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Praise for the First Edition
This book starts where the graphics sections of other books on using S for data 
analysis typically end: high-level plots and their default settings. If everything 
you want to do to visualize your data can be done using the standard settings, 
then this book is not for you. But if you ever wanted to go beyond that line, from 
changing bits and pieces of a graph to writing your own visualization functions, 
then R Graphics has all you need to know (and much more). Starting with the 
basic plotting commands most users are familiar with from introductory texts, the 
book gives a comprehensive overview of the current state and design principles of 
visualizing data with R.
—Friedrich Leisch, Institute for Statistics, Technical University of Vienna, Austria

Extensively updated to reflect the evolution of statistics and computing, the second 
edition of the bestselling R Graphics comes complete with new packages and 
new examples. Paul Murrell, widely known as the leading expert on R graphics, 
has developed an in-depth resource that helps both neophyte and seasoned users 
master the intricacies of R graphics.

New in the Second Edition
• Updated information on the core graphics engine, the traditional graphics 

system, the grid graphics system, and the lattice package
• A new chapter on the ggplot2 package
• New chapters on applications and extensions of R graphics, including 

geographic maps, dynamic and interactive graphics, and node-and-edge 
graphs

Organized into five parts, R Graphics, Second Edition covers both “traditional” 
and newer, R-specific graphics systems. The book reviews the graphics facilities 
of the R language and describes R’s powerful grid graphics system. The book 
then covers the graphics engine, which represents a common set of fundamental 
graphics facilities, and provides a series of brief overviews of some of the major 
areas of application for R graphics, and some of the major extensions of R graphics.
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now widely used in academic research, education, and industry. It is constantly growing, with 
new versions of the core software released regularly and more than 2,600 packages available. 
It is difficult for the documentation to keep pace with the expansion of the software, and this 
vital book series provides a forum for the publication of books covering many aspects of the 
development and application of R.

The scope of the series is wide, covering three main threads:
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Preface

R is a popular open source software tool for statistical analysis and graphics.
This book focuses on the very powerful graphics facilities that R provides for
the production of publication-quality diagrams and plots.

What this book is about

This book describes the graphics system in R. The first chapter provides an
overview of the R graphics facilities. There are several figures that demon-
strate the variety and complexity of plots and diagrams that can be produced
using R and there is a description of the overall organization of the R graphics
facilities, so that the user has some idea of where to find a function for a
particular purpose.

The most important feature of the R graphics setup is the existence of two
distinct graphics systems within R: the traditional graphics system and the
grid graphics system. Section 1.2.2 offers some advice on which system to
use.

Part I of this book is concerned with the traditional graphics system, which
implements many of the “traditional” graphics facilities of the S language
(originally developed at Bell Laboratories and available in a commercial im-
plementation as S-PLUS). The majority of R graphics functions are based upon
this system. The chapters in this part of the book describe how to work with
the traditional graphics functions, with a particular emphasis on how to mod-
ify or add output to a plot to produce exactly the right final output. Chapter
2 describes the functions that are available to produce complete plots and
Chapter 3 focuses on how to customize the details of plots, combine multiple
plots, and add further output to plots.

Part II describes the grid graphics system, which is unique to R and is much
more powerful than the traditional system. The graphics facilities that are
based on the grid graphics system are further split into three major graphics
packages.

Deepayan Sarkar’s lattice package provides a complete and coherent set of
graphics functions for producing plots, based on Bill Cleveland’s Trellis graph-
ics paradigm. This is described in Chapter 4.

xxi
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Hadley Wickhams’ ggplot2 package provides another complete and coher-
ent set of graphics functions for producing plots, this time based on Leland
Wilkinson’s Grammar of Graphics paradigm. This is described in Chapter 5.

Finally, there is the grid package itself, which provides a low-level, general-
purpose graphics system for producing a wide variety of images, including
plots. Both lattice and ggplot2 use grid to draw plots, but both can be
used without directly encountering grid. The grid package can be used on its
own, or as a low-level way to work with plots produced by lattice or ggplot2.
The remaining chapters in Part II describe how the grid system can be used
to produce graphical scenes starting from a blank page. In particular, there
is a discussion of how to use grid to develop new graphical functions that are
easy for other people to use and build on.

Underlying both traditional and grid graphics systems is a graphics engine,
which represents a common set of fundamental graphics facilities, such as
color management and support for different graphical output formats. These
facilities are described in Part III of this book.

Part IV provides a series of brief overviews of some of the major areas of
application for R graphics and some of the major extensions of R graphics:

� Chapter 11 describes some packages that provide additional low-level
graphics facilities, such as unusual shapes or fancy fill patterns.

� Chapter 12 describes some packages that provide special types of plots,
such as Venn diagrams and Chernoff faces.

� Chapter 13 describes functions for drawing plots of categorical data.
� Chapter 14 describes packages for drawing maps.
� Chapter 15 describes packages for drawing node-and-edge graphs.
� Chapter 16 describes functions for drawing three-dimensional plots.
� Chapter 17 describes packages that provide dynamic and interactive

plots.
� Chapter 18 describes packages for reading external graphics files into R

and including them in plots.
� Chapter 19 describes functions that allow traditional graphics and grid

graphics to be used together.

Changes in the second edition

Six years have elapsed since R Graphics was first published, which is a very
long time in the world of computing.

Much of the graphics system in R that was described in the first edition
of this book still exists and is still being heavily used, but there have been
numerous changes in some of the details. One purpose of this second edition
is to provide updated information on the core graphics engine, the traditional
graphics system, the grid graphics system, and the lattice package. The
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material has been slightly rearranged so that the fine details of the graphics
engine, which are common to all graphics systems, are collected together in
the new Part III.

The largest changes have occurred in the number and variety of graphics pack-
ages that extend the graphics capabilities of R. One particularly important
addition is Hadley Wickham’s ggplot2 package, which provides another com-
plete graphics system, based on Leland Wilkinson’s Grammar of Graphics
ideas. This package is afforded an entire new chapter of its own, alongside the
existing chapter on lattice.

The entirely new Part IV has been added to provide an overview of the
plethora of graphics extension packages. These chapters cover such topics
as geographic maps, dynamic and interactive graphics, and node-and-edge
graphs.

The one major deletion from the first edition involves the removal of Appendix
A, which used to provide a brief introduction to the R language itself. There
are now many books that introduce R and it is now assumed that the reader
of this book has already gained at least a basic familiarity with the R language
and with R data structures.

What this book is still not about

This book does not contain discussions about which sort of plot is most appro-
priate for a particular sort of data, nor does it contain guidelines for correct
graphical presentation. In fact, instructions are provided for producing some
types of plots and graphical elements that are generally disapproved of, such
as pie charts and cross-hatched fill patterns.

The information in this book is meant to be used to produce a plot once the
format of the plot has been decided upon and to experiment with different
ways of presenting a set of data. No plot types are deliberately excluded,
partly because no plot type is all bad (e.g., a pie chart can be a very effective
way to represent a simple proportion) and partly because some graphical
elements, such as cross-hatching, might be required by a particular publisher.

The flexibility of R graphics encourages the user not to be constrained to
thinking in terms of just the traditional types of plots. The aim of this book
is to provide lots of useful tools and to describe how to use them. There are
many other sources of information on graphical guidelines and recommended
plot types, some of which are mentioned below.

Most introductory statistics text books will contain basic guidelines for se-
lecting an appropriate type of plot. Examples of books that deal specifically
with the construction of effective plots and are aimed at a general audience
are Creating More Effective Graphs by Naomi Robbins and Edward Tufte’s
Visual Display of Quantitative Information and Envisioning Information. For
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more technical discussions of these issues, see Graphics For Statistics and Data
Analysis With R by Kevin Keene, Visualizing Data and Elements of Graphing
Data by Bill Cleveland, and The Grammar of Graphics by Leland Wilkinson.

For ideas on appropriate graphical displays for particular types of analysis or
particular types of data, some starting points are Data Analysis and Graphics
Using R by John Maindonald and John Braun, An R and S-Plus Companion
to Applied Regression by John Fox, Statistical Analysis and Data Display by
Richard Heiberger and Burt Holland, and Visualizing Categorical Data by
Michael Friendly.

This book is also not a complete reference to the R system. There are many
freely available documents that provide both introductory and in-depth ex-
planations of the R system. The best place to start is the “Documentation”
section on the home page of the R project web site (see “On the web” on page
xxvi). Two examples of introductory texts are Introductory Statistics with R
by Peter Dalgaard and Using R for Introductory Statistics by John Verzani.

While a significant amount of new material has been added in this edition,
this volume does not come close to providing a comprehensive description of
all of the graphics facilities in the R ecosystem. It can only be said that this
edition is less uncomprehensive than the first.

In particular, this edition is still missing a description of plots for specific
types of data analysis. It could be said that the plotting functions in this
book describe graphics that are driven by data, but not graphics that are
driven by statistical models.

This means that some quite large and well-known packages with significant
graphical content have been omitted, including Frank Harrell’s Design pack-
age, John Fox’s car and effects packages, Heiberger and Holland’s HH pack-
age, and a whole raft of packages from the Bioconductor project. These
omissions are a reflection of the time, space, and intellectual constraints of
the author of this book and bear no reflection on the packages themselves.

Who should read this book

This book should be of interest to a variety of R users. For people who are
new to R, this book provides an overview of the graphics facilities, which is
useful for understanding what to expect from R’s graphics functions and how
to modify or add to the output they produce. For this purpose, Chapter 1 is
the place to start. In particular, the discussion of which graphics system to
use in Section 1.2.2 will be of interest. Chapters 2, 4, and 5 provide relatively
brief introductions to the major packages that produce standard plots, so it
should be possible to get started fairly quickly using one of those chapters.

For intermediate-level R users, this book provides all of the information neces-
sary to perform sophisticated customizations of plots produced in R. As with
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many software applications, it is possible to work with R for years and remain
unaware of important and useful features. This book will be useful in making
users aware of the full scope of R graphics, and in providing a description of
the correct model for working with R graphics. Chapters 3, 6, and 7 contain
a lot of this detailed information about how R graphics works.

For readers who are familiar with R, but wish to use R to produce specific
sorts of graphics, there may be a chapter in Part IV that provides relevant
information to get started.

For advanced R users, this book contains vital information for producing co-
herent, reusable, and extensible graphics functions. Advanced users should
pay particular attention to Chapters 6, 7, and 8.

Conventions used in this book

This book describes a large number of R functions and there are many code
examples. Samples of code that could be entered interactively at the R com-
mand line are formatted as follows:

> 1:10

where the > denotes the R command-line prompt and everything else is what
the user should enter. When an expression is longer than a single line it will
look like the following, with the additional lines indented appropriately:

> plot(1:10, 1:10, col="blue", lty="dashed",
axes=FALSE, type="l")

Often, the functions described in this book are used for the side effect of
producing graphical output, so the result of running a function is represented
by a figure. In cases where the result of a function is a value that we might
be interested in, the result will be shown below the code that produced it and
will be formatted as follows:

[1] 1 2 3 4 5 6 7 8 9 10

In some places, an entirely new R function is defined. Such code would nor-
mally be entered into a script file and loaded into R in one step (rather than
being entered at the command line), so the code for new R functions will be
presented in a figure and formatted as follows:

1 myfun <- function(x, y) {
2 plot(x ,y)
3 }
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with line numbers provided for easy reference to particular parts of the code
from the main text.

When referring to a function within the main text, it will be formatted in
a typewriter font and will have parentheses after the function name, e.g.,
plot().

When referring to the arguments to a function or the values specified for the
arguments, they will also be formatted in a typewriter font, but they will
not have any parentheses at the end, e.g., x, y, or col="red".

When referring to an S3 class, statements will be of the form: “the
"classname" class,” using a typewriter font with the class name in double
quotes. However, when referring to an object that is an instance of a class,
statements will be of the form: “the classname object,” using a typewriter
font, but without the double quotes around the class name.

All package names are in bold and names of software and computer languages
and formats are in Sans Serif.

On the web

There is a web site with errata and links to pages of PNG versions of all figures
from the book and the R code used to produce them:

http://www.stat.auckland.ac.nz/~paul/RG2e/

There is also an RGraphics package containing functions to produce the
figures in this book and all functions, classes, and methods defined in the
book.

The RGraphics package and most of the packages mentioned in this book
are available from the Comprehensive R Archive Network (CRAN):

http://cran.r-project.org/

Packages that are not on CRAN will be found on the Bioconductor web site,
or the Omegahat Project web site, or, in rare cases, on the R-Forge web site:

http://www.bioconductor.org/
http://www.omegahat.org/
http://r-forge.r-project.org/

Version information

Software development is an ongoing process and this book can only provide
a snapshot of R’s graphics facilities. The descriptions and code samples in
this book are accurate for R version 2.13.0, but future changes are inevitable.
Much of the content of Parts I, II, and III is also accurate for earlier versions



xxvii

of R, but specific areas of incompatibility are not indicated in the text.

A new “minor” version of R is released approximately every six months. The
most up-to-date information on the most recent versions of R and grid are
available in the on-line help pages and at the home page for the R Project:

http://www.R-project.org/
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An Introduction to R Graphics

Chapter preview

This chapter provides the most basic information to get started pro-
ducing plots in R. First of all, there is a three-line code example that
demonstrates the fundamental steps involved in producing a plot. This
is followed by a series of figures to demonstrate the range of images
that R can produce. There is also a section on the organization of R
graphics giving information on where to look for a particular function.

The following code provides a simple example of how to produce a plot using
R (see Figure 1.1).

> plot(pressure)
> text(150, 600,

"Pressure (mm Hg)\nversus\nTemperature (Celsius)")

The expression plot(pressure) produces a scatterplot of pressure versus
temperature, including axes, labels, and a bounding rectangle. The call to
the text() function adds the label at the data location (150, 600) within
the plot.

This example is basic R graphics in a nutshell. In order to produce graphical
output, the user calls a series of graphics functions, each of which produces
either a complete plot or adds some output to an existing plot. R graphics
follows a “painters model,” which means that graphics output occurs in steps,
with later output drawn on top of any previous output.

1
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Figure 1.1
A simple scatterplot of vapor pressure of mercury as a function of temperature.
The plot is produced from two simple R expressions: one expression to draw the
basic plot, consisting of axes, data symbols, and bounding rectangle, and another
expression to add the text label within the plot.
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There are very many graphical functions provided by R and the extension
packages for R so, before describing individual functions, Section 1.1 demon-
strates the variety of results that can be achieved. This should provide some
idea of what users can expect to be able to achieve with R graphics.

Section 1.2 gives an overview of how the graphics functions in R are orga-
nized. This should provide users with some basic ideas of where to look for a
function to do a specific task. By the end of this chapter, the reader will be
in a position to start understanding in more detail the core R functions that
produce graphical output.

1.1 R graphics examples

This section provides an introduction to R graphics by way of a series of
examples. None of the code used to produce these images is shown, but it
is available from the web site for this book. The aim for now is simply to
provide an overall impression of the range of graphical images that can be
produced using R. The figures are described over the next few pages and the
images themselves are all collected together on pages 7 to 17.

1.1.1 Standard plots

R provides the usual range of standard statistical plots, including scatterplots,
boxplots, histograms, barplots, pie charts, and basic 3D plots. Figure 1.2
shows some examples.

In R, these basic plot types can be produced by a single function call (e.g.,
pie(pie.sales) will produce a pie chart), but plots can also be considered
merely as starting points for producing more complex images. For example,
in the top-left scatterplot in Figure 1.2, a text label has been added within
the body of the plot (in this case to show a subject identification number)
and a secondary y-axis has been added on the right-hand side of the plot.
Similarly, in the histogram, lines have been added to show a theoretical normal
distribution for comparison with the observed data. In the barplot, labels have
been added to the elements of the bars to quantify the contribution of each
element to the total bar and, in the boxplot, a legend has been added to
distinguish between the two data sets that have been plotted.

This ability to add several graphical elements together to create the final
result is a fundamental feature of R graphics. The flexibility that this allows
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is demonstrated in Figure 1.3, which illustrates the estimation of the original
number of vessels based on broken fragments gathered at an archaeological
site: a measure of “completeness” is obtained from the fragments at the site;
a theoretical relationship is used to produce an estimated range of “sampling
fraction” from the observed completeness; and another theoretical relationship
dictates the original number of vessels from a sampling fraction. This plot is
based on a simple scatterplot, but requires the addition of many extra lines,
polygons, and pieces of text, and the use of multiple overlapping coordinate
systems to produce the final result.

R graphics allows fine control of very low-level aspects of a plot and these
features can be used to produce some dramatic effects (at the risk of detracting
from the message in the data). Figure 1.4 demonstrates one such example,
where a simple barplot of tiger population levels has been embellished with
an image of the head of a tiger.

For more information on the R functions that produce these standard plots,
see Chapter 2. Chapter 3 describes the various ways that further output can
be added to a plot.

1.1.2 Trellis plots

In addition to the traditional statistical plots, R provides an implementation
of Trellis plots via the package lattice by Deepayan Sarkar. Trellis plots
embody a number of design principles proposed by Bill Cleveland that are
aimed at ensuring accurate and faithful communication of information via
statistical plots. These principles are evident in a number of new plot types
in Trellis and in the default choice of colors, symbol shapes, and line styles
provided by Trellis plots. Furthermore, Trellis plots provide a feature known
as multipanel conditioning, which creates multiple plots by splitting the data
being plotted according to the levels of other variables.

Figure 1.5 shows an example of a Trellis plot. The data are yields of several
different varieties of barley at six sites, over two years. The plot consists of
six panels, one for each site. Each panel consists of a dotplot showing yield
for each variety with different symbols used to distinguish different years, and
a strip showing the name of the site.

For more information on the Trellis system and how to produce Trellis plots
using the lattice package, see Chapter 4.
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1.1.3 The Grammar of Graphics

Leland Wilkinson’s Grammar of Graphics provides another completely differ-
ent paradigm for producing statistical plots and this approach to plotting has
been implemented for R by Hadley Wickham’s ggplot2 package.

One advantage of this package is that it makes it possible to create a very
wide variety of plots from a relatively small set of fundamental components.
The ggplot2 package also has a feature called facetting, which is similar to
lattice’s multipanel plots.

Figure 1.6 shows an example of a plot that has been produced using ggplot2.
For more information on the ggplot2 package, see Chapter 5.

1.1.4 Specialized plots

As well as providing a wide variety of functions that produce complete plots,
R provides a set of functions for producing graphical output primitives, such
as lines, text, rectangles, and polygons. This makes it possible for users to
write their own functions to create plots that occur in more specialized ar-
eas. There are many examples of special-purpose plots in extension packages
for R. For example, Figure 1.7 shows a map of New Zealand produced using
R and the extension packages maps, mapdata, and mapproj. Figure 1.8
shows another example: a financial chart produced by the quantmod pack-
age. The chapters in Part IV describe many different packages and functions
that produce different sorts of plots. Chapter 14 provides more information
on drawing maps with R.

In some cases, researchers are inspired to produce a totally new type of plot
for their data. R is not only a good platform for experimenting with novel
plots, but it is also a good way to deliver new plotting techniques to other
researchers. Figure 1.9 shows a novel display for decision trees, visualizing the
distribution of the dependent variable in each terminal node (produced using
the party package).

For more information on how to generate a plot starting from an empty page
with traditional graphics functions, see Chapter 3. The grid package provides
even more power and flexibility for producing customized graphical output
(see Chapters 6 and 7), especially for the purpose of producing functions for
others to use (see Chapter 8).
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1.1.5 General graphical scenes

The generality and flexibility of R graphics make it possible to produce graphi-
cal images that go beyond what is normally considered to be statistical graph-
ics, although the information presented can usually be thought of as data of
some kind. A good mainstream example is the ability to embed tabular ar-
rangements of text as graphical elements within a plot as in Figure 1.10. This
is a standard way of presenting the results of a meta-analysis.

R has also been used to produce figures that help to visualize important con-
cepts or teaching points. Figure 1.11 shows two examples that provide a
geometric representation of extensions to F-tests (provided by Arden Miller).
A more unusual example of a general diagram is provided by the musical score
in Figure 1.12 (provided by Steven Miller). R graphics can even be used to
produce infographics like Figure 1.13. These examples tend to require more
effort to achieve the final result as they cannot be produced from a single
function call.

These examples present only a tiny taste of what R graphics (and clever and
enthusiastic users) can do. They highlight the usefulness of R graphics not
only for producing what are considered to be standard plot types, for little
effort, but also for providing tools to produce final images that are well beyond
the standard plot types, including going beyond the boundaries of what is
normally considered statistical graphics.

The R Graph Gallery web site provides a much more comprehensive range of
graphics examples and the interested reader might also like to browse the R
Graphical Manual web site. The R Wiki also has a “Tips & Tricks” section
on graphics, with lots of examples.∗

∗http://addictedtor.free.fr/graphiques/; http://rgm2.lab.nig.ac.jp/RGM2/
http://rwiki.sciviews.org/.
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Figure 1.2
Some standard plots produced using R: (from left-to-right and top-to-bottom) a
scatterplot, a histogram, a barplot, a boxplot, a 3D surface, and a pie chart. In the
first four cases, the basic plot type has been augmented by adding additional labels,
lines, and axes.
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Figure 1.3
A customized scatterplot produced using R. This is created by starting with a simple
scatterplot and augmenting it by adding an additional y-axis and several additional
sets of lines, polygons, and text labels.
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Figure 1.4
A dramatized barplot produced using R. This is created by starting with a simple
barplot and augmenting it by adding a background image in light gray, with bolder
sections of the image drawn in each bar.
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Figure 1.5
A Trellis dotplot produced using the lattice package. The relationship between the
yield of barley and species of barley is presented, with a separate dotplot for different
experimental sites and different plotting symbols for data gathered in different years.
This is a small modification of Figure 1.1 from Bill Cleveland’s Visualizing Data
(reproduced with permission from Hobart Press).
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Figure 1.6
A plot produced using ggplot2. The relationship between miles per gallon (on the
highway) and engine displacement (in liters). The data are divided into four groups
based on the number of cylinders in the engine and different plotting symbols are
used for each group and a separate linear model fit is shown for each group.
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Auckland  

Figure 1.7
A map of New Zealand produced using the maps package, the mapdata package,
and the mapproj package. The map (of New Zealand) is drawn as a series of
polygons, and then text, an arrow, and a data point have been added to indicate the
location of Auckland, the birthplace of R. A separate world map has been drawn in
the bottom-right corner, with a circle to help people locate New Zealand.
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Figure 1.8
A financial chart produced with the chartSeries() function from the quantmod
package.
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Figure 1.9
A novel decision tree plot, visualizing the distribution of the dependent variable in
each terminal node. Produced using the party package.
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A table-like plot produced using R. This is a typical presentation of the results from
a meta-analysis.
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Figure 1.11
Didactic diagrams produced using R and functions provided by Arden Miller. The
figures show a geometric representation of extensions to F-tests.
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Figure 1.12
A music score produced using R (code by Steven Miller).

Figure 1.13
An infographic showing the proportion of aid money unaccounted for in the
reconstruction of Iraq. This image is a remix of a blog post:
http://www.good.is/post/infographic-where-did-the-money-to-rebuild-

iraq-go/. The background image is from Adam Henning’s flickr photostream:
http://www.flickr.com/photos/adamhenning/66822173/.
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1.2 The organization of R graphics

This section briefly describes how the functions in the R graphics universe
are organized so that the user knows where to start looking for a particular
function.

At the heart of the graphics facilities in R lies the package grDevices, which
will be referred to as the graphics engine. This provides fundamental infra-
stucture for graphics in R, such as selecting colors and fonts and selecting a
graphics output format. Although almost all graphics applications in R make
use of this package, a lot can be achieved with just basic knowledge, so a
detailed description of the functions in this package is delayed until Part III
of this book.

Two packages build directly on top of the graphics engine: the graphics
package and the grid package. These represent two largely incompatible
graphics systems and they divide the bulk of graphics functionality in R into
two separate worlds.

The graphics package, which will be referred to as the traditional graphics
system, provides a complete set of functions for creating a wide variety of plots
plus functions for customizing those plots in very fine detail. It is described
in Part I of this book.

The grid package provides a separate set of basic graphics tools. It does not
provide functions for drawing complete plots, so it is not often used directly
to produce statistical plots. It is more common to use functions from one
of the graphics packages that are built on top of grid, especially either the
lattice package or the ggplot2 package. These three packages, which make
up the majority of the grid graphics world in R, are described in Part II of
this book.

Many other graphics packages are built on top of either the graphics package
or the grid package. For example, the maps package provides functions for
drawing maps in the traditional graphics world, and the pixmap package pro-
vides functions for including external raster images, particularly within plots
produced by the graphics package, while the grImport package provides
functions for including external vector images, particularly within pictures
that have been produced within the grid world. Only a small selection of
these graphics packages is shown in Figure 1.14. Part IV of this book pro-
vides an introduction to a broader selection of extension packages.

Several graphics package exist largely independently of the main graphics
facilities in R. These provide interfaces between R and third-party graphics
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Figure 1.14
The structure of the R graphics system. The packages with darker gray backgrounds
form the core of the graphics system. The graphics package is described in Part I,
grid, lattice, and ggplot2 are described in Part II, and grDevices is described in
Part III. The packages with lighter gray backgrounds are examples of the packages
that extend the core system and those are described in Part IV. Some packages pro-
vide a stand-alone graphics system and these are represented by the trio of packages
in the diagram that have no connection to the core graphics packages.
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systems, such as OpenGL for sophisticated 3D images (the rgl package), and
dynamic and interactive graphics systems (the rggobi and iplots packages).
Basic introductions to these packages are included in Part IV.

Finally, there are several packages that provide additional graphics devices for
R (see Section 9.1). These allow R graphics output to be embedded nicely
within other systems, such as the tikzDevice package for producing plots for
inclusion within a LATEX document, and the JavaGD package for incorpo-
rating R graphics output within a Java application. These packages receive a
mention in Part III of this book.

1.2.1 Types of graphics functions

Functions in the graphics systems and graphics packages can be broken down
into two main types: high-level functions that produce complete plots and
low-level functions that add further output to an existing plot.

The traditional system, or graphics packages built on top of it, provide the
majority of the high-level functions currently available in R. The most sig-
nificant exceptions are the lattice package (see Chapter 4) and the ggplot2
package (see Chapter 5), which provide complete plots based on the grid sys-
tem. Both the traditional and grid systems provide many low-level graphics
functions.

Most functions in graphics packages produce complete plots and typically offer
specialized plots for a specific sort of analysis or a specific field of study. For
example: the hexbin package has functions for producing hexagonal binning
plots for visualizing large amounts of data (see Section 12.5); the maps pack-
age provides functions for visualizing geographic data (see Section 14.1.1);
and the package scatterplot3d produces a variety of three-dimensional plots
(see Section 16.5). If there is a need for a particular sort of plot, there is
a reasonable chance that someone has already written a function to do it.
For example, a common request on the R-help mailing list is for a way to
add error bars to scatterplots or barplots and this can be achieved in many
different ways, for example, using the traditional arrows() function, using
the plotCI() function from the gplots package, or the errbar() function
from the Hmisc package. There are some search facilities linked off the main
R home page web site to help to find a particular function for a particular
purpose. The sos package provides a nice web interface for the search with
the findFn() function.
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1.2.2 Traditional graphics versus grid graphics

The existence of two distinct graphics systems in R, the traditional graphics
world versus the grid graphics world, raises the issue of when to use each
system.

For the purpose of producing complete plots from a single function call, which
graphics system to use will largely depend on what type of plot is required.
The choice of graphics system is largely irrelevant if no further output needs
to be added to the plot.

If it is necessary to add further output to a plot, the most important thing to
know is which graphics system was used to produce the original plot. In gen-
eral, the same graphics system should be used to add further output (though
the gridBase package, described in Chapter 19, provides one way to get
around this restriction).

For a wide range of standard plots, it will be possible to produce the same sort
of plot in three different styles, using functions from any one of the lattice,
ggplot2, or graphics packages. As a general rule, the default style of the
lattice and ggplot2 packages will often be superior because they are both
motivated by principles of human perception and designed to make it easier
to extract information from a plot.

Both the lattice and ggplot2 packages also provide more sophisticated sup-
port for visualizing multivariate data sets where, for example, a simple scatter-
plot between two continuous variables may be augmented by having separate
lines or distinct plotting symbols for different subgroups within the data, or
by having entire separate plots for different subgroups.

The price of the additional advanced features of both lattice and ggplot2
is that there is a steeper learning curve required to master their respective
conceptual frameworks. For lattice, there is a particular effort required to
learn how to make significant customizations of the default style, while for
ggplot2, the overall philosophy takes some getting used to, although once
grasped it provides a more coherent and powerful paradigm.

In summary, given the choice, it may be quicker to get going with traditional
graphics, but both lattice and ggplot2 offer more efficient and sophisticated
options in the long run.

For more specialized plots, such as geographic maps or node-and-edge graphs,
the choice will be driven by which packages provide the relevant functionality
(see the chapters in Part IV of this book).

A different problem is that of producing an image for which there is no ex-
isting function, which requires resorting to low-level graphics functions. For
this situation, the grid system offers the benefit of a much wider range of
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possibilities than the low-level function in the traditional system, at the cost
of having to learn a few additional concepts.

If the goal is to create a new graphical function for others to use, grid again
provides better support, compared to the traditional system, for producing
more general output that can be combined with other output more easily.

One final consideration is speed. None of the graphics systems could be de-
scribed as blindingly fast, but the grid-based systems are noticeably slower
than traditional graphics and that performance penalty may be important in
some applications.

Chapter summary

The R graphics system consists of a core graphics engine and two low-
level graphics systems: traditional and grid. The traditional system
also includes high-level functions for producing complete plots. The
lattice package and the ggplot2 package provide high-level plotting
systems on top of grid. Many extension packages provide further
graphical facilities for both graphics systems, which means that it is
possible to create a very wide range of plots and general graphical
images with R.



Part I

TRADITIONAL GRAPHICS





2

Simple Usage of Traditional Graphics

Chapter preview

This chapter introduces the main high-level plotting functions in the
traditional graphics system. These are the functions used to produce
complete plots such as scatterplots, histograms, and boxplots. This
chapter describes the names of the standard plotting functions, the
standard ways to call these functions, and some of the standard argu-
ments that can be used to vary the appearance of the plots. Some of
this information is also applicable to high-level plotting functions in
extension packages.

The aim of this chapter is to provide an idea of the range of plots that are
available in the traditional graphics system, to point the user toward the most
important ones, and to introduce the standard approach to using them.

The graphics functions that make up the traditional graphics system are pro-
vided in an extension package called graphics, which is automatically loaded
in a standard installation of R. In a non-standard installation, it may be neces-
sary to make the following call in order to access traditional graphics functions
(if the graphics package is already loaded, this will not do any harm).

> library(graphics)

This chapter mentions many of the high-level graphics functions in the graph-
ics package, but does not describe all possible uses of these functions. For
detailed information on the behavior of individual functions the user will need
to consult the individual help pages using the help() function. For example,
the following code shows the help page for the barplot() function.

25
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> help(barplot)

Another useful way of learning about a graphics function is to use the
example() function. This runs the code in the “Examples” section of the help
page for a function. The following code runs the examples for barplot().

> example(barplot)

2.1 The traditional graphics model

As described at the start of Chapter 1, a plot is created in traditional graphics
by first calling a high-level function that creates a complete plot, then calling
low-level functions to add more output if necessary.

If there is only one plot per page, then a high-level function starts a new
plot on a new page. There may be multiple plots on a page, in which case a
high-level function starts the next plot on the same page, only starting a new
page when the number of plots per page is exceeded (see Section 3.3). All
low-level functions add output to the current plot. It is not generally possible
to go back to a previous plot in the traditional graphics system (see Section
3.3.3 for an exception).

2.2 The plot() function

The most important high-level function in traditional graphics is the plot()
function. In many situations, this provides the simplest way to produce a
complete plot in R.

The first argument to plot() provides the data to plot and there is a rea-
sonable amount of flexibility in the way that the data can be specified. For
example, each of the following calls to plot() can be used to produce the
scatterplot in Figure 1.1 (with small variations in the axis labels). In the first
case, all of the data to plot are specified in a single data frame. In the second
case, separate x and y variables are specified as two separate arguments. In
the third case, the data to plot are specified as a formula of the form y ~ x,
plus a data frame that contains the variables mentioned in the formula.
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> plot(pressure)
> plot(pressure$temperature, pressure$pressure)
> plot(pressure ~ temperature, data=pressure)

Traditional graphics does not make a major distinction between, for example,
scatterplots that only plot data symbols at each (x, y) location and scat-
terplots that draw straight lines connecting the (x, y) locations (line plots).
These are just variations on the basic scatterplot, controlled by a type ar-
gument. This is demonstrated by the following code, which produces four
different plots by varying the value of the type argument (see Figure 2.1).

> y <- rnorm(20)
> plot(y, type="p")
> plot(y, type="l")
> plot(y, type="b")
> plot(y, type="h")

Traditional graphics also does not make a distinction between a plot of a
single set of data and a plot containing multiple series of data. Additional
data series can be added to a plot using low-level functions such as points()
and lines() (see Section 3.4.1; also see the function matplot() in Section
2.5).

The plot() function is generic. One consequence of this has just been de-
scribed; the plot() function can cope with the same data being specified in
several different formats (and it will produce the same result). However, the
fact that plot() is generic also means that if plot() is given different types
of data, it will produce different types of plots. For example, the plot()
function will produce boxplots, rather than a scatterplot, if the x variable is a
factor, rather than a numeric vector. Another example is shown in the code
below. Here an "lm" object is created from a call to the lm() function. When
this object is passed to the plot() function, the special plot method for "lm"
objects produces several regression diagnostic plots (see Figure 2.2).∗

> lmfit <- lm(sr ~ pop15 + pop75 + dpi + ddpi,
data = LifeCycleSavings)

> plot(lmfit)

In order to learn more about the "lm" method for the plot() function, type
help(plot.lm).

∗The data used in this example are measures relating to the savings ratio (aggregate
personal saving divided by disposable income) averaged over the period 1960-1970 for 50
countries, available as the data set LifeCycleSavings in the datasets package.
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Figure 2.1
Four variations on a scatterplot. In each case, the plot is produced by a call to the
plot() function with the same data; all that changes is the value of the type argu-
ment. At top-left, type="p" to give points (data symbols), at top-right, type="l"
to give lines, at bottom-left, type="b" to give both, and at bottom-right, type="h"
to give histogram-like vertical lines.
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Figure 2.2
Plotting an "lm" object. There is a special plot() method for "lm" objects that
produces a number of diagnostic plots from the results of a linear model analysis.
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In many cases, graphics extension packages provide new plots by defining a
new method for the plot() function. For example, the cluster package pro-
vides a plot() method for plotting the result of an agglomerative hierarchical
clustering procedure (an agnes object). This method produces a special ban-
nerplot and a dendrogram from the data (see the following code and Figure
2.3).∗ The first block of expressions is just setting up the data and creating
an agnes object; the last expression plots the agnes object.

> subset <- sample(1:150, 20)
> cS <- as.character(Sp <- iris$Species[subset])
> cS[Sp == "setosa"] <- "S"
> cS[Sp == "versicolor"] <- "V"
> cS[Sp == "virginica"] <- "g"
> ai <- agnes(iris[subset, 1:4])

> plot(ai, labels = cS)

Simple calling plot(x), where x is an R object containing the data to visualize,
is often the simplest way to get an initial view of the data.

The following sections briefly describe the main types of plots that can be
produced using either plot() or one of the other high-level functions in the
graphics package. Toward the end of the chapter is a discussion of impor-
tant arguments to these functions that allow some control over the detailed
appearance of the plots (see Section 2.6).

Part IV of this book describes many other high-level functions from extension
packages that produce many other types of plots.

2.3 Plots of a single variable

Table 2.1 and Figure 2.4 show the traditional graphics functions that produce
a plot based on a single variable.

The plot() function will accept a single numeric vector, or a factor, or a one-
dimensional table (a table of counts from a single factor). A numeric vector

∗The data used in this example are the famous iris data data set giving measurements
of physical dimensions of three species of iris, available as the iris data set in the datasets

package.
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Figure 2.3
Plotting an agnes object. There is a special plot() method for agnes objects that
produces plots relevant to the results of an agglomerative hierarchical clustering
analysis.
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Table 2.1
High-level traditional graphics plotting functions for producing plots
of a single variable.

Function Data Description
plot() Numeric Scatterplot
plot() Factor Barplot
plot() 1-D table Barplot

barplot() Numeric (bar heights) Barplot
pie() Numeric Pie chart
dotchart() Numeric Dotplot

boxplot() Numeric Boxplot
hist() Numeric Histogram
stripchart() Numeric 1-D scatterplot
stem() Numeric Stem-and-leaf plot

will produce a scatterplot of the numeric values as a function of their indices,
while both a factor and a table produce a barplot of the counts for each level
of the factor. The plot() function will also accept a formula of the form ~ x
and if the variable x is numeric, the result is a one-dimensional scatterplot
(stripchart). If x is a factor, the result is a barplot.

A barplot can also be produced explicitly with the barplot() function. The
difference is that this function requires a numeric vector, rather than a factor,
as input — the numeric values are treated as the heights of the bars to be
plotted.

One issue with producing a barplot is providing a meaningful label below each
bar. The plot() function uses the levels of the factor being plotted for bar
labels and barplot() will use the names attribute of the numeric vector if it
is available.

As alternatives to a barplot, the pie() function plots the values in a numeric
vector as a pie chart, and dotchart() produces a dotplot.

Several functions provide a variety of ways to view the distribution of values in
a single numeric vector. The boxplot() function produces a boxplot (or box-
and-whisker plot), the hist() function produces a histogram, stripchart()
produces a one-dimensional scatterplot (stripchart), and stem() produces a
stem-and-leaf plot (but as text, on the console, rather than graphical output).
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Figure 2.4
High-level traditional graphics plotting functions for producing plots of a single
variable. Where the function can be used to produce more than one type of plot,
the relevant data type is shown (in gray).
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2.4 Plots of two variables

Table 2.2 and Figure 2.5 show the traditional graphics functions that produce
plots of two variables.

The plot() function will accept two variables in a variety of formats: a pair
of numeric vectors; one numeric vector and one factor; two factors; a list of
two vectors or factors (named x and y); a two-dimensional table; a matrix or
data frame with two columns (the first column is treated as x); or a formula
of the form y ~ x.

If both variables are numeric, the result is a scatterplot. If x is a factor and y
is numeric, the result is a boxplot for each level of x. If x is numeric and y is
a factor, the result is a (grouped) stripchart, and if both variables are factors,
the result is a spineplot. If plot() is given a table of counts, the result is a
mosaic plot.

Two functions provide alternatives to the scatterplot, both motivated by the
problem of overplotting, which occurs when values repeat or when there are
very many points to plot. The sunflowerplot() function draws a special
symbol at each location to indicate how many points are overplotted and the
smoothScatter() function draws a representation of the density of points
in the scatterplot (rather than drawing individual points). Another way to
produce multiple stripcharts is to provide stripchart() with a list of numeric
vectors.

When x is a factor and y is numeric, another way to produce multiple boxplots
is with the boxplot() function, with the data provided either as a list of
numeric vectors or as a formula of the form y ~ x, where x is a factor.

If the data consist of a numeric matrix, where each column or row represents a
different group, the barplot() function will produce a stacked or side-by-side
barplot from the numeric values and dotchart() will produce a dotplot.

When x is numeric and y is a factor, the spineplot() function will produce
a spinogram, and cdplot() will produce a conditional density plot. Both
functions will also accept the data as a formula of the form y ~ x.

For plotting two factors, there are also several options. Given the raw factors,
the spineplot() function will produce a spineplot, just like plot() produces
from two factors. An alternative is to work with a table of counts of the two
factors. Given a table, the mosaicplot() function produces a mosaic plot,
just like plot() does. The mosaicplot() function will also accept a formula
of the form y ~ x where both y and x are factors.
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Table 2.2
High-level traditional graphics plotting functions for producing plots of two
variables.

Function Data Description
plot() Numeric, numeric Scatterplot
plot() Numeric, factor Stripcharts
plot() Factor, numeric Boxplots
plot() Factor, factor Spineplot
plot() 2-D table Mosaic plot

sunflowerplot() Numeric, numeric Sunflower scatterplot
smoothScatter() Numeric, numeric Smooth scatterplot

boxplot() List of numeric Boxplots
barplot() Matrix Stacked/side-by-side barplot
dotchart() Matrix Dotplot

stripchart() List of numeric Stripcharts
spineplot() Numeric, factor Spinogram
cdplot() Numeric, factor Conditional density plot

fourfoldplot() 2x2 table Fourfold display
assocplot() 2-D table Association plot
mosaicplot() 2-D table Mosaic plot

In the special case where both factors have only two levels, assocplot()
produces a Cohen-Friendly association plot and fourfoldplot() produces a
fourfold display. See Chapter 13 for more plots that are designed specifically
for displaying categorical variables.

In addition to the numeric vector and factor data types, another important
basic data type is dates (or date-times). If plot() is given either x or y as a
"Date" or "POSIXt" object then the corresponding axis will be labeled with
date descriptions (e.g., using month names).

2.5 Plots of many variables

Table 2.3 and Figure 2.6 show the traditional graphics functions that produce
plots of many variables.

Given a data frame, with all columns numeric, the plot() function will pro-
duce a scatterplot matrix, plotting all pairs of variables against each other.
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Figure 2.5
High-level traditional graphics plotting functions for producing plots of two variables.
Where the function can be used to produce more than one type of plot, the relevant
data type is shown (in gray).
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Table 2.3
High-level traditional graphics plotting functions for producing plots of many
variables.

Function Data Description
plot() Data frame Scatterplot matrix
pairs() Matrix Scatterplot matrix
matplot() Matrix Scatterplot
stars() Matrix Star plots

image() Numeric,numeric,numeric Image plot
contour() Numeric,numeric,numeric Contour plot
filled.contour() Numeric,numeric,numeric Filled contour
persp() Numeric,numeric,numeric 3-D surface
symbols() Numeric,numeric,numeric Symbol scatterplot

coplot() Formula Conditioning plot

mosaicplot() N -D table Mosaic plot

The pairs() function does likewise, but it will accept the data in matrix form
as well.

An alternative, when the data are in matrix form, is the matplot() function,
which will plot a single scatterplot with a separate series of data symbols or
lines for each column of data. The data can be separate x and y matrices, or
a single matrix, in which case the values are treated as y-values and plotted
against 1:nrow.

Another alternative is the stars() function, which draws a star for each row
of data, with the values in the columns columns dictating the lengths of the
arms of each star. This type of plot is an example of the small multiples
technique, where many small plots are produced on a single page (see Section
3.3 for details on how to place multiple plots of any sort on a single page; see
Section 12.4 for other examples of plots based on polar coordinates; and see
Section 17.2.2 for a more sophisticated system for viewing multivariate data).

Several functions cater for the special case of three numeric variables. When x
and y are measured on a regular grid, and there is a single response variable,
z, the image() function plots z as a grid of colored regions, the contour()
function draws contour lines (lines of constant z), filled.contour() pro-
duces colored regions between contour lines, and persp() produces a three-
dimensional surface to represent z (see Chapter 16 for more sophisticated 3D
graphics functions).

The symbols() function produces a scatterplot of x and y with a small symbol
used to represent z, for example, a circle with radius proportional to z. A
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range of symbols is provided, some of which allow multiple variables to be
represented within the symbol, for example, a rectangle symbol can encode
separate variables as the width and height of the rectangle.

When the data consist of two numeric variables and one or two grouping fac-
tors, the coplot() function can be used to produce a conditioning plot, which
draws a separate plot for each level of the grouping factors. The data must be
given to this function as a formula of the form y ~ x | g or y ~ x | g*h,
where g and h are factors. This idea is implemented on a much grander scale in
the lattice package (see Chapter 4) and in the ggplot2 package (see Chapter
5).

For data consisting of multiple factors, the mosaicplot() function will pro-
duce a multidimensional mosaic plot, given a multidimensional table of counts
(see Chapter 13 for other options for plotting multiple factors).

2.6 Arguments to graphics functions

It is often the case, especially when producing graphics for publication, that
the output produced by a single call to a high-level graphics function is not
exactly right in all its details. There are many ways in which the output of
graphics functions may be modified and Chapter 3 addresses this topic in full
detail. This section will only consider the possibility of specifying arguments
to high-level graphics functions in order to modify their output.

Many of these arguments are specific to a particular function. For example,
the boxplot() function has width and boxwex arguments (among others) for
controlling the width of the boxes in the plot, and the barplot() function has
a horiz argument for controlling whether bars are drawn horizontally rather
than vertically. The following code shows examples of the use of the boxwex
argument for boxplot() and the horiz argument for barplot() (see Figure
2.7).

In the first example, there are two calls to boxplot(), which are identical
except that the second specifies that the individual boxplots should be half as
wide as they would be by default (boxwex=0.5).

> boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="light gray")

> boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="light gray",
boxwex=0.5)
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High-level traditional graphics plotting functions for producing plots of many vari-
ables. Where the function can be used to produce more than one type of plot, the
relevant data type is shown (in gray).
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Modifying default barplot() and boxplot() output. The top two plots are produced
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the boxwex argument. The bottom two plots are both produced by calls to the
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In the second example, there are two calls to barplot(), which are identical
except that the second specifies that the bars should be drawn horizontally
rather than vertically (horiz=TRUE).

> barplot(VADeaths[1:2,], angle = c(45, 135),
density = 20, col = "gray",
names=c("RM", "RF", "UM", "UF"))

> barplot(VADeaths[1:2,], angle = c(45, 135),
density = 20, col = "gray",
names=c("RM", "RF", "UM", "UF"),
horiz=TRUE)

In general, the user should consult the documentation for a specific function
to determine which arguments are available and what effect they have.

2.6.1 Standard arguments to graphics functions

Despite the existence of many arguments that are specific only to a single
graphics function, there are several arguments that are“standard” in the sense
that many high-level traditional graphics functions will accept them.

Most high-level functions will accept graphical parameters that control such
things as color (col), line type (lty), and text font (font and family). Sec-
tion 3.2 provides a full list of these arguments and describes their effects.

Unfortunately, because the interpretation of these standard arguments may
vary in some cases, some care is necessary. For example, if the col argument
is specified for a standard scatterplot, this only affects the color of the data
symbols in the plot (it does not affect the color of the axes or the axis labels),
but for the barplot() function, col specifies the color for the fill or pattern
used within the bars.

In addition to the standard graphical parameters, there are standard argu-
ments to control the appearance of axes and labels on plots. It is usually
possible to modify the range of the axis scales on a plot by specifying xlim
or ylim arguments in the call to the high-level function, and often there is a
set of arguments for specifying the labels on a plot: main for a title, sub for
a subtitle, xlab for an x-axis label and ylab for a y-axis label.

Although there is no guarantee that these standard arguments will be accepted
by high-level functions in graphics extension packages, in many cases they will
be accepted, and they will have the expected effect.

The following code shows examples of setting some of these standard argu-
ments for the plot() function (see Figure 2.8). All of the calls to plot()
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draw a scatterplot of the same data with lines connecting the data values:
the first call uses a wider line (lwd=3), the second call draws the line a gray
color (col="gray"), the third call draws a dashed line (lty="dashed"), and
the fourth call uses a much wider range of values on the y-scale (ylim=c(-4,
4)).

> y <- rnorm(20)
> plot(y, type="l", lwd=3)
> plot(y, type="l", col="gray")
> plot(y, type="l", lty="dashed")
> plot(y, type="l", ylim=c(-4, 4))

In cases where the default output from a high-level function cannot be modi-
fied to produce the desired result by just specifying arguments to the high-level
function, possible options are to add further output to the plot using low-level
graphics functions (see Section 3.4), or to generate the entire plot from scratch
(see Section 3.5).

Some high-level functions provide an argument to inhibit some of the default
output in order to assist in the customization of a plot. For example, the
default plot() function has an axes argument to allow the user to inhibit the
drawing of axes and an ann argument to inhibit the drawing of axis labels;
the user can then produce customized output to represent the axes and labels
(see Section 3.4.4).

2.7 Specialized plots

The traditional graphics system, and the extension packages that are built
on it, contain a number of functions to produce plots that are suited to a
particular type of data or analysis technique, or that are specific to a particular
area of research.

Several of these are just variations on a basic scatterplot, with data symbols
and/or lines plotted on cartesian coordinates. For example, the qqplot() and
qqnorm() functions produce quantile-quantile plots (plotting observed values
against values generated from theoretical distributions), the plot() method
for "ecdf" objects (empirical cumulative distribution functions) draws a step
plot, and the plot() methods for "ts" (time series) objects or density esti-
mates (from the density() function) automatically draw lines between values
to show the appropriate trends.
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Figure 2.8
Standard arguments for high-level functions. All four plots are produced by calls to
the plot() function with the same data, but with different standard plot function
arguments specified: the top-left plot makes use of the lwd argument to control line
thickness; the top-right plot uses the col argument to control line color; the bottom-
left plot makes use of the lty argument to control line type; and the bottom-right
plot uses the ylim argument to control the scale on the y-axis.
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One interesting case is the display of a parametric curve where, rather than
specifying explicit data points, a relationship between x and y is provided.
This can be achieved in two ways: via the plot() method for function objects
and via the curve() function. The following code shows both approaches to
draw a sine wave (see Figure 2.9).

> plot(function(x) {
sin(x)/x

},
from=-10*pi, to=10*pi,
xlab="", ylab="", n=500)

> curve(sin(x)/x, -10*pi, 10*pi)

There are also some functions that produce quite different sorts of plots. The
plot() method for dendrogram objects is provided for drawing hierarchical
or tree-like structures, such as the results from clustering or a recursive par-
titioning regression tree. The bottom two plots in Figure 2.9 show examples
of output from the plot() method for dendrogram objects.∗ Part IV of this
book contains several chapters that describe how to produce specialized plots
of various kinds. For example, Chapter 15 describes other functions that draw
this sort of node-and-edge graph.

2.8 Interactive graphics

The strength of the traditional graphics system lies in the production of static
graphics and there are only limited facilities for interacting with graphical
output.

The locator() function allows the user to click within a plot and returns the
coordinates where the mouse click occurred. It will also optionally draw data
symbols at the clicked locations or draw lines between the clicked locations.

The identify() function can be used to add labels to data symbols on a plot.
The data point closest to the mouse click gets labeled.

There is also a more general-purpose getGraphicsEvent() function that al-
lows capture of mouse and keyboard events (mouse button down, mouse up,

∗The data used in these examples are measures of crime rates in various US states in
1973, available as the data set USArrests in the datasets package.
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Figure 2.9
Some specialized plots. At the top is a plot of an R function and along the bottom
are two variations on a dendrogram.
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mouse move, key stroke). This provides a more flexible basis for developing
interactive plots (though at the time of writing only for the Windows and X
Window graphics device).

Chapter 17 includes a more detailed discussion of creating and using dynamic
and interactive graphics with R.

Chapter summary

The traditional graphics system has functions to produce the stan-
dard statistical plots such as histograms, scatterplots, barplots, and
pie charts. There are also functions for producing higher-dimensional
plots such as 3D surfaces and contour plots and more specialized or
modern plots such as dotplots, dendrograms, and mosaic plots. In
most cases, the functions provide a number of arguments to allow the
user to control the details of the plot, such as the widths of the boxes
in a boxplot. There is also a standard set of arguments for controlling
the appearance of a plot, such as colors, fonts, and line types and axis
ranges and labeling, although these are not all available for all types
of plots.



3

Customizing Traditional Graphics

Chapter preview

It is very often the case that a high-level plotting function does not
produce exactly the final result that is desired. This chapter describes
low-level traditional functions that are useful for controlling the fine
details of a plot and for adding further output to a plot (e.g., adding
descriptive labels).

In order to utilize these low-level functions effectively, this chapter also
includes a description of the regions and coordinate systems that are
used to locate the output from low-level functions. For example, there
is a description of which function to use to draw text in the margins of
a plot as opposed to drawing text in the data region (where the data
symbols are plotted). There is also a discussion of ways to arrange
several plots together on a single page.

Sometimes it is not possible to achieve a final result by modifying an
existing high-level plot. In such cases, the user might need to create a
plot using only low-level functions. This case is also addressed in this
chapter together with some discussion of how to write a new graphics
function for other people to use.

It is often the case that the default or standard output from a high-level
function is not exactly what the user requires, particularly when producing
graphics for publication. Various aspects of the output often need to be mod-
ified or completely replaced. This chapter describes the various ways in which
the output from a traditional graphics high-level function can be customized
and extended.

47
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The real power of the traditional graphics system lies in the ability to control
many aspects of the appearance of a plot, to add extra output to a plot, and
even to build a plot from scratch in order to produce precisely the right final
output.

Section 3.1 introduces important concepts of drawing regions, coordinate sys-
tems, and graphics state that are required for properly working with tradi-
tional graphics at a lower level. Section 3.2 describes how to control aspects
of output such as colors, fonts, line styles, and plotting symbols, and Section
3.3 addresses the problem of placing several plots on the same page. Section
3.4 describes how to customize a plot by adding extra output and Section 3.5
looks at ways to develop entirely new types of plots.

3.1 The traditional graphics model in more detail

In order to explain some of the facilities for customizing plots, it is necessary
to describe more about the model underlying traditional graphics plots.

3.1.1 Plotting regions

In the traditional graphics system, every page is split up into three main
regions: the outer margins, the current figure region, and the current plot
region. Figure 3.1 shows these regions when there is only one figure on the
page and Figure 3.2 shows the regions when there are multiple figures on the
page.

The region obtained by removing the outer margins from the device is called
the inner region. When there is only one figure, this usually corresponds to the
figure region, but when there are multiple figures the inner region corresponds
to the union of all figure regions.

The area outside the plot region, but inside the figure region is referred to
as the figure margins. A typical high-level function draws data symbols and
lines within the plot region and axes and labels in the figure margins or outer
margins (see Section 3.4 for information on the functions used to draw output
in the different regions).

The size and location of the different regions are controlled either via the
par() function, or using special functions for arranging plots (see Section 3.3).
Specifying an arrangement of the regions does not usually affect the current
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Figure 3.1
The plot regions in traditional graphics — the outer margins, figure region, and plot
region — when there is a single plot on the page.

plot as the settings only come into effect when the next plot is started.

Coordinate systems

Each plotting region has one or more coordinate systems associated with it.
Drawing in a region occurs relative to the relevant coordinate system. The
coordinate system in the plot region, referred to as user coordinates, is prob-
ably the easiest to understand as it simply corresponds to the range of values
on the axes of the plot (see Figure 3.3). The drawing of data symbols, lines,
and text in the plot region occurs relative to this user coordinate system.

The scales on the axes of a plot are often set up automatically by R, but
Sections 2.6 and 3.4.4 describe ways to set the scales manually.

The figure margins contain the next most commonly used coordinate systems.
The coordinate systems in these margins are a combination of x- or y-ranges
(like user coordinates) and lines of text away from the boundary of the plot
region. Figure 3.4 shows two of the four figure margin coordinate systems.
Axes are drawn in the figure margins using these coordinate systems.

There is a further set of “normalized” coordinate systems available for the
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Multiple figure regions in traditional graphics — the outer margins, current figure
region, and current plot region — when there are multiple plots on the page.
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Figure 3.3
The user coordinate system in the plot region. Locations within this coordinate
system are relative to the scales on the plot axes.

figure margins in which the x- and y-ranges are replaced with a range from 0
to 1. In other words, it is possible to specify locations along the axes as a pro-
portion of the total axis length. Axis labels and plot titles are drawn relative
to this coordinate system. All of these figure margin coordinate systems are
created implicitly from the arrangement of the figure margins and the setting
of the user coordinate system.

The outer margins have similar sets of coordinate systems, but locations along
the boundary of the inner region can only be specified in normalized coordi-
nates (always relative to the extent of the complete outer margin). Figure 3.5
shows two of the four outer margin coordinate systems.

Sections 3.4.2 and 3.4.4 describe functions that draw output relative to the
figure margin and outer margin coordinate systems.

3.1.2 The traditional graphics state

The traditional graphics system maintains a graphics “state” for each graphics
device and, when drawing occurs, this state is consulted to determine where
output should be drawn, what color to use, what fonts to use, and so on.
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Figure margin coordinate systems. The typical coordinate systems for figure margin
1 (top plot) and figure margin 2 (bottom plot). Locations within these coordinate
systems are a combination of position along the axis scale and distance away from
the axis in multiples of lines of text.
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Outer margin coordinate systems. The typical coordinate systems for outer margin
1 (top plot) and outer margin 2 (bottom plot). Locations within these coordinate
systems are a combination of a proportion along the inner region and distance away
from the inner region in multiples of lines of text.
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The graphics state consists of a large number of settings. Some of these
settings describe the size and placement of the plot regions and coordinate
systems that were described in the previous section. Some settings describe
the general appearance of graphical output (e.g., the colors and line types that
are used to draw lines and the fonts that are used to draw text) and some
settings describe aspects of the output device (e.g., the physical size of the
device and the current clipping region).

Tables 3.1 to 3.3 together provide a list of all of the graphics state settings and
a very brief indication of their meaning. Most of the settings are described in
detail in Sections 3.2 and 3.3.

The main function used to access the graphics state is the par() function.
Simply typing par() will result in a complete listing of the current graphics
state. A specific state setting can be queried by supplying specific setting
names as arguments to par(). The following code queries the current state
of the col and lty settings.

> par(c("col", "lty"))

$col

[1] "black"

$lty

[1] "solid"

The par() function can be used to modify traditional graphics state settings
by specifying a value via an argument with the appropriate setting name. The
following code sets new values for the col and lty settings.

> par(col="red", lty="dashed")

Modifying traditional graphics state settings via par() has a persistent effect.
Settings specified in this way will hold until a different setting is specified.
Settings may also be temporarily modified by specifying a new value in a
call to a graphics function such as plot() or lines(). The following code
demonstrates this idea. First of all, the line type is permanently set using
par(), then a plot is drawn and the lines drawn between data points in this
plot are dashed. Next, a plot is drawn with a temporary line type setting
of lty="solid" and the lines in this plot are solid. When the third plot is
drawn, the permanent line type setting of lty="dashed" is back in effect so
the lines are again dashed.
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Table 3.1
High-level traditional graphics state settings. This set of graphics state
settings can be queried and set via the par() function and can be used as
arguments to other graphics functions (e.g., plot() or lines()). Each
setting is described in more detail in the relevant Section.

Setting Description Section

adj Justification of text 3.2.3
ann Draw plot labels and titles? 3.2.3
bg Background color 3.2.1
bty Type of box drawn by box() 3.2.5
cex Size of text (multiplier) 3.2.3
also cex.axis, cex.lab, cex.main, cex.sub

col Color of lines and data symbols 3.2.1
also col.axis, col.lab, col.main, col.sub

family Font family for text 3.2.3
fg Foreground color 3.2.1
font Font face (bold, italic) for text 3.2.3
also font.axis, font.lab, font.main, font.sub

lab Number of ticks on axes 3.2.5
las Rotation of text in margins 3.2.3
lend Line end/join style 3.2.2
also ljoin, lmitre

lty Line type (solid, dashed) 3.2.2
lwd Line width 3.2.2
mgp Placement of axis ticks and tick labels 3.2.5
pch Data symbol type 3.2.4
srt Rotation of text in plot region 3.2.3
tck Length of axis ticks (relative to plot size) 3.2.5
tcl Length of axis ticks (relative to text size) 3.2.5
xaxp Number of ticks on x-axis 3.2.5
xaxs Calculation of scale range on x-axis 3.2.5
xaxt X-axis style (standard, none) 3.2.5
xpd Clipping region 3.2.7
yaxp Number of ticks on y-axis 3.2.5
yaxs Calculation of scale range on y-axis 3.2.5
yaxt Y-axis style (standard, none) 3.2.5
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Table 3.2
Low-level traditional graphics state settings. This set of graphics
state settings can only be queried and set via the par() function.
Each setting is described in more detail in the relevant Section.

Setting Description Section

fig Location of figure region (normalized) 3.2.6
fin Size of figure region (inches) 3.2.6
lheight Line spacing (multiplier) 3.2.3
mai Size of figure margins (inches) 3.2.6
mar Size of figure margins (lines of text) 3.2.6
mex Line spacing in margins 3.2.6
mfcol Number of figures on a page 3.3.1
mfg Which figure is used next 3.3.1
mfrow Number of figures on a page 3.3.1
new Has a new plot been started? 3.2.8
oma Size of outer margins (lines of text) 3.2.6
omd Location of inner region (normalized) 3.2.6
omi Size of outer margins (inches) 3.2.6
pin Size of plot region (inches) 3.2.6
plt Location of plot region (normalized) 3.2.6
ps Size of text (points) 3.2.3
pty Aspect ratio of plot region 3.2.6
usr Range of scales on axes 3.4.5
xlog Logarithmic scale on x-axis? 3.2.5
ylog Logarithmic scale on y-axis? 3.2.5

> y <- rnorm(20)
> par(lty="dashed")
> plot(y, type="l") # line is dashed
> plot(y, type="l", lty="solid") # line is solid
> plot(y, type="l") # line is dashed

Only some of the graphics state settings can be set temporarily in calls to
graphics functions. For example, the mfrow setting may not be set in this way
and can only be set using par(). The “low-level” settings are listed in Table
3.2.

A small set of graphics state settings cannot be modified at all and can only
be queried using par(). For example, there is no function to allow the user
to modify the size of the current device (after the device has been created),
but its size (in inches) may be obtained using par("din"). These “read-only”
settings are listed in Table 3.3.
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Table 3.3
Read-only traditional graphics state settings. This set of graphics
state settings can only be queried (via the par() function). Each
setting is described in more detail in the relevant Section.

Setting Description Section

cin Size of a character (inches) 3.4.5
cra Size of a character (“pixels”) 3.4.5
cxy Size of a character (user coordinates) 3.4.5
din Size of graphics device (inches) 3.4.5

Every graphics device has its own graphics state and calls to par() only
affect the traditional graphics state of the currently active graphics device
(see Chapter 9.1).

3.2 Controlling the appearance of plots

This section is concerned with the appearance of plots, which means the colors,
line types, fonts and so on that are used to draw a plot. As described in Section
3.1.2, these features are controlled via traditional graphics state settings and
values are specified for the settings either with a call to the par() function
or as arguments to a specific graphics function such as plot(). For example,
there is a setting called col to control the color of output (see Section 3.2.1).
This can be set permanently using par() with an expression of the form:

par(col="red")

This will affect all subsequent graphical output. Alternatively, the setting can
be specified as an argument to a high-level function using an expression of the
form:

plot(..., col="red")

This will affect the output just for that plot. Finally, the setting can be used
as an argument to a low-level function, as in the expression below.

lines(..., col="red")
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This demonstrates that the setting can be used to control the appearance of
just a single piece of graphical output.

There are many individual settings that affect the appearance of a plot, but
they can be grouped in terms of what aspects of a plot the settings affect.
Each of the following sections details a particular group of settings, including
a description of the role of individual settings. There are sections on specifying
colors; how to control the appearance of lines, text, data symbols, and axes;
how to control the size and location of the various plotting regions; clipping
(only drawing output on certain parts of the page); and specifying what should
happen when a high-level function is called to start a new plot.

The appearance of plots is also affected by the location and size of the plotting
regions, but this is dealt with separately in Section 3.3.

The following sections provide some simple examples of how to specify the
settings for the traditional graphical parameters, but much more detail is
provided in Chapter 10.

3.2.1 Colors

There are three main color settings in the traditional graphics state: col, fg,
and bg.

The col setting is the most commonly used. The primary use is to specify the
color of data symbols, lines, text, and so on that are drawn in the plot region.
Unfortunately, when specified via a graphics function, the effect can vary. For
example, a standard scatterplot produced by the plot() function will use col
for coloring data symbols and lines, but the barplot() function will use col
for filling the contents of its bars. In the rect() function (see Section 3.4),
the col argument provides the color to fill the rectangle and there is a border
argument specific to rect() that gives the color to draw the border of the
rectangle. The effect of col on graphical output drawn in the margins also
varies. It does not affect the color of axes and axis labels, but it does affect
the output from the mtext() function. There are specific settings for affecting
axes, labels, titles, and subtitles called col.axis, col.lab, col.main, and
col.sub.

The fg setting is primarily intended for specifying the color of axes and borders
on plots. There is some overlap between this and the specific col.axis,
col.main, etc. settings described above.

The bg setting is primarily intended to specify the color of the background
for traditional graphics output. This color is used to fill the entire page. As
with the col setting, when bg is specified in a graphics function it can have
a quite different meaning. For example, the plot() and points() functions
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use bg to specify the color for the interior of the data symbols, which can have
different colors on the border (pch values 21 to 25; see Section 3.2.4).

Colors may be specified in a number of different ways. The most simple is to
use a color name, such as "red" and "blue", but there are many alternatives,
including generating sets of colors by calling a function. Section 10.1 describes
the specification of colors in R in complete detail (also see Section 11.3).

Fill patterns

In some cases (e.g., when printing in black and white), it is difficult to make
use of different colors to distinguish between different elements of a plot. Using
different levels of gray can be effective, but another option is to make use of
some sort of fill pattern, such as cross-hatching. These should be used with
caution because it is very easy to create visual effects that are distracting.
Nevertheless, some journals actively encourage their use, so the facility has
some purpose.

In traditional graphics, there is only limited support for fill patterns and
they can only be applied to rectangles and polygons. It is possible to fill a
rectangle or polygon with a set of lines drawn at a certain angle, with a specific
separation between the lines. A density argument controls the separation
between the lines (in terms of lines per inch) and an angle argument controls
the angle of the lines (in terms of degrees anti-clockwise from 3 o’clock).
Examples of the use of fill patterns are given in Figures 2.7, 3.19, and their
associated code.

These settings can only be controlled via arguments to the functions rect(),
polygon(), hist(), barplot(), pie(), and legend() (and not via par()).

Section 11.2 describes some functions in add-on packages that provide other
ways to produce fill-pattern effects.

3.2.2 Lines

There are five graphics state settings for controlling the appearance of lines.
The lty setting describes the type of line to draw (e.g., solid, dashed, or
dotted), the lwd setting describes the width of lines, and the ljoin, lend,
and lmitre settings control how the ends and corners in lines are drawn
(rounded or pointy).

The line type can be specified as a character value, for example, "solid",
"dashed", or "dotted", and the line width is given as a number, where 1
corresponds to 1/96 inch (which is roughly 1 pixel on many computer screens).
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The scope of these settings again differs depending on the graphics function
being called. For example, for standard scatterplots, the setting only applies
to lines drawn within the plot region. In order to affect the lines drawn as part
of the axes, the lty setting must be passed directly to the axis() function
(see Section 3.4.4).

Section 10.2 describes the specification of lines in R in complete detail.

3.2.3 Text

There are a large number of traditional graphics state settings for controlling
the appearance of text. The size of text is controlled via ps and cex; the font
is controlled via font and family; the justification of text is controlled via
adj; and the angle of rotation is controlled via srt.

There is also an ann setting, which indicates whether titles and axis labels
should be drawn on a plot. This is intended to apply to high-level functions,
but is not guaranteed to work with all such functions (especially functions from
extension packages). There are examples of the use of ann as an argument to
high-level plotting functions in Section 3.4.1.

Text size

The size of text is ultimately a numerical value specifying the size of the font
in“points.” The font size is controlled by two settings: ps specifies an absolute
font size setting (e.g., ps=9), and cex specifies a multiplicative modifier (e.g.,
cex=1.5). The final font size specification is simply fontsize * cex.

As with specifying color, the scope of a cex setting can vary depending on
where it is given. When cex is specified via par(), it affects most text.
However, when cex is specified via plot(), it only affects the size of data
symbols. There are special settings for controlling the size of text that is drawn
as axis tick labels (cex.axis), text that is drawn as axis labels (cex.lab),
text in the title (cex.main), and text in the subtitle (cex.sub).

