

R Graphics
Third Edition

Chapman & Hall/CRC
The R Series

Series Editors

John M. Chambers, Department of Statistics Stanford University Stanford, California, USA
Torsten Hothorn, Division of Biostatistics University of Zurich Switzerland
Duncan Temple Lang, Department of Statistics University of California, Davis,
California, USA
Hadley Wickham, RStudio, Boston, Massachusetts, USA

Recently Published Titles

Computational Actuarial Science with R
Arthur Charpentier

bookdown: Authoring Books and Technical Documents with R Markdown,
Yihui Xie

Testing R Code
Richard Cotton

R Primer, Second Edition
Claus Thorn Ekstrøm

Flexible Regression and Smoothing: Using GAMLSS in R
Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, and
Fernanda De Bastiani

The Essentials of Data Science: Knowledge Discovery Using R
Graham J. Williams

blogdown: Creating Websites with R Markdown
Yihui Xie, Alison Presmanes Hill, Amber Thomas

Handbook of Educational Measurement and Psychometrics Using R
Christopher D. Desjardins, Okan Bulut

Displaying Time Series, Spatial, and Space-Time Data with R, Second Edition
Oscar Perpinan Lamigueiro

Reproducible Finance with R
Jonathan K. Regenstein, Jr

R Markdown
The Definitive Guide
Yihui Xie, J.J. Allaire, Garrett Grolemund

Practical R for Mass Communication and Journalism
Sharon Machlis

R Graphics, Third Edition
Paul Murrell

For more information about this series, please visit: https://www.crcpress.com/go/
the-r-series

https://www.crcpress.com
https://www.crcpress.com

R Graphics
Third Edition

Paul Murrell

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20181026

International Standard Book Number-13: 978-1-4987-8905-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Murrell, Paul, author.
Title: R graphics / Paul Murrell.
Description: Third edition. | Boca Raton, Florida : CRC Press, [2019] |
Series: The R series | Includes bibliographical references and index.
Identifiers: LCCN 2018040388| ISBN 9781498789059 (hardback : alk. paper) |
ISBN 9780429422768 (e-book)
Subjects: LCSH: Computer graphics. | R (Computer program language)
Classification: LCC T385 .M9 2019 | DDC 006.6/63--dc23
LC record available at https://lccn.loc.gov/2018040388

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
https://lccn.loc.gov/2018040388
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface xi

1 An Introduction to R Graphics 1
1.1 R graphics examples . 3

1.1.1 Standard plots . 3
1.1.2 Trellis plots . 4
1.1.3 The grammar of graphics 5
1.1.4 Specialized plots . 5
1.1.5 General graphical scenes 6

1.2 The organization of R graphics 19
1.2.1 Base graphics versus grid graphics 21

I BASE GRAPHICS 23

2 Simple Usage of Base Graphics 25
2.1 The base graphics model . 26
2.2 The plot() function . 26
2.3 Plots of a single variable . 31
2.4 Plots of two variables . 35
2.5 Plots of many variables . 36
2.6 Arguments to graphics functions 40

2.6.1 Standard arguments to graphics functions 42
2.7 Specialized plots . 43

3 Customizing Base Graphics 49
3.1 The base graphics model in more detail 50

3.1.1 Plotting regions . 50
3.1.2 The base graphics state 53

3.2 Controlling the appearance of plots 60
3.2.1 Colors . 61
3.2.2 Lines . 62
3.2.3 Text . 63
3.2.4 Data symbols . 67
3.2.5 Axes . 68
3.2.6 Plotting regions . 72

v

vi Contents

3.2.7 Clipping . 74
3.2.8 Moving to a new plot 75

3.3 Arranging multiple plots . 75
3.3.1 Using the base graphics state 75
3.3.2 Layouts . 76
3.3.3 The split-screen approach 79

3.4 Annotating plots . 81
3.4.1 Annotating the plot region 81
3.4.2 Annotating the margins 90
3.4.3 Legends . 92
3.4.4 Axes . 93
3.4.5 Coordinate systems . 97
3.4.6 Special cases . 104

3.5 Creating new plots . 109
3.5.1 A simple plot from scratch 110
3.5.2 A more complex plot from scratch 112
3.5.3 Writing base graphics functions 114

3.6 Interactive graphics . 117

II GRID GRAPHICS 121

4 Trellis Graphics: The lattice Package 123
4.1 The lattice graphics model 124

4.1.1 Why another graphics system? 127
4.2 lattice plot types . 127
4.3 The formula argument and multipanel conditioning 130
4.4 The group argument and legends 132
4.5 The layout argument and arranging plots 134
4.6 The scales argument and labeling axes 137
4.7 The panel argument and annotating plots 137

4.7.1 Adding output to a lattice plot 143
4.8 par.settings and graphical parameters 143

5 The Grammar of Graphics: The ggplot2 Package 149
5.1 Quick plots . 150
5.2 The ggplot2 graphics model 152

5.2.1 Why another graphics system? 153
5.3 Data . 153
5.4 Geoms and aesthetics . 154
5.5 Scales . 156
5.6 Statistical transformations . 160
5.7 The group aesthetic . 164
5.8 Position adjustments . 165
5.9 Coordinate transformations 166

Contents vii

5.10 Facets . 169
5.11 Themes . 169
5.12 Annotating . 172
5.13 Extending ggplot2 . 175

6 The grid Graphics Model 177
6.1 A brief overview of grid graphics 178

6.1.1 A simple example . 179
6.2 Graphical primitives . 182

6.2.1 Graphical utilities . 188
6.2.2 Standard arguments 189
6.2.3 Clipping . 189

6.3 Coordinate systems . 190
6.3.1 Conversion functions 193
6.3.2 Complex units . 194

6.4 Controlling the appearance of output 196
6.4.1 Specifying graphical parameter settings 199
6.4.2 Vectorized graphical parameter settings 200

6.5 Viewports . 203
6.5.1 Pushing, popping, and navigating between viewports . 204
6.5.2 Clipping to viewports 209
6.5.3 Viewport lists, stacks, and trees 210
6.5.4 Viewports as arguments to graphical primitives 213
6.5.5 Graphical parameter settings in viewports 215
6.5.6 Layouts . 217

6.6 Missing values and non-finite values 221
6.7 Interactive graphics . 222
6.8 Customizing lattice plots . 222

6.8.1 Adding grid output to lattice output 224
6.8.2 Adding lattice output to grid output 224

6.9 Customizing ggplot2 output 226
6.9.1 Adding grid output to ggplot2 output 227
6.9.2 Adding ggplot2 output to grid output 227

7 The grid Graphics Object Model 231
7.1 Working with graphical output 232
7.2 Listing graphical objects . 234
7.3 Selecting graphical objects . 237
7.4 Grob lists, trees, and paths 239

7.4.1 Graphical parameter settings in gTrees 241
7.5 Searching for grobs . 242
7.6 Editing graphical context . 243
7.7 Forcing graphical objects . 244
7.8 Working with graphical objects off-screen 245
7.9 Reordering graphical objects 247

viii Contents

7.10 Capturing output . 247
7.11 Querying grobs . 249

7.11.1 Calculating the sizes of grobs 249
7.11.2 Calculating the positions of grobs 252

7.12 Placing and packing grobs in frames 256
7.12.1 Placing and packing off-screen 258

7.13 Display lists . 258
7.14 Working with lattice grobs 259
7.15 Working with ggplot2 grobs 262

8 Developing New Graphical Functions and Objects 267
8.1 An example . 268
8.2 Graphical functions . 269

8.2.1 Modularity . 270
8.2.2 Embeddable output 270
8.2.3 Editable output . 271
8.2.4 Annotatable output 272

8.3 Graphical objects . 274
8.3.1 Defining a static grob 275
8.3.2 Editable grobs . 277
8.3.3 Defining a static grob with drawing context 278
8.3.4 Defining a dynamic grob 282
8.3.5 Forcing grobs . 285
8.3.6 Reverting grobs . 286
8.3.7 Defining a dynamic grob with drawing context 286
8.3.8 Querying graphical objects 288
8.3.9 Summary of graphical object methods 290
8.3.10 Calculations during drawing 290
8.3.11 Avoiding argument explosion 293

8.4 Mixing graphical functions and graphical objects 295
8.5 Debugging grid . 299

III THE GRAPHICS ENGINE 301

9 Graphics Formats 303
9.1 Graphics devices . 304
9.2 Graphical output formats . 305

9.2.1 Vector formats . 307
9.2.2 Raster formats . 311
9.2.3 R Studio . 312

9.3 Including R graphics in other documents 313
9.3.1 LATEX . 313
9.3.2 “Productivity” software 314
9.3.3 Web pages . 314

Contents ix

9.4 Device-specific features . 314
9.5 Multiple pages of output . 315
9.6 Display lists . 316
9.7 Extension packages . 317

10 Graphical Parameters 319
10.1 Colors . 319

10.1.1 Semitransparent colors 321
10.1.2 Converting colors . 322
10.1.3 Color sets . 322
10.1.4 Device dependency of color specifications 324

10.2 Line styles . 325
10.2.1 Line widths . 325
10.2.2 Line types . 325
10.2.3 Line ends and joins . 325

10.3 Data symbols . 328
10.4 Fonts . 328

10.4.1 Font family . 330
10.4.2 Font face . 339
10.4.3 Multi-line text . 340
10.4.4 Locales . 341
10.4.5 Escape sequences . 341
10.4.6 Anti-aliasing . 342

10.5 Mathematical formulae . 343

IV INTEGRATING GRAPHICS SYSTEMS 347

11 Importing Graphics 349
11.1 The Moon and the tides . 350
11.2 Importing raster graphics . 352
11.3 Importing vector graphics . 355

11.3.1 The grImport package 355
11.3.2 The grImport2 package 361

12 Combining Graphics Systems 369
12.1 The gridBase package . 370

12.1.1 Annotating base graphics using grid 370
12.1.2 Base graphics in grid viewports 373
12.1.3 Problems and limitations of gridBase 376

12.2 The gridGraphics package 377
12.2.1 Editing base graphics using grid 378
12.2.2 Base graphics in grid viewports 378
12.2.3 Problems and limitations of gridGraphics 381

x Contents

13 Advanced Graphics 385
13.1 Exporting SVG . 385
13.2 SVG advanced features . 389

13.2.1 Gradient fills . 389
13.2.2 Pattern fills . 390
13.2.3 Filters . 392
13.2.4 Clipping paths . 395
13.2.5 Masks . 395

13.3 SVG drawing context . 397
13.4 SVG definitions . 398
13.5 Drawing off screen . 401
13.6 SVG fonts . 402
13.7 Exporting base graphics . 405
13.8 Exporting to other formats 405
13.9 Exporting imported images 406

Bibliography 409

Index 415

Preface

R is a popular open-source software tool for statistical analysis and graphics.
This book focuses on the graphics facilities that R provides for the production
of publication-quality diagrams and plots.

What this book is about

This book describes the core graphics systems in R. The first chapter pro-
vides an overview of the R graphics facilities. There are several figures that
demonstrate the variety and complexity of plots and diagrams that can be
produced using R and there is a description of the overall organization of the
R graphics facilities, so that the user has some idea of where to find a function
for a particular purpose.

A very important feature of the R graphics setup is the existence of two distinct
graphics systems within R: the base graphics system and the grid graphics
system. Section 1.2.1 offers some advice on which system to use.

Part I of this book is concerned with the base graphics system, which imple-
ments many of the“traditional”graphics facilities of the S language (originally
developed at Bell Laboratories and made available in a commercial implemen-
tation as S-PLUS). This system is provided by the graphics package. The
base graphics system is older than the grid graphics system, and there are
a greater number of graphics functions and packages written for base graph-
ics. However, more modern grid-based systems, particularly ggplot2 (see
below) are now more popular. The chapters in this part of the book describe
how to work with the base graphics functions, with a particular emphasis on
how to modify or add output to a plot to produce exactly the right final out-
put. Chapter 2 describes the functions that are available to produce complete
plots and Chapter 3 focuses on how to customize the details of plots, combine
multiple plots, and add further output to plots.

Part II describes the grid graphics system, which is unique to R and is more
flexible than the base graphics system. The graphics facilities that are based
on the grid graphics system are further split into three major graphics pack-
ages.

Deepayan Sarkar’s lattice package provides a complete and coherent set of
graphics functions for producing plots, based on Bill Cleveland’s Trellis graph-

xi

xii Preface

ics paradigm. This is described in Chapter 4.

Hadley Wickhams’ ggplot2 package provides another complete and coher-
ent set of graphics functions for producing plots, this time based on Leland
Wilkinson’s Grammar of Graphics paradigm. This is described in Chapter 5.

Finally, there is the grid package itself, which provides a low-level, general-
purpose graphics system for producing a wide variety of images, including
plots. Both lattice and ggplot2 use grid to draw plots, but both can be
used without directly encountering grid. The grid package can be used on its
own, or as a low-level way to customise, modify, and combine plots produced
by lattice or ggplot2. The remaining chapters in Part II describe how the
grid system can be used to produce graphical scenes starting from a blank
page. In particular, there is a discussion of how to use grid to develop new
graphical functions that are easy for other people to use and build on.

Part III of this book is concerned with the R graphics “engine”, which is
provided by the grDevices package. This consists of functions that underly
both the graphics and grid packages and provide low-level infrastructure for
specifying colours and fonts (Chapter 10) and for controlling the format of
R graphics output (whether we draw to the screen or save graphics to a file,
such as a PDF document; see Chapter 9).

Finally, Part IV covers the integration of R graphics with other systems. Chap-
ter 11 looks at importing graphics from other systems into R with the grIm-
port and grImport2 packages. Chapter 12 is concerned with the problem of
combining grid and graphics output using the gridBase and gridGraph-
ics packages. Chapter 13 looks at accessing advanced graphics features that
R graphics itself does not support, specifically the gridSVG package for pro-
ducing SVG output that contains special effects like gradient fills and filter
effects.

Changes in the third edition

Much of the graphics system in R that was described in the first and second
editions of this book still exists and is still being heavily used, but there
have been numerous changes in some of the details. One purpose of this
third edition is to provide updated information on the core graphics engine,
the base graphics system, and the grid graphics ecosystem, which includes
lattice and ggplot2. In particular, Chapter 8 has been completely rewritten
to accomodate changes in the recommended method for developing new grid
grobs. The main example in that chapter has also been simplified so that
it is easier to demonstrate and discuss the issues involved in developing new
graphical functions and objects.

The main change from the second edition is that Part IV has been restruc-
tured. In the second edition, this part of the book attempted to cover a wide

Preface xiii

range of applications of R graphics, but the number of ways that R graph-
ics can be used has grown to the point that Part IV would require several
volumes by itself; something that is reflected in the fact that there are now
many more books that cover different aspects of producing plots in R (e.g.,
Thomas Rahlf’s Data Visualisation with R and Oscar Perpinan Lamigueiro’s
Displaying Time Series, Spatial, and Space-time Data with R).

The restructuring of Part IV reflects a change in focus back to static graphics
in this book. For example, there is no longer a chapter on interactive graphics
(which is a very active area of development, particularly connecting R with
javascript libraries for use on web pages). The emphasis in this third edition
is on having the ability to produce detailed and customised graphics in a
wide variety of formats, on being able to share and reuse those graphics, and
on being able to integrate graphics from multiple systems (for example, the
chapters on importing and combining graphics in R have been retained and
expanded).

As always, there is also an emphasis on producing graphics from code, with
all of the benefits that accrue from that: automation, reuse, sharing, and so
on.

What is different about this book?

Since the first edition of R Graphics was published, there have been many
more books written about R, many of which include or even focus on pro-
ducing plots with R. Notable examples include Winston Chang’s R Graphics
Cookbook, Deepayan Sarkar’s Lattice: Multivariate Data Visualization with R,
and Hadley Wickham’s ggplot2: Elegant Graphics for Data Analysis.

One distinction with this book is that it explicitly acknowledges that the
graphics facilities in R can be used to draw a wide variety of images beyond
just statistical plots.

One unique feature of this book is that it provides the only comprehensive
descriptions of the core graphics systems in R: base graphics and grid graphics.

This book focuses on the task of producing exactly the image that you want
and it attempts to provide a conceptual as well as technical explanation of
the steps involved. The focus is at a lower level than most other books on R
graphics. There is an overview of the packages and functions that allow you
to create complete plots, including lattice and ggplot2, but the value of this
book is in understanding how to modify the details of those plots, add further
drawing to those plots, and combine those plots with each other or make use
of those plots in other systems. In addition, the knowledge in this book will
allow you to draw from scratch, from the ground up, and from a blank page
if that is what you need to do.

tuhocr
Highlight

tuhocr
Highlight

xiv Preface

What this book is (still) not about

This book does not contain discussions about which sort of plot is most appro-
priate for a particular sort of data, nor does it contain guidelines for correct
graphical presentation. In fact, instructions are provided for producing some
types of plots and graphical elements that are generally disapproved of, such
as pie charts and cross-hatched fill patterns.

The information in this book is meant to be used to produce a plot once the
format of the plot has been decided upon and to experiment with different
ways of presenting a set of data. No plot types are deliberately excluded,
partly because no plot type is all bad (e.g., a pie chart can be a very effective
way to represent a simple proportion) and partly because some graphical
elements, such as cross-hatching, might be required by a particular publisher.

The flexibility of R graphics encourages the user not to be constrained to
thinking in terms of just the traditional types of plots. The aim of this book
is to provide lots of useful tools and to describe how to use them. There are
many other sources of information on graphical guidelines and recommended
plot types.

Most introductory statistics textbooks will contain basic guidelines for select-
ing an appropriate type of plot. Examples of books that deal specifically with
the construction of effective plots and that are aimed at a general audience
are Creating More Effective Graphs by Naomi Robbins and Edward Tufte’s
Visual Display of Quantitative Information and Envisioning Information. For
more technical discussions of these issues, see Graphics For Statistics and Data
Analysis With R by Kevin Keene, Visualizing Data and Elements of Graphing
Data by Bill Cleveland, and The Grammar of Graphics by Leland Wilkinson.

For ideas on appropriate graphical displays for particular types of analysis or
particular types of data, some starting points are Data Analysis and Graphics
Using R by John Maindonald and John Braun, An R and S-Plus Companion
to Applied Regression by John Fox, Statistical Analysis and Data Display by
Richard Heiberger and Burt Holland, Visualizing Categorical Data by Michael
Friendly, and Graphical Data Analysis with R by Antony Unwin.

This book is also not a complete reference to the R system. There are many
freely available documents that provide both introductory and in-depth ex-
planations of the R system. The best place to start is the “Documentation”
section on the home page of the R project web site (see “On the web” on page
xvi). Two examples of introductory texts are Introductory Statistics with R
by Peter Dalgaard and Using R for Introductory Statistics by John Verzani.

Preface xv

Who should read this book

This book should be of interest to a variety of R users. For people who are
new to R, this book provides an overview of the graphics facilities, which is
useful for understanding what to expect from R’s graphics functions and how
to modify or add to the output they produce. For this purpose, Chapter 1 is
the place to start. In particular, the discussion of which graphics system to
use in Section 1.2.1 will be of interest. Chapters 2, 4, and 5 provide relatively
brief introductions to the major packages that produce standard plots, so it
should be possible to get started fairly quickly using one of those chapters.

For intermediate-level R users, this book provides all of the information neces-
sary to perform sophisticated customizations of plots produced in R. As with
many software applications, it is possible to work with R for years and remain
unaware of important and useful features. This book will be useful in making
users aware of the full scope of R graphics, and in providing a description of
the correct model for working with R graphics. Chapters 3, 6, and 7 contain
a lot of this detailed information about how R graphics works.

For advanced R users, this book contains vital information for producing co-
herent, reusable, and extensible graphics functions. Advanced users should
pay particular attention to Chapters 6, 7, and 8.

Conventions used in this book

This book describes a large number of R functions and there are many code
examples. Samples of code that could be entered interactively at the R com-
mand line are formatted as follows:

> 1:10

where the > denotes the R command-line prompt and everything else is what
the user should enter. When an expression is longer than a single line it will
look like the following, with the additional lines indented appropriately:

> plot(1:10, 1:10, col="blue", lty="dashed",

axes=FALSE, type="l")

Often, the functions described in this book are used for the side effect of
producing graphical output, so the result of running a function is represented
by a figure. In cases where the result of a function is a value that we might
be interested in, the result will be shown below the code that produced it and
will be formatted as follows:

[1] 1 2 3 4 5 6 7 8 9 10

xvi Preface

In some places, an entirely new R function is defined. Such code would nor-
mally be entered into a script file and loaded into R in one step (rather than
being entered at the command line), so the code for new R functions will be
presented in a figure and formatted as follows:

1 myfun <- function(x, y) {

2 plot(x ,y)

3 }

with line numbers provided for easy reference to particular parts of the code
from the main text.

When referring to a function within the main text, it will be formatted in
a typewriter font and will have parentheses after the function name, e.g.,
plot().

When referring to the arguments to a function or the values specified for the
arguments, they will also be formatted in a typewriter font, but they will
not have any parentheses at the end, e.g., x, y, or col="red".

When referring to an S3 class, statements will be of the form: “the
"classname" class,” using a typewriter font with the class name in double
quotes. However, when referring to an object that is an instance of a class,
statements will be of the form: “the classname object,” using a typewriter
font, but without the double quotes around the class name.

All package names are in bold and names of software and computer languages
and formats are in Sans Serif.

On the web

There is a web site with errata and links to pages of PNG or SVG versions of
all figures from the book and the R code used to produce them:

http://www.stat.auckland.ac.nz/~paul/RG3e/

There is also an RGraphics package containing functions to produce the
figures in this book and all functions, classes, and methods defined in the
book.

The RGraphics package and all other packages mentioned in this book are
available from the Comprehensive R Archive Network (CRAN):

http://cran.r-project.org/

Version information

Software development is an ongoing process and this book can only provide a
snapshot of R’s graphics facilities. The descriptions and code samples in this

http://www.stat.auckland.ac.nz
http://cran.r-project.org

Preface xvii

book are accurate for R version 3.4.0, but future changes are inevitable. Much
of the content of Parts I, II, and III is also accurate for earlier versions of R,
but specific areas of incompatibility are not indicated in the text.

A new “minor” version of R is released every year. The most up-to-date
information on the most recent versions of R and grid are available in the
on-line help pages and at the home page for the R Project:

http://www.R-project.org/

Acknowledgments

One advantage of writing a new edition of this book is that it provides one
of the rare opportunities to express in print my thanks to colleagues in the R
Core team of developers for the work that they do to make R the powerful,
reliable, and fun system that it is.

An enormous debt of gratitude is also due to the wider group of people respon-
sible for the smooth and sane expansion of the R universe, including places
like CRAN and the R-Forge web site.

Wider still is the group of enthusiastic useRs who have made the transition to
developeRs and produced a staggering number of graphics extension packages
for R.

Last, and most, and always, thank you, Ju.

Paul Murrell
The University of Auckland

New Zealand

This manuscript was generated on an Ubuntu 16.04 Linux system using LATEX, nu-

merous GNU tools, the GIMP, ghostscript, ImageMagick, Sweave, and many different

R packages. Kudos to them all!

http://www.R-project.org

http://taylorandfrancis.com

1

An Introduction to R Graphics

Chapter preview

This chapter provides the most basic information to get started pro-
ducing plots in R. First of all, there is a three-line code example that
demonstrates the fundamental steps involved in producing a plot. This
is followed by a series of figures to demonstrate the range of images
that R can produce. There is also a section on the organization of R
graphics giving information on where to look for a particular function.

The following code provides a simple example of how to produce a plot using
R (see Figure 1.1).

> plot(pressure)

> text(150, 600,

"Pressure (mm Hg)\nversus\nTemperature (Celsius)")

The expression plot(pressure) produces a scatterplot of pressure versus
temperature, including axes, labels, and a bounding rectangle. The call to
the text() function adds the label at the data location (150, 600) within
the plot.

This example is basic R graphics in a nutshell. In order to produce graphical
output, the user calls a series of graphics functions, each of which produces
either a complete plot or adds some output to an existing plot. R graphics
follows a “painters model,” which means that graphics output occurs in steps,
with later output drawn on top of any previous output.

1

2 R Graphics, Third Edition

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

Pressure (mm Hg)
versus

Temperature (Celsius)

Figure 1.1
A simple scatterplot of vapor pressure of mercury as a function of temperature.
The plot is produced from two simple R expressions: one expression to draw the
basic plot, consisting of axes, data symbols, and bounding rectangle, and another
expression to add the text label within the plot.

An Introduction to R Graphics 3

It is also important to explicitly acknowledge that the way to produce graphics
in R is by writing code. There are a number of graphical user interfaces to
R that provide menus and dialog boxes for creating plots, but the only way
to access the full range and power of R graphics is through code. This book
takes the view that code is also the best way to produce R graphics, for several
reasons: code produces a record of your actions, so that we can reproduce a
plot easily, we can share the recipe for producing a plot with others, we can
adapt a recipe to produce variations on a plot without having to start each
time from scratch, and we can use programming tools like loops to efficiently
scale up to producing large numbers of plots. Finally, code-based graphics fits
nicely with version control tools, like github∗, and with tools that promote
reproducibility, like knitr and rmarkdown.

There are very many graphical functions provided by R and the extension
packages for R so, before describing individual functions, Section 1.1 demon-
strates the variety of results that can be achieved. This should provide some
idea of what users can expect to be able to achieve with R graphics.

Section 1.2 gives an overview of how the graphics functions in R are orga-
nized. This should provide users with some basic ideas of where to look for a
function to do a specific task. By the end of this chapter, the reader will be
in a position to start understanding in more detail the core R functions that
produce graphical output.

1.1 R graphics examples

This section provides an introduction to R graphics by way of a series of
examples. None of the code used to produce these images is shown, but it
is available from the web site for this book. The aim for now is simply to
provide an overall impression of the range of graphical images that can be
produced using R. The figures are described over the next few pages and the
images themselves are all collected on pages 7 to 18.

1.1.1 Standard plots

R provides the usual range of standard statistical plots, including scatterplots,
boxplots, histograms, barplots, pie charts, and basic 3D plots. Figure 1.2

∗http://github.com/

http://github.com/

4 R Graphics, Third Edition

shows some examples.

In R, these basic plot types can be produced by a single function call (e.g.,
pie(pie.sales) will produce a pie chart), but plots can also be considered
merely as starting points for producing more complex images. For example,
in the top-left scatterplot in Figure 1.2, a text label has been added within
the body of the plot (in this case to show a subject identification number)
and a secondary y-axis has been added on the right-hand side of the plot.
Similarly, in the histogram, lines have been added to show a theoretical normal
distribution for comparison with the observed data. In the barplot, labels have
been added to the elements of the bars to quantify the contribution of each
element to the total bar and, in the boxplot, a legend has been added to
distinguish between the two data sets that have been plotted.

This ability to add several graphical elements together to create the final
result is a fundamental feature of R graphics. The flexibility that this allows
is demonstrated in Figure 1.3, which illustrates the estimation of the original
number of vessels based on broken fragments gathered at an archaeological
site: a measure of “completeness” is obtained from the fragments at the site;
a theoretical relationship is used to produce an estimated range of “sampling
fraction” from the observed completeness; and another theoretical relationship
dictates the original number of vessels from a sampling fraction. This plot is
based on a simple scatterplot, but requires the addition of many extra lines,
polygons, and pieces of text, and the use of multiple overlapping coordinate
systems to produce the final result.

R graphics allows fine control of very low-level aspects of a plot and these
features can be used to produce some dramatic effects (at the risk of detracting
from the message in the data). Figure 1.4 demonstrates one such example,
where a simple barplot of tiger population levels has been embellished with
an image of the head of a tiger.

For more information on the R functions that produce these standard plots,
see Chapter 2. Chapter 3 describes the various ways that further output can
be added to a plot.

1.1.2 Trellis plots

In addition to the base graphics plots, R provides an implementation of Trellis
plots via the package lattice by Deepayan Sarkar. Trellis plots embody a
number of design principles proposed by Bill Cleveland that are aimed at
ensuring accurate and faithful communication of information via statistical
plots. These principles are evident in a number of new plot types in Trellis
and in the default choice of colors, symbol shapes, and line styles provided by
Trellis plots. Furthermore, Trellis plots provide a feature known as multipanel

An Introduction to R Graphics 5

conditioning, which creates multiple plots by splitting the data being plotted
according to the levels of other variables.

Figure 1.5 shows an example of a Trellis plot. The data are yields of several
different varieties of barley at six sites, over two years. The plot consists of
six panels, one for each site. Each panel consists of a dotplot showing yield
for each variety with different symbols used to distinguish different years, and
a strip at the top showing the name of the site.

For more information on the Trellis system and how to produce Trellis plots
using the lattice package, see Chapter 4.

1.1.3 The grammar of graphics

Leland Wilkinson’s Grammar of Graphics provides another completely differ-
ent paradigm for producing statistical plots and this approach to plotting has
been implemented for R by Hadley Wickham’s ggplot2 package.

One advantage of this package is that it makes it possible to create a very
wide variety of plots from a relatively small set of fundamental components.
The ggplot2 package also has a feature called facetting, which is similar to
lattice’s multipanel plots.

Figure 1.6 shows an example of a plot that has been produced using ggplot2.
For more information on the ggplot2 package, see Chapter 5.

1.1.4 Specialized plots

As well as providing a wide variety of functions that produce complete plots,
R provides a set of functions for producing graphical output primitives, such
as lines, text, rectangles, and polygons. This makes it possible for users to
write their own functions to create plots that occur in more specialized areas.
There are many examples of special-purpose plots in extension packages for R.
For example, Figure 1.7 shows a map of New Zealand produced using R and
the extension packages maps, mapdata, and mapproj. Figure 1.8 shows
another example: a financial chart produced by the quantmod package.

In some cases, researchers are inspired to produce a totally new type of plot
for their data. R is not only a good platform for experimenting with novel
plots, but it is also a good way to deliver new plotting techniques to other
researchers. Figure 1.9 shows a novel display for decision trees, visualizing the
distribution of the dependent variable in each terminal node (produced using
the party package).

6 R Graphics, Third Edition

For more information on how to generate a plot starting from an empty page
with base graphics functions, see Chapter 3. The grid package provides even
more power and flexibility for producing customized graphical output (see
Chapters 6 and 7), especially for the purpose of producing functions for others
to use (see Chapter 8).

1.1.5 General graphical scenes

The generality and flexibility of R graphics make it possible to produce graphi-
cal images that go beyond what is normally considered to be statistical graph-
ics, although the information presented can usually be thought of as data of
some kind. A good mainstream example is the ability to embed tabular ar-
rangements of text as graphical elements within a plot as in Figure 1.10.

R has also been used to produce figures that help to visualize important con-
cepts or teaching points. Figure 1.11 shows two examples that provide a
geometric representation of extensions to F-tests (provided by Arden Miller).
It is also possible to produce flow diagrams of various sorts, as demonstrated
in Figure 1.12. R graphics can even be used to produce infographics like Fig-
ure 1.13. These examples tend to require more effort to achieve the final result
as they cannot be produced from a single function call.

These examples present only a tiny taste of what R graphics (and clever and
enthusiastic users) can do. They highlight the usefulness of R graphics not
only for producing what are considered to be standard plot types, for little
effort, but also for providing tools to produce final images that are well beyond
the standard plot types, including going beyond the boundaries of what is
normally considered statistical graphics.

An Introduction to R Graphics 7

0 4 8 12 16

0

2

4

6

0

2

4

6

Travel Time (s)

R
es

po
ns

es
 p

er
 T

ra
ve

l

R
es

po
ns

es
 p

er
 S

ec
on

d

Bird 131

Histogram of Y

Y

D
en

si
ty

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0

50

100

150

200

Rural
Male

Rural
Female

Urban
Male

Urban
Female

11.7
18.1

26.9

41

66

8.7
11.7
20.3

30.9

54.3

15.4

24.3

37

54.6

71.1

8.4
13.6
19.3

35.1

50

0.5 1 2

0

5

10

15

20

25

30

35

to
ot

h
le

ng
th

Vitamin C dose (mg)
0.5 1 2

0

5

10

15

20

25

30

35

Ascorbic acid
Orange juice

x

y

z

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla

Figure 1.2
Some standard plots produced using R: (from left-to-right and top-to-bottom) a
scatterplot, a histogram, a barplot, a boxplot, a 3D surface, and a pie chart. In the
first four cases, the basic plot type has been augmented by adding additional labels,
lines, and axes.

8 R Graphics, Third Edition

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

234 (65%)

159 (44%)

1.2

N
um

be
r o

f V
es

se
ls

Sampling Fraction

C
om

pl
et

en
es

s

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

N = 360 brokenness = 0.5

Figure 1.3
A customized scatterplot produced using R. This is created by starting with a simple
scatterplot and augmenting it by adding an additional y-axis and several additional
sets of lines, polygons, and text labels.

An Introduction to R Graphics 9

1993 1996 1998 2001

0

50

100

150

200

250 (in Bhutan)

Figure 1.4
A dramatized barplot produced using R. This is created by starting with a simple
barplot and augmenting it by adding a background image in light gray, with bolder
sections of the image drawn in each bar.

10 R Graphics, Third Edition

Barley Yield (bushels/acre)

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

20 30 40 50 60

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

University Farm
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Crookston
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Waseca

1932
1931

Figure 1.5
A Trellis dotplot produced using the lattice package. The relationship between the
yield of barley and species of barley is presented, with a separate dotplot for different
experimental sites and different plotting symbols for data gathered in different years.
This is a small modification of Figure 1.1 from Bill Cleveland’s Visualizing Data
(reproduced with permission from Hobart Press).

An Introduction to R Graphics 11

20

30

40

2 3 4 5 6 7
displ

hw
y

factor(cyl)

4

5

6

8

Figure 1.6
A plot produced using ggplot2. The relationship between miles per gallon (on the
highway) and engine displacement (in liters). The data are divided into four groups
based on the number of cylinders in the engine and different plotting symbols are
used for each group and a separate linear model fit is shown for each group.

12 R Graphics, Third Edition

Figure 1.7
A map of New Zealand produced using the maps package, the mapdata package,
and the mapproj package. The map (of New Zealand) is drawn as a series of
polygons, and then text, an arrow, and a data point have been added to indicate the
location of Auckland, the birthplace of R. A separate world map has been drawn in
the bottom-right corner, with a circle to help people locate New Zealand.

An Introduction to R Graphics 13

70

75

80

get
AABA [2018−05−01/2018−08−30]

Last 69.330002

Volume (millions):
4,565,008

0

10

20

30

May 01
2018

May 21
2018

Jun 11
2018

Jul 02
2018

Jul 23
2018

Aug 13
2018

Aug 30
2018

Figure 1.8
A financial chart produced with the chartSeries() function from the quantmod
package.

14 R Graphics, Third Edition

vari
p < 0.001

1

≤ 0.059 > 0.059

vasg
p < 0.001

2

≤ 0.066 > 0.066

Node 3 (n = 79)

no
rm

gl
au

0

0.2

0.4

0.6

0.8

1 Node 4 (n = 8)

no
rm

gl
au

0

0.2

0.4

0.6

0.8

1

tms
p = 0.049

5

≤ −0.066 > −0.066

Node 6 (n = 65)

no
rm

gl
au

0

0.2

0.4

0.6

0.8

1 Node 7 (n = 44)

no
rm

gl
au

0

0.2

0.4

0.6

0.8

1

Figure 1.9
A novel decision tree plot, visualizing the distribution of the dependent variable in
each terminal node. Produced using the party package.

An Introduction to R Graphics 15

Centre

Thailand
Philippines

All in situ

Colombia
Spain

All invasive

All

Carcinoma in situ

Invasive cancer

Cases

327
319

1462

96
115

211

1673
0 1 2 3 4

OR

Figure 1.10
A table-like plot produced using R. This is a typical presentation of the results from
a meta-analysis.

16 R Graphics, Third Edition

X1

X2 X3

X2 X3

X1

Figure 1.11
Didactic diagrams produced using R and functions provided by Arden Miller. The
figures show a geometric representation of extensions to F-tests.

An Introduction to R Graphics 17

PIPELINE

R
.csv

01011

.csv

R

.xml

Python
.pdf

Figure 1.12

A flow diagram produced using R.

18 R Graphics, Third Edition

Figure 1.13
An infographic showing the proportion of aid money unaccounted for in the recon-
struction of Iraq. This image is a remix of a blog post: http://www.good.is/post/
infographic-where-did-the-money-to-rebuild-iraq-go/. The background im-
age is from Adam Henning’s flickr photostream: http://www.flickr.com/photos/

adamhenning/66822173/.

http://www.good.is
http://www.good.is
http://www.flickr.com
http://www.flickr.com

An Introduction to R Graphics 19

1.2 The organization of R graphics

This section briefly describes how the functions and packages in the core R
graphics system are organized so that the user knows where to start looking
for a particular function (see Figure 1.14).

At the heart of the graphics facilities in R lies the package grDevices, which
will be referred to as the graphics engine. This provides fundamental infra-
stucture for graphics in R, such as selecting colors and fonts and selecting a
graphics output format. Although almost all graphics applications in R make
use of this package, a lot can be achieved with just basic knowledge, so a
detailed description of the functions in this package is delayed until Part III
of this book.

Two packages build directly on top of the graphics engine: the graphics
package and the grid package. These represent two largely incompatible
graphics systems and they divide the bulk of graphics functionality in R into
two separate worlds.

The graphics package, which will be referred to as the base graphics system,
provides a complete set of functions for creating a wide variety of plots plus
functions for customizing those plots in very fine detail. It is described in Part
I of this book.

The grid package provides a separate set of basic graphics tools. It does not
provide functions for drawing complete plots, so it is not often used directly to
produce statistical plots. It is more common to use functions from one of the
graphics packages that are built on top of grid, especially either the lattice
package or the ggplot2 package. These three packages make up the core of
the grid graphics world in R and are described in Part II of this book.

Part IV of this book describes packages that integrate the core R graphics
system either internally or with external graphics systems. The gridBase
and gridGraphics packages allow output from the base graphics system and
the grid graphics system to be combined. The grImport and grImport2
packages provide tools for importing external images into R and the gridSVG
package provides tools for adding sophisticated SVG features to grid graphics
output.

Several other packages are also mentioned in Parts III and IV, but these are
the main packages that are covered in depth.

20 R Graphics, Third Edition

grDevices

graphics

grid

lattice ggplot2

grImport

grImport2

gridBase

gridGraphics

gridSVG

Figure 1.14
The structure of the R graphics system. The packages with gray backgrounds form
the core of the graphics system. The graphics package is described in Part I,
grid, lattice, and ggplot2 are described in Part II, and grDevices is described in
Part III. The packages with white backgrounds are packages that integrate the core
graphics system internally or with external graphics systems and are described in
Part IV.

An Introduction to R Graphics 21

1.2.1 Base graphics versus grid graphics

The existence of two distinct graphics systems in R, the base graphics world
versus the grid graphics world, raises the issue of when to use each system.

For the purpose of producing complete plots from a single function call, which
graphics system to use will largely depend on what type of plot is required.
The choice of graphics system is largely irrelevant if no further output needs
to be added to the plot.

If it is necessary to add further output to a plot, the most important thing to
know is which graphics system was used to produce the original plot. In gen-
eral, the same graphics system should be used to add further output (though
Chapter 12 describes ways to get around this restriction).

For a wide range of standard plots, it will be possible to produce the same sort
of plot in three different styles, using functions from any one of the lattice,
ggplot2, or graphics packages. As a rough guide, the default style of the
lattice and ggplot2 packages may often be superior because they are both
motivated by principles of human perception and designed to make it easier
to extract information from a plot.

Both the lattice and ggplot2 packages also provide more sophisticated sup-
port for visualizing multivariate data sets where, for example, a simple scatter-
plot between two continuous variables may be augmented by having separate
lines or distinct plotting symbols for different subgroups within the data, or
by having entire separate plots for different subgroups.

The price of the additional advanced features of both lattice and ggplot2
is that there is a steeper learning curve required to master their respective
conceptual frameworks. For lattice, there is a particular effort required to
learn how to make significant customizations of the default style, while for
ggplot2, the overall philosophy takes some getting used to, although once
grasped it provides a more coherent and powerful paradigm.

In summary, given the choice, it may be quicker to get going with base graph-
ics, but both lattice and ggplot2 offer more efficient and sophisticated op-
tions in the long run.

A different problem is that of producing an image for which there is no ex-
isting function, which requires resorting to low-level graphics functions. For
this situation, the grid system offers the benefit of a much wider range of
possibilities than the low-level functions in the base graphics system, at the
cost of having to learn a few additional concepts.

If the goal is to create a new graphical function for others to use, grid again
provides better support, compared to the base graphics system, for producing
more general output that can be combined with other output more easily.

tuhocr
Highlight

22 R Graphics, Third Edition

One final consideration is speed. None of the core R graphics systems could be
described as blindingly fast, but the grid-based systems are noticeably slower
than base graphics and that performance penalty may be important in some
applications.

Chapter summary

The R graphics system consists of a core graphics engine and two
low-level graphics systems: base graphics and grid graphics. The
base graphics system also includes high-level functions for producing
complete plots. The lattice package and the ggplot2 package provide
high-level plotting systems on top of grid. Many extension packages
provide further graphical facilities for both graphics systems, which
means that it is possible to create a very wide range of plots and
general graphical images with R.

Part I

BASE GRAPHICS

http://taylorandfrancis.com

2

Simple Usage of Base Graphics

Chapter preview

This chapter introduces the main high-level plotting functions in the
base graphics system. These are the functions used to produce com-
plete plots such as scatterplots, histograms, and boxplots. This chap-
ter describes the names of the standard plotting functions, the stan-
dard ways to call these functions, and some of the standard arguments
that can be used to vary the appearance of the plots. Some of this
information is also applicable to high-level plotting functions in exten-
sion packages.

The aim of this chapter is to provide an idea of the range of plots that are
available in the base graphics system, to point the user toward the most
important ones, and to introduce the standard approach to using them.

Although the focus of this book is on controlling the fine details of plots, we
must first have a plot to fine tune. This chapter describes how to generate a
range of complete plots within the base graphics system.

The graphics functions that make up the base graphics system are provided
in an extension package called graphics, which is automatically loaded in a
standard installation of R. In a non-standard installation, it may be necessary
to make the following call in order to access base graphics functions (if the
graphics package is already loaded, this will not do any harm).

> library(graphics)

This chapter mentions many of the high-level graphics functions in the graph-
ics package, but does not describe all possible uses of these functions. For

25

26 R Graphics, Third Edition

detailed information on the behavior of individual functions the user will need
to consult the individual help pages using the help() function. For example,
the following code shows the help page for the barplot() function.

> help(barplot)

Another useful way of learning about a graphics function is to use the
example() function. This runs the code in the “Examples” section of the help
page for a function. The following code runs the examples for barplot().

> example(barplot)

2.1 The base graphics model

As described at the start of Chapter 1, a plot is created in base graphics by
first calling a high-level function that creates a complete plot, then calling
low-level functions to add more output if necessary.

If there is only one plot per page, then a high-level function starts a new plot
on a new page. There may be multiple plots on a page, in which case a high-
level function starts the next plot on the same page, only starting a new page
when the number of plots per page is exceeded (see Section 3.3). All low-level
functions add output to the current plot. It is not generally possible to go
back to a previous plot in the base graphics system (see Section 3.3.3 for an
exception).

2.2 The plot() function

The most important high-level function in base graphics is the plot() func-
tion. In many situations, this provides the simplest way to produce a complete
plot in R.

The first argument to plot() provides the data to plot and there is a rea-
sonable amount of flexibility in the way that the data can be specified. For
example, each of the following calls to plot() can be used to produce essen-
tially the same scatterplot (shown in Figure 2.1), with small variations in the

Simple Usage of Base Graphics 27

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

Figure 2.1
A scatterplot produced by the plot() function. This plot can be produced by
providing a single data frame, two numeric vectors, or a formula as the first argument
to the plot() function.

28 R Graphics, Third Edition

axis labels. In the first case, all of the data to plot are specified in a single
data frame. In the second case, separate x and y variables are specified as
two separate arguments. In the third case, the data to plot are specified as
a formula of the form y ~ x, plus a data frame that contains the variables
mentioned in the formula.

> plot(pressure)

> plot(pressure$temperature, pressure$pressure)

> plot(pressure ~ temperature, data=pressure)

Base graphics does not make a major distinction between, for example, scat-
terplots that only plot data symbols at each (x, y) location and scatterplots
that draw straight lines connecting the (x, y) locations (line plots). These
are just variations on the basic scatterplot, controlled by a type argument.
This is demonstrated by the following code, which produces four different
plots by varying the value of the type argument (see Figure 2.2).

> plot(pressure, type="p")

> plot(pressure, type="l")

> plot(pressure, type="b")

> plot(pressure, type="h")

Base graphics also does not make a distinction between a plot of a single set of
data and a plot containing multiple series of data. Additional data series can
be added to a plot using low-level functions such as points() and lines()

(see Section 3.4.1; also see the function matplot() in Section 2.5).

The plot() function is generic. One consequence of this has just been de-
scribed; the plot() function can cope with the same data being specified in
several different formats (and it will produce the same result). However, the
fact that plot() is generic also means that if plot() is given different types
of data, it will produce different types of plots. For example, the plot()

function will produce boxplots, rather than a scatterplot, if the x variable is a
factor, rather than a numeric vector. Another example is shown in the code
below. Here an "lm" object is created from a call to the lm() function. When
this object is passed to the plot() function, the special plot method for "lm"
objects produces several regression diagnostic plots (see Figure 2.3).∗

> lmfit <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings)

> plot(lmfit)

∗The data used in this example are measures relating to the savings ratio (aggregate
personal saving divided by disposable income) averaged over the period 1960-1970 for 50
countries, available as the data set LifeCycleSavings in the datasets package.

Simple Usage of Base Graphics 29

0 50 150 250 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

0 50 150 250 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

0 50 150 250 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

0 50 150 250 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

Figure 2.2
Four variations on a scatterplot. In each case, the plot is produced by a call to the
plot() function with the same data; all that changes is the value of the type argu-
ment. At top-left, type="p" to give points (data symbols), at top-right, type="l"
to give lines, at bottom-left, type="b" to give both, and at bottom-right, type="h"
to give histogram-like vertical lines.

30 R Graphics, Third Edition

6 8 10 12 14 16

−1
0

−5
0

5
10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

Zambia

−2 −1 0 1 2

−2
−1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

Zambia

6 8 10 12 14 16

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
Zambia

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance
Libya

Figure 2.3
Plotting an "lm" object. There is a special plot() method for "lm" objects that
produces a number of diagnostic plots from the results of a linear model analysis.

Simple Usage of Base Graphics 31

In order to learn more about the "lm" method for the plot() function, type
help(plot.lm).

In many cases, graphics extension packages provide new types of plots by
defining a new method for the plot() function. For example, the cluster
package provides a plot() method for plotting the result of an agglomerative
hierarchical clustering procedure (an agnes object). This method produces a
special bannerplot and a dendrogram from the data (see the following code
and Figure 2.4).∗ The first block of expressions is just setting up the data
and creating an agnes object; the last expression plots the agnes object.

> subset <- sample(1:150, 20)

> cS <- as.character(Sp <- iris$Species[subset])

> cS[Sp == "setosa"] <- "S"

> cS[Sp == "versicolor"] <- "V"

> cS[Sp == "virginica"] <- "g"

> ai <- agnes(iris[subset, 1:4])

> plot(ai, labels = cS)

Simply calling plot(x), where x is an R object containing the data to visualize,
is often the simplest way to get an initial view of the data.

The following sections briefly describe the main types of plots that can be
produced using either plot() or one of the other high-level functions in the
graphics package. Toward the end of the chapter is a discussion of impor-
tant arguments to these functions that allow some control over the detailed
appearance of the plots (see Section 2.6).

2.3 Plots of a single variable

Table 2.1 and Figure 2.5 show the base graphics functions that produce a plot
based on a single variable.

The plot() function will accept, as a single unnamed argument, a numeric
vector, or a factor, or a one-dimensional table (a table of counts from a single

∗The data used in this example are the famous iris data set giving measurements of
physical dimensions of three species of iris, available as the iris data set in the datasets

package.

32 R Graphics, Third Edition

Height

Banner of agnes(x = iris[subset, 1:4])

Agglomerative Coefficient = 0.81

0 0.5 1 1.5 2 2.5 3 3.5

g
S
S
V
S
g
S
V
V
V
V
V
g
g
g
V
g
V
S
S

g g
g

V
g V
V V

V V
V V g

g
S S

S S
S

S

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Dendrogram of agnes(x = iris[subset, 1:4])

Agglomerative Coefficient = 0.81
iris[subset, 1:4]

H
ei

gh
t

Figure 2.4
Plotting an agnes object. There is a special plot() method for agnes objects that
produces plots relevant to the results of an agglomerative hierarchical clustering
analysis.

Simple Usage of Base Graphics 33

Table 2.1
High-level base graphics plotting functions for producing plots of a
single variable.

Function Data Description
plot() Numeric Scatterplot
plot() Factor Barplot
plot() 1-D table Barplot

barplot() Numeric (bar heights) Barplot
pie() Numeric Pie chart
dotchart() Numeric Dotplot

boxplot() Numeric Boxplot
hist() Numeric Histogram
stripchart() Numeric 1-D scatterplot
stem() Numeric Stem-and-leaf plot

factor). A numeric vector will produce a scatterplot of the numeric values as
a function of their indices, while both a factor and a table produce a barplot
of the counts for each level of the factor. The plot() function will also accept
a formula of the form ~ x and if the variable x is numeric, the result is a one-
dimensional scatterplot (stripchart). If x is a factor, the result is a barplot.

A barplot can also be produced explicitly with the barplot() function. The
difference is that this function requires a numeric vector, rather than a factor,
as input — the numeric values are treated as the heights of the bars to be
plotted.

One issue with producing a barplot is providing a meaningful label below each
bar. The plot() function uses the levels of the factor being plotted for bar
labels and barplot() will use the names attribute of the numeric vector if it
is available.

As alternatives to a barplot, the pie() function plots the values in a numeric
vector as a pie chart, and dotchart() produces a dotplot.

Several functions provide a variety of ways to view the distribution of values in
a single numeric vector. The boxplot() function produces a boxplot (or box-
and-whisker plot), the hist() function produces a histogram, stripchart()
produces a one-dimensional scatterplot (stripchart), and stem() produces a
stem-and-leaf plot (but as text, on the console, rather than graphical output).

34 R Graphics, Third Edition

plot() numeric plot() table

barplot()
plot()

 factor pie() dotchart() numeric

boxplot() numeric hist()
stripchart()

plot()
 numeric

 ~x

 0 | 1496
 2 | 56
 4 | 9
 6 | 4
 8 | 1
 10 | 0

stem()

Figure 2.5
High-level base graphics plotting functions for producing plots of a single variable.
Where the function can be used to produce more than one type of plot, the relevant
data type is shown (in gray). For example, plot(numeric) means that this is what
the plot() produces when it is given a single numeric argument.

Simple Usage of Base Graphics 35

2.4 Plots of two variables

Table 2.2 and Figure 2.6 show the base graphics functions that produce plots
of two variables.

The plot() function will accept two variables in a variety of formats: a pair
of numeric vectors; one numeric vector and one factor; two factors; a list of
two vectors or factors (named x and y); a two-dimensional table; a matrix or
data frame with two columns (the first column is treated as x); or a formula
of the form y ~ x.

If both variables are numeric, the result is a scatterplot. If x is a factor and y

is numeric, the result is a boxplot for each level of x. If x is numeric and y is
a factor, the result is a (grouped) stripchart, and if both variables are factors,
the result is a spineplot. If plot() is given a table of counts, the result is a
mosaic plot.

Two functions provide alternatives to the scatterplot, both motivated by the
problem of overplotting, which occurs when values repeat or when there are
very many points to plot. The sunflowerplot() function draws a special
symbol at each location to indicate how many points are overplotted and the
smoothScatter() function draws a representation of the density of points
in the scatterplot (rather than drawing individual points). Another way to
produce multiple stripcharts is to provide stripchart() with a list of numeric
vectors.

When x is a factor and y is numeric, another way to produce multiple boxplots
is with the boxplot() function, with the data provided either as a list of
numeric vectors or as a formula of the form y ~ x, where x is a factor.

If the data consist of a numeric matrix, where each column or row represents a
different group, the barplot() function will produce a stacked or side-by-side
barplot from the numeric values and dotchart() will produce a dotplot.

When x is numeric and y is a factor, the spineplot() function will produce
a spinogram, and cdplot() will produce a conditional density plot. Both
functions will also accept the data as a formula of the form y ~ x.

For plotting two factors, there are also several options. Given the raw factors,
the spineplot() function will produce a spineplot, just like plot() produces
from two factors. An alternative is to work with a table of counts of the two
factors. Given a table, the mosaicplot() function produces a mosaic plot,
just like plot() does. The mosaicplot() function will also accept a formula
of the form y ~ x where both y and x are factors.

36 R Graphics, Third Edition

Table 2.2
High-level base graphics plotting functions for producing plots of two variables.

Function Data Description
plot() Numeric, numeric Scatterplot
plot() Numeric, factor Stripcharts
plot() Factor, numeric Boxplots
plot() Factor, factor Spineplot
plot() 2-D table Mosaic plot

sunflowerplot() Numeric, numeric Sunflower scatterplot
smoothScatter() Numeric, numeric Smooth scatterplot

boxplot() List of numeric Boxplots
barplot() Matrix Stacked/side-by-side barplot
dotchart() Matrix Dotplot

stripchart() List of numeric Stripcharts
spineplot() Numeric, factor Spinogram
cdplot() Numeric, factor Conditional density plot

fourfoldplot() 2x2 table Fourfold display
assocplot() 2-D table Association plot
mosaicplot() 2-D table Mosaic plot

In the special case where both factors have only two levels, assocplot()

produces a Cohen-Friendly association plot and fourfoldplot() produces a
fourfold display.

In addition to the numeric vector and factor data types, another important
basic data type is dates (or date-times). If plot() is given either x or y as a
"Date" or "POSIXt" object, then the corresponding axis will be labeled with
date descriptions (e.g., using month names).

2.5 Plots of many variables

Table 2.3 and Figure 2.7 show the base graphics functions that produce plots
of many variables.

Given a numeric data frame, the plot() function will produce a scatterplot
matrix, plotting all pairs of variables against each other. The pairs() func-
tion does likewise, but it will accept the data in matrix form as well.

Simple Usage of Base Graphics 37

plot() num,num smoothScatter() sunflowerplot()

boxplot()
plot()
 list
 fac,num barplot() matrix barplot() matrix

stripchart()
plot()

 list
 num,fac spineplot() num,fac cdplot()

 spineplot()
plot()

 fac,fac
 fac,fac assocplot()

: 1

: 1

: 2

: 2

1

2

2

1

fourfoldplot()
1 2 3

1
2

3

mosaicplot()
plot()

 table

dotchart() matrix

Figure 2.6
High-level base graphics plotting functions for producing plots of two variables.
Where the function can be used to produce more than one type of plot, the relevant
data type is shown (in gray). For example plot(num,fac) represents calling the
plot() function with a numeric vector as the first argument and a factor as the
second argument.

38 R Graphics, Third Edition

Table 2.3
High-level base graphics plotting functions for producing plots of many vari-
ables.

Function Data Description
plot() Data frame Scatterplot matrix
pairs() Matrix Scatterplot matrix
matplot() Matrix Scatterplot
stars() Matrix Star plots

image() Numeric,numeric,numeric Image plot
contour() Numeric,numeric,numeric Contour plot
filled.contour() Numeric,numeric,numeric Filled contour
persp() Numeric,numeric,numeric 3-D surface
symbols() Numeric,numeric,numeric Symbol scatterplot

coplot() Formula Conditioning plot

mosaicplot() N-D table Mosaic plot

An alternative, when the data are in matrix form, is the matplot() function,
which will plot a single scatterplot with a separate series of data symbols or
lines for each column of data. The data can be separate x and y matrices, or
a single matrix, in which case the values are treated as y-values and plotted
against 1:nrow.

Another alternative is the stars() function, which draws a star for each row
of data, with the values in the columns columns dictating the lengths of the
arms of each star. This type of plot is an example of the small multiples
technique, where many small plots are produced on a single page (see Section
3.3 for details on how to place multiple plots of any sort on a single page).

Several functions cater for the special case of three numeric variables. When x

and y are measured on a regular grid, and there is a single response variable,
z, the image() function plots z as a grid of colored regions, the contour()

function draws contour lines (lines of constant z), filled.contour() pro-
duces colored regions between contour lines, and persp() produces a three-
dimensional surface to represent z.

The symbols() function produces a scatterplot of x and y with a small symbol
used to represent z, for example, a circle with radius proportional to z. A
range of symbols is provided, some of which allow multiple variables to be
represented within the symbol, for example, a rectangle symbol can encode
separate variables as the width and height of the rectangle.

Simple Usage of Base Graphics 39

matplot() stars()

image()

 0.5

 0
.5

 0
.5

 0.5

 1

 1.25

 1.
5 1.75

contour() persp()

symbols()
1 2 3

1
2

3

mosaicplot()

var 1

var 2

var 3

pairs()
plot()

 data frame

filled.contour()

coplot()

Figure 2.7
High-level base graphics plotting functions for producing plots of many variables.
Where the function can be used to produce more than one type of plot, the relevant
data type is shown (in gray).

40 R Graphics, Third Edition

When the data consist of two numeric variables and one or two grouping fac-
tors, the coplot() function can be used to produce a conditioning plot, which
draws a separate plot for each level of the grouping factors. The data must be
given to this function as a formula of the form y ~ x | g or y ~ x | g*h,
where g and h are factors. This idea is implemented on a much grander scale in
the lattice package (see Chapter 4) and in the ggplot2 package (see Chapter
5).

For data consisting of multiple factors, the mosaicplot() function will pro-
duce a multidimensional mosaic plot, given a multidimensional table of counts.

2.6 Arguments to graphics functions

It is often the case, especially when producing graphics for publication, that
the output produced by a single call to a high-level graphics function is not
exactly right in all its details. There are many ways in which the output of
graphics functions may be modified and Chapter 3 addresses this topic in full
detail. This section will only consider the possibility of specifying arguments
to high-level graphics functions in order to modify their output.

Many of these arguments are specific to a particular function. For example,
the boxplot() function has width and boxwex arguments (among others) for
controlling the width of the boxes in the plot, and the barplot() function has
a horiz argument for controlling whether bars are drawn horizontally rather
than vertically. The following code shows examples of the use of the boxwex

argument for boxplot() and the horiz argument for barplot() (see Figure
2.8).

In the first example, there are two calls to boxplot(), which are identical
except that the second specifies that the individual boxplots should be half as
wide as they would be by default (boxwex=0.5).∗

> boxplot(decrease ~ treatment, data = OrchardSprays,

log = "y", col="light gray")

> boxplot(decrease ~ treatment, data = OrchardSprays,

log = "y", col="light gray",

boxwex=0.5)

∗The data used in this example are amount of orchard spray consumed by honey bees for
different potencies, available as the OrchardSprays data frame from the datasets package.

Simple Usage of Base Graphics 41

A B C D E F G H

2
5

10
20

50
10

0

A B C D E F G H

2
5

10
20

50
10

0

R
M R
F

U
M U
F

0

10

20

30

RM

RF

UM

UF

0 10 20 30

Figure 2.8
Modifying default barplot() and boxplot() output. The top two plots are produced
by calls to the boxplot() function with the same data, but with different values of
the boxwex argument. The bottom two plots are both produced by calls to the
barplot() function with the same data, but with different values of the horiz

argument.

42 R Graphics, Third Edition

In the second example, there are two calls to barplot(), which are identical
except that the second specifies that the bars should be drawn horizontally
rather than vertically (horiz=TRUE).∗

> barplot(VADeaths[1:2,], angle = c(45, 135),

density = 20, col = "gray",

names=c("RM", "RF", "UM", "UF"))

> barplot(VADeaths[1:2,], angle = c(45, 135),

density = 20, col = "gray",

names=c("RM", "RF", "UM", "UF"),

horiz=TRUE)

In general, the user should consult the documentation for a specific function
to determine which arguments are available and what effect they have.

2.6.1 Standard arguments to graphics functions

Despite the existence of many arguments that are specific only to a single
graphics function, there are several arguments that are“standard” in the sense
that many high-level base graphics functions will accept them.

Most high-level functions will accept graphical parameters that control such
things as color (col), line type (lty), and text font (font and family). Sec-
tion 3.2 provides a full list of these arguments and describes their effects.
Chapter 10 describes the complete set of values that these arguments can
take.

Unfortunately, because the interpretation of these standard arguments may
vary in some cases, some care is necessary. For example, if the col argument
is specified for a standard scatterplot, this only affects the color of the data
symbols in the plot (it does not affect the color of the axes or the axis labels),
but for the barplot() function, col specifies the color for the fill or pattern
used within the bars.

In addition to the standard graphical parameters, there are standard argu-
ments to control the appearance of axes and labels on plots. It is usually
possible to modify the range of the axis scales on a plot by specifying xlim

or ylim arguments in the call to the high-level function, and often there is a
set of arguments for specifying the labels on a plot: main for a title, sub for
a subtitle, xlab for an x-axis label and ylab for a y-axis label.

∗The data used in this example are death rates in Virginia in 1940 broken into different
age groups and by gender and rural/urban location, available as the VADeaths matrix from
the datasets package.

Simple Usage of Base Graphics 43

Although there is no guarantee that these standard arguments will be accepted
by high-level functions in graphics extension packages, in many cases they will
be accepted, and they will have the expected effect.

The following code shows examples of setting some of these standard argu-
ments for the plot() function (see Figure 2.9). All of the calls to plot()

draw a scatterplot of the same data with lines connecting the data values:
the first call uses a wider line (lwd=3), the second call draws the line a gray
color (col="gray"), the third call draws a dashed line (lty="dashed"), and
the fourth call uses a much wider range of values on the y-scale (ylim=c(-4,
4)).

> y <- rnorm(20)

> plot(y, type="l", lwd=3)

> plot(y, type="l", col="gray")

> plot(y, type="l", lty="dashed")

> plot(y, type="l", ylim=c(-4, 4))

In cases where the default output from a high-level function cannot be modi-
fied to produce the desired result by just specifying arguments to the high-level
function, possible options are to add further output to the plot using low-level
graphics functions (see Section 3.4), or to generate the entire plot from scratch
(see Section 3.5).

Some high-level functions provide an argument to inhibit some of the default
output in order to assist in the customization of a plot. For example, the
default plot() function has an axes argument to allow the user to inhibit the
drawing of axes and an ann argument to inhibit the drawing of axis labels;
the user can then produce customized output to represent the axes and labels
(see Section 3.4.4).

2.7 Specialized plots

The base graphics system, and the extension packages that are built on it,
contain a number of functions to produce plots that are suited to a particular
type of data or analysis technique, or that are specific to a particular area of
research.

Several of these are just variations on a basic scatterplot, with data symbols
and/or lines plotted on cartesian coordinates. For example, the qqplot() and
qqnorm() functions produce quantile-quantile plots (plotting observed values

44 R Graphics, Third Edition

5 10 15 20

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

5 10 15 20

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

5 10 15 20

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

5 10 15 20

−4
−2

0
2

4

Figure 2.9
Standard arguments for high-level functions. All four plots are produced by calls to
the plot() function with the same data, but with different standard plot function
arguments specified: the top-left plot makes use of the lwd argument to control line
thickness; the top-right plot uses the col argument to control line color; the bottom-
left plot makes use of the lty argument to control line type; and the bottom-right
plot uses the ylim argument to control the scale on the y-axis.

Simple Usage of Base Graphics 45

against values generated from theoretical distributions), the plot() method
for "ecdf" objects (empirical cumulative distribution functions) draws a step
plot, and the plot() methods for "ts" (time series) objects or density esti-
mates (from the density() function) automatically draw lines between values
to show the appropriate trends.

One interesting case is the display of a parametric curve where, rather than
specifying explicit data points, a relationship between x and y is provided.
This can be achieved in two ways: via the plot() method for function objects
and via the curve() function. The following code shows both approaches to
draw a sine wave (see Figure 2.10). In the first case, we must provide a function
as the first argument to the plot() function, but in the second case, we can
just provide an expression as the first argument to the curve() function.

> plot(function(x) {

sin(x)/x

},

from=-10*pi, to=10*pi,

xlab="", ylab="", n=500)

> curve(sin(x)/x, -10*pi, 10*pi)

There are also some functions that produce quite different sorts of plots. The
plot() method for dendrogram objects is provided for drawing hierarchical
or tree-like structures, such as the results from clustering or a recursive par-
titioning regression tree. The bottom two plots in Figure 2.10 show examples
of output from the plot() method for dendrogram objects.∗

∗The data used in these examples are measures of crime rates in various US states in
1973, available as the data set USArrests in the datasets package.

46 R Graphics, Third Edition

−30 −20 −10 0 10 20 30

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Washington
Oregon
Wyoming
Oklahoma
Virginia
Rhode Island
Massachusetts
New Jersey
Missouri
Arkansas
Tennessee
Georgia
Colorado
Texas

C
al

ifo
rn

ia
M

ar
yl

an
d

A
riz

on
a

N
ew

 M
ex

ic
o

D
el

aw
ar

e
A

la
ba

m
a

Lo
ui

si
an

a
Ill

in
oi

s
N

ew
 Y

or
k

M
ic

hi
ga

n
N

ev
ad

a
A

la
sk

a
M

is
si

ss
ip

pi
S

ou
th

 C
ar

ol
in

a

Figure 2.10
Some specialized plots. At the top is a plot of an R function and along the bottom
are two variations on a dendrogram.

Simple Usage of Base Graphics 47

Chapter summary

The base graphics system has functions to produce the standard sta-
tistical plots such as histograms, scatterplots, barplots, and pie charts.
There are also functions for producing higher-dimensional plots such
as 3D surfaces and contour plots and more specialized or modern plots
such as dotplots, dendrograms, and mosaic plots. In most cases, the
functions provide a number of arguments to allow the user to control
the details of the plot, such as the widths of the boxes in a boxplot.
There is also a standard set of arguments for controlling the appear-
ance of a plot, such as colors, fonts, and line types and axis ranges
and labeling, although these are not all available for all types of plots.

http://taylorandfrancis.com

3

Customizing Base Graphics

Chapter preview

It is very often the case that a high-level plotting function does not
produce exactly the final result that is desired. This chapter describes
low-level base graphics functions that are useful for controlling the fine
details of a plot and for adding further output to a plot (e.g., adding
descriptive labels).

In order to utilize these low-level functions effectively, this chapter also
includes a description of the regions and coordinate systems that are
used to locate the output from low-level functions. For example, there
is a description of which function to use to draw text in the margins of
a plot as opposed to drawing text in the data region (where the data
symbols are plotted). There is also a discussion of ways to arrange
several plots together on a single page.

Sometimes it is not possible to achieve a final result by modifying an
existing high-level plot. In such cases, the user might need to create a
plot using only low-level functions. This case is also addressed in this
chapter together with some discussion of how to write a new graphics
function for other people to use.

It is often the case that the default or standard output from a high-level
function is not exactly what the user requires, particularly when producing
graphics for publication. Various aspects of the output often need to be mod-
ified or completely replaced. This chapter describes the various ways in which
the output from a base graphics high-level function can be customized and
extended.

49

50 R Graphics, Third Edition

The real power of the base graphics system lies in the ability to control many
aspects of the appearance of a plot, to add extra output to a plot, and even to
build a plot from scratch in order to produce precisely the right final output.

