cloud NJ of Groups of Variables

The raw data associated with a group j of variables makes up table Xj . Gener-
ally, there is no correspondence between the columns of the different Xj and
it is not possible to compare the Xj tables directly.

The idea of comparing two groups of variables from their partial cloud (see
Chapter 5) suggests representing a group by its matrix of between-individual
distances. These matrices have the same dimensions from one group to an-
other and their entries correspond pairwise: it is therefore possible to compare
them directly.

From another point of view, it is legitimate to represent a cloud of individ-
uals by the matrix of their scalar products (between individuals; denoted XX′

in Section 1.5.1) with which it is associated: indeed, diagonalising this matrix
makes it possible to represent the cloud of individuals perfectly on its princi-
pal axes, with the same weight attributed to each individual (see Section 1.5.3).
These two matrices are closely linked: the matrix of scalar products can be
obtained by performing a dual centring of the matrix of squared distances.

The notations are as follows: 〈i, l〉 indicates the scalar product between in-
dividuals i and l; d (i, l) the distance between i and l; d2 (i, .) (and, respectively,

133
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FIGURE 7.1

Clouds of variables and cloud NJ of groups of variables. Each group of variables in R
I is asso-

ciated with a point in R
I 2

.

d2 (., l)) the mean of the squared distances between i (and, respectively, l) and
the other points. Thus

d2 (i, .) = 1
I

∑

l

d2 (i, l) d2 (., l) = 1
I

∑

i

d2 (i, l) .

d2 (., .) is the general mean of the squared between-individual distances:

d2 (., .) = 1
I 2

∑

i

∑

l

d2 (i, l) .

Torgerson’s formula gives the scalar product between individuals i and l
from the distances:

〈i, l〉 = 1
2

[
d2 (i, l) − d2 (i, .) − d2 (., l) + d2 (., .)

]
.

This is double centring of the matrix of squared distances by row and
by column. Due to its properties, the scalar product matrix is used (rather
than the distance matrix). It is traditionally denoted by the letter W; thus, for
group j:

Wj = Xj Mj X′
j .

Matrix Mj represents the metric in R
K j ; it is diagonal and contains the

weights of the variables of group j. In MFA, this weight is generally constant
within a group of variables (and equal to 1/λ

j
1). Each matrix Wj contains

I × I = I 2 numbers; it can be attributed a point (or a vector) in a space of I 2

dimensions, denoted R
I 2

and known as the groups’ space (see Figure 7.1).
All of Wj in R

I 2
make up the cloud of the groups of variables denoted NJ .

In order to judge the similarity between two matrices, we examine (in R
I 2

)
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their distance (as for the individuals in principal component analysis, PCA)
and/or the angle that they form with the origin (as for the variables in PCA).
It is thus necessary to endow the space R

I 2
with a metric.

Each element of Wj , and therefore each dimension of R
I 2

, corresponds to
a pair of individuals. In order to account for the individuals’ weights, we
associate the product pi pl of the weights of these individuals with the di-
mension corresponding to the pair of individuals (i, l). The scalar product (in
R

I 2
) between the matrices (of the scalar products between individuals, in R

K )
associated with the groups j and h is thus expressed:

〈
Wj , Wh

〉
D =

∑

i

∑

l

pi pl Wj (i, l) Wh (i, l) = trace
(
Wj DWh D

)
.

The D in
〈
Wj , Wh

〉
D is a reminder that the weights of the individuals inter-

vene in defining this scalar product. The justification for this metric lies in the
reasoning which has already been discussed about the metric in R

I : attribut-
ing a weight of 2 to an individual is the same as introducing this individual
in the analysis twice. Therefore, attributing a weight of 2 (or 3, respectively)
to individual i (and l, respectively) generates 2 × 3 = 6 times entry (i, l) in
matrix Wj , after duplication of the individuals i and l.

Remark
It is also possible to take into account the individuals’ weights, by associating
matrix Wj D with group j. In this case, space R

I 2
is endowed with the usual

metric and we obtain the same scalar product between groups j and h.

7.2 Scalar Product and Relationship Between
Groups of Variables

Case of groups of variables each reduced to a single variable

K1 = {v} K2 = {z} .

Due to weighting in the MFA, these variables are standardised and have a
weight of 1. In this case, W1 = vv′ and W1 (i, l) = v (i) v (l) . The rank of this
matrix is 1. An element of R

I 2
is said to be of rank 1 when it corresponds to

only one element of R
I . The scalar product between W1 and W2 is expressed:

〈W1, W2〉D =
∑

i

∑

l

pi plv (i) v (l) z (i) z (l) = r2 (v, z) .

In this simple but fundamental case, the scalar product (in R
I 2

) corresponds
to the classic relationship measurement between two quantitative variables.
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Case where only one of the two groups is multidimensional

K1 = {v} K2 = {zk : k = 1, K2} .

Variable zk is endowed with weight mk . When the variables are standard-
ised, this weight is generally that of the MFA: 1/λ2

1. When the variables are
only centred, we can consider reduction as a weighting (of the standardised
variables) by their variance

(
s2

k

)
. Finally, in this case, their weight in MFA is

s2
k /λ

2
1.

W2 can be written as a sum of elements of rank 1. Thus

W2 =
∑

k

mk zk z′
k .

This is why, by exploiting the bilinearity of the scalar product,

〈W1, W2〉D =
〈

vv′,
∑

k

mk zk z′
k

〉

D

=
∑

k

mk
〈
vv′, zk z′

k

〉
D =

∑

k

mkr2 (v, zk)

=
∑

k

projected intertia of zk on v (in R
I ) = Lg(v, K2).

Again here, the scalar product is interpreted as a relationship measurement
(see Section 6.2).

General Case: Two multidimensional groups

K1 = {vh : h = 1, K1} K2 = {zk : k = 1, K2} .

Variable vh is endowed with weight mh and variable zk is endowed with
weight mk .

W1 =
∑

h

mhvhv′
h W2 =

∑

k

mk zk z′
k

〈W1, W2〉D =
∑

h

mh

∑

k

mkr2 (vh, zk) =
∑

h

mh Lg (vh, K2) =
∑

k

mk Lg (zk, K1) .

This scalar product in R
I 2

is interpreted in space R
I as follows: the inertias

of the variables of a group projected onto each of the variables of the other
group are added together.

It is worth 0 if, and only if, each variable from one group is uncorrelated with
every variable from the other group. There is no maximum value as such: this
maximum depends on the dimensionality of the groups. More specifically,
this quantity increases when the two groups possess a rich common structure
(that is to say, when they have several common directions with high inertia in
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7 98

Lg = 1 ; RV = 1 Lg = 1.25 ; RV = 1 Lg = 2 ; RV = 1

Lg = 1 ; RV = 0.7 Lg = 1 ; RV = 0.57 Lg = 2 ; RV = 0 .67

Lg = 0.25 ; RV = 0.2 Lg = 0.25 ; RV = 0.16 Lg = 0.25 ; RV = 0.11

FIGURE 7.2
Lg and RV measurements in a few typical cases. Each segment represents a variable belonging
to group 1 (continuous lines) or group 2 (broken lines). In these examples, the angles between
the variables are worth 0◦ or 90◦, which are not represented accurately on the diagrams in order
to display all the variables.

each group). In this sense, we can consider this scalar product as a measure-
ment of the relationship between two groups of variables. This aspect appears
more clearly in the following section explaining the norm in R

I 2
.

Lg and RV
By explicitly highlighting the weighting of the MFA, the measurement Lg of
the relationship between groups K j and Kl is expressed:

Lg(K j , Kl) =
〈

Wj

λ
j
1

,
Wl

λl
1

〉

D

.

When W1 and W2 are standardised (in R
I 2

), 〈W1, W2〉D is interpreted geo-
metrically as a cosine and corresponds to the RV relationship measurement.
Thus

RV(K j , Kl) =
〈

Wj∥
∥Wj

∥
∥

D

,
Wl

‖Wl‖D

〉

D

.
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Like measurement Lg, RV is worth 0 if, and only if, each variable of
one group is uncorrelated with every variable of the other group. How-
ever, the RV coefficient is always less than or equal to 1, a value attained
when the clouds of individuals associated with each of the groups are ho-
mothetic (the dimension of the clouds of individuals does not intervene in
this case). This useful property makes RV the traditional measurement of
the relationship between two groups of multidimensional variables. How-
ever, in cases where one of the groups is one-dimensional, Lg is more
suitable.

In both measurements, we evaluate the importance of a structure common
to two groups of variables:

– In RV, without paying attention to the dimension of this common
structure.

– In Lg, taking into account the dimension of this common structure
and its inertia relative to that of the groups. Lg is in some ways a
‘number of common dimensions’, each ‘weighted’ by its inertia.

The two measurements therefore complement each other perfectly. It is
important to remember that RV or Lg is chosen according to whether we
want to distinguish between the case of two one-dimensional homothetic
structures and that of two multidimensional homothetic structures (in many
respects, the second case is more remarkable than the first). When working
with MFA, we examine both indicators.

Figure 7.2 gives the values of RV and Lg in a few typical cases explained
below.

– Cases 1, 2 and 3. In these three cases, the structures generated by the
two groups are homothetic: RV is always worth 1. Lg increases with
the number and the inertia (relative to the first principal component
of each group) of the common dimensions.

– Cases 1, 4 and 5. In these three cases, the two groups have the first
principal component, and only this component, in common: Lg is
always worth 1; RV decreases as the number of ‘non-common’ di-
mensions increases.

– Cases 1 and 6. Between 1 and 6, the number of common dimensions
increases along with the number of non-common dimensions: Lg
increases and RV decreases.

– Cases 7, 8 and 9. In these three cases, the common dimension of the
two groups differs from their first principal component and, for each
group, is associated with a constant inertia relative to that of the
first principal component: Lg is constant, and here is worth .25; RV
decreases as the number and inertia of non-common dimensions in-
crease.
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7.3 Norm in the Groups’ Space

In R
I 2

, we associate a norm with the scalar product defined above. The square
of this norm, denoted Ng, is used as an indicator of dimensionality. Thus

Ng
(
Wj

) = ∥
∥Wj

∥
∥2

D = 〈
Wj , Wj

〉
D = trace

(
Wj DWj D

) =
∑

s

(
λ j

s

)2
.

Due to the weighting in MFA, this norm can be written:

Ng
(
Wj

) = ∥
∥Wj

∥
∥2

D = 1
(
λ

j
1

)2

∑

s

(
λ j

s

)2 = 1 +
s=S∑

s=2

[
λ j

s

λ
j
1

]2

.

The groups of variables are therefore not standardised in MFA. The norm of
a group increases when it has a high number of directions of inertia equal to
(in practice, neighbouring) its first eigenvalue. This is why Ng is considered
an indicator of dimensionality.

Dimensionality and Dimension. The dimension of a group of variables can be
defined as that of the subspace generated by the variables of the group. In
this subspace, the users are only interested in the dimensions associated with
high inertia. We can therefore define dimensionality as the number of these
dimensions of high inertia.

In the case of the six orange juices, Ng is worth 1.039 for group 1 and 1.109
for group 2. As has already been mentioned (see comment, Table 4.5), the
first group has only one notable dimension and the second has two. From
this perspective, indicator Ng does indeed rank the two groups according to
their dimensionality. However, this indicator suggests a deviation between
the two dimensionalities which is much lower than that suggested by the
sequence of eigenvalues. This is because these eigenvalues are squared (in
calculating Ng), making them low compared to (the first one equal to) 1 (see
Table 7.1).

7.4 Representation of Cloud NJ

7.4.1 Principle

In order to represent cloud NJ of the groups of variables, the most natural
way (at least for those familiar with factorial analysis) might be to project it
onto its directions of maximum inertia. The Statis method, which was the first
to examine cloud NJ , uses this approach. However, the axes of R

I 2
found by

Statis cannot be interpreted; in other words, if two groups of variables are
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TABLE 7.1
Orange Juice. Eigenvalues (λ) for the Separate PCAs for the Two
Groups of Variablesa

Chemical Sensory
Axis λ λ2 Total λ λ2 Total

1 1 1 1 1 1 1
2 .177 .031 1.031 .281 .079 1.079
3 .059 .003 1.035 .173 .030 1.109
4 .050 .002 1.037 .018 .000 1.109
5 .002 .002 1.039 .004 .000 1.109

a Eigenvalues are divided by the first of them, squared and cumulated.

close along one axis and far apart along another, we do not know what brings
them together and what separates them. This is why, in MFA, the axes on
which NJ is projected are constrained to be elements of rank 1. In this way,
they correspond to a direction of R

I (see Section 7.2), a direction which is
interpreted by examining its correlations with the initial variables.

In MFA, cloud NJ is projected on the elements of rank 1 (in R
I 2

) associ-
ated with the standardised principal components of the MFA (vectors of R

I

denoted vs). Denoting ws the axis of rank s in R
I 2

, we thus obtain:

ws = vsv′
s .

As vectors vs are standardised and orthogonal (in R
I ), it can easily be shown

that ws are as well (in R
I 2

). Thus

‖ws‖2
D = trace

(
vsv′

s Dvsv′
s D

) = trace
(
v′

s Dvsv′
s Dvs

) = 1

〈ws, wt〉D = trace
(
vsv′

s Dvtv′
t D

) = trace
(
v′

t Dvsv′
s Dvt

) = 0.

The coordinate of group K j along ws (axis of rank s) is worth
〈
ws, Wj

〉
D = Lg

(
vs, K j

) = Lg
(

Fs, K j
)
.

This coordinate is therefore interpreted as a relationship measurement be-
tween K j and Fs . It is important to remember that as the axes of representation
of NJ are generated by the principal components, they are interpreted as such.

Figure 7.3 features the representation of the groups in the orange juice ex-
ample. In this example, there are very few groups and this representation does
not add much to the interpretations that have already been made. However,
this figure is sufficient to illustrate the rule of interpretation.

Graphs like this are interpreted in a similar way as correlation circles: in
both cases the coordinate of a point is interpreted as a relationship measure-
ment with a maximum value of 1. But this new graph has two specificities: the
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FIGURE 7.3
Orange Juice. MFA: relationship square. Representation of the groups of variables, active (trian-
gles) and supplementary (circles).

groups of variables are unstandardised and their coordinates are always pos-
itive. They therefore appear in a square (with a side of 1 and with points [0,0]
and [1,1] as vertices) known as a relationship square which we have already
seen in the case of groups with only one variable (see Figure 3.3).

The two active groups are almost identical from the point of view of the first
axis and their coordinate is high: the first axis, that is to say, the opposition
between the Florida juices and the others, corresponds to a high direction of
inertia in each group (which means it is correlated with several variables from
each group). The two groups differ from the point of view of the second axis,
as the coordinate of group 1 (chemical) is very low. The second axis (that is to
say, roughly, the opposition between the refrigerated juices and the ambient
juices) is invisible from a chemical perspective (at least when accounting for
the available variables). On the other hand, this opposition corresponds to a
sensory direction with low inertia (that is to say, it concerns few variables).

Therefore, when compared with an intuitive approach to interpretation
(for a PCA user), one highly practical advantage of this representation is its
relationship with the representations of individuals and variables already
provided: in MFA, data are considered from different points of view, but in
one single framework.
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Remark
In Figure 7.3, the two qualitative variables (introduced as supplemen-
tary) were represented, as in multiple correspondence analysis (MCA; see
Figure 2.3), by their squared correlation ratios with the factors. It thus ap-
pears that this first dimension more or less corresponds to the origin of the
juices (Florida/other). The type of juice (ambient/refrigerated) is somewhat
related to the second dimension and slightly related to the first. The overall
evaluation is a supplementary group containing a single variable; its coordi-
nates are the squared coefficient of correlation with the factors (the Florida
juices are evaluated the best). These comments support the individuals’ repre-
sentation. Full justification for simultaneously representing quantitative and
qualitative groups is described in the following chapter on qualitative and
mixed data.

7.4.2 Criterion

In R
I , the (standardised) principal component vs maximises the quantity (with

the usual orthogonality and norm constraints):
∑

j

Lg
(
v, K j

)
.

Translated in R
I 2

, this criterion becomes: ws is the w which maximises the
quantity

∑

j

〈
w, Wj

〉
D ,

which is the sum of the coordinates of the Wj . This quantity is maximised with,
aside from the particular constraint of being of rank 1, the usual orthogonality
and norm constraints:

‖ws‖2
D = 1 and 〈ws, wt〉D = 0 for t < s.

We therefore follow the usual factorial analysis approach, that is to say, the pro-
jection of a cloud of points onto a sequence of orthogonal axes in descending
order in terms of interest; however, the coordinates of the projections inter-
vene directly in the criterion rather than through their square. This does not
pose a problem, unlike in PCA for example, as these coordinates are always
positive.

7.5 Interpretation Aids

Due to the criterion used, the contribution of group K j to the axis of rank s
is the coordinate of group K j (and not its square) along the axis of rank s; we
obtain a relative contribution by dividing this coordinate by the sum of the
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TABLE 7.2
Orange Juice. MFA. Quality of Representationa

Group Axis 1 Axis 2 Plane (1,2) Axis 3 Axis 4 Axis 5 Ssp(1...5)

W1 0.7657 0.0094 0.7751 0.0190 0.0038 0.0086 0.8065
W2 0.7205 0.0640 0.7845 0.0202 0.0122 0.0022 0.8191
NJ 0.7423 0.0376 0.7799 0.0196 0.0081 0.0053 0.8130
a Of the groups of variables and of NJ (in R

I 2
). Qualities are given axis by axis, for the

first plane (1,2) and for all five axes (Ssp(1. . . 5)).

coordinates of the active groups. These contributions are interpreted in R
I as

those of clouds N j
K . Thus, for the relative contribution:

CTR(K j , ws) = Lg(Fs, K j )
∑

j Lg(Fs, K j )
= Projected inertia of N j

K on vs

Projected inertia of NK on vs
=CTR(K j , Fs).

The quality of representation of a group by an axis (or plane) can be mea-
sured as usual, using the squared cosine of the angle between the vector rep-
resenting the group (Wj ) and the axis (or plane). In the relationship square,
it is important to check this quality because the axes are constrained to be of
rank 1 (a constraint reduces the quality of the representation). Calculated for
the orange juice example, these indicators are brought together in Table 7.2.

Each of the two groups possesses a quality of representation by the first
plane of around .8, which can be considered entirely satisfactory. Indeed,
due to the constraint of rank 1 imposed on the axes, even if all of the axes
are retained (here five), the group quality of representation does not gener-
ally reach 1; the reason for this becomes clear in the section on the Indscal
model.

Calculated on all of J points (last row of Table 7.2), this indicator therefore
measures the quality of representation of cloud NJ by an axis or plane. This
indicator differs from that calculated for clouds NI or NK , despite the fact that
these two indicators are not independent, as one of them is based (in R

I 2
) on

the sum of the coordinates and the other on the sum of the squared coordi-
nates (see Tables 7.2 and 4.5). In particular, we observe the constraint effect,
mentioned for each group, for cloud NJ : except in very particular cases, NJ

is never perfectly represented, even when all the axes are retained.

Supplementary Elements
Supplementary groups can be introduced easily. Once the principal compo-
nents (Fs) have been obtained, the coordinate of the supplementary group j
along the axis of rank s, is calculated in the same way as for an active group.

It is also possible to represent isolated variables as groups with only one
variable. This representation was already introduced in MCA (see Figure 2.3)
and in factorial analysis of mixed data (FAMD; see Figure 3.3). It has two
advantages.
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For the quantitative variables, the coordinate of variable vk along the axis
of rank s (in R

I 2
) is worth r2(vk, Fs). This representation of the variables is

poorer than the correlation circle (the sign of the correlation coefficient is lost);
however, its advantage is that it is common to both variables and groups of
variables. Chapter 8 describes how to introduce the qualitative variables in
this representation; in particular, geometric interpretation is presented in R

I 2
,

for the representation of Figure 2.3 (in which the coordinate of qualitative
variable q along the axis of rank s (in R

I 2
) is equal to the squared correla-

tion ratio η2 (q , Fs)). This option is used in Figure 7.3, which shows that the
first axis is linked to the juice’s origin (Florida/other) and the second to its
type (refrigerated/ambient), which we can easily find in the representation
of individuals (see Figure 4.4).

7.6 The Indscal Model

The Indscal model is useful for analysing a set of distance matrices. It is
expressed directly in space R

I 2
. In addition, the analysis of cloud NJ included

in the MFA corresponds to this model. Hence the introduction of this model
in this chapter.

7.6.1 Model

In the previous sections, each group j is represented by the shape of cloud
N j

I with which it is associated. Technically, to represent this shape, after hav-
ing considered the distance matrices associated with N j

I , the scalar product
(between the individuals) matrix Wj is used. These two points of view, dis-
tances and scalar products, are brought together in the Indscal model, a model
designed to analyse a set of distance matrices (relative to a given set of indi-
viduals).

In the original Indscal model data, J subjects were asked to evaluate the
resemblances directly (or distances, in practice these distances are similarities;
see end of the following section) between I stimuli. Directly here means that
we do not ask each subject j for an evaluation of each characteristic of each
stimulus, but only for an overall evaluation of the distance d j (i, l) for each
pair of stimuli (i, l). The data are therefore made up of a set of J distance
matrices (of I × I dimension).

The Indscal model is based on two assumptions:

1. The stimuli are differentiated according to S factors (or characteristics)
for which there is a consensus among the subjects. If the stimuli are
orange juices, an example of such a consensus would be: all of the
subjects perceive juice 1 as very bitter, very sweet, and so on; juice 2
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as not bitter at all, very sweet, and so on. We denote zs(i) the value
of the sth factor for stimulus i; fundamentally, there is no ordinal
relationship between the factors.

2. In their overall evaluation of stimuli, the subjects do not attribute the
same importance to the different factors. For example, some judges
give great importance to differences in sourness (perhaps because
they are particularly sensitive to acidity) and very little importance
to differences in bitterness; these judges might, for example, consider
two juices with very different bitterness as similar, and consider juices
which only differ according to their sourness as very different. Let q j

s
be the weight attributed by subject j to factor zs .

With these assumptions, the distance perceived by subject j between the
stimuli i and l is expressed:

d2
j (i, l) =

∑

s

q j
s (zs (i) − zs (l))2 + residual.

In this model, the factors zs and the weights q j
s are the parameters to be esti-

mated. There are no constraints on the residuals, as the model is not designed
within a classic inferential framework.

In other words, according to this model, there is a configuration of stimuli
(defined by zs) that each subject j ‘sees’ with its own diagonal metric. This
point of view makes it possible to write the model for the scalar products.
Thus, by denoting w j (i, l) the scalar product between two stimuli i and l
from the point of view of subject j:

w j (i, l) =
∑

s

q j
s zs (i) zs (l) + residual,

which generates, for matrix Wj bringing together the scalar products for sub-
ject j:

Wj =
∑

s

q j
s zs z′

s + residual.

In this equation, we recognise the decomposition, in R
I 2

, of Wj into a sum of
symmetrical elements of rank 1. The representation of the groups of variables
in the MFA can therefore be interpreted in terms of an Indscal model in which:

– The stimuli are the individuals; the subjects are the groups of vari-
ables.

– The factors zs of the model are the standardised factors vs (of the
MFA).

– Weight q j
s is the coordinate, in R

I 2
, of group j along the direction of

rank s.



146 Multiple Factor Analysis by Example Using R

7.6.2 Estimating Parameters and Properties

The usual Indscal algorithm (for estimating the model’s parameters) de-
scribed in the original publication of the model uses an alternating method:
zs are fixed and q j

s are estimated; these values q j
s in turn serve to estimate zs ,

and so on. In order to do this, the number of factors S must be fixed. These
estimations are not nested (that is to say, the two factors of the estimation for
S = 2 do not coincide with two of the factors of an estimation with S > 2). In
practice, this problem is resolved by launching the algorithm for several val-
ues of S and then choosing a value of S which corresponds to a good balance
between the goodness of fit and the number of factors.

The MFA, seen as a method for estimating the parameters of the Indscal
model, is conducted in two steps.

Step 1. First, the zs are estimated. These factors correspond as much as pos-
sible to high directions of inertia in each group. This idea (high inertia)
does not appear explicitly in the Indscal model. It is essential in MFA and
leads to a hierarchy of factors, from the most important (overall) to the sub-
jects, to the least important. This hierarchy between the factors is of course
necessary in practice, and users of Indscal’s usual algorithms will obtain
it by ranking the factors in ascending order according to the individuals’
weights.
Step 2. As zs are fixed, q j

s are calculated. According to the interpretation of
q j

s as the relationship measurement Lg
(

Fs, K j
)
, the weight that subject j at-

tributes to dimension s increases the more closely the dimension corresponds
to a strong direction of inertia of its configuration of the stimuli. This corre-
sponds perfectly to the meaning of the weights in the Indscal model.