Specifying fonts

The font used for drawing text is controlled by the settings family and font.

The family setting is a character value giving the name of a specific font
family, such as "Times Roman", or a generic family style, such as "serif",
"sans" (sans-serif), or "mono" (monospaced). Specific font families will only
be available if they are installed on the operating system that R is run on, but
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family="sans"

font=1

family="serif"

font=1

family="mono"

font=1

family="sans"

font=2

family="serif"

font=2

family="mono"

font=2

family="sans"

font=3

family="serif"

font=3

family="mono"

font=3

family="sans"

font=4

family="serif"

font=4

family="mono"

font=4

Figure 3.6
Font families and font faces. The appearance of the twelve font family and font face
combinations that are available in the traditional graphics system.

the generic family styles are always available.

The font is a numeric value that selects between normal text (1), bold (2),
italic (3), and bold-italic (4). Similar to color and text size, the font setting
applies mostly to text drawn in the plot region. There are additional settings
specifically for labels (font.lab), and titles (font.main and font.sub). Fig-
ure 3.6 demonstrates the 12 basic font family and face combinations.

Section 10.4 contains more details about how to specify text fonts in R graph-
ics.
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Justification of text

The adj setting is a value from 0 to 1 indicating the horizontal justification
of text strings (0 means left-justified, 1 means right-justified and a value of
0.5 centers text).

The meaning of the adj setting depends on whether text is being drawn in
the plot region, in the figure margins, or in the outer margins. In the plot
region, the justification is relative to the (x, y) location at which the text
is being drawn. In this context, it is also possible to specify two values for
the setting and the second value is taken as a vertical justification for the
text. Furthermore, non-finite values (NA, NaN, or Inf) may be specified for
the justification and this is taken to mean “exact” centering (see below).

There is only a difference between a justification value of 0.5 and a non-
finite justification value for vertical justification. In this case, a setting of 0.5
means text is vertically centered based on the height of the text above the
text baseline (i.e., ignoring “descenders” like the tail on a “y”). A non-finite
value means that text is vertically centered based on the full height of the
text (including descenders). Figure 3.7 shows how various adj settings affect
the alignment of text in the plot region.

In the figure margins and outer margins, the meaning of the adj setting
depends on the las setting (see below). When margin text is parallel to the
axis, adj specifies both the location and the justification of the text. For
example, a value of 0 means that the text is left-justified and that the text
is located at the left end of the margin. When text is perpendicular to the
axis, the adj setting only affects justification. Furthermore, the adj setting
only affects “horizontal” justification (justification in the reading direction)
for text in the margins. Section 3.4.2 contains more information about the
justification of text in the plot margins.

Rotating text

The srt setting specifies a rotation angle anti-clockwise from the positive x-
axis, in degrees. This will only affect text drawn in the plot region (text drawn
by the text() function; see Section 3.4.1). Text can be drawn at any angle
within the plot region.

In the figure and outer margins, text may only be drawn at angles that are
multiples of 90◦, and this angle is controlled by the las setting. A value of
0 means text is always drawn parallel to the relevant axis (i.e., horizontal in
margins 1 and 3, and vertical in margins 2 and 4). A value of 1 means text is
always horizontal, 2 means text is always perpendicular to the relevant axis,
and 3 means text is always vertical.
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c(1, 1)

c(0.5, 1)

c(NA, 1)

c(0, 1)

c(1, 0.5)

c(0.5, 0.5)

c(NA, 0.5)

c(0, 0.5)

c(1, NA)

c(0.5, NA)

c(NA, NA)

c(0, NA)

c(1, 0)

c(0.5, 0)

c(NA, 0)

c(0, 0)

Figure 3.7
Alignment of text in the plot region. The adj graphical setting may be given two
values, c(hjust, vjust), where hjust specifies horizontal justification and vjust spec-
ifies vertical justification. Each piece of text in the diagram is justified relative to a
gray cross to represent the effect of the relevant adj setting. The vertical adjustment
for NA is subtly different from the vertical adjustment for 0.5.
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0 1 2 3 4 5

Figure 3.8
The first six data symbols that are available in traditional graphics. In the diagram,
the relevant integer value for the pch setting is shown in gray to the left of the
corresponding symbol.

Multi-line text

The spacing between multiple lines of text is controlled by the lheight setting,
which is a multiplier applied to the natural height of a line of text. For
example, lheight=2 specifies double-spaced text. This setting can only be
specified via par().

3.2.4 Data symbols

The data symbol used for plotting points is controlled by the pch setting. This
can be an integer value to select one of a fixed set of data symbols, or a single
character. For example, specifying pch=0 produces an open square, pch=1
produces an open circle, and pch=2 produces an open triangle (see Figure
3.8). Specifying pch="#" means that a hash character will be plotted at each
data location.

Some of the predefined data symbols (pch between 21 and 25) allow a fill color
separate from the border color, with the bg setting controlling the fill color in
these cases.

Section 10.3 describes the possible set of data symbols in more detail.

The size of the data symbols is linked to the size of text and is affected by the
cex setting. If the data symbol is a character, the size will also be affected by
the ps setting.

The type setting controls how data are represented in a plot. A value of
"p" means that data symbols are drawn at each (x, y) location. The value
"l" means that the (x, y) locations are connected by lines. A value of "b"
means that both data symbols and lines are drawn. The type setting may
also have the value "o", which means that data symbols are “over-plotted” on
lines (with the value "b", the lines stop short of each data symbol). It is also
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possible to specify the value "h", which means that vertical lines are drawn
from the x-axis to the (x, y) locations (the appearance is like a barplot with
very thin bars). Two further values, "s" and "S" mean that (x, y) locations
are joined in a city-block fashion with lines going horizontally then vertically
(or vertically then horizontally) between each data location. Finally, the value
"n" means that nothing is drawn at all.

Figure 3.9 shows simple examples of the different plot types. This setting is
most often specified within a call to a high-level function (e.g., plot()) rather
than via par().

3.2.5 Axes

By default, the traditional graphics system produces axes with sensible labels
and tick marks at sensible locations. If the axis does not look right, there are
a number of graphical state settings specifically for controlling aspects such as
the number of tick marks and the positioning of labels. These are described
below. If none of these gives the desired result, the user may have to resort
to drawing the axis explicitly using the axis() function (see Section 3.4.4).

The lab setting in the traditional graphics state is used to control the number
of tick marks on the axes. The setting is only used as a starting point for the
algorithm R uses to determine sensible tick locations so the final number of
tick marks that are drawn could easily differ from this specification. The
setting takes two values: the first specifies the number of tick marks on the
x-axis and the second specifies the number of tick marks on the y-axis.

The xaxp and yaxp settings also relate to the number and location of the tick
marks on the axes of a plot. This setting is almost always calculated by R
for each new plot so user settings are usually overridden (see Section 3.4.4 for
an exception to this rule). In other words, it only makes sense to query this
setting for its current value. The settings consist of three values: the first two
specify the location of the left-most and right-most tick marks (bottom and
top tick marks for the y-axis), and the third value specifies how many intervals
there are between tick marks. When a log transformation is in effect for an
axis, the three values have a different meaning altogether (see the on-line help
page for par()).

The mgp setting controls the distance that the components of the axes are
drawn away from the edge of the plot region. There are three values repre-
senting the positioning of the overall axis label, the tick mark labels, and the
lines for the ticks. The values are in terms of lines of text away from the edges
of the plot region. The default value is c(3, 1, 0). Figure 3.10 gives an
example of different mgp settings.
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type="p" type="l"

type="b" type="o"

type="h" type="s"

Figure 3.9
Basic plot types. Plotting the same data with different plot type settings. In
each case, the output is produced by an expression of the form plot(x, y,

type=something), where the relevant value of type is shown above each plot.
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mgp=c(3, 1, 0)

xaxs="r"

tcl=−0.5

0.0 0.5 1.0

X−axis Label

mgp=c(2, 0.3, 0)

xaxs="r"

tcl=0.2

0.0 0.5 1.0

X−axis Label

mgp=c(3, 1, 0)

xaxs="i"

tcl=−0.5

0.0 0.5 1.0

X−axis Label

Figure 3.10
Different axis styles. The top-left plot demonstrates the default axis settings for an
x-axis. The top-right plot shows the effects of specifying different positions for the
axis labels (the tick labels and axis labels are closer to the plot region) and different
lengths for the tick marks and the bottom-left plot shows the effect of specifying an
“internal” axis range calculation.
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The tck and tcl settings control the length of tick marks. The tcl setting
specifies the length of tick marks as a fraction of the height of a line of text.
The sign dictates the direction of the tick marks — a negative value draws
tick marks outside the plot region and a positive value draws tick marks inside
the plot region. The tck setting specifies tick mark lengths as a fraction of
the smaller of the physical width or height of the plotting region, but it is
only used if its value is not NA (and it is NA by default). Figure 3.10 gives an
example of different tcl settings.

The xaxs and yaxs settings control the “style” of the axes of a plot. By
default, the setting is "r", which means that R calculates the range of values
on the axis to be wider than the range of the data being plotted (so that data
symbols do not collide with the boundaries of the plot region). It is possible
to make the range of values on the axis exactly match the range of values in
the data, by specifying the value "i". This can be useful if the range of values
on the axes are being explicitly controlled via xlim or ylim arguments to a
function. Figure 3.10 gives an example of different xaxs settings.

The xaxt and yaxt settings control the “type” of axes. The default value,
"s", means that the axis is drawn. Specifying a value of "n" means that the
axis is not drawn.

The xlog and ylog settings control the transformation of values on the axes.
The default value is FALSE, which means that the axes are linear and values
are not transformed. If this value is TRUE then a logarithmic transformation
is applied to any values on the relevant dimension in the plot region. This
also affects the calculation of tick mark locations on the axes.

When data of a special nature are being plotted (e.g., time series data), some
of these settings may not apply (and may not have any sensible interpretation).

The bty setting is not strictly to do with axes, but it controls the output
of the box() function, which is most commonly used in conjunction with
drawing axes. This function draws a bounding box around the edges of the
plot region (by default). The bty setting controls the type of box that the
box() function draws. The value can be "n", which means that no box is
drawn, or it can be one of "o", "l", "7", "c", "u", or "]", which means that
the box drawn resembles the corresponding uppercase character. For example,
bty="c" means that the bottom, left, and top borders will be drawn, but the
right border will not be drawn.

In addition to these graphics state settings, many high-level plotting functions,
e.g., plot(), provide arguments xlim and ylim to control the range of the
scale on the axes. Section 2.6.1 has an example.
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3.2.6 Plotting regions

As described in Section 3.1.1, the traditional graphics system defines several
different regions on the graphics device. This section describes how to control
the size and layout of these regions using graphics state settings. Figure 3.11
shows a diagram of some of the settings that affect the widths and horizontal
placement of the regions.

The size of each margin can be controlled independently, but R will check
whether an overall specification is consistent. For example, if the margins are
made too big, so that there is not room left on the page for the plot region,
then R will give an error message like the following:

Error in plot.new() : figure margins too large

Outer margins

By default, there are no outer margins on a page. Outer margins can be
specified using the oma graphics state setting. This consists of four values
for the four margins in the order (bottom, left, top, right) and values
are interpreted as lines of text (a value of 1 provides space for one line of
text in the margin). The margins can also be specified in inches using omi or
in normalized device coordinates (i.e., as a proportion of the device region)
using omd. If omd is used, the margins are specified in the order (left,
right, bottom, top).

Figure regions

By default, the figure region is calculated from the settings for the outer mar-
gins and the number of figures on the page. The figure region can be specified
explicitly instead, using either the fig setting or the fin state setting. The
fig setting specifies the location, (left, right, bottom, top), of the fig-
ure region where each value is a proportion of the “inner” region (the page less
the outer margins). The fin setting specifies the size, (width, height), of
the figure region in inches and the resulting figure region is centered within
the inner region.

Figure margins

The figure margins can be controlled using the mar state setting. This consists
of four values for the four margins in the order (bottom, left, top, right)
where each value represents a number of lines of text. The default values are
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Figure 3.11
Graphics state settings controlling plot regions. These are some of the settings that
control the widths and horizontal locations of the plot regions. For ease of com-
parison, this diagram has the same layout as Figure 3.1: the central gray rectangle
represents the plot region, the lighter gray rectangle around that is the figure region,
and the darker gray rectangle around that is the outer margins. A similar diagram
could be produced for settings controlling heights and vertical locations.
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c(5, 4, 4, 2) + 0.1. The margins may also be specified in terms of inches
using mai.

The mex setting controls the size of a “line” in the margins. This does not
affect the size of text drawn in the margins, but is used to multiply the size
of text to determine the height of one line of text in the margins.

Plot regions

By default, the plot region is calculated from the figure region less the figure
margins. The location and size of the plot region may be controlled explicitly
instead, using the plt, pin, or pty settings. The plt setting allows the user to
specify the location of the plot region, (left, right, bottom, top), where
each value is a proportion of current figure region. The pin setting specifies
the size of the plot region, (width, height), in terms of inches.

The pty setting controls how much of the available space (figure region less
figure margins) the plot region occupies. The default value is "m", which
means that the plot region occupies all of the available space. A value of
"s" means that the plot region will take up as much of the available space as
possible, but it must be “square” (i.e., its physical width will be the same as
its physical height).

3.2.7 Clipping

Traditional graphics output is usually clipped to the plot region. This means
that any output that would appear outside the plot region is not drawn. For
example, in the default behavior, data symbols for (x, y) locations which lie
outside the ranges of the axes are not drawn. Traditional graphics functions
that draw in the margins clip output to the current figure region or to the
device. Section 3.4 has information about which functions draw in which
regions.

It can be useful to override the default clipping region. For example, this
is necessary to draw a legend outside the plot region using the legend()
function.

The traditional clipping region is controlled via the xpd setting. Clipping can
occur either to the whole device (an xpd value of NA), to the current figure
region (a value of TRUE), or to the current plot region (a value of FALSE, which
is the default).

There is also a clip() function for setting the clipping region to be smaller
than the plot region.
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3.2.8 Moving to a new plot

As described in Section 2.1, high-level graphics functions usually start a new
plot.

The devAskNewPage() function can be used to control whether the user is
prompted before the graphics system starts a new page of output.

The graphics state includes a setting called new, which controls whether a
function that starts a new plot will move on to the next figure region (possibly
a new page). Every plot sets the value to FALSE so that the next plot will
move on by default, but if this setting has the value TRUE then a new plot does
not move on to the next figure region. This can be used to overlay several
plots on the same figure (Section 3.4.5 has an example).

3.3 Arranging multiple plots

There are a number of ways to produce multiple plots on a single page.

The number of plots on a page, and their placement on the page, can be
controlled directly by specifying the traditional graphics state settings mfrow
or mfcol using the par() function, or through a higher-level interface provided
by the layout() function. The split.screen() function provides yet another
approach, where a figure region can itself be treated as a complete page to
split into further figure and plot regions.

These three approaches are mutually incompatible. For example, a call to the
layout() function will override any previous mfrow and mfcol settings. Also,
some high-level functions (e.g., coplot()) call layout() or par() themselves
to create a plot arrangement, which means that the output from such functions
cannot be arranged with other plots on a page (see Section 3.4.6 for further
discussion).

3.3.1 Using the traditional graphics state

The number of figure regions on a page can be controlled via the mfrow and
mfcol graphics state settings. Both of these consist of two values indicating
a number of rows, nr, and a number of columns, nc; these settings result in
nr × nc figure regions of equal size.

The top-left figure region is used first. If the setting is made via mfrow then



Customizing Traditional Graphics 73

the figure regions along the top row are used next from left to right, until that
row is full. After that, figure regions are used in the next row down, from
left to right, and so on. When all rows are full, a new page is started. For
example, the following code creates six figure regions on the page, arranged
in three rows and two columns and the regions are used in the order shown
in Figure 3.12a.

> par(mfrow=c(3, 2))

If the setting is made via mfcol, figure regions are used by column instead of
by row.

The order in which figure regions are used can be controlled explicitly by using
the mfg setting to specify the next figure region. This setting consists of two
values that indicate the row and column of the next figure to use.

3.3.2 Layouts

The layout() function provides an alternative to the mfrow and mfcol set-
tings. The primary difference is that the layout() function allows the creation
of multiple figure regions of unequal sizes.

The simple idea underlying the layout() function is that it divides the inner
region of the page into a number of rows and columns, but the heights of rows
and the widths of columns can be independently controlled, and a figure can
occupy more than one row or more than one column.

The first argument (and the only required argument) to the layout() function
is a matrix. The number of rows and columns in the matrix determines the
number of rows and columns in the layout.

The contents of the matrix are integer values that determine which rows and
columns each figure will occupy. The following layout specification is identical
to par(mfrow=c(3, 2)).

> layout(matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, ncol=2))

It may be easier to imagine the arrangement of figure regions if the matrix
is specified using cbind() or rbind(). The code below repeats the previous
example, but uses rbind() to specify the layout matrix.

> layout(rbind(c(1, 2),
c(3, 4),
c(5, 6)))
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The function layout.show() may be helpful for visualizing the figure regions
that are created. The following code creates a figure visualizing the layout
created in the previous example (see Figure 3.12a).

> layout.show(6)

The contents of the layout matrix determine the order in which the resulting
figure regions will be used. The following code creates a layout with exactly
the same rows and columns as the previous one, but the figure regions will be
used in the reverse order (see Figure 3.12b).

> layout(rbind(c(6, 5),
c(4, 3),
c(2, 1)))

By default, all row heights are the same and all column widths are the same
size and the available inner region is divided up equally. The heights argu-
ments can be used to specify that certain rows are given a greater portion
of the available height (for all of what follows, the widths argument works
analogously for column widths). When the available height is divided up, the
proportion of the available height given to each row is determined by dividing
the row heights by the sum of the row heights. For example, in the following
layout there are two rows and one column. The top row is given two thirds
of the available height, 2/(2 + 1), and the bottom row is given one third,
1/(2 + 1). Figure 3.12c shows the resulting layout.

> layout(matrix(c(1, 2)), heights=c(2, 1))

In the examples so far, the division of row heights has been completely in-
dependent of the division of column widths. The widths and heights can be
forced to correspond as well so that, for example, a height of 1 corresponds
to the same physical distance as a width of 1. This allows control over the
aspect ratio of the resulting figure. The respect argument is used to force
this correspondence. The following code is the same as the previous example
except that the respect argument is set to TRUE (see Figure 3.12d).

> layout(matrix(c(1, 2)), heights=c(2, 1),
respect=TRUE)

It is also possible to specify heights of rows and widths of columns in absolute
terms. The lcm() function can be used to specify heights and widths for a
layout in terms of centimeters. The following code is the same as the previous
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Figure 3.12
Some basic layouts: (a) A layout that is identical to par(mfrow=c(3, 2)); (b) Same
as (a) except the figures are used in the reverse order; (c) A layout with unequal row
heights; (d) Same as (c) except the layout widths and heights “respect” each other.
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example, except that a third, empty region is created to provide a vertical
gap of 0.5 cm between the two figures (see Figure 3.13a). The 0 in the first
matrix argument means that no figure occupies that region.

> layout(matrix(c(1, 0, 2)),
heights=c(2, lcm(0.5), 1),
respect=TRUE)

This next piece of code demonstrates that a figure may occupy more than one
row or column in the layout. This extends the previous example by adding a
second column and creating a figure region that occupies both columns of the
bottom row. In the matrix argument, the value 2 appears in both columns of
row 3 (see Figure 3.13b).

> layout(rbind(c(1, 3),
c(0, 0),
c(2, 2)),

heights=c(2, lcm(0.5), 1),
respect=TRUE)

Finally, it is possible to specify that only certain rows and columns should
respect each other’s heights/widths. This is done by specifying a matrix for
the respect argument. In the following code, the previous example is modified
by specifying that only the first column and the last row should respect each
other’s widths/heights. In this case, the effect is to ensure that the width of
figure region 1 is the same as the height of figure region 2, but the width of
figure region 3 is free to expand to the available width (see Figure 3.13c).

> layout(rbind(c(1, 3),
c(0, 0),
c(2, 2)),

heights=c(2, lcm(0.5), 1),
respect=rbind(c(0, 0),

c(0, 0),
c(1, 0)))

3.3.3 The split-screen approach

The split.screen() function provides yet another way to divide the page
into a number of figure regions. The first argument, figs, is either two
values specifying a number of rows and columns of figures (i.e., like the
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Figure 3.13
Some more complex layouts: (a) A layout with a row height specified in centimeters;
(b) A layout with a figure occupying more than one column; (c) Same as (b), but
with only column 1 and row 3 respected.
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mfrow setting), or a matrix containing a figure region location, (left, right,
bottom, top), on each row (i.e., like a par(fig) setting on each row).

Having established figure regions in this manner, a figure region is used by
calling the screen() function to select a region. This means that the order
in which figures are used is completely under the user’s control, and it is
possible to reuse a figure region, though there are dangers in doing so (the
on-line help for split.screen() provides further discussion). The function
erase.screen() can be used to clear a defined screen and close.screen()
can be used to remove one or more screen definitions.

An even more useful feature of this approach is that each figure region can
itself be divided up by a further call to split.screen(). This allows complex
arrangements of plots to be created.

The downside to this approach is that it does not fit very nicely with the
underlying traditional graphics system model (see Section 3.1). The recom-
mended way to achieve complex arrangements of plots is via the layout()
function from the previous section or by using the grid graphics system (see
Part II), possibly in combination with traditional high-level functions (see
Chapter 19). Section 11.4.2 describes yet more alternatives that are available
in extension packages.

3.4 Annotating plots

Sometimes it is not enough to be able to modify the default output from
high-level functions and further graphical output must be added, using low-
level functions, to achieve the desired result (see, for example, Figure 1.3). R
graphics in general is fundamentally oriented to supporting the annotation of
plots — the ability to add graphical output to an existing plot. In particular,
the regions and coordinate systems used in the construction of a plot remain
available for adding further output to the plot. For example, it is possible to
position a text label relative to the scales on the axes of a plot.

3.4.1 Annotating the plot region

Most low-level graphics functions that add output to an existing plot, add the
output to the plot region. In other words, locations are specified relative to
the user coordinate system (see Section 3.1.1).
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Table 3.4
The low-level traditional graphics functions for drawing basic graphical primi-
tives.

Function Description

points() Draw data symbols at locations (x, y)
lines() Draw lines between locations (x, y)
segments() Draw line segments between (x0, y0) and (x1, y1)
arrows() Draw line segments with arrowheads at the end(s)
xspline() Draw a smooth curve relative to control points (x, y)
rect() Draw rectangles with bottom-left corner at (xl, yb)

and top-right corner at (xr, yt)
polygon() Draw one or more polygons with vertices (x, y)
polypath() Draw a single polygon made up of one or more paths

with vertices (x, y)
rasterImage() Draw a bitmap image
text() Draw text at locations (x, y)

Graphical primitives

This section describes the graphics functions that provide the most basic
graphics output (lines, rectangles, text, etc). Table 3.4 provides a complete
list.

The most common use of this facility is to add extra sets of data to a plot. The
lines() function draws lines between (x, y) locations, and the points()
function draws data symbols at (x, y) locations. The following code demon-
strates a common situation where three different sets of y-values, recorded
at the same set of x-values, are plotted together on the same plot (see the
left-hand plot in Figure 3.14).

First some data are generated, consisting of one set of x-values and three sets
of y-values, and the first set of y-values are plotted as a gray line (type="l"
and col="gray"). The scale on the y-axis is set, using ylim, to ensure that
there will be room on the plot for all of the data series.

> x <- 1:10
> y <- matrix(sort(rnorm(30)), ncol=3)
> plot(x, y[,1], ylim=range(y), ann=FALSE, axes=FALSE,

type="l", col="gray")
> box(col="gray")

Now a set of points are added for the first set of y-values, then lines and points
are added for the other two sets of y-values.
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Figure 3.14
Annotating the plot region of a traditional graphics plot. The left-hand plot shows
points and extra lines being added to an initial line plot. The right-hand plot shows
text being added to an initial scatterplot.

> points(x, y[,1])
> lines(x, y[,2], col="gray")
> points(x, y[,2], pch=2)
> lines(x, y[,3], col="gray")
> points(x, y[,3], pch=3)

It is also possible to draw text at (x, y) locations with the text() function.
This is useful for labeling data locations, particularly using the pos argument
to offset the text so that it does not overlay the corresponding data symbols.
The following code creates a diagram demonstrating the use of text() (see
the right-hand plot in Figure 3.14). Again, some data are created and (gray)
data symbols are plotted at the (x, y) locations.

> x <- 1:5
> y <- x
> plot(x, y, ann=FALSE, axes=FALSE, col="gray", pch=16)
> box(col="gray")

Now some text labels are added, with each one offset in a different way from
the (x, y) location. Notice that the arguments to text() may be vectors so
that several pieces of text are drawn by the one function call.
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> text(x[-3], y[-3], c("right", "top", "bottom", "left"),
pos=c(4, 3, 1, 2))

> text(3, 3, "overlay")

Like the plot() function, the text(), lines(), and points() functions are
generic. This means that they have flexible interfaces for specifying the data
for the (x, y) locations, or they produce different output when given objects
of a particular class in the x argument. For example, both lines(), and
points() will accept formulae for specifying the (x, y) locations and the
lines() function will behave sensibly when given a ts (time series) object to
draw.

The text() function normally takes a character value to draw, but it will also
accept an R expression (as produced by the expression() function), which
can be used to produce a mathematical formula with special symbols (e.g.,
Greek letters) and formatting (e.g., superscripts). Section 10.5 describes this
facility in more detail.

As a parallel to the matplot() function (see Section 2.5), there are functions
matpoints() and matlines() specifically for adding lines and data symbols
to a plot, given x or y as matrices.

Having access to graphical primitives not only makes it easy to add new data
series to a plot and to add labels, but it also makes it possible to add arbitrary
drawing to a plot. In addition to lines, points, and text, there are graphical
primitives for drawing more complex shapes.

In order to demonstrate these other graphical primitives, the following code
produces a simple set of x- and y-values. These points will be plotted and
used to draw a variety of shapes (see Figure 3.15).

> t <- seq(60, 360, 30)
> x <- cos(t/180*pi)*t/360
> y <- sin(t/180*pi)*t/360

The lines() function draws a single line through several points. Missing
values in the (x, y) locations will create breaks in the line.

> lines(x, y)

An alternative is provided by the segments() function, which will draw several
different straight lines between pairs of end points. In the following code, a
straight line is drawn from (0, 0) to each of the (x, y) locations. Notice that
R’s normal recycling rule behavior is applied to most arguments of graphics
functions.
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lines() segments() arrows()

xspline() rect() polygon()

polypath() xspline() rasterImage()

Figure 3.15
Drawing in the plot region of a traditional graphics plot. These pictures show some
of the functions that draw more complex graphical shapes. The shapes are based
on a set of (x, y) points which are drawn as light gray dots.
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> segments(0, 0, x, y)

The arrows() function produces the same output as segments(), but also
adds simple arrowheads at either end of the line segments. The length argu-
ment is used here to control the size of the arrowheads.

> arrows(0, 0, x[-1], y[-1], length=.1)

The xspline() function also produces a line, but the line is an X-spline, which
treats the (x, y) locations as control points from which to produce a smooth
curve. The smoothness of the curve is controlled by a shape parameter.

> xspline(x, y, shape=1)

There are also several functions for producing closed shapes. The simplest
is rect(), which only requires a left, bottom, right, and top value to draw
a rectangle (though all values can be vectors, which will result in several
rectangles being drawn).

> rect(min(x), min(y), max(x), max(y), col="gray")

The polygon() function produces more complex shapes, using the (x, y)
locations as vertices. Multiple polygons may be drawn using polygon() by
inserting an NA value between each set of polygon vertexes. For both rect()
and polygon(), the col argument specifies the color to fill the interior of
the shape and the argument border controls the color of the line around the
boundary of the shape.

> polygon(x, y, col="gray")

The polygon() function can draw self-intersecting polygons, but cannot rep-
resent polygons with holes. For the latter case, there is polypath(), which
only draws a single polygon, but the polygon can be composed of more than
one subpath. This allows for polygons consisting of distinct paths as well as
polygons with holes.

> polypath(c(x, NA, .5*x), c(y, NA, .5*y),
col="gray", rule="evenodd")

The xspline() function can also be used to create closed shapes, by specifying
open=FALSE.
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> xspline(x, y, shape=1, open=FALSE, col="gray")

Finally, there is a function, rasterImage(), for drawing bitmap images on a
plot. The bitmap can be an external file, or it can just be a vector, matrix,
or array. The following code draws the R logo at each of the (x, y) locations
(code to read in the R logo is not shown; see Chapter 18 for more information).

> rasterImage(rlogo,
x - .07, y - .07,
x + .07, y + .07,
interpolate=FALSE)

These examples only provide a tiny glimpse of what is possible with these
graphical primitives (see Figure 3.15). The possibilities are endless and a
number of the examples in the remainder of this chapter provide some further
demonstrations of what can be achieved by adding basic graphical shapes to
a plot (see, for example, Figure 3.23).

Graphical utilities

In addition to the low-level graphical primitives of the previous section, there
are a number of utility functions that provide a set of slightly more complex
shapes.

The grid() function adds a series of grid lines to a plot. This is simply a
series of line segments, but the default appearance (light gray and dotted) is
suited to the purpose of providing visual cues to the viewer without interfering
with the primary data symbols.

The abline() function provides a number of convenient ways to add a line
(or lines) to a plot. The line(s) can be specified either by a slope and y-axis
intercept, or as a series of x-locations for vertical lines or as a series of y-
locations for horizontal lines. The function will also accept the coefficients
from a linear regression analysis (even as an "lm" object), thereby providing
a simple way to add a line of best fit to a scatterplot.

The following code annotates a basic scatterplot with a line and arrows (see
the left-hand plot of Figure 3.16).

First, some data are generated and plotted.

> x <- runif(20, 1, 10)
> y <- x + rnorm(20)
> plot(x, y, ann=FALSE, axes=FALSE, col="gray", pch=16)
> box(col="gray")



Customizing Traditional Graphics 85

Line of best fit

abline() & arrows() rug()

Figure 3.16
More examples of annotating the plot region of a traditional graphics plot. The
left-hand plot shows a line of best fit (plus a text label and arrow) being added to
an initial scatterplot. The right-hand plot shows a series of ticks being added as a
rug plot on an initial histogram.

Now a line of best fit is drawn through the data using abline() and a text
label and arrow are added using text() and arrows().

> lmfit <- lm(y ~ x)
> abline(lmfit)
> arrows(5, 8, 7, predict(lmfit, data.frame(x=7)),

length=0.1)
> text(5, 8, "Line of best fit", pos=2)

The box() function draws a rectangle around the boundary of the plot region.
The which argument makes it possible to draw the rectangle around the cur-
rent figure region, inner region, or outer region instead. The box() function
has been used in many of the examples in this section.

The rug() function produces a“rug”plot along one of the axes, which consists
of a series of tick marks representing data locations. This can be useful to
represent an additional one-dimensional plot of data (e.g., in combination
with a density curve). The following code uses this function to annotate a
histogram (see the right-hand plot of Figure 3.16).
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> y <- rnorm(50)
> hist(y, main="", xlab="", ylab="", axes=FALSE,

border="gray", col="light gray")
> box(col="gray")
> rug(y, ticksize=0.02)

Missing values and non-finite values

R has special values representing missing observations (NA) and non-finite
values (NaN and Inf). Most traditional graphics functions allow such values
within (x, y) locations and handle them by not drawing the relevant location.
For drawing data symbols or text, this means the relevant data symbol or piece
of text will not be drawn. For drawing lines, this means that lines to or from
the relevant location are not drawn; a gap is created in the line. For drawing
rectangles, an entire rectangle will not be drawn if any of the four boundary
locations is missing or non-finite.

Polygons are a slightly more complex case. For drawing polygons, a missing
or non-finite value in x or y is interpreted as the end of one polygon and the
start of another. Figure 3.17 shows an example. On the left, a polygon is
drawn through 12 locations evenly spaced around a circle. On the right, the
first, fifth, and ninth locations have been set to NA so the output is split into
three separate polygons.

Missing or non-finite values can also be specified for some traditional graphics
state settings. For example, if a color setting is missing or non-finite then
nothing is drawn (this is a brute-force way to specify a completely transparent
color). Similarly, specifying a missing value or non-finite value for cex means
that the relevant data symbol or piece of text is not drawn.

3.4.2 Annotating the margins

There are only two functions that produce output in the figure or outer mar-
gins, relative to the margin coordinate systems (Section 3.1.1).

The mtext() function draws text at any location in any of the margins. The
outer argument controls whether output goes in the figure or outer margins.
The side argument determines which margin to draw in: 1 means the bottom
margin, 2 means the left margin, 3 means the top margin, and 4 means the
right margin.

Text is drawn a number of lines of text away from the edges of the plot region
for figure margins or a number of lines away from the edges of the inner region
for outer margins. In the figure margins, the location of the text along the
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Figure 3.17
Drawing polygons using the polygon() function. On the left, a single polygon
(dodecagon) is produced from multiple (x, y) locations. On the right, the first,
fifth, and ninth values have been set to NA, which splits the output into three separate
polygons. The polygon() function does not draw the gray NA values; those have been
drawn using the text() function purely for the purposes of illustration.

margin can be specified relative to the user coordinates on the relevant axis
using the at argument. In some cases it is possible to specify the location as
a proportion of the length of the margin using the adj argument, but this is
dependent on the value of the las state setting (see page 62). For certain las
settings, the adj argument instead controls the justification of the text relative
to a position chosen by the las argument. There is also a padj argument for
controlling the “vertical” justification of text in the margins (the justification
of the text perpendicular to the reading direction of the text).

The title() function is essentially a specialized version of mtext(). It is more
convenient for producing a few specific types of output, but much less flexible
than mtext(). This function can be used to produce a main title for a plot (in
the top figure margin), axis labels (in the left and bottom figure margins), and
a subtitle for a plot (in the bottom margin below the x-axis label). The output
from this function is heavily influenced by various graphics state settings, such
as cex.main and col.main, which control the size and color of the title.

Just like the text() function, which draws text in the plot region, the func-
tions that draw text in the margins all accept not only a character value, but
also an R expression, so that axis labels and plot titles can include special
symbols and formatting (see Section 10.5).

With a little extra effort, it is also possible to produce graphical output in
the figure or outer margins using the functions that normally draw in the



88 R Graphics, Second Edition

Left end of margin

Right end of margin

Label below x=30

Figure 3.18
Annotating the margins of a traditional graphics plot. Text has been added in
margin 3 of the top plot and in margins 1 and 3 in the bottom plot. Thick gray
lines have been added to both plots (and overlapped so that it appears to be a single
rectangle across the plots).

plot region (e.g., points() and lines()). In order to do this, the clipping
region of the plot must first be set using the xpd state setting (see Section
3.2.7). This approach is not very convenient because the functions are drawing
relative to user coordinates rather than locations relative to the margin co-
ordinate systems. Nevertheless, it can sometimes be useful and the functions
grconvertX() and grconvertY() can help with converting locations between
coordinate systems.

The following code demonstrates the use of mtext() and a simple application
of using lines() outside the plot region for drawing what appears to be a
rectangle extending across two plots (see Figure 3.18).∗

First of all, the mfrow setting is used to set up an arrangement of two figure
regions, one above the other. The clipping region is set to the entire device
using xpd=NA.

∗This example was motivated by a question to R-help on December 14, 2004 with
subject: “drawing a rectangle through multiple plots”.
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> y1 <- rnorm(100)
> y2 <- rnorm(100)

> par(mfrow=c(2, 1), xpd=NA)

The first data set is plotted as a line on the top plot and a label is added
at the left end of figure margin 3. In addition, thick gray lines are drawn to
represent the top of the rectangle, with the lines deliberately extending well
below the bottom of the plot.

> plot(y1, type="l", axes=FALSE,
xlab="", ylab="", main="")

> box(col="gray")
> mtext("Left end of margin", adj=0, side=3)
> lines(x=c(20, 20, 40, 40), y=c(-7, max(y1), max(y1), -7),

lwd=3, col="gray")

The second data set is plotted as a line in the bottom plot, a label is added
to this plot at the right end of figure margin 3, and another label is drawn
beneath the x-location 30 in figure margin 1. Finally, thick gray lines are
drawn to represent the bottom of the rectangle, again deliberately extending
these above the plot. The thick gray lines overlap the lines drawn with respect
to the top plot to create the impression of a single rectangle traversing both
plots.

> plot(y2, type="l", axes=FALSE,
xlab="", ylab="", main="")

> box(col="gray")
> mtext("Right end of margin", adj=1, side=3)
> mtext("Label below x=30", at=30, side=1)
> lines(x=c(20, 20, 40, 40), y=c(7, min(y2), min(y2), 7),

lwd=3, col="gray")

3.4.3 Legends

The traditional graphics system provides the legend() function for adding a
legend or key to a plot. The legend is usually drawn within the plot region,
and is located relative to user coordinates. The function has many arguments,
which allow for a great deal of flexibility in the specification of the contents
and layout of the legend. The following code demonstrates a couple of typical
uses.
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The first example shows a scatterplot with a legend to relate group names to
different symbols (see the top plot in Figure 3.19). The first two arguments
give the position of the top-left corner of the legend, relative to the user
coordinate system. The third argument provides labels for the legend and,
because the pch argument is also specified, data symbols are drawn beside
each label.

> with(iris,
plot(Sepal.Length, Sepal.Width,

pch=as.numeric(Species), cex=1.2))
> legend(6.1, 4.4, c("setosa", "versicolor", "virginica"),

cex=1.5, pch=1:3)

The next example shows a barplot with a legend to relate group names to
different fill patterns (see the bottom plot in Figure 3.19). In this example,
the angle, density, and fill arguments are specified, so small rectangles
with fill patterns are drawn beside each label in the legend.

> barplot(VADeaths[1:2,], angle=c(45, 135), density=20,
col="gray", names=c("RM", "RF", "UM", "UF"))

> legend(0.4, 38, c("55-59", "50-54"), cex=1.5,
angle=c(135, 45), density=20, fill="gray")

It should be noted that it is entirely the responsibility of the user to ensure
that the legend corresponds to the plot. There is no automatic checking that
data symbols in the legend match those in the plot, or that the labels in the
legend have any correspondence with the data. This is one area where the
lattice and ggplot2 graphics systems provide a significant convenience (see
Part II).

Some high-level functions draw their own legend specific to their purpose (e.g.,
filled.contour()).

3.4.4 Axes

In most cases, the axes that are automatically generated by the traditional
graphics system will be sufficient for a plot. This is true even when the data
being plotted on an axis are not numeric. For example, the axes of a boxplot
or barplot are labeled appropriately using group names.

Section 3.2.5 describes ways in which the default appearance of automatically-
generated axes can be modified, but it is more often the case that the user
needs to inhibit the production of the automatic axis and draw a customized
axis using the axis() function.
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Figure 3.19
Some simple legends. Legends can be added to any kind of plot and can relate text
labels to different symbols or different fill colors or patterns.
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The first step is to inhibit the default axes. Most high-level functions should
provide an axes argument which, when set to FALSE, indicates that the high-
level function should not draw axes. Specifying the traditional graphics setting
xaxt="n" (or yaxt="n") may also do the trick.

The axis() function can draw axes on any side of a plot (chosen by the
side argument), and the user can specify the location along the axis of tick
marks and the text to use for tick labels (using the at and labels arguments,
respectively). The following code demonstrates a simple example of a plot
where the automatic axes are inhibited and custom axes are drawn, including
a “secondary” y-axis on the right side of the plot (see Figure 3.20).

First of all, some temperature data are generated and an empty plot is created
with no data symbols and no axes.

> x <- 1:2
> y <- runif(2, 0, 100)
> par(mar=c(4, 4, 2, 4))
> plot(x, y, type="n", xlim=c(0.5, 2.5), ylim=c(-10, 110),

axes=FALSE, ann=FALSE)

Next, the main y-axis is drawn with specific tick locations to represent the
Centigrade scale. The number 2 means that the axis should be drawn in
margin 2 (the left margin) and the at argument specifies the locations of the
tick marks for the axis.

> axis(2, at=seq(0, 100, 20))
> mtext("Temperature (Centigrade)", side=2, line=3)

Now the bottom axis is drawn with special labels and a secondary y-axis is
drawn to represent the Fahrenheit scale. In the first expression, the labels
argument is used to draw special tick mark labels on the x-axis. The second
expression draws the secondary y-axis to the right of the plot by specifying 4
as the axis margin number.

> axis(1, at=1:2, labels=c("Treatment 1", "Treatment 2"))
> axis(4, at=seq(0, 100, 20), labels=seq(0, 100, 20)*9/5 + 32)
> mtext("Temperature (Fahrenheit)", side=4, line=3)
> box()

Finally, some thermometer-like symbols are drawn to represent the actual
temperatures.
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Figure 3.20
Customizing axes. An initial plot is drawn with a y-scale in degrees Centigrade,
then a secondary y-axis is drawn with a scale in degrees Fahrenheit. The x-axis is
drawn using special text labels, rather than the default numeric locations of the tick
marks.
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> segments(x, 0, x, 100, lwd=20)
> segments(x, 0, x, 100, lwd=16, col="white")
> segments(x, 0, x, y, lwd=16, col="gray")

The axis() function is not generic, but there are special alternative func-
tions for plotting time-related data. The functions axis.Date() and
axis.POSIXct() take an object containing dates and produce an axis with
appropriate labels representing times, days, months, and years (e.g., 10:15,
Jan 12 or 1995).

In some cases, it may be useful to draw tick marks at the locations that the
default axis would use, but with different labels. The axTicks() function can
be used to calculate these default locations. This function is also useful for
enforcing an xaxp (or yaxp) graphics state setting, which control the number
and placement of tick marks. If these settings are specified via par(), they
usually have no effect because the traditional graphics system almost always
calculates the settings itself. The user can choose these settings by passing
them as arguments to axTicks(), then passing the resulting locations via the
at argument to axis().

3.4.5 Coordinate systems

The traditional graphics system provides a number of coordinate systems for
conveniently locating graphical output (see Section 3.1.1). Graphical output
in the plot region is automatically positioned relative to the scales on the axes
and text in the figure margins is placed in terms of a number of lines away
from the edge of the plot (i.e., a scale that naturally corresponds to the size
of the text).

It is also possible to locate output according to other coordinate systems that
are not automatically supplied, but a little more work is required from the
user. The basic principle is that the traditional graphics state can be queried
to determine features of existing coordinate systems, then new coordinate
systems can be calculated from this information.

The par() function

As well as being used to enforce new graphics state settings, the function
par() can also be used to query current graphics state settings. The most
useful settings are: din, fin, and pin, which reflect the current size, (width,
height), of the graphics device, figure region, and plot region, in inches; and
usr, which reflects the current user coordinate system (i.e., the ranges on the
axes). The values of usr are in the order (xmin, xmax, ymin, ymax). When
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Figure 3.21
Custom coordinate systems. The lines and text are drawn relative to real physical
centimeters (rather than the default coordinate system defined by the scales on plot
axes).

a scale has a logarithmic transformation, the values are (10^xmin, 10^xmax,
10^ymin, 10^ymax).

There are also settings that reflect the size, (width, height), of a “standard”
character. The setting cin gives the size in inches, cra in “rasters” or pixels,
and cxy in “user coordinates.” However, these values are not very useful
because they only refer to a cex value of 1 (i.e., they ignore the current
cex setting) and they only refer to the ps value when the current graphics
device was first opened. Of more use are the strheight() function and the
strwidth() function. These calculate the height and width of a given piece
of text in inches, or in terms of user coordinates, or as a proportion of the
current figure region (taking into account the current cex and ps settings).

The following code demonstrates a simple example of making use of cus-
tomized coordinates where a ruler is drawn showing centimeter units (see
Figure 3.21).

A blank plot region is set up first and calculations are performed to establish
the relationship between user coordinates in the plot and physical centime-
ters.∗

> plot(0:1, 0:1, type="n", axes=FALSE, ann=FALSE)
> usr <- par("usr")
> pin <- par("pin")
> xcm <- diff(usr[1:2])/(pin[1]*2.54)
> ycm <- diff(usr[3:4])/(pin[2]*2.54)

∗R graphics relies on having accurate information on the physical size of the natural
units on the page or screen (e.g., the physical size of pixels on a computer screen). The
physical size of output for PostScript and PDF files should always be correct, but small
inaccuracies may occur when specifying output with an physical size (such as inches) on
screen devices such as Windows and X Window windows.
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Now drawing can occur with positions expressed in terms of centimeters. First
of all a “drop shadow” is drawn to give a three-dimensional effect by drawing
a gray rectangle offset by 2 mm from the main ruler. The call to par() makes
sure that the gray rectangle is not clipped to the plotting region (see Section
3.2.7).

> par(xpd=NA)
> rect(0 + 0.2*xcm, 0 - 0.2*ycm,

1 + 0.2*xcm, 1 - 0.2*ycm,
col="gray", border=NA)

The ruler itself is drawn with a call to rect() to draw the edges of the ruler,
a call to segments() to draw the scale, and calls to text() to label the scale.

> rect(0, 0, 1, 1, col="white")
> segments(seq(1, 8, 0.1)*xcm, 0,

seq(1, 8, 0.1)*xcm,
c(rep(c(0.5, rep(0.25, 4),

0.35, rep(0.25, 4)),
7), 0.5)*ycm)

> text(1:8*xcm, 0.6*ycm, 0:7, adj=c(0.5, 0))
> text(8.2*xcm, 0.6*ycm, "cm", adj=c(0, 0))

There are utility functions, xinch() and yinch(), for performing the inches-
to-user coordinates transformation (plus xyinch() for converting a location in
one step and cm() for converting inches to centimeters). More powerful still
are the grconvertX() and grconvertY() functions, which can be used to
convert locations between any of the coordinate systems that the traditional
graphics engine recognizes (see Table 3.5).

One problem with performing coordinate transformations like these is that the
locations and sizes being drawn have no memory of how they were calculated.
They are specified as locations and dimensions in user coordinates. This
means that if the graphics window is resized (so that the relationship between
physical dimensions and user coordinates changes), the locations and sizes will
no longer have their intended meaning. If, in the above example, the graphics
window is resized, the ruler will no longer accurately represent centimeter
units. This problem will also occur if output is copied from one device to
another device that has different physical dimensions. The legend() function
performs calculations like these when arranging the components of a legend
and its output is affected by device resizes and copying between devices.∗

∗It is possible to work around these problems in by using the recordGraphics() function,
although this function should be used with extreme care.
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Table 3.5
The coordinate systems recognized by the traditional graphics system.

Name Description

"user" The scales on the plot axes
"inches" Inches, with (0, 0) at bottom-left
"device" Pixels for screen or bitmap output, otherwise 1/72"
"ndc" Normalized coordinates, with (0, 0) at bottom-left

and (1, 1) at top-right, within the entire device
"nic" Normalized coordinates within the inner region
"nfc" Normalized coordinates within the figure region
"npc" Normalized coordinates within the plot region

Overlaying output

It is sometimes useful to plot two data sets on the same plot where the data
sets share a common x-variable, but have very different y-scales. This can be
achieved in at least two ways. One approach is simply to use par(new=TRUE)
to overlay two distinct plots on top of each other, though care must be taken to
avoid conflicting axes overwriting each other. Another approach is to explicitly
reset the usr state setting before plotting a second set of data. The following
code demonstrates both approaches to produce exactly the same result (see
the top plot of Figure 3.22).

The data are yearly numbers of drunkenness-related arrests∗ and mean annual
temperature in New Haven, Connecticut from 1912 to 1971. The temperature
data are available as the data set nhtemp in the datasets package. There are
only arrests data for the first 9 years.

> drunkenness <- ts(c(3875, 4846, 5128, 5773, 7327,
6688, 5582, 3473, 3186,
rep(NA, 51)),

start=1912, end=1971)

The first approach is to draw a plot of the drunkenness data, call
par(new=TRUE), then draw a complete second plot of the temperature data on
top of the first plot. The second plot does not draw default axes (axes=FALSE),
but uses the axis() function to draw a secondary y-axis to represent the tem-
perature scale.

∗These data were obtained from “Crime Statistics and Department Demographics” on
the New Haven Police Department Web Site:
http://www.cityofnewhaven.com/police/html/stats/crime/yearly/1863-1920.htm.
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Figure 3.22
Overlaying plots. In the top plot, two line plots are drawn one on top of each other
to produce aligned plots of two data sets with very different scales. In the bottom
plot, the plotting function symbols() is used in “annotating mode” so that it adds
circles to an existing scatterplot rather than producing a complete plot itself.
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> par(mar=c(5, 6, 2, 4))
> plot(drunkenness, lwd=3, col="gray", ann=FALSE, las=2)
> mtext("Drunkenness\nRelated Arrests", side=2, line=3.5)
> par(new=TRUE)
> plot(nhtemp, ann=FALSE, axes=FALSE)
> mtext("Temperature (F)", side=4, line=3)
> title("Using par(new=TRUE)")
> axis(4)

The second approach draws only one plot (for the drunkenness data). The
user coordinate system is then redefined by specifying a new usr setting and
the second “plot” is produced simply using lines(). Again, a secondary axis
is drawn using the axis() function.

> par(mar=c(5, 6, 2, 4))
> plot(drunkenness, lwd=3, col="gray", ann=FALSE, las=2)
> mtext("Drunkenness\nRelated Arrests", side=2, line=3.5)
> usr <- par("usr")
> par(usr=c(usr[1:2], 47.6, 54.9))
> lines(nhtemp)
> mtext("Temperature (F)", side=4, line=3)
> title("Using par(usr=...)")
> axis(4)

Some high-level functions (e.g., symbols() and contour()) provide an argu-
ment called add which, if set to TRUE, will add the function output to the
current plot, rather than starting a new plot. The following code shows the
symbols() function being used to annotate a basic scatterplot (see the bot-
tom plot of Figure 3.22). The data used in this example are physical meas-
urements of black cherry trees available as the trees data frame from the
datasets package.

> with(trees,
{
plot(Height, Volume, pch=3,

xlab="Height (ft)",
ylab=expression(paste("Volume ", (ft^3))))

symbols(Height, Volume, circles=Girth/12,
fg="gray", inches=FALSE, add=TRUE)

})

Another function of this type is the bxp() function. This function is called by
boxplot() to draw the individual boxplots and is specifically set up to add
boxplots to an existing plot (although it can also produce a complete plot).
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It is also worth remembering that R follows a painters model, with later output
obscuring earlier output. The following example makes use of this feature to
fill a complex region within a plot (see Figure 3.23).

The first step is to generate some data and calculate some important features
of the data.

> xx <- c(1:50)
> yy <- rnorm(50)
> n <- 50
> hline <- 0

The first thing to draw is a plot with a filled polygon beneath the y-values
(see the top-left plot of Figure 3.23).

> plot (yy ~ xx, type="n", axes=FALSE, ann=FALSE)
> polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)),

col="gray", border=NA)

The next step is to draw a rectangle over the top of the polygon up to a fixed
y-value. The expression par("usr") is used to obtain the current x-scale and
y-scale ranges (see the top-right plot of Figure 3.23).

> usr <- par("usr")
> rect(usr[1], usr[3], usr[2], hline, col="white", border=NA)

Now a line through the y-values is drawn over the top of the rectangle (see
the bottom-left plot of Figure 3.23).

> lines(xx, yy)

Finally, a horizontal line is drawn to indicate the y-value cut-off, and axes are
added to the plot (see the bottom-right plot of Figure 3.23).

> abline (h=hline,col="gray")
> box()
> axis(1)
> axis(2)
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Figure 3.23
Overlaying output (making use of the painters model). The final complex plot,
shown at bottom-right, is the result of overlaying several basic pieces of output: a
gray polygon at top-left, with a white rectangle over the top (top-right), a black
line on top of that (bottom-left), and a gray line on top of it all (plus axes and a
bounding box).
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3.4.6 Special cases

Some high-level functions are a little more difficult to annotate than others
because the plotting regions that they set up either are not immediately ob-
vious or are not available after the function has run. This section describes
a number of high-level functions where additional knowledge is required to
perform annotations.

Obscure scales on axes

It is not immediately obvious how to add extra annotation to a barplot or a
boxplot in traditional R graphics because the scale on the categorical axis is
not obvious.

The difficulty with the barplot() function is that because the scale on the
x-axis is not labeled at all by default. the numeric scale is not obvious (and
calling par("usr") is not much help because the scale that the function sets
up is not intuitive either). In order to add annotations sensibly to a barplot
it is necessary to capture the value returned by the function. This return
value gives the x-locations of the mid-points of each bar that the function has
drawn. These midpoints can then be used to locate annotations relative to
the bars in the plot.

The code below shows an example of adding extra horizontal reference lines
to the bars of a barplot. The mid-points of the bars are saved to a variable
called midpts, then locations are calculated from those mid-points (and the
original counts) to draw horizontal white line segments within each bar using
the segments() function (see the left plot of Figure 3.24).

> y <- sample(1:10)
> midpts <- barplot(y, col=" light gray")
> width <- diff(midpts[1:2])/4
> left <- rep(midpts, y - 1) - width
> right <- rep(midpts, y - 1) + width
> heights <- unlist(apply(matrix(y, ncol=10),

2, seq))[-cumsum(y)]
> segments(left, heights, right, heights,

col="white")

The boxplot() function is similar to the barplot() function in that the x-
scale is typically labeled with category names so the numeric scale is not obvi-
ous from looking at the plot. Fortunately, the scale set up by the boxplot()
function is much more intuitive. The individual boxplots are drawn at x-
locations 1:n, where n is the number of boxplots being drawn.
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Figure 3.24
Special-case annotations. Some examples of functions where annotation requires
special care. In the barplot at left, the value returned by the barplot() function is
used to add horizontal white lines within the bars. Jittered points are added to the
boxplot (right) using the knowledge that the ith box is located at position i on the
x-axis.

The following code provides a simple example of annotating boxplots to add
a jittered dotplot of individual data points on top of the boxplots. This
provides a detailed view of the data as well as showing the main features via
the boxplot. It is also a useful way to show how interesting features of the
data, such as small clusters of points, can be hidden by a boxplot. In this
example, the jittered data are centered upon the x-locations 1:2 to correspond
to the centers of the relevant boxplots (see the right plot of Figure 3.24).

> with(ToothGrowth,
{
boxplot(len ~ supp, border="gray",

col="light gray", boxwex=0.5)
points(jitter(rep(1:2, each=30), 0.5),

unlist(split(len, supp)),
cex=0.5, pch=16)

})

Functions that draw several plots

The pairs() function is an example of a high-level function that draws more
than one plot. This function draws a matrix of scatterplots. Such functions
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tend to save the traditional graphics state before drawing, call par(mfrow) or
layout() to arrange the individual plots, and restore the traditional graphics
state once all of the individual plots have been drawn. This means that it
is not possible to annotate any of the plots drawn by the pairs() function
once the function has completed drawing. The regions and coordinate systems
that the function set up to draw the individual plots have been thrown away.
The only way to annotate the output from such functions is by way of panel
functions.

The pairs() function has a number of arguments that allow the user to
specify a function: panel, diag.panel, upper.panel, lower.panel, and
text.panel. The functions specified via these arguments are run as each
individual plot is drawn. In this way, the panel function has access to the plot
regions that are set up for each individual plot.

The following code shows a pairs() plot of the first two variables in the iris
data set. The diag.panel argument is used to draw boxplots in the diagonal
panels, instead of the default variable names. Notice that the panel function
must only add extra output, not start its own plot and this is achieved in this
case by called boxplot() with add=TRUE. Because axes=FALSE, the normal
boxplot axes are not drawn, and the at argument is used to make sure the
boxplots are centered horizontally within the panels. Because the normal
diagonal panels have variable names drawn in them, a text.panel function
is also specified. This panel function calls mtext() so that the normal text is
drawn in the top margin of the panel instead. The resulting plot is shown in
Figure 3.25.

> pairs(iris[1:2],
diag.panel=function(x, ...) {

boxplot(x, add=TRUE, axes=FALSE,
at=mean(par("usr")[1:2]))

},
text.panel=function(x, y, labels, ...) {

mtext(labels, side=3, line=0)
})

The filled.contour() function and the coplot() function have the same
problem as pairs() because the legends that they draw are actually separate
plots. Again, those functions allow annotation via panel function arguments.

The panel.smooth() function provides a predefined panel function to add a
smoothed trend line to a scatterplot of points.
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Figure 3.25
A panel function example. An example of using a panel function to add customized
output to each the diagonal panels of a pairs() plot.
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3D plots

It is possible to annotate a plot that was produced using the persp() function,
but it is more difficult than for most other high-level functions. The impor-
tant step is to acquire the transformation matrix that the persp() function
returns. This can be used to transform 3D locations into 2D locations, using
the trans3d() function. The result can then be given to the standard anno-
tation functions such as lines() and text(). The persp() function also has
an add argument, which allows multiple persp() plots to be over-plotted.

The following code demonstrates annotation of persp() output to add a con-
tour plot beneath a 3D plot of the Maunga Whau volcano in Auckland New
Zealand (see Figure 3.26). The data are from the volcano matrix in the
datasets package.

The first step is to draw the 3D surface. The important features of this code
are that the zlim is specified to leave room for the contour plot and the result
of the call to persp() is assigned to a variable called trans.

> z <- 2 * volcano
> x <- 10 * (1:nrow(z))
> y <- 10 * (1:ncol(z))
> trans <- persp(x, y, z, zlim=c(0, max(z)),

theta = 150, phi = 12, lwd=.5,
scale = FALSE, axes=FALSE)

The next code calculates contour lines from the 3D data and then adds them
to the plot. The result of contourLines() is a list, so lapply() is used to
draw each contour line separately. The locations of the contour lines in the
3D plot are calculated using trans3d(), which is given the x and y vertices
for a contour line, plus the z-position of zero (below the 3D surface). The
trans3d() function converts the 3D locations into 2D locations which are
drawn with the lines() function.

> clines <- contourLines(x, y, z)
> lapply(clines,

function(contour) {
lines(trans3d(contour$x, contour$y, 0, trans))

})

A major limitation with annotating persp() output is that there is no support
for automatically hiding output that should not be seen. In the above example,
the view point was carefully chosen so that the entire contour plot was visible
beneath the 3D surface. If the viewing angle is changed so that the surface
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Figure 3.26
Annotating a 3D surface created by persp(). The contour lines are added to the
3D plot using the transformation matrix returned by the persp() function.

and the contour lines overlap, the contour lines will be drawn on top of the 3D
surface. In simple cases, this sort of problem can be worked around through
careful ordering of drawing operations, but in the general case something more
sophisticated is required (see Chapter 16).

3.5 Creating new plots

There are cases where no existing plot provides a sensible starting point for
creating the final plot that the user requires, situations where simply draw-
ing more shapes on the plot is not sufficient. This section describes how to
construct a new plot entirely from scratch for such cases.

The plot.new() function is the most basic starting point for producing a
traditional graphics plot (the frame() function is equivalent). This function
starts a new plot and sets up the various plotting regions described in Section
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3.1.1, with both the x-scale and y-scale set to (0, 1).∗ The size and position
of the regions that are set up depend on the current graphics state settings.

The plot.window() function resets the scales in the user coordinate system,
given x- and y-ranges via the arguments xlim and ylim, and the plot.xy()
function draws data symbols and lines between locations within the plot re-
gion.

3.5.1 A simple plot from scratch

In order to demonstrate the use of these functions, the following code produces
the simple scatterplot in Figure 1.1 from scratch.

> plot.new()
> plot.window(range(pressure$temperature),

range(pressure$pressure))
> plot.xy(pressure, type="p")
> box()
> axis(1)
> axis(2)

The call to plot.new() starts a new, completely blank, plot and the call to
plot.window() sets the scales on the axes to fit the range of the data to be
plotted. At this point, there is still nothing drawn. The plot.xy() function
draws data symbols (type="p") at the data locations, then box() draws a
rectangle around the plot region, and axis() is used to draw the axes.

The output could be produced by the simple expression plot(pressure), but
this code shows that the steps in building a plot are available as separate func-
tions as well, which allows the user to have fine control over the construction
of a plot.

3.5.2 A more complex plot from scratch

This section describes a slightly more complex example of creating a plot from
scratch. The final goal is represented in Figure 3.27 and the steps involved
are described below.

The first chunk of code generates some data to plot. These are the counts of
(adult) male and female survivors of the sinking of the Titanic.

∗The actual scale setup depends on the current settings for xaxs and yaxs. With the
default settings, the scales are (−0.04, 1.04).
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Figure 3.27
A back-to-back barplot from scratch. This demonstrates the use of lower-level plot-
ting functions to produce a novel plot that cannot be produced by an existing high-
level function.
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> groups <- dimnames(Titanic)[[1]]
> males <- Titanic[, 1, 2, 2]
> females <- Titanic[, 2, 2, 2]

> males

1st 2nd 3rd Crew

57 14 75 192

> females

1st 2nd 3rd Crew

140 80 76 20

There are several ways that the plot could be created, the main idea being
that it fundamentally consists of just a collection of graphical primitives that
have been arranged in a meaningful way.

For this example, the approach will be to create a single plot. The labels to
the left of the plot will be drawn in the margins of the plot, but everything
else will be drawn inside the plot region. This next bit of code sets up the
figure margins so that there is enough room for the labels in the left margin,
but all other margins are nice and small (to avoid lots of empty space around
the plot).

> par(mar=c(0.5, 3, 0.5, 1))

Inside the plot region there are six different rows of output to draw: the four
main pairs of bars, the x-axis, and the legend at the bottom. The axis will
be drawn at a y-location of 0, the main bars at the y-locations 1:4, and the
legend at -1. The following code starts the plot and sets up the appropriate
y-scale and x-scale.

> plot.new()
> plot.window(xlim=c(-200, 200), ylim=c(-1.5, 4.5))

This next bit of code assigns some useful values to variables, including the
x-locations of tick marks on the x-axis, the y-locations of the main bars, and
a value representing half the height of the bars.

> ticks <- seq(-200, 200, 100)
> y <- 1:4
> h <- 0.2
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Now some drawing can occur. This next code draws the main part of the plot.
Everything is drawn using calls to the low-level functions such as lines(),
segments(), mtext(), and axis(). In particular, the main bars are just
rectangles produced using rect(). Notice that the x-axis is drawn within the
plot region (pos=0).

> lines(rep(0, 2), c(-1.5, 4.5), col="gray")
> segments(-200, y, 200, y, lty="dotted")
> rect(-males, y-h, 0, y+h, col="dark gray")
> rect(0, y-h, females, y+h, col="light gray")
> mtext(groups, at=y, adj=1, side=2, las=2)
> par(cex.axis=0.5, mex=0.5)
> axis(1, at=ticks, labels=abs(ticks), pos=0)

The final step is to produce the legend at the bottom of the plot. Again, this
is just a series of calls to low-level functions, although the bars are sized using
strwidth() to ensure that they contain the labels.

> tw <- 1.5*strwidth("females")
> rect(-tw, -1-h, 0, -1+h, col="dark gray")
> rect(0, -1-h, tw, -1+h, col="light gray")
> text(0, -1, "males", pos=2)
> text(0, -1, "females", pos=4)

This example is particularly customized to the data set involved. It could
be made much more general by replacing some constants with variable values
(e.g., instead of using 4 because there are four groups in the data set, the
code could have a variable numGroups). If more than one such plot needs to
be made, it makes good sense to also wrap the code within a function. That
task is discussed in the next section.

3.5.3 Writing traditional graphics functions

Having made the effort to construct a plot from scratch, it is usually worth-
while encapsulating the calls within a new function and possibly even making
it available for others to use. This section briefly describes some of the things
to consider when creating a new graphics function built on the traditional
graphics system.

There are many advantages to developing new graphics functions in the grid
graphics system (see Part II) rather than using traditional graphics. Conse-
quently, Chapter 8 contains a more complete discussion of the issues involved
in developing new graphics functions.
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Helper functions

There are some helper functions that do no drawing, but are used by the
predefined high-level plots to do some of the work in setting up a plot.

The xy.coords() function is useful for allowing x and y arguments to your
new function to be flexibly specified (just like the plot() function where y
can be left unspecified and x can be a data.frame, and so on). This function
takes x and y arguments and creates a standard object containing x-values,
y-values, and sensible labels for the axes. There is also an xyz.coords()
function.

If your plotting function generates multiple subplots, the n2mfrow() function
may be helpful to generate a sensible number of rows and columns of plots,
based on the total number of plots to fit on a page.

Another set of useful helper functions are those that calculate values to plot
from the raw data (but do no actual drawing). Examples of these sorts of
functions are: boxplot.stats() used by boxplot() to generate five-number
summaries; contourLines() used by contour() to generate contour lines;
nclass.Sturges(), nclass.scott(), and nclass.FD() used by hist() to
generate the number of intervals for a histogram; and co.intervals() used
by coplot() to generate ranges of values for conditioning a data set into
panels.

Some high-level functions invisibly return this sort of information too. For
example, boxplot() returns the combined results from boxplot.stats() for
all of the boxplots that it produces and hist() returns information on the
intervals that it creates including the number of data values in each inter-
val. The hist() function is also useful (with plot=FALSE) simply to perform
binning of continuous data.

Argument lists

A common technique when writing a traditional graphics function is to pro-
vide an ellipsis argument (...) instead of individual graphics state arguments
(such as col and lty). This allows users to specify any state settings (e.g.,
col="red" and lty="dashed") and the new function can pass them straight
on to the traditional graphics functions that the new function calls. This
avoids having to specify all individual state settings as arguments to the new
function. Some care must be taken with this technique because sometimes
different graphics functions interpret the same graphics state setting in differ-
ent ways (the col setting is a good example; see Section 3.2). In such cases,
it becomes necessary to name the individual graphics state setting as an ar-
gument and explicitly pass it on only to other graphics calls that will accept
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it and respond to it in the desired manner.

Sometimes it is useful for a graphics function to deliberately override the
current graphics state settings. For example, a new plot may want to force the
xpd setting to be NA in order to draw lines and text outside of the plot region.
In such cases, it is polite for the graphics function to revert the graphics state
settings at the end of the function so that users do not get a nasty surprise!
A standard technique is to put the following expressions at the start of the
new function to restore the graphics state to the settings that existed before
the function was called.

opar <- par(no.readonly=TRUE)
on.exit(par(opar))

Because some of the traditional graphics state settings interact with each
other, such a wholesale save-and-replace approach is actually unlikely to re-
turn the graphics state to exactly what it was before, so an even better solution
is to save and restore only those parameters that the function modifies.

Care should be taken to ensure that a new graphics function takes notice of
appropriate graphics state settings (e.g., ann). This can be a little complicated
to implement because it is necessary to be aware of the possibility that the
user might specify a setting in the call to the function and that such a setting
should override the main graphics state setting. The standard approach is
to name the state setting explicitly as an argument to the graphics function
and provide the permanent state setting as a default value. See the new
graphics function template below for an example of this technique using the
ann argument. An additional complication is that now there is a state setting
that will not be part of the ... argument, so the state setting must be
explicitly passed on to any other functions that might make use of it.

Another good technique is to provide arguments that users are used to seeing
in other graphics functions — the main, sub, xlim, and ylim arguments are
good examples of this sort of thing — and a new graphics function should
be able to handle missing and non-finite values. The functions is.na(),
is.finite(), and na.omit() may be useful for this purpose.

Plot methods

If a new function is for use with a particular type of data, then it is convenient
for users if the function is provided as a method for the generic plot() func-
tion. This allows users to simply call the new function by calling plot(x),
where x is an object of the relevant class.
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1 plot.newclass <-
2 function(x, y=NULL,
3 main="", sub="",
4 xlim=NULL, ylim=NULL,
5 axes=TRUE, ann=par("ann"),
6 col=par("col"),
7 ...) {
8 xy <- xy.coords(x, y)
9 if (is.null(xlim))
10 xlim <- range(xy$x[is.finite(xy$x)])
11 if (is.null(ylim))
12 ylim <- range(xy$y[is.finite(xy$y)])
13 opar <- par(no.readonly=TRUE)
14 on.exit(par(opar))
15 plot.new()
16 plot.window(xlim, ylim, ...)
17 points(xy$x, xy$y, col=col, ...)
18 if (axes) {
19 axis(1)
20 axis(2)
21 box()
22 }
23 if (ann)
24 title(main=main, sub=sub,
25 xlab=xy$xlab, ylab=xy$ylab, ...)
26 }

Figure 3.28
A graphics function template. This code provides a starting point for producing a
new graphics function for others to use.