Section 3.1 introduces important concepts of drawing regions, coordinate sys-
tems, and graphics state that are required for properly working with base
graphics at a lower level. Section 3.2 describes how to control aspects of out-
put such as colors, fonts, line styles, and plotting symbols, and Section 3.3
addresses the problem of placing several plots on the same page. Section 3.4
describes how to customize a plot by adding extra output and Section 3.5
looks at ways to develop entirely new types of plots.

3.1 The base graphics model in more detail

In order to explain some of the facilities for customizing plots, it is necessary
to describe more about the model underlying base graphics plots.

3.1.1 Plotting regions

In the base graphics system, every page is split up into three main regions: the
outer margins, the current figure region, and the current plot region. Figure
3.1 shows these regions when there is only one figure on the page and Figure
3.2 shows the regions when there are multiple figures on the page.

The region obtained by removing the outer margins from the device is called
the inner region. When there is only one figure, this usually corresponds to the
figure region, but when there are multiple figures the inner region corresponds
to the union of all figure regions.

The area outside the plot region, but inside the figure region is referred to
as the figure margins. A typical high-level function draws data symbols and
lines within the plot region and axes and labels in the figure margins or outer
margins (see Section 3.4 for information on the functions used to draw output
in the different regions). The margins are numbered 1 to 4 in the order bottom,
left, top, then right. For example, “margin 3” means the top margin.

The size and location of the different regions are controlled either via the
par() function, or using special functions for arranging plots (see Section 3.3).
Specifying an arrangement of the regions does not usually affect the current
plot as the settings only come into effect when the next plot is started.

Customizing Base Graphics 51

Plot Region

Figure Region

Outer margin 1

O
ut

er
 m

ar
gi

n
2

Outer margin 3

O
ut

er
 m

ar
gi

n
4

Figure 3.1
The plot regions in base graphics — the outer margins, figure region, and plot region
— when there is a single plot on the page.

Coordinate systems

Each plotting region has one or more coordinate systems associated with it.
Drawing in a region occurs relative to the relevant coordinate system. The
coordinate system in the plot region, referred to as user coordinates, is prob-
ably the easiest to understand as it simply corresponds to the range of values
on the axes of the plot (see Figure 3.3). The drawing of data symbols, lines,
and text in the plot region occurs relative to this user coordinate system.

The scales on the axes of a plot are often set up automatically by R, but
Sections 2.6 and 3.4.4 describe ways to set the scales manually.

The figure margins contain the next most commonly used coordinate systems.
The coordinate systems in these margins are a combination of x- or y-ranges
(like user coordinates) and lines of text away from the boundary of the plot
region. Figure 3.4 shows two of the four figure margin coordinate systems.
Axes are drawn in the figure margins using these coordinate systems.

There is a further set of “normalized” coordinate systems available for the
figure margins in which the x- and y-ranges are replaced with a range from 0
to 1. In other words, it is possible to specify locations along the axes as a pro-
portion of the total axis length. Axis labels and plot titles are drawn relative

52 R Graphics, Third Edition

Figure 1 Figure 2

Current Plot Region

Current Figure Region

Figure 4

Figure 5 Figure 6

Outer margin 1

O
ut

er
 m

ar
gi

n
2

Outer margin 3

O
ut

er
 m

ar
gi

n
4

Figure 3.2
Multiple figure regions in base graphics — the outer margins, current figure region,
and current plot region — when there are multiple plots on the page.

Customizing Base Graphics 53

Min x−value Max x−value

Min y−value

Max y−value

The location (xi, yi)

xi

yi

Figure 3.3
The user coordinate system in the plot region. Locations within this coordinate
system are relative to the scales on the plot axes.

to this coordinate system. All of these figure margin coordinate systems are
created implicitly from the arrangement of the figure margins and the setting
of the user coordinate system.

The outer margins have similar sets of coordinate systems, but locations along
the boundary of the inner region can only be specified in normalized coordi-
nates (always relative to the extent of the complete outer margin). Figure 3.5
shows two of the four outer margin coordinate systems.

Sections 3.4.2 and 3.4.4 describe functions that draw output relative to the
figure margin and outer margin coordinate systems.

3.1.2 The base graphics state

The base graphics system maintains a graphics“state” for the graphics window
and, when drawing occurs, this state is consulted to determine where output
should be drawn, what color to use, what fonts to use, and so on.

The graphics state consists of a large number of settings. Some of these
settings describe the size and placement of the plot regions and coordinate
systems that were described in the previous section. Some settings describe

54 R Graphics, Third Edition

Current Plot

Figure
Margin

1

xmin xmax

0 lines

3 lines

Current Plot
Figure
Margin

2

ymin

ymax

0
lin

es

3
lin

es

Figure 3.4
Figure margin coordinate systems. The typical coordinate systems for figure margin
1 (top plot) and figure margin 2 (bottom plot). Locations within these coordinate
systems are a combination of position along the axis scale and distance away from
the axis in multiples of lines of text.

Customizing Base Graphics 55

Plot 1 Plot 2
Outer

Margin
2

0

1

0
lin

es

3
lin

es

Plot 1 Plot 2

Outer Margin 1

0 1

0 lines

3 lines

Figure 3.5
Outer margin coordinate systems. The typical coordinate systems for outer margin
1 (top plot) and outer margin 2 (bottom plot). Locations within these coordinate
systems are a combination of a proportion along the inner region and distance away
from the inner region in multiples of lines of text.

56 R Graphics, Third Edition

the general appearance of graphical output (e.g., the colors and line types that
are used to draw lines and the fonts that are used to draw text) and some
settings describe aspects of the output device (e.g., the physical size of the
device and the current clipping region).

Tables 3.1 to 3.3 together provide a list of all of the graphics state settings and
a very brief indication of their meaning. Most of the settings are described in
detail in Sections 3.2 and 3.3.

The main function used to access the graphics state is the par() function.
Simply typing par() will result in a complete listing of the current graphics
state. A specific state setting can be queried by supplying specific setting
names as arguments to par(). The following code queries the current state of
the col and lty settings. In this case, we are asking what the current drawing
color is (black) and what the current line type is (solid).

> par(c("col", "lty"))

$col

[1] "black"

$lty

[1] "solid"

The par() function can be used to modify base graphics state settings by
specifying a value via an argument with the appropriate setting name. The
following code sets new values for the col and lty settings. In this case, we
are changing the drawing color to red and the line type to dashed.

> par(col="red", lty="dashed")

Modifying base graphics state settings via par() has a persistent effect. Set-
tings specified in this way will hold until a different setting is specified. Set-
tings may also be temporarily modified by specifying a new value in a call to
a high-level graphics function such as plot() or a low-level graphics function
such as lines(). The following code demonstrates this idea. First of all, the
line type is permanently set to dashed using par(), then a plot is drawn and
the lines drawn between data points in this plot are dashed. Next, a plot is
drawn with a temporary line type setting of lty="solid" and the lines in this
plot are solid. When the third plot is drawn, the permanent line type setting
of lty="dashed" is back in effect so the lines are again dashed (see Figure
3.6).∗

∗The data used in this example are daily closing prices of major European stock indices
available as the EuStockMarkets object from the datasets package.

Customizing Base Graphics 57

Table 3.1
High-level base graphics state settings. This set of graphics state set-
tings can be queried and set via the par() function and can be used as
arguments to other graphics functions (e.g., plot() or lines()). Each
setting is described in more detail in the relevant Section.

Setting Description Section

adj Justification of text 3.2.3
ann Draw plot labels and titles? 3.2.3
bg Background color 3.2.1
bty Type of box drawn by box() 3.2.5
cex Size of text (multiplier) 3.2.3

also cex.axis, cex.lab, cex.main, cex.sub
col Color of lines and data symbols 3.2.1

also col.axis, col.lab, col.main, col.sub
family Font family for text 3.2.3
fg Foreground color 3.2.1
font Font face (bold, italic) for text 3.2.3

also font.axis, font.lab, font.main, font.sub
lab Number of ticks on axes 3.2.5
las Rotation of text in margins 3.2.3
lend Line end/join style 3.2.2

also ljoin, lmitre
lty Line type (solid, dashed) 3.2.2
lwd Line width 3.2.2
mgp Placement of axis ticks and tick labels 3.2.5
pch Data symbol type 3.2.4
srt Rotation of text in plot region 3.2.3
tck Length of axis ticks (relative to plot size) 3.2.5
tcl Length of axis ticks (relative to text size) 3.2.5
xaxp Number of ticks on x-axis 3.2.5
xaxs Calculation of scale range on x-axis 3.2.5
xaxt X-axis style (standard, none) 3.2.5
xpd Clipping region 3.2.7
yaxp Number of ticks on y-axis 3.2.5
yaxs Calculation of scale range on y-axis 3.2.5
yaxt Y-axis style (standard, none) 3.2.5

tuhocr
Highlight

58 R Graphics, Third Edition

Time

E
U

19
92

[,
"D

A
X

"]

1992.0 1992.2 1992.4 1992.6 1992.8 1993.0

15
00

20
00

25
00

Figure 3.6
Persistent versus temporary graphical settings. The line type was set permanently
to dashed with the par() function to draw a plot containing the top line, then the
line type was temporarily set to solid in a call to lines() for the middle line, then
the line type reverted to the permanent dashed setting for the call to lines() for
the bottom line.

> EU1992 <- window(EuStockMarkets, 1992, 1993)

> par(lty="dashed")

> plot(EU1992[,"DAX"], ylim=range(EU1992))

> lines(EU1992[,"CAC"], lty="solid")

> lines(EU1992[,"FTSE"])

Only some of the graphics state settings can be set temporarily in calls to
graphics functions. For example, the mfrow setting may not be set in this way
and can only be set using par(). These “low-level” settings are listed in Table
3.2.

Customizing Base Graphics 59

Table 3.2
Low-level base graphics state settings. This set of graphics state
settings can only be queried and set via the par() function. Each
setting is described in more detail in the relevant Section.

Setting Description Section

fig Location of figure region (normalized) 3.2.6
fin Size of figure region (inches) 3.2.6
lheight Line spacing (multiplier) 3.2.3
mai Size of figure margins (inches) 3.2.6
mar Size of figure margins (lines of text) 3.2.6
mex Line spacing in margins 3.2.6
mfcol Number of figures on a page 3.3.1
mfg Which figure is used next 3.3.1
mfrow Number of figures on a page 3.3.1
new Has a new plot been started? 3.2.8
oma Size of outer margins (lines of text) 3.2.6
omd Location of inner region (normalized) 3.2.6
omi Size of outer margins (inches) 3.2.6
pin Size of plot region (inches) 3.2.6
plt Location of plot region (normalized) 3.2.6
ps Size of text (points) 3.2.3
pty Aspect ratio of plot region 3.2.6
usr Range of scales on axes 3.4.5
xlog Logarithmic scale on x-axis? 3.2.5
ylog Logarithmic scale on y-axis? 3.2.5

60 R Graphics, Third Edition

Table 3.3
Read-only base graphics state settings. This set of graphics state
settings can only be queried (via the par() function). Each setting
is described in more detail in the relevant Section.

Setting Description Section

cin Size of a character (inches) 3.4.5
cra Size of a character (“pixels”) 3.4.5
cxy Size of a character (user coordinates) 3.4.5
din Size of graphics device (inches) 3.4.5
page Will the next plot start a new page? 3.3.1

A small set of graphics state settings cannot be modified at all and can only
be queried using par(). For example, there is no function to allow the user
to modify the size of the current device (after the device has been created),
but its size (in inches) may be obtained using par("din"). These “read-only”
settings are listed in Table 3.3.

It is possible to have more than one graphics window open at the same time
(see Section 9.1). Every graphics window has its own graphics state and calls
to par() only affect the base graphics state of the currently active graphics
window (see Section 9.1).

3.2 Controlling the appearance of plots

This section is concerned with the appearance of plots, which means the colors,
line types, fonts and so on that are used to draw a plot. As described in Section
3.1.2, these features are controlled via base graphics state settings and values
are specified for the settings either with a call to the par() function or as
arguments to a specific graphics function such as plot(). For example, there
is a setting called col to control the color of output (see Section 3.2.1). This
can be set permanently using par() with an expression of the form:

par(col="red")

This will affect all subsequent graphical output. Alternatively, the setting can
be specified as an argument to a high-level function using an expression of the
form:

Customizing Base Graphics 61

plot(..., col="red")

This will affect the output just for that plot. Finally, the setting can be used
as an argument to a low-level function, as in the expression below.

lines(..., col="red")

This demonstrates that the setting can be used to control the appearance of
just a single piece of graphical output.

There are many individual settings that affect the appearance of a plot, but
they can be grouped in terms of what aspects of a plot the settings affect.
Each of the following sections details a particular group of settings, including
a description of the role of individual settings. There are sections on specifying
colors; how to control the appearance of lines, text, data symbols, and axes;
how to control the size and location of the various plotting regions; clipping
(only drawing output on certain parts of the page); and specifying what should
happen when a high-level function is called to start a new plot.

The appearance of plots is also affected by the location and size of the plotting
regions, but this is dealt with separately in Section 3.3.

The following sections provide some simple examples of how to specify the
settings for the base graphical parameters, but much more detail is provided
in Chapter 10.

3.2.1 Colors

There are three main color settings in the base graphics state: col, fg, and
bg.

The col setting is the most commonly used. The primary use is to specify the
color of data symbols, lines, text, and so on that are drawn in the plot region.
Unfortunately, when specified via a graphics function, the effect can vary. For
example, a standard scatterplot produced by the plot() function will use col
for coloring data symbols and lines, but the barplot() function will use col

for filling the contents of its bars. In the rect() function (see Section 3.4),
the col argument provides the color to fill the rectangle and there is a border

argument specific to rect() that gives the color to draw the border of the
rectangle. The effect of col on graphical output drawn in the margins also
varies. It does not affect the color of axes and axis labels, but it does affect
the output from the mtext() function. There are specific settings for affecting
axes, labels, titles, and subtitles called col.axis, col.lab, col.main, and
col.sub.

62 R Graphics, Third Edition

The fg setting is primarily intended for specifying the color of axes and borders
on plots. There is some overlap between this and the specific col.axis,
col.main, etc. settings described above.

The bg setting is primarily intended to specify the color of the background
for base graphics output. This color is used to fill the entire page. As with
the col setting, when bg is specified in a graphics function it can have a quite
different meaning. For example, the plot() and points() functions use bg to
specify the color for the interior of the data symbols, which can have different
colors on the border (pch values 21 to 25; see Section 3.2.4).

Colors may be specified in a number of different ways. The most simple is to
use a color name, such as "red" and "blue", but there are many alternatives,
including generating sets of colors by calling a function. Section 10.1 describes
the specification of colors in R in complete detail.

Fill patterns

In some cases (e.g., when printing in black and white), it is difficult to make
use of different colors to distinguish between different elements of a plot. Using
different levels of gray can be effective, but another option is to make use of
some sort of fill pattern, such as cross-hatching. These should be used with
caution because it is very easy to create visual effects that are distracting.

In base graphics, there is only limited support for fill patterns and they can
only be applied to rectangles and polygons. It is possible to fill a rectangle or
polygon with a set of lines drawn at a certain angle, with a specific separation
between the lines. A density argument controls the separation between the
lines (in terms of lines per inch) and an angle argument controls the angle of
the lines (in terms of degrees anti-clockwise from 3 o’clock). Examples of the
use of fill patterns are given in Figures 2.8, 3.20, and their associated code.

These settings can only be controlled via arguments to the functions rect(),
polygon(), hist(), barplot(), pie(), and legend() (and not via par()).

3.2.2 Lines

There are five graphics state settings for controlling the appearance of lines.
The lty setting describes the type of line to draw (e.g., solid, dashed, or
dotted), the lwd setting describes the width of lines, and the ljoin, lend,
and lmitre settings control how the ends and corners in lines are drawn
(rounded or pointy).

The line type can be specified as a character value, for example, "solid",
"dashed", or "dotted", and the line width is given as a number, where 1

Customizing Base Graphics 63

corresponds to 1/96 inch (which is roughly 1 pixel on many computer screens).

The scope of these settings again differs depending on the graphics function
being called. For example, for standard scatterplots, the setting only applies
to lines drawn within the plot region. In order to affect the lines drawn as part
of the axes, the lty setting must be passed directly to the axis() function
(see Section 3.4.4).

Section 10.2 describes the specification of line styles in R in complete detail.

3.2.3 Text

There are a large number of base graphics state settings for controlling the
appearance of text. The size of text is controlled via ps and cex; the font is
controlled via font and family; the justification of text is controlled via adj;
and the angle of rotation is controlled via srt.

There is also an ann setting, which indicates whether titles and axis labels
should be drawn on a plot. This is intended to apply to high-level functions,
but is not guaranteed to work with all such functions (especially functions from
extension packages). There are examples of the use of ann as an argument to
high-level plotting functions in Section 3.4.1.

Text size

The size of text is ultimately a numerical value specifying the size of the font
in“points.” The font size is controlled by two settings: ps specifies an absolute
font size setting (e.g., ps=9), and cex specifies a multiplicative modifier (e.g.,
cex=1.5). The final font size specification is simply fontsize * cex.

As with specifying color, the scope of a cex setting can vary depending on
where it is given. When cex is specified via par(), it affects most text.
However, when cex is specified via plot(), it only affects the size of data
symbols. There are special settings for controlling the size of text that is drawn
as axis tick labels (cex.axis), text that is drawn as axis labels (cex.lab),
text in the title (cex.main), and text in the subtitle (cex.sub).

Specifying fonts

The font used for drawing text is controlled by the settings family and font.

The family setting is a character value giving the name of a specific font
family, such as "Times Roman", or a generic family style, such as "serif",
"sans" (sans-serif), or "mono" (monospaced). Specific font families will only

64 R Graphics, Third Edition

family="sans"

font=1

family="serif"

font=1

family="mono"

font=1

family="sans"

font=2

family="serif"

font=2

family="mono"

font=2

family="sans"

font=3

family="serif"

font=3

family="mono"

font=3

family="sans"

font=4

family="serif"

font=4

family="mono"

font=4

Figure 3.7
Font families and font faces. The appearance of the twelve font family and font face
combinations that are available in the base graphics system.

be available if they are installed on the operating system that R is run on, but
the generic family styles are always available.

The font setting is a numeric value that selects between normal text (1),
bold (2), italic (3), and bold-italic (4). Similar to color and text size, the
font setting applies mostly to text drawn in the plot region. There are ad-
ditional settings specifically for labels (font.lab), and titles (font.main and
font.sub). Figure 3.7 demonstrates the 12 basic font family and face combi-
nations.

The specification of fonts in R is described in great detail in Section 10.4.

Customizing Base Graphics 65

Justification of text

The adj setting is a value from 0 to 1 indicating the horizontal justification
of text strings (0 means left-justified, 1 means right-justified and a value of
0.5 centers text).

The meaning of the adj setting depends on whether text is being drawn in
the plot region, in the figure margins, or in the outer margins. In the plot
region, the justification is relative to the (x, y) location at which the text
is being drawn. In this context, it is also possible to specify two values for
the setting and the second value is taken as a vertical justification for the
text. Furthermore, non-finite values (NA, NaN, or Inf) may be specified for
the justification and this is taken to mean “exact” centering (see below).

There is only a difference between a justification value of 0.5 and a non-
finite justification value for vertical justification. In this case, a setting of 0.5
means text is vertically centered based on the height of the text above the
text baseline (i.e., ignoring “descenders” like the tail on a “y”). A non-finite
value means that text is vertically centered based on the full height of the
text (including descenders). Figure 3.8 shows how various adj settings affect
the alignment of text in the plot region.

In the figure margins and outer margins, the meaning of the adj setting
depends on the las setting (see below). When margin text is parallel to the
axis, adj specifies both the location and the justification of the text. For
example, a value of 0 means that the text is left-justified and that the text
is located at the left end of the margin. When text is perpendicular to the
axis, the adj setting only affects justification. Furthermore, the adj setting
only affects “horizontal” justification (justification in the reading direction)
for text in the margins. Section 3.4.2 contains more information about the
justification of text in the plot margins.

Rotating text

The srt setting specifies a rotation angle anti-clockwise from the positive x-
axis, in degrees. This will only affect text drawn in the plot region (text drawn
by the text() function; see Section 3.4.1). Text can be drawn at any angle
within the plot region.

In the figure and outer margins, text may only be drawn at angles that are
multiples of 90◦, and this angle is controlled by the las setting. A value of
0 means text is always drawn parallel to the relevant axis (i.e., horizontal in
margins 1 and 3, and vertical in margins 2 and 4). A value of 1 means text is
always horizontal, 2 means text is always perpendicular to the relevant axis,
and 3 means text is always vertical.

66 R Graphics, Third Edition

c(1, 1)

c(0.5, 1)

c(NA, 1)

c(0, 1)

c(1, 0.5)

c(0.5, 0.5)

c(NA, 0.5)

c(0, 0.5)

c(1, NA)

c(0.5, NA)

c(NA, NA)

c(0, NA)

c(1, 0)

c(0.5, 0)

c(NA, 0)

c(0, 0)

Figure 3.8
Alignment of text in the plot region. The adj graphical setting may be given two
values, c(hjust, vjust), where hjust specifies horizontal justification and vjust spec-
ifies vertical justification. Each piece of text in the diagram is justified relative to a
gray cross to represent the effect of the relevant adj setting. The vertical adjustment
for NA is subtly different from the vertical adjustment for 0.5.

Customizing Base Graphics 67

0 1 2 3 4 5

Figure 3.9
The first six data symbols that are available in base graphics. In the diagram,
the relevant integer value for the pch setting is shown in gray to the left of the
corresponding symbol.

Multi-line text

The spacing between multiple lines of text is controlled by the lheight setting,
which is a multiplier applied to the natural height of a line of text. For
example, lheight=2 specifies double-spaced text. This setting can only be
specified via par().

3.2.4 Data symbols

The data symbol used for plotting points is controlled by the pch setting. This
can be an integer value to select one of a fixed set of data symbols, or a single
character. For example, specifying pch=0 produces an open square, pch=1

produces an open circle, and pch=2 produces an open triangle (see Figure
3.9). Specifying pch="#" means that a hash character will be plotted at each
data location.

Some of the predefined data symbols (pch between 21 and 25) allow a fill color
separate from the border color, with the bg setting controlling the fill color in
these cases.

Section 10.3 describes the possible set of data symbols in more detail.

The size of the data symbols is linked to the size of text and is affected by the
cex setting. If the data symbol is a character, the size will also be affected by
the ps setting.

The type setting controls how data are represented in a plot. A value of
"p" means that data symbols are drawn at each (x, y) location. The value
"l" means that the (x, y) locations are connected by lines. A value of "b"
means that both data symbols and lines are drawn. The type setting may
also have the value "o", which means that data symbols are “over-plotted” on
lines (with the value "b", the lines stop short of each data symbol). It is also

68 R Graphics, Third Edition

possible to specify the value "h", which means that vertical lines are drawn
from the x-axis to the (x, y) locations (the appearance is like a barplot with
very thin bars). Two further values, "s" and "S" mean that (x, y) locations
are joined in a city-block fashion with lines going horizontally then vertically
(or vertically then horizontally) between each data location. Finally, the value
"n" means that nothing is drawn at all.

Figure 3.10 shows simple examples of the different plot types. This setting is
most often specified within a call to a high-level function (e.g., plot()) rather
than via par().

3.2.5 Axes

By default, the base graphics system produces axes with sensible labels and
tick marks at sensible locations. If the axis does not look right, there are a
number of graphical state settings specifically for controlling aspects such as
the number of tick marks and the positioning of labels. These are described
below. If none of these gives the desired result, the user may have to resort
to drawing the axis explicitly using the axis() function (see Section 3.4.4).

The lab setting in the base graphics state is used to control the number of
tick marks on the axes. The setting is only used as a starting point for the
algorithm R uses to determine sensible tick locations so the final number of
tick marks that are drawn could easily differ from this specification. The
setting takes two values: the first specifies the number of tick marks on the
x-axis and the second specifies the number of tick marks on the y-axis.

The xaxp and yaxp settings also relate to the number and location of the tick
marks on the axes of a plot. This setting is almost always calculated by R
for each new plot so user settings are usually overridden (see Section 3.4.4 for
an exception to this rule). In other words, it only makes sense to query this
setting for its current value. The settings consist of three values: the first two
specify the location of the left-most and right-most tick marks (bottom and
top tick marks for the y-axis), and the third value specifies how many intervals
there are between tick marks. When a log transformation is in effect for an
axis, the three values have a different and much more complicated meaning
altogether (see the on-line help page for par()).

The mgp setting controls the distance that the components of the axes are
drawn away from the edge of the plot region. There are three values repre-
senting the positioning of the overall axis label, the tick mark labels, and the
lines for the ticks. The values are in terms of lines of text away from the edges
of the plot region. The default value is c(3, 1, 0). Figure 3.11 gives an
example of different mgp settings.

Customizing Base Graphics 69

type="p" type="l"

type="b" type="o"

type="h" type="s"

Figure 3.10
Basic plot types. Plotting the same data with different plot type settings. In
each case, the output is produced by an expression of the form plot(x, y,

type=something), where the relevant value of type is shown above each plot.

70 R Graphics, Third Edition

mgp=c(3, 1, 0)

xaxs="r"

tcl=−0.5

0.0 0.5 1.0

X−axis Label

mgp=c(2, 0.3, 0)

xaxs="r"

tcl=0.2

0.0 0.5 1.0

X−axis Label

mgp=c(3, 1, 0)

xaxs="i"

tcl=−0.5

0.0 0.5 1.0

X−axis Label

Figure 3.11
Different axis styles. The top-left plot demonstrates the default axis settings for an
x-axis. The top-right plot shows the effects of specifying different positions for the
axis labels (the tick labels and axis labels are closer to the plot region) and different
lengths for the tick marks and the bottom-left plot shows the effect of specifying an
“internal” axis range calculation.

Customizing Base Graphics 71

The tck and tcl settings control the length of tick marks. The tcl setting
specifies the length of tick marks as a fraction of the height of a line of text.
The sign dictates the direction of the tick marks — a negative value draws
tick marks outside the plot region and a positive value draws tick marks inside
the plot region. The tck setting specifies tick mark lengths as a fraction of
the smaller of the physical width or height of the plotting region, but it is
only used if its value is not NA (and it is NA by default). Figure 3.11 gives an
example of different tcl settings.

The xaxs and yaxs settings control the “style” of the axes of a plot. By
default, the setting is "r", which means that R calculates the range of values
on the axis to be wider than the range of the data being plotted (so that data
symbols do not collide with the boundaries of the plot region). It is possible
to make the range of values on the axis exactly match the range of values in
the data, by specifying the value "i". This can be useful if the range of values
on the axes are being explicitly controlled via xlim or ylim arguments to a
function. Figure 3.11 gives an example of different xaxs settings.

The xaxt and yaxt settings control the “type” of axes. The default value,
"s", means that the axis is drawn. Specifying a value of "n" means that the
axis is not drawn.

The xlog and ylog settings control the transformation of values on the axes.
The default value is FALSE, which means that the axes are linear and values
are not transformed. If this value is TRUE then a logarithmic transformation
is applied to any values on the relevant dimension in the plot region. This
also affects the calculation of tick mark locations on the axes.

When data of a special nature are being plotted (e.g., time series data), some
of these settings may not apply (and may not have any sensible interpretation).

The bty setting is not strictly to do with axes, but it controls the output
of the box() function, which is most commonly used in conjunction with
drawing axes. This function draws a bounding box around the edges of the
plot region (by default). The bty setting controls the type of box that the
box() function draws. The value can be "n", which means that no box is
drawn, or it can be one of "o", "l", "7", "c", "u", or "]", which means that
the box drawn resembles the corresponding uppercase character. For example,
bty="c" means that the bottom, left, and top borders will be drawn, but the
right border will not be drawn.

In addition to these graphics state settings, many high-level plotting functions,
e.g., plot(), provide arguments xlim and ylim to control the range of the
scale on the axes. Section 2.6.1 has an example.

72 R Graphics, Third Edition

3.2.6 Plotting regions

As described in Section 3.1.1, the base graphics system defines several different
regions on the graphics device. This section describes how to control the size
and layout of these regions using graphics state settings. Figure 3.12 shows a
diagram of some of the settings that affect the widths and horizontal placement
of the regions.

The size of each margin can be controlled independently, but R will check
whether an overall specification is consistent. For example, if the margins are
made too big, so that there is not room left on the page for the plot region,
then R will give an error message like the following:

Error in plot.new() : figure margins too large

Outer margins

By default, there are no outer margins on a page. Outer margins can be
specified using the oma graphics state setting. This consists of four values
for the four margins in the order (bottom, left, top, right) and values
are interpreted as lines of text (a value of 1 provides space for one line of
text in the margin). The margins can also be specified in inches using omi or
in normalized device coordinates (i.e., as a proportion of the device region)
using omd. If omd is used, the margins are specified in the order (left,

right, bottom, top).

Figure regions

By default, the figure region is calculated from the settings for the outer mar-
gins and the number of figures on the page. The figure region can be specified
explicitly instead, using either the fig setting or the fin state setting. The
fig setting specifies the location, (left, right, bottom, top), of the fig-
ure region where each value is a proportion of the “inner” region (the page less
the outer margins). The fin setting specifies the size, (width, height), of
the figure region in inches and the resulting figure region is centered within
the inner region.

Figure margins

The figure margins can be controlled using the mar state setting. This consists
of four values for the four margins in the order (bottom, left, top, right)

where each value represents a number of lines of text. The default values are

Customizing Base Graphics 73

din[1]

omi[2]

oma[2]

omi[4]

oma[4]

omd[1]

omd[2]

fin[1]

mai[2]

mar[2]

m
a
i
[
4
]

m
a
r
[
4
]

plt[1]

plt[2]

pin[1]

Figure 3.12
Graphics state settings controlling plot regions. These are some of the settings that
control the widths and horizontal locations of the plot regions. For ease of com-
parison, this diagram has the same layout as Figure 3.1: the central gray rectangle
represents the plot region, the lighter gray rectangle around that is the figure region,
and the darker gray rectangle around that is the outer margins. A similar diagram
could be produced for settings controlling heights and vertical locations.

74 R Graphics, Third Edition

c(5, 4, 4, 2) + 0.1. The margins may also be specified in terms of inches
using mai.

The mex setting controls the size of a “line” in the margins. This does not
affect the size of text drawn in the margins, but is used to multiply the size
of text to determine the height of one line of text in the margins.

Plot regions

By default, the plot region is calculated from the figure region less the figure
margins. The location and size of the plot region may be controlled explicitly
instead, using the plt, pin, or pty settings. The plt setting allows the user to
specify the location of the plot region, (left, right, bottom, top), where
each value is a proportion of current figure region. The pin setting specifies
the size of the plot region, (width, height), in terms of inches.

The pty setting controls how much of the available space (figure region less
figure margins) the plot region occupies. The default value is "m", which
means that the plot region occupies all of the available space. A value of
"s" means that the plot region will take up as much of the available space as
possible, but it must be “square” (i.e., its physical width will be the same as
its physical height).

3.2.7 Clipping

Base graphics output is usually clipped to the plot region. This means that
any output that would appear outside the plot region is not drawn. For
example, in the default behavior, data symbols for (x, y) locations which lie
outside the ranges of the axes are not drawn. Base graphics functions that
draw in the margins clip output to the current figure region or to the device.
Section 3.4 has information about which functions draw in which regions.

It can be useful to override the default clipping region. For example, this
is necessary to draw a legend outside the plot region using the legend()

function.

The base clipping region is controlled via the xpd setting. Clipping can occur
either to the whole device (an xpd value of NA), to the current figure region
(a value of TRUE), or to the current plot region (a value of FALSE, which is the
default).

There is also a clip() function for setting the clipping region to be smaller
than the plot region.

Customizing Base Graphics 75

3.2.8 Moving to a new plot

As described in Section 2.1, high-level graphics functions usually start a new
plot.

The devAskNewPage() function can be used to control whether the user is
prompted before the graphics system starts a new page of output.

The graphics state includes a setting called new, which controls whether a
function that starts a new plot will move on to the next figure region (possibly
a new page). Every plot sets the value to FALSE so that the next plot will
move on by default, but if this setting has the value TRUE then a new plot does
not move on to the next figure region. This can be used to overlay several
plots on the same figure (Section 3.4.5 has an example).

3.3 Arranging multiple plots

There are a number of ways to produce multiple plots on a single page.

The number of plots on a page, and their placement on the page, can be
controlled directly by specifying the base graphics state settings mfrow or
mfcol using the par() function, or through a higher-level interface provided
by the layout() function. The split.screen() function provides yet another
approach, where a figure region can itself be treated as a complete page to
split into further figure and plot regions.

These three approaches are mutually incompatible. For example, a call to the
layout() function will override any previous mfrow and mfcol settings. Also,
some high-level functions (e.g., coplot()) call layout() or par() themselves
to create a plot arrangement, which means that the output from such functions
cannot be arranged with other plots on a page (see Section 3.4.6 for further
discussion; Section 12.2 describes one way to work around this limitation).

3.3.1 Using the base graphics state

The number of figure regions on a page can be controlled via the mfrow and
mfcol graphics state settings. Both of these consist of two values indicating
a number of rows, nr, and a number of columns, nc; these settings result in
nr×nc figure regions of equal size.

The top-left figure region is used first. If the setting is made via mfrow then

76 R Graphics, Third Edition

the figure regions along the top row are used next from left to right, until that
row is full. After that, figure regions are used in the next row down, from
left to right, and so on. When all rows are full, a new page is started. For
example, the following code creates six figure regions on the page, arranged
in three rows and two columns and the regions are used in the order shown
in Figure 3.13(a).

> par(mfrow=c(3, 2))

If the setting is made via mfcol, figure regions are used in a column-first order
instead of a row-first order.

The order in which figure regions are used can be controlled explicitly by using
the mfg setting to specify the next figure region. This setting consists of two
values that indicate the row and column of the next figure to use.

The read-only page setting can be queried to determine whether the next
high-level graphics function is going to start a new page.

3.3.2 Layouts

The layout() function provides an alternative to the mfrow and mfcol set-
tings. The primary difference is that the layout() function allows the creation
of multiple figure regions of unequal size.

The simple idea underlying the layout() function is that it divides the inner
region of the page into a number of rows and columns, but the heights of rows
and the widths of columns can be independently controlled, and a figure can
occupy more than one row or more than one column.

The first argument (and the only required argument) to the layout() function
is a matrix. The number of rows and columns in the matrix determines the
number of rows and columns in the layout.

The contents of the matrix are integer values that determine which rows and
columns each figure will occupy. The following layout specification is identical
to par(mfrow=c(3, 2)).

> layout(matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, ncol=2))

It may be easier to imagine the arrangement of figure regions if the matrix
is specified using cbind() or rbind(). The code below repeats the previous
example, but uses rbind() to specify the layout matrix.

Customizing Base Graphics 77

> layout(rbind(c(1, 2),

c(3, 4),

c(5, 6)))

The function layout.show() may be helpful for visualizing the figure regions
that are created. The following code creates a figure visualizing the layout
created in the previous example (see Figure 3.13(a)).

> layout.show(6)

The contents of the layout matrix determine the order in which the resulting
figure regions will be used. The following code creates a layout with exactly
the same rows and columns as the previous one, but the figure regions will be
used in the reverse order (see Figure 3.13(b)).

> layout(rbind(c(6, 5),

c(4, 3),

c(2, 1)))

By default, all row heights are the same and all column widths are the same
size and the available inner region is divided up equally. The heights argu-
ments can be used to specify that certain rows are given a greater portion
of the available height (for all of what follows, the widths argument works
analogously for column widths). When the available height is divided up,
the proportion of the available height given to each row is determined by di-
viding the row heights by the sum of the row heights. For example, in the
following layout there are two rows and one column. The top row is given
two thirds of the available height, 2/(2 + 1), and the bottom row is given one
third, 1/(2 + 1). Figure 3.13(c) shows the resulting layout.

> layout(matrix(c(1, 2)), heights=c(2, 1))

In the examples so far, the division of row heights has been completely in-
dependent of the division of column widths. The widths and heights can be
forced to correspond as well so that, for example, a height of 1 corresponds
to the same physical distance as a width of 1. This allows control over the
aspect ratio of the resulting figure. The respect argument is used to force
this correspondence. The following code is the same as the previous example
except that the respect argument is set to TRUE (see Figure 3.13(d)).

> layout(matrix(c(1, 2)), heights=c(2, 1),

respect=TRUE)

78 R Graphics, Third Edition

1 2

3 4

5 6

(a)

6 5

4 3

2 1

(b)

1

2

(c)

1

2

(d)

Figure 3.13
Some basic layouts: (a) A layout that is identical to par(mfrow=c(3, 2)); (b) Same
as (a) except the figures are used in the reverse order; (c) A layout with unequal row
heights; (d) Same as (c) except the layout widths and heights “respect” each other.

Customizing Base Graphics 79

It is also possible to specify heights of rows and widths of columns in absolute
terms. The lcm() function can be used to specify heights and widths for a
layout in terms of centimeters. The following code is the same as the previous
example, except that a third, empty region is created to provide a vertical
gap of 0.5 cm between the two figures (see Figure 3.14(a)). The 0 in the first
matrix argument means that no figure occupies that region.

> layout(matrix(c(1, 0, 2)),

heights=c(2, lcm(0.5), 1),

respect=TRUE)

This next piece of code demonstrates that a figure may occupy more than one
row or column in the layout. This extends the previous example by adding a
second column and creating a figure region that occupies both columns of the
bottom row. In the matrix argument, the value 2 appears in both columns of
row 3 (see Figure 3.14(b)).

> layout(rbind(c(1, 3),

c(0, 0),

c(2, 2)),

heights=c(2, lcm(0.5), 1),

respect=TRUE)

Finally, it is possible to specify that only certain rows and columns should
respect each other’s heights/widths. This is done by specifying a matrix for
the respect argument. In the following code, the previous example is modified
by specifying that only the first column and the last row should respect each
other’s widths/heights. In this case, the effect is to ensure that the width of
figure region 1 is the same as the height of figure region 2, but the width of
figure region 3 is free to expand to the available width (see Figure 3.14(c)).

> layout(rbind(c(1, 3),

c(0, 0),

c(2, 2)),

heights=c(2, lcm(0.5), 1),

respect=rbind(c(0, 0),

c(0, 0),

c(1, 0)))

3.3.3 The split-screen approach

The split.screen() function provides yet another way to divide the page
into a number of figure regions. The first argument, figs, is either two

80 R Graphics, Third Edition

1

2

(a)

1

2

3

(b)

1

2

3

(c)

Figure 3.14
Some more complex layouts: (a) A layout with a row height specified in centimeters;
(b) A layout with a figure occupying more than one column; (c) Same as (b), but
with only column 1 and row 3 respected.

Customizing Base Graphics 81

values specifying a number of rows and columns of figures (i.e., like the
mfrow setting), or a matrix containing a figure region location, (left, right,

bottom, top), on each row (i.e., like a par(fig) setting on each row).

Having established figure regions in this manner, a figure region is used by
calling the screen() function to select a region. This means that the order
in which figures are used is completely under the user’s control, and it is
possible to reuse a figure region, though there are dangers in doing so (the
on-line help for split.screen() provides further discussion). The function
erase.screen() can be used to clear a defined screen and close.screen()

can be used to remove one or more screen definitions.

An even more useful feature of this approach is that each figure region can
itself be divided up by a further call to split.screen(). This allows complex
arrangements of plots to be created.

The downside to this approach is that it does not fit very nicely with the
underlying base graphics system model (see Section 3.1). The recommended
way to achieve complex arrangements of plots is via the layout() function
from the previous section or by using the grid graphics system (see Part II),
possibly in combination with base graphics high-level functions (see Chapter
12).

3.4 Annotating plots

Sometimes it is not enough to be able to modify the default output from
high-level functions and further graphical output must be added, using low-
level functions, to achieve the desired result (see, for example, Figure 1.3). R
graphics in general is fundamentally oriented to supporting the annotation of
plots — the ability to add graphical output to an existing plot. In particular,
the regions and coordinate systems used in the construction of a plot remain
available for adding further output to the plot. For example, it is possible to
position a text label relative to the scales on the axes of a plot.

3.4.1 Annotating the plot region

Most low-level graphics functions that add output to an existing plot, add the
output to the plot region. In other words, locations are specified relative to
the user coordinate system (see Section 3.1.1).

82 R Graphics, Third Edition

Table 3.4
The low-level base graphics functions for drawing basic graphical primitives.

Function Description

points() Draw data symbols at locations (x, y)
lines() Draw lines between locations (x, y)
segments() Draw line segments between (x0, y0) and (x1, y1)
arrows() Draw line segments with arrowheads at the end(s)
xspline() Draw a smooth curve relative to control points (x, y)
rect() Draw rectangles with bottom-left corner at (xl, yb)

and top-right corner at (xr, yt)
polygon() Draw one or more polygons with vertices (x, y)
polypath() Draw a single polygon made up of one or more paths

with vertices (x, y)
rasterImage() Draw a bitmap image
text() Draw text at locations (x, y)

Graphical primitives

This section describes the graphics functions that provide the most basic
graphics output (lines, rectangles, text, etc). Table 3.4 provides a complete
list.

The most common use of this facility is to add extra sets of data to a plot. The
lines() function draws lines between (x, y) locations, and the points()

function draws data symbols at (x, y) locations. The following code demon-
strates a common situation where three different sets of y-values, recorded
at the same set of x-values, are plotted together on the same plot (see the
left-hand plot in Figure 3.15).

First, we extract just a few days of data from the EuStockMarkets time series
and plot the closing price from one market as a gray line (type="l" and
col="gray"). The scale on the y-axis is set, using ylim, to ensure that there
will be room on the plot for all of the data series.

> EUdays <- window(EuStockMarkets, c(1992,1), c(1992,10))

> plot(EUdays[,"DAX"], ylim=range(EUdays), ann=FALSE,

axes=FALSE, type="l", col="gray")

Now a set of points are added for the first set of closing prices, then lines and
points are added for the closing prices of two other markets.

Customizing Base Graphics 83

points() & lines()

right

top

bottom

left

overlay

text()

Figure 3.15
Annotating the plot region of a base graphics plot. The left-hand plot shows points
and extra lines being added to an initial line plot. The right-hand plot shows text
being added to an initial scatterplot.

> points(EUdays[,"DAX"])

> lines(EUdays[,"CAC"], col="gray")

> points(EUdays[,"CAC"], pch=2)

> lines(EUdays[,"FTSE"], col="gray")

> points(EUdays[,"FTSE"], pch=3)

It is also possible to draw text at (x, y) locations with the text() function.
This is useful for labeling data locations, particularly using the pos argument
to offset the text so that it does not overlay the corresponding data symbols.
The following code creates a diagram demonstrating the use of text() (see
the right-hand plot in Figure 3.15). Again, some data are created and (gray)
data symbols are plotted at the (x, y) locations.

> x <- 1:5

> y <- x

> plot(x, y, ann=FALSE, axes=FALSE, col="gray", pch=16)

Now some text labels are added, with each one offset in a different way from
the (x, y) location. Notice that the arguments to text() may be vectors so
that several pieces of text are drawn by the one function call.

> text(x[-3], y[-3], c("right", "top", "bottom", "left"),

pos=c(4, 3, 1, 2))

> text(3, 3, "overlay")

84 R Graphics, Third Edition

Like the plot() function, the text(), lines(), and points() functions are
generic. This means that they have flexible interfaces for specifying the data
for the (x, y) locations, or they produce different output when given objects
of a particular class in the x argument. For example, both lines(), and
points() will accept formulae for specifying the (x, y) locations and the
lines() function will behave sensibly when given a ts (time series) object to
draw.

The text() function normally takes a character value to draw, but it will
also accept an R expression (as produced by the expression() function),
which can be used to produce a mathematical formula with special symbols
and formatting. For example, the following code draws the formula

√
2πσ2.

Section 10.5 describes this facility in more detail.

> text(0.5, 0.5, expression(sqrt(2*pi*sigma^2)))

As a parallel to the matplot() function (see Section 2.5), there are functions
matpoints() and matlines() specifically for adding lines and data symbols
to a plot, given x or y as matrices.

Having access to graphical primitives not only makes it easy to add new data
series to a plot and to add labels, but it also makes it possible to add arbitrary
drawing to a plot. In addition to lines, points, and text, there are graphical
primitives for drawing more complex shapes.

In order to demonstrate these other graphical primitives, the following code
produces a simple set of x- and y-values. These points will be plotted and
used to draw a variety of shapes (see Figure 3.16).

> t <- seq(60, 360, 30)

> x <- cos(t/180*pi)*t/360

> y <- sin(t/180*pi)*t/360

The lines() function draws a single line through several points. Missing
values in the (x, y) locations will create breaks in the line.

> lines(x, y)

An alternative is provided by the segments() function, which will draw several
different straight lines between pairs of end points. In the following code, a
straight line is drawn from (0, 0) to each of the (x, y) locations. Notice that
R’s normal recycling rule behavior is applied to most arguments of graphics
functions.

Customizing Base Graphics 85

lines() segments() arrows()

xspline() rect() polygon()

polypath() xspline() rasterImage()

Figure 3.16
Drawing in the plot region of a base graphics plot. These pictures show some of the
functions that draw more complex graphical shapes. The shapes are based on a set
of (x, y) points which are drawn as light gray dots.

86 R Graphics, Third Edition

> segments(0, 0, x, y)

The arrows() function produces the same output as segments(), but also
adds simple arrowheads at either end of the line segments. The length argu-
ment is used here to control the size of the arrowheads.

> arrows(0, 0, x[-1], y[-1], length=.1)

The xspline() function also produces a line, but the line is an X-spline, which
treats the (x, y) locations as control points from which to produce a smooth
curve. The smoothness of the curve is controlled by a shape parameter.

> xspline(x, y, shape=1)

There are also several functions for producing closed shapes. The simplest
is rect(), which only requires a left, bottom, right, and top value to draw
a rectangle (though all values can be vectors, which will result in several
rectangles being drawn).

> rect(min(x), min(y), max(x), max(y), col="gray")

The polygon() function produces more complex shapes, using the (x, y)

locations as vertices. Multiple polygons may be drawn using polygon() by
inserting an NA value between each set of polygon vertexes. For both rect()

and polygon(), the col argument specifies the color to fill the interior of
the shape and the argument border controls the color of the line around the
boundary of the shape.

> polygon(x, y, col="gray")

The polygon() function can draw self-intersecting polygons, but cannot rep-
resent polygons with holes. For the latter case, there is polypath(), which
only draws a single polygon, but the polygon can be composed of more than
one subpath. This allows for polygons consisting of distinct paths as well as
polygons with holes.

> polypath(c(x, NA, .5*x), c(y, NA, .5*y),

col="gray", rule="evenodd")

The xspline() function can also be used to create closed shapes, by specifying
open=FALSE.

Customizing Base Graphics 87

> xspline(x, y, shape=1, open=FALSE, col="gray")

Finally, there is a function, rasterImage(), for drawing bitmap images on a
plot. The bitmap can be an external file, or it can just be a vector, matrix,
or array. The following code draws the R logo at each of the (x, y) locations
(code to read in the R logo is not shown; see Chapter 11 for more information).

> rasterImage(rlogo,

x - .1, y - .1,

x + .1, y + .1)

These examples only provide a tiny glimpse of what is possible with these
graphical primitives. The possibilities are endless and a number of the ex-
amples in the remainder of this chapter provide some further demonstrations
of what can be achieved by adding basic graphical shapes to a plot (see, for
example, Figure 3.24).

Graphical utilities

In addition to the low-level graphical primitives of the previous section, there
are a number of utility functions that provide a set of slightly more complex
shapes.

The grid() function adds a series of grid lines to a plot. This is simply a
series of line segments, but the default appearance (light gray and dotted) is
suited to the purpose of providing visual cues to the viewer without interfering
with the primary data symbols.

The abline() function provides a number of convenient ways to add a line
(or lines) to a plot. The line(s) can be specified either by a slope and y-axis
intercept, or as a series of x-locations for vertical lines or as a series of y-
locations for horizontal lines. The function will also accept the coefficients
from a linear regression analysis (even as an "lm" object), thereby providing
a simple way to add a line of best fit to a scatterplot.

The following code annotates a basic scatterplot with a line and arrows (see
the left-hand plot of Figure 3.17).

First, we plot some points in an unadorned plot.∗

> plot(cars, ann=FALSE, axes=FALSE, col="gray", pch=16)

∗The data used in this example are vehicle speeds and stopping distances that were
recorded in the 1920s available as the data set cars in the datasets package.

88 R Graphics, Third Edition

Line of best fit

abline() & arrows() rug()

Figure 3.17
More examples of annotating the plot region of a base graphics plot. The left-hand
plot shows a line of best fit (plus a text label and arrow) being added to an initial
scatterplot. The right-hand plot shows a series of ticks being added as a rug plot on
an initial histogram.

Now a line of best fit is drawn through the data using abline() and a text
label and arrow are added using text() and arrows().

> lmfit <- lm(dist ~ speed, cars)

> abline(lmfit)

> arrows(15, 90, 19, predict(lmfit, data.frame(speed=19)),

length=0.1)

> text(15, 90, "Line of best fit", pos=2)

The box() function draws a rectangle around the boundary of the plot region.
The which argument makes it possible to draw the rectangle around the cur-
rent figure region, inner region, or outer region instead. The following code
draws a gray box around the plot region in the plot above.

> box(col="gray")

The rug() function produces a“rug”plot along one of the axes, which consists
of a series of tick marks representing data locations. This can be useful to
represent an additional one-dimensional plot of data (e.g., in combination
with a density curve). The following code uses this function to annotate the
same scatterplot as above, with a set of tick marks on the y-axis to show the
distribution of stopping distances (see the right-hand plot of Figure 3.17).

Customizing Base Graphics 89

NA

NA

NA

Figure 3.18
Drawing polygons using the polygon() function. On the left, a single polygon
(dodecagon) is produced from multiple (x, y) locations. On the right, the first,
fifth, and ninth values have been set to NA, which splits the output into three separate
polygons. The polygon() function does not draw the gray NA values; those have been
drawn using the text() function purely for the purposes of illustration.

> rug(cars$dist, side=2)

Missing values and non-finite values

R has special values representing missing observations (NA) and non-finite
values (NaN and Inf). Most base graphics functions allow such values within
(x, y) locations and handle them by not drawing the relevant location. For
drawing data symbols or text, this means the relevant data symbol or piece
of text will not be drawn. For drawing lines, this means that lines to or from
the relevant location are not drawn; a gap is created in the line. For drawing
rectangles, an entire rectangle will not be drawn if any of the four boundary
locations is missing or non-finite.

Polygons are a slightly more complex case. For drawing polygons, a missing
or non-finite value in x or y is interpreted as the end of one polygon and the
start of another. Figure 3.18 shows an example. On the left, a polygon is
drawn through 12 locations evenly spaced around a circle. On the right, the
first, fifth, and ninth locations have been set to NA so the output is split into
three separate polygons.

Missing or non-finite values can also be specified for some base graphics state
settings. For example, if a color setting is missing or non-finite, then nothing
is drawn (this is a brute-force way to specify a completely transparent color).

90 R Graphics, Third Edition

Similarly, specifying a missing value or non-finite value for cex means that
the relevant data symbol or piece of text is not drawn.

3.4.2 Annotating the margins

There are only two functions that produce output in the figure or outer mar-
gins, relative to the margin coordinate systems (Section 3.1.1).

The mtext() function draws text at any location in any of the margins. The
outer argument controls whether output goes in the figure or outer margins.
The side argument determines which margin to draw in: 1 means the bottom
margin, 2 means the left margin, 3 means the top margin, and 4 means the
right margin.

Text is drawn a number of lines of text away from the edges of the plot region
for figure margins or a number of lines away from the edges of the inner region
for outer margins. In the figure margins, the location of the text along the
margin can be specified relative to the user coordinates on the relevant axis
using the at argument. In some cases it is possible to specify the location as
a proportion of the length of the margin using the adj argument, but this is
dependent on the value of the las state setting (see page 65). For certain las

settings, the adj argument instead controls the justification of the text relative
to a position chosen by the las argument. There is also a padj argument for
controlling the “vertical” justification of text in the margins (the justification
of the text perpendicular to the reading direction of the text).

The title() function is essentially a specialized version of mtext(). It is more
convenient for producing a few specific types of output, but much less flexible
than mtext(). This function can be used to produce a main title for a plot (in
the top figure margin), axis labels (in the left and bottom figure margins), and
a subtitle for a plot (in the bottom margin below the x-axis label). The output
from this function is heavily influenced by various graphics state settings, such
as cex.main and col.main, which control the size and color of the title.

Just like the text() function, which draws text in the plot region, the func-
tions that draw text in the margins all accept not only a character value, but
also an R expression, so that axis labels and plot titles can include special
symbols and formatting (see Section 10.5).

With a little extra effort, it is also possible to produce graphical output in
the figure or outer margins using the functions that normally draw in the
plot region (e.g., points() and lines()). In order to do this, the clipping
region of the plot must first be set using the xpd state setting (see Section
3.2.7). This approach is not very convenient because the functions are drawing
relative to user coordinates rather than locations relative to the margin co-

Customizing Base Graphics 91

Mid 1991

D
A

X

Mid 1998

1995

FT
S

E

Figure 3.19
Annotating the margins of a base graphics plot. Text has been added in margin 3
of the top plot and in margins 1 and 3 in the bottom plot. Thick gray lines have
been added to both plots (and overlapped so that it appears to be a single rectangle
across the plots).

ordinate systems. Nevertheless, it can sometimes be useful and the functions
grconvertX() and grconvertY() can help with converting locations between
coordinate systems.

The following code demonstrates the use of mtext() and a simple application
of using lines() outside the plot region for drawing what appears to be a
rectangle extending across two plots (see Figure 3.19).∗

First of all, the mfrow setting is used to set up an arrangement of two figure
regions, one above the other. The clipping region is set to the entire device
using xpd=NA.

> par(mfrow=c(2, 1), xpd=NA)

The first data set is plotted as a line on the top plot and a label is added
at the left end of figure margin 3. In addition, thick gray lines are drawn to

∗This example was motivated by a question to R-help on December 14, 2004 with
subject: “drawing a rectangle through multiple plots”.

92 R Graphics, Third Edition

represent the top of the rectangle, with the lines deliberately extending well
below the bottom of the plot. The label "DAX" is drawn in figure margin 2.

> plot(EuStockMarkets[,"DAX"], type="l", axes=FALSE,

xlab="", ylab="", main="")

> box(col="gray")

> mtext("Mid 1991", adj=0, side=3)

> lines(x=c(1995, 1995, 1996, 1996),

y=c(-1000, 6000, 6000, -1000),

lwd=3, col="gray")

> mtext("DAX", side=2, line=0)

The second data set is plotted as a line in the bottom plot, a label is added
to this plot at the right end of figure margin 3, and another label is drawn
beneath the x-location 1995.5 in figure margin 1. Finally, thick gray lines are
drawn to represent the bottom of the rectangle, again deliberately extending
these above the plot, and the label "FTSE" is drawn in figure margin 2. The
thick gray lines overlap the lines drawn with respect to the top plot to create
the impression of a single rectangle traversing both plots.

> plot(EuStockMarkets[,"FTSE"], type="l", axes=FALSE,

xlab="", ylab="", main="")

> box(col="gray")

> mtext("Mid 1998", adj=1, side=3)

> mtext("1995", at=1995.5, side=1)

> lines(x=c(1995, 1995, 1996, 1996),

y=c(7000, 2500, 2500, 7000),

lwd=3, col="gray")

> mtext("FTSE", side=2, line=0)

3.4.3 Legends

The base graphics system provides the legend() function for adding a legend
or key to a plot. The legend is usually drawn within the plot region, and
is located relative to user coordinates. The function has many arguments,
which allow for a great deal of flexibility in the specification of the contents
and layout of the legend. The following code demonstrates a couple of typical
uses.

The first example shows a scatterplot with a legend to relate group names to
different symbols (see the top plot in Figure 3.20). The first two arguments
give the position of the top-left corner of the legend, relative to the user
coordinate system. The third argument provides labels for the legend and,

Customizing Base Graphics 93

because the pch argument is also specified, data symbols are drawn beside
each label.

> with(iris,

plot(Sepal.Length, Sepal.Width,

pch=as.numeric(Species), cex=1.2))

> legend(6.1, 4.4, c("setosa", "versicolor", "virginica"),

cex=1.5, pch=1:3)

The next example shows a barplot with a legend to relate group names to
different fill patterns (see the bottom plot in Figure 3.20). In this example,
the angle, density, and fill arguments are specified, so small rectangles
with fill patterns are drawn beside each label in the legend.

> barplot(VADeaths[1:2,], angle=c(45, 135), density=30,

col="black", names=c("RM", "RF", "UM", "UF"))

> legend(0.4, 38, c("55-59", "50-54"), cex=1.5,

angle=c(135, 45), density=30)

It should be noted that it is entirely the responsibility of the user to ensure
that the legend corresponds to the plot. There is no automatic checking that
data symbols in the legend match those in the plot, or that the labels in the
legend have any correspondence with the data. This is one area where the
lattice and ggplot2 graphics systems provide a significant convenience (see
Part II).

Some high-level functions draw their own legend specific to their purpose (e.g.,
filled.contour()).

3.4.4 Axes

In most cases, the axes that are automatically generated by the base graphics
system will be sufficient for a plot. This is true even when the data being
plotted on an axis are not numeric. For example, the axes of a boxplot or
barplot are labeled appropriately using group names (see Figure 3.20).

Section 3.2.5 describes ways in which the default appearance of automatically
generated axes can be modified, but it is more often the case that the user
needs to inhibit the production of the automatic axis and draw a customized
axis using the axis() function.

The first step is to inhibit the default axes. Most high-level functions should
provide an axes argument which, when set to FALSE, indicates that the high-

94 R Graphics, Third Edition

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

setosa
versicolor
virginica

RM RF UM UF

0
10

20
30

55−59
50−54

Figure 3.20
Some simple legends. Legends can be added to any kind of plot and can relate text
labels to different symbols or different fill colors or patterns.

Customizing Base Graphics 95

level function should not draw axes. Specifying the base graphics setting
xaxt="n" (or yaxt="n") may also do the trick.

The axis() function can draw axes on any side of a plot (chosen by the
side argument), and the user can specify the location along the axis of tick
marks and the text to use for tick labels (using the at and labels arguments,
respectively). The following code demonstrates a simple example of a plot
where the automatic axes are inhibited and custom axes are drawn, including
a “secondary” y-axis on the right side of the plot (see Figure 3.21).∗

First of all, a line plot is drawn with no axes.

> plot(nhtempCelsius, axes=FALSE, ann=FALSE, ylim=c(0, 13))

Next, the main y-axis is drawn with specific tick locations to represent the
Centigrade scale. The number 2 means that the axis should be drawn in
margin 2 (the left margin) and the at argument specifies the locations of the
tick marks for the axis.

> axis(2, at=seq(0, 12, 4))

> mtext("Degrees Centigrade", side=2, line=3)

Now the default bottom axis is drawn and a secondary y-axis is drawn to
represent the Fahrenheit scale. In the second expression, the labels argument
is used to draw special tick mark labels on the secondary y-axis and this axis
is drawn to the right of the plot by specifying 4 as the axis margin number.

> axis(1)

> axis(4, at=seq(0, 12, 4), labels=seq(0, 12, 4)*9/5 + 32)

> mtext(" Degrees Fahrenheit", side=4, line=3)

> box()

The axis() function is not generic, but there are special alternative func-
tions for plotting time-related data. The functions axis.Date() and
axis.POSIXct() take an object containing dates and produce an axis with
appropriate labels representing times, days, months, and years (e.g., 10:15,
Jan 12 or 1995).

In some cases, it may be useful to draw tick marks at the locations that the
default axis would use, but with different labels. The axTicks() function can

∗The data used in this plot are (a Celsius version of) mean annual temperature in
degrees Fahrenheit in New Haven, Connecticut, from 1912 to 1971, available as the data
set nhtemp in the datasets package.

96 R Graphics, Third Edition

0
4

8
12

D
eg

re
es

 C
en

tig
ra

de

1910 1920 1930 1940 1950 1960 1970

32
39

.2
46

.4
53

.6

Figure 3.21
Customizing axes. On top is a data set drawn with the default axes. On the bottom,
an initial plot is drawn with a y-scale in degrees Centigrade, including zero on the
scale, then a secondary y-axis is drawn with a scale in degrees Fahrenheit. The
labels on the secondary y-axis are specified explicitly, rather than just being the
default numeric locations of the tick marks.

Customizing Base Graphics 97

be used to calculate these default locations. This function is also useful for
enforcing an xaxp (or yaxp) graphics state setting, which control the number
and placement of tick marks. If these settings are specified via par(), they
usually have no effect because the base graphics system almost always calcu-
lates the settings itself. The user can choose these settings by passing them
as arguments to axTicks(), then passing the resulting locations via the at

argument to axis().

3.4.5 Coordinate systems

The base graphics system provides a number of coordinate systems for conve-
niently locating graphical output (see Section 3.1.1). Graphical output in the
plot region is automatically positioned relative to the scales on the axes and
text in the figure margins is placed in terms of a number of lines away from
the edge of the plot (i.e., a scale that naturally corresponds to the size of the
text).

It is also possible to locate output according to other coordinate systems
that are not automatically supplied, but a little more work is required from
the user. The basic principle is that the base graphics state can be queried
to determine features of existing coordinate systems, then new coordinate
systems can be calculated from this information.

The par() function

As well as being used to enforce new graphics state settings, the function
par() can also be used to query current graphics state settings. The most
useful settings are: din, fin, and pin, which reflect the current size, (width,
height), of the graphics device, figure region, and plot region, in inches; and
usr, which reflects the current user coordinate system (i.e., the ranges on the
axes). The values of usr are in the order (xmin, xmax, ymin, ymax). When
a scale has a logarithmic transformation, the values are (10^xmin, 10^xmax,

10^ymin, 10^ymax).

There are also settings that reflect the size, (width, height), of a “standard”
character. The setting cin gives the size in inches, cra in “rasters” or pixels,
and cxy in “user coordinates.” However, these values are not very useful
because they only refer to a cex value of 1 (i.e., they ignore the current
cex setting) and they only refer to the ps value when the current graphics
device was first opened. Of more use are the strheight() function and the
strwidth() function. These calculate the height and width of a given piece
of text in inches, or in terms of user coordinates, or as a proportion of the
current figure region (taking into account the current cex and ps settings).

98 R Graphics, Third Edition

0 1 2 3 4 5 6 7 cm

Figure 3.22
Custom coordinate systems. The lines and text are drawn relative to real physical
centimeters (rather than the default coordinate system defined by the scales on plot
axes).

The following code demonstrates a simple example of making use of cus-
tomized coordinates where a ruler is drawn showing centimeter units (see
Figure 3.22).

A blank plot region is set up first and calculations are performed to establish
the relationship between user coordinates in the plot and physical centime-
ters.∗

> plot(0:1, 0:1, type="n", axes=FALSE, ann=FALSE)

> usr <- par("usr")

> pin <- par("pin")

> xcm <- diff(usr[1:2])/(pin[1]*2.54)

> ycm <- diff(usr[3:4])/(pin[2]*2.54)

Now drawing can occur with positions expressed in terms of centimeters. The
ruler itself is drawn with a call to rect() to draw the edges of the ruler, a
call to segments() to draw the scale, and calls to text() to label the scale.

> rect(0, 0, 1, 1, col="white")

> segments(seq(1, 8, 0.1)*xcm, 0,

seq(1, 8, 0.1)*xcm,

c(rep(c(0.5, rep(0.25, 4),

0.35, rep(0.25, 4)),

7), 0.5)*ycm)

> text(1:8*xcm, 0.6*ycm, 0:7, adj=c(0.5, 0))

> text(8.2*xcm, 0.6*ycm, "cm", adj=c(0, 0))

∗R graphics relies on having accurate information on the physical size of the natural
units on the page or screen (e.g., the physical size of pixels on a computer screen). The
physical size of output when producing PostScript and PDF files (see Section 9.1) should
always be correct, but small inaccuracies may occur when specifying output with a physical
size (such as inches) on a graphics window on screen.

Customizing Base Graphics 99

Table 3.5
The coordinate systems recognized by the base graphics system.

Name Description

"user" The scales on the plot axes
"inches" Inches, with (0, 0) at bottom-left
"device" Pixels for screen or bitmap output, otherwise 1/72in.
"ndc" Normalized coordinates, with (0, 0) at bottom-left

and (1, 1) at top-right, within the entire device
"nic" Normalized coordinates within the inner region
"nfc" Normalized coordinates within the figure region
"npc" Normalized coordinates within the plot region

There are utility functions, xinch() and yinch(), for performing the inches-
to-user coordinates transformation (plus xyinch() for converting a location
in one step and cm() for converting inches to centimeters). More powerful
still are the grconvertX() and grconvertY() functions, which can be used
to convert locations between any of the coordinate systems that the base
graphics engine recognizes (see Table 3.5).

One problem with performing coordinate transformations like these is that the
locations and sizes being drawn have no memory of how they were calculated.
They are specified as locations and dimensions in user coordinates. This
means that if the graphics window is resized (so that the relationship between
physical dimensions and user coordinates changes), the locations and sizes will
no longer have their intended meaning. If, in the above example, the graphics
window is resized, the ruler will no longer accurately represent centimeter
units. This problem will also occur if output is copied from one device to
another device that has different physical dimensions. The legend() function
performs calculations like these when arranging the components of a legend
and its output is affected by resizing a device and copying between devices.∗

Overlaying output

It is sometimes useful to plot two data sets on the same plot where the data
sets share a common x-variable, but have very different y-scales. This can be
achieved in at least two ways. One approach is simply to use par(new=TRUE)

to overlay two distinct plots on top of each other, though care must be taken to
avoid conflicting axes overwriting each other. Another approach is to explicitly

∗It is possible to work around these problems in by using the recordGraphics() function,
although this function should be used with extreme care.

100 R Graphics, Third Edition

reset the usr state setting before plotting a second set of data. The following
code demonstrates both approaches to produce exactly the same result (see
the top plot of Figure 3.23).

The data are yearly numbers of drunkenness-related arrests∗ and mean annual
temperature in New Haven, Connecticut from 1912 to 1971. The temperature
data are available as the data set nhtemp in the datasets package. There are
only arrests data for the first 9 years.

> drunkenness <- ts(c(3875, 4846, 5128, 5773, 7327,

6688, 5582, 3473, 3186,

rep(NA, 51)),

start=1912, end=1971)

The first approach is to draw a plot of the drunkenness data, call
par(new=TRUE), then draw a complete second plot of the temperature data on
top of the first plot. The second plot does not draw default axes (axes=FALSE),
but uses the axis() function to draw a secondary y-axis to represent the tem-
perature scale.

> par(mar=c(5, 6, 2, 4))

> plot(drunkenness, lwd=3, col="gray", ann=FALSE, las=2)

> mtext("Drunkenness\nRelated Arrests", side=2, line=3.5)

> par(new=TRUE)

> plot(nhtemp, ann=FALSE, axes=FALSE)

> mtext("Temperature (F)", side=4, line=3)

> title("Using par(new=TRUE)")

> axis(4)

The second approach draws only one plot (for the drunkenness data). The
user coordinate system is then redefined by specifying a new usr setting and
the second “plot” is produced simply using lines(). Again, a secondary axis
is drawn using the axis() function.

∗These data were obtained as “Crime Statistics and Department Demographics” from
the New Haven Police Department:
http://www.cityofnewhaven.com/police/html/stats/crime/yearly/1863-1920.htm.

http://www.cityofnewhaven.com

Customizing Base Graphics 101

19
10

19
20

19
30

19
40

19
50

19
60

19
70

4000

5000

6000

7000

D
ru

nk
en

ne
ss

R
el

at
ed

 A
rr

es
ts

Te
m

pe
ra

tu
re

 (F
)

Using par(new=TRUE) or par(usr=...)