Compared with the usual algorithm, the estimation of the parameters of
the Indscal model by the MFA presents five technical advantages:

1. The weights q j
s are always positive. In comparison, the usual Ind-

scal algorithm can provide negative weights interpreted as rounding
errors if they are close to 0 but are otherwise not interpretable (in
practice, these negative weights are replaced by zero).

2. The weights q j
s have a maximum value of 1, a value reached when zs

corresponds to the direction of maximum inertia of subject j. The
scale of variation of these weights is therefore fixed, which makes it
possible to compare them amongst subjects, axes and even analyses.

3. The estimations of the parameters of the models which have different
numbers of factors are nested (the two axes of the two-dimensional
solution are the first two axes of the solutions with more than two
dimensions).

4. Thanks to the two-stage approach (first find zs and then q j
s ), supple-

mentary subjects are introduced naturally.
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5. This estimation is made in a framework common to several points of
view (as seen in the previous chapters) which enrich one another in
the interpretation.

Two other characteristics differentiate the MFA estimation and that of the
Indscal algorithm.

In MFA, the Fs factors are orthogonal by construction. This constraint does
not exist in the usual Indscal model. This constraint can seem useful at first
as it is in factorial analysis. However, there are sometimes correlated factors
(underlying the evaluation of the distances). The orange juices are a good
example of this: the two experimental factors (origin and type) are not or-
thogonal and prove influential on the sensory plane. This is not a problem in
factorial analysis as users can decide to interpret directions on the factorial
plane other than the axes themselves (which can be done empirically, or more
formally by optimal rotation of the axes). However, this is not possible with
the Indscal model. This particularity, noticed since the origin, is especially
clear with the geometric interpretation in R

I 2
: the plane generated by two

elements of rank 1 (w1 and w2) does not include any other elements of rank 1
(other than w1 and w2). The result is that the usual Indscal algorithm retains
its usefulness in the presence of nonorthogonal factors.

The other difference between the two approaches lies in the preliminary
standardisation of the subjects: the Indscal algorithm standardises the subjects
by fixing their total inertia at 1. The weighting in MFA is well suited to the
Indscal model: particularly, multidimensional configuration must not be put
at a disadvantage in constructing the first axis.

The Indscal model is Euclidean. The existence of a residual term makes it
possible to imagine non-Euclidean individual data. However, the algorithms
work from scalar product matrices, which means they require Euclidean indi-
vidual data. Usually, individual data are not Euclidean. For example, when a
subject is asked to evaluate successively the distances between pairs of stimuli,
the distance matrix obtained does not generally verify triangular inequality;
such a matrix is therefore not a distance matrix in the strictest sense but rather
a dissimilarity matrix (symmetrical matrix of positive numbers with 0 on the
diagonal). In this case, Euclidean data are obtained by a preprocessing: Torg-
erson’s formula is applied to each dissimilarity matrix. The resulting matrix,
called a pseudo-scalar product matrix, is diagonalised and only the factors
related to positive eigenvalues are retained. It can be shown that this proce-
dure, known as factorial analysis on distance tables (FADT), provides the best
Euclidean approximation of a non-Euclidean distance matrix.

Specific case. There is one case in which the individual data are Euclidean: the
napping R©. In this data-collection procedure, subjects are asked to lay out the
stimuli on a large sheet of paper (originally a tablecloth, or nappe in French,
hence the term napping) so that the distances on the paper reflect the perceived
distances. This data-collection method is used in both of the examples below.
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FIGURE 7.4
Cards data: four individuals (cards a, b, c and d) as seen by two groups of two variables (the data
configurations by the two children).

7.6.3 Example of an Indscal model via MFA (cards)

A simple example can be used to illustrate the estimation of the parameters
of the Indscal model via the MFA. There are two planar configurations of four
individuals (see Figure 7.4) or, in other words, two groups of two quantitative
variables each (the horizontal X and vertical Y coordinates; see Table 7.3). Here
we use the MFA terminology: individuals and groups (the model stimuli and
subjects, respectively).

This example is inspired by a real experiment conducted with children. Two
children were presented with a set of cards (four) depicting different shapes
and colours. Each child was asked to arrange the cards on the table by placing
those that they considered similar close together, and placing those that they
considered very different far apart. The layout of the cards was summarised
using coordinates after choosing an appropriate reference.

These data were constructed using an Indscal model with two orthogonal
dimensions. It is therefore unsurprising that the MFA ‘finds’ this model. The
advantage of this example lies in the interpretation of certain results of the
MFA as parameters of the Indscal model. In this MFA the variables are not
standardised, so as to respect the initial distances. The estimations of the
parameters are represented on a graph in Figure 7.5.

TABLE 7.3
Cards. Dataa

X1 Y1 X2 Y2

a 0 4 4 8
b 0 0 8 4
c 10 4 0 4
d 10 0 4 0
Variance 25 4 8 8
a {X1, Y1}: Coordinates for the left configuration (see

Figure 7.4).
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(b) Representation of groups

FIGURE 7.5
Cards. MFA. Representations corresponding to the parameters of the Indscal model. G1: group
1. Mean (MFA): set of the two groups, weighted according to the MFA.

Reminder: the whole set of coordinates of the individuals along an axis is
interpreted as a factor of the Indscal model. Here these factors are interpreted
simply:

– The first confronts{a,b}and{c,d} (opposition of shapes: square/circle).
– The second confronts {a,c} and {b,d} (opposition of colours:

white/grey).
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TABLE 7.4
Cards. Inertias in the Separate PCAs and MFA

Total F1 F2
PCA Group 1 29 25 4
PCA Group 2 16 8 8
MFA 3.16 2 1.16

of which group 1 1.16 1 0.16
of which group 2 2 1 1

Two representations of the individuals are possible in the Indscal model:

1. Standardised factors. This results directly from the model in the sense
that the weights q j

s are applied to the factors. This is the usual choice
in the Indscal programs.

2. Unstandardised factors, with their norm measuring their relative im-
portance. This is the choice of the MFA (see Figure 7.5), conducted
independently of the Indscal model but which can be interpreted in
terms of this model: the square of the norm of a factor (that is to say,
the associated eigenvalue) is the sum of the weights of all of the active
groups for this factor {q j

s ; j = 1, J }.
The configuration of individuals in Figure 7.5 therefore shows that the

first factor is generally more important (for the subjects) than the second:
its elongated shape illustrates these relative importances. Overall (here for
the groups/subjects), shape is more important than colour. Finally, this con-
figuration is a ‘mean’ representation of clouds associated with each group.

This relative importance can also be read on the groups’ representation (see
Figure 7.5). Thus, the weights for the first axis are much greater than for the
second. The fact that these weights have an upper limit of 1 in MFA makes it
possible to be much more precise: in this example, the first axis corresponds
to the maximum direction of inertia of each group.

In practice, this group maximum is unique (the PCA rarely generates two
equal first eigenvalues). From this perspective, the case of the second group is
particular due to its symmetry (clearly visible in Figure 7.4): both factors are of
equal importance. It should also be noted that, in the relationship square, the
point of coordinates (1, 1) does not correspond to the ‘mean’ configuration
of the individuals (see Figure 7.5) but to the standardised factors. This is
why, as an interpretation aid, the point corresponding to the configuration
of the individuals of Figure 7.5 is represented. This is done under the label
mean (MFA) (for mean configuration of MFA). The coordinates of this point are
(1, λ2/λ1), denoting λ1 and λ2 the first two eigenvalues of the MFA.

Table 7.4 summarises the principal inertias in this analysis. The simplicity
of these data makes it possible to find all these results easily. The eigenvalues
of the separate analyses coincide with the variances of the initial variables.
The groups’ inertias, on the second axis of the MFA, are obtained by dividing
the second eigenvalue by the first.
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7.6.4 Ten Touraine White Wines

Data (Wines)
Eleven tasters (professional oenologists) were asked to evaluate 10 white
wines using the napping R© method. Each taster laid out the wines on a paper
tablecloth with the wines that seem similar to him or her on a sensory level
placed close together. Thus, each taster j is associated with a configuration of
10 wines, that is to say, a table of coordinates with 10 rows (the wines) and two
columns (horizontal and vertical coordinates), except for taster 10 who used
only the vertical dimension (and therefore his data have only one column).
Each configuration is called a nappe.

These tables are horizontally brought together, all of them being subjected
to an MFA in which a group corresponds to a taster (and therefore contains
his or her coordinates). Here we focus on the representation of the groups
(the tasters) in reference to the Indscal model. In parallel to the MFA, the
parameters of this model were estimated with the usual procedure (that we
refer to as Indscal, thus using the same word to designate both the model and
a usual program).

Five of the wines (numbered 1 to 5) are officially labelled Touraine (Sauvi-
gnon vines). The remaining five (numbered 6 to 10) belong to the Vouvray
labelling category (Chenin vines). In the latter group, two wines (7 and 10) are
cask-aged (and thus have a woody flavour) and one (number 6) has residual
sugars (7 g/L).

Figure 7.6 shows the two nappes for tasters 8 and 9. That of taster 9, for
example, shows the two woody wines (7 and 10) to be relatively isolated but
no separation between the Chenins and Sauvignons.

Results
The configuration of the wines provided by the MFA (see Figure 7.7), accord-
ing to the first bisector, shows a separation between Chenins and Sauvignons.

Y8

1 T Michaud

2 T Renaudie

3 T Trotignon

4 T Buisse Domaine

5 T Buisse Cristal

6 V Aub. Silex7 V Aub. Marigny

8 V Font. Domaine

9 V Font. Brules

10 V Font Coteaux

Y9

1T Michaud 

2 T Renaudie

3 T Trotignon

4 T Buisse Domaine
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7 V Aub. Marigny

8 V Font. Domaine

9 V Font. Br˚lÈs

10 V Font Coteaux
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FIGURE 7.6
Wines. Nappes for tasters 8 (left) and 9 (right).
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FIGURE 7.7
Wines. MFA. Representation of the wines and tasters on the first plane.

More specifically, it suggests that the Sauvignons are more homogeneous than
the Chenins, and that two of them (4 and 5, from the same producer, Buisse)
are less typically Sauvignon than the other three as they are closer to the centre
of gravity (which is clear on the plane and remains true when we consider
the overall space).

For an interpretation in terms of the Indscal model, we must look at the axes.
The first axis separates the woody wines (7 and 10; these two wines make up
a total contribution of 55%) from the others; it can be summarised by the term
woody. At the other end of this axis, we find the three most typical Sauvignons:
their strong fruity nose (this traditional characteristic of Sauvignons stands
out from the other sensory analyses conducted on these 10 wines) can be
considered, in some ways, as the opposite of woody.

The second axis separates wines 8 and 9 from the others (these two wines
make up a total contribution of 60%). These are Chenins with no specific
particularity (not cask-aged, no residual sugars). We therefore propose to
summarise this axis as Chenin typicity.

Group representation by MFA (see Figure 7.7) is interpreted in terms of
the Indscal model. For example, the high coordinate for taster 9 along axis 1
suggests that, when representing the wines, she attributed great importance
to the woody dimension (this can be seen on her nappe, Figure 7.6, which sepa-
rates 7 and 10 from the others). Another example: due to the strong coordinate
along axis 2, taster 8 favoured the Chenin typicity dimension. Of course, this
can be seen on his nappe (see Figure 7.6) on which the horizontal dimension
is strongly related to the second axis on the MFA (r (X8, F AF M

2 ) = .93).
When applied to the same data, the usual Indscal algorithm (for estimating

the parameters of the model) generated the representations seen in Figure 7.8.
The configuration of the wines generated by Indscal is, up to a ro-

tation, very similar to that of the MFA (RV between these two planar
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FIGURE 7.8
Wines. Indscal with two dimensions. Representation of the wines and tasters.

configurations = .95). Much like the first bisector of Figure 7.7, the second
axis generated by Indscal perfectly separates the two vines. However, the
first axis suggests no immediate interpretation. It clearly highlights the two
woody wines, but opposes them with wines (1, 3, 8 and 9) with no clear com-
mon denominator. However, by consulting other information available for
these four wines, it appears that they were often said to be fruity, a general
and vague term (fruity odours can vary greatly) but which could be consid-
ered as opposing woody if fruity is understood as ‘natural’. Finally, the second
bisector almost corresponds to the first axis of the MFA (r = .996) but does
not fit within the framework of the Indscal model.

The tasters are represented completely differently by the two methods. Ind-
scal highlights three particular tasters (4, 7 and 10) who essentially separated
the wines according to the vine, and three others (1, 3 and 11) who essentially
opposed the woody and fruity wines. These two groups of tasters are mixed
in the MFA representation. This example, in which the two representations of
the wines differ by only one rotation and the two representations of the tasters
are completely different, thus clearly illustrates why, within the context of the
Indscal model, it is impossible to interpret combinations of factors, as is done
in PCA, for example.

Technical Comments on the Parameters Estimated by the Indscal Program
r (F I ndscal

1 , F I ndscal
2 ) = −.33: in this example, the factors on I (wines’ coordi-

nates) are loosely correlated.
Five of the tasters’ coordinates are equal to 0 (tasters 4, 6 and 10 for F 1, 3

and 11 for F 2). The algorithm here generated negative coordinates but, as a
negative weight has no meaning, they are displayed as equal to 0.

The estimations generated by Indscal, with a one- or two-dimensional
model, are not nested. Nevertheless, the unique factor of the one-dimensional
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TABLE 7.5
Wines. Quality of Fit of the Indscal Modela

One Dimension Two Dimensions
Indscal .2862 .4961
MFA .2773 .4286
Indscal without subject 10 .3118 .4860
MFA without subject 10 .3073 .4674
a According to the procedure (Indscal program or MFA), the number of

dimensions and whether subject 10 is taken into account.

solution F 1 dim
1 is very similar to the first factor of the first two-dimensional

solution
(

F 2 dim
1

)
: r

(
F 1 dim

1 , F 2 dim
1

) = .961.

Comparing the Two Estimations: Quality of the Fit
In the usual Indscal procedure, this quality is measured by the proportion of
inertia explained by the model (the sum of squares of the residuals divided
by the total variability). In MFA, this quantity is interpreted as the proportion
of inertia of cloud NJ expressed by an axis or plane (see Section 7.5).

Table 7.5 brings together the quality of fit of the Indscal model for different
procedures. With two dimensions, this quality is slightly better (.4961 > .4286)
for the Indscal estimation (see Figure 7.8) than for the MFA (see Figure 7.7).
This is the expected result: the orthogonality constraint included in the MFA
solution can only decrease the quality of the fit.

This is why we compare the estimation associated with only the first axis of
the MFA and the Indscal estimation with just one dimension. The difference
between the two procedures still favours Indscal but this time much less
clearly (.2862 > .2773). Here, again, we can legitimately expect a better fit by
Indscal, for which the algorithm specifically aims to optimise this fit, which
is not the case in MFA.

Finally, it is important to mention that the groups are weighted differently
in the two approaches: in Indscal, it is the tasters’ total inertias which are
standardised. Does this procedural difference explain the differences in the
quality of the fit? In these data, this difference in weighting has little influence
(after the MFA weighting, the tasters have more or less the same norm in R

I 2
)

except for taster 10, whose choice to use only one dimension has already been
mentioned. This is why we conduct the analyses without taster 10, which
should attenuate the weighting effect. As expected (see Table 7.5), the differ-
ences still favour the Indscal procedure, but to a lesser extent (.4860 > .4674
for the two-dimensional solution and .3118 > .3073 for the one-dimensional
solution).

Nature of the Factors
Although they are associated with similar qualities of fit, the estimations
generated by the two procedures differ somewhat. Among other things, as



Comparing Groups of Variables 155

F1 (62.42%)

F2 (34.46%)

F1
AFM_11

F1
AFM_10

F2
AFM_11

F2
AFM_10

F1
ind_11

F2
ind_11

F2
ind_10

F1
ind_10

Find_10

Find_11

FIGURE 7.9
Wines. Standardised PCA on the factors from the different procedures. Representation of these
factors on the first plane. F ind_10

1 : first factor from Indscal with 10 subjects. F ind_10: the same
with a one-dimensional Indscal model.

the solutions (with different dimensions) of the Indscal procedure are not
nested, it is useful to confront them with the aim of removing elements so
as to improve the stability of the results. Finally, the estimation conducted
without taster 10 can also provide elements of validity.

With this in mind, a standardised PCA was performed on the factors (on I )
from the different procedures. It generated a representation of these factors
(see Figure 7.9) with excellent representation quality (96.88%) which shows:

• (In terms of whether to take taster 10 into account) good stability of
the two factors of the MFA and of the first factor of Indscal but not
the second

• A notable difference between the two procedures when the 11 tasters
are taken into account, but a convergence when taster 10 is eliminated

• An almost perfect nesting of the Indscal solutions when taster 10 is
not included, but not otherwise

Conclusion
It is always tricky to draw general conclusions from one example. At least, we
can retain that the Indscal aspect of the MFA is indeed competitive with regard
to the procedure dedicated to simply estimating the parameters of the Indscal
model. The main advantage of MFA here is again to provide an Indscal point
of view within a general framework including many different perspectives.
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Nevertheless, the usual Indscal model remains useful if we believe there may
be underlying nonorthogonal factors.

7.7 MFA in FactoMineR (groups)

We use the Orange Juice data (see Table 1.5).
In R Commander, representations of groups in a relationship square are

obtained by default for the first plane (see Figure 4.10). To obtain other planes,
we use the plot.MFA function:

> plot.MFA(ResMFA,axes=c(2,3),choix="group")

The MFA function creates several tables for the groups (in R
I 2

):
the coordinates (res$group$coord), the qualities of representation
(res$group$cos2) and the total inertias (res$group$dist2).

Table 7.2 combines several of these results. Below, we list the R code needed
to obtain it:

# Initialisation
> tab7_2=matrix(nrow=3,ncol=7)

# Labels of rows and columns
> row.names(tab7_2)=c("W1","W2","NJ")
> colnames(tab7_2)=c(paste("Axis",1:5),"Plane(1,2)","Ssp(1,5)")

# Quality of representation of groups
> tab7_2[1:2,1:5]=ResMFA$group$cos2[,1:5]

# Projected inertia of NJ
> tab7_2[3,1:5]=apply(ResMFA$group$coord[,1:5]^2,MARGIN=2,

FUN=sum)

# Quality of representation of NJ
# Total inertia of the Wj are in ResMFA$group$dist2
> tab7_2[3,1:5]=tab7_2[3,1:5]/sum(ResMFA$group$dist2)

# Two column margins
> tab7_2[,6]=apply(tab7_2[1:3,1:2],MARGIN=1,FUN=sum)
> tab7_2[,7]=apply(tab7_2[1:3,1:5],MARGIN=1,FUN=sum)
> round(tab7_2,4)

In the relationship squares, it can sometimes be useful to add a point corre-
sponding to all of the active tables (including the weighting of the MFA). This
was done in Figure 7.5 using the card data. To do this, from the (active) graph
displayed using the plot.MFA function, a point is added (points function):
its coordinates are calculated from the eigenvalues of the MFA and its label is
displayed with the text function.
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# Import and verification
> Cards=read.table("Cards.csv",header=TRUE,sep=";",row.names=1)
> Cards X1 Y1 X2 Y2
a 0 4 4 8
b 0 0 8 4
c 10 4 0 4
d 10 0 4 0

# Figure 7.4 (b)
> res=MFA(Cards,group=c(2,2),type=c("c","c"),graph=F,
> name.group=c("G1","G2"))
> plot(res,choix="group",cex=1.3)
> points(1,res$eig[2,1]/res$eig[1,1],pch=16,cex=1.3)
> text(1,res$eig[2,1]/res$eig[1,1],"mean(MFA)",offset=0.5,
+ pos=3)

An indscal function can be found in SensoMineR, an R package ded-
icated to sensory data analysis and which has also been developed by the
applied mathematics department at Agrocampus. This indscal function is
dedicated to nappes (all of the groups have two variables). Therefore, the
single dimension of nappe 10 (column 19) must be duplicated. Below is
the code corresponding to the analysis of the 10 Touraine white wines us-
ing the Indscal model.

> library(SensoMineR)
# Data importation
> napping=read.table("napping.csv",header=TRUE,sep=";",row.

names=1)
# The unique dimension of nappe 10 is duplicated (column 19)
> res=indscal(napping[,c(1:19,19:21)])

# The Indscal function displays all the useful graphs.
# To customise the graphs in figure 7.7 (larger font)
> plot(res$points)
> text(res$points,rownames(res$points),offset=0.5,pos=3,

cex=1.3)
> x11()
> plot(res$W)
> text(res$W,paste("",1:11,sep=""),offset=0.5,pos=3,cex=1.3)

# Table 7.5 and figure 7.8 require an Indscal solution with one
# dimension (option coord=c(1,1)). For figure 7.8, the factors
# are saved after each analysis in DonFig7_8.
# These factors are in $points (Indscal) or in $ind$coord (MFA).
> DonFig7_8=res$points
> Tab7_5=matrix(nrow=4,ncol=2)
> rownames(Tab7_5)=c("Indscal","MFA","Indscal without subject
+ 10",



158 Multiple Factor Analysis by Example Using R

# "MFA without subject 10")
> colnames(Tab7_5)=c("1 dimension","2 dimensions")

# Indscal with 1 dimension
> res1=indscal(napping[,c(1:19,19:21)],coord=c(1,1))
> DonFig7_8=cbind(DonFig7_8,res1$points)
> Tab7_5[1,]=c(res1$r2,res$r2)

# Indscal without subject 10
> res=indscal(napping[,c(1:18,20:21)])
> DonFig7_8=cbind(DonFig7_8,res$points)
> res1=indscal(napping[,c(1:18,20:21)],coord=c(1,1))
> DonFig7_8=cbind(DonFig7_8,res1$points)
> Tab7_5[3,]=c(res1$r2,res$r2)

# MFA with subject 10
> res=MFA(napping[,c(1:19,19:21)],group=rep(2,11),
+ type=rep("c",11),graph=F)
> DonFig7_8=cbind(DonFig7_8,res$ind$coord[,1:2])
> lig2=apply(res$group$coord^2,MARGIN=2,FUN=sum)/sum
+ (res$group$dist2)
> Tab7_5[2,]=c(lig2[1],sum(lig2[1:2]))

# MFA without subject 10
> res=MFA(napping[,c(1:18,20:21)],group=rep(2,10),
+ type=rep("c",10),graph=F)
> DonFig7_8=cbind(DonFig7_8,res$ind$coord[,1:2])
> lig2=apply(res$group$coord^2,MARGIN=2,FUN=sum)/sum
+ (res$group$dist2)
> Tab7_5[4,]=c(lig2[1],sum(lig2[1:2]))
> round(Tab7_5,4)

# PCA with the factors of all the analyses
> colnames(DonFig7_8)=c("F1Ind","F2Ind","FInd","F1Ind10",
+ "F2Ind10","FInd10","F1MFA","F2MFA","F1MFA10","F2MFA10")
> res=PCA(DonFig7_8)



8
Qualitative and Mixed Data

Until now, multiple factor analysis (MFA) has been presented for quantitative
variables. In this chapter, we extend this to qualitative variables and, more
generally, to mixed data. The referent method for processing individuals ×
qualitative variables tables is multiple correspondence analysis (MCA). Fur-
thermore, the issue of mixed data has already been discussed in the chapter
devoted to factorial analysis of mixed data (FAMD). Here we therefore present
a combination of MCA, FAMD and MFA.

Weighting the variables is key to MFA. We begin by introducing the notion
of weighted variables in MCA under the name weighted MCA.

8.1 Weighted MCA

We use the notations for MCA as presented in Section 2.2:

– yik : General term for the complete disjunctive table (CDT); yik ∈ {0, 1}.
– I: The number of individuals and J the number of variables.
– K j : The number of categories of variable j; K = ∑

j K j is the total
number of categories.

– pi : The weight of individual i . Generally, all of the individuals have
the same weight, with the sum of weights fixed at 1: pi = 1/I ; these
weights are brought together in the diagonal matrix D of dimension
I : D (i, i) = pi .

– pk : The weight of the set of individuals possessing category k: pk =∑
i pi yik . When the individuals have the same weight, pk is the pro-

portion of individuals possessing category k. These weights (of cate-
gories) are brought together in the diagonal matrix M of dimension
K: M (k, k) = pk .

