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Introduction

Welcome to Data Science Revealed. This book is your guide to solving practical and
real-world problems using data science procedures. It gives insight into data science
techniques, such as data engineering and visualization, statistical modeling, machine
learning, and deep learning. It has a rich set of examples on how to select variables,
optimize hyperparameters, develop pipelines, and train, test and validate machine
and deep learning models. Each chapter contains a set of examples allowing you to
understand the concepts, assumptions, and procedures behind each model.

First, it conceals the parametric method or linear model and the means for
combating underfitting or overfitting using regularization techniques such as lasso and
ridge. Next, it concludes complex regression by presenting time-series smoothening,
decomposition, and forecasting. Then, it takes a fresh look at a nonparametric model
for binary classification, known as logistic regression, and ensemble methods such as
decision tree, support vector machine, and naive Bayes. Next, it covers the most popular
nonparametric method for time-event data, recognized as the Kaplan-Meier estimator.
It also covers ways of solving a classification problem using artificial neural networks,
like the restricted Boltzmann machine, multilayer perceptron, and deep belief network.
Then, it summarizes unsupervised learning by uncovering clustering techniques, such
as K-means, agglomerative and DBSCAN, and dimension reduction techniques such as
feature importance, principal component analysis, and linear discriminant analysis. In
addition, it introduces driverless artificial intelligence using H20.

It uses Anaconda (an open source distribution of Python programming) to prepare
the examples. The following are some of the libraries covered in this book:

o Pandas for data structures and tools
o Statsmodels for basic statistical computation and modeling

o SciKit-Learn for building and validating key machine learning
algorithms

o Prophet for time-series analysis

o Keras for high-level frameworks for deep learning

Xix



INTRODUCTION

H20 for driverless machine learning

Lifelines for survival analysis

NumPy for arrays and matrices

SciPy for integrals, solving differential equations and optimization

Matplotlib and Seaborn for popular plots and graphs

This book targets beginner to intermediate data scientists and machine learning

engineers who want to learn the full data science process. Before exploring the contents

of this book, ensure that you understand the basics of statistics, Python programming,

and probability theories. Also, you'll need to install the packages mentioned in the

previous list in your environment.



CHAPTER 1

An Introduction to Simple
Linear Regression

This book introduces you to the world of data science. It reveals the proper way to do
data science. It covers essential statistical and programming techniques to help you
understand data science from a broad perspective. Not only that, but it provides a
theoretical, technical, and mathematical foundation for problem-solving using data
science techniques.

This chapter covers the parametric method, also called the linear method.
Understanding how to test a regressor under the violation of regression assumptions
will enable you to tackle problems in subsequent chapters with ease. While reading, it is
important to remember that the example data has one dependent variable. This chapter
does not cover multicollinearity with a variance inflation factor (VIF).

Simple linear regression estimates the nature of the relationship between an
independent variable and a dependent variable, where an independent variable is a
continuous variable or a categorical variable and a dependent variable is inevitably a
continuous variable. It investigates how a change in an independent variable influences
a change in a dependent variable. We express the standard formula as shown in
Equation 1-1.

y=a+bx (Equation 1-1)

Here, y represents a dependent variable, a represents an intercept (the mean value of
a dependent variable given that we hold an independent variable constant), b represents
a slope or gradient (the direction of a straight line), and x represents an independent
variable.

The model fits a straight line to the data points. If it perfectly fits a straight line to the
data points, then it is an exemplary model. In contrast, if the data points severely deviate
away from a straight line, then it violates regression assumptions.
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X

Figure 1-1. Pairwise scatter plot for a perfect linear regression modelx

Figure 1-1 illustrates an optimal model (it hardly happens in the actual world
because of variability). At most, the data points scatter close to the straight line. To
combat this problem, a regressor (or a regression model) introduces an error term
during modeling so that the squared deviation of the data points is small. It estimates
an intercept and a slope to reduce the error terms. The most common regressor is the
least-squares model. Equation 1-2 expresses the formula of the least-squares model.

JA’: Bo + ﬁle +g,~ (Equation 1—2)

Here, y represents an expected dependent variable, 3, represents an intercept,
1 represents a slope, X, represents an independent variable, and ¢, represents the error
terms (the residual for the i of n data points) expressed as shown in Equation 1-3.

€=y - 5/\, (Equation 1-3)
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The least-squares regressor ensures that the sum squares of residuals are small.
Equation 1-4 estimates the sum squares of residuals by using the property underneath.

e’ +e;...e (Equation 1-4)

Equation 1-4 assumes that residuals are always equal to zero and that estimates are
unbiased.

Regression Assumptions

If a regressor satisfies the assumptions specified in Table 1-1, then it is reliable.

Table 1-1. Linear Regression Assumptions

Assumption Description

Linearity There must be a linear relationship between an independent variable and a
dependent variable. We verify this assumption using a pairwise scatter plot.

Normality Data must come from a normal distribution. There is a normal distribution
when values of a variable spread symmetrically around the true mean value.
We verify this assumption using a normal probability plot (also called a
normal @-Q plod). For a reliable test of normality, use a test statistic called the
Kolmogorov-Smirnov test. If there is no normality, then transform the data.

Multicollinearity There must be little or no multicollinearity in the data. If an independent
variable has a high correlation, then there is multicollinearity. We verify
this assumption by using a correlation matrix, tolerance, and VIF. If there
is multicollinearity, we must center the data. The example data has one
dependent variable, so multicolllinearity with VIF is not covered.

No autocorrelation  There must be no autocorrelation in the residuals. There is autocorrelation
when residuals are not independent of each other. We verify this
assumption using a lag plot, autocorrelation function plot, and partial
autocorrelation plot. For a reliable test of autocorrelation, use the Dublin-
Watson test.

In contrast, if a regressor violates the underlying regression assumption, then it
becomes difficult to generalize a model.
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Simple Linear Regression in Practice

The example data' has two columns (each column represents a variable). The first
column contains the values of employees’ years of work experience (an independent
variable), and the second column contains the values of employees’ salaries

(a dependent variable).

Check Data Quality

The least-squares model is sensitive (the quality of the data influences its performance).
For optimal model performance, ensure there are no missing values or outliers and scale
the data prior to training the regressor.

Detect Missing Values

The visible presence of missing values in the data results in poor model performance. To
avoid this dilemma, after loading the data, check whether there are missing values in the
data.

Missing Values Heatmap

Listing 1-1 plots a heatmap that shows the missing values (see Figure 1-2).

Listing 1-1. Missing Values Heatmap

import seaborn as sns
sns.heatmap(df.isnull(),cmap="Blues")
plt.show()

'https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset
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Figure 1-2. Missing values heatmap

Figure 1-2 shows that there are no missing values detected in the data. If there are
missing values in the data, the heatmap looks like Figure 1-3.
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Figure 1-3. Missing values heatmap

If there are missing values in the data, replace the missing values with the mean
value or the median of the variable. Listing 1-2 replaces the missing values with the
mean value.

Listing 1-2. Replace Missing Values with the Mean Value

df["YearsExperience"].fillna(df["YearsExperience"].mean())
df["Salary"].fillna(df["YearsExperience"].mean())

Listing 1-3 replaces missing values with the median value.

Listing 1-3. Replace Missing Values with the Median Value

df["YearsExperience"].fillna(df["YearsExperience"].median())
df["Salary"].fillna(df["YearsExperience"].median())
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Detect Normality

Regressors assume the data follows a normal distribution (data points are spread
symmetrically around the true mean value). If the data is not normal, perform data
transformation to reduce its skewness. Negatively skewed data requires a power
transformation or an exponential transformation. In contrast, positively skewed data
requires a log transformation or square root transformation. A standardized normal
distribution with different means and variances is written mathematically in terms of the
distribution.

N(071) (Equation 1-5)

Here, the mean value is equal to 0, and the standard deviation is equal to 1.

Histogram

A histogram plot has the intervals of a variable on the x-axis and the frequency of the
values on the y-axis. Listing 1-4 plots the employee’s years of work experience, and
Figure 1-4 exhibits the distribution of employees’ years of work experience.

Listing 1-4. Employees’ Years of Work Experience Histogram

sns.distplot(df["YearsExperience"])
plt.ylabel("Frequency")
plt.xlabel("Experience")

plt.show()
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Figure 1-4. Histogram

Figure 1-4 shows that the values of employees’ years of work experience slightly
follow a normal distribution. We cannot summarize the independent variable using the
mean value.

Listing 1-5 plots the histogram for employees’ salaries (see Figure 1-5).

Listing 1-5. Employees’ Salaries Histogram

sns.distplot(df["Salary"])
plt.ylabel("Frequency")
plt.xlabel("Salary")
plt.show()
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Figure 1-5. Histogram

Both Figure 1-4 and Figure 1-15 show nonextreme normal distributions. Skewness
frequently occurs when there are outliers in the data.

Detect Outliers

An outlier represents a data point that is too small or large. It can influence the model by
inflating error rates. If there are outliers in the data, remove them, or replace them with

the mean value or median value.

Box Plot

The simplest way to detect outliers is by using a box plot. A box plot succinctly
summarizes information about the distinctive shape and dispersion of the data. It has
the following properties: a box representing the middle values in the data, the median
line representing the point where 50% of the data points are, and quartiles representing
the point at which 25% of the data points are above and 75% of the data points are below
the straight line. While Q3 represents the point at which 75% of the data is over and 25%
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of it is under, the straight line and the other lines are representing a whisker that joins Q1
or Q3 with the farthest data point other than an outlier.
Listing 1-6 plots the employees’ years of work experience.

Listing 1-6. Employees’ Years of Work Experience Box Plot

sns.boxplot(df["YearsExperience"])
plt.xlabel("Experience")
plt.show()

| | ]
2 4 6 8 10

Experience

Figure 1-6. Box plot

Figure 1-6 shows that the values of employees’ years of work experience are slightly
skewed to the left, and there were no outliers in the data.

Listing 1-7 constructs a box plot for the values of the dependent variable (see
Figure 1-7).

10
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Listing 1-7. Employees’ Salaries Box Plot

sns.boxplot(df["Salary"])
plt.xlabel("Salary")
plt.show()

| | | | |
40000 60000 80000 100000 120000
Salary

Figure 1-7. Box plot

Figure 1-7 indicates that the values of employees’ salaries are skewed to the left,
and there are no outliers detected in the data. Both Figure 1-6 and Figure 1-7 slightly
resemble a normal distribution.

Listing 1-8 plots the employees’ years of work experience and employees’ salaries.
Figure 1-8 exhibits changes over time connected by a straight line. It has two axes:
x-axis (horizontal) and y-axis (vertical). The axes are graphically denoted as (x, y). The
independent variable is on the x-axis, and the dependent is on the y-axis.

11
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Listing 1-8. Employees’ Years of Work Experience and Employees’ Salaries Line Plot

df.plot(kind="1ine")
plt.xlabel("Experience")
plt.ylabel("Salary")
plt.show()
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Figure 1-8. Line plot

Figure 1-8 does not show an ideal line. The data points invariably follow a long-run
upward trend. The straight line slopes upward and to the right. Employees’ salaries
increase as their years of work experience increase.

Listing 1-9 returns a plot that shows the probability density function using kernel density
estimation (see Figure 1-9). It captures the probabilities of the continuous random variable.

Listing 1-9. Density Plot

sns.kdeplot(df["YearsExperience"],df["Salary"])
plt.title("Experience and salary density plot")
plt.xlabel("Experience")

plt.ylabel("Salary")

plt.show()

12
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Figure 1-9. Density plot

Figure 1-9 suggests a two-dimensional probability density; however, the distribution
is not normal enough. It has clustered data points, making it inadvertently difficult to
interpret the data.

Listing 1-10 returns a scatter plot that depicts the association between variables (see
Figure 1-10).

Listing 1-10. Employees’ Years of Work Experience and Employees’ Salaries
Joint Plot

sns.jointplot(x="YearsExperience",y="Salary",data=df,kind="reg")
plt.xlabel("Experience")

plt.ylabel("Salary")

plt.show()

13
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Figure 1-10. Pairwise scatter plot

Figure 1-10 indicates that a straight line perfectly fits the data points. There is a
strong positive correlation relationship between employees’ years of work experience
and employees’ salaries.

Listing 1-11 summarizes the data using the central tendency (see Table 1-2).

Listing 1-11. Summarize the Central Tendency

df.describe().transpose()

14
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Table 1-2 highlights that the arithmetic average of employees’ work experience is 5
years and that of employees’ salaries is $76,003 per year. The values of employees’ years
of work experience deviate away from the mean value by 3, and the values of employees’
salaries deviate by $27,414. The lowest number of work year experience is 1 year, and the
lowest salary is $37,731. An employee with the highest salary earns $122,391 annually
and has about 11 years of work experience. One out of four employees earns a salary of
about $56,721 annually. Employees who earn a salary of $100,544 and above annually
fall under the upper echelon.

Understand Correlation

Linear regression is all about examining correlation coefficients. Correlation estimates
the apparent strength of a linear relationship between an independent variable and a
dependent variable. There are several methods for determining the correlation between
two variables like the Pearson correlation method, Spearman correlation method, and
Kendall correlation method.

The Pearson Correlation Method

Listing 1-12 applies the Pearson correlation method (the dependent variable is a
continuous variable). Equation 1-6 expresses the method.

r,=—>-— (Equation 1-6)

Here, s, represents the standard deviation of an independent variable, s, represents
the standard deviation of a dependent variable, and s,, represents the covariance. The
method produces values that range from -1 to 1, where -1 shows a strong negative
correlation relationship, 0 shows no correlation relationship, and 1 shows a strong
positive correlation relationship.

Correlation Matrix

Figure 1-11 shows the correlation between employees’ years of work experience and
employees’ salaries.

16
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Listing 1-12. Correlation Matrix

dfcorr = df.corr(method="pearson")
sns.heatmap(dfcorr, annot=True,annot kws={"size":12}, cmap="Blues")
plt.show()
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Figure 1-11. Correlation matrix heatmap

Figure 1-11 shows a line of 1s that go from the top left to the bottom right (each
variable perfectly correlates with itself). There is strong positive correlation between the
employees’ years of work experience and the employees’ salaries.

The Covariance Method

Covariance is the joint variability between the two variables (it estimates how two
variables vary together). Equation 1-7 expresses the covariance method.

S(x —x)v, —
Sy = ( 53(1% X) (Equation 1-7)

Here, n is the number of the samples, y; represents scalar random variables, and x
and y are the mean values of the scalar random variables.

17
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Covariance Matrix

Listing 1-13 produces the covariance matrix (see Figure 1-12).

Listing 1-13. Covariance Matrix

dfcov = df.cov()
sns.heatmap(dfcov, annot=True,annot kws={"size":12}, cmap="Blues")
plt.show()

1e8
: 6
Years Experience — 8.1 7.6e+04
4
Salary = 7.6e+04 7.5e+08 -2

I
Years Experience Salary

Figure 1-12. Covariance matrix heatmap

Figure 1-12 reveals that the covariance is approximately 0.0076 (which is close to 1).
It confirms a positive relationship between variables.

Assign and Reshape Arrays

Listing 1-14 assigns arrays of x and y using NumPy. An array holds one or more variables.

Listing 1-14. Assign x and y arrays

np.array(df[ "YearsExperience"])
np.array(df[ "Salary"])

<
1

18
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Listing 1-15 reshapes x and y (transforms one-dimensional data into two-
dimensional data).

Listing 1-15. Reshape x and y arrays

X
y

x.reshape(-1,1)
y.reshape(-1,1)

Split Data into Training and Test Data

Supervised models require a data partition. Listing 1-16 splits the data into training and
test data by calling the train test split() method.

Listing 1-16. Split Data into Training and Test Data

from sklearn.model selection import train test split
x_train, x_test, y train, y test = train test split(x,y,test size=0.2,
random_state=0)

Note that 80% of the data is for training, and 20% of the data is for testing.

Normalize Data

Widespread scaling methods include StandardScaler (), which scales data in such a
way that the mean value is 0 and the standard deviation is 1, 2); MinMaxScaler (), which
scales data between 0 and 1 or between -1 and 1 if there are negative values in the data;
and RobustScaler(), which removes outliers and uses scale data (using either of the
previous scales). Listing 1-17 applies the StandardScaler() method to normalize data.

Listing 1-17. Normalize Data

from sklearn.model selection import StandardScaler
scaler = StandardScaler()

x_train = scaler.fit transform(x_ train)

x_test = scaler.transform(x test)

19
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Develop the Least Squares Model Using
Statsmodels

Statsmodels is a Python scientific package that contains a set of distinct classes and
functions for correctly estimating statistical models and performing test statistics. It
complements the SciPy package for statistical computation. By default, it does not
include an intercept. Listing 1-18 manually adds an intercept to the model.

Listing 1-18. Add a Constant

x_constant = sm.add constant(x_train)
x_test = sm.add _constant(x_test)

Listing 1-19 completes the regressor.

Listing 1-19. Develop the Least Squares Model

model = sm.OLS(y train, x constant).fit()

Predictions

Listing 1-20 tabulates the predicted values (see Table 1-3).

Listing 1-20. Predicted Values

y pred = model.predict(x test)
pd.DataFrame(y pred, columns = ["Predicted salary"])

Table 1-3. Predicted Values

Predicted Salary

40748.961841
122699.622956
64961.657170
63099.142145
115249.562855
107799.502753

g A~ W N = O
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Evaluate the Model

Listing 1-21 returns a summary of the performance of the regressor (see Table 1-4).

Listing 1-21. Profile

summary = model.summary/()

summary

Table 1-4. Results

AN INTRODUCTION TO SIMPLE LINEAR REGRESSION

Dep. Variable: y R-squared: 0.941
Model: oLS Adj. R-squared: 0.939
Method: Least Squares F-statistic: 352.1
Date: Fri, 16 Oct 2020 Prob (F-statistic): 5.03e-15
Time: 14:42:15 Log-Likelihood: -242.89
No. Observations: 24 AIC: 489.8
Df Residuals: 22 BIC: 492.1
Df Model: 1
Covariance Type: nonrobust

coef std err T P>Itl [0.025 0.975]
const 7.38%+04 1281.861 57.640 0.000 7.12e+04 7.65e+04
x1 2.405e+04 1281.861 18.765 0.000 2.14e+04 2.67e+04
Omnibus: 3.105 Durbin-Watson: 2.608
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.567
Skew: 0.297 Prob(JB): 0.457
Kurtosis: 1.898 Cond. No. 1.00

21
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R-squared represents the variation the model explains about the data. On the other
hand, adjusted R-squared represents the variation of the independent variable that
influences the dependent variable explains. The model explains 94.1% of the variation in
the data, and the independent variable (YearsExperience) explains 93.9% of the variation
in the data. The model best explains the data. The p-value was barely 0.05. We reject the
null hypothesis in favor of the alternative hypothesis. There is a significant difference
between the employees’ years of work experience and the employees’ salaries.

Develop the Least Squares Model Using
SciKit-Learn

The SciKit-Learn package is popular for training and testing models. It has features that
enable data preprocessing and model selection, training, and evaluation.

Least Squares Model Hyperparameter Optimization

A hyperparameter is a value set before training a model. It controls a model’s learning
process. Hyperparameter optimization involves specifying a list of values and finding
values that yield optimal model performance.

Step 1: Fit the Least Squares Model with Default
Hyperparameters

Listing 1-22 fits the least squares model with default hyperparameters.

Listing 1-22. Develo the Least Squares Model

from sklearn.linear model import LinearRegression
Im = LinearRegression()
Im.fit(x_train,y train)

Step 2: Determine the Mean and Standard Deviation of the
Cross-Validation Scores

Cross-validation involves examining the extent to which the model generalizes the data.
Listing 1-24 applies the R? score as a criterion for finding the cross-validation scores.
There are other scores that one can use as a criterion such as the mean squared error

22
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(the variability explained by the model about the data after considering a regression
relationship) and the root mean squared error (the variability explained without
considering a regression relationship). Listing 1-23 finds the default parameters of the

regressor.

Listing 1-23. Default Parameters
1m.get params()

An intensive search returns an estimator, a parameter space, the method used
to search candidates, the cross-validation scheme, and the score function. Cross-
validation methods include RandomizedSearchCV, which considers a specific number
of candidates; GridSearchCV, which considers all parameter combinations; and
BayesSearchCV, which uses previous loss to determine the best point to sample the loss
by processing the Gaussian process as a prior for function. Underneath, we show you
how to perform cross-validation using GridSearchCV and BayesSearchCV. Table 1-5
highlights optimizable hyperparameter.

Table 1-5. Optimizable Hyperparameters

Parameter Description

fit_intercept Determines whether the model must estimate an intercept
normalize Determines whether we must normalize the independent variables
copy_X Determines whether we must copy the independent variable

Listing 1-24 creates the grid model.

Listing 1-24. Develop the Grid Model Using GridSearchCV

from sklearn.model selection import GridSearchCV
param grid = {'fit_intercept':[True,False],
"normalize':[True,False],
"copy X':[True, False]}
grid model = GridSearchCV(estimator=1m,
param_grid=param grid,
n_jobs=-1)
grid model.fit(x_train,y train)

23
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Listing 1-25 returns the best cross-validation and best parameters.

Listing 1-25. Find Best Hyperparameters Using GridSearhCV

print("Best score: ", grid model.best score , "Best parameters: ",

grid model.best params )

Best score: 0.9272138118711238 Best parameters: {‘copy_X': True, ‘fit_intercept’:
True, ‘normalize’: True}

Another way of finding the right hyperparameters involves using Bayesian
optimization. Listing 1-26 performs Bayesian optimization using Skopt. To install it in
the Python environment, use pip install scikit-optimize.

Listing 1-26. Develop the Grid Model Using BayesSearchCV

from skopt import BayesSearchCV
param grid = {'fit_intercept':[True,False],
"normalize':[True,False],
‘copy X':[True, False]}
grid model = BayesSearchCV(1m,param grid,n_iter=30,random_state=1234,
verbose=0)
grid model.fit(x_train,y train)

Listing 1-27 finds the best cross-validation score and best parameters.

Listing 1-27. Find Best Hyperparameters Using BayesSearchCV

print("Best score: ", grid model.best score , "Best parameters: ",
grid model.best params )

Best score: 0.9266258295344271 Best parameters: OrderedDict([(‘copy_X; False),
(‘fit_intercept, True), (‘normalize, False)])

Finalize the Least Squares Model

Listing 1-28 completes the least squares model using the hyperparameters estimated in
Listing 1-27.

24
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Listing 1-28. Finalize the Least Squares Model

Im = LinearRegression(copy X= True,
fit_intercept= True,
normalize= True)

Im.fit(x_train,y train)

Find the Intercept

Listing 1-29 estimates the intercept. An intercept is the mean value of an independent
variable, given that we hold a dependent variable constant.

Listing 1-29. Intercept

Im.intercept_
array([73886.20833333])

Find the Estimated Coefficient

Listing 1-30 estimates coefficients.

Listing 1-30. Coefficient

Im.coef
array([[24053.85556857]])

A formula of a straight line is expressed as follows:
J=173886.21+24053.851X, +¢, (Equation 1-8)

For every additional year of work experience, the salary increases by 24,054.

Test the Least Squares Model Performance Using
SciKit-Learn

Listing 1-31 applies the predict () method to return predicted values, and then it passes
the array to a dataframe (see Table 1-6).
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Listing 1-31. Tabulate Predicted Values

y_pred = Im.predict(x_test)
pd.DataFrame(y pred, columns = ["Predicted salary"])

Table 1-6. Actual Values

Predicted Salary

40748.961841
122699.622956
64961.657170
63099.142145
115249.562855
107799.502753

Sl A W N = O

Listing 1-32 tabulates actual values (see Table 1-7).

Listing 1-32. Develop an Actual Values Table

pd.DataFrame(y_test, columns = ["Actual salary"])

Table 1-7. Actual Values of Salary

Actual Salary

37731.0
122391.0
57081.0
63218.0
116969.0
109431.0

gl A~ W N = O

Table 1-7 suggests that the regressor makes slight errors.
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Mean Absolute Error

An absolute error is a difference between the estimated value and the true value. For
example, if a model predicts that the salary is $40,749 while the actual value is $37,731, then
the model has an absolute error of $40,749 - $37,731 = $3,018. Mean absolute error (MAE)
represents the average magnitude of error in estimates without considering the
direction.

MAE = lzn: |x; — x| (Equation 1-9)
=

Here, n represents the number of errors, and |x; — x| represents the absolute errors.

Mean Squared Error

Mean squared error (MSE) represents the variability explained by the model about the
data after considering a regression relationship.

(Equation 1-10)

MSE:%ZLV;’ _)A/

i=1

Root Mean Squared Error

Root mean squared error (RMSE) represents the variability explained without
considering a regression relationship. To get an RMSE score, use the square root of the
MSE.

RMSE =~ MSE (Equation 1-11)

R-squared

R-squared (R?) represents the variability explained by the model about the data. The
metric comprises values that range from 0 to 1, where 0 shows that the regression model
poorly explains the variability in the data, and 1 shows that the regression model best
explains the data.

(Equation 1-12)
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Here, y represents the predicted value of y, and y represents the mean value of y.
The R? score must be multiplied by a hundred. For ex;mple, if the score is 0.9, then the
model explains 90% of the variability in the data.

There are other metrics for model evaluation such as the following:

Explained variance score: A metric that captures a discrepancy
between a model and the actual data. If the score is close to 1,
then there is a strong correlation.

Mean gamma deviance: A metric that captures the scaling of a
dependent variable and estimates the relative error. It is a Tweedie

deviance with a power parameter of 2.

Mean Poisson deviance: A metric that captures the scaling of a
dependent variable and estimates the relative error. It is a Tweedie

deviance with a power parameter of 1.

Listing 1-33 tabulates the evaluation metrics (see Table 1-8).