A graphics function template

The code in Figure 3.28 is a simple shell that combines some of the basic
guidelines from this section. This is just a simplified version of the default
plot() method. It is far from complete and will not gracefully accept all
possible inputs (especially via the ... argument), but it could be used as the
starting template for writing a new traditional graphics function.
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Chapter summary

High-level traditional graphics functions produce complete plots and
low-level traditional graphics functions add output to existing plots.
There are low-level functions for producing simple output such as lines,
rectangles, text, and polygons and also functions for producing more
complex output such as axes and legends.

The traditional graphics system creates several regions for drawing the
various components of a plot: a plot region for drawing data symbols
and lines, figure margins for axes and labels, and so on. Each low-level
graphics function produces output in a particular drawing region and
most work in the plot region.

There is a traditional graphics system state that consists of settings to
control the appearance of output and the arrangement of the drawing
regions. There are settings for controlling color, fonts, line styles, data
symbol style, and the style of axes. There are several mechanisms for
arranging multiple plots on a single page.

It is straightforward to create a complete plot using only low-level
graphics functions. This makes it possible to produce a completely
new type of plot. It is also possible for the user to define an entirely
new graphics function.
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Trellis Graphics: The lattice Package

Chapter preview

This chapter describes how to produce Trellis plots using R. There
is a description of what Trellis plots are as well as a description of
the functions used to produce them. Trellis plots are designed to be
easy to interpret and at the same time provide some modern and
sophisticated plotting styles, such as multipanel conditioning. The
grid graphics system provides no high-level plotting functions itself,
so this chapter also describes one way to produce a complete plot using
the grid system.

This part of the book concerns the major graphics packages that are related
to the grid graphics system. This graphics system exists in parallel with the
traditional graphics system and the two worlds do not interact at all well (see
Section 1.2, but also Chapter 19).

The grid package only provides low-level graphics functions; it does not pro-
vide any functions for drawing complete plots. Such high-level functions are
provided instead by other packages. This chapter and the next describe two
major packages of this type: Deepayan Sarkar’s lattice and Hadley Wick-
ham’s ggplot2.

The lattice package implements the Trellis Graphics system with some novel
extensions. This represents a complete and coherent graphics system, which
can in most cases be used without encountering any concepts of the underlying
grid system.

This chapter deals with lattice as a self-contained system consisting of func-
tions for producing complete plots and functions for controlling the appear-
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ance of the plots. Section 6.8 and Section 7.7 describe some of the benefits
that can be gained from viewing lattice plots as grid output and dealing
directly with the grid concepts and objects that underly the lattice system.

The graphics functions that make up the lattice graphics system are provided
in an extension package called lattice. The lattice system is loaded into R
as follows.

> library(lattice)

This chapter provides a very brief introduction to lattice. Much more infor-
mation can be obtained from Deepayan Sarkar’s book, “Lattice: Multivariate
Data Visualization with R.”The original Trellis Graphics system, upon which
lattice is modeled, also has documentation, examples, and background avail-
able from its web site:

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html

4.1 The lattice graphics model

In simple usage, lattice functions appear to work just like traditional graphics
functions where the user calls a function and output is generated on the current
device. The following code produces the lattice equivalent of the traditional
graphics call plot(pressure). The first argument is a formula defining the x-
and y-variables to plot and the second argument is a data frame that contains
the variables named in the formula. The resulting plot (Figure 4.1) should be
compared with Figure 1.1.

> xyplot(pressure ~ temperature, pressure)

There are also many familiar arguments to modify the basic features of a
lattice plot. For example, the following code plots lines as well as points,
using the type argument, adds a title, using the main argument, and uses pch
and lty to set the data symbol and line type (see Figure 4.2).

> xyplot(pressure ~ temperature, pressure,
type="o", pch=16, lty="dashed",
main="Vapor Pressure of Mercury")
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Figure 4.1
A scatterplot using lattice (showing the vapor pressure of mercury as a function of
temperature). A basic lattice plot has a very similar appearance to an analogous
traditional plot.
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Figure 4.2
A modified scatterplot using lattice. Many of the standard high-level traditional
graphics arguments also work with lattice.

Adding further lines and text to a plot is a little more complex in lattice
compared to traditional graphics, so that topic is discussed later in Section
4.7.

One important difference compared to traditional graphics functions is that
lattice graphics functions do not produce graphical output directly. Instead
they produce an object of class "trellis", which contains a description of the
plot. The print() method for objects of this class does the actual drawing of
the plot. This can be demonstrated quite easily. For example, the following
code creates a trellis object, but does not draw anything.

> tplot <- xyplot(pressure ~ temperature, pressure)

The result of the call to xyplot() is assigned to the variable tplot so it is
not printed. The plot can be drawn by calling print on the trellis object
(the result is exactly the same as Figure 4.1).

> print(tplot)

This explicit printing is necessary when calling lattice functions within a loop
or from another function.
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4.1.1 Why another graphics system?

A number of functions in lattice produce output that is very similar to the
output of functions in the traditional graphics system, but there are several
reasons for using lattice functions instead of the traditional counterparts:

� The default appearance of the lattice plots is superior in some areas.
For example, the default colors and the default data symbols have been
deliberately chosen to make it easy to distinguish between groups when
more than one data series is plotted, based on visual perception exper-
iments. There are also some subtle things such as the fact that tick
labels on the y-axes are written horizontally by default, which makes
them easier to read.

� The arrangement of plot components is more automated in lattice. For
example, the right amount of space is automatically created for axis
labels and the plot title (it is usually not necessary to set figure margins
manually).

� Legends can be automatically generated by the lattice system, so it
is not the user’s responsibility to ensure that the content of the legend
corresponds correctly to the colors and data symbols used in the plot.

� The lattice plot functions can be extended in several very powerful
ways. For example, several data series can be plotted at once in a
convenient manner and multiple panels of plots can be produced easily
(see Section 4.3).

� The output from lattice functions is grid output, so many powerful
grid features are available for annotating, editing, and saving the graph-
ics output. See Sections 6.8 and 7.7 for examples of these features.

4.2 lattice plot types

The lattice package provides functions to produce a number of standard plot
types, plus some more modern and specialized plots. Table 4.1 describes the
functions that are available and Figure 4.3 provides a basic idea of the sort of
output that they produce.

Most of the lattice plotting functions provide a very long list of arguments
and produce a wide range of different types of output. However, because
lattice provides a single coherent system, many of the arguments are the
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Table 4.1
The plotting functions available in lattice.

lattice Traditional
Function Description Analog

barchart() Barcharts barplot()

bwplot() Boxplots boxplot()
Box-and-whisker plots

densityplot() Conditional kernel density plots plot.density
Smoothed density estimate

dotplot() Dotplots dotchart()
Continuous versus categorical

histogram() Histograms hist()

qqmath() Quantile–quantile plots qqnorm()
Data set versus theoretical distribution

stripplot() Stripplots stripchart()
One-dimensional scatterplot

qq() Quantile–quantile plots qqplot()
Data set versus data set

xyplot() Scatterplots plot()

levelplot() Level plots image()

contourplot() Contour plots contour()

cloud() 3D scatterplot -
wireframe() 3D surfaces persp()

splom() Scatterplot matrices pairs()

parallel() Parallel coordinate plots -
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barchart bwplot densityplot dotplot

histogram qqmath stripplot qq

xyplot levelplot contourplot cloud

wireframe

x

y

splom parallel

Figure 4.3
Plot types available in lattice. The name of the function used to produce the
different plot types is shown in the strip above each plot.
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same across the different graphics functions, so much can be learned from just
studying one of the lattice functions. This chapter will largely focus on the
xyplot() function.

The following sections address the most important shared arguments. For a
full explanation of all arguments, the help documentation should be consulted,
particularly the help for the xyplot() function.

4.3 The formula argument and multipanel conditioning

In most cases, the first argument to the lattice plotting functions is an R
formula that describes which variables to plot. The simplest case has already
been demonstrated. A formula of the form y ~ x plots variable y against
variable x. There are some variations for plots of only one variable or plots
of more than two variables. For example, for the histogram() function,
the formula can be of the form ~ x and for the cloud() and wireframe()
functions something of the form z ~ x * y is required to specify the three
variables to plot. Another useful variation is the ability to specify multiple
y-variables. Something of the form y1 + y2 ~ x produces a plot of both the
y1 variable and the y2 variable against x. Multiple x-variables can be specified
as well.

The second argument to a lattice plotting function is typically data, which
allows the user to specify a data frame within which lattice can find the
variables that were used in the formula.

One of the very powerful features of Trellis Graphics is the ability to spec-
ify conditioning variables within the formula argument. Something of the
form y ~ x | g indicates that several plots should be generated, showing the
variable y against the variable x for each level of the variable g.

The following examples use various measurements on 32 different automobile
designs, which are available as the data set mtcars in the datasets package.
The examples will use measurements on fuel efficiency in miles per gallon
(mpg), engine size or displacement (disp), and number of forward gears (gear).

> head(mtcars)

mpg disp gear

Mazda RX4 21.0 160 4

Mazda RX4 Wag 21.0 160 4

Datsun 710 22.8 108 4



Trellis Graphics: The lattice Package 127

disp

m
p
g

10

15

20

25

30

35

100 200 300 400

Figure 4.4
A lattice scatterplot of fuel efficiency as a function of engine size.

A simple scatterplot of fuel efficiency as a function of engine size is produced
by the following code (see Figure 4.4).

> xyplot(mpg ~ disp, data=mtcars)

As an example of multipanel conditioning, the following code produces several
scatterplots, with each scatterplot showing the relationship between engine
size and fuel efficiency for cars with a particular number of forward gears (see
Figure 4.5).

> xyplot(mpg ~ disp | factor(gear), data=mtcars)

In the Trellis terminology, the plot in Figure 4.5 consists of three panels. Each
panel in this case contains a scatterplot and above each panel there is a strip
that presents the level of the conditioning variable. There can be more than
one conditioning variable in the formula argument, in which case a panel is
produced for each combination of the conditioning variables.

The most natural type of variable to use as a conditioning variable is a cat-
egorical variable (factor), but there is also support for using a continuous
(numeric) conditioning variable. For this purpose, Trellis Graphics introduces
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Figure 4.5
A lattice multipanel conditioning plot. A single function call produces several
scatterplots of the relationship between engine size and fuel efficiency for cars with
different numbers of forward gears.
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the concept of a shingle. This is a continuous variable with a number of
ranges associated with it. The ranges are used to split the continuous values
into (possibly overlapping) groups. The shingle() function can be used to
explicitly control the ranges, or the equal.count() function can be used to
generate ranges automatically given a number of groups.

4.4 The group argument and legends

Another important argument in high-level lattice functions is the group ar-
gument, which allows multiple data series to be drawn on the same plot (or
in each panel). The following code shows an example and the result is shown
in Figure 4.6.

> xyplot(mpg ~ disp, data=mtcars,
group=gear,
auto.key=list(space="right"))

By specifying a variable via the group argument, a different plotting symbol
will be used for cars with different numbers of gears. The auto.key argument
is set so that lattice automatically generates an appropriate legend to show
the mapping between data symbols and number of gears. This argument can
either be just TRUE or a list of values specifying the appearance of the legend.
In this case, the legend is positioned to the right of the plot. Notice that the
page is automatically arranged to provide space for the plot legend.

In addition to the auto.key, there are arguments key and legend which
provide progressively greater flexibility at the cost of increased complexity.

4.5 The layout argument and arranging plots

There are two types of arrangements to consider when dealing with lattice
plots: the arrangement of panels and strips within a single lattice plot; and
the arrangement of several complete lattice plots together on a single page.

In the first case (the arrangement of panels and strips within a single plot)
there are two useful arguments that can be specified in a call to a lattice
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Figure 4.6
A lattice plot with multiple groups and an automatically generated legend. Differ-
ent data symbols are used for cars with different numbers of gears.

plotting function: the layout argument and the aspect argument.

The layout argument consists of up to three values. The first two indicate
the number of columns and rows of panels on each page and the third value
indicates the number of pages. It is not necessary to specify all three values,
as lattice provides sensible default values for any unspecified values. The
following code produces a variation on Figure 4.5 by explicitly specifying that
there should be a single column of three panels, via the layout argument, and
that each panel must be “square,” via the aspect argument. The final result
is shown in Figure 4.7.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,
layout=c(1, 3), aspect=1)

The aspect argument specifies the aspect ratio (height divided by width) for
the panels. The default value is "fill", which means that panels expand to
occupy as much space as possible. In the example above, the panels were all
forced to be square by specifying aspect=1. This argument will also accept
the special value "xy", which means that the aspect ratio is calculated to
satisfy the “banking to 45 degrees” rule proposed by Bill Cleveland.
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Figure 4.7
Controlling the layout of lattice panels. The lattice package arranges panels in a
sensible way by default, but there are several ways to force the panels to be arranged
in a particular layout. This figure shows a custom arrangement of the panels in the
plot from Figure 4.5.
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As with the choice of colors and data symbols, a lot of work is done to select
sensible default values for the arrangement of panels, so in many cases nothing
special needs to be specified.

The problem of arranging multiple lattice plots on a page requires a different
approach. A trellis object must be created (but not plotted) for each lat-
tice plot, then the print() function is called, supplying arguments to specify
the position of each plot. The following code demonstrates this idea by man-
ually arranging three separate plots of automobile fuel efficiency for different
numbers of gears in a column (see Figure 4.8).

Three lattice plots are produced and then positioned one above the other
on a page. The position argument is used to specify their location, (left,
bottom, right, top), as a proportion of the total page, and the more argu-
ment is used in the first and second print() calls to ensure that the second
and third print() calls draw on the same page. Some extra work is done
with the xlim and ylim arguments to make sure that the scales on the three
plots match up.

> plot1 <- xyplot(mpg ~ disp, data=mtcars,
aspect=1, xlim=c(65, 480), ylim=c(9, 35),
subset=gear == 5)

> plot2 <- xyplot(mpg ~ disp, data=mtcars,
aspect=1, xlim=c(65, 480), ylim=c(9, 35),
subset=gear == 4)

> plot3 <- xyplot(mpg ~ disp, data=mtcars,
aspect=1, xlim=c(65, 480), ylim=c(9, 35),
subset=gear == 3)

> print(plot1, position=c(0, 2/3, 1, 1), more=TRUE)
> print(plot2, position=c(0, 1/3, 1, 2/3), more=TRUE)
> print(plot3, position=c(0, 0, 1, 1/3))

Section 6.8 describes more flexible options for arranging multiple lattice plots,
using the concepts and facilities of the grid system.

4.6 The scales argument and labeling axes

This section looks at controlling the scales and labeling of the axes in lattice
plots.

The scales argument takes a list of different settings that influence the ap-
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Figure 4.8
Arranging multiple lattice plots. This shows three separate lattice plots arranged
together on a single page.
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Figure 4.9
Modifying lattice axes. The placement of tick marks on the y-axis and the axis
labels have been customized in this plot.

pearance of axes. The list can have sublists, named x and y, if the settings
are intended to affect only the x-axes or only the y-axes.

In the following code, the scales argument is used to specify exactly where
tick marks should appear on y-axes. This code also demonstrates that the
xlab and ylab arguments can be expressions to allow the use of special for-
matting and special symbols. The plot produced by this code is shown in
Figure 4.9.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,
layout=c(3, 1), aspect=1,
scales=list(y=list(at=seq(10, 30, 10))),
ylab="miles per gallon",
xlab=expression(paste("displacement (", inch^3, ")")))

Besides specifying the location and labels for tick marks, the scales argument
can also be used to control the font used for tick labels (font), the rotation
of the labels (rot), the range of values on the axes (limits), and whether
these ranges should be the same for all panels (relation="same") or allowed
to vary between panels (relation="free").
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4.7 The panel argument and annotating plots

One advantage of the lattice graphics system is that it can produce extremely
sophisticated plots from relatively simple expressions, especially with its mul-
tipanel conditioning feature. However, the cost of this is that the task of
adding simple annotations of a lattice plot, such as adding extra lines or
text, is more complex compared to the same task in traditional graphics.

Extra drawing can be added to the panels of a lattice plot via the panel
argument. The value of this argument is a function, which gets called to draw
the contents of each panel.

The following code shows an example panel function. The main plot is once
again of the automobile fuel efficiency data, with three panels corresponding
to different numbers of gear. The panel function consists of calls to vari-
ous predefined functions that are designed to add graphics to lattice panels.
The first function is very important. The panel.xyplot() function does
the drawing that xyplot() would normally have done if the panel argument
had not been specified. In this case, it draws a data symbol for each car.
The other functions called in this panel function are panel.abline() and
panel.text(), which add a dashed horizontal line and a label to indicate an
efficiency criterion of 29 miles per gallon. The final result is shown in Figure
4.10.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,
layout=c(3, 1), aspect=1,
panel=function(...) {

panel.xyplot(...)
panel.abline(h=29, lty="dashed")
panel.text(470, 29.5, "efficiency criterion",

adj=c(1, 0), cex=.7)
})

That panel function is a very simple one because it does exactly the same
thing in each panel. Things get more complicated if the panel function has to
produce different output for each panel. In that case, more attention has to
be paid to the arguments of the panel function.

In the simple example above, the panel function is defined with just an ellipsis
(...) argument. This means that any information that lattice sends to this
panel function is captured by the ellipsis argument and the panel function
simply passes the information on to panel.xyplot().
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Figure 4.10
Adding annotations to lattice plots. The dashed horizontal lines and the labels
have been added to a standard xyplot() using a panel function.

Another common situation is that the extra graphics in a panel need to depend
on the x- and y-values that are plotted in that panel. The code below shows
an example, where the panel.lmline() function is called as part of the panel
function to draw a line of best fit to the data in each panel (see Figure 4.11).
The panel function now has explicit x- and y-arguments, which capture the
data values that lattice passes to each panel. These x- and y-values are passed
to panel.lmline() and to panel.xyplot() to produce the relevant output in
each panel. There is a lot of other information that lattice passes to the panel
function (see the argument list on the help page for panel.xyplot()), but
that is all simply passed through to panel.xyplot() via an ellipsis argument.

> xyplot(mpg ~ disp | factor(gear), data=mtcars,
layout=c(3, 1), aspect=1,
panel=function(x, y, ...) {

panel.lmline(x, y)
panel.xyplot(x, y, ...)

})

As these examples have demonstrated, there are a number of predefined panel
functions available for adding output to a lattice panel, including both low-
level graphical primitives like points, and text and more high-level graphics
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Figure 4.11
An example of a lattice panel function. A line of best fit has been added to each
panel in a standard xyplot() using a panel function.

like grids and lines of best fit. For every high-level lattice plotting function
(see Table 4.1) there is also a corresponding default panel function, for exam-
ple, panel.xyplot(), panel.bwplot(), and panel.histogram(). Table 4.2
provides a list of some other predefined panel functions.

One other important panel function is panel.superpose(), which is the de-
fault panel function whenever multiple groups are drawn within a panel (e.g.,
when the group argument is used). When writing a custom panel function
for a lattice plot that has multiple groups in each panel, this function must
be called to reproduce the default plotting behavior.

In addition to the panel argument for adding further drawing to lattice
panels, there is a strip argument, which allows customization of the strips
above each panel.

4.7.1 Adding output to a lattice plot

Unlike in the original Trellis implementation, it is also possible to add output
to a complete lattice plot after the plot has been drawn (i.e., without using
a panel function).
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Table 4.2
A selection of predefined panel functions for adding graphical output to the
panels of lattice plots.

Function Description

panel.points() Draw data symbols at locations (x, y)
panel.lines() Draw lines between locations (x, y)
panel.segments() Draw line segments between (x0, y0) and

(x1, y1)
panel.arrows() Draw line segments and arrowheads to the

end(s)
panel.rect() Draw rectangles with bottom-left corner

at (xl, yl) and top-right corner at (xr,
yt)

panel.polygon() Draw one or more polygons with vertices
(x, y)

panel.text() Draw text at locations (x, y)

panel.abline() Draw a line with intercept a and slope b
panel.curve() Draw a function given by expr
panel.rug() Draw axis ticks at x- or y-locations
panel.grid() Draw a (gray) reference grid

panel.loess() Draw a loess smooth through (x, y)
panel.violin() Draw one or more violin plots
panel.smoothScatter() Draw a smoothed 2D density of (x, y)
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The function trellis.focus() can be used to return to a particular panel
or strip of the current lattice plot in order to add further output using,
for example, panel.lines() or panel.points(). The trellis.unfocus()
function should be called after the extra drawing is complete. The function
trellis.panelArgs() may be useful for retrieving the arguments (including
the data) that were used to originally draw the panel.

Sections 6.8 and 7.7 show how grid provides more flexibility for navigating to
different parts of a lattice plot and for adding further output.

4.8 par.settings and graphical parameters

An important feature of Trellis Graphics is the careful selection of default
settings that are provided for many of the features of lattice plots. For
example, the default data symbols and colors used to distinguish between
different data series have been chosen so that it is easy to visually discriminate
between them. Nevertheless, it is still sometimes desirable to be able to make
alterations to the default settings for aspects like color and text size.

The examples at the start of this chapter demonstrated that many of the
familiar standard arguments from traditional graphics, such as col, lty, and
lwd, do the same job in lattice plots. These graphical parameters can also
be set via a par.settings argument. For example, the following code is an
alternative way to produce Figure 4.2.

> xyplot(pressure ~ temperature, pressure,
type="o",
par.settings=list(plot.symbol=list(pch=16),

plot.line=list(lty="dashed")),
main="Vapor Pressure of Mercury")

This approach works because lattice maintains a graphics state similar to the
traditional graphics state: a large set of graphical parameter defaults.

The lattice graphical parameter settings consist of a large list of parameter
groups and each parameter group is itself a list of parameter settings. For
example, there is a plot.line parameter group consisting of alpha, col, lty,
and lwd settings to control the color, line type, and line width for lines drawn
between data locations. There is a separate plot.symbol group consisting of
alpha, cex, col, font, pch, and fill settings to control the size, shape, and
color of data symbols.
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The settings in each parameter group affect some aspect of a lattice plot:
some have a “global” effect, for example, the fontsize settings affect all text
in a plot; some are more specific, for example, the strip.background setting
affects the background color of strips; and some only affect a certain aspect
of a certain sort of plot, for example, the box.dot settings affect only the dot
that is plotted at the median value in boxplots.

The function show.settings() produces a picture representing some of the
current graphical parameter settings. Figure 4.12 shows the settings for a
black-and-white PostScript device.

The par.settings argument to high-level lattice plots allows specific graph-
ical parameters to be set for a single plot, but, similar to par() in traditional
graphics, the global default values can also be changed.

The current value of graphical parameter settings can be obtained using the
trellis.par.get() function. For a list of all of the names of the parame-
ter groups, type names(trellis.par.get()). If one of these group names is
specified as the argument to trellis.par.get(), then only the relevant set-
tings are returned. The following code shows how to obtain only the add.text
group of settings.

> trellis.par.get("add.text")

$alpha

[1] 1

$cex

[1] 1

$col

[1] "#000000"

$font

[1] 1

$lineheight

[1] 1.2

The trellis.par.set() function can be used to specify new default values
for graphical parameters. The value given to this function should be a list
of lists. Only the components and groups that are to be changed need to be
specified.

The following code demonstrates how to use trellis.par.set() to specify
a new value for the "col" component of the add.text settings.
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Figure 4.12
Some default lattice settings for a black-and-white PostScript device. This figure
was produced by the lattice function show.settings().
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> trellis.par.set(list(add.text=list(col="red")))

A full set of lattice graphical parameter settings is called a theme. It is
possible to specify such a theme and enforce a new “look and feel” for a plot,
although choosing a complete set of defaults that all work together nicely is a
difficult task. The lattice package currently provides one custom theme via
the col.whitebg() function. It is also possible to obtain the default theme
for a particular device using the canonical.theme() function. The lattice
package maintains a separate set of these graphical parameter settings for
each graphics device (see Section 9.1).

4.9 Extending lattice plots

This section briefly looks at the task of developing new lattice functions.
This is not as simple as developing a new traditional graphics function be-
cause lattice is a more sophisticated and consistent graphics system; any new
function has a lot to live up to.

The simplest case involves just writing a special panel function that others
can call. Slightly better, in the case where a new function is designed for use
with a specific class of data, is to define a method for an existing high-level
function, like xyplot(). All high-level lattice plotting functions have been
made generic so that this sort of customization can occur.

It is also possible to create an entirely new function, but the form of that
function has to be relatively complex to retain the standard behavior of lattice
plots. For a template example of this approach, see the code for the dotplot()
function, which is really only a call to the bwplot() function with a different
panel function supplied (type lattice:::dotplot.formula to see the code).

Users wanting to develop a new lattice plotting function along these lines are
advised to read Chapter 6 to gain an understanding of the grid system that is
used in the production of lattice output. Deepayan Sarkar’s book on lattice
has further discussion of this topic.

4.9.1 The latticeExtra package

The latticeExtra package provides a number of new lattice plots and new
panel functions. Table 4.3 and Figure 4.13 show four of the new plots and
Table 4.4 describes some of the new panel functions.
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Table 4.3
Some plotting functions available in latticeExtra.

Function Description

ecdfplot() Empirical cumulative distribution
rootogram() Tukey’s hanging rootogram
segplot() Segment plot
tileplot() Voronoi mosaic or Dirichlet tesselation
marginal.plot() Graphical summary of data frame

ecdfplot rootogram segplot tileplot

Figure 4.13
Plot types available in latticeExtra. The name of the function used to produce the
different plot types is shown in the strip above each plot.

> library(latticeExtra)

In addition, the latticeExtra package provides a new lattice theme, via
theEconomist.theme(), and it provides functions for manipulating trellis
plot objects. For example, it provides a method for the c() function so that
separate lattice plots can be combined to form a single plot (in certain cir-
cumstances). There is also a layer() function that allows a lattice plot to
be annotated in separate steps, rather than using a panel function (in a style
similar to that used by ggplot2; see Chapter 5). For example, the following
code is an alternative way, using the latticeExtra package, to produce Figure
4.10.
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Table 4.4
A range of panel functions from the latticeExtra package for adding
graphical output to the panels of lattice plots.

Function Description

panel.key() Draw legend within a panel
panel.ellipse() Draw confidence ellipsoid
panel.xyarea() Draw area below curve
panel.2dsmoother() Draw level plot on irregular (x, y)

panel.3dbars() Draw 3D bars (in wireframe() plot)
panel.3dpolygon() Draw 3D planes
panel.3dtext() Draw text at 3D location

> xyplot(mpg ~ disp | factor(gear), data=mtcars,
layout=c(3, 1), aspect=1) +

layer(panel.abline(h=29, lty="dashed")) +
layer(panel.text(470, 29.5, "efficiency criterion",

adj=c(1, 0), cex=.7))

Chapter summary

The lattice package implements and extends the Trellis Graphics sys-
tem for producing complete statistical plots. This system provides
most standard plot types and a number of modern plot types with
several important extensions. For a start, the layout and appearance
of the plots is designed to maximize readability and comprehension of
the information represented in the plot. Also, the system provides a
feature called multipanel conditioning, which produces multiple panels
of plots from a single data set, where each panel contains a different
subset of the data. The lattice functions provide an extensive set of
arguments for customizing the detailed appearance of a plot and there
are functions that allow the user to add further output to a plot.
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The Grammar of Graphics:
The ggplot2 Package

Chapter preview

This chapter describes how to produce plots using the ggplot2 pack-
age. There is a brief introduction to the concepts underlying the
Grammar of Graphics paradigm as well as a description of the func-
tions used to produce plots within this paradigm. The distinguishing
feature of the ggplot2 package is its ability to produce a very wide
range of different plots from a relatively small set of fundamental com-
ponents. Because ggplot2 uses grid to draw plots, this chapter de-
scribes another way to produce a complete plot using the grid system.

The ggplot2 package provides an interpretation and extension of the ideas in
Leland Wilkinson’s book The Grammar of Graphics. The ggplot2 package
represents a complete and coherent graphics system, completely separate from
both traditional and lattice graphics.

The ggplot2 package is built on grid, so it provides another way to generate
complete plots within the grid world, but as with lattice, the package has
so many features that it is unnecessary to encounter grid concepts for most
applications.

The graphics functions that make up the graphics system are provided in an
extension package called ggplot2. This package is not part of a standard
R installation, so it must first be installed, then it can be loaded into R as
follows.

145
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> library(ggplot2)

This chapter presents a very brief introduction to ggplot2. Hadley Wickham’s
book, ggplot2: Elegant Graphics for Data Analysis, provides much more detail
about the package.

5.1 Quick plots

For very simple plots, the qplot() function in ggplot2 serves a similar pur-
pose to the plot() function in traditional graphics. All that is required is to
specify the relevant data values and the qplot() function produces a complete
plot.

For example, the following code produces a scatterplot of pressure versus
temperature using the pressure data set (see Figure 5.1).

> qplot(temperature, pressure, data=pressure)

This plot should be compared with Figures 1.1 and 4.1. The main differences
between this scatterplot and what is produced by the traditional plot() func-
tion, or lattice’s xyplot(), are just the default settings used for things like
the background grid, the plotting symbols, and the axis labeling.

There are also similarities in how the appearance of the plot can be modified.
For example, the following code adds a title to the plot using the argument
main.

> qplot(temperature, pressure, data=pressure,
main="Vapor Pressure of Mercury")

However, ggplot2 diverges quite rapidly from the other graphics systems if
further customizations are desired. For example, in order to plot both points
and lines on the plot, the following code is required (see Figure 5.2). Notice
that, like lattice, the ggplot2 result has automatically resized the plot region
to provide room for the title.

> qplot(temperature, pressure, data=pressure,
main="Vapor Pressure of Mercury",
geom=c("point", "line"), lty=I("dashed"))
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Figure 5.1
A scatterplot produced by the qplot() function from the ggplot2 package. This
plot is comparable to the traditional graphics plot in Figure 1.1.
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Figure 5.2
A scatterplot produced by the qplot() function from the ggplot2 package, with a
title and lines added. This plot is a modified version of 5.1.
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The lty argument in this code is familiar, but the value "dashed" is wrapped
inside a call to the I() function. The geom argument is also unique to ggplot2.

In order to understand how this code works, rather than spending a lot of
time on the qplot() function, it is useful to move on instead to the conceptual
structure, the grammar of graphics, that underlies the ggplot2 package.

5.2 The ggplot2 graphics model

The ggplot2 package implements the Grammar of Graphics paradigm. This
means that, rather than having lots of different functions, each of which pro-
duces a different sort of plot, there is a small set of functions, each of which
produces a different sort of plot component, and those components can be
combined in many different ways to produce a huge variety of plots.

The steps in creating a plot with ggplot2 often come down to the following
essentials:

� Define the data that you want to plot and create an empty plot object
with ggplot().

� Specify what graphics shapes, or geoms, that you are going to use to
view the data (e.g., data symbols or lines) and add those to the plot
with, for example, geom_point() or geom_line().

� Specify which features, or aesthetics, of the shapes will be used to repre-
sent the data values (e.g., the x- and y-locations of data symbols) with
the aes() function.

In summary, a plot is created by mapping data values via aesthetics to the
features of geometric shapes (see Figure 5.3).

For example, to produce the simple plot in Figure 5.1, the data set is the
pressure data frame, and the variables temperature and pressure are used
as the x and y locations of data symbols. This is expressed by the following
code.

> ggplot(pressure) +
geom_point(aes(x=temperature, y=pressure))

A ggplot2 plot is built up like this by creating plot components, or layers,
and combining them using the + operator.
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data aesthetic geom

Figure 5.3
A diagram showing how data is mapped to features of a geom (geometric shape) via
aesthetics in ggplot2.

The following sections describe these ideas of geoms and aesthetics in more
detail and go on to look at several other important components that allow for
more complex plots that contain multiple groups, legends, facetting (similar
to lattice’s multipanel conditioning), and more.

5.2.1 Why another graphics system?

Many of the plots that can be produced with ggplot2 are very similar to the
output of the traditional graphics system or the lattice graphics system, but
there are several reasons for using ggplot2 over the others:

� The default appearance of plots has been carefully chosen with visual
perception in mind, like the defaults for lattice plots. The ggplot2
style may be more appealing to some people than the lattice style.

� The arrangement of plot components and the inclusion of legends is
automated. This is also like lattice, but the ggplot2 facility is more
comprehensive and sophisticated.

� Although the conceptual framework in ggplot2 can take a little getting
used to, once mastered, it provides a very powerful language for concisely
expressing a wide variety of plots.

� The ggplot2 package uses grid for rendering, which provides a lot of
flexibility available for annotating, editing, and embedding ggplot2 out-
put (see Sections 6.9 and 7.8).

5.2.2 An example data set

The examples throughout this section will make use of the mtcars2 data set.
This data set is based on the mtcars data set from the datasets package and
contains information on 32 different car models, including the size of the car
engine (disp), its fuel efficiency (mpg), type of transmission (trans), number
of forward gears (gear), and number of cylinders (cyl). The first few lines of
the data set are shown below.
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> head(mtcars2)

mpg cyl disp gear trans

Mazda RX4 21.0 6 160 4 manual

Mazda RX4 Wag 21.0 6 160 4 manual

Datsun 710 22.8 4 108 4 manual

Hornet 4 Drive 21.4 6 258 3 automatic

Hornet Sportabout 18.7 8 360 3 automatic

Valiant 18.1 6 225 3 automatic

5.3 Data

The starting point for a plot is a set of data to visualize. The following call to
the ggplot() function creates a new plot for the mtcars data set. The data
for a plot must always be a data frame.

> p <- ggplot(mtcars2)

There is no information yet about how to display these data, so nothing is
drawn. However, the result, a "ggplot" object, is assigned to the symbol p
so that we can add more components to the plot in later examples.

5.4 Geoms and aesthetics

The next step in creating a plot is to specify what sort of shape will be used
in the plot, for example, data symbols for a scatterplot or bars for a barplot.
This step also involves deciding which variables in the data set will be used
to control features of the shapes, for example, which variables will be used for
the (x, y) positions of the data symbols in a scatterplot.

The following code adds this information to the plot that was created in the
last section. This code produces a new "ggplot" object by adding information
that says to draw data symbols, using the geom_point() function, and that
the disp variable should be used for the x location and the and mpg variable
should be used for the y location of the data symbols; these variables are
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mapped to the x and y aesthetics of the point geom, using the aes() function.
The result is a scatterplot of fuel efficiency versus engine size (see Figure 5.4).

> p + geom_point(aes(x=disp, y=mpg))

Depending on what geom is being used to display the data, various other
aesthetics are available. Another aesthetic that can be used with point geoms
is the shape aesthetic. In the following code, the gear variable is associated
with the data symbol shape so that cars with different numbers of forward
gears are drawn with different data symbols (see Figure 5.4). Table 5.1 lists
some of the common aesthetics for some common geoms.

> p + geom_point(aes(x=disp, y=mpg, shape=gear),
size=4)

This example also demonstrates the difference between setting an aesthetic
and mapping an aesthetic. The gear variable is mapped to the shape aesthetic,
using the aes() function, which means that the shapes of the data symbols
are taken from the value of the variable and different data symbols will get
different shapes. By contrast, the size aesthetic is set to the constant value
of 4 (it is not part of the call to aes()), so all data symbols get this size. This
is the reason for the use of the I() function on page 148; that is how to set
an aesthetic when using qplot().

The ggplot2 package provides a range of geometric shapes that can be used
to produce different sorts of plots. Other geoms include the standard graph-
ical primitives, such as lines, text, and polygons, plus several more complex
graphical shapes such as bars, contours, and boxplots (see later examples).
Table 5.1 lists some of the common geoms that are available. As an example
of a different sort of geom, the following code uses text labels rather than
data symbols to plot the relationship between engine displacement and miles
per gallon (see Figure 5.4). The locations of the the text are the same as the
locations of the data symbols from before, but the text drawn at each location
is based on the value of the gear variable. This example also demonstrates
another aesthetic, label, which is relevant for text geoms.

> p + geom_text(aes(x=disp, y=mpg, label=gear))

A plot can be made up of multiple geoms by simply adding further geoms to
the plot description. The following code draws a plot consisting of both data
symbols and a straight line that is based on a linear model fit to the data (see
Figure 5.4). The line is defined by its intercept and slope aesthetics.
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Table 5.1
Some of the common geoms and their common aesthetics that are available in the
ggplot2 graphics system. All geoms have color, size, and group aesthetics. The
size aesthetic means size of shape for points, height for text, and width for lines
and it is in units of millimeters.

Geom Description Aesthetics

geom_point() Data symbols x, y, shape, fill
geom_line() Line (ordered on x) x, y, linetype
geom_path() Line (original order) x, y, linetype
geom_text() Text labels x, y, label, angle,

hjust, vjust
geom_rect() Rectangles xmin, xmax, ymin, ymax, fill,

linetype
geom_polygon() Polygons x, y, fill, linetype
geom_segment() Line segments x, y, xend, yend, linetype

geom_bar() Bars x, fill, linetype, weight
geom_histogram() Histogram x, fill, linetype, weight
geom_boxplot() Boxplots x, y, fill, weight
geom_density() Density x, y, fill, linetype
geom_contour() Contour lines x, y, fill, linetype
geom_smooth() Smoothed line x, y, fill, linetype

ALL color, size, group

> lmcoef <- coef(lm(mpg ~ disp, mtcars2))

> p + geom_point(aes(x=disp, y=mpg)) +
geom_abline(intercept=lmcoef[1], slope=lmcoef[2])

Specifying geoms and aesthetics provides the basis for creating a wide variety
of plots with ggplot2. The remaining sections of this chapter introduce a
number of other plot components within the ggplot2 system, which are re-
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Figure 5.4
Variations on a scatterplot that shows the relationship between miles per gallon
(mpg) and engine displacement (disp): at top-left, a points geom is used to plot
data symbols; at top-right, the shape aesthetic of the points geom is used to plot
different data symbols for cars with different numbers of forward gears; at bottom-
left, a text geom is used to plot labels rather than data symbols; and at bottom-right,
both a points geom and an abline geom are used on the same plot to draw both
data symbols and a straight line (of best fit).
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quired to control the details of plots and which extend the range of plots even
further.

5.5 Scales

Another important type of component that has not yet been mentioned is the
scale component. In ggplot2 this encompasses the ideas of both axes and
legends on plots.

Scales have not been mentioned to this point because ggplot2 will often
automatically generate appropriate scales for plots. For example, the x-axes
and y-axes on the previous plots in this section are actually scale components
that have been automatically generated by ggplot2.

One reason for explicitly adding a scale component to a plot is to over-
ride the detail of the scale that ggplot2 creates. For example, the follow-
ing code explicitly sets the axis labels using the scale_x_continuous() and
scale_y_continuous() functions (see Figure 5.5).

> p + geom_point(aes(x=disp, y=mpg)) +
scale_y_continuous(name="miles per gallon") +
scale_x_continuous(name="displacement (cu.in.)")

It is also possible to control features such as the limits of the axis, where
the tick marks should go, and what the tick labels should look like. Table
5.2 shows some of the common scale functions and their arguments. In the
following code, the limits of the y-axis are widened to include zero (see Figure
5.5).

> p + geom_point(aes(x=disp, y=mpg)) +
scale_y_continuous(limits=c(0, 40))

The ggplot2 package also automatically creates legends when it is appropriate
to do so. For example, in the following code, the color aesthetic is mapped
to the trans variable in the mtcars data frame, so that the data symbols are
colored according to what sort of transmission a car has. This automatically
produces a legend to display the mapping between type of transmission and
color.

> p + geom_point(aes(x=disp, y=mpg,
color=trans), size=4)
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The plot resulting from the above code is not shown because this example
demonstrates another important role that scales play in the ggplot2 system.

When the aes() function is used to set up a mapping, the values of a variable
are used to generate values of an aesthetic. Sometimes this is very straight-
forard. For example, when the variable disp is mapped to the aesthetic x for
a points geom, the numeric values of disp are used directly as x locations for
the points.

However, in other cases, the mapping is less obvious. For example, when
the variable trans, with values "manual" and "automatic", is mapped to
the aesthetic color for a points geom, what color does the value "manual"
correspond to?

As usual, ggplot2 provides a reasonable answer to this question by default,
but a second reason for explicitly adding a scale component to a plot is to
explicitly control this mapping of variable values to aesthetic values (see Fig-
ure 5.6). For example, the following code uses the scale_color_manual()
function to specify the two colors (shades of gray) that will correspond to the
two values of the trans variable (see Figure 5.5).

> p + geom_point(aes(x=disp, y=mpg,
color=trans), size=4) +

scale_color_manual(values=c(automatic=gray(2/3),
manual=gray(1/3)))

5.6 Statistical transformations

In the examples so far, data values have been mapped directly to aesthetic
settings. For example, the numeric disp values have been used as x-locations
for data symbols and the levels of the trans factor have been associated with
different symbol colors.

Some geoms do not use the raw data values like this. Instead, the data values
undergo some form of statistical transformation, or stat, and the transformed
values are mapped to aesthetics (see Figure 5.7).

A good example of this sort of thing is the bar geom. This geom bins the
raw values and uses the counts in each bin as the data to plot. For example,
in the following code, the trans variable is mapped to the x aesthetic in the
geom_bar() call. This establishes that the x-locations of the bars should be
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Figure 5.5
Scatterplots that have explicit scale components to control the labeling of axes or
the mapping from variable values to colors: at top-left, the x-axis and y-axis labels
are specified explicitly; at top-right, the y-axis range has been expanded; and the
bottom plot has an explicit mapping between transmission type and shades of gray.

data scale aesthetic geom

Figure 5.6
A diagram showing how the mapping of data to the features of geometric shapes is
controlled by a scale. The scale specifies how data values are mapped to aesthetic
values.
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Table 5.2
Some of the common scales that are available in the ggplot2 graphics system. All
scales have name, breaks, labels, limits parameters. For every x-axis scale there
is a corresponding y-axis scale.

Scale Description Parameters

scale_x_continuous() Continuous axis expand, trans
scale_x_discrete() Categorical axis
scale_x_date() Date axis major, minor, format

scale_shape() Symbol shape legend
scale_linetype() Line pattern legend
scale_color_manual() Symbol/line color legend values
scale_fill_manual() Symbol/bar fill legend values
scale_size() Symbol size legend trans, to

ALL name, breaks,
labels, limits

data scale stat aesthetic geom

Figure 5.7
A diagram showing how the scaled data may be undergo a statistical transformation
before being mapped to the values of an aesthetic.

the levels of trans, but heights of the bars (the y aesthetic) is automatically
generated from the counts of each level of trans to produce a bar plot (see
Figure 5.8).

> p + geom_bar(aes(x=trans))

The stat that is used in this case is a binning stat. Another option is an
identity stat, which does not transform the data at all. The following code
shows how to explicitly set the stat for a geom by creating the same bar plot
from data that have already been binned.

> transCounts <- as.data.frame(table(mtcars2$trans))
> transCounts
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Figure 5.8
Examples of geoms with stat components: a bar geom, which uses a binning stat,
and a smooth geom, which uses a smoother stat.

Var1 Freq

1 automatic 19

2 manual 13

Now, both the x and the y aesthetics are set explicitly for the bar geom and
the stat is set to "identity" to tell the geom not to bin again.

> ggplot(transCounts) +
geom_bar(aes(x=Var1, y=Freq), stat="identity")

The following code presents another common transformation, which involves
smoothing the original values. In this code, a smooth geom is added to the
original empty plot. Rather than drawing a line through the original (x, y)
values, this geom draws a smoothed line (plus a confidence band; see Figure
5.8).

> p + geom_smooth(aes(x=disp, y=mpg))

A similar result (without the confidence band) can be obtained using a line
geom and explicitly specifying a "smooth" stat, as shown below.

> p + geom_line(aes(x=disp, y=mpg), stat="smooth")
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Table 5.3
Some of the common stats that are available in the ggplot2 graphics system.

Stat Description Parameters

stat_identity() No transformation -
stat_bin() Binning binwidth, origin
stat_smooth() Smoother method, se, n
stat_boxplot() Boxplot statistics width
stat_contour() Contours breaks

Yet another alternative is to add an explicit stat component, as in the fol-
lowing code. This works because stat components automatically have a geom
associated with them, just as geoms automatically have a stat associated with
them. The default geom for a smoother stat is a line.

> p + stat_smooth(aes(x=disp, y=mpg))

Similarly, the bar plot in Figure 5.8 could be created with an explicit binning
stat component, as shown below. The default geom for a binning stat is a
bar.

> p + stat_bin(aes(x=trans))

One advantage of this approach is that parameters of the stat, such as bin-
widths for binning data, can be specified clearly as part of the stat. For
example, the following code controls the method for the smooth stat to get a
straight line (the result is similar to the line in Figure 5.4).

> p + stat_smooth(aes(x=disp, y=mpg), method="lm")

Table 5.3 shows some common ggplot2 stats and their parameters.

5.7 The group aesthetic

Previous examples have demonstrated that ggplot2 automatically handles
plotting multiple groups of data on a plot. For example, in the following
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Figure 5.9
The group aesthetic in ggplot2. At left, mapping the shape aesthetic for point
geoms automatically generates a legend. At right, mapping the group aesthetic for
a smoother stat generates separate smoothed lines for different groups.

code, by introducing the trans variable as an aesthetic that controls shape,
two groups of data symbols are generated on the plot and a legend is produced
(the scale_shape_manual() function is used to control the mapping from
trans to data symbol shape; see Figure 5.9).

> p + geom_point(aes(x=disp, y=mpg, shape=trans)) +
scale_shape_manual(values=c(1, 3))

It is also useful to be able to explicitly force a grouping for a plot and this can
be achieved via the group aesthetic. For example, the following code adds
a smoother stat to a scatterplot where the data symbols are all the same,
but there are separate smoothed lines for separate types of transmissions; the
group aesthetic is set for the smoother stat. The method parameter is also
set for the smoother stat so that the result is a straight line of best fit (see
Figure 5.9).

> ggplot(mtcars2, aes(x=disp, y=mpg)) +
geom_point() +
stat_smooth(aes(group=trans),

method="lm")

Notice that in the code above, aesthetic mappings have been specified in the
call to ggplot(). This is more efficient when several components in a plot
share the same aesthetic settings.
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5.8 Position adjustments

Another detail that ggplot2 often handles automatically is the problem of
how to arrange geoms that overlap with each other. For example, the following
code produces a bar plot of the number of cars with different transmissions,
but also with the number of cylinders, cyl, mapped to the fill color for the
bars (see Figure 5.10). The color aesthetic for the bars is set to "black" to
provide borders for the bars and the fill color scale is explicitly set to three
shades of gray.

> p + geom_bar(aes(x=trans, fill=factor(cyl)),
color="black") +

scale_fill_manual(values=gray(1:3/3))

There are three bars in this plot for automatic transmission cars (i.e., three
bars share the same x-location). Rather than draw these bars over the top of
each other, ggplot2 has automatically stacked them up. This is an example
of position adjustment.

An alternative is to use a dodge position adjustment, which places the bars
side-by-side. This is shown in the following code and the result is shown in
Figure 5.10.

> p + geom_bar(aes(x=trans, fill=factor(cyl)),
color="black",
position="dodge") +

scale_fill_manual(values=gray(1:3/3))

Another option is a fill position adjustment. This expands the bars to fill the
available space to produce a spine plot (see Figure 5.10).

> p + geom_bar(aes(x=trans, fill=factor(cyl)),
color="black",
position="fill") +

scale_fill_manual(values=gray(1:3/3))
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Figure 5.10
Examples of position adjustments in ggplot2: at top-left, the bars are "stacked";
at top-right, the bar position is "dodge" so the bars are side-by-side; and at the
bottom, the position is "fill", so the bars are scaled to fill the available (vertical)
space.
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5.9 Coordinate transformations

Section 5.5 described how scale components can be used to control the map-
ping between data values and the values of an aesthetic (e.g., map the trans
value "automatic" to the color value gray(2/3)).

Another way to view this feature is as a transformation of the data values into
the aesthetic domain. Another example of a transformation of data values
is to use log axes on a plot. The following code does this for the plot of
engine displacement versus miles per gallon via the trans argument of the
scale_x_continuous() function. The result is shown in Figure 5.11.

> p + geom_point(aes(x=disp, y=mpg)) +
scale_x_continuous(trans="log") +
scale_y_continuous(trans="log") +
geom_line(aes(x=disp, y=mpg), stat="smooth",

method="lm")

This is another reason for using an explicit scale component in a plot. Notice
that the data are transformed by the scale before any stat components are
applied (see Figure 5.7), so the line is fitted to the log transformed data.

Another type of transformation is also possible in ggplot2. There is a coordi-
nate system component, or coord, which by default is simple linear cartesian
coordinates, but this can be explicitly set to something else.

For example, the following code adds a coordinate system component to the
previous plot, using the coord_trans() function. This transformation says
that both dimensions should be exponential.

> p + geom_point(aes(x=disp, y=mpg)) +
scale_x_continuous(trans="log") +
scale_y_continuous(trans="log") +
geom_line(aes(x=disp, y=mpg), stat="smooth",

method="lm") +
coord_trans(x="exp", y="exp")

This sort of transformation occurs after the plot geoms have been created and
controls how the graphical shapes are drawn on the page or screen (see Figure
5.12). In this case, the effect is to reverse the transformation of the data, so
that the data points are back in their familiar arrangement and the line of
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best fit, which was fitted to the logged data, has become a curve (see Figure
5.11).

Another example of a coordinate system in ggplot2 is polar coordinates,
where the x- and y-values are treated as angle and radius values. The following
code creates a normal, cartesian coordinate system, stacked barplot showing
the number of cars with automatic versus manual transmissions (see Figure
5.11).

> p + geom_bar(aes(x="", fill=trans)) +
scale_fill_manual(values=gray(1:2/3))

This next code sets the coordinate system to be polar, so that the y-values
(the heights of the bars) are treated as angles and x-values (the width of the
bar) is a (constant) radius. The result is a pie chart (see Figure 5.11).

> p + geom_bar(aes(x="", fill=trans)) +
scale_fill_manual(values=gray(1:2/3)) +
coord_polar(theta="y")

5.10 Facets

Facetting means breaking the data into several subsets and producing a sep-
arate plot for each subset on a single page. This is similar to lattice’s idea of
multipanel conditioning and is also known as producing small multiples.

The facet_wrap() function can be used to add facetting to a plot. The main
argument to this function is a formula that describes the variable to use for
subsetting the data. For example, in the following code a separate scatterplot
is produced for each value of gear. The nrow argument is used here to ensure
a single row of plots is produced.

> p + geom_point(aes(x=disp, y=mpg)) +
facet_wrap(~ gear, nrow=1)

There is also a facet_grid() function for producing plots arranged on a grid.
The main difference is that the formula argument is of the form y ~ x and a
separate row of plots is produced for each level of y and a separate column of
plots is produced for each level of x.
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Figure 5.11
Examples of coordinate system transformations in ggplot2: at top-left is a cartesian
plot of logged data with linear axes; at top-right is a cartesian plot of logged data
with exponential axes; at bottom-left is a cartesian stacked barplot; and at bottom-
right is a polar stacked barplot (a pie chart).

data scale stat aesthetic geom coord

Figure 5.12
A diagram showing how geometric shapes may be transformed by a coordinate
system before they are drawn on the page or screen.
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Figure 5.13
A facetted ggplot2 scatterplot. A separate panel is produced for each level of a
facetting variable, gear.

5.11 Themes

The ggplot2 package takes a different approach to controlling the appearance
of graphical objects, by separating output into data and non-data elements.
Geoms represent the data-related elements of a plot and aesthetics are used
to control the appearance of a geom, as was described in Section 5.4. This
section looks at how to control the non-data elements of a plot, such as the
labels and lines used to create the axes and legends.

The collection of graphical parameters that control non-data elements is called
a theme in ggplot2. A theme can be added as another component to a plot
in the now-familiar way. For example, the following code creates a basic
scatterplot, but changes the basic color settings for the plot using the function
theme_bw(). Instead of the standard gray background with white grid lines,
this plot has a white background with gray gridlines (see Figure 5.14).

> p + geom_point(aes(x=disp, y=mpg)) +
theme_bw()

It is also possible to set just specific theme elements of the overall theme
for a plot. This requires the opts() function and one of the element func-
tions to specify the new setting. For example, the following code uses the
theme_text() function to make the y-axis label horizontal (see Figure 5.14).
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Table 5.4
Some of the common plot elements in the ggplot2 graphics system.
The type implies which element function should be used to provide
graphical parameter settings (e.g., text implies theme_text()).

Element Type Description

axis.text.x text X-axis tick labels
legend.text text Legend labels
panel.background rect Background of panel
panel.grid.major line Major grid lines
panel.grid.minor line Minor grid lines
plot.title text Plot title
strip.background rect Background of facet labels
strip.text.x text Text for horizontal strips

This example sets the text angle of rotation; it is also possible to set other
parameters such as text font, color, and justification.

> p + geom_point(aes(x=disp, y=mpg)) +
opts(axis.title.y=theme_text(angle=0))

There are other functions for setting graphical parameters for lines, segments,
and rectangles, plus a theme_blank(), which removes the relevant plot ele-
ment completely (see Figure 5.14).

> p + geom_point(aes(x=disp, y=mpg)) +
opts(axis.title.y=theme_blank())

Table 5.4 shows some of the plot elements that can be controlled in this way.

The opts() function can also be used to control other features of the plot.
For example, the following code specifies an overall title for a scatterplot (see
Figure 5.14).

> p + geom_point(aes(x=disp, y=mpg)) +
opts(title="Vehicle Fuel Efficiency")
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Figure 5.14
Some examples of themes in ggplot2: at top-left, the overall default style has been
set to theme_bw; at top-right, the y-axis label has been rotated to horizontal; at
bottom-left, the y-axis label has been removed altogether; at bottom-right, the plot
has been given an overall title.
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5.12 Annotating

With the emphasis on mapping values from a data frame to aesthetics of
geoms, it may not be immediately obvious how to create custom annotations
on a plot with ggplot2.

One approach is just to make use of the ability to set aesthetics rather than
mapping them. For example, the following code shows how to add a single
horizontal line to a scatterplot by setting the yintercept aesthetic of an
hline geom to a specific value. The result is shown in Figure 5.15.

> p + geom_point(aes(x=disp, y=mpg)) +
geom_hline(yintercept=29)

Another option is to make use of the fact that the functions that create geoms
are actually creating a complete layer, just with many components of the layer
either inheriting or automatically generating default values. In particular, a
geom inherits its data source from the original "ggplot" object that forms
the basis for the plot. However, it is possible to specify a new data source for
a geom instead.

In order to demonstrate this idea, the following code generates a data frame
containing various fuel efficiency (lower) limits for different classes of vehicle.
These come from Criterion 4 of the Green Communities Grant Program, which
is run by the Massachusetts Department of Energy Resources.

> gcLimits <-
data.frame(category=c("2WD car",

"4WD car",
"2WD small pick-up truck",
"4WD small pick-up truck",
"2WD std pick-up truck",
"4WD std pick-up truck"),

limit=c(29, 24, 20, 18, 17, 16))

The following code creates a scatterplot from the mtcars2 data set and adds
some extra lines and text based on this new gcLimits data set. The data
argument to the geom functions is used to explicitly specify the data source for
these geoms, so the aesthetic mappings for these geoms make use of variables
from the gcLimits data frame. The final result is shown in Figure 5.15.
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Figure 5.15
Some examples of annotation in ggplot2: at left, a single horizontal line has been
added by setting a geom aesthetic (rather than mapping the aesthetic) and, at right,
several horizontal lines and text labels have been added by using a completely new
data set for the relevant geoms.

> p + geom_point(aes(x=disp, y=mpg)) +
geom_hline(data=gcLimits,

aes(yintercept=limit),
linetype="dotted") +

geom_text(data=gcLimits,
aes(y=limit + .1, label=category),
x=70, hjust=0, vjust=0, size=3)

5.13 Extending ggplot2

Because ggplot2 is based on a set of plot components that are combined
to form plots, developing a new type of plot is usually simply a matter of
combining the existing components in a new way.

Hadley Wickham’s ggplot2 book provides further discussion, including advice
on how to write a high-level function for producing a plot from ggplot2
functions.



The Grammar of Graphics: The ggplot2 Package 171

Chapter summary

The ggplot2 package implements and extends the Grammar of Graph-
ics paradigm for statistical plots. The qplot() function works like
plot() in very simple cases. Otherwise, a plot is created from basic
components: a data frame, plus a set of geometric shapes (geoms),
with a set of mappings from data values to properties of the shapes
(aesthetics). Legends and axes are generated automatically, but the
detailed appearance of all aspects of a plot can still be controlled.
Multipanel plots are also possible.





6

The grid Graphics Model

Chapter preview

This chapter describes the fundamental tools that grid provides for
drawing graphical scenes (including plots). There are basic features
such as functions for drawing lines, rectangles, and text, together with
more sophisticated and powerful concepts such as viewports, layouts,
and units, which allow basic output to be located and sized in very
flexible ways.

This chapter is useful for drawing a wide variety of pictures, including
statistical plots from scratch, and for adding output to plots created
by lattice or ggplot2.

The functions that make up the grid graphics system are provided in an
extension package called grid. The grid system is loaded into R as follows.

> library(grid)

In addition to the standard on-line documentation available via the help()
function, grid provides both broader and more in-depth on-line documenta-
tion in a series of vignettes, which are available via the vignette() function.

The grid graphics system only provides low-level graphics functions. There
are no high-level functions for producing complete plots. Section 6.1 briefly
introduces the concepts underlying the grid system, but this only provides an
indication of how to work with grid and some of the things that are possible.
An effective direct use of grid functions requires a deeper understanding of
the grid system (see later sections of this chapter and Chapter 7).

173
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The lattice and ggplot2 packages described in Chapters 4 and 5 provide
extensive demonstrations of the high-level results that can be achieved using
grid. Other examples in this book are Figure 1.9 in Chapter 1 and Figures
8.1 and 8.18 in Chapter 8.

6.1 A brief overview of grid graphics

This chapter describes how to use grid to produce graphical output. There
are functions to produce basic output, such as lines and rectangles and text,
and there are functions to establish the context for drawing, such as specifying
where output should be placed and what colors and fonts to use for drawing.

Like the traditional system, grid follows the painters model, with later output
obscuring any earlier output that it overlaps. In this way, images can be
constructed incrementally using grid by calling functions in sequence to add
more and more output.

There are grid functions to draw primitive graphical output such as lines,
text, and polygons, plus some slightly higher-level graphical components such
as axes (see Section 6.2). Complex graphical output is produced by making a
sequence of several calls to these primitive functions.

The colors, line types, fonts, and other aspects that affect the appearance of
graphical output are controlled via a set of graphical parameters (see Section
6.4).

The grid system provides no predefined regions for graphical output, but there
is a powerful facility for defining regions, based on the idea of a viewport (see
Section 6.5). It is quite simple to create a set of regions that are convenient
for producing a single plot (see the example in the next section), but it is also
possible to produce very complex sets of regions such as those used in the
production of Trellis plots (see Chapter 4).

All viewports have a large set of coordinate systems associated with them
so that it is possible to position and size output in physical terms (e.g., in
centimeters) as well as relative to the scales on axes, and in a variety of other
ways (see Section 6.3).

All grid output occurs relative to the current viewport (region) on a page. In
order to start a new page of output, the user must call the grid.newpage()
function. The function devAskNewPage() can be used to control whether the
user is prompted when moving to a new page.
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As well as the side effect of producing graphical output, grid graphics func-
tions produce objects representing output. These objects can be saved to
produce a persistent record of a plot, and other grid functions exist to mod-
ify these graphical objects. For example, it is possible to query an object to
determine its width on the page so that other drawing can be placed relative
to the position of that object. It is also possible to work entirely with graph-
ical descriptions, without producing any output. Functions for working with
graphical objects are described in detail in Chapter 7.

6.1.1 A simple example

The following example demonstrates the construction of a simple scatterplot
using grid. This is more work than a single function call to produce the plot,
but it shows some of the advantages that can be gained by producing the plot
using grid.

This example uses the pressure data to produce a scatterplot much like that
in Figure 1.1.

Firstly, some regions are created that will correspond to the “plot region” (the
area within which the data symbols will be drawn) and the “margins” (the
area used to draw axes and labels).

The following code creates two viewports. The first viewport is a rectangular
region that leaves space for five lines of text at the bottom, four lines of
text at the left side, two lines at the top, and two lines to the right. The
second viewport is in the same location as the first, but it has x- and y-scales
corresponding to the range of the pressure data to be plotted.

> pushViewport(plotViewport(c(5, 4, 2, 2)))
> pushViewport(dataViewport(pressure$temperature,

pressure$pressure,
name="plotRegion"))

The following code draws the scatterplot one piece at a time. The output from
grid functions is drawn relative to the most recent viewport, which in this
case is the viewport with the appropriate axis scales. The data symbols are
drawn relative to the x- and y-scales, a rectangle is drawn around the entire
plot region, and x- and y-axes are drawn to represent the scales.
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> grid.points(pressure$temperature, pressure$pressure,
name="dataSymbols")

> grid.rect()
> grid.xaxis()
> grid.yaxis()

Adding labels to the axes demonstrates the use of the different coordinate
systems that are available in grid. The label text is drawn outside the edges
of the plot region and is positioned in terms of a number of lines of text (i.e.,
the height that a line of text would occupy).

> grid.text("temperature", y=unit(-3, "line"))
> grid.text("pressure", x=unit(-3, "line"), rot=90)

The obvious result of running the above code is the graphical output (see the
top-left image in Figure 6.1). Less obvious is the fact that several objects have
been created. There are objects representing the viewport regions and there
are objects representing the graphical output. The following code makes use
of this fact to modify the plotting symbol from a circle to a triangle (see the
top-right image in Figure 6.1). The object representing the data symbols was
named "dataSymbols" (see the code above) and this name is used to find that
object and modify it using the grid.edit() function.

> grid.edit("dataSymbols", pch=2)

The next piece of code makes use of the objects representing the viewports.
The upViewport() and downViewport() functions are used to navigate be-
tween the different viewport regions to perform some extra annotations. First
of all, a call to the upViewport() function is used to go back to working
within the entire page so that a dashed rectangle can be drawn around the
complete plot.

> upViewport(2)
> grid.rect(gp=gpar(lty="dashed"))

Next, the downViewport() function is used to return to the plot region to
add a text annotation that is positioned relative to the scale on the axes of
the plot (see bottom-right image in Figure 6.1).

> downViewport("plotRegion")
> grid.text("Pressure (mm Hg)\nversus\nTemperature (Celsius)",

x=unit(150, "native"), y=unit(600, "native"))
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Figure 6.1
A simple scatterplot produced using grid. The top-left plot was constructed from
a series of calls to primitive grid functions that produce graphical output. The
top-right plot shows the result of calling the grid.edit() function to interactively
modify the plotting symbol. The bottom-right plot was created by making calls to
upViewport() and downViewport() to navigate between different drawing regions
and adding further output (a dashed border and text within the plot).
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The final scatterplot is still quite simple in this example, but the techniques
that were used to produce it are very general and powerful. It is possible to
produce a very complex plot, yet still have complete access to modify and add
to any part of the plot.

In the remaining sections of this chapter, the basic grid concepts of viewports
and units are discussed in full detail. A complete understanding of the grid
system will be useful in two ways: it will allow the user to produce very
complex images from scratch and it will allow the user to work effectively
with complex grid output that is produced by other people’s code, for example
plots that are produced using lattice or ggplot2.

6.2 Graphical primitives

The most simple grid functions to understand are those that draw something.
There are a set of grid functions for producing basic graphical output such
as lines, circles, and text.∗ Table 6.1 lists the full set of these functions.

The first arguments to most of these functions is a set of locations and di-
mensions for the graphical object to draw. For example, grid.rect() has
arguments x, y, width, and height for specifying the locations and sizes of
the rectangles to draw. An important exception is the grid.text() function,
which requires the text to draw as its first argument. The text to draw may
be a character vector or an R expression (to produce special symbols and
formatting; see Section 10.5).

In most cases, multiple locations and sizes can be specified and multiple prim-
itives will be produced in response. For example, the following function call
produces 100 circles because 100 locations and radii are specified (see Figure
6.2).

> grid.circle(x=seq(0.1, 0.9, length=100),
y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),
r=abs(0.1*cos(seq(0, 2*pi, length=100))))

∗All of these functions are of the form grid.*() and, for each one, there is a correspond-
ing *Grob() function that creates an object containing a description of primitive graphical
output, but does not draw anything. The *Grob() versions are addressed fully in Chapter
7.
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Table 6.1
Graphical primitives in grid. This is the complete set of low-level functions that
produce graphical output. For each function that produces graphical output (left-
most column), there is a corresponding function that returns a graphical object
containing a description of graphical output instead of producing graphical output
(right-most column). The latter set of functions is described further in Chapter 7.

Function to Function to
Produce Output Description Produce Object

grid.move.to() Set the current location. moveToGrob()
grid.line.to() Draw a line from the current lo-

cation to a new location and reset
the current location.

lineToGrob()

grid.lines() Draw a single line through multi-
ple locations in sequence.

linesGrob()

grid.polyline() Draw multiple lines through mul-
tiple locations in sequence.

polylineGrob()

grid.segments() Draw multiple lines between pairs
of locations.

segmentsGrob()

grid.xspline() Draw smooth curve relative to
control points.

xsplineGrob()

grid.rect() Draw rectangles given locations
and sizes.

rectGrob()

grid.roundrect() Draw rectangles with rounded
corners, given locations and sizes.

roundrectGrob()

grid.circle() Draw circles given locations and
radii.

circleGrob()

grid.polygon() Draw polygons given vertexes. polygonGrob()
grid.path() Draw single polygon consisting of

multiple paths.
pathGrob()

grid.text() Draw text given strings, locations
and rotations.

textGrob()

grid.raster() Draw bitmap image. rasterGrob()

grid.curve() Draw smooth curve between two
end points.

curveGrob()

grid.points() Draw data symbols given loca-
tions.

pointsGrob()

grid.xaxis() Draw x-axis. xaxisGrob()
grid.yaxis() Draw y-axis. yaxisGrob()
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Figure 6.2
Primitive grid output. A demonstration of basic graphical output produced using
a single call to the grid.circle() function. There are 100 circles of varying sizes,
each at a different (x, y) location.

The grid.move.to() and grid.line.to() functions are unusual in that they
both only accept one location. These functions refer to and modify a “cur-
rent location.” The grid.move.to() function sets the current location and
grid.line.to() draws from the current location to a new location, then sets
the current location to be the new location. The current location is not used
by the other drawing functions. In most cases, grid.lines() will be more
convenient, but grid.move.to() and grid.line.to() are useful for drawing
lines across multiple viewports (also see Section 6.5.1).

The difference between grid.lines() and grid.polyline() is that the latter
has an id argument. That argument can be used to split the (x, y) locations
into separate lines.

The grid.curve() function draws a curve between two locations, which is
useful in drawing simple diagrams. Several arguments control the shape of
the curve, including how much the curve deviates from a straight line be-
tween the points (curvature), whether the curve follows a city-block pattern
(square), and how smooth the curve is (ncp). The following code produces
three examples: a city-block curve; a smooth, oblique curve; and a curve
that is biased toward the start point and swings wider around the corner (see
Figure 6.3).
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Figure 6.3
Drawing curves between two end points using the grid.curve() function: at left is
the default city-block curve; in the middle is a curve that bends less and is symmetric
between the end points; and at right is a curve that is biased toward the starting
point.