In MCA, if a variable is duplicated, it is attributed a role which is twice
as important. It is therefore easy to imagine an MCA in which the variables
are weighted. Implicitly, in usual MCA, the weight of each variable is 1/J .
This appears most notably in the maximised criterion: the mean of squared
correlation ratios.

159
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In the weighted MCA, we denote c j the weight attributed to variable j. To be
exactly in the context of the MCA, particularly to obtain eigenvalues between
0 and 1, the sum of these weights must equal 1. We show that this condition
does not apply in MFA as, for each group, the weights of the variables must
ensure a maximum axial inertia of 1. But let’s not get ahead of ourselves. By
following the MCA presentation in chapter 2, weighted MCA is generally the
same as conducting a principal component analysis (PCA) on a table X:

xik = yik

pk
− 1,

where individual i has a weight of pi and category k (of variable j) of weight
mk = pkc j . Indeed, the weighted MCA only differs from usual MCA (as seen
in Chapter 2), by the weighting of categories. The weighting of category k,
belonging to variable j, can be seen as the product of the weighting of the
category ‘within’ variable j (in other words pk) by the weighting of variable
j in the set of variables (that is to say, 1/J in usual MCA and c j in weighted
MCA), hence: pkc j .

8.1.1 Cloud of Categories in Weighted MCA

In MCA, the cloud of categories has remarkable properties. The principal char-
acteristics of this cloud are brought together in Table 8.1, for both MCA and
weighted MCA. For weighted MCA, they are obtained by replacing quantity
1/J , in the MCA properties, by c j .

8.1.2 Transition Relations in Weighted MCA

λs , Fs and Gs here designate the results (eigenvalue, coordinates of the indi-
viduals and coordinates of the categories for the axis of rank s) for MCA and
weighted MCA.

In MCA and weighted MCA a category k is (up to a coefficient) at the barycen-
tre (denoted gk) of the individuals that possess it:

Gs(k) = 1√
λs

1
pk

∑

i

pi yik Fs(i) = 1√
λs

Fs(gk).

In MCA an individual is (up to a coefficient) at the barycentre of the cate-
gories (each attributed the same weight) that it possesses:

Fs(i) = 1√
λs

1
J

∑

k∈K

yik Gs(k) = 1√
λs

∑

j

1
J

∑

k∈K j

yik Gs(k).

In weighted MCA an individual is (up to a coefficient) at the barycentre of
the categories (each attributed the weight of the variable to which it belongs)
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that it possesses:

Fs(i) = 1√
λs

∑

j

c j

∑

k∈K j

yik Gs(k) = 1
λs

∑

j

c j

∑

k∈K j

yik Fs(gk).

8.2 MFA of Qualitative Variables

Within the CDT (its general term is denoted yik), the indicators are now
brought together in groups which include several variables. The indicators of
a given variable always belong to one group: no distinction is made between
a group of indicators and a group of variables. As in all MFA, we use the letter
j for the groups (group j and J the number of groups); the letter q is used for
qualitative variables (variable q and Q the number of variables). In summary:

– K j : Number of categories of group j ; K: total number of categories
(K = ∑

K j );
– Q j : Number of variables of group j ; Q: total number of variables

(Q = ∑
Q j ).

8.2.1 From the Perspective of Factorial Analysis

Principle of Weighting Groups of Variables
The issue which arises from accounting for groups in a set of variables is
the same whether those variables are quantitative or qualitative: firstly the
need of balancing the influence of the groups in an overall analysis, bearing
in mind that a group with numerous dimensions will influence more axes
than another with only few dimensions (or even one single dimension). The
solution chosen by MFA (to harmonise the maximum axial inertias of the
clouds associated with the different groups), previously presented within
the context of quantitative variables, is not specific to these variables and
applies to qualitative variables.

MFA of Qualitative Variables Is Based on a Weighted MCA
As MCA is the usual factorial analysis of a set of qualitative variables, it is
natural to base the MFA of J groups of qualitative variables on a weighted
MCA. In this weighted MCA, the weighting of variables, induced by the
equalisation (at a value of 1) of the maximum axial inertias of the subclouds,
stems from the following reasoning.

In group j prior to weighting (that is to say, in the MCA applied to group
j), the distance between two individuals i and l is expressed:

d2(i j , l j ) = 1
Q j

∑

k∈K j

pk

(
yik

pk
− ylk

pk

)2

,

denoting i j the individual i considered from the point of view of the variables
of group j alone (called partial individual in MFA).
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To make the maximum inertia of the cloud associated with group j equal to
1, we divide the weight of each category of group j by λ

j
1 (first eigenvalue of

the MCA of group j). After this harmonisation, the distance between i j and
l j is expressed (see Section 2.4):

d2(i j , l j ) = 1

Q jλ
j
1

∑

k∈K j

pk

(
yik

pk
− ylk

pk

)2

.

When considering all of the groups of variables, these distances generate
the following distance between points i and l of NI :

d2(i, l) =
∑

j

d2 (
i j , l j) =

∑

j

1

Q jλ
j
1

∑

k∈K j

pk

(
yik

pk
− ylk

pk

)2

=
∑

j

∑

k∈K j

1

Q jλ
j
1

pk

(
yik

pk
− ylk

pk

)2

.

This relationship shows that the MFA of a set of qualitative variables organ-
ised into groups must be based on a weighted MCA in which the weighting
of the variables of group j is 1/(Q jλ

j
1).

The weight 1/(Q jλ
j
1) of variable q for group j results from two steps:

1. Consider that variable q belongs to group j in which case the weight-
ing is worth 1/Q j in the MCA for this group.

2. Fix the maximum axial inertia of the clouds of the MCA for group
j at 1 by dividing the weights of the preceding variables by λ

j
1 (first

eigenvalue of this MCA).

This weighted MCA provides the representations of individuals and cate-
gories in accordance with the issue: the role of the different groups is balanced.
The discussion of the conditions of this balance – harmonising the maximum
axial inertias, rather than the total inertias, for example – can be approached
from the same perspective as for that of the quantitative variables.

Remark
When each group is made up of only one variable, ∀ j Q j = 1 and λ

j
1 = 1,

MFA is then equal to MCA.
In MFA, the sum of the weights of the variables is not set at 1. This is due

to the fact that each group has an imposed maximum axial inertia of 1.

8.2.2 From the Perspective of Multicanonical Analysis

Lg Measurement for Qualitative Variables
For quantitative variables (see Section 6.2), it has been mentioned that
MFA can be considered a multicanonical analysis as described by Carroll
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(see Sections 6.2 and 6.3) on the condition that the relationship between a
variable z and a group of variables K j = {vk ; k = 1, K j } is measured by the
Lg measurement, the projected inertia of the variables of group K j along z.
Thus

Lg
(
z, K j

) =
∑

k∈K j

inertia of the projection of vk on z.

When the group of variables j is made up of indicators of only one qualita-
tive variable V, this measurement applies and it can be shown that it is worth
(z is centred):

Lg
(
z, K j

) = η2(z, V)

in which η2(z, V) is the squared correlation ratio between z and variable V.
If group j includes Q j qualitative variables Vq , this measurement becomes:

Lg(z, K j ) = 1

λ
j
1

1
Q j

∑

q∈Q j

η2(z, Vq ).

This measurement is proportional to the mean of the squared correlation
ratios between variable z and the variables which make up group j. This mean
is divided by its maximum value accounting for the data from group j, which is
the first eigenvalue of the MCA of this group j. Indeed, in MCA, the eigenvalue
of rank s is equal to the mean of the squared correlation ratios between factor
Fs and the Q qualitative variables. Finally, the Lg measurement is worth 0 if
the variable z has a zero correlation ratio with each variable of group j; it is
worth 1 if z coincides with the principal direction of inertia of group j.

These comments are the same as those made regarding quantitative vari-
ables. They show that Lg is well suited to serve as a relationship measurement
in a multicanonical analysis of qualitative variables and MFA can therefore
be considered as such an analysis.

Remark
In the last relationship, Lg(z, K j ) satisfies the following property: if each vari-
able of group j is duplicated, the MCA of this group, and particularly λ

j
1,

remains unchanged; the 1/Q j coefficient induces the same value of Lg(z, K j )
in both cases.

Looking for General Variables
In space R

I endowed with the metric D (containing the weights of the in-
dividuals), the general variable of rank s (denoted zs) of this multicanonical
analysis maximises:

∑

j

Lg(zs , K j ) =
∑

j

1

λ
j
1 Q j

∑

q∈Q j

η2(zs , Vq )

with the usual norm and orthogonality constraints:

‖zs‖D = 1 〈zs , zt 〉D = 0 if s �= t.
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8.2.3 Representing Partial Individuals

The notion of partial individuals, that is to say, an individual considered
from the point of view of a group only, is important in MFA. We have al-
ready denoted i j , individual i ‘as seen’ by group j. The geometric principle
of representation of these partial individuals is identical for quantitative and
qualitative variables: in space R

K , partial individual i j , derived from i by re-
placing its values for the (centred) variables by 0 for groups other than j, is
projected on the axes of inertia of NI .

The representation of the partial individuals benefits from an important
property: a partial transition relation. This is inferred from the usual rela-
tionship expressing the coordinate of an individual according to that of the
categories, limited to one single group of variables. These two relationships
(partial and usual) are presented for qualitative variables.

In MFA on qualitative variables, the representation of NI verifies the prop-
erties of weighted MCA (see Section 8.1.2). An individual is therefore (up to a
coefficient) at the barycentre of the categories that it possesses (each attributed
the weight of the variable to which it belongs). Thus

Fs(i) = 1
λs

∑

j

1

λ
j
1 Q j

∑

k∈K j

yik Fs(gk).

The representation of partial individual i j verifies the previous transition
relation by restricting the sum to variables of group j (partial transition rela-
tion). Thus

Fs(i j ) = 1
λs

1

λ
j
1 Q j

∑

k∈K j

yik Fs(gk).

Up to a coefficient, i j is at the barycentre of the categories (of group j) that it
possesses. This relationship can be used to compare directly the positions of
points of the same cloud N j

I (for example, i j and l j ). However, comparisons
between points from different clouds (such as i j and lh) are indirect: only the
relative positions of these points in their respective clouds (N j

I and Nh
I ) can

be compared, which only really seems useful if the factors (of MFA) being
examined are common to groups j and h.

Remark
In MFA, each cloud N j

I is dilated according to a homothety of ratio J in order
to situate individual i at the centre of gravity of its partial points {i j : j = 1, J }.
The previous formula therefore becomes:

Fs(i j ) = 1
λs

J

λ
j
1 Q j

∑

k∈K j

yik Fs(gk).
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8.2.4 Representing Partial Categories

As categories are represented by a centre of gravity of individuals, we can
imagine a concept of partial categories based on that of partial individuals. In
R

K , partial category k for group j (denoted g j
k ) is inferred from gk by replacing

its values for the variables (that is to say, the transformed and centred indica-
tors) for groups other than j with 0. As a result, in MFA, a partial category is at
the centre of gravity of the partial individuals that possess it. Thus, projecting
on the axis of rank s:

Fs(g j
k ) = 1

pk

∑

i

pi yik Fs(i j ).

Remark
The concept of partial category is of great importance for analysing qualitative
variables. In surveys, for example, there are generally a lot of individuals: they
are therefore not considered individually, but instead through the subpopu-
lations induced by their categories. This concept of partial category justifies the
fact that, in MFA, the categories should be represented through the barycentres
of their individuals rather than by indicators (or by the barycentres, dilated
axis by axis by the coefficient 1/

√
λs , which amounts to the same thing), as is

usually the case in MCA.

8.2.5 Analysing in Space of Groups of Variables (RI 2
)

Cloud of Groups of Variables
In R

I 2
, the case of qualitative variables is only slightly different from that of

quantitative variables. Each group of variables K j is represented by the matrix
of the scalar products between individuals defined by group j alone. Thus,
denoting Mj the diagonal matrix of dimension K j containing the weights
of the categories of group j (see also Section 7.1): Wj = Xj Mj X′

j . Each Wj is

associated with a point in R
I 2

. All of these points make up the cloud of groups
of variables denoted NJ .

Cloud NJ is projected on the subspace generated by the standardised prin-
cipal components (of the MFA in R

I ) vs , that is to say on ws = vsv′
s (see

Section 7.4.1). The coordinate of group j along ws is equal to the relationship
measurement Lg

(
ws, K j

)
, which is why this representation is known as a

relationship square. Lg
(
ws, K j

)
is also the contribution of group j to the iner-

tia of the axis of rank s (see Section 6.5.1). Unlike for groups of quantitative
variables, this Lg measurement is based on the correlation ratio (and not the
correlation coefficient) for which it is a standardised mean (see Section 8.2.2).

Each qualitative variable can also be represented individually in the rela-
tionship square. The representation suggested for the MCA (see Section 2.6)
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is again seen here, and here has further justification (as the projection of a
cloud of points).

Interpreting the Scalar Product Between Two Groups
It is important to remember that, in space R

I 2
, the scalar product between two

groups of quantitative variables K1 and K2 is interpreted as a relationship
measurement: RV if the groups are standardised and Lg(K1, K2) when the
maximum axial inertias of the clouds associated with the groups are equal to
1 (see Section 7.2). This property also applies to qualitative variables.

Let us remind ourselves of the two classical measurements of the relation-
ship between two qualitative variables:

1. The χ2 criterion, which measures the significance of the relationship
via a p-value

2. The φ2 = χ2/I criterion, which measures the intensity of the relation-
ship

It can be shown that when the groups of variables K1 and K2 are each made
up of only one qualitative variable (along with V1 and V2, respectively):

〈W1, W2〉D = Lg(K1, K2) = φ2
V1V2

= 1
I
χ2

V1V2
.

In this particular case, we find the usual measurement of the intensity of
the relationship between two qualitative variables. As a result, if K1 is made
up of one single variable V1 and K2 of Q2 variables denoted Vq :

〈W1, W2〉D = Lg(K1, K2) = 1
λ2

1 Q2

∑

q∈Q2

Lg(V1, Vq ) = 1
λ2

1 Q2

∑

q∈Q2

φ2
V1Vq

.

The two groups are more closely related, the more closely related (in terms
of φ2) the variable of group 1 is to each of the variables of group 2. The same
comments can be made about weighting by λ2

1 (first eigenvalue of the MCA of
group 2) as for quantitative variables. As the relationship between V1 and K2
increases, the closer the subspace generated by the indicators of V1 is to the
principal directions of inertia of K2. It must be noted that, if all of the variables
of group K2 are duplicated, λ2

1 remains unchanged. The Q2 coefficient ensures
that this relationship measurement does not vary.

Finally, if K1 and K2 include Q1 and Q2 variables, respectively (denoted Vh

for group K1 and Vq for group K2), we obtain:

〈W1, W2〉D = Lg(K1, K2) = 1
λ1

1 Q1

1
λ2

1 Q2

∑

h∈Q1

∑

q∈Q2

φ2
Vh Vq

.

The two groups are more closely related, the more closely related (in terms
of φ2) each variable of group 1 is to each of the variables of group 2. The same
comments can be made about weighting by 1/(λ1

1λ
2
1 Q1 Q2) as for the previous

case.
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8.3 Mixed Data

The J groups of variables are now decomposed into J1 groups of quantitative
variables, J2 groups of qualitative variables and J3 mixed groups.

Simultaneously processing quantitative and qualitative variables by fac-
torial analysis was addressed for FAMD (Chapter 3). But FAMD does not
account for the notion of groups of variables. However, many applications
require the possibility to account for variables of both kinds organised into
groups. MFA offers such a possibility.

A starting point for such an analysis is to define a distance between individ-
uals which simultaneously accounts for both types of variables. This question
has already been addressed for FAMD. Concisely, it can be said that this dis-
tance must be that of the PCA if we consider only quantitative variables, and
that of MCA if we consider only qualitative variables. The new element here
is the structuring into groups. The balance between both types of variable
must be ensured both within mixed groups (as in FAMD) and between the
groups, as usual in MFA.

8.3.1 Weighting the Variables

The data table juxtaposes quantitative variables and indicators. The analy-
sis must simultaneously take into account both types of data and function
‘locally’ as PCA for quantitative variables and as MCA for qualitative vari-
ables. In practice, as in FAMD, this result can be obtained directly by using
the equivalence between PCA and MCA: the indicators can be processed as
quantitative variables on the condition that they are appropriately weighted
and coded (see Section 2.4).

The groups are balanced by the weighting of the MFA. The initial weight
of variable k of group j is divided by:

– λ
j
1 if group j is quantitative or mixed (λ j

1: first eigenvalue of the PCA
or the FAMD of group j)

– λ
j
1 Q j if group j is qualitative (λ j

1: first eigenvalue of the MCA of group
j including Q j variables (see Section 8.2.1))

The same result can be obtained by replacing the raw data with the
factors of the separate factorial analysis of the groups (PCA, MCA or
FAMD depending on the case). These factors are either unstandardised, or
standardised and attributed an initial weight equal to their associated eigen-
value. This property suggests that the contributions (in the fullest sense of
the word) to the inertias of the axes should be calculated both for the initial
variables and for the factors of the separate analyses (an idea already used in
Section 4.5).
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8.3.2 Properties

Representing the Variables
The quantitative variables are represented with the help of their correlation co-
efficients with the factors. The qualitative variables essentially appear through
their categories, represented by the barycentre of the individuals that possess
them. In MFA, we use the exact barycentre (rather than the barycentre up to a
coefficient as in MCA) due to the partial categories (for which the coefficient
would not be justified). In addition, the qualitative variables themselves also
appear in the relationship square.

Representing Clouds of Partial Individuals
Equalising maximum inertias of these clouds allows them to be repre-
sented simultaneously. This representation benefits from partial transition
relations identical to those of the MFA applied to groups of the same
type.

Up to a coefficient, partial individual i of qualitative group j lies at the
barycentre of the categories of group j which it possesses; thus

Fs(i j ) = 1
λs

J

λ
j
1 Q j

∑

k∈K j

yik Fs(gk) = 1√
λs

J

λ
j
1 Q j

∑

k∈K j

yik Gs(k).

Partial individual i of quantitative group j lies on the side of the variables
of group j for which it has high values and opposite those of group j for which
it has low values; thus

Fs(i j ) = 1√
λs

J

λ
j
1

∑

k∈K j

xik Gs(k).

The position of a partial individual of mixed group j verifies a property
which combines the two preceding properties in the same way as the transition
relation in FAMD (see Section 3.4). In summary, an individual lies both on the
side of the quantitative variables for which it has a high value and on the side
of the categories it possesses.

In the previous relationships, coefficient J ensures that individual i is at the
isobarycentre of its partial points i j , whatever their type (see also the remark
at the end of Section 8.2.3). Thus

Fs(i) = 1
J

∑

j∈J

Fs(i j ).

Partial categories can be defined from the partial individuals. Partial cat-
egory k of group j is denoted k j ; it is situated at the isobarycentre of partial
individuals i j associated with the individuals i possessing category k. This
definition applies whatever the nature of group j.
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Multicanonical Analysis
The quantity maximised by the factors of the MFA can be expressed in terms of
a canonical analysis, with these factors as the general variables. This quantity
is given hereafter, limited to three groups: K1 (quantitative group made up
of K1 variables vk), K2 (qualitative group made up of Q2 variables Vq ) and
K3 (mixed group made up of K3 quantitative variables vk and Q3 qualitative
variables Vq ). The general variable of rank s (denoted vs) maximises

Lg (vs, K1) + Lg (vs, K2) + Lg (vs, K3)

= 1
λ1

1

∑

k∈K1

r2 (vs, vk) + 1
λ2

1 Q2

∑

q∈Q2

η2 (
vs, Vq

)

+ 1
λ3

1

⎡

⎣
∑

k∈K3

r2 (vs, vk) +
∑

q∈Q3

η2 (
vs, Vq

)
⎤

⎦

with the usual norm and orthogonality constraints for vs and denoting λ
j
1 the

first eigenvalue of the factorial analysis (PCA, MCA or FAMD) of group j .
As in FAMD, this quantity means that the squared correlation coefficient

and the squared correlation ratio play the same role. It increases the more
closely vs is correlated with the quantitative variables and the stronger the
correlation ratio with the qualitative variables. In this way, vs is linked to K1,
K2 and K3. The weighting of the groups of variables limits the maximum
contribution of a group to this quantity at 1. This quantity is therefore worth
a maximum of 3 (general case: J), a value which is reached when vs coincides
with the first factor of the PCA of K1 and with that of the MCA of K2 and with
that of the FAMD of K3.

Analysis in R
I 2

In this space, group j is represented by the matrix Wj of the scalar products
(between individuals) that it generates. The presence of different kinds of
variables poses no particular problem as the Wj matrices are homogeneous
(same dimensions, same first eigenvalue). The projection of group K j , on
axis ws generated by the general variable vs (defined in R

I ) of the MFA, is
interpreted as the relationship measurement Lg

(
vs, K j

)
(see Section 7.4.1).

In this space, the scalar product between K1 and K2 is worth Lg(K1, K2) (on
the condition that the maximum axial inertia of each cloud associated with
one group is 1). Depending on the nature of the variables, this scalar product
derives from the correlation coefficient, from the correlation ratio or from the
φ2. Table 8.2 specifies Lg(K1, K2) according to the number and the nature of
the variables making up the groups in the case of homogeneous groups.

When there is both a quantitative group and a qualitative group, Lg(K1, K2)
is worth 0 if each variable from one group has a zero correlation ratio with
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each variable from the other group. There is no upper limit; it increases when
both groups have many common directions of high inertia. This last property
is true for all types of groups.

8.4 Application (Biometry2)

The properties of MFA as performed on mixed data are illustrated below using
a small example of data chosen specifically to highlight these properties.

The biometry2 dataset is constructed as follows (see Table 8.3):

– Six individuals (A, . . . , F) are described by three quantitative variables
(length, weight, width), two of which are correlated with each other
(r (length, width) = −.71) and only slightly correlated to the third
(r (length, weight) = −.39 ; r (width, weight) = −.13).

– These three variables are also coded into three qualitative variables
by subdividing their variation range into two or three classes.

The specific aim of this application is to compare two images of one sin-
gle dataset: that provided by the standardised data and that provided by
coding into classes. The ‘canonical analysis perspective’ of MFA, by which
the method highlights the factors common to the variables groups and those
which are specific to only one of them, does indeed correspond to this com-
parison. The point of view ‘factorial analysis of the separate factors’ makes
it possible to compare the two usual methodologies: standardised PCA on
raw data and MCA on data coded into classes. The more general aim of this
application is to show how MFA simultaneously accounts for both types of
variable.

It must be noted that, in this case, there are very few individuals, particularly
for an MCA. An analysis such as this would probably be of no great use with
real data, but these data were constructed according to a simple and clear
structure which should be highlighted with the two codings.

8.4.1 Separate Analyses

Inertias (Table 8.4)
In MCA the projected inertias are always less than 1; in PCA, the first eigen-
value is always greater than 1. Weighting the variables is vital to analyse these
two types of data simultaneously.

The decrease of eigenvalues is less pronounced for the qualitative
group (MCA). This is a classic observation. The first (qualitative) group is
three-dimensional with the two first eigenvalues quite close together. The
second (quantitative) group is two-dimensional, which fits the way it was
constructed.
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TABLE 8.4
Biometry2. Eigenvalues of the Separate Analyses

Eigenvalues Percentages of Inertia

Group 1 2 3 4 1 2 3 4
1 Qualitative (MCA) 0.667 0.605 0.333 0.061 40.0 36.3 20.0 3.7
2 Quantitative (PCA) 1.765 1.110 0.125 58.8 37.0 4.2

TABLE 8.5
Biometry2. Correlations Between Factors of Separate Analysesa

Group 1 (MCA)

F1 F2 F3

Group 2 F 1 −0.82 −0.37 −0.41
(PCA) F 2 0.43 −0.87 −0.04

F 3 0.33 0.27 −0.68
a Example: .43 is the correlation coefficient between the second factor

of the PCA of group 2 and the first factor of the MCA of group 1.

Correlations Between the Factors of the Separate Analyses (Table 8.5)
Limiting ourselves to the first two, the factors of the same rank are quite
closely correlated (.82 and .87): as expected, the results of the two analyses are
linked. That said, higher coefficients could have been expected. In fact, these
coefficients give a pessimistic view of the relationships between the results,
as a similarity between two factorial planes can be masked by a rotation. Such
a rotation is highly plausible in this case, because the first two eigenvalues of
the MCA are close together: it is the first plane of the MCA which is stable
rather than the axes themselves.