Listing 1-33. Evaluation Metrics

MAE = metrics.mean_absolute error(y test,y pred)

MSE = metrics.mean squared error(y test,y pred)

RMSE = np.sqrt(MSE)

R2 = metrics.r2 score(y test,y pred)

EV = metrics.explained variance score(y test,y pred)
MGD = metrics.mean _gamma_deviance(y test,y pred)

MPD = metrics.mean_poisson_deviance(y test,y pred)
lmmodelevaluation = [[MAE,MSE,RMSE,R2,EV,MGD,MPD]]
Immodelevaluationdata = pd.DataFrame(1lmmodelevaluation,
index = ["Values"],
columns = ["MAE",
"MSE",
"RMSE",
"R2",
"Explained variance score",
"Mean gamma deviance",
"Mean Poisson deviance"]).transpose()
Immodelevaluationdata
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Table 1-8. Performance Matrix

Values
MAE 2.446172e+03
MSE 1.282341e+07
RMSE 3.580979e+03
R? 9.881695e-01

Explained variance score ~ 9.897038e-01
Mean gamma deviance 3.709334e-03

Mean Poisson deviance 2.129260e+02

Table 1-8 indicates that the model explains 98% of the variability of the data. There
is a strong correlation between employees’ years of work experience and employees’
salaries. On average, the magnitude of errors without considering the direction is 2,446,
and the mean squared errorsis 1.

Training Data

Listing 1-34 verifies whether there is a linear relationship between the variables by
plotting a line through the data points (see Figure 1-13).

Listing 1-34. Training Data

plt.scatter(x_train,y train,s=200)
plt.plot(x test,y pred,color="red")
plt.xlabel("Actual Experience")
plt.ylabel("Actual Salary")
plt.show()

29



CHAPTER 1 AN INTRODUCTION TO SIMPLE LINEAR REGRESSION

120000 -

100000 -

80000 -

Actual Salary

60000 -

40000 —

1 | 1 [
-1 0 1 2

Actual Experience

Figure 1-13. Training data

Figure 1-13 confirms that the data points are close to a straight line, but the
closeness is not extreme. There is a linear relationship between employees’ years of work
experience and employees’ salaries.

Test Data

Listing 1-35 returns Figure 1-14, which shows the actual values of employees’ years of
work experience and predicted values of employees’ years of work experience.

Listing 1-35. Test Data

plt.scatter(y test,y pred,s=200)
plt.axhline(color="red")
plt.xlabel("Actual Salary")
plt.ylabel("Predicted Salary")
plt.show()
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Figure 1-14. Testdata

Figure 1-14 affirms a perfect fit model. As mentioned, a perfect model is rare in the
actual world because of variability.

Actual Values and Predicted Values

Model evaluation involves comparing the actual values and the predicted values of a
dependent variable. Listing 1-36 returns the difference in actual values of employees’
salaries against predicted values of employees’ salaries (see Figure 1-15).

Listing 1-36. Actual Values and Predicted Values

plt.scatter(y test,y pred,s=200)
plt.axhline(color="red")
plt.xlabel("Actual Salary")
plt.ylabel("Predicted Salary")
plt.show()
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Figure 1-15. Actual values and predicted values

There are notable differences between the actual values of employees’ salaries and
predicted values of employees’ salaries, but those differences are not large.

Diagnose Residuals

A residual represents the difference between the actual values and the predicted values.
Residual diagnosis involves discovering behavioral patterns of errors that a model
makes. There are several tools that we can use to check whether a model fulfils the
assumption. The easiest way of analyzing the residuals involves looking at their mean
value. If the mean value of the residuals is close to 0, then the model is a good fit.

To graphically represent residuals and make sense of the behavioral patterns of errors,
we can use plots such as the autocorrelation function plot, partial autocorrelation function
plot, fitted values and residuals values plot, leverage values and residual values plot, fitted
values and studentized residual values, leverage and studentized residual values (also
recognized as Cook’s D influence plot), and the normal probability (or normal Q-Q) plot.
These plots are useful for detecting abnormalities in residuals.
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If there is a pattern or shape in the residuals, then the model violates a regression
assumption. There are three main patterns, namely, fan-shaped pattern, which
happens when there is an increase of variability with predicted values (error term not
affected by the value of an independent variable); parabolic pattern, which happens
when predicted values are relative or there are multiplicative errors; and double bow
pattern, which happens when an independent variable is a proportion or percentage.
There are other factors that influence behavioral patterns of residuals such as the
distribution of the data and visible presence of outliers. It is important to ensure that
we feed the model quality data.

Evaluate Residuals Using Statsmodels

Listing 1-37 shows the residuals diagnosis metrics, and Listing 1-38 shows the box plot.

Listing 1-37. Residuals Diagnosis Metrics

model residual = model.resid

model fitted = model.fittedvalues

model leverage = model.get influence().hat matrix diag
model norm residual = model.get influence().resid studentized internal
model norm residual ab sqrt = np.sqrt(np.abs(model norm residual))

Figure 1-16 shows the dispersion of the residuals.

Listing 1-38. Residuals Box Plot

model residual = pd.DataFrame(model residual)
model residual.columns = ["Residuals"]
sns.boxplot(model residual["Residuals"])
plt.xlabel("Residuals")

plt.show()
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Figure 1-16. Residuals box plot

Figure 1-16 shows that the mean value of residuals is close to 0, but the closeness is
not extreme. The residuals spread symmetrically around the true value (they are well-
behaved).

Normal Q-Q

Listing 1-39 plots the normal Q-Q. Figure 1-17 determines whether data comes from a
normal theoretical distribution. It verifies the assumption of normality by comparing two
probability distributions (theoretical quantiles on the x-axis and values of the sample
quantiles on the y-axis).

Listing 1-39. Normal Q-Q

fig, ax = plt.subplots()

fig = sm.graphics.qgplot(model residual,ax=ax,line="45",fit=True,
dist=stats.norm)

plt.show()
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Figure 1-17. Normal Q-Q

Figure 1-17 shows that data points do not form a straight line. They deviate away
from the straight line. It also shows outliers in the data.

Cook’s D Influence

Listing 1-40 plots the Cook’s D influence. Figure 1-18 detects outliers that pull a
regression function toward itself. It uses a cutoff value to determine outliers. A cutoff
represents a value at which we decide whether an observation is an outlier. We estimate
the cutoff using 4/n-k-1, where n is the sample size and k is the number of outliers for

assessing the performances.

Listing 1-40. Cook’s D Influence

fig, ax = plt.subplots()
fig = sm.graphics.influence plot(model,ax=ax,criterion="cooks")
plt.show()
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Figure 1-18. Cook’s D influence

Figure 1-18 shows influential data points (a minor point at observation 0 and an
extreme one at observation 11). Removing them significantly improves the predictive
power of the model.

Fitted Values and Residual Values

Listing 1-41 plots fitted values and residual values. Figure 1-19 compares fitted values
(predicted responses) and against residuals (the difference between actual values and
predicted values). It checks for unequal variances, nonlinearity, and outliers.

Listing 1-41. Fitted Values and Residual Values

plt.scatter(model fitted,model residual,s=200)
plt.xlabel("Fitted Salary")
plt.ylabel("Residual Salary")

plt.show()
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Figure 1-19. Fitted values and residual values

Figure 1-19 shows the characteristics of a well-behaved fitted salary and residual
salary plot. There are no large residuals. Also, residuals bounce randomly around zero.
The model satisfies the assumption of linearity.

Leverage Values and Residual Values

Listing 1-42 plots leverage values (how far way x is from the mean of y) and residuals (see
Figure 1-20).

Listing 1-42. Leverage Values and Residual Values

plt.scatter(model leverage,model residual,s=200)
plt.xlabel("Leverage Salary")
plt.ylabel("Residual Salary")

plt.show()
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Figure 1-20. Leverage values and residual values

Figure 1-2 suggests that there is one high leverage data point that contributes to
prediction inaccuracy.

Fitted Values and Studentized Residual Values

Listing 1-43 returns predicted responses and standardized deleted residuals (see
Figure 1-21). Studentized residuals equal to or greater than 3 are influential points.

Listing 1-43. Fitted Values and Studentized Residual Values

plt.scatter(model leverage,model norm residual,s=200)
plt.xlabel("Leverage Salary")

plt.ylabel("Studentized Residual Salary")

plt.show()
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Figure 1-21. Fitted values and studentized residual values

Figure 1-21 confirms random distribution (residuals do not follow a trend or
pattern).

Leverage Values and Studentized Residual Values

Another way of identifying influential data points involves comparing how far data
points of an independent are from other data points against standardized deleted
residuals. See Listing 1-44.

Listing 1-44. Fitted Values and Studentized Residual Values

plt.scatter(model leverage,model norm residual,s=200)
plt.xlabel("Leverage Salary")

plt.ylabel("Studentized Residual Salary")

plt.show()
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Figure 1-22 shows characteristics of well-behaved residuals, but there is one extreme

outlier.
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Figure 1-22. Fitted values and studentized residual values

Evaluate Residuals Using SciKit-Learn

The following section investigates the extent to which to residuals correlate with
themselves using the autocorrelation function and the partial autocorrelation function.

Autocorrelation Function

Autocorrelation represents the extent to which data correlates with itself, as opposed
to some other data (see Listing 1-45). Figure 1-23 determines whether there is
autocorrelation between residuals in previous lags. It has two axes, with lags on the
x-axis and with the autocorrelation function of residuals on the y-axis.
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Listing 1-45. Autocorrelation Function

from statsmodels.graphics.tsaplots import plot acf
residuallm = y test - y pred

plot acf(residuallm)

plt.xlabel("Lag")

plt.ylabel ("ACF")

plt.show()
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Figure 1-23. Autocorrelation function plot

Figure 1-23 shows that at lag 0, the correlation is 1 (the data correlates with itself).

There is a slight negative correlation at lags 1, 2, 4, and 5 and a moderate negative
correlation at lag 3.
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Partial Autocorrelation Function

Listing 1-46 plots the partial correlation of coefficients not explained at low-level lags
(see Figure 1-24).

Listing 1-46. Partial Autocorrelation Function

from statsmodels.graphics.tsaplots import plot pacf
plot pacf(residualslm)

plt.xlabel("Lag")

plt.ylabel("PACF")

plt.show()
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Figure 1-24. Partial autocorrelation function

Lag 0 can explain all higher-order autocorrelation.
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Conclusion

This chapter covered the simple linear regression method and the least-squares model
and its application. It examined whether there is a significant difference between
employees’ work experience and employees’ salaries using two regressors (applying
both Statsmodels and SciKit-Learn). The findings suggest there is a significant difference
between employees’ work experience and employees’ salaries. There is linearity, but

the regressors violate certain regression assumptions. They make marginal errors due to
minor abnormalities in the data (this is common with a small sample). The subsequent
chapter covers techniques for dealing with errors; it introduces the concept of errors due
to bias and variance and how to solve the errors using advanced parametric methods
such as ridge regression and lasso regression.
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Advanced Parametric
Methods

The method covered in the previous chapter violated certain regression assumptions.
It cannot capture noise, and as a result, it makes mistakes when predicting future
instances. The most convenient way of combating this problem involves adding a
penalty term to the equation.

This chapter introduces the novel concept of bias-variance trade-off, and it then
covers regularized models like ridge regression, ridge with built-in cross-validation
regression, and lasso regression. Last, it compares the performance of these models
against that of the least-squares model. To tacitly understand regularizing models, you
must first understand the concept of bias-variance trade-off. In the following section, we
properly introduce the concept.

Concepts of Bias and Variance

Bias represents the closeness of estimates to the actual value, and variance represents
how the data points vary for each realization of a model. Error due to bias occurs when a
model class cannot fit the data. Developing a more expressive model class combats this
problem. On the other hand, error due to variance represents the variability of a model’s
prediction on a data point. This occurs when a model class can fit the data, but cannot
do so. Developing a less expressive model class combats this problem.
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Figure 2-1. Bias and variance graphic definition

Figure 2-1 shows bias and variance.

Bias-Variance Trade-Off in Action

The bias-variance trade-off involves decreasing bias or variance at the expense of the
other. We decrease variance to increase bias when there are a few variables in the data,
there is a highly regularized model, the decision tree model has extremely pruned
decision trees, and the K-nearest neighbor model has a large k. Figure 2-2 shows an
example of low bias (or high variance).
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©True

Figure 2-2. Low bias/high variance

We decrease bias to increase variance when there are several variables in the data,
the model is unregularized, the decision tree model is unpruned, or the K-nearest
neighbor model has a small k. Figure 2-3 shows an example of high bias (or low
variance).
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Figure 2-3. High bias/low variance

Bias-variance trade-off is about addressing the problem of underfitting (when there
is a low bias error term) and overfitting (when there is high variance). We decrease bias
and variance based on the complexity of the model. Several parameters in a model
increase the complexity of the model and variance and decrease bias.

Ridge Regression

We also recognize ridge regression as Tikhonov or L2 regularization. This model
addresses the problem of multicollinearity by minimizing variables by a small k along
each eigenvector to ensure that there is a narrow spread in axes. Similar to the least
squares regressor, it assumes linearity and normality in the data. The major difference
between the two models is that the ridge regressor assumes that after normalizing the
data, coefficients are small. It also assumes that as the value of k increases, coefficients
with multicollinearity alter their behavior. Given this assumption, the model sharply
decreases coefficients to zero. At most, the value of k of the ridge regressor is less than
the value of k of the least squares model.

48



CHAPTER 2  ADVANCED PARAMETRIC METHODS

It shrinks the estimates to stabilize variability by adding bias (introducing a penalty
and controlling for shrinkage to the least squares function). It prevents the values
of the independent variable from exploding, reduces standard errors, and provides
more reliable estimates. This procedure minimizes the penalized sum of residuals
and carefully controls the considerable amount of shrinkage in a regression model. It
changes the cost function by adding a penalty term (a term relative to the sum of squares
of the coefficients). A constant penalty term ranges from 0 to 1. It controls estimates, p,
and as a result, high variance is more likely to occur. The least squares model does not
control the loss function of the ridge model. Equation 2-1 expresses a standard ridge
formula.

'Bridge _ (X'X +A, )‘1 XYy (Equation 2-1)

Here, )\, represents the ridge penalty term responsible for penalizing the squared
regression coefficient. The penalty term controls the size of the coefficients and the
amount of regularization.

RidgeCV

RidgeCV stands for “ridge regression with built-in cross-validation” (it weighs the
prediction errors of a model to validate each data point as an out-of-sample prediction).
CV methods include the K-fold, leave-one-out, and generalized cross-validation (GCV).
By default, the ridgeCV regressor in SciKit-Learn uses GCV. See Equation 2-2.

11L& Y _]}(xi) .
GCV = - ; . r(S) (Equation 2-2)
n

Recall that tr(S) is the effective number of parameters.
It alters model behavior by partitioning data, finding optimal penalty terms, and
training and validating complementary regressors.
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Lasso Regression

Lasso stands for “least absolute shrinkage selector operator” (also known as L1
regularization). It applies the shrinkage technique (centering the data to its central point,
such as centering the data to the mean value). This procedure produces sparse models
(models with a reduced numbers of parameters). We use it for both variable selection
and regularization. Like ridge regression, lasso regression boosts a regressor’s predictive
power by including a penalty term. They differ from the penalty term: lasso regression
uses L1 to penalize the sum of residuals, while ridge regression uses the L2 penalty term.
It assumes that as the penalty term increases, more coefficients were set to zero, which
results in fewer variables being selected. L1 regularization uses nonzero coefficients

and coerces the sum of absolute values of coefficient (sets 0 coefficients and adds
interpretability). See Equation 2-3.

ﬂlusso — (XX)’I X:y _% w (Equation 2'3)

A1 represents the lasso penalty, penalizing the sum of the absolute values of the
regression coefficients.

Tunable Hyperparameters

If you do not want to use default parameters to complete your model, you can change
the hyperparameters accordingly. Table 2-1 highlights tunable hyperparameters.
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Table 2-1. Tunable Hyperparameters

Parameters Description

alpha Determines the regularization strength. It is a constant that multiplies the term.
One must be cautious when selecting alpha. A small value of alpha specifies
weak regularization, and a large value specifies strong regularization. As alpha
increases, the parameters become smaller. If alpha increases, coefficients
approach 0 and under-fit the data. The default value is 1.

fit_intercept Determines whether the model must estimate the intercept.

normalize Determines whether we must normalize the independent variables.
copy_X Determines whether we must copy the independent variable.

tol Determines the precision. The default value is 0.003.

max_iter Determines the maximum number of iterations.

tol Determines the tolerance for the optimization

warm_state Determines whether to initialize a solution or erase the preceding solution.

Develop the Models

The example data was obtained from GitHub.! It compromises a few categorical
independent variables. Listing 2-1 transforms the categorical variable into numeric
using the LabelEncoder () method. For example, we transform [ 'VS2"' 'VS1' 'VVS1'
"WS2' 'IF']to [0,1,2,34]. Listing 2-2 creates an x and y array and thereafter splits
and normalizes the data.

Listing 2-1. Convert Variables to Numeric

from sklearn.preprocessing import LabelEncoder
categorical features = ['colour', 'clarity']
le = LabelEncoder()

'https://vincentarelbundock.github.io/Rdatasets/csv/Ecdat/Diamond.csv
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for i in range(2):
new = le.fit transform(df[categorical features[i]])
df[categorical features[i]] = new
df["certification"] = pd.get dummies(df["certification"])
print(df.clarity.unique())
print(df.colour.unique())
print(df.certification.unique())

[2 134 0]
[013245]
[1 0]

Listing 2-1

Last, Listing 2-3 trains all the models.

Listing 2-2. Data Preprocessing

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

x = df.iloc[::,0:4]

y = df.iloc[::,-1]

x_train, x test, y train, y test = train test split(x,y,test size=0.2,
random_state=0)

scaler = StandardScaler()

x_train = scaler.fit transform(x train)
x_test = scaler.transform(x test)

Listing 2-3. Develop Models

from sklearn.linear model import LinearRegression, Ridge, RidgeCV, RidgeCV
Im = LinearRegression()

Im.fit(x_train,y train)

ridge = Ridge()

ridge.fit(x_train, y_train)

ridgecv = RidgeCV()

ridgecv.fit(x_train, y train)

lasso = RidgeCV()

lasso.fit(x_train,y train)
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Evaluate the Models

Table 2-2 summarizes the performance of all regressors using primary evaluation
metrics.

Table 2-2. Model Evaluation Results of All Models

MAE MSE RMSE R? Explained variance score

OLS 550.512799 528211.610638 726.781680 0.942619  0.944409
Ridge 548.303122 526871.168399 725.858918 0.942764 0.944672
Ridge CV  550.291000 528056.270472 726.674804 0.942636 0.944437
Lasso 550.291000 528056.270472 726.674804 0.942636 0.944437

Table 2-2 highlights that all regressors explain more than 94% of the variability in
the data. However, the least-squares regressor is the weakest contender, with the lowest
R-squared score and discrepancies. In addition, the ridge regressor has the highest
discrepancy between predicted values and actual values.

Conclusion

This chapter explored the different models for regularizing estimates of the least squares
model such as ridge, ridge with built-in cross-validation, and lasso. These models
sufficiently dealt with error due to bias and error due to variance. After testing their
performance, we found that regularizing or shrinking estimates of a mode improves

the general performance. The ridge regressor model is a delicate contender. In a case
where both regularizing models do not improve the predictive power of the least squares
model, use the ElasticNet model, a viable hybrid of ridge regression and lasso regression.

53



CHAPTER 3

Time-Series Analysis

This introduces a complex regression method, called time-series analysis. Similar to the
regression method, the time series makes strong assumptions about the underlying
structure of the data. We recognize time-series analysis as a parametric method because
it deals with a continuous variable. Remember, we do not limit series analysis to
continuous variables; we can also analyze time-dependent categorical variables.

It introduces empirical tests for testing assumptions, and we then introduce the
standard techniques for analyzing a time series like seasonal decomposition and
smoothing. After that, it shows you how to estimate the rate of return and how to run the
minimum and maximum. Last, it covers SARIMAX model development and evaluation.

What Is Time-Series Analysis?

Time-series analysis enables us to recognize apparent trends and consistent patterns
in a series. It captures the movement of a variable across time. In continuous time-
series analysis, we continuously examine a variable. We define a series at a specific
point and not at each point. For instance, we will use closing prices on the foreign
exchange (there is one closing price per trading trade). We obtained the example data
from Yahoo (it is series data about the price of the USD/ZAR currency pair from July 3,
2010, to July 4, 2020).

Time-Series Assumptions

A time-series analysis model must fulfill the following assumptions:
e More than 50 independent data points
e No missing values

¢ No outliers in the series
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o Nonstationary
e Absence of white noise

e Correlation between variables with themselves

Types of Time-Series Models

We typically analyze a series by smoothing or moving averages (MA) using the box-
Jenkins autoregressive (AR) and MA model, which is a combination of these methods
called the ARMA model. When a series convincingly shows a pattern, we use a relaxed
version of the model recognized as the autoregressive integrated moving averages
(ARIMA) model. We can include a seasonal component using the seasonal ARIMA

or SARIMAX model. These methods describe a series in terms of its linear structure.
Sometimes, there is a nonlinear structure. When dealing with a nonlinear model, use
the autoregressive conditionally heteroscedasticity (ARCH) model. When dealing with
multiple time series, use the VARMA model.

The ARIMA Model

ARIMA (p, d, q) finds a key trend and reasonably predicts future values of the series,
where p represents the order of the autoregressive model, d represents the degree of
differencing, and q represents the order of the moving average model. The term ARIMA
is threefold: AR (autoregressive) represents the linear combination of preceding values’
influence, I (integrative) represents the random walk, and the MA (moving average)
represents the linear combination of preceding errors.

Test for Stationary

The series is stationary when there are stochastic trends (random walk or unit root).
This happens when there is uncertainty in the data. We recognize these trends when the
series possesses elements of randomness. Their visible presence affects conclusions.
Before training a time-series model, test whether a series is stationary. We express the
hypothesis as follows:

Null hypothesis: The series is stationary.
Alternative hypothesis: The series is not stationary.
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The Augmented Dickey-Fuller Test

The most reliable way to test whether a series is stationary is the augmented
Dick-Fuller (ADF) test. It is a unit root test. When looking at the results, fiercely devote
attention to the ADF F-statistics. If the F-statistics have a negative value, then there is
sound evidence that there is a unit root. We express the hypothesis as follows:

Null hypothesis: There is a unit root.
Alternative hypothesis: There is no unit root.

If the p-value score exceeds 0.05, then we adamantly reject the null hypothesis in
favor of the alternative hypothesis. There is sound evidence that there is no unit root.

Conduct an ADF Fuller Test

Listing 3-1 conducts an ADF Fuller test (see Table 3-1).

Listing 3-1. ADF Fuller Test

from statsmodels.tsa.stattools import adfuller
adfullerreport = adfuller(new df["Close"])
adfullerreportdata = pd.DataFrame(adfullerreport[0:4],
columns = ["Values"],
index=["ADF F% statistics",
"P-value",
"No. of lags used",
"No. of observations"])
Adfullerreportdata

Table 3-1. ADF Test Statistics

Values

ADF F% statistics -1.031626
P-value 0.741555
No. of lags used 0.000000
No. of observations  262.000000
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As expected, the F-statistics have a negative value. The p-value exceeds 0.05. We
reject the null hypothesis in favor of the alternative hypothesis. There is sound evidence
that there is no unit root—the series is not stationary.

Test for White Noise

A series has white noise when there is an element of randomness. The apparent
presence of randomness shows that there is no correlation between data points of a
series—the autocorrelation is zero. White noise is an example of stationary. We express
the hypothesis as follows:

Null hypothesis: There is white noise.
Alternative hypothesis: There is no white noise.

To check whether a series has white noise, look at the mean value. If the mean value
is zero, then a series has white noise. If the mean value of a series is not zero, then there
is no white noise. See Listing 3-2 and Figure 3-1.

Listing 3-2. Random White Noise

randval = np.random.randn(1000)
autocorrelation plot(randval)
plt.show()
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Figure 3-1. Random white noise

There are significant spikes above the 95% and 99% confidence interval.

Test for Correlation

Correlation estimates of the strength of a linear relationship between variables. In time-
series analysis, we focus on the correlation between data points in a series. If you recall,
we proceed under the assumption that the underlying structure of the data is linear. To
check whether there is a correlation in a series, we do not use the Pearson correlation
method. We verify the assumption using autocorrelation.

Listing 3-3 and Figure 3-2 show lagged variables. A lag is the difference in time
between a recent data points and preceding data points. It verifies whether a series has
an element of randomness. When we plot lags, we expect to find a pattern. If a lag plot
shows a linear pattern, then there is a correlation between the two lagged variables. It
also detects outliers in a time series. As you can see, there were no outliers detected.
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Listing 3-3. Lag

lag plot(df["Close"])
plt.show()
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Figure 3-2. Lag plot

Figure 3-2 shows a linear pattern in the series (data points tightly aligned to an
imaginary straight line). Listing 3-4 produces an autocorrelation plot (see Figure 3-3).

Listing 3-4. Autocorrelation

autocorrelation plot(df["Close"])
plt.show()
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Figure 3-3. Autocorrelation plot

Figure 3-3 shows USD/ZAR daily returns where most of the spikes are not statistically
significant.

Autocorrelation Function

Listing 3-5 shows the autocorrelation function (ACF) plot. Figure 3-4 considers the trend,
seasonality, cyclic, and residual components.

Listing 3-5. ACF Plot

plot _acf(df["Close"])
plt.xlabel("Lag")
plt.ylabel("ACF")
plt.show
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Figure 3-4. ACF plot

Partial Autocorrelation

Listing 3-6 shows partial autocorrelation (PACF). Figure 3-5 shows the partial correlation
coefficient not explained at low-level lags. There is a significant spike atlag 1. The first
lag explains all higher-order autocorrelation.

Listing 3-6. PACF

plot pacf(df["Close"])
plt.xlabel("Lag")
plt.ylabel("PACF")
plt.show()
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Figure 3-5. PACF plot

Understand Trends, Seasonality, and Irregular
Components

It is challenging to separate a trend from a cycle. The easiest way to make sense of time-
series data is by breaking down data into different components. Seasonal decomposition
involves breaking down a series into three components, namely, trend, cycles,
seasonality, and irregular components. We commonly use an additive model, expressed
as shown in Equation 3-1.