> grid.curve(x1=.1, y1=.25, x2=.3, y2=.75)
> grid.curve(x1=.4, y1=.25, x2=.6, y2=.75,

square=FALSE, ncp=8, curvature=.5)
> grid.curve(x1=.7, y1=.25, x2=.9, y2=.75,

square=FALSE, angle=45, shape=-1)

The grid.curve() function use X-splines to make smooth curves between
two end points; the grid.xspline() function can be used to produce smooth
curves relative to any number of control points.

All functions that draw lines have an arrow argument, which can be used
to add arrowheads to either end of the line. The arrow() function is used
to create a description of the arrowheads, then this is supplied as the value
of the arrow argument. The following code demonstrates two possible uses
(see Figure 6.4). The first expression adds an open arrowhead to a single line
drawn by grid.lines() and the second call adds narrower closed arrowheads
to three lines drawn by grid.segments().

> angle <- seq(0, 2*pi, length=50)
> grid.lines(x=seq(0.1, 0.5, length=50),

y=0.5 + 0.3*sin(angle), arrow=arrow())
> grid.segments(6:8/10, 0.2, 7:9/10, 0.8,

arrow=arrow(angle=15, type="closed"))
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Figure 6.4
Drawing arrows using line-drawing functions. Arrows can be added to the out-
put from grid.lines(), grid.polyline(), grid.segments(), grid.line.to(),
grid.xspline(), and grid.curve(). Examples are shown for grid.lines() (the
sine curve in the left half of the figure) and grid.segments() (the three straight
lines in the right half of the figure).

In simple usage, the grid.polygon() function draws a single polygon through
the specified x- and y-locations, automatically joining the last location to
the first to close the polygon. It is possible to produce multiple polygons
from a single call if the id argument is specified. In this case, a polygon is
drawn for each set of x- and y-locations corresponding to a different value of
id. The following code demonstrates both usages (see Figure 6.5). The two
grid.polygon() calls use the same x- and y-locations, but the second call
splits the locations into three separate polygons using the id argument.

> angle <- seq(0, 2*pi, length=10)[-10]
> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

gp=gpar(fill="gray"))
> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:3, each=3),
gp=gpar(fill="gray"))

The grid.path() function also has an id argument, but instead of producing
multiple polygons, the result is a single polygon consisting of multiple paths.
This can be used to create a shape with an internal hole. The following code
shows an example where a polygon shape is created with a rectangular hole
in the middle (see Figure 6.6).



The grid Graphics Model 183

Figure 6.5
Drawing polygons using the grid.polygon() function. By default, a single polygon
is produced from multiple (x, y) locations (the nonagon on the left), but it is
possible to associate subsets of the locations with separate polygons using the id

argument (the three triangles on the right).

> angle <- seq(0, 2*pi, length=10)[-10]
> grid.path(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

gp=gpar(fill="gray"))
> grid.path(x=c(0.75 + 0.15*cos(angle), .7, .7, .8, .8),

y=c(0.5 + 0.3*sin(angle), .4, .6, .6, .4),
id=rep(1:2, c(9, 4)),
gp=gpar(fill="gray"))

The grid.points() function draws small shapes as data symbols at the (x,
y) locations. The pch argument specifies the data symbol shape as an integer
(e.g., 0 means an open square and 1 means an open circle) or as a single
character (see Section 10.3).

The grid.raster() function draws a bitmap image. The bitmap image can
be specified as a vector, matrix, or array. Chapter 18 describes ways to source
an image from an external file.

The grid.xaxis() and grid.yaxis() functions are not really graphical prim-
itives as they produce relatively complex output consisting of both lines and
text. They are included here because they complete the set of grid functions
that produce graphical output. The main argument to these functions is the
at argument. This is used to specify where tick marks should be placed. If the
argument is not specified, sensible tick marks are drawn based on the current
scales in effect (see Section 6.5 for information about viewport scales). The
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Figure 6.6
Drawing paths using the grid.path() function. In simple cases, a single polygon is
produced, from multiple (x, y) locations (the nonagon on the left), but it is also
possible to associate subsets of the locations with separate subpaths using the id

argument, which can be used to create holes in the polygon (the shape on the right).

values specified for the at argument are always relative to the current scales
(see the concept of the "native" coordinate system in Section 6.3). These
functions are much less flexible and general than the traditional axis() func-
tion. For example, they do not provide automatic support for generating
labels from time-based or date-based at locations.

6.2.1 Standard arguments

All primitive graphics functions accept a gp argument that allows control over
aspects such as the color and line type of the relevant output. For example, the
following code specifies that the boundary of the rectangle should be dashed
and colored red.

> grid.rect(gp=gpar(col="red", lty="dashed"))

Section 6.4 provides more information about setting graphical parameters.

All primitive graphics functions also accept a vp argument that can be used
to specify a viewport in which to draw the relevant output. The following
code shows a simple example of the syntax (the result is a rectangle drawn in
the left half of the page); Section 6.5 describes viewports and the use of vp
arguments in full detail.



The grid Graphics Model 185

> grid.rect(vp=viewport(x=0, width=0.5, just="left"))

Finally, all primitive graphics functions also accept a name argument. This
can be used to identify the graphical object produced by the function. It is
useful for editing graphical output and when working with graphical objects
(see Chapter 7). The following code demonstrates how to associate a name
with a rectangle.

> grid.rect(name="myrect")

6.2.2 Clipping

The grid.clip() function is not really a graphical primitive because it does
not draw anything. Instead, this function specifies a clipping rectangle. After
this function has been called, any subsequent drawing will only be visible if
it occurs inside the clipping rectangle.

The clipping rectangle can be reset by calling grid.clip() again or by chang-
ing the drawing viewport (see Section 6.5, especially Section 6.5.2).

6.3 Coordinate systems

When drawing in grid, there are always a large number of coordinate sys-
tems available for specifying the locations and sizes of graphical output. For
example, it is possible to specify an x-location as a proportion of the width of
the drawing region, or as a number of inches (or centimeters, or millimeters)
from the left-hand edge of the drawing region, or relative to the current x-axis
scale. The full set of coordinate systems available is shown in Table 6.2. The
meaning of some of these will only become clear with an understanding of
viewports (Section 6.5) and graphical objects (Chapter 7).∗

With so many coordinate systems available, it is necessary to specify which
coordinate system a location or size refers to. This is the purpose of the
unit() function. This function creates an object of class "unit" (hereafter
referred to simply as a unit), which acts very much like a normal numeric

∗Absolute units, such as inches, may not be rendered with full accuracy in all output
formats (see the footnote on page 95).
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Table 6.2
The full set of coordinate systems available in grid.

Coordinate
System Name Description
"native" Locations and sizes are relative to the x- and y-

scales for the current viewport.
"npc" Normalized Parent Coordinates. Treats the

bottom-left corner of the current viewport as the
location (0, 0) and the top-right corner as (1, 1).

"snpc" Square Normalized Parent Coordinates. Locations
and sizes are expressed as a proportion of the
smaller of the width and height of the current
viewport.

"in" Locations and sizes are in terms of physical inches.
For locations, (0, 0) is at the bottom-left of the
viewport.

"cm" Same as "in", except in centimeters.
"mm" Millimeters.
"pt" Points. There are 72.27 points per inch.
"bigpts" Big points. There are 72 big points per inch.
"picas" Picas. There are 12 points per pica.
"dida" Dida. 1157 dida equals 1238 points.
"cicero" Cicero. There are 12 dida per cicero.
"scaledpts" Scaled points. There are 65536 scaled points per

point.

"char" Locations and sizes are specified in terms of mul-
tiples of the current nominal font size (dependent
on the current fontsize and cex).

"line" Locations and sizes are specified in terms of mul-
tiples of the height of a line of text (dependent on
the current fontsize, cex, and lineheight).

"strwidth"
"strheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given string (depen-
dent on the string and the current fontsize, cex,
fontfamily, and fontface).

"grobx"
"groby"

Locations and sizes are expressed as multiples of
the x- or y-location on the boundary of a given
graphical object (dependent on the type, location,
and graphical settings of the graphical object).

"grobwidth"
"grobheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given graphical object
(dependent on the type, location, and graphical
settings of the graphical object).
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object — it is possible to perform basic operations such as subsetting units,
and adding and subtracting units.

Each value in a unit can be associated with a different coordinate system and
each location and dimension of a graphical object is a separate unit so, for
example, a rectangle can have its x-location, y-location, width, and height all
specified relative to different coordinate systems.

The following pieces of code demonstrate some of the flexibility of grid units.
The first code examples show some different uses of the unit() function: a
single value is associated with a coordinate system, then several values are
associated with a coordinate system (notice the recycling of the coordinate
system), then several values are associated with different coordinate systems.

> unit(1, "mm")

[1] 1mm

> unit(1:4, "mm")

[1] 1mm 2mm 3mm 4mm

> unit(1:4, c("npc", "mm", "native", "line"))

[1] 1npc 2mm 3native 4line

The next code examples show how units can be manipulated in many of the
ways that normal numeric vectors can: firstly by subsetting, then simple
arithmetic (again notice the recycling), then finally the use of a summary
function (max() in this case).

> unit(1:4, "mm")[2:3]

[1] 2mm 3mm

> unit(1, "npc") - unit(1:4, "mm")

[1] 1npc-1mm 1npc-2mm 1npc-3mm 1npc-4mm
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> max(unit(1:4, c("npc", "mm", "native", "line")))

[1] max(1npc, 2mm, 3native, 4line)

Some operations on units are not as straightforward as with numeric vectors,
but require the use of functions written specifically for units. For example,
units must be concatenated (in the sense of the c() function) using unit.c().

The following code provides an example of using units to locate and size a
rectangle. The rectangle is at a location 40% of the way across the drawing
region and 1 inch from the bottom of the drawing region. It is as wide as the
text "very snug", and it is one line of text high (see Figure 6.7).

> grid.rect(x=unit(0.4, "npc"), y=unit(1, "in"),
width=stringWidth("very snug"),
height=unit(1, "line"),
just=c("left", "bottom"))

6.3.1 Conversion functions

As demonstrated in the previous section, a unit is not simply a numeric value.
Units only reduce to a simple numeric value (a physical location on a graphics
device) when drawing occurs. A consequence of this is that a unit can mean
very different things, depending on when it gets drawn (this should become
more apparent with an understanding of graphical parameters in Section 6.4
and viewports in Section 6.5).

In some cases, it can be useful to convert a unit to a simple numeric value.
For example, it is sometimes necessary to know the current scale limits for
numerical calculations. There are several functions that can assist with this
problem: convertUnit(), convertX(), convertY(), convertWidth(), and
convertHeight(). The following code shows a calculation of the current
page height in inches.

> convertHeight(unit(1, "npc"), "in")

[1] 7in
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Figure 6.7
A demonstration of grid units. A diagram demonstrating how graphical output
can be located and sized using grid units to associate numeric values with different
coordinate systems. The gray border represents the current viewport. A black
rectangle has been drawn with its bottom-left corner 40% of the way across the
current viewport and 1 inch above the bottom of the current viewport. The rectangle
is 1 line of text high and as wide as the text “very snug” (as it would be drawn in
the current font).

WARNING: These conversion functions must be used with care. The out-
put from these functions is only valid for the current page or screen size. If,
for example, a window on screen is resized, or output is copied from the screen
to a file format with a different physical size, these calculations may no longer
be correct. In other words, only rely on these functions when it is known that
the size of the screen will not change. See Chapter 19 for more information on
this topic and for a way to be able to use these functions when the screen may
be resized. The discussion on the use of these functions in drawDetails()
methods and the function grid.record() is also relevant (see “Calculations
during drawing” in Section 8.3.11).

6.3.2 Complex units

A number of coordinate systems in grid are relative in the sense that a
value is interpreted as a multiple of the location or size of some other object.
There are two peculiarities of these sorts of coordinate systems, "strwidth",
"strheight", "grobx", "groby", "grobwidth", and "grobheight", that re-
quire further explanation. In the first two cases, the other object is just a text
string (e.g., "a label"), but in the latter four cases, the other object can be
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any graphical object (see Chapter 7). It is necessary to specify the other ob-
ject when generating a unit for these coordinate systems and this is achieved
via the data argument. The following code shows some simple examples.

> unit(1, "strwidth", "some text")

[1] 1strwidth

> unit(1, "grobwidth", textGrob("some text"))

[1] 1grobwidth

A more convenient interface for generating units, when all values are rela-
tive to a single coordinate system, is also available via the stringWidth(),
stringHeight(), grobX(), grobY(), grobWidth(), and grobHeight() func-
tions. The following code is equivalent to the previous example.

> stringWidth("some text")

[1] 1strwidth

> grobWidth(textGrob("some text"))

[1] 1grobwidth

In this particular example, the "strwidth" and "grobwidth" units will be
identical as they are based on identical pieces of text. The difference is that
a graphical object can contain not only the text to draw, but also other
information that may affect the size of the text, such as the font family and
size.

In the following code, the two units are no longer identical because the text
grob represents text drawn at font size of 18, whereas the simple string rep-
resents text at the default size of 10. The convertWidth() function is used
to demonstrate the difference.

> convertWidth(stringWidth("some text"), "in")

[1] 0.715666666666667in
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> convertWidth(grobWidth(textGrob("some text",
gp=gpar(fontsize=18))),

"in")

[1] 1.0735in

For units that contain multiple values, there must be an object specified
for every "strwidth", "strheight", "grobx", "groby", "grobwidth", and
"grobheight" value. Where there is a mixture of coordinate systems within
a unit, a value of NULL can be supplied for the coordinate systems that do not
require data. The following code demonstrates this.

> unit(rep(1, 3), "strwidth", list("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

> unit(rep(1, 3),
c("npc", "strwidth", "grobwidth"),
list(NULL, "two", textGrob("three")))

[1] 1npc 1strwidth 1grobwidth

Again, there is a simpler interface for straightforward situations.

> stringWidth(c("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

For "grobx", "groby", "grobwidth", and "grobheight" units, it is also pos-
sible to specify the name of a graphical object rather than the graphical object
itself. This can be useful for establishing a reference to a graphical object, so
that when the named graphical object is modified, the unit is updated for the
change. The following code demonstrates this idea. First of all, a text grob
is drawn with the name "tgrob".

> grid.text("some text", name="tgrob")

Next, a unit is created that is based on the width of the grob called "tgrob".

> theUnit <- grobWidth("tgrob")
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The convertWidth() function can be used to show the current value of the
unit.

> convertWidth(theUnit, "in")

[1] 0.715666666666666in

The following code modifies the grob named "tgrob" and convertWidth()
is used to show that the value of the unit reflects the new width of the text
grob.

> grid.edit("tgrob", gp=gpar(fontsize=18))
> convertWidth(theUnit, "in")

[1] 1.0735in

See Section 7.5 for more examples of calculating the sizes of graphical objects.

6.4 Controlling the appearance of output

All graphical primitives functions (and the viewport() function; see Section
6.5) have a gp argument that can be used to provide a set of graphical pa-
rameters to control the appearance of the graphical output. There is a fixed
set of graphical parameters (see Table 6.3), all of which can be specified for
all types of graphical output.

The value supplied for the gp argument must be an object of class "gpar",
which is produced using the gpar() function. For example, the following code
produces a gpar object containing graphical parameter settings controlling
color and line type.

> gpar(col="red", lty="dashed")

$col

[1] "red"

$lty

[1] "dashed"
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Table 6.3
The full set of graphical parameters available in grid.

Parameter Description

col Color of lines, text, rectangle borders, ...
fill Color for filling rectangles, circles, polygons, ...
alpha Alpha blending coefficient for transparency
lwd Line width
lex Line width expansion multiplier applied to lwd to

obtain final line width
lty Line type
lineend Line end style (round, butt, square)
linejoin Line join style (round, miter, bevel)
linemitre Line miter limit
cex Character expansion multiplier applied to

fontsize to obtain final font size
fontsize Size of text (in points)
fontface Font face (bold, italic, ...)
fontfamily Font family
lineheight Multiplier applied to final font size to obtain the

height of a line
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The function get.gpar() can be used to obtain current graphical parameter
settings. The following code shows how to query the current line type and fill
color. When called with no arguments, the function returns a complete list of
current settings.

> get.gpar(c("lty", "fill"))

$lty

[1] "solid"

$fill

[1] NA

A gpar object represents an explicit graphical context — settings for a small
number of specific graphical parameters. The example above produces a
graphical context that ensures that the color setting is "red" and the line-type
setting is "dashed". There is always an implicit graphical context consisting
of default settings for all graphical parameters. The implicit graphical context
is initialized automatically by grid device and can be modified by viewports
(see Section 6.5.5) or by gTrees (see Section 7.2.1).∗

A graphical primitive will be drawn with graphical parameter settings taken
from the implicit graphical context, except where there are explicit graphical
parameter settings from the graphical primitive’s gp argument. For graphical
primitives, the explicit graphical context is only in effect for the duration of the
drawing of the graphical primitive. The following code example demonstrates
these rules.

The default initial implicit graphical context includes settings such as
lty="solid" and fill="transparent". The first rectangle has an explicit
setting fill="black" so it only uses the implicit setting lty="solid". The
second rectangle has no explicit graphical parameter settings so it uses all of
the implicit graphical parameter settings. In particular, it is not at all affected
by the explicit settings of the first rectangle (see Figure 6.8).

> grid.rect(x=0.33, height=0.7, width=0.2,
gp=gpar(fill="black"))

> grid.rect(x=0.66, height=0.7, width=0.2)

∗The ideas of implicit and explicit graphical contexts are similar to the specification of
settings in Cascading Style Sheets and the graphics state in PostScript.
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Figure 6.8
Graphical parameters for graphical primitives. The gray rectangle represents the
current viewport. The right-hand rectangle has been drawn with no specific graphi-
cal parameters so it inherits the defaults for the current viewport (which in this case
are a black border and no fill color). The left-hand rectangle has been drawn with
a specific fill color of black (it is still drawn with the inherited black border). The
graphical parameter settings for one rectangle have no effect on the other rectangle.

6.4.1 Specifying graphical parameter settings

The values that can be specified for colors, line types, line widths, line ends,
line joins, and fonts are mostly the same as for the traditional graphics system.
For example, colors can be specified by names such as "red". Chapter 10
describes the specification of graphical parameters in R in complete detail.

One peculiarity to grid is that the fontface value can be a name instead of
an integer. Table 6.4 shows the possible values.

Many of the parameter names in grid are also the same as those in traditional
graphics, though several of the grid names are slightly more verbose (e.g.,
lineend and fontfamily).

In grid, the cex value is cumulative. This means that it is multiplied by the
previous cex value to obtain a current cex value. The following code shows
a simple example. A viewport is pushed with cex=0.5. This means that text
will be half size. Next, some text is drawn, also with cex=0.5. This text is
drawn quarter size because cex was already 0.5 from the viewport (0.5*0.5
= 0.25).

> pushViewport(viewport(gp=gpar(cex=0.5)))
> grid.text("How small do you think?", gp=gpar(cex=0.5))
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Table 6.4
Possible font face specifications in grid.

Integer Name Description

1 "plain" Roman or upright face
2 "bold" Bold face
3 "italic" or "oblique" Slanted face
4 "bold.italic" Bold and slanted face

The lex parameter, which is a multiplier that affects line width, is similarly
cumulative.

The alpha graphical parameter provides a general alpha-transparency setting.
It is a value between 1 (fully opaque) and 0 (fully transparent). The alpha
value is combined with the alpha channel of colors by multiplying the two
and this setting is cumulative like the cex setting. The following code shows
a simple example. A viewport is pushed with alpha=0.5, then a rectangle is
drawn using a semitransparent red fill color (alpha channel set to 0.5). The
final alpha channel for the fill color is 0.25 (0.5*0.5 = 0.25).

> pushViewport(viewport(gp=gpar(alpha=0.5)))
> grid.rect(width=0.5, height=0.5,

gp=gpar(fill=rgb(1, 0, 0, 0.5)))

The grid system does not provide any support for fill gradients or patterns,
but some effects are possible through judicious use of raster images, graphical
primitives, and clipping. Section 11.2 describes some functions in external
packages that implement this idea.

6.4.2 Vectorized graphical parameter settings

All graphical parameter settings may be vector values. Many graphical primi-
tive functions produce multiple primitives as output and graphical parameter
settings will be recycled over those primitives. The following code produces
100 circles, cycling through 50 different shades of gray for the circles (see
Figure 6.9).
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Figure 6.9
Recycling graphical parameters. The 100 circles are drawn by a single function call
with 50 different grays specified for the border color (from a very light gray to a
very dark gray and back to a very light gray). The 50 colors are recycled over the
100 circles so circle i gets the same color as circle i + 50.

> levels <- round(seq(90, 10, length=25))
> grays <- paste("gray", c(levels, rev(levels)), sep="")
> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),
r=abs(0.1*cos(seq(0, 2*pi, length=100))),
gp=gpar(col=grays))

The grid.polygon() function is a slightly complex case. There are two ways
in which this function will produce multiple polygons: when the id argument
is specified and when there are NA values in the x- or y-locations (see Sec-
tion 6.6). For grid.polygon(), a different graphical parameter will only be
applied to each polygon identified by a different id. When a single polygon
(as identified by a single id value) is split into multiple subpolygons by NA
values, all subpolygons receive the same graphical parameter settings. The
following code demonstrates these rules (see Figure 6.10). The first call to
grid.polygon() draws two polygons as specified by the id argument. The
fill graphical parameter setting contains two colors so the first polygon gets
the first color (gray) and the second polygon gets the second color (white). In
the second call, all that has changed is that an NA value has been introduced.
This means that the first polygon as specified by the id argument is split into
two separate polygons, but both of these polygons use the same fill setting
because they both correspond to an id of 1. Both of these polygons get the
first color (gray).
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NA

Figure 6.10
Recycling graphical parameters for polygons. On the left, a single function call
produces two polygons with different fill colors by specifying an id argument and
two fill colors. On the right, there are three polygons because an NA value has been
introduced in the (x, y) locations for the polygon, but there are still only two colors
specified. The colors are allocated to polygons using the id argument and ignoring
any NA values.

> angle <- seq(0, 2*pi, length=11)[-11]
> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),
gp=gpar(fill=c("gray", "white")))

> angle[4] <- NA
> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),
gp=gpar(fill=c("gray", "white")))

Other functions with an id argument, for example, grid.polyline() and
grid.xspline(), obey similar rules. On the other hand, the grid.path()
function is an exception to the exception because it (conceptually) only ever
draws a single shape.

All graphical primitives have a gp component, so it is possible to specify any
graphical parameter setting for any graphical primitive. This may seem inef-
ficient, and indeed in some cases the values are completely ignored (e.g., text
drawing ignores the lty setting), but in many cases the values are potentially
useful. For example, even when there is no text being drawn, the settings for
fontsize, cex, and lineheight are always used to calculate the meaning of
"line" and "char" coordinates. For example, the rectangles produced by the
following code are different heights.
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> grid.rect(height=unit(1, "lines"))
> grid.rect(height=unit(1, "lines"),

gp=gpar(lineheight=2))

6.5 Viewports

A viewport is a rectangular region that provides a context for drawing.

A viewport provides a drawing context consisting of both a geometric context
and a graphical context. A geometric context consists of a set of coordinate
systems for locating and sizing output and all of the coordinate systems de-
scribed in Section 6.3 are available within every viewport. A graphical context
consists of explicit graphical parameter settings for controlling the appearance
of output. This is specified as a gpar object via the gp argument.

By default, grid creates a root viewport that corresponds to the entire page
and, until another viewport is created, drawing occurs within the full extent
of the page and using the default graphical parameter settings.∗

A new viewport is created using the viewport() function. A viewport has
a location (given by x and y), a size (given by width and height), and it is
justified relative to its location (according to the value of the just argument).
The location and size of a viewport are specified in units, so a viewport can
be positioned and sized within another viewport in a very flexible manner.
The following code creates a viewport that is left-justified at an x-location
0.4 of the way across the drawing region, and bottom-justified 1 centimeter
from the bottom of the drawing region. It is as wide as the text "very very
snug indeed", and it is six lines of text high. Figure 6.11 shows a diagram
representing this viewport.

> viewport(x=unit(0.4, "npc"), y=unit(1, "cm"),
width=stringWidth("very very snug indeed"),
height=unit(6, "line"),
just=c("left", "bottom"))

viewport[GRID.VP.24]

∗Warning: some default parameter settings vary between different graphics formats. For
example, the fill parameter is usually "transparent", but for PNG output it is "white".
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Figure 6.11
A diagram of a simple viewport. A viewport is a rectangular region specified by
an (x, y) location, a (width, height) size, and a justification (and possibly a
rotation). This diagram shows a viewport that is left-bottom justified 1 centimeter
off the bottom of the page and 0.4 of the way across the page. It is six lines of text
high and as wide as the text “very very snug indeed.”

An important thing to notice in the above example is that the result of the
viewport() function is an object of class "viewport". No region has actually
been created on the page. In order to create regions on the page, a viewport
object must be pushed, as described in the next section.

6.5.1 Pushing, popping, and navigating between viewports

The pushViewport() function takes a viewport object and uses it to create
a region on the graphics device. This region becomes the drawing context for
all subsequent graphical output, until the region is removed or another region
is defined.

The following code demonstrates this idea (see Figure 6.12). To start with,
the entire page, and the default graphical parameter settings, provide the
drawing context. Within this context, the grid.text() call draws some text
at the top-left corner of the device. A viewport is then pushed, which creates
a region 80% as wide as the page, half the height of the page, and rotated at
an angle of 10 degrees.∗ The viewport is given a name, "vp1", which will help

∗It is not often very useful to rotate a viewport, but it helps in this case to dramatize
the difference between the drawing regions.
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top−left corner

top−left corner

Figure 6.12
Pushing a viewport. Drawing occurs relative to the entire device until a viewport is
pushed. For example, some text has been drawn in the top-left corner of the device.
Once a viewport has been pushed, output is drawn relative to that viewport. The
black rectangle represents a viewport that has been pushed and text has been drawn
in the top-left corner of that viewport.

us to navigate back to this viewport from another viewport later.

Within the new drawing context defined by the viewport that has been pushed,
exactly the same grid.text() call produces some text at the top-left corner
of the viewport. A rectangle is also drawn to make the extent of the new
viewport clear.

> grid.text("top-left corner", x=unit(1, "mm"),
y=unit(1, "npc") - unit(1, "mm"),
just=c("left", "top"))

> pushViewport(viewport(width=0.8, height=0.5, angle=10,
name="vp1"))

> grid.rect()
> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),
just=c("left", "top"))

The pushing of viewports is entirely general. A viewport is pushed relative
to the current drawing context. The following code slightly extends the pre-
vious example by pushing a further viewport, exactly like the first, and again
drawing text at the top-left corner (see Figure 6.13). The location, size, and
rotation of this second viewport are all relative to the context provided by the
first viewport. Viewports can be nested like this to any depth.
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Figure 6.13
Pushing several viewports. Viewports are pushed relative to the current viewport.
Here, a second viewport has been pushed relative to the viewport that was pushed
in Figure 6.12. Again, text has been drawn in the top-left corner.

> pushViewport(viewport(width=0.8, height=0.5, angle=10,
name="vp2"))

> grid.rect()
> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),
just=c("left", "top"))

In grid, drawing is always within the context of the current viewport. One
way to change the current viewport is to push a viewport (as in the previous
examples), but there are other ways too. For a start, it is possible to pop a
viewport using the popViewport() function. This removes the current view-
port and the drawing context reverts to whatever it was before the current
viewport was pushed. It is illegal to pop the top-most viewport that repre-
sents the entire page and the default graphical parameter settings and trying
to do so will result in an error.

The following code demonstrates popping viewports (see Figure 6.14). The
call to popViewport() removes the last viewport that was created on the page.
Text is drawn at the bottom-right of the resulting drawing region (which has
reverted back to being the first viewport that was pushed).

> popViewport()
> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),
y=unit(1, "mm"), just=c("right", "bottom"))
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Figure 6.14
Popping a viewport. When a viewport is popped, the drawing context reverts to
the parent viewport. In this figure, the second viewport (pushed in Figure 6.13) has
been popped to go back to the first viewport (pushed in Figure 6.12). This time
text has been drawn in the bottom-right corner.

The popViewport() function has an integer argument n that specifies how
many viewports to pop. The default is 1, but several viewports can be popped
at once by specifying a larger value. The special value of 0 means that all
viewports should be popped. In other words, the drawing context should
revert to the entire device and the default graphical parameter settings.

Another way to change the current viewport is by using the upViewport()
and downViewport() functions. The upViewport() function is similar to
popViewport() in that the drawing context reverts to whatever it was prior to
the current viewport being pushed. The difference is that upViewport() does
not remove the current viewport from the page. This difference is significant
because it means that that a viewport can be revisited without having to
push it again. Revisiting a viewport is faster than pushing a viewport and it
allows the creation of viewport regions to be separated from the production
of output (see “viewport paths” in Section 6.5.3 and Chapter 8).

A viewport can be revisited using the downViewport() function. This function
has an argument name that can be used to specify the name of an existing
viewport. The result of downViewport() is to make the named viewport
the current drawing context. The following code demonstrates the use of
upViewport() and downViewport() (see Figure 6.15).

A call to upViewport() is made, which reverts the drawing context to the
entire page (recall that prior to this navigation the current viewport was the
first viewport that was pushed) and text is drawn in the bottom-right corner.
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Figure 6.15
Navigating between viewports. Rather than popping a viewport, it is possible to
navigate up from a viewport (and leave the viewport on the device). Here navigation
has occurred from the first viewport to revert the drawing context to the entire
device and text has been drawn in the bottom-right corner. Next, there has been
a navigation down to the first viewport again and a second border has been drawn
around the outside of the viewport.

The downViewport() function is then used to navigate back down to the
viewport that was first pushed and a second border is drawn around this
viewport. The viewport to navigate down to is specified by its name, "vp1".

> upViewport()
> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),
y=unit(1, "mm"), just=c("right", "bottom"))

> downViewport("vp1")
> grid.rect(width=unit(1, "npc") + unit(2, "mm"),

height=unit(1, "npc") + unit(2, "mm"))

There is also a seekViewport() function that can be used to travel across
the viewport tree. This can be convenient for interactive use, but the result is
less predictable, so it is less suitable for use in writing grid functions for oth-
ers to use. The call seekViewport("avp") is equivalent to upViewport(0);
downViewport("avp").
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Drawing between viewports

Sometimes it is useful to be able to locate graphical output relative to more
than one viewport. One way to do this in grid is via the grid.move.to()
and grid.line.to() functions. It is possible to call grid.move.to() within
one viewport, change viewports, and call grid.line.to().

Another approach is to use the grid.null() function. This is a special graph-
ical primitive that does not draw anything, but it draws nothing at a very
specific location. Through the use of the functions grobX() and grobY() this
makes it possible to perform drawing relative to one or more invisible loca-
tions, represented by one or more “null” grobs, which can be located in one or
more different viewports. Section 7.5 has an example of this approach.

6.5.2 Clipping to viewports

Drawing can be restricted to only the interior of the current viewport (clipped
to the viewport) by specifying the clip argument to the viewport() function.
This argument has three values: "on" indicates that output should be clipped
to the current viewport; "off" indicates that output should not be clipped
at all; "inherit" means that the clipping region of the previous viewport
should be used (this may not have been set by the previous viewport if that
viewport’s clip argument was also "inherit"). The following code provides
a simple example (see Figure 6.16). A viewport is pushed with clipping on
and a circle with a very thick black border is drawn relative to the viewport.
A rectangle is also drawn to show the extent of the viewport. The circle
partially extends beyond the limits of the viewport, so only those parts of the
circle that lie within the viewport are drawn.

> pushViewport(viewport(w=.5, h=.5, clip="on"))
> grid.rect()
> grid.circle(r=.7, gp=gpar(lwd=20))

Next, another viewport is pushed and this viewport just inherits the clipping
region from the first viewport. Another circle is drawn, this time with a gray
and slightly thinner border and again the circle is clipped to the viewport.

> pushViewport(viewport(clip="inherit"))
> grid.circle(r=.7, gp=gpar(lwd=10, col="gray"))

Finally, a third viewport is pushed with clipping turned off. Now, when a
third circle is drawn (with a thin, black border) all of the circle is drawn, even
though parts of the circle extend beyond the viewport.
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Figure 6.16
Clipping output in viewports. When a viewport is pushed, output can be clipped to
that viewport, or the clipping region can be left in its current state, or clipping can
be turned off entirely. In this figure, a viewport is pushed (the black rectangle) with
clipping on. A circle is drawn with a very thick black border and it gets clipped.
Next, another viewport is pushed (in the same location) with clipping left as it was.
A second circle is drawn with a slightly thinner gray border and it is also clipped.
Finally, a third viewport is pushed, which turns clipping off. A circle is drawn with
a thin black border and this circle is not clipped.

> pushViewport(viewport(clip="off"))
> grid.circle(r=.7)
> popViewport(3)

6.5.3 Viewport lists, stacks, and trees

It can be convenient to work with several viewports at once and there are
several facilities for doing this in grid. The pushViewport() function will
accept multiple arguments and will push the specified viewports one after
another. For example, the fourth expression below is a shorter equivalent
version of the first three expressions.

> pushViewport(vp1)
> pushViewport(vp2)
> pushViewport(vp3)

> pushViewport(vp1, vp2, vp3)
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The pushViewport() function will also accept objects that contain several
viewports: viewport lists, viewport stacks, and viewport trees. The func-
tion vpList() creates a list of viewports and these are pushed “in parallel.”
The first viewport in the list is pushed, then grid navigates back up before
the next viewport in the list is pushed. The vpStack() function creates a
stack of viewports and these are pushed “in series.” Pushing a stack of view-
ports is exactly the same as specifying the viewports as multiple arguments
to pushViewport(). The vpTree() function creates a tree of viewports that
consists of a parent viewport and any number of child viewports. The parent
viewport is pushed first, then the child viewports are pushed in parallel within
the parent.

The current set of viewports that have been pushed on the current device
constitute a viewport tree and the current.vpTree() function prints out a
representation of the current viewport tree. The following code demonstrates
the output from current.vpTree() and the difference between lists, stacks,
and trees of viewports. First of all, some (trivial) viewports are created to
work with.

> vp1 <- viewport(name="A")
> vp2 <- viewport(name="B")
> vp3 <- viewport(name="C")

The next piece of code shows these three viewports pushed as a list. The
output of current.vpTree() shows the root viewport (which represents the
entire device) and then all three viewports as children of the root viewport.
A graph of the resulting viewport tree is shown in Figure 6.17 (top-left).

> pushViewport(vpList(vp1, vp2, vp3))
> current.vpTree()

viewport[ROOT]->(viewport[A], viewport[B], viewport[C])

This next code pushes the three viewports as a stack. The viewport vp1 is
now the only child of the root viewport with vp2 a child of vp1, and vp3 a
child of vp2. A graph of the resulting viewport tree is shown in Figure 6.17
(top-right).

> grid.newpage()
> pushViewport(vpStack(vp1, vp2, vp3))
> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B]->(viewport[C])))
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Finally, the three viewports are pushed as a tree, with vp1 as the parent and
vp2 and vp3 as its children. A graph of the resulting viewport tree is shown
in Figure 6.17 (bottom-left).

> grid.newpage()
> pushViewport(vpTree(vp1, vpList(vp2, vp3)))
> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B], viewport[C]))

As with single viewports, viewport lists, stacks, and trees can be provided as
the vp argument for graphical functions (see Section 6.5.4).

Viewport paths

The downViewport() function, by default, searches down the current viewport
tree as far as is necessary to find a given viewport name. This is convenient
for interactive use, but can be ambiguous if there is more than one viewport
with the same name in the viewport tree.

The grid system provides the concept of a viewport path to resolve such am-
biguity. A viewport path is an ordered list of viewport names, which specify a
series of parent-child relations. A viewport path is created using the vpPath()
function. For example, the following code produces a viewport path that spec-
ifies a viewport called "C" with a parent called "B", which in turn has a parent
called "A".

> vpPath("A", "B", "C")

A::B::C

For convenience in interactive use, a viewport path may be specified directly
as a string. For example, the previous viewport path could be specified simply
as "A::B::C". The vpPath() function should be used when writing graphics
functions for others to use.

The name argument to the downViewport() function will accept a viewport
path, in which case it searches for a viewport that matches the entire path.
The strict argument to downViewport() ensures that a viewport will only
be found if the full viewport path is found, starting from the current location
in the viewport tree.
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Figure 6.17
Viewport lists, stacks, and trees. There is always a ROOT viewport. At top-left, a
list of three viewports has been pushed. At top-right, a stack of three viewports has
been pushed. At bottom-left, a tree of three viewports has been pushed (where the
tree consists of a parent with two children).
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6.5.4 Viewports as arguments to graphical primitives

As mentioned in Section 6.2.1, a viewport may be specified as an argument to
functions that produce graphical output (via an argument called vp). When a
viewport is specified in this way, the viewport gets pushed before the graphical
output is produced and the viewport is popped again afterward. To make this
completely clear, the following two code segments are identical. First of all, a
simple viewport is defined.

> vp1 <- viewport(width=0.5, height=0.5, name="vp1")

The next code explicitly pushes the viewport, draws some text, then pops the
viewport.

> pushViewport(vp1)
> grid.text("Text drawn in a viewport")
> popViewport()

This next piece of code does the same thing in a single call.

> grid.text("Text drawn in a viewport", vp=vp1)

It is also possible to specify the name of a viewport (or a viewport path) for a
vp argument. In this case, the name (or path) is used to navigate down to the
viewport, via a call to downViewport(), and then back up again afterward,
via a call to upViewport(). This promotes the practice of pushing viewports
once, then specifying where to draw different output by simply naming the
appropriate viewport. The following code does the same thing as the previous
example, but leaves the viewport intact (so that it can be used for further
drawing).

> pushViewport(vp1)
> upViewport()
> grid.text("Text drawn in a viewport", vp="vp1")

This feature is also very useful when annotating a plot produced by a high-
level graphics function. As long as the graphics function names the viewports
that it creates and does not pop them, it is possible to revisit the viewports to
add further output. This is what both lattice and ggplot2 do and examples
of this sort of annotation are given in Section 6.8. This approach to writing
high-level grid functions is discussed further in Chapter 8.
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Figure 6.18
The inheritance of viewport graphical parameters. A diagram demonstrating how
viewport graphical parameter settings are inherited by graphical output within the
viewport. The viewport sets the default fill color to gray. The left-hand rectangle
specifies no fill color itself so it is filled with gray. The right-hand rectangle specifies
a black fill color that overrides the viewport setting.

6.5.5 Graphical parameter settings in viewports

A viewport can have graphical parameter settings associated with it via the gp
argument to viewport(). When a viewport has graphical parameter settings,
those settings affect all graphical objects drawn within the viewport, and all
other viewports pushed within the viewport, unless the graphical objects or
the other viewports specify their own graphical parameter setting. In other
words, the graphical parameter settings for a viewport modify the implicit
graphical context (see page 194).

The following code demonstrates this rule. A viewport is pushed that has
a fill="gray" setting. A rectangle with no graphical parameter settings is
drawn within that viewport and this rectangle “inherits” the fill="gray"
setting. Another rectangle is drawn with its own fill setting so it does not
inherit the viewport setting (see Figure 6.18).

> pushViewport(viewport(gp=gpar(fill="gray")))
> grid.rect(x=0.33, height=0.7, width=0.2)
> grid.rect(x=0.66, height=0.7, width=0.2,

gp=gpar(fill="black"))
> popViewport()

The graphical parameter settings in a viewport only affect other viewports and
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graphical output within that viewport. The settings do not affect the viewport
itself. For example, parameters controlling the size of text (fontsize, cex,
etc.) do not affect the meaning of "line" units when determining the location
and size of the viewport, but they will affect the location and size of other
viewports or graphical output within the viewport. A layout (see Section
6.5.6) counts as being within the viewport (i.e., it is affected by the graphical
parameter settings of the viewport).

If there are multiple values for a graphical parameter setting, only the first is
used when determining the location and size of a viewport.

6.5.6 Layouts

A viewport can have a layout specified via the layout argument. A layout
in grid is similar to the same concept in traditional graphics (see Section
3.3.2). It divides the viewport region into several columns and rows, where
each column can have a different width and each row can have a different
height. For several reasons, however, layouts are much more flexible in grid:
there are many more coordinate systems for specifying the widths of columns
and the heights of rows (see Section 6.3); viewports can occupy overlapping
areas within the layout; and each viewport within the viewport tree can have
a layout (layouts can be nested). There is also a just argument to justify the
layout within a viewport when the layout does not occupy the entire viewport
region.

Layouts provide a convenient way to position viewports using the standard
set of coordinate systems, and provide an extra coordinate system, "null",
which is specific to layouts.

The basic idea is that a viewport can be created with a layout and then
subsequent viewports can be positioned relative to that layout. In simple
cases, this can be just a convenient way to position viewports in a regular grid,
but in more complex cases, layouts are the only way to apportion regions.
There are very many ways that layouts can be used in grid; the following
sections attempt to provide a glimpse of the possibilities by demonstrating a
series of example uses.

A grid layout is created using the function grid.layout() (not the tradi-
tional function layout()).

A simple layout

The following code produces a simple layout with three columns and three
rows, where the central cell (row two, column two) is forced to always be
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square (using the respect argument).

> vplay <- grid.layout(3, 3,
respect=rbind(c(0, 0, 0),

c(0, 1, 0),
c(0, 0, 0)))

The next piece of code uses this layout in a viewport. Any subsequent view-
ports may make use of the layout, or they can ignore it completely.

> pushViewport(viewport(layout=vplay))

In the next piece of code, two further viewports are pushed within the viewport
with the layout. The layout.pos.col and layout.pos.row arguments are
used to specify which cells within the layout each viewport should occupy. The
first viewport occupies all of column two and the second viewport occupies all
of row two. This demonstrates that viewports can occupy overlapping regions
within a layout. A rectangle has been drawn within each viewport to show
the region that the viewport occupies (see Figure 6.19).

> pushViewport(viewport(layout.pos.col=2, name="col2"))
> upViewport()
> pushViewport(viewport(layout.pos.row=2, name="row2"))

A layout with units

This section describes a layout that makes use of grid units. In the context
of specifying the widths of columns and the heights of rows for a layout, there
is an additional unit available, the "null" unit. All other units ("cm", "npc",
etc.) are allocated first within a layout, then the "null" units are used to
divide the remaining space proportionally (see Section 3.3.2). The following
code creates a layout with three columns and three rows. The left column is
one inch wide and the top row is three lines of text high. The remainder of
the current region is divided into two rows of equal height and two columns
with the right column twice as wide as the left column (see Figure 6.20).

> unitlay <-
grid.layout(3, 3,

widths=unit(c(1, 1, 2),
c("in", "null", "null")),

heights=unit(c(3, 1, 1),
c("line", "null", "null")))
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col2

row2

Figure 6.19
Layouts and viewports. Two viewports occupying overlapping regions within a
layout. Each viewport is represented by a rectangle with the viewport name at the
top-left corner. The layout has three columns and three rows with one viewport
occupying all of row two and the other viewport occupying all of column two.

With the use of "strwidth" and "grobwidth" units it is possible to produce
columns that are just wide enough to fit graphical output that will be drawn
in the column (and similarly for row heights — see Section 7.4).

A nested layout

This section demonstrates the nesting of layouts. The following code defines
a function that includes a trivial use of a layout consisting of two equal-width
columns to produce grid output.

> gridfun <- function() {
pushViewport(viewport(layout=grid.layout(1, 2)))
pushViewport(viewport(layout.pos.col=1))
grid.rect()
grid.text("black")
grid.text("&", x=1)
popViewport()
pushViewport(viewport(layout.pos.col=2, clip="on"))
grid.rect(gp=gpar(fill="black"))
grid.text("white", gp=gpar(col="white"))
grid.text("&", x=0, gp=gpar(col="white"))
popViewport(2)

}
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Figure 6.20
Layouts and units. A grid layout using a variety of coordinate systems to specify
the widths of columns and the heights of rows.
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The next piece of code creates a viewport with a layout and places the output
from the above function within a particular cell of that layout (see Figure
6.21).

> pushViewport(
viewport(
layout=grid.layout(5, 5,

widths=unit(c(5, 1, 5, 2, 5),
c("mm", "null", "mm",
"null", "mm")),

heights=unit(c(5, 1, 5, 2, 5),
c("mm", "null", "mm",
"null", "mm")))))

> pushViewport(viewport(layout.pos.col=2, layout.pos.row=2))
> gridfun()
> popViewport()

The next piece of code calls the function again to draw the same output within
a different cell of the layout.

> pushViewport(viewport(layout.pos.col=4, layout.pos.row=4))
> gridfun()
> popViewport(2)

Although the result of this particular example could be achieved using a single
layout, what this shows is that it is possible to take grid code that makes use
of a layout (and may have been written by someone else) and embed it within
a layout of your own. A more sophisticated example of this involving lattice
plots is given in Section 6.8.2.

6.6 Missing values and non-finite values

Non-finite values are not permitted in the location, size, or scales of a viewport.
Viewport scales are checked when a viewport is created, but it is impossible
to be certain that locations and sizes are not non-finite when the viewport
is created, so this is only checked when the viewport is pushed. Non-finite
values result in error messages.

The locations and sizes of graphical objects can be specified as missing values
(NA, "NA") or non-finite values (NaN, Inf, -Inf). For most graphical primitives,
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black & white&

black & white&

Figure 6.21
Nested layouts. An example of a layout nested within a layout. The black and white
squares are drawn within a layout that has two equal-width columns. One instance
of the black and white squares has been embedded within cell (2, 2) of a layout
consisting of five columns and five rows of varying widths and heights (as indicated
by the dashed lines). Another instance has been embedded within cell (4, 4).

non-finite values for locations or sizes result in the corresponding primitive
not being drawn. For the grid.line.to() function, a line segment is only
drawn if the previous location and the new location are both not non-finite.
For grid.polygon(), a non-finite value breaks the polygon into two separate
polygons. This break happens within the current polygon as specified by the
id argument. All polygons with the same id receive the same gp settings. For
line-drawing primitives that are supposed to draw arrowheads, an arrowhead
is only drawn if the first or last line segment is drawn.

Figure 6.22 shows the behavior of these primitives where x- and y-locations
are seven equally spaced locations around the perimeter of a circle. In the
top-left figure, all locations are not non-finite. In each of the other figures,
two locations have been made non-finite (indicated in each case by gray text).

6.7 Interactive graphics

The strength of the grid system is in the production of static graphics. Only
very basic support for user interaction is provided via the grid.locator()
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Figure 6.22
Non-finite values for line-tos, polygons, and arrows. The effect of non-finite values
for grid.line.to(), grid.polygon(), and grid.lines() (with an arrow specified).
In each panel, a single gray polygon, a single thick black line (with an arrow at the
end), and a series of thin white line-tos are drawn through the same set of seven
points. In some cases, certain locations have been set to NA (indicated by gray text),
which causes the polygon to become cropped, creates gaps in the lines, and can
cause the arrowhead to disappear. In the bottom-left panel, the seventh location is
not NA, but it produces no output.
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function. This function returns the location of a single mouse click relative
to the current viewport. The result is a list containing an x and a y unit.
The unit argument can be used to specify the coordinate system that is to
be used for the result.

The getGraphicsEvent() function provides additional capability (on Win-
dows and X11) to respond to mouse movements, mouse ups, and key strokes.
However, with this function, mouse activity is only reported relative to the
native coordinate system of the device.

Chapter 17 describes more sophisticated interactive graphics solutions.

6.8 Customizing lattice plots

The lattice package described in Chapter 4 produces complete and very so-
phisticated plots using grid. It makes use of a sometimes large number of
viewports to arrange the graphical output. A page of lattice output contains
a top-level viewport with a quite complex layout that provides space for all of
the panels and strips and margins used in the plot. Viewports are created for
each panel and for each strip (among other things), and the plot is constructed
from a large number of rectangles, lines, text, and data points.

In many cases, it is possible to use lattice without having to know anything
about grid. However, a knowledge of grid provides a number of more ad-
vanced ways to work with lattice output (also see Section 7.7).

6.8.1 Adding grid output to lattice output

The functions that lattice provides for adding output to panels, for example,
panel.text() and panel.points(), are restricted because they only allow
output to be located and sized relative to the "native" coordinate system
of the panel (i.e., relative to the panel axes). The low-level grid graphical
primitives provide much more control over the location and size of additional
panel output. It is even possible to create and push extra viewports within a
panel if desired, although it is very important that they are popped again or
lattice will get very confused.

In a similar vein, the grid functions upViewport() and downViewport() allow
for more flexible navigation of a lattice plot compared to the trellis.focus()
function.
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The following code provides an example of grid.text() to add output within
a lattice panel function. This produces a variation on Figure 4.5 with a text
label in the top-right corner of each panel to indicate the number of data
values in each panel (see Figure 6.23).∗

> xyplot(mpg ~ disp | factor(gear), data=mtcars,
panel=function(subscripts, ...) {

grid.text(paste("n =", length(subscripts)),
unit(1, "npc") - unit(1, "mm"),
unit(1, "npc") - unit(1, "mm"),
just=c("right", "top"))

panel.xyplot(subscripts=subscripts, ...)
})

6.8.2 Adding lattice output to grid output

As well as the advantages of using grid functions to add further output to
lattice plots, an understanding that lattice output is really grid output
makes it possible to embed lattice output within grid output. The following
code provides a simple example where two lattice plots are arranged together
on a page by drawing them within grid viewports (see Figure 6.24).

> grid.newpage()
> pushViewport(viewport(x=0, width=.4, just="left"))
> print(barchart(table(mtcars$gear)),

newpage=FALSE)
> popViewport()
> pushViewport(viewport(x=.4, width=.6, just="left"))
> print(xyplot(mpg ~ disp, data=mtcars,

group=gear,
auto.key=list(space="right")),

newpage=FALSE)
> popViewport()

The viewports are set up using the standard grid functions, then the lat-
tice plots are drawn within the viewports by explicitly calling print() and
specifying newpage=FALSE.

∗The data are from the mtcars data set (see page 126).
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Figure 6.23
Adding grid output to a lattice plot (the lattice plot in Figure 4.5). The grid
function grid.text() is used within a lattice panel function to show the number
of points in each panel.
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Figure 6.24
Embedding a lattice plot within grid output. Two lattice plots are arranged on a
page by drawing them within grid viewports.

6.9 Customizing ggplot2 output

Like lattice, the ggplot2 package uses grid to do its drawing, which involves
creating a lot of viewports and drawing a lot of graphical primitives. This
means that it is possible to use low-level grid functions to manipulate and
add further drawing to ggplot2 output.

6.9.1 Adding grid output to ggplot2 output

There is one obstacle to using grid functions to add further drawing to gg-
plot2 output: the viewports created by ggplot2 do not have any knowledge
of the x-axis or y-axis scale on the plot, so it is not feasible to position extra
output relative the plot scales.

Nevertheless, it is still possible to locate further drawing using any of the other
grid coordinate systems. For example, the following code draws a ggplot2
scatterplot and then navigates to the "panel-3-3" viewport to place a text
label in the top-right corner of the plot (see Figure 6.25).

> ggplot(mtcars2, aes(x=disp, y=mpg)) +
geom_point()
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Figure 6.25
Adding grid output to ggplot2. A text label is added to a ggplot2 scatterplot by
navigating to the appropriate ggplot2 viewport and calling grid.text().

> downViewport("panel-3-3")
> grid.text(paste("n =", nrow(mtcars2)),

x=unit(1, "npc") - unit(1, "mm"),
y=unit(1, "npc") - unit(1, "mm"),
just=c("right", "top"))

6.9.2 Adding ggplot2 output to grid output

The ggplot2 functions create a "ggplot" object, which only produces out-
put when it is printed. The printing can be controlled so that, for example,
ggplot2 does not start a new page for the plot. This makes it possible to set
up grid viewports and draw ggplot2 output within the viewports.

The following code demonstrates this idea by drawing a ggplot2 barplot to
the left of a ggplot2 scatterplot (see Figure 6.26).
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Figure 6.26
Embedding a ggplot2 plot within grid output. Two ggplot2 plots are drawn
within two grid viewports. This is how to get more than one ggplot2 plot on the
same page.

> grid.newpage()
> pushViewport(viewport(x=0, width=1/3, just="left"))
> print(ggplot(mtcars2, aes(x=trans)) +

geom_bar(),
newpage=FALSE)

> popViewport()
> pushViewport(viewport(x=1/3, width=2/3, just="left"))
> print(ggplot(mtcars2, aes(x=disp, y=mpg)) +

geom_point(aes(color=trans)) +
scale_color_manual(values=gray(2:1/3)),
newpage=FALSE)

> popViewport()
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Chapter summary

The grid package provides a number of functions for producing basic
graphical output such as lines, polygons, rectangles, and text, plus
some functions for producing slightly more complex output such as
data symbols, smooth curves, and axes. Graphical output can be
located and sized relative to a large number of coordinate systems
and there are a number of graphical parameter settings for controlling
the appearance of output, such as colors, fonts, and line types.

Viewports can be created to provide contexts for drawing. A viewport
defines a rectangular region on the device and all coordinate systems
are available within all viewports. Viewports can be arranged using
layouts and nested within one another to produce sophisticated ar-
rangements of graphical output.

Because lattice and ggplot2 output is grid output, grid functions
can be used to add further output to a ggplot2 or lattice plot and
grid functions can also be used to control the size and placement of
ggplot2 and lattice plots.
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Chapter preview

This chapter describes how to work with graphical objects (grobs).
The main advantage of this approach is that it is possible to modify
a scene that was produced using grid without having to modify the
source code that produced the scene. Because lattice and ggplot2
are built on grid, this means it is possible to modify a ggplot2 or
lattice plot.

There are also benefits from being able to do such things as ask a piece
of graphical output how big it is. For example, this makes it easy to
leave space for a legend beside a plot.

Graphical objects can be combined to form larger, hierarchical graph-
ical objects (gTrees). This makes it possible to control the appearance
and position of whole groups of graphical objects at once.

This chapter describes the grid concepts of grobs and gTrees as well
as important functions for accessing, querying, and modifying these
objects.

The previous chapter mostly dealt with using grid functions to produce graph-
ical output. That knowledge is useful for annotating a plot produced using
grid (such as a lattice plot), for producing one-off or customized plots for
your own use, and for writing simple graphics functions.

This chapter on the other hand addresses grid functions for creating and
manipulating graphical objects. This information is useful for querying or
modifying graphical output and for writing graphical functions and objects
for others to use (also see Chapter 8).

227
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7.1 Working with graphical output

This section describes using grid to modify graphical output. Having called
functions to draw some output, there are functions to edit and delete elements
of the output.

All of the functions in Chapter 6 that produce graphical output also produce
graphical objects, or grobs, representing that output. For example, the follow-
ing code produces a number of circles as output (see the left panel in Figure
7.1).

> grid.circle(name="circles", x=seq(0.1, 0.9, length=40),
y=0.5 + 0.4*sin(seq(0, 2*pi, length=40)),
r=abs(0.1*cos(seq(0, 2*pi, length=40))))

As well as drawing the circles, this code produces a circle grob, an object
of class "circle", which contains information describing the circles that have
been drawn. Importantly, this grob has been given a name, in this case
"circles".

The grid system maintains a display list, a record of all viewports and grobs
drawn on the current page, and the object that grid.circle() created is
stored on this display list. This means that it can be accessed to obtain a
copy, to modify the output, or even to remove it altogether. The grob has
been given the name "circles" to make it easy to identify on the display list.

In the following code, the call to grid.get() obtains a copy of the circle
object. This can be useful for inspecting the elements of a scene.

> grid.get("circles")

circle[circles]

The following call to grid.edit() modifies the output by editing the circle
object to change the colors used for drawing the circles (see the middle panel
of Figure 7.1). In this case, the gp component of the circle grob is being
modified. Typically, most arguments that can be specified when first drawing
output can also be used when editing output.

> grid.edit("circles",
gp=gpar(col=gray(c(1:20*0.04, 20:1*0.04))))
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Figure 7.1
Modifying a circle grob. The left panel shows the output produced by a call to
grid.circle(), the middle panel shows the result of using grid.edit() to modify
the colors of the circles, and the right panel shows the result of using grid.remove()

to delete the circles.

The next call below, to the grid.remove() function, deletes the output by
removing the circle object from the display list (see the right panel of Figure
7.1).

> grid.remove("circles")

In each of these examples, the grob has been specified by giving its name
("circles"). Other standard arguments to these functions are discussed in
the next section.

Any output produced by grid functions can be interacted with in this way,
including output from lattice and ggplot2 functions (see Sections 7.7 and
7.8).

It is possible to disable the grid display list, using the grid.display.list()
function, in which case no grobs are stored, so these sorts of manipulations
are no longer possible.

7.1.1 Standard functions and arguments

The complete set of functions that provide the ability to interact with grobs
is shown in Table 7.1.

All of the functions for working with graphical output require a grob name as
the first argument, to identify which grob to work with. This name will be
treated as a regular expression if the grep argument is TRUE. If the global
argument is TRUE then all matching grobs on the display list (not just the
first) will be accessed or modified.

The following code provides a simple example. Eight concentric circle grobs
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Table 7.1
Functions for working with grobs. Functions of the form grid.*() access and de-
structively modify grobs on the grid display list and affect graphical output. Func-
tions of the form *Grob() work with user-level grobs and return grobs as their values
(they have no effect on graphical output).

Function to Work Function to Work
with Output Description with grobs
grid.get() Returns a copy of one or

more grobs
getGrob()

grid.edit() Modifies one or more grobs editGrob()

grid.add() Adds a grob to one or more
grobs

addGrob()

grid.remove() Removes one or more grobs removeGrob()

grid.set() Replaces one or more grobs setGrob()

are drawn, with the first, third, fifth, and seventh circles named "circle.odd"
and the second, fourth, sixth, and eighth circles named "circle.even". The
circles are initially drawn with decreasing shades of gray (see the left panel of
Figure 7.2).

> suffix <- c("even", "odd")
> for (i in 1:8)

grid.circle(name=paste("circle.", suffix[i %% 2 + 1],
sep=""),

r=(9 - i)/20,
gp=gpar(col=NA, fill=gray(i/10)))

The following call to grid.edit() makes use of the global argument to
modify all grobs named "circle.odd" and change their fill color to a very
dark gray (see the middle panel of Figure 7.2).

> grid.edit("circle.odd", gp=gpar(fill="gray10"),
global=TRUE)

A second call to grid.edit(), below, makes use of both the grep argument
and the global argument to modify all grobs with names matching the pattern
"circle" (all of the circles) and change their fill color to a light gray and their
border color to a darker gray (see the right panel of Figure 7.2).

> grid.edit("circle", gp=gpar(col="gray", fill="gray90"),
grep=TRUE, global=TRUE)
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Figure 7.2
Editing grobs using grep and global in grid.edit(). The left-hand panel shows
eight separate concentric circles, with names alternating between "circle.odd"

and "circle.even", filled with progressively lighter shades of gray. The middle
panel shows the use of the global argument to change the fill for all circles named
"circle.odd" to black. The right-hand panel shows the use of the grep and global

arguments to change all circles whose names match the pattern "circle" (all of the
circles) to have a light gray fill and a gray border.

There are convenience functions grid.gget() and grid.gedit() that have
the grep and global arguments set to TRUE by default.

In summary, as long as the name of a grob is known, it is possible to access
that grob using grid.get(), modify it using grid.edit(), or delete it using
grid.remove().

The function grid.ls() is useful for producing a list of all grobs in the current
scene, as shown by the following code.

> grid.ls()

circle.odd

circle.even

circle.odd

circle.even

circle.odd

circle.even

circle.odd

circle.even

This function is described in more detail in Section 8.4.
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Figure 7.3
The structure of a gTree. A diagram of the structure of an xaxis gTree. There is
the xaxis gTree itself (here given the name "xaxis1") and there are its children: a
lines grob named "major", another lines grob named "ticks", and a text grob
named "labels".

7.2 Grob lists, trees, and paths

As well as basic grobs, it is possible to work with a list of grobs (a gList) or
several grobs combined together in a tree-like structure (a gTree). A gList is
just a list of several grobs (produced by the function gList()). A gTree is a
grob that can contain other grobs. Examples are the xaxis and yaxis grobs.
This section looks at how to work with gTrees.

An xaxis grob contains a high-level description of an axis, plus several child
grobs representing the lines and text that make up the axis (see Figure 7.3).

The following code draws an x-axis and creates an xaxis grob on the display
list (see the left panel of Figure 7.4). The grid.ls() function shows that the
axis1 grob has three child grobs.



The grid Graphics Object Model 233

> grid.xaxis(name="axis1", at=1:4/5)
> grid.ls()

axis1

major

ticks

labels

The hierarchical structure of gTrees makes it possible to interact with both a
high-level description, as provided by the xaxis grob, and a low-level descrip-
tion, as provided by the children of the gTree. The following code demonstrates
an interaction with the high-level description of an xaxis grob. The xaxis
gTree contains components describing where to put tick marks on the axis and
whether to draw labels and so on. The code below shows the at component of
an xaxis grob being modified. The xaxis grob is designed so that it modifies
its children to match the new high-level description so that only three ticks
are now drawn (see the middle panel of Figure 7.4).

> grid.edit("axis1", at=1:3/4)

It is also possible to access the children of a gTree. In the case of an xaxis,
there are three children: a lines grob with the name "major"; another lines
grob with the name "ticks"; and a text grob with the name "labels". Any
of these children can be accessed by specifying the name of the xaxis grob
and the name of the child in a grob path (gPath). A gPath is like a viewport
path (see Section 6.5.3) — it is just a concatenation of several grob names.
The following code shows how to access the "labels" child of the xaxis grob
using the gPath() function to specify a gPath. The gPath specifies the child
called "label" in the gTree called "axis1". The labels are rotated to 45
degrees (see the right panel of Figure 7.4).

> grid.edit(gPath("axis1", "labels"), rot=45)

It is also possible to specify a gPath directly as a string, for example
"axis1::labels", but this is only recommended for interactive use.

7.2.1 Graphical parameter settings in gTrees

Just like any other grob, a gTree can have graphical parameter settings asso-
ciated with it via a gp component. These settings affect all graphical objects
that are children of the gTree, unless the children specify their own graphi-
cal parameter setting. In other words, the graphical parameter settings for a
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Figure 7.4
Editing a gTree. The left-hand panel shows a basic x-axis, the middle panel shows
the effect of editing the at component of the x-axis (all of the tick marks and
labels have changed), and the right-hand panel shows the effect of editing the rot

component of the "labels" child of the x-axis (only the angle of rotation of the
labels has changed).

gTree modify the implicit graphical context for the children of the gTree (see
page 194).

The following expression demonstrates this rule. The gp component of an
xaxis grob sets the drawing color to be "gray". This means that all of the
children of the xaxis — the lines and labels — will be drawn gray.

> grid.xaxis(gp=gpar(col="gray"))

Another example of this behavior is given in Section 7.3 and the role of the
gp component in the drawing behavior of gTree objects is described in more
detail in Section 8.3.4.

7.2.2 Viewports as components of gTrees

Just like any other grob, a gTree can have a viewport (or viewport tree, or
viewport path, etc.) associated with it via a vp component. This viewport is
pushed before the gTree is drawn and popped afterward (see Section 6.5.4).
This means that the children of a gTree are drawn within the drawing context
defined by the viewport in the vp slot of the gTree (see page 199).

The following code demonstrates this rule. The vp component of an xaxis
grob specifies a viewport in the top half of the page. This means that the
children of the xaxis are positioned relative to that viewport.

> grid.xaxis(vp=viewport(y=0.75, height=0.5))
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An example of this behavior is given in Section 7.3 and the role of the vp
component in the drawing behavior of gTree objects is described in more
detail in Sections 8.3.4 and 8.3.7.

7.2.3 Searching for grobs

This section provides details about how grob names and gPaths are used to
find a grob.

Grobs are stored on the grid display list in the order that they are drawn.
When searching for a matching name, the functions in Table 7.1 search the
display list from the beginning. This means that if there are several grobs
whose names are matched, they will be found in the order that they were
drawn.

Furthermore, the functions perform a depth-first search. This means that if
there is a gTree on the display list, and its name is not matched, then its
children are searched for a match before any other grobs on the display list
are searched.

The name to search for can be given as a gPath, which makes it possible to
explicitly specify a particular child grob of a particular gTree. For example,
"axis1::labels" specifies a grob called "labels" that must have a parent
called "axis1".

The argument strict controls whether a complete match must be found.
By default, the strict argument is FALSE, so in the previous example, the
"labels" child of "axis1" could have been accessed with the expression
grid.get("labels"). On the other hand, if strict is set to TRUE, then
simply specifying "labels" results in no match because there is no top-level
grob with the name "labels", as shown by the following code.

> grid.edit("labels", strict=TRUE, rot=45)

Error in

editDLfromGPath(gPath, specs, strict, grep, global, redraw) :

'gPath' (labels) not found
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7.3 Working with graphical objects off-screen

Chapter 6 described grid functions that draw graphical output on the page
or screen. All of those functions also create grobs representing the drawing
and those grobs are stored on the grid display list.

It can also be useful to create a grob without producing any output. This sec-
tion describes how to use grid to produce graphical objects (without drawing
them). There are functions to create grobs, functions to combine them and
to modify them, and the grid.draw() function to draw them.

For each grid function that produces graphical output, there is a counterpart
that produces a graphical object and no graphical output. For example, the
counterpart to grid.circle() is the function circleGrob() (see Table 6.1).
Similarly, for each function that works with grobs on the grid display list,
there is a counterpart for working with grobs off-screen. For example, the
counterpart to grid.edit() is editGrob() (see Table 7.1).

The following example demonstrates the process of creating a grob and work-
ing with the grob without drawing it. The code below draws a rectangle that
is as wide as a text grob, but the text is not drawn. The function textGrob()
produces a text grob, but does not draw it.

> grid.rect(width=grobWidth(textGrob("Some text")))

It can be useful to create a grob and modify it before producing any graphical
output (i.e., only draw the final result). The following code creates an axis
and modifies the font face for the labels to italic before drawing the axis. The
function grid.draw() is used to produce graphical output from a grob.

> ag <- xaxisGrob(at=1:4/5)
> ag <- editGrob(ag, "labels", gp=gpar(fontface="italic"))
> grid.draw(ag)

Another example of working with grobs is in the construction of gTrees. In
its simplest form, a gTree is just a grouping of several grobs (more complex
gTree creation is discussed later in Section 8.3).

By grouping several grobs together as a single object, the grobs can be dealt
with as a single object. For example, it becomes possible to edit the graphical
context for all of the grobs at once, or define the drawing context for all of
the grobs at once.
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When a gTree is drawn, any viewports in its vp component are pushed, any
settings in its gp component are enforced, and then its children are all drawn.
This means that the vp and gp components of a gTree affect where and how
the children of the gTree are drawn (see Sections 7.2.1 and 7.2.2).

As an example, a boxed-text object can be created by grouping a "rect" grob
and a "text" grob together as children of a gTree. This allows us to modify
the color of both the rectangle and the text by modifying these features in
the gTree. Similarly, it is possible to locate both the rectangle and the text
by defining a viewport for the gTree.

The following code uses the gTree() function to create a gTree that groups
a "rect" grob and a "text" grob together. There is no graphical output
produced from this code. It only creates graphical objects.

> tg <- textGrob("sample text")
> rg <- rectGrob(width=1.1*grobWidth(tg),

height=1.3*grobHeight(tg))
> boxedText <- gTree(children=gList(tg, rg))

It is now easy to produce output including both the rectangle and the text by
drawing variations on the boxedText grob, as demonstrated by the following
code.

The first call simply draws the plain boxedText, which is drawn in black (see
the left panel of Figure 7.5).

> grid.draw(boxedText)

The second call draws a modified boxedText with the drawing color set to
gray (see the middle panel of Figure 7.5).