8.4.2 Inertias in the Overall Analysis

The sequence of eigenvalues (see Table 8.6) suggests interpreting three
axes. The first eigenvalue of 1.920 is close to its maximum (the number of
groups): the first axis of the MFA corresponds to a high direction of inertia in
each group. The two groups contribute equally to this first axis, as expected

TABLE 8.6
Biometry2. MFA. Decompositions of Inertia by Axis and by Group

Total Inertia F1 F2 F3 F4 F5

Total Inertia 4.200 1.920 1.530 0.610 0.120 0.020
Group 1 2.500 0.947 0.909 0.536 0.098 0.010
Group 2 1.699 0.972 0.621 0.072 0.020 0.015
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Dim 1 (45.72%)

Dim 2 (36.42%)

F1.Classes

F3.Classes

F1.Std

F2.Std

F3.Std

F2.Classes

FIGURE 8.1
Biometry2. MFA. First plane. Factors of the separate analyses. Std: Standardised.

due to the weighting of the MFA (this property is almost always observed in
practice).

The second axis corresponds to a direction of high inertia for group 1 and
lower for group 2. This was also expected due to the first two eigenvalues of
the separate analyses. The third axis is specific to group 1. This is coherent
with the data construction method used.

We here illustrate the major difficulty inherent to the simultaneous facto-
rial analysis of quantitative and qualitative variables: weighting of the MFA
standardises the maximum axial inertia of each group. However, due to the
decrease of the inertias which is generally lower in MCA than in PCA, the
qualitative groups should be more influential, in terms of contribution to in-
ertia, from the second axis on. This difficulty must nonetheless be put into
perspective as shown in the following section.

8.4.3 Coordinates of the Factors of the Separate Analyses

The first two factors of the MFA (see Figure 8.1) are quite close to the fac-
tors of the same rank in the separate analyses. They are slightly more closely
correlated with the factors of the quantitative group. This is probably a conse-
quence of the low decrease in the inertias of the qualitative group, which
indirectly favours the factors of the quantitative group in the sense that
they mediate between directions of the qualitative group with comparable
inertias.
Conclusion: Weighting the MFA worked very well in this example by balancing
the influences of these two types of variable.
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Dim 1 (45.72%)

Dim 2 (36.42%)

A

B

C

D

E

F

Length1

Length2

Length3
Weight1

Weight2

Width1
Width2

Width3

Dim 1 (45.72%)

Dim 2 (36.42%)

Length

Weight

Width

FIGURE 8.2
Biometry2. MFA. First plane. Left: Quantitative variables. Right: Individuals and categories.

This remark attenuates the impact of the reticence mentioned in the previ-
ous section concerning the simultaneous analysis of these two types of vari-
able. Nevertheless, this also highlights the need to bear in mind the inertias
of separate analyses when interpreting results of MFA. This necessity, which
applies to any multiple table analysis, is exacerbated in cases of active groups
of different types.

8.4.4 First Factor

Individuals and Variables (See Figure 8.2)
For quantitative variables, categories and individuals, the rules for interpret-
ing the analyses are the same as for PCA and MCA.

The first factor:

– Is negatively correlated with length and positively correlated with
width (quantitative)

– Ranks the individuals in almost regular (inverse) alphabetic order
– Ranks the categories of the qualitative variables length and width in

their natural order, according to the previous correlations

In particular, this factor opposes individual A, wide and short, with F, long
and narrow. This is indeed a factor common to the two groups of variables,
with this opposition being clear in the data for each of these two types of
variables.

Partial Individuals (See Figure 8.3)
There are some marginal differences between the partial individuals of the
two groups. For axis 1, individuals A and B are thus more different from
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FIGURE 8.3
Biometry2. MFA. First plane. Individuals, mean and partial (left); Categories, mean and partial
(right). Std: Standardised; Cl: Classes.

the point of view of the quantitative group (group 2 = Std) than from the
point of view of the qualitative group (group 1 = Cl):

∣
∣F1

(
A1

) − F1
(

B1
)∣
∣ <∣

∣F1
(

A2
) − F1

(
B2

)∣
∣. Here we can see a consequence of coding the data into

classes which can group together (slightly) different individuals: A and B
differ (slightly) in terms of length and width, but this is not visible when
grouped into classes (only their differences in weight, a variable very slightly
linked to the first factor, prevent A1 and B1 from having the same coordinate
on this axis).

Our attention is drawn to individuals D and E. In terms of axis 1, E is more
typical than D if we consider the quantitative data:

∣
∣F1

(
E2

)∣
∣ >

∣
∣F1

(
D2

)∣
∣.

Indeed, D is slightly longer than it is wide, whereas E is much longer than it
is wide; this can be seen in the raw data, with these two variables having the
same standard deviation.

However, still from the perspective of the first axis, D is more typical than
E if we consider the data grouped into classes:

∣
∣F1

(
D1

)∣
∣ >

∣
∣F1

(
E1

)∣
∣. First, it

can be seen that the coding into classes has erased the difference mentioned
above, in the sense that the deviation between the two individuals is now
of only one class both for length and for width. From this perspective, these
two individuals are identical, as can be observed in the proximity between
the barycentre (not represented) of {length = 3; width = 2} for individual
D and that of {length = 2; width = 1} for individual E. The difference be-
tween the partial points stems from the weight, which is slightly related to
the first factor and clearly opposes D and E (particularly in the data coded into
classes).

Transition Relations
The transition relations expressing the coordinate of an individual in terms
of those of the quantitative variables on the one hand and of those of the
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categories (see Section 8.3.2), underlie the interpretation of the projection of
the cloud of individuals and variables and therefore the comments in the
previous paragraph.

Table 8.7 shows details of how the coordinate of a partial individual is
calculated from the data. For factor 1, it brings together the terms on the
right in the first two formulae of Section 8.3.2, for which the sum is the co-
ordinate of an individual (up to a coefficient, each term is the result of the
product of a value from the data table by the coordinate of a variable or cat-
egory). These values can therefore be seen as the variables’ contributions to
the coordinates of the individuals (for example, the coordinate of A2 is worth
1.165+0.080+1.016 = 2.261). In calculating this coordinate, length and width
play the same role and weight is of very little consequence. Between the two
groups, these contributions to the coordinates can be compared, as shown by
the two examples below:

– The qualitative variable length does not separate A and B; compared
to the quantitative variable length, it depicts (along F1) both A less
typical (.927 < 1.165) and B more typical (.927 > .699).

– Weight is much less closely linked to F1 than length, which is
translated by lower contributions in both codings. These contribu-
tions (see Figure 8.4, right) are slightly higher in this qualitative case,
as a sign of a stronger relationship between F1 and weight in the
qualitative coding (η2 (F1, weight qlt.) = .097) than in the quantita-
tive data (r2

(
F1, weight quant.

) = .048).

Partial Categories (see Figure 8.3)
Overall, the homologous partial categories (that is to say, those relating to
the same category) are closer to one another than the homologous partial
individuals are. This result is classical: out of those individuals with the same
category, opposite deviations between partial images cancel each other out
when calculating barycentres. Example: width = 3 (shared by A and B) along
F1. Counter-example: width = 1 (shared by E and F, both of which are more
extreme from the quantitative point of view) along F1.

Conclusion
The negative correlation between length and width, the principal structure
of the data insomuch as it concerns two out of three variables, can be clearly
observed through both codings. The loss of information due to the coding
into a qualitative variable leads to a slightly different appearance of the cloud
of individuals, in particular:

– Regular distribution of individuals for the raw data
– Distribution which suggests two classes ({A, B} and {C, D, E, F}) after

coding into classes

The superimposed representation of the MFA works in quantitative, qual-
itative and mixed cases. Its interpretation is essentially based on the partial
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transition relations, which are almost identical to those of the PCA and the
MCA.

8.4.5 Second Factor

This factor:

– Essentially opposes individuals E and C (contribution: 59.8%) with
the others

– Is positively correlated with the quantitative variable weight (R2 =
.88)

– Is linked to the qualitative variables weight (η2 = .80) and length
(η2 = .902)
These two coefficients are read in the relationship square (see
Figure 8.4) commented later in the chapter.

According to this factor, E and C are characterised by a heavy weight and
an intermediary length (which can easily be seen in the raw data).

This second factor is common to both groups (the opposition between E
and C with the others is clear in the two types of variables) but does not have
exactly the same meaning in the two cases. It is linked to both weight variables
but its meaning is enriched, for group 1, by the opposition between extreme
lengths and intermediary lengths.

Here we notice that MCA can highlight nonlinear relationships. The quan-
titative perspective only indicates that the second factor is not correlated with
length and width. The qualitative perspective also depicts an absence of rela-
tionship with width, but a nonlinear relationship with length.

From the point of view of the superimposed representation of partial clouds,
it should be noted that the dispersion of partial individuals is greater for group
1 than for group 2. This is a consequence of the lower decrease of inertias of
the separate analysis of group 1. In parallel, factor F2 of the MFA is more
closely linked to group 1 than group 2: Lg (F2, K1) = .91; Lg (F2, K2) =
.62. As a result, F2 separates the partial categories of group 1 more
markedly.

8.4.6 Third Factor

This factor is specific to group 1 and closely correlated to the third factor of the
MCA for this group (r

(
F AF M

3 , F 1
3

) = .95). Being three-dimensional, group 1
could not be perfectly represented on the first plane of the MFA.

In MCA, each variable generates, in R
I , a subspace of dimension (number

of categories −1). For group 1, the first plane of the MFA takes into account the
two length dimensions, the single weight dimension and one width dimen-
sion. Thus, the third factor of the MFA ‘automatically’ expresses the remaining
width dimension.
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FIGURE 8.4
Biometry2. MFA. Left, individuals and categories on the (F 1, F 3) plane. Right, relationship
square (F 1, F 2).

This third factor (see Figure 8.4) opposes categories 1 and 2 of width
with each other (these categories are close on the first plane, particularly
from the point of view of group 1, which corresponds to the identical
way in which they associate themselves with the other categories) and,
in parallel, the little wide individuals (E , F) and the moderately wide
individuals (D, C).

8.4.7 Representing Groups of Variables

The graphical representation of groups of variables in the relationship square
is particularly useful when there are many groups, which is not the case in
this example. However, this representation can be completed by those of the
variables, each considered as a group (the coordinate of a group made up of
a single variable is a squared correlation coefficient/ratio).

Figure 8.4 (right) provides a synthetic visualisation of the two main outlines
of the interpretation which has already been discussed:

1. The first factor of the MFA corresponds to a high direction of inertia
for the two groups of variables; it is strongly linked to two out of three
variables of each (length and width).

2. The second factor of the MFA corresponds to a high direction of inertia
for the first group (it is related to two variables of this group: weight
and length) and less for the second group (it is related only to weight).

As the groups of variables are not normed, their qualities of representation
(in the sense of projected inertia/total inertia) do not appear on the graph and
must be consulted separately (see Table 8.8). Thus, on the first plane:
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TABLE 8.8
Biometry2. MFA. Groups’ Quality of Representationa

F1 F2 F3

Group 1 (Classes) 0.43 0.40 0.14
Group 2 (Standardised) 0.68 0.28 0.00
All 0.53 0.35 0.08
Quali. length 0.40 0.41 0.00
Quali. weight 0.01 0.64 0.00
Quali. width 0.41 0.01 0.48
Quanti. length 0.90 0.00 0.00
Quanti. weight 0.00 0.78 0.00
Quanti. width 0.52 0.03 0.01
a In R

I 2
on the first three axes.

– The distance between the two codings of the length (well represented)
do indeed correspond to unidimensionality of one and bidimension-
ality of the other.

– The proximity between the two widths (poorly represented) does not
correspond to an overall equivalence between the two codings, which
is impossible due to the different dimensions; the difference between
the two codings is expressed on axis 3.

– The proximity between the two weights (quite well represented) sug-
gests an equivalence between the two codings, possible from the point
of view of the dimensions and not contradicted by the other axes.

The influence of coding can be measured by the relationship indicators
Lg and RV calculated between the two codings of the same variable (see
Table 8.9). As the groups are reduced to a quantitative variable and a qualita-
tive variable, Lg is interpreted as the squared correlation ratio. As the quali-
tative variable weight has two categories, in this case Lg is interpreted as the
squared correlation coefficient between the quantitative variable and one of
the two indicators. Finally, in this very specific case, RV is equal to Lg divided
by the square root of the number of categories of the qualitative variable.

Indicator Lg identifies a weaker common structure between the two cod-
ings for the weight: the qualitative variable better reproduces the raw data in
the case of length and width. The fact that these two variables have more cate-
gories mechanically increases Lg in this case. In comparison, the RV indicator
brings into perspective the importance of the common structure through the
number of categories of the qualitative variable: it indicates that the images
of the individuals given by the two codings are closer for weight. These two
points of view are not contradictory: the qualitative coding with more than
two categories makes it possible to highlight nonlinear relationships, which
are invisible with quantitative variables (in factorial analysis).
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TABLE 8.9
Biometry2. Relationship Indicators Lg and RVa

Measurement/Variable Length Weight Width

Lg .914 .800 .914
RV .646 .800 .646
a Between the two codings of each variable.

8.4.8 Conclusion

This example shows that the weighting of the variables included in MFA
makes it possible to analyse groups of variables of different types simultane-
ously. The interpretations are based on both PCA and MCA. They do not pose
any particular problem aside from the need to bear in mind the inertias of the
separate analyses (classic in MFA but heightened in this type of application).

The advantage of studying quantitative variables by coding them as quali-
tative and then conducting an MCA has been confirmed (if ever confirmation
was needed). The linear relationships detected by the PCA are also identi-
fied by the MCA. But MCA identifies other relationships. In this example, in
which the relationships are essentially linear, the first factors of the PCA and
the MCA are similar, but of course this is not always the case.

Here, MFA proves a rich and useful tool for comparing two methodologies.
The advantage of this method when the groups have a lot in common is always
observed.

Another application is suggested by this example: MFA makes it possi-
ble not to choose between two (or more) codings but rather to conduct an
analysis which accounts for both. This approach will be valuable particu-
larly to construct a classification of individuals from the coordinates of the
MFA (which here plays the role of preprocessing) which is robust in terms of
coding.

8.5 MFA of Mixed Data in FactoMineR

We do not go into detail with regard to the R Commander interface, which
has already been described in Section 1.11, and instead focus on the specifics
of the qualitative variables.

This section is illustrated with the Biometry2 data (see Table 8.3). Each vari-
able is present in the file twice in an order which appears in the importation
verification:

> Biometry2=read.table("Biometry2.csv",header=TRUE,sep=";",
+ row.names=1)

> colnames(Biometry2)
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[1] "Length3classes" "Weight2classes" "Width3classes" "Length"
[5] "Weight" "Width" "Length3cl." "Weight2cl."
[9] "Width3cl." "Length2" "Weight2" "Width2"

The MFA is conducted on the first six columns only, with all of the de-
fault options (the names of the groups are thus group.1 and group.2). The
columns of each group must be consecutive in the table.

> res=MFA(Biometry2[,1:6],group=c(3,3),type=c("n","s"))

This command displays the main graphs: mean individuals, quantitative
variables, mean and partial categories, partial axes, groups, mean and partial
individuals (the latter being limited to four individuals with the two highest
and the two lowest within inertias for the first axis).

For some graphs, it can be useful to have short group names. Thus, to label
partial individuals and/or categories:

> res=MFA(Biometry2[,1:6],group=c(3,3),type=c("n","s"),
+ name.group=c("Class.","Std"))
> plot.MFA(res,axes=c(1,2),choix="ind",habillage="group",
+ invisible="quali",partial="all",lab.par=TRUE)

The graph in Figure 8.3 on the right is obtained as follows:

> plot.MFA(res,axes=c(1,2),choix="ind",habillage="group",
+ invisible="ind",partial="all")
# Labelling partial points with group labels
> text(res$quali.var$coord.partiel[seq(1,15,2),1],
+ res$quali.var$coord.partiel[seq(1,15,2),2],
+ rep("Std",6),pos=3,offset=0.5)

> text(res$quali.var$coord.partiel[seq(2,16,2),1],
+ res$quali.var$coord.partiel[seq(2,16,2),2],
+ rep("Cl.",6),pos=1,offset=0.5)

# Connecting categories of variables length and width
> varco<-res$quali.var$coord
> points(varco[1:3,1],varco[1:3,2],type="o")
> points(varco[6:8,1],varco[6:8,2],type="o")

It is often useful to colour the individuals according to the categories they
possess for a specific qualitative variable. Thus, to differentiate between the
individuals according to the weight (hab=2):

> plot.MFA(res,choix="ind",invisible="quali",hab=2)

It is possible to display a confidence ellipse around the mean point of the in-
dividuals possessing a given category of a given variable, using the plotel-
lipses function. For example, for the categories of the weight (keepvar =
2):
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> plotellipses(res,keepvar=2)

The relationship square (see Figure 8.4, right) can display the variables
themselves as well as the groups of variables. In order to do this, each variable
is also introduced as a supplementary group of one single variable. This is
why the variables are duplicated in the file. In this graph, longer labels are
used for the groups. Thus:

> res=MFA(Biometry2,group=c(3,3,rep(1,6)),
+ type=c("n","s",rep("n",3),rep("s",3)),
+ num.group.sup=c(3:8),name.group=c("G1qualitative",
+ "G2quantitative","LengthQuali","WeightQuali","WidthQuali",
+ "LengthQuanti","WeightQuanti","WidthQuanti"))

Among other things, this command generates the relationship square seen
in Figure 8.4.

Most of the tables in this chapter are not specific to mixed data and the way
in which they are obtained has already been described. The four tables below
are (more or less) new.

Table 8.5 (Correlations Between Partial Axes)
The program brings together the correlation coefficients for all pairs of factors
in a table, from which we extract a section:

> round(res$partial.axes$cor.between[6:8,1:3],2)

Table 8.7 (Contributions of the Cells to Partial Individuals)
This table is very particular and, unlike the other three, it is seldom con-
structed. It is important to appreciate subtly how the quantitative and qual-
itative variables are balanced. It is mainly based on the partial transition
relations described in 8.3.2.

The tab.disjonctif function is included in FactoMineR. From a
data.frame containing the qualitative variables (factors), it constructs a com-
plete disjunctive table (CDT). This function has many other uses, particularly
for grouping together contingency tables crossing subsets of qualitative vari-
ables with one another in one single table.

# Initialisation
> Tab8_7=matrix(rep(0,78),nrow=13,ncol=6)
# BCR: Quantitative group standardised (centred and reduced)
# Bdis: qualitative group (complete disjunctive coding)
> BCR=as.matrix(scale(Biometry2[,4:6])*sqrt(6/5))
> Bdis=tab.disjonctif(Biometry2[,1:3])
> colnames(Tab8_7)=rownames(Biometry2)
> rownames(Tab8_7)=c(colnames(BCR),"Ind.part.quanti",
+ colnames(Bdis),"Ind.part.quali")

# First eigenvalue of MFA and of separate analyses
> L1AFM=res$eig[1,1]
> L1ACM=res$separate.analyses$Categ.$eig[1,1]
> L1ACP=res$separate.analyses$Std$eig[1,1]
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In the transition relation in PCA (for the axis of rank s), a coefficient equal
to the root of the eigenvalue (of rank s) appears; the role of this coefficient is
here held by the first eigenvalue of the MFA (first as here we are interested in
the axis of rank 1). In addition, the weighting of the MFA by the first (first as
it is the choice of the weighting of the MFA) eigenvalue of the separate PCA
for the groups of quantitative variables intervenes here.

# Coeff = coefficient in transition formula
> coord=res$quanti.var$coord[,1]
> coeff=2/(sqrt(L1AFM)*L1ACP)

Index j (columns) is that of the individuals (there are six) and index i (rows)
that of the variables (compared with the usual format, the table is transposed
to make it easier to edit):

# Quantitative group part
> for(i in 1:3){ for (j in 1:6) {
+ Tab8_7[i,j]=BCR[j,i]*coord[i]*coeff
+ Tab8_7[4,j]=Tab8_7[4,j]+Tab8_7[i,j]
+ }}

For qualitative variables, the first eigenvalue of the PCA is replaced by
the first eigenvalue of the MCA multiplied by the number of variables. In
addition, the first eigenvalue of the MFA here intervenes directly, rather than
through its root, as here we use the coordinates of the centres of gravity for
the categories and not those of the indicators (see Section 8.1.2).

# Qualitative group part
> coeff=2/(L1AFM*L1ACM*3)
> coord=res$quali.var$coord[,1]
> for(i in 1:8){ for (j in 1:6) {
+ Tab8_7[i+4,j]=Bdis[j,i]*coord[i]*coeff
+ Tab8_7[13,j]=Tab8_7[13,j]+Tab8_7[i+4,j]
+ }}

Table 8.8 (Qualities of Representation in R
I 2

)
To make editing easier, slightly shortened labels are used.

# Initialisation and choice of labels
> tab_8.8=matrix(nrow=9,ncol=3)
> row.names(tab_8.8)=c("Group 1","Group 2","Overall",
"LengthQuali",

+ "WeightQuali","WidthQuali","LengthQuanti","WeightQuanti",
+ "WidthQuanti")
> colnames(tab_8.8)=c("F1","F2","F3")

# The cos2 of Wj are calculated by MFA (cos2 and cos2.sup)
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> tab8_8[1:2,1:3]=res$group$cos2[,1:3]
> tab8_8[4:9,1:3]=res$group$cos2.sup[,1:3]

# Projected inertia/global inertia ratio (for NJ)
# must be calculated from coordinates (coord)
# and distances between the Wj and the origin (dist2)
> tab8_8[3,1:3]=apply(res$group$coord[,1:3]^2,MARGIN=2,FUN=sum)
> tab8_8[3,1:3]=tab8_8[3,1:3]/sum(res$group$dist2)

# Editing numbers with 2 decimal places
> round(tab8_8,2)

Table 8.9 (Lg and RV Relationship Indicators)
To obtain this table, as for the relationship square, each variable was also
introduced as a supplementary group of just one variable. The desired Lg and
RV indicators are found in the matrices bringing together these coefficients
for each pair of groups (res$group$Lg and res$group$RV):

# Initialisation and choice of labels
> tab8_9=matrix(nrow=2,ncol=3)
> row.names(tab8_9)=c("Lg","RV")
> colnames(tab8_9)=c("Length","Weight","Width")

# Lg and RV coefficients are on the diagonal of submatrices
# included in res$group$Lg and res$group$RV
> tab8_9[1,1:3]=diag(res$group$Lg[3:5,6:8])
> tab8_9[2,1:3]=diag(res$group$RV[3:5,6:8])

# Editing numbers with 3 places
> round(tab8_9,3)





9
Multiple Factor Analysis and Procrustes
Analysis

Originally, the question which motivated Procrustes analysis (PA) was, ‘How
can one of two homologous clouds of points situated within the same
space be turned to make them coincide as closely as possible?’ Today,
generalised Procrustes analysis (GPA) is applied to sets of more than two
clouds.

Chapter 5 describes the solution proposed by multiple factor analysis (MFA)
to obtain a superimposed representation of homologous clouds of points (N j

I ).
The two approaches must be compared.

As GPA is not well known outside the field of sensory analysis, we start by
presenting some basic elements of this method.

9.1 Procrustes Analysis

9.1.1 Data, Notations

There are J clouds (denoted N j
I ) of I homologous points (i j ). These clouds

evolve within spaces of the same number of dimensions Kc (but these dimen-
sions do not correspond from one space to the other). The coordinates of the
points of N j

I are brought together in matrix Xj of dimensions ( I, Kc). The
columns of Xj are centred.

When initially N j
I evolve within spaces of different dimensions (K j ), we

choose Kc = max (K j , j = 1, J ); when K j < Kc , we consider that N j
I has zero

inertia in Kc − K j directions, which it obtained by adding columns of 0 to the
initial matrix Xj .

In Procrustes analysis, the individuals are always attributed a weight
of 1. These weights are used in this chapter. That being said, the pres-
ence of different weights from one individual to the other is not contra-
dictory to Procrustes analysis: we might want the superimposition to be a
particularly good fit for certain individuals. Reminder: in MFA it is pos-
sible to attribute weights to individuals, a possibility which is offered by
FactoMineR.

189
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9.1.2 Objectives

Clouds N j
I are positioned in one space R

Kc . Each cloud is centred and no
translation is required. We then transform N j

I so as to make the homologous
points coincide as well as possible. In the most common (and the original)
version, only orthogonal transformations are authorised (that is to say, the
rotations and symmetries) as they do not modify the distances between the
points of a single cloud. Homotheties can also be authorised, but their ap-
plication advantage cannot be seen when N j

I have been standardised. Thus,
unless explicitly stated to the contrary, they are not considered.