Y(t) = T(t)+C(t)+S(t) x I(t) (Equation 3-1)

Here, T(t) represents the trend value at period t, S(t) represents a seasonal value
at period t, C(t) represents a cyclical value at time t, and I(t) represents an irregular
(random) value at period t. Seasonal decomposition requires positive values. When
there are zeros in a series, add 0.5 or 1 to the entire series. Listing 3-7 decomposes the
series (see Figure 3-6).
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Listing 3-7. Seasonal Decomposition

decompose = seasonal decompose(df["Close"].interpolate(),freq=30)
decompose.plot()

plt.show()
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Figure 3-6. Seasonal components
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Smoothing a Time Series Using Moving Average
and Exponential Techniques

The most straightforward way to analyze a series involves using smoothing techniques.
There are two primary smoothing techniques, namely, moving average smoothing and
exponential smoothing.

Original Time Series

Listing 3-8 graphically represents the movement of a variable over time. Figure 3-7 has
two axes: x-axis (horizontal) and y-axis (vertical), graphically denoted as (x,y). Time (an
independent variable) is on the x-axis, and the dependent variable is on the y-axis.

Listing 3-8. Time Series

Original = new df["Close"]

fig, ax = plt.subplots()
Original.plot(kind="1line", color="navy")
plt.xlabel("Time")

plt.ylabel("Close")
plt.xticks(rotation=45)

plt.show()
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Figure 3-7. Original time series

The Moving Averages Smoothing Technique

MA applies the means of weight average of preceding and recent data points. It is

useful when there is no seasonality in a series, but we want to forecast future instances.
Weighting depends on the stability of a series. If a series is stable, then recent data points
weigh high and preceding data points weigh low. In contrast, if the series is not stable,
then we weigh recent data points that weigh lower and preceding data points higher.
Listing 3-9 returns 90 days of moving averages (see Figure 3-8).

Listing 3-9. Time Series (90 Days of Moving Averages)

MA90 = df["Close"].rolling(window=90).mean()
df.plot(kind="1ine",color="navy")
MA90.plot(kind="1ine",color="black",label="Rolling MA 90 days")
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plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Price")
plt.legend()

plt.show()
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Figure 3-8. Time series (90 days of moving averages)

Figure 3-8 does not consider seasonality. The close price is mostly above the moving
average. However, it struggles to keep at abreast with the trend.
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The Exponential Smoothing Technique

An alternative to the MA method is exponential smoothing. It weights values outside
the window to zero. Using this method, large weighted values rapidly die out, and small
weighted values slowly die out. Listing 3-10 specifies the half life (the time lag at which
the exponential weights decay by one-half) as 30 (see Figure 3-9).

Listing 3-10. Time Series (Exponential)

Exp = df["Close"].ewm(halflife=30).mean()

fig, ax = plt.subplots()

Original.plot(kind="1line", color="navy")
Exp.plot(kind="1ine", color="gray", label="Half Life")
plt.xlabel("Time")

plt.ylabel("Close")

plt.xticks(rotation=45)

plt.legend()

plt.show
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Figure 3-9. Time series (exponential)

Smoothing methods do not produce confidence intervals for forecasts or tests for
whether the model is reasonable.

Running Minimum and Maximum Value

Running min is the lowest value in a series as it progresses, and running max is the
highest value in a series as it progresses. Extreme values of a series tell us much about
boundaries in a series. Listing 3-11 estimates the running min and max using the

expanding() method (see Figure 3-10).
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Listing 3-11. Running Minimum and Maximum Values

expanding_df = df
expanding_df["running min"]

expanding df["Close"].expanding().min()
expanding_df[ "Close"].expanding().max()

expanding_df["running max"]
fig, ax = plt.subplots()
Original.plot(kind="1ine", color="navy")

expanding df["running min"].plot(kind="1ine", color="red")
expanding_df["running max"].plot(kind="1line", color="red")
plt.xlabel("Date")

plt.ylabel("Close")

plt.legend()
plt.xticks(rotation=45)
plt.show()
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Figure 3-10. Running the minimum and maximum value of price
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Figure 3-10 shows that the USD/ZAR closing price dropped to a low of 13.8531 on
July 24, 2019. Thereafter, it approached a psychological level. In the last quarter of 2019,
the South African rand moderately steadied against the US dollar. However, those gains
quickly wiped out at the beginning of the year. The US dollar edged higher, reaching a
new high of 19.2486 on April 6, 2020.

Find the Rate of Return and Rolling Rate of Return

Returns refer to profit on an investment. It shows the change in the value of an
investment. Listing 3-12 shows the delete expansion.

Listing 3-12. Delete Expansion

del df_expanding["Running_min"]
del df_expanding["Running max"]

Listing 3-13 and Figure 3-11 show the rate of return of the portfolio.

Listing 3-13. Rate of Return

pr = df.pct_change()

pr_plus one = pr.add(1)

cumulative return = pr plus one.cumprod().sub(1)
fig, ax = plt.subplots()

cumulative return.mul(100).plot(ax=ax, color="navy")
plt.xlabel("Date")

plt.ylabel("Return (%)")

plt.xticks(rotation=45)

plt.show()
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Figure 3-11. Rate of return

Find the Rolling Rate of Return

The rolling rate of return shows the rolling window rate of return. It communicates the
stability of the rate of return. Listing 3-14 finds a linear combination of the previous
mean returns, and Listing 3-15 plots 90 days of the rolling rate of return (see Figure 3-12).

Listing 3-14. Rolling Rate of Return Function

def get period return(period return):
return np.prod(period return + 1) - 1
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Listing 3-15. Rolling Rate of Return

rolling 90 days rate of return = df["Close"].rolling(window=90).apply(
get period return)

fig, ax = plt.subplots()

rolling 90 days rate of return.plot(color="navy")

plt.xlabel("Date")

plt.ylabel("Return (%)")

plt.xticks(rotation=45)

plt.show()
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Figure 3-12. Rolling rate of return
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SARIMAX Hyperparameter Optimization

Listing 3-16 splits the data into training data and test data.

Listing 3-16. Split Data

train = df.iloc[:len(df) -12]
test = df.iloc[:len(df) -12]
start = len(train)

end = len(train) + len(train) - 1

Listing 3-17 applies the itertools package to determine the optimal parameters of
the seasonal ARIMA model using the akaike information criterion (AIC).

Listing 3-17. Hyperparameter Optimization

import itertools
p=d=q = range(0, 2)
pdq = list(itertools.product(p, d, q))
seasonal pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product
(p, d, 9))]
for param in pdq:
for param in pdq:
for param_seasonal in seasonal pdq:
try:
mod = sm.tsa.statespace.SARIMAX(train["Close"],
order=param, seasonal_
order=param_seasonal,
enforce stationarity=False,
enforce
invertibility=False)
results = mod.fit()
print('SARIMAX{}x{}12 - AIC:{}'.format(param, param_
seasonal, results.aic))
except:
continue
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AIC is defined as AIC = -2 InL + 2k, where InL is the maximized log-likelihood of the
model, and kis the number of parameters estimated. We identified that the optimal
parameters for the seasonal ARIMA model are as follows: - ARIMA (1,1, 1) x(1, 1, 1, 12)12.

Develop the SARIMAX Model

Listing 3-18 configures the ARIMA model with a (1, 1, 1) order and (1, 1, 1, 12)

seasonal order.

Listing 3-18. Finalize the SARIMAX Model

timeseriesmodell = sm.tsa.statespace.SARIMAX(new df["Close"], order=(1, 1, 1),
seasonal order=(1, 1, 1, 12),
enforce stationarity=False,
enforce_invertibility=False)

timeseriesmodel fit1 = timeseriesmodell.fit()

Model Summary

Listing 3-19 and Table 3-2 show the profile of the SARIMAX model.

Listing 3-19. SARIMAX Profile

timeseriesmodel fit1.summary()

75



CHAPTER 3  TIME-SERIES ANALYSIS

Table 3-2. SARIMAX Profile

Dep. Variable: Close No. Observations: 263
Model: SARIMAX(1, 1, 1)x(1,1,1,12) Log Likelihood 53.382
Date: Fri, 16 Oct 2020 AIC -96.765
Time: 16:07:34 BIC -79.446
Sample: 07-03-2019 HQIC -89.783
- 07-03-2020

Covariance Type: Opg

coef std err Z P>lzl [0.025 0.975]
ar.L1 0.4856 1.971 0.246 0.805 -3.377 4.348
ma.L1 -0.5019 1.952 -0.257 0.797 -4.327 3.324
arS.L12 -4.739%¢-06 0.008 -0.001 1.000 -0.015 0.015
ma.S.L12 -0.9322 0.046 -20.178 0.000 -1.023 -0.842
sigma2 0.0348 0.002 15.107 0.000 0.030 0.039
Ljung-Box (Q): 66.32 Jarque-Bera (JB): 91.15
Prob(Q): 0.01 Prob(JB): 0.00
Heteroskedasticity (H): 5.28 Skew: 0.53
Prob(H) (two-sided): 0.00 Kurtosis: 5.86

Table 3-2 shows that the AIC score is -96.765, that the score is low compared to other
orders, and that ar.LL.1, ma.L1, and ar.S.L12 are not statistically significant. The p-value
scores are greater than 0.005. This shows that the SARIMAX (1, 1, 1, 12) model is not the
appropriate model. It is advisable to try all orders and seasonal orders to find the most

hyperparameters that produce a model with significant accurate predictions.
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Forecast a SARIMAX

Listing 3-20 produces future instances of the series and plots them with the actual values
(see Figure 3-13).

Listing 3-20. Forecast

predictionsl = timeseriesmodel fiti.predict(start,end,typ="levels").
rename("Prediction")

test.plot(color="navy")

predictionsi.plot(color="red")

plt.ylabel("Price")

plt.xlabel("Date")

plt.xticks(rotation=45)

plt.show()
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Figure 3-13. SARMIAX (1, 1, 1, 12) forecast
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Conclusion

This chapter covers the time-series analysis. We trained a SARIMAX model with a (1,1, 1)
order and a (1, 1, 1, 12) seasonal order. It forecasts an upward trend; however, it

is unreliable because of influential data points in the series. The model commits
significant mistakes when it forecasts the series. The subsequent chapter introduces
the additive model.
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High-Quality Time-Series
Analysis

The preceding chapter covered seasonal ARIMA. After all the considerable effort in data
preprocessing and hyperparameter optimization, the model generates considerable
errors when forecasting future instances of the series. For a fast and automated
forecasting procedure, use Facebook’s Prophet; it forecasts time-series data based on
nonlinear trends with seasonality and holiday effects. This chapter introduces Prophet
and presents a way of developing and testing an additive model. First, it discusses the
crucial difference between the Statsmodels package and the Prophet package.

The Difference Between Statsmodels and Prophet

Time-series analysis typically requires missing values and outliers diagnosis and
treatment, multiple test statistics to verify key assumptions, hyperparameter
optimization, and seasonal effects control. If we commit a slight mistake in the workflow,
then the model will make significant mistakes when forecasting future instances.
Consequently, building a model using Statsmodels reasonably requires a certain level of
mastery.

Fondly remember that machine learning is about inducing a computer with
intelligence using minimal code. Statsmodels does not offer us that. Prophet fills that
gap. It was developed by Facebook’s Core Data Science team. It performs tasks such
as missing value and outlier detection, hyperparameter optimization, and control of
seasonality and holiday effects. To install FB Prophet in the Python environment, use
pip install fbprophet. To install it in the Conda environment, use conda install -c
conda-forge fbprophet.
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Understand Prophet Components

In the previous chapter, we painstakingly built a time-series model with three
components, namely, trend, seasonality, and irregular components.

Prophet Components

The Prophet package sufficiently takes into account the trend, seasonality and holidays,
and events. In this section, we will briefly discuss the key components of the package.

Trend

A trend is a single and consistent directional movement (upward or downward). We fit a
time-series model to discover a trend. Table 4-1 highlights tunable trend parameters.

Table 4-1. Tunable Trend Parameters

Parameters Description
growth Specifies a piecewise linear or logistic trend
n_changepoints The number of changes to be automatically included, if changepoints

are not specified

change _prior _scale The change of automatic changepoint selection

Changepoints

A changepoint is a penalty term. It alters the behavior of a time-series model. If you do
not specify changepoints, the default changepoint value is automated.

Seasonality

Seasonality represents consistent year-to-year upward or downward movements.
Equation 4-1 approximates this.

5(t)=3 a,cos cos(

n=1

27;nt]+bn cos(zz)nt] (Equation 4-1)
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Here, Pis the period (7 for weekly data, 30 for monthly data, 90 for quarterly data,
and 365 for yearly data).

Holidays and Events Parameters

Holidays and events affect the time series’ conditional mean. Table 4-2 outlines key
tunable holiday and event parameters.

Table 4-2. Holiday and Event Parameters

Parameters Description

daily seasonality Fit daily seasonality

weekly seasonality Fit weekly seasonality
year_seasonality Fit yearly seasonality
holidays Include holiday name and date

yeasonality prior scale Determine strength of needed for seasonal or holiday
components

The Additive Model

The additive models assume that the trend and cycle are treated as one term. Its
components are similar to the Holt-Winters technique. We express the equation as
shown in Equation 4-2.

y=S(t)+T(t)*1(r) (Equation 4-2)
The formula is written mathematically as shown in Equation 4-3.
y=8(t)+s(t)+h(t)+e (Equation 4-3)

Here, g(t) represents the linear or logistic growth curve for modeling changes that
are not periodic, s(t) represents the periodic changes (daily, weekly, yearly seasonality),
h(t) represents the effects of holidays, and + ¢, represents the error term that considers
unusual changes.
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Data Preprocessing

We obtained the example data from Yahoo Finance.' Before training the model,
repurpose the data as follows:

e df["ds"], which repurposes time

o df["y"], which repurposes the independent variable

o df.set_index(""), which sets the date and time as the index column

Listing 4-1 sets column names to the right format.

Listing 4-1. Process Data

df["ds"] = df["Date"]
df["y"] = df["Close"]
df.set_index("Date")

Table 4-3 shows how a dataframe should look like before developing a time-series
model using Prophet.

Table 4-3. Dataset

Close ds y

Date

2019-07-03 14.074300 2019-07-03 14.074300
2019-07-04 14.052900 2019-07-04 14.052900
2019-07-05 14.038500 2019-07-05 14.038500
2019-07-08 14.195200 2019-07-08 14.195200
2019-07-09 14.179500 2019-07-09 14.179500
2020-06-29 17.298901 2020-06-29 17.298901
2020-06-30 17.219200 2020-06-30 17.219200

'https://finance.yahoo.com/quote/usdzar=x/
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Table 4-3. (continued)

Close ds y
2020-07-01 17.341900 2020-07-01 17.341900
2020-07-02 17.039301 2020-07-02 17.039301
2020-07-03 17.037100 2020-07-03 17.037100

Develop the Prophet Model

Listing 4-2 specifies the official holidays. Listing 4-3 configures the model with a
confidence interval to 95%, and it considers yearly seasonality, weekly seasonality, and
daily seasonality.

Listing 4-2. Specify Holidays

holidays = pd.DataFrame({
"holiday': 'playoff',
'ds': pd.to_datetime(["2020-12-25", "2020-12-24", "2020-12-23",
"2019-12-25", "2021-01-01", "2021-01-20"]),
"lower_window": O,
"upper window": 1,

1)

Listing 4-3 completes the model.

Listing 4-3. Develop Prophet Model

m = Prophet(holidays=holidays,
interval width=0.95,
yearly seasonality=True,
weekly seasonality=True,
daily seasonality=True,
changepoint prior scale=0.095)
m.add_country holidays(country name='US")
m.fit(df)
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Create the Future Data Frame

Listing 4-4 applies the make_future_ dataframe() method to create the future dataframe.

Listing 4-4. Create a Future Data Frame Constrained to 365 Days

future = m.make future dataframe(periods=365)

Forecast

Listing 4-5 applies the predict() method to forecast future instances.

Listing 4-5. Forecast Time Series
forecast = m.predict(future)

Listing 4-6 plots previous values and forecasted values (see Figure 4-1).

Listing 4-6. Forecast

m.plot(forecast)
plt.xlabel("Date")
plt.ylabel("Price")
plt.xticks(rotation=45)
plt.show()
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Figure 4-1. Forecast

Figure 4-1 tacitly agrees with the SARIMAX in the previous chapter; however, it
provides more details. It forecasts a long-run bullish trend in the first quarters of the year
2021.

Seasonal Components

Listing 4-7 decomposes the series (see Figure 4-2).

Listing 4-7. Seasonal Components

model.plot components(forecast)
plt.show()
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Figure 4-2. Seasonal components
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Cross-Validate the Model

Cross validation tests model performance. In the background, Prophet finds forecast

errors of historical data. It sets the cutoff point and only data up to that specific cutoff

point. Listing 4-8 applies the cross_validation() method with a specified initial

CHAPTER 4  HIGH-QUALITY TIME-SERIES ANALYSIS

starting point of the training data (initial), forecast horizon (horizon), and space between

cutting off points (period). See Table 4-4.

Listing 4-8. Cross Validation

from fbprophet.diagnostics import cross validation

df cv

= cross_validation(model, initial="210 days",period="15 days",
horizon="70 days") df_cv

Table 4-4. Cross-Validation Table

ds yhat yhat_lower yhat_upper y cutoff
0 2020-02-10  14.706377  14.527866 14.862567 15.071000  2020-02-09
1 2020-02-11  14.594084  14.429592 14.753000 14.953500 2020-02-09
2 2020-02-12  14.448900 14.283988 14.625561 14.791600  2020-02-09
3 2020-02-13  14.258331  14.094124 14.428341 14.865500 2020-02-09
4 2020-02-14  14.028495 13.858400 14.204660 14.905000 2020-02-09
295 2020-06-29 19.919252 19.620802 20.193089 17.298901  2020-04-24
296 2020-06-30 19.951939  19.660207 20.233733 17.219200 2020-04-24
297  2020-07-01 19.966822 19.665303  20.250541 17.341900  2020-04-24
298 2020-07-02  20.012227  19.725297 20.301380 17.039301  2020-04-24
299 2020-07-03  20.049481  19.752089 20.347799 17.037100  2020-04-24
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Evaluate the Model

Listing 4-9 applies the performance_metrics() method to return key evaluation metrics
(see Table 4-5).

Listing 4-9. Performance

from fbprophet.diagnostics import performance metrics
df p = performance metrics(df cv)
df p

Table 4-5. Performance Metrics

horizon mse Rmse mae mape mdape coverage

0 7days  0.682286 0.826006  0.672591 0.038865 0.033701 0.166667
8days  1.145452 1.070258  0.888658 0.051701 0.047487 0.100000
9days  1.557723 1.248088  1.077183 0.063369 0.056721  0.033333
10days 2.141915 1.463528  1.299301 0.077282 0.066508 0.033333
11 days  3.547450 1.883468  1.648495 0.097855 0.086243 0.000000

-k

H W DN

59 o66days 187.260756 13.684325 9.480800 0.549271 0.244816 0.000000
60 o67days 157.856975 12.564115 8.915581 0.515198 0.244816  0.000000
61 68days 137.029889 11.705977 8.692623 0.499211 0.253436 0.000000
62 69days 116.105651 10.775233 8.146737 0.466255 0.252308 0.000000
63 70days 96.738282  9.835562  7.483452 0.427025 0.227503 0.000000

Conclusion

This chapter covers the generalized additive model. The model takes seasonality into
account and uses time as a regressor. Its performance surpasses that of the seasonal
ARIMA model. The model commits minor errors when forecasting future instances of
the series. We can rely on the Prophet model to forecast a time series.
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The first four chapters of this book properly introduce the parametric method. This
method makes bold assumptions about the underlying structure of the data. It assumes
the underlying structure of the data is linear.

The subsequent chapter introduces the nonparametric method. This method
supports flexible assumptions about the underlying structure of the data. It assumes the
underlying structure of the data is nonlinear.
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Logistic Regression
Analysis

This chapter covers the logistic regression concept and implementation in a structured
way. Preceding chapters introduced supervised learning and concentrated on the
parametric method. In supervised learning, we present a model with a set of correct
answers, and we then allow a model to predict unseen data. We use the parametric
method to solve regression problems (when a dependent variable is a continuous
variable).

This chapter introduces a supervised learning method recognized as the
nonparametric method (or the classification method). Unlike the linear regression
method, it has flexible assumptions about the structure of the data. It does not have
linearity and normality assumptions. There are two intact families of the classification
method. They are binary classification, which is used when a dependent variable has
two outcomes (i.e., yes/no, pass/fail), and multiclass classification, which is used when a
dependent variable has more than two outcomes (negative/neutral/positive).

What Is Logistic Regression?

Logistic regression is a model that estimates the extent to which an independent variable
influences a dependent variable. An independent variable is a continuous variable or
categorical, and the dependent variable is invariably a categorical variable with only

two outcomes. Although logistic regression is called regression, it is not a regression
model but a classification model. Like with linear regression, we use the model to find an
intercept and slope.
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Logistic Regression Assumptions

The classification method does not contain strict assumptions about the structure of the
data. It assumes that a dependent variable is a categorical variable and there are more
than 50 data points in the data. Ideally, we require a large sample.

Logistic Regression in Practice

We obtained the example data from Kaggle.' Table 5-1 shows the first rows of the data.

Table 5-1. Dataset

Pregnancies Glucose Blood Skin Insulin BMI Diabetes Age Outcome
Pressure Thickness Pedigree
Function
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1

Sigmoid Function

Logistic regression uses the sigmoid function to transform an output in such a way that
it promptly returns a probabilistic value that is assigned to two categorical classes. The
standard formula of is an S-shape or sigmoid shape. Figure 5-1 shows a standard logistic

function.

'https://waw.kaggle.com/uciml/pima-indians-diabetes-database
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Figure 5-1. Sigmoid function

Equation 5-1 expresses the sigmoid function.

L e’
S(x)= = Equation 5-1
( ) 1-e* e*+1 (Eq )

The standard sigmoid function takes any input and outputs a value between 0 and 1.

Descriptive Analysis

Listing 5-1 produces descriptive statistics (see Table 5-2).

Listing 5-1. Descriptive Statistics

df.describe().transpose()
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The Pearson Correlation Method

Listing 5-2 shows off the strength of the linear relationships (see Figure 5-2).

Listing 5-2. Pearson Correlation Matrix

dfcorr = df.corr(method="pearson")
sns.heatmap(dfcorr, annot=True,annot kws={"size":12}, cmap="Blues")
plt.show()
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Figure 5-2. Pearson correlation matrix

Figure 5-2 shows a weak positive association between most variables in the data.
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Other Correlation Methods

There are other methods used to measure correlation between variables, such as the
Kendall method and the Spearman method. Their use depends on the use case.

The Kendall Correlation Method

The Kendall correlation method estimates the association between rankings in ordinal
variables. An ordinal variable comprises categorical variables with unknown distances.
An example of ordinal data is a Likert scale. The Kendall correlation method has values
that range from -1 to 1, where -1 indicates that rankings are not the same, 0 indicates that
rankings are independent, and 1 indicates that two rankings are the same. Listing 5-3
produces the Kendall correlation matrix (see Figure 5-3).

Listing 5-3. Kendall Correlation Matrix

dfcorr kendall = df.corr(method="kendall")

sns.heatmap(dfcorr _kendall, annot=True,annot kws={"size":12},
cmap="0ranges")

plt.show()
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Figure 5-3. Kendall correlation matrix

Figure 5-3 shows most rankings are close to being the same. There is a slight
difference in the values produced by the Kendall correlation method and the Pearson

correlation method.

The Spearman Correlation Method

The Spearman correlation method is an alternative rank correlation method. It measures
the statistical dependence between the rankings of two variables. The method helps
identify whether variables are linear. It also has values that range from -1 and 1, where -1
indicates that there is a weak association, 0 indicates that there is no association, and

1 indicates that there is a strong association. Listing 5-4 returns a Spearman correlation
matrix (see Figure 5-4).
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Listing 5-4. Spearman Correlation Matrix
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Figure 5-4. Spearman correlation matrix

Figure 5-4 also confirms that the underlying structure of the data is linear.

The Covariance Matrix

Covariance gives details about the joint variability between an independent variable
and a dependent variable. At most, we are uninterested in the covariance; instead, we
are interested in the correlation between variables. Listing 5-5 produces the covariance

matrix (see Figure 5-5).
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Listing 5-5. Covariance Matrix

dfcov = df.cov() sns.heatmap(dfcov, annot=True,annot kws={"size":12},
cmap="Blues")

plt.show
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Figure 5-5. Covariance matrix

Figure 5-5 depicts variability between variables.

Create X and Y Arrays

After performing descriptive analysis and dimension reduction, the subsequent step is to
break down the data into two groups of one-dimensional arrays (x,y), where x represents
independent variables and y represents a dependent variable. Listing 5-6 slices the data
in such a way that the first eight columns of the data rightfully belong to the x array and

the last column belongs to the y array.
99



CHAPTER 5  LOGISTIC REGRESSION ANALYSIS

Listing 5-6. Create X and Y arrays

X

y

df.iloc[::,0:8]
df.iloc[::,-1]

Split Data into Training Data and Test Data

In supervised learning models, we split the data into training data and test data.
Listing 5-7 splits the data into training data and test data.

Listing 5-7. Split Data

from sklearn.model selection import train test split
x_train, x test, y train, y test = train test split(x,y, test size=0.2,
random_state=0)

The Eigen Matrix

The most common multicollinearity detection method is the tolerance and variance
inflation factor (VIF). Tolerance measures unique total standard variance, and VIF

is the model’s overall variance including on a single independent variable. A more
credible way of finding severity is using eigenvalues. Eigenvalues less than 0 indicate
multicollinearity. Eigenvalues between 10 and 100 indicate that there is slight
multicollinearity. Last, eigenvalues above 100 show severe multicollinearity. Listing 5-8
generates eigenvectors and values using the NumPy package and passes them as
dataframes using Pandas so you can have a clear picture of the matrix (see Table 5-3).

Listing 5-8. Create the Eigen Matrix

eigenvalues, eigenvectors = np.linalg.eig(dfcov)

eigenvalues = pd.DataFrame(eigenvalues)

eigenvectors = pd.DataFrame(eigenvectors)

eigens = pd.concat([eigenvalues,eigenvectors],axis=1)

eigens.index = df.columns

eigens.columns = ("Eigen values","Pregnancies","Glucose","BloodPressure",

"SkinThickness","Insulin","BMI","DiabetesPedigreeFunction”,"Age","Outcome")

eigens
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Normalize Data

Listing 5-9 transforms the data in such a way that the mean value is 0 and the standard
deviation is 1.