> grid.draw(editGrob(boxedText, gp=gpar(col="gray")))

The final call draws another modification of the boxedText, this time in a
rotated viewport and with a larger font (see the right panel of Figure 7.5).

> grid.draw(editGrob(boxedText, vp=viewport(angle=45),
gp=gpar(fontsize=18)))
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Figure 7.5
Using a gTree to group grobs. The left-hand panel shows a boxed text object (which
is a combination of a piece of text and a rectangle). The middle panel shows how
changes to the color settings in the boxed text object propagate to the components
(both the text and rectangle turn gray). The right-hand panel shows a more dra-
matic demonstration of the same idea as, in this case, the font size of the boxed text
is modified and it is drawn within a rotated viewport.

7.3.1 Capturing output

In the example in the previous section, several grobs are created off-screen
and then grouped together as a gTree, which allows the collection of grobs to
be dealt with as a single object.

It is also possible first to draw several grobs and then to group them. The
grid.grab() function does this by generating a gTree from all of the grobs
in the current page of output. This means that output can be captured even
from a function that produces very complex output (lots of grobs), such as
a lattice plot. For example, the following code draws a lattice plot, then
creates a gTree containing all of the grobs in the plot.

> bwplot(rnorm(10))
> bwplotTree <- grid.grab()

The grid.grab() function actually captures all of the viewports in the current
scene as well as the grobs, so drawing the gTree, as in the following code,
produces exactly the same output as the original plot.

> grid.newpage()
> grid.draw(bwplotTree)

Another function, grid.grabExpr() allows complex output to be captured
off-screen. This function takes an R expression and evaluates it. Any drawing
that occurs as a result of evaluating the expression does not produce any
output, but the grobs that would be produced are captured anyway.
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The following code provides a simple demonstration. Here a lattice plot is
captured without drawing any output.∗

> grid.grabExpr(print(bwplot(rnorm(10))))

gTree[GRID.gTree.100]

Both the grid.grab() and grid.grabExpr() functions attempt to create a
gTree in a sophisticated way so that it is easier to work with the resulting
gTree. Unfortunately, this will not always produce a gTree that will exactly
replicate the original output. These functions issue warnings if they detect a
situation where output may not be reproduced correctly, and there is a wrap
argument that can be used to force the functions to produce a gTree that is
less sophisticated, but is guaranteed to replicate the original output.

7.4 Placing and packing grobs in frames

It can be useful to position the components of a plot in a way that leaves
sufficient room for labels or legends. The "grobwidth" and "grobheight"
coordinate systems provide a way to determine the size of a grob and can
be used to achieve this sort of arrangement of components by, for example,
allocating appropriate regions within a layout.

The following code demonstrates this idea. First of all, some grobs are created
to use as components of a scene. The first grob, label, is a simple text grob.
The second grob, gplot, is a gTree containing a rect grob, a lines grob, and
a points grob that provide a simple representation of time-series data. The
gplot has a viewport in its vp component and the rectangle and lines are
drawn within that viewport.

∗The expression must explicitly print() the lattice plot because otherwise nothing
would be drawn (see Section 4.1).
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> label <- textGrob("A\nPlot\nLabel ",
x=0, just="left")

> x <- seq(0.1, 0.9, length=50)
> y <- runif(50, 0.1, 0.9)
> gplot <-

gTree(
children=gList(rectGrob(gp=gpar(col="gray60",

fill="white")),
linesGrob(x, y),
pointsGrob(x, y, pch=16,

size=unit(1.5, "mm"))),
vp=viewport(width=unit(1, "npc") - unit(5, "mm"),

height=unit(1, "npc") - unit(5, "mm")))

The next piece of code defines a layout with two columns. The second column
of the layout has its width determined by the width of the label grob created
above. The first column will take up whatever space is left over.

> layout <- grid.layout(1, 2,
widths=unit(c(1, 1),

c("null", "grobwidth"),
list(NULL, label)))

Now some drawing can occur. A viewport is pushed with the layout defined
above, then the label grob is drawn in the second column of this layout,
which is exactly the right width to contain the text, and the gplot gTree is
drawn in the first column (see Figure 7.6).

> pushViewport(viewport(layout=layout))
> pushViewport(viewport(layout.pos.col=2))
> grid.draw(label)
> popViewport()
> pushViewport(viewport(layout.pos.col=1))
> grid.draw(gplot)
> popViewport(2)

The grid package provides a set of functions that make it more convenient to
arrange grobs like this so that they allow space for each other. The function
grid.frame(), and its off-screen counterpart frameGrob(), produce a gTree
with no children. Children are added to the frame using the grid.pack()
function and the frame makes sure that enough space is allowed for the child
when it is drawn. Using these functions, the previous example becomes sim-
pler, as shown by the following code (the output is the same as Figure 7.6).
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Figure 7.6
Packing grobs by hand. The scene was created using a frame object, into which the
time-series plot (consisting of a rectangle, lines, and points) was packed. The text
was then packed on the right-hand side, which meant that the time series plot was
allocated less room in order to leave space for the text.

The big difference is that there is no need to specify a layout as an appropriate
layout is calculated automatically.

The first call creates an empty frame. The second call packs gplot into the
frame; at this stage, gplot takes up the entire frame. The third call packs
the text label on the right-hand side of the frame; enough space is made for
the text label by reducing the space allowed for the rectangle.

> grid.frame(name="frame1")
> grid.pack("frame1", gplot)
> grid.pack("frame1", label, side="right")

There are many arguments to grid.pack() for specifying where to pack new
grobs within a frame. There is also a dynamic argument to specify whether
the frame should reallocate space if the grobs that have been packed in the
frame are modified.

Unfortunately, packing grobs into a frame like this becomes quite slow as more
grobs are packed, so it is most useful for very simple arrangements of grobs
or for interactively constructing a scene. An alternative approach, which
is a little more work, but still more convenient than dealing directly with
pushing and popping viewports (and can be made dynamic like packing), is
to place grobs within a frame that has a predefined layout. The following code
demonstrates this approach. This time, the frame is initially created with the
desired layout as defined above, then the grid.place() function is used to
position grobs within specific cells of the frame layout.

> grid.frame(name="frame1", layout=layout)
> grid.place("frame1", gplot, col=1)
> grid.place("frame1", label, col=2)
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7.4.1 Placing and packing off-screen

In the previous two examples, the screen is redrawn each time a grob is packed
into the frame. It is more typical to create a frame and pack or place grobs
within it off-screen and only draw the frame once it is complete. The following
code demonstrates the use of the frameGrob() and placeGrob() functions to
achieve the same end result as shown in Figure 7.6, doing all of the construc-
tion of the frame off-screen.

> fg <- frameGrob(layout=layout)
> fg <- placeGrob(fg, gplot, col=1)
> fg <- placeGrob(fg, label, col=2)
> grid.draw(fg)

The function packGrob() is the off-screen counterpart of grid.pack().

7.5 Other details about grobs

This section describes some important extra details about the calculation of
grob sizes and the editing of graphical contexts.

7.5.1 Calculating the sizes of grobs

As described in Section 6.3.2, the "grobwidth" and "grobheight" units, and
the grobWidth() and grobHeight() functions, provide a way to determine
the size of a grob. This section provides some more details about the correct
usage of these units.

The most important point is that the size of a grob is always calculated
relative to the current geometric and graphical context. The following code
demonstrates this point. First of all, a text grob and a rect grob are created,
and the dimensions of the rect grob are based on the dimensions of the text.∗

∗The rect grob draws two rectangles: one thick and dark gray, one white and thin.
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> tg1 <- textGrob("Sample")
> rg1 <- rectGrob(x=rep(0.5, 2),

width=1.1*grobWidth(tg1),
height=1.3*grobHeight(tg1),
gp=gpar(col=c("gray60", "white"),

lwd=c(3, 1)))

Next, these two grobs are drawn in three different settings. In the first setting,
the rectangle and the text are drawn in the default geometric and graphical
context and the rectangle bounds the text (see the left panel of Figure 7.7).

> grid.draw(tg1)
> grid.draw(rg1)

In the second setting, the grobs are both drawn within a viewport that has
cex=2. Both the text and the rectangle are drawn bigger (the calculation of
the "grobwidth" and "grobheight" units takes place in the same context as
the drawing of the text grob; see the middle panel of Figure 7.7).

> pushViewport(viewport(gp=gpar(cex=2)))
> grid.draw(tg1)
> grid.draw(rg1)
> popViewport()

In the third setting, the text grob is drawn in a different context than the
rectangle, so the rectangle’s size is “wrong” (see the right panel of Figure 7.7).

> pushViewport(viewport(gp=gpar(cex=2)))
> grid.draw(tg1)
> popViewport()
> grid.draw(rg1)

A related issue arises with the use of grob names when creating a "grobwidth"
or "grobheight" unit (see Section 6.3.2). The following code provides a
simple example.

A text grob and two rect grobs are created, with the dimensions of both
rectangles based upon the dimensions of the text. One rectangle, rg1, uses a
copy of the text grob in the calls to grobWidth(), and grobHeight(). The
other rectangle, rg2, just uses the name of the text grob, "tg1".
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Sample Sample Sample

Figure 7.7
Calculating the size of a grob. In the left-hand panel, a text grob and a separate
rect grob, the size of which is calculated to be the size of the text grob, are drawn
together. In the middle panel, these objects are drawn together in a viewport with
a larger font size, so they are both larger. In the right-hand panel, only the text is
drawn in a viewport with a larger font size, so only the text is larger. The rectangle
calculates the size of the text in a different font context.

> tg1 <- textGrob("Sample", name="tg1")
> rg1 <- rectGrob(width=1.1*grobWidth("tg1"),

height=1.3*grobHeight("tg1"),
gp=gpar(col="gray60", lwd=3))

> rg2 <- rectGrob(width=1.1*grobWidth(tg1),
height=1.3*grobHeight(tg1),
gp=gpar(col="white"))

When these rectangles and text are initially drawn, both rectangles frame the
text correctly (see the left panel of Figure 7.8).

> grid.draw(tg1)
> grid.draw(rg1)
> grid.draw(rg2)

However, if the text grob is modified, as shown below, only the rectangle rg1
(the dark gray rectangle) will be updated to correspond to the new dimensions
of the text (see the right panel of Figure 7.8).

> grid.edit("tg1", grep=TRUE, global=TRUE,
label="Different text")

With this approach, "grobwidth" and "grobheight" units are still evaluated
in the current geometric and graphical context, but in addition, only grobs
that have previously been drawn can be referred to. For example, drawing
the rectangle rg1 before drawing the text tg1 will not work because there is
no drawn grob named "tg1" from which a size can be calculated.
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Sample Different text

Figure 7.8
Grob dimensions by reference. In the left-hand panel there are three grobs: one
text grob and two rect grobs. The sizes of both rect grobs are calculated from the
text grob. The difference is that the white rectangle is related to the text by value
and the dark gray rectangle is related to the text by reference. The right-hand panel
shows what happens when the text grob is edited. Only the dark gray, by-reference,
rectangle gets resized.

> grid.newpage()
> grid.draw(rg1)

Error in function (name) :

Grob 'tg1' not found

7.5.2 Calculating the positions of grobs

In addition to being able to query a grob about its dimensions, it is also
possible to query a grob about its location, using "grobx" and "groby" units,
or the grobX() and grobY() functions.

Locations are calculated relative to the current geometric and graphical con-
text, just like widths and heights, so all of the warnings from the previous
section also apply here.

The grob locations are positions on the border of a grob, given by an angle
(relative to the “center” of the grob). The following code shows a simple
example usage (see Figure 7.9). A small dot is drawn on the left and a text
label, with a surrounding box, is drawn on the right. The box grob is named
"labelbox".
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A label

Figure 7.9
Calculating grob locations. The line segment is drawn from an explicit (x, y) start
location to an end location that is calculated using grobX() to give the left edge of
the box surrounding the text.

> grid.circle(.25, .5, r=unit(1, "mm"),
gp=gpar(fill="black"))

> grid.text("A label", .75, .5)
> grid.rect(.75, .5,

width=stringWidth("A label") + unit(2, "mm"),
height=unit(1, "line"),
name="labelbox")

A line segment, with an arrow, is now drawn between the dot and the left
edge of the box, using the grobX() function to determine the location of the
left edge of the box.

> grid.segments(.25, .5,
grobX("labelbox", 180), .5,
arrow=arrow(angle=15, type="closed"),
gp=gpar(fill="black"))

The next example demonstrates a more complex use. This replicates an ex-
ample from Figure 3.18 and demonstrates a possible use for “null” grobs.

First of all, two viewports are created, one in the top half of the page and one
in the bottom half.

> vptop <- viewport(width=.9, height=.4, y=.75,
name="vptop")

> vpbot <- viewport(width=.9, height=.4, y=.25,
name="vpbot")

> pushViewport(vptop)
> upViewport()
> pushViewport(vpbot)
> upViewport()
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Now a rectangle and a line through some data are drawn in each viewport.

> grid.rect(vp="vptop")
> grid.lines(1:50/51, runif(50), vp="vptop")
> grid.rect(vp="vpbot")
> grid.lines(1:50/51, runif(50), vp="vpbot")

The next step does not draw anything, it just locates several null grobs at
specific locations, two in the top viewport and two in the bottom viewport.

> grid.null(x=.2, y=.95, vp="vptop", name="tl")
> grid.null(x=.4, y=.95, vp="vptop", name="tr")
> grid.null(x=.2, y=.05, vp="vpbot", name="bl")
> grid.null(x=.4, y=.05, vp="vpbot", name="br")

Finally, a polygon is drawn that spans both viewports. The first two vertices
of the polygon are calculated from the positions of the two null grobs in the
top viewport and the second two vertices of the polygon are calculated from
the positions of the two null grobs in the bottom viewport.

> grid.polygon(unit.c(grobX("tl", 0),
grobX("tr", 0),
grobX("br", 0),
grobX("bl", 0)),

unit.c(grobY("tl", 0),
grobY("tr", 0),
grobY("br", 0),
grobY("bl", 0)),

gp=gpar(col="gray", lwd=3))

The final result is shown in Figure 7.10.

7.5.3 Editing graphical context

When a grob is edited using grid.edit() or editGrob(), the modification of
a gp component is treated as a special case. Only the graphical parameters
that are explicitly given new settings are modified. All other settings remain
untouched. The following code provides a simple example.

A circle is drawn with a gray fill color (see the left panel of Figure 7.11), then
the border of the circle is made thick (see the middle panel of Figure 7.11)
and the fill color remains the same. Finally, the border is changed to a dashed
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Figure 7.10
Calculating null grob locations. The two line plots are drawn in separate viewports.
The thick gray rectangle is drawn relative to the locations of four null grobs, two of
which are located in the top viewport and two of which are located in the bottom
viewport.
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Figure 7.11
Editing the graphical context. The left-hand panel shows a circle with a solid, thin
black border and a gray fill. The middle panel shows the effect of making the border
thicker. The important point is that the other features of the circle are not affected
(the border is still solid and the fill is still gray). The right-hand panel shows another
demonstration of the same idea, with the border now drawn dashed (but the border
is still thick and the fill is still gray).

line type, but it stays thick (and the fill remains gray — see the right panel
of Figure 7.11).

> grid.circle(r=0.3, gp=gpar(fill="gray80"),
name="mycircle")

> grid.edit("mycircle", gp=gpar(lwd=5))
> grid.edit("mycircle", gp=gpar(lty="dashed"))

7.6 Saving and loading grid graphics

The best way to create a persistent record of a grid plot is to record in a text
file the R code that was used to create the plot. The code can then be run
again, e.g., using source(), to reproduce the output.

It is also possible to save grobs in R’s binary format using the save() function.
The grobs can then be loaded, using load(), and redrawn using grid.draw().
For the purpose of saving an entire scene, it may be more useful to save and
load a gTree created by the grid.grab() function (see Section 7.3.1).

A possible danger with saving a grid grob is that methods specific to that
grob are not automatically recorded, so the grob may not behave correctly
when loaded into a different session. This will only be an issue for grobs that
are not predefined by grid (see Chapter 8, particularly Section 8.3).
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7.7 Working with lattice grobs

The output from a lattice function is fundamentally just a collection of grid
viewports and grobs. Section 6.8 described some examples of making use of
the grid viewports that are set up by a lattice plot to add extra output. This
section looks at some examples of working with the grobs that are created by
a lattice plot.

The following code creates a lattice scatterplot to work with.

> angle <- seq(0, 2*pi, length=21)[-21]
> x <- cos(angle)
> y <- sin(angle)

> xyplot(y ~ x, aspect=1,
xlab="displacement",
ylab="velocity")

The grid.ls() function shows the set of graphical primitives that have been
created for this plot.

> grid.ls()

GRID.rect.156

plot_01.xlab

plot_01.ylab

GRID.segments.157

GRID.segments.158

GRID.text.159

GRID.segments.160

GRID.text.161

GRID.segments.162

GRID.points.163

GRID.rect.164

The grobs created by other people’s functions will not necessarily provide
useful names for all components that are drawn, but in this case, it is easy to
spot which components provide the x-axis label and y-axis label for the plot.

The following code edits the axis labels to change the font to a "mono" family
and to position the labels at the ends of the axes (see Figure 7.12).
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> grid.edit("[.]xlab$", grep=TRUE,
x=unit(1, "npc"), just="right",
gp=gpar(fontfamily="mono"))

> grid.edit("[.]ylab$", grep=TRUE,
y=unit(1, "npc"), just="right",
gp=gpar(fontfamily="mono"))

Other grob operations are also possible. For example, the following code
removes the labels from the plot.

> grid.remove(".lab$", grep=TRUE, global=TRUE)

Finally, it is possible to group all of the grobs from a lattice plot together
using grid.grab(). This creates a gTree that can then be used as a component
in creating another picture.

7.8 Working with ggplot2 grobs

Like lattice, ggplot2 creates lots of grid grobs when it draws a plot and
these grobs can be manipulated using grid functions.

The following code uses ggplot2 to create a scatterplot with a linear model
line of best fit.

> ggplot(mtcars2, aes(x=disp, y=mpg)) +
geom_point() +
geom_smooth(method=lm)

The next code navigates down to the plot region and queries the grob that
represents the line of best fit, using grobX() and grobY(), to determine a
location on the line. This location is used to draw an arrow that points from
a text label to the line of best fit (see Figure 7.13).
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Figure 7.12
Editing the grobs in a lattice plot. The top plot is an initial scatterplot produced
using the lattice function xyplot(). The bottom plot shows the effect of editing
the grid text grobs that represent the labels on the plot (the labels are relocated
at the ends of the axes and are drawn in a monospace font).
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Figure 7.13
Working with ggplot2 grobs. A ggplot2 scatterplot is drawn and then a line is
added with an end point that is calculated from the grob that represents the smooth
line on the plot.

> downViewport("panel-3-3")
> sline <- grid.get(gPath("smooth", "polyline"),

grep=TRUE)
> grid.segments(.7, .8,

grobX(sline, 45), grobY(sline, 45),
arrow=arrow(angle=10, type="closed"),
gp=gpar(fill="black"))

> grid.text("line of best fit", .71, .81,
just=c("left", "bottom"))

Determining the name of the correct grob in this example required an inspec-
tion of the output from grid.ls(). Section 8.4 provides more examples of
how to explore grid grobs and viewports.
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Chapter summary

As well as producing graphical output, all grid functions create grobs
(graphical objects) that contain descriptions of what has been drawn.
These grobs may be accessed, modified, and even removed, and the
graphical output will be updated to reflect the changes.

There are also grid functions for creating grobs without producing any
graphical output. A complete description of a plot can be produced
by creating, modifying, and combining grobs off-screen.

A gTree is a grob that can have other grobs as its children. A gTree can
be useful for grouping grobs and for providing a high-level interface
to a group of grobs.

The lattice and ggplot2 plotting functions generate large numbers
of grid grobs. These grobs may be manipulated just like any other
grobs to access, edit, and delete parts of a ggplot2 or lattice plot.
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Developing New Graphics Functions
and Objects

Chapter preview

This chapter looks in depth at the task of writing graphical functions
for others to use.

There are important guidelines for writing simple functions whose
main purpose is to produce graphical output. There is an empha-
sis on making sure that other users can annotate the output produced
by a function and that other users can make use of the function as a
component in larger or more complex plots.

There is also a discussion on how to create a new class of graphical ob-
ject. This is important for allowing users to interactively edit output,
to ask questions such as how much space a graphical object requires,
and to be able to combine graphical objects together in a gTree.

This chapter addresses the issue of developing graphics functions for others
to use. This will involve a discussion of some of the lower-level details of
how grid works as well as some more abstract ideas of software design. A
basic understanding of programming concepts is recommended, and the later
sections assume an understanding of object-oriented concepts such as classes
and methods.

Important low-level details of the grid graphics system and important design
considerations are introduced in increasing levels of complexity to allow devel-
opers to construct simple graphics functions at first. Readers aiming to design
a new fully featured grid graphical object should read the entire chapter.

255
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8.1 An example

In order to provide concrete examples of the concepts described in this chapter,
a set of graphical functions and objects will be developed for the purpose of
producing plots of oceanographic data.

An example of the final output that is desired is shown in Figure 8.1. Sections
8.2 to 8.3.9 go through the process of creating functions and objects to produce
this output.

The data are measurements of fluorescence calculated at the thermocline
(point of maximum temperature gradient) for 87 measuring stations off the
coast of South Australia. The values plotted in the image are from a predic-
tion surface based on an analysis using the Krig() function in the fields
package.∗

0.720

0.803

0.886

0.969

1.050

1.130

1.220

1.300

Figure 8.1
A plot of oceanographic data. The plot consists of a section of South Australian
coastline, an image representing fluorescence at the thermocline, a small map to
indicate where the main plot region is in Australia, and a legend to map the gray
scale to fluorescence values.

∗The data for the prediction surface are available as the data set fluoro.predict. Sam
McClatchie provided the data and the original motivation to look at oceanographic plots
in R.
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8.1.1 Modularity

One decision can be made before writing a single line of code: the code should
be modular. This means that the code should consist of several small func-
tions, each of which produces a well-defined, self-contained piece of graphical
output. It would be a bad idea to create Figure 8.1 in one big function. Such a
function would be unlikely to be very flexible, would be very hard to maintain
(it is easier to see what is going on in smaller functions), and would be very
hard to debug (it is much easier to test small functions with a clear, simple
purpose).

The following sections look at writing several simple functions, each of which
produces a conceptually separate part of the final plot. One possible break-
down of Figure 8.1 involves the following elements: two maps of Australia (one
just a piece of the coastline), an array of colored rectangles (an image), and
a legend. Immediately, the focus is on producing much more basic graphical
output. If some useful functions are created for these, the functions will
provide much more reusable graphical elements that could be combined in
other ways to create all sorts of other plots (for example, see Section 8.3.10
and Figure 8.18).

8.2 Simple graphics functions

The simplest approach is to write a graphics function just for its side effect of
producing graphical output (i.e., using grid graphics functions as described
in Chapter 6). The first example will be a simple graphics function to pro-
duce an image. The code in Figure 8.2 provides code defining a function
grid.imageFun() for this purpose.

This function takes arguments to describe the number of rows and columns in
the image (nrow and ncol), the colors to use for each cell in the image (cols),
and the order in which those colors should be applied to the cells (byrow).
Output is produced by a call to the grid.rect() function (line 12), which
draws a rectangle for each cell in the image.

This function can be used to draw an array of rectangles just like any other
plotting function. An example usage is given in the following code. First, a
set of gray scale colors are defined (these will be used throughout the chapter).

> grays <- gray(0.5 + (rep(1:4, 4) - rep(0:3, each=4))/10)
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1 grid.imageFun <- function(nrow, ncol, cols,
2 byrow=TRUE) {
3 x <- (1:ncol)/ncol
4 y <- (1:nrow)/nrow
5 if (byrow) {
6 right <- rep(x, nrow)
7 top <- rep(y, each=ncol)
8 } else {
9 right <- rep(x, each=nrow)
10 top <- rep(y, ncol)
11 }
12 grid.rect(x=right, y=top,
13 width=1/ncol, height=1/nrow,
14 just=c("right", "top"),
15 gp=gpar(col=NA, fill=cols),
16 name="image")
17 }

Figure 8.2
A grid.imageFun() function. This function draws an array of nrow by ncol rect-
angles filled with the specified colors.

Now two images are drawn with the same colors, but different byrow settings
(see Figures 8.3a and 8.3b).

> grid.imageFun(4, 4, grays)

> grid.imageFun(4, 4, grays, byrow=FALSE)

There is an obvious deficiency in this function because it does not perform
any checking of its arguments to ensure that the correct information is being
passed to it. For example, there is no check that nrow and ncol are numeric
values of length 1. In general, in order to reduce the size and complexity of
the code chunks, the examples will leave out input-checking code. This issue
is addressed more seriously in the context of developing new graphical objects
in Section 8.3.3.

The grid.imageFun() example shows that it is quite straightforward to create
a new graphics function that just produces output. However, there are three
important things to keep in mind when writing such a function: other people
might want to embed the output from your function as an element within a
more complex scene; other people might want to embed their output within
the output from your function; and other people might want to manipulate
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(a) (b)

Figure 8.3
Output from the grid.imageFun() function. The two images use the same set of
colors, but have different orientations. Image (a) has byrow=TRUE and image (b) has
byrow=FALSE.

the output from your function. The following sections look at how you should
design your function so that these tasks are straightforward for other people.

8.2.1 Embedding graphical output

The grid system is designed to allow graphical output to be embedded within
other graphical output. All drawing occurs within the current viewport and no
assumptions are made about the position or size of that viewport. New grid
functions should be written with this in mind and it should not be assumed
that output is being drawn into the entire device.

The grid.imageFun() function demonstrates this idea; this function just
draws rectangles within the current viewport, wherever that may be and how-
ever large it may be.

On the other hand, it is sometimes important to enforce certain constraints
on how graphical output is drawn. A good example is in the drawing of maps.
Usually, a map is drawn with a specific aspect ratio so that, for example, 1
unit in the x-dimension has the same physical size as 1 unit in the y-dimension.
In such cases, it may be necessary for a function to push its own viewports to
enforce an aspect ratio before performing any drawing. A function to draw a
map of Australia will be developed in order to demonstrate this idea.

The package oz provides data for drawing maps of Australia. The ozRegion()
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1 grid.ozFun <- function(ozRegion) {
2 pushViewport(
3 viewport(name="ozlay",
4 layout=grid.layout(1,1,
5 widths=diff(ozRegion$rangex),
6 heights=diff(ozRegion$rangey),
7 respect=TRUE)))
8 pushViewport(viewport(name="ozvp",
9 layout.pos.row=1,
10 layout.pos.col=1,
11 xscale=ozRegion$rangex,
12 yscale=ozRegion$rangey,
13 clip=TRUE))
14 index <- 1
15 for(i in ozRegion$lines) {
16 grid.lines(i$x, i$y, default.units="native",
17 name=paste("ozlines", index, sep=""))
18 index <- index + 1
19 }
20 upViewport(2)
21 }

Figure 8.4
A grid.ozFun() function. This function draws a map of Australia or some part
thereof.

function in the oz package returns an object of class "ozRegion" containing
x-axis and y-axis ranges, and a list of x-locations and y-locations to draw map
lines. The grid.ozFun() shown in Figure 8.4 makes use of ozRegion() to
draw a map of Australia using grid.

The most important part of this function is the pushing of viewports that
establish the correct aspect ratio for drawing the map (lines 2 to 13). The
first viewport contains a layout with a single cell set to the correct aspect ratio
and the second viewport occupies that cell and sets the appropriate "native"
coordinate system for the map. This allows the map to be drawn within any
viewport, but retain the appropriate shape.

The rest of the grid.ozFun() function just draws the lines representing the
Australian coastline (and state boundaries) using grid.lines().

The following code shows an example of the grid.ozFun() function being
used to draw all of Australia (see Figure 8.5). The map is not distorted even
though the region it is drawn in (indicated by the gray rectangle) is very wide.
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Figure 8.5
Example output from grid.ozFun(). By default it draws all of Australia.

> grid.ozFun(ozRegion())

8.2.2 Facilitating annotation

In addition to being able to produce graphical output within any context, it is
vital that further graphical output can be added to the output of a graphical
function. Again, the grid system is designed to facilitate this, by allowing
navigation between viewports.

In this context, there are two important features of the grid.ozFun() func-
tion defined in Figure 8.4: the viewports that are pushed have names,
"ozlay" and "ozvp" (lines 3 and 8); and the function calls upViewport()
(not popViewport()) when it has finished drawing (line 20). These features
mean that the viewports are available and accessible for other code to use
after the grid.ozFun() function has done its drawing.

The following code provides an example of annotation using the
grid.imageFun() function to add an image to output from the grid.ozFun()
function (see Figure 8.6). In this example, only a small part of the South Aus-
tralian coastline is used (the coastline close to the area where fluorescence data
were gathered).

First of all, the latitude and longitude ranges are set up for the map (mapLong
and mapLat) and for the image (imageLong and imageLat). Also, the set
of colors for the image are calculated (imageCols). The prediction surface
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Figure 8.6
Annotating grid.ozFun() output. An image has been added using the
grid.imageFun() function.

to be plotted is in a variable called fluoro.predict, which has components
x, y, and z for the longitude, latitude, and predicted fluorescence value, re-
spectively. These ranges and colors will be used throughout the rest of the
chapter.

> mapLong <- c(132, 136)
> mapLat <- c(-35, -31.5)
> imageLong <- range(fluoro.predict$x)
> imageLat <- range(fluoro.predict$y)
> zbreaks <- seq(min(fluoro.predict$z, na.rm=TRUE),

max(fluoro.predict$z, na.rm=TRUE),
length=10)

> zcol <- cut(fluoro.predict$z, zbreaks,
include.lowest=TRUE, labels=FALSE)

> ozgrays <- gray(0.5 + 1:9/20)
> imageCols <- ozgrays[zcol]

Now, the map and image can be drawn. The map is drawn first which produces
the coast line of South Australia and sets up the viewports "ozlay" and
"ozvp".

> grid.ozFun(ozRegion(xlim=mapLong, ylim=mapLat))

The function downViewport() is used to navigate down to the viewport
"ozvp", which has scales set up representing the latitude and longitude of
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the map. This is only possible because the grid.ozFun() function specified
useful names for the viewports it set up.

> downViewport("ozvp")

A further viewport is pushed to occupy the region where the image should be
drawn and the image is drawn within that viewport.

> pushViewport(viewport(y=min(imageLat),
height=abs(diff(imageLat)),
x=max(imageLong),
width=abs(diff(imageLong)),
default.units="native",
just=c("right", "bottom")))

> grid.imageFun(50, 50, col=imageCols)
> upViewport(0)

8.2.3 Editing output

In addition to being able to add further output to a plot, it is useful to make
it easy for others to modify the existing elements of a plot. The important
step in this case is to provide a name for each piece of graphical output that
your function produces.

The grid.imageFun() function uses the name "image" for the set of rect-
angles that it draws (line 16 in Figure 8.2) and the grid.ozFun() function
names each map border that it draws "ozlinesi", where i varies from 1 to
the number of borders drawn (line 17 in Figure 8.4).

These names are useful for interacting with the output from these functions,
particularly for the purpose of editing the output. The following code presents
a couple of examples of modifying the plot produced in Figure 8.6. The first
edit reverses the set of colors used in the image. The second edit changes the
color of all map borders to gray and makes the borders thicker (see Figure
8.7).

> grid.edit("image", gp=gpar(fill=rev(ozgrays)[zcol]))
> grid.gedit("^ozlines[0-9]+$", gp=gpar(col="gray", lwd=2))
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Figure 8.7
Editing grid.ozFun() output. Compared to Figure 8.6, the colors of the image have
been reversed and the Australian coastline is thicker and colored gray.

8.2.4 Absolute versus relative sizes

Another thing to consider when designing a graphics function is whether to
use absolute or relative coordinate systems and graphical parameters for sizing
graphical output. If absolute coordinates systems such as "in", "cm", or "mm"
are used to size output, then the output will remain that size no matter how
large or small the surrounding viewport is made. This is also true of graphical
parameters such as fontsize (which specifies the size of text in points), and
lwd. If, on the other hand, relative coordinates such as "npc" or "native"
are used for sizing output, the output will resize with its container. Graphical
parameters that are relative like this are cex for sizing text and lex for line
width.

In general, absolute sizes are more appropriate for producing or fine-tuning a
piece of output for a specific use (e.g., a figure in an article). Relative sizes
are more appropriate when designing general graphics functions for others to
use, where it is unknown how large the final output will be. One possible
exception to this rule is the sizing of text. It is reasonable to set text size in
absolute terms (i.e., a particular point size) in order to ensure that the text
is legible.

The coordinate systems "char", "line", "strwidth", "strheight", "grobx",
"groby", "grobwidth", and "grobheight" are considered to be relative be-
cause they depend on the size of other output.



Developing New Graphics Functions and Objects 265

8.3 Graphical objects

A properly written graphics function can be very useful if it can be reused
in other plots and arbitrarily added to or modified as described in previous
sections. There are, however, a number of benefits to be gained from also
creating a graphical object, or grob, to represent the output that your function
produces.

The following sections consider again the development of functions to produce
maps and images, but this time with an emphasis on creating objects that
represent the output, rather than just producing output.

Defining new grobs involves working with classes and generic functions. This
section assumes a familiarity with the basic ideas of object-oriented program-
ming and its implementation in S3 classes and methods.

The design of classes and methods is a reasonably sophisticated process, there
are often a number of possible designs to choose from, and it can be difficult
to determine a “best solution.” This means that it is impossible to provide
a single definitive statement about how a new graphical object should be
developed. Instead, this section presents a number of examples with several
different implementations and there is a discussion of the advantages and
disadvantages of different approaches.

8.3.1 Overview of creating a new graphical class

There are two main steps involved in defining a new graphical class. First of
all, the structure of the class must be described. This consists of specifying
the components of the new class: what information will be stored in objects
of that class. For example, the "rect" class has components x, y, width,
height, and just that describe the location and size of the rectangle.

The functions grob() and gTree() are used to define the structure for a
new graphical class (as described in more detail in the next section). These
functions ensure that all grobs have a number of standard components. For
example, all grobs must have gp, vp, and name components. In addition, all
classes derived from "gTree" (via the gTree() function) also have components
children and childrenvp that describe the children of the gTree and how
those children are drawn (see Section 8.3.4).

The second step in defining a new graphical class is to define the behavior
of the class. This consists of writing methods for several important generic
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functions. Methods can be written to control the validation of a grob, how a
grob is drawn, and what happens when a grob is modified. It is also possible
to write methods that allow a grob to be queried for its location and size.
These generic functions are described in Sections 8.3.4 to 8.3.7.

8.3.2 Defining a new graphical class

The code in Figure 8.8 gives an example of defining a new graphical class.
An "imageGrob" class is defined, which contains a description of the image
output generated by the grid.imageFun() function that was defined earlier.

The imageGrob() function calls the function gTree() to create an object
of a new class, "imageGrob". An imageGrob is a gTree with several compo-
nents that provide a high-level description of an image (ncol, nrow, cols, and
byrow). There is also a single child, which is a rect grob, representing the
rectangles that will be drawn to produce the image. The imageGrob() func-
tion also provides the standard gp, vp, and name components, which should
be available for all grobs.

The makeImageRect() function generates a rect grob from a high-level image
description. This is very similar to the function grid.imageFun(), but it
produces an object containing a description of some rectangles, rather than
drawing the rectangles, and it calls rectGrob() rather than grid.rect() (line
11). This function is not intended to be used directly — it is just a “helper
function” for the main imageGrob() function. This is an example of modular
code that makes it easier to read the main function and it will be used later
when some other details of creating graphical objects are considered.

The grid.imageGrob() function is just a convenience for producing graphical
output from an imageGrob grob; it just creates an appropriate grob and draws
it. The following code produces the same result as Figure 8.3a.

> grid.imageGrob(4, 4, grays)

There are now functions that define a new class and create an object of that
class. Sections 8.3.3 to 8.3.7 describe how to define appropriate behavior for
the new class so that it draws correctly and responds appropriately to being
modified.

Summary of creating a new graphical class

A new class is derived from the "grob" class using the grob() function, or
from the "gTree" class using the gTree() function (e.g., line 20 in Figure
8.8). This will ensure standard behavior when drawing and editing grobs,
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1 makeImageRect <- function(nrow, ncol, cols, byrow) {
2 xx <- (1:ncol)/ncol
3 yy <- (1:nrow)/nrow
4 if (byrow) {
5 right <- rep(xx, nrow)
6 top <- rep(yy, each=ncol)
7 } else {
8 right <- rep(xx, each=nrow)
9 top <- rep(yy, ncol)
10 }
11 rectGrob(x=right, y=top,
12 width=1/ncol, height=1/nrow,
13 just=c("right", "top"),
14 gp=gpar(col=NA, fill=cols),
15 name="image")
16 }

18 imageGrob <- function(nrow, ncol, cols, byrow=TRUE,
19 name=NULL, gp=NULL, vp=NULL) {
20 igt <- gTree(nrow=nrow, ncol=ncol,
21 cols=cols, byrow=byrow,
22 children=gList(makeImageRect(nrow, ncol,
23 cols, byrow)),
24 gp=gp, name=name, vp=vp,
25 cl="imageGrob")
26 igt
27 }

29 grid.imageGrob <- function(...) {
30 igt <- imageGrob(...)
31 grid.draw(igt)
32 }

Figure 8.8
An "imageGrob" class. This is a grob-based equivalent of grid.imageFun().
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calculating the size of grobs, and so on (Sections 8.3.3 to 8.3.7 provide detailed
information about the default behavior of grobs). Apart from the cl argument
that specifies the name of the new class (line 25 in Figure 8.8), the arguments
to these functions provide a list of components for the new class.

There are some standard components common to all grobs: gp, vp, and name.
It is sensible to make these available via the constructor function for your new
class (e.g., line 19 in Figure 8.8).

The gp component is designed to contain a gpar object, which is a set of
graphical parameter settings; the vp component is designed to hold a viewport
or a viewport path; and the name component provides the name for the grob.
All of these are validated automatically and are used in the drawing and
editing of the grob (see Section 8.3.3).

The "gTree" class defines two more standard components: the children
component contains the children of the gTree (as a gList) and the childrenvp
component contains viewports for the children to be drawn within (used in the
drawing of the children of the gTree). An example of the use of the children
component is shown in Figure 8.8 on line 22.

All other components are at the discretion of the class designer.

Having defined a new graphical class, it is then necessary to write one or more
methods for some important generic functions as described in the following
sections.

8.3.3 Validating grobs

This section describes the validDetails() function, which is important for
ensuring that the components of a grob contain valid values.

The code examples used in the examples of simple graphics functions ignored
the issue of checking user input to ensure that valid values are supplied for
arguments or components. This issue becomes particularly important when
dealing with grobs because it is not only possible to supply invalid values when
a grob is first created, but also whenever a grob is modified via grid.edit()
or editGrob().

Default validating behavior

When a grob is created or modified, it is automatically validated. The valida-
tion checks that the gp, vp, and name components of a grob are sensible (and
for a gTree, the children and childrenvp components are also checked) and
then the validDetails() generic function is called. By default this function
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1 validDetails.imageGrob <- function(x) {
2 if (!is.numeric(x$nrow) || length(x$nrow) > 1 ||
3 !is.numeric(x$ncol) || length(x$ncol) > 1)
4 stop("nrow and ncol must be numeric and length 1")
5 if (!is.logical(x$byrow))
6 stop("byrow must be logical")
7 x
8 }

10 validDetails.ozGrob <- function(x) {
11 if (!inherits(x$ozRegion, "ozRegion"))
12 stop("Invalid ozRegion")
13 x
14 }

Figure 8.9
Some validDetails() methods. These are called when an imageGrob or an ozGrob

is first created, or when such an object is modified using grid.edit().

does nothing. A new class should define a method to check the components
that are specific to that class.

The imageGrob example

Figure 8.9 shows a validDetails() methods for the "imageGrob" class (Fig-
ure 8.9 also shows a method for the "ozGrob" class, which is introduced in the
next section). The validDetails() method for the "imageGrob" class (lines
1 to 8) checks that the nrow and ncol components are numeric and of length
1 and that the byrow component is a logical vector. The return value of the
method is the validated imageGrob (line 7). All validDetails() methods
must do this whether they modify the grob or not.

With these validation methods defined, both the creation and the modifica-
tion of an imageGrob will perform checks to ensure that the components of
the imageGrob contain valid values. The following code demonstrates the val-
idation at work. First of all, the creation of an imageGrob fails because byrow
is not a logical value.

> grid.imageGrob(4, 4, grays, byrow="what?")

Error in validDetails.imageGrob(x) :

byrow must be logical
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In this next example, an imageGrob is created with valid components, but
then it is edited with an invalid nrow component specification.

> ig <- imageGrob(4, 4, grays)

> editGrob(ig, nrow="what?")

Error in validDetails.imageGrob(x) :

nrow and ncol must be numeric and length 1

8.3.4 Drawing grobs

This section describes the drawDetails() generic function, which is important
for ensuring that appropriate output is produced when a grob is drawn.

The function grid.draw() produces graphical output from a grob. The grid
system automatically performs some default drawing actions for all grobs, but
a drawDetails() method will often also be required.

Default drawing behavior

By default, if the vp component of a grob contains a viewport (or viewport
stack, list, or tree), the viewport is pushed before any output is produced.
If the vp component is a vpPath, the path is used to navigate down to the
relevant viewport using downViewport().∗ Also, if the gp components con-
tains a gpar object, those graphical settings are enforced before any output
is produced.

After the output has been produced, graphical settings are reverted and any
viewports that were pushed are popped. If there was navigation down to a
viewport, then that navigation is reversed with a call to upViewport().

By default, no graphical output is produced for a grob. The generic function
drawDetails() is called so that classes can define a method that calls grid
functions to produce output. For classes derived from "gTree", as well as
calling the drawDetails() function, all of the children of the gTree are drawn
(by calling grid.draw() for each child).

The default behavior for grobs also takes care of recording the grob on the
grid display list.

∗The navigation down is performed with strict=TRUE.
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A further default behavior for gTrees is that, before drawing its children, a
gTree will push any viewports in its childrenvp component, then navigate
back up again. This means that all viewports in the childrenvp component
are available for the grobs in the children component of the gTree to navigate
down to. An example is given later (see the subsection “An ozGrob example”
and Figure 8.10).

The imageGrob example

The grid.imageGrob() function in Figure 8.8 draws an image by creating an
imageGrob object and calling grid.draw(). This provides the same interface
as the grid.imageFun() function and produces exactly the same output. The
following code shows a simple example. The output is exactly the same as
Figure 8.3a.

> grid.imageGrob(4, 4, grays)

The output is generated automatically in the imageGrob case because of the
default drawing behavior defined for gTrees. When a gTree is drawn, it draws
all of its children, so when an imageGrob is drawn, the rect grob child is
drawn automatically.

The following code demonstrates the other automatic drawing behavior for
grobs (pushing of the vp component and enforcing gp settings). The code
draws an image like the previous one, except that the drawing occurs within a
viewport specified via the vp component and the entire image is made trans-
parent via the gp component.

> grid.imageGrob(4, 4, grays, name="imageGrob",
vp=viewport(width=0.5, height=0.5),
gp=gpar(alpha=0.5))

An ozGrob example

The "imageGrob" class provides a simple example of the default drawing be-
havior for a gTree with children. The code in Figure 8.10 shows the definition
of an "ozGrob" class, which will be used to demonstrate the drawing of a
gTree with children and a childrenvp component.

In this example, the makeOzViewports() function and the makeOzLines()
function are both just helper functions. The functions ozGrob() and
grid.ozGrob() are the only functions that other people will use.
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1 makeOzViewports <- function(ozRegion) {
2 vpStack(viewport(name="ozlay", layout=grid.layout(1, 1,
3 widths=diff(ozRegion$rangex),
4 heights=diff(ozRegion$rangey),
5 respect=TRUE)),
6 viewport(name="ozvp", layout.pos.row=1,
7 layout.pos.col=1,
8 xscale=ozRegion$rangex,
9 yscale=ozRegion$rangey,
10 clip=TRUE))
11 }

13 makeOzLines <- function(ozRegion) {
14 numLines <- length(ozRegion$lines)
15 lines <- vector("list", numLines)
16 index <- 1
17 for(i in ozRegion$lines) {
18 lines[[index]] <- linesGrob(i$x, i$y,
19 default.units="native",
20 vp=vpPath("ozlay", "ozvp"),
21 name=paste("ozlines", index, sep=""))
22 index <- index + 1
23 }
24 do.call("gList", lines)
25 }

27 ozGrob <- function(ozRegion, name=NULL, gp=NULL, vp=NULL) {
28 gTree(ozRegion=ozRegion, name=name, gp=gp, vp=vp,
29 childrenvp=makeOzViewports(ozRegion),
30 children=makeOzLines(ozRegion),
31 cl="ozGrob")
32 }

34 grid.ozGrob <- function(...) {
35 grid.draw(ozGrob(...))
36 }

Figure 8.10
An "ozGrob" class. This is a grob-based equivalent of grid.ozFun().
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An ozGrob is a gTree with a single component, ozRegion, which contains
a description of the region of Australia to map (line 28 in Figure 8.10). An
ozGrob also has a number of children, all of which are lines grobs representing
the coastline and state boundaries to draw (line 30), and an ozGrob has
a viewport stack in its childrenvp component (line 29). These viewports
create a region with the right aspect ratio for drawing a map and the children
of the ozGrob are all created with viewport paths to specify that they should
be drawn within this region (line 20).

When an ozGrob is drawn, the viewports in its childrenvp component are
pushed as part of the default drawing behavior for gTrees, then the grobs in its
children component are drawn. Each child has a vp component indicating
which viewport to navigate to before drawing.

The grid.ozGrob() function is just a convenient front-end for drawing an
ozGrob. This can be used just like the function grid.ozFun() to draw some
or all of a map of Australia. The following code produces exactly the same
output as shown in Figure 8.5. There are more examples using ozGrob objects
in later sections.

> grid.ozGrob(ozRegion())

An ozImage example

Both the "imageGrob" class and the "ozGrob" class are derived from the
"gTree" class. This means that they have other grobs as children and the
default drawing behavior for gTrees draws those children correctly when the
imageGrob or ozGrob is drawn. This section looks at an example where a
drawDetails() method has to be written in order to produce any output.

A typical reason for needing to write a drawDetails() method is that your
new class does not have a fixed set of grobs as children. Axes that must
calculate tick marks on the fly are a good example (it is only possible to
figure out how many tick marks to draw and where to locate them when the
axis is actually drawn).

In order to demonstrate the definition of a drawDetails() method, an
"ozImage" class will be defined. This class combines an ozGrob and an
imageGrob and has to do the drawing itself to get them combining correctly
(for producing output like that in Figure 8.6).

The code in Figure 8.11 shows the definition of an "ozImage" class. An
ozImage is just a grob (it has no children; lines 3 to 5) so without a
drawDetails() method, it would produce no output. In order to produce
output when an ozImage is drawn, a drawDetails() method is defined for
the "ozImage" class (lines 8 to 21). This method creates an ozGrob and
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1 ozImage <- function(mapLong, mapLat,
2 imageLong, imageLat, cols) {
3 grob(mapLong=mapLong, mapLat=mapLat,
4 imageLong=imageLong, imageLat=imageLat, cols=cols,
5 cl="ozImage")
6 }

8 drawDetails.ozImage <- function(x, recording) {
9 grid.draw(ozGrob(ozRegion(xlim=x$mapLong,
10 ylim=x$mapLat)))
11 depth <- downViewport(vpPath("ozlay", "ozvp"))
12 pushViewport(viewport(y=min(x$imageLat),
13 height=diff(range(x$imageLat)),
14 x=max(x$imageLong),
15 width=diff(range(x$imageLong)),
16 default="native",
17 just=c("right", "bottom")))
18 grid.draw(imageGrob(50, 50, col=x$col))
19 popViewport()
20 upViewport(depth)
21 }

Figure 8.11
An "ozImage" class. This combines an imageGrob with an ozGrob to make a larger,
more complex grob.

draws it (lines 9 to 10), then navigates down to the "ozvp" viewport, pushes
a viewport within which to draw the image, creates and draws an imageGrob
(line 18), and finally navigates back up to the viewport that it started in.

With this class defined, Figure 8.6 can be produced as follows.

> grid.draw(ozImage(mapLong, mapLat,
imageLong, imageLat, imageCols))

An important point about drawDetails() methods is that none of the draw-
ing and viewport operations within a drawDetails() method are recorded on
the display list. For example, as a result of the above code, there is an ozImage
grob on the display list, but there is neither an ozGrob nor an imageGrob on
the display list. This has implications for editing output which are discussed
in the next section.
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8.3.5 Editing grobs

This section describes the editDetails() generic function, which is impor-
tant for ensuring that a grob responds appropriately when it is edited. It
is particularly important for classes derived from "gTree" to ensure that the
children of the gTree are updated when the high-level components of the gTree
are modified.

One advantage of defining a grob to represent graphical output is that the
grob provides a high-level interface to the graphical output. For example, an
imageGrob contains components that describe an image in terms of how many
rows and columns it has. The low-level description of the precise location of
individual rectangles within the image is left to the lower-level rect grob. This
means that it is possible to modify the high-level description in order to change
the graphical output. For example, the number of rows in an imageGrob could
be modified simply by changing the high-level nrow component rather than
by having to modify the location and size of all of the low-level rectangles.
Unfortunately, modifying the high-level description of an imageGrob as it has
been defined so far will have no effect on the output because it will have
no effect on the children of the imageGrob. For gTrees with children, it is
necessary to provide instructions for how to change the children when the
high-level description is modified.

Default editing behavior

The grid.edit() function and the editGrob() function are used to modify
a grob.

When a grob is modified, the components of the grob are set to the new values
and the editDetails() generic function is called. The default behavior is to
do nothing, but a class can define a method which, for example, propagates a
change to its children.

The imageGrob example

In the case of an imageGrob, an editDetails() method is required to en-
sure that the child rect corresponds to the high-level description in the
imageGrob. Figure 8.12 shows code defining an editDetails() method for
the "imageGrob" class (lines 1 to 10). This method totally re-creates the child
rect grob if any of the ncol, nrow, or byrow arguments are modified (lines 2
to 5), and edits the child rect grob if the cols argument is modified (lines 6
to 8). A very important feature of the function is that it returns the modified
grob (line 9). All editDetails() methods must do this.



276 R Graphics, Second Edition

1 editDetails.imageGrob <- function(x, specs) {
2 if (any(c("ncol", "nrow", "byrow") %in% names(specs))) {
3 x <- addGrob(x, makeImageRect(x$nrow, x$ncol,
4 x$cols, x$byrow))
5 }
6 if (any(c("cols") %in% names(specs))) {
7 x <- editGrob(x, "image", gp=gpar(fill=x$cols))
8 }
9 x
10 }

12 editDetails.ozGrob <- function(x, specs) {
13 if ("ozRegion" %in% names(specs)) {
14 x$childrenvp <- makeOzViewports(x$ozRegion)
15 x <- setChildren(x, makeOzLines(x$ozRegion))
16 }
17 x
18 }

Figure 8.12
Some editDetails() methods for imageGrob and ozGrob objects. These will be run
when such objects are modified using grid.edit().

The ozGrob example

Figure 8.12 also shows an editDetails() method for the "ozGrob" class.
This method ensures that changes to the ozRegion component of an ozGrob
will be reflected in the children of the ozGrob by completely re-creating the
childrenvp and children components of the ozGrob.

The ozImage example

There is no method for the "ozImage" class because it is only a grob and
there are no children to propagate changes to. The output of an ozImage is
re-created by its drawDetails() method whenever an ozImage is edited.

The imageGrob example again

With the editDetails() method defined for the "imageGrob" class, it is
possible to edit an imageGrob. The following code creates an image (see
Figure 8.13a) and then modifies the orientation via the high-level descrip-
tion in the imageGrob. The changes are passed on to the rect child by the
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(a) (b) (c)

Figure 8.13
Editing an imageGrob. Panel (a) shows a simple imageGrob. In panel (b), the
imageGrob has been modified by changing the byrow argument. In panel (c), the
rect grob within the imageGrob has been modified to change the borders of each
rectangle in the image to be thick and white.

editDetails() method (see Figure 8.13b).

> grid.imageGrob(4, 4, grays, name="imageGrob")

> grid.edit("imageGrob", byrow=FALSE)

A gTree with child grobs not only allows interaction with a high-level descrip-
tion of graphical output, but it also makes it possible to access the low-level
description as well through the child grobs. For example, it is possible to
edit the low-level rect child of an imageGrob. The following code modifies
the image drawn in the previous example to change the borders of the child
rectangles to be white and very wide (see Figure 8.13c). The only important
design aspect here is that the "imageGrob" class provides a name, "image",
for the rect child. This makes it possible to specify a gPath to the rect.

> grid.edit("imageGrob::image", gp=gpar(col="white", lwd=6))

The difference between editing the low-level rect object and re-creating it is
that when the rect object is edited it will retain any other customizations
that have been made to it. The following code gives a small example. First
of all an imageGrob object is drawn (the output is identical to Figure 8.13a).

> grid.imageGrob(4, 4, grays, name="imageGrob")

In the first edit, the low-level rect object is edited so that the borders of the
individual rectangles are drawn white (see Figure 8.14a).
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(a) (b) (c)

Figure 8.14
Low-level editing of an imageGrob. Panel (a) shows an imageGrob with the rect

grob modified so that all of the rectangles in the image have a white border. In panel
(b), the cols argument of the imageGrob has been modified, which changes the fill
color of each rectangle, but does not alter the borders (which are still white). In
panel (c), the byrow argument of the imageGrob has been modified and this causes
the rect grob to be remade so the white borders are lost.

> grid.edit("imageGrob::image", gp=gpar(col="white"))

The second edit modifies the high-level cols component in the imageGrob
object, but because this only edits the low-level rect object the individual
rectangle borders are retained (see Figure 8.14b).

> grid.edit("imageGrob", cols=rev(grays))

In the final edit, the high-level byrow argument is edited, which causes the
low-level rect object to be re-created and the individual borders are lost (see
Figure 8.14c).

> grid.edit("imageGrob", byrow=FALSE)

The ozImage example again

It is worth noting that for grobs that do not have any children, but produce
output by creating and drawing grobs in a drawDetails() method, it is not
actually possible to perform this sort of low-level editing. For example, it is
not possible to edit the low-level imageGrob or ozGrob of an ozImage because
the imageGrob and ozGrob are never stored anywhere. Some solutions to this
problem are discussed in Section 8.3.11.
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8.3.6 Querying grobs

This section describes the functions xDetails() and yDetails(), which are
useful for determining a location on the boundary of a grob, and the functions
widthDetails() and heightDetails(), which are useful for calculating the
amount of space that a grob requires for drawing.

Every new graphical class should have appropriate behavior defined for vali-
dating, drawing, and editing objects of the class. This section looks at defining
behavior for querying a grob for its location and size, which only makes sense
in some cases.

This is most often used for providing column widths and row heights for grid
layouts, but can also be used to position one grob relative to another, for
example, to draw a rectangular border around a piece of text or to draw a
line from one grob to another.

Default sizing behavior

The calculations of "grobx", "groby", "grobwidth", and "grobheight" units
call the generic functions, xDetails(), yDetails(), widthDetails(), and
heightDetails(), respectively, which should return a unit describing a loca-
tion on the boundary of the grob or the width and height of the grob.

The default xDetails() and yDetails() methods return unit(0.5, "npc"),
which means that locations default to the center of the current viewport.

The default methods for widthDetails() and heightDetails() return the
value unit(1, "null"), which means that the corresponding widths and
heights get an equal share of the available space within layouts (see Section
6.5.6). Outside of a layout, the default width and height both evaluate to
zero.

There are predefined methods for most primitives and for the "frame" class
(see Section 7.4).

A ribbonLegend example

In order to demonstrate the use of these methods, a "ribbonLegend" class
will be defined (see Figures 8.15 and 8.16).

A ribbonLegend consists of several components describing the number of
levels to represent in the legend and the colors to use for each level (line 6 in
Figure 8.16). It is also possible to control the amount of empty space to leave
around the legend (line 3). The children of a ribbonLegend are a rect grob
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to draw rectangles for the levels and a lines grob and a text grob to show
the legend scale (see the ribbonKids() function in Figure 8.15). There is a
childrenvp component that contains a vpTree: the parent viewport defines
a layout and then two child viewports occupy column 2 and column 3 of row
2 of that layout (see the ribbonVps() function in Figure 8.15). The layout is
created with column widths based on the space needed for the scale labels (in
column 3), one line of text for the “ribbon” of rectangles (in column 2), and
the required empty space around the outside (columns 1 and 4).

A widthDetails() method is defined for the "ribbonLegend" class in Figure
8.16 (lines 12 to 14). The width of a ribbonLegend is calculated as the sum
of the widths of the layout in the top viewport of the childrenvp component
(line 13), which reflects the space required to draw the legend.

This class can be used to produce a ribbon legend as shown at the right-hand
side of Figure 8.1. If a ribbon legend is used as the data for a "grobwidth"
unit, it will request enough space to draw itself. Examples are given in Sections
8.3.9 and 8.3.10.

8.3.7 Pre-drawing and post-drawing

There are two more generic functions that have not yet been mentioned:
preDrawDetails() and postDrawDetails(). These functions are called as
part of the default drawing behavior (see Section 8.3.4).

Default pre/post-drawing behavior

The pushing and popping of viewports in vp components described
in the default drawing behavior (Section 8.3.4) includes a call to the
preDrawDetails() generic function (after the vp component has been
pushed, but before the drawDetails() method is called) and a call to the
postDrawDetails() generic function (after the drawDetails() method has
been called, but before the vp component is popped).

By default, the generic functions do nothing, but a new graphical class can
define a method to perform additional pushing, popping, and navigation of
viewports if required.

The pre-drawing and post-drawing are separate actions from the actual draw-
ing because they are also performed during the evaluation of "grobwidth"
and "grobheight" units. This is done so that the size of a grob is calculated
based on the context in which it is drawn (i.e., so that the size corresponds
to the actual size of the graphical output). This means that any pushing
(and popping) of viewports for a new grob class must be performed in a
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1 calcBreaks <- function(nlevels, breaks, scale) {
2 if (is.null(breaks)) {
3 seq(min(scale), max(scale), diff(scale)/nlevels)
4 } else {
5 breaks
6 }
7 }

9 ribbonVps <- function(nlevels, breaks, margin, scale) {
10 breaks <- format(signif(calcBreaks(nlevels, breaks, scale),
11 3))
12 vpTree(
13 viewport(name="layout", layout=
14 grid.layout(3, 4,
15 widths=unit.c(margin, unit(1, "line"),
16 max(unit(0.8, "line") +
17 stringWidth(breaks)), margin),
18 heights=unit.c(margin, unit(1, "null"), margin))),
19 vpList(viewport(layout.pos.col=2, layout.pos.row=2,
20 yscale=scale, name="ribbon"),
21 viewport(layout.pos.col=3, layout.pos.row=2,
22 yscale=scale, name="labels")))
23 }

25 ribbonKids <- function(nlevels, breaks, cols, scale) {
26 breaks <- calcBreaks(nlevels, breaks, scale)
27 nb <- length(breaks)
28 tickloc <- breaks[-c(1, nb)]
29 gList(rectGrob(y=unit(breaks[-1], "native"),
30 height=unit(diff(breaks), "native"),
31 just="top", gp=gpar(fill=cols),
32 vp=vpPath("layout", "ribbon")),
33 segmentsGrob(x1=unit(0.5, "line"),
34 y0=unit(tickloc, "native"),
35 y1=unit(tickloc, "native"),
36 vp=vpPath("layout", "labels")),
37 textGrob(x=unit(0.8, "line"),
38 y=unit(tickloc, "native"),
39 just="left",
40 label=format(signif(tickloc, 3)),
41 vp=vpPath("layout", "labels")))
42 }

Figure 8.15
Helper functions for a "ribbonLegend" class. The class itself is defined in Figure
8.16.
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1 ribbonLegend <- function(nlevels=NULL, breaks=NULL, cols,
2 scale=range(breaks),
3 margin=unit(0.5, "line"),
4 gp=NULL, vp=NULL, name=NULL) {
5 gTree(
6 nlevels=nlevels, breaks=breaks, cols=cols, scale=scale,
7 children=ribbonKids(nlevels, breaks, cols, scale),
8 childrenvp=ribbonVps(nlevels, breaks, margin, scale),
9 gp=gp, vp=vp, name=name, cl="ribbonLegend")
10 }

12 widthDetails.ribbonLegend <- function(x) {
13 sum(layout.widths(viewport.layout(x$childrenvp[[1]])))
14 }

Figure 8.16
A "ribbonLegend" class. This consists of a “ribbon” of rectangles filled with the
specified colors, plus an axis showing the scale.

preDrawDetails() (and postDrawDetails()) method if they will have any
effect on the calculations on the size of the grob. An example of a class
that has its own preDrawDetails() and postDrawDetails() methods is the
"frame" grob class (see Section 7.4).

8.3.8 Summary of graphical object methods

Defining the behavior for a new graphical class requires writing one or more
methods for the standard grid generic functions:

• Always write a constructor function for the class to generate a grob or
a gTree containing the description of what to draw.

• Always write a validDetails() method for checking the validity of
values in the non-standard components of the class.

• Sometimes write a drawDetails() method to specify how to draw the
class.

• Rarely write preDrawDetails() and postDrawDetails() methods if
the drawing involves pushing viewports that affect the determination of
the size of the graphical output.

• Always (for gTrees) write an editDetails() method so that changes
to the high-level description are propagated to child grobs.

• Sometimes write xDetails() and yDetails() methods if the bound-
ary of the graphical output can be sensibly determined.
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• Sometimes write widthDetails() and heightDetails() methods if
the size of the graphical output can be sensibly determined.

8.3.9 Completing the example

Almost all of the components required to produce Figure 8.1 have now been
defined. The following code produces an ozImage that contains a portion of
the South Australian coastline and an image representing fluorescence just off
the coast.

> ozimage <- ozImage(mapLong, mapLat,
imageLong, imageLat, imageCols)

This next piece of code creates a ribbonLegend for the image plot.

> ribbonlegend <- ribbonLegend(breaks=zbreaks,
cols=ozgrays,
scale=range(zbreaks),
gp=gpar(cex=0.7))

The final piece required is the ability to draw a “key” consisting of a map of
Australia with a rectangle to indicate the region drawn in the main image.
The code in Figure 8.17 defines an "ozKey" class for this purpose. An ozKey
is a gTree with an ozGrob and a rect grob as children. An ozKey draws
its children within a viewport, the location and size of which are specified
when the ozKey is constructed. A drawDetails() method is not required
for this class because the default drawing behavior for gTrees is sufficient. A
validDetails() method should be written and an editDetails() method
would be required for an ozKey to respond properly to editing; however, these
are left as an exercise for the reader.

The following code constructs an ozKey grob for the image plot.

> ozkey <- ozKey(x=unit(1, "npc") - unit(1, "mm"),
y=unit(1, "npc") - unit(1, "mm"),
width=unit(3.5, "cm"),
height=unit(2, "cm"),
just=c("right", "top"),
mapLong, mapLat)

Finally, the ozImage, ozKey, and ribbonLegend grobs are used to construct
Figure 8.1 as follows.
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1 ozKey <- function(x, y, width, height, just,
2 mapLong, mapLat) {
3 gTree(childrenvp=viewport(name="ozkeyframe",
4 x=x, y=y, just=just,
5 width=width, height=height),
6 children=gList(ozGrob(ozRegion(), vp="ozkeyframe",
7 gp=gpar(lwd=0.1)),
8 rectGrob(x=mean(mapLong),
9 y=mean(mapLat),
10 width=abs(diff(mapLong)),
11 height=abs(diff(mapLat)),
12 default.units="native",
13 gp=gpar(lwd=1),
14 vp=vpPath("ozkeyframe",
15 "ozlay", "ozvp"))))
16 }

Figure 8.17
An "ozKey" class. This consists of a map of Australia with a rectangle superimposed.

> fg <- frameGrob()
> fg <- packGrob(fg, ozimage)
> fg <- placeGrob(fg, ozkey)
> fg <- packGrob(fg, ribbonlegend, "right")
> grid.draw(fg)

This makes use of the fact that the ribbonLegend will be allocated the correct
width because it has a widthDetails() method defined.

8.3.10 Reusing graphical elements

Having created all of these graphical objects, there exists a set of graphical
elements that produce useful graphical output, that can have other output
added to them, that can be modified at different levels, and that can be
embedded in other settings. This means that it is possible to use them to
produce a quite different sort of plot. Figure 8.18 shows an example that
combines an ozGrob and several ribbonLegends in a quite different way.

First of all, a map of Australia is drawn, then a ribbonLegend grob is drawn
for each city to show the range of average monthly temperatures. The data
are minimum and maximum monthly temperatures at six major cities spread
around Australia available as the data set ozTemp.
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> grid.ozGrob(ozRegion())
> downViewport("ozvp")
> for (i in 1:(dim(ozTemp)[1])) {

grid.points(ozTemp$long[i], ozTemp$lat[i], pch=16)
rl <- ribbonLegend(breaks=c(min(ozTemp$min),

ozTemp$min[i],
ozTemp$max[i],
max(ozTemp$max)),

cols=c("white", "gray", "white"),
gp=gpar(cex=.7))

pushViewport(viewport(x=unit(ozTemp$long[i], "native"),
y=unit(ozTemp$lat[i], "native"),
height=unit(1, "in"),
width=grobWidth(rl),
clip="off"))

grid.circle(r=1,
gp=gpar(col="gray", fill="white", alpha=0.8))

grid.draw(rl)
popViewport()

}
> upViewport(0)

8.3.11 Other details

This section describes some more detailed and abstract issues that can arise
in the design of a new graphical object.

Extending other grobs

From a design point of view, the correct implementation of the "imageGrob"
class (Figure 8.8) probably would have been to derive it from the predefined
"rect" class (rather than deriving it from the "gTree" class and having it
contain a rect object as its child). In other words, from a design perspective,
an image is a rect, simply with a different parameterization.

Unfortunately, this sort of implementation is awkward because grid uses the
S3 class system, which does not support inheritance of structure. Deriving an
"image" class from the "rect" grob class would mean that generic functions
are automatically inherited, but the inheritance of structure (components) has
to be done by hand. This requires knowledge of the internal structure of the
"rect" class and will fail if there are any changes to that structure, so this
approach is not recommended.
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Figure 8.18
A plot of temperature data for several cities in Australia. This plot was composed
using the same ozGrob and ribbonLegend grobs that were used to construct the
oceanographic plot in Figure 8.1.
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This means that the standard approach has to be to derive new classes directly
from the "grob" class or the "gTree" class, not from other graphical classes.

Display lists

As mentioned in Section 9.6, R’s graphics engine maintains a display list,
which is a record of all graphical output on a page, and this is used to redraw
a scene if a page is resized (among other things). The output from both
traditional and grid graphics functions is recorded on this display list.

The grid package also maintains its own separate display list, which is used
for accessing grobs in the current scene and for redrawing the current scene
after editing (i.e., after a call to grid.edit()). The grid display list can be
replayed explicitly using the grid.refresh() function.

The grid display list can be disabled using grid.display.list(), which
saves on grid’s memory usage, but disables grid’s ability to modify and re-
draw a scene. If the grid display list is disabled, the functions grid.edit(),
grid.get(), grid.add(), and grid.remove() will no longer work.

It is possible to record grid output only on the grid display list with the
engine.display.list() function, as shown by the following code. Redraw-
ing will be slightly slower, but this avoids the memory cost of having output
recorded on both the grid display list and the graphics engine display list.

> engine.display.list(FALSE)

This action only affects the recording of grid operations on the graphics engine
display list; traditional graphics output is still recorded on the graphics engine
display list.