Following transformations, cloud N j
I has new coordinates that are brought

together in matrix Yj . Saying that N j
I coincide (with one another) as well as

possible is the same as saying Yj are as close together as possible. The sum
of the square of the term-by-term differences between matrices Yj and Yl is
written:

trace
[(

Yj − Yl
)′ (Yj − Yl

)]
.

The quantity which Procrustes analysis minimises is thus written:
∑

j>l

trace
(
Yj − Yl

)′ (Yj − Yl
)
.

Yj is deduced from Xj by isometry (a transformation which preserves the
distances); Yj can be written Yj = Xj Tj with Tj as an orthogonal matrix, that is
to say, verifying Tj T ′

j = Id (denoting Id the identity matrix of the appropriate
size). The Procrustes model can therefore be expressed:

q j Xj Tj = Z + E j ,

where Z, matrix of size ( I, Kc), contains the coordinates of the so-called mean
configuration (in reference to the way it is calculated), E j a matrix of residuals
and q j a scalar present in the model when the homotheties are authorised.

Mean Cloud. When N j
I are placed in the same space, we can construct a

mean cloud NI for which each point i is the isobarycentre of its homologous
points in N j

I . Up to a certain point, this cloud is analogous with mean cloud
NI of the MFA. To make it easier to compare the two methods, we call NI

the mean cloud, whatever the analysis (even though the two clouds are not
constructed in the same way).

9.1.3 Methods and Variations

Depending on the Number of Clouds
First Case: J = 2. This is the original method. It includes an analytical solution
which we look at briefly.
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Let X1 and X2 be the tables containing the initial data which are generally
centred and reduced; we aim to transform X2 to fit X1.

Let V12 = X′
1 X2 be the matrix containing (up to I coefficient) the correla-

tion coefficients between the variables of group 1 (rows) and those of group
2 (columns), when the data are centred and reduced. V12 contains the covari-
ances if the data are only centred.

Let U be an (orthogonal) matrix of standardised eigenvectors of V12V′
12 and

V an (orthogonal) matrix of standardised eigenvectors of V′
12V12.

It can be shown that the fit of table X2 (to table X1) is given by

Y2 = X2VU ′.

The dissymmetry of the solution is only apparent: from the point of view
of the relative position of the points, there is no difference between fitting X1
to X2 or X2 to X1.

Remark
The axes of the principal component analysis (PCA) only depend on the cor-
relations between variables; those of the Procrustes analysis depend only on
between-table correlations.

Second Case: J > 2. This is the case of the GPA. There is no known analytical
solution. An iterative algorithm, at each step, successively fits each cloud N j

I
to the mean cloud (in the first step, the first cloud acts as a mean cloud). The
mean cloud itself is recalculated after the rotations of N j

I . More specifically,
the principle of the usual algorithm can be described as follows:

1. Initialise the mean cloud Z (by the first configuration).

2. Fit each of J clouds N j
I to the mean cloud; update N j

I by the result of
these fits which are conducted successively.

3. Update the mean cloud Z from J fitted clouds N j
I .

4. Update the fitting criterion for all N j
I .

5. Begin step 2 again while the improvement of the criterion is above a
fixed threshold.

This algorithm converges, but its convergence to an overall optimum of the
criterion is uncertain. Many studies have tried to improve this algorithm.

Depending on the Number of Dimensions
First Case: Kc = 2 or 3. The solution can be examined directly and overall by
a graphical representation.

Second Case: Kc > 3. The solution can only be examined via a projection
on subspaces. In the usual variant, at the end of the PA (or the GPA), N j

I are



192 Multiple Factor Analysis by Example Using R

projected onto the factorial axes of NI . It has also been suggested to use the
factorial axes of the union of the N j

I (denoted NJ
I ).

Influence of the Dimensions on the Objectives
When Kc > 3, homology between the spaces in which N j

I evolve is not studied
globally but subspace by subspace. In practice, the representations are often
studied dimension by dimension. This point of view brings GPA closer to
generalised canonical analysis, that is to say, the search for a sequence of
directions common to several homologous clouds of points. We often refer
back to this approach.

9.2 Comparing MFA and GPA

Reminder: The MFA is based on a weighted PCA of table X of size (I, K)
juxtaposing tables Xj in rows. In this PCA, the variables of group j are
weighted by 1/λ

j
1 (denoting λ

j
1 the first eigenvalue of the separate PCA for

group j).

9.2.1 Representing N j
I

Each cloud N j
I corresponds to a table Xj .

In MFA
N j

I are placed in space R
K , the direct sum of R

K j . Thus, N j
I are not really in

the same space. The simultaneous nature of this representation is artificial; it
is justified as a framework for interpreting the method.

In GPA
N j

I are all positioned in the same space R
Kc . This representation corresponds

to an overall homology of spaces R
Kc which each contain a cloud N j

I .
N.B.: Initially, it is an overall homology, rather than initial dimension by

initial dimension homology, as is the case when the variables are the same
from one group to the other. This initial superimposed representation of N j

I is
artificial, as is that of the MFA, and is justified as a framework for interpreting
the method.

The aim of GPA is to identify the homologous dimensions of N j
I from this

overall homology of spaces R
Kc . These homologous dimensions induce the

same structure on the individuals. We here observe the common factor notion
of MFA.

Almost all of the differences between the two methods are derived from
the difference between the two modes of representation of N j

I .
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9.2.2 Mean Cloud

In both methods, mean cloud NI contains the points i, the centres of gravity
of the sets {i j ; j = 1, J } (which is why they are called mean clouds). However,
as these two mean clouds NI are constructed in different spaces, they do not
carry the same meaning from one method to another.

In MFA

• The i j associated with a given i belong to orthogonal subspaces.
• Their coordinates are juxtaposed and cannot be averaged.
• The squared distance between two mean points i and l is written:

d2 (i, l) = 1
J 2

∑

j

d2 (
i j , l j) .

• This overall distance increases with the distances in each subspace,
whatever the direction of this distance in each subspace.

• In R
K , the total inertia of NI is equal to the total inertia of NJ

I (union
of N j

I ) divided by J 2.

In GPA

• The i j associated with a given i belong to the same space, R
Kc .

• The coordinates of i are the average of the coordinates of {i j ; j = 1, J }.
• As in MFA, the distance between the two mean points i and l is

dependent on the distance between individuals i and l in each group
but, in addition, on the fact that, along homologous directions, the
deviations between individuals i and l either do or do not have the
same sign (see Figure 9.1).

• As a result, at constant inertia NJ
I , the inertia of NI is greater when the

deviations between the points are identical in homologous directions,
that is to say, when N j

I are similar. This is why, in GPA, the mean cloud
is sometimes called a consensus cloud.

Illustration. In Figure 9.1, A and B differ for each group: in MFA the mean
points differ. The same applies for C and D. On the axis of the PA, the differ-
ences between A and B are similar for each group: the mean points differ. On
this axis, the differences between C and D are opposite for the two groups:
the mean points are the same.

9.2.3 Objective, Criterion, Algorithm

From a general point of view, in both cases we are looking for factors common
to N j

I which are visualised using a superimposed representation of N j
I .
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FIGURE 9.1
Four individuals ( A, B, C, D) described by two groups, each composed of one variable ({V1},
{V2}). Representations of clouds NI and N j

I in space R
K of the MFA (left) and on the unique

axis of the Procrustes analysis (right).

In MFA

• The number of common factors is not specified.
• The common factors can be common to all or some of the groups.
• The aim of the analysis is to highlight them.

In GPA

• We assume that there is an homology between the spaces in which N j
I

initially evolve. In practice, we identify homologous bases of these
spaces. Finally, in terms of canonical analysis, this means assuming
that there are Kc factors common to all of the J groups.

• The aim of the analysis is to identify these common factors.

Criterion
In both methods, the criterion can be expressed from the superimposed rep-
resentation. We consider the partition of NJ

I into I classes, each containing
the partial points associated with one given individual {i j ; j = 1, J }. The
within-class inertia of NJ

I relative to this partition is written:

∑

i

∑

j

d2 (
i j , i

) = 1
2I

∑

i

∑

j,l

d2 (
i j , i l) .

In PA and GPA, the aim is to minimise this quantity. When homotheties are
not authorised, the same result can be achieved by maximising the associated
between-class inertia which is none other than the inertia of NI . For GPA, at
each step we are looking for the rotation of each cloud N j

I which satisfies this
criterion (thus calculated for all dimensions).
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Remark
When homotheties are authorised, one trivial solution is to choose 0 as the q j

coefficient for each cloud j . In order to avoid this, one can fix the total inertia
of NJ

I (union of N j
I ).

In MFA, axis by axis, the aim is to maximise projected between-class inertia.
Despite their resemblance, the two criteria only partially correspond because,
by proceeding axis by axis, total inertia is no longer fixed, which cancels out the
equivalence of minimising within-inertia and maximising between-inertia.

Therefore, between the two methods:

• The geometric representations differ; the mean clouds do not have
exactly the same meaning.

• The quantities to be maximised differ despite the existence of a re-
semblance.

• The types of transformation of N j
I differ (rotation or projection).

9.2.4 Properties of the Representations of N j
I

In GPA

• The transformations of N j
I are orthogonal (which may include homo-

theties).
• The shape of N j

I is perfectly respected; this is a very strong constraint,
specific to GPA.

• If Kc is greater than 3, the superimposed representation of N j
I can

only be examined using projections, for example, on the principal
axes of NI ; these projections are conducted after fitting.

In MFA

• The projection is conducted in parallel to the fitting.

• The projection of N j
I is conducted on axes which do not belong to

R
K j or, from another point of view, on nonorthogonal axes of R

K j .
The result is a deformation of N j

I , even if cloud NI is perfectly repre-
sented. These distortions have already been described in Section 5.5;
an illustration is given in the example (referred to as 23−1) described
below in Section 9.3.

9.2.5 A First Appraisal

MFA is a particular factorial analysis and a particular multicanonical analysis
(in Carroll’s sense). It is not a Procrustes analysis if we consider the nondefor-
mation of N j

I as one of its characteristics. Nonetheless the issues which arise
in Procrustes analyses and MFA are connected:
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TABLE 9.1
Three Individuals ( A, B, C) Described by Three Groupsa

V1 V2 V3 V1 V2 V3

A 5 1 −3 V1 1
B −2 −2 −2 V2 .40 1
C −3 1 5 V3 −.68 .40 1

Data Correlations
a Each with a single variable.

– Both include the notion of the common factor.
– Both include a superimposed representation of N j

I and a mean cloud.

9.2.6 Harmonising the Inertia of N j
I

In MFA, the inertia of N j
I is harmonised prior to the analysis:

– Within the groups, by optional reduction of the columns
– Between the groups, by overweighting the variables which amounts

to a homothety of each N j
I

In GPA, the issue is the same as prior to conducting an MFA or any other
analysis of this type of multiple table. The practice is: the inertia of NJ

I is al-
ways 100; optionally, the inertia of each N j

I can also be fixed to 100/J.

9.2.7 Relationships Between Homologous Factors

We use the notations from MFA: Fs : coordinates of NI along axis of ranks; F j
s :

coordinates of N j
I along axis of rank s.

It can be shown then, in MFA, these factors benefit from the following
property:

∀s, j : r
(

F j
s , Fs

) ≥ 0.

Thus, a canonical variable F j
s is never negatively related to the gen-

eral variable of the same rank Fs . This property is the very least we
can ask of a common factor. The GPA can also be shown to verify this
property.

However, in both GPA and MFA, homologous factors (such as F j
s and F l

s )
can be negatively correlated, as illustrated in the example (see Table 9.1).

In this specific case, where each group has only one single variable, the
GPA considers the three variables to be homologous (sometimes consid-
ering their opposites). Thus, the correlation matrix between homologous
factors is the same as the correlation matrix between initial variables
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(if necessary accounting for symmetries by changing the signs of one or more
rows and their corresponding columns). When a variable is positively cor-
related with two variables which themselves are negatively correlated with
each other (as is the case here), there are negatively correlated homologous
factors.

Remark
If, in the data from the previous example, GPA are conducted using homoth-
eties, group 2 is attributed a 0 coefficient, which illustrates how introducing
homotheties makes it possible to exclude a group. However, introducing ho-
motheties satisfactorily solves the problem of negative correlations between
homologous dimensions only in one-dimensional cases, as the homothety is
applied in the same way to all of the dimensions of the group.

9.2.8 Representing Individuals

Preliminary Note. When the Procrustes model is verified exactly (that is to
say, when N j

I infer one another by rotation or symmetry), both methods pro-
vide the ‘correct answer’, that is to say, a superimposed representation of
N j

I in which the homologous points are equal and the shapes of N j
I per-

fectly respected. For GPA, it is clear as the mean cloud is identical to each
N j

I after rotation. For MFA, consider three groups X = (Z, ZA, ZB) with
A′ A = Id and B ′ B = Id (with Id the identity matrix of the appropriate
size); the principal components of the MFA are eigenvectors of X′ = 3Z′Z:
the mean cloud and each partial cloud therefore have the same principal
components.

In identifying common factors, the GPA framework is restricted compared
to that of MFA, as it supposes that:

– There are Kc common orthogonal factors.
– The factors are common to all groups.

These constraints weigh on all of the results (in particular on the first fac-
tors), as we are looking to find an overall optimum. Let us consider the case
of a factor common to only certain groups.

– In MFA, N j
I which do not possess this factor are orthogonal to it; they

have no influence on it.
– In GPA, all directions are common to all the groups and a factor

common to only some groups will be superimposed with the direction
of the other groups with which it is not related. In this case, identifying
this common factor can be disturbed: the mean configuration does
not correspond to that of this common factor as it is distorted by the
representations of the groups which have nothing in common with
it, but which are nonetheless superimposed on it.
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9.2.9 Interpretation Aids

We present the principal aids of GPA, specifying their meaning and, if appro-
priate, their equivalents in MFA.

In GPA, superimposed representation provides a framework in which the
total inertia of NJ

I can be decomposed in many ways and can induce a com-
prehensive system of indicators (this decomposition is presented for MFA
in Section 5.4). Total inertia (in practice set at 100) is first decomposed into
between-inertia (inertia of the consensus NI ) and within-inertia (inertia of NJ

i
clouds, each bringing together J partial points associated with individual i).
These three inertias are then themselves decomposed in three ways (an ex-
ample of these decompositions is given below in Section 9.3.3).

Decomposition by Dimension

– Between-inertia indicates the relative importance of the dimensions;
here we find the eigenvalues of the PCA of NI . This indicator is the
same as for MFA.

– Within-inertia indicates the degree of consensus of the dimension.
This indicator is the same as that in the MFA, in which we divide
between-inertia to total inertia (see Section 5.4 and Table 5.2).

Decomposition by Group

– The proportion of group j in within-inertia measures the similarity
between N j

I and NI . In MFA, we calculate the canonical correlation
coefficients and the Lg measurements thus making it possible to eval-
uate the relationship between N j

I and NI axis by axis. There are two
main differences between the methods: the nature of the indicator and
whether they are calculated axis by axis or overall. These differences
follow the different perspectives of the two methods. It is possible to
introduce the indices of one method in the other, except for the sums
of within-inertia on several axes which have no meaning in MFA.

– Decomposing within-inertia would make no sense here.

Decomposition by Individual

– The between-inertia of individual i is its contribution to the mean
cloud; this indicator also exists in MFA (careful: the mean cloud does
not have exactly the same meaning) but then it is mostly used axis by
axis as in any factorial analysis.

– The within-inertia of individual i indicates whether this individual
is the object of overall consensus. In MFA, this indicator is calculated
axis by axis but cannot be cumulated over several dimensions; in
GPA, it can be calculated overall and broken down axis by axis.
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Summary

– Both methods have systems of indicators which make it possible to
scan all of the issues that arise when examining a superimposed rep-
resentation.

– However, in MFA it is not possible to add together the projected
inertias of the N j

I over several axes.
– In GPA, the forced nature of the superimposition, which weighs on

the consensus, also consequently weighs on the indicators as shown
in the following example (23−1).

9.2.10 Representing the Variables

In both methods, the correlation coefficients (along with the covariances
where appropriate) are calculated between the initial variables and the di-
mensions of the mean cloud. These coefficients are represented graphically in
the same way as in PCA.

Here, the difference between the two methods is caused by the fact that
in MFA the initial variables play a direct active role (through the within-
and between-group relationships) in representing the mean cloud, whereas
in GPA they intervene indirectly. As a result:

– The representation of variables has its own optimality in MFA, which
is not the case in GPA.

– The transition relation which expresses the coordinate of a mean indi-
vidual according to the variables’ coordinates does not exist in GPA.

– The relationship which in MFA expresses the coordinate of a par-
tial individual (i j ) according to the coordinates of the variables (of
group j) is all the more specific to MFA. This relationship, described
in Section 5.2 (property 3), is key to the interpretations.

9.3 Application (Data 23−1)

9.3.1 Data 23−1

Four individuals ( A, B, C and D) are described by three groups, each with
two variables. The data are presented in Table 9.2 and illustrated in Figures 9.2
and 9.3.

The six variables are centred. They derive from three variables X, Y and Z,
which are uncorrelated pairwise, with a variance of 1, and which have been
multiplied by 2, 3 or 6. These variables are therefore the principal components
of the separate PCAs. The three variables X, Y and Z are constructed from
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TABLE 9.2
Data 23−1

Group 1 Group 2 Group 3
X1 Y1 X2 Z1 Y3 Z3

A 6 6 6 −2 3 −6
B 6 −6 6 2 −3 6
C −6 6 −6 2 3 6
D −6 −6 −6 −2 −3 −6
Variance 36 36 36 4 9 36

Y1

Z3

X2
X1

Z2

Y3

FIGURE 9.2

Data 23−1. Representation of the six variables in R
4. As the variables are centred, they are situated

in a three-dimensional subspace, which makes it possible to represent them. The correlation
coefficients are here either 0 or 1. The perfectly correlated variables (example X1 and X2) are
slightly separated in order to represent them distinctly.

A1

B1

C1

D1

A2

B2C2

D2

A3

B3 C3

D3

FIGURE 9.3
Data 23−1. Representation of the four individuals for each of the three groups.
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TABLE 9.3
Data 23−1. Relationships Between Factors of the MFA
and Groups

F1 F2 F3 F1 F2 F3

Group 1 1 1 0 1 1 0
Group 2 1 0 1 1 0 1/9
Group 3 0 1 1 0 1/4 1

r (Fs, F j
s ) Lg (Fs, j)

factors of the fractional factorial design 23−1, which explains the name of
the data. The variables are not reduced, which leads to uneven directions of
inertia. By proceeding in this way, each group presents a factor common to
each of the other two; these common factors are not necessarily associated
with the same inertia from one group to another.

The maximum inertia is the same in each group, which eliminates the in-
fluence of the weighting of the MFA: both analyses operate on the same data.

9.3.2 Results of the MFA

Projected Inertias of the Mean Cloud
The inertias of the axes of the MFA are easy to calculate. The first axis corre-
sponds to variable X. Its inertia is obtained by adding together those of X1 and
X2 (after weighting by the MFA, that is to say, by dividing each variance by the
maximum variance of its group). Thus 36/36+36/36 = 2. Axis 2 corresponds
to variable Y and has an inertia of 36/36 + 9/36 = 1.25. Axis 3 corresponds to
Z with an inertia of 4/36 + 36/36 = 10/9. In this analysis, three dimensions
are needed to represent the data (data are generated from three orthogonal
variables). They are of similar importance.

Relationship Measurements Between Factors and Groups
Two measurements are used and brought together in Table 9.3 in which we
find, at the crossing of group j and factor s:

• The (canonical) correlation coefficient between Fs and F j
s

• The relationship measurement Lg between Fs and group j

The canonical correlation coefficients indicate that F1 is common to groups
1 and 2, F2 to groups 1 and 3, F3 to groups 2 and 3. The Lg measurements
specify, for example, that F3 corresponds to the principal direction of inertia
of group 3 and to a direction of lesser inertia of group 2. Here we observe the
exact structure used to construct the data.

Inertias of Individuals in the Mean Cloud
Whatever the axis, the four individuals have the same coordinate (in absolute
value) and therefore the same contribution to inertia. Here we again see the
symmetry of individuals which can be clearly seen in the data.
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1.06–1.12–1.41D

–1.061.12–1.41C

–1.061.121.41B

1.061.121.41A

F3F2F1
A

B

C

D

F1

F2

F3

FIGURE 9.4
Data 23−1. MFA. Representation of the mean cloud. Roundings and exact values: 1.41 = √

2;
1.12 = √

5/2; 1.06 = √
10/3.

Superimposed Representation
This representation specifies the nature of the common factors (see Figure
9.5). The first factor opposes A and B on the one hand, with C and D, an
opposition which exists in groups 1 and 2 and not in group 3. In this very
particular example, we already saw this when we identified factor 1 with
variable X.

In detail, this representation illustrates the distortions of the partial clouds
in the superimposed representation. Indeed, although NI is perfectly repre-
sented, clouds N j

I are distorted according to the two aspects described in
Section 5.5. Thus, in terms of the initial N j

I , the representations of N j
I in the

MFA from the example present the following two characteristics:

1. N j
I were subject to a homothety of ratio 1/

√
λs along each factor of

cloud NI . Thus, cloud N1
I initially possesses the same inertia in all di-

rections but, when projected, is longer along F 2. For this first group,
the numerical calculation is simple as both of the nonzero eigenval-
ues for its separate PCA are equal. Between axes 1 and 2 of the MFA,
the square of the ratio of the coordinates of partial individuals (co-
ordinates with identical absolute values for all points and for axes 1
and 2) is the opposite of that of the eigenvalues of the MFA. Thus,
numerically, as λ1 = 2 and λ2 = 1.25:

[
F2(i)
F1(i)

]2

=
[

6√
5

√
2

3

]2

= λ1

λ2
= 2

1.25
.

2. N j
I were subject to a homothety of ratio

√
λ

j
s along their own factors

(λ j
s being the sth eigenvalue in the separate analysis of N j

I ). Thus, for
j = 3, the rectangle formed by N j

I is more elongated in the projec-
tion than it was initially (the distance between the second and third
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Coordinates 
F1 F2 F3

A1 2.12 2.68 0.00
B1 –2.68 0.00
C1 2.68 0.00
D1 –2.68 0.00
A2 0.00 0.32
B2 0.00 –0.32
C2 0.00 –0.32
D2 0.00 0.32
A3 0.67 2.85
B3 –0.67 –2.85
C3 0.67 –2.85
D3

2.12
–2.12
–2.12

2.12
2.12

–2.12
–2.12

0.00
0.00
0.00
0.00 –0.67 2.85

Exact and rounded values 
1
10

3
2 5

3
2

6
5

9
10

F3
A3

D3
F2

A1
C1

A2

0.32 0.67 2.12 2.68 2.85

F1B2

B1
C3

B3

D1

C2

D2

FIGURE 9.5

Data 23−1. MFA. Superimposed representation. The coordinates of N j
I are multiplied by the

number of active groups J (here 3) so that the overall cloud NI might be at the centre of gravity
of N j

I .

eigenvalues of NI is minimal and is of little importance here). For this
third group, a simple calculation is possible as the factors of the MFA
coincide, up to a rank, with those of its separate PCA: axis 2 (and 3,
respectively) of the MFA coincides with axis 2 (and 1, respectively)
of the separate PCA of group 3. Therefore, between axes 2 and 3,
the square of the ratio of the coordinates of the individuals is simply
expressed according to the eigenvalues of the MFA and those of the
PCA of group 3. Thus, numerically, as λ3

1 = 1, λ3
2 = 1/4, λ2 = 1.25

and λ3 = 10/9:

[
F3(i)
F2(i)

]2

=
[

9√
10

2
√

5
3

]2

= λ2

λ3

λ3
1

λ3
2

=
[

5
4

9
10

]

4.

9.3.3 Results of the GPA

Projected Inertias of the Mean Cloud
By construction, this cloud is contained within a plane. The percentages of
inertia are 63.5% and 36.5%.
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F2

A1

B2

A
F1A3A2

D3

B1
D1

D

D2

B

B3

C
C3

C1

C2

FIGURE 9.6
Data 23−1. GPA. Superimposed representation.

Representing Individuals
Each cloud N j

I is represented perfectly (see Figure 9.6). Of course, the ho-
mologous points do not superimpose exactly as the data do not respect the
Procrustes model exactly. Unlike N j

I , there is no symmetry in the mean cloud:
the individuals play very different roles. Of course this is not in accordance
with the data.