Listing 5-9. Normalize Data

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)

x_test = scaler.transform(x test)

Modeling Data

We develop two models to address the classification problem at hand; the first model
uses Statsmodels, and the second one uses SciKit-Learn.

Develop the Logistic Classifier Using Statsmodels

In the past two chapters (covering time-series analysis), we criticized how difficult it is
to develop a reliable time-series model using Statsmodels. This does not mean that the
package in its entirety is bad. It is still relevant; actually, there are few packages that offer
in-depth analysis like Statsmodels does.

Add the Constant

By default, Statsmodels does not include the constant. Listing 5-10 manually adds a
constant.

Listing 5-10. Add the Constant

from statsmodels.api import sm
x_constant = sm.add_constant(x_train)
x_test = sm.add _constant(x_test)
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Develop the Logistic Classifier

The default classifier Statsmodels uses the logit model and maximum likelihood
method (MLE). We express the formula as shown in Equation 5-2.

E,, =log|X(6)|-log|S|+ tr[S >(0)" ] -p (Equation 5-2)

Here, log represents natural logarithms, S represents the empirical covariance
matrix, © represents parameter vectors, and Y (0) and |Y.(6) | represent the covariance.
See Listing 5-11.

Listing 5-11. Develop the Logistic Classifier

model = sm.Logit(y train,x constant).fit()

Partial Regression

The relaxed way of depicting the relationship among variables is using a partial
regression plot. Listing 5-12 plots the association between variables under investigation
(see Figure 5-6).

Listing 5-12. Partial Regression

fig = sm.graphics.plot partregress grid(model)
plt.show()
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< Partial Regression Plot
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Figure 5-6. Partial regression grid

Model Summary

Listing 5-13 and Table 5-4 summarize the model.

Listing 5-13. Profile

summary = model.summary()
summary
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Dep. Variable: Outcome No. Observations: 614
Model: Logit Df Residuals: 605
Method: MLE Df Model: 8
Date: Thu, 15 Oct 2020 Pseudo R-squ.: 0.2607
Time: 19:15:31 Log-Likelihood: -296.59
converged: True LL-Null: -401.18
Covariance Type: nonrobust LLR p-value: 7.418e-41
coef std err z P>lzl [0.025 0.975]
const -0.7920 0.106 -7.484 0.000 -0.999 -0.585
x1 0.3147 0.118 2.664 0.008 0.083 0.546
X2 1.0788 0.131 8.224 0.000 0.822 1.336
x3 -0.2685 0.113 -2.369 0.018 -0.491 -0.046
x4 0.0710 0.125 0.569 0.569 -0174 0.316
x5 -0.1664 0.115 -1.443 0.149 -0.393 0.060
X6 0.6955 0.131 5.313 0.000 0.439 0.952
X7 0.2983 0.110 2.700 0.007 0.082 0.515
x8 0.2394 0.124 1.931 0.054 -0.004 0.483

Table 5-4 displays information about the logistic regression model. It outlines the

estimated intercept and slope. In addition, it has test statistics results that are useful for

testing hypotheses and information about the model’s performance. In classification

analysis, we do not use R? to measure variability. Instead, we use the pseudo R

Table 5-4 indicates we have statistically significant relationships. Few established

relationships are statistically insignificant.
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Develop the Logistic Classifier Using SciKit-Learn

In the next section, we use the Scikit-Learn package. We follow the same procedure as in
other chapters. Listing 5-14 trains the model with default hyperparameters.

Listing 5-14. Develop the Logistic Classifier with Default Hyperparameters

from sklearn.linear _model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(x_train,y train)

Logistic Hyperparameter Optimization

After reviewing the contents of the preceding chapters, you might have noticed that
hyperparameters play a significant role in model performance. Before finalizing machine
learning models, ensure that a model has optimal hyperparameters. Listing 5-15 returns
optimal hyperparameters.

Listing 5-15. Hyperparameter Optimization

from sklearn.model selection import GridSearchCV
param _grid = {"dual":[False,True],
"fit_intercept":[False,True],
"max_iter":[1,10,100,1000],
"penalty":("11","12"),
"tol":[0.0001,0.001,0.01,1.0],
"warm start":[False,True]}
grid model = GridSearchCV(estimator=logreg, param grid=param grid)
grid model.fit(x_train,y train)

print("Best score: ", grid model.best score , "Best parameters: ",

grid model.best params )

Best score: 0.7960609991158407 Best parameters: {‘dual’: False, ‘fit_intercept’: True,
‘max_iter’: 100, ‘penalty’: ‘12) ‘tol’: 0.0001, ‘warm_start’: False}
Listing 5-16 completes the model.
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Listing 5-16. Finalize the Logistic Classifier

logreg = LogisticRegression(dual= False,

logreg.fit(x_train,y train)

Predictions

fit_intercept= True,
max_iter= 10,
n_jobs= -5,

penalty= '12',
t01=0.0001,

warm start= False)

Listing 5-17 obtains predicted values and, thereafter, creates a dataframe that shows

actual values and predicted values (see Table 5-5).

Listing 5-17. Actual Values and Predicted Values

y _pred = logreg.predict(x_test)
y pred = pd.DataFrame({"Actual":y test, "Predicted": y predlogreg})

y_pred

Table 5-5. Actual Values and Predicted Values

Actual Predicted
661 1 1
122 0 0
113 0 0
14 1 1
529 0 0
476 1 0
482 0 0
230 1 1
527 0 0
380 0 0
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Find the Intercept

Listing 5-18 finds the intercept.

Listing 5-18. Intercept

logreg.intercept_
array([-0.78763914])

Find the Estimated Coefficients

Listing 5-19 shows the parameters of our model.

Listing 5-19. Coefficients

logreg.coef
array([[ 0.3097449 , 1.06006236, -0.26057825, 0.06865213, -0.15816976,
0.68419394, 0.29353764, 0.2396453 ]])

Evaluate the Logistic Classifier

After finalizing a binary classifier, we must look at how well the binary classifier classifies
classes. This involves comparing the difference between actual and predicted labels. We
begin with developing a confusion matrix.

Confusion Matrix

When the classifier makes predictions, it is prone to make errors. When dealing with
a binary classification problem, there are two types of errors, namely, the Type I error
(False Positive) and the Type II error (False Negative).

False positive (FP): Incorrectly predicting that an event took place.
An example is predicting that a patient is diabetic when a patient
is not diabetic.

False negative (FN): Incorrectly predicting an event that never
took place. An example is predicting that a patient is not diabetic
when a patient is diabetic.
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Although the classifier is prone to making errors, it does get some predictions correct.

True positive (TP): Correctly predicting that an event took place.
An example is correctly predicting that a patient is diabetic.

True negative (TN): Correctly predicting that an event never took
place. An example is correctly predicting that a patient is not
diabetic.

A confusion matrix takes four combinations of actual classes and predictions. A
confusion matrix looks like Table 5-6, Listing 5-20, and Table 5-7.

Table 5-6. Confusion Matrix

Predicted: No Predicted: Yes

Actual: No TN =98 FP=9
Actual: Yes FN=18 TP =29

Listing 5-20. Confusion Matrix

cmatlogreg = pd.DataFrame(metrics.confusion matrix(y test,y predlogreg),
index=["Actual: No","Actual: Yes"],
columns=("Predicted: No","Predicted: Yes"))

cmatlogreg

Table 5-7. Confusion Matrix

Predicted: No Predicted: Yes

Actual: No 98 9
Actual: Yes 18 29

Classification Report

A classification report is a detailed report that highlights how well the classifier performs. It
encompasses key metrics such as accuracy, precision, F-1 support, recall, and prevalence.
Calculations of these metrics come from the confusion matrix. Table 5-8 outlines key
metrics in a classification report, and Listing 5-21 returns a classification report.
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Table 5-8. Classification Report

Metric Description

Precision Determines how often the classifier is correct

Accuracy Determines how often the classifier got predictions right

F1-support Determines the mean value of precision and recall

Support Determines the number of samples of the true response that lies in that class

Listing 5-21. Classification Report

creportlogreg = pd.DataFrame(metrics.classification report(y test,
y_predlogreg, output dict=True)).transpose()
creportlogreg

Table 5-9 highlights that the logistic classifier is accurate 82% of the time. It also tells
us that there is an imbalance in the data. The classifier is more precise when it predicts
class 0 than when it predicts class 1.

Table 5-9. Classification Report

precision recall f1-score support
0 0.844828 0.915888 0.878924 107.000000
1 0.763158 0.617021 0.682353 47.000000
Accuracy 0.824675 0.824675 0.824675 0.824675
macro avg 0.803993 0.766455 0.780638 154.000000
weighted avg 0.819902 0.824675 0.818931 154.000000

ROC Curve

A receiver operating characteristics (ROC) curve is a tool used to find appropriate
hyperparameter settings. It helps summarize the trade-off between the true positive
rate and the false positive rate using different probability thresholds. On the x-axis lies
the false positive rate, and on the y-axis lies the true positive rate. The closer the curve
follows the left-side border than the top border of the ROC space, the more accurate it is.
See Listing 5-22.
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Listing 5-22. ROC Curve

y_predlogreg proba = logreg.predict proba(x test)[::,1]

fprlogreg, tprlogreg, = metrics.roc_curve(y test,y predlogreg proba)
auclogreg = metrics.roc_auc_score(y test, y predlogreg proba)
plt.plot(fprlogreg, tprlogreg, label="AUC: "+str(auclogreg), color="navy")
plt.plot([0,1],[0,1],color="red")

plt.x1im([0.00,1.01])

plt.ylim([0.00,1.01])

plt.xlabel("Specificity")

plt.ylabel("Sensitivity")

plt.legend(loc=4)

plt.show()

The curve in Figure 5-7 follows the left-side border for a while; then it smoothly
bends to the top border of the ROC space. The curve slowly approaches the 45-degree
line. This means that the logistic classifier is not accurate as we would want it to be.
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Figure 5-7. ROC curve
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Area Under the Curve

The area under the curve (AUC) is also recognized as the index of accuracy. It consists

of performance metrics for an ROC curve. It indicates how the classifier distinguishes
between classes. The closer the area under the curve score is to 1, the better the
predictive power the model has. The AUC score is 0.87. Using the 80/20 rule, the
classifier is skillful in distinguishing classes between actual classes and predicted classes.

Precision Recall Curve

We use the precision-recall curve to show the trade-offs between precision and recall
across different thresholds. Ideally, we want a curve that straightforwardly moves to the
top right and sharply bends horizontally. Such a curve has high precision and high recall.
This means that the binary classifier gets all the predictions correct. See Listing 5-23.

Listing 5-23. Precision-Recall Curve

precisionlogreg, recalllogreg, thresholdlogreg = metrics.precision recall
curve(y_test,y predlogreg)

apslogreg = metrics.roc_auc_score(y test,y predlogreg)
plt.plot(precisionlogreg, recalllogreg, label="aps: "+str(apslogreg),
color="navy",alpha=0.8)

plt.axhline(y=0.5,color="red",alpha=0.8)

plt.xlabel("Precision")

plt.ylabel("Recall")

plt.legend(loc=4)

plt.show()

The curve in Figure 5-8 does not approach the top-right border; rather, it slowly
declines to the bottom right. This indicates that there is an overlap between patients with
diabetes and those without diabetes. The precision and recall are not high enough.
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Figure 5-8. Precision-recall curve

Find the Average Precision Score

To make sense of a precision-recall curve, we unbundle the central tendency. An
average precision score (APS) is the arithmetic average of the precision scores inside the
precision-recall curve. The classifier is precise 76% of the time.

Learning Curve

A learning curve finds whether a model has a low bias error term (under-fitting) and
high variance (over-fitting). It depicts a model’s learning process over time. This curve
enables us to determine the extent to which we can benefit from increased data points
in the training data and to find out whether the estimator suffers variance error or bias.
There are two types of learning curves, namely, training learning curve (calculated from
the training data) and validation learning curve (calculated using the validation data). A
learning curve has two axes: the training set size on the x-axis and the accuracy score on
the y-axis. Figure 5-9 shows the classifier’s learning process. See also Listing 5-24.
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Listing 5-24. Learning Curve

trainsizelogreg, trainscorelogreg, testscorelogreg = learning curve(logreg,
X, Y, cv=5, n_jobs=5, train sizes=np.linspace(0.1,1.0,50))
trainscorelogreg mean = np.mean(trainscorelogreg,axis=1)
testscorelogreg mean = np.mean(testscorelogreg,axis=1)
plt.plot(trainsizelogreg,trainscorelogreg mean,color="red", label="Training
score", alpha=0.8)

plt.plot(trainsizelogreg,testscorelogreg mean,color="navy", label="Cross
validation score", alpha=0.8)

plt.xlabel("Training set size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()
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Figure 5-9. Learning curve
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At the beginning phase of the learning process, the logistic classifier over-fits.
However, as the training set size increases, the classifier over-fits less. As the classifier
approaches the 400" data point, the cross-validation accuracy score starts to decrease.
Adding more data points will not increase generalization. You will learn more about how
to interpret a learning curve in the subsequent chapters.

Conclusion

This chapter introduced the nonparametric method. It assessed two logistic classifiers
developed using Statsmodels and SciKit-Learn. The second mode shows the
characteristics of a well-behaved model. The model is correct 85% of the time. Ideally,
we want a model that is correct 100% of the time. There are several ways of improving the
performance of the logistic classifier, such as dimension reduction and regularization. In
the SciKit-Learn package, there is the logistic classifier with built-in cross validation and
aridge classifier. These models can help improve the performance of the classifier.
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Dimension Reduction

and Multivariate Analysis
Using Linear Discriminant
Analysis

The preceding chapter presented a classification method known as logistic regression.

It solves binary classification problems. Multinomial logistic regression (MLR) is an
extension of logistic regression using the Softmax function; instead of the Sigmoid
function, it applies the cross-entropy loss function. It is a form of logistic regression used
to predict a target variable with more than two classes. It differs from linear discriminant
analysis (LDA) in the sense that MLR does not assume the data comes from a normal
distribution. LDA comes from a linear family; it assumes normality and linearity.

We use LDA to solve binary class problems and multiclass classification problems.
This chapter introduces linear classification and discriminant analysis. It reveals a way
of using LDA to condense data to fewer dimensions and estimate categorical variables
using continuous variables.

This model works like models concealed in the preceding chapters, like linear
regression and logistic regression. It is also similar to analysis of covariance (ANOVA).
ANOVA estimates continuous variables using categorical variables. LDA reasonably
assumes that the covariance structure of the groups is alike. If the covariance structure
groups are unequal, then use the quadratic discriminant analysis. An extension of the
LDA model is known as Fisher’s discriminant analysis (FDA). FDA does not perform
classification, but features obtained after transformation can be used for classification.
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Both logistic regression and LDA estimate a categorical dependent variable. What
differentiates LDA from logistic regression has more assumptions. It is also like principal
component analysis and factor analysis in the sense it looks for linear combinations that
best explain the data. LDA works best when there is a large sample.

It applies the discriminant function to allocate a group of continuous variables into
categories by finding the linear combinations of variables and maximizing the difference
between them. Likewise, it applies Fisher’s linear discriminant rule to maximize the ratio
between the within-class scatter matrix and between-class scatter matrix and to discover
the linear combinations in groups.

Last, it estimates categorical variables using only continuous variables. If
independent variables are categorical and the dependent variable is categorical, use
an alternative model recognized as discriminant correspondence analysis. Given its
inheritance from the linear family, test the model against assumptions of linearity and
normality. LDA serves two purposes: dimension reduction and classification.

Dimension Reduction

We use LDA, which is similar to PCA, for dimension reduction. It discovers variance
explained in the data and reduces data into fewer dimensions. Remember to use
eigenvalues to find the source of considerable variation in the data. An eigenvalue with
the uppermost loading is the first function, the one with the second-highest loading is
the second function, and so forth. We eliminate the factors with excessive eigenvalues
(extreme variability) based on some criteria.

Classification

LDA solves both binary and multiclass classification problems. It applies a linear
classifier to assign variables to a class. Given that the model applies a linear classifier, it
inherits strict assumptions of linearity and normality.

Assumptions

LDA makes strong assumptions about the structure of the data. We consider the LDA
classifier reliable if it satisfies the assumptions highlighted in Table 6-1.
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Table 6-1. LDA Assumptions

Assumption Description

Multivariate There must be multivariate normality in each grouping of variables; independent
normality variables must follow a normal distribution.

Covariance Variances among group variables are the same across levels of predictors. When
covariance is equal, one can make use of linear discriminant analysis. Otherwise, use
quadratic discriminant analysis.

Correlation  Variables must not be highly correlated.

Random Participants must be selected using random sampling. A participant’s score must be
sampling independent of variables.

Assuming there are C classes, let the mean vector of the class be the number of
samples within classes.
Equation 6-1 is for a within-class scatter matrix.

Cc M;

o= (v )y - m) (Equation 6-1)

i=1 j=1

Equation 6-2 is for a between-class scatter matrix. Equation 6-3 is within scatter
matrix.

C

Sy ZZ(J’,- —.U,-)(y,- K )T (Equation 6-2)

i=1

1< , .
:EZ w;(mean of the entire dataset ) (Equation 6-3)
i=1
It performs a transformation that maximizes the between-class scatter matrix while
minimizing the within-scatter. See Equation 6-4.

. det(S,) )
maximize = ———= (Equation 6-4)

det(S,)

This transformation keeps class separability while reducing the variation due to
sources other than identity. The linear transformation is given by a matrix U whose
columns are the eigenvectors of S,,'S,.
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Basically, it computes the d-dimensional mean vectors, followed by the scatter
matrices and eigenvectors and equivalent eigenvalues for the scatter matrices.
Thereafter, the model class the eigenvalues and select larger eigenvalues to form a dxk
dimensional matrix and convert the samples onto the new subspace. The end result is a
class separation.

Develop the LDA Classifier

The example data was retrieved from ML Data.! We want to predict the quality of a car
based on a set of independent variables. See Listing 6-1.

Listing 6-1. Develop the Model with Default Hyperparameters

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
LDA = LinearDiscriminantAnalysis()
LDA.fit(x_train,y train)

LDA Hyperparameter Optimization

Tuning LDA hyperparameters is not as tedious as tuning hyperparameters of other
classification models. Table 6-2 highlights important hyperparameters.

Table 6-2. Tunable Hyperparameters

Parameters Description

n_component Determines the number of components.

shrinkage Determines the automatic shrinkage using the Ledoit-Wolf lemma or
specifies the value.

solver Determines the solver to use; use svd for single-value decomposition,
1sqr for least squares solutions, and eigen for Eigenvalue decomposition
by default

store_covariance Determines whether to store covariance

tol Determines the tolerance for the optimization

'https://waw.mldata.io/dataset-details/cars/
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Listing 6-2 finds the hyperparameters that yield optimal model performance.

Listing 6-2. Hyperparameter Optimizations

param_gridLDA = {"n_components":[1,2,3,4,5,6,7,8,9],
"solver":("svd", "lsqr", "eigen"),
"store covariance":[False,True],
"tol":[0.0001,0.001,0.01,1.0]}
grid modellDA = GridSearchCV(estimator=LDA, param grid= param gridLDA)
grid modellDA.fit(x train,y train)
print("Best score: ", grid modellLDA.best score , "Best parameters: ",

grid modellLDA.best params )

Best score: 0.7622550979608157 Best parameters: {'n_components’: 1, ‘solver’: ‘svd,
‘store_covariance’: False, ‘tol’: 0.0001}
Listing 6-3 completes the model using default hyperparameters.

Listing 6-3. Finalize the LDA Classifier

LDA = LinearDiscriminantAnalysis(n_components= 1,
solver= ‘'svd',
store_covariance= False,
tol= 0.0001)
LDA.fit(x_train,y train)

Listing 6-4 transforms the variables.

Listing 6-4. Create New Features
features new = LDA.transform(x_train)

Listing 6-5 estimates the percentage of variance explained by each of the selected
components.

Listing 6-5. Explained Variance Ratio

print(LDA.explained variance ratio )

[1.]

Each of the selected components explains 100% of the variance. Listing 6-6 prints the
original number of features and the number of reduced features.
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Listing 6-6. The Number of Original and Reduced Features

print('Original feature #:', x_train.shape[1])
print('Reduced feature #:', features new.shape[1])
Original feature #: 7

Reduced feature #: 1

Initially, we had eight features; there are now seven features.

Predictions

After finalizing the classifier, the subsequent step involves comparing the actual values of
the dependent variable and predicted values of the variable. Listing 6-7 tabulates actual
values and predicted values (see Table 6-3).

Listing 6-7. Actual Values and Predicted Values
y_predLDA = LDA.predict(x_test)
pd.DataFrame({"Actual": y test,"Predicted": y predLDA})

Table 6-3. Actual Values and
Predicted Values

Actual Predicted

661 1 1
122 0 0
113 0 0
14 1 1
529 0 0
476 1 0
482 0 0
230 1 1
527 0 0
380 O 0
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Table 6-3 does not tell us much about how the classifier performs.

Evaluate the LDA Classifier

To understand how the LDA classifier performs, we must compare actual classes and
predicted classes side by side.

Confusion Matrix

We commonly recognize a confusion matrix as the error matrix. It is a 2x2 matrix that
counts actual labels and predicted labels. Listing 6-8 tabulates the confusion matrix (see
Table 6-4).

Listing 6-8. Confusion Matrix

cmatLDA = pd.DataFrame(metrics.confusion matrix(y test,y predlLDA),
index=["Actual: No","Actual: Yes"],

columns=("Predicted: No","Predicted: Yes"))
cmatLDA

Table 6-4. Confusion Matrix

Predicted: No Predicted: Yes

Actual: No 263 0
Actual: Yes 0 263

Table 6-4 highlights values similar to the logistic classifier. We expect to find similar
performance results.
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Classification Report

Table 6-5 highlights important classification evaluation metrics. It gives us an overview
of how well the classifier performs. See Listing 6-9.

Listing 6-9. Classification Report

creportLDA = pd.DataFrame(metrics.classification report(y test,y predlLDA,
output_dict=True)).transpose()
creportLDA

Table 6-5. Classification Report

precision recall f1-score support
0 1.0 1.0 1.0 263.0
1 1.0 1.0 1.0 83.0
accuracy 1.0 1.0 1.0 1.0
macro avg 1.0 1.0 1.0 346.0
weighted avg 1.0 1.0 1.0 346.0

The LDA classifier shows the optimal model performance. It is accurate and precise
100% of the time.

ROC Curve

Listing 6-10 applies the roc_curve() and roc_auc_score() method to depict actual
classes and probabilities of each class to develop the curve (see Figure 6-1).

Listing 6-10. ROC Curve

y_predLDA probalDA = LDA.predict proba(x test)[::,1]

fprLDA, tprLDA, _ = metrics.roc_curve(y test,y predLDA probalDA)
aucLDA = metrics.roc_auc_score(y test,y predLDA probalDA)
plt.plot(fprLDA, tprLDA,label="AUC: " + str(aucLDA),color="navy")
plt.plot([0,1], [0,1],color="red")

plt.x1im([0.00,1.01])
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plt.ylim([0.00,1.01])
plt.xlabel("Sensitivity")
plt.ylabel("Specificity")
plt.legend(loc=4)
plt.show()
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Figure 6-1. ROC curve

Figure 6-1 shows that the AUC score is 1.0. The LDA classifier shows how the optimal
model performs.
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Precision-Recall Curve

Listing 6-11 produces a curve that tells us about the relevance and precision of the LDA
classifier when it predicts classes. We use a precision-recall curve.

Listing 6-11. Precision-Recall Curve

precisionLDA, recalllDA, thresholdLDA = metrics.precision recall curve(

y _test,y predLDA)

apsLDA = metrics.roc_auc_score(y test,y predLDA)

plt.plot(precisionLDA, recalllDA, label="APS: "+str(apsLDA),color="navy")
plt.axhline(y=0.5,color="red",alpha=0.8)

plt.xlabel("Recall")

plt.ylabel("Precision")

plt.legend(loc=4)

plt.show()

Figure 6-2 shows characteristics of a well-behaved precision-recall curve.
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Figure 6-2. Precision-recall curve
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Learning Curve

Listing 6-12 and Figure 6-3 depict the LDA classifier’s learning process.

Listing 6-12. Learning Curve

trainsizelDA, trainscorelDA, testscorelDA = learning curve(LDA, x, y, cv=5,
n_jobs=5, train sizes=np.linspace(0.1,1.0,50))

trainscorelDA mean = np.mean(trainscorelDA,axis=1)

testscorelDA mean = np.mean(testscorelDA,axis=1)
plt.plot(trainsizelDA,trainscorelLDA mean,color="red", label="Training Score")
plt.plot(trainsizelDA,testscorelDA mean,color="navy", label="Cross
Validation Score")

plt.xlabel("Training Set Size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()
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Figure 6-3. Learning curve
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Figure 6-3 conveys that the classifier’s training and cross-validation accuracy is stable
for the first 550 data points, but as we increase the training set, the accuracy drops.

Conclusion

This chapter explored discriminant analysis. It focused primarily on linear discriminant
analysis and illustrated ways of using it for dimension reduction linear classification.
The model used a single decomposition solver, which was restricted from storing the
covariance and tolerance of the optimization set to 0.0001. It shows the optimal model
performance.
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Finding Hyperplanes
Using Support Vectors

The preceding chapter presented a linear classification model called linear discriminant
analysis (LDA), which distributes groups equally when covariance matrices are
equivalent. Although the classifier is one of the optimum linear classification models, it
has its limits. Foremost, we cannot estimate the dependent variable using a categorical
variable. Second, we train and test the model under strict assumptions of normality.
This chapter brings together an alternative linear classification model called support
vector machine (SVM). It is part of the ensemble family; it estimates either a continuous
variable or a categorical variable. It applies a kernel function to transform data in such a
way that a hyperplane best fits the data. Unlike LDA, SVM makes no assumptions about
the underlying structure of the data.