Calculations during drawing

With grid units and layouts, it is possible to specify quite complex arrange-
ments of output in a “declarative” manner. For example, the idea that a par-
ticular region should be square (have an aspect ratio of 1) can be expressed
at a high level, by specifying both width and height as unit(1, "snpc"),
and the system will ensure that this occurs. There is no need to calculate the
physical dimensions of the current viewport and from those determine how to
make a square region.

It is, however, sometimes necessary to perform calculations by hand. For
example, consider the problem of splitting text into several lines based on
the width of the available space. The code in Figure 8.19 defines a function,
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1 splitString <- function(text) {
2 strings <- strsplit(text, " ")[[1]]
3 newstring <- strings[1]
4 linewidth <- stringWidth(newstring)
5 gapwidth <- stringWidth(" ")
6 availwidth <-
7 convertWidth(unit(1, "npc"),
8 "in", valueOnly=TRUE)
9 for (i in 2:length(strings)) {
10 width <- stringWidth(strings[i])
11 if (convertWidth(linewidth + gapwidth + width,
12 "in", valueOnly=TRUE) <
13 availwidth) {
14 sep <- " "
15 linewidth <- linewidth + gapwidth + width
16 } else {
17 sep <- "\n"
18 linewidth <- width
19 }
20 newstring <- paste(newstring, strings[i], sep=sep)
21 }
22 newstring
23 }

Figure 8.19
A splitString() function. This function takes a piece of text and splits it into
multiple lines so that the text will fit (horizontally) within the current viewport.
Validation checks (e.g., whether strings is a character vector of length at least 2)
have not been included.

splitString(), to perform this operation (in a very simple-minded way). The
important part of this function is the use of the convertWidth() function to
obtain the size of the current line of text in inches (line 11) for comparison
with the size of the current region in inches (lines 6 to 8).

The following code uses the splitString() function to draw some text within
the current viewport (see the left-hand panel in Figure 8.20).

> text <- "The quick brown fox jumps over the lazy dog."
> grid.text(splitString(text),

x=0, y=1, just=c("left", "top"))

There is a problem with the above code. If it is used to draw into a window
and then the window is resized, the calculations are not rerun and the line
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Figure 8.20
Performing calculations before drawing. If the drawing of a grob depends on cal-
culations (in this case, calculations to split text into multiple lines to fit horizon-
tally within the current viewport), the calculations should be included within a
drawDetails() method. This means that the calculations will be rerun if the device
is resized (left panel versus top-right panel) or if the grob is edited to make the font
size larger (top-right panel versus bottom-right panel).

splitting becomes incorrect.

The issue is that only drawing actions are recorded on the display list, not any
calculations leading up to the drawing. Anything that works off the display
list (like redrawing after a resize) only reruns drawing actions.

There are two solutions to this problem. One solution rests on the fact
that all code within a drawDetails() method (or a preDrawDetails() or
postDrawDetails() method) is captured on the graphics engine display list.
The code in Figure 8.21 uses this fact to create a "splitText" class with a
drawDetails() method that performs the calculations.

A splitText grob will recalculate the line breaks when a window is resized
(see the top-right panel of Figure 8.20).

> splitText <- splitTextGrob(text, name="splitText")
> grid.draw(splitText)

Another advantage of creating a grob with a drawDetails() method is that
it is possible to edit the grob and have the calculations updated (see the
bottom-right panel of Figure 8.20).

> grid.edit("splitText", gp=gpar(cex=1.5))
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1 splitTextGrob <- function(text, ...) {
2 grob(text=text, cl="splitText", ...)
3 }

5 drawDetails.splitText <- function(x, recording) {
6 grid.text(splitString(x$text),
7 x=0, y=1, just=c("left", "top"))
8 }

Figure 8.21
A "splitText" class. The drawDetails method for the class recalculates where to
place line breaks in the text, based on the current viewport size.

The other way to encapsulate calculations with drawing operations is to use
the grid.record() function, as shown by the following code.

> grid.record({
grid.text(splitString(text),

x=0, y=1, just=c("left", "top"))
},
list(text=text))

This is convenient for writing code purely for its side effect (i.e., without having
to deal explicitly with grobs), but it provides less control over the design of
the object that is created. There is also a recordGrob() function that simply
creates a grob encapsulating the calculations and drawing operations without
drawing anything.

Avoiding argument explosion

Very complex or high-level graphics functions and objects are usually com-
posed of several lower-level elements, which in turn may be composed of sev-
eral even-lower-level elements. For example, a scatterplot matrix is composed
of several scatterplots and each scatterplot contains axes, labels, and data
symbols.

Ideally, it should be possible to control any aspect of a graphical scene. In
terms of writing code, this means that an argument or component should be
supplied to allow the user to specify a customized value for any parameter of
the scene.

At the level of graphical primitives, parameters consist of such things as the
locations of lines, the color of lines, and the line thickness. At a higher level,
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for example for axes, there are higher-level parameters, such as where to place
tick marks, but it is also desirable to still be able to control the individual
elements of the axis.

It is tempting to simply provide arguments for the elements of an axis as
arguments of the axis itself. An example is where an axis could have a rot
argument to specify the angle of rotation of the tick mark labels, but this
approach quickly runs into difficulties. For one thing, ambiguities can easily
arise. If an axis had an overall label it is unclear whether the rot argument
would apply to the tick mark labels or to the overall label. Another problem is
that as elements become more complex, the number of parameters required for
all subelements grows alarmingly. Consider the number of separate arguments
required to individually specify the angle of rotation for tick mark labels on
all scatterplots within a scatterplot matrix!

The grid package provides several features that can help to solve this problem.
The functions grid.edit() and editGrob() (see Section 7.1) make it possible
to access the lower-level elements of an object using a gPath. For example, in
the following code, an x-axis is created and then the labels on the tick marks
are rotated by editing the rot component of the text grob called "labels"
that is a child of the xaxis grob.

> grid.xaxis(at=1:3/4, name="xaxis1")
> grid.edit("xaxis1::labels", rot=45)

More complex is the case where a grob calculates its children on the fly. This
typically occurs when a grob has no permanent children to access via a gPath
and this will often correspond to a grob that has a drawDetails() method.

The functions gEdit() and gEditList() allow the user to specify one or more
edit operations and the functions applyEdit() and applyEdits() apply those
operations to a grob. These can be used to specify editing actions that should
be applied on the fly. The following code demonstrates their use. In this case,
an x-axis is created without specifying the at argument, which means that
tick marks are calculated on the fly. The edits argument is used to specify
modifications to the labels that will be generated on the fly.

> grid.xaxis(name="xaxis1")
> grid.edit("xaxis1", edits=gEdit("labels", rot=45))

This approach is similar to the concept of panel functions (see Sections 3.4.6
and 4.7).
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Mixing graphical functions and graphical objects

This chapter has addressed two main ways in which to develop new graphical
functionality: as a graphics function, purely for the side effect of producing
output (see Section 8.2); and as a graphical object (Section 8.3). There has
also been an emphasis on producing reusable graphical elements, a corollary
of which is that existing graphical elements should be used where possible in
the construction of new graphical elements.

There is no way to force other developers to create graphical objects rather
than graphical functions, so it is necessary to be able to make use of both
existing functions and existing objects whether constructing a new function
or a new object.

In order to discuss each of the four possible situations (new functions from
existing functions, new functions from existing grobs, new grobs from exist-
ing functions, and new grobs from existing grobs) the following paragraphs
consider the simple case of drawing a “face,” which consists of a rectangle for
the border, two circles for eyes, and a line for the mouth (see Figure 8.22 for
examples).

Defining a new graphics function is straightforward whether using existing
graphics functions or existing graphical objects. Figure 8.23 defines two new
graphical functions to draw a face. The function faceA() demonstrates the
most straightforward case of a graphics function that includes calls to other
graphics functions to produce output. The function faceB() shows a graphics
function making use of existing graphical objects, which is done by just passing
the result of the object constructor functions to the function grid.draw().

Developing a new graphical object can be a bit trickier, but there are several
tools to help out. Figure 8.24 defines three functions for creating a new
graphical object to represent a face. The function faceC() shows the simplest
case, where a gTree is built from existing graphical objects, by just creating
the appropriate objects as children of the gTree.

The functions faceD() and faceE() demonstrate the harder problem of cre-
ating a new graphical object using only existing graphics functions. In the
case of faceD(), the output of the graphics functions is captured as a gTree
using the grid.grabExpr() function. The faceE() function shows a differ-
ent approach: it creates a grob with a special class, "face", and wraps the
existing graphics functions in a drawDetails() method for that new class.



Developing New Graphics Functions and Objects 293

Figure 8.22
Drawing faces. Examples of the output that could be produced using the graphics
functions and graphical objects defined in Figures 8.23 and 8.24.
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1 faceA <- function(x, y, width, height) {
2 pushViewport(viewport(x=x, y=y,
3 width=width, height=height))
4 grid.rect()
5 grid.circle(x=c(0.25, 0.75), y=0.75, r=0.1)
6 grid.lines(x=c(0.33, 0.67), y=0.25)
7 popViewport()
8 }

10 faceB <- function(x, y, width, height) {
11 pushViewport(viewport(x=x, y=y,
12 width=width, height=height))
13 grid.draw(rectGrob())
14 grid.draw(circleGrob(x=c(0.25, 0.75), y=0.75, r=0.1))
15 grid.draw(linesGrob(x=c(0.33, 0.67), y=0.25))
16 popViewport()
17 }

Figure 8.23
Some face functions. Some different ways to implement a new graphics function to
draw a “face.” The function faceA() makes use of existing graphics functions. The
function faceB() makes use of existing graphical objects.
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1 faceC <- function(x, y, width, height) {
2 gTree(childrenvp=viewport(x=x, y=y,
3 width=width, height=height,
4 name="face"),
5 children=gList(rectGrob(vp="face"),
6 circleGrob(x=c(0.25, 0.75),
7 y=0.75, r=0.1, vp="face"),
8 linesGrob(x=c(0.33, 0.67), y=0.25,
9 vp="face")))
10 }

12 faceD <- function(x, y, width, height) {
13 grid.grabExpr({
14 pushViewport(viewport(x=x, y=y,
15 width=size,
16 height=size))
17 grid.rect()
18 grid.circle(x=c(0.25, 0.75),
19 y=0.75, r=0.1)
20 grid.lines(x=c(0.33, 0.67), y=0.25)
21 popViewport()
22 })
23 }

25 drawDetails.face <- function(x, recording) {
26 pushViewport(viewport(x=x$x, y=x$y,
27 width=x$width, height=x$height))
28 grid.rect()
29 grid.circle(x=c(0.25, 0.75), y=0.75, r=0.1)
30 grid.lines(x=c(0.33, 0.67), y=0.25)
31 popViewport()
32 }

34 faceE <- function(x, y, width, height) {
35 grob(x=x, y=y, width=width, height=height, cl="face")
36 }

Figure 8.24
Some face objects. Some different ways to implement a new graphical object to
represent a “face.” The function faceC() makes use of existing graphical objects.
The function faceD() makes use of existing graphics functions by capturing their
output as a gTree. The function faceE() makes use of existing graphics functions
by creating a new class of grob with a special drawDetails() method.
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Figure 8.25
A simple drawing of a face on an otherwise blank page.

8.4 Debugging grid

When developing graphics functions or graphics objects with grid, it is very
easy to get a bit lost. The only way to tell if code is doing the right thing is to
view the graphical output that it produces. If the code is wrong, a common
outcome to be faced with is a completely blank page.

This section describes some functions that are useful for querying the current
state of the grid graphics system, which is useful for investigating the struc-
ture of the output that is produced by a function and for understanding what
has gone wrong when a function has produced unexpected output.

These functions are also useful for exploring the grid objects that have been
created by someone else’s code, for example, a ggplot2 or lattice plot.

As a simple example to demonstrate the use of these functions, the following
code draws a simple face on an otherwise blank page (see Figure 8.25).

> grid.newpage()
> grid.draw(faceC(.5, .5, .5, .5))

The grid.ls() function can be used to list all graphical objects that have
been drawn on a page. In this case, there is a single gTree, with a rect grob
and a circle grob and a lines grob as its children.

> grid.ls()

GRID.gTree.232

GRID.rect.233

GRID.circle.234

GRID.lines.235
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The grid.ls() function can also be used to list the viewports that have been
created on the page. The function works off the grid display list, so it shows
every time a viewport is pushed and every time that a navigation down or
back up the viewport tree occurs. In this case, a viewport called face has been
pushed once (before the gTree drew any of its children) and then navigated
down to three times (once for each time a child was drawn), with navigation
back up occurring between each child.

> grid.ls(viewports=TRUE, grobs=FALSE)

ROOT

face

1

face

1

face

1

face

1

There is some flexibility in how the information is displayed. For example,
the following code shows both viewports and grobs and prints full paths to
both.

> grid.ls(viewports=TRUE, print=pathListing)

ROOT

ROOT | GRID.gTree.240

ROOT::face

ROOT::face::1

ROOT::face

ROOT::face | GRID.gTree.240::GRID.rect.241

ROOT::face::1

ROOT::face

ROOT::face | GRID.gTree.240::GRID.circle.242

ROOT::face::1

ROOT::face

ROOT::face | GRID.gTree.240::GRID.lines.243

ROOT::face::1

Furthermore, the result of the grid.ls() function is a list of information
about the grobs and viewports on the current page, which can be used in
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further processing, for example, to search for objects of a certain name or
objects of a certain type.

The current.vpTree() function provides an alternative way to list the view-
ports on the current page. One difference is that the result of this function is
an actual viewport tree object, not just the names of the viewports.

> current.vpTree()

viewport[ROOT]->(viewport[face])

Finally, there is a showViewport() function that draws a representation of
the viewports on the current page. For example, the following code draws the
viewports that are produced by lattice when drawing a simple scatterplot
(see Figure 8.26; the actual lattice plot itself is the one in Figure 4.1).

> xyplot(pressure ~ temperature, pressure)

> showViewport(newpage=TRUE)

There are various options for controlling how viewports are shown and which
viewports are shown. For example, the following code only shows the “leaf”
viewports and shows them side-by-side rather than all overlapped (see Figure
8.27).

> showViewport(newpage=TRUE, leaves=TRUE)
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Figure 8.26
A diagram of the viewports that lattice creates when drawing a simple scatterplot.
Each viewport is represented by a rectangle and labeled with its name. Because
several of the viewports overlap, some of the labels are not legible.
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Figure 8.27
A diagram of the “leaf” viewports that lattice creates when drawing a simple scat-
terplot. Each viewport is drawn as a rectangle within a separate panel, labeled with
its name. This is an alternative view to Figure 8.26.
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Chapter summary

It is possible to write simple grid graphics functions for the purpose
of producing graphical output. Such functions should not assume that
they have the entire device to draw into. They should only assume
that they are drawing within a grid viewport. Naming any view-
ports created in the function and using upViewport() rather than
popViewport() makes it possible for others to annotate the graphi-
cal output produced by the function. Naming all grobs produced by
the function makes it possible for others to edit the output from the
function (or remove grobs or add grobs or extract grobs).

Creating a graphical object, either a grob or a gTree, to represent the
output generated by the function requires extra effort to set up meth-
ods for the new graphical object class, but provides additional bene-
fits. Most graphical objects will be gTrees consisting of a high-level
description plus several child grobs representing the output produced.
A gTree makes it possible for others to interact with the high-level de-
scription, while still being able to access the low-level element grobs.
A grob can also be useful to provide information about the amount
of space required to produce graphical output. Finally, a grob makes
it possible for others to create higher-level gTrees with the grob as a
child element.
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Graphics Formats

Chapter preview

This chapter describes how to produce graphical output in different
formats. The output of graphics functions is typically drawn on screen
initially, but this chapter describes how to save plots to files on disk.
There is a discussion of the advantages and disadvantages of the var-
ious formats for different purposes. The same R code will sometimes
produce slightly different output on different formats, so these differ-
ences are also described.

This part of the book is devoted to the core graphics engine in R, which is
provided by the grDevices package. The information in this chapter and the
next applies to almost all graphics functions and packages mentioned in this
book.

The grDevices package is part of the standard R installation and is normally
loaded by default in every R session. In a non-standard installation, it may be
necessary to make the following call in order to access core graphics functions
(if the grDevices package is already loaded, this will not do any harm).

> library(grDevices)

The graphics engine provides two main facilities for almost all graphics func-
tions in R: support for producing output in different graphics formats, which
is described in this chapter, and support for specifying values for graphical
parameters, such as colors and fonts, which is described in Chapter 10.

305
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9.1 Graphics devices

Throughout Parts I and II of this book, there have been vague statements
about graphical output being drawn on a “page” or a “screen.” This chap-
ter addresses the issue of where graphical output appears and how it gets
recorded.

In a typical interactive R session, a graphics window is automatically opened
the first time that a graphics function is called and a plot is drawn on screen in
this window. So for simple usage, there is no need for the user to decide where
graphics output should go because there is a sensible default. However, for
the purposes of producing a report, for example, in a PDF document, drawing
a plot on screen is not very helpful. Instead, the plot needs to be saved in
a PDF format, in a file on a hard disk. This section describes how to direct
graphical output to a file rather than to the screen and how to specify the
format of that file.

In R’s terminology, graphical output is directed to a particular graphics device.
In general, a graphics device must first be opened, then any subsequent calls to
graphics functions produce output on that device. The dev.new() function
opens the default device, as given by options("device"), but each device
also has its own specific function. For example, the pdf() function opens a
file and stores graphics output in a PDF format. A full list is given in the next
section. For file-based devices, it is also important to close the device using
the dev.off() function once all graphical output is complete.

The following code shows how to produce a simple scatterplot in PDF format.
The output is stored in a file called myplot.pdf.

> pdf(file="myplot.pdf")
> plot(pressure)
> dev.off()

A simple modification of this pattern produces the same output in PNG format
(in a file called myplot.png), as shown below.

> png(file="myplot.png")
> plot(pressure)
> dev.off()

It is possible to have more than one device open at the same time, but only
one device is currently active and all graphics output is sent to that device.



Graphics Formats 307

If multiple devices are open, there are functions to control which device is
active. The list of open devices can be obtained using dev.list(). This gives
the name (the device format) and number for each open device. The function
dev.cur() returns this information only for the currently active device. The
dev.set() function can be used to make a device active, by specifying the
appropriate device number and the functions dev.next() and dev.prev()
can be used to make the next/previous device on the device list the active
device.

The dev.size() function can be used to obtain the size of the current device,
in either inches, centimeters, or pixels.

All open devices can be closed at once using the function graphics.off().
When an R session ends, all open devices are closed automatically.

9.2 Graphical output formats

Table 9.1 gives a full list of functions that open devices and the output formats
that they correspond to.

All of these functions provide several arguments to allow the user to specify
things such as the physical size of the window or document that is created.

Due to differences between graphics formats, it is very unlikely that the same
R code will produce identical results on different devices. For example, a PDF
version of a plot is unlikely to appear identical to a PNG version of the same
plot.

Some of the distinct features of the various graphics formats are discussed
further in the following sections.

9.2.1 Vector formats

Graphics devices can be divided into two main groups: vector formats and
raster formats. In a vector format, an image is described by a set of mathe-
matical shapes, for example, a line segment from one (x, y) location to another.
In a raster format, an image consists of an array of pixels, with information
such as color recorded for each pixel. The vector-format version for drawing a
line segment might look something like the following, which involves just the
end points of the line that should be drawn.
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Table 9.1
Graphics formats that R supports and the functions that open an
appropriate graphics device.

Function Graphical Format

Screen Devices
x11() or X11() X Window window (Cairo graphics)
windows() Microsoft Windows window
quartz() MacOS X Quartz window

File Devices
postscript() Adobe PostScript file
pdf() Adobe PDF file
svg() SVG file (Linux and MacOS X only)
win.metafile() Windows Metafile file (Windows only)

png() PNG file
jpeg() JPEG file
tiff() TIFF file
bmp() BMP file

pictex() LATEX PicTEX file
xfig() xfig FIG file
bitmap() Multiple formats via Ghostscript
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2 2 moveto
8 6 lineto

By contrast, a raster format version of the same line might look like the
following, which involves specifing which pixels should be drawn to show the
line.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Vector formats include PDF, PostScript, and SVG. Examples of raster formats
are PNG, JPEG, TIFF, and all screen devices.

The R graphics engine is fundamentally vector based, so R plots are produced
very faithfully on vector-based devices. When producing output on a raster
device, the quality of the result may be lower than for a vector device, but this
can be ameliorated by using a higher resolution (more pixels) or by using a
raster device that implements anti-aliasing, which helps to produce smoother
lines.

In general, vector formats are superior for images that need to be viewed at
a variety of scales, but raster formats will produce much smaller files if the
image is very complex. For most purposes, a vector format is usually the best
choice, but it is sometimes more sensible to use a raster format when a plot
is visually complex, for example, if it involves a large number of data points.

It may sometimes be necessary to make further modifications to an R plot
using third-party software. In such cases, another consideration is that certain
modifications of an image, for example removing a particular shape, are only
possible with a vector format. On the other hand, other modifications, such as
making all white pixels in an image transparent, are only possible with raster
formats. Because it is easy to convert a vector format to a raster version,
while the reverse is very difficult if not impossible, it usually makes sense to
produce a vector image from R if the image will be modified later.

PDF

PDF is a good choice of format, partly because of the widespread availability
of viewing software such as Adobe Reader. It is also a very sophisticated
format, so it is able to faithfully produce anything that R graphics can do.
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The primary device for producing R plots in PDF format is the pdf() device.

The first argument is the name of the file to produce. By default, this will
produce a single file, which can contain several pages of output. Section 9.5
describes how to produce a separate file for each page of output.

By default the pdf() device produces a seven-inch square document, but a
custom physical size can be specified as the width and height, in inches. It
is also possible to specify a standard paper size, e.g., "a4", via the paper
argument. However, this paper size is independent of the width and height of
the actual plot unless the width and height are set to zero, in which case the
plot expands to fit the paper size (minus 0.25 inch margins).

The default (sans-serif) font for the pdf() device is Helvetica, but a different
default can be specified via the family argument. For example, "serif" uses
a Times font, and "mono" produces Courier (see Section 10.4).

It is possible to use any Type 1 font in a plot with the pdf() device, but R must
be told the location of font metric (afm) files for the font. The pdfFonts()
function provides a list of fonts for which R already has font metrics. In order
to use a font that is not on the list, it is necessary to describe the location
of the font metric files using the Type1Font() function, then this information
can be added to the font database using pdfFonts().

In non-English locales, it may be necessary to specify an appropriate encoding
for the file, although the pdf() function makes some attempt to automate this.

R also provides some support for locales with very large character sets, such
as Chinese hanzi, Japanese kanji, and Korean hanja. For these cases, there
are several predefined CID-keyed fonts, which are also included in the list pro-
duced by pdfFonts(). It is also possible to define new fonts via the CIDFont()
function, but this does require some fairly detailed knowledge of the relevant
font technology.

The pdf() device does not embed fonts within the PDF file. This is significant
because PDF viewer software will substitute fonts if they are not embedded
within a PDF file and they are not available on the system where the file is
being viewed. If a non-standard font is used and font substitution occurs, the
resulting plot may have missing characters or at best look quite untidy. This
means that a plot should only use fonts that are known to be installed on the
system where the plot is to be viewed (e.g., the default Helvetica, Times, or
Courier fonts) or all fonts should be embedded within the PDF file using the
embedFonts() function. In the latter case, all relevant fonts must be installed
on the system that is used to create the PDF file.

In summary, any plot that makes use of the standard fonts should be fine,
but any plot that makes use of more exotic fonts should call embedFonts()
to make sure that the plot can be viewed or printed properly on any system.
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When saving graphics that includes text in a PDF format, the default behavior
is to use kerning to make small adjustments to the positioning of certain pairs
of characters. For example, a lowercase ‘a’ beside an uppercase ‘T’ are placed
closer together than a lowercase ‘a’ beside a lowercase ‘o’. This facility is
turned on or off via the useKerning argument.

Another special situation arises when drawing polygons that self-intersect.
There are two main algorithms for determining the interior of such polygons:
the non-zero winding rule and the even-odd rule. Unfortunately, the R graph-
ics engine does not explicitly specify a fill rule for self-intersecting polygons,
so the default is to use the non-zero winding rule. The fillOddEven argument
can be used to change to the even-odd rule instead.

Another way to produce PDF output in R is to use the function that is based
on the Cairo graphics library,∗ cairo_pdf() (on Linux or MacOS X systems).
The advantage of this function is that it may provide better support for fonts,
including automatic embedding of fonts, although this does depend on the
installation of further software libraries.

PostScript

PostScript can be thought of as a predecessor of PDF. In some ways, PostScript
is actually more sophisticated than PDF, but it does not support some of the
more modern features such as semitransparent colors and hyperlinking. This
means that PostScript output cannot faithfully produce everything that R
graphics can do. Nevertheless, PostScript remains a very important format
and is still the preferred format for some people.

The main way to produce PostScript output is using the postscript() device.
This shares many features with the pdf() device as described above, including
the ability to size the device, the use of Type 1 fonts, kerning, and polygon
fill rules.

Device sizing is slightly different in that the paper setting is dominant over
the width and height. For example, on an "a4" PostScript page, the plot
will fill the page by default. The PostScript produced by R is compatible
with Encapsulated PostScript (EPS), which is useful for including R plots
within other documents (see Section 9.3), but to control the size of a plot it
is necessary to specify paper="special" as well as an appropriate width and
height. In this situation, it is usually also a good idea to specify a portrait
orientation for the page via horizontal=FALSE. The setEPS() function is
useful for setting up appropriate default settings for Encapsulated PostScript
output.

∗http://cairographics.org/.
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Another difference between the PostScript device and the PDF device is that
all fonts that are used in a PostScript plot must be“predeclared”via the fonts
argument when the device is first opened.

One limitation with the postscript() device is that it does not support semi-
transparency. Any attempt to draw a semitransparent color will fail with a
warning. If PostScript is the required format, one avenue is to produce PDF
and then convert to PostScript using third-party software such as ImageMag-
ick.∗ Another option is to use the Cairo-based device cairo_ps() (on Linux
and MacOS X systems). However, both of those options are likely to produce
raster elements within the PostScript file, which means that the quality of the
image may be reduced.

SVG

SVG is a format with tremendous potential because it offers an open standard
vector format, as sophisticated as the PDF format, that can be embedded in
web pages. Support for SVG in popular web browsers is improving and should
support most static graphics that are produced in R.

On Linux systems and MacOS X, SVG output is available via the svg() device.
On Windows, SVG output requires one of the extension packages (see Section
9.7).

Because of the limitations of the R graphics engine, it is not possible to take
advantage of more advanced SVG features, such as compositing operators and
animation, though some extension packages provide access to some of these
features (see Section 9.7 and Section 17.4).

Windows Metafile

The Windows Metafile format is important because it is the vector format that
should be most compatible with Microsoft products such as Word, Excel, and
PowerPoint. This format can only be produced on Windows systems.

9.2.2 Raster formats

The raster device that users will encounter most often is the graphics window
on screen. This is the quickest and simplest way to view graphical output.
Screen devices are different on different operating systems: typically, a Cairo-
based X Window device on Linux, a Quartz device on MacOS X, and a native

∗http://www.imagemagick.org/.
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Windows device on Windows. There are some differences between these devices
(see Section 9.4), so R code is unlikely to produce identical results on different
platforms. On Linux and MacOS X there is also an X Window device, which
lacks support for some graphics features, but is faster than the Cairo-based
device.

When saving graphics to a file, there are several raster formats to choose
from. The PNG format is desirable because it is lossless, which means that it
compresses the image (most raster formats compress the image to save space)
in such a way that no information is lost. This means that a PNG file can
be edited without reducing the quality. The JPEG format, by comparison,
uses lossy compression so, although JPEG files will typically be smaller than
PNG files, repeatedly editing a JPEG will result in a reduction in quality.
Furthermore, the JPEG compression is better suited to complex images with
lots of different regions (like photgraphs), whereas the PNG format does a
better job with simpler images that include lines and text and large areas of
constant color. Consequently, the PNG format is usually better for statistical
plots, though an exception might be a very busy image() plot or contour()
plot.

The JPEG format does not support semitransparency. The PNG format does,
but this is only partially supported on Windows, and via the default Cairo-
based devices on Linux and MacOS X.

Neither PNG nor JPEG formats support multiple pages in a document, so if a
png() device is opened and then more than one page of output is produced,
the result will be several PNG files rather than just one (by default, the file
names are automatically numbered).

TIFF is a very sophisticated format that allows multiple pages of raster output
within a single file. It is less well supported by web browsers, but may be the
preferred format for publishers of books or journal articles.

Determining the size of a raster image is less straightforward than it is for
vector formats. The width and height of a raster device are specified as a
number of pixels rather than as a physical size in inches. The physical size of
a raster image is then determined by the resolution at which it is viewed. For
example, a PNG image that is 72 pixels wide will be 1 inch wide when viewed
on a screen with a resolution of 72 dpi (dots per inch), but it will be only 0.75
inches wide on a screen with a resolution of 96 dpi.

It is possible to specify a fixed resolution for a raster format image via the
res argument. However, this information will not necessarily be respected
when the image is displayed. For example, web browsers tend to just use the
resolution of the screen when displaying images on web pages (so the image
size will still vary depending on the screen resolution). On the other hand,
if a raster image is included within a LATEX document, the resolution of the
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image is respected

As a general rule of thumb, if a raster image is being prepared for use on a web
page, there is no point in worrying about setting the resolution, but if a raster
image is being prepared for inclusion in a document that is to be typeset, such
as a LATEX or Microsoft Word document, then setting the resolution may be
worthwhile, particularly if a high-quality image is required.

Because the physical size of a raster image can be ambiguous, it can be difficult
to control the size of text in a raster image. The pointsize argument specifies
the default size of text for an image, but what this means is again dependent
on the resolution at which the image is displayed. The size of text is given in
big points ( 1

72 inch), relative to the res argument. This means that the size
of text is calculated as if the resolution of the image is going to be respected.
The result should be as expected when a raster image is included in another
document, but the result can be confusing if the image is displayed at screen
resolution (e.g., when the image is used on a web page).

In summary, the physical size of text in a plot depends on the size of the text,
the size of the image, the resolution of the image, and whether the image is
displayed at screen resolution or at the native resolution of the image.

9.3 Including R graphics in other documents

There are two typical uses of R graphics. One is to produce basic plots on
screen for exploratory data analysis, to look for patterns in the data, and the
other is to produce finely tuned plots in a file format for inclusion in a larger
document such as a web page or a printed report. This section deals with
some issues specifically related to the latter task.

One important issue to consider is the physical size of text and the physical
width of lines in a plot within the final document. Text has to be readable
and lines typically need to be wide enough for print resolution so that, for
example, they do not disappear when photocopied.

The default, for vector formats, is to produce a seven-inch square document,
using a 12-point, sans-serif font, with lines 1

96 inches wide. This is fine for
viewing a plot on its own, but is much too large for a typical document, for
example, when including a plot in a figure within an A4 page.

The best approach is to produce the plot at the size that it needs to be in the
final document and specify the appropriate font size and line width explicitly.
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9.3.1 LATEX

Standarad vector formats such as PDF and PostScript are ideal for including
within LATEX documents. However, there is one situation where a more LATEX-
specific option may be more desirable.

One thing that LATEX does exceptionally well is the typesetting of mathe-
matical formulae. R’s mathematical annotation facility attempts to emulate
LATEX, but it is not as good as the real thing, particularly when the fonts
involved are not the TEX math fonts.

There is a special cmsyase font that can be used to draw mathematical for-
mulae in R with TEX math fonts. This is available from the following web
site: http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html.

One way to produce graphics output specifically for inclusion in a LATEX doc-
ument is to use the pictex() device. This produces LATEX macros from the
PICTEX package to draw a plot. The main advantage of this is that the text
in the plot will use the same font as the rest of the LATEX document. Unfor-
tunately, this device is very rudimentary, so is not suitable for anything other
than very basic plots (it does not even support colors). See Section 9.7 for a
more sophisticated alternative.

9.3.2 “Productivity” software

Microsoft software products have a tendency to play nicely with each other
and with Microsoft formats, but less well with other software products and
formats. This is particularly true for vector graphics formats, so possibly the
best vector format for including plots in Microsoft products, such as Word and
Excel, is the WMF format (Windows Meta-File). Microsoft products should
cope well with the standard raster formats, though there is also the Windows-
specific BMP format.

The Open Office software has better support for including PDF plots in doc-
uments and will also cope with standard raster formats.

9.3.3 Web pages

The standard way to include an image in a web page has been to use a raster
format, such as PNG. With the improving support for SVG in web browsers,
that format is becoming a viable vector alternative. See Section 17.4 for
further discussion of this topic.
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9.4 Device-specific features

Not all graphics devices are created equal. The same R code can produce
slightly different graphical output depending on the graphics device format.

While the performance of vector devices should be quite consistent on all
platforms (Windows, Linux, MacOS X), the performance of raster devices is
much more platform dependent. On the other hand, for a specific platform,
plots saved in a raster format should have the same appearance as they do
on-screen.

One area where differences can become evident is in the selection of fonts. The
standard set of fonts, as described in Section 10.4, should always be available,
though there will be small differences in appearance on different platforms
(e.g., the default "sans" font is Arial on Windows and Helvetica on Linux).
The method for selecting fonts beyond the standard set is different on different
platforms. For example, there is the windowsFonts function on Windows, but
with Cairo-based devices on Linux and MacOS X, fonts can be specified simply
by a font family name. In any case, the availability of fonts will be dependent
on which fonts have been installed.

On some devices, the font size that is specified will not be honored exactly. For
example, when drawing in a raw X Window window with bitmap fonts, there
are only a finite set of font sizes available and this set will vary depending
on which fonts are installed. For the PostScript and PDF formats, font sizes
should scale appropriately to any size.

Antialiasing can dramatically improve the quality of a raster image by smooth-
ing the appearance of lines and text. This is available by default on Linux and
MacOS X, but not on Windows. If the purpose is to include a raster image in
another document, then generating a high-resolution image is another way to
improve quality.

The Windows screen device has less-complete support for semitransparent col-
ors, compared to the default screen device on Linux and MacOS X.

On Linux and MacOS X, where the default screen and raster devices are Cairo
based, it is also possible to produce screen output and raster formats directly
via the X Window system. This typically produces a poorer quality image,
for example, there is no support for semitransparent colors or antialiasing,
but the rendering is faster so this option could be considered for particularly
complex images.

An alternative way to produce raster format images that should produce more
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consistent results across platforms is to use the bitmap() function. The down-
side is that this requires the installation of additional software (Ghostscript).
Section 9.7 describes some other possibilities for producing consistency across
platforms.

9.5 Multiple pages of output

For a screen device, starting a new page involves clearing the window before
producing more output. On Windows there is a facility for returning to pre-
vious screens of output (see the “History” menu, which is available when a
graphics window has focus), but on most screen devices, the output of previ-
ous pages is lost.

If a piece of code produces several pages of plots, the devAskNewPage() func-
tion can be used to force a user prompt before each new page is started. This
allows the user to view each page at leisure before indicating to R to move on
to the next page.

For file devices, the output format dictates whether multiple pages are sup-
ported. For example, PostScript and PDF allow multiple pages, but PNG does
not. It is usually possible, especially for devices that do not support multiple
pages of output, to specify that each page of output produces a separate file.
This is achieved by specifying the argument onefile=FALSE when opening
a device and specifying a pattern for the file name like file="myplot%03d"
so that the %03d is replaced by a three-digit number (padded with zeroes)
indicating the “page number” for each file that is created.

9.6 Display lists

R maintains a display list for each open device, which is a record of the output
on the current page of a device. This is used to redraw the output when
a device is resized and can also be used to copy output from one device to
another.

The function dev.copy() copies all output from the active device to another
device. The copy may be distorted if the aspect ratio of the destination device
— the ratio of the physical height and width of the device — is not the same as
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the aspect ratio of the active device. The function dev.copy2eps() is similar
to dev.copy(), but it preserves the aspect ratio of the copy and creates a file
in EPS (Encapsulated PostScript) format that is ideal for embedding in other
documents (e.g., a LATEX document). The dev2bitmap() function is similar
in that it also tries to preserve the aspect ratio of the image, but it produces
one of the output formats available via the bitmap() device.

The function dev.print() attempts to print the output on the active device.
By default, this involves making a PostScript copy and then invoking the print
command given by options("printcmd").

The display list can consume a reasonable amount of memory if a plot is par-
ticularly complex or if there are very many devices open at the same time.
For this reason it is possible to disable the display list, by typing the expres-
sion dev.control(displaylist="inhibit"). If the display list is disabled,
output will not be redrawn when a device is resized, and output cannot be
copied between devices.

There is also a recordPlot() function, which saves the display list to an R
variable. The variable can then be passed to the replayPlot() function to
draw the saved plot.

9.7 Extension packages

Several extension packages for R provide a number of extra graphical formats
that are not provided by the grDevices package itself. In general, these work
just like the core devices, with a function provided to open a device in the
appropriate format. Additional functions may be provided for handling other
features of the device, such as fonts. Table 9.2 lists some of the extension
packages that provide graphics devices.

The usefulness of the Cairo package is that it allows Cairo-based graphics
output on any platform (although it requires the Cairo graphics library to be
installed first). This has two advantages: the output on a Cairo-based screen
device should be very similar on all platforms and (Cairo-based) SVG output
becomes available on Windows.

The cairoDevice package is similar, but with a focus on integration with
the GTK+ GUI toolkit system (so it also requires the GTK+ libraries to be
installed).

The tikzDevice package provides a sophisticated solution for producing graph-
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Table 9.2
Graphics formats that are provided by extension packages for R and
the functions that open an appropriate graphics device.

Function Graphical Format Package

Cairo() Multiple formats Cairo
tikz() LATEX PGF/TikZ file tikzDevice
devSVGTips() SVG file RSVGTipsDevice
JavaGD() Java Swing window JavaGD

ical output for inclusion in LATEX documents. The main advantages are that
the fonts for text in the plot will match the fonts used in the LATEX document
and LATEX’s native mathematical formula syntax can be used for text in plots.

The RSVGTipsDevice package provides an alternative way to produce SVG
output, with the advantage of allowing tooltips and hyperlinks to be added
to the SVG file. See Section 17.4 for some other packages that take this idea
further.

The JavaGD package allows graphical output to be included as part of a
Java GUI. The tkrplot provides a similar facility for including R graphics in
a tcltk GUI. See Section 17.3.2 for more discussion of GUI-related packages.

There is also a canvas package in development that produces javascript code
for drawing an R plot in an HTML 5 canvas element.

For the more adventurous and developer-minded, the Omegahat Project pro-
vides an RGraphicsDevice package for building new R graphics devices,
plus a FlashMXML package for generating R graphics as Adobe Flash files,
among others. Another important package still being developed at the time
of writing is the Acinonyx package. This provides an idev() function which
creates a graphics device that can draw graphics very much faster than normal
R graphics devices.

There are also several packages that do not produce their graphical output
on R graphics devices. Instead, they create and manage their own graphics
windows. Examples are the rgl package (see Section 16.6) and rggobi (see
Section 17.2.2).
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Chapter summary

R graphics can produce a wide variety of graphical formats. In inter-
active use, graphics output is drawn on screen, but it is also possible
to save graphics output in a file. A vector graphics format usually pro-
duces a better-quality result than a raster format when saving plots
to a file, but the choice of format will also depend on how the plot
will be used (e.g., included in a LATEX document versus distributed as
part of a web page). Several extension packages provide support for
additional graphics formats.



10

Graphical Parameters

Chapter preview

This chapter describes how to specify graphical parameters, including
information about specifying a single color, how to generate sets of co-
herent colors, information about how to specify fonts for drawing text,
and information about how to produce special symbols and formatting
for drawing mathematical formulae. The information in this chapter
is useful for controlling the output of almost all graphics functions in
R.

Graphical parameters are the arguments to functions that influence the de-
tailed appearance of a graphical image. They apply the make-up to the basic
bone structure of an image. Examples include the color and line width used
to draw a line and the font used to draw text.

Despite the fact that the R graphics universe consists of two distinct graphics
systems, traditional and grid, plus several other stand-alone systems (see, for
example, Sections 17.2.2 and 16.6), the way that graphical parameters are
specified is quite consistent across all of these systems.

10.1 Colors

The easiest way to specify a color in R is simply to use the color’s name. For
example, "red" can be used to specify that graphical output should be (a very
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bright) red. R understands a fairly large set of color names; type colors()
(or colours()) to see a full list of known names.

It is also possible to specify colors using one of the standard color space
descriptions. For example, the rgb() function allows a color to be specified as
a Red-Green-Blue (RGB) triplet of intensities. Using this function, the color
red is specified as rgb(1, 0, 0). The function col2rgb() can be used to
see the RGB values for a particular color name (although the resulting color
channels are in the range 0 to 255 rather than 0 to 1).

> col2rgb("red")

[,1]

red 255

green 0

blue 0

An alternative way to provide an RGB color specification is to provide a
string of the form "#RRGGBB", where each of the pairs RR, GG, BB consist of
two hexadecimal digits giving a value in the range zero (00) to 255 (FF). In
this specification, the color red is given as "#FF0000".

In R, RGB color specifications are interpreted relative to the sRGB color space
(IEC standard 61966).∗

There is also an hsv() function for specifying a color as a Hue-Saturation-
Value (HSV) triplet. The terminology of color spaces is fraught, but roughly
speaking: hue corresponds to a position on the rainbow, from red (0),
through orange, yellow, green, blue, indigo, to violet (1); saturation deter-
mines whether the color is dull (grayish) or bright (colorful); and value deter-
mines whether the color is light or dark. The HSV specification for the (very
bright) color red is hsv(0, 1, 1). The function rgb2hsv() converts a color
specification from RGB to HSV.

> rgb2hsv(255, 0, 0)

[,1]

h 0

s 1

v 1

∗http://www.color.org/chardata/rgb/srgb.xalter.
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A better alternative to either rgb() or hsv() is the hcl() function. Similar
to hsv(), this function specifies colors as a hue, a chroma (or colorfulness,
similar to saturation), and a luminance (or lightness, similar to value). The
color "red" corresponds to hcl(12, 179, 53).

The hcl() function is better than the hsv() function because it works in
the CIE-LUV color space, in which a unit distance is close to a perceptually
constant change in color, so, for example, holding chroma and luminance
constant while varying only hue produces colors that are approximately similar
in their visual impact on the observer.

Greyscale colors can be generated using the function gray() (or gray()).
These functions take a vector of numeric values between 0 (black) and 1
(white).

One final way to specify a color is simply as an integer index into a predefined
set of colors. The predefined set of colors can be viewed and modified using
the palette() function. In the default palette, red is specified as the integer
2.

10.1.1 Semitransparent colors

All R colors are stored with an alpha transparency channel. An alpha value of
0 means fully transparent and an alpha value of 1 means fully opaque. When
an alpha value is not specified, the color is opaque.

The function rgb() can be used to specify a color with an alpha transparency
channel, simply by providing a fourth value to the function. For example,
rgb(1, 0, 0, 0.5) specifies a semitransparent red. Alternatively, a color can
be specified as a string beginning with a "#" and followed by eight hexadecimal
digits. In that case, the last two hexadecimal digits specify an alpha value
in the range 0 to 255. For example, "#FF000080" specifies a semitransparent
red.

A color may also be specified as NA, which is usually interpreted as fully
transparent (i.e., nothing is drawn). The special color name "transparent"
can also be used to specify full transparency.

WARNING: If a graphic device does not support semitransparency, semi-
transparent colors are rendered as fully transparent.
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10.1.2 Converting colors

There are many other ways to specify colors besides the RGB, HSV, and
HCL color spaces described so far and the convertColor() function provides
a mechanism for converting between different color spaces.

The following code shows an example where the color "red" is converted to
the CIE-LUV color space. This can be a useful transformation because the
L component of the result can be used to convert color to grayscale. The
col2rgb() function is used to obtain a matrix containing the separate red,
green, and blue components, those are normalized to a zero-to-one range by
dividing by 255, and then the matrix is transposed so that the components are
different columns. The transformation is from R’s native color space, sRGB,
to CIE-LUV.

> convertColor(t(col2rgb("red")/255), "sRGB", "Luv")

L u v

[1,] 53.48418 175.3647 37.80017

The L component of the result corresponds to the values given for the hcl()
specification of "red" on page 323. The u and v components do not correspond
to the h and c components of the hcl() example because the hcl() function
works in polar coordinates, whereas u and v are cartesian dimensions within
the CIE-LUV color space.

Another useful tool is the adjustcolor() function, which allows the compo-
nents of an existing color to be scaled. For example, the following code takes
the color "red" and makes it semitransparent.

> adjustcolor("red", alpha.f=.5)

[1] "#FF000080"

This result corresponds to the explicit color specification for semitransparent
red that was given above.

Section 11.3 describes functions from add-on packages that provide further
color conversions.

10.1.3 Color sets

More than one color is often required within a single plot, for example to
distinguish between different groups of data symbols, and in such cases it
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Table 10.1
Functions to generate color sets. R functions that can be used to generate coher-
ent sets of colors.

Name Description

rainbow() Colors vary from red through orange, yellow,
green, blue, and indigo, to violet.

heat.colors() Colors vary from white, through orange, to red.
terrain.colors() Colors vary from white, through brown, to green.
topo.colors() Colors vary from white, through brown then green,

to blue.
cm.colors() Colors vary from light blue, through white, to light

magenta.
gray.colors() A set of shades of gray.

can be difficult to select colors that are aesthetically pleasing or are related in
some way (e.g., a set of colors in which the brightness of the colors decreases in
regular steps). Table 10.1 lists some functions that R provides for generating
sets of colors. Each of these functions takes a single numeric argument and
returns that number of colors. For example, the following code produces five
colors from the rainbow() function.

> rainbow(5)

[1] "#FF0000FF" "#CCFF00FF" "#00FF66FF" "#0066FFFF"

[5] "#CC00FFFF"

The output of the expression example(rainbow) provides a nice visual sum-
mary of the color sets generated by several of these functions.

Each of the functions in Table 10.1 (apart from gray.colors()) selects a set
of colors by taking regular steps along a path through the HSV color space.
As mentioned previously, a more perceptually uniform set of colors can be
obtained by working in the CIE-LUV color space. For example, the following
code generates six colors from the CIE-LUV color space that vary regularly
in terms of hue, but are all equally bright (the chroma component is fixed at
50) and all equally light (the luminance component is fixed at 60).
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> hcl(seq(0, 300, 60), 50, 60)

[1] "#C87A8A" "#AC8C4E" "#6B9D59" "#00A396" "#5F96C2"

[6] "#B37EBE"

Section 11.3 describes functions from add-on packages that provide further
tools for generating sets of colors, including functions that work in the CIE-
LUV color space.

The functions colorRamp() and colorRampPalette() are a little different
because they are not color set generators. Instead, they are color set function
generators. These functions accept a set of colors and color space to work
in and they interpolate a path through the color space (either joining the
starting colors with straight lines or interpolating a smooth curve through the
colors), then they return a function that can be called to select colors from
the interpolated path.

One difference between the functions is that colorRamp() produces a function
that can generate colors based on a sequence of values in the range 0 to 1, like
gray.colors(), whereas colorRampPalette() produces a function that can
generate n colors, like rainbow().

Another difference between the functions is that colorRamp() returns a ma-
trix of red, green, and blue color components, whereas colorRampPalette()
returns a vector of colors.

The following code demonstrates colorRampPalette() being used to create
a color set generating function that produces colors ranging from "blue" to
"gray". The function is then used to generate five colors.

> bluegray <- colorRampPalette(c("blue", "gray"))
> bluegray(5)

[1] "#0000FF" "#2F2FEE" "#5F5FDE" "#8E8ECE" "#BEBEBE"

10.1.4 Device Dependency of Color Specifications

The colors that R sends to a graphics device are sRGB colors. This should be
appropriate for drawing to a screen device because most computer monitors
are set up to work with sRGB. Also, colors used on web pages are typically
sRGB, so raster file formats produced by R, such as PNG, should work rea-
sonably well there too.

However, the final appearance of a color can vary considerably when it is
viewed on a screen, or printed on paper, or displayed through a projector
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as it depends on the physical characteristics of the screen, printer ink, or
projector. When an image is saved in a PDF or PostScript format, R records
the fact that sRGB colors are being used so printers and viewers have some
chance of producing the right result.

10.2 Line styles

It is possible to control the width of a line, the pattern used to draw the line
(e.g., solid versus dashed), and the styling used for the ends and corners of a
line.

10.2.1 Line widths

The width of lines is specified by a simple numeric value, e.g., lwd=3. This
value is a multiple of 1/96 inch, with a lower limit of 1 pixel on some screen
devices. The default value is 1.

10.2.2 Line types

R graphics supports a fixed set of predefined line types, which can be specified
by name, such as "solid" or "dashed", or as an integer index (see Figure
10.1). In addition, it is possible to specify customized line types via a string of
digits. In this case, each digit is a hexadecimal value that indicates a number
of “units” to draw either a line or a gap. Odd digits specify line lengths and
even digits specify gap lengths. For example, a dotted line is specified by
lty="13", which means draw a line of length one unit then a gap of length
three units. A unit corresponds to the current line width, so the result scales
with line width, but is device dependent. Up to four such line-gap pairs can
be specified. Figure 10.1 shows the available predefined line types and some
examples of customized line types.

10.2.3 Line ends and joins

When drawing thick lines, it becomes important to select the style that is
used to draw corners (joins) in the line and the style that is used to draw
the ends of the line. R provides three styles for both cases: there is an lend



328 R Graphics, Second Edition

Integer Sample line String

Predefined

0 "blank"

1 "solid"

2 "dashed"

3 "dotted"

4 "dotdash"

5 "longdash"

6 "twodash"

Custom

"13"

"F8"

"431313"

"22848222"

Figure 10.1
Predefined and custom line types. Line type may be specified as a predefined integer,
as a predefined string name, or as a string of hexadecimal characters specifying a
custom line type.
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Figure 10.2
Line join and line ending styles. Three thick lines have been drawn through the
same three points (indicated by black circles), but with different line end and line
join styles. The black line was drawn first with "square" ends and "mitre" joins;
the dark gray line was drawn on top of the black line with "round" ends and "round"

joins; and the light gray line was drawn on top of that with "butt" ends and "bevel"

joins.

setting to control line ends, which can be "round" or flat (with two variations
on flat, "square" or "butt"); and there is an ljoin setting to control line
joins, which can be "mitre" (pointy), "round", or "bevel". The differences
are most easily demonstrated visually (see Figure 10.2).

When the line join style is "mitre", the join style will automatically be con-
verted to "bevel" if the angle at the join is too small. This is to avoid
excessively pointy joins. The point at which the automatic conversion occurs
is controlled by a miter limit, which specifies the ratio of the length of the
miter divided by the line width. The default value is 10, which means that
the conversion occurs for joins where the angle is less than 11 degrees. Other
standard values are 2, which means that conversion occurs at angles less than
60 degrees, and 1.414, which means that conversion occurs for angles less
than 90 degrees. The minimum miter limit value is 1.

It is important to remember that line join styles influence the corners on
rectangles and polygons as well as joins in lines.



330 R Graphics, Second Edition
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Figure 10.3
Data symbols available in R. A particular data symbol is selected by specifying an
integer between 0 and 25 or a single character. In the diagram, the relevant integer
or character value is shown in gray to the left of the relevant symbol.

10.3 Data symbols

The data symbol used for plotting points is specified as either an integer,
which indexes one of 26 predefined data symbols (see Figure 10.3), or directly
as a single character. Some of the predefined data symbols (pch between 21
and 25) allow a fill color separate from the border color.

If pch is a character then that letter is used as the plotting symbol. The
character "." is treated as a special case and the device attempts to draw a
very small dot.
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10.4 Fonts

Specifying a font for drawing text consists of specifing a font family, such as
Helvetica or Courier, and specifying a font face, such as bold or italic.

10.4.1 Font family

Every graphics device establishes a default font family, which is usually a
sans-serif font such as Helvetica or Arial. A new font family can be specified
using a device-independent name: "sans" gives a sans-serif font, like Arial;
"serif" gives a serif font, like Times; and "mono" gives a monospace font,
like Courier (see Table 10.2).

The device-independent font name is mapped to a device-dependent font fam-
ily by individual devices. These mappings can be modified and new font
names and mappings defined using functions such as Type1Font() to cre-
ate a font description and pdfFonts() to register the font description with
a device. On Windows, the corresponding functions are windowsFont() and
windowsFonts(). The information required to define a new font is very device
dependent.

The Hershey outline fonts are also distributed with R and are available for
all output formats. The names to use with the family setting to obtain the
different Hershey fonts are shown in Table 10.2. See the on-line help page for
Hershey for more information on Hershey fonts.

10.4.2 Font face

The font face is usually specified as an integer value between 1 and 4. Table
10.3 shows the mapping from numbers to font faces.

The grid graphics system also allows the font face to be specified by name
(see Table 6.4).
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Table 10.2
Device-independent and Hershey font families that are distributed
with R. A font family is specified as a character value.

Name Description

Device-independent fonts
"serif" Serif variable-width font
"sans" Sans-serif variable-width font
"mono" Mono-spaced “typewriter” font

Hershey fonts
"HersheySerif" Serif variable-width font
"HersheySans" Sans-serif variable-width font
"HersheyScript" Serif “handwriting” font
"HersheyGothicEnglish" Gothic script font
"HersheyGothicGerman" Gothic script font
"HersheyGothicItalian" Gothic script font
"HersheySymbol" Serif symbol font
"HersheySansSymbol" Sans-serif symbol font

Table 10.3
Possible integer font face specifications and their meanings. See Table 6.4
for font face name specifications. The range of valid font faces varies for
different Hershey fonts, but the maximum valid value is usually 4 or less.
When the font family is "HersheySerif", there are a number of special
font faces available.

Integer Description

1 Roman or upright face
2 Bold face
3 Slanted or italic face
4 Bold and slanted face
5 Symbol

For the HersheySerif font family
5 Cyrillic font
6 Slanted Cyrillic font
7 Japanese characters
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10.4.3 Multi-line text

It is possible to draw text that spans several lines by inserting a new line
escape sequence, "\n", within a piece of text, as in the following example.

"first line\n second line"

Alternatively, simply entering a character value across several lines will pro-
duce the same result, as shown below.

> "first line
second line"

[1] "first line\n second line"

Vertical separation can be controlled via a line height parameter, which acts
as a multiplier (2 means double-spaced text).

10.4.4 Locales

R supports multibyte locales, such as UTF-8 locales and East Asian locales
(Chinese, Japanese, and Korean), which means that it is possible to enter
multibyte character values. There may be problems including such characters
as part of graphical output on some devices. For example, Type 1 fonts on
PostScript and PDF devices only work with single-byte character encodings, so
an appropriate encoding may need to be specified in order to produce special
characters on those devices.

10.5 Mathematical formulae

This section does not concern a graphical parameter, but it does provide
important information about how to specify character values for drawing text.

Any R graphics function that draws text should accept both a normal char-
acter value, e.g., "some text", and an R expression, which is typically the
result of a call to the expression() function. If an expression is specified
as the text to draw, then it is interpreted as a mathematical formula and is
formatted appropriately. This section provides some simple examples of what



334 R Graphics, Second Edition

expression(z[i] == sqrt(x[i]^2 + y[i]^2))

zi = xi
2 + yi

2

expression(hat(beta) == (X^t * X)^{−1} * X^t * y)

β̂ = (XtX)−1Xty

expression(bar(x) == sum(frac(x[i], n), i==1, n))

x = ∑
i=1

n xi

n

expression(paste("Temperature (", degree, "C) in 2003"))

Temperature (°C) in 2003

Figure 10.4
Mathematical formulae in plots. For each example, the output is shown in a serif
font, and below that, in a typewriter font, is the R expression required to produce
the output.

can be achieved. For a complete description of the available features, type
help(plotmath) or demo(plotmath) in an R session.

When an R expression is provided as text to draw in graphical output, the
expression is evaluated to produce a mathematical formula. This evaluation
is very different from the normal evaluation of R expressions: certain names
are interpreted as special mathematical symbols, e.g., alpha is interpreted as
the Greek symbol α; certain mathematical operators are interpreted as literal
symbols, e.g., a + is interpreted as a plus sign symbol; and certain functions are
interpreted as mathematical operators, e.g., sum(x, i==1, n) is interpreted
as

∑n
i=1 x. Figure 10.4 shows some examples of expressions and the output

that they create.

In some situations, for example, when calling graphics functions from within
a loop, or when calling graphics functions from within another function, the
expression representing the mathematical formula must be constructed using
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values within variables as well as literal symbols and constants. A variable
name within an expression will be treated as a literal symbol (i.e., the variable
name will be drawn, not the value within the variable). The solution in such
cases is to use the substitute() function to produce an expression. The
following code shows the use of substitute() to produce a label where the
year is stored in a variable.

> myfunction <- function(year) {
text(0.5, 0.5, substitute(paste("Temperature (",

degree, "C) in ", year),
list(year=year)))

}

The mathematical annotation feature makes use of information about the
dimensions of individual characters to perform the formatting of the formula.
For some output formats, such information is not available, so mathematical
formulae cannot be produced.

Chapter summary

There are standard ways to specify colors, fonts, line types, and text
for virtually all graphics functions in R. There are many functions
for generating sets of colors. The CIE-LUV color space provides a
sensible foundation for generating colors in a rational fashion. Text
can be specified as an R expression, which makes it possible to draw
special characters and to produce special formatting for mathematical
formulae.
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Graphics Extensions

Chapter preview

Ths chapter describes functions from extension packages that provide
additional low-level utilities for R graphics. There are sections on
drawing basic shapes, labeling points and lines, generating color sets,
producing fill patterns, and manipulating coordinate systems.

This part of the book is devoted to a number of graphical topics where the
core statistical graphics packages in R are extended in useful ways.

This chapter describes functions from a number of packages that build useful
low-level extensions on top of the core facilities of the traditional graphics
system and the grid graphics system.

This chapter focuses mainly on low-level extensions of the core graphics sys-
tems: functions that provide new graphical primitives or more convenient
ways to work with existing graphical primitives. Each section will focus on
a certain useful graphical task and describe some functions that are available
to assist with that task.

11.1 Tricks with text

This section describes functions that relate to drawing text on a graphics
device.

339
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The core graphics facilities for drawing text provide a good amount of control
over the placement of an individual piece of text, but they do not provide much
support for placing multiple pieces of text relative to each other or relative
to other graphical output. Two important situations are common: laying out
text in a strict, regular arrangement, such as a table; and laying out text in a
flexible, fluid arrangement, such as labels on data points.

11.1.1 Drawing formatted text on a plot

The textplot() function from the gplots package draws a character vector
as text on a graphics device.

> library(gplots)

It is designed for drawing regular R output, what R normally prints at the
command line as the result of an expression. The function acts like a high-
level plotting function, starting a new plot to hold the text and, by default,
it automatically sizes the text to fill the width of the new plot region, so one
useful application is to draw R output alongside a plot as part of a multifigure
page. The function sinkplot() from the same package provides a convenient
higher-level interface for capturing and drawing R output. The main advan-
tage of these functions over text() is that they automatically draw different
elements of a character vector on separate lines and use a monospace font,
which makes horizontal alignment easy. The following code provides a simple
example usage of textplot() (see Figure 11.1).

> par(mfrow=c(1, 2))
> plot(faithful)
> textplot(capture.output(summary(faithful)))

A similar function is addtable2plot() from the plotrix package.

> library(plotrix)

This function is aimed more at adding text output to an existing plot, and the
text to draw is specified as a matrix or data frame (not necessarily character
values). Positioning of the text output is relative to a location in the current
user coordinate system, similar to the legend() function.

The following code adds a table showing some of the raw data values to a plot
of the pressure data set (see Figure 11.2).
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5
0

6
0
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0
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0

9
0

   eruptions        waiting    

 Min.   :1.600   Min.   :43.0  

 1st Qu.:2.163   1st Qu.:58.0  

 Median :4.000   Median :76.0  

 Mean   :3.488   Mean   :70.9  

 3rd Qu.:4.454   3rd Qu.:82.0  

 Max.   :5.100   Max.   :96.0  

Figure 11.1
Example output from the textplot() function. The plot to the left is normal output
from plot() and the text to the right is a separate “plot” produced by textplot().

> plot(pressure)
> addtable2plot(0, 300, pressure[13:19, ])

The grid.table() function from the gridExtra package provides tabular
text output for grid-based graphics, with a large number of arguments to
control borders, fonts, and justification.

> library(gridExtra)

The following code creates a table from some of the pressure values (see
Figure 11.3).

> grid.table(pressure[13:19, ], show.box=TRUE,
separator="black")

11.1.2 Avoiding text overlaps

A major problem that occurs when attempting to label points on a plot, or
when adding a legend to a plot, is making sure that the text labels do not
obscure any data values and that the text labels do not obscure each other.
Often this problem is solved manually by trial and error, but this section
describes some automated solutions.

To help with postioning text to avoid data symbols, the plotrix package
provides the function emptyspace() to determine the largest empty region



342 R Graphics, Second Edition

0
2
0
0

4
0
0

6
0
0

8
0
0

240 57
260 96
280 157
300 247
320 376
340 558
360 806

temperature pressure

Figure 11.2
Example output from the addtable2plot() function.

13

14

15

16

17

18

19

temperature

240

260

280

300

320

340

360

pressure

57

96

157

247

376

558

806

Figure 11.3
Example output from the grid.table() function.
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within a plot, though it only returns the central location of that region and
makes no guarantees about what sort of output will fit into the region. The
largest.empty() function in Hmisc is similar, except that it has arguments
width and height to specify a minimum size for the empty region (in user
coordinates).

> library(Hmisc)

The following code uses these two functions to find empty space in a scatter-
plot. First, a scatterplot of random points is drawn.

> x <- rnorm(20)
> y <- rnorm(20)
> plot(x, y, pch=16, col="gray")

Now the emptyspace() function is called to determine the central point within
the largest empty space in the plot. This location is used to draw a text label
(see Figure 11.4).

> xy <- emptyspace(x, y)
> text(xy, label="largest\nempty\nregion")

Finally, the largest.empty() function is used to request an empty space
that is length one on each side (in user coordinates) and a rectangle of the
requested size is drawn (see Figure 11.4).

> xy2 <- largest.empty(x, y, 1, 1)
> rect(xy2$x - .5, xy2$y - .5,

xy2$x + .5, xy2$y + .5)

Switching now to the problem of placing text values so that they do not overlap
with each other, the plotrix package has two functions for automatically
positioning text labels relative to data points. The spread.labels() function
is designed for a situation where the points to be labeled form a vertical or
horizontal band, which leaves plenty of room for labels either above and below
or to either side. The function shifts the labels away from the points and
alternates the “side” that the label is drawn on. It also draws lines between
each label and its corresponding point. The following code provides a simple
example using random data, where the points form a vertical band so labels
can be drawn to either side (see Figure 11.5).

> x <- runif(10)
> y <- rnorm(10)
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Figure 11.4
Finding empty space in a plot with the emptyspace() function (shown by the text)
and the largest.empty() function (shown by the rectangle).

> plot(x, y, pch=21, bg="gray", ylim=c(-3, 3), asp=1)
> spread.labels(x, y, labels=1:10)

The thigmophobe.labels() function places the labels right next to the points,
but attempts to avoid overlaps by choosing which “side” to draw the label on
(below, to the left, above, or to the right). The following code demonstrates
the use of this function (see Figure 11.5).

> plot(x, y, pch=21, bg="gray",
ylim=c(-2, 3), xlim=c(-.5, 1.5))

> thigmophobe.labels(x, y, labels=1:10)

An alternative approach is provided by the spread.labs() function from the
TeachingDemos package.

> library(TeachingDemos)

This is similar to the spread.labels() function, but it places all labels along
a single dimension, adjusting the space between them to avoid overlaps. This
function does not draw the labels; it just returns modified locations for the
labels in one direction. The following code uses this function to generate a new
set of values, adjy, from the original y-values of the data points, then draws
the labels using those new values. It also uses the new values a second time
to draw line segments between the labels and the points (see Figure 11.5).
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> plot(x, y, pch=21, bg="gray", ylim=c(-3, 3), asp=1)
> adjy <- spread.labs(y, strheight("10", cex=1.5))
> text(-0.5, adjy, labels=1:10, pos=2)
> segments(-0.5, adjy, x, y)

Yet another option is the pointLabel() function from the maptools package.

> library(maptools)

This function considers eight possible positions for each label relative to its
data point (below, below and to the left, to the left, above and to the left,
etc) and attempts to find an optimal placement of all labels. This is similar
to thigmophobe.labels(), but the algorithm is more sophisticated and the
labels are drawn much closer to the points. The following code demonstrates
the use of this function (see Figure 11.5).

> plot(x, y, pch=16, col="gray", ylim=c(-2, 3), xlim=c(-.5, 1.5))
> pointLabel(x, y, labels=as.character(1:10))

The final function considered here is labcurve() from the Hmisc package.
This function is a little different because it is designed for labeling lines on
a plot rather than points. The complete set of lines to be labeled must be
provided as a list of lists, then the function determines locations for the labels
where there is large separation between the curves (so that it is obvious to
which curve each label belongs). The following code constructs a list of four
curves by permuting the x- and y-values from the previous examples.

> sx <- sort(x)
> sy <- sort(y)
> lines <- list(A=list(x=sx, y=y, lty=1),

B=list(x=sx, y=sy, lty=2),
C=list(x=sx, y=rev(y), lty=3),
D=list(x=sx, y=rev(sy), lty=4))

The next code starts a new plot, draws the curves, then calls labcurve() to
label each curve (see Figure 11.5).

> plot(x, y, type="n", ylim=c(-3, 3))
> lapply(lines, function(l) do.call("lines", l))
> labcurve(lines)
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Figure 11.5
Drawing non-overlapping labels in a plot: top-left is the spread.labels() func-
tion; top-right is the thigmophobe.labels() function; middle-left is spread.labs();
middle-right is pointLabel(); and bottom is labcurve().
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With all of these functions, it may be necessary to manually adjust the axis
limits in order to accommodate all labels. All of these functions are also
only compatible with traditional graphics; the directlabels package, still in
development at the time of writing, provides the direct.label() function
for a general labeling paradigm with grid-based packages.

11.2 Peculiar primitives

A number of functions provide variations and embellishments on the standard
set of graphical shapes, such as lines, rectangles, polygons, and text, that are
provided by the core graphics systems.

The plotrix package provides circles and arc segments via draw.circle()
and draw.arc(). There is also an arctext() function to draw text along an
arc. For example, the following code draws a series of concentric circles and
arcs, plus a piece of text on a curve (see Figure 11.6).

> draw.circle(.1, .9, radius=1:5/100)
> draw.arc(.3, .9, radius=1:5/100,

deg1=45, deg2=seq(360, 160, -50))
> arctext("arctext", center=c(.5, .85), radius=.05,

stretch=1.2)

The plotrix package also provides the boxed.labels() function, which draws
text, like the traditional function text(), but adds a background rectangle,
which can be filled. The rectangle is automatically sized to enclose the text.
The textbox() function takes a different approach, drawing a rectangle with
a given width and then breaking text into multiple lines so that it fits into
the rectangle width. The height of the rectangle then depends on how many
lines of text are produced. The following code draws an example of both type
of boxed text (see Figure 11.6).

> boxed.labels(.7, .85, "boxed.labels", bg="gray90")
> textbox(c(.85, 1), .9, "this is a textbox .")

Three functions in the plotrix package produce different fill patterns within
rectangles. The gradient.rect() function produces a gradient fill effect
by drawing many thin slices of different colors within a rectangle and the
cylindrect() function is a special case where the gradient fill is produced so
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as to create the illusion of a 3D cylinder. The rectFill() function produces
fill patterns by drawing multiple plotting symbols within a rectangle. The
following code draws examples of these fill patterns (see Figure 11.6).