That being said, we again see the key features of the first plane of the MFA,
that is to say, a first axis which, overall, confronts {A, B} with {C, D} and a
second which, overall, confronts {A, C} with {B, D}.

Indicators of the Discrepancy to the Procrustes Model
The decomposition of total inertia into between-inertia and within-inertia is
examined overall and then decomposed in different ways (see Table 9.4). Total
inertia is fixed at 100.

Overall Decomposition. The between-inertia (58.3) is:

• Substantially lower than 100: The Procrustes model is far from veri-
fied.

• Substantially higher than 100/3: The three clouds have common
structural elements.

Decomposition by Dimension. The between-inertia is stronger for axis 1 (37.0 >

21.3). The contrast between {A, B} and {C, D} has a strong inertia in one cloud
(the 2) which is not the case of the contrast between {A, C} with {B, D}. But
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TABLE 9.4
Data 23−1. GPA. Decompositions of Total Inertia

Decomposition Between-Iner. Within-Iner. Total

Overall 58.3 41.7 100

By dimension
1 37.0 (58%) 26.2 63.3 (100%)
2 21.3 (56%) 15.5 37.7 (100%)

By group
1 13.3 (29%) 45.9 (100%)
2 9.6 (38%) 25.5 (100%)
3 18.8 (65%) 28.7 (100%)

By individual
A 20.6 4.4 25
B 1.4 23.6 25
C 21.4 3.6 25
D 15.0 10.1 25

the percentage of between-inertia is almost the same for both dimensions. The
consensus degree is similar between the two axes.

Decomposition by Group. The mean cloud (which is interpreted as the com-
mon structure) is most similar to groups 1 and 2 and much less so to group 3
(stronger within-inertia for this group: 18.8). This decomposition suggests
that groups 1 and 2 are more alike than they are like group 3. This can be seen
in the data (see Figure 9.3) and in MFA (see Table 9.3: the common direction
between N1

I and N2
I is a direction of maximum inertia).

Decomposition by Individual. The different representations of individuals A
and C are grouped closely around their centre of gravity (low within-inertia:
4.4 and 3.6), unlike those of individual B which are far apart. This sug-
gests that individual B plays a particular role in the data, which contradicts
the symmetries in the data. In fact, if, in the configuration of the GPA, we
switch individuals A and D and individuals B and C , we obtain a solu-
tion which is just as good as the previous one but which this time sug-
gests that it is individual C which is very particular. This instability is not
satisfactory.

Conclusion
In this example of very low dimension, the constrained nature of the model
heavily influences the GPA of the data which does not verify the Procrustes
model. The specificities of the groups make it difficult to identify the common
structures clearly.
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F2 (27.21%)

1 T Michaud
3 T Trotignon

4 T Buisse domaine

5 T Buisse cristal

6 V Aub. silex

7 V Aub. Marigny

8 V Font. domaine

9 V Font. Brûlés

10 V Font. côteaux

F1 (72.79%)

2 T Renaudie

FIGURE 9.7
Wines. GPA. Representation of the mean cloud.

9.4 Application to the Ten Touraine Wines

These data have already been analysed in Chapter 7. In these napping R© data,
11 tasters each provided a planar configuration of 10 wines.

We are here dealing with a GPA in its true context. As the initial configura-
tions are planar, they can be represented perfectly on a plane. Otherwise, when
they have more than two dimensions, the advantage of the GPA constraint of
nondistortion of the configuration in looking for a superimposed represen-
tation becomes unclear, as it is not possible to represent the configurations
without distorting them (due to their projection on the axes of NI ).

We do not reproduce the superimposition of the 10 configurations as it is
extremely overcrowded and only really of interest to users who know the
tasters well. The mean configuration generated by the GPA (see Figure 9.7) is
very similar to that generated by the MFA (see Figure 7.7). The RV between
these two planar configurations is .906. More precisely (see Table 9.5), these
two representations have almost the same first axis (r = .9917), which is not
the case for the second axis (r = .8734). As a result, the first bisector in GPA
does not clearly separate the two vines (as it does in MFA).

The second axis of the GPA isolates wines 5, 6, 8 and 9 from the others by
bringing them closer to one another. This does not seem to make sense. In
MFA, wines 8 and 9 mainly contribute to the second axis (60%) and wines 5
and 6 mainly contribute to the third axis (73%). Unlike the MFA, the GPA (in
this application) only has two dimensions. This is why this second axis of the
GPA is difficult to interpret. The impossible compromise (roughly between
axes 2 and 3 of the MFA), that is the second axis of the GPA, also induces a
difference in inertia, with the first axis, which is very high compared to that
of the MFA (72.79 − 27.21 > 36.39 − 26.68).
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TABLE 9.5
Wines. Correlation Coefficientsa

MFA1 MFA2 MFA3 GPA1 GPA2

MFA1 39.39%
MFA2 0 26.68%
MFA3 0 0 11.45%
GPA1 −0.9917 0.0147 0.0716 73.15%
GPA2 −0.0581 −0.8734 −0.4381 0 26.85%
a Between the factors of the MFA and those of the GPA. The percentages

of inertia associated with the factors can be seen on the diagonal.

In this application on real data, we can see the drawback of GPA identified
in the 23−1 data. In fact, the advantage of GPA resides in the superimposed
representation. The mean cloud is merely an intermediary calculation and its
use as a mean cloud is limited.

On the other hand, the superimposed representation of the MFA distorts
the partial clouds (see Section 5.5). This is problematic in an application such
as napping R© in which each taster expects to find his or her exact nappe (on
the factorial plane). This is the origin of Procrustes MFA (PMFA) which, from
the mean configuration of the MFA, conducts a Procrustes rotation of each
partial configuration on this mean configuration.

For example, Figure 9.8 shows the resulting graph for the PMFA of nappes
8 and 9. This is therefore a Procrustes rotation applied to the configurations
of Figure 7.6 in order to make them coincide as closely as possible with the
configuration of the wines from Figure 7.7.

It is not surprising to see that the largest dimension of nappe 9 (and 8,
respectively) coincides (more or less) with the first (and, respectively, second)
axis: this supports the representation of the tasters generated by the MFA (see
Figure 7.7, right). Taster 9 (and 8, respectively) attributes great importance
(in terms of the Indscal model) to the dimension illustrated by the first (and,
respectively, second) axis of the MFA.

This clearly illustrates an advantage which has been mentioned many times
in this work, that is to say, the fact that each perspective of the MFA (here, that
of the superimposed representation, the GPA), is related to other perspectives
(that of Indscal in the above comment).

9.5 Conclusion

MFA and GPA are fundamentally different methods with different objectives.
In particular, GPA constructs a representation of the data within a constrained
framework (each dimension is common to all of the groups). GPA must be
reserved for specific applications.
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FIGURE 9.8
Wines. PMFA. Representation of nappes 8 and 9 on the mean configuration of the MFA.

Concretely, GPA generates an exact superposed representation of N j
I . The

mean cloud is merely an intermediary used to obtain the superimposed repre-
sentation. Its representation can inappropriately express a common structure
when accompanied by specific structures. We do not recommend using GPA
to obtain a mean configuration. MFA, on the other hand, focusses on repre-
senting the mean cloud and generates a representation which fully benefits
by the dual nature of factorial analysis. However, the representation of N j

I is
distorted.

In practice, we are often looking for dimensions common to groups of
variables on data which, aside from a few common dimensions, have many
dimensions which are both non-common and have low inertia. In these situ-
ations, GPA’s limitations are not a problem as the non-common dimensions
which it superimposes concern the dimensions of low inertia which are not
examined. This explains the convergence of the results which can be observed
in practice on the first plane.

9.6 GPA in FactoMineR

Here we use the 23−1 data. There are no specific instructions for implement-
ing GPA via R Commander as it should pose no problem for users. The
default values of the algorithm’s parameters are (almost) always suitable in
practice.

Below are some of the command lines used for this chapter.

# Reading and verifying data
> D2=read.table("DON2(3-1).csv",header=T,sep=";",row.names=1)
> D2
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X1 Y1 X2 Z2 Y3 Z3
A 6 6 6 -2 3 -6
B 6 -6 6 2 -3 6
C -6 6 -6 2 3 6
D -6 -6 -6 -2 -3 -6

As in MFA, the variables of a given group must be consecutive in the file
and the groups are defined by their number of variables. Only quantitative
variables can be used. The data are always centred. Reduction is optional but
is applied to all groups in the same way. In the example, the variables must
not be reduced:

> res=GPA(D2,group=c(2,2,2),scale=F)

By default, this instruction displays the mean and partial points in a star
representation. It includes the plot.GPA function, with all options selected by
default:

> plot.GPA(res)

The colours of the partial points are generally chosen according to the
groups:

> plot.GPA(res,hab="group")

The graph thus generated was used as a basis for creating Figure 9.6 along
with graphics software. The res list contains the different decompositions
of the inertia. The raw values for Table 9.4 are obtained using the following
code.

# Initialisation of table 9_4
> tab9_4=matrix(nrow=10,ncol=3)
# Choice of names for rows and columns
> colnames(tab10_4)=c("Between In.","Within In.","Total In.")
> row.names(tab9_4)=c("Global","Dim1","Dim2","G1","G2","G3",
+ "A","B","C","D")
# All the decompositions of inertia are in the
# tables in the list res$PANOVA
# By dimension
> tab9_4[1:3,]=res$PANOVA$dimension[c(3,1,2),]
# By group
> tab9_4[4:6,]=res$PANOVA$config[1:3,]
# By individual
> tab9_4[7:10,]=res$PANOVA$objet[1:4,]
# Edition
> round(tab9_4,1)

Procrustes MFA (PMFA; Figure 9.8)
This method is limited to sensory data collected using napping R©. It is not
available in FactoMineR but in the R package SensoMineR. In this package,
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PMFA is available using the pmfa function. This function can be applied to
a data table with the same format as that of MFA with, as a constraint, each
group being made up of two (consecutive) quantitative variables. In the case
of the Touraine wines (see Sections 9.4 and 7.6.4), this means duplicating the
single dimension of taster 10. These constraints make it possible to implement
the function with all the default options:

# Data importation (napping with white wines from Loire Valley)
> napping=read.table("napping.csv",header=TRUE,sep=";",
+ row.names=1)
# PMFA function is in SensoMineR
> library(SensoMineR)
# Each nappe must have 2 dimensions;
# hence the duplication of column 19 (nappe 10)
> library(SensoMineR)
> res=pmfa(napping[,c(1:19,19:21)])

Below is the code used to process the GPA of these data (see Figure 9.7 and
Table 9.5).

# GPA
> library(FactoMineR)
> res=GPA(napping[,c(1:21)],group=c(rep(2,9),1,2),scale=FALSE)
# Figure 9.7
> plot(res,partial="none")
# The inertias by dimension are in res$PANOVA$dimension
# To obtain the percent of inertia of the mean cloud
> res$PANOVA$dimension[1:2,1]/res$PANOVA$dimension[3,1]*100

# Table 9.5
# Concatenation of the 3 first factors of MFA and of the 2 of GPA
> resmfa=MFA(napping[,c(1:19,19:21)],group=rep(2,11),
+ type=rep("c",11),graph=F)
> comp=cbind(resmfa$ind$coord[,1:3],res$consensus)
> colnames(comp)=c("MFA1","MFA2","MFA3","GPA1","GPA2")
> Tab9_5=cor(comp)

# Percentages in the diagonal
> percentmfa=resmfa$eig[1:3,2]
> percentgpa=res$PANOVA$dimension[1:2,1]/res$PANOVA$
+ dimension[3,1]*100
> diag(Tab9_5)=c(percentmfa,percentgpa)
> round(Tab9_5,4)



10
Hierarchical Multiple Factor Analysis

Hierarchical multiple factor analysis (HMFA) is the most direct extension of
multiple factor analysis (MFA): it is used with tables in which the variables
are structured according to a hierarchy. In practice, this means a sequence
of nested partitions. At first sight, one might be tempted to think that this is
merely a curiosity, but HMFA has considerable application potential due to the
increasingly complex nature of the data users wish to analyse simultaneously.

10.1 Data, Examples

We often want to analyse individuals × variables tables in which the structure
of the variables is more complex than a simple partition. To illustrate this point,
let us look back at the orange juices.

In fact, in these data, in addition to the chemical and sensory measurements,
we also have overall evaluation scores (known as hedonic assessments in the
field of sensory analysis) for each of the six juices, attributed by 96 consumers.
We want these data to indicate which of these juices the consumers preferred.
Using the terminology utilized in the presentation of principal component
analysis (PCA), we refer to the hedonic profile of a product as all of the as-
sessment scores it obtained. This table should therefore make it possible to
identify juices with similar hedonic profiles (when someone likes one juice,
she likes the other) or opposite profiles (when someone likes one juice, she
does not like the other). These scores can be presented in a table with the
six juices in the rows and the consumers in the columns, with, at the inter-
section of row i and column k, the score given by consumer k for product i.
Presented in this way, that is to say, with the products associated with rows
of a table, these data can be juxtaposed with the chemical (8 variables) and
sensory (7 variables) data. In the end, we obtain a table with 8 + 7 + 96 =
111 columns.

We might consider conducting an MFA of this table, with the three groups
of variables introduced as active but this methodology would make each of
the three groups play the same role, which would not meet the users’ needs.
Users primarily want to link the hedonic assessments to the characteristics of
the products, these characteristics being chemical measurements or sensory
descriptors. This perspective suggests the hierarchical structure on the data

211
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Chemical

measurements

(8 variables)

PCA : λ = 6.2125

Sensory

description

(7 variables)

PCA : λ1 = 4.7437

Product characterisation

MFA : λ1 = 1.7852

Hedonic assessments

(96 variables)

PCA : λ1 = 34.0281

221

2-1 2-2

FIGURE 10.1
Data structure. The nodes of the tree are numbered like the chapters of a book (see text). For each,
we specify the method (PCA or MFA) corresponding to the analysis of the variables brought
together by the node, as well as its first eigenvalue.

illustrated in Figure 10.1. The aim of this chapter is to show what accounting
for a hierarchical structure on the variables means.

The Bac data, used to illustrate the PCA in Chapter 1, provides a second
example of a hierarchy of variables. In fact, in these data, along with each
student’s Baccalaureate results, we also have their term grades (there are
three terms) for each of the five subjects. The complete data table therefore
has 5 (subjects) × {1 (Bac) + 3 (terms)} = 20 columns. It is possible to conduct
many interesting analyses on these data. An overall perspective is to account
for the hierarchy of variables which first separates the five Bac grades from
the fifteen term grades and, within these term grades, the three blocks of five
term grades.

These two examples illustrate a common source of hierarchies defined from
variables: collecting different kinds of data for one set of statistical individu-
als. Surveys are another such source: questionnaires are often organised into
themes and subthemes; it is interesting to take this structure into account in
the analysis.

10.2 Hierarchy and Partitions

Figure 10.2 contains two representations of one hierarchy defined on a set
of seven variables {X1, . . ., X7}. In these graphs, a node is represented by a
horizontal segment. The highest segment represents the root node.

In our context, it is helpful to consider a hierarchy as a sequence of nested
partitions, remembering that, in practice, only some of these partitions will be
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FIGURE 10.2
Two representations of one hierarchy of seven variables.

of interest. This is illustrated in Figure 10.2, which identifies two sequences of
partitions from one single hierarchy. In our applications, the hierarchies are
not indexed: as Figure 10.2 shows, graphically introducing indexes to each
node makes it possible to visualise a specific sequence of partitions.

These are not merely formal considerations. In practice, that is to say, in the
function which conducts an HMFA in the FactoMineR package, the hierarchy
is introduced using a sequence of nested partitions. The results concerning
the nodes are given according to this sequence. In Figure 10.2, the sequence
on the left makes it possible, via partition P2, to determine the components of
node 1 (X1, X2, X3, X4) without identifying those of node 2 (X5, X6, X7), which
is not the case for the sequence on the right. This aspect is particularly im-
portant in the graphs representing partial individuals, which quickly become
overcrowded (see below).

We show that, in the calculation procedure as well as that used to determine
the hierarchy, we proceed from the bottom upwards, from the most to the
least detailed partition. However, when analysing the results, we proceed in
the opposite sense, from top to bottom. It is therefore useful to number the
partitions from the top down (see Figure 10.2).

When interpreting the analysis, we constantly refer back to the groups of
variables defined in the tree, that is to say, the nodes of the tree. It is therefore
important to label them. There are two ways of labelling the data, bearing in
mind that the root node, which includes all of the variables, does not need to
be labelled.

One system (see Figure 10.2, right) is based on the partitions. A node re-
ceives a label concatenating the rank of the partition which defines it, followed
by an (arbitrary) ordinal number in the partition. Therefore, in this system,
2-1 is the first node of the partition at level 2.

Another system (see Figure 10.2, left, and Figure 10.1) expresses the path
between the root node and another given node (in much the same way as
the sections of a book might be numbered, like in this one). Therefore, in this
system, 2-1 is the first node (directly) dependent on node 2 (which itself is
directly attached to the root node).
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10.3 Weighting the Variables

In MFA, taking into account partitioning of the variables first means balancing
the role of the groups in an overall analysis. This idea is transposed in the case
of a hierarchy of the variables: for each node, taking this hierarchy into account
means balancing the role of the groups of variables which descend directly
from that node.

Therefore, in the Orange Juice data, the chemical and sensory groups first
need to be balanced. This balance must be conducted in the sense of MFA,
that is to say, by fixing the maximal inertia at 1. Firstly, we endow these
variables with their weights in the MFA of these two groups (that is to say,
the inverse of the first eigenvalue of the PCA of their group; λn

1 is the first
eigenvalue of the analysis of node n) thus, for a sensory variable (belonging
to node 2-2; see Figure 10.1) 1/λ2-2

1 = 1/4.7437 = .2108 and, for a chemical
variable (belonging to node 2-1), 1/λ2-1

1 = 1/6.2125 = .1610.
In addition, the groups’ characterisation and hedonic assessments need to

be balanced. In order to do this, the hedonic assessments (node 1) will be
weighted by 1/λ1

1 = 1/34.0281 = 0.02939, and the characterisation variables
will be overweighted by the inverse of the first eigenvalue of their MFA,
1/λ2

1 = 1/1.7852 = .5602. They are said to be overweighted as these variables
are already weighted in the MFA associated with node 2. Finally, the weights
associated with the characterisation variables are:

– Chemical variables:
(
1/λ2-1

1

) (
1/λ2

1

) = .0902

– Sensory variables:
(
1/λ2-2

1

) (
1/λ2

1

) = .1181

Using these weights in the overall analysis:

– The groups’ characterisation and hedonic assessment are balanced in
terms of the MFA (in the full sense of the word: the maximum axial
inertia of each group is fixed at 1).

– The groups’ chemical and sensory are balanced in terms of the MFA (in
a limited sense: the maximum axial inertias are all equal, but are not
1, more precisely 1/λ2

1).

More generally, let us consider a variable k, with an initial weight of p0
k (gener-

ally p0
k = 1) and the sequence of nodes here denoted {0, 1, . . ., n, . . ., N} (node

0 corresponds to the variable considered alone) linking it to the root node.
Let λn

1 be the first eigenvalue of the factorial analysis associated with node n.
In the case of quantitative variables, this analysis is a PCA if n = 1, an MFA
if n = 2 and an HMFA if n > 2. The weight of variable k in the analysis
associated with any node n0 is

pn0
k = p0

k

n=n0∏

n=1

(
1
λn

1

)

.
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TABLE 10.1
Orange Juice. HMFA. Decomposition of Inertia by Axis and by Node

Node F1 F2 F3 F4 F5

HMFA 1.934 0.775 0.648 0.512 0.501
(44.25%) (17.73%) (14.82%) (11.71%) (11.46%)

1 Hedonic assess. 0.957 0.577 0.489 0.412 0.386
2 Characterisation 0.976 0.198 0.159 0.100 0.115
2-1 Chemical 0.449 0.060 0.134 0.068 0.010
2-2 Sensory 0.527 0.138 0.026 0.031 0.104

We simply denote pk the weight of variable k in the final analysis.

Algorithm. An HMFA can be conducted using an MFA program (and therefore
PCA). The tree is scanned from the bottom up. For each node, an MFA is con-
ducted on the variables it brings together and these variables are replaced by
the (unstandardised) factors of this MFA. The MFA associated with the root
node provides the factors of the HMFA. The HMFA in FactoMineR proceeds
in this way.

Table 10.1 summarises the decompositions of inertia in the HMFA of the
Orange Juice data. This shows how the HMFA balances the influence of the
hedonic assessments and characterisation on the one hand (rows 3 and 4) and
of chemical and sensory (last two rows). This balance is excellent for the first
axis (.957 ≈ .976 and .449 ≈ .527). For the following axes, the predominance of
hedonic assessments derives directly from a more homogeneous distribution
of inertia in this group.

Remark
In the Orange Juice data, the variables are quantitative. In the presence of
qualitative variables, in the above reasoning the PCA should be replaced by
multiple correspondence analysis (MCA). When the less-detailed partition
includes mixed groups, PCA is then replaced by factorial analysis of mixed
data (FAMD).

10.4 Representing Partial Individuals

10.4.1 Method

In MFA the partial cloud (of individuals) associated with group j (denoted
N j

I ) is obtained by projecting the mean cloud (denoted NI ) on the subspace
(of R

K ) generated by the variables of group j alone. The same principle is used
in HMFA with the groups’ roles played by the nodes. Thus, the partial cloud
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of node n (denoted Nn
I , it is made up of partial individuals denoted in) is the

projection of NI on the subspace generated by the variables which depend on
node n alone.

The representation of cloud Nn
I is obtained in the same way as for MFA, that

is to say, by projection on the principal axes of NI . This representation benefits
from the same properties as in MFA, particularly the partial transition relation
which expresses the coordinate of point in according to the coordinates of the
variables depending on node n.

The notations from MFA (see Section 5.2) are adapted to HMFA.

Kn: Variables dependent on node n.
F n

s : Factor of rank s partial to node n. This factor contains the coordinates
of the partial individuals in on the axis of rank s (of mean cloud NI ). Its ith
term is denoted F n

s (i) or Fs (in) interchangeably.
M: (Diagonal) Metric in R

K for the overall analysis. Unlike in MFA, the
weights (pk) of the variables from a given group defined by a given node are
not generally identical.

With these notations, the partial transition relation of the MFA (see Sec-
tion 5.2) is transposed directly:

F n
s = Fs

(
in) = 1√

λs

∑

k∈Kn

xik pk Gs (k) .

The interpretation rule resulting from this relation is the same as for MFA: on
the graphs, partial individual in is on the side of the variables (of node n) for
which it has a high value and opposite the variables (of node n) for which it
has a low value. The only difference between the two relations is the presence
of weights of variables (pk) which are not generally constant within a node.

On the MFA graphs, the mean point i is at the barycentre of the partial
individuals (hence the name mean point). To obtain this property, cloud N j

I is
dilated with the J coefficient (see Section 5.2).

This property can be transposed to HMFA as follows: each partial point in

must be at the barycentre of the partial points which are directly dependent
on node n. In the example of the six orange juices:

– Mean point i must be at the barycentre of its partial points characteri-
sation and hedonic assessments.

– Partial point i characterisation must be at the barycentre of its partial
points chemical and sensory.

As in MFA, this property is obtained by dilating clouds Nn
I . For the J nodes

dependent on the root node, dilation is conducted in the same way as in MFA,
using the J coefficient. For the other nodes, it is important to account for the
dilations associated with the nodes that link them back to the root node.

Thus, in the Orange Juice example, the partial points chemical and sensory
must be dilated with coefficient 2 so that the partial point characterisation
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FIGURE 10.3
Orange Juice. HMFA. Representation of partial points corresponding to the characterisation (c)
and hedonic assessment (h) nodes on the first plane.

might be at their barycentre. But this partial point characterisation was itself
dilated, with coefficient 2, so that mean point i might be at the barycentre of
its partial points characterisation and hedonic assessments. Finally, the partial
clouds chemical and sensory will be dilated with coefficient 4 = 2 × 2.

More generally, denoting Jn the number of direct descendants of node n,
that is to say, the number of elements which are directly related to it, and An all
of the ascendants of node n (including the root node), the dilation coefficient
of Nn

I is worth
∏

n∈An

Jn.

10.4.2 Application to the Six Orange Juices

Figure 10.3 represents the partial points for the hedonic assessment and charac-
terisation nodes only; Figure 10.4 identifies the chemical and sensory aspects.