48
50

52
54

65 70 75 80 85

10
20

30
40

50
60

70

Height (ft)

Vo
lu

m
e

(ft
3)

symbols(..., add=TRUE)

Figure 3.23
Overlaying plots. In the top plot, two line plots are drawn one on top of the other
to produce aligned plots of two data sets with very different scales. In the bottom
plot, the plotting function symbols() is used in “annotating mode” so that it adds
circles to an existing scatterplot rather than producing a complete plot itself.

102 R Graphics, Third Edition

> par(mar=c(5, 6, 2, 4))

> plot(drunkenness, lwd=3, col="gray", ann=FALSE, las=2)

> mtext("Drunkenness\nRelated Arrests", side=2, line=3.5)

> usr <- par("usr")

> par(usr=c(usr[1:2], 47.6, 54.9))

> lines(nhtemp)

> mtext("Temperature (F)", side=4, line=3)

> title("Using par(usr=...)")

> axis(4)

Some high-level functions (e.g., symbols() and contour()) provide an argu-
ment called add which, if set to TRUE, will add the function output to the
current plot, rather than starting a new plot. The following code shows the
symbols() function being used to annotate a basic scatterplot (see the bot-
tom plot of Figure 3.23). The data used in this example are physical meas-
urements of black cherry trees available as the trees data frame from the
datasets package.

> with(trees,

{

plot(Height, Volume, pch=3,

xlab="Height (ft)",

ylab=expression(paste("Volume ", (ft^3))))

symbols(Height, Volume, circles=Girth/12,

fg="gray", inches=FALSE, add=TRUE)

})

Another function of this type is the bxp() function. This function is called by
boxplot() to draw the individual boxplots and is specifically set up to add
boxplots to an existing plot (although it can also produce a complete plot).

It is also worth remembering that R follows a painters model, with later output
obscuring earlier output. The following example makes use of this feature to
fill a complex region within a plot (see Figure 3.24).

The first step is to prepare the data and calculate some important features of
the data.

> x <- as.numeric(time(nhtemp))

> y <- as.numeric(nhtemp)

> n <- length(x)

> mean <- mean(y)

The first thing to draw is a plot with a filled polygon beneath the y-values
(see the top-left plot of Figure 3.24).

Customizing Base Graphics 103

1910 1930 1950 1970

48
50

52
54

Figure 3.24
Overlaying output (making use of the painters model). The final complex plot,
shown at bottom-right, is the result of overlaying several basic pieces of output: a
gray polygon at top-left, with a white rectangle over the top (top-right), a black
line on top of that (bottom-left), and a gray line on top of it all (plus axes and a
bounding box).

104 R Graphics, Third Edition

> plot(x, y, type="n", axes=FALSE, ann=FALSE)

> polygon(c(x[1], x, x[n]), c(min(y), y, min(y)),

col="gray", border=NA)

The next step is to draw a rectangle over the top of the polygon up to a fixed
y-value. The expression par("usr") is used to obtain the current x-scale and
y-scale ranges (see the top-right plot of Figure 3.24).

> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], mean, col="white", border=NA)

Now a line through the y-values is drawn over the top of the rectangle (see
the bottom-left plot of Figure 3.24).

> lines(x, y)

Finally, a horizontal line is drawn to indicate the y-value cut-off, and axes are
added to the plot (see the bottom-right plot of Figure 3.24).

> abline (h=mean, col="gray")

> box()

> axis(1)

> axis(2)

3.4.6 Special cases

Some high-level functions are a little more difficult to annotate than others
because the plotting regions that they set up either are not immediately ob-
vious or are not available after the function has run. This section describes
a number of high-level functions where additional knowledge is required to
perform annotations.

Obscure scales on axes

It is not immediately obvious how to add extra annotation to a barplot or
a boxplot in base R graphics because the scale on the categorical axis is not
obvious.

The difficulty with the barplot() function is that, because the scale on the
x-axis is not labeled at all by default, the numeric scale is not obvious (and
calling par("usr") is not much help because the scale that the function sets

Customizing Base Graphics 105

up is not intuitive either). In order to add annotations sensibly to a barplot
it is necessary to capture the value returned by the function. This return
value gives the x-locations of the mid-points of each bar that the function has
drawn. These midpoints can then be used to locate annotations relative to
the bars in the plot.

The code below shows an example of adding extra horizontal reference lines
to the bars of a barplot. The mid-points of the bars are saved to a variable
called midpts, then locations are calculated from those mid-points (and the
original counts) to draw horizontal white line segments within each bar using
the segments() function (see the left plot of Figure 3.25).

> y <- sample(1:10)

> midpts <- barplot(y, col=" light gray")

> width <- diff(midpts[1:2])/4

> left <- rep(midpts, y - 1) - width

> right <- rep(midpts, y - 1) + width

> heights <- unlist(apply(matrix(y, ncol=10),

2, seq))[-cumsum(y)]

> segments(left, heights, right, heights,

col="white")

The boxplot() function is similar to the barplot() function in that the x-
scale is typically labeled with category names so the numeric scale is not obvi-
ous from looking at the plot. Fortunately, the scale set up by the boxplot()

function is much more intuitive. The individual boxplots are drawn at x-
locations 1:n, where n is the number of boxplots being drawn.

The following code provides a simple example of annotating boxplots to add a
jittered dotplot of individual data points on top of the boxplots. This provides
a detailed view of the data with individual points and shows the main features
of the data via the boxplot. It is also a useful way to show how interesting
features of the data, such as small clusters of points, can be hidden by a
boxplot. In this example, the jittered data are centered upon the x-locations
1:2 to correspond to the centers of the relevant boxplots (see the right plot
of Figure 3.25).

> with(ToothGrowth,

{

boxplot(len ~ supp, border="gray",

col="light gray", boxwex=0.5)

points(jitter(rep(1:2, each=30), 0.5),

unlist(split(len, supp)),

cex=0.5, pch=16)

})

106 R Graphics, Third Edition

0
2

4
6

8
10

OJ VC

5
10

15
20

25
30

35
Figure 3.25
Special-case annotations. Some examples of functions where annotation requires
special care. In the barplot at left, the value returned by the barplot() function is
used to add horizontal white lines within the bars. Jittered points are added to the
boxplot (right) using the knowledge that the ith box is located at position i on the
x-axis.

Functions that draw several plots

The pairs() function is an example of a high-level function that draws more
than one plot. This function draws a matrix of scatterplots. Such func-
tions tend to save the base graphics state before drawing, call par(mfrow) or
layout() to arrange the individual plots, and restore the base graphics state
once all of the individual plots have been drawn. This means that it is not
possible to annotate any of the plots drawn by the pairs() function once the
function has completed drawing. The regions and coordinate systems that the
function set up to draw the individual plots have been thrown away. The only
way to annotate the output from such functions is by way of panel functions.

The pairs() function has a number of arguments that allow the user to
specify a function: panel, diag.panel, upper.panel, lower.panel, and
text.panel. The functions specified via these arguments are run as each
individual plot is drawn. In this way, the panel function has access to the plot
regions that are set up for each individual plot.

The following code shows a pairs() plot of the first two variables in the iris

data set. The diag.panel argument is used to draw boxplots in the diagonal
panels, instead of the default variable names. Notice that the panel function
must only add extra output, not start its own plot and this is achieved in this

Customizing Base Graphics 107

case by called boxplot() with add=TRUE. Because axes=FALSE, the normal
boxplot axes are not drawn, and the at argument is used to make sure the
boxplots are centered horizontally within the panels. Because the normal
diagonal panels have variable names drawn in them, a text.panel function
is also specified. This panel function calls mtext() so that the normal text is
drawn in the top margin of the panel instead. The resulting plot is shown in
Figure 3.26.

> pairs(iris[1:2],

diag.panel=function(x, ...) {

boxplot(x, add=TRUE, axes=FALSE,

at=mean(par("usr")[1:2]))

},

text.panel=function(x, y, labels, ...) {

mtext(labels, side=3, line=0)

})

The filled.contour() function and the coplot() function have the same
problem as pairs() because the legends that they draw are actually separate
plots. Again, those functions allow annotation via panel function arguments.

The panel.smooth() function provides a predefined panel function to add a
smoothed trend line to a scatterplot of points.

3D plots

It is possible to annotate a plot that was produced using the persp() function,
but it is more difficult than for most other high-level functions. The impor-
tant step is to acquire the transformation matrix that the persp() function
returns. This can be used to transform 3D locations into 2D locations, using
the trans3d() function. The result can then be given to the standard anno-
tation functions such as lines() and text(). The persp() function also has
an add argument, which allows multiple persp() plots to be over-plotted.

The following code demonstrates annotation of persp() output to add a con-
tour plot beneath a 3D plot of the Maunga Whau volcano in Auckland New
Zealand (see Figure 3.27). The data are from the volcano matrix in the
datasets package.

The first step is to draw the 3D surface. The important features of this code
are that the zlim is specified to leave room for the contour plot and the result
of the call to persp() is assigned to a variable called trans.

108 R Graphics, Third Edition

Sepal.Length
2.0 2.5 3.0 3.5 4.0

4.
5

5.
5

6.
5

7.
5

4.5 5.5 6.5 7.5

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Width

Figure 3.26
A panel function example. An example of using a panel function to add customized
output to each of the diagonal panels of a pairs() plot.

Customizing Base Graphics 109

> z <- 2 * volcano

> x <- 10 * (1:nrow(z))

> y <- 10 * (1:ncol(z))

> trans <- persp(x, y, z, zlim=c(0, max(z)),

theta = 150, phi = 12, lwd=.5,

scale = FALSE, axes=FALSE)

The next code calculates contour lines from the 3D data and then adds them
to the plot. The result of contourLines() is a list, so lapply() is used to
draw each contour line separately. The locations of the contour lines in the
3D plot are calculated using trans3d(), which is given the x and y vertices
for a contour line, plus the z-position of zero (below the 3D surface). The
trans3d() function converts the 3D locations into 2D locations which are
drawn with the lines() function.

> clines <- contourLines(x, y, z)

> lapply(clines,

function(contour) {

lines(trans3d(contour$x, contour$y, 0, trans))

})

A major limitation with annotating persp() output is that there is no support
for automatically hiding output that should not be seen. In the above example,
the view point was carefully chosen so that the entire contour plot was visible
beneath the 3D surface. If the viewing angle is changed so that the surface
and the contour lines overlap, the contour lines will be drawn on top of the 3D
surface because they are drawn second. In simple cases, this sort of problem
can be worked around through careful ordering of drawing operations, but in
the general case a more sophisticated 3D graphics system would be required
(e.g., the rgl package).

3.5 Creating new plots

There are cases where no existing plot provides a sensible starting point for
creating the final plot that the user requires; situations where simply draw-
ing more shapes on the plot is not sufficient. This section describes how to
construct a new plot entirely from scratch for such cases.

The plot.new() function is the most basic starting point for producing a base
graphics plot (the frame() function is equivalent). This function starts a new

110 R Graphics, Third Edition

Figure 3.27
Annotating a 3D surface created by persp(). The contour lines are added to the
3D plot using the transformation matrix returned by the persp() function.

plot and sets up the various plotting regions described in Section 3.1.1, with
both the x-scale and y-scale set to (0,1).∗ The size and position of the regions
that are set up depend on the current graphics state settings (see Section
3.2.6).

The plot.window() function resets the scales in the user coordinate system,
given x- and y-ranges via the arguments xlim and ylim, and the plot.xy()

function draws data symbols and lines between locations within the plot re-
gion.

3.5.1 A simple plot from scratch

In order to demonstrate the use of these functions, the following code produces
a very simple scatterplot like Figure 1.1 from scratch. The result is shown in
Figure 3.28.

∗The actual scale setup depends on the current settings for xaxs and yaxs. With the
default settings, the scales are (−0.04,1.04).

Customizing Base Graphics 111

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

Figure 3.28
A simple scatterplot of vapor pressure of mercury as a function of temperature.
This is similar to Figure 1.1, but where that figure was generated with a single call
to the plot() function, this plot is produced from scratch using low-level plotting
functions.

> plot.new()

> plot.window(range(pressure$temperature),

range(pressure$pressure))

> plot.xy(pressure, type="p")

> box()

> axis(1)

> axis(2)

The call to plot.new() starts a new, completely blank, plot and the call to
plot.window() sets the scales on the axes to fit the range of the data to be
plotted. At this point, there is still nothing drawn. The plot.xy() function
draws data symbols (type="p") at the data locations, then box() draws a
rectangle around the plot region, and axis() is used to draw the axes.

The output could be produced by the simple expression plot(pressure), but
this code shows that the steps in building a plot are available as separate func-
tions as well, which allows the user to have fine control over the construction
of a plot.

112 R Graphics, Third Edition

3.5.2 A more complex plot from scratch

This section describes a slightly more complex example of creating a plot from
scratch. The final goal is represented in Figure 3.29 and the steps involved
are described below.

The first chunk of code prepares some data to plot. These are the counts of
(adult) male and female survivors of the sinking of the Titanic.

> groups <- dimnames(Titanic)[[1]]

> males <- Titanic[, 1, 2, 2]

> females <- Titanic[, 2, 2, 2]

> males

1st 2nd 3rd Crew

57 14 75 192

> females

1st 2nd 3rd Crew

140 80 76 20

There are several ways that the plot could be created, the main idea being
that it fundamentally consists of just a collection of graphical primitives that
have been arranged in a meaningful way.

For this example, the approach will be to create a single plot. The labels to
the left of the plot will be drawn in the margins of the plot, but everything
else will be drawn inside the plot region. This next bit of code sets up the
figure margins so that there is enough room for the labels in the left margin,
but all other margins are nice and small (to avoid lots of empty space around
the plot).

> par(mar=c(0.5, 3, 0.5, 1))

Inside the plot region there are six different rows of output to draw: the four
main pairs of bars, the x-axis, and the legend at the bottom. The axis will
be drawn at a y-location of 0, the main bars at the y-locations 1:4, and the
legend at -1. The following code starts the plot and sets up the appropriate
y-scale and x-scale.

> plot.new()

> plot.window(xlim=c(-200, 200), ylim=c(-1.5, 4.5))

Customizing Base Graphics 113

1st

2nd

3rd

Crew

200 100 0 100 200

males females

Figure 3.29
A back-to-back barplot from scratch. This demonstrates the use of lower-level plot-
ting functions to produce a novel plot that cannot be produced by an existing high-
level function.

114 R Graphics, Third Edition

This next bit of code assigns some useful values to variables, including the
x-locations of tick marks on the x-axis, the y-locations of the main bars, and
a value representing half the height of the bars.

> ticks <- seq(-200, 200, 100)

> y <- 1:4

> h <- 0.2

Now some drawing can occur. This next code draws the main part of the plot.
Everything is drawn using calls to the low-level functions such as lines(),
segments(), mtext(), and axis(). In particular, the main bars are just
rectangles produced using rect(). Notice that the x-axis is drawn within the
plot region (pos=0).

> lines(rep(0, 2), c(-1.5, 4.5), col="gray")

> segments(-200, y, 200, y, lty="dotted")

> rect(-males, y-h, 0, y+h, col="dark gray")

> rect(0, y-h, females, y+h, col="light gray")

> mtext(groups, at=y, adj=1, side=2, las=2)

> par(cex.axis=0.8, mex=0.5)

> axis(1, at=ticks, labels=abs(ticks), pos=0)

The final step is to produce the legend at the bottom of the plot. Again, this
is just a series of calls to low-level functions, although the bars are sized using
strwidth() to ensure that they contain the labels.

> tw <- 1.5*strwidth("females")

> rect(-tw, -1-h, 0, -1+h, col="dark gray")

> rect(0, -1-h, tw, -1+h, col="light gray")

> text(0, -1, "males", pos=2)

> text(0, -1, "females", pos=4)

This example is particularly customized to the data set involved. It could
be made much more general by replacing some constants with variable values
(e.g., instead of using 4 because there are four groups in the data set, the
code could have a variable numGroups). If more than one such plot needs to
be made, it makes good sense to also wrap the code within a function. That
task is discussed in the next section.

3.5.3 Writing base graphics functions

Having made the effort to construct a plot from scratch, the next step is to
encapsulate the calls within a new function and possibly even make it available

Customizing Base Graphics 115

for others to use. This section briefly describes some of the things to consider
when creating a new graphics function built on the base graphics system.

There are many advantages to developing new graphics functions in the grid
graphics system (see Part II) rather than using base graphics. See Chapter
8 for a more complete discussion of the issues involved in developing new
graphics functions.

Helper functions

There are some helper functions that do no drawing, but are used by the
predefined high-level plots to do some of the work in setting up a plot.

The xy.coords() function is useful for allowing x and y arguments to your
new function to be flexibly specified (just like the plot() function where y

can be left unspecified and x can be a data.frame, and so on). This function
takes x and y arguments and creates a standard object containing x-values,
y-values, and sensible labels for the axes. There is also an xyz.coords()

function for plots of three variables.

If your plotting function generates multiple subplots, the n2mfrow() function
may be helpful to generate a sensible number of rows and columns of plots,
based on the total number of plots to fit on a page.

Another set of useful helper functions are those that calculate values to plot
from the raw data (but do no actual drawing). Examples of these sorts of
functions are: boxplot.stats() used by boxplot() to generate five-number
summaries; contourLines() used by contour() to generate contour lines;
nclass.Sturges(), nclass.scott(), and nclass.FD() used by hist() to
generate the number of intervals for a histogram; and co.intervals() used
by coplot() to generate ranges of values for conditioning a data set into
panels.

Some high-level functions invisibly return this sort of information too. For
example, boxplot() returns the combined results from boxplot.stats() for
all of the boxplots that it produces, and hist() returns information on the
intervals that it creates including the number of data values in each inter-
val. The hist() function is also useful (with plot=FALSE) simply to perform
binning of continuous data.

Argument lists

A common technique when writing a base graphics function is to provide an
ellipsis argument (...) instead of individual graphics state arguments (such as
col and lty). This allows users to specify any state settings (e.g., col="red"

116 R Graphics, Third Edition

and lty="dashed") and the new function can pass them straight on to the
base graphics functions that the new function calls. This avoids having to
specify all individual state settings as arguments to the new function. Some
care must be taken with this technique because sometimes different graphics
functions interpret the same graphics state setting in different ways (the col

setting is a good example; see Section 3.2). In such cases, it becomes necessary
to name the individual graphics state setting as an argument and explicitly
pass it on only to other graphics calls that will accept it and respond to it in
the desired manner.

Sometimes it is useful for a graphics function to deliberately override the
current graphics state settings. For example, a new plot may want to force the
xpd setting to be NA in order to draw lines and text outside of the plot region.
In such cases, it is polite for the graphics function to revert the graphics state
settings at the end of the function so that users do not get a nasty surprise!
A standard technique is to put the following expressions at the start of the
new function to restore the graphics state to the settings that existed before
the function was called.

opar <- par(no.readonly=TRUE)

on.exit(par(opar))

Because some of the base graphics state settings interact with each other,
such a wholesale save-and-replace approach is actually unlikely to return the
graphics state to exactly what it was before, so an even better solution is to
save and restore only those parameters that the function modifies.

Care should be taken to ensure that a new graphics function takes notice of
appropriate graphics state settings (e.g., ann). This can be a little complicated
to implement because it is necessary to be aware of the possibility that the
user might specify a setting in the call to the function and that such a setting
should override the main graphics state setting. The standard approach is
to name the state setting explicitly as an argument to the graphics function
and provide the permanent state setting as a default value. See the new
graphics function template below for an example of this technique using the
ann argument. An additional complication is that now there is a state setting
that will not be part of the ... argument, so the state setting must be
explicitly passed on to any other functions that might make use of it.

Another good technique is to provide arguments that users are used to seeing
in other graphics functions — the main, sub, xlim, and ylim arguments are
good examples of this sort of thing — and a new graphics function should
be able to handle missing and non-finite values. The functions is.na(),
is.finite(), and na.omit() may be useful for this purpose.

Customizing Base Graphics 117

Plot methods

If a new function is for use with a particular type of data, then it is convenient
for users if the function is provided as a method for the generic plot() func-
tion. This allows users to simply call the new function by calling plot(x),
where x is an object of the relevant class.

A graphics function template

The code in Figure 3.30 is a simple shell that combines some of the basic
guidelines from this section. This is just a simplified version of the default
plot() method. It is far from complete and will not gracefully accept all
possible inputs (especially via the ... argument), but it could be used as the
starting template for writing a new base graphics function.

3.6 Interactive graphics

The strength of the base graphics system lies in the production of static graph-
ics and that is the focus of this book. However, for completeness, this section
briefly mentions the limited facilities for interacting with base graphics output.

The locator() function allows the user to click within a plot and returns the
coordinates where the mouse click occurred. It will also optionally draw data
symbols at the clicked locations or draw lines between the clicked locations.

The identify() function can be used to add labels to data symbols on a plot.
The data point closest to the mouse click gets labeled.

There is also a more general-purpose mechanism for defining interactions with
the output in a graphics window (though at the time of writing only for
the Windows, X Window, and Cairo graphics devices; see Chapter 9). The
setGraphicsEventHandlers() function can be used to define R functions
that will be called whenever events such as keystrokes or mouse clicks occur
within the graphics window and the getGraphicsEvent() function can be
called to start listening to events within the graphics window. This provides
a more flexible basis for developing simple interactive base graphicsplots.

118 R Graphics, Third Edition

1 plot.newclass <- function(x, y=NULL,

2 main="", sub="",

3 xlim=NULL, ylim=NULL,

4 axes=TRUE, ann=par("ann"),

5 col=par("col"),

6 ...) {

7 xy <- xy.coords(x, y)

8 if (is.null(xlim))

9 xlim <- range(xy$x[is.finite(xy$x)])

10 if (is.null(ylim))

11 ylim <- range(xy$y[is.finite(xy$y)])

12 opar <- par(no.readonly=TRUE)

13 on.exit(par(opar))

14 plot.new()

15 plot.window(xlim, ylim, ...)

16 points(xyx, xyy, col=col, ...)

17 if (axes) {

18 axis(1)

19 axis(2)

20 box()

21 }

22 if (ann)

23 title(main=main, sub=sub,

24 xlab=xy$xlab, ylab=xy$ylab, ...)

25 }

Figure 3.30
A graphics function template. This code provides a starting point for producing a
new graphics function for others to use.

Customizing Base Graphics 119

Chapter summary

High-level base graphics functions produce complete plots, and low-
level base graphics functions add output to existing plots. There are
low-level functions for producing simple output such as lines, rectan-
gles, text, and polygons and also functions for producing more complex
output such as axes and legends.

The base graphics system creates several regions for drawing the vari-
ous components of a plot: a plot region for drawing data symbols and
lines, figure margins for axes and labels, and so on. Each low-level
graphics function produces output in a particular drawing region and
most work in the plot region.

There is a base graphics system state that consists of settings to con-
trol the appearance of output and the arrangement of the drawing re-
gions. There are settings for controlling color, fonts, line styles, data
symbol style, and the style of axes. There are several mechanisms for
arranging multiple plots on a single page.

It is straightforward to create a complete plot using only low-level
graphics functions. This makes it possible to produce a completely
new type of plot. It is also possible for the user to define an entirely
new graphics function.

http://taylorandfrancis.com

Part II

GRID GRAPHICS

http://taylorandfrancis.com

4

Trellis Graphics: The lattice Package

Chapter preview

This chapter describes how to produce plots using the lattice package.
There is a description of what lattice plots are as well as a description
of the functions used to produce them. Plots produced by the lattice
package are designed to be clear and easy to interpret and at the
same time provide sophisticated plotting styles, such as multipanel
conditioning. The grid graphics system provides no high-level plotting
functions itself, so this chapter also describes one way to produce a
complete plot using the grid system.

This part of the book concerns the major graphics packages that are related
to the grid graphics system. This graphics system exists in parallel with the
base graphics system and the two worlds do not naturally interact well (see
Section 1.2, but also Chapter 12).

The grid package only provides low-level graphics functions; it does not pro-
vide any functions for drawing complete plots. Such high-level functions are
provided instead by other packages. This chapter and the next describe two
major packages of this type: Deepayan Sarkar’s lattice and Hadley Wick-
ham’s ggplot2.

The lattice package implements Bill Cleveland’s Trellis Graphics system with
some novel extensions. This represents a complete and coherent graphics
system, which can in most cases be used without encountering any concepts
of the underlying grid system.

This chapter deals with lattice as a self-contained system consisting of func-
tions for producing complete plots and functions for controlling the appear-

123

124 R Graphics, Third Edition

ance of the plots. Section 6.8 and Section 7.14 describe some of the benefits
that can be gained from viewing lattice plots as grid output and dealing
directly with the grid concepts and objects that underlie the lattice system.

The graphics functions that make up the lattice graphics system are provided
in an extension package called lattice, which is loaded into R as follows.

> library(lattice)

This chapter provides a very brief introduction to lattice. Much more infor-
mation can be obtained from Deepayan Sarkar’s book, “Lattice: Multivariate
Data Visualization with R.”

4.1 The lattice graphics model

In simple usage, lattice functions appear to work just like base graphics func-
tions where the user calls a function and output is generated on the current
device. The following code produces the lattice equivalent of the base graph-
ics call plot(pressure). The first argument is a formula defining the x- and
y-variables to plot and the second argument is a data frame that contains the
variables named in the formula. The resulting plot (Figure 4.1) should be
compared with Figure 1.1.

> xyplot(pressure ~ temperature, pressure)

There are also many familiar arguments to modify the basic features of a
lattice plot. For example, the following code plots lines as well as points,
using the type argument, adds a title, using the main argument, and uses pch
and lty to set the data symbol and line type (see Figure 4.2).

> xyplot(pressure ~ temperature, pressure,

type="o", pch=16, lty="dashed",

main="Vapor Pressure of Mercury")

Adding further lines and text to a plot is a little more complex in lattice
compared to base graphics, so that topic is discussed later in Section 4.7.

Another important difference compared to base graphics functions is that
lattice graphics functions do not produce graphical output directly. Instead

Trellis Graphics: The lattice Package 125

temperature

pr
es

su
re

0

200

400

600

800

0 100 200 300

Figure 4.1
A scatterplot using lattice (showing the vapor pressure of mercury as a function of
temperature). A basic lattice plot has a very similar appearance to an analogous
base plot.

126 R Graphics, Third Edition

Vapor Pressure of Mercury

temperature

pr
es

su
re

0

200

400

600

800

0 100 200 300

Figure 4.2
A modified scatterplot using lattice. Many of the standard high-level base graphics
arguments also work with lattice.

they produce an object of class "trellis", which contains a description of the
plot. The print() method for objects of this class does the actual drawing of
the plot. This can be demonstrated quite easily. For example, the following
code creates a trellis object, but does not draw anything.

> tplot <- xyplot(pressure ~ temperature, pressure)

The result of the call to xyplot() is assigned to the variable tplot so it is
not printed. The plot can be drawn by calling print on the trellis object
(the result is exactly the same as Figure 4.1).

> print(tplot)

This explicit printing is necessary when calling lattice functions within a loop
or from another function.

Trellis Graphics: The lattice Package 127

4.1.1 Why another graphics system?

A number of functions in lattice produce output that is very similar to the
output of functions in the base graphics system, but there are several reasons
for using lattice functions instead of the base counterparts:

• The default appearance of the lattice plots is superior in some areas.
For example, the default colors and the default data symbols have been
deliberately chosen to make it easy to distinguish between groups when
more than one data series is plotted, based on visual perception exper-
iments. There are also some subtle things such as the fact that tick
labels on the y-axes are written horizontally by default, which makes
them easier to read.

• The arrangement of plot components is more automated in lattice. For
example, the right amount of space is automatically created for axis
labels and the plot title (it is usually not necessary to set figure margins
manually).

• Legends can be automatically generated by the lattice system, so it
is not the user’s responsibility to ensure that the content of the legend
corresponds correctly to the colors and data symbols used in the plot.

• The lattice plot functions can be extended in several very powerful
ways. For example, several data series can be plotted at once in a
convenient manner and multiple panels of plots can be produced easily
(see Section 4.3).

• The output from lattice functions is grid output, so many powerful
grid features are available for annotating, editing, and saving the graph-
ics output. See Sections 6.8 and 7.14 for examples of these features.

4.2 lattice plot types

The lattice package provides functions to produce a number of standard plot
types, plus some more modern and specialized plots. Table 4.1 describes the
functions that are available and Figure 4.3 provides a basic idea of the sort of
output that they produce.

Most of the lattice plotting functions provide a very long list of arguments
and produce a wide range of different types of output. However, because
lattice provides a single coherent system, many of the arguments are the

tuhocr
Highlight

128 R Graphics, Third Edition

Table 4.1
The plotting functions available in lattice.

lattice Base
Function Description Analog

barchart() Barcharts barplot()

bwplot() Boxplots boxplot()
Box-and-whisker plots

densityplot() Conditional kernel density plots plot.density
Smoothed density estimate

dotplot() Dotplots dotchart()
Continuous vs. categorical

histogram() Histograms hist()

qqmath() Quantile–quantile plots qqnorm()
Data set vs. theoretical distribution

stripplot() Stripplots stripchart()
One-dimensional scatterplot

qq() Quantile–quantile plots qqplot()
Data set vs. data set

xyplot() Scatterplots plot()

levelplot() Level plots image()

contourplot() Contour plots contour()

cloud() 3D scatterplot -

wireframe() 3D surfaces persp()

splom() Scatterplot matrices pairs()

parallelplot() Parallel coordinate plots -

Trellis Graphics: The lattice Package 129

barchart bwplot densityplot dotplot

histogram qqmath stripplot qq

xyplot levelplot contourplot cloud

wireframe

x

y

splom parallelplot

Figure 4.3
Plot types available in lattice. The name of the function used to produce the
different plot types is shown in the strip above each plot.

130 R Graphics, Third Edition

same across the different graphics functions, so much can be learned from just
studying one of the lattice functions. This chapter will largely focus on the
xyplot() function.

The following sections address the most important shared arguments. For a
full explanation of all arguments, the help documentation should be consulted,
particularly the help for the xyplot() function. The purpose of this chapter
is to provide enough information to produce a range of complete plots using
lattice.

4.3 The formula argument and multipanel conditioning

In most cases, the first argument to the lattice plotting functions is an R
formula that describes which variables to plot. The simplest case has already
been demonstrated. A formula of the form y ~ x plots variable y against
variable x. There are some variations for plots of only one variable or plots
of more than two variables. For example, for the histogram() function,
the formula can be of the form ~ x and for the cloud() and wireframe()

functions something of the form z ~ x * y is required to specify the three
variables to plot. Another useful variation is the ability to specify multiple
y-variables. Something of the form y1 + y2 ~ x produces a plot of both the
y1 variable and the y2 variable against x. Multiple x-variables can be specified
as well.

The second argument to a lattice plotting function is typically data, which
allows the user to specify a data frame within which lattice can find the
variables that were used in the formula.

One of the very powerful features of Trellis Graphics is the ability to spec-
ify conditioning variables within the formula argument. Something of the
form y ~ x | g indicates that several plots should be generated, showing the
variable y against the variable x for each level of the variable g.

The following examples use various measurements on 32 different automobile
designs, which are available as the data set mtcars in the datasets package.
The examples will use measurements on fuel efficiency in miles per gallon
(mpg), engine size or displacement (disp), and number of forward gears (gear).

Trellis Graphics: The lattice Package 131

> head(mtcars)

mpg cyl disp hp drat wt qsec vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0

gear carb

Mazda RX4 4 4

Mazda RX4 Wag 4 4

Datsun 710 4 1

Hornet 4 Drive 3 1

Hornet Sportabout 3 2

Valiant 3 1

A simple scatterplot of fuel efficiency as a function of engine size is produced
by the following code (see Figure 4.4).

> xyplot(mpg ~ disp, data=mtcars)

As an example of multipanel conditioning, the following code produces several
scatterplots, with each scatterplot showing the relationship between engine
size and fuel efficiency for cars with a particular number of forward gears (see
Figure 4.5).

> xyplot(mpg ~ disp | factor(gear), data=mtcars)

In the Trellis terminology, the plot in Figure 4.5 consists of three panels. Each
panel in this case contains a scatterplot and above each panel there is a strip
that presents the level of the conditioning variable. There can be more than
one conditioning variable in the formula argument, in which case a panel is
produced for each combination of the conditioning variables.

The most natural type of variable to use as a conditioning variable is a cat-
egorical variable (factor), but there is also support for using a continuous
(numeric) conditioning variable. For this purpose, Trellis Graphics introduces
the concept of a shingle. This is a continuous variable with a number of
ranges associated with it. The ranges are used to split the continuous values
into (possibly overlapping) groups. The shingle() function can be used to
explicitly control the ranges, or the equal.count() function can be used to
generate ranges automatically given a number of groups.

132 R Graphics, Third Edition

disp

m
pg

10

15

20

25

30

35

100 200 300 400

Figure 4.4

A lattice scatterplot of fuel efficiency as a function of engine size.

4.4 The group argument and legends

Another important argument in high-level lattice functions is the group ar-
gument, which allows multiple data series to be drawn on the same plot (or
in each panel). The following code shows an example and the result is shown
in Figure 4.6.

> xyplot(mpg ~ disp, data=mtcars,

group=gear,

auto.key=list(space="right"))

By specifying a variable via the group argument, a different plotting symbol
will be used for cars with different numbers of gears. The auto.key argument
is set so that lattice automatically generates an appropriate legend to show
the mapping between data symbols and number of gears. This argument can
either be just TRUE or a list of values specifying the appearance of the legend.
In this case, the legend is positioned to the right of the plot. Notice that the
page is automatically arranged to provide space for the plot legend.

Trellis Graphics: The lattice Package 133

disp

m
pg

10

15

20

25

30

35

100 200 300 400

3 4
10

15

20

25

30

35
5

Figure 4.5
A lattice multipanel conditioning plot. A single function call produces several
scatterplots of the relationship between engine size and fuel efficiency for cars with
different numbers of forward gears.

134 R Graphics, Third Edition

disp

m
pg

10

15

20

25

30

35

100 200 300 400

3
4
5

Figure 4.6
A lattice plot with multiple groups and an automatically generated legend. Differ-
ent data symbols are used for cars with different numbers of gears.

In addition to the auto.key, there are arguments key and legend which
provide progressively greater flexibility at the cost of increased complexity.

4.5 The layout argument and arranging plots

There are two types of arrangements to consider when dealing with lattice
plots: the arrangement of panels and strips within a single lattice plot; and
the arrangement of several complete lattice plots together on a single page.

In the first case (the arrangement of panels and strips within a single plot),
there are two useful arguments that can be specified in a call to a lattice
plotting function: the layout argument and the aspect argument.

The layout argument consists of up to three values. The first two indicate
the number of columns and rows of panels on each page and the third value
indicates the number of pages. It is not necessary to specify all three values,
as lattice provides sensible default values for any unspecified values. The

Trellis Graphics: The lattice Package 135

following code produces a variation on Figure 4.5 by explicitly specifying that
there should be a single column of three panels, via the layout argument, and
that each panel must be “square,” via the aspect argument. The final result
is shown in Figure 4.7.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,

layout=c(1, 3), aspect=1)

The aspect argument specifies the aspect ratio (height divided by width) for
the panels. The default value is "fill", which means that panels expand to
occupy as much space as possible. In the example above, the panels were all
forced to be square by specifying aspect=1. This argument will also accept
the special value "xy", which means that the aspect ratio is calculated to
satisfy the “banking to 45 degrees” rule proposed by Bill Cleveland.

As with the choice of colors and data symbols, a lot of work is done to select
sensible default values for the arrangement of panels, so in many cases nothing
special needs to be specified.

The problem of arranging multiple lattice plots on a page requires a different
approach. A trellis object must be created (but not plotted) for each lat-
tice plot, then the print() function is called, supplying arguments to specify
the position of each plot. The following code demonstrates this idea by man-
ually arranging three separate plots of automobile fuel efficiency for different
numbers of gears in a column (see Figure 4.8).

Three lattice plots are produced and then positioned one above the other
on a page. The position argument is used to specify their location, (left,
bottom, right, top), as a proportion of the total page, and the more argu-
ment is used in the first and second print() calls to ensure that the second
and third print() calls draw on the same page. Some extra work is done
with the xlim and ylim arguments to make sure that the scales on the three
plots match up.

> plot1 <- xyplot(mpg ~ disp, data=mtcars,

aspect=1, xlim=c(65, 480), ylim=c(9, 35),

subset=gear == 5)

> plot2 <- xyplot(mpg ~ disp, data=mtcars,

aspect=1, xlim=c(65, 480), ylim=c(9, 35),

subset=gear == 4)

> plot3 <- xyplot(mpg ~ disp, data=mtcars,

aspect=1, xlim=c(65, 480), ylim=c(9, 35),

subset=gear == 3)

> print(plot1, position=c(0, 2/3, 1, 1), more=TRUE)

> print(plot2, position=c(0, 1/3, 1, 2/3), more=TRUE)

> print(plot3, position=c(0, 0, 1, 1/3))

136 R Graphics, Third Edition

disp

m
pg

10

15

20

25

30

35

100 200 300 400

3
10

15

20

25

30

35
4

10

15

20

25

30

35
5

Figure 4.7
Controlling the layout of lattice panels. The lattice package arranges panels in a
sensible way by default, but there are several ways to force the panels to be arranged
in a particular layout. This figure shows a custom arrangement of the panels in the
plot from Figure 4.5.

Trellis Graphics: The lattice Package 137

Section 6.8 describes more flexible options for arranging multiple lattice plots,
using the concepts and facilities of the grid system.

4.6 The scales argument and labeling axes

This section looks at controlling the scales and labeling of the axes in lattice
plots.

The scales argument takes a list of different settings that influence the ap-
pearance of axes. The list can have sublists, named x and y, if the settings
are intended to affect only the x-axes or only the y-axes.

In the following code, the scales argument is used to specify exactly where
tick marks should appear on y-axes. This code also demonstrates that the
xlab and ylab arguments can be expressions to allow the use of special for-
matting and special symbols. The plot produced by this code is shown in
Figure 4.9.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,

layout=c(3, 1), aspect=1,

scales=list(y=list(at=seq(10, 30, 10))),

ylab="miles per gallon",

xlab=expression(paste("displacement (in"^3, ")")))

Besides specifying the location and labels for tick marks, the scales argument
can also be used to control the font used for tick labels (font), the rotation
of the labels (rot), the range of values on the axes (limits), and whether
these ranges should be the same for all panels (relation="same") or allowed
to vary between panels (relation="free").

4.7 The panel argument and annotating plots

One advantage of the lattice graphics system is that it can produce extremely
sophisticated plots from relatively simple expressions, especially with its mul-
tipanel conditioning feature. However, the cost of this is that the task of
adding simple annotations of a lattice plot, such as adding extra lines or

138 R Graphics, Third Edition

disp

m
pg

10

15

20

25

30

100 200 300 400

disp

m
pg

10

15

20

25

30

100 200 300 400

disp

m
pg

10

15

20

25

30

100 200 300 400

Figure 4.8
Arranging multiple lattice plots. This shows three separate lattice plots arranged
together on a single page.

Trellis Graphics: The lattice Package 139

displacement (in3)

m
ile

s
pe

r g
al

lo
n

10

20

30

100 200 300 400

3

100 200 300 400

4

100 200 300 400

5

Figure 4.9
Modifying lattice axes. The placement of tick marks on the y-axis and the axis
labels have been customized in this plot.

text, is more complex compared to the same task in base graphics.

Extra drawing can be added to the panels of a lattice plot via the panel

argument. The value of this argument is a function, which gets called to draw
the contents of each panel.

The following code shows an example panel function. The main plot is once
again of the automobile fuel efficiency data, with three panels corresponding
to different numbers of gear. The panel function consists of calls to vari-
ous predefined functions that are designed to add graphics to lattice pan-
els. The first function call within the panel function is very important. The
panel.xyplot() function does the drawing that xyplot() would normally
have done if the panel argument had not been specified. In this case, it
draws a data symbol for each car. The other functions called in this panel
function are panel.abline() and panel.text(), which add a dashed hori-
zontal line and a label to indicate an efficiency criterion of 29 miles per gallon.
The final result is shown in Figure 4.10.

140 R Graphics, Third Edition

disp

m
pg

10

15

20

25

30

35

100 200 300 400

efficiency criterion

3

100 200 300 400

efficiency criterion

4

100 200 300 400

efficiency criterion

5

Figure 4.10
Adding annotations to lattice plots. The dashed horizontal lines and the labels
have been added to a standard xyplot() using a panel function.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,

layout=c(3, 1), aspect=1,

panel=function(...) {

panel.xyplot(...)

panel.abline(h=29, lty="dashed")

panel.text(470, 29.5, "efficiency criterion",

adj=c(1, 0), cex=.7)

})

That panel function is a very simple one because it does exactly the same
thing in each panel. Things get more complicated if the panel function has to
produce different output for each panel. In that case, more attention has to
be paid to the arguments of the panel function.

In the simple example above, the panel function is defined with just an ellipsis
(...) argument. This means that any information that lattice sends to this
panel function is captured by the ellipsis argument and the panel function
simply passes the information on to panel.xyplot().

Another common situation is that the extra graphics in a panel need to depend
on the x- and y-values that are plotted in that panel. The code below shows

Trellis Graphics: The lattice Package 141

disp

m
pg

10

15

20

25

30

35

100 200 300 400

3

100 200 300 400

4

100 200 300 400

5

Figure 4.11
An example of a lattice panel function. A line of best fit has been added to each
panel in a standard xyplot() using a panel function.

an example, where the panel.lmline() function is called as part of the panel
function to draw a line of best fit to the data in each panel (see Figure 4.11).
The panel function now has explicit x- and y-arguments, which capture the
data values that lattice passes to each panel. These x- and y-values are passed
to panel.lmline() and to panel.xyplot() to produce the relevant output in
each panel. There is a lot of other information that lattice passes to the panel
function (see the argument list on the help page for panel.xyplot()), but
that is all simply passed through to panel.xyplot() via an ellipsis argument.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,

layout=c(3, 1), aspect=1,

panel=function(x, y, ...) {

panel.lmline(x, y)

panel.xyplot(x, y, ...)

})

As these examples have demonstrated, there are a number of predefined panel
functions available for adding output to a lattice panel, including both low-
level graphical primitives like points, and text and more high-level graphics
like grids and lines of best fit. For every high-level lattice plotting function

142 R Graphics, Third Edition

Table 4.2
A selection of predefined panel functions for adding graphical output to the
panels of lattice plots.

Function Description

panel.points() Draw data symbols at locations (x, y)
panel.lines() Draw lines between locations (x, y)
panel.segments() Draw line segments between (x0, y0) and

(x1, y1)
panel.arrows() Draw line segments and arrowheads to the

end(s)
panel.rect() Draw rectangles with bottom-left corner

at (xl, yl) and top-right corner at (xr,
yt)

panel.polygon() Draw one or more polygons with vertices
(x, y)

panel.text() Draw text at locations (x, y)

panel.abline() Draw a line with intercept a and slope b
panel.curve() Draw a function given by expr
panel.rug() Draw axis ticks at x- or y-locations
panel.grid() Draw a (gray) reference grid

panel.loess() Draw a loess smooth through (x, y)
panel.violin() Draw one or more violin plots
panel.smoothScatter() Draw a smoothed 2D density of (x, y)

(see Table 4.1) there is also a corresponding default panel function, for exam-
ple, panel.xyplot(), panel.bwplot(), and panel.histogram(). Table 4.2
provides a list of some other predefined panel functions.

One other important panel function is panel.superpose(), which is the de-
fault panel function whenever multiple groups are drawn within a panel (e.g.,
when the group argument is used). When writing a custom panel function
for a lattice plot that has multiple groups in each panel, this function must
be called to reproduce the default plotting behavior.

In addition to the panel argument for adding further drawing to lattice
panels, there is a strip argument, which allows customization of the strips
above each panel.

Trellis Graphics: The lattice Package 143

4.7.1 Adding output to a lattice plot

Unlike in the original Trellis implementation, it is also possible to add output
to a complete lattice plot after the plot has been drawn (i.e., without using
a panel function).

The function trellis.focus() can be used to return to a particular panel
or strip of the current lattice plot in order to add further output using,
for example, panel.lines() or panel.points(). The trellis.unfocus()

function should be called after the extra drawing is complete. The function
trellis.panelArgs() may be useful for retrieving the arguments (including
the data) that were used to originally draw the panel.

Sections 6.8 and 7.14 show how grid provides more flexibility for navigating
to different parts of a lattice plot and for adding further output.

4.8 par.settings and graphical parameters

An important feature of Trellis Graphics is the careful selection of default
settings that are provided for many of the features of lattice plots. For
example, the default data symbols and colors used to distinguish between
different data series have been chosen so that it is easy to visually discriminate
between them. Nevertheless, it is still sometimes desirable to be able to make
alterations to the default settings for aspects like color and text size.

The examples at the start of this chapter demonstrated that many of the
familiar standard arguments from base graphics, such as col, lty, and lwd,
do the same job in lattice plots. These graphical parameters can also be
set via a par.settings argument. For example, the original code for Figure
4.2, which draws both lines and point with custom pch and lty settings is
reproduced below.

> xyplot(pressure ~ temperature, pressure,

type="o", pch=16, lty="dashed",

main="Vapor Pressure of Mercury")

The following code is an alternative way to produce the same result using the
par.settings argument.

tuhocr
Highlight

144 R Graphics, Third Edition

> xyplot(pressure ~ temperature, pressure,

type="o",

par.settings=list(plot.symbol=list(pch=16),

plot.line=list(lty="dashed")),

main="Vapor Pressure of Mercury")

This approach works because lattice maintains a graphics state similar to the
base graphics state: a large set of graphical parameter defaults.

The lattice graphical parameter settings consist of a large list of parameter
groups and each parameter group is itself a list of parameter settings. These
groups allow settings like color to be applied just to specific elements of a
plot. For example, there is a plot.line parameter group consisting of alpha,
col, lty, and lwd settings to control the color, line type, and line width for
lines drawn between data locations. There is a separate plot.symbol group
consisting of alpha, cex, col, font, pch, and fill settings to control the size,
shape, and color of data symbols.

The settings in each parameter group affect some aspect of a lattice plot:
some have a “global” effect, for example, the fontsize settings affect all text
in a plot; some are more specific, for example, the strip.background setting
affects the background color of strips; and some only affect a certain aspect
of a certain sort of plot, for example, the box.dot settings affect only the dot
that is plotted at the median value in boxplots.

The function show.settings() produces a picture representing some of the
current graphical parameter settings. Figure 4.12 shows the settings for a
black-and-white PostScript device.

The par.settings argument to high-level lattice plots allows specific graph-
ical parameters to be set for a single plot, but, similar to par() in base
graphics, the global default values can also be changed.

The current value of graphical parameter settings can be obtained using the
trellis.par.get() function. For a list of all of the names of the parame-
ter groups, type names(trellis.par.get()). If one of these group names is
specified as the argument to trellis.par.get(), then only the relevant set-
tings are returned. The following code shows how to obtain only the add.text
group of settings.

Trellis Graphics: The lattice Package 145

su
pe

rp
os

e.
sy

m
bo

l
su

pe
rp

os
e.

lin
e

st
rip

.b
ac

kg
ro

un
d

st
rip

.s
hi

ng
le

do
t.[

sy
m

bo
l,

lin
e]

bo
x.

[d
ot

, r
ec

ta
ng

le
, u

m
br

el
la

]
ad

d.
[li

ne
, t

ex
t]

H
el

lo

W
or

ld

re
fe

re
nc

e.
lin

e
pl

ot
.[s

ym
bo

l,
lin

e]
pl

ot
.s

hi
ng

le
[p

lo
t.p

ol
yg

on
]

hi
st

og
ra

m
[p

lo
t.p

ol
yg

on
]

ba
rc

ha
rt

[p
lo

t.p
ol

yg
on

]
su

pe
rp

os
e.

po
ly

go
n

re
gi

on
s

Figure 4.12
Some default lattice settings for a black-and-white PostScript device. This figure
was produced by the lattice function show.settings().

146 R Graphics, Third Edition

> trellis.par.get("add.text")

$alpha

[1] 1

$cex

[1] 1

$col

[1] "#000000"

$font

[1] 1

$lineheight

[1] 1.2

The trellis.par.set() function can be used to specify new default values
for graphical parameters. The value given to this function should be a list
of lists. Only the components and groups that are to be changed need to be
specified.

The following code demonstrates how to use trellis.par.set() to specify
a new value for the "col" component of the add.text settings.

> trellis.par.set(list(add.text=list(col="red")))

A full set of lattice graphical parameter settings is called a theme. It is
possible to specify such a theme and enforce a new “look and feel” for a plot,
although choosing a complete set of defaults that all work together nicely is
a difficult task. The lattice package currently provides one custom theme
via the col.whitebg() function and there is a simpleTheme() function that
makes creating a new theme easier.

There is much more that can be said about the lattice graphics system and
there are many more plots that can be produced (see, for example, the lat-
ticeExtra package). However, the purpose of this chapter is just to enable
us to produce a range of high-level plots in the grid graphics world. Chapters
6 and 7 will describe the tools within grid that can be used to customize,
modify, and add to these lattice plots.

Trellis Graphics: The lattice Package 147

Chapter summary

The lattice package implements and extends the Trellis Graphics sys-
tem for producing complete statistical plots. This system provides
most standard plot types and a number of modern plot types with
several important extensions. For a start, the layout and appearance
of the plots is designed to maximize readability and comprehension of
the information represented in the plot. Also, the system provides a
feature called multipanel conditioning, which produces multiple panels
of plots from a single data set, where each panel contains a different
subset of the data. The lattice functions provide an extensive set of
arguments for customizing the detailed appearance of a plot and there
are functions that allow the user to add further output to a plot.

http://taylorandfrancis.com

5

The Grammar of Graphics:
The ggplot2 Package

Chapter preview

This chapter describes how to produce plots using the ggplot2 pack-
age. There is a brief introduction to the concepts underlying the
Grammar of Graphics paradigm as well as a description of the func-
tions used to produce plots within this paradigm. The distinguishing
feature of the ggplot2 package is its ability to produce a very wide
range of different plots from a relatively small set of fundamental com-
ponents. Because ggplot2 uses grid to draw plots, this chapter de-
scribes another way to produce a complete plot using the grid system.

The ggplot2 package provides an interpretation and extension of the ideas in
Leland Wilkinson’s book The Grammar of Graphics. The ggplot2 package
represents a complete and coherent graphics system, completely separate from
both base and lattice graphics.

The ggplot2 package is built on grid, so it provides another way to generate
complete plots within the grid world, but as with lattice, the package has
so many features that it is unnecessary to encounter grid concepts for most
applications.

The graphics functions that make up the graphics system are provided in an
extension package called ggplot2. This package is not part of a standard
R installation, so it must first be installed, then it can be loaded into R as
follows.

149

150 R Graphics, Third Edition

> library(ggplot2)

This chapter presents a very brief introduction to ggplot2. Hadley Wickham’s
book, ggplot2: Elegant Graphics for Data Analysis, provides much more detail
about the package.

5.1 Quick plots

For very simple plots, the qplot() function in ggplot2 serves a similar pur-
pose to the plot() function in base graphics. All that is required is to specify
the relevant data values and the qplot() function produces a complete plot.

For example, the following code produces a scatterplot of pressure versus
temperature using the pressure data set (see Figure 5.1).

> qplot(temperature, pressure, data=pressure)

This plot should be compared with Figures 1.1 and 4.1. The main differences
between this scatterplot and what is produced by the base graphics plot()

function, or lattice’s xyplot(), are just the default settings used for things
like the background grid, the plotting symbols, and the axis labeling.

There are also similarities in how the appearance of the plot can be modified.
For example, the following code adds a title to the plot using the argument
main.

> qplot(temperature, pressure, data=pressure,

main="Vapor Pressure of Mercury")

However, ggplot2 diverges quite rapidly from the other graphics systems if
further customizations are desired. For example, in order to plot both points
and lines on the plot, the following code is required (see Figure 5.2). Notice
that, like lattice, the ggplot2 result has automatically resized the plot region
to provide room for the title.

> qplot(temperature, pressure, data=pressure,

main="Vapor Pressure of Mercury",

geom=c("point", "line"))

The Grammar of Graphics: The ggplot2 Package 151

0

200

400

600

800

0 100 200 300
temperature

pr
es

su
re

Figure 5.1
A scatterplot produced by the qplot() function from the ggplot2 package. This
plot is comparable to the base graphics plot in Figure 1.1.

0

200

400

600

800

0 100 200 300
temperature

pr
es

su
re

Vapor Pressure of Mercury

Figure 5.2
A scatterplot produced by the qplot() function from the ggplot2 package, with a
title and lines added. This plot is a modified version of 5.1.

152 R Graphics, Third Edition

In order to understand how this code works, rather than spending a lot of
time on the qplot() function, it is useful to move on instead to the conceptual
structure, the Grammar of Graphics, that underlies the ggplot2 package.

5.2 The ggplot2 graphics model

The ggplot2 package implements the Grammar of Graphics paradigm. This
means that, rather than having lots of different functions, each of which pro-
duces a different sort of plot, there is a small set of functions, each of which
produces a different sort of plot component, and those components can be
combined in many different ways to produce a huge variety of plots.

The steps in creating a plot with ggplot2 often come down to the following
essentials:

• Define the data that you want to plot and create an empty plot object
with ggplot().

• Specify the graphics shapes, or geoms, that you are going to use to view
the data (e.g., data symbols or lines) and add those to the plot with, for
example, geom_point() or geom_line().

• Specify which features, or aesthetics, of the shapes will be used to repre-
sent the data values (e.g., the x- and y-locations of data symbols) with
the aes() function.

In summary, a plot is created by mapping data values via aesthetics to the
features of geometric shapes (see Figure 5.3).

For example, to produce the simple plot in Figure 5.1, the data set is the
pressure data frame, and the variables temperature and pressure are used
as the x and y locations of data symbols. This is expressed by the following
code.

> ggplot(pressure) +

geom_point(aes(x=temperature, y=pressure))

A ggplot2 plot is built up like this by creating plot components, or layers,
and combining them using the + operator.

The following sections describe these ideas of geoms and aesthetics in more
detail and go on to look at several other important components that allow for

The Grammar of Graphics: The ggplot2 Package 153

data aesthetic geom

Figure 5.3
A diagram showing how data is mapped to features of a geom (geometric shape) via
aesthetics in ggplot2.

more complex plots that contain multiple groups, legends, facetting (similar
to lattice’s multipanel conditioning), and more.

5.2.1 Why another graphics system?

Many of the plots that can be produced with ggplot2 are very similar to the
output of the base graphics system or the lattice graphics system, but there
are several reasons for using ggplot2 over the others:

• The default appearance of plots has been carefully chosen with visual
perception in mind, like the defaults for lattice plots. The ggplot2
style may be more appealing to some people than the lattice style.

• The arrangement of plot components and the inclusion of legends is
automated. This is also like lattice, but the ggplot2 facility is more
comprehensive and sophisticated.

• Although the conceptual framework in ggplot2 can take a little getting
used to, once mastered, it provides a very powerful language for concisely
expressing a wide variety of plots.

• The ggplot2 package uses grid for rendering, which provides a lot of
flexibility available for annotating, editing, and embedding ggplot2 out-
put (see Sections 6.9 and 7.15).

5.3 Data

The starting point for a plot is a set of data to visualize.

The examples throughout this section will make use of the mtcars2 data set.
This data set is based on the mtcars data set from the datasets package and
contains information on 32 different car models, including the size of the car

154 R Graphics, Third Edition

engine (disp), its fuel efficiency (mpg), type of transmission (trans), number
of forward gears (gear), and number of cylinders (cyl). The first few lines of
the data set are shown below.

> head(mtcars2)

mpg cyl disp gear trans

Mazda RX4 21.0 6 160 4 manual

Mazda RX4 Wag 21.0 6 160 4 manual

Datsun 710 22.8 4 108 4 manual

Hornet 4 Drive 21.4 6 258 3 automatic

Hornet Sportabout 18.7 8 360 3 automatic

Valiant 18.1 6 225 3 automatic

The following call to the ggplot() function creates a new plot for the mtcars2
data set. The data for a plot must always be a data frame.

> p <- ggplot(mtcars2)

The result of the ggplot() call is a "ggplot" object and, if we print this
object, a plot is drawn (see Figure 5.4).

> p

Our plot description contains no information yet about how to display the
data, so nothing is drawn. However, we will add more components to the plot
in later examples.

5.4 Geoms and aesthetics

The next step in creating a plot is to specify what sort of shape will be used
in the plot, for example, data symbols for a scatterplot or bars for a barplot.
This step also involves deciding which variables in the data set will be used
to control features of the shapes, for example, which variables will be used for
the (x, y) positions of the data symbols in a scatterplot.

The following code adds this information to the plot that was created in the
last section. This code produces a new "ggplot" object by adding information

The Grammar of Graphics: The ggplot2 Package 155

Figure 5.4

A "ggplot" object that only contains data produces an empty plot.

that says to draw data symbols, using the geom_point() function, and that
the disp variable should be used for the x location and the mpg variable should
be used for the y location of the data symbols; these variables are mapped
to the x and y aesthetics of the point geom, using the aes() function. The
result is a scatterplot of fuel efficiency versus engine size (see Figure 5.5).

> p + geom_point(aes(x=disp, y=mpg))

Depending on what geom is being used to display the data, various other
aesthetics are available. Another aesthetic that can be used with point geoms
is the shape aesthetic. In the following code, the gear variable is associated
with the data symbol shape so that cars with different numbers of forward
gears are drawn with different data symbols (see Figure 5.5). Table 5.1 lists
some of the common aesthetics for some common geoms.

> p + geom_point(aes(x=disp, y=mpg, shape=gear),

size=4)

This example also demonstrates the difference between setting an aesthetic
and mapping an aesthetic. The gear variable is mapped to the shape aesthetic,
using the aes() function, which means that the shapes of the data symbols
are taken from the value of the variable and different data symbols will get
different shapes. By contrast, the size aesthetic is set to the constant value
of 4 (it is not part of the call to aes()), so all data symbols get this size.

156 R Graphics, Third Edition

The ggplot2 package provides a range of geometric shapes that can be used
to produce different sorts of plots. Other geoms include the standard graph-
ical primitives, such as lines, text, and polygons, plus several more complex
graphical shapes such as bars, contours, and boxplots (see later examples).
Table 5.1 lists some of the common geoms that are available. As an example
of a different sort of geom, the following code uses text labels rather than data
symbols to plot the relationship between engine displacement and miles per
gallon (see Figure 5.5). The locations of the text are the same as the locations
of the data symbols from before, but the text drawn at each location is based
on the value of the gear variable. This example also demonstrates another
aesthetic, label, which is relevant for text geoms.

> p + geom_text(aes(x=disp, y=mpg, label=gear))

A plot can be made up of multiple geoms by simply adding further geoms to
the plot description. The following code draws a plot consisting of both data
symbols and a straight line that is based on a linear model fit to the data (see
Figure 5.5). The line is defined by its intercept and slope aesthetics.

> lmcoef <- coef(lm(mpg ~ disp, mtcars2))

> p + geom_point(aes(x=disp, y=mpg)) +

geom_abline(intercept=lmcoef[1], slope=lmcoef[2])

Specifying geoms and aesthetics provides the basis for creating a wide variety
of plots with ggplot2. The remaining sections of this chapter introduce a
number of other plot components within the ggplot2 system, which are re-
quired to control the details of plots and which extend the range of plots even
further.

5.5 Scales

Another important type of component that has not yet been mentioned is the
scale component. In ggplot2 this encompasses the ideas of both axes and
legends on plots.

Scales have not been mentioned to this point because ggplot2 will often
automatically generate appropriate scales for plots. For example, the x-axes

The Grammar of Graphics: The ggplot2 Package 157

10

15

20

25

30

35

100 200 300 400
disp

m
pg

10

15

20

25

30

35

100 200 300 400
disp

m
pg

44

4
3

33

3

4

4

4
4

3
3

3

33

3

4

4

4

3

33

3

3

4
5

5

5

5

5

4

10

15

20

25

30

35

100 200 300 400
disp

m
pg

10

15

20

25

30

35

100 200 300 400
disp

m
pg

Figure 5.5
Variations on a scatterplot that shows the relationship between miles per gallon
(mpg) and engine displacement (disp): at top-left, a points geom is used to plot
data symbols; at top-right, the shape aesthetic of the points geom is used to plot
different data symbols for cars with different numbers of forward gears; at bottom-
left, a text geom is used to plot labels rather than data symbols; and at bottom-right,
both a points geom and an abline geom are used on the same plot to draw both
data symbols and a straight line (of best fit).

158 R Graphics, Third Edition

Table 5.1
Some of the common geoms and their common aesthetics that are available in the
ggplot2 graphics system. Many geoms have color, size, and group aesthetics.
The size aesthetic means size of shape for points, height for text, and width for
lines and it is in units of millimeters.

Geom Description Aesthetics

geom_point() Data symbols x, y, shape, fill
geom_line() Line (ordered on x) x, y, linetype
geom_path() Line (original order) x, y, linetype
geom_text() Text labels x, y, label, angle,

hjust, vjust
geom_rect() Rectangles xmin, xmax, ymin, ymax, fill,

linetype
geom_polygon() Polygons x, y, fill, linetype
geom_segment() Line segments x, y, xend, yend, linetype

geom_bar() Bars x, fill, linetype, weight
geom_histogram() Histogram x, fill, linetype, weight
geom_boxplot() Boxplots x, y, fill, weight
geom_density() Density x, y, fill, linetype
geom_contour() Contour lines x, y, fill, linetype
geom_smooth() Smoothed line x, y, fill, linetype

Common to many geoms color, size, group

The Grammar of Graphics: The ggplot2 Package 159

and y-axes on the previous plots in this section are actually scale components
that have been automatically generated by ggplot2.

One reason for explicitly adding a scale component to a plot is to over-
ride the detail of the scale that ggplot2 creates. For example, the follow-
ing code explicitly sets the axis labels using the scale_x_continuous() and
scale_y_continuous() functions (see Figure 5.6).

> p + geom_point(aes(x=disp, y=mpg)) +

scale_y_continuous(name="miles per gallon") +

scale_x_continuous(name="displacement (cu.in.)")

It is also possible to control features such as the limits of the axis, where
the tick marks should go, and what the tick labels should look like. Table
5.2 shows some of the common scale functions and their arguments. In the
following code, the limits of the y-axis are widened to include zero (see Figure
5.6).

> p + geom_point(aes(x=disp, y=mpg)) +

scale_y_continuous(limits=c(0, 40))

The ggplot2 package also automatically creates legends when it is appropriate
to do so. For example, in the following code, the color aesthetic is mapped
to the trans variable in the mtcars data frame, so that the data symbols are
colored according to what sort of transmission a car has. This automatically
produces a legend to display the mapping between type of transmission and
color.

> p + geom_point(aes(x=disp, y=mpg,

color=trans), size=4)

The plot resulting from the above code is not shown because this example
demonstrates another important role that scales play in the ggplot2 system.

When the aes() function is used to set up a mapping, the values of a variable
are used to generate values of an aesthetic. Sometimes this is very straight-
forward. For example, when the variable disp is mapped to the aesthetic x

for a points geom, the numeric values of disp are used directly as x locations
for the points.

However, in other cases, the mapping is less obvious. For example, when
the variable trans, with values "manual" and "automatic", is mapped to
the aesthetic color for a points geom, what color does the value "manual"

correspond to?

160 R Graphics, Third Edition

Table 5.2
Some of the common scales that are available in the ggplot2 graphics system. Most
scales have name, breaks, labels, limits parameters. For every x-axis scale there
is a corresponding y-axis scale.

Scale Description Parameters

scale_x_continuous() Continuous axis expand, trans
scale_x_discrete() Categorical axis
scale_x_date() Date axis major, minor,

format

scale_shape() Symbol shape legend
scale_linetype() Line pattern legend
scale_color_manual() Symbol/line color legend values
scale_fill_manual() Symbol/bar fill legend values
scale_size() Symbol size legend trans, to

Common to most scales name, breaks,
labels, limits

As usual, ggplot2 provides a reasonable answer to this question by default,
but a second reason for explicitly adding a scale component to a plot is to
explicitly control this mapping of variable values to aesthetic values (see Fig-
ure 5.7). For example, the following code uses the scale_color_manual()

function to specify the two colors (shades of gray) that will correspond to the
two values of the trans variable (see Figure 5.6).

> p + geom_point(aes(x=disp, y=mpg,

color=trans), size=4) +

scale_color_manual(values=c(automatic=gray(2/3),

manual=gray(1/3)))

5.6 Statistical transformations

In the examples so far, data values have been mapped directly to aesthetic
settings. For example, the numeric disp values have been used as x-locations
for data symbols and the levels of the trans factor have been associated with
different symbol colors.

The Grammar of Graphics: The ggplot2 Package 161

10

15

20

25

30

35

100 200 300 400
displacement (cu.in.)

m
ile

s
pe

r g
al

lo
n

0

10

20

30

40

100 200 300 400
disp

m
pg

10

15

20

25

30

35

100 200 300 400
disp

m
pg

trans

automatic

manual

Figure 5.6
Scatterplots that have explicit scale components to control the labeling of axes or
the mapping from variable values to colors: at top-left, the x-axis and y-axis labels
are specified explicitly; at top-right, the y-axis range has been expanded; and the
bottom plot has an explicit mapping between transmission type and shades of gray.

data scale aesthetic geom

Figure 5.7
A diagram showing how the mapping of data to the features of geometric shapes is
controlled by a scale. The scale specifies how data values are mapped to aesthetic
values.

162 R Graphics, Third Edition

data scale stat aesthetic geom

Figure 5.8
A diagram showing how the scaled data may undergo a statistical transformation
before being mapped to the values of an aesthetic.

Some geoms do not use the raw data values like this. Instead, the data values
undergo some form of statistical transformation, or stat, and the transformed
values are mapped to aesthetics (see Figure 5.8).

A good example of this sort of thing is the bar geom. This geom counts
the number of times each different data value occurs and uses the counts as
the data to plot. For example, in the following code, the trans variable is
mapped to the x aesthetic in the geom_bar() call. This establishes that the
x-locations of the bars should be the levels of trans, but heights of the bars
(the y aesthetic) is automatically generated from the counts of each level of
trans to produce a bar plot (see Figure 5.9).

> p + geom_bar(aes(x=trans))

The stat that is used in this case is a "count" stat. Another option is an
identity stat, which does not transform the data at all. The following code
shows how to explicitly set the stat for a geom by creating the same bar plot
from data that have already been counted.

> transCounts <- as.data.frame(table(mtcars2$trans))

> transCounts

Var1 Freq

1 automatic 19

2 manual 13

Now, both the x and the y aesthetics are set explicitly for the bar geom and
the stat is set to "identity" to tell the geom not to count again. The result
of this code is exactly the same as the left plot in Figure 5.9.

> ggplot(transCounts) +

geom_bar(aes(x=Var1, y=Freq), stat="identity")

The following code presents another common transformation, which involves
smoothing the original values. In this code, a smooth geom is added to the

The Grammar of Graphics: The ggplot2 Package 163

0

5

10

15

automatic manual
trans

co
un

t

10

15

20

25

30

35

100 200 300 400
disp

m
pg

Figure 5.9
Examples of geoms with stat components: a bar geom, which uses a binning stat,
and a smooth geom, which uses a smoother stat.

original empty plot. Rather than drawing a line through the original (x, y)

values, this geom draws a smoothed line (plus a confidence band; see Figure
5.9).