Support Vector Machine

SVM typically assumes that the data points are linearly indistinguishable in lower
dimensions and linearly distinguishable in higher dimensions. It finds an optimal
hyperplane to take full advantage of the margin and simplify nonlinear problems. First,
it efficiently captures data and develops a new dimensional vector space. Thereafter,

it develops a linear boundary of the new vector space into two classes. It positions a
data point either above or underneath a hyperplane, resulting in classification. It uses a
kernel function to estimate a hyperplane with an extreme margin. The primary kernel
functions are the linear function, polynomial function, and sigmoid function. Except

if you are analyzing high-dimensional data, there is absolutely no need to study these
functions extensively. You can always use hyperparameter optimization to find an
optimal function.

129
© Tshepo Chris Nokeri 2021

T. C. Nokeri, Data Science Revealed, https://doi.org/10.1007/978-1-4842-6870-4_7


https://doi.org/10.1007/978-1-4842-6870-4_7#DOI
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Support Vectors

Support vectors are data points next to the hyperplane. They determine the position of
the hyperplane. Furthermore, when we eliminate these data points, the position of a
hyperplane changes.

Hyperplane

A hyperplane is a line that splits into two categories (each class falls on either side).

It serves as a boundary between the two sides. Positioning an optimal hyperplane

is challenging when using real-world data. SVM transforms the data into higher
dimensions through a procedure called kerneling. After transforming the data, it does
not develop a straight line but a plane. It applies a kernel function to transform the data,
so it positions a hyperplane at the proper location. Figure 7-1 portrays a hyperplane.

Figure 7-1. Hyperplane
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Figure 7-1 shows the formula of the straight line expressed in Equation 7-1.
WT x+b=0 (Equation 7-1)

Here, Wrepresents the slope of the line, x represents the input vector, and b
represents bias. The two lines (highlighted in orange) pass through the support vectors
and support the best plane. A decent hyperplane has an extreme margin for the support
vectors.

It figures out how to position a hyperplane during training by using an optimization
procedure that enlarges the separation. We do not add hyperplanes manually. It applies
a technique recognized as a kernel trick to transform the data. The technique enables it
to enlarge the dimensional vector space with less computing power.

Support Vector Classifier

A support vector classifier (SVC), also known as a margin classifier, permits certain
data points to be on the inappropriate side of the hyperplane. If the data is not directly
distinguishable, it includes slack variables to permit the violation of constraints by
allowing certain data points to fall inside the margin; in addition, it punishes them.

It limits slack variables to non-negative values. If slack variables are over 0, it sets aside
constraints by positioning a plane next to the data points instead of the margin by
selecting a lambda. Figure 7-2 shows how the SVC works.

Linear

Separation Classification

Transformation

Figure 7-2. LinearSVC workflow

There are three basic tasks the LinearSVC classifier performs.

e Transformation: Changing an input space into higher-dimensional
vectors space

o Linear separation or straight division: Realizing a hyperplane with the
most margin

o Classification: Allocating data points to a class
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Develop the LinearSVC Classifier
We obtained the example data from Kaggle.! Listing 7-1 completes the classifier.

Listing 7-1. Finalize the LinearSVC Classifier

from sklearn.svm import LinearSVC
1svc = LinearSVC()
lsvc.fit(x_train,y train)

LinearSVC Hyperparameter Optimization

Table 7-1 highlights key hyperparameters.

Table 7-1. Tunable Hyperparameters

Parameter Description

Dual Determines whether the model must solve dual problems

fit_intercept Determines whether the model must calculate the intercept.

max_iter Determines the maximum number of iterations.

Penalty Determines the regularization method to use. Available penalty terms include I1
penalty (lasso) and 12 penalty (ridge).

Tol Determines the tolerance for the optimization.

Loss Determines the type of function. Available loss functions include hinge and

squared hinge.

Listing 7-2 creates a dictionary with group parameters and a specific range of
values we expect to find the best cross-validation score from and then applies the
GridSearchCV() method to develop a grid model and find hyperparameters with the
best score.

'Visit https://www.kaggle.com/uciml/pima-indians-diabetes-database to download the data.
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Listing 7-2. Hyperparameter Optimization

param _gridlsvc = {"dual":[False,True],
"fit_intercept":[False,True],
"max_iter":[1,10,100,100],
"penalty":("11","12"),
"tol":[0.0001,0.001,0.01,1.0],
"loss":("hinge", "squared hinge")}
grid modellsvc = GridSearchCV(estimator=1svc, param grid=param gridlsvc)
grid modellsvc.fit(x_train,y train)

print("Best score: ", grid modellsvc.best score , "Best parameters: ",

grid modellsvc.best params )

Best score: 0.7671331467413035 Best parameters: {‘dual’: False, ‘fit_intercept’: True,
‘loss’: ‘squared_hinge, ‘max_iter’: 100, ‘penalty’: ‘1, ‘tol’: 0.001}

Finalize the LinearSVC Classifier

The previous findings suggest that we use the squared hinge function and control
for bias and variance using the L1 penalty term. Listing 7-3 completes the LinearSVC
classifier.

Listing 7-3. Finalize the LinearSVC Classifier

lsvc = LinearSVC(dual= False,
fit_intercept= True,
max_iter= 100,
penalty= '11',
tol= 0.001,
loss="squared hinge")
lsvc.fit(x_train,y train)
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Evaluate the LinearSVGC Classifier

Listing 7-4 tabulates the actual classes and predicted classes side by side. See also
Table 7-2.

Listing 7-4. Actual Values and Predicted Values

y_predlsvc = lsvc.predict(x test)
pd.DataFrame({"Actual":y test,"Predicted":y predlsvc})

Table 7-2. Actual Values and Predicted Values

Actual Predicted
661 1 1
122 0 0
113 0 0
14 1 1
529 0 0
476 1 0
482 0 0
230 1 1
527 0 0
380 0 0

Confusion Matrix

Listing 7-5 and Table 7-3 give us an abstract report about the classifier’s performance.

Listing 7-5. Confusion Matrix

cmatlsvc = pd.DataFrame(metrics.confusion matrix(y test,y predlsvc),
index=["Actual: No","Actual: Yes"],
columns=("Predicted: No","Predicted: Yes"))
cmatlsvc
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Table 7-3. Confusion Matrix

Predicted: No Predicted: Yes

Actual: No 98 9
Actual: Yes 18 29

Classification Report

Listing 7-6 and Table 7-4 show how reliable the LinearSVC classifier is. It provides the
model’s accuracy score, precision score, recall, and other key evaluation metrics.

Listing 7-6. Classification Report

creportlsvc = pd.DataFrame(metrics.classification report(y test,y predlsvc,
output_dict=True)).transpose()
creportlsvc

Table 7-4. Classification Report

precision recall f1-score support
0 0.844828 0.915888 0.878924 107.000000
1 0.763158 0.617021 0.682353 47.000000
accuracy 0.824675 0.824675 0.824675 0.824675
macro avg 0.803993 0.766455 0.780638 154.000000
weighted avg 0.819902 0.824675 0.818931 154.000000

The LinearSVC classifier is accurate 82% of the time. It is precise 84% of the time
when predicting class 0 and 76% of the time when predicting class 1.
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Learning Curve

Listing 7-7 produces a curve that depicts the progression of the LinearSVC classifier’s
accuracy as it learns the training data (see Figure 7-3).

Listing 7-7. Learning Curve

trainsizelsvc, trainscorelsvc, testscorelsvc = learning curve(lsvc, Xx, vy,
cv=5, n_jobs=5, train sizes=np.linspace(0.1,1.0,50))

trainscorelsvc_mean = np.mean(trainscorelsvc,axis=1)

testscorelsvc mean = np.mean(testscorelsvc,axis=1)
plt.plot(trainsizelsvc,trainscorelsvc_mean,color="red", label="Training Score")
plt.plot(trainsizelsvc,testscorelsvc_mean,color="navy", label="Cross
Validation Score")

plt.xlabel("Training Set Size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()
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Figure 7-3. Learning curve
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In the first phase of the learning process, the training accuracy score sharply
declined to an all-time low of about 70%, followed by an upward rally. As the classifier
reached the 200" data point, the training accuracy score improved. At most, the training
accuracy score is below the cross-validation accuracy score. Last, as the classifier is
about to reach the 600" data point, the training accuracy score surpasses the cross-
validation accuracy score.

Conclusion

This chapter presented how SVM changes the input space into a higher-dimensional
vector space and creates a hyperplane and classifies variables. We configured the
LinearSVC classifier with a squared hinge loss function and an L1 penalty term.
Remember, we do not develop ROC curve and precision-recall curve as the classifier
lacks probabilistic importance. We rely upon the classification report and learning curve
to comprehend the underlying performance of the classifier.
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CHAPTER 8

Classification Using
Decision Trees

This chapter presents the most widespread ensemble method, the decision tree.

A decision tree classifier estimates a categorical dependent variable or a continuous
dependent. It solves binary and multiclass classification problems. We base the model
on a tree-like structure. It breaks down the data into small, manageable chunks while
incrementally developing a decision tree. The outcome is a tree-like structure with
decision nodes and leaf nodes. We consider it a greedy model since its primary concern
is to reduce the training time while maximizing information gain.

To get the best out of decision trees, knowing the data and partitions are required
in advance. We construct a decision tree by recursive partitioning the training data into
decision nodes. Thereafter, we examine variables and branch cases grounded on the
findings of the examination.

It selects variables with excessive predictive power, less impurity, and low entropy. It
also explores the paramount variable to decrease impurity. The most important thing is the
purity of the leaves after partitioning; it discovers a tree with the lowest entropy on the nodes.
In summary, the decision tree classifier serves two purposes: separating data into different
subsets and shortening the branches of a decision tree. It limits the depth of the tree.

Entropy

Entropy represents an estimate of randomness or uncertainty. The lower the entropy, the
less uniform the distribution is, and the more the nodes. It shows the level of disorder
in the data. It estimates the homogeneity of samples in a node. If the variables are
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homogenous, then the entropy is zero. If we equally divide samples, then entropy is 1.
We estimate entropy using Equation 8-1.

Entropy =p(A) log(p(A))-p(B)log(p(B)) (Equation 8-1)

Here, p is the prop or ratio of a category. We use entropy to group comparative data
groups into comparable classes. High entropy shows that we have highly disordered
data. A low entropy shows the data is well-organized. The model assumes that a less
impure node requires less information to describe it, and a more impure node requires
more information.

A decision tree estimates the entropy of the node, and it then estimates the entropy
of each node of the partition. Thereafter, it weighs averages of the subnodes and estimate
information gain and selects the node with the highest information gain for partitioning.
Organizing data for decision tree classification involves partitioning the data and group
samples together in classes they belong to and maximizing the purity of the groups each
time it develops a node.

Information Gain

Information gain refers to information that increases the level of certainty after a
partition. It is the opposite of entropy. If weighted entropy decreases, then information
gain increases, and vice versa. In summary, the decision tree classifier finds variables
that return the most noteworthy information gain. To calculate information gain, we use
Equation 8-2.

Information gain = (Entropy before the split)—
(Weighted entropy after the split) (Equation 8-2)

Structure of a Decision Tree

As mentioned, a decision tree is a flowchart-based tree-like structure. A decision tree
estimates a sin curve using a bunch of if-then-else decision rules. The complexity
of the decision rules depends on the depth of the tree. A decision tree encompasses

140



CHAPTER 8  CLASSIFICATION USING DECISION TREES

decision nodes and leaf nodes. The uppermost decision node corresponds to the root
node (the noteworthy independent variable). A leaf node is a classification or decision.
Figure 8-1 shows the structure of a decision tree.

Leaf Node Leaf Node Leaf Node Leaf Node

Figure 8-1. Decision tree structure

'l

Develop the Decision Tree Classifier

Listing 8-1 develops a decision tree classifier with default hyperparameters.

Listing 8-1. Develop the Decision Tree Classifier with Default Hyperparameters

from sklearn.tree import plot tree

from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()

dt.fit(x_train,y train)

Decision Tree Hyperparameter Optimization

There are dozens of tunable decision tree hyperparameters. We cover only two key
hyperparameters: criterion and max_depth. Criteria include gini impurity and
entropy. By default, the criterion is gini, which gives the probability of each label
or class. A higher value shows high homogeneity. Listing 8-2 finds the optimal
hyperparameters.
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Listing 8-2. Hyperparameter Optimization

param_griddt

{"criterion":("gini", "entropy"),
"max_depth":[1,3,5,7,9,12]}

grid modeldt = GridSearchCV(estimator=dt, param_grid=param griddt)

grid modeldt.fit(x train,y train)

print("Best score: ", grid modeldt.best score , "Best parameters:",

grid modeldt.best params )

Best score: 0.7182993469278954 Best parameters: {‘criterion’: ‘entropy,
‘max_depth’: 3}

The previous results indicate that we should use entropy as the criterion and set 3 as
the maximum depth of the tree. See Listing 8-3.

Listing 8-3. Finalize the Decision Tree Classifier

dt = DecisionTreeClassifier(criterion= 'entropy', max depth= 3)
dt.fit(x_train,y train)

Visualize Decision Trees

Listing 8-4 visualizes the decision tree (see Figure 8-2).

Listing 8-4. Visualize the Decision Tree

plt.figure(figsize=(24,14))
tree.plot tree(dt, filled=True)
plt.show()
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X[1] <= 0.082
entropy = 0.943
samples =614

X[5] <=-0.273

value = [393, 221]
entropy = 0.974
samples = 262

N
/ /N

X[7] <=-0.424 X[7] <= -0.633 X[1] <= 1.152
entropy = 0.813 entropy = 0.909 entropy = 0.879
samples = 255 samples = 74 samples = 188
value = [191, 64] value = [S0, 24] value = [56, 132]

[N SN

entropy = 0.964 entropy =0.988  entropy = 0.974
samples = 121 samples = 55 samples = 116

- - value = [74, 47] value = [31, 24]  value = [47, 69]

Figure 8-2. Decision tree

Feature Importance

Feature importance determines the relative importance of independent variables to

a dependent variable. It allocates a score that ranges from 0 to 1 to each independent
variable. An independent variable with the highest score is the most important variable,
an independent variable with the second highest score is the second most important
variable, and so forth. Listing 8-5 plots feature importance (see Figure 8-3).

Listing 8-5. Feature Importance

diabetes features = [x for i,x in enumerate(df.columns) if i!=8]
def plot feature importances diabetes(model):
plt.figure(figsize=(8,6))
n_features = 8
plt.barh(range(n_features), model.feature importances , align='center")
plt.yticks(np.arange(n_features), diabetes features)
plt.xlabel("Feature Importance")
plt.ylabel("Feature")
plt.ylim(-1, n_features)
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plot feature importances diabetes(dt)
plt.savefig('feature importance')

Age
DiabetesPedigreeFunction
BMI

Insulin =

SkinThickness -

Feature

BloodPressure —

Pregnancies =

I I I 1
0.0 0.1 0.2 0.3 0.4 0.5

Feature Importance

Figure 8-3. Feature importance

Figure 8-3 shows that there are a few important variables to the dependent variable.
Glucose has the topmost score, meaning that it is more important than other variables
to the dependent variable (diabetes outcome). This is followed by bmi and age,
respectively.

We use the previous findings to reduce the number of variables in the data.

Listing 8-6 reduces the data.

Listing 8-6. Re-processing

df[["Glucose","DiabetesPedigreeFunction”,"Age"]]

df.iloc[::,0:8]

df.iloc[::,-1]

_train, x_test, y train, y test = train test split(x,y,test size=0.2,
random_state=0)

scaler = StandardScaler()

x_train = scaler.fit transform(x train)

X < X X
1]
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x_test = scaler.transform(x test)
dt = DecisionTreeClassifier(criterion= 'entropy', max depth= 3)
dt.fit(x_train,y train)

Evaluate the Decision Tree Classifier

Listing 8-7 returns a table that compares actual values and predicted values
(see Table 8-1).

Listing 8-7. Actual Values and Predicted Values

y preddt = dt.predict(x test)
pd.DataFrame({"Actual":y test, "Predicted": y preddt})

Table 8-1. Actual Values and

Predicted Values
Actual Predicted

661 1 1
122 0 0
113 0 0
14 1 0
529 0 0
476 1 0
482 0 0
230 1 1
527 0 0
380 0 0

Confusion Matrix

Listing 8-8 and Table 8-2 show the performance of the decision tree classifier. It has four
combinations of actual values and predicted values.
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Listing 8-8. Confusion Matrix

cmatdt = pd.DataFrame(metrics.confusion matrix(y test,y preddt),
index=["Actual: No","Actual: Yes"],

columns=("Predicted: No","Predicted: Yes"))

cmatdt

Table 8-2. Confusion Matrix

Predicted: No  Predicted: Yes

Actual: No 93 14
Actual: Yes 23 24

Classification Report

To gain deep insight into the decision tree classifier’s performance, we use the
classification report. Listing 8-9 tabulates a classification report (see Table 8-3).

Listing 8-9. Classification Report

creportdt = pd.DataFrame(metrics.classification report(y test,y preddt,
output_dict=True)).transpose()
creportdt

Table 8-3. Classification Report

precision recall f1-score support
0 0.801724 0.869159 0.834081 107.00000
1 0.631579 0.510638 0.564706 47.00000
accuracy 0.759740 0.759740 0.759740 0.75974
macro avg 0.716652 0.689899 0.699393 154.00000
weighted avg 0.749797 0.759740 0.751869 154.00000
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Table 8-3 indicates that the decision tree classifier performs poorly. The accuracy
score is 74%, which is about 8% lower than the accuracy score of the logistic regression
classifier, linear support vector classifier, and linear discriminant analysis classifier. The
classifier also has a lower precision score than both classifiers.

ROC Curve

The most reliable way involves predicting the probabilities of each class. First, we
predict the probabilities of each class. Thereafter, we construct an ROC and find the
AUC. Listing 8-10 produces an ROC curve (see Figure 8-4).

Listing 8-10. ROC Curve

y_preddt proba = dt.predict proba(x test)[::,1]

fprdt, tprdt, = metrics.roc _curve(y test,y preddt proba)
aucdt = metrics.roc auc_score(y test, y preddt proba)
plt.plot(fprdt, tprdt, label="AUC: "+str(aucdt), color="navy")
plt.plot([0,1],[0,1],color="red")

plt.xlim([0.00,1.01])

plt.ylim([0.00,1.01])

plt.xlabel("Specificity")

plt.ylabel("Sensitivity")

plt.legend(loc=4)

plt.show()
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Figure 8-4. ROC curve
Figure 8-4 shows that the AUC score is close to 80%. Ideally, we want an AUC score

greater than 80%. The previous AUC score shows that the classifier is not skillful in
distinguishing between classes.

Precision-Recall Curve

Listing 8-11 produces a curve that gives meaningful insight about false positives and
false negatives (see Figure 8-5).

Listing 8-11. Precision-Recall Curve

precisiondt, recalldt, thresholddt = metrics.precision recall curve(
y test,y preddt)

apsdt = metrics.roc_auc_score(y test,y preddt)

plt.plot(precisiondt, recalldt, label="APS: "+str(apsdt),color="navy")
plt.axhline(y=0.5,color="red")

plt.xlabel("Recall")
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plt.ylabel("Precision")
plt.legend(loc=4)
plt.show()
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Figure 8-5. Precision-recall curve

Without considering the decision thresholds, the APS is 69%.

Learning Curve

Listing 8-12 produces a curve that depicts the progression of the LinearSVC classifier’s
accuracy as it learns the training data (see Figure 8-6).

Listing 8-12. Learning Curve

trainsizedt, trainscoredt, testscoredt = learning curve(dt, x, y, cv=5,
n_jobs=5, train sizes=np.linspace(0.1,1.0,50))

trainscoredt mean = np.mean(trainscoredt,axis=1)

testscoredt mean = np.mean(testscoredt,axis=1)

149



CHAPTER 8  CLASSIFICATION USING DECISION TREES

plt.plot(trainsizedt,trainscoredt mean,color="red", label="Training Score")
plt.plot(trainsizedt,testscoredt mean,color="navy", label="Cross Validation
Score")

plt.xlabel("Training Set Size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()
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Figure 8-6. Learning curve

Figure 8-6 shows that the training accuracy score is higher than the cross validation
from the time the decision tree classifier learns the data. The classifier starts off very
optimistic, but as we increase the training set, the size drops and becomes comfortable
around the 0.75 to 0.80 range.
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Conclusion

This chapter showed the tree classification modeling technique, including discovering
the optimal hyperparameters, finding variables that are the most important to the
dependent variables, and visualizing the decision tree and classifier using only import
variables and the best hyperparameters. There are alternative classifiers that uniquely
extend the decision tree classifier, such as the extra tree and random forest tree. Extra
trees split a point of the decision tree at random. A random forest tree iteratively builds
multiple decision trees in parallel.
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Back to the Classics

We will now cover one of the oldest classification methods; naive Bayes is an early
18™ century model. It is a supervised learning model that solves binary and multiclass
classification problems. The word naive derives from the assumption that the model
makes about the data. We consider it naive because it assumes that variables are
independent of each other, meaning there is no dependency on the data. This rarely
occurs in the actual world. We can reduce the naive Bayes theorem into Equation 9-1.

P(A|B)=(P(B|A)P(A))/(P(B)) (Equation 9-1)

Here, the probability of event A happening knowing that event B has already
happened.

This chapter covers Gaussian naive Bayes. It assumes that the independent variables
are binary. However, we can relax the assumption to accommodate continuous variables
that follow a normal distribution. Also, it is memory efficient and fast because we do
not perform hyperparameter tuning; it has no tunable hyperparameters. Bayes models
are part of the probabilistic family. To comprehend the model, familiarize yourself with
naive Bayes.

The Naive Bayes Theorem

When dealing with continuous independent variables, use the GaussianNB

classifier. It is relatively easy to model, provided you have background on dealing

with continuous variables. Refer to the first chapter of the book for a recap on the
Gaussian distribution (also known as normal distribution). We mentioned that the
data follows a normal distribution when the data points are close to the actual mean.
The GaussianNB classifier estimates the probability of a variable belonging to a certain
class; simultaneously, it estimates the central values, in other words, the mean value
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or standard deviation value. It is most suitable for features with high dimensionality.
At most, we use this classifier when the training set is small. The classifier uses the
Gaussian probability density function to estimate the probabilities of new values of the
independent variable.

Develop the Gaussian Naive Bayes Classifier

The GaussianNB classifier does not require hyperparameter optimization. Likewise, we
obtained the data from Kaggle.! Listing 9-1 completes the GaussianNB classifier.

Listing 9-1. Finalize the GaussianNB Classifier

from sklearn.naive bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(x_train,y train)

Listing 9-2 returns a table that highlights both actual classes and predicted classes
(see Table 9-1).

Listing 9-2. Actual Values and Predicted Values

y_predgnb = gnb.predict(x test)
pd.DataFrame({"Actual":y test, "Predicted":y predgnb})

'https://waw.kaggle.com/uciml/pima-indians-diabetes-database
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Table 9-1. Actual Values and

Predicted Values
Actual Predicted

661 1 1
122 0 0
113 0 0
14 1 1
529 0 0
476 1 0
482 0 0
230 1 0
527 0 0
380 0 0

Evaluate the Gaussian Naive Bayes Classifier

To understand how the GaussianNB classifier performs, we must compare actual classes
and predicted classes side by side.

Confusion Matrix

Listing 9-3 and Table 9-2 produces a matrix that highlights the values that we used to
estimate the key performance of the GaussianNB classifier.

Listing 9-3. Confusion Matrix

cmatgnb = pd.DataFrame(metrics.confusion matrix(y test,y predgnb),
index=["Actual: No","Actual: Yes"],

columns=("Predicted: No","Predicted: Yes"))
cmatgnb
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Table 9-2. Confusion Matrix

Predicted: No Predicted: Yes

Actual: No 93 14
Actual: Yes 18 29

Classification Report

Listing 9-4 and Table 9-3 highlight key classification evaluation metrics such as accuracy,
precision, recall, and others.

Listing 9-4. Classification Report

creportgnb = pd.DataFrame(metrics.classification report(y test,y predgnb,
output_dict=True)).transpose()
creportgnb

Table 9-3. Classification Report

precision recall f1-score Support
0 0.837838 0.869159 0.853211 107.000000
1 0.674419 0.617021 0.644444 47.000000
accuracy 0.792208 0.792208 0.792208 0.792208
macro avg 0.756128 0.743090 0.748828 154.000000
weighted avg 0.787963 0.792208 0.789497 154.000000

Table 9-3 shows that class 0 has the highest precision score (0.84) and recall score
(0.87). Overall, the model is accurate 79% of the time.

ROC Curve

Listing 9-5 and Figure 9-1 represent different thresholds that enable an operator to trade
off precision and recall. The threshold is between 0 and 1.
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Listing 9-5. ROC Curve

y_predgnb proba = gnb.predict proba(x test)[::,1]

fprgnb, tprgnb, = metrics.roc curve(y test,y predgnb proba)
aucgnb = metrics.roc_auc_score(y test, y predgnb proba)
plt.plot(fprgnb, tprgnb, label="auc: "+str(aucgnb), color="navy")
plt.plot([0,1],[0,1],color="red")

plt.x1im([0.00,1.01])

plt.ylim([0.00,1.01])

plt.xlabel("Specificty")

plt.ylabel("Sensitivity")

plt.legend(loc=4)

plt.show()
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Figure 9-1. ROC curve
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Figure 9-1 shows a curve that sails close to the right-side border when specificity
is between 0 and 0.1. However, as specificity increases, the curve bends and slowly
approaches 1. The AUC score is 0.84.

Precision Recall Curve

The classification report tells us that class 0 has an enormous number of data points (the
data is imbalanced). We must focus more on precision and recall. Listing 9-6 produces
the precision-recall curve (see Figure 9-2).