First of all, the representation of mean individuals resulting from the HMFA
is similar to that generated by the MFA of the characterisation data alone (see
Figure 4.4). From the sensory and chemical perspective, it therefore supports
the same interpretation (see representation of variables in Figure 4.4). The
new aspect here stems from the hedonic assessments: the opposition ‘hard
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FIGURE 10.4
Orange Juice. HMFA. Representation of all the partial points.

juices’ ↔ ‘soft juices’ is correlated with many hedonic assessments. We can
go further still: the projection of the axes of the separate analyses of the nodes
(see Figure 10.5) shows that this first factor of the HMFA is very similar to
the first factor of the PCA of the hedonic assessments alone (the correlation
coefficient between these two factors is .957). This convergence between prin-
cipal dimensions of characterisation and hedonic assessments is absolutely
remarkable.

The superimposed representation shows that, from the perspective of the
first axis (opposition ‘soft juices’ ↔ ‘hard juices’):

• Juices 2, 3 and 5 are the same from the characterisation perspective;
this can be seen in the MFA of the characterisation data alone (see
Figure 4.4).

• Juices 3 and 5 are much more typical than 2 from the hedonic assessment
perspective; (compared to 3 and 5) the latter was much less appre-
ciated by those preferring soft juices and/or much less badly scored
than those who like hard juices (this can be clearly seen on the PCA
of the hedonic assessments alone, which is not reproduced here).

This similarity of the overall characterisations of juices 2, 3 and 5 hides dis-
parities when the chemical and sensory aspects are detailed (see Figure 10.4).
Juice 2 is more typical of a soft juice from a chemical perspective than from
a sensory point of view. The opposite is true for juice 3. This observation
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FIGURE 10.5
Orange Juice. HMFA. Representation of the axes of the separate analyses of the nodes. H: Hedonic
assessments; C: Characterisation; Ch: Chemical; S: Sensory.

corresponds well to the plane of the MFA on the characterisation data alone
(see Figure 4.4).

This illustration shows that the rules for interpreting the representations of
partial points in HMFA are identical to those of MFA.

10.5 Canonical Correlation Coefficients

As in MFA, it is useful to measure the similarity between the representation
of the mean cloud and that of each partial cloud. We can thus calculate the
correlation coefficient between Fs and F n

s for all n and all the first axes. We
obtain Table 10.2, analogous to Table 6.1 in MFA.

The first two rows remind the user of the problems related to the dimen-
sions of these data, that is to say, the small number of individuals compared

TABLE 10.2
Orange Juice. HMFA. Canonical Correlation Coefficients

F1 F2 F3 F4 F5

Hedonic assessments 0.989 0.994 0.967 0.997 0.994
Characterisation 0.990 0.952 0.776 0.958 0.938
Chemical 0.902 0.492 0.623 0.550 0.325
Sensory 0.972 0.913 0.400 0.281 0.871
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with the number of variables. This problem is particularly notable for the
hedonic assessments node (96 variables in a space with five dimensions) for
which the five coefficients are greater than .966. In R

I , every direction is
a linear combination of the hedonic assessments. This is also true, to a
lesser extent, for the characterisation node (15 variables). Finally, the last
two rows of the table resemble those in Table 6.1 of the MFA for char-
acterisation alone. In summary, the first factor is common to the hedonic,
chemical and sensory data, and the second to only the hedonic and sensory
data.

10.6 Representing the Nodes

In MFA, the representation of groups of variables (known as the relationship
square; see Section 7.3) presents an interesting property: the coordinate of an
active group j along axis s is interpreted both as the relationship measurement
Lg between group j and the sth factor, and as the contribution of group j to
the construction of the axis of rank s.

In HMFA this property only exists for the nodes linked directly to the root
node (HMFA relies on an MFA of these nodes). For the others, these two
notions do not coincide. In this type of graph, it is natural to favour the notion
of relationship to enable the representation of supplementary elements. With
this choice, a set of variables which appear twice in the hierarchy lies in one
place.

In the example of the orange juices, this representation (see Figure 10.6)
shows that:

– The first axis corresponds to a direction of high inertia for each of the
nodes; this is not new: the strong correlation between this axis and
the first component of the separate analyses of the nodes has already
been mentioned.

– The second axis is more closely related to hedonic assessments than
characterisation; this is due to the higher dimensionality of the he-
donic assessments (see Table 10.1). As characterisation (and partic-
ularly its two aspects) has a predominant dimension linked to the
first axis, it cannot be closely related to the other dimensions in
terms of Lg.

– The relationship with the first axis is stronger for the sensory group
than for the chemical group. In the MFA on the characterisation data
alone (see Figure 7.3 and Table 4.5), this relationship was at the same
level. This result is probably the consequence of the influence of the
hedonic data, more directly linked to the sensory data than to the
chemical data: 0.8197 > 0.6576 (see Table 10.3).
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Orange Juice. HMFA. Representing the nodes (relationship square).

10.7 Application to Mixed Data: Sorted Napping R©

10.7.1 Data and Methodology

In sensory evaluation, classic data collection involves asking judges (that is to
say, tasters) to evaluate a set of products using a set of descriptors (variables).
In this way products are attributed a sensory characterisation: a given product
is perceived as sour, mildly bitter and so on. This classic approach does not take
into account the importance of these descriptors in constructing the tasters’
overall assessments.

To reveal the importance of each criterion, holistic methods can be used
in which the judges directly evaluate the similarities between products, each
according to his or her own criteria. There are three possible methods.

TABLE 10.3
Orange Juice. HMFA. RV Coefficients Between the Nodes

RV MFA ch. + s. Hedonic Assmt. Chemical

MFA ch. + sensory 1
Hedonic Assmt. 0.8245 1
Chemical 0.8938 0.6576
Sensory 0.9011 0.8197 0.6109
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TABLE 10.4
Two Sorted Nappesa

Iden. X1 Y1 S1 X2 Y2 S2

a 10 10 S1_1 10 10 S2_1
b 20 10 S1_1 10 20 S2_1
c 20 30 S1_2 20 30 S2_1
d 40 30 S1_2 40 30 S2_2
e 40 10 S1_3 40 10 S2_2
f 50 10 S1_3 50 10 S2_2
Variance 200 88.9 - 200 80.6 -
a X1: Horizontal dimension of judge 1 (in cm). S2_1: Group 1 of the

sorting of taster 2 (containing individuals a, b and c).

Free sorting (= categorisation). Each judge partitions the products so that each
class contains products which are similar to one another (in the judge’s
opinion) and between the classes where the products differ. In this data-
collection method, each judge’s data are a qualitative variable (defined on the
products).

Napping R©. Each judge provides a planar representation of products in such
a way that two products are closer together (or farther apart, respectively),
the more similar they are (or different, respectively). Originally, each judge
physically laid out the products on a large sheet of paper 40 cm × 60 cm (a
tablecloth, or nappe in French, hence the term napping R©; in practice, the term
nappe designates a configuration of products provided by a judge). Nowa-
days, this operation is often conducted on a screen: using specially designed
software, the judge positions icons representing the products. In this data
collection method, each judge’s data are a pair of quantitative variables (the
products’ coordinates).

For the distances to be respected, the variables are not standardised when
the data are analysed.

Sorted napping R© combines the two previous approaches. After having po-
sitioned the products on the nappe, the judge groups together the products
which he believes to be particularly similar. In this method, the data from
each judge include three variables (the set of these three variables is a sorted
nappe): a pair of quantitative variables (which make up what we refer to as
the nappe) and a qualitative variable (sorting).

To illustrate the factorial analysis of such data, we use a small example
made up of two sorted nappes (see Table 10.4 and Figure 10.7).

The aim of factorial analysis with this type of data is to obtain graphical
representations of the objects at hand: the individuals, quantitative variables,
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FIGURE 10.7
Two sorted nappes. ‘Raw’ nappes (left); nappes seen by their MFA (Euclidian representations of
the sorted nappes, right).

categories of qualitative variables and sorted nappes. To conduct this analysis,
it is important to balance:

– The two sorted nappes one against the other
– The nappe and the sorting within each sorted nappe

Balancing in these ways corresponds to the hierarchical structure of
Figure 10.8. HMFA is the factorial analysis which takes this structure into
account.

10.7.2 Intermediary Analysis: MFA on a Sorted Nappe

Before describing the results of this analysis, it is helpful to examine how
the nappe and the sorting are taken into account simultaneously to obtain
a sorted nappe. The HMFA proceeds in exactly this way as it is the same
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X1 Y1 X2 Y2C1 C2

Nappe 1

Sorting 1

Sorted nappe 1

Nappe 2

Sorting 2

Sorted nappe 2

λ1=200 λ1=249

λ1=1.866 λ1=1.956

λ1=1.955

λ1=1
λ1=1

FIGURE 10.8
Two sorted nappes. Hierarchy of the six variables. Each node is attributed the first eigenvalue of
the factorial analysis (PCA, MCA, MFA or HMFA depending on the cases) of the variables that
it brings together.

as conducting a factorial analysis (PCA, MCA, FAMD, MFA or HMFA de-
pending on the cases) for each of the nodes in the hierarchy, from the bottom
of the tree upwards. The type of node considered here brings together the
data of just one judge, that is to say, a group of two quantitative variables
and one qualitative variable. This is therefore a good example in order to
illustrate:

– In terms of statistical methodology: An MFA of quantitative and qual-
itative variables

– In terms of sensory methodology: The influence, in the analysis, of
superimposing a sorting on a nappe.

Figure 10.7 (right) contains the first factorial plane of the MFA of each
sorted nappe: this first plane is the Euclidean represention of the sorted nappe.
Overall, in comparison with the nappe, the individuals of a given group (of
sorting) are closer together on the sorted nappe (the term sorted nappe also
designates Figures 10.7 left, which illustrate the nappe itself and the sorting,
and Figures 10.7 right, Euclidean representations which account for both types
of data).

The result is a sorted nappe 1 with two directions of comparable inertia
(the horizontal and vertical dimensions of the nappe both correspond to an
opposition between the classes of the sorting) and a sorted nappe 2 with a
predominant direction of inertia (only the horizontal dimension corresponds
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TABLE 10.5
Two Sorted Nappes. HMFA. Decompositions of Inertiaa

F1 F2 F3 F4 F5 Sum

HMFA eigenvalue 1.955 0.919 0.107 0.036 0.012 3.029
Sorted nappe 1 0.977 0.772 0.079 0.016 0.002 1.846
Sorted nappe 2 0.978 0.148 0.028 0.020 0.010 1.183

Nappe 1 0.514 0.237 0.008 0.015 0.000 0.774
Sorting 1 0.464 0.534 0.071 0.001 0.001 1.072

Nappe 2 0.505 0.148 0.002 0.009 0.008 0.672
Sorting 2 0.472 0.000 0.026 0.011 0.003 0.511
a By axis and by node.

to an opposition between classes of the sorting and thus to the two kinds of
data). These results are entirely satisfactory for users.

10.7.3 Decompositions of Inertia

Table 10.5 brings together the decomposition of inertia by axis and by node in
the HMFA. Figure 10.9 illustrates the decomposition of the first axis according
to the nodes.

X1 Y1 X2 Y2C1 C2

0.514 0.505

0.977 0.978

λ1 = 1.955

0.464 0.472

Nappe 1

Sorting 1 Sorting 2

Sorted nappe 1

Nappe 2

Sorted nappe 2

FIGURE 10.9
Two sorted nappes. HMFA. Decomposition of the inertia of the first axis according to the nodes
of the hierarchy.
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Dim 1 (64.54%)

Dim 2 (30.35%)

a
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c d

e f

sn1 sn1

sn1 sn1

sn1 sn1

sn2

sn2
sn2 sn2

sn2 sn2

Dim 1 (64.54%)

Dim 2 (30.35%)

a b

c d

e f

FIGURE 10.10
Two sorted nappes. HMFA. Representation of mean individuals (left) and partial individuals
(right) associated with the root node (that is to say, associated with each sorted nappe, sn).

The first two axes make it possible to reconstitute the data almost perfectly
((1.955+ .919)/3.029 = 94.89 % of the inertia) and we can limit our comments
to these two axes. The decomposition of the first eigenvalue according to the
nodes of the hierarchy indicates balanced influence:

– Of the two sorted nappes one with the other (.977 versus .978)
– Of the nappe and the sorting within each sorted nappe (.514 versus

.464 on the one hand and .505 versus .472)

10.7.4 Representing Partial and Mean Individuals

As the two sorted nappes have corresponding horizontal and vertical dimen-
sions, it can easily be seen that the representation of individuals generated by
the HMFA (see Figure 10.10) is much like a mean of these two nappes.

In particular, the deviation between the first two percentages of inertia is,
in HMFA, intermediary to that which is in the two sorted nodes (12.23%
< 34.199% < 70.94%; the percentages of the sorted nappes can be seen in
Figure 10.7; for example: 12.23% = 54.17% − 41.94%).

Another example: in the mean configuration, points c and d are closer to
each other than on sorted nappe 2 and more distanced from each other than
on sorted nappe 1.

In HMFA, for each individual, it is possible to represent as many partial
points as there are nodes in the hierarchy. In practice, we begin by representing
the partial points associated with the root node. If necessary, we go down in the
hierarchy. In the practice of sorted napping, only the partial points associated
with the root node are used: each one represents an individual in a sorted
nappe.

The following remarks can be made about Figure 10.10. Along axis 1, the
two partial points associated with one individual are very close; this is the
case for all the individuals. This first dimension is a factor which is common to
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both groups of variables. A more detailed examination shows that individuals
c and d are closer to each other on nappe 1 than on nappe 2, which can be seen
both in the coordinates of the partial points along axis 1 and on the sorted
nappes themselves. In even more detail, according to this dimension, which
we outline in opposition with {a, b} and {e, f}, a is more extreme than b only
on nappe 1, which can be seen both on the plane generated by the HMFA and
on the nappes themselves.

Along axis 2, the opposition between {c, d} and the other individuals can be
observed for the partial points of both nappes. This opposition is much more
pronounced on the first nappe than on the second. This can be seen directly
on the sorted nappes themselves.

Thus, the representation of partial points examined axis by axis does indeed
lead to interpretations which can be clearly read in the data. However, it would
seem that proportions are not respected between the axes:

– For nappe 1: The vertical dimension seems to be of greater importance
(relative to the horizontal dimension) in the representation of partial
points than in the sorted nappe.

– For nappe 2: The vertical dimension seems to be less important (rel-
ative to the horizontal dimension) in the partial representation than
in the sorted nappe.

This visual impression is confirmed by confronting the variances of the two
principal dimensions in the different representations (see Table 10.6): .769 <
1.292 and 19.383 > 6.229.

We here observe a particularity of the superimposed representation in MFA
described in Section 5.5 and seen in Section 9.3.2: when an MFA axis cor-
responds to different inertias depending on the group, these differences in
inertia are amplified in the superimposed representation.

In practice, when analysing a set of sorted nappes, the superimposed rep-
resentation is not described beyond the first partition. However, within the
context of this methodological study, a superimposed representation made

TABLE 10.6
Two Sorted Nappesa

F1 F2 F1/F1

MFA nappe 1 1.866 1.444 1.292
MFA nappe 2 1.956 0.314 6.229
HMFA partial cloud 1.955 0.920 2.126
HMFA partial cloud nappe 1 1.998 2.598 0.769
HMFA partial cloud nappe 2 2.000 0.103 19.383
a Variance of the first two factors in the sorted nappes and in the

representation generated by the MFA (partial and mean clouds).
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X1 Y1 X2 Y2C1 C2

Sorted nappe 1 Sorted nappe 2

1-1 2-1

21

1-2 2-2

Partition 1

Partition 2

FIGURE 10.11
Two sorted nappes. HMFA. Numbering the nodes for the superimposed representation.

up of at least two levels of partition needs to be studied, particularly in the
case of variables of different types (quantitative/qualitative).

In the following, each node is numbered indicating the path linking it to the
root node of the tree (see Figure 10.11). The label of a partial point concatenates
that of a given individual and node.

Figure 10.12 repeats Figure 10.10, adding the partial clouds associated with
the partition 2.

Let us consider points c and d from the point of view of sorted nappe 1 (c-1
and d-1). When accounting for partition 2, each of these points now appears:

– From the point of view of the sorting alone (c-1-2 and d-1-2), in which
case c and d lie in the same place

– From the point of view of the nappe (c-1-1 and d-1-1), in which case
c and d are more distanced than on the sorted nappe (as the sorting
brings together c-1 and d-1)

Let us consider points c and d from the point of view of sorted nappe 2 (c-2
and d-2). By differentiating between the nappe and the sorting, Figure 10.12
shows that points c and d:

– Are not characterised by axis 2 when seen from the perspective
of sorting alone (c-2-2 and d-2-2), which clearly represents the
noncharacterisation of these points by qualitative variable S2 (they
do not belong to the same group unlike for S1).

– Are characterised by axis 2 when seen from the perspective of the
nappe (c-2-1 and d-2-1); their coordinates are slightly lower than those
of their counterparts on nappe 1 (c-1-1 and d-1-1), which can be seen
on the nappes (see Figure 10.7).
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F1 (64.54%)

F2 (30.35%)

a
b

c d

e f

d-1

d-1-2

d-1-1

d-2

d-2-1

d-2-2

c-1-2

c-1

c-1-1

c-2

c-2-1

c-2-2

FIGURE 10.12
Two sorted nappes. HMFA. Superimposed representation of the partial clouds associated with
the first two partitions (see Figure 10.11). Only the points related to individuals c and d are
labelled.

Representation of Groups of Variables (see Figure 10.13)
In HMFA, a group of variables corresponds to a node of the tree structuring the
variables. The Ng indicator (squared norm in R

I 2
), which specifies the group’s

dimensionality, appears in the first column of Table 10.7. This indicator shows:

– The dimensions (equal to 2 or 1) of the sortings (qualitative variables
with three or two categories)

– The strongest dimensionality of nappe 1 (1.198 > 1.099) due to the
greater relative importance of its second (vertical) dimension

– The dimensionalities of these sorted nappes, intermediate between
that of the nappes and that of the sortings

For the two groups attached to the root node (sorted nappes 1 and 2),
the representation of nodes in HMFA is exactly the same as that for the
groups in MFA: the coordinates of the groups are interpreted both as a
contribution and a relationship measurement. In this example, these coor-
dinates are the inertias of rows 2 and 3 of Table 10.5. Figure 10.13 thus
illustrates:

– The great importance of the first axis on both sorted nappes
– The importance of axis 2 greater in sorted nappe 1 (in which this axis

corresponds to both kinds of data) than in sorted nappe 2 (in which
this axis is not at all linked to the sorting)
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FIGURE 10.13
Two sorted nappes. HMFA. Representing the nodes (= groups of variables) in the relationship
square.

For the other groups, the coordinates are interpreted only as the relationship
measurement Lg. In particular, the sorting nodes, corresponding to a single
qualitative variable, have a coordinate equal to φ2 (between the variable and
the factor). Thus, in the example:

TABLE 10.7
Two Sorted Nappes. HMFAa

Nodes Ng F1 F2 Plane(1,2)

Sorted Nappe 1 1.604 0.595 0.371 0.966
Sorted Nappe 2 1.026 0.931 0.021 0.953

Nappe 1 1.198 0.767 0.164 0.931
Sorting 1 2.000 0.374 0.497 0.871

Nappe 2 1.099 0.889 0.076 0.965
Sorting 2 1.000 0.853 0.000 0.853
a Squared norms (Ng) and qualities of representations of the

nodes in R
I 2

.



Hierarchical Multiple Factor Analysis 231

– The first axis is an important dimension from both perspectives
(nappe and sorting) for each judge.

– The second axis is a dimension of almost equal importance in both
nappes; it is closely related to the sorting of judge 1 and not at all to
that of judge 2.

This representation can be completed by a quality of representation in-
dicator (see Table 10.7). In this simple example, all of the groups are well
represented (cos2 ≥ .853) by the first plane.

From this representation, the user will see a strong similarity between the
nappes and a contrasting situation for the sortings (strong similarity accord-
ing to one axis, strong dissimilarity according to the other). This situation is
extreme in the example, but aside from these particular data, it is related to the
general nature of the data. Indeed this is the advantage of this methodology
which incorporates both quantitative aspects (with the possibility of nuances)
and qualitative aspects (focussing on the essential).

10.8 HMFA in FactoMineR

Here we use the Two sorted nappes data (see Table 10.4). This presentation
focusses on the specific aspects of the HMFA (compared with the MFA).

# Importation
> SorNap=read.table("SorNap.csv",header=T,sep=";",row.names=1)

# Checking the first two rows
> SorNap[1:2,]

X1 Y1 S1 X2 Y2 S2
a 10 10 S1_1 10 10 S2_1
b 20 10 S1_1 10 20 S2_1

To define the hierarchy on the variables, we describe a sequence of nested
partitions. The first partition described is the finest (= most detailed). Then,
for each partition level, the groups defined by the previous partition are
aggregated.

In the example of the two sorted nappes, the four groups of variables (nappe
and sorting for each taster) are defined first. Following a procedure similar to
that of MFA, we obtain four groups (see Figure 10.14, left), two of which are
quantitative (each containing the two coordinates of a nappe, called Nappe_1
and Nappe_2) and two of which are qualitative (each including a qualitative
variable, called Sorting_1 and Sorting_2). Once this has been done, the
Next level of the hierarchy button opens a window (see Figure 10.14, right) to
bring together the groups which have already been constructed. On the right
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FIGURE 10.14
HMFA in FactoMineR. Windows for the finest partition (left) and the next partition (right).

of Figure 10.14, the two groups of sorted nappe 1 (Nappe_1 and Sorting_1)
are selected.

Remark
As in MFA where it is possible to include a single variable in several groups,
in HMFA it is possible to include a group from a given hierarchical level in
several groups of the next level.

Again here, it is possible to launch a clustering directly from the factors
resulting from the MFA.

The command line for this HMFA is written:

> ResHMFA=HMFA(SorNap,type=c("c","n","c","n"),H=list
+ (c(2,1,2,1),c(2,2)),name.group=list(c("Nappe 1","Sorting 1",
+ "Nappe 2","Sorting 2"),c("Sor.Nap.1","Sor.Nap.2")))

File SorNap can be directly subjected to HMFA inasmuch as:

– The variables belonging to one group of the finest partition are adja-
cent.

– The groups of this partition brought together in the superior partition
are adjacent.
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The hierarchy is entered by the argument H, which defines a list containing
as many terms as partitions. The first of these terms corresponds to the finest
partition which, like in MFA, is described by the number of variables of each
group (in the example, the first group contains the first two variables, the
second only the third and so on). The next term describes the next partition,
using the same principle applied to the groups of the previous partition. In the
example, this second partition includes a first group which brings together
the first two groups of the previous hierarchical level and a second group
which brings together the last two.

The type of group is specified in the argumenttypewhich is endowed with
a sequence of characters (as in MFA: "c" = unreduced quantitative group;
"s" = standardised; "n" = qualitative group), each corresponding to a group
of the finest partition.

It is possible to name each group, wherever it is in the hierarchical tree.
These labels are brought together in a list (attributed to name.group) with
the same structure as that which defined the hierarchy (attributed to H). In the
example, the two groups of the second partition are called Sor.Nap.1 and
Sor.Nap.2.

Many graphs can be generated using theplot.HMFA function, for example,
Figure 10.10:

> plot.HMFA(ResAFMH,choix="ind",invisible="quali",new.plot=
TRUE,

+ cex=1.4)

The argument choix selects which elements to represent; ind represents
the individuals and categories of the qualitative variables (as the centre of
gravity of the individuals). The argument invisible is used to refine the
selection: here, only the individuals are retained. This command generates
three graphs including those in Figure 10.10. They are then all closed, except
the graph of level 1 partial points, which becomes active.

Short labels are then attributed to the partial points using the following lines
of code.

> text(ResHMFA$partial[[2]][,1:2,1],labels=rep("sn1",6),pos=3,
+ offset=.5,cex=1)
> text(ResHMFA$partial[[2]][,1:2,2],labels=rep("sn2",6),pos=3,
+ offset=.5,cex=1)

Users often want to present the results in a specific way. This is the case for
Table 10.5 obtained using the following R code.