> p + geom_smooth(aes(x=disp, y=mpg))

A similar result (without the confidence band) can be obtained using a line
geom and explicitly specifying a "smooth" stat, as shown below.

> p + geom_line(aes(x=disp, y=mpg), stat="smooth")

Yet another alternative is to add an explicit stat component, as in the fol-
lowing code. This works because stat components automatically have a geom
associated with them, just as geoms automatically have a stat associated with
them. The default geom for a smoother stat is a line. The result of this code
is exactly the same as the right plot in Figure 5.9.

> p + stat_smooth(aes(x=disp, y=mpg))

Similarly, the bar plot in Figure 5.9 could be created with an explicit count
stat component, as shown below. The default geom for a count stat is a bar.

> p + stat_count(aes(x=trans))

164 R Graphics, Third Edition

Table 5.3
Some of the common stats that are available in the ggplot2 graphics system.

Stat Description Parameters

stat_identity() No transformation -
stat_count() Counts -
stat_bin() Binning binwidth, origin
stat_smooth() Smoother method, se, n
stat_boxplot() Boxplot statistics width
stat_contour() Contours breaks

One advantage of this approach is that parameters of the stat, such as the
smoothing method for a smooth stat or the binwidths for binning data, can be
specified clearly as part of the stat. For example, the following code controls
the method for the smooth stat to get a straight line (the result is similar to
the line in Figure 5.5).

> p + stat_smooth(aes(x=disp, y=mpg), method="lm")

Table 5.3 shows some common ggplot2 stats and their parameters.

5.7 The group aesthetic

Previous examples have demonstrated that ggplot2 automatically handles
plotting multiple groups of data on a plot. For example, in the following
code, by introducing the trans variable as an aesthetic that controls shape,
two groups of data symbols are generated on the plot and a legend is produced
(the scale_shape_manual() function is used to control the mapping from
trans to data symbol shape; see Figure 5.10).

> p + geom_point(aes(x=disp, y=mpg, shape=trans)) +

scale_shape_manual(values=c(1, 3))

It is also useful to be able to explicitly force a grouping for a plot and this can
be achieved via the group aesthetic. For example, the following code adds
a smoother stat to a scatterplot where the data symbols are all the same,
but there are separate smoothed lines for separate types of transmissions; the

The Grammar of Graphics: The ggplot2 Package 165

10

15

20

25

30

35

100 200 300 400
disp

m
pg

trans

automatic

manual

10

20

30

100 200 300 400
disp

m
pg

Figure 5.10
The group aesthetic in ggplot2. At left, mapping the shape aesthetic for point
geoms automatically generates a legend. At right, mapping the group aesthetic for
a smoother stat generates separate smoothed lines for different groups.

group aesthetic is set for the smoother stat. The method parameter is also
set for the smoother stat so that the result is a straight line of best fit (see
Figure 5.10).

> ggplot(mtcars2, aes(x=disp, y=mpg)) +

geom_point() +

stat_smooth(aes(group=trans),

method="lm")

Notice that in the code above, aesthetic mappings have been specified in the
call to ggplot(). This is more efficient when several components in a plot
share the same aesthetic settings.

5.8 Position adjustments

Another detail that ggplot2 often handles automatically is the problem of
how to arrange geoms that overlap with each other. For example, the following
code produces a bar plot of the number of cars with different transmissions,
but also with the number of cylinders, cyl, mapped to the fill color for the
bars (see Figure 5.11). The color aesthetic for the bars is set to "black" to

166 R Graphics, Third Edition

provide borders for the bars and the fill color scale is explicitly set to three
shades of gray.

> p + geom_bar(aes(x=trans, fill=factor(cyl)),

color="black") +

scale_fill_manual(values=gray(1:3/3))

There are three bars in this plot for automatic transmission cars (i.e., three
bars share the same x-location). Rather than draw these bars over the top of
each other, ggplot2 has automatically stacked them up. This is an example
of position adjustment.

An alternative is to use a "dodge" position adjustment, which places the bars
side-by-side. This is shown in the following code and the result is shown in
Figure 5.11.

> p + geom_bar(aes(x=trans, fill=factor(cyl)),

color="black",

position="dodge") +

scale_fill_manual(values=gray(1:3/3))

Another option is a "fill" position adjustment. This expands the bars to fill
the available space to produce a spine plot (see Figure 5.11).

> p + geom_bar(aes(x=trans, fill=factor(cyl)),

color="black",

position="fill") +

scale_fill_manual(values=gray(1:3/3))

5.9 Coordinate transformations

Section 5.5 described how scale components can be used to control the map-
ping between data values and the values of an aesthetic (e.g., map the trans

value "automatic" to the color value gray(2/3)).

Another way to view this feature is as a transformation of the data values into
the aesthetic domain. Another example of a transformation of data values
is to use log axes on a plot. The following code does this for the plot of
engine displacement versus miles per gallon via the trans argument of the
scale_x_continuous() function. The result is shown in Figure 5.12.

The Grammar of Graphics: The ggplot2 Package 167

0

5

10

15

automatic manual
trans

co
un

t

factor(cyl)

4

6

8

0.0

2.5

5.0

7.5

10.0

12.5

automatic manual
trans

co
un

t

factor(cyl)

4

6

8

0.00

0.25

0.50

0.75

1.00

automatic manual
trans

co
un

t

factor(cyl)

4

6

8

Figure 5.11
Examples of position adjustments in ggplot2: at top-left, the bars are "stacked";
at top-right, the bar position is "dodge" so the bars are side-by-side; and at the
bottom, the position is "fill", so the bars are scaled to fill the available (vertical)
space.

168 R Graphics, Third Edition

> p + geom_point(aes(x=disp, y=mpg)) +

scale_y_continuous(trans="log",

breaks=seq(10, 40, 10)) +

scale_x_continuous(trans="log",

breaks=seq(100, 400, 100)) +

geom_line(aes(x=disp, y=mpg), stat="smooth",

method="lm")

This is another reason for using an explicit scale component in a plot. Notice
that the data are transformed by the scale before any stat components are
applied (see Figure 5.8), so the line is fitted to the log transformed data.

Another type of transformation is also possible in ggplot2. There is a coordi-
nate system component, or coord, which by default is simple linear cartesian
coordinates, but this can be explicitly set to something else.

For example, the following code adds a coordinate system component to the
previous plot, using the coord_trans() function. This transformation says
that both dimensions should be exponential.

> p + geom_point(aes(x=disp, y=mpg)) +

scale_x_continuous(trans="log") +

scale_y_continuous(trans="log") +

geom_line(aes(x=disp, y=mpg), stat="smooth",

method="lm") +

coord_trans(x="exp", y="exp")

This sort of transformation occurs after the plot geoms have been created and
controls how the graphical shapes are drawn on the page or screen (see Figure
5.13). In this case, the effect is to reverse the transformation of the data, so
that the data points are back in their familiar arrangement and the line of
best fit, which was fitted to the logged data, has become a curve (see Figure
5.12).

Another example of a coordinate system in ggplot2 is polar coordinates,
where the x- and y-values are treated as angle and radius values. The following
code creates a normal, cartesian coordinate system, stacked barplot showing
the number of cars with automatic versus manual transmissions (see Figure
5.12).

> p + geom_bar(aes(x="", fill=trans)) +

scale_fill_manual(values=gray(1:2/3))

This next code sets the coordinate system to be polar, so that the y-values
(the heights of the bars) are treated as angles and x-values (the width of the
bar) is a (constant) radius. The result is a pie chart (see Figure 5.12).

The Grammar of Graphics: The ggplot2 Package 169

> p + geom_bar(aes(x="", fill=trans)) +

scale_fill_manual(values=gray(1:2/3)) +

coord_polar(theta="y")

5.10 Facets

Facetting means breaking the data into several subsets and producing a sep-
arate plot for each subset on a single page. This is similar to lattice’s idea of
multipanel conditioning and is also known as producing small multiples

The facet_wrap() function can be used to add facetting to a plot. The main
argument to this function is a formula that describes the variable to use for
subsetting the data. For example, in the following code a separate scatterplot
is produced for each value of gear (see Figure 5.14). The nrow argument is
used here to ensure a single row of plots is produced.

> p + geom_point(aes(x=disp, y=mpg)) +

facet_wrap(~ gear, nrow=1)

There is also a facet_grid() function for producing plots arranged on a grid.
The main difference is that the formula argument is of the form y ~ x and a
separate row of plots is produced for each level of y and a separate column of
plots is produced for each level of x.

5.11 Themes

The ggplot2 package takes a different approach to controlling the appearance
of graphical objects, by separating output into data and non-data elements.
Geoms represent the data-related elements of a plot and aesthetics are used
to control the appearance of a geom, as was described in Section 5.4. This
section looks at how to control the non-data elements of a plot, such as the
labels and lines used to create the axes and legends.

The collection of graphical parameters that control non-data elements is called
a theme in ggplot2. A theme can be added as another component to a plot

170 R Graphics, Third Edition

10

20

30

100 200 300 400
disp

m
pg

20.08554

148.4132 403.4288
disp

m
pg

0

10

20

30

x

co
un

t trans

automatic

manual

0

10

20

30

count

x

trans

automatic

manual

Figure 5.12
Examples of coordinate system transformations in ggplot2: at top-left is a cartesian
plot of logged data with linear axes; at top-right is a cartesian plot of logged data
with exponential axes; at bottom-left is a cartesian stacked barplot; and at bottom-
right is a polar stacked barplot (a pie chart).

data scale stat aesthetic geom coord

Figure 5.13
A diagram showing how geometric shapes may be transformed by a coordinate
system before they are drawn on the page or screen.

The Grammar of Graphics: The ggplot2 Package 171

3 4 5

100 200 300 400 100 200 300 400 100 200 300 400

10

15

20

25

30

35

disp

m
pg

Figure 5.14
A facetted ggplot2 scatterplot. A separate panel is produced for each level of a
facetting variable, gear.

in the now-familiar way. For example, the following code creates a basic
scatterplot, but changes the basic color settings for the plot using the function
theme_bw(). Instead of the standard gray background with white grid lines,
this plot has a white background with gray gridlines (see Figure 5.15).

> p + geom_point(aes(x=disp, y=mpg)) +

theme_bw()

It is also possible to set just specific theme elements of the overall theme
for a plot. This requires the theme() function and one of the element func-
tions to specify the new setting. For example, the following code uses the
element_text() function to make the y-axis label horizontal (see Figure
5.15). This example sets the text angle of rotation (and the vertical justi-
fication); it is also possible to set other parameters such as text font, color,
and horizontal justification.

> p + geom_point(aes(x=disp, y=mpg)) +

theme(axis.title.y=element_text(angle=0, vjust=.5))

There are other functions for setting graphical parameters for lines, segments,
and rectangles, plus element_blank(), which removes the relevant plot ele-
ment completely (see Figure 5.15).

> p + geom_point(aes(x=disp, y=mpg)) +

theme(axis.title.y=element_blank())

172 R Graphics, Third Edition

Table 5.4
Some of the common plot elements in the ggplot2 graphics system.
The type implies which element function should be used to provide
graphical parameter settings (e.g., text implies element_text()).

Element Type Description

axis.text.x text X-axis tick labels
legend.text text Legend labels
panel.background rect Background of panel
panel.grid.major line Major grid lines
panel.grid.minor line Minor grid lines
plot.title text Plot title
strip.background rect Background of facet labels
strip.text.x text Text for horizontal strips

Table 5.4 shows some of the plot elements that can be controlled in this way.

The labs() function can be used to control the labelling of the plot. For
example, the following code specifies an overall title for a scatterplot (see
Figure 5.15).

> p + geom_point(aes(x=disp, y=mpg)) +

labs(title="Vehicle Fuel Efficiency")

5.12 Annotating

With the emphasis on mapping values from a data frame to aesthetics of
geoms, it may not be immediately obvious how to create custom annotations
on a plot with ggplot2.

One approach is just to make use of the ability to set aesthetics rather than
mapping them. For example, the following code shows how to add a single
horizontal line to a scatterplot by setting the yintercept aesthetic of an
hline geom to a specific value. The result is shown in Figure 5.16.

> p + geom_point(aes(x=disp, y=mpg)) +

geom_hline(yintercept=29)

The Grammar of Graphics: The ggplot2 Package 173

10

15

20

25

30

35

100 200 300 400
disp

m
pg

10

15

20

25

30

35

100 200 300 400
disp

mpg

10

15

20

25

30

35

100 200 300 400
disp

10

15

20

25

30

35

100 200 300 400
disp

m
pg

Vehicle Fuel Efficiency

Figure 5.15
Some examples of themes in ggplot2: at top-left, the overall default style has been
set to theme_bw; at top-right, the y-axis label has been rotated to horizontal; at
bottom-left, the y-axis label has been removed altogether; at bottom-right, the plot
has been given an overall title.

174 R Graphics, Third Edition

Another option is to make use of the fact that the functions that create geoms
are actually creating a complete layer, just with many components of the layer
either inheriting or automatically generating default values. In particular, a
geom inherits its data source from the original "ggplot" object that forms
the basis for the plot. However, it is possible to specify a new data source for
a geom instead.

In order to demonstrate this idea, the following code generates a data frame
containing various fuel efficiency (lower) limits for different classes of vehicle.
These come from Criterion 4 of the Green Communities Grant Program, which
is run by the Massachusetts Department of Energy Resources.∗

> gcLimits <-

data.frame(category=c("2WD car",

"4WD car",

"2WD small pick-up truck",

"4WD small pick-up truck",

"2WD std pick-up truck",

"4WD std pick-up truck"),

limit=c(29, 24, 20, 18, 17, 16))

The following code creates a scatterplot from the mtcars2 data set and adds
some extra lines and text based on this new gcLimits data set. The data

argument to the geom functions is used to explicitly specify the data source for
these geoms, so the aesthetic mappings for these geoms make use of variables
from the gcLimits data frame rather than the mtcars2 data frame. The final
result is shown in Figure 5.16.

> p + geom_point(aes(x=disp, y=mpg)) +

geom_hline(data=gcLimits,

aes(yintercept=limit),

linetype="dotted") +

geom_text(data=gcLimits,

aes(y=limit + .1, label=category),

x=70, hjust=0, vjust=0, size=3)

∗https://www.mass.gov/orgs/massachusetts-department-of-energy-resources

https://www.mass.gov

The Grammar of Graphics: The ggplot2 Package 175

10

15

20

25

30

35

100 200 300 400
disp

m
pg

2WD car

4WD car

2WD small pick−up truck

4WD small pick−up truck
2WD std pick−up truck
4WD std pick−up truck

10

15

20

25

30

35

100 200 300 400
disp

m
pg

Figure 5.16
Some examples of annotation in ggplot2: at left, a single horizontal line has been
added by setting a geom aesthetic (rather than mapping the aesthetic) and, at right,
several horizontal lines and text labels have been added by using a completely new
data set for the relevant geoms.

5.13 Extending ggplot2

Because ggplot2 is based on a set of plot components that are combined
to form plots, developing a new type of plot is usually simply a matter of
combining the existing components in a new way.

Hadley Wickham’s ggplot2 book provides further discussion, including advice
on how to write a high-level function for producing a plot from ggplot2
functions.

176 R Graphics, Third Edition

Chapter summary

The ggplot2 package implements and extends the Grammar of Graph-
ics paradigm for statistical plots. The qplot() function works like
plot() in very simple cases. Otherwise, a plot is created from basic
components: a data frame, plus a set of geometric shapes (geoms),
with a set of mappings from data values to properties of the shapes
(aesthetics). Legends and axes are generated automatically, but the
detailed appearance of all aspects of a plot can still be controlled.
Facetted (multipanel) plots are also possible.

6

The grid Graphics Model

Chapter preview

This chapter describes the fundamental tools that grid provides for
drawing graphical scenes. There are basic features such as functions
for drawing lines, rectangles, and text, together with more sophisti-
cated and powerful concepts such as viewports, layouts, and units,
which allow basic output to be located and sized in very flexible ways.

This chapter is useful for drawing a wide variety of pictures, including
statistical plots from scratch, and it is useful for adding to or modifying
plots created by lattice or ggplot2.

The functions that make up the grid graphics system are provided in an
extension package called grid. The grid system is loaded into R as follows.

> library(grid)

The grid graphics system only provides low-level graphics functions. There
are no high-level functions for producing complete plots. Section 6.1 briefly
introduces the concepts underlying the grid system, but this only provides an
indication of how to work with grid and some of the things that are possible.
An effective direct use of grid functions requires a deeper understanding of
the grid system (see later sections of this chapter and Chapter 7).

The lattice and ggplot2 packages described in Chapters 4 and 5 provide
extensive demonstrations of the high-level results that can be achieved using
grid. Other examples in this book are Figures 1.9, 1.10, 1.12, and 1.13 in
Chapter 1.

177

178 R Graphics, Third Edition

6.1 A brief overview of grid graphics

This chapter describes how to use grid to produce graphical output. There
are functions to produce basic output, such as lines and rectangles and text,
and there are functions to establish the context for drawing, such as specifying
where output should be placed and what colors and fonts to use for drawing.

Like the base system, grid follows the painters model, with later output ob-
scuring any earlier output that it overlaps. In this way, images can be con-
structed incrementally using grid by calling functions in sequence to add more
and more output.

There are grid functions to draw primitive graphical output such as lines,
text, and polygons, plus some slightly higher-level graphical components such
as axes (see Section 6.2). Complex graphical output is produced by making a
sequence of calls to these primitive functions.

The colors, line types, fonts, and other aspects that affect the appearance of
graphical output are controlled via a set of graphical parameters (see Section
6.4).

The grid system provides no predefined regions for graphical output, but there
is a powerful facility for defining regions, based on the idea of a viewport (see
Section 6.5). It is quite simple to create a set of regions that are convenient
for producing a single plot (see the example in the next section), but it is also
possible to produce very complex sets of regions such as those used in the
production of Trellis plots (see Chapter 4).

All viewports have a large set of coordinate systems associated with them
so that it is possible to position and size output in physical terms (e.g., in
centimeters) as well as relative to the scales on axes, and in a variety of other
ways (see Section 6.3).

All grid output occurs relative to the current viewport (region) on a page. In
order to start a new page of output, the user must call the grid.newpage()

function.

In addition to the side effect of producing graphical output, grid graphics
functions produce objects representing output. These objects can be saved
to produce a persistent record of a plot, and other grid functions exist to
modify these graphical objects. For example, it is possible to query an object
to determine its width on the page so that other drawing can be placed rel-
ative to the position of that object. It is also possible to work entirely with
graphical descriptions, without producing any output. Functions for working

The grid Graphics Model 179

with graphical objects are described in detail in Chapter 7.

6.1.1 A simple example

The following example demonstrates the construction of a simple scatterplot
using grid. This is more work than a single function call to produce the plot,
but it shows some of the advantages that can be gained by producing the plot
using grid.

This example uses the pressure data to produce a scatterplot much like that
in Figure 1.1.

Firstly, some regions are created that will correspond to the “plot region” (the
area within which the data symbols will be drawn) and the “margins” (the
area used to draw axes and labels).

The following code creates two viewports. The first viewport is a rectangular
region that leaves space for five lines of text at the bottom, four lines of
text at the left side, two lines at the top, and two lines to the right. The
second viewport is in the same location as the first, but it has x- and y-scales
corresponding to the range of the pressure data to be plotted.

> pushViewport(plotViewport(c(5, 4, 2, 2)))

> pushViewport(dataViewport(pressure$temperature,

pressure$pressure,

name="plotRegion"))

The following code draws the scatterplot one piece at a time. The output from
grid functions is drawn relative to the most recent viewport, which in this
case is the viewport with the appropriate axis scales. The data symbols are
drawn relative to the x- and y-scales, a rectangle is drawn around the entire
plot region, and x- and y-axes are drawn to represent the scales.

> grid.points(pressure$temperature, pressure$pressure,

name="dataSymbols")

> grid.rect()

> grid.xaxis()

> grid.yaxis()

Adding labels to the axes demonstrates the use of the different coordinate
systems that are available in grid. The label text is drawn outside the edges
of the plot region and is positioned in terms of a number of lines of text (i.e.,
the height that a line of text would occupy).

180 R Graphics, Third Edition

> grid.text("temperature", y=unit(-3, "line"))

> grid.text("pressure", x=unit(-3, "line"), rot=90)

The obvious result of running the above code is the graphical output (see the
top-left image in Figure 6.1). Less obvious is the fact that several objects have
been created. There are objects representing the viewport regions and there
are objects representing the graphical output. The following code makes use
of this fact to modify the plotting symbol from a circle to a triangle (see the
top-right image in Figure 6.1). The object representing the data symbols was
named "dataSymbols" (see the code above) and this name is used to find that
object and modify it using the grid.edit() function.

> grid.edit("dataSymbols", pch=2)

The next piece of code makes use of the objects representing the viewports.
The upViewport() and downViewport() functions are used to navigate be-
tween the different viewport regions to perform some extra annotations. First
of all, a call to the upViewport() function is used to go back to working
within the entire page so that a dashed rectangle can be drawn around the
complete plot.

> upViewport(2)

> grid.rect(gp=gpar(lty="dashed"))

Next, the downViewport() function is used to return to the plot region to
add a text annotation that is positioned relative to the scale on the axes of
the plot (see bottom-right image in Figure 6.1).

> downViewport("plotRegion")

> grid.text("Pressure (mm Hg)\nversus\nTemperature (Celsius)",

x=unit(150, "native"), y=unit(600, "native"))

The final scatterplot is still quite simple in this example, but the techniques
that were used to produce it are very general and powerful. It is possible to
produce a very complex plot, yet still have complete access to modify and add
to any part of the plot.

In the remaining sections of this chapter, the basic grid concepts of viewports
and units are discussed in full detail. A complete understanding of the grid
system will be useful in two ways: it will allow the user to produce very
complex images from scratch and it will allow the user to work effectively
with complex grid output that is produced by other people’s code, for example
plots that are produced using lattice or ggplot2.

The grid Graphics Model 181

0 100 200 300

0

200

400

600

800

temperature

pr
es

su
re

0 100 200 300

0

200

400

600

800

temperature

pr
es

su
re

0 100 200 300

0

200

400

600

800

temperature

pr
es

su
re

Pressure (mm Hg)
versus

Temperature (Celsius)

Figure 6.1
A simple scatterplot produced using grid. The top-left plot was constructed from
a series of calls to primitive grid functions that produce graphical output. The
top-right plot shows the result of calling the grid.edit() function to interactively
modify the plotting symbol. The bottom-right plot was created by making calls to
upViewport() and downViewport() to navigate between different drawing regions
and adding further output (a dashed border and text within the plot).

182 R Graphics, Third Edition

6.2 Graphical primitives

The most simple grid functions to understand are those that draw something.
There are a set of grid functions for producing basic graphical output such
as lines, circles, and text.∗ Table 6.1 lists the full set of these functions.

The first arguments to most of these functions are a set of locations and
dimensions for the graphical object to draw. For example, grid.rect() has
arguments x, y, width, and height for specifying the locations and sizes of
the rectangles to draw. An important exception is the grid.text() function,
which requires the text to draw as its first argument. The text to draw may
be a character vector or an R expression (to produce special symbols and
formatting; see Section 10.5).

In most cases, multiple locations and sizes can be specified and multiple prim-
itives will be produced in response. For example, the following function call
produces 100 circles because 100 locations and radii are specified (see Figure
6.2).

> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),

r=abs(0.1*cos(seq(0, 2*pi, length=100))))

The grid.move.to() and grid.line.to() functions are unusual in that they
both only accept one location. These functions refer to and modify a “cur-
rent location.” The grid.move.to() function sets the current location and
grid.line.to() draws from the current location to a new location, then sets
the current location to be the new location. The current location is not used
by the other drawing functions. In most cases, grid.lines() will be more
convenient, but grid.move.to() and grid.line.to() are useful for drawing
lines across multiple viewports (also see Section 6.5.1).

The difference between grid.lines() and grid.polyline() is that the latter
has an id argument. That argument can be used to split the (x, y) locations
into separate lines.

The grid.curve() function draws a curve between two locations, which is
useful in drawing simple diagrams. Several arguments control the shape of

∗All of these functions are of the form grid.*() and, for each one, there is a correspond-
ing *Grob() function that creates an object containing a description of primitive graphical
output, but does not draw anything. The *Grob() versions are addressed fully in Chapter
7.

The grid Graphics Model 183

Table 6.1
Graphical primitives in grid. This is the complete set of low-level functions that
produce graphical output. For each function that produces graphical output (left-
most column), there is a corresponding function that returns a graphical object
containing a description of graphical output instead of producing graphical output
(right-most column). The latter set of functions is described further in Chapter
7.

Function to Function to
Produce Output Description Produce Object

grid.move.to() Set the current location. moveToGrob()
grid.line.to() Draw a line from the current

location to a new location and
reset the current location.

lineToGrob()

grid.lines() Draw a single line through
multiple locations in se-
quence.

linesGrob()

grid.polyline() Draw multiple lines through
multiple locations in se-
quence.

polylineGrob()

grid.segments() Draw multiple lines between
pairs of locations.

segmentsGrob()

grid.xspline() Draw smooth curve relative to
control points.

xsplineGrob()

grid.bezier Draw an (approximate) Bezier
curve.

bezierGrob

grid.rect() Draw rectangles given loca-
tions and sizes.

rectGrob()

grid.roundrect() Draw rectangles with rounded
corners, given locations and
sizes.

roundrectGrob()

grid.circle() Draw circles given locations
and radii.

circleGrob()

grid.polygon() Draw polygons given vertexes. polygonGrob()
grid.path() Draw single polygon consist-

ing of multiple paths.
pathGrob()

grid.text() Draw text given strings, loca-
tions and rotations.

textGrob()

grid.raster() Draw bitmap image. rasterGrob()

grid.curve() Draw smooth curve between
two end points.

curveGrob()

grid.points() Draw data symbols given lo-
cations.

pointsGrob()

184 R Graphics, Third Edition

Figure 6.2
Primitive grid output. A demonstration of basic graphical output produced using
a single call to the grid.circle() function. There are 100 circles of varying sizes,
each at a different (x, y) location.

the curve, including how much the curve deviates from a straight line be-
tween the points (curvature), whether the curve follows a city-block pattern
(square), and how smooth the curve is (ncp). The following code produces
three examples: a city-block curve; a smooth, oblique curve; and a curve
that is biased toward the start point and swings wider around the corner (see
Figure 6.3).

> grid.curve(x1=.1, y1=.25, x2=.3, y2=.75)

> grid.curve(x1=.4, y1=.25, x2=.6, y2=.75,

square=FALSE, ncp=8, curvature=.5)

> grid.curve(x1=.7, y1=.25, x2=.9, y2=.75,

square=FALSE, angle=45, shape=-1)

The grid.curve() function use X-splines to make smooth curves between
two end points; the grid.xspline() function can be used to produce smooth
curves relative to any number of control points. The grid.bezier() function
draws an approximate cubic Bézier curve; it is only approximate because the
curve is actually an X-spline that is parameterised to closely approximate a
Bézier curve.

All functions that draw lines have an arrow argument, which can be used to
add arrowheads to either end of the line. The arrow() function is used to
create a description of the arrowheads, then this is supplied as the value of
the arrow argument. The following code demonstrates two possible uses (see

The grid Graphics Model 185

Figure 6.3
Drawing curves between two end points using the grid.curve() function: at left is
the default city-block curve; in the middle is a curve that bends less and is symmetric
between the end points; and at right is a curve that is biased toward the starting
point.

Figure 6.4). The call to grid.lines() adds an open arrowhead to a single
line and the call to grid.segments() adds narrower closed arrowheads to
each of three lines.

> angle <- seq(0, 2*pi, length=50)

> grid.lines(x=seq(0.1, 0.5, length=50),

y=0.5 + 0.3*sin(angle), arrow=arrow())

> grid.segments(6:8/10, 0.2, 7:9/10, 0.8,

arrow=arrow(angle=15, type="closed"))

In simple usage, the grid.polygon() function draws a single polygon through
the specified x- and y-locations, automatically joining the last location to
the first to close the polygon. It is possible to produce multiple polygons
from a single call if the id argument is specified. In this case, a polygon is
drawn for each set of x- and y-locations corresponding to a different value of
id. The following code demonstrates both usages (see Figure 6.5). The two
grid.polygon() calls both use the same x- and y-locations, but the second
call splits the locations into three separate polygons using the id argument.

186 R Graphics, Third Edition

Figure 6.4
Drawing arrows using line-drawing functions. Arrows can be added to the out-
put from grid.lines(), grid.polyline(), grid.segments(), grid.line.to(),
grid.xspline(), and grid.curve(). Examples are shown for grid.lines() (the
sine curve in the left half of the figure) and grid.segments() (the three straight
lines in the right half of the figure).

> angle <- seq(0, 2*pi, length=10)[-10]

> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

gp=gpar(fill="gray"))

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:3, each=3),

gp=gpar(fill="gray"))

The grid.path() function also has an id argument, but instead of producing
multiple polygons, the result is a single polygon consisting of multiple paths.
This can be used to create a shape with an internal hole. The following code
shows an example where a polygon shape is created with a rectangular hole
in the middle (see Figure 6.6).

> angle <- seq(0, 2*pi, length=10)[-10]

> grid.path(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

gp=gpar(fill="gray"))

> grid.path(x=c(0.75 + 0.15*cos(angle), .7, .7, .8, .8),

y=c(0.5 + 0.3*sin(angle), .4, .6, .6, .4),

id=rep(1:2, c(9, 4)),

gp=gpar(fill="gray"))

The grid Graphics Model 187

Figure 6.5
Drawing polygons using the grid.polygon() function. By default, a single polygon
is produced from multiple (x, y) locations (the nonagon on the left), but it is
possible to associate subsets of the locations with separate polygons using the id

argument (the three triangles on the right).

Figure 6.6
Drawing paths using the grid.path() function. In simple cases, a single polygon is
produced, from multiple (x, y) locations (the nonagon on the left), but it is also
possible to associate subsets of the locations with separate subpaths using the id

argument, which can be used to create holes in the polygon (the shape on the right).

188 R Graphics, Third Edition

Table 6.2
Graphical utilities in grid. These functions draw a small collection of basic shapes
or a basic shape that has indirect parameters. As with the graphical primitives,
for each function that produces graphical output (left-most column), there is a
corresponding function that returns a graphical object containing a description
of graphical output instead of producing graphical output (right-most column).
The latter set of functions is described further in Chapter 7.

Function to Function to
Produce Output Description Produce Object

grid.xaxis() Draw x-axis. xaxisGrob()
grid.yaxis() Draw y-axis. yaxisGrob()
grid.abline() Draw a line given slope and in-

tercept.
ablineGrob

grid.grill() Draw vertical and horizontal
lines.

grillGrob

grid.function Draw a curve defined by a
function.

functionGrob

The grid.points() function draws small shapes as data symbols at the spec-
ified (x, y) locations. The pch argument specifies the data symbol shape as
an integer (e.g., 0 means an open square and 1 means an open circle) or as a
single character (see Section 10.3).

The grid.raster() function draws a bitmap image. The bitmap image can
be specified as a vector, matrix, or array. Chapter 11 describes ways to source
an image from an external file.

6.2.1 Graphical utilities

In addition to the most basic shapes, grid provides some slightly higher level
drawing functions. These are listed in Table 6.2 and each one is briefly de-
scribed in this section.

The grid.xaxis() and grid.yaxis() functions are not simple graphical
primitives because they produce output consisting of both lines and text.
The main argument to these functions is the at argument. This is used to
specify where tick marks should be placed. If the argument is not speci-
fied, sensible tick marks are drawn based on the current scales in effect (see
Section 6.5 for information about viewport scales). The values specified for
the at argument are always relative to the current scales (see the concept of
the "native" coordinate system in Section 6.3). These functions are much

The grid Graphics Model 189

less flexible and general than the base axis() function. For example, they
do not provide automatic support for generating labels from time-based or
date-based at locations.

The remaining functions all draw one or more lines. The grid.abline() func-
tion draws a straight line based on intercept and slope values, ensuring that the
line starts and ends on an edge of the current viewport. The grid.grill()

function draws a set of vertical and horizontal lines, based on just a set of
horizontal and vertical values, respectively. The grid.function() function
draws a series of line segments based on a function, which must take a single
argument, x, and must return a list with x and y components.

6.2.2 Standard arguments

All primitive graphics functions accept a gp argument that allows control over
aspects such as the color and line type of the relevant output. For example, the
following code specifies that the boundary of the rectangle should be dashed
and colored red.

> grid.rect(gp=gpar(col="red", lty="dashed"))

Section 6.4 provides more information about setting graphical parameters.

All primitive graphics functions also accept a vp argument that can be used
to specify a viewport in which to draw the relevant output. The following
code shows a simple example of the syntax (the result is a rectangle drawn in
the left half of the page); Section 6.5 describes viewports and the use of vp
arguments in full detail.

> grid.rect(vp=viewport(x=0, width=0.5, just="left"))

Finally, all primitive graphics functions also accept a name argument. This
can be used to identify the graphical object produced by the function. It is
useful for editing graphical output and when working with graphical objects
(see Chapter 7). The following code demonstrates how to associate a name
with a rectangle.

> grid.rect(name="myrect")

6.2.3 Clipping

The grid.clip() function is not really a graphical primitive because it does
not draw anything. Instead, this function specifies a clipping rectangle. After

190 R Graphics, Third Edition

this function has been called, any subsequent drawing will only be visible if
it occurs inside the clipping rectangle.

The clipping rectangle can be reset by calling grid.clip() again or by chang-
ing the drawing viewport (see Section 6.5, especially Section 6.5.2).

6.3 Coordinate systems

When drawing in grid, there are always a large number of coordinate sys-
tems available for specifying the locations and sizes of graphical output. For
example, it is possible to specify an x-location as a proportion of the width of
the drawing region, or as a number of inches (or centimeters, or millimeters)
from the left-hand edge of the drawing region, or relative to the current x-axis
scale. The full set of coordinate systems available is shown in Table 6.3. The
meaning of some of these will only become clear with an understanding of
viewports (Section 6.5) and graphical objects (Chapter 7).∗

With so many coordinate systems available, it is necessary to specify which
coordinate system a location or size refers to. This is the purpose of the
unit() function. This function creates an object of class "unit" (hereafter
referred to simply as a unit), which acts very much like a normal numeric
object — it is possible to perform basic operations such as subsetting units,
and adding and subtracting units.

Each value in a unit can be associated with a different coordinate system and
each location and dimension of a graphical object is a separate unit so, for
example, a rectangle can have its x-location, y-location, width, and height all
specified relative to different coordinate systems.

The following pieces of code demonstrate some of the flexibility of grid units.
The first code examples show some different uses of the unit() function: a
single value is associated with a coordinate system, then several values are
associated with a coordinate system (notice the recycling of the coordinate
system), then several values are associated with different coordinate systems.

> unit(1, "mm")

[1] 1mm

∗Absolute units, such as inches, may not be rendered with full accuracy in all output
formats (see the footnote on page 98).

The grid Graphics Model 191

Table 6.3
The full set of coordinate systems available in grid.

Coordinate
System Name Description
"native" Locations and sizes are relative to the x- and y-

scales for the current viewport.
"npc" Normalized Parent Coordinates. Treats the

bottom-left corner of the current viewport as the
location (0,0) and the top-right corner as (1,1).

"snpc" Square Normalized Parent Coordinates. Locations
and sizes are expressed as a proportion of the
smaller of the width and height of the current
viewport.

"in" Locations and sizes are in terms of physical inches.
For locations, (0,0) is at the bottom-left of the
viewport.

"cm" Same as "in", except in centimeters.
"mm" Millimeters.
"pt" Points. There are 72.27 points per inch.
"bigpts" Big points. There are 72 big points per inch.
"picas" Picas. There are 12 points per pica.
"dida" Dida. 1157 dida equals 1238 points.
"cicero" Cicero. There are 12 dida per cicero.
"scaledpts" Scaled points. There are 65536 scaled points per

point.

"char" Locations and sizes are specified in terms of mul-
tiples of the current nominal font size (dependent
on the current fontsize and cex).

"line" Locations and sizes are specified in terms of mul-
tiples of the height of a line of text (dependent on
the current fontsize, cex, and lineheight).

"strwidth"

"strheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given string (depen-
dent on the string and the current fontsize, cex,
fontfamily, and fontface).

"grobx"

"groby"

Locations and sizes are expressed as multiples of
the x- or y-location on the boundary of a given
graphical object (dependent on the type, location,
and graphical settings of the graphical object).

"grobwidth"

"grobheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given graphical object
(dependent on the type, location, and graphical
settings of the graphical object).

192 R Graphics, Third Edition

> unit(1:4, "mm")

[1] 1mm 2mm 3mm 4mm

> unit(1:4, c("npc", "mm", "native", "line"))

[1] 1npc 2mm 3native 4line

The next code examples show how units can be manipulated in many of the
ways that normal numeric vectors can: firstly by subsetting, then simple
arithmetic (again notice the recycling), then finally the use of a summary
function (max() in this case).

> unit(1:4, "mm")[2:3]

[1] 2mm 3mm

> unit(1, "npc") - unit(1:4, "mm")

[1] 1npc-1mm 1npc-2mm 1npc-3mm 1npc-4mm

> max(unit(1:4, c("npc", "mm", "native", "line")))

[1] max(1npc, 2mm, 3native, 4line)

Some operations on units are not as straightforward as with numeric vectors,
but require the use of functions written specifically for units. For example,
units must be concatenated (in the sense of the c() function) using unit.c().

The following code provides an example of using units to locate and size a
rectangle. The rectangle is at a location 40% of the way across the drawing
region and 1 inch from the bottom of the drawing region. It is as wide as the
text "very snug", and it is one line of text high (see Figure 6.7).

> grid.rect(x=unit(0.4, "npc"), y=unit(1, "in"),

width=stringWidth("very snug"),

height=unit(1, "line"),

just=c("left", "bottom"))

The grid Graphics Model 193

very snug

1
in

ch

0.4npc

Figure 6.7
A demonstration of grid units. A diagram demonstrating how graphical output
can be located and sized using grid units to associate numeric values with different
coordinate systems. The gray border represents the current viewport. A black
rectangle has been drawn with its bottom-left corner 40% of the way across the
current viewport and 1 inch above the bottom of the current viewport. The rectangle
is 1 line of text high and as wide as the text “very snug” (as it would be drawn in
the current font).

6.3.1 Conversion functions

As demonstrated in the previous section, a unit is not simply a numeric value.
Units only reduce to a simple numeric value (a physical location on a graphics
device) when drawing occurs. A consequence of this is that a unit can mean
very different things, depending on when it gets drawn (this should become
more apparent with an understanding of graphical parameters in Section 6.4
and viewports in Section 6.5).

In some cases, it can be useful to convert a unit to a simple numeric value.
For example, it is sometimes necessary to know the current scale limits for
numerical calculations. There are several functions that can assist with this
problem: convertX(), convertY(), convertWidth(), convertHeight(), and
convertUnit(). The following code shows a calculation of the current page
height in inches.

> convertHeight(unit(1, "npc"), "in")

[1] 7in

194 R Graphics, Third Edition

WARNING: These conversion functions must be used with care. The out-
put from these functions is only valid for the current page or screen size. If,
for example, a window on screen is resized, or output is copied from the screen
to a file format with a different physical size, these calculations may no longer
be correct. In other words, only rely on these functions when it is known
that the size of the screen will not change. The discussion on the use of these
functions in makeContent() methods and the functions grid.record() and
grid.delay() is also relevant (see “Calculations during drawing” in Section
8.3.10).

6.3.2 Complex units

A number of coordinate systems in grid are relative in the sense that a value
is interpreted as a multiple of the location or size of some other object. These
units include "strwidth", "strheight", "grobx", "groby", "grobwidth",
and "grobheight" and there are two peculiarities of these sorts of coordinate
systems that require further explanation. In the first two cases, "strwidth"
and "strheight" units, the other object is just a text string (e.g., "a label"),
but in the latter four cases, the other object can be any graphical object (see
Chapter 7). It is necessary to specify the other object when generating a unit
for these coordinate systems and this is achieved via the data argument. The
following code shows some simple examples.

> unit(1, "strwidth", "some text")

[1] 1strwidth

> unit(1, "grobwidth", textGrob("some text"))

[1] 1grobwidth

A more convenient interface for generating units, when all values are rela-
tive to a single coordinate system, is also available via the stringWidth(),
stringHeight(), grobX(), grobY(), grobWidth(), and grobHeight() func-
tions. The following code is equivalent to the previous example.

> stringWidth("some text")

[1] 1strwidth

> grobWidth(textGrob("some text"))

The grid Graphics Model 195

[1] 1grobwidth

In this particular example, the "strwidth" and "grobwidth" units will be
identical as they are based on identical pieces of text. The difference is that
a graphical object can contain not only the text to draw, but also other
information that may affect the size of the text, such as the font family and
size.

In the following code, the two units are no longer identical because the text

grob represents text drawn at font size of 18, whereas the simple string rep-
resents text at the default size of 10. The convertWidth() function is used
to demonstrate the difference.

> convertWidth(stringWidth("some text"), "in")

[1] 0.715666666666667in

> convertWidth(grobWidth(textGrob("some text",

gp=gpar(fontsize=18))),

"in")

[1] 1.0735in

For units that contain multiple values, there must be an object specified
for every "strwidth", "strheight", "grobx", "groby", "grobwidth", and
"grobheight" value. Where there is a mixture of coordinate systems within
a unit, a value of NULL can be supplied for the coordinate systems that do not
require data. The following code demonstrates this.

> unit(rep(1, 3), "strwidth", list("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

> unit(rep(1, 3),

c("npc", "strwidth", "grobwidth"),

list(NULL, "two", textGrob("three")))

[1] 1npc 1strwidth 1grobwidth

Again, there is a simpler interface for straightforward situations.

196 R Graphics, Third Edition

> stringWidth(c("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

For "grobx", "groby", "grobwidth", and "grobheight" units, it is also pos-
sible to specify the name of a graphical object rather than the graphical object
itself. This can be useful for establishing a reference to a graphical object, so
that when the named graphical object is modified, the unit is updated for the
change. The following code demonstrates this idea. First of all, a text grob
is drawn with the name "tgrob".

> grid.text("some text", name="tgrob")

Next, a unit is created that is based on the width of the grob called "tgrob".

> theUnit <- grobWidth("tgrob")

The convertWidth() function can be used to show the current value of the
unit.

> convertWidth(theUnit, "in")

[1] 0.715666666666667in

The following code modifies the grob named "tgrob" and convertWidth()

is used to show that the value of the unit reflects the new width of the text

grob.

> grid.edit("tgrob", gp=gpar(fontsize=18))

> convertWidth(theUnit, "in")

[1] 1.0735in

See Section 7.11 for more examples of calculating the sizes of graphical objects.

6.4 Controlling the appearance of output

All graphical primitives functions (and the viewport() function; see Section
6.5) have a gp argument that can be used to provide a set of graphical pa-
rameters to control the appearance of the graphical output. There is a fixed

The grid Graphics Model 197

Table 6.4
The full set of graphical parameters available in grid.

Parameter Description

col Color of lines, text, rectangle borders, ...

fill Color for filling rectangles, circles, polygons, ...

alpha Alpha blending coefficient for transparency

lwd Line width

lex Line width expansion multiplier applied to lwd to
obtain final line width

lty Line type

lineend Line end style (round, butt, square)

linejoin Line join style (round, miter, bevel)

linemitre Line miter limit

cex Character expansion multiplier applied to
fontsize to obtain final font size

fontsize Size of text (in points)

fontface Font face (bold, italic, ...)

fontfamily Font family

lineheight Multiplier applied to final font size to obtain the
height of a line

set of graphical parameters (see Table 6.4), all of which can be specified for
all types of graphical output.

The value supplied for the gp argument must be an object of class "gpar",
which is produced using the gpar() function. For example, the following code
produces a gpar object containing graphical parameter settings controlling
color and line type.

> gpar(col="red", lty="dashed")

$col

[1] "red"

$lty

[1] "dashed"

The function get.gpar() can be used to obtain current graphical parameter
settings. The following code shows how to query the current line type and fill

198 R Graphics, Third Edition

color. When called with no arguments, the function returns a complete list of
current settings.

> get.gpar(c("lty", "fill"))

$lty

[1] "solid"

$fill

[1] "transparent"

A gpar object represents an explicit graphical context — settings for a small
number of specific graphical parameters. The example above produces a
graphical context that ensures that the color setting is "red" and the line-type
setting is "dashed". There is also always an implicit graphical context con-
sisting of default settings for all graphical parameters. The implicit graphical
context is initialized automatically when we call grid.newpage() and can be
modified by viewports (see Section 6.5.5) or by gTrees (see Section 7.4.1).∗

A graphical primitive will be drawn with graphical parameter settings taken
from the implicit graphical context, except where there are explicit graphical
parameter settings from the graphical primitive’s gp argument. For graphical
primitives, the explicit graphical context is only in effect for the duration of the
drawing of the graphical primitive. The following code example demonstrates
these rules.

The default initial implicit graphical context includes settings such as
lty="solid" and fill="transparent". The first rectangle has an explicit
setting fill="black" so it only uses the implicit setting lty="solid". The
second rectangle has no explicit graphical parameter settings so it uses all of
the implicit graphical parameter settings, for example, it has a transparent
fill. In particular, it is not at all affected by the explicit settings of the first
rectangle (see Figure 6.8).

> grid.rect(x=0.33, height=0.7, width=0.2,

gp=gpar(fill="black"))

> grid.rect(x=0.66, height=0.7, width=0.2)

∗The ideas of implicit and explicit graphical contexts are similar to the specification of
settings in Cascading Style Sheets and the graphics state in PostScript.

The grid Graphics Model 199

gr
id

.re
ct

()

gr
id

.re
ct

(g
p=

gp
ar

(fi
ll=

"b
la

ck
")

)

Figure 6.8
Graphical parameters for graphical primitives. The gray rectangle represents the
current viewport. The right-hand rectangle has been drawn with no specific graphi-
cal parameters so it inherits the defaults for the current viewport (which in this case
are a black border and no fill color). The left-hand rectangle has been drawn with
a specific fill color of black (it is still drawn with the inherited black border). The
graphical parameter settings for one rectangle have no effect on the other rectangle.

6.4.1 Specifying graphical parameter settings

The values that can be specified for colors, line types, line widths, line ends,
line joins, and fonts are mostly the same as for the base graphics system.
For example, colors can be specified by names such as "red". Chapter 10
describes the specification of graphical parameters in R in complete detail.

One peculiarity to grid is that the fontface value can be a name instead of
an integer. Table 6.5 shows the possible values.

Many of the parameter names in grid are also the same as those in base
graphics, though several of the grid names are slightly more verbose (e.g.,
lineend and fontfamily).

In grid, the cex value is cumulative. This means that it is multiplied by the
previous cex value to obtain a current cex value. The following code shows
a simple example. A viewport is pushed with cex=0.5. This means that text
will be half size. Next, some text is drawn, also with cex=0.5. This text is
drawn quarter size because cex was already 0.5 from the viewport (0.5*0.5
= 0.25).

> pushViewport(viewport(gp=gpar(cex=0.5)))

> grid.text("How small do you think?", gp=gpar(cex=0.5))

200 R Graphics, Third Edition

Table 6.5
Possible font face specifications in grid.

Integer Name Description

1 "plain" Roman or upright face
2 "bold" Bold face
3 "italic" or "oblique" Slanted face
4 "bold.italic" Bold and slanted face

The lex parameter, which is a multiplier that affects line width, is similarly
cumulative.

The alpha graphical parameter provides a general alpha-transparency setting.
It is a value between 1 (fully opaque) and 0 (fully transparent). The alpha

value is combined with the alpha channel of colors by multiplying the two
and this setting is cumulative like the cex setting. The following code shows
a simple example. A viewport is pushed with alpha=0.5, then a rectangle is
drawn using a semitransparent red fill color (alpha channel set to 0.5). The
final alpha channel for the fill color is 0.25 (0.5*0.5 = 0.25).

> pushViewport(viewport(gp=gpar(alpha=0.5)))

> grid.rect(width=0.5, height=0.5,

gp=gpar(fill=rgb(1, 0, 0, 0.5)))

The grid system does not provide any support for fill gradients or patterns,
but some effects are possible through judicious use of raster images, graphical
primitives, and clipping. Chapter 13 also describes an approach to adding fill
patterns to grid output.

6.4.2 Vectorized graphical parameter settings

All graphical parameter settings can take a vector of values. Many graphi-
cal primitive functions produce multiple primitives as output and graphical
parameter settings will be recycled over those primitives. The following code
produces 100 circles, cycling through 50 different shades of gray for the circles
(see Figure 6.9).

The grid Graphics Model 201

Figure 6.9
Recycling graphical parameters. The 100 circles are drawn by a single function call
with 50 different grays specified for the border color (from a very light gray to a
very dark gray and back to a very light gray). The 50 colors are recycled over the
100 circles so circle i gets the same color as circle i + 50.

> levels <- round(seq(90, 10, length=25))

> grays <- paste("gray", c(levels, rev(levels)), sep="")

> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),

r=abs(0.1*cos(seq(0, 2*pi, length=100))),

gp=gpar(col=grays))

The grid.polygon() function is a slightly complex case. There are two ways
in which this function will produce multiple polygons: when the id argument
is specified and when there are NA values in the x- or y-locations (see Sec-
tion 6.6). For grid.polygon(), a different graphical parameter will only be
applied to each polygon identified by a different id. When a single polygon
(as identified by a single id value) is split into multiple subpolygons by NA

values, all subpolygons receive the same graphical parameter settings. The
following code demonstrates these rules (see Figure 6.10). The first call to
grid.polygon() draws two polygons as specified by the id argument. The
fill graphical parameter setting contains two colors so the first polygon gets
the first color (gray) and the second polygon gets the second color (white). In
the second call, all that has changed is that an NA value has been introduced.
This means that the first polygon as specified by the id argument is split into
two separate polygons, but both of these polygons use the same fill setting
because they both correspond to an id of 1. Both of these polygons get the
first color (gray).

202 R Graphics, Third Edition

NA

Figure 6.10
Recycling graphical parameters for polygons. On the left, a single function call
produces two polygons with different fill colors by specifying an id argument and
two fill colors. On the right, there are three polygons because an NA value has been
introduced in the (x, y) locations for the polygon, but there are still only two colors
specified. The colors are allocated to polygons using the id argument and ignoring
any NA values.

> angle <- seq(0, 2*pi, length=11)[-11]

> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),

gp=gpar(fill=c("gray", "white")))

> angle[4] <- NA

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),

gp=gpar(fill=c("gray", "white")))

Other functions with an id argument, for example, grid.polyline() and
grid.xspline(), obey similar rules. On the other hand, the grid.path()

function is an exception to the exception because it (conceptually) only ever
draws a single shape.

All graphical primitives have a gp component, so it is possible to specify any
graphical parameter setting for any graphical primitive. This may seem inef-
ficient, and indeed in some cases the values are completely ignored (e.g., text
drawing ignores the lty setting), but in many cases the values are potentially
useful. For example, even when there is no text being drawn, the settings for
fontsize, cex, and lineheight are always used to calculate the meaning of
"line" and "char" coordinates. For example, the rectangles produced by the
following code are different heights. Both rectangles have their height defined

The grid Graphics Model 203

in terms of lines of text so, although no text is drawn, the size of the rectangles
can be affected by text-related graphical parameter settings (in this case, the
lineheight multiplier).

> grid.rect(height=unit(1, "lines"))

> grid.rect(height=unit(1, "lines"),

gp=gpar(lineheight=2))

6.5 Viewports

A viewport is a rectangular region that provides a context for drawing.

A viewport provides a drawing context consisting of both a geometric context
and a graphical context. A geometric context consists of a set of coordinate
systems for locating and sizing output and all of the coordinate systems de-
scribed in Section 6.3 are available within every viewport. A graphical context
consists of explicit graphical parameter settings for controlling the appearance
of output. This is specified as a "gpar" as produced by the gpar() function.

By default, grid creates a root viewport that corresponds to the entire page
and, until another viewport is created, drawing occurs within the full extent
of the page and using the default graphical parameter settings.∗

A new viewport is created using the viewport() function. A viewport has
a location (given by x and y), a size (given by width and height), and it is
justified relative to its location (according to the value of the just argument).
The location and size of a viewport are specified in units, so a viewport can
be positioned and sized within another viewport in a very flexible manner.
The following code creates a viewport that is left-justified at an x-location
0.4 of the way across the drawing region, and bottom-justified 1 centimeter
from the bottom of the drawing region. It is as wide as the text "very very

snug indeed", and it is six lines of text high. Figure 6.11 shows a diagram
representing this viewport.

∗Warning: some default parameter settings vary between different graphics formats.
For example, the default fill parameter is usually "transparent", but for PNG output it
is "white".

204 R Graphics, Third Edition

0 1

0

1
1strwidth

6line

0.4npc

1c
m

very very snug indeed

Figure 6.11
A diagram of a simple viewport. A viewport is a rectangular region specified by
an (x, y) location, a (width, height) size, and a justification (and possibly a
rotation). This diagram shows a viewport that is left-bottom justified 1 centimeter
off the bottom of the page and 0.4 of the way across the page. It is six lines of text
high and as wide as the text “very very snug indeed.”

> viewport(x=unit(0.4, "npc"), y=unit(1, "cm"),

width=stringWidth("very very snug indeed"),

height=unit(6, "line"),

just=c("left", "bottom"))

viewport[GRID.VP.14]

An important thing to notice in the above example is that the result of the
viewport() function is an object of class "viewport". No region has actually
been created on the page. In order to create regions on the page, a viewport

object must be pushed, as described in the next section.

6.5.1 Pushing, popping, and navigating between viewports

The pushViewport() function takes a viewport object and uses it to create
a region on the graphics device. This region becomes the drawing context for
all subsequent graphical output, until the region is removed or another region
is defined.

The following code demonstrates this idea (see Figure 6.12). To start with, the
entire page and the default graphical parameter settings provide the drawing

The grid Graphics Model 205

context. Within this context, the grid.text() call draws some text at the
top-left corner of the device. A viewport is then pushed, which creates a
region 80% as wide as the page, half the height of the page, and rotated at an
angle of 10 degrees.∗ The viewport is given a name, "vp1", which will help
us to navigate back to this viewport from another viewport later.

Within the new drawing context defined by the viewport that has been pushed,
exactly the same grid.text() call produces some text at the top-left corner
of the viewport. A rectangle is also drawn to make the extent of the new
viewport clear.

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

> pushViewport(viewport(width=0.8, height=0.5, angle=10,

name="vp1"))

> grid.rect()

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

The pushing of viewports is entirely general. A viewport is pushed relative
to the current drawing context. The following code slightly extends the pre-
vious example by pushing a further viewport, exactly like the first, and again
drawing text at the top-left corner (see Figure 6.13). The location, size, and
rotation of this second viewport are all relative to the context provided by the
first viewport. Viewports can be nested like this to any depth.

> pushViewport(viewport(width=0.8, height=0.5, angle=10,

name="vp2"))

> grid.rect()

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

In grid, drawing is always within the context of the current viewport. One
way to change the current viewport is to push a viewport (as in the previous
examples), but there are other ways too. For a start, it is possible to pop a
viewport using the popViewport() function. This removes the current view-
port and the drawing context reverts to whatever it was before the current

∗It is not often very useful to rotate a viewport, but it helps in this case to dramatize
the difference between the drawing regions.

206 R Graphics, Third Edition

top−left corner

top−left corner

Figure 6.12
Pushing a viewport. Drawing occurs relative to the entire device until a viewport is
pushed. For example, some text has been drawn in the top-left corner of the device.
Once a viewport has been pushed, output is drawn relative to that viewport. The
black rectangle represents a viewport that has been pushed and text has been drawn
in the top-left corner of that viewport.

top−left corner

top−left corner

top−left corner

Figure 6.13
Pushing several viewports. Viewports are pushed relative to the current viewport.
Here, a second viewport has been pushed relative to the viewport that was pushed
in Figure 6.12. Again, text has been drawn in the top-left corner.

The grid Graphics Model 207

top−left corner

top−left corner

top−left corner

bottom−right corner

Figure 6.14
Popping a viewport. When a viewport is popped, the drawing context reverts to
the parent viewport. In this figure, the second viewport (pushed in Figure 6.13) has
been popped to go back to the first viewport (pushed in Figure 6.12). This time
text has been drawn in the bottom-right corner.

viewport was pushed. It is illegal to pop the top-most viewport, and trying
to do so will result in an error.

The following code demonstrates popping viewports (see Figure 6.14). The
call to popViewport() removes the last viewport that was created on the page.
Text is drawn at the bottom-right of the resulting drawing region (which has
reverted back to being the first viewport that was pushed).

> popViewport()

> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "mm"), just=c("right", "bottom"))

The popViewport() function has an integer argument n that specifies how
many viewports to pop. The default is 1, but several viewports can be popped
at once by specifying a larger value. The special value of 0 means that all
viewports should be popped. In other words, the drawing context should
revert to the entire device and the default graphical parameter settings.

Another way to change the current viewport is by using the upViewport()

and downViewport() functions. The upViewport() function is similar to
popViewport() in that the drawing context reverts to whatever it was prior to
the current viewport being pushed. The difference is that upViewport() does
not remove the current viewport from the page. This difference is significant

208 R Graphics, Third Edition

because it means that a viewport can be revisited without having to push it
again. Revisiting a viewport is faster than pushing a viewport and it allows
the creation of viewport regions to be separated from the production of output
(see “viewport paths” in Section 6.5.3 and Chapter 8).

A viewport can be revisited using the downViewport() function. This function
has an argument name that can be used to specify the name of an existing
viewport. The result of downViewport() is to make the named viewport
the current drawing context. The following code demonstrates the use of
upViewport() and downViewport() (see Figure 6.15).

A call to upViewport() is made, which reverts the drawing context to the
top-level (root) viewport (the entire page) and text is drawn in the bottom-
right corner (recall that prior to this navigation the current viewport was the
first viewport that was pushed). The downViewport() function is then used
to navigate back down to the viewport that was first pushed and a second
border is drawn around this viewport. The viewport to navigate down to is
specified by its name, "vp1".

> upViewport()

> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "mm"), just=c("right", "bottom"))

> downViewport("vp1")

> grid.rect(width=unit(1, "npc") + unit(2, "mm"),

height=unit(1, "npc") + unit(2, "mm"))

There is also a seekViewport() function that can be used to travel across
the viewport tree. This can be convenient for interactive use, but the result is
less predictable, so it is less suitable for use in writing grid functions for oth-
ers to use. The call seekViewport("avp") is equivalent to upViewport(0);

downViewport("avp").

Drawing between viewports

Sometimes it is useful to be able to locate graphical output relative to more
than one viewport. One way to do this in grid is via the grid.move.to()

and grid.line.to() functions. It is possible to call grid.move.to() within
one viewport, change viewports, and call grid.line.to().

Another approach is to use the grid.null() function. This is a special graph-
ical primitive that does not draw anything, but it draws nothing at a very
specific location. Through the use of the functions grobX() and grobY() this
makes it possible to perform drawing relative to one or more invisible loca-

The grid Graphics Model 209

top−left corner

top−left corner

top−left corner

bottom−right corner

bottom−right corner

Figure 6.15
Navigating between viewports. Rather than popping a viewport, it is possible to
navigate up from a viewport (and leave the viewport on the device). Here navigation
has occurred from the first viewport to revert the drawing context to the entire
device and text has been drawn in the bottom-right corner. Next, there has been
a navigation down to the first viewport again and a second border has been drawn
around the outside of the viewport.

tions, represented by one or more “null” grobs, which can be located in one or
more different viewports. Section 7.11 has an example of this approach.

6.5.2 Clipping to viewports

Drawing can be restricted to only the interior of the current viewport (clipped
to the viewport) by specifying the clip argument to the viewport() function.
This argument has three values: "on" indicates that output should be clipped
to the current viewport; "off" indicates that output should not be clipped
at all; "inherit" means that the clipping region of the previous viewport
should be used (this may not have been set by the previous viewport if that
viewport’s clip argument was also "inherit"). The following code provides
a simple example (see Figure 6.16). A viewport is pushed with clipping on
and a circle with a very thick black border is drawn relative to the viewport.
A rectangle is also drawn to show the extent of the viewport. The circle
partially extends beyond the limits of the viewport, so only those parts of the
circle that lie within the viewport are drawn.

210 R Graphics, Third Edition

> pushViewport(viewport(width=.5, height=.5, clip="on"))

> grid.rect()

> grid.circle(r=.7, gp=gpar(lwd=20))

Next, another viewport is pushed and this viewport just inherits the clipping
region from the first viewport. Another circle is drawn, this time with a gray
and slightly thinner border and again the circle is clipped to the viewport.

> pushViewport(viewport(clip="inherit"))

> grid.circle(r=.7, gp=gpar(lwd=10, col="gray"))

Finally, a third viewport is pushed with clipping turned off. Now, when a
third circle is drawn (with a thin, black border) all of the circle is drawn, even
though parts of the circle extend beyond the viewport.

> pushViewport(viewport(clip="off"))

> grid.circle(r=.7)

> popViewport(3)

6.5.3 Viewport lists, stacks, and trees

It can be convenient to work with several viewports at once and there are
several facilities for doing this in grid. The pushViewport() function will
accept multiple arguments and will push the specified viewports one after
another. For example, the fourth expression below is a shorter equivalent
version of the first three expressions.

> pushViewport(vp1)

> pushViewport(vp2)

> pushViewport(vp3)

> pushViewport(vp1, vp2, vp3)

The pushViewport() function will also accept objects that contain several
viewports: viewport lists, viewport stacks, and viewport trees. The func-
tion vpList() creates a list of viewports and these are pushed “in parallel.”
The first viewport in the list is pushed, then grid navigates back up before
the next viewport in the list is pushed. The vpStack() function creates a
stack of viewports and these are pushed “in series.” Pushing a stack of view-
ports is exactly the same as specifying the viewports as multiple arguments

The grid Graphics Model 211

Figure 6.16
Clipping output in viewports. When a viewport is pushed, output can be clipped
to that viewport, or the clipping region can be left in its current state, or clipping
can be turned off entirely. The left panel shows the result of pushing a viewport
(the black rectangle) with clipping on. A circle is drawn with a very thick black
border and it gets clipped. In the middle panel, the left panel is repeated and then
another viewport is pushed (in the same location) with clipping left as it was. A
second circle is drawn with a slightly thinner gray border and it is also clipped. In
the right panel, the middle panel is repeated and then a third viewport is pushed,
which turns clipping off. A circle is drawn with a thin black border and this circle
is not clipped.

212 R Graphics, Third Edition

to pushViewport(). The vpTree() function creates a tree of viewports that
consists of a parent viewport and any number of child viewports. The parent
viewport is pushed first, then the child viewports are pushed in parallel within
the parent.

The current set of viewports that have been pushed on the current device
constitute a viewport tree and the current.vpTree() function prints out a
representation of the current viewport tree. The following code demonstrates
the output from current.vpTree() and the difference between lists, stacks,
and trees of viewports. First of all, some (trivial) viewports are created to
work with.

> vp1 <- viewport(name="A")

> vp2 <- viewport(name="B")

> vp3 <- viewport(name="C")

The next piece of code shows these three viewports pushed as a list. The
output of current.vpTree() shows the root viewport (which represents the
entire device) and then all three viewports as children of the root viewport.
A graph of the resulting viewport tree is shown in Figure 6.17 (top-left).

> pushViewport(vpList(vp1, vp2, vp3))

> current.vpTree()

viewport[ROOT]->(viewport[A], viewport[B], viewport[C])

This next code pushes the three viewports as a stack. The viewport vp1 is
now the only child of the root viewport with vp2 a child of vp1, and vp3 a
child of vp2. A graph of the resulting viewport tree is shown in Figure 6.17
(top-right).

> grid.newpage()

> pushViewport(vpStack(vp1, vp2, vp3))

> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B]->(viewport[C])))

Finally, the three viewports are pushed as a tree, with vp1 as the parent and
vp2 and vp3 as its children. A graph of the resulting viewport tree is shown
in Figure 6.17 (bottom-left).

> grid.newpage()

> pushViewport(vpTree(vp1, vpList(vp2, vp3)))

> current.vpTree()

The grid Graphics Model 213

viewport[ROOT]->(viewport[A]->(viewport[B], viewport[C]))

As with single viewports, viewport lists, stacks, and trees can be provided as
the vp argument for graphical functions (see Section 6.5.4).

Viewport paths

The downViewport() function, by default, searches down the current viewport
tree as far as is necessary to find a given viewport name. This is convenient
for interactive use, but can be ambiguous if there is more than one viewport
with the same name in the viewport tree.

The grid system provides the concept of a viewport path to resolve such am-
biguity. A viewport path is an ordered list of viewport names, which specify a
series of parent-child relations. A viewport path is created using the vpPath()
function. For example, the following code produces a viewport path that spec-
ifies a viewport called "C" with a parent called "B", which in turn has a parent
called "A".

> vpPath("A", "B", "C")

A::B::C

For convenience in interactive use, a viewport path may be specified directly
as a string. For example, the previous viewport path could be specified simply
as "C". However, the vpPath() function should be used when writing graphics
functions for others to use.

The name argument to the downViewport() function will accept a viewport
path, in which case it searches for a viewport that matches the entire path.
The strict argument to downViewport() ensures that a viewport will only
be found if the full viewport path is found, starting from the current location
in the viewport tree.

6.5.4 Viewports as arguments to graphical primitives

As mentioned in Section 6.2.2, a viewport may be specified as an argument to
functions that produce graphical output (via an argument called vp). When a
viewport is specified in this way, the viewport gets pushed before the graphical
output is produced and the viewport is popped again afterward. To make this
completely clear, the following two code segments are identical. First of all, a
simple viewport is defined.

214 R Graphics, Third Edition

ROOT

A B C

ROOT

A

B

C

ROOT

A

B C

Figure 6.17
Viewport lists, stacks, and trees. There is always a ROOT viewport. At top-left, a
list of three viewports has been pushed. At top-right, a stack of three viewports has
been pushed. At bottom-left, a tree of three viewports has been pushed (where the
tree consists of a parent with two children).

The grid Graphics Model 215

> vp1 <- viewport(width=0.5, height=0.5, name="vp1")

The next code explicitly pushes the viewport, draws some text, then pops the
viewport.

> pushViewport(vp1)

> grid.text("Text drawn in a viewport")

> popViewport()

This next piece of code does the same thing in a single call.

> grid.text("Text drawn in a viewport", vp=vp1)

It is also possible to specify the name of a viewport (or a viewport path) for a
vp argument. In this case, the name (or path) is used to navigate down to the
viewport, via a call to downViewport(), and then back up again afterward,
via a call to upViewport(). This promotes the practice of pushing viewports
once, then specifying where to draw different output by simply naming the
appropriate viewport. The following code does the same thing as the previous
example, but leaves the viewport intact (so that it can be used for further
drawing).

> pushViewport(vp1)

> upViewport()

> grid.text("Text drawn in a viewport", vp="vp1")

This feature is also very useful when annotating a plot produced by a high-
level graphics function. As long as the graphics function names the viewports
that it creates and does not pop them, it is possible to revisit the viewports to
add further output. This is what both lattice and ggplot2 do and examples
of this sort of annotation are given in Section 6.8. This approach to writing
high-level grid functions is discussed further in Chapter 8.

6.5.5 Graphical parameter settings in viewports

A viewport can have graphical parameter settings associated with it via the gp
argument to viewport(). When a viewport has graphical parameter settings,
those settings affect all graphical objects drawn within the viewport, and all
other viewports pushed within the viewport, unless the graphical objects or
the other viewports specify their own graphical parameter setting. In other
words, the graphical parameter settings for a viewport modify the implicit
graphical context (see page 198).