> gradient.rect(.05, .5, .15, .7, col=gray(0:20/21))
> cylindrect(.25, .5, .35, .7, "black")
> rectFill(.45, .5, .55, .7, pch=16)

One further plotrix graphical primitive is provided by the polygon.shadow()
function, which produces a fake shadow effect. This can be used to create the
illusion of three dimensions, with a graphical shape appearing to hover slightly
above the surface of the page. The following code shows how this function
can be combined with the standard polygon() function (see Figure 11.6).

> x <- c(.65, .65, .75, .75)
> y <- c(.5, .7, .7, .5)
> polygon.shadow(x, y, offset=c(2/100, -2/100))
> polygon(x, y, col="white")

A similar function, shadowtext(), is provided by TeachingDemos package.
This draws a background or border around text to make it stand out from its
surroundings. The following code draws a simple example (see Figure 11.6).

> shadowtext(.9, .6, "shadowtext")

The TeachingDemos package also provides the my.symbols() function. This
allows an arbitrary shape to be used as the plotting symbol, similar to the
function symbols(), except that the user has complete control over what the
shape looks like. The user defines the custom symbol as a matrix or list of
x- and y-values, or as a function that creates a matrix or list or draws the
symbol directly. The coordinate system for expressing the custom symbol is
a square region with values ranging from −1 to 1 in both dimensions. The
following code provides a simple example which draws predefined ms.male
and ms.female symbols (see 11.6).

> my.symbols(seq(.3, .7, .2), .3,
ms.male, inches=.2)

> my.symbols(c(.4, .6), .3,
ms.female, inches=.2)

The TeachingDemos package also has a panel.my.symbols() function for
drawing custom data symbols on lattice plots.
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Figure 11.6
Graphical primitives produced by the functions draw.circle(), draw.arc(),
arctext(), boxed.labels(), textbox(), gradient.rect(), cylindrect(),
rectFill(), polygon.shadow(), shadowtext(), and my.symbols().

The gridExtra package provides several new primitives for grid-based graph-
ics: the grid.ellipse() function draws an ellipse, specified by size, ar
(aspect ratio), and angle; grid.pattern() fills a rectangle with one of six
possible fill patterns; and grid.barbed() draws points and lines for specified
x and y locations in the type="b" style of the traditional graphics plot()
function.

The following code demonstrates the use of these functions (see Figure 11.7).

> grid.ellipse(x=1:6/7, y=rep(.8, 6), size=.1,
default.units="npc", size.unit="npc",
ar=1:6, angle=1:6*15/180*pi)

> grid.pattern(x=1:6/7, y=.5, width=unit(.1, "npc"),
height=unit(.1, "npc"), pattern=1:6,
motif.cex=.7, gp=gpar(fill="gray80"))

> grid.barbed(1:6/7, y=rep(c(.15, .25), 3),
size=unit(.05, "snpc"),
pch=21, gp=gpar(fill="gray"))
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grid.ellipse

grid.pattern

grid.barbed

Figure 11.7
Graphical primitives produced by the functions grid.ellipse(), grid.pattern(),
and grid.barbed().

Another package that produces a variety of geometric shapes and fill patterns
is the shape package (see Section 15.4).

11.2.1 Confidence bars

A common extension of a standard scatterplot involves adding confidence bars
to the data symbols. This effect can be achieved relatively easily with the
low-level arrows() function, but a number of packages provide convenience
functions.

There are in fact so many solutions that several different packages, including
gplots and plotrix, all provide a function called plotCI() and Hmisc is not
the only package that provides an errbar() function for the same purpose.
The gplots package includes an even higher-level function, plotmeans() that
calculates the ranges of the area bars as well. The following code uses that
function to plot the average fuel consumption for cars with different numbers
of cylinders, with confidence intervals represented by vertical bars (see Figure
11.8).

> plotmeans(mpg ~ cyl, mtcars,
barcol="black", n.label=FALSE, connect=FALSE)
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Figure 11.8
A scatterplot of average fuel consumption for cars with different numbers of engine
cylinders, with confidence represented by vertical bars.

In the lattice world, confidence bars are one feature of the xYplot() function
from the Hmisc package.

The ggplot2 package provides several geoms that can be used for this purpose,
including the geom_errorbar(), geom_pointrange(), and geom_ribbon()
functions.

11.3 Calculations on colors

A number of packages provide additional functions for generating sets of col-
ors. This section describes a small selection of these packages that have a
specific focus on color.

11.3.1 The colorspace package

The colorspace package provides functions to create colors in a variety of
color spaces, plus functions to convert between color spaces. There is some
overlap with the convertColor() function from the grDevices package (see
Section 10.1).
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> library(colorspace)

In terms of generating color sets, the colorspace package provides analogs of
some functions from grDevices that work in the (superior) CIE-LUV color
space: rainbow_hcl(), heat_hcl(), and terrain_hcl(). In addition, there
are functions for generating sequential and diverging color sets (in CIE-LUV).
The sequential_hcl() function interpolates a sequence of n colors of a given
hue, between a starting value for chroma and luminance and an end value for
chroma and luminance. The following code draws a series of circles filled with
10 grayscale colors from a luminance of 20 to a luminance of 90 (see Figure
11.9).

> grid.rect(1:10/11, .75, width=1/15, height=1/3,
gp=gpar(col=NA,
fill=sequential_hcl(10, 0, 0, c(20, 90))))

The diverge_hcl() function interpolates a sequence of colors from a start-
ing hue, chroma, and luminance, through a neutral color, given by a second
luminance (and chroma of zero), to an end hue with the starting luminance.
The following code draws a series of circles filled with 10 grayscale colors from
a luminance of 20 through a luminance of 90 and back to a luminance of 20.
The output from this code and the previous code is shown in Figure 11.9.

> grid.rect(1:10/11, .25, width=1/15, height=1/3,
gp=gpar(col=NA,
fill=diverge_hcl(10, 0, 0, c(20, 90))))

Both sequential_hcl() and diverge_hcl() have a power argument to allow
for non-linear interpolation between the start and end colors.

11.3.2 The RColorBrewer package

The ColorBrewer web site provides carefully designed palettes of colors for
use in coloring regions of maps.∗ The RColorBrewer package provides the
brewer.pal() function for selecting one of these palettes, by specifying the
name and size of the palette. For example, the following code selects the
"Pastel1" palette containing five colors.

> library(RColorBrewer)

∗http://colorbrewer2.org/.
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Figure 11.9
Two sets of grayscale colors generated by sequential_hcl() (top) and
diverge_hcl() (bottom).

> brewer.pal(5, "Pastel1")

[1] "#FBB4AE" "#B3CDE3" "#CCEBC5" "#DECBE4" "#FED9A6"

The display.brewer.all() functions produces a convenient display of all of
the ColorBrewer palettes.

11.3.3 The munsell package

The Munsell color space is a perceptually based system for specifying colors
as a hue, value, and chroma triplet. Munsell colors are specified with an
idiosyncratic syntax and the munsell package provides a mnsl2hex() function
to convert such a specification to an R color. For example, the following code
converts a Munsell specification for a colorful, medium-lightness, purple to an
R color.

> library(munsell)
> mnsl2hex("5P 5/10")

[1] "#9060A8"
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The package also has functions for selecting and manipulating colors within
the Munsell color space.

11.3.4 The dichromat package

A significant percentage of males suffer from some form of color blindness, for
example, an inability to distinguish between reds and greens. The dichromat
package provides a list containing a number of palettes that are suitable for
people with this sort of vision deficiency. For example, the following code
produces a set of 10 divergent colors ranging from a dark brown to light
brown then light blue to dark blue.

> library(dichromat)
> colorschemes$BrowntoBlue.10

[1] "#663000" "#996136" "#CC9B7A" "#D9AF98" "#F2DACE"

[6] "#CCFDFF" "#99F8FF" "#66F0FF" "#33E4FF" "#00AACC"

11.4 Custom coordinates

One problem with positioning output within a traditional plot, using func-
tions like text() and lines(), is that locations are given in user coordinates
(relative to the scales on the plot axes). Simple conceptual locations, such as
“top-left corner,” are awkward to specify, so several packages provide functions
to make this sort of task a bit easier.

11.4.1 Converting between traditional coordinate systems

The smartlegend() function from the gplots package allows a legend, as
drawn by the legend() function, to be positioned using "left", "center",
"right", "bottom", and "top". Similarly, corner.label() from the plotrix
package will locate text, as drawn by text(), based on a position that is
specified from −1 (left) to 1 (right) in both horizontal and vertical dimensions.

These functions provide a small amount of convenience over the traditional
functions grconvertX() and grconvertY(), which support conversions be-
tween a much wider variety of traditional coordinate systems (see Section
3.1.1).
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Figure 11.10
Example output from the functions corner.label(), smartlegend(), and
grconvertX().

The following code draws a scatterplot of random data.

> plot(rnorm(100), rnorm(100), pch=16, col="gray",
ann=FALSE, axes=FALSE)

> box()

The next code uses corner.label() to put a label in the top-left corner of
a plot, smartlegend() to draw a legend at top-right, and grconvertX() and
grconvertY() to draw a label at bottom-right (see Figure 11.10).

> corner.label("top-left", x=-1, y=1)

> smartlegend(x="right", y="top",
legend="top-right", pch=16,
col="gray", bg="white")

> text(grconvertX(1, "npc"), grconvertY(0, "npc"),
adj=c(1, 0), labels="bottom-right")

In grid-based graphics, these sorts of conversions are supported by the core
system via the concept of units (see Section 6.3).

11.4.2 Subplots

This section concerns the problem of drawing a small plot within a larger plot.
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Figure 11.11
An example of drawing a small plot within a larger plot with the subplot() function.

The traditional graphics system has numerous graphical state settings that
allow control over the location and size of plot regions (see Section 3.2.6), but
again these can require a bit of effort to use. The subplot() function in the
TeachingDemos package provides a convenient front end to these settings,
so that a subplot can be drawn in a single call.

For example, the following code draws a time series plot for a subset of the
Nile data set, with a small plot embedded in the top-left corner. The small
plot shows the complete Nile time series, with a gray region to indicate the
extent of the main plot (see Figure 11.11). The small plot is positioned within
the main plot using x and y, the size is given in inches, and the horizontal
justification is controlled by hadj.

> plot(window(Nile, 1920, 1940))
> subplot({ plot(Nile, axes=FALSE, ann=FALSE)

rect(1920, 0, 1940, 2000, border=NA, col="gray")
box()
lines(Nile) },

x=1920, y=1000, size=c(1.5, .75), hadj=0)

In grid-based systems, this sort of problem is solved using viewports (see
Section 6.5).
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11.5 Atypical axes

The plotrix package provides two functions that provide special effects for
axis labeling.

The first of these addresses the issue of overlapping axis tick labels. The
default behavior of the axis() function is to only draw axis tick labels that
do not overlap. The staxlab() function provides an alternative solution by
drawing the labels that would overlap at a different offset from the axis. The
following code provides a simple example by drawing lots of tick labels along
the x-axis (see Figure 11.12).

> with(pressure,
{

plot(temperature, pressure, axes=FALSE)
axis(2)
box()
staxlab(1, at=temperature, cex=.7)

})

Alternatively, this function can be used to draw the tick labels at an angle to
avoid overlaps.

The plotrix package also provides the axis.break() function. This adds a
visual “break” to an axis, for example, in the following code a break is put on
the x-axis as a visual cue that the left end of the axis does not represent 0
(see Figure 11.12).

> kelvin <- pressure$temperature + 273.15

> with(pressure,
{

plot(kelvin, pressure, xlim=c(250, 650))
axis.break(1)

})

Another task that can be awkward in traditional plots is modifying the scales
on an existing plot (see Section 3.4.5). The plotrix package provides one
convenience function for this task, revaxis(). This function draws a complete
plot and reverses the direction of the x- or y-axis (or both) so that, for example,
y-values increase down the page rather than up the page. The following code
shows a simple example (see Figure 11.13).
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Figure 11.12
Examples of axis annotation from the staxlab() (left) and axis.break() (right)
functions.

> with(pressure,
revaxis(temperature, pressure))

The TeachingDemos package also provides functions in this area. The
updateusr() function allows the user coordinate system to be modified by
mapping a pair of points in each dimension to a new pair of points. In the
following code, the pressure data are plotted with temperature on the Kelvin
scale. The updateusr() function is used to transform the x-axis scale to be
in Celsius (0 kelvin maps to −273.15 celsius) and the y-axis scale is left alone.
A vertical line at the boiling point of water is then added to the plot using
the new Celsius scale (see Figure 11.13).

> plot(kelvin, pressure$pressure)
> updateusr(c(0, 1), 0:1, c(-273.15, -272.15), 0:1)
> abline(v=100)
> text(x=100, y=700, " water boils", adj=0)

Another function provided by TeachingDemos is the zoomplot() function.
This function resets the axis scale limits and redraws the plot, creating the
effect of zooming in or out. For example, the following code draws a plot of
the pressure data set then zooms in on the bottom-left section of the plot
(the result is shown in Figure 11.13).

> plot(pressure)
> zoomplot(c(0, 150), c(0, 3))
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Examples of modifying the scales on the axes using revaxis() (top) to reverse the
direction of the y-axis, updateusr() (bottom-left) to transform the x-axis scale from
Kelvin to Celsius, and zoomplot() (bottom-right) to reset the axis limits.
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Chapter summary

There are many functions in a range of extension packages that provide
low-level extensions to the core R graphics drawing tools for position-
ing text, drawing shapes, drawing fill patterns, manipulating plotting
coordinates, and generating colors.



12

Plot Extensions

Chapter preview

This chapter describes functions from extension packages that produce
complete plots that are either reasonably common or well known or
arise from a common type of data, but are not catered for by high-level
functions in the core R graphics packages.

An important feature of the various R graphics systems is that they are gen-
erally built for extensibility. If there is not a function that already produces
a particular image, there are functions that can be put together to produce
that image, given enough time and patience.

However, it can be much faster to get a result if someone else has already done
at least some of the work, so it is often worthwhile using an existing function
if one can be found.

The standard plot types—scatterplots, barplots, histograms, and boxplots—
are all well catered for by existing functions, but there are many well-known
types of plots that are not provided by the core R graphics packages.

This chapter looks at a selection of these types of plots and the packages that
provide functions for drawing them.

361
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12.1 Venn diagrams

A number of packages provide functions for producing Venn diagrams, two of
which will be demonstrated in this section.

In both cases, the data can be specified as a data frame with a column of
logical values for each set. If row i of column j is TRUE then case i is a
member of set j.

The following code creates a data frame from the Titanic data set. There
are four sets representing passengers (as opposed to crew), adults, males, and
survivors.

> TitanicDF <- as.data.frame(Titanic)
> TitanicList <- lapply(TitanicDF[1:4], rep, TitanicDF$Freq)
> TitanicSets <-

data.frame(passenger=TitanicList$Class != "Crew",
adult=TitanicList$Age == "Adult",
male=TitanicList$Sex == "Male",
survivor=TitanicList$Survived == "Yes")

> head(TitanicSets)

passenger adult male survivor

1 TRUE FALSE TRUE FALSE

2 TRUE FALSE TRUE FALSE

3 TRUE FALSE TRUE FALSE

4 TRUE FALSE TRUE FALSE

5 TRUE FALSE TRUE FALSE

6 TRUE FALSE TRUE FALSE

The gplots package provides the venn() function for drawing Venn diagrams.

> library(gplots)

It can represent up to five sets at once. Two or three sets are drawn using
overlapping circles, with no attempt made to represent degree of intersection
by amount of overlap (see Figure 12.1). These plots are drawn using the grid
graphics system.

> venn(TitanicSets[1:2])
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> venn(TitanicSets[1:3])

With four or five sets, the diagram is drawn using ellipses, again with no
attempt made to represent degree of intersection by amount of overlap (see
Figure 12.1). This plot is drawn using the traditional graphics system.

> venn(TitanicSets)

An alternative is provided by the venneuler package.

> library(venneuler)

This package has the venneuler() function, which generates an object de-
scribing the location and size of overlapping circles for a Venn diagram, where
the overlap of the circles approximates the amount of intersection between the
sets. There is a plot() method for drawing the result.

The following code produces venneuler versions of the previous three Venn
diagrams (see Figure 12.1).

> plot(venneuler(TitanicSets[1:2]),
col=hcl(0, 0, c(60, 80), .5),
alpha=NA, border="black")

> plot(venneuler(TitanicSets[1:3]),
col=hcl(0, 0, seq(40, 80, 20), .5),
alpha=NA, border="black")

> plot(venneuler(TitanicSets[1:4]),
col=hcl(0, 0, seq(20, 80, 20), .5),
alpha=NA, border="black")

This package is based on Java code and requires the rJava package. The
drawing is based on the traditional graphics system.

12.2 Chernoff faces

One approach to visualizing multivariate data is to produce a small plot for
each case in the data set (see Section 2.5). One of the more entertaining



364 R Graphics, Second Edition

adult

passenger

885

109

1207 adult

passenger

male

adultpassenger

0

23

862

45

64

402

805 adult
male

passenger

adultmale
survivor

passenger

Figure 12.1
Venn diagrams from the gplots package and the venneuler package.



Plot Extensions 365

variations on this idea is the Chernoff face, which draws a cartoon human
head with the size and shape of different facial features depending on the
values of different variables.

The TeachingDemos package provides two functions for drawing Chernoff
faces: faces() and faces2().

> library(TeachingDemos)

These functions differ in which features are controlled by variables in the
data set, so they produce different styles of faces. The following code draws
Chernoff faces based on the first five judges in the USJudegRatings data set
(lawyers’ ratings of US Supreme Court judges). The result is shown in Figure
12.2.

> faces(USJudgeRatings[1:5, ], nrow=1, ncol=5)

> faces2(USJudgeRatings[1:5, ], nrow=1, ncol=5, scale="all")

Another variation is provided by the symbol() function from the symbols
package (see Figure 12.2).

> library(symbols)

> symbol(USJudgeRatings[1:5, ], type="face")

This function can also be used to draw other sorts of small plots, including
stars (like the stars() function), profile plots, and a “stick figure” plot.

Both of these packages are based on the traditional graphics system.

12.3 Ternary plots

A ternary plot can be useful for plotting compositional data, where three values
sum to a constant value. An example is soil texture data, which consists of
three proportions that sum to one: the proportions of clay, silt, and sand in
a soil sample.

This section will use as an example a set of 13 soil samples from different
regions of Peru (derived from the soil data set in the agricolae package).
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Figure 12.2
Four implementations of Chernoff faces: faces() and faces2() from the Teach-
ingDemos package; faces() from the aplpack package; and symbol() from the
symbols package.
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> head(soils)

sand silt clay

1 68 26 6

2 52 28 20

3 48 38 14

4 36 36 28

5 50 28 22

6 44 46 10

The vcd package provides the ternaryplot() function.

> library(vcd)

This function expects the data in three columns and each row should sum
to the same number. The plot resulting from the following code is shown in
Figure 12.3.

> ternaryplot(soils, col="black",
grid_color="black", labels_color="black")

The ternaryplot() function is based on the grid graphics system, but all
other examples in this section are based on traditional graphics.

The plotrix package also provides a ternary plot, which just has a different
labeling style.

> library(plotrix)

The function is called triax.plot() and the data are supplied as before (see
Figure 12.3).

> triax.plot(soils, cex.ticks=.5)

Another option is provided by the compositions package.

> library(compositions)

This package has an rcomp() function for creating a composition object and
there is an appropriate plot() method. This package also provides some
lower-level annotation support. For example, the following code plots the soil
data on a ternary plot, then adds a horizontal line representing the FAO“fine”
and “very fine” soil classification criteria (more than 35% clay and more than
60% clay).
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> plot(rcomp(soils))
> lines(rcomp(rbind(c(.4, 0, .6),

c(0, .4, .6))))
> lines(rcomp(rbind(c(.65, 0, .35),

c(0, .65, .35))))

The compositions package provides a more general approach to composi-
tional data. For example, the data can be composed from more than three
values, in which case a matrix of ternary plots is produced. The package also
implements more sophisticated approaches to compositional data, which can
result in different visualizations.

12.3.1 Soil texture diagrams

For the specific case of soil texture data, the soiltexture package provides a
comprehensive set of functions for drawing, annotating, and customizing soil
texture diagrams, complete with classification boundaries.

> library(soiltexture)

The following code uses the TT.plot() function to draw a soil texture diagram
for the Peru soil samples. This function requires the data in a very specific
format.

> TTsoils <- soils
> names(TTsoils) <- c("SAND", "SILT", "CLAY")
> TT.plot(tri.data=TTsoils)

12.4 Polar plots

The pie chart is a much-maligned graphical device for displaying counts or
proportions as slices of a circle. The problem is that, in general, people are
not good at perceiving the absolute or relative sizes of angles, compared to
judging lengths or positions in normal cartesian coordinates.

However, pie charts are not the only way to present data on a polar coordinate
system. It is possible to produce polar plots that represent values by lengths
(of bars extending from the center) rather than angles and there are certain
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Four implementations of ternary plots: the ternaryplot() function from vcd (top-
left); the triax.plot() function from plotrix (top-right); the plot() method for
"rcomp" objects from the compositions package (bottom-left); and TT.plot() from
soiltexture (bottom-right).
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sorts of data, such as wind direction, that are naturally represented as an
angle. For data that have a repeating cycle, such as hourly measurements over
several days, a polar representation can also be useful for revealing periodic
features.

This section looks at some packages that provide functions for producing plots
using polar coordinates.

The data used in this section are wind measurements from the New Zealand
National Climate Database (http://cliflo.niwa.co.nz/). The data consist
of wind speed and direction from daily (9am) observation for approximately
two years (September 2008 to September 2010). Observations at each time
point are taken from 11 different weather stations scattered around the Auck-
land region.

> head(wind9am)

Station Date Speed Dir

1 12325 2008-09-26 09:00:00 3.194444 211

2 12326 2008-09-26 09:00:00 3.194444 221

3 12327 2008-09-26 09:00:00 1.805556 212

4 12328 2008-09-26 09:00:00 1.611111 225

5 18195 2008-09-26 09:00:00 1.611111 215

6 22164 2008-09-26 09:00:00 2.805556 196

There is also a smaller data set consisting of hourly average wind speed based
on data from 11 weather stations. There are hourly readings every day for
one month (September 2010).

> head(hourlySpeed)

hour day Speed

1 0 237 1.626263

2 1 237 1.575758

3 2 237 1.618687

4 3 237 1.489899

5 4 237 1.138889

6 5 237 1.343434

The first function, polar.plot(), is from the plotrix package. This can be
used to produce a variety of plots, but the code below is just a polar scatterplot
of individual daily wind observations, with points plotted around the circle
based on the wind direction and the distance from the center of the circle
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based on wind speed. The first two arguments provide the radius variable
and the angle variable, and rp.type is specified here to plot data symbols at
each point. The function normally draws its polar grid on top of the data
symbols, so the code makes use of the standard painters model to first draw
an empty plot with a grid and then draw another plot over the top to draw
the actual data symbols. The data symbols are very dense at the center of the
plot so the color of the data symbols is made semitransparent, with the level
of transparency varying according to distance from the center. This allows
some of the density structure to be seen at the center of the plot (see Figure
12.4).

> with(wind9am,
{

polar.plot(Speed, Dir, rp.type="s",
start=90, clockwise=TRUE,
point.col=NA)

polar.plot(Speed, Dir, rp.type="s",
start=90, clockwise=TRUE,
add=TRUE,
point.symbols=16,
point.col=rgb(0,0,0, .3*Speed/max(Speed)),
show.grid=FALSE, show.radial.grid=FALSE)

})

An important consideration with all polar plots is where to place the angle
origin and which direction angles increase (clockwise or anti-clockwise), so
all functions in this section provide some way to control these features. In
this case, the start argument controls the origin and clockwise controls the
direction.

Another way to view the distribution of these observations is provided by the
polarFreq() function from the openair package.

> library(openair)

This function draws a polar image plot, with the color of each annulus sector
determined by the number of points within that region.

The data must be provided to this function with variables named ws for the
radius variable and wd for the angle variable. There should also be a date
variable, even though that is not always used.

The following code demonstrates the use of this function and the output is
shown in Figure 12.4.
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> with(wind9am,
polarFreq(data.frame(ws=Speed, wd=Dir, date=Date),

cols=gray(10:1/11), border.col="black"))

The functions in the openair package assume that the angle origin is pointing
up (north) and that angles proceed clockwise, so there is no need to explicitly
set the origin or angle direction in this case.

It should also be obvious that the openair package is built on lattice. In
other words, the drawing is based on the grid graphics system. There are
more examples from this package later in this section.

The previous two examples have demonstrated the use of points and areas
within a polar plot. The next example shows one use of line segments, again
using the polar.plot() function from plotrix. This plot is based on an
aggregated form of the hourly wind data. The values are averaged across
days to leave only 24 values, one for each hour of the day.

> hourSpeed <- aggregate(hourlySpeed["Speed"],
list(hour=hourlySpeed$hour),
mean)

> head(hourSpeed)

hour Speed

1 0 2.404572

2 1 2.387312

3 2 2.318133

4 3 2.231682

5 4 2.330435

6 5 2.398445

The angles on this plot represent hours of the day (0 to 23), but distance from
the center still representing wind speed. As the following code demonstrates,
there are numerous arguments that allow control over the placement of the
grid lines and labels that provide the axes in a polar plot. It is also possible
to control the range of radial values.

> polar.plot(hourSpeed$Speed, hourSpeed$hour * 15,
start=90, clockwise=TRUE, lwd=5,
label.pos=seq(15, 360, 15), labels=1:24,
radial.lim=c(0, 4.5))

The circular package also provides functions that produce polar plots, al-
though this package is focused on circular data, which is to say that only
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Figure 12.4
Polar plots produced by polar.plot() from the plotrix package (left and bottom)
and polarFreq() from the openair package (right). These are the polar-coordinates
analogs of a scatterplot (top-left), a barplot (bottom), and an image plot (top-right).
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the angle variable is of interest. The focus of these plots is mostly on the
distribution of the angle values.

> library(circular)

The next few examples will work with the daily wind data from just one of
the weather stations in the wind9am data set.

> station22254dir <- with(wind9am, Dir[Station == 22254])

The first step is to create a circular object using the circular() function.
Notice that the object itself contains information about the origin and direc-
tion of angles.

> station22254 <- circular(station22254dir,
units="degrees",
zero=pi/2, rotation="clock")

The following code draws the individual data values as data symbols on the
circumference of a circle, using an appropriate plot() method (see Figure
12.5).

> plot(station22254, stack=TRUE, sep=.06)

This next code calculates, then plots, a density estimate for the wind directions
at this station (see Figure 12.5).

> plot(density(station22254, bw=45),
main="", xlab="", ylab="")

The rose.diag() function plots a polar histogram from the wind direction
values, which provides yet another view of the distribution of the angles (see
Figure 12.5).

> rose.diag(station22254, bins=36, prop=3)

One useful feature of the circular package is that it provides low-level func-
tions for annotating a polar plot. The next example works with the hourly
wind data (there is a wind speed value for each hour of each day for approxi-
mately one month). The directions for these circular data represent hours.
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> windHours <- circular(hourlySpeed$hour,
units="hours",
zero=pi/2, rotation="clock")

In the following code, a bare plot is created. The lines() method for
circular ojects is then used to add lines to the plot. The lines show how wind
speeds vary over the day. Finally, the axis() method for circular objects
is used to add labeling to the plot (see Figure 12.5).

> plot(windHours, col=NA, shrink=1.2, axes=FALSE)
> lines(windHours,

0.5*hourlySpeed$Speed/max(hourlySpeed$Speed),
nosort=TRUE, lty="dotted", join=FALSE)

> axis.circular(template="clock24")

12.4.1 Wind roses

In the specific case of plotting wind data, a specific style of plot called a wind
rose is popular. This plots wedges (or “paddles”) for a small set of angle
ranges to represent how common each wind direction is. The wind speed is
represented by breaking the wedge into separate bands, similar to a stacked
bar chart.

The openair package provides the windRose() function. As mentioned pre-
viously, this package is built on lattice so it is capable of multipanel wind
roses. The following code produces a wind rose of the daily wind data for each
weather station in the data set (see Figure 12.6).

> with(wind9am,
windRose(data.frame(ws=Speed, wd=Dir,

date=Date, station=factor(Station)),
paddle=FALSE,
type="station", cols=gray(4:1/6), width=2))

The ggplot2 package provides a general mechanism for drawing in polar co-
ordinates via the coord_polar() function (see Section 5.9).
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Figure 12.5
Plots of circular data produced by the functions plot.circular() (top-
left), plot.density.circular() (top-right), rose.diag() (bottom-left), and
lines.circular() and axis.circular() (bottom-right). All of these functions are
from the openair package.
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Figure 12.6
Wind rose plots produced by windRose() from the openair package. The different
panels show wind data from different weather stations.
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12.5 Hexagonal binning

This section describes another option for avoiding overlapping data symbols
when plotting a very large number of points on a scatterplot (see Section 2.4).
This solution involves hexagonal binning and drawing a representation of the
density of points in different regions of the plot rather than the points them-
selves. The hexbin package provides functions for performing the binning
operation and drawing the resulting hexagons.

> library(hexbin)

For example, the following code draws a normal scatterplot of Serum.Iron
against Transferin from the NHANES data set (part of the hexbin package)
and the main body of points consists of a dark blob (see Figure 12.7).

> data(NHANES)
> plot(Serum.Iron ~ Transferin, NHANES)

A hexagonal binning plot allows some of the structure of the main body of
points to be seen. The following code uses the hexbinplot() function from
the hexbin package (see Figure 12.7).

> hexbinplot(Serum.Iron ~ Transferin, NHANES)

The hexbinplot() function provides a lattice style interface so that multi-
panel conditioning and multiple groups of data within panels are also possible
(see Figure 12.7).

> hexbinplot(Serum.Iron ~ Transferin | Sex, NHANES)

There is also a hexplom() function for drawing hexagonal binning plot ma-
trices.

The geom_hex() and stat_binhex() functions can be used to produce this
sort of plot in ggplot2.
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Figure 12.7
At top-left is a scatterplot with many overlapping points. The hexagonal binning
plot at top-right plots point densities in hexagonal regions to reveal some of the
distributional structure of the main body of points. The bottom plot is a multipanel
hexagonal binning plot.
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Chapter summary

Many extension packages provide high-level functions for producing
types of plots that are not available in the core R graphics system.
This chapter described some packages and functions for drawing Venn
diagrams, Chernoff faces, polar coordinate plots, ternary plots, and
hexagonal binning plots.
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Graphics for Categorical Data

Chapter preview

This chapter describes plots for categorical data. Some of these plots
can be produced using traditional, lattice, or ggplot2 functions, but
the vcd package provides both specializations and generalizations that
go beyond the facilities provided by the core graphics packages.

This chapter focuses on graphics for visualizing categorical data. Although
categorical data are extremely common, the techniques for visualizing cate-
gorical data, especially in a multivariate setting, are much less well known
than the corresponding plot types for continuous variables. For example, the
mosaic plot for displaying the relationship between two categorical variables
is much less common than the ubiquitous scatterplot for two continuous vari-
ables. One purpose of this chapter is to describe functions that can draw plots
for multivariate categorical data sets.

13.1 The vcd package

The main package described in this chapter is vcd, a package that was orig-
inally created as an implementation of the ideas in Michael Friendly’s book
Visualizing Categorical Data. This package is built on the grid graphics sys-
tem and that provides the second main purpose of this chapter, which is to
describe grid-based functions for displaying categorical data. This leads to
features such as lattice-like multipanel displays for categorical data and so-
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phisticated support for customization of categorical plots.

13.2 XMM-Newton

Data from the X-ray Multi-Mirror space telescope (XMM) will be used to
provide examples in this chapter.

XMM was launched by the European Space Agency in December 1999 to help
study exotic astronomical objects such as black holes and pulsars. Researchers
must apply for a time slot to use the telescope in a competitive process and this
chapter will make use of public information about the successful applications
in this process from 2007 (see http://xmm.esac.esa.int/). Proposals are
classified by the following variables:

Category: This describes what sort of object is being studied. There are
seven categories, labeled A to G.

Priority: This describes the assessed importance of the study, from A (high-
est) to C (lowest).

Schedule: This is a binary variable indicating whether the study needs to be
carried out at a particular point in time (fixed) or whether it can be
carried out anytime (free).

nObs: The number of “pointings” involved in the study (the number of times
the telescope needs to be focused upon a particular region of the sky),
as a categorical variable with levels single and multiple.

Duration: The total proposed observation duration, in seconds.

> head(xmm)

Category Priority Schedule Duration nObs

1 D C free 56000 single

2 A A fixed 13000 multiple

3 A A fixed 13000 multiple

4 A A fixed 18000 multiple

5 A B free 10000 single

6 A B free 18000 single
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13.3 Plots of categorical data

For a single categorical variable, the standard visualization approach is a
barplot, though a more modern approach acknowledges that the widths of
the bars are redundant and a dotplot is considered to be more appropriate.
Figure 13.1 shows some simple examples of these plots, which are produced
using the traditional graphics functions barplot() and dotchart(). These
types of plots can also easily be reproduced in either lattice or ggplot2 (also
shown in Figure 13.1).

There are also standard plots for visualizing the dependence of one or more
continuous variables on a single categorical variable. This leads to multiple
boxplots or, using the categorical variable as a grouping variable, a scatterplot
with multiple data series. These sorts of plots are again easy to produce in
either traditional graphics, lattice, or ggplot2.

However, plots that show a categorical variable as the dependent variable,
or plots that show the relationship between several categorical variables, are
much less common.

13.4 Categorical data on the y-axis

Two plots that show the distribution of a categorical variable dependent on a
continuous variable are the spinogram and the conditional density plot. Figure
13.2 shows examples of these sorts of plots where the dependent variable is
the Priority assigned to XMM proposals and the independent variable is
the proposal Duration. In both cases, the shading in the vertical direction
represents the proportion of proposals in each Priority category, conditional
on the Duration.

These plots can be produced in traditional graphics using the spineplot()
and cdplot() functions. The vcd package provides grid-based versions via
cd_plot() and spine().

> library(vcd)

The following code demonstrates the use of these functions (see Figure 13.2).
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Figure 13.1
Barplots (left) and dotplots (right) of the frequency of XMM proposals in each
scientific category. The top row shows traditional graphics versions, the plots in
the middle row are produced using lattice, and the bottom row shows ggplot2
versions. The counts have been deliberately ordered from smallest to largest.
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> spine(Priority ~ Duration, xmm)

> cd_plot(Priority ~ Duration, xmm)

> durn <- xmm$Duration/1000
> cd_plot(Priority ~ durn, xmm, xlab="Duration (1000s)")

13.5 Visualizing contingency tables

One approach to visualizing several categorical variables together is to extend
the simple barplot to a stacked barplot or a side-by-side barplot. These sorts
of plots can be produced with barplot() in traditional graphics and are also
straightforward in lattice and ggplot2. Figure 13.3 shows examples of these
types of plots to show the distribution of priority ratings for XMM proposals
with free versus fixed timings.

A more general form of the stacked barplot is the mosaic plot. In this sort of
plot, a rectangle is divided into rows, based on the proportion of observations
in each category of a variable. Each row is then subdivided into columns,
based on the proportions or counts in a second categorical variable. Each
column can then be further subdivided into rows according to a third variable
and so on. The areas of the resulting rectangles represent the counts in the
corresponding cell of a multiway contingency table.

In traditional graphics, mosaic plots can be generated with the mosaicplot()
function. The vcd package provides a grid-based version via the mosaic()
function. Figure 13.4 shows an example for the XMM proposal data, which is
equivalent to the stacked barplots in Figure 13.3. The code is shown below.

> mosaic(Priority ~ Schedule, xmm)

One advantage of the mosaic plot is that it presents information on the rela-
tive frequencies of both variables at once. For example, the barplots in Figure
13.3 do not reflect the fact that most proposals have free timings. Another
advantage is that mosaic plots generalize to more than two variables. The
following code uses mosaic() to draw a mosaic plot showing the relative fre-
quencies of different proposal timings, the distribution of priorities within each
timing category, and the distribution of single versus multiple observation
proposals within each combination of timing and priority (see the bottom plot
of Figure 13.4).
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Figure 13.2
A spinogram (top) and a conditional density plot (bottom) showing the proportion
of proposals assigned to each priority category, conditional on the proposal duration.
Notice the non-linear x-axis on the spinogram.
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lattice (top) and ggplot2 (bottom), showing the proportion of proposals assigned
to each priority category for proposals with fixed versus free timing.
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> mosaic(nObs ~ Schedule + Priority, xmm)

The order in which variables are used in a mosaic plot has an enormous
impact on what sorts of comparisons can be made and this leads to a number
of further generalizations of the idea of a grid of rectangular regions.

The tile() function in the vcd package produces a grid of rectangles where
the area of each rectangle represents the proportion of observations in each
combination of categories. This sort of plot is called a tile display or a fluc-
tuation diagram. The following code produces a tile display version of the
bottom mosaic plot in Figure 13.4 (see Figure 13.5).

> tile(nObs ~ Schedule + Priority, xmm)

Another variation on the mosaic plot is the double-decker plot. In this case,
a rectangle is divided into columns based on frequencies of one categorical
variable and then each column is subdivided into more columns based on
another categorical variable. This breakdown continues until the last (binary)
variable, which is represented by dividing each column into shaded rows. This
plot is specifically aimed at visualizing the final (binary) variable conditional
on the levels of all other variables.

The vcd package can provides the doubledecker() function for producing
this type of plot. The following code uses this function to produce another
variation on the mosaic plot in Figure 13.4 (see Figure 13.5).

> doubledecker(nObs ~ Schedule + Priority, xmm)

The vcd package also provides support for model-based displays of categor-
ical data. For example, mosaic displays can be shaded and colored to rep-
resent residuals from an independence model. There are also functions that
provide grid-based versions of assocation plots, assoc(), and fourfold plots,
fourfold().

13.6 Categorical plot matrices

The vcd package also provides a categorical plot matrix analog to the scatter-
plot matrix. This is provided as a "table" method for the pairs() function.

The vcd package provides the structable() function for conveniently tab-
ulating data from a formula. As an example, the following code generates a
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vcd package.



390 R Graphics, Second Edition

Priority

S
c
h
e
d
u
le

n
O
b
s

fr
e
e

s
in
g
le

m
u
lt
ip
le

fi
xe
d

A B C

s
in
g
le

m
u
lt
ip
le

Schedule

Priority

fixed

A B

free

A B C

single

multiple

Figure 13.5
A tile display (top) and a double-decker plot (bottom) of three categorical variables,
produced by the vcd package.



Graphics for Categorical Data 391

0

50

100

150

200

250

300

350

A B C

Priority

0

100

200

300

400

500

600

fixed free

Schedule

0

100

200

300

400

500

600

700

multiple single

nObs

Figure 13.6
A categorical plot matrix, with a mosaic plot for each pair of variables and barplots
on the diagonal.

three-way table from the Priority, Schedule, and nObs variables. This is
then passed to the pairs() function to produce a matrix of mosaic plots, with
barplots on the diagonal (see Figure 13.6).

> pairs(structable(nObs ~ Priority + Schedule, xmm),
space=.15)
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Multipanel conditioning mosaic plots, with a mosaic plot panel for each level of a
categorical variable.

13.7 Multipanel categorical plots

Another way of incorporating a categorical variable into a display is to use it
as a conditioning variable, so that individual subplots, or panels, are produced
for each level of the variable.

It is quite simple to create multipanel conditioned barplots with lattice, or
facetted barplots with ggplot2, but the vcd package adds the ability to gen-
erate multpanel conditioning plots for the mosaic plot and its variations. The
cotabplot() produces output much like the lattice high-level functions, but
allows vcd plots as panel functions.

The following code generates a mosaic plot of XMM proposal Schedule versus
Priority for both single and multiple pointing proposals (see Figure 13.7).
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13.8 Customizing categorical plots

The vcd package is designed to allow a great deal of customization of the
plots that it creates. One of the difficulties in producing complex plots of
multivariate categorical data is that there is no obvious algorithm for placing
category labels that will always avoid overlapping the text of adjacent labels.
The number of labels will also vary from plot to plot, and there are typically
many labels, so it is not possible to provide a separate argument to control
the detailed position and appearance of each individual label.

This problem is addressed in vcd by providing a general mechanism for spec-
ifying not only details for labels, but also details for shading the rectangles
within the plots and details for the spacing between the rectangles.

The plots in Figures 13.4 and 13.5 made use of these customization features
and this section will demonstrate the real code that was used to generate those
figures.

The following code was used to produce the bottom plot in Figure 13.4.

> mosaic(nObs ~ Schedule + Priority, xmm,
labeling_args=list(rot_labels=c(right=0),
offset_labels=c(right=-.5),
just_labels=c(right="left")),

margin=c(right=4))

The default mosaic plot has labels written vertically on both the left and
right of the plot, but in this case that would mean that the labels overlap.
Instead this code specifies that the labels on the right of the plot should be
horizontal and left-aligned and that they should be offset from the plot by
half a line less than the default. The right margin for the plot is made slightly
larger than the default to accommodate the horizontal labels. This code uses
named vectors as the argument values to avoid having to specify values for
the bottom, left, and top of the plot as well; the unspecified parameters just
retain their defaults.

The key insight that is embodied in the vcd package is that most of the
plots of multidimensional tables of counts are just a two-dimensional array of
rectangles. The calculation of the placement and sizes of the rectangles varies,
and the appearance of the rectangles varies, and the labeling of the rectangles
varies, but there is a common underlying structure.

This means that a wide range of plots can be produced from a single function,
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with arguments to allow some details to vary. The above example demon-
strates the labeling_args argument, which allows for small deviations from
the default behavior. There is also a labeling argument, which allows larger
customizations by specifying a completely different labeling function. Further-
more, there are similar arguments for controlling shading of rectangles and
spacing between rectangles: shading_args and shading, and spacing_args
and spacing.

The code below shows a very simple use of the shade argument. This code
was used to produce the top plot in Figure 13.5.

> tile(nObs ~ Schedule + Priority, xmm,
tile_type="area",
shade=TRUE,
gp=gpar(lwd=2, fill="white"),
pos_labels=c(left="left", top="left", right="left"),
just_labels=c(left="left", top="left", right="left"),
pop=FALSE, newpage=FALSE)

The positioning of the labels has been customized again, but the new feature
is that the rectangles in the plot are forced to have a gray fill and thicker
lines than the default. This is to ensure that the small rectangles in this
plot are still visible. The argument shade=TRUE means that the rectangles
are filled and the value of the gp argument provides the graphical parameters
that dictate how that fill occurs.

Even finer control can be obtained by taking advantage of the fact that vcd
is built on top of the grid graphics system, plus the fact that vcd provides
useful names for many of the viewports and grobs that it creates.

The top plot in Figure 13.5 also provides an example of this flexibility. The
default fluctuation diagram draws just a very small dot when the observed
count in a cell is zero. In order to make these cells more visible, and to
distinguish them from cells that have a small count, in Figure 13.5 a circle is
drawn around each small dot that represents a zero. The code below shows
how this is achieved for one of the zero cells.

> downViewport("cell:Schedule=fixed,Priority=C,nObs=multiple")
> grid.circle(0, 0, r=unit(1, "mm"))
> upViewport(0)

The point is that the tile() function uses grid viewports to arrange its
drawing and it names those viewports in a rational manner. By specifying
pop=FALSE in the call to tile(), those viewports were retained so that, in the
code above, each viewport corresponding to a zero cell can be revisited and a
circle added at the bottom-left corner.
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Figure 13.8
A three-dimensional mosaic plot produced by the mosaic3d() function from the
vcdExtra package.

13.9 The vcdExtra package

The vcdExtra package mostly extends the model-based features of vcd, by
providing support for displaying diagnostics from a wider range of categorical
data analysis models.

> library(vcdExtra)

However, vcdExtra also provides a mosaic3d() function for producing three-
dimensional mosaic plots, with help from the rgl package (see Section 16.6).
Figure 13.8 shows the output from the following call to mosaic3d().

> mosaic3d(structable(~ Priority + Schedule + nObs, xmm))
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Chapter summary

Simple plots of one or two categorical variables can be produced using
either traditional graphics, lattice, or ggplot2. The vcd package
provides grid-based versions of some less common categorical plots,
plus a number of more complex, multivariate plots for categorical data.
The vcd package allows for a great deal of customization of its plots.
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Maps

Chapter preview

This chapter describes how to draw geographical maps in R. Draw-
ing maps requires specialized extension packages because there are
unique file formats for map data and drawing maps involves special
transformations that are not provided by the core graphics systems.

From a purely graphical perspective, drawing a map appears to be simply a
matter of rendering one or more polygons that represent the borders of one or
more countries, states, or regions. For example, it is not immediately obvious
whether Figure 14.1 is just a rectangle, or a map of the State of Colorado.

However, a number of issues combine to ensure that producing a map is often
not a trivial task.

Figure 14.1
A map of the State of Colorado. This could be mistaken for a simple rectangle
because a simple map is just a set of polygonal shapes.

397
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Map data: The polygons that describe regions on a map can be very detailed
and complex, so it is usual to obtain information about map boundaries
from external files, which often have a special format. This leads to two
problems: locating map data in the first place and then finding functions
that can be used to read the map data into R.

Lakes in islands on lakes: One classic example of complexity in a map is
the existence of a hole within a geographical region, such as a country
that contains a lake. The situation gets worse if the lake contains an
island and worse still if the island has its own lake, particularly if the
goal is to fill areas of land with a color, but leave areas of water empty.
Functions that draw maps must be aware of this problem.

Projections: Locations and regions on a map are often described in terms of
geographic coordinates, longitude and latitude, but these are locations
and regions on the surface of a three-dimensional sphere whereas map
display typically occurs on a two-dimensional page or computer screen.
Longitude and latitude are often converted to two-dimensional projected
coordinates, which can be drawn in a straightforward manner, but there
are many such projections to choose from. Drawing a map requires both
knowledge of whether the locations and regions have been projected and,
if not, possibly some way of applying a projection to the polygons or
other graphical shapes that are to be drawn.

Aspect ratio: The locations of map polygons typically relate to a physical
scale, for example, a set of locations on the Earth’s surface. In order to
faithfully represent these locations, it is important to control the (ratio
of the) physical dimensions of the polygons as they are drawn. Drawing
a map requires the ability to control the aspect ratio of the drawing
region.

Annotation: A map rarely consists of just the border outline of a geograph-
ical region. For example, additional lines may be added to represent
other features such as cities, roads, railways, and rivers. More often, the
map is just providing a context for displaying the values of one or more
variables, such as fill colors to indicate disease incidence within different
regions, data symbols to represent the locations of events, or an overlay
of weather patterns such as wind speed and direction. Any drawing that
consists of multiple layers of annotation like this must ensure that any
projection is consistent across all layers. Also, there needs to be some
way to reliably match a data value with the appropriate polygon within
a map.

The following sections elaborate on these issues and describe some of the
packages and functions in R that provide solutions.
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This is a very simplified and brief introduction to some of the mapping tools
that are available for R. A far more thorough discussion of the ideas, tools,
and techniques is provided in the book Applied Spatial Data Analysis with R
by Roger Bivand, Edzer Pebesma, and Virgilio Gómez-Rubio.

14.1 Map data

The simplest way to produce a map in R is with the maps package, because
maps provides several of its own sets of map information.

14.1.1 The maps package

The maps package provides the function map() for drawing maps. The first
argument to this function specifies the name of a “database” that contains
the map information. The default is "world", which is a set of low-resolution
country boundaries. Other options are: "france", which includes boundaries
of the departments of France; "italy", which includes boundaries of the Ital-
ian provinces; "state" and "county", which provide state and county borders
in the USA; and "nz", which provides the outline of the main islands of New
Zealand.

By default, all polygons in a given database are drawn, but the region ar-
gument can be used to specify (by name) just a subset of polygons, and the
xlim and ylim arguments may also be used to limit the drawing to just a
particular range of longitude and latitude.

The following code shows a simple example using the default "world" database,
but only drawing the polygon corresponding to Brazil (see Figure 14.2).

> library(maps)

> map(regions="Brazil", fill=TRUE, col="gray")

The map() function uses the traditional graphics system to draw the map.
The gmaps package can use the maps package map databases, but render
the map with grid.

The map produced with the default "world" database is quite coarse and the
mapdata package has a higher-resolution map database. For example, the
following code produces a more detailed version of Figure 14.2.
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Figure 14.2
A simple map of Brazil produced using the maps package.

> library(mapdata)

> map(database="worldHires", regions="Brazil",
fill=TRUE, col="gray")

However, the map data from both the maps and the mapdata package may
not be sufficiently accurate or up-to-date for some purposes. For more modern,
accurate, and detailed maps there are more sophisticated sources of map data
and more sophisticated packages for working with them.

14.1.2 Shapefiles

A very common format for storing geographical information is the shapefile
format. More accurately, such files are called ESRI shapefiles because the
format is controlled by the ESRI company that produces GIS software. A
shapefile is actually a collection of files; the geographical information is stored
in several files with a common name stem and different suffixes (e.g., .shp,
.shx, and .dbx).

Shapefiles are available from many places on the internet, including various
governmental agencies. Files were obtained from the GSHHS (Global Self-
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consistent, Hierarchical, High-resolution Shoreline) database and the Natural
Earth Project for the figures in this chapter.∗

The maptools package provides several functions to read shapefiles, the most
general of which is the readShapeSpatial() function. The following code uses
this function to read a shape file that contains state boundaries for Brazil.

> library(maptools)

> brazil <-
readShapeSpatial(system.file("extra", "10m-brazil.shp",

package="RGraphics"))

The maptools package depends on the sp package, which is automatically
loaded when maptools is loaded. The sp package provides data structures
and functions for working with spatial data in R and this is what gets cre-
ated by the call to readShapeSpatial(). The variable brazil is a special
"Spatial" object that combines the polygons to draw the map, plus extra
information about the regions that those polygons represent. The extra infor-
mation will be used in Section 14.2; for now, the map itself can be drawn with
a call to plot(), as shown below, because the sp package defines a method
for "Spatial" objects (see Figure 14.3).

> plot(brazil, col="gray")

The maptools package also provides functions for reading data in other for-
mats, for example, there is the Rgshhs() function for reading map files from
the GSHHS database (see Section 14.3). There are also functions for convert-
ing map databases from the maps package to "Spatial" objects, for example,
map2SpatialPolygons().

14.2 Map annotation

Up to this point, a map has only been considered as a set of polygons repre-
senting regions. However, other sorts of shapes are also relevant for drawing
maps: lines to represent roads or rivers; and points to represent specific loca-
tions of interest such as cities or mountain peaks.

∗ftp://ftp.soest.hawaii.edu/pwessel/gshhs; http://www.naturalearthdata.com/.
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Figure 14.3
A map of Brazil showing the different states. Made with Natural Earth: Free vector
and raster map data @ naturalearthdata.com.

Furthermore, the region boundaries on a map are useful only really as a con-
text for other sorts of data. For example, regions may be filled with different
colors to indicate population size and points may be labeled with city names.

This is where the "Spatial" data structures from the sp package become
very useful because they contain not only the shapes to draw a map, but
also additional information such as place names and region names that are
associated with the shapes.

For example, the "Spatial" object brazil contains polygons to draw each
of the Brazilian states, plus it contains the name of the region that each state
belongs to. The extra information can be accessed just like accessing variables
in an R data frame.
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Figure 14.4
A map of Brazil showing the different state boundaries, with states filled according
to which region they come from.

> brazil$Regions

[1] Norte Norte Nordeste Norte

[5] Norte Norte Centro Oeste Centro Oeste

[9] Sudeste Centro Oeste Sul Sul

[13] Sul Nordeste Nordeste Nordeste

[17] Nordeste Sudeste Nordeste Sudeste

[21] Nordeste Nordeste Norte Norte

[25] Centro Oeste Sudeste Nordeste

Levels: Centro Oeste Nordeste Norte Sudeste Sul

The following code draws a map of Brazil with the states shaded according
to region (see Figure 14.4).

> spplot(brazil, "Regions", col.regions=gray(5:1/6))

This example introduces another function from the sp package for drawing
maps, the spplot() function, which provides several points of difference from
the plot() method used previously.



404 R Graphics, Second Edition

The major advantage that has been demonstrated here is that it makes it
easy to annotate the fill regions on the map according to the levels of a vari-
able simply by naming the relevant variable. Another difference is that the
spplot() function calls lattice functions to draw the map. This means that
it is possible to produce multipanel map displays (by specifying more than
one variable as the second argument to spplot()) and, because the output is
grid based, it is possible to perform detailed customizations.

The next example demonstrates a more complex annotation. In this case,
lines, points, and text are added to the original map to indicate the boundaries
of regions and the locations and names of the state capitals (see Figure 14.5).

The data for the region boundaries and the data for the locations and names
of the state capitals in this example come from separate shapefiles.

> brazilRegions <-
readShapeSpatial(system.file("extra",

"10m_brazil_regions.shp",
package="RGraphics"))
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Figure 14.5
A map of Brazil showing the different state boundaries, with states filled according
to which region they come from and state capitals shown.
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> brazilCapitals <-
readShapeSpatial(system.file("extra",

"10m_brazil_capitals.shp",
package="RGraphics"))

The following code draws a map with each state colored according to its re-
gion similar to before, but with white borders for the regions. The important
change is that this time a custom panel function is specified, which adds darker
borders around each region via sp.lines(), points for each state capital via
sp.points(), and labels for each capital via sp.text(). There are also semi-
transparent rectangles behind each label to aid visibility. Those are added
using low-level grid calls.

> spplot(brazil, "Regions",
col.regions=gray.colors(5, 0.8, 0.3),
col="white",
panel=function(...) {

panel.polygonsplot(...)
sp.lines(brazilRegions, col="gray40")
labels <- brazilCapitals$Name
w <- stringWidth(labels)
h <- stringHeight(labels)
locs <- coordinates(brazilCapitals)
grid.rect(unit(locs[, 1], "native"),

unit(locs[, 2], "native"),
w, h, just=c("right", "top"),
gp=gpar(col=NA, fill=rgb(1, 1, 1, .5)))

sp.text(locs, labels, adj=c(1, 1))
sp.points(brazilCapitals, pch=21,

col="black", fill="white")
})

14.3 Complex polygons

The busy-looking region in the North of the map of Brazil (see, for example,
Figure 14.3) represents the mouth of the Amazon river. At the heart of that
river mouth lies the island of Marajo, which is large enough to contain its own
lakes.

The shape files used in previous figures, from the Natural Earth project, do
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Figure 14.6
A map of Marajo Island in the mouth of the Amazon River. This is the largest
island that is completely surrounded by fresh water in the world. The map data
come from GSHHS.

not have sufficient detail to show these lakes, but the GSHHS database does
provide the required resolution. The following code reads in a shapefile that
was generated from the GSHHS data.

> marajo <-
readShapeSpatial(system.file("extra", "marajo.shp",

package="RGraphics"))

The following code draws Marajo Island and its surrounds. The important
features are the three lakes toward the north-east of the island. These have
been filled white by specifying the pbg argument.

> plot(marajo, col="gray", pbg="white")

The main point is that the sp functions for drawing maps can detect and
handle these situations.

14.4 Map projections

All geographic locations can be specified by a longitude (east-west of green-
wich) and latitude (north-south of the equator). However, these are locations
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Figure 14.7
A map of Iceland drawn without specifying any projection information. The result
is very distorted because a degree of longitude at northerly climes is a much smaller
distance than a degree of latitude.

on a three-dimensional (approximate) sphere and maps are typically drawn
on a two-dimensional page or screen.

A very simple projection of longitude and latitude to a two-dimensional plot-
ting surface involves assigning longitude to the x-axis and latitude to the
y-axis, but there are many other possibilities.

In the worst case, no information is known about the map projection. In this
situation, the sp functions for drawing maps will set the plot aspect ratio to 1
(a unit in the x-direction is the same physical size as a unit in the y-direction),
but that will not always produce a nice result.

For example, the following code reads in and draws the counties of Iceland
without supplying any projection information (see Figure 14.7).

> iceland <-
readShapeSpatial(system.file("extra", "10m-iceland.shp",

package="RGraphics"))

> plot(iceland, col="gray")

The map data are in geographic coordinates and plotting a country like Ice-
land by simply mapping longitude and latitude to x and y, with an aspect
ratio of 1, creates severe distortion because, at northerly or southerly lati-
tudes, a single degree of longitude spans a much smaller distance than it does
at the equator. The following code adds projection information, using the
CRS() and proj4string() functions so that R knows that the map is in geo-
graphic coordinates. The projection value is a PROJ.4 specification∗ and this

∗http://trac.osgeo.org/proj/.
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Figure 14.8
A map of Iceland drawn with an aspect ratio adjustment made for the fact that the
map is in geometric coordinates. The result is much less distorted than Figure 14.7.

information should be obtained from the supplier of the shapefile or in some
cases this will be part of a shapefile in the form of a file with a .prj suffix.

> proj4string(iceland) <- CRS("+proj=longlat +ellps=WGS84")

Now the map can be drawn again (see Figure 14.8). With the projection
information specified, the plot() method calculates an aspect ratio for the
plot to account for the displacement from the equator and this produces a
better result.

> plot(iceland, col="gray")

However, the regions for this map of Iceland are still in geographic coordinates.
A more sophisticated solution would be to use a proper map projection to
produce projected coordinates. This requires loading the package rgdal.

> library(rgdal)

The choice of projection depends on the use for the map because different
projections preserve different map features. For example Google Maps uses
a Mercator projection because this preserves angles (so that, for example,
streets that meet at a cross road are drawn at right angles). The follow-
ing code projects the map of Iceland using a Mercator projection with the
spTransform() function (and then draws the map; see Figure 14.9).

> icelandMercator <- spTransform(iceland,
CRS("+proj=merc +ellps=GRS80"))
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Figure 14.9
A map of Iceland drawn with a Mercator projection. The result is very similar to the
adjusted map of geometric coordinates (which is drawn in gray with white borders
in the background).

> plot(icelandMercator)

The result is very similar to the previous map, but with this projection the
map has known useful properties, rather than just a rough adjustment using
the plot aspect ratio.

The following code demonstrates another type of projection. First, projection
information is added for the Brazil map used in previous sections.

> proj4string(brazil) <- CRS("+proj=longlat +ellps=WGS84")

Now the map is transformed using an orthographic projection, which shows
what Brazil would look like if viewed from orbit at a location above longitude
zero and latitude zero (see Figure 14.10). Grid lines have been added to the
plot, using the gridlines() function, to help understand the projection.

> brazilOrtho <- spTransform(brazil, CRS("+proj=ortho"))
> plot(brazilOrtho, col="gray")

14.5 Raster maps

The examples so far have demonstrated vector data (polygonal regions) and
point data (city locations). A third main type of information that can be used
in a map is raster data, which consists of a regular grid of values (pixels).
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Figure 14.10
A map of Brazil using an orthographic projection. This is what Brazil would look
like from space (hovering above the equator directly south of Greenwich).

Reading and rendering raster data is quite straightforward (see also Chapter
18). The main problem that arises is aligning raster data and vector (or
point) data on a map together. The raster package provides support for
reading and manipulating raster data, including combining raster and vector
data for drawing maps.

> library(raster)

The following code uses the raster() function from the raster package to
read in a raster image from the Natural Earth project and sets the projec-
tion information using the projection() function. This image provides a
grayscale shaded relief of the entire Earth.

> worldRelief <- raster("SR_LR.tif")
> projection(worldRelief) <- CRS("+proj=longlat +ellps=WGS84")

The result is a special "RasterLayer" object and the following code uses the
crop() function to reduce that very large image down to just that part of
the image that corresponds to the extent of the vector map of Brazil from
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Figure 14.11
A map of Brazil with a shaded relief background to indicate elevation. Made with
Natural Earth. Free vector and raster map data @ naturalearthdata.com.

previous examples. The two objects now correspond to each other and have
the same projection, so they can be drawn together.

> brazilRelief <- crop(worldRelief, brazil)

The raster image can be rendered using a "RasterLayer" method for the
image() function and then the vector state borders are added using the
plot() method for "Spatial" objects, with add=TRUE (see Figure 14.11).

> image(brazilRelief, col=gray(0:255/255), maxpixels=1e6)
> plot(brazil, add=TRUE)

14.6 Other packages

Several other packages provide further mapping extensions or completely al-
ternative paradigms for mapping in R.



412 R Graphics, Second Edition

For example, the PBSmapping package provides its own self-contained set of
map data files, data structures for working with the map data, and functions
for manipulating and rendering the map data. The rworldmap package also
contains its own map data plus convenient high-level functions for producing
world maps of coarse geographic data sets that contain one value per country.

The RgoogleMaps package provides functions for downloading Google Maps
tiles for use as raster map data. Going the other way, there are functions in
maptools for writing out map data as KML files for use in Google Earth and
Google Maps.

The latticeExtra package provides a mapplot() function for lattice and
ggplot2 has the borders() function, plus a few others, to support drawing
maps from the maps package.

Chapter summary

Drawing maps requires specialized graphics functions to handle special
file formats and rendering details such as map projections and lakes
within islands. Simple maps can be drawn using the maps package
and its built-in map data. More sophisticated results can be obtained
using the maptools package to read in map data, the rgdal package
to handle projections, and the sp and raster packages for map data
manipulation and map drawing.
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Node-and-edge Graphs

Chapter preview

This chapter describes how to produce node-and-edge graphs with R.
Node-and-edge graphs are a special case because producing a graph
visualization usually requires special algorithms to determine a useful
arrangement of the nodes on a page. Several packages are described
that provide this facility, notably Rgraphviz and igraph. This chap-
ter also describes how to draw more regular node-and-edge diagrams
in R.

The main graphics systems in R, traditional, lattice, and ggplot2, are all
focused on producing graphs in the sense of statistical plots. Another common
meaning of the term “graph” is a set of nodes with edges connecting them.
This chapter describes packages that are focused on producing images of this
sort of node-and-edge graph.

There are three important steps involved in producing an image of a node-
and-edge graph:

1. An object representing the graph must be created.

2. A layout must be generated for the graph, which provides a description
of where all of the nodes and edges should be drawn.

3. The graph needs to be rendered, which involves drawing the information
in the graph representation, such as the names of the nodes, at the
locations specified in the layout.

413
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15.1 Creating graphs

A graph consists of a set of nodes and a set of edges, where each edge is
a connection between any two nodes. This information about a graph can
be represented in R in any number of ways and different packages provide
different solutions. However, many of the packages that work with graphs,
particularly those that produce graph visualizations, depend on graph repre-
sentations provided by the graph package.

15.1.1 The graph package

The graph package provides two simple ways to specify a graph.

> library(graph)

The graph can be described in terms of explicit node names and an explicit
list of edges between nodes, a "graphNEL" object, or in terms of an adjacency
matrix, a "graphAM" object, where there is an edge between node i and node
j if element (i, j) of the matrix has the value 1.

The following code shows how to create a simple graph from a vector of node
names and a list of edges. This graph shows the relationships between the
five core graphics packages in R. A visualization of this simple graph is shown
in Figure 15.1. Notice that the graph is directed, so edges go only one way
between two nodes.

> nodes <- c("grDevices", "graphics", "grid",
"lattice", "ggplot2")

> edgeList <-
list(grDevices=list(edges=c("graphics", "grid")),

graphics=list(),
grid=list(edges=c("lattice", "ggplot2")),
lattice=list(),
ggplot2=list())

> simpleGNEL <- new("graphNEL",
nodes=nodes,
edgeL=edgeList,
edgemode="directed")

The following code shows an equivalent graph defined via an adjacency matrix.
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grDevices

graphics grid

lattice ggplot2

Figure 15.1
A simple node-and-edge graph consisting of five nodes. This shows the relationship
between the core graphics functions in R. This graph has been rendered by the
Rgraphviz package.

> adjMat <- rbind(grDevices=c(0, 1, 1, 0, 0),
graphics=rep(0, 5),
grid=c(0, 0, 0, 1, 1),
lattice=rep(0, 5),
ggplot2=rep(0, 5))

> simpleGAM <- new("graphAM", adjMat, edgemode="directed")

For small graphs, it is feasible to specify the nodes and edges by hand as in
the above examples, but for larger graphs the set of nodes and the edge list,
or the adjacency matrix, can be generated programmatically.

Alternatively, an external description of a graph in the GXL∗ format can be
read into R, as a "graphNEL" object, using the fromGXL() function. For
example, Figure 15.2 shows a file, simplegraph.gxl, containing GXL code for
the simple graph example above and the following code creates a "graphNEL"
object from that file.

> simpleGNEL <- fromGXL(file("simplegraph.gxl"))

∗http://www.gupro.de/GXL/.



416 R Graphics, Second Edition

<?xml version="1.0"?>
<gxl:gxl xmlns:gxl="http://www.gupro.de/GXL/gxl-1.1.dtd">
<gxl:graph id="graphNEL" edgemode="directed">
<gxl:node id="grDevices" />
<gxl:node id="graphics" />
<gxl:node id="grid" />
<gxl:node id="lattice" />
<gxl:node id="ggplot2" />
<gxl:edge id="1" from="grDevices" to="graphics"/>
<gxl:edge id="2" from="grDevices" to="grid"/>
<gxl:edge id="3" from="grid" to="lattice"/>
<gxl:edge id="4" from="grid" to="ggplot2"/>
</gxl:graph>
</gxl:gxl>

Figure 15.2
A simple GXL file that describes a graph consisting of five nodes. This is the graph
that is drawn in Figure 15.1.

The graph package also provides functions for manipulating graphs. For
example, the subGraph() function can be used to extract a subgraph from
a larger graph and the leaves() function can be used to determine the leaf
nodes of a graph. In the following code, subGraph() is used to extract just
the grid-related nodes from simpleGNEL and leaves() is used to find the leaf
nodes of simpleGNEL.

> smallGNEL <- subGraph(c("grid", "lattice", "ggplot2"),
simpleGNEL)

> smallGNEL

A graphNEL graph with directed edges

Number of Nodes = 3

Number of Edges = 2

> leaves(simpleGNEL, "out")

[1] "graphics" "lattice" "ggplot2"
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15.2 Graph layout and rendering

Having generated a representation of a graph, drawing the graph requires
deciding where to draw nodes and edges, the layout step, and then drawing
the nodes and edges at those locations, the rendering step.

For very simple graphs, it may be feasible or desirable to position the nodes
and edges by hand. That scenario is dealt with in Section 15.4. This section
addresses the more complex problem of positioning graphs with numerous
nodes and edges. In this case, some sort of layout algorithm must be employed.

Several packages implement graph layout algorithms, but the focus in this
section is on the Rgraphviz package, which provides an interface to the
graphviz software library.∗

15.2.1 The Rgraphviz package

The Rgraphviz package is part of the Bioconductor project. This package
provides both layout and rendering facilities for graphs that have been created
using the graph package.

> library(Rgraphviz)

Rendering a graph is as simple as calling the generic plot() function with a
"graphNEL" or "graphAM" object as the argument. The following code renders
the simple graph introduced earlier to produce the result shown in Figure 15.1.

> plot(simpleGNEL)

This rendering uses the default layout algorithm for Rgraphviz, which is
called dot. This algorithm places nodes in a hierarchical layout consisting of
horizontal layers, tries to keep edges short, and tries to avoid edge crossings.

The second argument to this plot() method is the algorithm to use for laying
out the graph. There are several options; the following code shows how to
select a neato layout, which treats edges as if they are springs and finds a layout
that balances the tension of the springs. Figure 15.3 shows the resulting layout
for the simple graph.

∗http://www.graphviz.org/.
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Figure 15.3
Rendering a graph with Rgraphviz, using the neato layout algorithm. This should
be compared with the graph layout in Figure 15.1, which used the default dot layout
algorithm.

> plot(simpleGNEL, "neato")

The help page for "GraphvizLayouts" provides more information on the lay-
out algorithms.

15.2.2 Graph attributes

It is also possible to supply graph attributes, which affect the rendering of
the graph. The following code demonstrates one way to do this, by supplying
additional arguments to the call to plot(). In this case, the nodeAttrs and
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Figure 15.4
A simple graph rendered with Rgraphviz, but using graph attributes to modify the
appearance of nodes and edges.

edgeAttrs arguments are used to modify the appearance of individual nodes
and edges. The resulting graph is shown in Figure 15.4.