Listing 9-6. Precision-Recall Curve

precisiongnb, recallgnb, thresholdgnb = metrics.precision recall curve(
y_test,y predgnb)

apsgnb = metrics.roc_auc_score(y test,y predgnb)

plt.plot(precisiongnb, recallgnb, label="aps: "+str(apsgnb),color="navy",
alpha=0.8)

plt.axhline(y=0.5,color="red",alpha=0.8)

plt.xlabel("Precision")

plt.ylabel("Recall")

plt.legend(loc=4)

plt.show()
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Figure 9-2. Precision-recall curve

The mean of the precision scores is 74%. The curve does not approach the
uppermost border. Rather, it slows down smoothly until it reaches 0.8, and then the
momentum declines.

Learning Curve

Listing 9-7 produces a curve that depicts the progression of the GaussianNB classifier’s
accuracy as it learns the training data (see Figure 9-3).

Listing 9-7. Learning Curve

trainsizegnb, trainscoregnb, testscoregnb = learning curve(gnb, x, y, cv=5,
n_jobs=5, train sizes=np.linspace(0.1,1.0,50))

trainscoregnb mean = np.mean(trainscoregnb,axis=1)

testscoregnb mean = np.mean(testscoregnb,axis=1)
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plt.plot(trainsizegnb,trainscoregnb mean,color="red", label="Training
Score", alpha=0.8)

plt.plot(trainsizegnb,testscoregnb mean,color="navy", label="Cross
Validation Score", alpha=0.8)

plt.xlabel("Training Set Size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()
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Figure 9-3. Learning curve
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Figure 9-3 shows that the GaussianNB classifier is a fast learner. This comes as
no surprise given that the model has no tunable hyperparameters. Compared to the
classifiers we developed in the preceding chapters, the GaussianNB over-fit less from
the beginning phase of the training process. Unlike in other learning curves, the training
accuracy score does not crash in the first few training sets. Although the classifier is a fast
learner, it failed to reach an accuracy score of 80%.

Conclusion

This chapter covered the naive Bayes classifier. Remember, there are other naive
classifiers such as the multinomial naive Bayes model and the Bernoulli naive Bayes
model.? Their use depends on the context.

*https://scikit-learn.org/stable/modules/naive_bayes.html
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CHAPTER 10

Cluster Analysis

This chapter briefly covers the cluster analysis concept in a structured format. In
previous chapters, we sufficiently covered supervised learning. In supervised learning,
we present a model with a set of correct answers, and then we permit it to predict unseen
data. Now, let’s turn our attention a little. Imagine we have data with a set of variables
and there is no independent variable of concern. In such a situation, we do not develop
any plausible assumptions about a phenomenon.

This chapter introduces unsupervised learning. We do not present a model with a
set of correct answers; rather, we allow it to make intelligent guesstimates. Unsupervised
learning encompasses dimension reduction and cluster analysis. In this chapter, we first
familiarize you with a dimension reduction method widely called principal component
analysis (PCA), and we then acquaint you with cluster analysis. Thereafter, we develop
and appraise models such as the K-means model, agglomerative model, and DBSCAN
model. Before we preprocess and model the data, let’s discuss cluster analysis.

What Is Cluster Analysis?

Cluster analysis is a method that assuredly finds a group of data points with similarities
and dissimilarities. In cluster analysis, we are concerned with distinct clusters that
explain variation in the data. There is no real dependent variable. We treat all variables
equally. Popular clustering techniques include centroid clustering, which is random
and selects centroids of the data points into a group of specified clusters, i.e., K-means;
density clustering, which groups data points based on density population, i.e., DBSCAN;
and distribution clustering, which identifies the probability of data points belonging in a

cluster based on some distribution, i.e., Gaussian mixture model, etc.
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Cluster Analysis in Practice

Table 10-1 displays the data for this use case. There are three variables in the data.

There is no actual independent variable. All variables are of equal importance. We are
concerned with the similarities and dissimilarities in the data. Likewise, we obtained the
example data from Kaggle.!

Table 10-1. Dataset

Age Annual Income (k$) Spending Score (1-100)

0 19 15 39
1 21 15 81
2 20 16 6

3 23 16 77
4 31 17 40

The Correlation Matrix

We begin by computing the association between variables in the data. When there is a
set of continuous variables in the data, use the Pearson method to measure correlation.
Listing 10-1 produces the Pearson correlation matrix (see Table 10-2).

Listing 10-1. Pearson Correlation Matrix

dfcorr = df.corr()

dfcorr

Table 10-2. Pearson Correlation Matrix

Age Annual Income (k$) Spending Score (1-100)
Age 1.000000 -0.012398 -0.327227
Annual Income (k$) -0.012398 1.000000 0.009903
Spending Score (1-100)  -0.327227 0.009903 1.000000

'https://www.kaggle.com/kandij/mall-customers
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Table 10-2 expresses a fragile adverse association between age and annual income
and a sturdy adverse association between age and spending score.

The Covariance Matrix

The principal purpose of computing the covariance is to develop the eigen matrix.
Listing 10-2 and Table 10-3 summarize the variability between the variables.

Listing 10-2. Covariance Matrix

dfcov = df.cov()
dfcov

Table 10-3. Covariance Matrix

Age Annual Income (k$)  Spending Score (1-100)
Age 195.133166 -4.548744 -118.040201
Annual Income (k$) -4.548744 689.835578 6.716583
Spending Score (1-100)  -118.040201 6.716583 666.854271

At most, we are uninterested in the covariance between variables; instead, we are

interested in the correlation between them and the severity of the correlation.

The Eigen Matrix

To reliably find the severity of the correlation between variables, use the eigenvalues. An
eigenvalue less than 0 indicates multicollinearity, between 10 and 100 indicates slight
multicollinearity, and more than 100 indicates severe multicollinearity. Listing 10-3
computes and tabulates eigenvalues and eigenvectors (see Table 10-4).

Listing 10-3. Eigen Matrix

eigenvalues, eigenvectors = np.linalg.eig(dfcov)
eigenvalues = pd.DataFrame(eigenvalues)

eigenvectors = pd.DataFrame(eigenvectors)

eigen = pd.concat([eigenvalues,eigenvectors],axis=1)
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eigen.index = df.columns

eigen.columns = ("Eigen values","Age","Annual Income (k$)","Spending Score
(1-1200)")

eigen

Table 10-4. Eigen Matrix

Eigen values Age Annual Income (k$) Spending Score (1-100)
Age 167.228524 0.973210 0.188974 -0.130965
Annual Income (k$)  700.264355 0.005517 -0.588641 -0.808376
Spending Score 684.330136  0.229854 -0.785997 0.573914

(1-100)

Table 10-4 displays eigenvectors and eigenvalues. There is severe multicollinearity.
As we prominently mentioned in the preceding chapters, multicollinearity can adversely
affect the conclusions.

Listing 10-4 applies the StandardScaler () method to scale the data in such a way
that the mean value is 0 and the standard deviation is 1.

Listing 10-4. Normalize Data

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df = scaler.fit transform(df)

Next, we perform PCA.

Principal Component Analysis

In PCA, we use the eigenvalues to find the source of variation in the data. PCA computes
the cumulative proportion. Remember that we do not base PCA on a model. It finds
data points that explain variation. Like factor analysis, we use PCA? to streamline

the structure of a set of variables. It calculates principal components as the linear
combinations of the variables. The primary aim of the method is to explain the total

*https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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variance. It also condenses data into fewer components so that the components used
signifies model estimates. Last, it eliminates the factors with great eigenvalues (extreme
variability). Not only that, but it uses the Kaiser’s criterion to discover the number of
factors to preserve. Figure 10-1 simplifies the structure of a set of variables.

C1

C2

Figure 10-1. Principal components analysis

Here, the variables (M1, M2 and M3) are based on some factors or components,
C1 and C2. Recall that we are interested in discovering variables that back principal
components. Listing 10-5 returns PCA loading and creates a loading matrix.

Listing 10-5. Explained Variance

pca = PCA()

pca.fit transform(df)

pca_variance = pca.explained variance_

plt.figure(figsize=(8, 6))

plt.bar(range(3), pca_variance, align="center", label="Individual Variance")
plt.legend()

plt.ylabel("Variance Ratio")

plt.xlabel("Principal Components")

plt.show()
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Figure 10-2 shows the ranking of the components’ relative importance to the

predictor variable. It confirms that the first component explains most of the variation in

the data. See Listing 10-6.
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Figure 10-2. Explained variance

Listing 10-6. Principal Components Matrix

pca = PCA(n_components=3).fit(df)
pca_components = pca.components .T
pca_components = pd.DataFrame(pca_components)
pca_components.index = df.columns
pca_components.columns = df.columns
pca_components

B |ndividual Variance

2.5

Listing 10-6 returns a conditional index that depicts PCA loading of each component

(see Table 10-5).
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Table 10-5. Principal Components

Age Annual Income (k$) Spending Score (1-100)
Age -0.188974 0.130965 0.973210
Annual Income (k$) 0.588641 0.808376 0.005517
Spending Score (1-100)  0.785997 -0.573914 0.229854

Age has the uppermost PCA loading (it is the first component), followed by annual
income (k$) and so forth. Listing 10-7 transforms the data. Remember, we specify the
number of components as 3.

Listing 10-7. Finalize PCA

pca2 = PCA(n_components=3)

pca2.fit(df)

X _3d = pca2.transform(df)

plt.figure(figsize=(8,6))

plt.scatter(x 3d[:,0], x 3d[:,2], c=old df['Annual Income (k$)'])
plt.xlabel("y")

plt.show()

After performing dimension reduction, we plot the data points using a scatter plot.
Figure 10-3 shows the distribution of the data points. See Listing 10-8.
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Figure 10-3. Principal components

Listing 10-8. Reduce Data Dimension

df = pca.transform(df)

Elbow Curve

An elbow curve is widely recognized as a knee of curve plot. We use it to discover the
number of clusters in the data. It has the number of clusters on the x-axis and the percent
of the variance explained on the y-axis. We use a cutoff point to select the number of
clusters. A cutoff point is a point at which a smooth bend ends and a sharp bend begins.
See Listing 10-9.
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Listing 10-9. Elbow Curve

Nc = range(1,20)

kmeans = [KMeans(n clusters=i) for i in Nc]

scores = [kmeans[i].fit(df).score(df) for i in range(len(kmeans))]
fig, ax = plt.subplots()

plt.plot(Nc, scores)

plt.xlabel("No. of clusters")

plt.show()

Figure 10-4 displays a smooth bend from cluster 1 to cluster 3. However, from
cluster 3, the curve bends abruptly. We use 3 as the cutoff point.

—-100000 -

—-200000 -

-300000 -

| | |
5 10 15

No. of clusters
Figure 10-4.
There are various ways of skinning a cat. You can also use a scree plot to endorse
the cutoff point. Remember that we normally use a scree plot in PCA to find the number

of components to keep. Listing 10-10 produces a scree plot, which we can also use to
determine the number of clusters to use for a cluster model (see Figure 10-5).
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Listing 10-10. Scree Plot

ks = range(1,20)
ds = []
for k in ks:

cls = KMeans(n_clusters=k)

cls.fit(df)

ds.append(cls.inertia )
fig, ax = plt.subplots()
plt.plot(ks, ds)
plt.xlabel("Value of k")
plt.ylabel("Distortion")
plt.show()
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100000

| | [
5 10 15

Value of k
Figure 10-5. Scree plot

Figure 10-5 approves the scree plot point.
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K-Means Clustering

The K-means model is the most prevalent cluster model. It splits the data into k clusters
with the nearest mean centroids, and it then finds the distance between subsets to
develop a cluster. It also reduces the intracluster distances and advance intercluster. We

express the formula as shown in Equation 10-1.

n

Dis(x,, %)=, [> (% =y ) (Equation 10-1)

i=0

Basically, the model finds the initial k (the number of clusters) and calculates the
distance between clusters. Thereafter, it allocates each data point to the closest centroid.
The model works best with large samples. See Listing 10-11.

Listing 10-11. K-Means Model Using Default Hyperparameters

kmeans = KMeans(n_clusters=3)
kmeans_output = kmeans.fit(df)
kmeans output

K-Means Hyperparameter Optimization

At most, we do not want to fit a model with initial hyperparameters, unless it yields
optimal performance. With each use case, we must find the best hyperparameters
(provided a model has tunable hyperparameters). Table 10-6 outlines key tunable
K-means hyperparameters.

Table 10-6. Tunable Hyperparameters

Parameter Description

copy_X Finds whether the independent variable must be copied.
tol Finds the precision. The default value is 0.003.
max_iter Finds the maximum number of iterations.

tol Finds the tolerance for the optimization
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Listing 10-12 finds the optimal hyperparameters for the K-means model.

Listing 10-12. Hyperparameter Optimization

param_gridkmeans

{"copy_x":[False,True],

"max_iter":[1,10,100,1000],

"n_init":[s5,10,15,20],

"tol":[0.0001,0.001,0.01,1.0]}
GridSearchCV(estimator=kmeans output, param grid=param_

grid_modelkmeans
gridkmeans)

grid modelkmeans.fit(df)

print("Best score: ", grid modelkmeans.best score , "Best hyper-parameters: ",
grid modelkmeans.best params )

Best score: -49470.220198874384 Best hyper-parameters: {‘copy_x": False,
‘max_iter’: 1, ‘n_init’: 15, ‘tol’: 0.01}

Listing 10-13 concludes the K-means model with optimal hyperparameters.

Listing 10-13. Finalize the K-Means Model

kmeans = KMeans(n clusters=3,
copy_x=False,
max_iter= 1, n_init= 15,
tol= 0.01)

kmeans_output = kmeans.fit(df)

kmeans _output

Listing 10-14 tabulates predicted labels (Table 10-7).

Listing 10-14. Predicted Labels

y_predkmeans = pd.DataFrame(kmeans output.labels , columns = ["Predicted"])
y_predkmeans
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Table 10-7. Predicted Labels

Predicted
0 1
1 1
2 1
3 1
4 1
195 0
196 2
197 0
198 2
199 0

Table 10-7 does not tell us much. We are basically observing labels produced by the
K-means model.

Centroids

The central tendency of the data indicates much about the data. We must find the
centers of clusters also recognized as centroids. Listing 10-15 applies cluster_centers_
to find centroids (see Table 10-8).

Listing 10-15. Centroids

kmean centroids = pd.DataFrame(kmeans output.cluster centers ,
columns = ("Cluster 1","Cluster 2","Cluster 3"))
kmean_centroids
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Table 10-8. Centroids

Cluster 1 Cluster 2 Cluster 3
0 -8.879001 -11.467679 0.891796
1 -10.435900 42.928296 -5.127039
2 43.326081 2.774284 1.470721

To really make sense of the model, Listing 10-16 creates a scatter plot displaying
clusters and centers of cluster (see Figure 10-6).

Listing 10-16. Visualize the K-Means Model

fig, ax = plt.subplots()
plt.scatter(df[:,0],df[:,1],c=kmeans output.labels ,cmap="viridis",s=20)
plt.scatter(kmean_centroids[:,0], kmean centroids[:,1], color="red")
plt.xlabel("y")

plt.show()

50

0_ e © o .
_50_
| | |
=50 0 50

Figure 10-6. K-means model
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The K-means model made intelligent guesstimates until data points were allocated
to the nearest centroid and found the mean value of the centroids. Figure 10-6 indicates
that there are three apparent clusters in the data.

The Silhouette Score

We use the Silhouette method to appraise the K-means model. The method compares
cohesion and separation. It has values that range from -1 to 1, where -1 indicates severe
mislabeling, 0 indicates overlaps in clusters, and 1 indicates that the sample is far away
from adjacent clusters. See Listing 10-17.

Listing 10-17. Silhouette Score

metrics.silhouette score(df, y predkmeans)
0.3839349967742105

The Silhouette score is 0.38, which indicates that the model is far from perfect. There
are overlaps in clusters.

Agglomerative Clustering

The agglomerative model is a hierarchical model that uses a bottom-up approach

to produce dendrograms. It develops n clusters (one for each) and then computes
proximity. Thereafter, it consolidates clusters close to each other while updating the
proximity matrix. The end result is a single cluster. There are several ways of calculating
the distance between data points. Table 10-9 highlights key distance calculation
techniques.

Table 10-9. Distancing Techniques

Technique Description

Single-linkage clustering Finding the minimum distance between clusters
Complete-linkage clustering Finding the maximum distance between clusters
Average linkage clustering Finding the average distance between clusters
Centroid linkage clustering Finding the distance between cluster centroids
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Unlike the K-means model that randomly initializes centroids, the agglomerative
generates more than one partition based on resolution. Listing 10-18 completes the
agglomerative model.

Listing 10-18. Finalize the Agglomerative Model

agglo = AgglomerativeClustering(n _clusters=None,distance threshold=0)
agglo output = agglo.fit(pca_df)

agglo output

Listing 10-19.

After finalizing the agglomerative model, Listing 10-19 finds and tabulates the
predicted labels (Table 10-10). Listing 10-20 shows the agglomerative model.

Listing 10-19. Predicted Labels

y pred = pd.DataFrame(agglo output.labels ,columns = ["Predicted"])
y_pred

Table 10-10. Predicted Labels

Predicted
0 -1
1 -1
2 -1
3 -1
4 -1
195 -1
196 -1
197 -1
198 -1
199 -1
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Listing 10-20. Agglomerative Model

fig, ax = plt.subplots()
plt.scatter(df[:,0],df[:,1],c=agglo output.labels ,cmap="viridis",s=20)
plt.xlabel("y")

plt.show()

Figure 10-7 points out three clusters. The large cluster breaks down into two small
clusters. We also realize a minor overlap between cluster 1 and cluster 2.
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Figure 10-7. Agglomerative model

We use a dendogram to depict the hierarchy of the cluster tree. Listing 10-21
creates a linkage matrix, creates the counts of samples under each node, and creates a
corresponding dendrogram (see Figure 10-8).
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Listing 10-21. Visualize the Dendrogram

def plot_dendrogram(model, **kwargs):
counts = np.zeros(model.children .shape[0])
n_samples = len(model.labels )
for i, merge in enumerate(model.children ):
current_count = 0
for child idx in merge:
if child_idx < n_samples:
current_count += 1
else:
current _count += counts[child idx - n_samples]
counts[i] = current count

linkage_matrix = np.column_stack([model.children_, model.distances_,
counts]).astype(float)
dendrogram(linkage matrix, **kwargs)
plot dendrogram(agglo output, truncate mode='level', p=3)

20

15 -

10 -

(6) (3) (7) (12) (8) (14)(22)(23)(12)(10) (3) (14) (2) (19) (7) (38)

Figure 10-8. Agglomerative dendrogram
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Figure 10-8 shows data points connected in clusters (one parent with two children).

Density-Based Spatial Clustering Model with Noise

We use the density-based spatial clustering model with noise (DBSCAN) model to find
arbitrary-spatial clusters. It recognizes a radius area that includes several data points.
Any of the data points can be a core point, border point, or outlier point. Points are
grouped as clusters based on these points. Table 10-11 highlights these points.

Table 10-11. DBSCAN Points

Points Description

Core point A point enclosed by the smallest number of neighbors. Core points are surrounded
by border points.

Border point A point that is not enclosed by the smallest number of neighbors and can be
reached from the core point.

Outlier point A point that is neither a core point nor a border point. This is a point that is far away
from the reach of a core point.

It finds core points that are neighbors and places them in the same cluster. As a
result, a cluster encompasses at least one core point (reachable points) or border points.
Moreover, it discovers clusters enclosed by different clusters. See Listing 10-22.

Listing 10-22. Finalize the DBSCAN Model

dbscan = DBSCAN()
dbscan_output = dbscan.fit(df)
dbscan_output

Listing 10-23 and Table 10-12 highlight predicted labels.

Listing 10-23. Predicted Labels

y pred = pd.DataFrame(dbscan output.labels ,columns = ["Predicted"])
y_pred
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Table 10-12. Predicted Classes

Predicted
0 -1
1 1
2 -1
3 -1
4 1
195 -1
196 -1
197 -1
198 -1
199 -1

Listing 10-24 characterizes the DBSCAN model (see Figure 10-9).

Listing 10-24. Visualize the DBSCAN Model

fig, ax = plt.subplots()
plt.scatter(df[:,0],df[:,1],c=dbscan output.labels ,cmap="viridis",s=20)
plt.xlabel("y")

plt.show()
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Figure 10-9. DBSCAN model

Figure 10-9 shows that the DBSCAN model does not make ample intelligent
guesstimates. This does not entail that the model performs poorly in all settings. The
model is suitable when the density-based criterion is met. It is apparent that Gaussian
distributions demonstrate superior performance.

Conclusion

This chapter presented dimension reduction and cluster analysis. We developed
and assessed three cluster models, namely, the K-means, DBSCAN model, and
agglomerative model. We began by plummeting the dimension of the data using the PCA
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method. Thereafter, we employed the elbow curve to discover the number of clusters to
be specified on the K-means model and agglomerative model. We do not postulate the
number of clusters when developing the DBSCAN model.

Cluster models are relaxed; they are free of strong assumptions. The daunting part
about cluster analysis is model evaluation. They lack robust evaluation metrics, and we
rest on the Silhouette method for model evaluation.
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Survival Analysis

This chapter introduces the survival analysis. The method comprises two families: the
parametric method and the nonparametric method. Parametric survival analysis models
include Weibull, exponential, log-linear, and many others (learn more from Lifelines').
Nonparametric survival analysis models include Kaplan-Meier and Nelson-Aalen.

This chapter covers only the most popular nonparametric model, called the Kaplan-
Meier model, which measures a binary variable using time. It has relaxed assumptions
about the structure of the data. Likewise, it does not hold assumptions about the
linearity and normality of the data.

It does not capture time in the traditional sense. It captures the actual date of entry
and exit in the study. We also call survival analysis reliability analysis or duration
modeling. When we use it, the duration is more important than time. In clinical trials,
we use it to estimate the probabilities of a patient surviving an event (i.e., illness or
death) beyond a specific time. In engineering, we use it to estimate the probabilities of a
machine surviving an event (i.e., machine failure) beyond time.

It must fulfill certain conditions for us to consider a study and a survival analysis
model reliable. First, the research design should include a control group. Second, there
must be rigorous methods in place to capture the activities of participants in the study;
we must always consider factors like a patient entering or leaving a study, a patient at
risk, and a patient dying. Table 11-1 outlines key survival analysis terms.

'https://lifelines.readthedocs.io/en/latest/Survival%20analysis’20with%20lifelines.
html
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Table 11-1. Survival Analysis Key Term

Term Description

Survival time Represents the timeline of events

Event Represents a binary outcome under investigation (mostly iliness or death)
Censoring Represents removal of a patient from a study

Studies that measure event outcomes such as illness and death take a long period.
Participants can enter or exit a study, some can die, and we report others as risky. In
survival analysis, we mostly deal with missing values. We call data with missing values
censored data. Unlike other nonparametric models such as logistic regression and linear
discriminant analysis, survival analysis models are not sensitive to missing values. In

fact, we always expect to find missing values in the data.

Survival Analysis in Practice

We loaded a dataset available in the Lifeline package, named load watons. Lifeline is
not a standard Python library. To install it in the Python environment, use pip install
lifelines, and to install it in the Conda environment, use conda install -c conda-
forge lifelines. The datais comprised of three columns. The first column is time
(an independent variable), the second column is the event (a dependent variable), and
the third column specifies the group the patient is in. The two groups are the control
group and the miR-137 group. A patient can be in either category. See Listing 11-1 and
Table 11-2.

Listing 11-1. Load Data

from lifelines.datasets import load walton
import pandas as pd

df = load waton()

df.head()
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Table 11-2. Dataset

T E Group
0 6.0 1 miR-137
1 13.0 1 miR-137
2 13.0 1 miR-137
3 13.0 1 miR-137
4 19.0 1 miR-137

Listing 11-2 returns the data structure.

Listing 11-2. Data Structure

tdf.info()

RangeIndex: 163 entries, 0 to 162
Data columns (total 3 columns):

# Column Non-Null Count Dtype

o T 163 non-null float64

1 E 163 non-null int64

2 group 163 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 3.9+ K

As you can see, 163 patients took part in the study. There are no missing values in the
data. This means that the data collection methods used were rigorous. Remember, this
hardly happens in the actual world. At most, we deal with data with missing values. The
data is comprised of three columns; the first column is a continuous variable (timeline
specified by the number of years), the second column is a binary variable (event
outcome—we code a patient failing to survive beyond a specific time as 0 and a patient
who survives beyond a specific time as 1), and the third column is a binary categorical
(a patient is in the control group or the miR-137 group). Based on the structure of the
data, we can use a survival analysis model such as the Kaplan-Meier model or the
Nelson-Aalen model. In this chapter, we look at the Kaplan-Meier model. Before we
develop the model, let’s first describe the data.

Listing 11-3 counts and tabulates patients in each group (see Table 11-3).
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Listing 11-3. Count of Groups

class_series group

df.groupby("group").size()
pd.DataFrame(class _series group, columns=["Count"])

class_series_group
class_series_group

Table 11-3. Count of
Patients in Each Group

Count
group
control 129
miR-137 34

Table 11-4 highlights that out of 193 patients in the study, 129 patients were part of
the group, and 34 were part of the miR-137 group. The control group accounts for 79.14%
of the total sample of patients, and the miR-137 group accounts for 20.86% of the sample.
Listing 11-4 counts and tabulates event outcomes (see Table 11-4).

Listing 11-4. Event Outcomes

class_series_event = df.groupby("E").size()

pd.DataFrame(class_series_event, columns=["Count"])

class_series_event
class_series_event

Table 11-4. Count of

Event Outcomes
Count

E

0 7

1 156

Table 11-4 shows that out of 163 patients, only 7 patients failed to survive an event
beyond a specific time, and 95.71% of them survived beyond the specified time.
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Listing 11-5 counts and tabulates event outcomes per group (see Table 11-5).

Listing 11-5. Event Outcomes per Group

class_series event per group = df.groupby(["group","E"]).size()

class_series event per group
columns = ["Count"])
class_series _event per group

Table 11-5. Count of
Event Outcome per Group

Count
group E
control 0 7
1 122

miR-137 1 34

Table 11-5 shows that all 34 of the patients who were part of the miR-137 group
survived an event beyond the specific time. In the control group, 122 of the patients
survived and 7 failed to survive.

Data Preprocessing

Listing 11-6 splits the data into the miR-137 group and the control group.