216 R Graphics, Third Edition

viewport(gp=gpar(fill="gray"))

gr
id

.re
ct

()

gr
id

.re
ct

(g
p=

gp
ar

(fi
ll=

"b
la

ck
")

)

Figure 6.18
The inheritance of viewport graphical parameters. A diagram demonstrating how
viewport graphical parameter settings are inherited by graphical output within the
viewport. The viewport sets the default fill color to gray. The left-hand rectangle
specifies no fill color itself, so it is filled with gray. The right-hand rectangle specifies
a black fill color that overrides the viewport setting.

The following code demonstrates this rule. A viewport is pushed that has
a fill="gray" setting. A rectangle with no graphical parameter settings is
drawn within that viewport and this rectangle “inherits” the fill="gray"

setting. Next, another rectangle is drawn with its own fill setting, so it does
not inherit the viewport setting (see Figure 6.18).

> pushViewport(viewport(gp=gpar(fill="gray")))

> grid.rect(x=0.33, height=0.7, width=0.2)

> grid.rect(x=0.66, height=0.7, width=0.2,

gp=gpar(fill="black"))

> popViewport()

The graphical parameter settings in a viewport only affect other viewports and
graphical output within that viewport. The settings do not affect the viewport
itself. For example, parameters controlling the size of text (fontsize, cex,
etc.) do not affect the meaning of "line" units when determining the location
and size of the viewport, but they will affect the location and size of other
viewports or graphical output within the viewport. A layout (see Section
6.5.6) counts as being within the viewport (i.e., it is affected by the graphical
parameter settings of the viewport).

If there are multiple values for a graphical parameter setting, only the first is
used when determining the location and size of a viewport.

The grid Graphics Model 217

6.5.6 Layouts

A viewport can have a layout specified via the layout argument. A layout
in grid is similar to the same concept in traditional graphics (see Section
3.3.2). It divides the viewport region into several columns and rows, where
each column can have a different width and each row can have a different
height. For several reasons, however, layouts are much more flexible in grid:
there are many more coordinate systems for specifying the widths of columns
and the heights of rows (see Section 6.3); viewports can occupy overlapping
areas within the layout; and each viewport within the viewport tree can have
a layout (layouts can be nested). There is also a just argument to justify the
layout within a viewport when the layout does not occupy the entire viewport
region.

Layouts provide a convenient way to position viewports using the standard
set of coordinate systems, and provide an extra coordinate system, "null",
which is specific to layouts.

The basic idea is that a viewport can be created with a layout and then
subsequent viewports can be positioned relative to that layout. In simple
cases, this can be just a convenient way to position viewports in a regular grid,
but in more complex cases, layouts are the only way to apportion regions.
There are very many ways that layouts can be used in grid; the following
sections attempt to provide a glimpse of the possibilities by demonstrating a
series of example uses.

A grid layout is created using the function grid.layout() (not the base
function layout()).

A simple layout

The following code produces a simple layout with three columns and three
rows, where the central cell (row two, column two) is forced to always be
square (using the respect argument).

> vplay <- grid.layout(3, 3,

respect=rbind(c(0, 0, 0),

c(0, 1, 0),

c(0, 0, 0)))

The next piece of code uses this layout in a viewport. Any subsequent view-
ports may make use of the layout, or they can ignore it completely.

> pushViewport(viewport(layout=vplay))

218 R Graphics, Third Edition

col2

row2

Figure 6.19
Layouts and viewports. Two viewports occupying overlapping regions within a
layout. Each viewport is represented by a rectangle with the viewport name at the
top-left corner. The layout has three columns and three rows with one viewport
occupying all of row two and the other viewport occupying all of column two.

In the next piece of code, two further viewports are pushed within the viewport
with the layout. The layout.pos.col and layout.pos.row arguments are
used to specify which cells within the layout each viewport should occupy. The
first viewport occupies all of column two and the second viewport occupies all
of row two. This demonstrates that viewports can occupy overlapping regions
within a layout. A rectangle has been drawn within each viewport to show
the region that the viewport occupies (see Figure 6.19).

> pushViewport(viewport(layout.pos.col=2, name="col2"))

> upViewport()

> pushViewport(viewport(layout.pos.row=2, name="row2"))

A layout with units

This section describes a layout that makes use of grid units. In the context
of specifying the widths of columns and the heights of rows for a layout, there
is an additional unit available, the "null" unit. All other units ("cm", "npc",
etc.) are allocated first within a layout, then the "null" units are used to
divide the remaining space proportionally (see Section 3.3.2). The following
code creates a layout with three columns and three rows. The left column is
one inch wide and the top row is three lines of text high. The remainder of
the current region is divided into two rows of equal height and two columns

The grid Graphics Model 219

(1, 1)3line

1in

(1, 2)

1null

(1, 3) 3line

2null

(2, 1)1null (2, 2) (2, 3) 1null

(3, 1)1null

1in

(3, 2)

1null

(3, 3)

2null

1null

Figure 6.20
Layouts and units. A grid layout using a variety of coordinate systems to specify
the widths of columns and the heights of rows.

with the right column twice as wide as the left column (see Figure 6.20).

> unitlay <-

grid.layout(3, 3,

widths=unit(c(1, 1, 2),

c("in", "null", "null")),

heights=unit(c(3, 1, 1),

c("line", "null", "null")))

With the use of "strwidth" and "grobwidth" units it is possible to produce
columns that are just wide enough to fit graphical output that will be drawn
in the column (and similarly for row heights — see Section 7.12).

220 R Graphics, Third Edition

A nested layout

This section demonstrates the nesting of layouts. The following code defines
a function that includes a trivial use of a layout consisting of two equal-width
columns to produce grid output.

> gridfun <- function() {

pushViewport(viewport(layout=grid.layout(1, 2)))

pushViewport(viewport(layout.pos.col=1))

grid.rect()

grid.text("black")

grid.text("&", x=1)

popViewport()

pushViewport(viewport(layout.pos.col=2, clip="on"))

grid.rect(gp=gpar(fill="black"))

grid.text("white", gp=gpar(col="white"))

grid.text("&", x=0, gp=gpar(col="white"))

popViewport(2)

}

The next piece of code creates a viewport with a layout and places the output
from the above function within a particular cell of that layout (see Figure
6.21).

> pushViewport(

viewport(

layout=grid.layout(5, 5,

widths=unit(c(5, 1, 5, 2, 5),

c("mm", "null", "mm",

"null", "mm")),

heights=unit(c(5, 1, 5, 2, 5),

c("mm", "null", "mm",

"null", "mm")))))

> pushViewport(viewport(layout.pos.col=2, layout.pos.row=2))

> gridfun()

> popViewport()

The next piece of code calls the function again to draw the same output within
a different cell of the layout.

> pushViewport(viewport(layout.pos.col=4, layout.pos.row=4))

> gridfun()

> popViewport(2)

The grid Graphics Model 221

black & white&

black & white&

Figure 6.21
Nested layouts. An example of a layout nested within a layout. The black and
white squares are drawn within a layout that has two equal-width columns. One
instance of the black and white squares has been embedded within cell (2,2) of a
layout consisting of five columns and five rows of varying widths and heights (as
indicated by the dashed lines). Another instance has been embedded within cell
(4,4).

Although the result of this particular example could be achieved using a single
layout, what this shows is that it is possible to take grid code that makes use
of a layout (and may have been written by someone else) and embed it within
a layout of your own. A more sophisticated example of this idea, involving
lattice plots, is given in Section 6.8.2.

6.6 Missing values and non-finite values

Non-finite values are not permitted in the location, size, or scales of a viewport.
Viewport scales are checked when a viewport is created, but it is impossible
to be certain that locations and sizes are not non-finite when the viewport
is created, so this is only checked when the viewport is pushed. Non-finite
values result in error messages.

The locations and sizes of graphical objects can be specified as missing values
(NA, "NA") or non-finite values (NaN, Inf, -Inf). For most graphical primitives,
non-finite values for locations or sizes result in the corresponding primitive

222 R Graphics, Third Edition

not being drawn. For the grid.line.to() function, a line segment is only
drawn if the previous location and the new location are both not non-finite.
For grid.polygon(), a non-finite value breaks the polygon into two separate
polygons. This break happens within the current polygon as specified by the
id argument. All polygons with the same id receive the same gp settings. For
line-drawing primitives that are supposed to draw arrowheads, an arrowhead
is only drawn if the first or last line segment is drawn.

Figure 6.22 shows the behavior of these primitives where x- and y-locations
are seven equally spaced locations around the perimeter of a circle. In the
top-left figure, all locations are not non-finite. In each of the other figures,
two locations have been made non-finite (indicated in each case by gray text).

Non-finite values for fontsize, lineheight, and cex are silently ignored; the
effect is the same as not specifying a parameter setting. This is because there
are grid units that rely on these parameter settings; ensuring finite values
ensures that coordinate system transformations can occur.

6.7 Interactive graphics

The strength of the grid system is in the production of static graphics and only
very basic support for user interaction is provided via the grid.locator()

function. This function returns the location of a single mouse click relative
to the current viewport. The result is a list containing an x and a y unit.
The unit argument can be used to specify the coordinate system that is to
be used for the result.

6.8 Customizing lattice plots

The lattice package described in Chapter 4 produces complete and very so-
phisticated plots using grid. It makes use of a sometimes large number of
viewports to arrange the graphical output. A page of lattice output contains
a top-level viewport with a quite complex layout that provides space for all of
the panels and strips and margins used in the plot. Viewports are created for
each panel and for each strip (among other things), and the plot is constructed
from a large number of rectangles, lines, text, and data points.

The grid Graphics Model 223

NA1

NA5

NA2

NA6

NA3

NA7

Figure 6.22
Non-finite values for line-to, polygons, and arrows. The effect of non-finite values
for grid.line.to(), grid.polygon(), and grid.lines() (with an arrow specified).
In each panel, a single gray polygon, a single thick black line (with an arrow at the
end), and a series of thin white line-tos are drawn through the same set of seven
points. In some cases, certain locations have been set to NA (indicated by gray text),
which causes the polygon to become cropped, creates gaps in the lines, and can
cause the arrowhead to disappear. In the bottom-left panel, the seventh location is
not NA, but it produces no output.

224 R Graphics, Third Edition

In many cases, it is possible to use lattice without having to know anything
about grid. However, a knowledge of grid provides a number of more ad-
vanced ways to work with lattice output (also see Section 7.14).

6.8.1 Adding grid output to lattice output

The functions that lattice provides for adding output to panels, for example,
panel.text() and panel.points(), are restricted because they only allow
output to be located and sized relative to the "native" coordinate system
of the panel (i.e., relative to the panel axes). The low-level grid graphical
primitives provide much more control over the location and size of additional
panel output. It is even possible to create and push extra viewports within a
panel if desired, although it is very important that they are popped again or
lattice will get very confused.

In a similar vein, the grid functions upViewport() and downViewport() al-
low for more flexible navigation of a lattice plot compared to the function
trellis.focus().

The following code provides an example of grid.text() to add output within
a lattice panel function. This produces a variation on Figure 4.5 with a text
label in the top-right corner of each panel to indicate the number of data
values in each panel (see Figure 6.23).∗

> xyplot(mpg ~ disp | factor(gear), data=mtcars,

panel=function(subscripts, ...) {

grid.text(paste("n =", length(subscripts)),

unit(1, "npc") - unit(1, "mm"),

unit(1, "npc") - unit(1, "mm"),

just=c("right", "top"))

panel.xyplot(subscripts=subscripts, ...)

})

6.8.2 Adding lattice output to grid output

As well as the advantages of using grid functions to add further output to
lattice plots, an understanding that lattice output is really grid output
makes it possible to embed lattice output within grid output. The following
code provides a simple example where two lattice plots are arranged together
on a page by drawing them within grid viewports (see Figure 6.24).

∗The data are from the mtcars data set (see page 130).

The grid Graphics Model 225

disp

m
pg

10

15

20

25

30

35

100 200 300 400

n = 15
3

n = 12
4

10

15

20

25

30

35n = 5
5

Figure 6.23
Adding grid output to a lattice plot (the lattice plot in Figure 4.5). The grid
function grid.text() is used within a lattice panel function to show the number
of points in each panel.

226 R Graphics, Third Edition

Freq

3

4

5

0 5 10 15

disp

m
pg

10

15

20

25

30

35

100 200 300 400

3
4
5

Figure 6.24
Embedding a lattice plot within grid output. Two lattice plots are arranged on a
page by drawing them within grid viewports.

> grid.newpage()

> pushViewport(viewport(x=0, width=.4, just="left"))

> print(barchart(table(mtcars$gear)),

newpage=FALSE)

> popViewport()

> pushViewport(viewport(x=.4, width=.6, just="left"))

> print(xyplot(mpg ~ disp, data=mtcars,

group=gear,

auto.key=list(space="right")),

newpage=FALSE)

> popViewport()

The viewports are set up using the standard grid functions, then the lat-
tice plots are drawn within the viewports by explicitly calling print() and
specifying newpage=FALSE.

6.9 Customizing ggplot2 output

Like lattice, the ggplot2 package uses grid to do its drawing, which involves
creating a lot of viewports and drawing a lot of graphical primitives. This
means that it is possible to use low-level grid functions to manipulate and

The grid Graphics Model 227

add further drawing to ggplot2 output.

6.9.1 Adding grid output to ggplot2 output

There are two main obstacles to using grid functions to add further drawing
to ggplot2 output: we have to call the grid.force() function to make the
viewports that ggplot2 produces available (see Section 7.7); and the view-
ports created by ggplot2 do not have any knowledge of the x-axis or y-axis
scale on the plot, so it is not easy to position extra output relative to the plot
scales. A third difficulty is that the viewports that ggplot2 creates are not
named as conveniently as the lattice viewports.

Nevertheless, we can still locate further drawing using any of the other grid
coordinate systems. For example, the following code draws a ggplot2 scat-
terplot and then calls grid.force() to make the viewports available. The
grid.grep() function is then used to get the exact name of the “panel” view-
port in the plot (see Section 7.2). We then navigate to the panel viewport
and place a text label in the top-right corner of the plot (see Figure 6.25).

> ggplot(mtcars2, aes(x=disp, y=mpg)) +

geom_point()

> grid.force()

> panelvp <- grid.grep("panel", grobs=FALSE,

viewports=TRUE, grep=TRUE)

> downViewport(panelvp)

> grid.text(paste("n =", nrow(mtcars2)),

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("right", "top"))

Chapter 7 provides more information on the ideas and tools required to add
grid output to ggplot2 plots.

6.9.2 Adding ggplot2 output to grid output

Similar to lattice functions, the ggplot2 functions create a "ggplot" object,
which only produces output when it is printed. The printing can be controlled
so that, for example, ggplot2 does not start a new page for the plot. This
makes it possible to set up grid viewports and draw ggplot2 output within
the viewports.

228 R Graphics, Third Edition

10

15

20

25

30

35

100 200 300 400
disp

m
pg

n = 32

Figure 6.25
Adding grid output to a ggplot2 plot. A text label is added to a ggplot2 scatter-
plot by navigating to the appropriate ggplot2 viewport and calling grid.text().

The following code demonstrates this idea by drawing a ggplot2 barplot to
the left of a ggplot2 scatterplot (see Figure 6.26).

> grid.newpage()

> pushViewport(viewport(x=0, width=1/3, just="left"))

> print(ggplot(mtcars2, aes(x=trans)) +

geom_bar(),

newpage=FALSE)

> popViewport()

> pushViewport(viewport(x=1/3, width=2/3, just="left"))

> print(ggplot(mtcars2, aes(x=disp, y=mpg)) +

geom_point(aes(color=trans)) +

scale_color_manual(values=gray(2:1/3)),

newpage=FALSE)

> popViewport()

We can even combine lattice plots with ggplot2 plots, as shown in the fol-
lowing code (see Figure 6.27).

The grid Graphics Model 229

0

5

10

15

automatic manual
trans

co
un

t

10

15

20

25

30

35

100 200 300 400
disp

m
pg

trans

automatic

manual

Figure 6.26
Embedding a ggplot2 plot within grid output. Two ggplot2 plots are drawn
within two grid viewports. This is how to get more than one ggplot2 plot on the
same page.

> grid.newpage()

> pushViewport(viewport(x=0, width=.4, just="left"))

> print(ggplot(mtcars2, aes(x=trans)) +

geom_bar(),

newpage=FALSE)

> popViewport()

> pushViewport(viewport(x=.4, width=.6, just="left"))

> print(xyplot(mpg ~ disp, data=mtcars,

group=gear,

auto.key=list(space="right"),

par.settings=list(

superpose.symbol=list(pch=c(1, 3, 16),

fill="white"))),

newpage=FALSE)

> popViewport()

230 R Graphics, Third Edition

0

5

10

15

automatic manual
trans

co
un

t

disp
m

pg

10

15

20

25

30

35

100 200 300 400

3
4
5

Figure 6.27
Combining a lattice plot with a ggplot2 plot. A ggplot2 plot is drawn within a
grid viewport on the left side of the page and a lattice plot is drawn within a grid
viewport on the right side of the page.

Chapter summary

The grid package provides a number of functions for producing basic
graphical output such as lines, polygons, rectangles, and text, plus
some functions for producing slightly more complex output such as
data symbols, smooth curves, and axes. Graphical output can be
located and sized relative to a large number of coordinate systems
and there are a number of graphical parameter settings for controlling
the appearance of output, such as colors, fonts, and line types.

Viewports can be created to provide contexts for drawing. A viewport
defines a rectangular region on the device and all coordinate systems
are available within all viewports. Viewports can be arranged using
layouts and nested within one another to produce sophisticated ar-
rangements of graphical output.

Because lattice and ggplot2 output is grid output, grid functions
can be used to add further output to a ggplot2 or lattice plot, and
grid functions can also be used to control the size and placement of
ggplot2 and lattice plots.

7

The grid Graphics Object Model

Chapter preview

This chapter describes how to work with graphical objects (grobs).
The main advantage of this approach is that it is possible to modify
a scene that was produced using grid without having to modify the
source code that produced the scene. Because lattice and ggplot2
are built on grid, this means it is possible to modify a ggplot2 or
lattice plot.

There are also benefits from being able to do such things as ask a piece
of graphical output how big it is. For example, this makes it easy to
leave space for a legend beside a plot.

Graphical objects can be combined to form larger, hierarchical graph-
ical objects (gTrees). This makes it possible to control the appearance
and position of whole groups of graphical objects at once.

This chapter describes the grid concepts of grobs and gTrees as well
as important functions for accessing, querying, and modifying these
objects.

The previous chapter mostly dealt with using grid functions to produce graph-
ical output. That knowledge is useful for annotating a plot produced using
grid (such as a lattice plot), for producing one-off or customized plots for
your own use, and for writing simple graphics functions.

This chapter addresses grid functions for creating and manipulating graphical
objects. This information is useful for querying or modifying graphical output
that was produced by grid (such as a lattice plot) and for writing graphical
functions and objects for others to use (also see Chapter 8).

231

232 R Graphics, Third Edition

7.1 Working with graphical output

This section describes using grid to modify graphical output. Every time that
we draw something with grid, in addition to producing graphical output, we
create graphical objects, called grobs, and grid keeps a record of those objects
(called a display list). For example, the following code draws a circle (see the
left panel of Figure 7.1).

> grid.circle(r=.4, name="mycircle")

In addition to producing a circle that we can see, this code generates a
"circle" grob on the display list. We can call the grid.ls() function to
see all grobs on the display list.

> grid.ls()

mycircle

We can also call functions to modify grobs on the display list. This is where
it is important that we gave the grob a name because we use the grob names
to identify which grob we want to modify.

For example, the grid.edit() function can be used to modify a grob on the
display list. In the following code, we modify the circle object to change its
fill color (see the middle panel of Figure 7.1). In this case, the gp component
of the circle grob is being modified. Typically, most arguments that can be
specified when first drawing output can also be used when editing output.

> grid.edit("mycircle",

gp=gpar(fill="grey"))

The grid.remove() function can be used to remove a grob from the display
list. The following code deletes the output by removing the circle object
from the display list (see the right panel of Figure 7.1).

> grid.remove("mycircle")

Any output produced by grid functions can be interacted with in this way,
including output from lattice and ggplot2 functions (see Sections 7.14 and
7.15).

The grid Graphics Object Model 233

Figure 7.1
Modifying a circle grob. The left panel shows the output produced by a call to
grid.circle(), the middle panel shows the result of using grid.edit() to modify
the colors of the circles, and the right panel shows the result of using grid.remove()

to delete the circles.

Table 7.1
Functions for working with grobs. Functions of the form grid.*() access and de-
structively modify grobs on the grid display list and affect graphical output. Func-
tions of the form *Grob() work with user-level grobs and return grobs as their values
(they have no effect on graphical output).

Function to Work Function to Work

with Output Description with grobs

grid.get() Returns a copy of one or
more grobs

getGrob()

grid.edit() Modifies one or more grobs editGrob()

grid.add() Adds a grob to one or more
grobs

addGrob()

grid.remove() Removes one or more grobs removeGrob()

grid.set() Replaces one or more grobs setGrob()

In addition to editing and removing grobs, we can add grobs and replace grobs;
Table 7.1 shows the main functions for working with grobs on the display list.

We can also disable the grid display list, using the grid.display.list()

function, in which case no grobs are stored, so these sorts of manipulations
are no longer possible.

234 R Graphics, Third Edition

7.2 Listing graphical objects

All of the functions that modify grobs on the grid display list require the name
of a grob as their first argument. For complex grid scenes, such as lattice
or ggplot2 plots, there may be many grobs in the scene and the names of
the grobs may not be known. In these cases, the grid.ls() function can be
useful to list the names of the grobs in the current scene.

As an example, the following code draws a simple lattice scatterplot (see
Figure 7.2.

> xyplot(mpg ~ disp, mtcars)

The grobs in this plot are listed with a call to grid.ls(). This allows us to
see all of the names of the grobs that lattice created.

> grid.ls()

plot_01.background

plot_01.xlab

plot_01.ylab

plot_01.ticks.top.panel.1.1

plot_01.ticks.left.panel.1.1

plot_01.ticklabels.left.panel.1.1

plot_01.ticks.bottom.panel.1.1

plot_01.ticklabels.bottom.panel.1.1

plot_01.ticks.right.panel.1.1

plot_01.xyplot.points.panel.1.1

plot_01.border.panel.1.1

We can also list the viewports that lattice created and we can show longer
names so that it is easier to distinguish between grobs and viewports.

The grid Graphics Object Model 235

disp

m
pg

10

15

20

25

30

35

100 200 300 400

Figure 7.2
Listing grobs using grid.ls(). This plot is produced by lattice, but it generates a
number of grid grobs and viewports.

236 R Graphics, Third Edition

> grid.ls(viewports=TRUE, fullNames=TRUE)

viewport[ROOT]

rect[plot_01.background]

viewport[plot_01.toplevel.vp]

viewport[plot_01.xlab.vp]

text[plot_01.xlab]

upViewport[1]

viewport[plot_01.ylab.vp]

text[plot_01.ylab]

upViewport[1]

viewport[plot_01.figure.vp]

upViewport[1]

viewport[plot_01.panel.1.1.vp]

upViewport[1]

viewport[plot_01.strip.1.1.off.vp]

segments[plot_01.ticks.top.panel.1.1]

upViewport[1]

viewport[plot_01.strip.left.1.1.off.vp]

segments[plot_01.ticks.left.panel.1.1]

text[plot_01.ticklabels.left.panel.1.1]

upViewport[1]

viewport[plot_01.panel.1.1.off.vp]

segments[plot_01.ticks.bottom.panel.1.1]

text[plot_01.ticklabels.bottom.panel.1.1]

segments[plot_01.ticks.right.panel.1.1]

upViewport[1]

downViewport[plot_01.panel.1.1.vp]

points[plot_01.xyplot.points.panel.1.1]

upViewport[1]

downViewport[plot_01.panel.1.1.off.vp]

rect[plot_01.border.panel.1.1]

upViewport[1]

viewport[plot_01.]

upViewport[1]

upViewport[1]

In the case of lattice plots, all grob and viewport names should be unique
and meaningful, but that is not guaranteed to be the case for other code. For
example, some of the grobs and viewports in ggplot2 plots are less obvious
(the case of ggplot2 plots is discussed in more detail in Section 7.15).

When we have a lot of grobs and viewports and the naming system is less
clear, the grid.grep() function can be used to search for grob or viewport

The grid Graphics Object Model 237

names. For example, using the lattice plot above, the following code finds
the names of all grobs that contain the word "lab".

> grid.grep("lab", grep=TRUE, global=TRUE)

[[1]]

plot_01.xlab

[[2]]

plot_01.ylab

[[3]]

plot_01.ticklabels.left.panel.1.1

[[4]]

plot_01.ticklabels.bottom.panel.1.1

7.3 Selecting graphical objects

All of the functions that modify grobs on the grid display list, such as
grid.edit(), require the name of a grob as their first argument. This se-
lects which grob to modify.

In the simplest case, we want to modify a single grob, but this section shows
how to select more than one grob to modify.

To help demonstrate these situations, the following code draws eight con-
centric circle grobs. The first, third, fifth, and seventh circles are named
"circle.odd" and the second, fourth, sixth, and eighth circles are named
"circle.even". The circles are initially drawn with decreasing shades of
gray (see the left panel of Figure 7.3).

> suffix <- rep(c("odd", "even"), 4)

> names <- paste0("circle.", suffix)

> names

[1] "circle.odd" "circle.even" "circle.odd" "circle.even"

[5] "circle.odd" "circle.even" "circle.odd" "circle.even"

238 R Graphics, Third Edition

> for (i in 1:8)

grid.circle(name=names[i], r=(9 - i)/20,

gp=gpar(col=NA, fill=gray(i/10)))

The function grid.ls() shows that we have eight grobs in the current scene.

> grid.ls()

circle.odd

circle.even

circle.odd

circle.even

circle.odd

circle.even

circle.odd

circle.even

All of the functions for working with graphical output have a grep argument.
If we set this to TRUE, then the grob name that we provide as the first argument
is treated as a regular expression. There is also a global argument and if we
set that to TRUE, then all matching grobs on the display list (not just the first)
will be selected.

Working with the concentric circles that we drew above, the following call to
grid.edit() makes use of the global argument to modify all grobs named
"circle.odd" and change their fill color to a very dark gray (see the middle
panel of Figure 7.3).

> grid.edit("circle.odd", gp=gpar(fill="gray10"),

global=TRUE)

A second call to grid.edit(), below, makes use of both the grep argument
and the global argument to modify all grobs with names matching the pattern
"circle" (all of the circles) and change their fill color to a light gray and their
border color to a darker gray (see the right panel of Figure 7.3).

> grid.edit("circle", gp=gpar(col="gray", fill="gray90"),

grep=TRUE, global=TRUE)

Section 7.15 provides an example of using these more complex selections when
modifying a ggplot2 plot.

There are convenience functions grid.gget(), grid.gedit(), and
grid.gremove() that have the grep and global arguments set to TRUE by
default.

The grid Graphics Object Model 239

Figure 7.3
Editing grobs using grep and global in grid.edit(). The left-hand panel shows
eight separate concentric circles, with names alternating between "circle.odd" and
"circle.even", filled with progressively lighter shades of gray. The middle panel
shows the use of the global argument to change the fill for all circles named "cir-

cle.odd" to black. The right-hand panel shows the use of the grep and global

arguments to change all circles whose names match the pattern "circle" (all of the
circles) to have a light gray fill and a gray border.

7.4 Grob lists, trees, and paths

As well as basic grobs, it is possible to work with a list of grobs (a gList) or
several grobs combined together in a tree-like structure (a gTree). A gList
is just a list of several grobs (produced by the function gList()). A gTree
is a grob that can contain other grobs. Two examples of gTree objects are
the xaxis and yaxis objects that are produced by the grid.xaxis() and
grid.yaxis() functions. More complex examples are the gTrees that are
produced to draw ggplot2 plots (see Section 7.15). Another source of gTrees
is the grid.grab() function (see Section 7.10). This section looks at how to
work with gTrees.

When we call the grid.xaxis() function, in addition to drawing an axis, we
create an xaxis grob. This grob contains a high-level description of an axis,
plus several child grobs representing the lines and text that make up the axis
(see Figure 7.4).

The following code draws an x-axis and creates an xaxis grob on the display
list (see the left panel of Figure 7.5). The grid.ls() function shows that the
axis1 grob has three child grobs. Indenting is used to show that the major,
ticks, and labels grobs are children of the axis1 grob.

240 R Graphics, Third Edition

"xaxis1"
xaxis gTree

"major"
lines grob

"ticks"
lines grob

"labels"
text grob

Figure 7.4
The structure of a gTree. A diagram of the structure of an xaxis gTree. There is
the xaxis gTree itself (here given the name "xaxis1") and there are its children: a
lines grob named "major", another lines grob named "ticks", and a text grob
named "labels".

> grid.xaxis(name="axis1", at=1:4/5)

> grid.ls()

axis1

major

ticks

labels

The hierarchical structure of gTrees makes it possible to interact with both a
high-level description, as provided by the xaxis grob, and a low-level descrip-
tion, as provided by the children of the gTree. The following code demonstrates
an interaction with the high-level description of an xaxis grob. The xaxis

gTree contains components describing where to put tick marks on the axis and
whether to draw labels and so on. The code below shows the at component of
an xaxis grob being modified. The xaxis grob is designed so that it modifies
its children to match the new high-level description so that only three ticks
are now drawn (see the middle panel of Figure 7.5).

> grid.edit("axis1", at=1:3/4)

It is also possible to access the children of a gTree. In the case of an xaxis,
there are three children: a lines grob with the name "major"; another lines

The grid Graphics Object Model 241

0.2 0.4 0.6 0.8 0.25 0.5 0.75 0.2
5

0.5 0.7
5

Figure 7.5
Editing a gTree. The left-hand panel shows a basic x-axis, the middle panel shows
the effect of editing the at component of the x-axis (all of the tick marks and
labels have changed), and the right-hand panel shows the effect of editing the rot

component of the "labels" child of the x-axis (only the angle of rotation of the
labels has changed).

grob with the name "ticks"; and a text grob with the name "labels". Any
of these children can be accessed by specifying the name of the xaxis grob
and the name of the child in a grob path (gPath). A gPath is like a viewport
path (see Section 6.5.3) — it is just a concatenation of several grob names.
The following code shows how to access the "labels" child of the xaxis grob
using the gPath() function to specify a gPath. The gPath specifies the child
called "labels" in the gTree called "axis1". The labels are rotated to 45
degrees (see the right panel of Figure 7.5).

> grid.edit(gPath("axis1", "labels"), rot=45)

It is also possible to specify a gPath directly as a string, for example "labels",
but this is only recommended for interactive use.

7.4.1 Graphical parameter settings in gTrees

A gTree can have graphical parameter settings associated with it, in which
case, these settings affect all graphical objects that are children of the gTree,
unless the children specify their own graphical parameter setting. In other
words, the graphical parameter settings for a gTree modify the implicit graph-
ical context for the children of the gTree (see page 198).

The following code demonstrates this rule. First, we create an xaxis grob,
then we edit the graphical parameter settings of the high-level "axis2" gTree
and specify the drawing color to be "gray". This means that all of the children
of the xaxis, the lines and labels, will be drawn gray. Finally, we edit the
graphical parameter setting of the low-level tick "labels" so that only those
are drawn black (see Figure 7.6).

242 R Graphics, Third Edition

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 7.6
Graphical parameters in a gTree. The left-hand panel shows a basic x-axis, the
middle panel shows the effect of editing the gp component of the x-axis (all of the
tick marks and labels have changed color), and the right-hand panel shows the effect
of editing the gp component of the "labels" child of the x-axis (only the labels have
changed color).

> grid.xaxis(name="axis2", at=1:4/5)

> grid.edit("axis2", gp=gpar(col="gray"))

> grid.edit("labels", gp=gpar(col="black"))

Another example of this behavior is given in Section 7.8.

7.5 Searching for grobs

This section provides details about how grob names and gPaths are used to
find a grob.

Grobs are stored on the grid display list in the order that they are drawn.
When searching for a matching name, the functions in Table 7.1 search the
display list from the beginning. This means that if there are several grobs
whose names are matched, they will be found in the order that they were
drawn.

Furthermore, the functions perform a depth-first search. This means that if
there is a gTree on the display list, and its name is not matched, then its
children are searched for a match before any other grobs on the display list
are searched.

The grid Graphics Object Model 243

The name to search for can be given as a gPath, which makes it possible to
explicitly specify a particular child grob of a particular gTree. For example,
"labels" specifies a grob called "labels" that must have a parent called
"axis1".

The argument strict controls whether a complete match must be found.
By default, the strict argument is FALSE, so in the previous example, the
"labels" child of "axis2" could have been accessed with the expression
grid.get("labels"). On the other hand, if strict is set to TRUE, then
simply specifying "labels" results in no match because there is no top-level
grob with the name "labels", as shown by the following code.

> grid.edit("labels", strict=TRUE, rot=45)

Error in

editDLfromGPath(gPath, specs, strict, grep, global, redraw) :

'gPath' (labels) not found

7.6 Editing graphical context

When a grob is edited using grid.edit() or editGrob(), the modification of
a gp component is treated as a special case. Only the graphical parameters
that are explicitly given new settings are modified. All other settings remain
untouched. The following code provides a simple example.

A circle is drawn with a gray fill color (see the left panel of Figure 7.7), then
the border of the circle is made thick (see the middle panel of Figure 7.7) and
the fill color remains the same. Finally, the border is changed to a dashed
line type, but it stays thick (and the fill remains gray — see the right panel
of Figure 7.7).

> grid.circle(r=0.3, gp=gpar(fill="gray80"),

name="mycircle")

> grid.edit("mycircle", gp=gpar(lwd=5))

> grid.edit("mycircle", gp=gpar(lty="dashed"))

244 R Graphics, Third Edition

Figure 7.7
Editing the graphical context. The left-hand panel shows a circle with a solid, thin
black border and a gray fill. The middle panel shows the effect of making the border
thicker. The important point is that the other features of the circle are not affected
(the border is still solid and the fill is still gray). The right-hand panel shows another
demonstration of the same idea, with the border now drawn dashed (but the border
is still thick and the fill is still gray).

7.7 Forcing graphical objects

It is possible to create a gTree that does not immediately draw its children
(see Section 8.3.4) and only decides what to draw when the gTree as a whole
is drawn. For example, if we call grid.xaxis() without specifying the at

argument, an xaxis gTree is created without any children. This is because
the xaxis will decide what tick marks to draw only when it is drawn (when
it can ask for the "native" scale of the viewport that it is drawn within).

The following code provides an example. We first push a viewport and specify
an x-axis scale of 0 to 100. A rectangle is drawn to show the location of the
viewport and an x-axis is drawn along the bottom edge of the viewport (see
Figure 7.8).

> pushViewport(viewport(xscale=c(0, 100)))

> grid.rect(name="rect")

> grid.xaxis(name="axis3")

If we list the grobs on the display list, there are two, the gray rectangle and
the xaxis, but the xaxis has no children (on the display list).

> grid.ls()

rect

axis3

The grid Graphics Object Model 245

0 20 40 60 80 100

Figure 7.8
An xaxis grob drawn within a viewport (represented by the black rectangle) with
an x-axis scale from 0 to 100. This axis has an at value of NULL so it determines its
tick mark locations and labels as it is drawn (rather than when it was created).

This means that we cannot directly access or modify the children of the xaxis.
However, the grid.force() function can be used to force the xaxis to create
its children on the display list, as shown in the following code. The children
of the xaxis are now visible on the display list, so we can access and modify
them.

> grid.force()

> grid.ls()

rect

axis3

major

ticks

labels

Another, more complex, example of this situation occurs when we create a
ggplot2 plot. The ggplot2 functions create a gTree with very few children;
most grobs are only created as the ggplot2 plot is drawn and are not recorded
on the display list. This is why it is necessary to call grid.force() before
we can modify the grobs and viewports for a ggplot2 plot (see Section 7.15).

7.8 Working with graphical objects off-screen

Chapter 6 described grid functions that draw graphical output. All of those
functions also create grobs representing the drawing and those grobs are stored
on the grid display list.

246 R Graphics, Third Edition

We can also create a grob without producing any output. This section de-
scribes how to use grid to just produce graphical objects (without drawing
them). There are functions to create grobs, functions to combine them and
to modify them, and the grid.draw() function to draw them.

For each grid function that produces graphical output, there is a counterpart
that produces a graphical object and no graphical output. For example, the
counterpart to grid.circle() is the function circleGrob() (see Table 6.1).
Similarly, for each function that works with grobs on the grid display list,
there is a counterpart for working with grobs off-screen. For example, the
counterpart to grid.edit() is editGrob() (see Table 7.1).

The following example demonstrates the process of creating a grob and work-
ing with the grob without drawing it. The code below draws a rectangle that
is as wide as a text grob, but the text is not drawn. The function textGrob()

produces a text grob, but does not draw it.

> grid.rect(width=grobWidth(textGrob("Some text")))

We can also create a grob and modify it before producing any graphical out-
put (i.e., only draw the final result). The following code shows an example
involving an xaxis. The first expression creates an xaxis, but does not draw
anything.

> ag <- xaxisGrob(at=1:4/5, name="axis4")

Because we specified the at argument, the xaxis children have also been
created. The next code shows that the grid.ls() function can be given a

gTree as its first argument, in which case it will list the children of the gTree.

> grid.ls(ag)

axis4

major

ticks

labels

Next, we modify the font face for the "labels" child of the xaxis to be italic.
The result is the modified xaxis object; still nothing has been drawn to this
point.

> ag <- editGrob(ag, "labels", gp=gpar(fontface="italic"))

The grid Graphics Object Model 247

Finally, we call the grid.draw() function to draw the (modified) xaxis.

> grid.draw(ag)

7.9 Reordering graphical objects

Another way of modifying the children of a gTree is to change the order in
which they are drawn, using the grid.reorder() function.

In order to demonstrate this tool, the following code creates a gTree with a
set of rectangles as its children, one wide and short, one thin and tall, and
one square (in that order), and draws it (see the left panel of Figure 7.9).

> r1 <- rectGrob(height=.2, gp=gpar(fill="black"), name="r1")

> r2 <- rectGrob(width=.2, gp=gpar(fill="grey"), name="r2")

> r3 <- rectGrob(width=.4, height=.4, gp=gpar(fill="white"),

name="r3")

> gt <- gTree(children=gList(r1, r2, r3), name="gt")

> grid.draw(gt)

The following call to grid.reorder() reverses the order of the children so
that the square is drawn first (at the back see the right panel of Figure 7.9).

> grid.reorder("gt", c("r3", "r2", "r1"))

7.10 Capturing output

In the example above, several grobs were created off-screen and then grouped
together as a gTree, which allowed the collection of grobs to be dealt with as
a single object.

It is also possible first to draw several grobs and then to group them. The
grid.grab() function does this by generating a gTree from all of the grobs
in the current page of output. This means that output can be captured even

248 R Graphics, Third Edition

Figure 7.9

Reordering children in a gTree.

from a function that produces very complex output (lots of grobs), such as
a lattice plot. For example, the following code draws a lattice plot, then
creates a gTree containing all of the grobs in the plot.

> bwplot(voice.part ~ height, data=singer)

> bwplotTree <- grid.grab()

The grid.grab() function actually captures all of the viewports in the current
scene as well as the grobs, so drawing the gTree, as in the following code,
produces exactly the same output as the original plot.

> grid.newpage()

> grid.draw(bwplotTree)

Another function, grid.grabExpr() allows grid output to be captured off-
screen. This function takes an R expression and evaluates it. Any drawing
that occurs as a result of evaluating the expression does not produce any
output, but the grobs that would be produced are captured anyway.

The following code provides a simple demonstration. Here a lattice plot is
captured without drawing any output.∗

> grid.grabExpr(print(bwplot(voice.part ~ height, data=singer)))

∗The expression must explicitly print() the lattice plot because otherwise nothing
would be drawn (see Section 4.1).

The grid Graphics Object Model 249

gTree[GRID.gTree.75]

Both the grid.grab() and grid.grabExpr() functions attempt to create a

gTree in a sophisticated way so that it is easier to work with the resulting

gTree. Unfortunately, this will not always produce a gTree that will exactly
replicate the original output. These functions issue warnings if they detect a
situation where output may not be reproduced correctly, and there is a wrap

argument that can be used to force the functions to produce a gTree that is
less sophisticated, but is guaranteed to replicate the original output.

7.11 Querying grobs

Another benefit of having graphical objects (as well as producing graphical
output) is that we can query graphical objects to find information about
them. Section 6.3.2 already described one way to access this facility with the
grobWidth() and grobHeight() functions, which allow us to calculate the
width and height of graphical output. The following code provides a simple
example by drawing some text and then a rectangle that is the same width
as the text.

> grid.text("text", name="t")

> grid.rect(width=grobWidth("t"))

A small extension to this idea is that we do not need to draw the text in order
to calculate its width. The following code again draws a rectangle that is as
wide as a piece of text, but it does not draw the text. Instead it just creates
a text grob and queries that.

> t <- textGrob("text")

> grid.rect(width=grobWidth(t))

This section describes some important extra details about the calculation of
grob sizes and the editing of graphical contexts.

7.11.1 Calculating the sizes of grobs

The "grobwidth" and "grobheight" units, and the grobWidth() and
grobHeight() functions, provide a way to determine the size of a grob.

250 R Graphics, Third Edition

The most important point about this calculation is that the size of a grob
is always calculated relative to the current geometric and graphical context.
The following code demonstrates this point. First of all, a text grob and a
rect grob are created, and the dimensions of the rect grob are based on the
dimensions of the text.∗

> tg1 <- textGrob("Sample")

> rg1 <- rectGrob(x=rep(0.5, 2),

width=1.1*grobWidth(tg1),

height=1.3*grobHeight(tg1),

gp=gpar(col=c("gray60", "white"),

lwd=c(3, 1)))

Next, these two grobs are drawn in three different settings. In the first setting,
the rectangle and the text are drawn in the default geometric and graphical
context and the rectangle bounds the text (see the left panel of Figure 7.10).

> grid.draw(tg1)

> grid.draw(rg1)

In the second setting, the grobs are both drawn within a viewport that has
cex=2. Both the text and the rectangle are drawn bigger (the calculation of
the "grobwidth" and "grobheight" units takes place in the same context as
the drawing of the text grob; see the middle panel of Figure 7.10).

> pushViewport(viewport(gp=gpar(cex=2)))

> grid.draw(tg1)

> grid.draw(rg1)

> popViewport()

In the third setting, the text grob is drawn in a different context than the
rectangle, so the rectangle’s size is“wrong”(see the right panel of Figure 7.10).

> pushViewport(viewport(gp=gpar(cex=2)))

> grid.draw(tg1)

> popViewport()

> grid.draw(rg1)

∗The rect grob draws two rectangles: one thick and dark gray, one white and thin.

The grid Graphics Object Model 251

Sample Sample Sample

Figure 7.10
Calculating the size of a grob. In the left-hand panel, a text grob and a separate
rect grob, the size of which is calculated to be the size of the text grob, are drawn
together. In the middle panel, these objects are drawn together in a viewport with
a larger font size, so they are both larger. In the right-hand panel, only the text is
drawn in a viewport with a larger font size, so only the text is larger. The rectangle
calculates the size of the text in a different font context.

A related issue arises with the use of grob names when creating a "grobwidth"

or "grobheight" unit (see Section 6.3.2). The following code provides a
simple example.

A text grob and two rect grobs are created, with the dimensions of both
rectangles based upon the dimensions of the text. One rectangle, rg1 (the gray
one), uses the name "tg1" to refer to the text grob in the calls to grobWidth(),
and grobHeight(). The other rectangle, rg2 (the white one), just uses the
text grob itself.

> tg1 <- textGrob("Sample", name="tg1")

> rg1 <- rectGrob(width=1.1*grobWidth("tg1"),

height=1.3*grobHeight("tg1"),

gp=gpar(col="gray60", lwd=3))

> rg2 <- rectGrob(width=1.1*grobWidth(tg1),

height=1.3*grobHeight(tg1),

gp=gpar(col="white"))

When these rectangles and text are initially drawn, both rectangles frame the
text correctly (see the left panel of Figure 7.11).

> grid.draw(tg1)

> grid.draw(rg1)

> grid.draw(rg2)

However, if the text grob is modified, as shown below, only the rectangle rg1

(the dark gray rectangle) will be updated to correspond to the new dimensions

252 R Graphics, Third Edition

Sample Different text

Figure 7.11
Grob dimensions by reference. In the left-hand panel there are three grobs: one
text grob and two rect grobs. The sizes of both rect grobs are calculated from the
text grob. The difference is that the white rectangle is related to the text by value
and the dark gray rectangle is related to the text by reference. The right-hand panel
shows what happens when the text grob is edited. Only the dark gray, by-reference,
rectangle gets resized.

of the text (see the right panel of Figure 7.11). The rg1 rectangle, with its
reference to the grob name "tg1" will get the latest (modified) text grob, but
the rg2 rectangle only has the original text grob to work with.

> grid.edit("tg1", grep=TRUE, global=TRUE,

label="Different text")

With this approach, "grobwidth" and "grobheight" units are still evaluated
in the current geometric and graphical context, but in addition, only grobs
that have previously been drawn can be referred to. For example, drawing
the rectangle rg1 before drawing the text tg1 will not work because there is
no drawn grob named "tg1" from which a size can be calculated.

> grid.newpage()

> grid.draw(rg1)

Error in (function (name) :

grob 'tg1' not found

7.11.2 Calculating the positions of grobs

In addition to being able to query a grob about its dimensions, it is also
possible to query a grob about its location, using "grobx" and "groby" units,
or the grobX() and grobY() functions.

Locations are calculated relative to the current geometric and graphical con-
text, just like widths and heights, so all of the warnings from the previous
section also apply here.

The grid Graphics Object Model 253

A label

Figure 7.12
Calculating grob locations. The line segment is drawn from an explicit (x, y) start
location to an end location that is calculated using grobX() to give the left edge of
the box surrounding the text.

The grob locations are positions on the border of a grob, given by an angle
(relative to the “center” of the grob). The following code shows a simple
example usage (see Figure 7.12). A small dot is drawn on the left and a text
label, with a surrounding box, is drawn on the right. The box grob is named
"labelbox".

> grid.circle(.25, .5, r=unit(1, "mm"),

gp=gpar(fill="black"))

> grid.text("A label", .75, .5)

> grid.rect(.75, .5,

width=stringWidth("A label") + unit(2, "mm"),

height=unit(1, "line"),

name="labelbox")

A line segment, with an arrow, is now drawn between the dot and the left
edge of the box, using the grobX() function to determine the location of the
left edge of the box.

> grid.segments(.25, .5,

grobX("labelbox", 180), .5,

arrow=arrow(angle=15, type="closed"),

gp=gpar(fill="black"))

The next example demonstrates a more complex use. This replicates an ex-
ample from Figure 3.19 and demonstrates a possible use for “null” grobs.

First of all, two viewports are created, one in the top half of the page and one
in the bottom half.

254 R Graphics, Third Edition

> vptop <- viewport(width=.9, height=.4, y=.75,

name="vptop")

> vpbot <- viewport(width=.9, height=.4, y=.25,

name="vpbot")

> pushViewport(vptop)

> upViewport()

> pushViewport(vpbot)

> upViewport()

Now a rectangle and a line through some data are drawn in each viewport.

> grid.rect(vp="vptop")

> grid.lines(1:50/51, runif(50), vp="vptop")

> grid.rect(vp="vpbot")

> grid.lines(1:50/51, runif(50), vp="vpbot")

The next step does not draw anything, it just locates several null grobs at
specific locations, two in the top viewport and two in the bottom viewport.

> grid.null(x=.2, y=.95, vp="vptop", name="tl")

> grid.null(x=.4, y=.95, vp="vptop", name="tr")

> grid.null(x=.2, y=.05, vp="vpbot", name="bl")

> grid.null(x=.4, y=.05, vp="vpbot", name="br")

Finally, a polygon is drawn that spans both viewports. The first two vertices
of the polygon are calculated from the positions of the two null grobs in the
top viewport and the second two vertices of the polygon are calculated from
the positions of the two null grobs in the bottom viewport.

> grid.polygon(unit.c(grobX("tl", 0),

grobX("tr", 0),

grobX("br", 0),

grobX("bl", 0)),

unit.c(grobY("tl", 0),

grobY("tr", 0),

grobY("br", 0),

grobY("bl", 0)),

gp=gpar(col="gray", lwd=3))

The final result is shown in Figure 7.13.

The grid Graphics Object Model 255

Figure 7.13
Calculating null grob locations. The two line plots are drawn in separate viewports.
The thick gray rectangle is drawn relative to the locations of four null grobs, two of
which are located in the top viewport and two of which are located in the bottom
viewport.

256 R Graphics, Third Edition

7.12 Placing and packing grobs in frames

When drawing labels or legends on a plot, one of the difficult problems is
determining sufficient margins for the labels or legends. The "grobwidth"

and "grobheight" coordinate systems provide a way to determine the size of
a grob and can be used to achieve this sort of arrangement of components by,
for example, allocating appropriate regions within a layout.

The following code demonstrates this idea. First of all, some grobs are created
to use as components of a scene. The first grob, label, is a simple text grob.
The second grob, gplot, is a gTree containing a rect grob, a lines grob, and
a points grob that provide a simple representation of time-series data. The
gplot grob has a viewport in its vp component and the rectangle and lines
are drawn within that viewport.

> label <- textGrob("A\nPlot\nLabel ",

x=0, just="left")

> x <- seq(0.1, 0.9, length=50)

> y <- runif(50, 0.1, 0.9)

> gplot <-

gTree(

children=gList(rectGrob(gp=gpar(col="gray60",

fill="white")),

linesGrob(x, y),

pointsGrob(x, y, pch=16,

size=unit(1.5, "mm"))),

vp=viewport(width=unit(1, "npc") - unit(5, "mm"),

height=unit(1, "npc") - unit(5, "mm")))

The next piece of code defines a layout with two columns. The second column
of the layout has its width determined by the width of the label grob created
above. The first column will take up whatever space is left over.

> layout <- grid.layout(1, 2,

widths=unit(c(1, 1),

c("null", "grobwidth"),

list(NULL, label)))

Now some drawing can occur. A viewport is pushed with the layout defined
above, then the label grob is drawn in the second column of this layout,
which is exactly the right width to contain the text, and the gplot gTree is
drawn in the first column (see Figure 7.14).

The grid Graphics Object Model 257

A
Plot
Label

Figure 7.14
Packing grobs by hand. The scene was created using a frame object, into which the
time-series plot (consisting of a rectangle, lines, and points) was packed. The text
was then packed on the right-hand side, which meant that the time series plot was
allocated less room in order to leave space for the text.

> pushViewport(viewport(layout=layout))

> pushViewport(viewport(layout.pos.col=2))

> grid.draw(label)

> popViewport()

> pushViewport(viewport(layout.pos.col=1))

> grid.draw(gplot)

> popViewport(2)

The grid package provides a set of functions that make it more convenient to
arrange grobs like this so that they allow space for each other. The function
grid.frame(), and its off-screen counterpart frameGrob(), produce a gTree
with no children. Children are added to the frame using the grid.pack()

function and the frame makes sure that enough space is allowed for the child
when it is drawn. Using these functions, the previous example becomes sim-
pler, as shown by the following code (the output is the same as Figure 7.14).
The big difference is that there is no need to specify a layout as an appropriate
layout is calculated automatically.

The first call creates an empty frame. The second call packs gplot into the
frame; at this stage, gplot takes up the entire frame. The third call packs
the text label on the right-hand side of the frame; enough space is made for
the text label by reducing the space allowed for the rectangle.

> grid.frame(name="frame1")

> grid.pack("frame1", gplot)

> grid.pack("frame1", label, side="right")

There are many arguments to grid.pack() for specifying where to pack new
grobs within a frame. There is also a dynamic argument to specify whether

258 R Graphics, Third Edition

the frame should reallocate space if the grobs that have been packed in the
frame are modified.

Unfortunately, packing grobs into a frame like this becomes quite slow as more
grobs are packed, so it is most useful for very simple arrangements of grobs
or for interactively constructing a scene. An alternative approach, which
is a little more work, but still more convenient than dealing directly with
pushing and popping viewports (and can be made dynamic like packing), is
to place grobs within a frame that has a predefined layout. The following code
demonstrates this approach. This time, the frame is initially created with the
desired layout as defined above, then the grid.place() function is used to
position grobs within specific cells of the frame layout.

> grid.frame(name="frame1", layout=layout)

> grid.place("frame1", gplot, col=1)

> grid.place("frame1", label, col=2)

7.12.1 Placing and packing off-screen

In the previous two examples, the screen is redrawn each time a grob is packed
into the frame. An alternative is to create a frame and pack or place grobs
within it off-screen and only draw the frame once it is complete. The following
code demonstrates the use of the frameGrob() and placeGrob() functions to
achieve the same end result as shown in Figure 7.14, doing all of the construc-
tion of the frame off-screen.

> fg <- frameGrob(layout=layout)

> fg <- placeGrob(fg, gplot, col=1)

> fg <- placeGrob(fg, label, col=2)

> grid.draw(fg)

The function packGrob() is the off-screen counterpart of grid.pack().

7.13 Display lists

R’s graphics engine maintains a display list, which is a record of all graphical
output on a page, and this is used to redraw a scene if a page is resized (among

The grid Graphics Object Model 259

other things; see Section 9.6). The output from both base and grid graphics
functions is recorded on this display list.

The grid package also maintains its own separate display list, which is used
for accessing grobs in the current scene and for redrawing the current scene
after editing (i.e., after a call to grid.edit()). The grid display list can be
replayed explicitly using the grid.refresh() function.

The grid display list can be disabled using grid.display.list(), which
saves on grid’s memory usage, but disables grid’s ability to modify and re-
draw a scene. If the grid display list is disabled, the functions grid.edit(),
grid.get(), grid.add(), and grid.remove() will no longer work.

It is possible to record grid output only on the grid display list with the
engine.display.list() function, as shown by the following code. Redraw-
ing will be slightly slower, but this avoids the memory cost of having output
recorded on both the grid display list and the graphics engine display list.

> engine.display.list(FALSE)

This action only affects the recording of grid operations on the graphics en-
gine display list; base graphics output is still recorded on the graphics engine
display list.

7.14 Working with lattice grobs

The output from a lattice function is fundamentally just a collection of grid
viewports and grobs. Section 6.8 described some examples of making use of
the grid viewports that are set up by a lattice plot to add extra output. This
section looks at some examples of working with the grobs that are created by
a lattice plot.

The following code creates a lattice scatterplot to work with.

> xyplot(mpg ~ disp, mtcars)

The grid.ls() function shows the set of graphical primitives that have been
created for this plot.

260 R Graphics, Third Edition

> grid.ls()

plot_01.background

plot_01.xlab

plot_01.ylab

plot_01.ticks.top.panel.1.1

plot_01.ticks.left.panel.1.1

plot_01.ticklabels.left.panel.1.1

plot_01.ticks.bottom.panel.1.1

plot_01.ticklabels.bottom.panel.1.1

plot_01.ticks.right.panel.1.1

plot_01.xyplot.points.panel.1.1

plot_01.border.panel.1.1

The grobs created by other people’s functions will not necessarily provide
useful names for all components that are drawn, but in this case, it is easy to
spot which components provide the x-axis label and y-axis label for the plot.

The following code edits the axis labels, changes the font face to bold, and
positions the labels at the ends of the axes (see Figure 7.15).

> grid.edit("[.]xlab$", grep=TRUE,

label="Displacement",

x=unit(1, "npc"), just="right",

gp=gpar(fontface="bold"))

> grid.edit("[.]ylab$", grep=TRUE,

label="Miles per Gallon",

y=unit(1, "npc"), just="right",

gp=gpar(fontface="bold"))

Other grob operations are also possible. For example, the following code
removes the labels from the plot.

> grid.remove(".lab$", grep=TRUE, global=TRUE)

Finally, it is possible to group all of the grobs from a lattice plot together
using grid.grab(). This creates a gTree that can then be used as a component
in creating another picture.

The grid Graphics Object Model 261

disp

m
pg

10

15

20

25

30

35

100 200 300 400

Displacement

M
ile

s
pe

r
G

al
lo

n

10

15

20

25

30

35

100 200 300 400

Figure 7.15
Editing the grobs in a lattice plot. The top plot is an initial scatterplot produced
using the lattice function xyplot(). The bottom plot shows the effect of editing
the grid text grobs that represent the labels on the plot (the labels are relocated
at the ends of the axes and are drawn in a monospace font).

262 R Graphics, Third Edition

7.15 Working with ggplot2 grobs

Like lattice, ggplot2 creates lots of grid grobs when it draws a plot and
these grobs can be manipulated using grid functions.

The following code uses ggplot2 to create a scatterplot with a linear model
line of best fit.

> ggplot(mtcars2, aes(x=disp, y=mpg)) +

geom_point() +

geom_smooth(method=lm)

The grobs generated by ggplot2 are different from the grobs generated by
lattice in several important ways. First of all, ggplot2 only creates one
single large gTree that only creates individual grobs as it is drawn. We can
see this if we call grid.ls() for this ggplot2.

> grid.ls()

layout

If we want to access the individual grobs or viewports for the ggplot2 plot,
we must first call grid.force() (see Section 7.7).

> grid.force()

The output from grid.ls() now shows many individual grobs.

> grid.ls()

The grid Graphics Object Model 263

layout

background.1-9-12-1

panel.7-5-7-5

grill.gTree.193

panel.background..rect.184

panel.grid.minor.y..polyline.186

panel.grid.minor.x..polyline.188

panel.grid.major.y..polyline.190

panel.grid.major.x..polyline.192

NULL

geom_point.points.175

geom_smooth.gTree.180

geom_ribbon.polygon.177

GRID.polyline.178

NULL

panel.border..zeroGrob.181

spacer.8-6-8-6

spacer.8-4-8-4

spacer.6-6-6-6

spacer.6-4-6-4

axis-t.6-5-6-5

axis-l.7-4-7-4

axis.line.y.left..zeroGrob.206

axis

axis.1-1-1-1

GRID.text.203

axis.1-2-1-2

axis-r.7-6-7-6

axis-b.8-5-8-5

axis.line.x.bottom..zeroGrob.199

axis

axis.1-1-1-1

axis.2-1-2-1

GRID.text.196

xlab-t.5-5-5-5

xlab-b.9-5-9-5

GRID.text.210

ylab-l.7-3-7-3

GRID.text.213

ylab-r.7-7-7-7

subtitle.4-5-4-5

title.3-5-3-5

caption.10-5-10-5

tag.2-2-2-2

264 R Graphics, Third Edition

The next big difference between ggplot2 and lattice is that the grobs cre-
ated by ggplot2 are arranged in a hierarchy of grobs, which is visible in the
indenting of the output from grid.ls(). This means that we may need to
use gPaths to access individual grobs.

The final difference between ggplot2 and lattice is that the ggplot2 grob
names are a little less meaningful, particularly the numeric suffixes. This
means that we may need to use grid.grep() to find an appropriate grob
name. The next code demonstrates using grid.grep() to find the viewport
with "panel" in its name.

> panelvp <- grid.grep("panel", grobs=FALSE,

viewports=TRUE, grep=TRUE)

> panelvp

Now that we have forced the ggplot2 plot grobs and viewports and we have
determined the correct name of the main panel viewport, the following code
navigates down to the plot region and queries the grob that represents the
line of best fit, using grobX() and grobY(), to determine a location on the
line. This location is used to draw an arrow that points from a text label to
the line of best fit (see Figure 7.16).

> downViewport(panelvp)

> sline <- grid.get(gPath("smooth", "polyline"),

grep=TRUE)

> grid.segments(.7, .8,

grobX(sline, 45), grobY(sline, 45),

arrow=arrow(angle=10, type="closed"),

gp=gpar(fill="black"))

> grid.text("line of best fit", .71, .81,

just=c("left", "bottom"))

The grid Graphics Object Model 265

10

15

20

25

30

35

100 200 300 400
disp

m
pg

line of best fit

Figure 7.16
Working with ggplot2 grobs. A ggplot2 scatterplot is drawn and then a line is
added with an end point that is calculated from the grob that represents the smooth
line on the plot.

266 R Graphics, Third Edition

Chapter summary

As well as producing graphical output, all grid functions create grobs
(graphical objects) that contain descriptions of what has been drawn.
These grobs may be accessed, modified, and even removed, and the
graphical output will be updated to reflect the changes.

There are also grid functions for creating grobs without producing any
graphical output. A complete description of a plot can be produced
by creating, modifying, and combining grobs off-screen.

A gTree is a grob that can have other grobs as its children. A gTree can
be useful for grouping grobs and for providing a high-level interface
to a group of grobs.

The lattice and ggplot2 plotting functions generate large numbers
of grid grobs. These grobs may be manipulated just like any other
grobs to access, edit, and delete parts of a ggplot2 or lattice plot.

8

Developing New Graphical Functions
and Objects

Chapter preview

This chapter looks in depth at the task of writing graphical functions
for others to use.

There are important guidelines for writing simple functions whose
main purpose is to produce graphical output. There is an empha-
sis on making sure that other users can annotate the output produced
by a function and that other users can make use of the function as a
component in larger or more complex plots.

There is also a discussion on how to create a new class of graphical
object. This is important for allowing users to edit output, to ask
questions such as how much space a graphical object requires, and to
be able to combine graphical objects together in a gTree.

This chapter addresses the issue of developing graphics functions for others
to use. This will involve a discussion of some of the lower-level details of
how grid works as well as some more abstract ideas of software design. A
basic understanding of programming concepts is recommended, and the later
sections assume an understanding of object-oriented concepts such as classes
and methods.

Important low-level details of the grid graphics system and important design
considerations are introduced in increasing levels of complexity to allow de-
velopers to construct simple graphics functions at first. Readers aiming to
design a new grid graphical object should read the entire chapter.

267

268 R Graphics, Third Edition

underlined text

Figure 8.1

An example of underlined text.

Although very complex grid functions and objects can be developed, (see,
for example, the gtable package), this chapter will work with a very simple
example. This is so that the functions and objects that we build are simple
enough for the main ideas to be demonstrated clearly.

8.1 An example

Throughout this chapter we will develop code to generate very simple graph-
ical output: text with an underline (see Figure 8.1).

The following code demonstrates one way we could produce this output using
existing grid functions. Our aim is to reduce this code to a single function
call.

> grid.text("underlined text", y=.5, just="bottom")

> w <- stringWidth("underlined text")

> grid.segments(unit(.5, "npc") - 0.5*w,

unit(.5, "npc") - unit(1, "mm"),

unit(.5, "npc") + 0.5*w,

unit(.5, "npc") - unit(1, "mm"))

Although the output in Figure 8.1 is very basic, it provides examples of several
key features that need to be addressed in much more complex output:

1. The output consists of more than one basic shape.

2. The placement of the output requires some calculation, and/or the com-
ponents of the output are dependent on each other in some way.

Developing New Graphical Functions and Objects 269

1 textCorners <- function(x) {

2 list(xl=grobX(x, 180), xr=grobX(x, 0),

3 yb=grobY(x, 270), yt=grobY(x, 90))

4 }

6 grid.utext <- function(label, x=.5, y=.5, ...,

7 name="utext") {

8 grid.text(label, x, y, ..., name=paste0(name, ".label"))

9 corners <- textCorners(paste0(name, ".label"))

10 grid.segments(corners$xl, corners$yb - unit(.2, "lines"),

11 corners$xr, corners$yb - unit(.2, "lines"),

12 gp=gpar(lex=get.gpar("cex")),

13 name=paste0(name, ".underline"))

14 }

Figure 8.2

The grid.utext() function. This function draws underlined text.

In this case, there are two basic shapes, a piece of text and a line segment,
and the constraints are that the line segment must be placed directly below
the text and must be the same length as the text.

In solving this simple example, we will discuss several different approaches
and solve a number of different issues that can arise when producing much
more complex output.

8.2 Graphical functions

The simplest approach we can take is to write a graphics function just for its
side effect of producing graphical output (i.e., using grid graphics functions
as described in Chapter 6). Figure 8.2 provides code that defines a function
grid.utext() for this purpose.

This conveniently encapsulates the work required to draw a line segment be-
neath a piece of text into a single function call, as shown below (see Figure
8.3).

> grid.utext("underlined text")

270 R Graphics, Third Edition

underlined text

Figure 8.3

An example of underlined text produced using the grid.utext() function.

8.2.1 Modularity

Although the grid.utext() function is very simple, the code in Figure 8.2
demonstrates an important general principle.

It is useful to organize code into small functions, each of which performs a
well-defined job. With graphics functions, it is particularly important to sep-
arate out the calculations that underlie a graphic from the code that actually
renders the graphic. In Figure 8.2 the function textCorners() calculates the
left, right, bottom, and top locations of a text grob. The grid.utext() func-
tion draws text and a line segment and uses textCorners() to decide where
to position the line segment so that it aligns with the text. This modular ap-
proach has the usual benefit of allowing the reuse of code, both by ourselves
(we will reuse the textCorners() function several times in this chapter) and
by others.

For more complex graphical output, this idea should be extended to organize
code into functions that each produce separate components that can be com-
bined into a larger graphic, just like this function combines existing graphical
primitives.

8.2.2 Embeddable output

Another thing to consider when writing a grid function is the fact that all
grid drawing occurs within the current viewport. This means that a function
that produces grid output should be aware that it may be drawn in an area
of any size and with any graphical parameter settings.

This is reflected in the code for the grid.utext() function on lines 10 and
11 where "lines" units are used to determine the vertical distance of the line
segment from the text. This means that the distance will grow and shrink
as the text size grows and shrinks. The following code demonstrates this
idea by drawing underlined text within viewports with different cex settings.

Developing New Graphical Functions and Objects 271

underlined text

underlined text

underlined text

underlined text

Figure 8.4
A demonstration of the importance of using relative units within a grid func-
tion. This allows the function to perform well in any context. On the left, the
grid.utext() function is called within two viewports, one with a normal font (top)
and one with a small font (bottom). The output looks appropriate in both cases
because the distance between the text and the line segment is based on lines of text
and the line width is also relative. On the right, a variation of grid.utext() is
demonstrated where the distance between line and text is absolute (1mm); this does
not adjust to the different viewport contexts and consequently the resulting output
does not look as good.

The result is shown in Figure 8.4 alongside what would happen if we used an
absolute distance between the text and the line like 1mm instead.

> pushViewport(viewport(y=.5, height=.5, just="bottom",

gp=gpar(cex=1)))

> grid.utext("underlined text")

> popViewport()

> pushViewport(viewport(y=0, height=.5, just="bottom",

gp=gpar(cex=0.5)))

> grid.utext("underlined text")

> popViewport()

8.2.3 Editable output

Another important feature of the code for the grid.utext() function occurs
on lines 8 and 13, where the output that this function produces is named.
This ensures that others are able to edit the output from this function.

For example, in the following code we draw underlined text and then edit the
line segment to modify its width (and set the line end style to "butt"; see
Figure 8.5).

> grid.utext("underlined text")

> grid.edit("utext.underline", gp=gpar(lwd=3, lineend="butt"))

272 R Graphics, Third Edition

underlined text underlined text

Figure 8.5
Underlined text from the grid.utext() function (left) is edited to modify the width
of the underline (right).

8.2.4 Annotatable output

We have addressed the issue of adding the output from grid.utext() to other
grid output in Section 8.2.2. Another issue is adding other grid output to
the output from grid.utext().

In order to demonstrate this point, we will consider an alternative implemen-
tation of underlined text that involves creating a grid viewport. This function
is called grid.utextvp() and the code for it is shown in Figure 8.6.

One advantage of this function is that it can draw rotated underlined text,
like that drawn by the following code (see Figure 8.7).