# Initialisation
> Tab10_5=matrix(nrow=7,ncol=6)
# Names of rows and columns
> row.names(Tab10_5)=c("Eigenvalues HMFA","Sor.Nap.1",
+ "Sor.Nap.2",
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+ "Nappe 1","Sorting 1","Nappe 2","Sorting 2")
> colnames(Tab10_5)=c(paste("F",1:5,sep=""),"Sum")

# Eigenvalues of HMFA
> Tab10_5[1,1:5]=t(ResHMFA$eig[,1])
# Inertia of sorted nappes
> Tab10_5[2:3,1:5]=ResHMFA$group$coord[[2]][,]

# Contributions (%) of nappes
# (The ctr of the 2 coordinates are added together)
> quan_ctr=ResHMFA$quanti.var$contrib
> Tab10_5[4,1:5]=apply(quan_ctr[1:2,],MARGIN=2,FUN=sum)
> Tab10_5[6,1:5]=apply(quan_ctr[3:4,],MARGIN=2,FUN=sum)

# Contribution (%) of sortings
# (the categories’ ctr are added together)
> qual_ctr=ResHMFA$quali.var$contrib
> Tab10_5[5,1:5]=apply(qual_ctr[1:3,],MARGIN=2,FUN=sum)
> Tab10_5[7,1:5]=apply(qual_ctr[4:5,],MARGIN=2,FUN=sum)

# Inertias are obtained by multiplying the contributions (%)
# by eigenvalues
> Tab10_5[4:7,1:5]=Tab10_5[4:7,1:5]%*%diag(ResHMFA$eig[,1])/100

# Rowise sum (last column)
Tab10_5[,6]=apply(Tab10_5[,1:5],MARGIN=1,FUN=sum)

# Edition with 3 places
> round(Tab10_5,3)

Table 10.6 brings together the results from the HMFA and the separate MFA
of the nodes linked to the root node. Table 10.7 requires calulations in R

I 2
. The

code for these two tables can be found below. As an exercise, readers might
like to try to find it themselves.

# Table 10.6
# Initialisation
> Tab10_6=matrix(nrow=5,ncol=3)
# Names of rows and columns
> row.names(Tab10_6)=c("MFA nappe 1","MFA nappe 2","HMFA mean
+ cloud",
+ "HMFA partial cloud nappe 1","HMFA partial cloud nappe 2")
> colnames(Tab10_6)=c("F1","F2","F1/F2")

# Eigenvalues of separate MFA of sorted nappes

> Tab10_6[1,1:2]=resMFAnappe1$eig[1:2,1]
> Tab10_6[2,1:2]=resMFAnappe2$eig[1:2,1]
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# HMFA. Eigevalues and then variance of partial clouds
# by HMFA dimension
> Tab10_6[3,1:2]=ResHMFA$eig[1:2,1]
> Tab10_6[4,1:2]=apply(ResHMFA$partial[[2]][,1:2,1],MARGIN=2,
+ FUN=var)*5/6
> Tab10_6[5,1:2]=apply(ResHMFA$partial[[2]][,1:2,2],MARGIN=2,
+ FUN=var)*5/6

> for(i in 1:5){Tab10_6[i,3]=Tab10_6[i,1]/Tab10_6[i,2]}
> round(Tab10_6,3)

# Table 10.7
# Initialisation
> Tab10_7=matrix(nrow=6,ncol=4)
# Names of rows and columns
> row.names(Tab10_7)=c("Sorted Nappe 1","Sorted Nappe 2",
+ "Nappe 1","Sorting 1","Nappe 2","Sorting 2")
> colnames(Tab10_7)=c("Ng","F1","F2","Plane(1,2)")

# Groups’ norms before the last weighting of HMFA (Ng)
# are in the separate MFA of the sorted nappes
> Tab10_7[1,1]=sum(resMFAnappe1$eig[,1]^2)/resMFAnappe1$eig
+ [1,1]^2
> Tab10_7[2,1]=sum(resMFAnappe2$eig[,1]^2)/resMFAnappe2$eig
+ [1,1]^2
> Tab10_7[3:4,1]=diag(resMFAnappe1$group$Lg)[1:2]
> Tab10_7[5:6,1]=diag(resMFAnappe2$group$Lg)[1:2]

# Squared cosine of groups: squared projected length (in HMFA)
# divided by squared total length (Ng)
> for(i in 1:2){Tab10_7[1:2,i+1]=ResHMFA$group$coord[[2]]
+ [,i]^2/Tab10_7[1:2,1]}
> for(i in 1:2){Tab10_7[3:6,i+1]=ResHMFA$group$coord[[1]]
+ [,i]^2/Tab10_7[3:6,1]}
> Tab10_7[,4]=apply(Tab10_7[,2:3],MARGIN=1,FUN=sum)
> round(Tab10_7,3)

Below are the lines of code corresponding to the the HMFA as applied to
the Orange Juice data.

# Importation and selection of required columns
# in orange data frame
> orange5=read.csv2("orange5.csv",header=T,row.names=1)
> orange=orange5[,c(3:17,19:114)]

# HMFA
> resHMFA=HMFA(orange,type=c("s","s","s"),H=list(c(8,7,96),
+ c(2,1)),name.group=list(c("Chemical","Sensory","Hedonic"),
+ c("Characterisation","Hedonic")))
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# Figure 10.3
> plot.HMFA(resHMFA,choix="ind",invisible="quali",
+ new.plot=TRUE,cex=1.4)
# This command produces 3 graphs including those of Figure 10.3.
# They must be closed, except the one with level 1 partial points.
# The latter thus becomes active.
> text(resHMFA$partial[[2]][,1:2,1],labels=rep("c",6),pos=3,
+ offset=.5,cex=1)
> text(resHMFA$partial[[2]][,1:2,2],labels=rep("h",6),pos=3,
+ offset=.5,cex=1)

# Figure 10.4
> plot.HMFA(resHMFA,choix="ind",invisible="quali",
+ new.plot=TRUE,cex=1.4)
# This command produces 3 graphs including those of Figure 10.4.
# They must be closed, except the one with level 1 partial points.
# The latter thus becomes active.
> text(resHMFA$partial[[2]][,1:2,1],labels=rep("c",6),pos=3,
+ offset=.5,cex=1)
> text(resHMFA$partial[[2]][,1:2,2],labels=rep("h",6),pos=3,
+ offset=.5,cex=1)
> text(resHMFA$partial[[1]][,1:2,1],labels=rep("ch",6),pos=3,
+ offset=.5,cex=1)
> text(resHMFA$partial[[1]][,1:2,2],labels=rep("s",6),pos=3,
+ offset=.5,cex=1)

To obtain Figure 10.5, the analyses are conducted node by node and the
factors stored. A PCA is conducted on the first two factors of the HMFA
(which reconstructs the HMFA) by introducing the factors of by node analyses
as supplementary.

# Analyses by node
> resacpchim=PCA(orange[,c(1:8)],graph=FALSE)
> resacpsenso=PCA(orange[,9:15],graph=FALSE)
> resacphedo=PCA(orange[,16:111],graph=FALSE)
> resMFAcaract=MFA(orange[,1:15],group=c(8,7),type=c("s","s"),
+ name.group=c("Chemical","Sensory"),graph=FALSE)

# Concatenation of the first two factors
# by node and from HMFA
> axpartHMFA=cbind(resHMFA$ind$coord[,1:2],
+ resacpchim$ind$coord[,1:2],resacpsenso$ind$coord[,1:2],
+ resMFAcaract$ind$coord[,1:2],resacphedo$ind$coord[,1:2])
# Labels of partial axes
> colnames(axpartHMFA)=c("F1_HMFA","F2_HMFA","F1_Ch","F2_Ch",
+ "F1_S","F2_S","F1_C","F2_C","F1_H","F2_H")
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# PCA on HMFA factors as active, the factors by node
# being supplementary; the first HMFA factor is used twice in
# order to preserve the rank order of factors even if this
# PCA is standardised. Figure 10.5 is the variables graph.
> resPartHMFA=PCA(axpartHMFA[,c(1,1,2:10)],quanti.sup=c(4:11))
> plot(resPartHMFA,choix="var")





11
Matrix Calculus and Euclidean
Vector Space

This book uses several elements of algebra, specifically matrix calculus and
the notion of spaces endowed with a distance (or a metric). To help users
avoid having to read a general algebra book, we have grouped these elements
together. These examples do not need to be read in any particular order, given
that each one uses elements of the other.

11.1 Matrix Calculus

Definitions
A matrix is a set of numbers organised in a rectangular table. It is generally
denoted by a capital letter (for example, X). Its terms (= elements = entries)
are designated using indices, the first being that of the rows (for example, A12,
at the crossing of the first row and the second column).

The dimensions of a matrix are given in brackets (for example, matrix
A(n, p) has n rows and p columns). If n = p, the matrix is square.

In a symmetric square matrix Ai j = Aji . In a diagonal matrix Ai j = 0 if
i �= j . A diagonal matrix with nonzero terms equal to 1 is called an identity
matrix. A vector corresponds to a matrix with only one column (a column
matrix).

Transposition
Let us consider a matrix denoted X with n rows and p columns. Its trans-
pose (matrix), denoted X′, is obtained by writing the values of the rows of
X in the columns of X′. The matrix X′ thus obtained possesses p rows and n
columns.

Matrix Multiplication
Let us consider two matrices X(n, p) and Y( p, q ) in which the number of
columns of X is equal to the number of rows of Y. The multiplication of these
two matrices, denoted XY, is a matrix, denoted A, with n rows and q columns,
and for which the general term Ai j , at the crossing of row i and column j, is
the scalar product between the vector containing the terms of the ith row of
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X and the vector containing the terms of the jth column of Y. Thus

Ai j =
∑

k

XikYkj .

The (usual) scalar product between two vectors u and v (denoted 〈u, v〉) is
obtained by multiplying the corresponding matrices (also denoted u and v),
the first having been transposed.

〈u, v〉 = u′v = v′u.

Matrix multiplication can therefore be seen as a juxtaposition of scalar prod-
ucts. In statistics, we encounter this when the scalar product matrix is calcu-
lated between individuals. Let X (n, p) be the data table in which n individuals
are described by p variables. The rows of X correspond to the transposition of
the column vectors, each containing the data of a given individual. The matrix
multiplication XX′ is therefore the same as calculating the scalar products of
each individual with each of the others. Indeed, the general term XX′, at the
crossing of row i and column l, is the scalar product between individuals i and
l. On the diagonal, we therefore obtain the squared norms of the individuals.

The other matrix multiplication which is commonly used in statistics is
X′ X. It juxtaposes the scalar products between the vectors representing the
variables. When the variables are centred (and standardised, respectively),
the X′ X matrix contains the covariances (and correlation coefficients, respec-
tively) between the variables (up to a coefficient n and only when the individ-
uals have the same weights). When the individuals are not of the same weight,
with these weights being positioned on the diagonal of diagonal matrix D,
the covariance matrix is written X′ DX (the variables are centred).

In factorial analysis, clouds of points are often projected onto axes. When
the coordinates of point i are in the ith row of matrix X, we calculate all of
the coordinates of the projections of points i on unit vector u by conducting
matrix multiplication Xu (which here is clearly interpreted as a juxtaposition
of scalar products).

The matrix multiplication is associative:

ABC = ( AB)C = A(BC).

To conduct matrix multiplication among three matrices, two of them (adja-
cent) are first multiplied together and then the result of this multiplication is
multiplied by the third.

The transpose of a multiplication of two matrices is equal to the multiplication
of the two transpose matrices, with their order in the multiplication being
inverted: ( AB)′ = B ′ A′.

Trace of a Square Matrix
The trace of a square matrix A is the sum of its diagonal terms. It is denoted
trace (A).
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When applied to the matrix XX′ of the scalar products between individuals,
the trace is the sum of the squared norms of the individuals, that is to say, if all
the individuals have a weight of 1, the total inertia of the cloud of individuals.

The trace operator has a remarkable property:

trace ( AB) = trace (B A) .

When applied to the covariance matrix between individuals, this property,
expressed trace

(
X′ DX

) = trace
(

XX′ D
)
, links the total inertia of the cloud of

variables with that of the cloud of individuals.
Property: the trace of a square matrix is equal to the sum of its eigenvalues

(defined below). This property is used in principal component analysis (PCA):
the eigenvalues of X′ DX are the inertias projected on the axes. The trace of
X′ DX is the total inertia which is thus decomposed on the factorial axes.

Matrix and Function, Orthogonal Matrix, Diagonalisation
Let us consider matrix A(n, p) and vector u of R

p associated with a matrix, also
denoted u, of dimensions (p,1). By multiplying A and u, we obtain vector v =
Au with n coordinates therefore belonging to R

n. Matrix A thus corresponds
to a function, which for all elements u of R

p attributes an element v of R
n.

Generally, we consider the function within a space (for example, from R
n to

R
n), therefore associated with a square matrix of dimension (n,n).
A square matrix A(n, n) is said to be orthogonal if all its column vectors are

orthogonal and of norm 1 (thus constituting an orthonormal base). A matrix
such as this thus verifies A′ A = In, where In is the identity matrix of size n. It
can also be shown that this matrix A verifies A′ A = AA′ = In.

An orthogonal matrix corresponds to a function with a remarkable prop-
erty: the norm of a vector remains unchanged by this function’s transforma-
tion. Indeed,

‖Au‖2 = u′ A′ Au = u′u = ‖u‖2 .

A function such as this, which preserves the distance, is known as isometry.
The most common example is rotation, which is used in Procrustes analysis.

Base Change. Let us consider an orthogonal matrix A and uA a vector ex-
pressed in the base of the columns of A. To express uA in the usual canonical
base, expression denoted u, we write: u = AuA. From here we deduce the
equation which makes it possible to write u in the base (of the columns of)
A: uA = A′u.

Vector u is said to be the eigenvector of the square matrix A associated with
the eigenvalue λ if it verifies Au = λu.

Straight away, we can see that if u is an eigenvector, ku (k being a constant)
is also an eigenvector. An eigenvector thus generates an eigendirection (or
eigendimension) for which all of its vectors are eigenvectors (associated with
the same eigenvalue). An eigendirection is represented by a unit vector (which
leaves two possibilities between which the software chooses at random).
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Geometric Interpretation. Let u be an eigenvector of matrix A associated with
the eigenvalue λ. If the function associated with matrix A is applied to u,
we obtain a vector collinear to u (with the λ ratio). The eigendirections are
constant for function A and therefore are very particular for this function (and
consequently for matrix A).

The procedure which finds the eigendimensions of matrix A (each repre-
sented by a unit vector) is called diagonalisation. The terminology ‘the eigen-
vectors of A(n, n)’ designates a set of n unit eigenvectors, each associated with
a distinct eigenvalue.

A symmetric matrix has the two following properties:

1. Two eigenvectors associated with two distinct eigenvalues are or-
thogonal (for the identity metric).

2. The eigenvalues are real numbers.

In PCA, in space R
K (endowed with the identity metric), the factorial axes

are obtained from the eigenvectors of X′ DX (see Section 1.5.3). As this matrix
is symmetrical, its eigenvectors are orthogonal (with one another), as are the
factorial axes they define.

In space R
I (endowed with metric D of the weights of individuals), the

vectors we are interested in, denoted vs , are eigenvectors of XX′ D. Thus

XX′ Dvs = λsvs .

Matrix D is diagonal and contains only positive terms. We denote D1/2 the
diagonal matrix so that D1/2 D1/2 = D (its terms are thus the root of those of
D). By left-multiplying the two terms of the previous equation by D1/2 we
obtain

D1/2 XX′ D1/2 D1/2vs = λs D1/2vs .

This illustrates that D1/2vs is the eigenvector of D1/2 XX′ D1/2 associated with
eigenvalue λs . As this matrix is symmetric, two eigenvectors associated with
distinct eigenvalues are orthogonal for the usual matrix, thus

(
D1/2vs

)′ (
D1/2vt

) = v′
s Dvt,

which expresses that the axes generated by vectors vs and vt are orthogonal
for metric D.

In factorial analysis, an eigenvalue corresponds to a projected inertia. It is
therefore positive or zero. The condition of symmetry of A is not sufficient to
ensure non-negative eigenvalues. In fact, when the diagonalised matrix can
be written in the form X′ X or XX′ (that is to say the multiplication of a matrix
by its transpose), then the eigenvalues are positive or zero. Indeed, from

X′ Xu = λu,
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it is possible to deduce

u′ X′ Xu = λu′u

and therefore

‖Xu‖2 = λ ‖u‖2 ,

which indicates that λ is positive or zero. Therefore, if u is unitary, λ is equal
to the sum of squared coordinates of the projections of the rows of X on u (in
PCA, this is the total inertia of the cloud of points for which the coordinates
are in the rows of X).

11.2 Euclidean Vector Space

In factorial analysis, we work in vector spaces. The notions of distance, norm,
projection and angle (and therefore scalar product) are essential to this type
of analysis. Here, we show how these notions are related to one another and
how they can be calculated.

A vector space (finite dimensional) in which a distance (= metric) is defined
from a scalar product is said to be Euclidean. In factorial analyses, we always
work in Euclidean spaces.

11.2.1 Vector Space Endowed with the Usual Distance

Two-Dimensional Space
In usual three-dimensional space (R3, that which is all around us), we are
familiar with the notions of distance, length and angle. We start from this
basic knowledge, first reasoning on the plane (R2) to keep things simple, and
we conduct simple calculations from two points A and B (see Figure 11.1). By
considering R

2 as a vector space, A and B are therefore vectors, connecting
the origin with points A and B (here we recognise the point of view of the
variables in PCA). A as a vector is sometimes denoted �A or even

−→
OA. To

simplify notation, we use the same letter A to designate the point, the vector
and the matrix (with one column) bringing together the coordinates of A (xa

and ya ).
Pythagoras’ theorem is used to calculate the squared distance between A

and B.

d2 ( A, B) = (xa − xb)2 + (ya − yb)2 .

The length of the vector
−→
OA, also known as its norm, denoted ‖−→OA‖ or

simply ‖A‖, is calculated as the distance between O and A thus

‖−→OA‖2 = ‖A‖2 = d2 (O, A) .
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O xa xb

Pu(B)

A

B

u

xu

ya

yb

yu

FIGURE 11.1

A few notations in R
2.

At this level, we retain the fact that the notions of distance and norm are
connected.

Distance is also related to the notion of projection. The projection of a point
B on a line D is the point of the line D which is closest to B. In R

2, to obtain the
coordinate of this projection, the scalar product is calculated between B and a
unit vector of D (denoted u, of coordinates xu and yu). Pu (B) is the projection
of B on u. The length of this projection is worth (where 〈B, u〉 is the scalar
product between B and u):

‖Pu (B)‖ = 〈B, u〉 = |xb xu + yb yu|.
The notions of scalar product and norm are connected; by projecting a vector

onto itself, it remains unchanged. Thus, for a vector v (of coordinates xv and
yv):

‖v‖2 = 〈v, v〉 = x2
v + y2

v .

Finally, the notion of scalar product is connected to the notion of angle as
follows. Let u and v be two vectors forming an angle θ . The cosine of angle
θ is obtained by projecting one of these two vectors on the other after having
standardised them. Thus

cos θ = 〈 u
‖u‖ ,

v
‖v‖〉.

Note: Two vectors are said to be orthogonal if their scalar product is zero.
Summary. From the definition of scalar product, we define the norm: ‖u‖2 =

〈u, u〉. From the norm, we define the distance: d2 (u, v) = ‖u − v‖2.

Vector Space with n Dimensions
The scalar product previously defined in R

2 can easily be generalised in R
n.

Therefore, denoting {ui ; i = 1, n} the coordinates of u and {vi ; i = 1, n} the
coordinates of v:

〈u, v〉 = u1v1 + u2v2 + · · · =
i=n∑

i=1

ui vi .
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In matrix notations, retaining the notation u (and v, respectively) to desig-
nate the column matrix (with n rows and one column) bringing together the
coordinates of u (and v, respectively), the scalar product between u and v is
written (denoting u′ the transpose matrix of u):

〈u, v〉 = u′v = v′u.

The orthogonality between two vectors is thus expressed: u′v = 0, and in
addition: ‖u‖2 = u′u. A unit vector therefore satisfies u′u = 1.

11.2.2 Euclidean Space Endowed with a Diagonal Metric

Up until now, in the usual distance, the same weight 1 is attributed to each
dimension within the space. In data analysis, we might want to attribute a
weight other than 1 but identical for all of the dimensions, or a different weight
for each dimension. The most common case is the cloud of variables in PCA.

This cloud evolves within a space with I dimensions, denoted R
I , with each

dimension associated with one individual. If individual i is endowed with
weight pi , then this same weight pi must be attributed to dimension i when
calculating distance in R

I . Because, for simplicity’s sake, we impose a total
weight of 1 to pi , these weights pi are never equal to 1 and therefore, even in
cases where the individuals have the same weights, the usual distance needs
to be altered (slightly).

Let us look back at the general case of the space with n dimensions (Rn)
retaining index i for the dimensions. Let pi be the weight attributed to di-
mension i. These weights are organised on the diagonal of matrix M, a matrix
containing zeros elsewhere (matrix M is therefore diagonal).

To show that we use the weights organised within matrix M, this letter is
mentioned in the notations of scalar product, norm and distance. Thus

〈u, v〉M =
∑

i

pi ui vi = u′Mv.

Hence the norm:

‖u‖2
M = 〈u, u〉M =

∑

i

pi u2
i = u′Mu.

Hence the distance between (the extremities of the vectors) u and v:

d2
M (u, v) = ‖u − v‖2

M =
∑

i

pi (ui − vi )2 .

Specific Cases. When all of the weights pi are equal to 1, we obtain the usual
(Euclidean) distance. Matrix M is then the identity matrix, hence the name
identity metric. When all of the weights are equal to a constant c (and not 1; the
usual case in space R

I of variables in PCA with c = 1/I ), this is also referred
to as the identity metric.
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TABLE 11.1
Visualisation. Raw Data

u1 u2 Dim1 Dim2 a b c d
a 1 1 Dim1 4 0 a
b 2 1 Dim2 0 1/4 b 2
c 2 2 c

√
17/2 1/2

d 1 2 d 1/2
√

17/2 1/2
(a) Data (b) Metric (c) Distances

In data analysis, the diagonal metrics have an essential role as they are
easy to interpret; this is the same as attributing a weight to each dimension of
the space. However, it is also possible to define a scalar product, and thus a
metric, from a nondiagonal matrix M. This option is mentioned merely as an
aside as it is not used in this work.

11.2.3 Visualising a Cloud in a Space Endowed with a Metric Different from
the Identity

Visually, we can only read with the identity metric. Let us consider the data
(named Visualisation) from Table 11.1 represented in Figure 11.2 (left). The
four points {a, b, c, d} form a square. However, this is a false impression if,
for example, we use the metric attributing weight 4 to dimension 1 and 1–4
to dimension 2 (see distances in Table 11.1).

With this metric, vectors u1 and u2 which were used to construct the graph,
are not unitary (‖u1‖ = 2‖u2‖ = 1/2). On the same axes, let us consider unit
vectors e1 and e2. In Table 11.2, the data are expressed in base {e1, e2} and the
distances between the four points are calculated from these new data and
with the identity metric.

The same distances are obtained as for Table 11.1. This time, the graph (see
Figure 11.2 right) illustrates the distances correctly.

a b

cd

e1

e2a b

cd

u2

e1

(a) (b)
u1

e2

FIGURE 11.2
Visualisation. Representation of the data in Table 11.1 (left) and Table 11.2 (right).
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TABLE 11.2
Visualisation. Data Expressed in an Orthonormal Base

u1 u2 Dim1 Dim2 a b c d
a 2 1/2 Dim1 1 0 a
b 4 1/2 Dim2 0 1 b 2
c 4 1 c

√
17/2 1/2

d 2 1 d 1/2
√

17/2 1/2
(a) Data (b) Metric (c) Distances

This property is constantly used in factorial analysis: when using an Eu-
clidean metric which is different from the identity, the data must be expressed
in an orthonormal base; the representation generated is read correctly with
the usual distance.
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Multiple factor analysis (MFA) enables users to analyze tables of individuals and 
variables in which the variables are structured into quantitative, qualitative, or mixed 
groups. Written by the co-developer of this methodology, Multiple Factor Analysis 
by Example Using R brings together the theoretical and methodological aspects 
of MFA. It also includes examples of applications and details of how to implement 
MFA using an R package (FactoMineR).

The first two chapters cover the basic factorial analysis methods of principal 
component analysis (PCA) and multiple correspondence analysis (MCA). The next 
chapter discusses factor analysis for mixed data (FAMD), a little-known method 
for simultaneously analyzing quantitative and qualitative variables without group 
distinction. Focusing on MFA, subsequent chapters examine the key points of MFA 
in the context of quantitative variables as well as qualitative and mixed data. The 
author also compares MFA and Procrustes analysis and presents a natural extension 
of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of 
matrix calculation and metric spaces used in the book.
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