Listing 11-6. Split Data

miR_137 = df.loc[df.group == "miR-137"]
control group = df.loc[df.group == "control"]

After splitting the data into two, we repurpose the data into the required format.

See Listing 11-7.

pd.DataFrame(class_series event per group,
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Listing 11-7. Repurpose Data

T1 = miR_137["T"]
E1 = miR_137["E"]
T2 = control group["T"]
E2 = control group["E"]

Descriptive Statistics

Remember, in survival analysis, there are no strict assumptions of linearity and
normality; we do not use descriptive analysis to test assumptions, but to understand
the underlying structure of the data. We know that we are dealing with skewed data.
Listing 11-8 returns descriptive statistics (see Table 11-6).

Listing 11-8. Descriptive Statistics

pd.DataFrame(miR_137["T"].describe()).transpose()

Table 11-6. MiR-137 Descriptive Statistics

Count mean std min 25% 50% 75% max

T 34.0 25.705882 13.358755 6.0 16.0 26.0 29.0 62.0

Table 11-6 shows that the minimum number of years a patient takes part in the study
is 6, and the maximum number of years is 62. The mean number of years a patient takes
partin the study is 26.

Survival Table

We widely recognize the life table as the survival table. A survival table is a table that
provides information about the activities of the patients while participating in a study.
Table 11-7 highlights the contents of a survival table.
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Table 11-7. Contents of a Survival Table

Content Description

Removed The number of subjects who die (or suffer the event of interest) during interval ¢

Observed The number of subjects who are event-free and thought of as being at risk during
interval ¢

Censored The number of participants who leave the study during interval ¢

Entrance The number of subjects who entered during interval ¢

At-risk The aggregate number of subjects at risk during interval ¢

Listing 11-9 applies the survival from event() method to create a survival table
(see Table 11-8).

Listing 11-9. Survival Table

table = survival table from events(T1,E1)
table.head()

Table 11-8. Survival Table

removed observed censored entrance at_risk
event_at
0.0 0 0 0 34 34
6.0 1 1 0 0 34
9.0 3 3 0 0 33
13.0 3 3 0 0 30
15.0 2 2 0 0 27

Table 11-8 tells us the following:

— Inthe first year patients entered the study. By default, we consider all
patients under risk.

— Atyear 6, one patient died, and we thought another to be at risk.
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— Atyear9, three patients died, and we thought another three to be
at risk.

— Atyear 13, we reported three deaths and three patients at risk.

— Byyear 15, we reported two deaths and two patients at risk. There
were 27 patients left in the miR-137 group.

The Kaplan-Meier Model

The Kaplan-Meier (KM) model is a nonparametric method used to estimate the survival
probability from the observed survival times. It measures a binary variable using time.
We also recognize the model as a product limit model. When we use the model, we

look at the number of patients dying in a specified period, considering that they have
already survived. To understand how this model works, we explain the survival function
underneath. Listing 11-10 completes the Kaplan-Meier models.

Listing 11-10. Finalize the Kaplan-Meier Models

kmf miR 137 = KaplanMeierFitter().fit(T1,E1)
kmf_control group = KaplanMeierFitter().fit(T2,E2)

After developing the models, we find the estimates of the confidence interval.

Confidence Interval

A confidence interval (CI) represents the probability of a value falling within a specific
range. Table 11-9 shows the probability of the survival estimates falling in a specific
range at a certain period. The first column shows the timeline, the second column shows
the lower limit of the CI, and the third column shows the upper limit of the CI. See
Listing 11-11.

Listing 11-11. Kaplan-Meier Estimate Confidence Interval

kmf miR 137 ci = kmf miR 137.confidence interval
kmf control group ci = kmf_control group.confidence interval
kmf miR_137_ci.head()
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Table 11-9. Kaplan-Meier Estimate Confidence Interval

KM_estimate_lower_0.95 KM_estimate_upper_0.95
0.0 1.000000 1.000000
6.0 0.809010 0.995804
9.0 0.716269 0.954139
13.0 0.616102 0.896087
15.0 0.552952 0.852504

Table 11-9 shows, if we were to reproduce the study 95% of the time.

Atyear 0, the survival probability of patients in the miR-137 group is
100%.

— Atyear 6, the survival probability of patients in the miR-137 group is
between 80.90% and 99.58%.

— Atyear 9, the survival probability of patients in the miR-137 group is
between 71.27% and 95.41%.

— Atyear 13, the survival probability of patients in the miR-137 group is
between 61.61% and 89.61%.

— Atyear 13, the survival probability of patients in the miR-137 group is
between 55.95% and 85.25%.

Cumulative Density

Cumulative density represents the probability of failure occurring at a specific time t.
It estimates the cumulative density. We use the formula in Equation 11-1 to estimate the
unconditional failure rate.

f = T’ (Equation 11-1)
{tm - }

Here, d; represents the number of events, and ¢ is the survival time. See Listing 11-12
and Table 11-10.
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Listing 11-12. Kaplan-Meier Cumulative Density Estimates

kmf c_density = kmf_miR_137.cumulative density
kmf _control group c density = kmf_control group.cumulative density
kmf c_density.head()

Table 11-10. Kaplan-Meier
Cumulative Density Estimates

KM_estimate
timeline
0.0 0.000000
6.0 0.029412
9.0 0.117647
13.0 0.205882
15.0 0.264706

To make sense of the cumulative density estimates, we plot the Kaplan-Meier
cumulative density curve.

Cumulative Density Curve

We use a cumulative density curve to understand the median value and the interquartile
range. When we plot the curve, the cumulative frequency is on the x-axis, and the upper-
class boundary of each interval is on the y-axis. Listing 11-13 and Figure 11-1 show the
Kaplan-Meier cumulative density curve. From the curve, we can identify the median
quartile and interquartile.

Listing 11-13. Kaplan-Meier Cumulative Density Curve

kmf miR_137.plot cumulative density(color="navy", label="miR-137")
kmf_control group.plot cumulative density(color="green", label="control")
plt.xlabel("Time")

plt.ylabel("Cumulative Incidence")

plt.legend(loc=2)

plt.show()
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Figure 11-1. Kaplan-Meier cumulative density curve

Figure 11-1 shows the following:

Atyear 0, the unconditional failure rate is 0%.
Atyear 6, the unconditional failure rate is 2.94%.
Atyear 9, the unconditional failure rate is 11.17%.
Atyear 13, the unconditional failure rate is 20.59%.

Atyear 15, the unconditional failure rate is 26.47%.

Survival Function

In survival analysis, event outcomes and follow-up times are used to estimate the

survival function. The survival function of time ¢ is estimated (in the uncensored case) by

the equation in Equation 11-2.

number of patients surviving beyond time t
n

S=

(Equation 11-2)
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Here, n is the number of patients in the study (that is, at time zero). We express the
formula as shown in Equation 11-3.

S(t,)= (Equation 11-3)

Here, d;is the number of events, and 7 is the number of individuals who survived.
Listing 11-14 estimates and tabulates Kaplan-Meier function estimates
(see Table 11-11).

Listing 11-14. Kaplan-Meier Survival Function Estimates

kmf_survival function = kmf miR_137.survival function_
kmf _control group survival function = kmf control group.survival function_
kmf_survival function.head()

Table 11-11. Kaplan-Meier
Survival Function Estimates

KM_estimate
timeline
0.0 1.000000
6.0 0.970588
9.0 0.882353
13.0 0.794118
15.0 0.735294

Survival Curve

A survival curve is the plot of S(¢,) versus . In a survival curve, the x-axis represents
time in years, and the y-axis represents the probability of surviving or the proportion of
people surviving. Listing 11-15 plots the survival curve (see Figure 11-2).
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Listing 11-15. Kaplan-Meier Survival Curve

kmf miR_137.plot_survival function(color="navy", label="miR-137")

kmf _control group.plot survival function(color="green",label="control")
plt.xlabel("Time")

plt.ylabel("Survival Probability")

plt.legend(loc=3)

plt.show()
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Figure 11-2. Kaplan-Meier survival curve
Figure 11-2 shows that there is a major difference between the survival curve of
the miR-137 group and the control group. The miR-137 group’s survival curve sharply

declines at year 9. Meanwhile, the control group’s survival curve only starts declining at
year 45. Listing 11-16 plots the survival curve with confidence intervals (see Figure 11-3).
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Listing 11-16. Kaplan-Meier Curve with Confidence Interval

kmf miR_137.plot_survival function(color="navy", label="miR-137")

kmf control group.plot survival function(color="green", label="Control")
plt.plot(kmf miR_137.confidence interval , color="red", label="95% CI")
plt.plot(kmf control group.confidence interval , color="red")
plt.xlabel("Time")

plt.ylabel("Survival Probability")

plt.legend(loc=3)

plt.show()
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Figure 11-3. Kaplan-Meier survival curve with confidence intervals
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Figure 11-3 tells us the following:
— Atyear 0, the probability of a patient surviving is 100%.
— Atyear 6, the probability of a patient surviving is 97.06%.

— Atyear 9, the probability of the patient surviving is 88.24%.
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— Atyear 13, the probability of the patient surviving is 79.41%.
— Atyear 15, the probability of the patient surviving is 73.53%.

Listing 11-17 finds the median survival time.

Listing 11-17. Median Survival Time

kmf miR_137.median_survival time_
26.0

The median survival time is 26 years. Listing 11-18 applies the predict() method to
predict future instances of event outcomes.

Listing 11-18. Predicted Event Outcome

kmf miR_137.predict(30)
0.23529411764705874

When the survival time is 30 years, the event outcome is 0. After seeing how the
model predicts instances, we look at how the model performs.

Evaluate the Kaplan-Meier Model

After estimating the survival probabilities of the two groups, we must find whether

the death generation of both groups is equal. Unlike other nonparametric models, the
Kaplan-Meier model does not have sophisticated model evaluation metrics. The best
way to test the model involves finding out whether groups share a similar survival curve.
We express the hypothesis as follows:

e Null hypothesis: All groups share the same survival curve.
o Alternative hypothesis: All groups do not share the same survival curve.
Listing 1-19 returns the log-rank results (see Table 11-12). Listing 11-20 shows the

p-value.

Listing 1-19. Log-Rank Test Results

from lifelines.statistics import logrank test
results = logrank test(T1, T2, event observed A=E1, event observed B=E2)
results.print_summary()
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Table 11-12. Log-Rank Test Results

to -1

null_distribution chi squared

degrees_of freedom 1

test_name logrank_test
test_statistic p

0 122.25 <0.005

Listing 11-20. P-Value

print(results.p value)
2.0359832222855426e-28

The previous findings show that the p-value is greater than 0.05. We reject the null
hypothesis in favor of the alternative hypothesis. All groups do not share the same

survival curve.

Conclusion

This chapter covered the most popular nonparametric survival analysis model known as
the Kaplan-Meier model. We estimated the survival probabilities of a patient surviving
an event beyond a specific time. Before developing the model, we split the data into

two groups, and we then created a survival table for the group under investigation. We
plotted the cumulative density curve and survival curve to make sense of the estimates.
Thereafter, we tested whether the two groups share the same survival curve using the
log-rank test. After studying the test statistic, we found the model is reliable, and we can

use it to predict future instances of event outcomes.
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Neural Networks

This chapter introduces a subfield of machine learning frequently recognized as deep
learning. First, it introduces different artificial neural networks. Second, we cover back
propagation and forward propagation. Third, it presents different activation functions.
Last, it builds and test a Restricted Boltzmann Machine and a multilayer perceptron
using the SciKit-Learn package, followed by deep belief networks using the Keras
package. To install Keras on the Python environment, use pip install Keras and on
the conda environment use conda install -c conda-forge keras.

An artificial neural network is an interconnected group of nodes that retrieves and
processes input values using different weights and biases across layers until there is an
output value. A neural network comprises several layers with configured nodes. Each
node in a hidden layer and output layer contains its own classifier. Nodes in the visible
layer retrieve input values, thereafter, the activation happens. Table 12-1 highlights
several types of neural networks and their applications.

Table 12-1. Types of Neural Networks and their Applications

Neural Network Application

Restricted Boltzmann Machine or Autoencoder Unlabelled data, variable extraction,
and pattern recognition

Recursive Neural Tensor Network or Recurrent Neural ~ Text processing’
Network

Deep Belief Net or Convolutional Neural Network Image recognition
Recurrent Neural Network Speech recognition
Multilayer Perceptron orDeep Belief Network Classification and Time Series Analysis

'https://www.tensorflow.org/guide/keras/rnn
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Forward Propagation

Forward propagation involves nodes in the visible layer receiving and processing input
values, and transmitting them to nodes in the subsequent layers until an output value is
produced. Although each layer retrieves the same input value, they do not transmit the
same value.

Back Propagation

Back propagation is the reverse of forward propagation. In back propagation, the
network estimates the gradient in reverse, and transforms weights of error rates of the
preceding epoch. This process is not memory efficient, and it also results in poor model
performance.

Cost Function

Chapter 1 introduced residual analysis, thus understanding the cost function should

be relatively easy. A cost function estimates the differences between actual values and
predicted values. It adjusts weights and biases until it finds the lowest value. We use cost
function and loss function interchangeably.

Gradient

A gradient represents the rate at which the cost changes weights and bias. We calculate
the gradient during training. It is used to. A neural network multiples gradients of
preceding layers to find the gradient of subsequent layers. To optimize the gradient, we
use gradient descent. There three types of gradient descent method, namely 1) batch
gradient descent - estimates gradient of cost function to the parameters of the whole
training data, 2) stochastic gradient descent - updates parameter for each independent
variable and dependent variable, 3) mini-batch gradient descent - applies batch gradient
descent and stochastic gradient descent to perform a mini-batch of the training data.
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Vanishing Gradient

If the gradient is large, we train the network fast, and if the gradient is small, the training
becomes slow. At most, the first layer has a small gradient, and subsequent layers have
larger gradients. A traditional machine learning model learns at a slow pace and makes a
lot of errors when predicting classes. Artificial neural networks fill this gap by scaling the
gradient.

Activation Function

An activation function adds non-linearity to the network. An activation function enables
back propagation. Excluding an activation function reduces the neural network to a
linear regression model. Underneath, we discuss these activation functions. There are
other functions® we may use.

The Sigmoid Activation Function

Chapter 5 introduced the logistic function and how it estimates values. We also recognize
the logistic function as the sigmoid activation. It triggers output values between 0 and 1.
We primarily use the sigmoid activation function to solve binary classification problems.
We express the sigmoid function as:

Sigmoid = — (Equation 12-1)

1+e

The activation function feeds forward neural networks that require positive output
values only.

*https://keras.io/api/layers/activations/
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The Tangent Hyperbolic Activation Function

The tangent hyperbolic (tanh) activation function extends the sigmoid activation
function. It triggers output values between -1 and 1 and enables the network to center
the mean value to 0. We express the function as:

t —t

e —e
Tanh = -
e —e

(Equation 12-2)

—t

The tanh activation fits a tangent hyperbolic curve to the data. Figure 12-1 depicts
the standard tanh function.

1.0+

I | | I |
-10 -5 0 5 10

Figure 12-1. Tanh Function

Notice the output value is between -1 and 1 and the mean value is centered to 0.
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Rectified Linear Units Activation Function

ReLU is the default activation function in CNN and multilayer perceptron. ReLU helps
models to learn more fast and its performance is better. Unlike the sigmoid and tanh
activation functions, the ReLu activation does not saturate the data to -1, 0, or 1. Rather,
it moves onward until it retrieves an optimal value. It helps solve the vanishing gradient
problem. We express the function as:

f(x)=max(0,x) (Equation 12-3)

Figure 12-2 depict the standard ReLu function.

10
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f(X)
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Figure 12-2. ReLu Function

Notice the output value is not constrained to a specific range.
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Loss Function

Loss is a standard metric for examining the underlying performance of a model. A neural
network applies a loss function to determine whether it should improve its learning
process per epoch. An increasing loss shows that a model is a skillful learner. The most
common loss functions for continuous dependent variables include Mean Squared
Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),

and Mean Squared Logarithmic Error (MSLE). Loss functions for categorical outcomes
include binary cross-entropy for binary classification and categorical cross-entropy for
multiclass classification.

Optimization

There are many methods for model performance optimization, like SGD, RMSProp,
ADAGRAD, Adadelta, and Adam. This chapter applies the Adam optimization method?
because it works better in minimizing the cost function during training. Adam stands
for Adaptive Movement Estimation. It considers preceding gradients in momentum and
lowers the learning rate.

Bernoulli Restricted Boltzmann Machine

We use the Restricted Boltzmann Machine (RBM) to address the vanishing gradient
problem. An RBM is a shallow neural network that comprises the visible layer and the
hidden layer. It connects each node in the visible layer to every node in the hidden layer.
In addition, it applies weight and biases to understand the underlying relationship
between variables.

Shttps://keras.io/api/optimizers/adam/
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Visible Layer Hidden Layer

Figure 12-3. Restricted Boltzmann Machine

Figure 12-3 shows an RBM with 3 nodes at the visible layer and 4 nodes at the hidden
layer.

Train a Logistic Classifier

Listing 12-1 trains the logistic classifier.

Listing 12-1. Finalize the Logistic Classifier

from sklearn.linear _model import LogisticRegression
logreg = LogisticRegression(dual= False,
fit_intercept= True,
max_iter= 10,
n_jobs= -5,
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penalty= '12',

t01=0.0001,

warm start= False)
logreg.fit(x_train, y train)

Pipeline
Listing 12-2 creates a pipeline for the logistic classifier and RBM classifier.

Listing 12-2. Complete the Pipeline

from sklearn.neural network import BernoulliRBM

from sklearn.pipeline import Pipeline

rbm = BernoulliRBM()

classifier = Pipeline(steps=[("rbm", rbm), ("logreg", logreg)])
classifier.fit(x_train, y train)

Table 12-2 highlights key classification evaluation metrics such as accuracy,
precision, recall, and others.

Listing 12-3. Classification Report

y pred = classifier.predict(x_ test)

creportbm = pd.DataFrame(metrics.classification report(y test, y pred,
output_dict=True)).transpose()

creportbm

Table 12-2. Classification Report

precision recall f1-score support
0 0.829787 0.728972 0.776119 107.000000
1 0.516667 0.659574 0.579439 47.000000
accuracy 0.707792 0.707792 0.707792 0.707792
macro avg 0.673227 0.694273 0.677779 154.000000
weighted avg 0.734224 0.707792 0.716094 154.000000
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The Bernoulli RBM classifier is accurate 70.78% of the time when predicting classes.
The accuracy score is lower than that of the classifiers we covered in the preceding
chapters. The classifier is precise 82.98% of the time when predicting class 0 and precise
51.67% of the time when predicting class 1.

Multilayer Perceptron using SciKit-Learn

At most, the single perceptron model struggles to capture the underlying structure of the
data, resulting in poor model performance. The Multilayer Perceptron (MLP) model to
address this. It trains, weights, and thresholds a set of random values, then estimates and
controls change using the activation function. It encompasses multiple layers; there must
be at least three layers, namely the visible layer, the hidden layer, and the output layer.

Visible Layer Hidden Layer Output Layer

Figure 12-4. Multilayer Perceptron
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Figure 12-4 shows the MLP with 3 nodes at the visible layer, 4 nodes at the hidden
layer, and an output layer with only one possible outcome.

Listing 12-4. Finalize the MLP Classifier

from sklearn.neural network import MLPClassifier
mlp = MLPClassifier()
mlp.fit(x_train, y train)

Table 12-3 provides the model’s accuracy score, precision score, recall, and other key
evaluation metrics

Listing 12-5. Classification Report

y_predmlp = mlp.predict(x test)

creportmlp = pd.DataFrame(metrics.classification_report(y_test, y predmlp,
output_dict=True)).transpose()

creportmlp

Table 12-3. Classification Report

precision recall f1-score support
0 0.848214 0.887850 0.867580 107.000000
1 0.714286 0.638298 0.674157 47.000000
accuracy 0.811688 0.811688 0.811688 0.811688
macro avg 0.781250 0.763074 0.770869 154.000000
weighted avg 0.807340 0.811688 0.808548 154.000000

The MLP classifier is more accurate and precise compared to the RBM classifier.

Compare the Bernoulli RBM and MLP ROC Curves

Figure 12-5 shows how skillful the classifiers are in distinguishing between classes.
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Listing 12-6. ROC Curves

y_pred probarbm = classifier.predict proba(x test)[::, 1]

y _pred probamlp = mlp.predict proba(x test)[::, 1]

aucrbm = metrics.roc_auc_score(y test, y pred probarbm)

aucmlp = metrics.roc_auc_score(y test, y pred probamlp)

fprrbm, tprrbm, _ = metrics.roc_curve(y test, y pred probarbm)
fprmlp, tprmlp, = metrics.roc _curve(y test, y pred probamlp)
plt.plot(fprrbm, tprrbm, label="auc: "+str(aucrbm), color="gray")
plt.plot(fprmlp, tprmlp, label="auc: "+str(aucmlp), color="black")
plt.plot([o, 1], [0, 1], color="red")

plt.xlabel("Specificity")

plt.ylabel("Sensitivity")

plt.legend(loc=4)
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plt.show()
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Figure 12-5. ROC Curves
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In Figure 12-5, the curve of the MLP classifier are highlighted in black and that of the
Bernoulli RBM classifier is highlighted in gray. The Bernoulli RBM’s curve is closer to the
45-degree line when compared to that of the MLP classifier. None of the curves are close
to the right-hand-side of the border. They do not show the characteristics of a perfect
ROC curve. However, the MLP classifier has an AUC score of 0.86 (greater than most
classifiers covered in the chapters). Meanwhile, the AUC score of the Bernoulli RBM
classifier is less than 0.80 (less than the score of all classifiers covered in the preceding
chapters).

Compare Bernoulli RBM and MLP Precision-Recall Curves

Figure 12-6 how the classifiers trade-off precision and recall across different thresholds.

Listing 12-7. Precision-Recall Curves

precisionrbm, recallrbm, thresholdrbm
y_test, y predrbm)
precisionmlp, recallmlp, thresholdmlp
y test, y predmlp)
apsrbm

metrics.precision recall curve(

metrics.precision recall curve(

metrics.average precision score(y test, y predrbm)

apsmlp = metrics.roc_auc_score(y test, y predmlp)

plt.plot(precisionrbm, recallrbm, label="aps: "+str(apsrbm), color="gray")
plt.plot(precisionmlp, recallmlp, label="aps: "+str(apsmlp), color="black")
plt.axhline(y=0.5, color="red")

plt.xlabel("Recall")

plt.ylabel("Precision")

plt.legend(loc=3)

plt.show()
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Figure 12-6. Precision-Recall Curves

All curves do not follow the top border, nor approach the top-right border. Rather,
they quickly reach the 1.0 point. The MLP classifier is more precise than the Bernoulli
RBM classifier on average.

Deep Belief Networks using Keras

A deep belief network is a combination of multiple RBMs. The network is an alternative
to backward propagation. The structure is like that of the MLP network. However, they
differ in training; a hidden layer of one RBM is a visible layer of another RBM.

Split Data into Training, Test Data and Validation Data

Previously, we split the data into training data and test data, whereby 80% of the data is
for training, and 20% of the data is for testing. From now on, we allocate a certain portion
of the training data for validation. First, we split the data into training data and test data
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using the 80/20 ratio. Last, we further split the training data to allocate a portion of 10%

for validation. Figure 12-7 shows how we split the data into three sets.

Test Data (20%)

Figure 12-7. Data Splits

We use the training test split() method to split the data into training data, test
data, and validation data.

Listing 12-8. Split the Data into Training Data, Test Data and Validation Data

x_train, x test, y train, y test = train test split(x, y, test size=0.2,
random_state=0)

x_train, x val, y train, y val = train_test split(x_train, y train,

test size=0.2, random state=0)

x_train = scaler.fit transform(x_ train)

x_test = scaler.transform(x_test)

Afterward, we import the Keras package.

Listing 12-9. Import the Keras Package

import tensorflow as tf

from keras import Sequential, regularizers

from keras.layers import Dense, Dropout

from keras.wrappers.scikit learn import KerasClassifier
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The first network comprises a visible layer with the sigmoid activation function.
There are also two hidden layers with 8 neurons and the ReLu activation function.

Listing 12-10. Build Model 1’s Architecture

def create dnn_modeli(optimizer="adam"):
modell = Sequential()
model1.add(Dense(8, input dim=8, activation="sigmoid"))
model1.add(Dense(8, activation="relu"))
modell.add(Dense(1, activation="relu"))
modell.compile(loss="binary crossentropy", optimizer=optimizer,
metrics=["accuracy"])
return model1l

We wrap the architecture of the network using the KerasClassifier() method.

Listing 12-11. Wrap Model 1

modell = KerasClassifier(build fn=create_dnn_model1)

Hyperparameter Optimization

Listing 12-12 finds the optimal number of samples to include in training and the number
of complete forward and backward passes.

Listing 12-12. Hyperparameter Optimization

batch _size = [15, 30, 60]

epochs = [16, 32, 64]

param grid = {"batch size":batch size, "epochs": epochs}

grid model = GridSearchCV(estimator=modell, param grid=param grid)
grid model.fit(x_train, y train, validation data=(x_val, y val))
print("Best scores: ", grid model.best score , "Best parameters: ",
grid model.best params )

Best scores: 0.7535971999168396 Best parameters: {‘batch_size’: 15, ‘epochs’: 64}
We use the results above to complete the model.
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Finalize Model

We use the fit() method to train the model.

Listing 12-13. Finalize Model 1

historyl = model1.fit(x_train, y train, validation data=(x_val, y val),
batch size=15, epochs=64)
history1

Table 12-4 provides the model’s accuracy score, precision score, recall, and other key

evaluation metrics

Listing 12-14. Classification Report

y predmodell = modell.predict(x test)

creportmodell = pd.DataFrame(metrics.classification report(y test,
y_predmodell, output dict=True)).transpose()

creportmodell

Table 12-4. Classification Report

precision recall f1-score support
0 0.862069 0.934579 0.896861 107.000000
1 0.815789 0.659574 0.729412 47.000000
accuracy 0.850649 0.850649 0.850649 0.850649
macro avg 0.838929 0.797077 0.813136 154.000000
weighted avg 0.847945 0.850649 0.845756 154.000000

The first deep belief network shows superior performance, it is more accurate than
any other classifier covered.