> grid.utextvp("underlined text", angle=20)

The important code within this function is the code that creates and pushes a
viewport (line 9), with the name "utextvp" (line 4), and the code that calls
upViewport() (line 15). The use of a viewport makes the code that does
the drawing simpler (lines 10 to 14) because that drawing is relative to the
viewport, which has already been positioned and sized appropriately for the
text. The use of upViewport() is important because that means that the
viewport will persist so that others can use it later.

The following code makes use of this feature to add a second underline beneath
the text. First, we navigate down to the viewport that utextvp() created,
and then we draw a line segment relative to that viewport (see Figure 8.8).

> downViewport("utextvp")

> grid.segments(0, unit(-.3, "lines"), 1, unit(-.3, "lines"))

Developing New Graphical Functions and Objects 273

1 utextvp <- function(label, x, y, ..., name="utextvp") {

2 w <- stringWidth(label)

3 viewport(x, y, width=w, height=unit(1, "lines"),

4 ..., name=name)

5 }

7 grid.utextvp <- function(label, x=.5, y=.5, ...,

8 name="utext") {

9 pushViewport(utextvp(label, x, y, ...))

10 grid.text(label, y=0, just="bottom",

11 name=paste0(name, ".label"))

12 grid.segments(0, unit(-.2, "lines"),

13 1, unit(-.2, "lines"),

14 name=paste0(name, ".underline"))

15 upViewport()

16 }

Figure 8.6
The grid.utextvp() function. This function draws underlined text. It is an alter-
native to the grid.utext() function (Figure 8.2) that makes use of a grid viewport.

underlined text

Figure 8.7
An example of underlined text produced using the grid.utextvp() function. This
function can draw rotated underlined text (whereas the grid.utext() function can-
not).

274 R Graphics, Third Edition

underlined text

Figure 8.8
An example of annotating underlined text produced using the grid.utextvp() func-
tion (from Figure 8.7). The grid.utextvp() function creates a viewport for drawing
the underlined text. This means that we can navigate back to that viewport and
add further output, in this case a second underline.

8.3 Graphical objects

A properly written graphics function can be very useful if it can be reused
in other plots and arbitrarily added to or modified as described in previous
sections. There are, however, a number of benefits to be gained from instead
creating a graphical object, or grob, to represent the output that your function
produces.

In order to demonstrate a weakness of the graphical function approach, con-
sider the following code, which edits the text that was produced by the
grid.utextvp() function. This changes the text, but does not change the
line segment, so the lengths of the two no longer match (see Figure 8.9).

> grid.edit("utext.label", label="le texte soulign\U00E9")

A graphical function is essentially an interface that allows us to provide a
high-level description of an image and the function draws one or more low-
level graphical shapes based on that description. However, all that is recorded
on grid’s display list are the low-level graphical shapes.

In our example, the high-level description consists of the text that we want
to draw, plus where to draw it, and the function grid.utextvp() calculates
how to draw the line beneath the text (as well as the text itself). However,
once these graphical shapes have been drawn, there is no high-level connection
between them.

A graphical object is similar to a graphical function in that it provides a
high-level interface for drawing low-level graphical shapes, but when we draw
a graphical object, the high-level object is recorded on grid’s display list,

Developing New Graphical Functions and Objects 275

le texte souligné

Figure 8.9
Underlined text from the grid.utextvp() function (Figure 8.7) has been edited to
modify the text. The line segment is not affected so it no longer matches the text.

instead of or as well as the low-level shapes. This makes it possible to modify
the high-level description and have the graphical object recalculate the low-
level shapes (and redraw them).

In this section, we will develop a graphical object version of underlined text.

Defining new grobs involves working with classes and generic functions. This
section assumes a familiarity with the basic ideas of object-oriented program-
ming and its implementation in S3 classes and methods.

8.3.1 Defining a static grob

The simplest graphical object that we can create is a gTree with explicit
children; a static graphical object. The code shown in Figure 8.10 defines a
utextStatic() function for this purpose.

The most important part of this function is the call to the gTree() function
(line 19). This creates a gTree that records the high-level description of the
graphical object (the text and where to draw it). The cl argument is used to
specify that the object created by this function has the class "utextStatic".
This will allow us to define methods specific to "utextStatic" grobs. The
children of the gTree are the low-level grobs that will actually be drawn; a
text grob and a line segment grob. These are created in a separate function
called utextChildren() so that we can reuse that function in later examples.

The following code creates a "utextStatic" grob and then draws it (see
Figure 8.11). The default drawing behaviour of a gTree is to draw all of its
children.

> ug <- utextStatic("underlined text")

> grid.draw(ug)

276 R Graphics, Third Edition

1 utextChildren <- function(label, x, y, just, name) {

2 t <- textGrob(label, x, y, just=just,

3 name=paste0(name, ".label"))

4 corners <- textCorners(t)

5 s <- segmentsGrob(corners$xl,

6 corners$yb - unit(.2, "lines"),

7 corners$xr,

8 corners$yb - unit(.2, "lines"),

9 name=paste0(name, ".underline"))

10 gList(t, s)

11 }

13 utextStatic <- function(label,

14 x=.5, y=.5, default.units="npc",

15 just="centre", name="utext") {

16 if (!is.unit(x)) x <- unit(x, default.units)

17 if (!is.unit(y)) y <- unit(y, default.units)

18 kids <- utextChildren(label, x, y, just, name)

19 gTree(label=label, x=x, y=y, just=just,

20 children=kids, cl="utextStatic", name=name)

21 }

Figure 8.10
The utextStatic() function. This function creates a gTree object representing
underlined text. It is a graphical object alternative to the grid.utext() graphical
function (Figure 8.2).

underlined text

Figure 8.11
An example of underlined text produced using the utextStatic() function. The
utextStatic() function creates a grob representing underlined text, but does not
draw it. The resulting grob must be drawn by calling the grid.draw() function.

Developing New Graphical Functions and Objects 277

1 editDetails.utextStatic <- function(x, specs) {

2 if (any(names(specs) %in%

3 c("label", "x", "y", "just"))) {

4 kids <- utextChildren(x$label, x$x, x$y,

5 x$just, x$name)

6 x <- setChildren(x, kids)

7 }

8 x

9 }

Figure 8.12
The editDetails.utextStatic() function. This function allows us to sensibly mod-
ify the high-level description of a gTree object by recreating the low-level children
of the object.

8.3.2 Editable grobs

What we have created is a graphical object that contains a high-level descrip-
tion plus low-level components (text and a line segment).

> grid.ls()

utext

utext.label

utext.underline

If we want to edit the high-level description of a grob, we must define an
editDetails() method for the graphical object. Figure 8.12 shows a method
for "utextStatic" grobs. The important role of this function is to recreate
the children of the gTree if the high-level description has been modified.

Once we have defined an editDetails() method, we can modify the high-level
description and the low-level components are automatically recreated. The
following code modifies the label of the text and the underline is automatically
resized (see Figure 8.13).∗

> grid.edit("utext", label="le texte soulign\U00E9")

Because we also have the low-level components, we can modify those to make
changes that the high-level interface does not allow. The following code mod-
ifies the line style of the underline (see Figure 8.14).

∗The UNICODE escape sequence \U00E9 is used to specify an e-acute character.

278 R Graphics, Third Edition

le texte souligné

Figure 8.13
Underlined text from the utextStatic() function (Figure 8.11) has been edited to
modify the label (part of the high-level description). The editDetails() method
ensures that the children of the graphical object are recreated, so the underline still
matches the text.

le texte souligné

Figure 8.14
Underlined text from the utextStatic() function (Figure 8.13) has been edited to
modify the underline segment line type (one of the low-level components). This
shows fine tuning of low-level details that are not controlled by the high-level de-
scription.

> grid.edit("utext.underline", gp=gpar(lty="dashed"))

8.3.3 Defining a static grob with drawing context

When we developed a graphical function in Section 8.2, we considered two
approaches: one that just drew text and a line segment, and another that
pushed a viewport and then drew text and a line segment within that viewport.
In this section, we will look at a static graphical object analogue of the second
approach.

A static graphical object can also have a viewport within which its children
are drawn. Figure 8.15 shows code for a utextvpStatic() function that
implements this approach. The difference from the utextStatic() (Figure
8.10) is that, as well as creating children for the gTree (line 18), we create a
viewport for the children to be drawn within (line 19). The viewport becomes
the childrenvp component of the gTree (line 22).

Developing New Graphical Functions and Objects 279

As with the utextStatic() function, we define an editDetails() method
so that changes to the high-level description of the graphical object result
in the children, and the viewport that the children are drawn within, being
recreated.

The following code creates a "utextvpStatic" grob (at an angle of 20 degrees)
and then draws it (see Figure 8.16).

> ug <- utextvpStatic("underlined text", angle=20)

> grid.draw(ug)

What we have created is a graphical object that contains a high-level descrip-
tion with a viewport plus low-level components (text and a line segment) that
are drawn within that viewport.

> grid.ls(viewports=TRUE, fullNames=TRUE)

viewport[ROOT]

utextvpStatic[utext]

viewport[utext.vp]

upViewport[1]

downViewport[utext.vp]

text[utext.label]

upViewport[1]

downViewport[utext.vp]

segments[utext.underline]

upViewport[1]

Because of the editDetails() method, we can modify the high-level descrip-
tion and the low-level components are automatically recreated (see Figure
8.17).

> grid.edit("utext", label="le texte soulign\U00E9")

Because we also have the low-level components, we can modify those to make
changes that the high-level interface does not allow (see Figure 8.18).

> grid.edit("utext.underline", gp=gpar(lty="dashed"))

280 R Graphics, Third Edition

1 utextvpChildren <- function(label, name) {

2 t <- textGrob(label, y=0, just="bottom",

3 vp=paste0(name, ".vp"),

4 name=paste0(name, ".label"))

5 s <- segmentsGrob(0, unit(-.2, "lines"),

6 1, unit(-.2, "lines"),

7 vp=paste0(name, ".vp"),

8 name=paste0(name, ".underline"))

9 gList(t, s)

10 }

12 utextvpStatic <- function(label, x=.5, y=.5,

13 default.units="npc",

14 angle=0, just="centre",

15 name="utext") {

16 if (!is.unit(x)) x <- unit(x, default.units)

17 if (!is.unit(y)) y <- unit(y, default.units)

18 kids <- utextvpChildren(label, name)

19 kidsvp <- utextvp(label, x, y, just=just, angle=angle,

20 name=paste0(name, ".vp"))

21 gTree(label=label, x=x, y=y, just=just, angle=angle,

22 children=kids, childrenvp=kidsvp,

23 cl="utextvpStatic", name=name)

24 }

26 editDetails.utextvpStatic <- function(x, specs) {

27 if (any(names(specs) %in%

28 c("label", "x", "y", "just", "angle"))) {

29 kids <- utextvpChildren(x$label, x$name)

30 kidsvp <- utextvp(x$label, x$x, x$y,

31 just=x$just, angle=x$angle,

32 name=paste0(x$name, ".vp"))

33 x$childrenvp <- kidsvp

34 x <- setChildren(x, kids)

35 }

36 x

37 }

Figure 8.15
The utextvpStatic() function. This function creates a gTree object representing
underlined text. It is a graphical object alternative to the grid.utextvp() graphical
function (Figures 8.6).

Developing New Graphical Functions and Objects 281

underlined text

Figure 8.16
An example of underlined text produced using the utextvpStatic() function. The
utextvpStatic() function creates a grob representing underlined text, but does not
draw it. The resulting grob must be drawn by calling the grid.draw() function.

le texte souligné

Figure 8.17
Underlined text from the utextvptree() function (Figure 8.16) has been edited to
modify the label (part of the high-level description). The editDetails() method
ensures that the children of the graphical object, and the viewport that the children
are drawn within, are recreated.

le texte souligné

Figure 8.18
Underlined text from the utextvptree() function (Figure 8.17) has been edited to
modify the underline segment line type (one of the low-level components). This
shows fine tuning of low-level details that are not controlled by the high-level de-
scription.

282 R Graphics, Third Edition

8.3.4 Defining a dynamic grob

It is not always possible to know, when a grob is created, exactly what its
children should be. For example, an "xaxis" with at=NULL can only deter-
mine its children (the tick marks) when it is drawn, which is when it knows
what viewport, and hence what "native" coordinate system it is being drawn
within (see Section 7.7). This section looks at developing a graphical object
that can create its children on-the-fly as it is drawn; a dynamic graphical
object.

Figure 8.19 shows code that defines two functions. The first, utextDynamic(),
is the function that creates a graphical object. This function does no drawing;
it only creates a gTree object that contains the high-level description of the
underlined text (the text to draw and where to draw it). The most important
part of this function is the call to the gTree() function to create a gTree
object (line 6). The cl argument is used to specify that the object created
by this function has the class "utextDynamic". This will allow us to define
methods specific to "utextDynamic" grobs.

If we compare this utextDynamic() function to the previous utextStatic()
function (Figure 8.10), the major difference is that utextDynamic() creates a

gTree with no children. This is because, for a dynamic grob, the children are
created when the "utextDynamic" grob is drawn. That is the purpose of the
second function.

The second function is a method for the makeContent() generic function (for
objects of class "utextDynamic"). This function creates the low-level shapes
that are the“children”of the gTree (line 11), and then calls the setChildren()
function to add these grobs as children of the "utextDynamic" gTree (line 13).
The result of this function is the modified "utextDynamic" gTree.

The following code makes use of these functions to create a "utextDynamic"

grob and then draws it by calling the grid.draw() function (see Figure 8.20).

> ug <- utextDynamic("underlined text")

> grid.draw(ug)

The output from drawing a "utextDynamic" grob is just the same as from call-
ing the grid.utext() function and just the same as drawing a "utextStatic"

grob. However, the grid display list is very different because the only object
recorded is the "utextDynamic" grob, not the individual text grob or segments
grob.

> grid.ls()

utext

Developing New Graphical Functions and Objects 283

1 utextDynamic <- function(label,

2 x=.5, y=.5, default.units="npc",

3 just="centre", name="utext") {

4 if (!is.unit(x)) x <- unit(x, default.units)

5 if (!is.unit(y)) y <- unit(y, default.units)

6 gTree(label=label, x=x, y=y, just=just,

7 cl="utextDynamic", name=name)

8 }

10 makeContent.utextDynamic <- function(x) {

11 kids <- utextChildren(x$label, x$x, x$y,

12 just=x$just, x$name)

13 setChildren(x, kids)

14 }

Figure 8.19
The utextDynamic() function. This function creates a gTree object representing
underlined text. It is a dynamic version of the utext() function from Figure 8.1;
this grob creates its contents as it is drawn, whereas utext() creates its contents
when it is created.

underlined text

Figure 8.20
An example of underlined text produced using the utextDynamic() function. The
utextDynamic() function creates a grob representing underlined text, but does not
draw it. The resulting grob must be drawn by calling the grid.draw() function.

284 R Graphics, Third Edition

underlined text

Figure 8.21
Underlined text from the utextDynamic() function (Figure 8.20) has been edited to
modify the gp settings for the overall "utextDynamic" gTree. Both children of the

gTree, the label and the line segment, are affected by the graphical context of their
parent gTree, so they both turn gray.

This demonstrates the idea that, with a dynamic graphical object, what gets
recorded on the grid display list is just a high-level description. By com-
parison, with a graphical function, only low-level shapes get recorded on the
display list, and, with a static graphical function, both the high-level descrip-
tion and the low-level shapes are recorded.

We gain several benefits from retaining the high-level description. One benefit
arises from the fact that a gTree provides a graphical context for its children
(see page 6.4); specifically, the gp settings for a gTree become the default
gp settings for its children. This is demonstrated by the following code: we
change the colour of the "utextDynamic" grob to gray and both the text and
the underline turn gray as a result (see Figure 8.21).

> grid.edit("utext", gp=gpar(col="grey"))

Another benefit of having the high-level "utextDynamic" gTree on the display
list is that we can edit that high-level description and the low-level shapes will
be redrawn. This is demonstrated in the following code: we modify the label
in the high-level gTree and both the text and the underline adjust for the new
label (see Figure 8.22).

> grid.edit("utext", label="le texte soulign\U00E9")

Unlike a static graphical object (e.g., a "utextStatic" object), we do not have
to define an editDetails() method. The children of a "utextDynamic" grob
are always recreated whenever the "utextDynamic" grob is drawn.

Developing New Graphical Functions and Objects 285

le texte souligné

Figure 8.22
Underlined text from the utextDynamic() function (Figure 8.21) has been edited
to modify the label of the high-level "utextDynamic" gTree. Both children of the

gTree, the label and the line segment, are redrawn to reflect the new label.

8.3.5 Forcing grobs

The main downside to working with this high-level dynamic interface is that
we lose access to the low-level shapes. The display list only contains the high-
level gTree; it does not record the text grob or the segment grob. This means
that we cannot directly access the individual shapes, like we did in Figure 8.5.

> grid.get("utext.label")

NULL

However, we can make the low-level shapes available by calling the function
grid.force(). This function adds the children of a gTree to the grid display
list, as shown below.

> grid.force()

utext

utext.label

utext.underline

We can now access the individual low-level shapes. For example, in the fol-
lowing code, we increase the width of the underline (see Figure 8.23).

> grid.edit("utext.underline", gp=gpar(lwd=3))

286 R Graphics, Third Edition

le texte souligné

Figure 8.23
Underlined text from the utextDynamic() function (Figure 8.20) has been drawn,
then the low-level shapes have been made available by calling grid.force(), then
the underline segments grob has been edited to make the line thicker.

8.3.6 Reverting grobs

The downside to calling grid.force() is that we no longer have access to the
high-level gTree interface (changes to the gTree no longer recreate the children
of the gTree). There is a grid.revert() function that removes the children
of the gTree from the display list and restores the high-level interface, but
of course that means that direct changes to the low-level children are lost.
In other words, with a dynamic grob, we cannot have both high-level and
low-level access at the same time.

8.3.7 Defining a dynamic grob with drawing context

When we developed a graphical function in Section 8.2, we considered two
approaches: one which just drew text and a line segment and another that
pushed a viewport and then drew text and a line segment within that viewport.
In this section, we will look at a dynamic graphical object analogue of the
second approach.

We have seen that one thing we must do when we create a dynamic graphical
object is define a makeContent() method. The purpose of that is to create
the low-level children of the graphical object. In addition to that, we may
also want to create a viewport for the children of the graphical object. The
makeContext() generic function allows us to do that.

Figure 8.24 shows the code for a new graphical object that represents under-
lined text. This has a main function, utextvpDynamic() that creates a gTree
with the class "utextvpDynamic" (line 7). There is also a makeContent()

method to create low-level children for the gTree, like there was for the
"utextDynamic" graphical object, and in addition there is a makeContext()

method. A makeContext() method is similar to a makeContent() method,
except that it creates a viewport and adds it to the gTree (rather than creating

Developing New Graphical Functions and Objects 287

1 utextvpDynamic <- function(label,

2 x=.5, y=.5, default.units="npc",

3 just="centre", angle=0,

4 name="utext") {

5 if (!is.unit(x)) x <- unit(x, default.units)

6 if (!is.unit(y)) y <- unit(y, default.units)

7 gTree(label=label, x=x, y=y, just=just, angle=angle,

8 cl="utextvpDynamic", name=name)

9 }

11 makeContext.utextvpDynamic <- function(x) {

12 x$childrenvp <- utextvp(x$label, xx, xy,

13 just=x$just, angle=x$angle,

14 name=paste0(x$name, ".vp"))

15 x

16 }

18 makeContent.utextvpDynamic <- function(x) {

19 kids <- utextvpChildren(x$label, x$name)

20 setChildren(x, kids)

21 }

Figure 8.24
The utextvpDynamic() function. This function creates a gTree object representing
underlined text. It is an alternative to the utextDynamic() function (Figure 8.19).

and adding grobs).

With these functions defined, it is possible to create a "utextvpDynamic"

grob and draw it (see Figure 8.25). The advantage of utextvpDynamic() over
utextDynamic() is that the former can draw underlined text at an angle.

> ug <- utextvpDynamic("underlined text", angle=20)

> grid.draw(ug)

Although the low-level children of a "utextvpDynamic" grob are not recorded
on the grid display list, the viewports that are created in a makeContext()

method do get recorded.

288 R Graphics, Third Edition

underlined text

Figure 8.25
An example of underlined text produced using the utextvpDynamic() function. The
utextvpDynamic() function creates a grob representing underlined text, but does not
draw it. The resulting grob must be drawn by calling the grid.draw() function.

underlined text

Figure 8.26
Underlined text from the utextvpDynamic() function (Figure 8.25) has been drawn,
then we have navigated down to the viewport that was used to draw the underlined
text and added a second underline.

> grid.ls(viewports=TRUE, fullNames=TRUE)

viewport[ROOT]

utextvpDynamic[utext]

viewport[utext.vp]

upViewport[1]

In the following code, we navigate down to the viewport within which the
low-level shapes were drawn and add another underline (see Figure 8.26).

> downViewport("utext.vp")

> grid.segments(0, unit(-.3, "lines"), 1, unit(-.3, "lines"))

8.3.8 Querying graphical objects

A final advantage of creating a graphical object compared to a graphical
function is that we provide the opportunity for other code to query our

Developing New Graphical Functions and Objects 289

1 xDetails.utextvpDynamic <- function(x, theta) {

2 h <- unit(1, "npc") + unit(.2, "lines")

3 grobX(rectGrob(height=h, y=1, just="top",

4 vp=paste0(x$name, ".vp")), theta)

5 }

7 yDetails.utextvpDynamic <- function(x, theta) {

8 h <- unit(1, "npc") + unit(.2, "lines")

9 grobY(rectGrob(height=h, y=1, just="top",

10 vp=paste0(x$name, ".vp")), theta)

11 }

Figure 8.27
xDetails() and yDetails() methods for querying the edge locations of "utextvp-
Dynamic" grobs.

graphical object through the functions grobX(), grobY(), grobWidth(), and
grobHeight().

We can provide useful results to those functions for our graphical object by
defining methods for a set of generic functions: xDetails(), yDetails(),
widthDetails(), and heightDetails().

Figure 8.27 shows code for an xDetails() method and a yDetails() method
for "utextvpDynamic" grobs. One important feature of these functions is
that they create a simple grob, in this case a rectangle, and then call grobX()
(or grobY()) on that simple grob. In other words, they make use of existing
methods as much as possible. The second important feature of these functions
is that the simple grobs that they create are given vp values to reflect the fact
that they are relative to the childrenvp of the "utextvpDynamic" grob.

The following code makes use of these new methods to draw a line from a dot
in the top-left corner of the current viewport to the bottom-left corner of a
"utextvpDynamic" grob. The result is shown in Figure 8.28.

> ug <- utextvpDynamic("underlined text")

> grid.draw(ug)

> grid.circle(.1, .8, r=unit(1, "mm"), gp=gpar(fill="black"))

> grid.segments(.1, .8,

grobX("utext", 180), grobY("utext", 270))

290 R Graphics, Third Edition

underlined text

Figure 8.28
Underlined text from the utextvpDynamic() function has been drawn, which pro-
duces a "utextvpDynamic" grob, then a dot has been drawn at top-left, then the
"utextvpDynamic" grob has been queried for its bottom-left corner and a line has
been drawn from the dot to that corner.

8.3.9 Summary of graphical object methods

Defining the behavior for a new graphical object requires writing one or more
methods for the standard grid generic functions:

• Always write a constructor function for the class to generate a gTree
containing the description of what to draw.
For static grobs, the constructor should also create the children of the

gTree and any viewports for the children to be drawn within.
• For dynamic grobs, always write a makeContent() method to create

low-level children for the object (otherwise nothing will be drawn).
• For dynamic grobs, sometimes write a makeContext() method if draw-

ing graphical object involves pushing viewports.
• Sometimes write xDetails() and yDetails() methods if the bound-

ary of the graphical output can be sensibly determined.
• Sometimes write widthDetails() and heightDetails() methods if

the size of the graphical output can be sensibly determined.

8.3.10 Calculations during drawing

With grid units and layouts, it is possible to specify quite complex arrange-
ments of output in a “declarative” manner. For example, the idea that a par-
ticular region should be square (have an aspect ratio of 1) can be expressed
at a high level, by specifying both width and height as unit(1, "snpc"),
and the system will ensure that this occurs. There is no need to calculate the
physical dimensions of the current viewport and from those determine how to
make a square region.

It is, however, sometimes necessary to perform calculations by hand. For
example, consider the problem of splitting text into several lines based on

Developing New Graphical Functions and Objects 291

1 splitString <- function(text) {

2 strings <- strsplit(text, " ")[[1]]

3 if (length(strings) < 2)

4 return(text)

5 newstring <- strings[1]

6 linewidth <- stringWidth(newstring)

7 gapwidth <- stringWidth(" ")

8 availwidth <-

9 convertWidth(unit(1, "npc"),

10 "in", valueOnly=TRUE)

11 for (i in 2:length(strings)) {

12 width <- stringWidth(strings[i])

13 if (convertWidth(linewidth + gapwidth + width,

14 "in", valueOnly=TRUE) <

15 availwidth) {

16 sep <- " "

17 linewidth <- linewidth + gapwidth + width

18 } else {

19 sep <- "\n"

20 linewidth <- width

21 }

22 newstring <- paste(newstring, strings[i], sep=sep)

23 }

24 newstring

25 }

Figure 8.29
A splitString() function. This function takes a piece of text and splits it into
multiple lines so that the text will fit (horizontally) within the current viewport.
Validation checks (e.g., whether strings is a character vector of length at least 2)
have not been included.

the width of the available space. The code in Figure 8.29 defines a function,
splitString(), to perform this operation (in a very simple-minded way). The
important part of this function is the use of the convertWidth() function to
obtain the size of the current line of text in inches (line 13) for comparison
with the size of the current viewport in inches (lines 8 to 10).

The following code uses the splitString() function to draw some text within
the current viewport (see the left-hand panel in Figure 8.30).

> text <- "The quick brown fox jumps over the lazy dog."

> grid.text(splitString(text),

x=0, y=1, just=c("left", "top"))

292 R Graphics, Third Edition

The quick
brown fox
jumps over the
lazy dog.

The quick brown fox jumps
over the lazy dog.

The quick brown fox
jumps over the lazy
dog.

Figure 8.30
Performing calculations before drawing. If the drawing of a grob depends on calcu-
lations (in this case, calculations to split text into multiple lines to fit horizontally
within the current viewport), the calculations should be included within a make-

Content() method. This means that the calculations will be rerun if the device is
resized (left panel versus top-right panel) or if the grob is edited to make the font
size larger (top-right panel versus bottom-right panel).

There is a problem with the above code. If it is used to draw into a window
and then the window is resized, the calculations are not rerun and the line
splitting becomes incorrect.

The issue is that only drawing actions are recorded on the display list, not any
calculations leading up to the drawing. Anything that works off the display
list (like redrawing after a resize) only reruns drawing actions.

There are two solutions to this problem. One solution rests on the fact that
all code within a makeContent() method (or a makeContext() method) is
captured on the graphics engine display list. The code in Figure 8.31 uses
this fact to create a "splitText" grob with a makeContent() method that
performs the calculations.

A splitText grob will recalculate the line breaks when a window is resized
(see the top-right panel of Figure 8.30).

> splitText <- splitTextGrob(text, name="splitText")

> grid.draw(splitText)

Another advantage of creating a grob with a makeContent() method is that
it is possible to edit the grob and have the calculations updated (see the
bottom-right panel of Figure 8.30).

Developing New Graphical Functions and Objects 293

1 splitTextGrob <- function(text, ...) {

2 gTree(text=text, cl="splitText", ...)

3 }

5 makeContent.splitText <- function(x) {

6 setChildren(x, gList(textGrob(splitString(x$text),

7 x=0, y=1,

8 just=c("left", "top"))))

9 }

Figure 8.31
A "splitText" grob. The makeContent() method for the class recalculates where
to place line breaks in the text, based on the current viewport size.

> grid.edit("splitText", gp=gpar(cex=1.5))

The other way to encapsulate calculations with drawing operations is to use
the grid.delay() function, as shown by the following code.

> grid.delay({

grid.text(splitString(text),

x=0, y=1, just=c("left", "top"))

},

list(text=text))

This is convenient for writing code purely for its side effect (i.e., without having
to deal explicitly with grobs), but it provides less control over the design of
the object that is created. There is also a delayGrob() function that simply
creates a grob encapsulating the calculations and drawing operations without
drawing anything.

8.3.11 Avoiding argument explosion

Very complex or high-level graphics functions and objects are usually com-
posed of several lower-level elements, which in turn may be composed of sev-
eral even-lower-level elements. For example, a scatterplot matrix is composed
of several scatterplots and each scatterplot contains axes, labels, and data
symbols.

Ideally, it should be possible to control any aspect of a graphical scene. In
terms of writing code, this means that an argument or component should be

294 R Graphics, Third Edition

supplied to allow the user to specify a customized value for any parameter of
the scene.

At the level of graphical primitives, parameters consist of such things as the
locations of lines, the color of lines, and the line thickness. At a higher level,
for example for axes, there are higher-level parameters, such as where to place
tick marks, but it is also desirable to still be able to control the individual
elements of the axis.

It is tempting to simply provide arguments for the elements of an axis as
arguments of the axis itself. An example is where an axis could have a rot

argument to specify the angle of rotation of the tick mark labels, but this
approach quickly runs into difficulties. For one thing, ambiguities can easily
arise. If an axis had an overall label, it is unclear whether the rot argument
would apply to the tick mark labels or to the overall label. Another problem is
that as elements become more complex, the number of parameters required for
all subelements grows alarmingly. Consider the number of separate arguments
required to individually specify the angle of rotation for tick mark labels on
all scatterplots within a scatterplot matrix!

The grid package provides several features that can help to solve this problem.
The functions grid.edit() and editGrob() (see Section 7.1) make it possible
to access the lower-level elements of an object using a gPath. For example, in
the following code, an x-axis is created and then the labels on the tick marks
are rotated by editing the rot component of the text grob called "labels"

that is a child of the xaxis grob.

> grid.xaxis(at=1:3/4, name="xaxis1")

> grid.edit("labels", rot=45)

More complex is the case where a grob calculates its children on the fly. This
typically occurs when a grob has no permanent children to access via a gPath
and this will often correspond to a grob that has a makeContent() method.

This problem can be solved by calling the function grid.force(), which
makes the children of a grob visible on the display list.

> grid.xaxis(name="xaxis1")

> grid.force()

> grid.edit("labels", rot=45)

Developing New Graphical Functions and Objects 295

8.4 Mixing graphical functions and graphical objects

This chapter has addressed two main ways in which to develop new graphical
functionality: as a graphics function, purely for the side effect of producing
output (see Section 8.2); and as a graphical object (Section 8.3). There has
also been an emphasis on producing reusable graphical elements, a corollary
of which is that existing graphical elements should be used where possible in
the construction of new graphical elements.

There is no way to force other developers to create graphical objects rather
than graphical functions, so it is necessary to be able to make use of both
existing functions and existing objects whether we are constructing a new
function or a new object.

In order to discuss each of the four possible situations (new functions from
existing functions, new functions from existing grobs, new grobs from exist-
ing functions, and new grobs from existing grobs), the following paragraphs
consider the simple case of drawing a “face,” which consists of a rectangle for
the border, two circles for eyes, and a line for the mouth (see Figure 8.32 for
examples).

Defining a new graphics function is straightforward whether using existing
graphics functions or existing graphical objects. Figure 8.33 defines two new
graphical functions to draw a face. The function faceA() demonstrates the
most straightforward case of a graphics function that includes calls to other
graphics functions to produce output (lines 4 to 6). The function faceB()

shows a graphics function making use of existing graphical objects, which
is done by just passing the result of the object constructor functions to the
function grid.draw() (lines 13 to 15).

Developing a new graphical object can be a bit trickier, but there are several
tools to help out. Figure 8.34 defines two functions for creating a graphical
object to represent a face. The function faceC() represents the simplest case,
where a gTree is built from existing graphical objects, by just creating the
appropriate objects as children of the gTree (lines 5 to 10).

Function faceD() demonstrates the harder problem of creating a new graph-
ical object using only existing graphics functions. In this case, a solution is
to capture the output of the graphics function as a gTree with a call to the
grid.grabExpr() function.

296 R Graphics, Third Edition

Figure 8.32
Drawing faces. Examples of the output that could be produced using the graphical
functions and graphical objects defined in Figures 8.33 and 8.34.

Developing New Graphical Functions and Objects 297

1 faceA <- function(x, y, width, height) {

2 pushViewport(viewport(x=x, y=y,

3 width=width, height=height))

4 grid.rect()

5 grid.circle(x=c(0.25, 0.75), y=0.75, r=0.1)

6 grid.lines(x=c(0.33, 0.67), y=0.25)

7 popViewport()

8 }

10 faceB <- function(x, y, width, height) {

11 pushViewport(viewport(x=x, y=y,

12 width=width, height=height))

13 grid.draw(rectGrob())

14 grid.draw(circleGrob(x=c(0.25, 0.75), y=0.75, r=0.1))

15 grid.draw(linesGrob(x=c(0.33, 0.67), y=0.25))

16 popViewport()

17 }

Figure 8.33
Some face functions. Some different ways to implement a new graphical function to
draw a “face.” The function faceA() makes use of existing graphical functions. The
function faceB() makes use of existing graphical objects.

298 R Graphics, Third Edition

1 faceC <- function(x, y, width, height) {

2 gTree(childrenvp=viewport(x=x, y=y,

3 width=width, height=height,

4 name="face"),

5 children=gList(rectGrob(vp="face"),

6 circleGrob(x=c(0.25, 0.75),

7 y=0.75, r=0.1,

8 vp="face"),

9 linesGrob(x=c(0.33, 0.67), y=0.25,

10 vp="face")))

11 }

13 faceD <- function(x, y, width, height) {

14 grid.grabExpr({

15 pushViewport(viewport(x=x, y=y,

16 width=width,

17 height=height))

18 grid.rect()

19 grid.circle(x=c(0.25, 0.75),

20 y=0.75, r=0.1)

21 grid.lines(x=c(0.33, 0.67), y=0.25)

22 popViewport()

23 })

24 }

Figure 8.34
Some face objects. Some different ways to implement a new graphical object to
represent a “face.” The function faceC() makes use of existing graphical objects.
The function faceD() makes use of existing graphics functions by capturing their
output as a gTree.

Developing New Graphical Functions and Objects 299

8.5 Debugging grid

One of the difficulties of working with grid is relating our R code to what we
can see on screen. The R code describes what to draw, but when things go
wrong, the result can often be a blank page. In the case of viewports, even if
our code is working, it may not be obvious because the viewports themselves
are invisible. This section provides some tips and tools for debugging grid
graphics code.

The grid.ls() function (see Section 7.2) can be used to list all grobs and
viewports on the current page, although in some situations it will be useful
to call grid.force() first (see Section 7.7).

One of the simplest things we can do to check where a viewport is placed on
the page is to draw a rectangle around the current viewport with a simple call
to grid.rect().

When we are working with grid layouts, the grid.show.layout() function is
useful for drawing a diagram to show how a page will be divided by a layout.

Finally, the gridDebug package provides the gridTree() function for draw-
ing node-and-edge graphs to show the hierarchy of grobs and viewports in the
current page. The package also includes a grobBrowser() function that gen-
erates a SVG version of the current grid output with tooltips for interactively
exploring the names of grobs within a plot.

300 R Graphics, Third Edition

Chapter summary

It is possible to write simple grid graphics functions for the purpose
of producing graphical output. Such functions should not assume that
they have the entire device to draw into. They should only assume
that they are drawing within a grid viewport. Naming any view-
ports created in the function and using upViewport() rather than
popViewport() makes it possible for others to annotate the graphi-
cal output produced by the function. Naming all grobs produced by
the function makes it possible for others to edit the output from the
function (or remove grobs or add grobs or extract grobs).

Creating a graphical object to represent the output generated by the
function requires extra effort to set up methods for the new graphical
object class, but provides additional benefits. Most graphical objects
will be gTrees consisting of a high-level description plus several child
grobs representing the output produced. A gTree makes it possible
for others to interact with the high-level description, while still being
able to access the low-level element grobs. A grob can also be useful
to provide information about the amount of space required to produce
graphical output. Finally, a grob makes it possible for others to create
higher-level gTrees with the grob as a child element.

Part III

THE GRAPHICS ENGINE

http://taylorandfrancis.com

9

Graphics Formats

Chapter preview

This chapter describes how to produce graphical output in different
formats. The output of graphics functions is typically drawn on screen
initially, but this chapter describes how to save plots to files on disk.
There is a discussion of the advantages and disadvantages of the var-
ious formats for different purposes. The same R code will sometimes
produce slightly different output on different formats, so these differ-
ences are also described.

This part of the book is devoted to the core graphics engine in R, which is
provided by the grDevices package. The information in this chapter and the
next applies to almost all graphics functions and packages mentioned in this
book.

The grDevices package is part of the standard R installation and is normally
loaded by default in every R session. In a non-standard installation, it may be
necessary to make the following call in order to access core graphics functions
(if the grDevices package is already loaded, this will not do any harm).

> library(grDevices)

The graphics engine provides two main facilities for almost all graphics func-
tions in R: support for producing output in different graphics formats, which
is described in this chapter, and support for specifying values for graphical
parameters, such as colors and fonts, which is described in Chapter 10.

303

304 R Graphics, Third Edition

9.1 Graphics devices

Throughout Parts I and II of this book, there have been vague statements
about “the graphics window” or graphical output being drawn on a “page” or
a“screen.” This chapter addresses the issue of where graphical output appears
and how it gets recorded.

In a typical interactive R session, a graphics window is automatically opened
the first time that a graphics function is called and a plot is drawn on screen in
this window. So for simple usage, there is no need for the user to decide where
graphics output should go because there is a sensible default. However, for
the purposes of producing a report, for example, in a PDF document, drawing
a plot on screen is not very helpful. Instead, the plot needs to be saved in
a PDF format, in a file on a hard disk. This section describes how to direct
graphical output to a file rather than to the screen and how to specify the
format of that file.

When using the popular R Studio∗ interface for R, there is a graphics “pane”
where plots will appear. This is fine for casual use, but does not behave
exactly like a normal R graphics device, so for achieving fine control over a
plot it is advisable to explicitly open a graphics window (or file), as described
in this chapter.

In R’s terminology, graphical output is directed to a particular graphics device.
In general, a graphics device must first be opened, then any subsequent calls to
graphics functions produce output on that device. The dev.new() function
opens the default device, as given by options("device"), but each device
also has its own specific function. For example, the pdf() function opens a
file and stores graphics output in a PDF format. A full list is given in the next
section. For file-based devices, it is also important to close the device using
the dev.off() function once all graphical output is complete.

The following code shows how to produce a simple scatterplot in PDF format.
The output is stored in a file called myplot.pdf.

> pdf(file="myplot.pdf")

> plot(pressure)

> dev.off()

∗https://www.rstudio.com/

https://www.rstudio.com

Graphics Formats 305

A simple modification of this pattern produces the same output in PNG format
(in a file called myplot.png), as shown below.

> png(file="myplot.png")

> plot(pressure)

> dev.off()

It is possible to have more than one device open at the same time, but only
one device is currently active and all graphics output is sent to that device.

If multiple devices are open, there are functions to control which device is
active. The list of open devices can be obtained using dev.list(). This gives
the name (the device format) and number for each open device. The function
dev.cur() returns this information only for the currently active device. The
dev.set() function can be used to make a device active, by specifying the
appropriate device number and the functions dev.next() and dev.prev()

can be used to make the next/previous device on the device list the active
device.

The dev.size() function can be used to obtain the size of the current device,
in either inches, centimeters, or pixels.

All open devices can be closed at once using the function graphics.off().
When an R session ends, all open devices are closed automatically.

9.2 Graphical output formats

Table 9.1 gives a full list of functions that open devices and the output formats
that they correspond to.

All of these functions provide several arguments to allow the user to specify
things such as the physical size of the window or document that is created.

Due to differences between graphics formats, it is very unlikely that the same
R code will produce identical results on different devices. For example, a PDF
version of a plot is unlikely to appear identical to a PNG version of the same
plot. Fonts are a particularly difficult feature to reproduce exactly across
different formats.

Some of the distinct features of the various graphics formats are discussed
further in the following sections.

306 R Graphics, Third Edition

Table 9.1
Graphics formats that R supports and the functions that open an
appropriate graphics device.

Function Graphical Format

Screen Devices
x11() or X11() X Window window (Cairo graphics)
windows() Microsoft Windows window
quartz() MacOS X Quartz window

File Devices
postscript() Adobe PostScript file
pdf() Adobe PDF file
svg() SVG file
win.metafile() Windows Metafile file (Windows only)

png() PNG file
jpeg() JPEG file
tiff() TIFF file
bmp() BMP file

pictex() LATEX PicTEX file
xfig() xfig FIG file
bitmap() Multiple raster formats via Ghostscript

Graphics Formats 307

9.2.1 Vector formats

Graphics devices can be divided into two main groups: vector formats and
raster formats. In a vector format, an image is described by a set of mathe-
matical shapes, for example, a line segment from one (x,y) location to another.
In a raster format, an image consists of an array of pixels, with information
such as color recorded for each pixel. The vector-format version for drawing a
line segment might look something like the following, which involves just the
end points of the line that should be drawn.

2 2 moveto

8 6 lineto

By contrast, a raster format version of the same line might look like the
following, which involves specifying which pixels should be drawn to show the
line (the pixels with value 1 would be drawn).

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Vector formats include PDF, PostScript, and SVG. Examples of raster formats
are PNG, JPEG, TIFF, and all screen devices.

The R graphics engine is fundamentally vector based, so R plots are produced
very faithfully on vector-based devices. When producing output on a raster
device, the quality of the result may be lower than for a vector device, but this
can be ameliorated by using a higher resolution (more pixels) or by using a
raster device that implements anti-aliasing, which helps to produce smoother
lines.

In general, vector formats are superior for images that need to be viewed at
a variety of scales, but raster formats will produce much smaller files if the
image is very complex. For most purposes, a vector format is usually the best
choice, but it is sometimes more sensible to use a raster format when a plot
is visually complex, for example, if it involves a large number of data points.

It may sometimes be necessary to make further modifications to an R plot
using third-party software. In such cases, another consideration is that certain
modifications of an image, for example removing a particular shape, are only

308 R Graphics, Third Edition

possible with a vector format. On the other hand, other modifications, such
as making all white pixels in an image transparent, are easier with raster
formats. Because it is easy to convert a vector format to a raster version,
while the reverse is very difficult if not impossible, it usually makes sense to
produce a vector image from R if the image will be modified later.

PDF

PDF is a good choice of format, partly because of the widespread availability
of viewing software such as Adobe Reader. It is also a very sophisticated
format, so it is able to faithfully produce anything that R graphics can do.

The primary device for producing R plots in PDF format is the pdf() device.

The first argument is the name of the file to produce. By default, this will
produce a single file, which can contain several pages of output. Section 9.5
describes how to produce a separate file for each page of output.

By default the pdf() device produces a seven-inch square document, but a
custom physical size can be specified as the width and height, in inches. It
is also possible to specify a standard paper size, e.g., "a4", via the paper

argument. However, this paper size is independent of the width and height of
the actual plot unless the width and height are set to zero, in which case the
plot expands to fit the paper size (minus 0.25 inch margins).

The default (sans-serif) font for the pdf() device is Helvetica, but a different
default can be specified via the family argument. For example, "serif" uses
a Times font, and "mono" produces Courier. Much more information about
selecting fonts is provided in Section 10.4.

In non-English locales, it may be necessary to specify an appropriate encoding
for the file, although the pdf() function makes some attempt to automate this.

R also provides some support for locales with very large character sets, such
as Chinese hanzi, Japanese kanji, and Korean hanja. For these cases, there
are several predefined CID-keyed fonts, which are also included in the list pro-
duced by pdfFonts(). It is also possible to define new fonts via the CIDFont()
function, but this does require detailed knowledge of the relevant font tech-
nology.

The pdf() device does not embed fonts within the PDF file. This is significant
because PDF viewer software will substitute fonts if they are not embedded
within a PDF file and they are not available on the system where the file is
being viewed. If a non-standard font is used and font substitution occurs, the
resulting plot may have missing characters or at best look quite untidy. This
means that a plot should only use fonts that are known to be installed on the
system where the plot is to be viewed (e.g., the default Helvetica, Times, or

Graphics Formats 309

Courier fonts), or all fonts should be embedded within the PDF file using the
embedFonts() function. In the latter case, all relevant fonts must be installed
on the system that is used to perform the embedding.

In summary, any plot that makes use of the standard fonts should be fine,
but any plot that makes use of more exotic fonts should call embedFonts()
to make sure that the plot can be viewed or printed properly on any system.

When saving graphics that include text in a PDF format, the default behavior
is to use kerning to make small adjustments to the positioning of certain pairs
of characters. For example, a lowercase ‘a’ beside an uppercase ‘T’ are placed
closer together than a lowercase ‘a’ beside a lowercase ‘o’. This facility is
turned on or off via the useKerning argument.

Another special situation arises when drawing polygons that self-intersect.
There are two main algorithms for determining the interior of such polygons:
the non-zero winding rule and the even-odd rule. Unfortunately, the R graph-
ics engine does not explicitly specify a fill rule for self-intersecting polygons,
so the default is to use the non-zero winding rule. The fillOddEven argument
can be used to change to the even-odd rule instead.

Another way to produce PDF output in R is to use the function that is based
on the Cairo graphics library,∗ cairo_pdf(). The advantage of this function is
that it may provide better support for fonts, including automatic embedding
of fonts, although this does depend on the installation of further software
libraries. The downside to this PDF device is that it will sometimes generate
raster output for complex images.

PostScript

PostScript can be thought of as a predecessor of PDF. In some ways, PostScript
is actually more sophisticated than PDF, but it does not support some of the
more modern features such as semitransparent colors and hyperlinking. This
means that PostScript output cannot faithfully produce everything that R
graphics can do.

The main way to produce PostScript output is using the postscript() device.
This shares many features with the pdf() device as described above, including
the ability to size the device, text kerning, and polygon fill rules.

Device sizing is slightly different in that the paper setting is dominant over
the width and height. For example, on an "a4" PostScript page, the plot
will fill the page by default. The PostScript produced by R is compatible
with Encapsulated PostScript (EPS), which is useful for including R plots

∗http://cairographics.org/.

http://cairographics.org/

310 R Graphics, Third Edition

within other documents (see Section 9.3), but to control the size of a plot it
is necessary to specify paper="special" as well as an appropriate width and
height. In this situation, it is usually also a good idea to specify a portrait
orientation for the page via horizontal=FALSE. The setEPS() function is
useful for setting up appropriate default settings for Encapsulated PostScript
output.

Another difference between the PostScript device and the PDF device is that
all fonts that are used in a PostScript plot must be“predeclared”via the fonts
argument when the device is first opened.

One limitation with the postscript() device is that it does not support
semitransparency. Any attempt to draw a semitransparent color will fail with
a warning. If PostScript is the required format, one avenue is to produce
PDF and then convert to PostScript using third-party software such as Im-
ageMagick.∗ Another option is to use the Cairo-based device cairo_ps().
However, both of those options are likely to produce raster elements within
the PostScript file, which means that the quality of the image may be reduced.

SVG

SVG is a format with tremendous potential because it offers an open standard
vector format, as sophisticated as the PDF format, that can be embedded in
web pages. All modern web browsers now support SVG. SVG output can be
produced with the svg() device.

Because of the limitations of the R graphics engine, it is not possible to take
advantage of more advanced SVG features, such as compositing operators
and animation through the svg() device. However, Chapter 13 describes the
gridSVG package, which provides access to a wide range of advanced SVG
features. Some of the extension packages described in Section 9.7 also provide
access to some extra SVG features.

Windows Metafile

The Windows Metafile format is important because it is the vector format that
should be most compatible with Microsoft products such as Word, Excel, and
PowerPoint. This format can only be produced on Windows systems. A
Windows Metafile file can be generated with the win.metafile() function.

∗http://www.imagemagick.org/.

http://www.imagemagick.org

Graphics Formats 311

9.2.2 Raster formats

The raster device that users will encounter most often is the graphics window
on screen. This is the quickest and simplest way to view graphical output.
Screen devices are different on different operating systems: typically, a Cairo-
based X Window device on Linux, a Quartz device on MacOS X, and a native
Windows device on Windows. There are some differences between these devices
(see Section 9.4), so R code is unlikely to produce identical results on different
platforms. On Linux and MacOS X there is also an X Window device, which
lacks support for some graphics features, but is faster than the Cairo-based
device.

When saving graphics to a file, there are several raster formats to choose
from. The PNG format is desirable because it is lossless, which means that it
compresses the image (most raster formats compress the image to save space)
in such a way that no information is lost. This means that a PNG file can
be edited without reducing the quality. The JPEG format, by comparison,
uses lossy compression so, although JPEG files will typically be smaller than
PNG files, repeatedly editing a JPEG will result in a reduction in quality.
Furthermore, the JPEG compression is better suited to complex images with
lots of different regions (like photographs), whereas the PNG format does a
better job with simpler images that include lines and text and large areas of
constant color. Consequently, the PNG format is usually better for statistical
plots, though an exception might be a very busy image() plot or contour()

plot.

The JPEG format does not support semitransparency. The PNG format does,
but this is only partially supported on Windows, and only via the default
Cairo-based devices on Linux and MacOS X.

Neither PNG nor JPEG formats support multiple pages in a document, so if a
png() device is opened and then more than one page of output is produced,
the result will be several PNG files rather than just one (by default, the file
names are automatically numbered).

TIFF is a very sophisticated format that allows multiple pages of raster output
within a single file. It is less well supported by web browsers, but may be the
preferred format for publishers of books or journal articles.

Determining the size of a raster image is less straightforward than it is for
vector formats. The width and height of a raster device are specified as a
number of pixels rather than as a physical size in inches. The physical size of
a raster image is then determined by the resolution at which it is viewed. For
example, a PNG image that is 72 pixels wide will be 1 inch wide when viewed
on a screen with a resolution of 72 dpi (dots per inch), but it will be only 0.75
inches wide on a screen with a resolution of 96 dpi.

312 R Graphics, Third Edition

It is possible to specify a fixed resolution for a raster format image via the
res argument. However, this information will not necessarily be respected
when the image is displayed. For example, a web browser may just use the
resolution of the screen when displaying images on web pages (so the image
size will still vary depending on the screen resolution). On the other hand,
if a raster image is included within a LATEX document, the resolution of the
image is respected.

As a general rule of thumb, if a raster image is being prepared for use on a web
page, there is no point in worrying about setting the resolution, but if a raster
image is being prepared for inclusion in a document that is to be typeset, such
as a LATEX or Microsoft Word document, then setting the resolution may be
worthwhile, particularly if a high-quality image is required.

Because the physical size of a raster image can be ambiguous, it can be difficult
to control the size of text in a raster image. The pointsize argument specifies
the default size of text for an image, but what this means is again dependent
on the resolution at which the image is displayed. The size of text is given in
big points (1

72 inch), relative to the res argument. This means that the size
of text is calculated as if the resolution of the image is going to be respected.
The result should be as expected when a raster image is included in another
document, but the result can be confusing if the image is displayed at screen
resolution.

In summary, the physical size of text in a plot depends on the size of the text,
the size of the image, the resolution of the image, and whether the image is
displayed at screen resolution or at the native resolution of the image.

9.2.3 R Studio

The R Studio IDE for R includes a “plot pane” where graphics output will
appear by default. This plot pane is not a standard R graphics device. It is
useful for exploratory graphical analysis, but if you want to control the exact
appearance of the final result, you should open and use an explicit R graphics
device, for example, by calling pdf() or png().

This warning applies generally for all “GUI” R interfaces; in order to obtain
the best results for graphical output, rather than using a “Save as” menu
option, the recommended approach is to explicitly control the opening and
closing of R graphics devices.

Graphics Formats 313

9.3 Including R graphics in other documents

There are two typical uses of R graphics. One is to produce basic plots on
screen for exploratory data analysis, and the other is to produce finely tuned
plots in a file format for inclusion in a larger document such as a web page
or a printed report. This section deals with some issues specifically related to
the latter task.

One important issue to consider is the physical size of text and the physical
width of lines in a plot within the final document. Text has to be readable
and lines typically need to be wide enough for print resolution so that, for
example, they do not disappear when photocopied.

The default, for vector formats, is to produce a seven-inch square document,
using a 12-point, sans-serif font, with lines 1

96 inches wide. This is fine for
viewing a plot on its own, but is much too large for a typical document, for
example, when including a plot in a figure within an A4 page.

The best approach is to produce the plot at the size that it needs to be in the
final document and specify the appropriate font size and line width explicitly.

9.3.1 LATEX

Standard vector formats such as PDF and PostScript are ideal for including
within LATEX documents. However, there is one situation where a more LATEX-
specific option may be more desirable.

One thing that LATEX does exceptionally well is the typesetting of mathe-
matical formulae. R’s mathematical annotation facility attempts to emulate
LATEX, but it is not as good as the real thing, particularly when the fonts
involved are not the TEX math fonts.

There is a special cmsyase font that can be used to draw mathematical for-
mulae in R with TEX math fonts. This is available from the fontcm extension
package for R.

One way to produce graphics output specifically for inclusion in a LATEX doc-
ument is to use the pictex() device. This produces LATEX macros from the
PICTEX package to draw a plot. The main advantage of this is that the text
in the plot will use the same font as the rest of the LATEX document. Unfortu-
nately, this device is very rudimentary, so it is not suitable for anything other
than very basic plots (it does not even support colors). See Section 9.7 for a
more sophisticated alternative.

314 R Graphics, Third Edition

9.3.2 “Productivity” software

Microsoft software products have a tendency to play nicely with each other
and with Microsoft formats, but less well with other software products and
formats. This is particularly true for vector graphics formats, so possibly the
best vector format for including plots in Microsoft products, such as Word and
Excel, is the WMF format (Windows Meta-File). Microsoft products should
cope well with the standard raster formats, though there is also the Windows-
specific BMP format.

The Open Office software has better support for including PDF plots in doc-
uments and will also cope with standard raster formats.

9.3.3 Web pages

Historically, the standard way to include an image in a web page has been to
use a raster format, such as PNG. However, due to the improved support in
modern web browsers, SVG is now the preferred format.

9.4 Device-specific features

Not all graphics devices are created equal. The same R code can produce
slightly different graphical output depending on the graphics device format.

While the performance of vector devices should be quite consistent on all
platforms (Windows, Linux, MacOS X), the performance of raster devices is
much more platform dependent. On the other hand, for a specific platform,
plots saved in a raster format should have the same appearance as they do
on-screen.

One area where differences can become evident is in the selection of fonts.
The standard set of fonts, as described in Section 10.4, should always be
available, though there will be small differences in appearance on different
platforms (e.g., the default "sans" font is Arial on Windows and Helvetica
on Linux). Section 10.4 provides details on how to select fonts for different
graphics devices.

On some devices, the font size that is specified will not be honored exactly. For
example, when drawing in a raw X Window window with bitmap fonts, there
are only a finite set of font sizes available and this set will vary depending

Graphics Formats 315

on which fonts are installed. For the PostScript and PDF formats, font sizes
should scale appropriately to any size.

Anti-aliasing can dramatically improve the quality of a raster image by smooth-
ing the appearance of lines and text. The support for anti-aliasing will vary
across graphics devices. If the purpose is to include a raster image in another
document, then generating a high-resolution image is another way to improve
quality.

The Windows screen device has less-complete support for semitransparent col-
ors, compared to the default screen device on Linux and MacOS X.

On Linux and MacOS X, where the default screen and raster devices are Cairo
based, it is also possible to produce screen output and raster formats directly
via the X Window system. This typically produces a poorer quality image,
for example, there is no support for semitransparent colors or anti-aliasing,
but the rendering is faster so this option could be considered for particularly
complex images.

An alternative way to produce raster format images that should produce more
consistent results across platforms is to use the bitmap() function. The down-
side is that this requires the installation of additional software (Ghostscript).
Section 9.7 describes some other possibilities for producing consistency across
platforms.

9.5 Multiple pages of output

For a screen device, starting a new page involves clearing the window before
producing more output. Some “GUI” interfaces for R provide a “plot history”
facility for revisiting previous screens of output, but on most raw on-screen
devices, the output of previous pages is lost.

If a piece of code produces several pages of plots, the devAskNewPage() func-
tion can be used to force a user prompt before each new page is started. This
allows the user to view each page at leisure before indicating to R to move on
to the next page.

For file devices, the output format dictates whether multiple pages are sup-
ported. For example, PostScript and PDF allow multiple pages, but PNG does
not. It is usually possible, especially for devices that do not support multiple
pages of output, to specify that each page of output produces a separate file.
This is achieved by specifying the argument onefile=FALSE when opening

316 R Graphics, Third Edition

a device and specifying a pattern for the file name like file="myplot%03d"

so that the %03d is replaced by a three-digit number (padded with zeroes)
indicating the “page number” for each file that is created.

9.6 Display lists

R maintains a display list for each open device, which is a record of the output
on the current page of a device. This is used to redraw the output when
a device is resized and can also be used to copy output from one device to
another.

The function dev.copy() copies all output from the active device to another
device. The copy may be distorted if the aspect ratio of the destination device
— the ratio of the physical height and width of the device — is not the same as
the aspect ratio of the active device. The function dev.copy2eps() is similar
to dev.copy(), but it preserves the aspect ratio of the copy and creates a file
in EPS (Encapsulated PostScript) format that is ideal for embedding in other
documents (e.g., a LATEX document). The dev2bitmap() function is similar
in that it also tries to preserve the aspect ratio of the image, but it produces
one of the output formats available via the bitmap() device.

The function dev.print() attempts to print the output on the active device.
By default, this involves making a PostScript copy and then invoking the print
command given by options("printcmd").

The display list can consume a reasonable amount of memory if a plot is par-
ticularly complex or if there are very many devices open at the same time.
For this reason, it is possible to disable the display list by typing the expres-
sion dev.control(displaylist="inhibit"). If the display list is disabled,
output will not be redrawn when a device is resized, and output cannot be
copied between devices.

There is also a recordPlot() function, which saves the display list to an R
variable. The variable can then be passed to the replayPlot() function to
draw the saved plot.

Graphics Formats 317

Table 9.2
Graphics formats that are provided by extension packages for R and
the functions that open an appropriate graphics device.

Function Graphical Format Package

Cairo() Multiple formats Cairo
tikz() LATEX PGF/TikZ file tikzDevice
devSVGTips() SVG file RSVGTipsDevice

9.7 Extension packages

Several extension packages for R provide a number of extra graphical formats
that are not provided by the grDevices package itself. In general, these work
just like the core devices, with a function provided to open a device in the
appropriate format. Additional functions may be provided for handling other
features of the device, such as fonts. Table 9.2 lists some of the extension
packages that provide graphics devices.

The usefulness of the Cairo package is that it allows Cairo-based graphics
output on any platform (although it requires the Cairo graphics library to be
installed first). This has the advantage that the output on a Cairo-based screen
device should be very similar on all platforms and the output on a Cairo-based
file device should be very similar to the output on a screen device.

The tikzDevice package provides a sophisticated solution for producing graph-
ical output for inclusion in LATEX documents. The main advantages are that
the fonts for text in the plot will match the fonts used in the LATEX document
and LATEX’s native mathematical formula syntax can be used for text in plots.

The RSVGTipsDevice package provides an alternative way to produce SVG
output, with the advantage of allowing tooltips and hyperlinks to be added
to the SVG file. See Chapter 13 for the gridSVG package, which takes this
idea much further.

318 R Graphics, Third Edition

Chapter summary

R graphics can produce a wide variety of graphical formats. In inter-
active use, graphics output is drawn on screen, but it is also possible
to save graphics output in a file. A vector graphics format usually pro-
duces a better-quality result than a raster format when saving plots
to a file, but the choice of format will also depend on how the plot
will be used (e.g., included in a LATEX document versus distributed as
part of a web page).

10

Graphical Parameters

Chapter preview

This chapter describes how to specify graphical parameters, including
information about specifying colors, how to generate sets of coherent
colors, information about how to specify fonts for drawing text, and
information about how to produce special symbols and formatting for
drawing mathematical formulae. The information in this chapter is
useful for controlling the output of almost all graphics functions in R.

Graphical parameters are the arguments to functions that influence the de-
tailed appearance of a graphical image. They apply the make-up to the basic
bone structure of an image. Examples include the color and line width used
to draw a line and the font used to draw text.

Despite the fact that the R graphics universe consists of two distinct graphics
systems, base and grid, the way that graphical parameters are specified is
quite consistent across both of these systems.

10.1 Colors

The easiest way to specify a color in R is simply to use the color’s name. For
example, "red" can be used to specify that graphical output should be (a very
bright) red. R understands a fairly large set of color names; type colors()

319

320 R Graphics, Third Edition

(or colours()) to see a full list of known names.

It is also possible to specify colors using one of the standard color space
descriptions. For example, the rgb() function allows a color to be specified as
a Red-Green-Blue (RGB) triplet of intensities. Using this function, the color
red is specified as rgb(1, 0, 0). The function col2rgb() can be used to
see the RGB values for a particular color name (although the resulting color
channels are in the range 0 to 255 rather than 0 to 1).

> col2rgb("red")

[,1]

red 255

green 0

blue 0

An alternative way to provide an RGB color specification is to provide a
string of the form "#RRGGBB", where each of the pairs RR, GG, BB consist of
two hexadecimal digits giving a value in the range zero (00) to 255 (FF). In
this specification, the color red is given as "#FF0000".

In R, RGB color specifications are interpreted relative to the sRGB color space
(IEC standard 61966).∗

There is also an hsv() function for specifying a color as a Hue-Saturation-
Value (HSV) triplet. The terminology of color spaces is fraught, but roughly
speaking: hue corresponds to a position on the rainbow, from red (0),
through orange, yellow, green, blue, indigo, to violet (1); saturation deter-
mines whether the color is dull (grayish) or bright (colorful); and value deter-
mines whether the color is light or dark. The HSV specification for the (very
bright) color red is hsv(0, 1, 1). The function rgb2hsv() converts a color
specification from RGB to HSV.

> rgb2hsv(255, 0, 0)

[,1]

h 0

s 1

v 1

A better alternative to either rgb() or hsv() is the hcl() function. Similar
to hsv(), this function specifies colors as a hue, a chroma (or colorfulness,

∗http://www.color.org/chardata/rgb/srgb.xalter.

http://www.color.org

Graphical Parameters 321

similar to saturation), and a luminance (or lightness, similar to value). The
color "red" corresponds to hcl(12, 179, 53).

The hcl() function is better than the hsv() function because it works in the
(polar) CIE-LUV color space, in which a unit distance is close to a perceptually
constant change in color, so, for example, holding chroma and luminance
constant while varying only hue produces colors that are approximately similar
in their visual impact on the observer.

Greyscale colors can be generated using the function grey() (or gray()).
These functions take a vector of numeric values between 0 (black) and 1
(white).

One final way to specify a color is simply as an integer index into a predefined
set of colors. The predefined set of colors can be viewed and modified using
the palette() function. In the default palette, red is specified as the integer
2.

10.1.1 Semitransparent colors

All R colors are stored with an alpha transparency channel. An alpha value of
0 means fully transparent and an alpha value of 1 means fully opaque. When
an alpha value is not specified, the color is opaque.

The function rgb() can be used to specify a color with an alpha transparency
channel, simply by providing a fourth value to the function. For example,
rgb(1, 0, 0, 0.5) specifies a semitransparent red. Alternatively, a color can
be specified as a string beginning with a "#" and followed by eight hexadecimal
digits. In that case, the last two hexadecimal digits specify an alpha value
in the range 0 to 255. For example, "#FF000080" specifies a semitransparent
red.

A color may also be specified as NA, which is usually interpreted as fully
transparent (i.e., nothing is drawn). The special color name "transparent"

can also be used to specify full transparency.

WARNING: If a graphic device does not support semitransparency, semi-
transparent colors are rendered as fully transparent.

322 R Graphics, Third Edition

10.1.2 Converting colors

There are many other ways to specify colors besides the RGB, HSV, and polar
CIE-LUV color spaces described so far and the convertColor() function
provides a mechanism for converting between different color spaces.

The following code shows an example where the color "red" is converted to
the CIE-LUV color space. This can be a useful transformation because the L
component of the result can be used to convert the color to grayscale. The
col2rgb() function is used to obtain a matrix containing the separate red,
green, and blue components, those are normalized to a zero-to-one range by
dividing by 255, and then the matrix is transposed so that the components are
different columns. The transformation is from R’s native color space, sRGB,
to CIE-LUV.

> convertColor(t(col2rgb("red")/255), "sRGB", "Luv")

L u v

[1,] 53.48418 175.3647 37.80017

The L component of the result corresponds to the values given for the hcl()

specification of "red" on page 321. The u and v components do not correspond
to the h and c components of the hcl() example because the hcl() function
works in polar coordinates, whereas u and v are cartesian dimensions within
the CIE-LUV color space.

Another useful tool is the adjustcolor() function, which allows the compo-
nents of an existing color to be scaled. For example, the following code takes
the color "red" and makes it semitransparent.

> adjustcolor("red", alpha.f=.5)

[1] "#FF000080"

This result corresponds to the explicit color specification for semitransparent
red that was given above.

The colorspace package provides more tools for converting between a wider
range of color spaces.

10.1.3 Color sets

More than one color is often required within a single plot, for example to
distinguish between different groups of data symbols, and in such cases it

Graphical Parameters 323

Table 10.1
Functions to generate color sets. R functions that can be used to generate coher-
ent sets of colors.

Name Description

rainbow() Colors vary from red through orange, yellow,
green, blue, and indigo, to violet.

heat.colors() Colors vary from white, through orange, to red.

terrain.colors() Colors vary from white, through brown, to green.

topo.colors() Colors vary from white, through brown then green,
to blue.

cm.colors() Colors vary from light blue, through white, to light
magenta.

gray.colors() A set of shades of gray.

can be difficult to select colors that are aesthetically pleasing or are related in
some way (e.g., a set of colors in which the brightness of the colors decreases in
regular steps). Table 10.1 lists some functions that R provides for generating
sets of colors. Each of these functions takes a single numeric argument and
returns that number of colors. For example, the following code produces five
colors from the rainbow() function.

> rainbow(5)

[1] "#FF0000FF" "#CCFF00FF" "#00FF66FF" "#0066FFFF"

[5] "#CC00FFFF"

The output of the expression example(rainbow) provides a nice visual sum-
mary of the color sets generated by several of these functions.

Each of the functions in Table 10.1 (apart from gray.colors()) selects a set
of colors by taking regular steps along a path through the HSV color space.
As mentioned previously, a more perceptually uniform set of colors can be
obtained by working in the CIE-LUV color space. For example, the following
code generates six colors from the CIE-LUV color space that vary regularly
in terms of hue, but are all equally bright (the chroma component is fixed at
50) and all equally light (the luminance component is fixed at 60).

324 R Graphics, Third Edition

> hcl(seq(0, 300, 60), 50, 60)

[1] "#C87A8A" "#AC8C4E" "#6B9D59" "#00A396" "#5F96C2"

[6] "#B37EBE"

There are a number of extension packages that provide further functions for
generating a set of colors, for example, RColorBrewer and pals.

The functions colorRamp() and colorRampPalette() are a little different
because they are not color set generators. Instead, they are color set function
generators. These functions accept a set of colors and color space to work
in and they interpolate a path through the color space (either joining the
starting colors with straight lines or interpolating a smooth curve through the
colors), then they return a function that can be called to select colors from
the interpolated path.

One difference between the functions is that colorRamp() produces a function
that can generate colors based on a sequence of values in the range 0 to 1, like
gray.colors(), whereas colorRampPalette() produces a function that can
generate n colors, like rainbow().

Another difference between the functions is that colorRamp() returns a ma-
trix of red, green, and blue color components, whereas colorRampPalette()

returns a vector of colors.

The following code demonstrates colorRampPalette() being used to create
a color set generating function that produces colors ranging from "blue" to
"gray". The function is then used to generate five colors.

> bluegray <- colorRampPalette(c("blue", "gray"))

> bluegray(5)

[1] "#0000FF" "#2F2FEE" "#5F5FDE" "#8E8ECE" "#BEBEBE"

10.1.4 Device dependency of color specifications

The colors that R sends to a graphics device are sRGB colors. This should be
appropriate for drawing to a screen device because most computer monitors
are set up to work with sRGB. Also, colors used on web pages are typically
sRGB, so raster file formats produced by R, such as PNG, should work rea-
sonably well there too.

However, the final appearance of a color can vary considerably when it is
viewed on a screen, or printed on paper, or displayed through a projector

Graphical Parameters 325

as it depends on the physical characteristics of the screen, printer ink, or
projector. When an image is saved in a PDF or PostScript format, R records
the fact that sRGB colors are being used so printers and viewers have some
chance of producing the right result.

10.2 Line styles

It is possible to control the width of a line, the pattern used to draw the line
(e.g., solid versus dashed), and the styling used for the ends and corners of a
line.

10.2.1 Line widths

The width of lines is specified by a simple numeric value, e.g., lwd=3. This
value is a multiple of 1/96 inch, with a lower limit of 1 pixel on some screen
devices. The default value is 1.

10.2.2 Line types

R graphics supports a fixed set of predefined line types, which can be specified
by name, such as "solid" or "dashed", or as an integer index (see Figure
10.1). In addition, it is possible to specify customized line types via a string of
digits. In this case, each digit is a hexadecimal value that indicates a number
of “units” to draw either a line or a gap. Odd digits specify line lengths and
even digits specify gap lengths. For example, a dotted line is specified by
lty="13", which means draw a line of length one unit then a gap of length
three units. A unit corresponds to the current line width, so the result scales
with line width, but is device dependent. Up to four such line-gap pairs can
be specified. Figure 10.1 shows the available predefined line types and some
examples of customized line types.

10.2.3 Line ends and joins

When drawing thick lines, it becomes important to select the style that is
used to draw corners (joins) in the line and the style that is used to draw the
ends of the line. R provides three styles for both cases: line endings can be

326 R Graphics, Third Edition

Integer Sample line String

Predefined
0 "blank"
1 "solid"
2 "dashed"
3 "dotted"
4 "dotdash"
5 "longdash"
6 "twodash"

Custom
"13"
"F8"
"431313"
"22848222"

Figure 10.1
Predefined and custom line types. Line type may be specified as a predefined integer,
as a predefined string name, or as a string of hexadecimal characters specifying a
custom line type.

Graphical Parameters 327

Figure 10.2
Line join and line ending styles. Three thick lines have been drawn through the
same three points (indicated by black circles), but with different line end and line
join styles. The black line was drawn first with "square" ends and "mitre" joins;
the dark gray line was drawn on top of the black line with "round" ends and "round"

joins; and the light gray line was drawn on top of that with "butt" ends and "bevel"

joins.

"round" or flat (with two variations on flat, "square" or "butt"); and line
joins can be "mitre" (pointy), "round", or "bevel". The differences are most
easily demonstrated visually (see Figure 10.2).

When the line join style is "mitre", the join style will automatically be con-
verted to "bevel" if the angle at the join is too small. This is to avoid
excessively pointy joins. The point at which the automatic conversion occurs
is controlled by a miter limit, which specifies the ratio of the length of the
miter divided by the line width. The default value is 10, which means that
the conversion occurs for joins where the angle is less than 11 degrees. Other
standard values are 2, which means that conversion occurs at angles less than
60 degrees, and 1.414, which means that conversion occurs for angles less
than 90 degrees. The minimum miter limit value is 1.

It is important to remember that line join styles influence the corners on
rectangles and polygons as well as joins in lines.

328 R Graphics, Third Edition

10.3 Data symbols

The data symbol used for plotting points is specified as either an integer,
which indexes one of 26 predefined data symbols (see Figure 10.3), or directly
as a single character. Some of the predefined data symbols (pch between 21
and 25) allow a fill color separate from the border color.

Integer values larger than 32, but less than 127, are interpreted as ASCII
character values and the corresponding character is drawn.

If pch is a character, then that letter is used as the plotting symbol. The
character "." is treated as a special case and the device attempts to draw a
very small dot.

The text() and grid.text() functions can also be used to draw a single
character, which expands the range of possible “plotting symbols” enormously
(depending on our font and system locale).

10.4 Fonts

Whenever we draw text as part of a plot or image, R needs to know what
font to use for the text. Specifying a font in R consists of specifying a font
family, such as Helvetica or Courier, and specifying a font face, such as bold
or italic. If we specify nothing, the default should be a plain sans-serif font
(e.g., Helvetica or Arial).

The following code provides a simple demonstration (using grid functions):
the first expression draws text with the default (sans-serif) font; the second
expression specifies that the font family should be serif; and the third expres-
sion specifies that the font face should be bold. The result is shown in Figure
10.4.

> grid.text("hello", x=1/4)

> grid.text("hello", x=2/4,

gp=gpar(fontfamily="serif"))

> grid.text("hello", x=3/4,

gp=gpar(fontfamily="serif", fontface="bold"))

The code above demonstrates that the font family and font face are specified

Graphical Parameters 329

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 AA bb . ##

Figure 10.3
Data symbols available in R. A particular data symbol is selected by specifying an
integer between 0 and 25 or a single character. In the diagram, the relevant integer
or character value is shown in gray to the left of the relevant symbol.

hello hello hello

Figure 10.4
Specifying fonts in R. The “hello” on the left is in the default plain sans-serif font.
The middle “hello” has a serif font family specified and the right “hello” has, in
addition, a bold font face specified.

330 R Graphics, Third Edition

Figure 10.5

Special characters from the Hershey font set.

just using character values, e.g., "serif" and "bold". Section 10.4.1 describes
the set of character values that R allows for specifying the font family and
Section 10.4.2 describes the same for font face.

This simple method for specifying fonts in R does not allow us to select from
the full range of fonts on a system; Section 10.4.1 describes more details about
fonts in general and some ways to work around R’s limitations. It is also only
possible to specify a single font for each function call that draws text (e.g.,
it is not possible to emphasize a single word within a string of text); Section
10.5 offers a partial workaround for this limitation.

10.4.1 Font family

This section describes the values that can be used to specify the font family.

There is a set of device-independent fonts that are supported on all graphics
devices. These are "sans", which gives a sans-serif font, like Arial; "serif",
which gives a serif font, like Times; and "mono", which gives a monospace
font, like Courier (see Table 10.2). The default font family for most graphics
devices is "sans".

In addition, the Hershey outline fonts are also distributed with R and are
available for all output formats. The full set of Hershey font family names are
shown in Table 10.2. These fonts are outline fonts and are rendered by simply
tracing the outline of each character. To a large extent, the Hershey fonts are
a low-quality anachronistic curiosity, but they are possibly the simplest way to
get exactly the same text result on all possible output devices and platforms.
The Hershey fonts are also a source of some unusual characters and idiograms;
for example, the following code was used to draw Figure 10.5. The output
from demo(Hershey) includes a full set of these special characters.

> chars <- sprintf("\\#H%04d", 861:866)

> chars

> grid.text(chars, x=1:6/7, gp=gpar(fontfamily="HersheySans"))

Beyond these device-independent font family specifications, it is also possible
to use specific font family names, such as "Comic Sans". However, the range

Graphical Parameters 331

Table 10.2
Device-independent and Hershey font families that are distributed
with R. A font family is specified as a character value.

Name Description

Device-independent fonts
"serif" Serif variable-width font
"sans" Sans-serif variable-width font
"mono" Mono-spaced “typewriter” font

Hershey fonts
"HersheySerif" Serif variable-width font
"HersheySans" Sans-serif variable-width font
"HersheyScript" Serif “handwriting” font
"HersheyGothicEnglish" Gothic script font
"HersheyGothicGerman" Gothic script font
"HersheyGothicItalian" Gothic script font
"HersheySymbol" Serif symbol font
"HersheySansSymbol" Sans-serif symbol font

of valid font names and the amount of setup required depends on two things:
first, we must have the font installed on our system (it is also important
to consider the audience for the plot and whether they will have the font
installed); and, second, the specification of a font is different depending on
the graphics device that we are drawing on. The following sections cover the
various options for different standard graphics devices.

In brief, if you want to use a specific font, the easiest approach will be to use
one of the Cairo-based graphics devices: the default screen device on Linux,
cairo_pdf() for PDF output, or the Cairo package on Windows. The best
last resort, if nothing else is working, is to try the showtext package. Read
on for a much more detailed discussion.

Screen fonts

When we draw text to an on-screen graphics device, the fonts that are used
will usually depend on our operating system.

On Windows, the screen device can make use of any font that is installed
on the computer, but the font must be “registered” with R first using the
windowsFont() and windowsFonts() functions. For example, if we know that
the font Algerian is installed on our computer, the following code registers
that font with R under the name "AG" and then draws text with that font by

332 R Graphics, Third Edition

specifying the font family "AG".

> windowsFonts(AG=windowsFont("Algerian"))

> grid.text("hello", gp=gpar(fontfamily="AG"))

The extrafont package provides several useful functions that make this pro-
cess easier: the font_import() function can be used to discover the complete
list of fonts that are installed on our computer; and the loadfonts() function
can be used to register all of the installed fonts with R at once.

> library(extrafont)

> font_import()

> loadfonts(device="win")

There is also a fonts() function that lists the fonts that have been discovered;
the code and output below shows the first few fonts that were discovered on
a Windows 10 computer.

> head(fonts())

[1] "Agency FB" "Algerian" "AR BERKLEY" "AR BLANCA"

[5] "AR BONNIE" "AR CARTER"

After also calling loadfonts(), this means that I can use the following code
to draw text with the "AR BONNIE" font.

> grid.text("hello", gp=gpar(fontfamily="AR BONNIE"))

On Linux, the default screen device is most likely to be a Cairo graphics
device. In this case, we again have access to any font that is installed on the
computer and selecting a specific font is even easier—we can simply specify
the font family name (there is no “registration” step).

The gdtools package provides a sys_fonts() function to list all fonts that
are available to a Cairo device. For example, the code and output below show
the first few font names available on an Ubuntu 16.04 computer.

> library(gdtools)

> fonts <- sys_fonts()

> head(as.character(fonts$family))

Graphical Parameters 333

[1] "Tlwg Mono" "Courier New" "Gillius ADF"

[4] "STIXIntegralsUpD" "STIXIntegralsD" "NanumMyeongjo"

The following code shows that, on that Ubuntu computer, any of those font
names can be used directly when drawing text.

> grid.text("hello", gp=gpar(fontfamily="Tlwg Mono"))

Another option on Linux is to use a plain X Window graphics device. A plain
X Window graphics device does not produce the best quality output, so we
are less likely to be worried about tweaking details like the font. Nevertheless,
if we want to use a non-standard font, we must first define the font using
the X11Font() function, and then register it with R using the X11Fonts()

function.

The X11Fonts() function can be used both to view existing fonts and to define
new ones. The code below provides an example of the former use, which allows
us to see the format of a X Window font specification.

> X11Fonts("sans")

$sans

[1] "-*-helvetica-%s-%s-*-*-%d-*-*-*-*-*-*-*"

The following code shows how we can set up a new font. Having determined
that an Ubuntu computer has a set of “bitstream charter” fonts installed (e.g.,
using the shell utility xlsfonts), we use the X11Font() function to create a new
font description and then register that font with R using X11Fonts().

> charterFont <-

X11Font("-*-bitstream charter-%s-%s-*-*-%d-*-*-*-*-*-*-*")

> X11Fonts(charter=charterFont)

We can now use "charter" as a font family specification when drawing text
on an X Window device.

> grid.text("hello", gp=gpar(fontfamily="charter"))

On a MacOS X computer, the default screen device is a Quartz graphics device.
As for Windows and X Window, there is a quartzFont() function for defining a
new font family and a quartzFonts() function for registering the font family
with R. Defining a MacOS X font requires four font names, one each for normal
font face, bold, italic, and bold-italic. The following code shows an example
that registers an “Avenir” font.

334 R Graphics, Third Edition

> avenirFont <- quartzFont(c("Avenir Book", "Avenir Black",

"Avenir Book Oblique",

"Avenir Black Oblique"))

> quartzFonts(avenir=avenirFont)

We can now use the "avenir" font to draw text on a Quartz device.

> grid.text("hello", gp=gpar(fontfamily="avenir"))

Fonts for raster formats

When we use a raster graphics device, such as PNG or JPEG, the fonts available
and the method for specifying new fonts will be the same as when we use a
screen graphics device, so the descriptions from the previous section apply.

PDF and PostScript fonts

The vector graphics devices for PDF and PostScript work the same across
all operating systems. This means that we may get a slightly different (text)
result in PDF output compared to what we see on a screen graphics device, but
the PDF result should look the same for anyone else on any other computer.

Both PDF and PostScript graphics devices make use of Type1 fonts. A Type1
font consists of at least two separate files: one file contains the descriptions
of the individual characters in the font, and another file contains font metric
information—the ascent, descent, and width of individual characters. A new
Type1 font can be defined in R with the Type1Font() function by supplying
four or five font metric files. The first four files describe font metrics for
normal, bold, italic, and bold-italic font faces and the fifth, if given, describes
the font metrics for a symbol font face.

The symbol font face is used for drawing mathematical equations, separate
from whatever font is being used for other text (see Section 10.5). Graphics
devices provide a default symbol font, so this is not required when defining a
new Type1 font.

Once a Type1 font is defined, it must also be registered for use with PDF us-
ing the pdfFonts() function and/or PostScript with the postscriptFonts()

function. The following code provides an example of defining a new font, reg-
istering it for use with the PDF graphics device, and drawing text with that
new font (see Figure 10.6).

Graphical Parameters 335

hello

Figure 10.6

Text drawn on a PDF graphics device using a custom font called “flubber”.

> flubber <- Type1Font("flubber",

rep(file.path(getwd(), "Type1",

"flubber.afm"), 4),

encoding="WinAnsi.enc")

> pdfFonts(flubber=flubber)

> pdf("flubber.pdf", width=4.5, height=.5)

> grid.rect(gp=gpar(col="gray"))

> grid.text("hello", gp=gpar(fontfamily="flubber"))

> dev.off()

> embedFonts("flubber.pdf", outfile="flubber-embedded.pdf",

fontpaths=file.path(getwd(), "Type1"))

An extra complication with the PDF format is that the font does not have to
be included in the PDF file. This means that, when we view a PDF file, if the
computer we are viewing on does not have the required font, the PDF viewer
can substitute a different font so that we can still see the text. However, the
result is not usually very pleasant; the text may be readable, but it is usually
ugly. To avoid this situation, we can embed the font as part of the PDF file.
This is the purpose of the embedFonts() function call in the code above. If
we embed the font using embedFonts() then the PDF file will look the same
for someone else on another computer regardless of whether they have the
font installed on their computer.

Type1 fonts are single-byte fonts, which means that the font can only include
up to 256 different characters. It is not possible to include all characters and
symbols from all languages in only 256 characters, so two different fonts may
include two different sets of characters. This means that a Type1 font may
also require an encoding file, which provides a list of the characters that are
included in the font.

When we define a Type1 font, we can specify an encoding file for the font.
This can be a complete path to an encoding file, or it can just be the name of
one of the standard encoding files that comes included with R. For example,
R provides the encoding file "ISOLatin1.enc", which includes, besides the
basic ASCII english set of characters, a set of European accented characters,
such as é.

336 R Graphics, Third Edition

Many modern fonts are available in TrueType or OpenType formats, but these
can usually be converted to Type1 format for use with R.

The extrafont package, which was mentioned earlier in the context of us-
ing custom fonts on Windows, provides similar convenience when working
with PDF and PostScript graphics devices. The fonts that are discovered by
the font_import() function can be registered in bulk for use with PDF and
PostScript simply by changing the argument to the loadfonts() function.
For example, the following code registers all discovered system fonts for use
with PDF output. The extrafont package actually only discovers TrueType
fonts that have been installed, but it automatically takes care of converting
the TrueType fonts to Type1 fonts.

> loadfonts(device="pdf")

SVG fonts

The SVG graphics device is a Cairo device (like the default screen device on
Linux). This means that font selection is straightforward (as long as the
required font is installed on our system). The SVG device also produces a
result that is identical to other Cairo-based output. For example, on Linux, a
plot on a screen device should look identical to the SVG result. The cost of
this cross-format consistency is that text in SVG is rendered as paths. This
means that the rendering of very small text on an svg() device will not look
as good as, say, that on the pdf() device (because hinting information from
the font, which tells renderers how to draw very small text, is lost when the
font is converted to a path). The fact that text is just a path in svg() output
also means that we cannot search within the text in the resulting SVG file.

This text behaviour is specific to the svg() graphics device; it is not a feature
of SVG in general. For example, Chapter 13 describes some other ways to get
SVG output from R for which the selection of fonts and the rendering of text
is quite different.

Cairo fonts

The Cairo graphics system is behind several R graphics devices. We have
previously mentioned the Cairo screen device that is the default on Linux
(which also produces PNG and JPEG output on Linux) and the SVG graphics
device.

In addition, there are Cairo versions of PDF and PostScript devices, which are
available via the cairo_pdf() function and the cairo_ps() function. One
advantage of using these graphics devices is that they support a wider range of

Graphical Parameters 337

māori

Figure 10.7
Text that includes a macron-accented character drawn on a Cairo PDF graphics
device.

fonts (all fonts installed on the computer). These devices also automatically
embed fonts. Furthermore, these Cairo graphics devices support UTF8 text,
which means that they can draw any character or symbol from any language
(as long as the font contains the character or symbol). For example, if we
wish to draw an ‘a’ character with a macron accent, this is straightforward on
a Cairo device. There is no need to register fonts or specify encodings; we can
just name a font and we can just specify characters using Unicode escapes.
The following code provides an example, with an “Ubuntu” font selected just
by name (see Figure 10.7).

> cairo_pdf("cairo.pdf", width=4.5, height=.5)

> grid.rect(gp=gpar(col="gray"))

> grid.text("m\U0101ori", gp=gpar(fontfamily="Ubuntu"))

> dev.off()

On Windows, the default screen device, and hence the default raster device
for PNG and JPEG output, is not based on Cairo. In this case, we can choose
to use Cairo graphics for raster output via the type argument to the png()

function. There is also a Cairo package to produce Cairo-based output on
screen in Windows.

One reason for not using Cairo graphics for all output is that it will some-
times produce raster output even in vector formats (e.g., if the image involves
semitransparency).

LATEX fonts

A particularly important set of fonts are the Computer Modern fonts that are
the default in LATEX documents. If we are producing plots for inclusion in a
LATEX document, we might like to use Computer Modern for the plot labels
so that they match the main text.

The computer modern fonts are available in Type1 versions (e.g., the fonts-cmu
package on Linux), so one approach is to install those and use the instructions
above for using Type1 fonts with the pdf() device or with a Cairo-based
device. The fontcm package (based on extrafont) simplifies this process
significantly.

338 R Graphics, Third Edition

hello TEX ∑n
i=1 xi

Figure 10.8

R graphics output produced with the tikz() device.

Another option is to use the tikzDevice package, which provides a tikz()

device. This uses TEX (via pgf/TikZ) to produce graphics output, so natively
makes use of LATEX Computer Modern fonts. This graphics device also in-
terprets TEX commands within text, including mathematical equations. The
following code provides a simple demonstration (see Figure 10.8).

> library(tikzDevice)

> tikz("params-tikz.tex", width=4.5, height=.5)

> grid.rect(gp=gpar(col="grey"))

> grid.text("hello \\TeX{} $\\sum_{i=1}^n x_i$")

> dev.off()

Symbol fonts

When we draw mathematical equations in a plot (Section 10.5), R makes
use of a special symbol font, which contains the special characters required
for mathematical equations, and ignores the current font selection for normal
text.

Most graphics devices do not allow the user to choose a different symbol font,
but it is possible to specify a custom font for Type1 fonts, for use with PDF
or PostScript output. The complication with selecting a symbol font is that
the font that we choose must obey the Adobe Symbol Encoding.

Setting the encoding for a font is not very easy, but in one particular case
the hard work has been done for us. The fontcm package provides a symbol
font, encoded for use with R, that is based on the Computer Modern math
fonts, so that mathematical equations are closer in appearance to what LATEX
produces.

As mentioned in the section on LATEX fonts, another way to produce R graphics
with LATEX fonts, including mathematical equations, is with the device from
the tikzDevice package.

Graphical Parameters 339

Figure 10.9
R graphics text drawn with a Google Font (Special Elite) provided by the showtext
package.

Package showtext

One final solution for selecting a font in R graphics is the showtext package.
The advantages of this approach are that it provides access to the widest range
of fonts, including Google Fonts, and it should work on all graphics devices.
The downside is that text is drawn as paths rather than as a proper font
(similar to what the svg() device does), which will produce a lower quality
result in some situations (e.g., very small text). This approach also requires
additional function calls to“activate” the showtext functionality. The follow-
ing code shows a simple example: we choose a font with font_add_google(),
mapping the name of the font we want to a font family name to use in R;
we activate showtext rendering with showtext_begin(); we draw the text,
using the font family name we defined in the first step; and we deactivate
showtext with showtext_end(). The final result is shown in Figure 10.9.

> library(showtext)

> font_add_google("Special Elite", "elite")

> grid.rect(gp=gpar(col="grey"))

> showtext_begin()

> grid.text("hello", gp=gpar(fontfamily="elite"))

> showtext_end()

10.4.2 Font face

The font face is usually specified as an integer value between 1 and 4. Table
10.3 shows the mapping from numbers to font faces.

The grid graphics system also allows the font face to be specified by name
(see Table 6.5).

R graphics is limited to only bold, italic, and bold-italic variations of a font,
where other graphics systems provide a wider range of possibilities. For ex-
ample, the CSS font-stretch property allows specification of “condensed” or
“expanded” variants of a font.

340 R Graphics, Third Edition

Table 10.3
Possible integer font face specifications and their meanings. See Table 6.5
for font face name specifications. The range of valid font faces varies for
different Hershey fonts, but the maximum valid value is usually 4 or less.
When the font family is "HersheySerif", there are a number of special
font faces available.

Integer Description

1 Roman or upright face
2 Bold face
3 Slanted or italic face
4 Bold and slanted face
5 Symbol

For the HersheySerif font family
5 Cyrillic font
6 Slanted Cyrillic font
7 Japanese characters

However, it is possible to work around the limitation in R by specifying a
variation like condensed in the font family name. The following code provides
a simple example, showing the normal Ubuntu font family, with font face
variations, plus an Ubuntu Condensed font family (see Figure 10.10).

> cairo_pdf("cairo-faces.pdf", width=4.5, height=.5)

> grid.rect(gp=gpar(col="grey"))

> grid.text("hello", x=1/5,

gp=gpar(fontfamily="Ubuntu"))

> grid.text("hello", x=2/5,

gp=gpar(fontfamily="Ubuntu", fontface="bold"))

> grid.text("hello", x=3/5,

gp=gpar(fontfamily="Ubuntu", fontface="italic"))

> grid.text("hello", x=4/5,

gp=gpar(fontfamily="Ubuntu Condensed"))

> dev.off()

10.4.3 Multi-line text

It is possible to draw text that spans several lines by inserting a new line
escape sequence, "\n", within a piece of text, as in the following example.

"first line\n second line"

Graphical Parameters 341

hello hello hello hello

Figure 10.10
R graphics text drawn with the Ubuntu font. The right-most text is drawn in a
condensed font by specifying a font family that is a condensed font.

Alternatively, simply entering a character value across several lines will pro-
duce the same result, as shown below.

> "first line

second line"

[1] "first line\n second line"

Vertical separation of the text for drawing can be controlled via a line height
parameter, which acts as a multiplier (2 means double-spaced text).

10.4.4 Locales

R supports multibyte locales, such as UTF-8 locales and East Asian locales
(Chinese, Japanese, and Korean), which means that it is possible to enter
multibyte character values. There may be problems including such characters
as part of graphical output on some devices. For example, Type1 fonts on
PostScript and PDF devices only work with single-byte character encodings,
so an appropriate encoding may need to be specified in order to produce
special characters on those devices. The Cairo-based devices, cairo_pdf()

and cairo_ps(), are a good way around this issue.

10.4.5 Escape sequences

Another issue is how to type characters that are not directly represented
on our keyboard. One option is to use one of the escape sequences that R
allows within character values. These include simple escape sequences for
non-printing characters, such as "\n" for a newline and "\t" for a tab, octal
sequences of the form "\nnn" (where n is an octal digit), e.g., "\351" for é (in
an ISOLatin1 locale), hexadecimal sequences of the form "\xnn" (where n is a
hex digit), e.g., "\xE9" for é (in an ISOLatin1 locale), and Unicode sequences
of the form "\unnnn" (where n is a hex digit), e.g., "\u00E9" for é.

342 R Graphics, Third Edition

Figure 10.11
The text on the left has anti-aliasing turned off, the middle text has grayscale anti-
aliasing, and the text on the right has subpixel anti-aliasing.

10.4.6 Anti-aliasing

The appearance of text, with its fine detail, is greatly improved by anti-
aliasing—using, for example, grey pixels along the edge of character glyphs
to make the edges appear smooth (see Figure 10.11). When we are producing
vector output, such as PDF, we do not have to worry about this issue because it
is handled by the viewer or printer that renders the PDF document. However,
when we are producing raster output, such as PNG, or drawing to the screen,
we may need to specify whether we want anti-aliasing applied, and if so, what
sort.

The X Window device does not perform anti-aliasing of text, so there is nothing
to do in this case. On Cairo-based devices, the antialias argument can be set
to "none" for no anti-aliasing, "gray" to use grayscale pixels, and "subpixel"

to use subpixel anti-aliasing. The default is selected based on the system that
R is running on, and will typically be "gray". Subpixel anti-aliasing means
that individual red, green, and blue components of a pixel are adjusted to
create a smooth edge (rather than using complete pixels). When it works
well, subpixel anti-aliasing produces a smoother result than grayscale anti-
aliasing, but subpixel anti-aliasing does not always work well on all types of
display.

On Windows, for raster devices, the antialias argument can be set to "none",
"gray", or "cleartype", where the latter produces subpixel rendering. On
MacOS X, the Quartz device always uses anti-aliasing unless antialias="none"
is specified.

Graphical Parameters 343

10.5 Mathematical formulae

This section does not concern a graphical parameter, but it does provide
important information about how to specify character values for drawing text.

Any R graphics function that draws text should accept both a normal char-
acter value, e.g., "some text", and an R expression, which is typically the
result of a call to the expression() function. If an expression is specified
as the text to draw, then it is interpreted as a mathematical formula and is
formatted appropriately. This section provides some simple examples of what
can be achieved. For a complete description of the available features, type
help(plotmath) or demo(plotmath) in an R session.

When an R expression is provided as text to draw in graphical output, the
expression is evaluated to produce a mathematical formula. This evaluation
is very different from the normal evaluation of R expressions: certain names
are interpreted as special mathematical symbols, e.g., alpha is interpreted as
the Greek symbol α; certain mathematical operators are interpreted as literal
symbols, e.g., a + is interpreted as a plus sign symbol; and certain functions are
interpreted as mathematical operators, e.g., sum(x, i==1, n) is interpreted
as ∑n

i=1 x. Figure 10.12 shows some examples of expressions and the output
that they create.

Some of the operators within an expression affect the style of text and this
provides a limited way to control the font face within a single piece of text.
For example, the following code produces text that includes italic and bold
words (see Figure 10.13).

> grid.text(expression("We can make text "*

italic("emphasized")*

" or "*

bold("strong")))

In some situations, for example, when calling graphics functions from within
a loop, or when calling graphics functions from within another function, the
expression representing the mathematical formula must be constructed using
values within variables as well as literal symbols and constants. A variable
name within an expression will be treated as a literal symbol (i.e., the variable
name will be drawn, not the value within the variable). The solution in such
cases is to use the substitute() function to produce an expression. The
following code shows the use of substitute() to produce a label where the
year is stored in a variable.

344 R Graphics, Third Edition

expression(z[i] == sqrt(x[i]^2 + y[i]^2))

zi = xi
2 + yi

2

expression(hat(beta) == (X^t * X)^{−1} * X^t * y)

β̂ = (XtX)−1Xty

expression(bar(x) == sum(frac(x[i], n), i==1, n))

x = ∑
i=1

n xi

n

expression(paste("Temperature (", degree, "C) in 2003"))

Temperature (°C) in 2003

Figure 10.12
Mathematical formulae in plots. For each example, the output is shown in a serif
font, and below that, in a typewriter font, is the R expression required to produce
the output.

We can make text emphasized or strong

Figure 10.13
Specifying multiple font faces within the same piece of text, by using italic() and
bold() within an expression (within a call to a text-drawing function).

Graphical Parameters 345

> myfunction <- function(year) {

text(0.5, 0.5, substitute(paste("Temperature (",

degree, "C) in ", year),

list(year=year)))

}

The mathematical annotation feature makes use of information about the
dimensions of individual characters to perform the formatting of the formula.
For some output formats, such information is not available, so mathematical
formulae cannot be produced.

Chapter summary

There are standard ways to specify colors, fonts, line types, and text
for virtually all graphics functions in R. There are functions for gen-
erating coherent sets of colors as well as individual colors. Specify-
ing fonts for text can be tricky and format-dependent and platform-
dependent. Text can be specified as an R expression, which makes it
possible to draw special characters and to produce special formatting
for mathematical formulae.

http://taylorandfrancis.com

Part IV

INTEGRATING GRAPHICS
SYSTEMS

http://taylorandfrancis.com

11

Importing Graphics

Chapter preview

This chapter describes packages and functions that import images
from external files and allow them to be included as part of R graphics
output. There are separate packages for importing raster images and
importing vector images.

Sections 3.4.1 and 6.2 described the set of graphical primitives that are avail-
able in the base graphics system and the grid graphics system. These graphi-
cal primitives make it possible to draw basic shapes, text, and bitmap images
and they form the basis for drawing more complex images with R.

By combining basic shapes, it is possible to produce an infinite variety of
pictures; however, there are still some images that cannot be produced with
R, and R is not the best way to produce many kinds of images. For example,
it is not possible to generate a photographic image with R and there are much
better programs than R for producing artistic images such as logos.

Images like photographs and logos can be useful in plots or pictures, for ex-
ample, to provide a background image for a plot, or to annotate a plot with
the logo of a company or institution. In such cases, it may be necessary, or
just more convenient, to create the image outside of R and import the image
into R.

A number of packages provide tools for importing graphics into R and the
choice of which one to use will depend on the format of the original image and
what is to be done with the image once it has been imported. Image formats
can be divided into raster formats and vector formats (see Section 9.2.1) and
packages that import images into R typically address one of these options.

349

350 R Graphics, Third Edition

Figure 11.1
Three images of the Moon. On the left is a JPEG photograph of the North Pole of the
Moon that has been assembled from images taken by the Galileo spacecraft, courtesy
of NASA (image #: PIA00130). In the middle is a cartoon image of the Moon from
the Open Clip Art Library http://openclipart.org/media/files/rg1024/10351.
On the right is another vector image of the Moon from Pixabay https://pixabay.

com/en/moon-planet-outer-space-26619/.

11.1 The Moon and the tides

To provide a concrete example of importing images into R, this section looks
at producing a plot that shows the relationship between the timing of low tide
and the phase of the Moon. The main plot shows the hour during the day at
which low tide occurs as a function of the day of the month and the phases of
the Moon, and the plot is “dramatized” by adding an image of the Moon in
the background.

Three versions of this plot are considered: one using a raster image photograph
of the North Pole of the Moon, taken by NASA’s Galileo spacecraft, one using
a relatively simple vector image from the Open Clip Art Library, and one
using a relatively complex vector image from Pixabay (see Figure 11.1). The
difference between the latter two is that the simpler vector image only uses
graphical primitives that R graphics supports, while the more complex vector
image uses a radial gradient fill that goes beyond the capabilities of standard
R graphics.

One version of the plot, using the raster moon image as background, is shown
in Figure 11.2. The complete code for this plot is available on the book’s
web site. The focus of this chapter is on the two conceptual steps involved in
producing the plot: An external image has to be read by R; and the image
has to be rendered by R.

http://openclipart.org/media/files/rg1024/10351
https://pixabay.com/en/moon-planet-outer-space-26619/
https://pixabay.com/en/moon-planet-outer-space-26619/

Importing Graphics 351

Jan 02 Jan 07 Jan 12 Jan 17 Jan 22 Jan 27 Feb 01

00:00

04:00

08:00

12:00

Ti
m

e
of

 L
ow

 T
id

e
(N

ZD
T)

Auckland, New Zealand January 2010

Phases of the Moon

Figure 11.2
A plot with a raster background image. A raster photograph of the Moon provides
a backdrop to a line plot of times of low tide for Auckland in January 2010 (data
were obtained from Land Information New Zealand; http://hydro.linz.govt.nz).

http://hydro.linz.govt.nz

352 R Graphics, Third Edition

Table 11.1
A selection of packages that can read external raster
images into R.

Package Function File Formats

png readPNG() PNG
jpeg readJPEG() JPEG
tiff readTIFF() TIFF
magick image_read() Multiple formats

11.2 Importing raster graphics

Examples of raster formats include JPEG and PNG. A standard source of JPEG
files are photographs from digital cameras, while PNG images are commonly
encountered on the web.

The first step is to find a function that can read the file format of the exter-
nal image. A large number of packages provide functions for reading image
formats and Table 11.1 describes some of these. The important differences
between these functions are the range of file formats that they can handle and
how much they depend on other software (i.e., how much other software must
also be installed).

The magick package provides an R interface to the ImageMagick image ma-
nipulation system. This means that it can read images in many different
formats. The downside is that we need ImageMagick installed on our system
for this package to work.

The dev.capture() function can also be used to capture the current R graph-
ics device as a raster image (for raster-based devices, such as screen devices).

Having read an image into R, the next step is to draw the image as part of
an R plot. In base graphics, this means using the rasterImage() function
(see Section 3.4.1), and in grid this means using grid.raster() (see Section
6.2) because those functions allow the image to be drawn relative to the plot
regions and coordinate systems of an R plot (for example, Figure 11.2).

For the packages listed in Table 11.1, the result of reading an external file is an
R object that can be passed immediately to rasterImage() or grid.raster().

For our example of a line plot with a moon image in the background, the
original image is a JPEG file, so the following code can be used to read the

Importing Graphics 353

image into R.

> library(jpeg)

> moon <- readJPEG(system.file("extra", "GPN-2000-000473.jpg",

package="RGraphics"))

The result, moon, is a "matrix" object, so drawing the image with grid is as
simple as the following code.

> grid.raster(moon)

However, that just draws the image as large as it can go on the current page.
We can position and size the image with arguments to grid.raster() or by
calling grid.raster() within an appropriate grid viewport.

The following code draws the moon image in the top-left corner of the page,
specifying only its height so that it retains its aspect ratio, then in the top-
right corner at a fixed size that distorts the image, then in a series of viewports
across the bottom of the page at different angles (see Figure 11.3).

> grid.raster(moon, x=0, y=1, height=.5, just=c("left", "top"))

> grid.raster(moon, x=1, y=.75,

width=.5, height=.25, just="right")

> for (i in seq(10, 90, 10)) {

pushViewport(viewport(x=i/100, y=.25, width=.2, height=.2,

angle=i - 10))

grid.raster(moon)

popViewport()

}

The following code gives an indication of how we might position the image
within a base plot. This is a segment of the code that was used to produce
Figure 11.2; the full code is available on the book’s web site.

> plot(lowTideDate, lowTideHour, xlab="Date", ylab="Time of Day")

> width <- grconvertX(1.5, "in", "user")

> aspect <- nrow(moon)/ncol(moon)

> height <- grconvertY(1.5*aspect, "in", "user")

> rasterImage(moon, usr[1], usr[3] + (usr[4] - height),

width, usr[4])

The important point about this code is that we are able to locate the raster
image relative to the plot regions and coordinate systems of the R plot and

354 R Graphics, Third Edition

Figure 11.3
Drawing an imported raster image with grid. We can locate and size the raster
image using arguments to grid.raster() (top-left and top-right) or by drawing
within an appropriate viewport (bottom row).

Importing Graphics 355

we can do this programmatically. This is much better than trying to combine
the R plot and the raster image using other software that has no access to the
R plot regions and coordinate systems, or cannot be controlled programmati-
cally.

The downside is that it may be necessary to perform some calculations to
retain the aspect ratio of the image within the plot. In this case, we used
the functions grconvertX() and grconvertY() to help out. This is much
less of a problem when combining a raster image with a grid-based plot
using grid.raster() because grid provides access to more useful coordinate
systems (see Section 6.3).

If a package does not create an R object that we can use with rasterImage()

or grid.raster(), we may have to convert the image to a matrix or array.

11.3 Importing vector graphics

Examples of vector image formats include PDF, PostScript, and SVG. In this
section we will look at the grImport package, which can import PostScript
images, and the grImport2 package, which can import SVG images.

11.3.1 The grImport package

There are at least three steps required to draw an external PostScript image
in an R plot. In the simplest case, where the original image is already a
PostScript image, the first step is to “trace” the PostScript image using the
PostScriptTrace() function.

The PostScriptTrace() function converts a PostScript image into an XML
format (using Ghostscript). This step only needs to be performed once for
each image. For example, the following code traces a PostScript format cartoon
moon image (the middle image from Figure 11.1).

> library(grImport)

> PostScriptTrace(system.file("extra", "comic_moon.ps",

package="RGraphics"),

"comic_moon.xml")

The result of tracing is an XML file, and the second step involves reading that
XML file into R using the readPicture() function.

356 R Graphics, Third Edition

> vectorMoon <- grImport::readPicture("comic_moon.xml")

The third step is to render the object created by readPicture(), in this case
vectorMoon, either using the picture() function, which will draw the image
in the current base graphics plot region, or using the grid.picture() func-
tion, which will draw the image in the current grid viewport. The following
code shows grid.picture() being used to draw the vectorMoon in several
different ways: the default is to fill the current viewport (with a small margin
around all sides); we can control the location and size of the image, by default
retaining the default aspect ratio; or we can deliberately distort the image
(see Figure 11.4).

> grImport::grid.picture(vectorMoon)

> grImport::grid.picture(vectorMoon,

x=0, y=1, just=c("left", "top"),

width=.2, height=.2)

> grImport::grid.picture(vectorMoon,

x=1, y=1, just=c("right", "top"),

width=.3, height=.1, distort=TRUE)

Figure 11.5 shows a more complex embedding of the vector moon image within
a grid viewport (the data region of a plot). The following code draws a simpler
version of that plot (the full code for Figure 11.5 is available from the book’s
web site).

> library(lattice)

> xyplot(lowTideHour ~ lowTideDate, pch=16, col="black",

xlab="Date", ylab="Time of Day",

panel=function(x, y, ...) {

grid.picture(vectorMoon)

panel.xyplot(x, y, ...)

})

Complications with importing vector images

An extra step is required (at the start) if the original image is not in PostScript
format. In that case, we need to use another software tool to convert the image
to PostScript. The magick package has an image_convert() function that
can perform this task. The Inkscape image drawing software∗ produces good
results for converting from an SVG image.

∗http://inkscape.org/.

http://inkscape.org/

Importing Graphics 357

Figure 11.4
Drawing an imported vector image with grid. The image fills the current viewport
by default, or we can locate and size the image using arguments to grid.picture()

(top-left and top-right).

358 R Graphics, Third Edition

Jan 01 Jan 08 Jan 15 Jan 22 Jan 29

00:00

04:00

08:00

12:00

Ti
m

e
of

 L
ow

 T
id

e
(N

ZD
T)

Auckland, New Zealand January 2010

Phases of the Moon

Figure 11.5
A plot with a vector background image. A vector cartoon of the Moon provides a
backdrop to a line plot of times of low tide for Auckland in January 2010 (data were
obtained from Land Information New Zealand; http://hydro.linz.govt.nz).

http://hydro.linz.govt.nz

Importing Graphics 359

One danger is that, for complex vector images, some tools may convert the
image, or parts of it, to a raster format. A number of other issues may also
arise, mainly due to the fact that the content of a vector image can vary much
more than the content of a raster image.

A raster image can be thought of as simply a two-dimensional array of pixels.
There are many different ways that an array of pixels can be stored in a file,
but the image structure is fundamentally always the same and very simple.
This means that there are very few variations on how to read a raster image
into R or how to draw a raster image as part of an R plot. The functions to
read and draw raster images have relatively few arguments.

By contrast, a vector image is made up of a number of shapes or paths. There
may be very few paths, or very many paths. The paths may overlap each other
or even intersect with themselves. There may be text (letters are essentially
quite detailed and complex paths) and, in more complex cases, one path may
be used just to define a clipping region and not be drawn at all.

Sometimes, these complications mean that R will not be able to import an
image or it may not render the original image properly. In any case, reading
in a vector image and rendering the image may require more than a single
step. In particular, it may be necessary to work with individual paths within
a vector image and the grImport package provides several tools for doing so.

Manipulating vector images

One convenient feature is the ability to subset the object that is created by
the readPicture() function. For example, the following code just draws the
first four paths in the image (see Figure 11.6).

> grImport::grid.picture(vectorMoon[1:4])

There is also a picturePaths() function that allows each path to be inspected
in isolation. The following code shows the first six paths within the cartoon
Moon image (see Figure 11.7).

> grImport::picturePaths(vectorMoon[1:6], fill="white",

freeScales=TRUE, nr=2, nc=3)

It is also useful to note that the imported image is essentially just a series
of polygon outlines. The following code draws a “wireframe” version of the
Moon image by ignoring the colors from the original image and just drawing
the outline of each path (see Figure 11.6).

360 R Graphics, Third Edition

Figure 11.6
On the left, a “subset” of the cartoon Moon image (Figure 11.1), consisting of only
the first four paths. On the right, the paths from the cartoon Moon image drawn
as simple outlines, ignoring the fill colors from the original image.

Figure 11.7

The first six paths (shapes) in the cartoon Moon image from Figure 11.1.

Importing Graphics 361

> grImport::grid.picture(vectorMoon, use.gc=FALSE)

These facilities can be used, for example, to exclude certain parts of an image,
or to render paths in a different order, which can sometimes be useful to
reproduce the original image faithfully with R graphics.

Imported images as data symbols

The grImport package provides a convenience function, grid.symbols(),
that can be used to draw an imported image at multiple locations with a
single function call. For example, the following code draws a vector moon
image at each data point in a scatterplot.

> xyplot(lowTideHour ~ lowTideDate, pch=16, col="black",

xlab="Date", ylab="Time of Day", subset=1:10,

panel=function(x, y, ...) {

grid.symbols(vectorMoon, x, y, units="native",

size=unit(10, "mm"))

})

Drawing with this function will become very slow with a large number of data
points.

11.3.2 The grImport2 package

The grImport2 package is similar to the grImport package, except that
it imports SVG images rather than PostScript images. One obvious use for
this package is when the original image is in an SVG format. For example,
the PostScript cartoon moon image from the previous section was originally
an SVG image. With grImport2, rather than converting it to PostScript for
importing with grImport, we can import the original SVG image directly.

As with grImport, there are at least three steps involved in importing an
image with grImport2: pre-processing the image, reading the image into R,
and rendering the image in R.

The grImport2 package is able to directly read SVG files, but the SVG file
must have been generated by the Cairo graphics library. This means that we
have to use a program that generates Cairo SVG to pre-process the SVG file.
The rsvg_svg() function from the rsvg package is one way to perform this
step. For the case of the cartoon moon, the code is shown below. This code
starts with the original SVG file, "comic_moon.svg", which was not created

362 R Graphics, Third Edition

Figure 11.8

A grImport2 rendering of the cartoon moon.

by Cairo graphics, and generates a new SVG file, "comic_moon_cairo.svg",
which describes the same image, but can be read by grImport2.

> library(rsvg)

> rsvg_svg(system.file("extra", "comic_moon.svg",

package="RGraphics"),

"comic_moon_cairo.svg")

The resulting Cairo SVG file can then be read into R with the readPicture()

function from grImport2.

> library(grImport2)

> moonSVG <- grImport2::readPicture("comic_moon_cairo.svg")

Finally, the resulting R object, moonSVG, can be drawn with the function
grid.picture() from grImport2 (there is no support for drawing the R
object with base graphics). The result of the following code is shown in
Figure 11.8.

> grImport2::grid.picture(moonSVG)

The grid.picture() function from grImport2 works the same way as the
same function from grImport; the imported image is drawn in the current
grid viewport, filling the viewport (with a small margin on all sides) and

Importing Graphics 363

This should not be visible

Figure 11.9
A test image for importing. The image consists of a gray rectangle and a line of
text, with the text obscured behind a simple raster image.

retaining the original image aspect ratio by default. Alternatively, we can
specify a location and size for the imported image within the viewport if we
wish.

The main advantage of using grImport2 is that it allows us to import more
complex and sophisticated images than grImport. For example, Figure 11.9
shows a simple test image consisting of a gray rectangle and a line of text,
with the text obscured by a simple raster image.

The following output shows the grobs in this image.

> grid.ls(full.names=TRUE)

GRID.rect.1570

GRID.text.1571

GRID.rastergrob.1572

If we import this image using grImport, that package is not capable of im-
porting the raster component of the image so if we render the image, the
raster is missing and the line of text is visible (see Figure 11.10).

> PostScriptTrace("importtest.ps", "importtest.xml")

> test <- grImport::readPicture("importtest.xml")

> grImport::grid.picture(test)

The grImport2 package does import raster elements, amongst other things,
so it renders the test image correctly (see Figure 11.11).

364 R Graphics, Third Edition

Figure 11.10
The test image from Figure 11.9 as produced by grImport. The raster element of
the test image does not get imported, so we are able to see the text.

> rsvg_svg("importtest.svg", "importtest-cairo.svg")

> test <- grImport2::readPicture("importtest-cairo.svg")

> grImport2::grid.picture(test)

An interesting feature of grImport2 is that it will even import features of
an image that R graphics does not support. The next example demonstrates
this idea. We have another vector moon image (see the right-hand image in
Figure 11.1), but this time the image consists not only of several filled paths,
but also several radial gradients.

To import this image, we follow the same steps as before, pre-processing the
image with rsvg_svg(), then reading the resulting Cairo-based SVG into R
with grImport2::readPicture. This reads all features of the image into R,
including the radial gradients.

> rsvg_svg(system.file("extra", "moon-26619.svg",

package="RGraphics"),

"full-moon.svg")

> moon <- grImport2::readPicture("full-moon.svg")

If we draw the imported image on a normal R graphics device, we only see
the features of the image that R graphics supports; in this case, just a set of
filled paths (see Figure 11.12).

> grImport2::grid.picture(moon)

Importing Graphics 365

Figure 11.11
The test image from Figure 11.9 as produced by grImport2. The raster element
of the test image does get imported (and we are not able to see the text).

Figure 11.12
The complex vector moon image drawn using a normal R graphics device. The filled
paths component of the image has been rendered, but the radial gradient component
has not.

366 R Graphics, Third Edition

Figure 11.13
The complex vector moon image drawn using gridSVG. The filled paths component
of the image has been rendered and the radial gradient component of the image has
been rendered.

Although R graphics does not support some SVG special effects, all features
of an SVG image are imported by grImport2. This means that, if we use the
gridSVG package (see Chapter 13) to produce SVG output, we can reproduce
the imported SVG features in the exported SVG.

The following code demonstrates this idea. First, we load the gridSVG pack-
age. Then we call grid.picture() with the same imported R object as before,
moon, but this time we specify ext="gridSVG". This tells grid.picture()

to make use of the features of the gridSVG package when rendering the im-
ported image. Finally, we call grid.export() from the gridSVG package to
generate an SVG file that contains all of the original features of the original
SVG image (see Figure 11.13).

> library(gridSVG)

> grImport2::grid.picture(moon, ext="gridSVG")

> grid.export("moon3gridsvg.svg")

Figure 11.14 shows a more complex embedding of the vector moon image
within a grid viewport (the data region of a plot). The following code draws
a simpler version of that plot (the full code for Figure 11.14 is available from
the book web site).

> xyplot(lowTideHour ~ lowTideDate, pch=16, col="white",

xlab="Date", ylab="Time of Day",

panel=function(x, y, ...) {

grid.rect(gp=gpar(fill="black"))

grImport2::grid.picture(moon, ext="gridSVG")

panel.xyplot(x, y, ...)

})

Importing Graphics 367

Figure 11.14
A plot with a complex vector background image that contains radial gradients. The
vector Moon provides a backdrop to a line plot of times of low tide for Auckland
in January 2010 (data were obtained from Land Information New Zealand; http:
//hydro.linz.govt.nz).

> grid.export("moon-plot.svg")

The grImport2 package also has a grid.symbols() function for using an
imported image as a data symbol, similar to grImport.

Although grImport2 provides additional features that go beyond what the
grImport package can do, the grImport package is still useful for several
reasons. If the original image is PostScript, then we do not need to convert it
to another format and risk losing or messing up elements of the image. The
grImport package will also import text as text rather than always converting
text to paths.

http://hydro.linz.govt.nz
http://hydro.linz.govt.nz

368 R Graphics, Third Edition

Chapter summary

A number of packages provide functions for reading raster images into
R. The images can be drawn using base or grid graphical primitives.
The grImport package provides functions for reading PostScript vec-
tor images into R and drawing them. The grImport2 package pro-
vides functions for reading SVG vector images into R and drawing
them.

12

Combining Graphics Systems

Chapter preview

This chapter describes the gridBase and gridGraphics packages,
both of which make it possible to combine the output from the base
graphics system with the output from the grid graphics system.

The grid graphics system and the base graphics system work completely
independently of each other. This means that, while it is possible to produce
output from both systems on the same page, there should normally be no
expectation that the output from the two systems will correspond in any
sensible way.

The grid graphics system offers more power and flexibility than the base
graphics system, and the lattice and ggplot2 packages provide some facilities
not available in the base graphics system. However, it is often necessary to
use the base system because many plotting functions in extension packages
for R are built on the base system. Clearly, a combination of the wide range of
base plots and the power and flexibility of grid, lattice, and ggplot2 would
be desirable. That task is the focus of this chapter.

This chapter describes two packages, gridBase and gridGraphics, both of
which provide functions that can be used, in some situations, and with a little
care, to overcome this inherent incompatibility and combine the output from
the two systems in a coherent manner.

A discussion of the relative strengths and weaknesses of these packages will
be delayed until the end of the chapter.

369

370 R Graphics, Third Edition

12.1 The gridBase package

12.1.1 Annotating base graphics using grid

The gridBase package has one function, baseViewports(), that supports
adding grid output to a base graphics plot. This function creates a set of
grid viewports (see Section 6.5) that correspond to the current base plot
regions (see Section 3.1.1). By pushing these viewports, it is possible to do
simple annotations to a base plot, such as adding lines and text using grid’s
units to locate them relative to a wide variety of coordinate systems, or to
attempt more complex annotations involving pushing further grid viewports.

The baseViewports() function returns a list of three grid viewports. The
first corresponds to the base graphics inner region. This viewport is relative
to the entire device and it only makes sense to push this viewport from the
“top level” (i.e., only when no other grid viewports have been pushed). The
second viewport corresponds to the base graphics figure region and is relative
to the inner region, and it only makes sense to push it after the inner viewport
has been pushed. The third viewport corresponds to the base graphics plot
region and is relative to the figure region, and it only makes sense to push it
after the other two viewports have been pushed in the correct order.

A simple application of this facility involves adding text to the margins of
a base graphics plot at an arbitrary orientation. The base graphics function
mtext() allows text to be located in terms of a number of lines away from
the plot region, but only at rotations of 0 or 90 degrees. The base graphics
text() function allows arbitrary rotations, but only locates text relative to
the user coordinate system in effect in the plot region (which is inconvenient
for locating text in the margins of the plot). By contrast, the grid function
grid.text() allows arbitrary rotations and can be used in any grid viewport.
In the following, a base graphics plot is created with the x-axis tick labels left
off (see Figure 12.1).∗

> library(zoo)

> m <- factor(months(as.yearmon(time(sunspots))),

levels=month.name)

> plot(m, sunspots, axes=FALSE)

> axis(2)

> axis(1, at=1:12, labels=FALSE)

∗This example uses data on the monthly mean relative sunspot numbers from 1749 to
1983, available as the sunspots data set in the datasets package.

Combining Graphics Systems 371

0
50

10
0

15
0

20
0

25
0

Figure 12.1
A base plot with no x-axis labels. Tick labels will be added at an angle of 60 degrees
using gridBase (see Figure 12.2).

In the next code, baseViewports() is used to create grid viewports that
correspond to the base graphics plot and those viewports are pushed.

> library(gridBase)

> vps <- baseViewports()

> pushViewport(vps$inner, vps$figure, vps$plot)

Finally, rotated labels are drawn using grid.text() (and the viewports are
popped to clean up). The final output is shown in Figure 12.2. The labels
can be located horizontally relative to the plot x-axis scale, so that they line
up with the plot tick marks, because the vps$plot viewport that we pushed
has the same axis scales as the base plot region (and the viewport is located
on the page in exactly the same position as the base plot region).

> grid.text(month.name,

x=unit(1:12, "native"), y=unit(-1, "lines"),

just="right", rot=60)

> popViewport(3)

372 R Graphics, Third Edition

0
50

10
0

15
0

20
0

25
0

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch
Ap

ril
M

ay
Ju

ne Ju
ly

Au
gu

st
Se

pt
em

be
r

O
ct

ob
er

N
ov

em
be

r
D

ec
em

be
r

Figure 12.2
Annotating a base plot with grid. This is the plot from Figure 12.1 with the x-axis
labels drawn using grid.text() to make use of both a convenient coordinate system
(lines of text away from the x-axis) and the ability to rotate text to any angle.

Combining Graphics Systems 373

12.1.2 Base graphics in grid viewports

The gridBase package provides several functions for adding base graphics
output to grid output. There are three functions that allow base graphics
plotting regions to be aligned with the current grid viewport: gridOMI(),
gridFIG(), and gridPLT(). These make it possible to draw one or more
base graphics plots within a grid viewport. The fourth function, gridPAR(),
provides a set of graphical parameter settings so that base graphics par()

settings can be made to correspond to some of the current grid graphical
parameter settings.

The three functions return the appropriate par() values for setting the base
graphics inner, figure, and plot regions, respectively.

The main usefulness of these functions is to allow the user to create a complex
layout using grid and then draw a base graphics plot within relevant elements
of that layout. The following example uses this idea to create a lattice plot
where the panels contain dendrograms drawn using base graphics functions.

The first step just involves preparing some data to plot. A dendrogram object
is created and cut into four subtrees.∗

> hc <- hclust(dist(USArrests), "ave")

> dend1 <- as.dendrogram(hc)

> dend2 <- cut(dend1, h=70)

Next, some dummy-variables are created that correspond to the four subtrees.

> x <- 1:4

> y <- 1:4

> height <- factor(round(sapply(dend2$lower,

attr, "height")))

Now a lattice panel function is defined to draw the dendrograms. The first
thing this panel function does is push a viewport that is smaller than the
viewport lattice creates for the panel. The purpose of this is to ensure that
there is enough room for the labels on the dendrogram. The space variable
contains a measure of the length of the longest label. The panel function
then calls gridPLT() and uses the result in a call to par() to make the base
graphics plot region correspond to the viewport that has just been pushed.
It also sets new=TRUE so that the next call to plot(), when the next panel is

∗This example uses data on violent crimes in the United States, available as the USAr-

rests data set in the datasets package.

374 R Graphics, Third Edition

drawn, does not start a new page. Finally, the base plot() function is used to
draw the dendrogram (and then the viewports that the panel function pushed
are popped).

> space <- 1.2 * max(stringWidth(rownames(USArrests)))

> dendpanel <- function(x, y, subscripts, ...) {

pushViewport(viewport(gp=gpar(fontsize=8)),

viewport(y=unit(0.95, "npc"), width=0.9,

height=unit(0.95, "npc") - space,

just="top"))

par(plt=gridPLT(), new=TRUE, ps=8)

plot(dend2$lower[[subscripts]], axes=FALSE)

popViewport(2)

}

Now the main plot can be drawn, using lattice to set up the arrangement of
panels and strips (grid viewports) and the panel function defined above to
draw a base graphics dendrogram in each panel.

> library(lattice)

The final plot is produced by a call to the xyplot() function (see Figure 12.3).

> plot.new()

> print(xyplot(y ~ x | height, subscripts=TRUE,

xlab="", ylab="",

strip=strip.custom(style=4),

scales=list(draw=FALSE),

panel=dendpanel),

newpage=FALSE)

One difficulty with using gridBase to combine base and grid graphics out-
put on the same page is that the two systems can end up fighting over who
gets to start the drawing on a new page. In the code above, there is a call
to plot.new() before the call to xyplot(). It is generally a good idea to
start the new page with a call to plot.new() like this, rather than with
grid.newpage(), or a high-level lattice or ggplot2 function, because the
grid-based functions tend to be more accepting of the fact that there may
already be other drawing on the page.

This also explains the explicit call to print() around the xyplot() call, so
that the newpage argument can be used to prevent xyplot() from starting
its own new page. The general rule is: start a base plot and then add grid
output to it rather than the other way around.

Combining Graphics Systems 375

Fl
or

id
a

N
or

th
 C

ar
ol

in
a

39 44 45 55

C
al

ifo
rn

ia
M

ar
yl

an
d

A
riz

on
a

N
ew

 M
ex

ic
o

D
el

aw
ar

e
A

la
ba

m
a

Lo
ui

si
an

a
Ill

in
oi

s
N

ew
 Y

or
k

M
ic

hi
ga

n
N

ev
ad

a
A

la
sk

a
M

is
si

ss
ip

pi
S

ou
th

 C
ar

ol
in

a

39 44 45 55

W
as

hi
ng

to
n

O
re

go
n

W
yo

m
in

g
O

kl
ah

om
a

V
irg

in
ia

R
ho

de
 Is

la
nd

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
M

is
so

ur
i

A
rk

an
sa

s
Te

nn
es

se
e

G
eo

rg
ia

C
ol

or
ad

o
Te

xa
s

39 44 45 55

Id
ah

o
N

eb
ra

sk
a

K
en

tu
ck

y
M

on
ta

na
O

hi
o

U
ta

h
In

di
an

a
K

an
sa

s
C

on
ne

ct
ic

ut
P

en
ns

yl
va

ni
a

H
aw

ai
i

W
es

t V
irg

in
ia

M
ai

ne
S

ou
th

 D
ak

ot
a

N
or

th
 D

ak
ot

a
Ve

rm
on

t
M

in
ne

so
ta

W
is

co
ns

in
Io

w
a

N
ew

 H
am

ps
hi

re

39 44 45 55

Figure 12.3
Embedding a base plot within lattice output. The arrangement of the panels and
the drawing of axes and strips is all done by lattice using grid, but the contents of
each panel is a dendrogram plot produced by the base graphics system.

376 R Graphics, Third Edition

12.1.3 Problems and limitations of gridBase

The functions provided by the gridBase package allow the user to mix output
from two quite different graphics systems, but there are limits to how much
the systems can be combined.

For example, it is not possible to embed base graphics output within a grid
viewport that is rotated. There are also certain base graphics functions that
modify settings like omi and fig themselves (e.g., coplot()) and output from
these functions will not embed properly within grid viewports. Finally, the
calculations used to match grid graphics settings with base graphics settings
(and vice versa) are only valid for the current graphics device size. If these
functions are used to draw into a window, then the window is resized, the
base graphics and grid settings will almost certainly no longer match and the
graph may become non-sensical. This also applies to copying output between
devices of different sizes.

The recordGraphics() function provides one way to avoid this problem,
though proper use of the function requires expert knowledge. A very naive
use is shown in the following code.

> plot.new()

> recordGraphics({ print(xyplot(y ~ x | height,

subscripts=TRUE,

xlab="", ylab="",

strip=strip.custom(style=4),

scales=list(draw=FALSE),

panel=dendpanel),

newpage=FALSE)

},

list(),

globalenv())

Some other solutions to this problem are discussed in Section 7.13.

Combining Graphics Systems 377

January April June September

0
50

10
0

15
0

20
0

25
0

Figure 12.4
A base graphics boxplot, similar to Figure 12.1, but with x-axis labels included. Not
all x-axis labels are visible because labels that overlap are not rendered.

12.2 The gridGraphics package

The gridGraphics package takes a very different approach to combining base
and grid output. This package has a single main function, grid.echo(), and
the purpose of this function is to convert a base plot into equivalent grid
output.

For example, consider the base graphics boxplot from the previous section
(Figure 12.1). We could draw the original barplot complete with labels on the
x-axis using the following code (see Figure 12.4).

> plot(m, sunspots)

We can convert this to a grid plot by calling the grid.echo() function.

> library(gridGraphics)

> grid.echo()

378 R Graphics, Third Edition

The result is exactly the same as Figure 12.4, except that the plot has now
been drawn using grid. We can see that by listing the grid grobs.

> grid.ls()

graphics-plot-1-polygon-1

graphics-plot-1-segments-1

graphics-plot-1-points-1

graphics-plot-1-segments-2

graphics-plot-1-segments-3

graphics-plot-1-polygon-2

graphics-plot-1-segments-4

graphics-plot-1-points-2

graphics-plot-1-polygon-3

graphics-plot-1-segments-5

...

12.2.1 Editing base graphics using grid

Now that we have grid grobs to work with, we can use the grid functions for
editing grobs to change the position and orientation of the barplot labels. For
example, the following code shifts the labels up closer to the x-axis, makes
them right-justified, and rotates them 60 degrees (see Figure 12.5).

> grid.edit("graphics-plot-1-bottom-axis-labels-1",

y=unit(-1, "lines"), hjust=1, vjust=0.5, rot=60)

12.2.2 Base graphics in grid viewports

By default the grid.echo() function just converts whatever base graphics
output is on the current page. However, we can also provide a function as
the first argument to grid.echo() and it will convert whatever base graphics
output is produced by that function. This can be combined with the newpage

argument to grid.echo() to draw base graphics within grid viewports; the
base graphics is drawn on an off-screen device the size of the current grid
viewport and then echoed (as grid output) into the current viewport.

As an example, we will revisit the example that we used for gridBase, to
embed base graphics within a lattice plot (Figure 12.3). In the code below,
the dendpanel() function is quite similar to the dendpanel() function that
we used with gridBase, but instead of calls to par() and gridPLT() to set up

Combining Graphics Systems 379

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch
Ap

ril
M

ay
Ju

ne Ju
ly

Au
gu

st
Se

pt
em

be
r

O
ct

ob
er

N
ov

em
be

r
D

ec
em

be
r

0
50

10
0

15
0

20
0

25
0

Figure 12.5
The base barplot from Figure 12.4, converted to a grid version and then edited
using grid.edit() to modify the x-axis labels.

base graphics plot regions plus a direct call to plot() to draw the dendrogram,
we just call grid.echo() and give it a function that calls plot() to draw the
dendrogram. We also specify newpage=FALSE so that grid.echo() just draws
in the lattice panel viewport. The prefix argument is used to provide names
for the grid grobs that are produced.

> dendpanel <- function(x, y, subscripts, ...) {

pushViewport(viewport(gp=gpar(fontsize=8)),

viewport(y=unit(0.95, "npc"),

height=unit(0.95, "npc"),

just="top"))

grid.echo(function() {

par(mar=c(5.1, 0, 1, 0))

plot(dend2$lower[[subscripts]], axes=FALSE)

},

newpage=FALSE,

prefix=paste0("dend-", panel.number()))

popViewport(2)

}

380 R Graphics, Third Edition

Fl
or

id
a

N
or

th
 C

ar
ol

in
a

39 44 45 55
C

al
ifo

rn
ia

M
ar

yl
an

d
A

riz
on

a
N

ew
 M

ex
ic

o
D

el
aw

ar
e

A
la

ba
m

a
Lo

ui
si

an
a

Ill
in

oi
s

N
ew

 Y
or

k
M

ic
hi

ga
n

N
ev

ad
a

A
la

sk
a

M
is

si
ss

ip
pi

S
ou

th
 C

ar
ol

in
a

39 44 45 55

W
as

hi
ng

to
n

O
re

go
n

W
yo

m
in

g
O

kl
ah

om
a

V
irg

in
ia

R
ho

de
 Is

la
nd

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
M

is
so

ur
i

A
rk

an
sa

s
Te

nn
es

se
e

G
eo

rg
ia

C
ol

or
ad

o
Te

xa
s

39 44 45 55

Id
ah

o
N

eb
ra

sk
a

K
en

tu
ck

y
M

on
ta

na
O

hi
o

U
ta

h
In

di
an

a
K

an
sa

s
C

on
ne

ct
ic

ut
P

en
ns

yl
va

ni
a

H
aw

ai
i

W
es

t V
irg

in
ia

M
ai

ne
S

ou
th

 D
ak

ot
a

N
or

th
 D

ak
ot

a
Ve

rm
on

t
M

in
ne

so
ta

W
is

co
ns

in
Io

w
a

N
ew

 H
am

ps
hi

re

39 44 45 55

Figure 12.6
A lattice multi-panel plot with panels drawn by base graphics functions using
grid.echo().

The call to xyplot() is exactly as it was in the gridBase case; we just provide
dendpanel() as the panel function in the call to xyplot(), although we no
longer have to worry about calling plot.new(). The final result is shown in
Figure 12.6.

> xyplot(y ~ x | height, subscripts=TRUE,

xlab="", ylab="",

strip=strip.custom(style=4),

scales=list(draw=FALSE),

panel=dendpanel)

Combining Graphics Systems 381

12.2.3 Problems and limitations of gridGraphics

The gridGraphics package suffers from a few limitations, some of which are
similar to the gridBase package. For example, the output of grid.echo()
will not necessarily survive a device resize (e.g., resizing an on-screen graphics
window or copying from one graphics device to another). The gridGraphics
package also has limitations of its own. For example, it cannot exactly re-
produce the labelling on a contourplot() and in some cases may censor axis
labels in a slightly different manner than the base axis() function.

On the other hand, gridGraphics will perform better than gridBase in some
respects. For example, it is possible with gridGraphics to combine base
plots that usually demand the entire page for themselves, like the coplot()

function. The following code demonstrates this idea by combining a coplot()

with a ggplot2 histogram on the same page (see Figure 12.7). We first define
a function, cpfun, that contains a call to coplot(). Next, we push a viewport
occupying the bottom 70% of the page and call grid.echo(), giving it the
function cpfun (with newpage=FALSE) so that it draws a grid version of the
conditioning plot in the bottom 70% of the page. The remainder of the code
draws a ggplot2 plot in a viewport that occupies the top third of the page.

> cpfun <- function() {

coplot(lat ~ long | depth, quakes, pch=16, cex=.5,

given.values=rbind(c(0, 400), c(300, 700)))

}

> pushViewport(viewport(y=0, height=.7, just="bottom"))

> grid.echo(cpfun, newpage=FALSE, prefix="cp")

> upViewport()

> library(ggplot2)

> pushViewport(viewport(y=1, height=.33, just="top"))

> gg <- ggplot(quakes) + geom_histogram(aes(x=depth)) +

theme(axis.title.x = element_blank())

> print(gg, newpage=FALSE)

> upViewport()

382 R Graphics, Third Edition

165 170 175 180 185

−3
5

−2
5

−1
5

165 170 175 180 185

long

la
t

0 100 200 300 400 500 600 700

Given : depth

0

25

50

75

100

0 200 400 600

co
un

t

Figure 12.7
A coplot() conditioning plot (which usually demands the whole page for itself)
combined with a ggplot2 histogram on the same page using grid.echo().