Regularization

In the second chapter, we introduced the concept of bias-variance trade-off. You can
refer back to the chapter. We regularize the deep belief network by using the dropout
method or adding a penalty term.
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Dropout

We use the dropout method to remove neurons at every layer during training to reduce
overfitting. The network estimates the probability that it will drop a neuron in a layer. A
dropout rate represents the fraction of the variables dropped in a layer. Listing 12-15 the
second deep belief network and drop neurons in layers at a 0.2 rate.

Listing 12-15. Build Model 2’s Architecture

def create dnn_model2(optimizer="adam"):
model2 = Sequential()
model2.add(Dense(8, input dim=8, activation="sigmoid"))
model2.add(Dense(8, activation="relu"))
model2.add(Dropout(0.2))
model2.add(Dense(1, activation="relu"))
model2.compile(loss="binary crossentropy", optimizer=optimizer,
metrics=["accuracy"])
return model2

Listing 12-16 wraps the classifier.

Listing 12-16. Wrap Model 2
model2 = KerasClassifier(build fn=create_dnn_model2)

Thereafter, we complete the classifier.

Listing 12-17. Finalize Model 2

history2 = model2.fit(x_train, y train, validation_data=(x_val, y val),
batch size=15, epochs=64)
history2

Table 12-5 provides the model’s accuracy score, precision score, recall, and other key
evaluation metrics
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Listing 12-18. Classification Report

y_predmodel2 = model2.predict(x_test)

creportmodel2 = pd.DataFrame(metrics.classification report(y test,
y_predmodel2, output dict=True)).transpose()

creportmodel2

Table 12-5. Classification Report

precision recall f1-score support
0 0.844828 0.915888 0.878924 107.000000
1 0.763158 0.617021 0.682353 47.000000
accuracy 0.824675 0.824675 0.824675 0.824675
macro avg 0.803993 0.766455 0.780638 154.000000
weighted avg 0.819902 0.824675 0.818931 154.000000

The dropout method cannot improve the performance of the classier at the rate we
specified. However, the classifier outperforms those covered in the preceding chapters.

L1 Regularization

We use L1 regularization to center the data to its central point. This regularization
technique makes weak variables produce coefficients equal to zero. It helps reduce noisy
variables, consequently optimizing the learning process. Listing 12-19 the architecture of
the third deep belief network. It compromises a visible layer with the sigmoid activation
function and an L1 penalty term with an alpha of 0.01. There are also two hidden layers
with the ReLu activation function.

Listing 12-19. Build Model 3’s Architecture

def create dnn_model3(optimizer="adam"):
model3 = Sequential()
model3.add(Dense(8, input dim=8, activation="sigmoid", kernel
regularizer=regularizers.11(0.001), bias regularizer=regularizers.
11(0.01)))
model3.add(Dense(8, activation="relu"))
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model3.add(Dense(1, activation="relu"))
model3.compile(loss="binary crossentropy"”, optimizer=optimizer,
metrics=["accuracy"])

return model3

Listing 12-20 wraps the classifier.

Listing 12-20. Wrap Model 3
model3 = KerasClassifier(build fn=create dnn_model3)

Thereafter, we complete the classifier.

Listing 12-21. Finalize Model 3

history3 = model3.fit(x _train, y train, validation data=(x _val, y val),
batch_size=30, epochs=64)
history3

Table 12-6 provides the model’s accuracy score, precision score, recall, and other key
evaluation metrics.

Listing 12-22. Classification Report

y_predmodel3 = model3.predict(x_test)

creportmodel3 = pd.DataFrame(metrics.classification report(y test,
y_predmodel3, output dict=True)).transpose()

creportmodel3

Table 12-6. Classification Report

precision recall f1-score support
0 0.859649 0.915888 0.886878 107.000000
1 0.775000 0.659574 0.712644 47.000000
accuracy 0.837662 0.837662 0.837662 0.837662
macro avg 0.817325 0.787731 0.799761 154.000000
weighted avg 0.833815 0.837662 0.833702 154.000000
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Adding an L1 penalty to the classifier reduces the imbalance. However, it does not
improve the accuracy score. The classifier is more precise than all classifiers when
predicting class 1.

L2 Regularization

We base L2 regularization on the premise that after normalizing the data, coefficients

are small and that the value of k increases, coefficients with multicollinearity alter their
behavior. This regularization technique is the most suitable for variables with severe
correlation. Listing 12-23 builds the architecture of the fourth deep belief network. It
compromises a visible layer with the sigmoid activation function and an L2 penalty term
with an alpha of 0.01. There are also two hidden layers with the ReLu activation function.

Listing 12-23. Build Model 4’s Architecture

def create_dnn_model4(optimizer="adam"):
model4 = Sequential()
model4.add(Dense(8, input _dim=8, activation="sigmoid", kernel
regularizer=regularizers.12(0.001), bias regularizer=regularizers.
12(0.001)))
model4.add(Dense(8, activation="relu"))
model4.add(Dense(1, activation="relu"))
model4.compile(loss="binary crossentropy", optimizer=optimizer,
metrics=["accuracy"])
return model4

Listing 12-24 wraps the classifier.

Listing 12-24. Wrap Model 4
model4 = KerasClassifier(build fn=create_dnn_model4)

Thereafter, we complete the classifier.

Listing 12-25. Finalize Model 4

history4 = model4.fit(x_train, y train, validation data=(x_val, y val),
batch _size=30, epochs=64)
history4
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Table 12-6 provides the model’s accuracy score, precision score, recall, and other key
evaluation metrics.

Listing 12-26. Classification Report

y predmodel4 = model4.predict(x test)

creportmodel4 = pd.DataFrame(metrics.classification_report(y test,
y_predmodel4, output dict=True)).transpose()

creportmodels

Table 12-7. Classification Report

precision recall f1-score support
0 0.850877 0.906542 0.877828 107.000000
1 0.750000 0.638298 0.689655 47.000000
accuracy 0.824675 0.824675 0.824675 0.824675
macro avg 0.800439 0.772420 0.783742 154.000000
weighted avg 0.820090 0.824675 0.820399 154.000000

Adding an L2 penalty term to the deep belief network does not improve the accuracy
score. When we carefully compare classification reports of penalized networks, we notice
that adding an L1 penalty term reduces the imbalance in the data at the cost of accuracy.

Compare Deep Belief Networks’ ROC Curves

Figure 12-8 succinctly summarizes the trade-off between specificity and sensitivity
across different probability thresholds (for all models). The closer the curve is to the left-
hand-side of the border, then the top border of the space, the more accurate it is.

Listing 12-27. ROC Curves

y_pred probamodel1

modell.predict proba(x test)[::,1]

y_pred_probamodel2
y_pred probamodel3
y_pred probamodel4

model2.predict proba(x test)[::,1]
model3.predict proba(x test)[::,1]
model4.predict proba(x test)[::,1]
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fprmodel1, tprmodel1l, =
fprmodel2, tprmodel2, =
fprmodel3, tprmodel3, =
fprmodel4, tprmodels, =

plt.
plt.

plt

plt.
plt.
plt.
plt.
plt.

Sensitivity

metrics.roc_curve(y test, y pred probamodell)
metrics.roc_curve(y test, y pred probamodel2)
metrics.roc_curve(y test, y pred probamodel3)
metrics.roc_curve(y test, y pred probamodel4)

plot(fprmodel1, tprmodeli, color="navy", label="Model 1")
plot(fprmodel2, tprmodel2, color="orange", label="Model 2")

.plot(fprmodel3, tprmodel3, color="green", label="Model 3")
plt.

plot(fprmodel4, tprmodel4, color="brown", label="Model 4")
plot([o, 1], [0, 1], color="red")

xlabel("Specificity")
ylabel("Sensitivity")

legend(loc=4)
show()
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Figure 12-8. ROC Curves
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Figure 12-8 shows that all the curves show the characteristics of well-behaved curves.
They do not follow the left-hand-side of the border nor reach the top of the left-hand-
side of the border. Although the curves struggle to do so, they gradually approach the

45-degree line.

Listing 12-28. AUC Scores

aucmodell = metrics.
aucmodel2 = metrics.

aucmodel3 = metrics.

aucmodelsq = metrics.

aucfinaldata

roc_auc_score(y test, y predmodell)

roc_auc_score(y test, y predmodel2)
roc_auc_score(y test, y predmodel3)
roc_auc_score(y test, y predmodels)
aucfinal = [[aucmodell, aucmodel2, aucmodel3, aucmodel3]]
aucfinaldata = pd.DataFrame(aucfinal, columns = ("Model 1",

"Model 2",
"Model 3",
"Model 4"),

index=["AUC Score"]).transpose()

When we construct the ROC curve, we are keenly interested in finding the AUC
score. Table 12-8 highlights the AUC scores of all the networks.

Table 12-8. Deep Belief

Networks’ AUC Scores
AUC Score
Model 1 0.797077
Model 2 0.766455
Model 3 0.787731
Model 4 0.787731

The unregularized network has the greatest AUC score, followed by networks

regularized using L1 and L2 penalty terms. The network with dropped neurons is the

most mediocre performer.

223



CHAPTER 12 NEURAL NETWORKS

Compare Deep Belief Networks’ Precision-Recall
Curves

Our networks are more precise when predicting class 0 than class 1. We must base

conclusions about the networks’ performance on the trade-off between precision and

recall. Listing 12-29 plots a precision-recall curves of all networks (see Figure 12-9).

Listing 12-29. Precision-Recall Curves

precisionmodell, recallmodeli, thresholdmodel1

metrics.precision_recall

curve(y test, y predmodell)

precisionmodel2, recallmodel2, thresholdmodel2

metrics.precision recall

curve(y test, y predmodel2)

precisionmodel3, recallmodel3, thresholdmodel3

metrics.precision recall

curve(y test, y predmodel3)

precisionmodel4, recallmodel4, thresholdmodels

metrics.precision_recall

curve(y test, y predmodels)

plt.
plt.
plt.
plt.
plt.
plt.
plt.
.legend(loc=3)

plt

plt.
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plot(precisionmodel1, recallmodel1, label="Model 1", color="navy")
plot(precisionmodel2, recallmodel2, label="Model 2", color="orange")
plot(precisionmodel3, recallmodel3, label="Model 3", color="green")
plot(precisionmodel4, recallmodel4, label="Model 4", color="brown")
axhline(y=0.5, color="red")

xlabel("Recall")

ylabel("Precision")

show()
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Figure 12-9. Precision-Recall Curves

As we progressively increase the recall, the precision of the fourth network drops faster
than all models. Figure 12-9 also shows the first network outperforms other networks.
Table 12-19 summarizes the precision and recall of all networks using the APS score.

Listing 12-30. APS Score

apsmodel1
apsmodel2

metrics.average precision score(y test, y predmodell)

metrics.average precision score(y test, y predmodel2)
apsmodel3 = metrics.average precision score(y test, y predmodel3)
apsmodel4 = metrics.average precision score(y test, y predmodels)
apsfinal = [[apsmodell, apsmodel2, apsmodel3, apsmodel3]]
apsfinaldata = pd.DataFrame(apsfinal, columns = ("Model 1",

"Model 2",

"Model 3",

"Model 4"),

index=["APS Score"]).transpose()

apsfinaldata
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Table 12-9. APS Score

APS Score

Model 1
Model 2
Model 3
Model 4

0.641970
0.587768
0.615066
0.615066

The unregularized network has the greatest APS score, followed by networks
regularized using L1 and L2 penalty terms. The network with dropped neurons is less

precise.

Training and Validation Loss across Epochs

Figure 12-10 shows how the leading deep belief network learns to compare actual classes

and predicted classes.

Listing 12-31. Training and Validation Loss across Epochs

plt.plot(historyi.history["loss"], color="red", label="Training Loss")
plt.plot(historyi.history["val loss"], color="green", label="Cross-

Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(loc=4)
plt.show()
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Figure 12-10. Training and Validation Loss across Epochs

Figure 12-10 shows that in the 1st epoch, cross-validation loss increases until it
reaches its peak at the 60th epoch and begins to drop. The training loss is constantly 0
across epochs.

Training and Validation Accuracy across Epochs

Figure 12-11 shows how the leading deep belief network learns to predict classes
correctly.

Listing 12-32. Training and Validation Accuracy across Epochs

plt.plot(historyi.history["accuracy"], color="red", label="Training
Accuracy")

plt.plot(history1.history["val accuracy"], color="green", label="Cross-
Validation Accuracy")
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plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend(loc=4)

plt.show()
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Figure 12-11. Training and Validation Accuracy across Epochs

Figure 12-11 highlights that in the 1st epoch, the training accuracy increases to about
80%. Meanwhile, the cross-validation accuracy declines until it reaches 0%, thereafter, it
is constantly 0%.
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Conclusion

This chapter described artificial neural networks and their applications, and it then
explained various activation functions. It solved the same classification problem covered
in the preceding chapters using different artificial neural networks such as the Bernoulli
RBM classifier, MLP classifier, and deep belief networks.

After properly building their architecture and completing them, we tested their
performance using several classification evaluation matrices. We found that the
Bernoulli RBM classifier struggles to distinguish between classes. However, the MLP
classifier is skillful in distinguishing between classes. All regularized deep belief
networks show characteristics of well-behaved classifiers. Moreover, the unregularized
deep belief network outperforms the rest.
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CHAPTER 13

Machine Learning
Using H20

This chapter concludes a book that familiarizes you with the world of data science.

This book covers supervised learning and unsupervised learning, as well as dimension
reduction. In addition, it concealed a subfield of machine learning, frequently recognized
as deep learning. You might have realized that the field of machine learning is broad.

You must be able to engineer data, optimize hyperparameters and develop, test, validate,
deploy, and scale models to solve complex problems using machine learning models and
deep learning. This typically requires an individual to know and apply different statistical,
machine learning, and deep learning models, and some programming techniques.

The demand for data scientists is high, but the supply of data scientists who possess
adequate skills is low. Over the past decade, think tanks across the globe have been
contributing to well-documented and ground-breaking open-source packages that gallantly
help us solve complex problems using machine learning. There is also a wide range of
content available in the public domain, like online tutorials, traditional degree courses,
online learning courses, published academic research papers, and more. Although the
scientific community is attempting to accelerate the adoption Al by make it easily accessible
to everyone. Most organizations struggle to unanimously adopt and scale Al solutions.

To get the best of H20, use H20 Flow. It adequately provides the power of not writing
many lines of code. It is an open-source web-based interactive environment for H20
that allows you to combine code execution, text, mathematics, plots, and rich media in a
single document. With H20 Flow, you can efficiently capture, rerun, annotate, present,
and share your workflow'. In this chapter, we show you how to build and test a model
using Python code. To install H20 in the Python environment use pip install h2o and
to install it in the Conda environment use conda install -c h2oai h2o.

'http://docs.h20.ai/h2o0/1atest-stable/h2o0-docs/flow.html
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CHAPTER 13

How H20 Works

MACHINE LEARNING USING H20

H20 enables us to develop, test, and validate machine learning and deep learning

models with little technical effort. When using this package, we do not write many lines

of code. It automates most data science procedures. Listing 13-1 initializes H20.

Listing 13-1. Initialize H20

import h2o
h2o.init()

Table 13-1. Environment Information

H20_cluster_uptime:

07 secs

H20_cluster_timezone:
H20_data_parsing_timezone:
H20_cluster_version:
H20_cluster_version_age:
H20_cluster_name:
H20_cluster_total_nodes:
H20_cluster_free_memory:
H20_cluster_total_cores:
H20_cluster_allowed_cores:
H20_cluster_status:
H20_connection_url:
H20_connection_proxy:
H20_internal_security:
H20_API_Extensions:

Python_version:

America/Los_Angeles

uTc

3.30.0.7

3 months and 3 days
H20_from_python_i5_lenov_z4hvé4c
1

2.975 Gb

0

0

accepting new members, healthy
http://127.0.0.1:54321
{“http”: null, “https”: null}

False

Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
3.7.6 final
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Data Processing

We load the data into an H20 dataframe using the import_file() method. The package
supports different file formats. Likewise, we obtained the example data from Kaggle.?

Listing 13-2. Load Data into a H20 Dataframe
df = h2o.import file(path name)

Listing 13-3 returns first 10 data points.

Listing 13-3. View a H20 Dataframe

df.head()

Listing 13-4 assigns independent variables and the dependent variable to two
separate dataframes.

Listing 13-4. Allocate Variables to X and Y Dataframe

y = "Outcome" x = df.col names x.remove("Outcome") df["Outcome"] =
df["Outcome"].asfactor()

Listing 13-5 applies the split_frame() method to split data into training data, test
data, and validation data.

Listing 13-5. Split Data into Training Data, Test Data and Validation Data

train, valid, test = df.split frame(ratios=[.8, .1], seed=1234)
print("Train shape: ", train.shape)

print("Valid shape: ", valid.shape)

print("Test shape: ", test.shape)

Model Training

Listing 13-6 completes the logistic classifier.

Yihttps://www.kaggle.com/uciml/pima-indians-diabetes-database
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Listing 13-6. Finalize the Logistic Classifier

from h2o.estimators.glm import H20GeneralizedlLinearEstimator
glm = H20GeneralizedLinearEstimator(family="binomial")
glm.train(x=x, y=y, training frame=train, validation frame=valid)

We specified the family type as “binomial” since we are solving a binary classification
problem. If we were solving a multiclass classification problem, then we would have
specified the family type as “multinomial.”

Model evaluation

Throughout the book, we depended on the confusion matrix, classification report,

ROC curve, Precision-Recall curve, and learning curve to conclude about the binary
classifiers’ performance. The SciKit-Learn package provides a few matrices compared to
the H20 package. Underneath, we adequately discuss classification evaluation metrics
available in the H20 package, and we then show you how to estimate them. We begin
with the Gini Index.

Gini Index

The H20 package enables us to obtain the Gini Index value, which measures the extent
to which there is inequality in the values. We use the index to correctly determine the
quality of a classifier. The index compromises values that range from 0 to 1. Where

0 shows that a classifier has perfect equality and 1 shows that a classifier has perfect
inequality. When we develop a classifier, we ordinarily expect to find a Gini Index value
that is closer to 1. Listing 13-7 returns estimates of the Gini index.

Listing 13-7. Gini Index

glm.gini(train=True, valid=True, xval=False)
{'train': 0.6828073360331426, 'valid': 0.548148148148148}

The Gini Index value of the training data is 0.68 and the value of the validation data
is 0.55. Both sets are on the borderline between equality and non-equality. We do not
have perfect inequality, as expected. However, the values are not small enough to affect
conclusions about the classifier.
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Absolute Matthews Correlation Coefficient

Another classification model evaluation metric available on the H20 package is the
Absolute Matthews Correlation Coefficient (MCC). We use it to determine the nature
of the correlation between the actual classes and those predicted by a classifier. MCC
has values that range from -1 to 1. Where -1 shows that a classifier makes many errors
when predicting classes, 0 shows that a classifier struggles with guesstimating classes
and 1 shows that a classifier is not skillful in distinguishing classes. Listing 13-8 returns
estimates of the Absolute MCC.

Listing 13-8. Absolute MCC

glm.mcc(train=True, valid=True, xval=False)
{"train': [[0.3356601829569534, 0.5297584436640914]],
'valid': [[0.3790626186045188, 0.39336862882432994]]}

The finding above shows that there is a weak positive correlation between actual
classes and those predicted by the classifier.

Confusion Matrix

Listing 13-9 returns abstract information about a classifier’s performance.
(see Table 13-2).

Listing 13-9. Confusion Matrix

glm.confusion matrix()

Table 13-2. Confusion Matrix

0 1 Error Rate
0 0 306.0 90.0 0.2273 (90.0/396.0)
1 1 49.0 168.0 0.2258 (49.0/217.0)
2 Total 355.0 258.0 0.2268 (139.0/613.0)
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Listing 13-10 finds the F1 score of both the training data and validation data.

Listing 13-10. F1 Score Both the Training Data and Validation Data

glm.F1(train=True, valid=True, xval=False)
{"train': [[0.3356601829569534, 0.7073684210526315]],
'valid': [[0.3790626186045188, 0.5405405405405405]]}

The findings above show that the logistic classifier has decent precession and recall.
Listing 13-11 finds the accuracy coefficient.

Listing 13-11. Accuracy Coefficient
glm.accuracy(train=True, valid=True, xval=False)

{"train': [[0.5331122058852918, 0.7862969004893964]],
‘valid': [[0.8926783510054471, 0.8115942028985508]]}

Listing 13-12 produces a curve that summarize how skillful the classifier is in
distinguishing classes (see Figure 13-1).

Listing 13-12. ROC Curve

glm perf.plot()
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ROC Curve
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Figure 13-1. ROC Curve

Figure 13-1 exhibits the characteristics of a well-behaved curve; it follows the left-
hand-side of the border in the beginning. However, as we increase the false positive rate,
the true positive rate also increases.

Standardized Coefficient Magnitude

Listing 13-13 returns a plot that graphically represent the relationship between
independent variables and the dependent variable (see Figure 13-2).

Listing 13-13. Standard Coefficient Magnitude

glm.std_coef plot()
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Standardized Coef. Magnitudes: H20 GLM
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Figure 13-2. Standardized Coefficient Magnitude

Figure 13-2 shows the magnitude of the standardized coefficients. Most independent
variables positively correlate with diabetes outcomes, besides blood pressure and
insulin. We also see a strong positive correlation between glucose and diabetes
outcomes.

Partial Dependence

We use partial dependence to determine the effect of the relationship between variables.
Table 13-3 highlights the partial dependence between age and diabetes outcomes.

Listing 13-14. Partial Dependence

glm.partial plot(data = df, cols = ["Age", "Outcome"], server=False,
plot = True)
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Table 13-3. Age Partial Dependence

Age mean_response stddev_response std_error_mean_response
0 21.000000 0.322744 0.261743 0.009445
1 24.157895 0.328581 0.263071 0.009493
2 27.315789 0.334469 0.264344 0.009539
3 30.473684 0.340407 0.265559 0.009583
4 33.631579 0.346395 0.266716 0.009624

Table 13-3 and 13-4 highlight a change in values of the variables and the response
mean, response standard deviation, and response standard error mean.

Table 13-4. Glucose Partial Dependence

outcome mean_response stddev_response  std_error_mean_response
0 0 0.348501 0.272299 0.009826
1 1 0.348501 0.272299 0.009826

Figure 13-3 shows the variables and their corresponding mean response. It gives an
idea of the partial dependence.
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Partial Dependence Plot for Age
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Figure 13-3. Partial Dependence
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Feature Importance

We use feature importance as a dimension reduction technique by allocating each
independent variable a value that shows the relative importance of each independent
variable to the dependent variable. Listing 13-15 plots feature importance (see

Figure 13-4).

Listing 13-15. Feature Importance

glm.varimp plot()

Variable Importance: H20 GLM
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Figure 13-4. Feature Importance

Figure 13-4 shows that Glucose is the most important variable in diabetes outcomes.
Followed by BMI and then pregnancies, and so forth. If we remove age, insulin, and Skin

thickness, we can improve the performance of the classifier.
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Predictions

Listing 13-16 tabulates the predicted classes and class probabilities (see Table 13-5)

Listing 13-16. Predicted Classes

y_predglm = glm.predict(test)

y_predglm
Table 13-5. Predicted Classes
And Class Probabilities
predict p0 pi
0 0.956033  0.0439669
0 0.977438  0.0225621
1 0.58329 0.41671
0 0.753834  0.246166
1 0.269132  0.730868
0 0.952432  0.0475679
0 0.811075  0.188925
0 0.917553  0.0824472
0 0.665598  0.334402
0 0.813001  0.186999
AutoML

AutoML stands for Automated Machine Learning. The term is self-explanatory. It
enables us to build and rigorously test different machine learning and deep learning
models using only a few line codes. It also automates processes like hyperparameter
optimization and data modelling. Instead of developing many models and comparing
them individually, we may use it. Developing an AutoML model is straightforward.
Listing 13-17 completes the AutoML model.
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Listing 13-17. Finalize the AutoML Model

from h2o.automl import H20AutoML
automl = H20AutoML(max_runtime secs=120)
automl.train(x=x, y=y, training frame=train, validation frame=valid)

When we complete it, we must specify the maximum number of seconds
that different models must take to learn the structure of the data. In our case, we
specified 2 minutes. When we use it, in the background, the H20 package optimizes
hyperparameters of available models and trains them.

Leaderboard

Table 13-6 highlights the performance of all models trained, including a 5-fold cross-
validation model performance. It ranks the classifiers on the AUC score. A classifier first
on the list has the highest AUC score, and a classifier last on the list has the lowest AUC
score. It also highlights the log loss, the area under precision-recall, the mean value per
class error, mean sum of errors and root mean sum of errors.

Listing 13-18. AutoML Leaderboard

leaderboard = automl.leaderboard
leaderboard
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Table 13-6 shows that the leading binary classifier has an AUC score of 0.83 and an
AUCPR of 0.70.

Prediction

Above, we found the leading classifier. Now let us consider the predicted classes and
class probabilities (see Table 13-7).

Listing 13-19. Predicted Classes and Class Probabilities

y _pred = automl.predict(test)
y_pred

Table 13-7. Predicted Classes
and Class Probabilities

predict po0 p1

0 0.923024 0.0769757
0 0.896685  0.103315
1 0.625636 0.374364
1 0.713157 0.286843
1 0.37774 0.62226

0 0.922715 0.0772854
0 0.836983 0.163017
0 0.910994 0.0890061

—r

0.587552 0.412448
1 0.686241 0.313759
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Conclusion

This chapter introduced a driverless open-source package known as H20. We developed
and tested a logistic classifier and AutoML model. You might have noticed how intuitive
and rich this package is. It does not require one to have extensive technical skills and
experience. The ease of the package enables organizations to escalate adoption of
practical Al solutions. We expect to see more driverless open-source packages in the
foreseeable future.

We have now come to the end of the chapter that concludes the book; we believe you
have gained sufficient insight into the world of data science. Now, apply the knowledge
gained to solve complex problems. Always keep at abreast of the latest research and
technologies. Never fall into the trap of deploying unreliable models or abandoning the
scalability of models and web apps.
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