Combining Graphics Systems 383

Chapter summary

The gridBase package provides functions for aligning grid viewports
with base graphics plot regions. This makes it possible to draw grid-
based output within a base plot and base graphics output within grid
viewports, including lattice and ggplot2 plots.

The gridGraphics package provides the grid.echo() function,
which converts base graphics output into grid graphics output. This
also allows base plots to be drawn within grid viewports, plus it
allows grid-style manipulation of base plots, with functions like
grid.edit().

http://taylorandfrancis.com

13

Advanced Graphics

Chapter preview

The emphasis in this chapter is on accessing graphical effects and
features that the core R graphics system does not support. The focus
is on the gridSVG package for exporting R graphics to SVG with
access to advanced features of the SVG format.

The strength of the core R graphics engine lies in the production of complex
static plots with flexible control of fine details. However, there are limits to
what the R graphics system will allow. For example, R graphics does not
provide support for gradient fills, so the plot in Figure 13.1 is not possible in
standard R graphics.

In this chapter, we will look at the gridSVG package, which provides access
from R to advanced graphics features that R itself does not support.

> library(gridSVG)

13.1 Exporting SVG

The main function in the gridSVG package is the grid.export() function.
This generates an SVG file from the current page of grid output. For example,
the following code draws a lattice boxplot on the normal R graphics screen

385

386 R Graphics, Third Edition

Height (inches)

Bass 2

Bass 1

Tenor 2

Tenor 1

Alto 2

Alto 1

Soprano 2

Soprano 1

60 65 70 75

Figure 13.1
A lattice boxplot with the boxes filled using a linear gradient fill (from black to
white).

device and then exports the plot to an SVG file with a call to grid.export()

(see Figure 13.2).∗

> library(lattice)

> bwplot(voice.part ~ height, data=singer,

xlab="Height (inches)",

par.settings=list(box.rectangle=list(col="black"),

box.umbrella=list(col="black"),

plot.symbol=list(col="black")))

> grid.export()

This functionality is not very useful in itself because the standard svg() graph-
ics device can already generate SVG files. Furthermore, while the standard
svg() device can export all R graphics output, gridSVG only exports grid
output. The value of gridSVG lies in its functions that allow advanced SVG
features to be added to a plot. Also, the gridGraphics package allows us
to convert all base graphics into grid graphics (see Sections 12.2 and 13.7),

∗The data used in this example are heights of singers, grouped by voice part, available
as the data set singers in the lattice package.

Advanced Graphics 387

Height (inches)

Bass 2

Bass 1

Tenor 2

Tenor 1

Alto 2

Alto 1

Soprano 2

Soprano 1

60 65 70 75

Figure 13.2

A lattice boxplot that has been exported to SVG using the grid.export() function.

which means that we can actually export base graphics with gridSVG with
a tiny bit of extra work.

As a simple example of advanced SVG features, we will explore filling a rectan-
gle with a linear gradient. The following grid code draws a simple rectangle
with no fill color (see the left side of Figure 13.3).

> grid.rect(name="r")

The gridSVG package provides the function linearGradient() to describe
a linear gradient fill and the function grid.gradientFill() to apply a gra-
dient fill to a grid grob. The following code uses these functions to define a
horizontal linear gradient from black to white then back to black and then
apply that gradient fill to the rectangle that we just drew. Notice that we use
the name of the rectangle, "r", to identify the grob that we want to apply the
gradient fill to.

> gradient <- linearGradient(c("black", "white", "black"),

x0=0, y0=.5, x1=1, y1=.5)

> grid.gradientFill("r", gradient)

388 R Graphics, Third Edition

Figure 13.3
On the left is a normal grid rectangle (with no fill); on the right is the same rectangle
filled with a horizontal linear gradient fill (from black to white and back to black).

After running this code, absolutely nothing will have changed on the standard
R graphics device; it will still look like the left side of Figure 13.3. This should
not be surprising because normal R graphics does not support gradient fills.
However, if we call the grid.export() function we will produce an SVG file
that contains the gradient fill. The result is shown on the right side of Figure
13.3.

> grid.export()

By default, the result of a call to grid.export() is an SVG file with the name
"Rplots.svg", but we can specify a different file name as the first argument
to grid.export() if we wish.

In addition to gradient fills, the gridSVG package provides access to pattern
fills, clipping paths, opacity masks, and image filters, all of which are beyond
the capabilities of standard R graphics devices. Table 13.1 provides a full list
of the functions that can be used to define a special effect and the functions
that can be used to apply the effect to a grid grob, and the following sections
explore each of these features in more detail.

It is worth emphasizing the fact that the functions that apply an SVG special
effect must identify a grid grob by name. This is a good thing in the sense
that we can localize a special effect to only parts of an image and we can apply
special effects after the image has been drawn. On the other hand, for this to
work, we need the grobs in an image to be named. Fortunately, packages like
lattice and ggplot2 both do a reasonable job of naming most grobs in any
image that they create. However, we have no guarantee that grobs created
by someone else’s code will be sensibly named, in which case applying SVG
special effects to the correct part of an image can be challenging.

Advanced Graphics 389

Table 13.1
SVG special effects that are available in the gridSVG package. In each
case, there is a function to define the effect and a function to apply the
effect to a grid grob.

Effect Define Apply
Linear gradient linearGradient() grid.gradientFill()
Radial gradient radialGradient() grid.gradientFill()
Clipping path clipPath() grid.clipPath()
Filter filterEffect()∗ grid.filter()
Opacity mask mask() grid.mask()
Pattern fill pattern() grid.patternFill()

∗A filter effect is defined by one or more filters, such as a Gaussian blur filter defined
by the feGaussianBlur() function.

13.2 SVG advanced features

This section demonstrates examples of each of the SVG special effects from
Table 13.1.

13.2.1 Gradient fills

In addition to the linear gradients that were described in the previous section,
we can also create and apply radial gradient fills. The radialGradient()

function is used to describe the fill and grid.gradientFill() applies the fill
to one or more grobs.

A radial gradient is defined by a set of colours for the gradient to transition
through, plus a location for each colour in the set. The code below shows the
simplest case, where we have a gradient from one colour to another (in this
case white to black), with the first colour at the centre of the shape being
filled and the second colour at the edge of the shape being filled. The shape
we are filling is a rectangle (see Figure 13.4).

> grid.rect(name="r1")

> rg1 <- radialGradient(c("white", "black"))

> grid.gradientFill("r1", rg1)

The next example shows a slightly more complex radial gradient. This time
we have three colours (white then black then white) and we have set the
“focus” of the gradient to the left of center. We have also specified that the

390 R Graphics, Third Edition

Figure 13.4
On the left is a rectangle with a simple radial gradient from white to black; on the
right is a more complex radial gradient from white to black then back to white, with
the focus of the gradient skewed to the left and the first transition happening faster
than the second.

first transition from white to black occurs in the first quarter of the distance
from the centre to the edge and the transition back to white occurs more
slowly. The final result is a skewed gradient, again within a rectangle (see
Figure 13.4).

> grid.rect(name="r2")

> rg2 <- radialGradient(c("white", "black", "white"),

stops=c(0, .25, 1),

fx=.25, fy=.5)

> grid.gradientFill("r2", rg2)

In both examples above, we apply the radial gradient to a specific grob by
naming the grob in the first argument to the grid.gradientFill() function.
It is also possible to treat the first argument as a regular expression, by spec-
ifying grep=TRUE, and to allow more than one grob to be affected by the fill,
by specifying global=TRUE.

13.2.2 Pattern fills

Another way that we can fill shapes is with a pattern fill. These are cre-
ated with the pattern() function and applied to one or more grobs with
grid.patternFill().

A pattern is based on a grid grob, for example, the following code defines a
pattern based on a circle.

> dots <- pattern(circleGrob(r=.3, gp=gpar(fill="black")))

When a pattern fill is applied to another grob, the pattern is repeated to fill
up the shape. We refer to the basic pattern as a tile and the pattern definition

Advanced Graphics 391

Figure 13.5
On the left is a rectangle with a pattern fill based on a circle, where the pattern
starts at the bottom left of the rectangle and repeats 10 times in each direction. On
the right is a rectangle also filled with a pattern based on a circle, but this time the
pattern starts at the centre of the rectangle and repeats every 1cm.

includes how to repeat the tile to fill up a shape. By default, the tile starts off
centred at the bottom-left corner of the shape and repeats ten times across
and ten times up to fill the shape (see Figure 13.5).

> grid.rect(name="r1")

> grid.patternFill("r1", dots)

The following code defines a different pattern, still based on the simple circle,
but with the pattern starting in the centre of the filled shape and with a fixed
tile size of 1cm (see Figure 13.5).

> dotgrid <- pattern(circleGrob(r=.3, gp=gpar(fill="black")),

x=.5, y=.5,

width=unit(1, "cm"), height=unit(1, "cm"))

> grid.rect(name="r2")

> grid.patternFill("r2", dotgrid)

The definition of a pattern does not have to be based on just a single simple
grob. For example, the following code creates a pattern fill that is based on a
combination of gray rectangles and a white circle. This fill is then used on a
rectangle (see Figure 13.6).

392 R Graphics, Third Edition

Figure 13.6
On the left is a pattern fill that is based on a combination of grobs (a white circle on
top of four gray rectangles). On the right is a pattern fill that is based on a ggplot2
plot.

> c <- circleGrob(r=.25, gp=gpar(col=NA, fill="white"))

> r <- rectGrob(x=c(1, 1, 3, 3)/4, y=c(1, 3, 3, 1)/4,

width=.3, height=.3,

gp=gpar(col=NA, fill="grey"))

> p <- pattern(gTree(children=gList(r, c)),

x=.5, y=.5,

width=unit(2, "cm"), height=unit(2, "cm"))

> grid.rect(name="r3")

> grid.patternFill("r3", p)

Just to show how general this approach is, the following code uses a ggplot2
plot as the basis for a pattern fill (see Figure 13.6).

> library(ggplot2)

> cxc <- ggplot(mtcars, aes(x = factor(cyl))) +

geom_bar(width = 1, colour = "black") +

coord_polar(theta = "y")

> gg <- ggplotGrob(cxc)

> p <- pattern(gg, x=.5, y=.5,

width=unit(4, "cm"), height=unit(4, "cm"))

> grid.rect(name="r4")

> grid.patternFill("r4", p)

13.2.3 Filters

A filter is a graphical operation that can be applied to a grob. A filter is defined
by calling the filterEffect() function, which includes calls to specific filter
effect functions such as feGaussianBlur(), then the filter is applied by calling
grid.filter().

Advanced Graphics 393

Figure 13.7
On the left is a rectangle with a Gaussian blur filter applied to it (so that the
border has become fuzzy). On the right is a rectangle with a complex filter applied.
The filter takes the original rectangle, offsets it down and to the right, extracts the
opaque section of the rectangle (which is all of the rectangle because it is filled with
white), blurs the result, then composites the original rectangle over the top. The
end result is a drop shadow.

The following code describes a simple filter effect, which applies a Gaussian
blur to a rectangle (see Figure 13.7).

> feSimple <- filterEffect(feGaussianBlur(sd=3))

> grid.rect(name="r1", width=.8, height=.8)

> grid.filter("r1", feSimple)

The next code describes a more complex filter effect, which is a combination
of several filters. The image being filtered is again just a simple rectangle.
However, the first filter takes the alpha channel of the source image (and
because the source image is opaque, that is the entire rectangle) and offsets
it down and to the right. The result of this filter is given the label "offOut".
The second filter takes the "offOut" filter result and blurs it; the result of this
filter is given the label "gaussOut". The third filter composites the original
image (the rectangle) with the "gaussOut" filter result to produce a final
result that is a rectangle with a drop shadow (see Figure 13.7).

> offset <- feOffset("SourceAlpha", result="offOut",

dx=unit(2, "mm"), dy=unit(-2, "mm"))

> blur <- feGaussianBlur("offOut", sd=3, result="gaussOut")

> blend <- feBlend("SourceGraphic", "gaussOut")

> feComplex <- filterEffect(list(offset, blur, blend))

> grid.rect(name="r2", width=.8, height=.8,

gp=gpar(fill="white"))

> grid.filter("r2", feComplex)

Table 13.2 lists the full set of filter effects that are supported by gridSVG.

394 R Graphics, Third Edition

Table 13.2
Filter effects supported by gridSVG

Filter Description
feBlend Blend two objects together.
feColorMatrix Apply a matrix transformation on colour val-

ues.
feComponentTransfer Perform colour component-wise remapping.
feComposite Combine images using Porter-Duff operations.
feConvolveMatrix Apply a matrix convolution filter effect.
feDiffuseLighting Light an image using the alpha channel as a

bump map.
feDisplacementMap Displace pixel values from a filter input.
feDistantLight Create a distant light source.
feFlood Create and fill a rectangular region.
feGaussianBlur Apply a Gaussian blur to an image.
feImage Draw a referred image.
feMerge Composite image layers together.
feMorphology “Fatten” or “thin” artwork.
feOffset Offset an input image relative to its current

position.
fePointLight Create a point light source.
feSpecularLighting Light an image using the alpha channel as a

bump map.
feSpotLight Create a spot light source.
feTile Fill a rectangle with a tiled pattern of an input

image.
feTurbulence Create an image using the Perlin turbulence

function.

Advanced Graphics 395

Figure 13.8
On the left is a rectangle with a linear gradient fill (like Figure 13.3) that has been
clipped using a circle as the clipping path. On the right is the same rectangle that
has been clipped using three overlapping circles as the clipping path.

13.2.4 Clipping paths

Standard R graphics allows for clipping of graphical output, but only to rect-
angular regions. With gridSVG, we are able to clip to arbitrary paths.

A clipping path is defined using the clipPath() function and the clipping
is applied to a grob with the grid.clipPath() function. Similar to pattern
fills, a clipping path is based upon a grid grob. For example, the following
code draws a rectangle with a linear gradient fill (like in Figure 13.3), then
applies a clipping path based on a circle (see Figure 13.8).

> grid.rect(name="r1")

> grid.gradientFill("r1", gradient)

> cp <- clipPath(circleGrob())

> grid.clipPath("r1", cp)

The following code shows that a clipping path can be made up from more
than one shape. In this case, the clipping path is defined by three overlapping
circles; the resulting clipping path is the union of the three circles (see Figure
13.8).

> grid.rect(name="r2")

> grid.gradientFill("r2", gradient)

> cp <- clipPath(circleGrob(x=1:3/4, r=.3))

> grid.clipPath("r2", cp)

13.2.5 Masks

A mask is similar to clipping in that it allows us to exclude parts of an image.
However, where clipping describes an outline outside of which the image is

396 R Graphics, Third Edition

Figure 13.9
Applying a black-and-white mask. On the left is the mask itself (three overlapping
white circles on a black background) and on the right is a rectangle with a linear
gradient fill that has had the mask applied to it. Only the parts of the filled rectangle
where the mask was white are visible.

discarded, masking allows degrees of exclusion.

A mask is itself an image that contains white, black, or gray components.
When a mask is applied to another image, where the mask is white, the masked
image is retained, where the mask is black, the masked image is discarded,
and where the mask is gray, the masked image becomes semitransparent.

A mask is defined with the mask() function and applied to a grob with the
grid.mask() function. The following code shows a simple case where the
mask is a set of three white circles on a black background and the mask is
applied to the rectangle with a linear gradient. The result is exactly the same
as the second clipping example from the previous section (see Figure 13.9).

> circlesOnBlack <-

gTree(children=gList(rectGrob(gp=gpar(fill="black")),

circleGrob(x=1:3/4, r=.3,

gp=gpar(col=NA,

fill="white"))))

> m <- mask(circlesOnBlack)

> grid.rect(name="r2")

> grid.gradientFill("r2", gradient)

> grid.mask("r2", m)

The following code creates a more sophisticated mask. In this case, we use
the rectangle with a linear gradient as the mask and apply the mask to three
white circles on a black background. Where the mask is gray, the masked
image becomes semitransparent (see Figure 13.10).

Advanced Graphics 397

Figure 13.10
Applying a grayscale mask. On the left is the mask itself (a rectangle filled with a
grayscale linear gradient) and on the right is a set of three white circles on a black
background that has had the mask applied to it. Where the mask is white, the
circles and black background are opaque and where the mask is gray, the circles and
black background are semitransparent.

> grayGradient <-

gTree(children=gList(gradientFillGrob(rectGrob(),

gradient)))

> m <- mask(grayGradient)

> masked <- maskGrob(circlesOnBlack, m)

> grid.draw(masked)

13.3 SVG drawing context

In addition to applying features to specific grid grobs, it is possible to add a
clipping path or an opacity mask to the current drawing context so that it af-
fects all subsequent drawing. This is the purpose of the pushClipPath() and
pushMask() functions. These actions are similar to pushing a grid viewport
in that they affect the drawing context, but only within the current view-
port. The resulting clipping path or opacity mask is only in effect until the
next call to popViewport(). We can also call popClipPath(), or popMask(),
or popContext() to revert the drawing context without leaving the current
viewport.

The following code is equivalent to the grid.clipPath() example that pro-
duced the left side of Figure 13.8. In the original example, we drew the
rectangle, then filled it, then applied a clipping path to it. This time, we
enforce a clipping path and then draw the rectangle and fill it (and then roll

398 R Graphics, Third Edition

back the clipping path). The difference in the latter case is that we could
draw more than just a single rectangle between the pushClipPath() call and
the popClipPath() call.

> pushClipPath(path)

> grid.rect(name="r")

> grid.gradientFill("r", gradient)

> popClipPath()

13.4 SVG definitions

Clipping paths, opacity masks, filters, gradient fills, and pattern fills can be
collectively referred to as SVG definitions. There are three steps involved in
using one of these definitions: we create the definition, we register the def-
inition, and we apply the definition. In the examples so far, we have only
seen the first and the last step; the registering step has been handled auto-
matically. For example, we have used linearGradient() to create a linear
gradient fill definition and we have used grid.gradientFill() to apply that
linear gradient.

We can explicitly register a definition before we use it with functions like
registerGradientFill() or registerClipPath(). One reason for doing
this is efficiency because registering only records the definition in the SVG
file once, which will reduce the size of the SVG file; if we do not register the
definition, a copy is added to the SVG file every time that we use it. A second
reason for explicitly registering a definition is that the registration step is when
the semantics of the definition are resolved. To demonstrate the concept of
registration, we will consider the linear gradient that we described earlier. We
can see that this gradient will smoothly transition from black, at location (0,
0.5), to white, at location (1, 0.5).

> gradient <- linearGradient(c("black", "white", "black"),

x0=0, y0=.5, x1=1, y1=.5)

What is the meaning of those locations? The default is that 0 is the left side
of the object being filled and 1 is the right side, but, as the example at the
start of this chapter shows (see Figure 13.1), we might also want to fill several
objects with a single gradient that is defined relative to the page or a whole
plot.

Advanced Graphics 399

Figure 13.11
Two rectangles filled with a linear gradient that is defined relative to the bounding
box of the object being filled; both rectangles receive the same fill.

To get the latter effect, we have to change two things. First of all, we have
to specify the coordinate system that we are using to describe the gradient
fill. We do this with the gradientUnits argument, which can have the value
"bbox" (the default) or "coords". We will demonstrate the difference through
a series of examples.

The following code defines a linear gradient from black to white and back
to black, that starts at (0, .5) and ends at (1, .5), where those locations are
relative to the bounding box of the object being filled (the default).

> gradientBBox <- linearGradient(c("black", "white", "black"),

gradientUnits="bbox",

x0=0, y0=.5, x1=1, y1=.5)

In the next code, we apply that fill to two rectangles and, because the gradient
is relative to each rectangle, both rectangles are filled the same way (see Figure
13.11).

> grid.rect(1:2/3, 1:2/3, width=1/3, height=.2, name="r2")

> grid.gradientFill("r2", gradientBBox)

> grid.export()

If we define the same gradient fill, but use gradientUnits="coords", the
gradient fill is defined relative to the whole page rather than the bounding
box of the object being filled.

> gradientPage <- linearGradient(c("black", "white", "black"),

gradientUnits="coords",

x0=0, y0=.5, x1=1, y1=.5)

400 R Graphics, Third Edition

Figure 13.12
Two rectangles filled with a linear gradient that is defined relative to the whole page
(as indicated by the dotted rectangle); each rectangle receives a different fill based
on where it lies on the page.

If we fill two separate rectangles with this gradient fill, they receive different
fills based on where the rectangle lies on the page (see Figure 13.12).

> grid.rect(1:2/3, 1:2/3, width=1/3, height=.2, name="r2")

> grid.gradientFill("r2", gradientPage)

> grid.export()

Finally, if we define a gradient fill using gradientFill="coords", the lo-
cations in the definition are evaluated when the gradient fill is registered,
which means that we can control where on the page the gradient fill is defined
(e.g., within a plot region rather than over the entire page). For example,
in the following code we will reuse the pageGradient from above. However,
we first push a viewport that only occupies the central third of the page
(a dotted rectangle is drawn to show where this viewport lies on the page;
see Figure 13.13). We then explicitly register the gradient fill with a call
to registerGradientFill(), which means that the gradient fill is defined
across the central third of the page. Two separate rectangles are then filled
with that gradient and the result is different for each rectangle (because they
are in different positions on the page) and different from the previous example
(because the gradient fill is not defined across the whole page). In the call
to grid.gradientFill(), rather than providing a gradient fill object as in
previous examples, we identify a registered gradient fill by its label (in this
case, "g"). The final result is shown in Figure 13.13.

Outside of the central third of the page the gradient fill just stays black (the
value at the edge of the gradient fill), but that behaviour can be controlled
by the spreadMethod argument to the linearGradient() function.

Advanced Graphics 401

Figure 13.13
Two rectangles filled with a linear gradient that is defined relative to a viewport in
the central third of the page (as indicated by the dotted rectangle); each rectangle
receives a different fill based on where it lies relative to the viewport.

> pushViewport(viewport(width=1/3, name="vp"))

> registerGradientFill("g", gradientPage)

> upViewport()

> grid.rect(1:2/3, 1:2/3, width=1/3, height=.2, name="r2")

> grid.gradientFill("r2", label="g")

> grid.export()

13.5 Drawing off screen

The grid.export() function works by exporting whatever is on the current
graphics device to an SVG file. This requires that we first draw output on a
standard R graphics device, e.g., on screen, and then call grid.export().

The gridsvg() function offers a different approach. We can use this like any
other R graphics device (e.g., pdf()), to start a gridSVG graphics device
and then nothing is drawn on the screen; we just end up with the SVG file
once we call dev.off() to close the gridSVG device.

It is also possible to avoid generating an external SVG file. If we set the
name argument to grid.export() to NULL then, instead of generating an SVG
file, the function returns a list, the first element of which is an in-memory
representation of the SVG code. This object is an "XMLInternalNode" from
the package XML and it can be used to fine-tune the raw SVG code (using
other functions from the XML package). For example, the following code
draws nothing on screen, but generates SVG code for an image and then

402 R Graphics, Third Edition

extracts the <circle> element from that SVG code.

> pdf(NULL)

> grid.circle()

> svg <- grid.export(NULL)$svg

> dev.off()

> library(XML)

> getNodeSet(svg, "//svg:circle",

namespaces=c(svg="http://www.w3.org/2000/svg"))

[[1]]

<circle id="GRID.circle.469.1.1" cx="252" cy="252" r="252"/>

attr(,"class")

[1] "XMLNodeSet"

Most of the examples in this chapter have focused on drawing grid grobs
with specific names and then selecting which grob to modify by specifying
the grob name. As with standard grid functions, there are *Grob versions
of the grid.* functions, so we can also work directly with grobs off screen.
For example, the following code creates a rectangle grob, but does not draw
it, then adds a gradient fill effect to it, and finally draws the gradient-filled
rectangle.

> rect <- rectGrob()

> rectFilled <- gradientFillGrob(rect, gradient)

> grid.draw(rectFilled)

Section 13.2.5 also contains an example of this approach.

13.6 SVG fonts

In R graphics, we can specify a single font to use for a piece of text. For
example, in grid graphics, we do this by specifying a value for the fontfamily
argument in a call to gpar(), as shown below.

> grid.text("hello", gp=gpar(fontfamily="serif"))

http://www.w3.org

Advanced Graphics 403

In an SVG image, because SVG is used in web pages and those web pages
can be viewed on many different machines, so we cannot know what fonts are
available to the viewer, it is possible to specify a list of fonts for a piece of
text. Whatever software is used to view the SVG file will go down the list of
fonts until it finds one that it can use. The SVG code below shows an example,
where the font Helvetica will be used if it is available, otherwise Arial will be
used if it is available, otherwise a generic sans-serif font will be used.

<text style="font-family: Helvetica, Arial, sans-serif">

hello

</text>

The gridSVG package calls this list of fonts a font stack and provides func-
tions to define different font stacks. When we export an R plot that contains
text, the font family specification for that text is used to select a font stack,
which generates a list of fonts in the SVG file.

There are three font stacks available and the getSVGFonts() function returns
the current settings.

> stacks <- getSVGFonts()

> stacks

$sans

[1] "Helvetica" "Arial" "FreeSans"

[4] "Liberation Sans" "Nimbus Sans L" "sans-serif"

$serif

[1] "Times"

[2] "Times New Roman"

[3] "Liberation Serif"

[4] "Nimbus Roman No9 L Regular"

[5] "serif"

$mono

[1] "Courier" "Courier New" "Nimbus Mono L"

[4] "monospace"

The setSVGFonts() function can be used to modify the font stacks. The
following code makes use of the font stacks and some of the ideas from previous
sections to create an SVG image that makes use of a handwriting-style Google
Font.∗

∗https://fonts.google.com/?category=Handwriting\&selection.family=Satisfy

https://fonts.google.com/?category=Handwriting\&selection.family=Satisfy

404 R Graphics, Third Edition

The first step is to define a custom font stack. This font stack will use the
Google Font “Satisfy” if it is available, or otherwise any serif font that can be
found.

> stacks$serif <- c("Satisfy", "serif")

> setSVGFonts(stacks)

We now draw an image containing text and specify the "serif" font family,
which means that the serif font stack will be used. We do all drawing off
screen and just capture the SVG output for this image.

> pdf(NULL, width=2, height=1)

> grid.text("hello", gp=gpar(fontfamily="serif"))

> svg <- grid.export(NULL)$svg

> dev.off()

Next, we add a node into the SVG output to make sure that the web browser
that views the SVG will find the Google Font.

> root <-

xmlRoot(svg, "svg:svg",

namespaces=c(svg="http://www.w3.org/2000/svg"))

> url <-

"url('https://fonts.googleapis.com/css?family=Satisfy');"
> styleNode <-

newXMLNode("style",

attrs=c(type="text/css"),

paste("@import", url))

> invisible(newXMLNode("defs", styleNode, parent=root))

The final step is to write the modified SVG code out to a file. The final image
is shown in Figure 13.14.

> saveXML(root, "Figures/export-fonts.svg")

[1] "Figures/export-fonts.svg"

One problem with the font handling in gridSVG output is that the fine
placement of text will not be accurate with non-standard fonts, because the
font metrics the R uses to position text are not necessarily the same as the
font metrics of the font that is ultimately viewed on screen.

http://www.w3.org
https://fonts.googleapis.com/css?family=Satisfy

Advanced Graphics 405

Figure 13.14

An SVG image generated by gridSVG with text that uses a Google Font (“Satisfy”).

13.7 Exporting base graphics

Although, as the name suggests, gridSVG is limited to exporting grid out-
put, the gridGraphics package allows us to translate any base graphics out-
put to grid, so we can in effect export any R graphics.

The following code sequence shows the steps involved. First, we draw a base
plot ...

> plot(mpg ~ disp, mtcars)

... then we convert the base plot to grid graphics ...

> library(gridGraphics)

> grid.echo()

... then, perhaps after adding special SVG features to the plot grobs, we export
the plot to an SVG file ...

> library(gridSVG)

> grid.export()

13.8 Exporting to other formats

A major limitation of the gridSVG package is that it can only produce SVG
output. This is an excellent graphics format for including images in web pages,
or HTML documents generally, but it is not appropriate for including images
within, for example, PDF reports produced from LATEX documents.

406 R Graphics, Third Edition

If we wish to produce an R plot that contains SVG special effects, but in an-
other format, like PDF, we need to convert from the SVG that grid.export()
produces to the format that we desire. Fortunately, there are several programs
that can perform this conversion, though the quality of the result can vary
between programs. For example, some programs will produce a raster result
when converting SVG files with special effects like gradient fills to PDF files.

Inkscape is one program that performs quite well at this task, with the added
advantage that it is available on Windows as well as Linux. On Linux it is
also relatively straightforward to write code for this task, which allows the
conversion to be included in an automated workflow. The print version of
this book has exactly this problem and solves it with code along the lines of
the code below.

> system("inkscape --export-pdf=output-file.pdf input-file.svg")

Another option is to use a “headless” browser, as demonstrated by the follow-
ing code.

> system("chromium-browser --headless

--print-to-pdf input-file.svg")

13.9 Exporting imported images

Section 11.3.2 described the grImport2 package for importing SVG images
into R. One feature of that package is that it can import SVG images that
contain features that standard R graphics cannot support.

The gridSVG package can be used in combination with grImport2 to gener-
ate SVG output that contains imported images that R by itself cannot render.
An example of this idea is shown in Figure 11.14.

Advanced Graphics 407

Chapter summary

The gridSVG package exports grid output to an SVG format. The
advantage of this over the standard SVG graphics device is that ad-
vanced SVG features can be added to an image and exported. These
features include gradient fills, pattern fills, filters, clipping paths, and
masks. Base graphics output can be exported by first converting to
grid output with the gridGraphics package.

http://taylorandfrancis.com

Bibliography

Daniel Adler and Duncan Murdoch. rgl: 3D Visualization Device System
(OpenGL), 2010. R package version 0.91.

Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley
Longman, 2nd edition, 1990.

JJ Allaire, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey,
Aron Atkins, Hadley Wickham, Joe Cheng, and Winston Chang. rmark-
down: Dynamic Documents for R, 2017. URL https://CRAN.R-project.

org/package=rmarkdown. R package version 1.8.

Richard A. Becker and John M. Chambers. Extending the S System. Chapman
& Hall, 1985.

Richard A. Becker, William S. Cleveland, and Ming-Jen Shyu. The visual
design and control of trellis display. Journal of Computational and Graphical
Statistics, 5:123–155, 1996.

Richard A. Becker, Allan R. Wilks, Ray Brownrigg, Thomas P Minka, and
Alex Deckmyn. maps: Draw Geographical Maps, 2018. URL https://

CRAN.R-project.org/package=maps. R package version 3.3.0.

Ray Brownrigg, Richard A. Becker, and Allan R. Wilks. mapdata: Extra Map
Databases, 2018. URL https://CRAN.R-project.org/package=mapdata.
R package version 2.3.0.

J. M. Chambers. Structured computational graphics for data analysis. Pro-
ceedings of the International Statistical Institute, 40:501–507, 1975.

Winston Chang. extrafont: Tools for using fonts, 2014. URL https://CRAN.

R-project.org/package=extrafont. R package version 0.17.

Winston Chang, Alexej Kryukov, and Paul Murrell. fontcm: Computer
Modern font for use with extrafont package, 2014. URL https://CRAN.

R-project.org/package=fontcm. R package version 1.1.

William S. Cleveland. The Elements of Graphing Data. Wadsworth Publ.
Co., 1985.

William S. Cleveland. Visualizing Data. Hobart Press, 1993.

William S. Cleveland and Robert McGill. Graphical perception: The visual

409

https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=maps
https://CRAN.R-project.org/package=maps
https://CRAN.R-project.org/package=mapdata
https://CRAN.R-project.org/package=extrafont
https://CRAN.R-project.org/package=extrafont
https://CRAN.R-project.org/package=fontcm
https://CRAN.R-project.org/package=fontcm

410 R Graphics, Third Edition

decoding of quantitative information on graphical displays of data. Journal
of the Royal Statistical Society, Series A, General, 150:192–210, 1987.

P. Dalgaard. Introductory Statistics with R. Statistics and Computing.
Springer New York, 2008. ISBN 9780387790534. URL https://books.

google.co.nz/books?id=YI0kT8cuiVUC.

Matthew W. Felgate, Simon H. Bickler, and Paul R. Murrell. Estimating
parent population of pottery vessels from a sample of fragments: a case
study from inter-tidal surface collections, roviana lagoon, solomon islands.
Journal of Archaeological Science, 40(2):1319 – 1328, 2013.

John Fox. An R and S-Plus Companion to Applied Regression. Sage Publica-
tions, 2002.

Michael Friendly. Visualizing Categorical Data. SAS Publishing, 2000.

David Gohel, Hadley Wickham, Lionel Henry, and Jeroen Ooms. gdtools:
Utilities for Graphical Rendering, 2018. URL https://CRAN.R-project.

org/package=gdtools. R package version 0.1.7.

J.A. Hartigan and B. Kleiner. A mosaic of television ratings. The American
Statistician, 38:32–35, 1984.

Richard M. Heiberger and Burt Holland. Statistical Analysis and Data Dis-
play: An Intermediate Course with Examples in S-PLUS, R, and SAS.
Springer, 2004.

A.V. Hershey. A contribution to computer typesetting techniques: Tables
of coordinates for Hershey’s repertory of occidental type fonts and graphic
symbols. NBS Special Publication 424, April 1976.

H. Hofmann and M. Theus. Interactive graphics for visualizing conditional
distributions. Unpublished manuscript, 2005.

Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive parti-
tioning: A conditional inference framework. Journal of Computational and
Graphical Statistics, 15(3):651–674, 2006.

J. Hummel. Linked bar charts: Analyzing categorical data graphically. Com-
putational Statistics, 11:23–33, 1996.

Ross Ihaka, Paul Murrell, Kurt Hornik, and Achim Zeileis. colorspace: Color
Space Manipulation, 2016. R package version 1.3-2.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley, New York, 1990.

O.P. Lamigueiro. Displaying Time Series, Spatial, and Space-Time Data
with R. Chapman & Hall/CRC The R Series. CRC Press, 2014. ISBN
9781466565227.

https://books.google.co.nz/books?id=YI0kT8cuiVUC
https://books.google.co.nz/books?id=YI0kT8cuiVUC
https://CRAN.R-project.org/package=gdtools
https://CRAN.R-project.org/package=gdtools

Bibliography 411

Duncan Temple Lang and the CRAN Team. XML: Tools for Parsing and Gen-
erating XML Within R and S-Plus, 2018. URL https://CRAN.R-project.

org/package=XML. R package version 3.98-1.11.

H. W. Lie and B. Bos. Cascading Style Sheets, Level 1, 1996. W3C Recom-
mendation.

Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. cluster: Cluster Analysis Basics and Extensions, 2018. R pack-
age version 2.0.7-1.

John Maindonald and John Braun. Data Analysis and Graphics Using R: An
Example-Based Approach. Cambridge University Press, 2003.

Doug McIlroy, Ray Brownrigg, Thomas P Minka, and Roger Bivand. mapproj:
Map Projections, 2018. URL https://CRAN.R-project.org/package=

mapproj. R package version 1.2.6.

A.E. Miller. The analysis of unreplicated factorial experiments from a geo-
metric perspective. Canadian Journal of Statistics, 31:311–327, 2003.

Paul Murrell. Integrating grid graphics output with base graphics output. R
News, 3(2):7–12, 2003.

Paul Murrell. Importing vector graphics: The grImport package for R. Journal
of Statistical Software, 30(4):1–37, 2009.

Paul Murrell. gridBase: Integration of base and grid graphics, 2014. URL
https://CRAN.R-project.org/package=gridBase. R package version 0.4-
7.

Paul Murrell. The gridGraphics Package. The R Journal, 7(1):
151–162, 2015. URL https://journal.r-project.org/archive/2015/

RJ-2015-012/index.html.

Paul Murrell and Velvet Ly. gridDebug: Debugging ’grid’ Graphics, 2015.
URL https://CRAN.R-project.org/package=gridDebug. R package ver-
sion 0.5-0.

Paul Murrell and Simon Potter. gridSVG: Export ’grid’ Graphics as SVG,
2017. URL https://CRAN.R-project.org/package=gridSVG. R package
version 1.6-0.

Paul Murrell and Zhijian Wen. gridGraphics: Redraw Base Graphics Us-
ing ’grid’ Graphics, 2018. URL https://CRAN.R-project.org/package=

gridGraphics. R package version 0.3-0.

Kurt Nassau, editor. Color for Science, Art and Technology. Elsevier, 1998.

Erich Neuwirth. RColorBrewer: ColorBrewer palettes, 2014. R package ver-
sion 1.1-2.

https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=mapproj
https://CRAN.R-project.org/package=mapproj
https://CRAN.R-project.org/package=gridBase
https://journal.r-project.org/archive/2015/RJ-2015-012/index.html
https://journal.r-project.org/archive/2015/RJ-2015-012/index.html
https://CRAN.R-project.org/package=gridDebug.
https://CRAN.R-project.org/package=gridSVG
https://CRAN.R-project.org/package=gridGraphics
https://CRAN.R-project.org/package=gridGraphics

412 R Graphics, Third Edition

Jeroen Ooms. magick: Advanced Graphics and Image-Processing in R, 2018a.
URL https://github.com/ropensci/magick. R package version 1.8.

Jeroen Ooms. rsvg: Render SVG Images into PDF, PNG, PostScript, or
Bitmap Arrays, 2018b. URL https://CRAN.R-project.org/package=

rsvg. R package version 1.3.

Andrea Peters and Torsten Hothorn. ipred: Improved Predictors, 2017. URL
https://CRAN.R-project.org/package=ipred. R package version 0.9-6.

Simon Potter. grImport2: Importing ’SVG’ Graphics, 2018. R package version
0.1-4.

Yixuan Qiu. showtext: Using Fonts More Easily in R Graphs, 2018. URL
https://CRAN.R-project.org/package=showtext. R package version 0.5-
1.

Thomas Rahlf. Data Visualisation with R. Springer International Pub-
lishing, New York, 2017. ISBN 978-3-319-49750-1. URL http://www.

datavisualisation-r.com.

Naomi Robbins. Creating More Effective Graphs. Wiley, 2005.

P.J. Rousseeuw. A visual display for hierarchical classification. In E. Di-
day, Y. Escoufier, L. Lebart, J. Pages, Y. Schektman, and R. Tomassone,
editors, Data Analysis and Informatics 4, pages 743–748. North-Holland,
Amsterdam, 1986.

Jeffrey A. Ryan and Joshua M. Ulrich. quantmod: Quantitative Finan-
cial Modelling Framework, 2018. URL https://CRAN.R-project.org/

package=quantmod. R package version 0.4-13.

Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer,
New York, 2008.

Charlie Sharpsteen and Cameron Bracken. tikzDevice: R Graphics Output
in LATEX Format, 2018. URL https://CRAN.R-project.org/package=

tikzDevice. R package version 0.11.

A. Struyf, M. Hubert, and P.J. Rousseeuw. Integrating robust clustering
techniques in S-PLUS. Computational Statistics and Data Analysis, 26:
17–37, 1997.

E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
1989.

Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

A. Unwin. Graphical Data Analysis with R. Chapman & Hall/CRC The R
Series. CRC Press, 2015. ISBN 9781498715249.

Simon Urbanek. png: Read and write PNG images, 2013a. URL https:

http://www.datavisualisation-r.com
http://www.datavisualisation-r.com
https://github.com/ropensci/magick
https://CRAN.R-project.org/package=ipred
https://CRAN.R-project.org/package=rsvg
https://CRAN.R-project.org/package=rsvg
https://CRAN.R-project.org/package=showtext
https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=png

Bibliography 413

//CRAN.R-project.org/package=png. R package version 0.1-7.

Simon Urbanek. tiff: Read and write TIFF images, 2013b. URL https:

//CRAN.R-project.org/package=tiff. R package version 0.1-5.

Simon Urbanek. jpeg: Read and write JPEG images, 2014. URL https:

//CRAN.R-project.org/package=jpeg. R package version 0.1-8.

J. Verzani. Using R for Introductory Statistics, Second Edition. Chapman
& Hall/CRC The R Series. Taylor & Francis, 2014. ISBN 9781466590731.
URL https://books.google.co.nz/books?id=O86uAwAAQBAJ.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, 2nd
edition, 2016.

Leland Wilkinson. The Grammar of Graphics. Springer, 2nd edition, 2005.

Kevin Wright. pals: Color Palettes, Colormaps, and Tools to Evaluate Them,
2018. URL https://CRAN.R-project.org/package=pals. R package ver-
sion 1.5.

Yihui Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC,
Boca Raton, Florida, 2nd edition, 2015. URL https://yihui.name/

knitr/. ISBN 978-1498716963.

Achim Zeileis and Gabor Grothendieck. zoo: S3 infrastructure for regular and
irregular time series. Journal of Statistical Software, 14(6):1–27, 2005. doi:
10.18637/jss.v014.i06. URL http://www.jstatsoft.org/v14/i06/.

http://www.jstatsoft.org
https://yihui.name/knitr/
https://yihui.name/knitr/
https://CRAN.R-project.org/package=pals
https://books.google.co.nz/books?id=O86uAwAAQBAJ
https://CRAN.R-project.org/package=jpeg
https://CRAN.R-project.org/package=jpeg
https://CRAN.R-project.org/package=tiff
https://CRAN.R-project.org/package=tiff
https://CRAN.R-project.org/package=png

http://taylorandfrancis.com

Index

3D plots, 3, 33, 38, 107, 128

abline(), 87, 88
ablineGrob(), 188
addGrob(), 233
adjustcolor(), 322
aes(), 152, 155, 159
Aesthetics, 154
Arranging plots, see Layouts

in base graphics plots, 75–81
in ggplot2, 227
in lattice, 134–137

arrow(), 184
Arrows, see Graphical primitives
arrows(), 82, 86, 88
Aspect ratio, 77, 135, 316
Association plots, 36
assocplot(), 36
Axes

in base graphics plots, 42, 68, 93
in ggplot2, 156
in grid, 179
in lattice, 137

axis(), 68, 93–97, 100, 111, 114, 189,
381

axis.Date(), 95
axis.POSIXct(), 95
axTicks(), 95, 97

Banner plots, 31
barchart(), 128
Barcharts, 3, 33, 36, 38, 128, 162,

165
barplot(), 33, 35, 36, 40, 42, 62,

104, 105
Barplots, see Barcharts
Base graphics, 19

baseViewports(), 370
bezierGrob(), 183
bitmap(), 306, 315, 316
Bitmaps, 87, 188, 352–355
BMP, 314
bmp(), 306
box(), 71, 88, 111
boxplot(), 33, 35, 36, 40, 102, 105,

107, 115
boxplot.stats(), 115
Boxplots, 3, 33, 36, 38, 128
bwplot(), 128
bxp(), 102

c(), 192
Cairo package, 317, 331, 337
Cairo graphics, 309–311, 317
Cairo(), 317
cairo_pdf(), 309, 331, 336, 341
cairo_ps(), 310, 336, 341
cbind(), 76
cdplot(), 35, 36
chartSeries(), 13
CIDFont(), 308
circleGrob(), 183, 246
Circles, see Graphical primitives
clip(), 74
clipPath(), 389, 395
Clipping

in base graphics plots, 74
in grid, 189, 209–210

close.screen(), 81
cloud(), 128, 130
cluster package, 31
cm(), 99
cm.colors(), 323
co.intervals(), 115

415

416 R Graphics, Third Edition

col.whitebg(), 146
col2rgb(), 320, 322
Color spaces, 320
colorRamp(), 324
colorRampPalette(), 324
Colors, 61, 197, 319
colors(), 319
colorspace package, 322
colours(), 320
Conditional density plots, 35
Conditioning plots, 40,

see Multipanel conditioning
contour(), 38, 102, 115, 311
contourLines(), 109, 115
contourplot(), 128, 381
convertColor(), 322
convertHeight(), 193
convertUnit(), 193
convertWidth(), 193, 291
convertX(), 193
convertY(), 193
coord_trans(), 168
Coordinate systems

in base graphics plots, 51–53, 97–
99

in ggplot2, 166
in grid, 178, 179, 190–192,

see Units
coplot(), 38, 40, 75, 107, 115, 381,

382
Cross-hatching, 62
current.vpTree(), 212
curve(), 45
curveGrob(), 183

Data frames, 28, 130, 154
Data symbols, 67–68, 82, 183, 188,

328
datasets package, 40, 42, 56, 102,

107, 153
dataViewport(), 179
delayGrob(), 293
Dendrograms, 31, 45, 373
density(), 45
Density plots, 128

densityplot(), 128
dev.capture(), 352
dev.control(), 316
dev.copy(), 316
dev.copy2eps(), 316
dev.cur(), 305
dev.list(), 305
dev.new(), 304
dev.next(), 305
dev.off(), 304, 401
dev.prev(), 305
dev.print(), 316
dev.set(), 305
dev.size(), 305
dev2bitmap(), 316
devAskNewPage(), 75, 315
devSVGTips(), 317
Display list

in grid, 232–233, 258–259, 293
in graphics engine, 316

dotchart(), 33, 35, 36
dotplot(), 128
Dotplots, 33, 36, 128
downViewport(), 180, 207, 208, 213,

215, 224
Drawing context, 203

editDetails(), 277–279, 281, 284
editGrob(), 233, 243, 246, 294
element_blank(), 171
element_text(), 171, 172
Ellipsis argument, 115, 140
embedFonts(), 309, 335
Encoding, 341
engine.display.list(), 259
equal.count(), 131
erase.screen(), 81
example(), 26
expression(), 84, 343
Expressions, 343
extrafont package, 332, 336, 337

facet_grid(), 169
facet_wrap(), 169
Facetting, 169,

Index 417

see Multipanel conditioning
feGaussianBlur(), 389, 392
Figure margins, 50
Figure region, 50
Fill patterns, 62
filled.contour(), 38, 93, 107
filterEffect(), 389, 392
font_add_google(), 339
font_import(), 332, 336
fontcm package, 313, 337, 338
Fonts, 63, 199, 328
fonts(), 332
Formulae,

see Mathematical formulae
as data to plot, 28, 84, 130–131

Fourfold displays, 36
fourfoldplot(), 36
frame(), 109
frameGrob(), 257, 258
Frames, 256–258

packing grobs, 257–258
placing grobs, 258

functionGrob(), 188

gdtools package, 332
Generic functions

in base graphics plots, 28, 84
in grid, 290

geom_abline(), 156
geom_bar(), 158, 162
geom_boxplot(), 158
geom_contour(), 158
geom_density(), 158
geom_histogram(), 158
geom_hline(), 172
geom_line(), 152, 158, 163
geom_path(), 158
geom_point(), 152, 155, 158
geom_polygon(), 158
geom_rect(), 158
geom_segment(), 158
geom_smooth(), 158, 163
geom_text(), 156, 158
Geometric context, 203
Geoms, 154

get.gpar(), 197
getGraphicsEvent(), 117
getGrob(), 233
getSVGFonts(), 403
ggplot(), 152, 154, 165
ggplot2 package, 5, 19
Ghostscript, 315, 355
gList(), 239
gpar(), 197, 203, 402
gPath(), 241
Grammar of Graphics, 5, 149
Graphical context, 198, 203, 215
Graphical parameters,

see Graphics state
in base graphics plots, 42, 60–75
in ggplot2, 154–156
in grid, 196–203, 241–242
in lattice, 143–146
specifying, 319–345

Graphical primitives
in base graphics plots, 82–87
in grid, 182–189

graphics package, 19
Graphics devices, 304–305
Graphics engine, 19
Graphics formats, 306, 317
Graphics state, 53–60
Graphics systems, 19

combining, 369
comparison of, 21–22

graphics.off(), 305
gray(), 321
gray.colors(), 323, 324
grconvertX(), 91, 99, 355
grconvertY(), 91, 99, 355
grDevices package, 19, 20
grey(), 321
grid package, 19
grid(), 87
grid.abline(), 188, 189
grid.add(), 233, 259
grid.bezier(), 183, 184
grid.circle(), 183, 246
grid.clip(), 189, 190
grid.clipPath(), 389, 395, 397

418 R Graphics, Third Edition

grid.curve(), 182–184, 186
grid.delay(), 194, 293
grid.display.list(), 233, 259
grid.draw(), 246, 247, 276, 281–283,

288, 295
grid.echo(), 377–383
grid.edit(), 180, 232, 233, 237, 238,

243, 246, 259, 294, 379, 383
grid.export(), 366, 385–388, 401,

406
grid.filter(), 389, 392
grid.force(), 227, 245, 262, 285,

286, 294, 299
grid.frame(), 257
grid.function(), 188, 189
grid.gedit(), 238
grid.get(), 233, 259
grid.gget(), 238
grid.grab(), 239, 247, 260
grid.grabExpr(), 248
grid.gradientFill(), 387, 389, 390,

398, 400
grid.gremove(), 238
grid.grep(), 227, 236, 264
grid.grill(), 188, 189
grid.layout(), 217–221
grid.line.to(), 182, 183, 186, 208,

222, 223
grid.lines(), 182, 183, 185, 186,

223
grid.locator(), 222
grid.ls(), 232, 234, 235, 238, 239,

246, 259, 262, 264, 299
grid.mask(), 389, 396
grid.move.to(), 182, 183, 208
grid.newpage(), 178, 198, 374
grid.null(), 183, 208
grid.pack(), 257
grid.path(), 183, 186, 202
grid.patternFill(), 389, 390
grid.picture(), 356, 357, 362, 366
grid.place(), 258
grid.points(), 183, 188
grid.polygon(), 183, 185, 201, 222,

223

grid.polyline(), 182, 183, 186, 202
grid.raster(), 183, 188, 352–355
grid.record(), 194
grid.rect(), 182, 183, 299
grid.refresh(), 259
grid.remove(), 232, 233, 259
grid.reorder(), 247
grid.revert(), 286
grid.roundrect(), 183
grid.segments(), 183, 185, 186
grid.set(), 233
grid.show.layout(), 299
grid.symbols(), 361, 367
grid.text(), 182, 183, 205, 224, 228,

328, 372
grid.xaxis(), 188, 239, 244
grid.xspline(), 183, 184, 186, 202
grid.yaxis(), 188, 239
gridBase package, 19
gridDebug package, 299
gridFIG(), 373
gridGraphics package, 19
gridOMI(), 373
gridPAR(), 373
gridPLT(), 373, 378
gridSVG package, 19
gridsvg(), 401
gridTree(), 299
grillGrob(), 188
grImport package, 19
grImport2 package, 19
Grob lists, 239
Grob paths, 241
grobBrowser(), 299
grobHeight(), 194, 249, 251, 289
Grobs, 232–238
grobWidth(), 194, 249, 251, 289
grobX(), 194, 208, 252, 253, 264, 289
grobY(), 194, 208, 252, 264, 289
gtable package, 268
gTree(), 275, 282

gTrees, 239

hcl(), 320–322
heat.colors(), 323

Index 419

heightDetails(), 289, 290
help(), 26
Hershey outline fonts, 330, 340
hist(), 33, 62, 115
histogram(), 128, 130
Histograms, 3, 33, 36, 128
hsv(), 320, 321

identify(), 117
image(), 38, 311
image_convert(), 356
image_read(), 352
ImageMagick, 310
Inkscape, 356
Inner region, 50
Interactive graphics

in base graphics plots, 117
in grid, 222

is.finite(), 116
is.na(), 116

Jittering data, 105
JPEG, 311
jpeg package, 352
jpeg(), 306

knitr package, 3

labs(), 172
lapply(), 109
LATEX, 313
lattice package, 4, 19
latticeExtra package, 146
Layers, 152
layout(), 75–79, 81, 106
layout.show(), 77
Layouts

in grid, 217–221
in base graphics plots, 76–79

lcm(), 79
legend(), 62, 74, 92, 99
Legends

in base graphics plots, 92–93
in ggplot2, 156
in lattice, 132

Level plots, 38, 128
levelplot(), 128
Line ends, 325
Line joins, 325
Line style, 325
linearGradient(), 387, 389, 398, 400
Lines, see Graphical primitives
lines(), 28, 58, 82–84, 90, 91, 100,

107, 109, 114
linesGrob(), 183
lineToGrob(), 183
lm(), 28
loadfonts(), 332, 336
Locales, 341
locator(), 117

magick package, 352, 356
makeContent(), 194, 282, 286, 290,

292–294
makeContext(), 286, 287, 290, 292
mapdata package, 5, 12
mapproj package, 5, 12
Maps, 5
maps package, 5, 12
mask(), 389, 396
Mathematical formulae, 343–345
matlines(), 84
matplot(), 28, 38, 84
matpoints(), 84
max(), 192
Missing values

in grid, 221–222
in base graphics plots, 89–90

Mosaic plots, 35
mosaicplot(), 35, 36, 38, 40
moveToGrob(), 183
mtext(), 61, 90–91, 107, 114
Multipanel conditioning, 130–131,

see Facetting

n2mfrow(), 115
na.omit(), 116
nclass.FD(), 115
nclass.scott(), 115
nclass.Sturges(), 115

420 R Graphics, Third Edition

Non-finite values
in grid, 221–222
in base graphics plots, 65, 89–90

Normalized coordinates,
see Coordinate systems

nullGrob(), 183

on.exit(), 116
Outer margins, 50

packGrob(), 258
Painters model, 1, 178
pairs(), 36, 38, 106–108
palette(), 321
pals package, 324
Panel functions

in base graphics plots, 106
in lattice, 137

panel.abline(), 139, 142
panel.arrows(), 142
panel.bwplot(), 142
panel.curve(), 142
panel.grid(), 142
panel.histogram(), 142
panel.lines(), 142, 143
panel.lmline(), 141
panel.loess(), 142
panel.points(), 142, 143, 224
panel.polygon(), 142
panel.rect(), 142
panel.rug(), 142
panel.segments(), 142
panel.smooth(), 107
panel.smoothScatter(), 142
panel.superpose(), 142
panel.text(), 139, 142, 224
panel.violin(), 142
panel.xyplot(), 139–142
par(), 50, 53–76, 97, 116, 144, 373,

378
Parallel coordinate plots, 128
parallelplot(), 128
party package, 5, 14
pathGrob(), 183
Paths, 86, 186, 359

pattern(), 389, 390
PDF, 308
pdf(), 304, 306, 308, 309, 312, 336,

337, 401
pdfFonts(), 308, 334
persp(), 38, 107, 109
pictex(), 306, 313
picture(), 356
picturePaths(), 359
pie(), 33, 62
Pie charts, 3, 33, 168
placeGrob(), 258
plot(), 1, 26–43, 45, 62, 111, 379
Plot region, 50
plot.agnes(), 31
plot.dendrogram(), 45
plot.lm(), 28
plot.new(), 109, 111, 374, 380
plot.window(), 110, 111
plot.xy(), 110, 111
plotViewport(), 179
PNG, 311
png package, 352
png(), 306, 311, 312, 337
points(), 28, 62, 82, 90
pointsGrob(), 183
polygon(), 62, 82, 86, 89
polygonGrob(), 183
Polygons, see Graphical primitives
polylineGrob(), 183
polypath(), 82, 86
popClipPath(), 397, 398
popContext(), 397
popMask(), 397
popViewport(), 205, 207, 397
PostScript, 309
postscript(), 306, 309, 310
postscriptFonts(), 334
PostScriptTrace(), 355
print(), 226, 248, 374
pushClipPath(), 397, 398
pushMask(), 397
pushViewport(), 204, 210

qplot(), 150–152, 176

Index 421

qq(), 128
qqmath(), 128
qqnorm(), 43
qqplot(), 43
quantmod package, 5, 13
Quartz, 311
quartz(), 306
quartzFont(), 333
quartzFonts(), 333

radialGradient(), 389
rainbow(), 323, 324
Raster graphics, 311, 352
Raster images, see Bitmaps
rasterGrob(), 183
rasterImage(), 82, 87, 352, 355
rbind(), 76
RColorBrewer package, 324
readJPEG(), 352
readPicture(), 355, 356, 359, 362
readPNG(), 352
readTIFF(), 352
recordGraphics(), 99, 376
recordPlot(), 316
rect(), 61, 62, 82, 86, 98, 114
Rectangles, see Graphical primitives
rectGrob(), 183
Recycling rule, 84
registerClipPath(), 398
registerGradientFill(), 398, 400
removeGrob(), 233
replayPlot(), 316
rgb(), 320, 321
rgb2hsv(), 320
rgl package, 109
RGraphics package, xvi
rmarkdown package, 3
roundrectGrob(), 183
rsvg package, 361
rsvg_svg(), 361, 364
RSVGTipsDevice package, 317
rug(), 88

scale_color_manual(), 160
scale_fill_manual(), 160, 166

scale_linetype(), 160
scale_shape(), 160
scale_shape_manual(), 164
scale_size(), 160
scale_x_continuous(), 159, 160, 166
scale_x_date(), 160
scale_x_discrete(), 160
scale_y_continuous(), 159
Scales, 156
Scatterplot matrix, 38, 128
Scatterplots, 3, 33, 36, 38, 128, 155
screen(), 81
seekViewport(), 208
segments(), 82, 84, 86, 98, 105, 114
segmentsGrob(), 183
setChildren(), 282
setEPS(), 310
setGraphicsEventHandlers(), 117
setGrob(), 233
setSVGFonts(), 403
shingle(), 131
Shingles, 131
show.settings(), 144
showtext package, 331, 339
showtext_begin(), 339
showtext_end(), 339
simpleTheme(), 146
Small multiples, 38, 169
smoothScatter(), 35, 36
Spine plots, 35, 166
spineplot(), 35, 36
Spinograms, 35
Splines, see X-Splines
split.screen(), 79, 81
splom(), 128
stars(), 38
stat_bin(), 164
stat_boxplot(), 164
stat_contour(), 164
stat_count(), 163, 164
stat_identity(), 164
stat_smooth(), 163, 164
stem(), 33
Stem-and-leaf plots, 33
strheight(), 97

422 R Graphics, Third Edition

stringHeight(), 194
stringWidth(), 194
stripchart(), 33, 35, 36
Stripcharts, 33, 36, 128
stripplot(), 128
strwidth(), 97, 114
substitute(), 343
sunflowerplot(), 35, 36
SVG, 310
svg(), 306, 310, 336, 339, 386
Sweave package, xvii
symbols(), 38, 101, 102
sys_fonts(), 332

terrain.colors(), 323
Text, see graphical primitives
text(), 65, 82–84, 88–90, 98, 107,

328
textGrob(), 183, 246
theme(), 171
theme_bw(), 171
Themes

in ggplot2, 169
in lattice, 146

TIFF, 311
tiff package, 352
tiff(), 306
tikz(), 317, 338
tikzDevice package, 317, 338
title(), 90
topo.colors(), 323
trans3d(), 107, 109
Trellis graphics, 4, 123
trellis.focus(), 143, 224
trellis.panelArgs(), 143
trellis.par.get(), 144
trellis.unfocus(), 143
Type1Font(), 334

unit(), 190–196
unit.c(), 192
Units, 190–192, 218–219
upViewport(), 180, 207, 208, 215,

224, 272
User coordinates, 51,

see Coordinate systems

Vector graphics, 307, 355
viewport(), 203–221
Viewport lists, 210
Viewport paths, 213
Viewport stacks, 210
Viewport trees, 212–213
Viewports, 203–216

navigating between, 204–208
vpList(), 210
vpPath(), 213
vpStack(), 210
vpTree(), 212

widthDetails(), 289, 290
win.metafile(), 306, 310
windows(), 306
windowsFont(), 331
windowsFonts(), 331
wireframe(), 128, 130
WMF, 310
Writing graphical functions

in base graphics plots, 114–117
in grid, 269–272

X-splines, 86, 184
X11(), 306
x11(), 306
X11Font(), 333
X11Fonts(), 333
xaxisGrob(), 188
xDetails(), 289, 290
xfig, 306
xfig(), 306
xinch(), 99
XML package, 401
XML, 355
xspline(), 82, 86
xsplineGrob(), 183
xy.coords(), 115
xyinch(), 99
xyplot(), 128, 130, 139–141, 150,

374, 380
xyz.coords(), 115

Index 423

yaxisGrob(), 188
yDetails(), 289, 290
yinch(), 99

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	1: An Introduction to R Graphics
	1.1 R graphics examples
	1.1.1 Standard plots
	1.1.2 Trellis plots
	1.1.3 The grammar of graphics
	1.1.4 Specialized plots
	1.1.5 General graphical scenes

	1.2 The organization of R graphics
	1.2.1 Base graphics versus grid graphics

	I: BASE GRAPHICS
	2: Simple Usage of Base Graphics
	2.1 The base graphics model
	2.2 The plot() function
	2.3 Plots of a single variable
	2.4 Plots of two variables
	2.5 Plots of many variables
	2.6 Arguments to graphics functions
	2.6.1 Standard arguments to graphics functions

	2.7 Specialized plots

	3: Customizing Base Graphics
	3.1 The base graphics model in more detail
	3.1.1 Plotting regions
	3.1.2 The base graphics state

	3.2 Controlling the appearance of plots
	3.2.1 Colors
	3.2.2 Lines
	3.2.3 Text
	3.2.4 Data symbols
	3.2.5 Axes
	3.2.6 Plotting regions
	3.2.7 Clipping
	3.2.8 Moving to a new plot

	3.3 Arranging multiple plots
	3.3.1 Using the base graphics state
	3.3.2 Layouts
	3.3.3 The split-screen approach

	3.4 Annotating plots
	3.4.1 Annotating the plot region
	3.4.2 Annotating the margins
	3.4.3 Legends
	3.4.4 Axes
	3.4.5 Coordinate systems
	3.4.6 Special cases

	3.5 Creating new plots
	3.5.1 A simple plot from scratch
	3.5.2 A more complex plot from scratch
	3.5.3 Writing base graphics functions

	3.6 Interactive graphics

	II: GRID GRAPHICS
	4: Trellis Graphics: The lattice Package
	4.1 The lattice graphics model
	4.1.1 Why another graphics system?

	4.2 lattice plot types
	4.3 The formula argument and multipanel conditioning
	4.4 The group argument and legends
	4.5 The layout argument and arranging plots
	4.6 The scales argument and labeling axes
	4.7 The panel argument and annotating plots
	4.7.1 Adding output to a lattice plot

	4.8 par.settings and graphical parameters

	5: The Grammar of Graphics: The ggplot2 Package
	5.1 Quick plots
	5.2 The ggplot2 graphics model
	5.2.1 Why another graphics system?

	5.3 Data
	5.4 Geoms and aesthetics
	5.5 Scales
	5.6 Statistical transformations
	5.7 The group aesthetic
	5.8 Position adjustments
	5.9 Coordinate transformations
	5.10 Facets
	5.11 Themes
	5.12 Annotating
	5.13 Extending ggplot2

	6: The grid Graphics Model
	6.1 A brief overview of grid graphics
	6.1.1 A simple example

	6.2 Graphical primitives
	6.2.1 Graphical utilities
	6.2.2 Standard arguments
	6.2.3 Clipping

	6.3 Coordinate systems
	6.3.1 Conversion functions
	6.3.2 Complex units

	6.4 Controlling the appearance of output
	6.4.1 Specifying graphical parameter settings
	6.4.2 Vectorized graphical parameter settings

	6.5 Viewports
	6.5.1 Pushing, popping, and navigating between viewports
	6.5.2 Clipping to viewports
	6.5.3 Viewport lists, stacks, and trees
	6.5.4 Viewports as arguments to graphical primitives
	6.5.5 Graphical parameter settings in viewports
	6.5.6 Layouts

	6.6 Missing values and non-finite values
	6.7 Interactive graphics
	6.8 Customizing lattice plots
	6.8.1 Adding grid output to lattice output
	6.8.2 Adding lattice output to grid output

	6.9 Customizing ggplot2 output
	6.9.1 Adding grid output to ggplot2 output
	6.9.2 Adding ggplot2 output to grid output

	7: The grid Graphics Object Model
	7.1 Working with graphical output
	7.2 Listing graphical objects
	7.3 Selecting graphical objects
	7.4 Grob lists, trees, and paths
	7.4.1 Graphical parameter settings in gTrees

	7.5 Searching for grobs
	7.6 Editing graphical context
	7.7 Forcing graphical objects
	7.8 Working with graphical objects off-screen
	7.9 Reordering graphical objects
	7.10 Capturing output
	7.11 Querying grobs
	7.11.1 Calculating the sizes of grobs
	7.11.2 Calculating the positions of grobs

	7.12 Placing and packing grobs in frames
	7.12.1 Placing and packing off-screen

	7.13 Display lists
	7.14 Working with lattice grobs
	7.15 Working with ggplot2 grobs

	8: Developing New Graphical Functions and Objects
	8.1 An example
	8.2 Graphical functions
	8.2.1 Modularity
	8.2.2 Embeddable output
	8.2.3 Editable output
	8.2.4 Annotatable output

	8.3 Graphical objects
	8.3.1 Defining a static grob
	8.3.2 Editable grobs
	8.3.3 Defining a static grob with drawing context
	8.3.4 Defining a dynamic grob
	8.3.5 Forcing grobs
	8.3.6 Reverting grobs
	8.3.7 Defining a dynamic grob with drawing context
	8.3.8 Querying graphical objects
	8.3.9 Summary of graphical object methods
	8.3.10 Calculations during drawing
	8.3.11 Avoiding argument explosion

	8.4 Mixing graphical functions and graphical objects
	8.5 Debugging grid

	III: THE GRAPHICS ENGINE
	9: Graphics Formats
	9.1 Graphics devices
	9.2 Graphical output formats
	9.2.1 Vector formats
	9.2.2 Raster formats
	9.2.3 R Studio

	9.3 Including R graphics in other documents
	9.3.1 LATEX
	9.3.2 "Productivity" software
	9.3.3 Web pages

	9.4 Device-specific features
	9.5 Multiple pages of output
	9.6 Display lists
	9.7 Extension packages

	10: Graphical Parameters
	10.1 Colors
	10.1.1 Semitransparent colors
	10.1.2 Converting colors
	10.1.3 Color sets
	10.1.4 Device dependency of color specifications

	10.2 Line styles
	10.2.1 Line widths
	10.2.2 Line types
	10.2.3 Line ends and joins

	10.3 Data symbols
	10.4 Fonts
	10.4.1 Font family
	10.4.2 Font face
	10.4.3 Multi-line text
	10.4.4 Locales
	10.4.5 Escape sequences
	10.4.6 Anti-aliasing

	10.5 Mathematical formulae

	IV: INTEGRATING GRAPHICS SYSTEMS
	11: Importing Graphics
	11.1 The Moon and the tides
	11.2 Importing raster graphics
	11.3 Importing vector graphics
	11.3.1 The grImport package
	11.3.2 The grImport2 package

	12: Combining Graphics Systems
	12.1 The gridBase package
	12.1.1 Annotating base graphics using grid
	12.1.2 Base graphics in grid viewports
	12.1.3 Problems and limitations of gridBase

	12.2 The gridGraphics package
	12.2.1 Editing base graphics using grid
	12.2.2 Base graphics in grid viewports
	12.2.3 Problems and limitations of gridGraphics

	13: Advanced Graphics
	13.1 Exporting SVG
	13.2 SVG advanced features
	13.2.1 Gradient fills
	13.2.2 Pattern fills
	13.2.3 Filters
	13.2.4 Clipping paths
	13.2.5 Masks

	13.3 SVG drawing context
	13.4 SVG definitions
	13.5 Drawing off screen
	13.6 SVG fonts
	13.7 Exporting base graphics
	13.8 Exporting to other formats
	13.9 Exporting imported images

	Bibliography
	Index