> plot(simpleGNEL,
edgeAttrs=list(lty=c(`grDevices~graphics`="solid",

`grDevices~grid`="solid",
`grid~lattice`="dashed",
`grid~ggplot2`="dashed")),

nodeAttrs=list(fillcolor=c(grDevices="white",
graphics="gray90", grid="gray90",
lattice="gray60", ggplot2="gray60")))

The help page for "GraphvizAttributes" provides a list of available at-
tributes and their meanings. It may also help to refer to the documentation
on the graphviz web site itself.∗

∗http://www.graphviz.org/doc/info/attrs.html.
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15.2.3 Customization

The layout and rendering of graphs can be performed as separate steps. One
way to do this, using the layoutGraph() and renderGraph() functions, is
shown in the following code. The result is the same as Figure 15.1.

> layoutGNEL <- layoutGraph(simpleGNEL)
> renderGraph(layoutGNEL)

The usefulness of separating the steps like this is that an intermediate object,
here layoutGNEL, is created with information about the arrangement of the
nodes and edges.

This leads to an alternative method of customizing the appearance of nodes
and edges using functions like nodeRenderInfo() and edgeRenderInfo().
The following code modifies the background color for some nodes and the line
style for some edges to create the same result as shown in Figure 15.4.

> nodeRenderInfo(layoutGNEL) <-
list(fill=c(graphics="gray90", grid="gray90",

lattice="gray60", ggplot2="gray60"))
> edgeRenderInfo(layoutGNEL) <-

list(lty=c(`grid~lattice`="dashed",
`grid~ggplot2`="dashed"))

Another option is to make use of the layout information in the intermediate
object to add further drawing to a graph or even to take control of drawing
the graph itself. For example, the plot() method for graph objects and the
renderInfo() function are based on traditional graphics. Figure 15.5 shows
an example where layoutGraph() was used to calculate node positions, then
the resulting layout was rendered using grid. The code for this example is
available on the book web site.

15.2.4 Output formats

By rendering a graph using R, it is possible to produce output in any of the
graphics formats that the R engine supports (see Chapter 9). However, those
formats are purely for displaying a graph.

Another option is to save a graph in a format that facilitates further editing of
the graph (using other software), for example in graphviz’s native dot format
or the native format of a diagram editor such as xfig or dia.∗ The function

∗http://www.xfig.org/; http://projects.gnome.org/dia/.
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Figure 15.5
A more complex graph laid out using the neato layout algorithm. This graph has
been created by using Rgraphviz to do the layout, but then grid to do the render-
ing. The graph has a node for all packages that directly depend on or import one
of the core graphics packages in R (based on the state of CRAN on March 5, 2010).
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Figure 15.6
A simple graph that was created in R, but laid out and rendered by graphviz.

toFile() provides several extra formats of this sort.

Yet another way to work is to use the toFile() function to call graphviz to
perform not only the graph layout, but also the graph rendering, which in
some cases may produce a higher-quality result compared to a rendering in R.
For example, the following code produces a PDF file that has been both laid
out and rendered by graphviz (see Figure 15.6). In this case, the agopen()
function is used to lay out the graph and provide toFile() with the correct
sort of R object that it requires.

> toFile(agopen(simpleGNEL, ""),
filename="Figures/graph-graphvizrender.pdf",
fileType="pdf")

15.2.5 Hypergraphs

The graph package only supports standard directed or undirected graphs,
where an edge connects exactly two nodes. In a hypergraph, an edge can con-
nect more than two nodes. The hypergraph and hyperdraw packages from
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Figure 15.7
A simple hypergraph consisting of one hyperedge that connects one pair of nodes
to another pair of nodes. This hypergraph has been rendered by the hyperdraw
package.

the Bioconductor project provide some facilities for creating and rendering
hypergraphs.

> library(hyperdraw)

The following code provides a simple example. A hypergraph is constructed
using functions from the hypergraph package and then the graph is plotted
using graphBPH() and a hypergraph plot() method from the hyperdraw
package. The result is shown in Figure 15.7.

> dh <- DirectedHyperedge(c("A", "B"), c("C", "D"))
> hg <- Hypergraph(LETTERS[1:4], list(dh))
> plot(graphBPH(hg))

15.3 Other packages

The combination of graph and Rgraphviz provides only one possible ap-
proach to drawing node-and-edge graphs in R. This section desribes several
other packages that provide functions for creating and rendering graphs.
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15.3.1 The igraph package

The igraph package provides a large set of functions both for creating graphs
and for laying out and rendering graphs.

> library(igraph)

This package provides several convenient features for creating graphs. On one
hand, there are functions that provide simple interfaces for creating the graph
structure. For example, the graph() function accepts a numeric vector where
each pair of values describes an edge. The following code creates the simple
graph structure from Section 15.1.1.

> simpleIgraph <- graph(c(0, 1, 0, 2, 2, 3, 2, 4))

Another interface is provided by the graph.formula() function, which allows
the edges to be specified using a special syntax. The following code creates
the simple graph from Section 15.1.1.

> formulaIgraph <- graph.formula(grDevices -+ graphics,
grDevices -+ grid,
grid -+ lattice,
grid -+ ggplot2)

The igraph package also has a number of functions that generate regular
or well-known graphs. For example, the graph.tree() function produces
regular hierarchical graphs and the graph.full() function produces regular
fully connected graphs (see Figure 15.8).

> treeIgraph <- graph.tree(10)
> fullIgraph <- graph.full(10)

There is also the graph.famous() function for well-known “named” graphs,
the graph.atlas() function to create one of the 1253 graphs from the book
An Atlas of Graphs, and many more.

The igraph package also offers a wide variety of graph layout algorithms. For
example, the layout.reingold.tilford() function performs a hierarchical
layout similar to the dot algorithm of graphviz and the layout.spring() is
in a similar spirit to the neato algorithm. In addition, the igraph package
offers several more variations on the spring or force layout algorithm and
layout.circle() to place all nodes on the circumference of a circle.
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Figure 15.8
Two examples of regular graphs: a tree graph (left) and a fully connected graph
(right).

The sizing and labeling of graphs in the rendered output is less automated
in igraph, but it is possible to control these features via functions such as
set.vertex.attribute() and set.edge.attribute().

The existence of the igraph.to.graphNEL() function means that one fruitful
approach is to make use of the igraph package to generate a graph and then
convert it to something that Rgraphviz can render.

The igraph package has several other distinctive features. The tkplot()
function provides an interactive editor, which can be used to click and drag
individual nodes to fine tune the layout of a graph. There is also the function
read.graph() to read a graph description from an external file in a variety
of formats, plus the write.graph() function to save a graph in one of those
formats.

15.3.2 The network package

The network package is part of the statnet suite of software packages for
network analysis.∗ It provides the basic visualization functions for network
objects.

This package is notable for supporting a very general concept of a graph. For
example, it can cope with hypergraphs, where a single edge can connect more
than two nodes, in addition to the standard graph where an edge connects
exactly two nodes.

A graph may be created via the network() function, supplying the number of
nodes and the graph edges as an adjacency matrix or as an“edge list”(actually

∗http://www.statnetproject.org/.
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a matrix, where each row specifies an edge). The following code creates the
simple directed graph from previous sections.

> library(network)

> simpleNetwork <-
network(rbind(c(1, 2),

c(1, 3),
c(3, 4),
c(3, 5)),

vertex.attr=list(vertex.names=nodes))

The network package can also lay out and render graphs, though there are
only a few layout algorithms available and the rendering style is different again
from Rgraphviz and igraph. For example, node labels are drawn adjacent
to nodes rather than within nodes.

A plot() method for "network" objects performs the layout and rendering.
This function has many parameters to allow control over the appearance of
the rendered graph, including mode, which controls the layout algorithm. The
following code draws the simpleNetwork object (see Figure 15.9).

> plot(simpleNetwork, mode="fruchtermanreingold",
vertex.col=1, displaylabels=TRUE)

One advantage of this package is that it does not depend on any third-party
software to perform the graph layout.

Many other packages provide rendering of graphs or trees for particular areas
of application. For example, the ape package provides a range of layout styles
and flexible facilities for labeling nodes and edges of phylogenetic trees.

15.4 Diagrams

This section looks at drawing arrangements of nodes and edges when the
positioning is more deliberate or does not require automating, such as in the
production of flow charts.
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Figure 15.9
A simple network consisting of three nodes, with edge between nodes 1 and 2,
between nodes 2 and 3, and between nodes 3 and 1. This network has been rendered
by the network package.
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15.4.1 The diagram and shape packages

The shape package provides functions for drawing a variety of geometric
shapes and arrowheads and the diagram package provides functions for po-
sitioning shapes and drawing lines or curves between them. Together, these
packages provide convenient functions for producing simple diagrams consist-
ing of nodes and edges.

> library(diagram)

The function coordinates() provides a convenient way to calculate locations
(on a zero-to-one scale) for a simple arrangement of nodes. Given a vector of
n integers, this will calculate positions for nodes arranged in n rows, where
each integer describes how many nodes are placed in each row. The following
code calculates locations for eight nodes arranged two per row in four rows.

> nodePos <- coordinates(c(2, 2, 2, 2))

The locations are all on a normalized coordinate system, so a simple call to
plot.new() will create a plot region within which these coordinates can be
used.

> plot.new()

The function straightarrow() draws a line with an arrowhead on it. The
following code shows an example using the node positions calculated to draw
a line between node position 1 and node position 3. There are also functions
for drawing curved lines or lines that travel between points in a city-block
fashion.

> straightarrow(nodePos[1, ], nodePos[3,])

The function textrect() draws a piece of text within a rectangle (with a drop
shadow). For example, the following code draws the label "start" within a
rectangle at node position 1. Arguments to the function allow the rectangle
and the text to be sized appropriately.

> textrect(nodePos[1, ], .05, .025, lab="start")

There are also functions for drawing text labels within ellipses, or diamonds,
or with no surround at all.
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Figure 15.10
A flow chart about understanding flow charts produced using the diagram package
(based on the xkcd comic strip http://xkcd.com/518/).

The flow chart in Figure 15.10 was created from the code above, plus several
other similar calls to draw further lines and text labels. The full code is
available from the book web site.

The diagram package also provides convenience functions for producing sim-
ple arrangements of networks of nodes and edges in a single function call, for
example the plotmat() function.

Output from the diagram package is produced using traditional graphics;
Section 7.5.2 describes some features of grid graphics that can be used to
produce similar results based on grid.
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Chapter summary

Node-and-edge graphs can be created using the graph package and
laid out and rendered using Rgraphviz. The igraph package pro-
vides a complete alternative. The diagram package provides tools for
producing more regular arrangements of nodes and edges, such as a
flow chart, where the layout is determined by the user.
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3D Graphics

Chapter preview

This chapter describes several approaches to drawing 3D images in
R. Drawing in 3D requires several new concepts compared to drawing
in 2D, so there is a brief introduction to those concepts. The core
R graphics system only provides a 2D graphics engine, but several
functions are described that provide limited 3D support based on that.
Graphics based on a genuine 3D graphics engine is provided by the
rgl package.

The core R graphics system provides a 2D graphics engine. All drawing oc-
curs on a two-dimensional plane, usually based on simple (x, y) cartesian
coordinates. This chapter looks at packages and functions that allow drawing
in three dimensions, where locations are in terms of (x, y, z) triplets, it is
possible to work with shapes that represent volumes rather than just areas,
and a number of special effects are possible.

16.1 3D graphics concepts

The journey from a pair of data values to the location of a data symbol on a
scatterplot, while not entirely trivial, is sufficiently straightforward that it can
be taught to primary school children. It is still convenient, and more accurate,
to have graphics software take care of the details of the drawing, but because
the concepts are simple, it is simple to control the way that software draws
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Figure 16.1
A diagram showing a 3D object being projected onto a 2D surface.

a two-dimensional plot (see, for example, the discussion of plot regions in
Section 3.1 and the concept of viewports in Section 6.5).

The journey from a triplet of data values to the location of a data symbol
in a three-dimensional plot is, unfortunately, a little more difficult to grasp.
Although there is graphics software that can perform the necessary calcu-
lations to produce the drawing, because the concepts are more complex, a
little more learning is required to be able to control the software that draws
a three-dimensional plot.

Projections: The main step that has to occur is a projection from 3D space
into 2D space (a page or a computer screen). A simple way to think
about this is to imagine a 2D plane, like a sheet of paper, being placed
into the 3D space. Each point in the 3D space can be projected onto the
2D plane by drawing a perpendicular line from the plane to the point
(see Figure 16.1).

This simple projection is called an orthogonal projection. Different views
of a 3D object are obtained by placing the 2D plane at different locations
within the 3D space.

Viewpoints: An orthogonal projection has the advantage of making it easier
to compare distances between locations in 3D space, but it does not
provide good depth cues, so it may be hard for the viewer to perceive the
image as three dimensional, and it does not produce a realistic-looking
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Figure 16.2
A diagram showing a 3D object being projected onto a 2D surface from a 3D view-
point.

image, which can be a problem when drawing real-world objects. A
more realistic three-dimensional image is obtained by using a perspective
projection.

In this case, a 2D plane is located in 3D space as before, but then a
viewing location in 3D space, called a viewpoint, is also defined. Now the
3D space is projected onto the 2D plane by drawing at the intersection
of a line from each point in 3D space to the viewpoint (see Figure 16.2).

The result from a perspective projection creates a much more effective
illusion of three dimensions. The amount of perspective distortion and
the amount of the scene that is visible are determined by how close the
viewpoint is to the viewing plane, how big the viewing plane is, and how
close the viewing plane is to the 3D scene.

Typically, the viewpoint, the viewing direction, and the viewing plane
are determined automatically so that the entire 3D scene is visible, but
it may be necessary to modify their positions in order to obtain a more
interesting view. Each of the systems encountered in this chapter will
provide some way of specifying the three-dimensional view.

Aspect ratio: In a two-dimensional plot, the aspect ratio controls whether
data are plotted within a square region or within a rectangle.

In a three-dimensional plot, the aspect ratio controls whether the data
are plotted within a cube or within a cuboid (or rectangular prism). It
is important to control the aspect ratio whenever any of the three data
dimensions have different scales.

Transformation matrices: The transformation from a location in three di-
mensions to a location on a two-dimensional page or screen can be sum-
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marized by a single transformation matrix. This matrix can be useful
for adding further drawing to a 3D plot because it allows new 3D lo-
cations to be projected into 2D in exactly the same was as the original
plot. Each of the packages that are described in this chapter will provide
some way of obtaining and working with this matrix.

Drawing primitives: Just like in two dimensions, a three-dimensional plot
is composed mainly of points, lines, polygons (areas), and text. The
difference in three dimensions is that a polygon is a two-dimensional
surface with an orientation in 3D space. For example, a cube in 3D is
composed of six identical polygons with different locations and orienta-
tions. It will usually be possible to add extra low-level output to a 3D
plot just as extra output can be added to 2D plots in R.

An additional concept in three dimensions is that of a sprite. This is a
two-dimensional image that always faces toward the viewpoint no matter
where the three-dimensional scene is being viewed from. An example
use of sprites is to draw text so that it can always be read no matter
where a 3D plot is viewed from.

Parameters: The standard graphical parameters are available for controlling
the appearance of shapes in three dimensions, for example, line widths,
text size, and fill colors.

The situation can be more complex than in two dimensions though be-
cause the lighting of the 3D scene may be taken into account. Two
surfaces that have an identical fill color but have different orientations
will be shaded differently by the same light source. Using a light source
can be useful for producing a more realistic-looking three-dimensional
surface, though it involves the additional work of specifying a location
and direction for the light source. Some functions that draw 3D surfaces
provide a way to specify a light source for the scene.

Axes: Annotating a three-dimensional plot, particularly drawing axes, is
harder than annotating two-dimensional plots because it is harder to
automatically determine the layout and position of items like axes so
that they do not obscure and are not obscured by other objects in the
3D scene. This means that default labeling and axes tend to be less
useful in a three-dimensional plot and there is generally less support for
customizing axes.
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16.2 The Canterbury earthquake

This section describes a data set that will be used for examples throughout
the chapter.

On September 4, 2010, the Canterbury region of the South Island experienced
New Zealand’s worst earthquake for 80 years. The main quake, which caused
the majority of the damage, registered 7.1 on the Richter scale. This was
followed by hundreds of smaller quakes over the following weeks.

The New Zealand GeoNet project∗ provides earthquake data for the whole of
New Zealand, including location (longitude and latitude), depth (kilometers
underground), and magnitude. Earthquakes occurring on September 4 and
the following few days are available in the data frame NZquakes.

> head(NZquakes)

LAT LONG MAG DEPTH

1 -41.80190 174.2286 2.652 15.3622

2 -38.87300 175.8345 4.296 116.4915

3 -37.88906 176.9134 3.029 5.0000

4 -39.73341 176.9492 2.674 38.1103

5 -39.15628 174.9325 2.230 31.2663

6 -37.90366 176.9359 2.886 0.6285

16.3 Traditional graphics

The only traditional graphics function that draws a three-dimensional plot is
the persp() function. Given a regular grid of x- and y-locations, plus z-values
at each location, this function produces a three-dimensional surface from the
z-values.

As an example, the following code generates a two-dimensional kernel density
estimate for the geographic distribution of earthquakes in the Canterbury
region.

∗http://www.geonet.org.nz/.
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Figure 16.3
A 3D surface showing the two-dimensional density estimate of the locations of earth-
quakes in the region of Darfield, New Zealand, following the 7.1 magnitude earth-
quake on September 4, 2010.

> cantyQuakes <- quakes[quakes$LAT < -42.4 & quakes$LAT > -44 &
quakes$LONG > 171 & quakes$LONG < 173.5, ]

> library(MASS)
> quakeDens <- kde2d(cantyQuakes$LONG, cantyQuakes$LAT, n=30)

This density estimate is drawn as a three-dimensional surface with the follow-
ing code (see Figure 16.3).

> persp(quakeDens)

As this code demonstrates, the data to plot may be given as a single list with
x, y, and z components instead of three separate arguments. The x- and y-
values should be in ascending order and just provide the locations of the grid
lines (they are vectors not matrices). The z argument provides a matrix of
heights for the surface.

This example also demonstrates several of the difficulties in obtaining a useful
view of a three-dimensional plot. The following code improves the view in
several ways (see Figure 16.4).
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Figure 16.4
An improved view of the 3D surface showing the two-dimensional density estimate
of the locations of earthquakes in the region of Darfield, New Zealand, following the
7.1 magnitude earthquake on September 4, 2010.

> persp(quakeDens, scale=FALSE, expand=0.02,
theta=60, d=.1, r=.1,
xlab="longitude", ylab="latitude", zlab="")

The x-values in this plot are longitudes and the y-values are latitudes. By
setting scales=FALSE, the plot is created inside a cuboid with dimensions
that reflect the geographic range of the data (wider in an east-west direction
than in the north-south direction). The z-values are densities, with a much
wider range than either x or y, so expand=0.02 is used to scale the z values
(to avoid having a very tall and thin cuboid).

The main feature of the density estimate is a ridge running east-to-west. This
is hard to see in the default view in Figure 16.3, so theta=60 is used to specify
a different view point. The theta argument specifies an angle of rotation
about the z-dimension and there is also a phi argument to specify a rotation
up or down. The default view has phi=15, which provides a view looking
“down” on the drawn surface. With the change in aspect ratio, described
above, there is very little perspective distortion in the view, so r=.1 is used
to shift the viewpoint closer to the viewing plane and d=.1 is used to shift the
viewing plane closer to the scene, thereby restoring the perspective effect.

The axis labels have also been corrected via xlab, ylab, and zlab.

The persp() function also provides a basic lighting model via a shade ar-
gument (not used here). Specifying a value greater than 0 for the shade
argument generates a light source (the larger the value, the less diffuse the
light), which can be positioned via ltheta and lphi. The result is a different
shading on each surface to represent incident light.

Another option is to specify a color for each individual polygon of the surface,
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Figure 16.5
A 3D surface showing the two-dimensional density estimate of the locations of earth-
quakes in the region of Darfield, New Zealand, following the 7.1 magnitude earth-
quake on September 4, 2010. Each face on the surface is colored according to its
(interpolated) z value (high points are white, low areas are dark gray).

for example, coloring polygons according to their z-value. This is slightly
complicated by the fact that there are fewer polygons to color than there
are z-values because the z-values give the locations of the polygon vertices.
The following code shows one way to generate a set of z-based colors so that
“higher” areas of the surface are a lighter color than “lower” areas (see Figure
16.5). This code also removes all axes and the bounding box via the axes and
box arguments.

> zinterp <- with(quakeDens,
z[-1, -1] + z[-1, -ncol(z)] +
z[-nrow(z), -1] + z[-nrow(z), -ncol(z)])

> persp(quakeDens, scale=FALSE, expand=0.02,
theta=60, d=.1, r=.1, axes=FALSE, box=FALSE,
col=gray(.4 + 1:6/10)[cut(zinterp, 6)])

The return value from persp() is the transformation matrix for the plot. This
can be used, in combination with the trans3d() function and functions such
as lines(), points(), and text(), to add further lines, points, and text to
the plot. An example was given in Section 3.4.6.

The major drawback to the persp() function is that it has a very simple
approach to hidden surface removal—deciding which parts of a 3D scene are
visible. This means that, except for very simple cases, it is not possible to
produce more than one surface on a plot, and even drawing additional points
and lines may not be possible. For more complex cases, a more sophisticated
3D system is required (see Section 16.6).
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16.4 lattice graphics

The lattice package provides two functions for drawing three-dimensional
plots: wireframe() and cloud().

The wireframe() function produces a three-dimensional surface similar to
persp(), with the additional benefit of the standard lattice multipanel con-
ditioning feature. The data to plot may be provided simply as a matrix of
z values or as a formula of the form z ~ x + y (where x and y should be
locations on a regular grid).

The cloud() function produces a three-dimensional scatterplot, which con-
sists of a set of points within a three-dimensional scene. In this case, the x-
and y-values no longer have to reside on a regular grid.

In order to demonstrate the cloud() function, the following code further sub-
sets the Canterbury earthquake data to retain only earthquakes that occurred
closer than 20 km to the Earth’s surface.

> shallowCantyQuakes <- subset(cantyQuakes, DEPTH < 20)

For both cloud() and wireframe(), the aspect ratio of the plot is controlled
via the aspect argument. This consists of two numeric values: the first gives
the ratio of the x-dimension to the y-dimension and the second gives the ratio
of the z-dimension to the x-dimension. Alternatively, the plot region can be
left as a cube and the scales can be manipulated via xlim, ylim, and zlim.

The viewpoint and the amount of perspective is controlled via the screen
and distance arguments. The latter specifies the distance of the viewing
plane from the 3D scene (0 to 1) and the former controls the view by rotating
the data. The value of screen should be a list with components x, y, and
z to specify a rotation of the data about the corresponding dimension. The
viewpoint is along the z-dimension by default, so to view the z-values from
side on, a rotation about x or y is necessary. The default screen is list(z =
40, x = -60).

The following code produces several different views of the shallow earthquake
data (see Figure 16.6).
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> for (i in seq(40, 80, 20)) {
print(cloud(-DEPTH ~ LONG + LAT, shallowCantyQuakes,

xlim=c(171, 173), ylim=c(-44.5, -42.5),
pch=16, col=rgb(0, 0, 0, .5),
screen=list(z=i, x=-70)))

}

It is much harder to perceive three-dimensional structures in a 3D scatterplot
compared to a 3D surface plot, but presenting a series of views like this can
help to provide further visual cues. In this case, the data are arranged in a tall
thin cloud that runs east-to-west (along the longitude dimension). It is also
possible to see horizontal bands (these are around 5 km and 12 km), which
turn out to be artifacts of the process used to determine earthquake location
and depth.

16.5 The scatterplot3d package

The scatterplot3d package provides a single function, scatterplot3d(),
which produces a three-dimensional scatterplot. The distinction between this
and the lattice cloud() function is that the scatterplot3d() output uses
the traditional graphics system, whereas cloud() is based on grid.

The xyz.coords() function is used to transform any reasonable form of input
into a set of x, y, and z values to plot. The data can be given as: a formula of
the form z ~ x + y; three separate numeric vectors, or a list of three vectors;
a matrix or data frame, in which case the first three columns are used.

This package only provides an orthogonal projection, but allows fine control
over the detailed appearance of the plot, including axis labeling.

There is limited control over the direction from which the plot is viewed, via
the angle argument. This specifies the angle between the x- and y-axes (from
0 to 180), where this is the angle between these axes after projection (i.e., in
the two-dimensional viewing plane).

There is also some control over the aspect ratio via the scale.y argument,
which controls the ratio of the y-axis to both x and z (the latter two are
always equal length).

The return value from scatterplot3d() is a list of functions, which can be
used to add further output to the plot. The xyz.convert component of this
list is a function to convert three-dimensional coordinates into two dimensions
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Figure 16.6
A 3D scatterplot showing the locations and depths of shallow earthquakes (less than
20km deep) in the region of Darfield, New Zealand, following the 7.1 magnitude
earthquake on September 4, 2010.
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so that the standard lines(), points(), and text() functions can be used
to add further output. The points3d, plane3d, and box3d components of
the list are functions that provide convenient special cases to add extra points
(or lines), a plane, or a bounding box to an existing 3D scatterplot.

The following code demonstrates working with the return value from the
scatterplot3d() function. The first step is to set up a three-dimensional
scatterplot of the shallow earthquake data using scatterplot3d() (see Fig-
ure 16.7). Because type="n", no points are drawn. Instead, the return value
is captured so that further output can be added to the plot.

> library(scatterplot3d)

> s3d <- with(shallowCantyQuakes,
scatterplot3d(-DEPTH ~ LONG + LAT,

angle=30, scale.y=0.45, type="n",
pch=16, color=rgb(0, 0, 0, .5),
x.ticklabs=pretty(LONG, 3),
grid=FALSE, zlim=c(-20, 0)))

The next code adds a contour plot to the lower plane of the three-dimensional
scatterplot. This makes use of contourLines() to generate contour lines
from a two-dimensional density estimate of the shallow earthquake locations
(similar to the calculation in Section 16.3). Each of these contour lines is
upgraded to a three-dimensional line, by setting the z-value to -20, then
the three-dimensional lines are converted to two-dimensional lines using the
xyz.coords component of the result from scatterplot3d(). Each contour
is then drawn using the polygon() function, with a gray fill color based on
the contour level.

> quakeDensXY <- kde2d(shallowCantyQuakes$LONG,
shallowCantyQuakes$LAT, n=30)

> lapply(contourLines(quakeDensXY, nlevels=8),
function(cl) {

polygon(s3d$xyz.convert(cl$x, cl$y,
rep(-20, length(cl$x))),

lwd=.5, col=gray(.8 - cl$level/20),
border=NA)

})

Similar calculations and drawing are also performed to show the joint distri-
bution of longitude and depth, which is drawn on the back plane of the plot,
and to show the joint distribution of latitude and depth (code not shown).
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As a final step, the shallow earthquake points are drawn. These are drawn
last so that the contour lines do not obscure any data points.

> with(shallowCantyQuakes,
s3d$points3d(-DEPTH ~ LONG + LAT, pch=16,

col=rgb(0, 0, 0, .3)))

16.6 The rgl package

All of the previous approaches to three-dimensional plots only provide partial
implementations of a three-dimensional graphics system. For example, none of
them can properly perform hidden-surface removal to determine which parts
of a three-dimensional scene are visible.

The topic of this section, the rgl package, has no such inhibitions. This pack-
age provides access to the OpenGL graphics system, which is a fully featured
3D graphics engine.

> library(rgl)

The rgl package does require a software implementation of OpenGL to be
installed. On Windows and MacOS X systems, something appropriate should
be installed by default, but users on Linux systems may need to install the
Mesa 3D graphics library.∗

The rgl package provides both high-level plotting functions that can produce
entire three-dimensional plots, and low-level functions that can be used to
construct a more general 3D scene from basic primitives.

The output from rgl drawing functions is produced in a special rgl graphics
device. Only rgl functions can draw to these devices, but the resulting image
is interactive (the view can be manipulated using the mouse) and it is possible
to produce 3D images and effects that go well beyond what is possible with
functions based on traditional graphics or grid graphics.

An example of a high-level rgl function is the persp3d() function, which
produces a three-dimensional surface, similar to persp(). The following code

∗http://www.mesa3d.org/.
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Figure 16.7
A 3D scatterplot showing the locations and depths of shallow earthquakes (less than
20 km deep) in the region of Darfield, New Zealand, following the 7.1 magnitude
earthquake on September 4, 2010. Several contours of two-dimensional density esti-
mates of the point cloud have been added.
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Figure 16.8
A 3D surface plot of earthquakes.

draws a representation of the two-dimensional density estimate of Canterbury
earthquake locations from Section 16.3 (see Figure 16.8).

> persp3d(quakeDens$x, quakeDens$y, quakeDens$z,
aspect=c(1, 0.55, .2), col="white", box=FALSE,
axes=FALSE, xlab="", ylab="", zlab="")

This code demonstrates the use of the aspect argument to control the aspect
ratio of the resulting plot. This consists of three values, which specify the
ratios for the three plot dimensions, relative to a cube with sides of length 1.
The default axes and labels have all been turned off with standard arguments.

One important feature of this plot, compared to the shaded persp() plot in
Figure 16.4, is that the surface shading is very smooth. This is an example
of the effect of the more sophisticated underlying OpenGL graphics engine.
The color of the surface is specified at each vertex and the system interpolates
across each face of the surface to produce a smooth result. All of these features
are optional, for example, a non-smooth shading is still possible by setting the
smooth argument to FALSE.

Another important feature of the plot produced by persp3d() is that it is
interactive. The view can be manipulated by clicking and dragging with the
mouse. This removes the need to explicitly set a 3D viewpoint and being
able to rapidly change the view makes it much easier to perceive the three-
dimensional features of a plot. Section 17.2.2 describes another package that
provides this sort of facility.

On the downside, because the plot is not drawn in a normal R graphics device,
some facilities are not available. For example, it is not possible to draw
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mathematical formulae using R expressions (see Section 10.5) and there is
no built-in support for multiple plots let alone the multipanel conditioning
offered by lattice and ggplot2. It is also not possible to save the plot in
the usual array of file formats (see Section 9.2), though the rgl package does
provide the snapshot3d() function for generating a raster image (e.g., a PNG
file) and the rgl.postscript() function to save the scene to a PostScript file.

In addition to the persp3d() function, there is a plot3d() function for pro-
ducing a 3D scatterplot, including the option of drawing 3D spheres for data
points.

The rgl package also provides a number of low-level functions that add three-
dimensional objects to an existing 3D scene, such as lines3d(), points3d(),
and surface3d(). The text3d() function adds text that can be positioned
in 3D space, but is always oriented toward the viewing plane.

Importantly, the rgl package is capable of hidden surface removal, so ad-
ditional 3D objects can be added to a plot without having to worry about
which objects obscure each other. This means that there is no need to work
directly with a transformation matrix. That complexity is all handled by the
underlying OpenGL system.

In order to demonstrate this, the following code makes use of the misc3d pack-
age, which builds on rgl and offers functions for drawing three-dimensional
contour surfaces. The following code uses the kde3d() function to generate
a three-dimensional density estimate for the locations of the shallow earth-
quakes.

> library(misc3d)

> d <- with(shallowCantyQuakes,
{

kde3d(LONG, LAT, -DEPTH,
h=c(.1, .1, 2), n = 30)

})

The next code draws a 3D scatterplot of the shallow earthquakes and then
adds two semitransparent 3D contours to the plot (see Figure 16.9).
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Figure 16.9
A 3D contour plot of earthquakes.

> with(shallowCantyQuakes,
{

plot3d(LONG, LAT, -DEPTH,
aspect=c(1, 0.55, 1),
axes=TRUE, box=FALSE,
xlab="", ylab="", zlab="")

contour3d(d$d, c(.4, .1), d$x, d$y, d$z,
color=rep("gray80", 2),
color2="gray", specular="black",
engine="rgl", add=TRUE, alpha=.5)

})

The rgl package can also be used at a lower level, which allows a scene to
be constructed by creating and positioning 3D objects, plus there are more
advanced 3D effects such as lighting and surface reflectance that can be con-
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Figure 16.10
A 3D image that is not a statistical plot. Any resemblance to persons either real or
fictional is purely coincidental.

trolled.

It is possible to generate basic three-dimensional shapes with functions like
ellipse3d() and cylinder3d(), position the shapes through rotate3d()
and translate3d(), then view them with shade3d(). The viewpoint can be
explicitly set using par3d(), light sources can be added with light3d(), and
the material properties of surfaces controlled with material3d(). It is also
possible to specify a bitmap image as a texture for a 3D surface.

An example of an image constructed using these lower-level rgl functions is
shown in Figure 16.10. The code is available from the book web site.

16.7 The vrmlgen package

Another approach to producing 3D images is provided by the vrmlgen pack-
age. Rather than drawing to screen, this package saves 3D images in two file
formats that can then be viewed in a web browser: VRML and LiveGraph-
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ics3D.∗

> library(vrmlgen)

The package provides both high-level functions for producing complete plots,
such as cloud3d(), and low-level functions for building 3D scenes from simple
primitives, such as points3d(), lines3d(), and text3d().

The following code produces a VRML file containing a 3D scatterplot of the
Canterbury earthquake data and Figure 16.11 shows the file being viewed in
a web browser.

> with(shallowCantyQuakes,
cloud3d(LONG, LAT, -DEPTH,

filename="vrmlgen.wrl",
cols="white"))

Like rgl, one benefit of the vrmlgen package is that it is possible to interact
with the resulting 3D image. One additional benefit with vrmlgen is that
the resulting image can be viewed with just a web browser — R is not needed
to view and interact with the image — so it is easy to share the files widely.

∗http://www.web3d.org/x3d/specifications/vrml/;
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/.
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Figure 16.11
A 3D image that has been saved in a VRML format. The image is being viewed in
a web browser.
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Chapter summary

It is possible to produce basic 3D scatterplots and 3D surfaces in
traditional graphics, with the persp() function or the scatterplot3d
package. The cloud() and wireframe() functions provide similar
facilities in lattice graphics. For sophisticated 3D images and effects,
there is the rgl package.
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Dynamic and Interactive Graphics

Chapter preview

This chapter describes some functions and packages for producing dy-
namic and interactive graphics. The core R graphics system is de-
signed for producing static graphics, so this chapter introduces some
new graphical concepts as well as a number of extension packages. As
well as packages that provide ready-made interactive graphics, there is
a section on packages that provide tools for developing new interactive
graphics.

The strength of the core R graphics engine lies in the production of complex
static plots with flexible control of fine details. It is possible to create some
simple dynamic and interactive effects, but for anything remotely complex
one of the extension packages described in this chapter is required.

17.1 Dynamic graphics

A dynamic plot is one which changes over time, such as a plot of a stock
index that is constantly updated. The difference between a static plot and a
dynamic plot is the difference between a photograph and a video.

The simplest approach to producing a dynamic plot with R is to generate
a sequence of plots and show them rapidly one after the other. In simple
cases, this can be achieved with a normal graphics window. For example, the
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Figure 17.1
Seven frames from a simple animation of a dot traveling in a circle.

following code produces a dot traveling around the circumference of a circle.
On some platforms, the display may flicker badly as each new frame is drawn.
Figure 17.1 shows a sequence of the frames in this animation.

> n <- 40
> t <- seq(0, 2*pi, length=n)
> x <- cos(t)
> y <- sin(t)

> for (i in 1:n) {
plot.new()
plot.window(c(-1, 1), c(-1, 1))
lines(x, y)
points(x[i], y[i], pch=16, cex=2)
Sys.sleep(.05)

}

An alternative approach is to save each frame of the animation to a separate
file and then use third-party software, such as ffmpeg,∗ to combine the frames
together into a movie format. The animation package provides several con-
venient functions that implement variations on this approach.

17.1.1 The animation package

The animation package can produce animation files in a variety of formats,
for example, an animated GIF, an Adobe Flash animation, or a web page with
the animation embedded in it.

In order to demonstrate each of these, the following code defines a function,
orbit(), which will do the drawing of the animation frames.

∗http://ffmpeg.org/.
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> orbit <- function() {
par(pty="s", mar=rep(1, 4))
for (i in 1:n) {

plot.new()
plot.window(c(-1, 1), c(-1, 1))
lines(x, y)
points(x[i], y[i], pch=16, cex=2)

}
}

Producing an animated GIF is now simply a matter of calling the saveMovie()
function, passing a call to the function orbit() as the first argument. Other
arguments specify the delay between frames, where to put the files that are
generated, and what to call them.

> library(animation)

> saveMovie(orbit(), interval=0.05, moviename="orbit.gif")

This function uses ImageMagick to create the final file, so that software must
also be installed.

Producing an Adobe Flash animation is also very straightforward, this time
using the function saveSWF(). This function requires that the SWFTools
software is installed.∗

> saveSWF(orbit(), interval=0.05, swf.name="orbit.swf")

Generating a web page with an embedded animation is only slightly more
effort. The first step is to call the ani.options() function, which sets up
basic parameters of the animation. Next, the ani.start() function is called
to initialize some files for the web page. The third step is to call the function
that draws the animation frames, orbit() in this case, and the final step is to
call the ani.stop() function, which finishes off the creation of the web page.
Figure 17.2 shows the resulting web page.

> ani.options(interval=0.05, outdir="orbitImages",
filename="orbit.html")

> ani.start()
> orbit()
> ani.stop()

∗http://www.swftools.org/.
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Figure 17.2
An animation embedded in a web page, as produced by the animation package.

17.2 Interactive graphics

An interactive plot is dynamic in the sense that it can change rapidly, but the
changes occur as a result of user input. The difference between a dynamic plot
and an interactive plot is the difference between a video and a video game.

In order to demonstrate the usefulness of interactive graphics, it is useful to
consider the following static graphics example.

Figure 17.3 shows two simple static scatterplots of miles-per-gallon versus
engine displacement for the mtcars data. In both plots, a subset of the points
has been highlighted: cars with three-speed gearboxes on the left and cars
with four-speed gearboxes on the right. Figure 17.4 shows a similar plot,
using lattice to draw separate panels for different gearboxes.

These graphs allow us to inspect the relationship between two continuous
variables (mpg and disp) and one categorical variable (gear) all at once by
presenting two different views of the same data.

If the categorical variable had more categories, more plots (or panels) would
be required. Similarly, another categorical variable of interest (e.g., number
of cylinders in the engine) could be accommodated by producing even more
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Figure 17.3
Two static plots of miles-per-gallon versus engine displacement for the mtcars data.
In the left-hand plot, points corresponding to cars with a three-speed gearbox have
been highlighted and, in the right-hand plot, points have been highlighted for four-
speed gearboxes.
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Figure 17.4
A static lattice plot showing miles-per-gallon versus engine displacement for the
mtcars data, with separate panels for cars with a three-speed gearbox and cars with
a four-speed gearbox.
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Figure 17.5
Two interactive plots: an interactive scatterplot showing miles-per-gallon versus
engine displacment for the mtcars data and a separate barchart representing the
frequencies of cars with different numbers of gears. The bar for three-speed gearboxes
has been selected in the barchart.

plots. However, at some point the number of plots will exceed the space
available on the page (or the size of each plot will become too small to see).

Figure 17.5 shows an interactive graphics approach to this situation. In this
case, there are two different types of plots: a scatterplot of miles-per-gallon
versus engine displacement and a barchart of number of gears. The plots
are interactive so that, for example, if the user clicks within a bar in the
barchart, that bar is highlighted. Furthermore, the plots are linked so that,
for example, if a bar is highlighted in the barchart, the corresponding points in
the scatterplot are also highlighted. In Figure 17.5, the bar representing cars
with three-speed gearboxes has been selected and the corresponding points in
the scatterplot are also highlighted.

Through interacting with these plots, it is possible to inspect the relationship
between three variables, just like in Figures 17.3 and 17.4. However, this
interactive approach scales much better to larger numbers of categories and
a greater number of variables and it provides much greater flexibility. For
example, Figure 17.6 shows the same interactive plots as Figure 17.5, but this
time a selection has been made in the scatterplot. Now, when points in the
scatterplot are selected, corresponding regions of the bars in the barplot are
also highlighted.

The important point is that it is possible to ask many more questions of the
data by interacting with these plots compared to the static plots and the
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Figure 17.6
Two linked plots: an interactive scatterplot showing miles-per-gallon versus engine
displacment for the mtcars data and a separate barchart representing the frequencies
of cars with different numbers of gears. The points for cars with a miles-per-gallon
greater than 20 have been selected in the scatterplot.

answers to these questions are generated very rapidly.

The importance of interactive statistical graphics is that it allows many dif-
ferent views of the data to be produced and explored very rapidly.

There are of course some negatives to interactive graphics, for example, it is
harder to generate and save a record of the actions taken when using interac-
tive graphics (because it is harder to save and share mouse movements than
it is to save and share code) and plots tend to be less ornate because the
graphics systems are focused more on speed than on fine control of the details
of a plot.

17.2.1 Tools and techniques

There are many examples of interactive graphics software, but there are many
interactive features that they all have in common. This section describes
some of the standard sorts of interactions that are provided by interactive
statistical graphics systems. Some specific software tools are described in the
next sections. The book Interactive Graphics for Data Analysis by Martin
Theus and Simon Urbanek provides a more in-depth discussion.

Brushing and linking: The idea of brushing is that the user can click or
drag regions with the mouse to select subsets of the data. This may
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just serve to highlight a particular subset, but more often it is combined
with linking, whereby selections in one plot also highlight corresponding
points in a separate, linked plot.

The main idea is that the view of the data is altered by highlighting
only a subset of the plots so that they are visually distinguishable from
the parts of the plot that are not selected.

There are many variations on the basic idea: the “brush” can be a single
shape, a rectangular region, or a free-form shape (a “lasso”); the high-
lighting that is produced by brushing may be persistent or transient;
and, when highlighting is persistent, it may be possible to combine one
brush operation with another (in effect specifying more than one sub-
setting condition).

Furthermore, different sorts of plots present different graphical elements
for selection. For example, a barchart offers rectangular regions, while a
scatterplot offers only point symbols, and it makes sense to select either
edges or nodes in a node-and-edge graph.

Identification: The idea of identification is that the user can hover the mouse
over or click the mouse on a graphical element in a plot in order to obtain
more information about the underlying data. The main idea is that the
view of the data is augmented by presenting more detailed information
about the selected element.

The additional information may be drawn next to the selected item or it
could be presented in a tooltip (a separate small window of information
that is temporarily shown on top of the plot). In the extreme case, a
mouse click may generate a new display entirely (e.g., a hyperlink or a
“drill-down”).

Zooming: The idea of zooming is to change the scale on a plot so that only
a subset of the data is visible. A classic example is a time series that
extends over several years and we want to be able to view only one year
at a time or one month at a time as well as viewing the entire time
series. The main idea is that it is possible to rapidly alter the subset of
the data that is being viewed.

Dragging: The idea of dragging is to click (to select) and then drag elements
of the plot using the mouse. One way to view this technique is that
the interaction can be used to make changes to the actual data. This
may be a dangerous thing to do, but it has applications in teaching and
sensitivity analysis. A simple example might involve moving a single
data point on a scatterplot to see the impact on a fitted regression line.

Alternatively, dragging may be applied to some feature of the display.
Rather than altering the data values, the interaction modifies the man-
ner in which the data are being viewed. A good example of this sort of
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interaction is the ability to rearrange the order of bars within a barplot
or the order of variables within a parallel coordinates plot. This sort
of interaction can also be used with node-and-edge graphs to manually
fine-tune an automated graph layout.

It is possible to achieve some of these effects with the core R graphics system.
For example, the identify() function in traditional graphics allows interac-
tive labeling of points in a scatterplot. The panel.identify() function in
lattice provides a similar feature and there is a lower-level grid.locator()
in grid. However, for sophisticated interactive graphics, a more complete
solution is required.

The following sections describe two packages that provide these interactive
graphics features. In both cases, the packages provide their own graphics
systems, independent of core R graphics.

17.2.2 The rggobi package

The rggobi package provides an interface between R and the GGobi software
for dynamic and interactive graphics.∗ This section provides a very brief intro-
duction to the rggobi package. The book Interactive and Dynamic Graphics
for Data Analysis by Di Cook and Deborah Swayne provides a much more
complete description of the package and the underlying GGobi system.

The rggobi package requires GGobi to be installed, which in turn requires the
GTK+ software library.†

> library(rggobi)

In the most basic case, this package just simplifies the task of getting data
from R into GGobi.

> gg <- ggobi(mtcars)

The ggobi() function starts up a GGobi session using the supplied data frame
as the data set to explore. Figure 17.7 shows the initial GGobi window that
is created by the code above.

At this point, it is possible to leave R altogether and simply interact with
the GGobi system through its windows and dialogs. For example, the Display

∗http://www.ggobi.org/.
†http://www.gtk.org/.
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Figure 17.7
The GGobi main window after starting GGobi from R with the mtcars data set.

menu can be used to produce new plots and the buttons on the main GGobi
window can be used to select which variables are used within each plot.

Alternatively, some of these operations can be performed from R. For example,
the display() function can be used to generate new plots within the GGobi
session. The following code creates the scatterplot and a barchart from Figure
17.5.

> display(gg[1], vars=list(X="disp", Y="mpg"))
> display(gg[1], "Barchart", vars=list(X="gear"))

GGobi can produce scatterplots, barcharts, scatterplot matrices, parallel coor-
dinate plots, and time series. A scatterplot encompasses both the traditional
two-dimensional scatterplot and a one-dimensional, density view of a single
variable. The latter is, by default, an average shifted histogram, but it can
also be viewed as a jittered strip plot. A barchart may also be viewed as a
spineplot.

GGobi provides many ways to interact with the data. For example, with the
barchart from Figure 17.5 active, Brush interaction can be selected from the
Interaction menu on the main GGobi window. This produces a small square
brush cursor in the barchart window; clicking in one of the bars in the barchart
causes that bar to be highlighted and the corresponding points in the scat-
terplot to be highlighted (as in Figure 17.5). The documentation for GGobi
describes what other sorts of interactions are possible.
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Again, something similar to the interaction just described can be produced
by writing code from R rather than via the menus and dialogs of the GGobi
system. The following code uses the colorscheme() function to set the default
GGobi color scheme to a set of three distinct hues and the glyph_color()
function to assign different hues to different levels of the gear factor.

> colorscheme(gg) <- "Accent 3"
> mtcarsGG <- gg["mtcars"]
> glyph_color(mtcarsGG) <- mtcars$gear

This sort of interactive graphics with GGobi via R code is not very effective
because it removes the main point of interactivity, which is to be able to
generate multiple views of the data very rapidly. However, there are several
reasons why it makes sense to interact with GGobi via R code rather than
via GGobi’s native menus and dialogs: writing code produces a record of the
interaction; GGobi draws plots much faster than R graphics so a programmed
series of plots can be viewed more comfortably; and ultimately, R code can
be used to augment the capabilities of GGobi, for example, by providing data
analysis techniques and even for programming new types of interactive plots.

It is important to note that the GGobi plots are produced in separate windows
that are under the control of the GGobi system. It is not possible to add any
output to those plots using core R graphics functions. On the other hand,
GGobi does provide a Save Display Description option in its Tools menu, which
produces a file that can be read into R and drawn with the DescribeDisplay
package.

Tours

One of the main uses of GGobi is to visualize multidimensional data and,
besides the interactive techniques, the main tool that GGobi provides for this
purpose is the tour. This consists of a series of projections of many dimensions
into only one or two dimensions, typically with the purpose of identifying
“interesting” projections, such as separate clusters of points in the data. This
feature combines both dynamic and interactive graphics because a series of
different projections is generated and rapidly displayed, while at the same
time interactions such as brushing, possibly of linked plots, can be combined
to explore a high-dimensional data set.

17.2.3 The iplots package

Another option for interactive graphics is provided by the iplots package.
This package provides functions for creating plots that are similar to the
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Figure 17.8
Two iplots interactive plots showing miles-per-gallon versus engine displacement for
the mtcars data and a separate barchart representing the frequencies of cars with
different numbers of gears. The bar for four-speed gearboxes has been selected in
the barchart.

standard plot types, but which respond to user interaction and are automat-
ically linked. For example, the following code uses the iplot() and ibar()
functions to produce a scatterplot and a linked barchart from the mtcars data
frame, similar to those shown in Figure 17.5.

> library(iplots)

> iplot(mtcars$disp, mtcars$mpg)
> ibar(mtcars$gear)

A click in one of the bars of the barchart will highlight that bar and highlight
corresponding points in the scatterplot. Figure 17.8 shows the result of clicking
in the bar that represents cars that have a four-speed gear box. A selection
can also be made by clicking and dragging to specify a rectangular subregion
of a plot.

One point of interest with the iplots package is that it adds interactivity
to several additional plot types. The ibox() function produces interactive
boxplots, the imap() function produces interactive maps, and there is an
imosaic() for producing interactive mosaic plots for exploring multivariate
categorical data.

Like rggobi, plots produced by the iplots package appear in separate graphics
windows and normal R graphics functions cannot be used to add output to
those plots. However, there are iplots functions for adding annotations to
iplots plots: the iabline() function for straight lines, ilines() for paths
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and polygons, and itext() for text labels. For example, the following code
adds the car names to the interactive scatterplot that was produced above.
The call to the function iplot.set() is necessary to make the scatterplot
the active plot. The iplots package provides functions for navigating between
multiple plot windows similar to those provided for normal R graphics devices.

> iplot.set(1)
> itext(mtcars$disp, mtcars$mpg, rownames(mtcars))

In addition to manual interaction with iplots plots, it is possible to program-
matically affect the plots. For example, the iset.select() function can be
used to highlight a subset of the data; the following code highlights cars with
four-speed gear boxes, in both the scatterplot and the barchart.

> iset.select(mtcars$gear == 4)

This function also allows the specified subset to be combined with a pre-
existing selection, either by union or intersection. Conversely, there is a
iset.selected() function that can be used to obtain the indices of selected
observations following a manual selection.

Developing new interactive plots

Another interesting feature of the iplots package is that it provides facilities
for extending the interactive behavior of a plot. This is currently based on
the ievent.wait() function, which makes it possible to write R code that
will respond to user interaction on a plot.

The following code provides a simple demonstration. First of all, the text
labels that had been added above are removed from the scatterplot. This can
be done using the iobj.rm() function.

> iplot.set(1)
> iobj.rm()

The next code adds new text labels to the interactive scatterplot, but each of
these labels is only visible if the corresponding data point is currently selected.
Figure 17.9 shows the result
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Figure 17.9
Two iplots interactive plots showing miles-per-gallon versus engine displacment for
the mtcars data and a separate barchart representing the frequencies of cars with
different numbers of gears. The scatterplot has been customized so that labels are
drawn for selected points (and the bar for five-speed gearboxes has been selected in
the barchart).

> labels <- mapply("itext",
mtcars$disp, mtcars$mpg, rownames(mtcars),
MoreArgs=list(visible=FALSE), SIMPLIFY=FALSE)

> olds <- NULL
> while (!is.null(ievent.wait())) {

if (iset.sel.changed()) {
s <- iset.selected()
if (length(s) > 1) {

lapply(labels[s], iobj.opt, visible = TRUE)
}
if (length(olds) > 1) {

lapply(labels[olds], iobj.opt, visible = FALSE)
}
olds <- s

}
}

The ievent.wait() function is similar to the locator() function in tradi-
tional graphics in that it blocks the R console, so it is only possible to interact
with iplots windows—the R command line is unresponsive until the above
code is terminated (by selecting Break from the File menu of an iplots win-
dow).

The iplots package is built on top of the rJava package so Java must be
installed for this package to work.
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At the time of writing, a new version of iplots, called Acinonyx, is being
developed to offer greater speed and flexibility. This may become the preferred
package in the future.

17.3 Graphics GUIs

This section is similar to the previous section on interactive graphics, because
it also deals with graphics that change in response to user interaction. How-
ever, where Section 17.2 was more concerned with the user interacting with
elements of the graphical image itself, such as lines, points, and axes, in this
section, the interaction is typically with components that are separate from
the image, such as menus, dialogs, buttons, and sliders.

Another distinction is that, in this section, graphics is usually produced on
a standard R graphics device, rather than using external software to do the
drawing, so all normal R graphics functions can be used to produce graphics
output.

17.3.1 GUIs for R

On Windows and MacOS X, the standard interface for R consists of menus and
dialogs in addition to the basic R command-line. These interfaces allow some
simple graphical operations to be performed via the mouse, such as printing a
plot or saving it in a different format, but do not provide interactive graphics
in the sense used in this chapter.

A number of extension packages provide alternative GUIs for R. Some of these
provide provide further convenience for creating plots, for example the Rcmdr
package provides dialogs for the user to fill in the relevant parameters for the
plot. Figure 17.10 shows the dialog box from the Rcmdr package that is used
to create a scatterplot.

A slightly more advanced example is the pmg (Poor Man’s GUI) package,
which in addition to providing a similar dialog interface, has a “Lattice ex-
plorer” window (available from the Plots menu). This allows variables to be
dragged onto a canvas to create plots. Figure 17.11 shows a lattice xyplot()
that was created using this drag-and-drop feature.

Another quite sophisticated example of the plot dialog approach is the latti-
cist package. The latticist() function from this package creates a window
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Figure 17.10
An Rcmdr dialog box for creating a scatterplot. This dialog is being used to create
a scatterplot of miles-per-gallon as a function of engine displacement for the mtcars

data frame.

Figure 17.11
The Lattice Explorer from the pmg package. This plot has been created by dragging
the variables disp and mpg from a spreadsheet-like view of the mtcars data frame
onto the Lattice Explorer window.
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Figure 17.12
A latticist window showing a scatterplot of miles-per-gallon versus engine displace-
ment for the mtcars data frame. The plot may be interactively modified by manip-
ulating the menus and buttons to the left of the plot.

containing a lattice plot, with a large selection of interactive elements along-
side that allow the plot to be modified in many ways, including conditioning
the data into multiple panels. The following code creates a lattice scatterplot
from the mtcars data frame. Figure 17.12 shows the resulting window.

> library(latticist)
> latticist(mtcars, list(xvar="disp", yvar="mpg"),

use.playwith=FALSE)

The playwith package differs from the other R graphics GUIs because it also
provides direct interaction with the elements of the plot, such as brushing
data points. However, unlike the packages in Section 17.2, this interaction is
with a normal R graphics device, so the plots have all of the variety and fine
detail of standard R plots.

As an example, the following code uses the playwith() function to create
two windows that are linked so that brushing points in one window highlights
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the relevant points in both windows (see Figure 17.13). In this example, the
three cars with the greatest weight (wt) are shown to be the three cars with
the largest engines (disp).

> library(playwith)
> playwith(xyplot(mpg ~ disp, mtcars))
> playwith(xyplot(qsec ~ wt, mtcars),

new=TRUE, link.to=playDevCur())

It is also possible to interactively rescale or zoom the plots in the playwith
window.

The interactivity provided by this package is not as flexible as that provided
by the packages in Section 17.2. For example, brushing a scatterplot has no
effect on a linked barchart, but it is nevertheless an impressive augmentation
of R’s normally static-only graphics.

The latticist package is integrated with playwith by default (which explains
the use.playwith=FALSE in the previous code example).

17.3.2 GUI toolkits

This section looks at packages that work at a lower level than the packages in
the previous section. The packages in this section provide the basic interactive
tools that can be used to create GUIs like Rcmdr and its ilk.

This section provides a very brief introduction to creating a custom GUI in
R. The book Programming Graphical User Interfaces with R by John Verzani
and Michael Lawrence provides a thorough treatment of this area.

A GUI toolkit consists of three main parts: there are functions to to create
GUI components, such as buttons, menus, and dialog boxes, which are often
collectively referred to as widgets; there are functions to arrange these widgets
next to each other within a container, such as a window; and there is some way
to link R functions, called event handlers, to the actions of those components.

Two examples of GUI toolkits that are conveniently available in R are provided
by the tcltk package and the RGtk2 package. Another major set of packages,
that are still in development at the time of writing, is focused on the Qt toolkit
library.∗ One advantage of the tcltk package is that it is distributed as part
of the default R installation, along with the underlying tcltk software library.†

∗http://qtinterfaces.r-forge.r-project.org/.
†http://www.tcl.tk/.
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Figure 17.13
Two playwith scatterplots showing linked brushing of points. The top plot shows
miles-per-gallon versus engine displacement and the bottom plot shows quarter-mile
times versus weight.
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1 drawClock <- function(hour, minute) {
2 t <- seq(0, 2*pi, length=13)[-13]
3 x <- cos(t)
4 y <- sin(t)

6 grid.newpage()
7 pushViewport(dataViewport(x, y, gp=gpar(lwd=4)))
8 # Circle with ticks
9 grid.circle(x=0, y=0, default="native",
10 r=unit(1, "native"))
11 grid.segments(x, y, x*.9, y*.9, default="native")
12 # Hour hand
13 hourAngle <- pi/2 - (hour + minute/60)/12*2*pi
14 grid.segments(0, 0,
15 .6*cos(hourAngle), .6*sin(hourAngle),
16 default="native", gp=gpar(lex=4))
17 # Minute hand
18 minuteAngle <- pi/2 - (minute)/60*2*pi
19 grid.segments(0, 0,
20 .8*cos(minuteAngle), .8*sin(minuteAngle),
21 default="native", gp=gpar(lex=2))
22 grid.circle(0, 0, default="native", r=unit(1, "mm"),
23 gp=gpar(fill="white"))
24 }

Figure 17.14
A function that draws an analog clock for a specified time.

Rather than address these packages that interface directly to GUI toolkit
libraries, the focus in this section will be instead on the package gWidgets,
which abstracts the problem to a slightly higher level.

An interactive clock

To provide an example of building a simple graphical GUI from scratch, this
section describes a simple interactive clock that can be used to help teach
children to read the time from an analog clock.

The core image in this example is a representation of a clock: a circle with
12 ticks plus two hands to show the hours and minutes. Figure 17.14 shows
a simple R function that uses grid to draw this clock for a given time speci-
fication.
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Figure 17.15
A clock image with a simple GUI, created using gWidgets and gWidgetsRGtk2.

The goal is to produce an interactive clock as shown in Figure 17.15. Besides
the clock face image itself, there is a button to randomize the time shown on
the clock and there is a button to display the time as text.

The gWidgets package

The idea of the gWidgets package is to provide a single consistent interface
to creating GUIs in R. It must be used in combination with a “backend”
package that implements the gWidgets functionality in a lower-level toolkit.
For example, the gWidgetsRGtk2 package provides a backend based on the
RGtk2 package, which in turn is based on the GTK+ toolkit. Other backends
are also available.

> library(gWidgetsRGtk2)

The first step involved in creating a GUI is to create the widgets and lay
them out. The first widget is usually a window to hold everything else. The
following code creates a window with the gwindow() function.

> window <- gwindow("Clock")

The next widget is just a container to arrange the contents of the window.
This is created using the ggroup() function. The resulting widget is placed
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within the window that was created in the previous step and, in this case, the
widgets that are placed within this container will be arranged vertically.

> allContent <- ggroup(container=window, horizontal=FALSE)

The next widget is a graphics canvas, which is created by the ggraphics()
function. The widget is a normal R graphics device, so it is possible to draw
any R graphics output within it. This is placed within the allContent widget
from the previous step.

> graphicTime <- ggraphics(container=allContent)

The remaining widgets are to be arranged horizontally, so a new container is
created to hold these.

> timeContent <- ggroup(container=allContent)

The following code creates a label widget, with the glabel() function, but
this widget is not yet placed in a container. That will be done later. The
text label is blank initially because it will be set and changed by the user
interacting with the buttons.

> textLabel <- glabel("")

The buttons require a little more code to create because it is necessary to
provide an R function event handler that will be run when the button is clicked.
The following code defines the function for the Randomize Time button. This
function generates a new time, draws a clock representing that time, with the
drawClock() function shown in Figure 17.14, makes the textLabel widget
(created above) invisible, with the visible() function, and sets the text of
that label to be the appropriate time, with the svalue() function.

> randomizeTime <- function(h, ...) {
hour <- sample(1:12, 1)
minute <- sample(seq(0, 55, 5), 1)
drawClock(hour, minute)
visible(textLabel) <- FALSE
svalue(textLabel) <- paste(hour,

sprintf("%02d", minute),
sep=":")

}
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The button itself is created with the following call to the gbutton() function.

> reset <- gbutton("Randomize Time",
handler=randomizeTime)

The final button also needs an event handler, but this time it is quite simple
because all it needs to do is make the textLabel widget visible.

> textButton <- gbutton("Show Time",
handler=function(h, ...) {

visible(textLabel) <- TRUE
})

The final step is to add these buttons and the label widget to the timeContent
container, using the add() function.

> add(timeContent, reset)
> add(timeContent, textButton)
> add(timeContent, textLabel)

The result is the simple GUI shown in Figure 17.15. When the Randomize
Time button is clicked, the clock is redrawn with a new time and the time
label is removed. When the Show Time button is clicked, the time label is
shown with the correct time for the current clock.

17.4 Interactive graphics for the web

Producing interactive graphics for web pages is an area of rapid development.
This section briefly describes a few of the packages that are available.

The gridSVG package provides some limited interactivity by producing grid-
based plots in an SVG format and allowing access to some of the more advanced
SVG features, such as hyperlinks, animation, and the ability to embed scripts.

> library(gridSVG)

The following example produces an SVG version of the simple animation from
Section 17.1. The first step is to draw a simple grid image. The important
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detail about the following code is that the circle grob has been given the name
"planet".

> grid.newpage()
> pushViewport(dataViewport(x, y))
> grid.lines(x, y, default.units="native")
> grid.circle(x[1], y[1], default.units="native",

r=unit(2, "mm"), gp=gpar(fill="black"),
name="planet")

The grid.animate() function is then used to add animation information to
the circle grob called "planet". The x- and y-values used here were defined
back at the beginning of this chapter.

> grid.animate("planet",
x=unit(x, "native"), y=unit(y, "native"))

The final step is to save the drawing to an SVG file, which can then be viewed
in a web browser.

> gridToSVG("animation.svg")

A more sophisticated alternative is the SVGAnnotation package, which
provides functions for augmenting R plots with a wide range of interactive
features. This package is part of the Omegahat Project and depends on a
Cairo-based graphics device (see Chapter 9).

> library(SVGAnnotation)

With this package, graphical output is produced in the SVG format, then
various functions are provided to modify the SVG content and possibly add
javascript code to add interactive features, such as hyperlinks, tool tips, ani-
mations, and even linked plots. For example, the following code creates an
initial image containing two scatterplots, with the svgPlot() function, then
augments the plot using the linkPlots() function so that moving the mouse
over a point in one plot causes corresponding points in the other plot to be
highlighted (see Figure 17.16). The plot is actually created and modified in
memory and the saveXML() function (from the XML package) is used to
write it to disk as an SVG file.
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Figure 17.16
Two linked scatterplots being viewed in a browser. The plots are a combination of
SVG and javascript produced by the SVGAnnotation package.
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> doc <- svgPlot({ par(mfrow=c(2, 1), cex=.7,
mar=c(5.1, 4.1, 1, 1))

plot(mpg ~ disp, mtcars, cex=2)
plot(qsec ~ wt, mtcars, cex=2) },

width=4, height=8)
> linkPlots(doc)
> saveXML(doc, "linkedplots.svg")

One advantage of these approaches that produce SVG files is that the resulting
file does not depend on R, so the plot can be used and shared by anyone with
a compliant web browser. It is also possible to create even more complex
interactivity by having R sitting in behind the web browser on the web server,
but that sort of setup goes beyond the scope of this book.

Several other packages are being developed in this space, including packages
that provide interfaces to other web graphics libraries such as protovis and
Processing.js (for example, the webvis package). There are likely to be rapid
developments in this area.

Chapter summary

The animation package provides a convenient interface for generat-
ing dynamic graphics from R plots. The rggobi and iplots pack-
ages provide access to interactive graphics systems from R. Several
packages also implement less sophisticated interaction with native R
plots. The gWidgets package provides a convenient interface to GUI
toolkit packages for building interfaces that allow interactive control
of R graphics via GUI elements such as buttons and menus. Other
packages provide tools for generating interactive R plots for inclusion
in web pages.
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Importing Graphics

Chapter preview

This chapter describes packages and functions that import images
from external files and allow them to be included as part of R graphics
output. There are separate packages for importing raster images and
importing vector images.

Sections 3.4.1 and 6.2 describe the set of graphical primitives that are avail-
able in the traditional graphics system and the grid graphics system. These
graphical primitives make it possible to draw basic shapes, text, and bitmap
images and they form the basis for drawing more complex images with R.

By combining basic shapes, it is possible to produce an infinite variety of
pictures, however, there are still some images that cannot be produced with
R and R is not the best way to produce many kinds of images. For example,
it is not possible to generate a photographic image with R and there are much
better programs than R for producing artistic images such as logos.

Images like photographs and logos can be useful in plots or pictures, for ex-
ample, to provide a background image for a plot, or to annotate a plot with
the logo of a company or institution. In such cases, it may be necessary, or
just more convenient, to source or create the image outside of R and import
the image into R.

A number of packages provide tools for importing graphics into R and the
choice of which one to use will depend on the format of the original image and
what is to be done with the image once it has been imported. Image formats
can be divided into raster formats and vector formats (see Section 9.2.1) and
packages that import images into R typically address one of these options.
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Figure 18.1
Two images of the Moon. On the left is a JPEG photograph of the North Pole of the
Moon that has been assembled from images taken by the Galileo spacecraft, courtesy
of NASA (image #: PIA00130). On the right is a cartoon image of the Moon from
the Open Clip Art Library http://openclipart.org/media/files/rg1024/10351.

18.1 The Moon and the tides

To provide a concrete example of importing images into R, this section looks
at producing a plot that shows the relationship between the timing of low tide
and the phase of the Moon. The main plot shows the hour during the day at
which low tide occurs as a function of the day of the month and the phases
of the Moon and the plot is “dramatized” by adding an image of the Moon in
the background.

Two versions of this plot are considered: one using a raster JPEG photograph
of the North Pole of the Moon, taken by NASA’s Galileo spacecraft and one
using a vector SVG file from the Open Clip Art Library (see Figure 18.1).

The complete plots are shown in Figure 18.2 and code for these plots is avail-
able on the book web site. The focus of this chapter is on the two conceptual
steps involved in producing the plots:

1. The external image has to be read into R. This involves having the
ability to read the file format of the external image and being able to
work with the data structure that is used to use to store the image in
R.

2. The image has to be rendered by R. How this occurs will depend on
the data structure that was created in the previous step. It may be
important to be able to retain the original aspect ratio of the original
image and it is usually important to be able to draw the image relative
to the coordinate systems of the R plot.
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Table 18.1
A selection of packages that can read external raster images into R. The De-
pendencies are third-party software applications or libraries that must also be
installed for the package to work.

Package Function File Formats Dependencies

pixmap read.pnm() PBM, PGM, PPM -
png readPNG() PNG libpng
rtiff readTiff() TIFF pixmap, libtiff
ReadImages read.jpeg() JPEG libjpeg
EBImage readImage() MANY ImageMagick
RImageJ IJ$openImage() MANY rJava, Java

18.2 Importing raster graphics

Examples of raster formats include JPEG, PNG, and GIF. A standard source of
JPEG files are photographs from digital cameras, while GIF and PNG images
are commonly encountered on the web.

The first step is to find a function that can read the file format of the exter-
nal image. A large number of packages provide functions for reading image
formats and Table 18.1 describes some of these. The important differences
between these functions are the range of file formats that they can handle and
how much they depend on other software (i.e., how much other software must
also be installed).

The packages that are built on more sophisticated systems, such as EBImage
and RImageJ, also provide numerous functions for manipulating images,
from simple operations such as cropping an image to more complex tasks
such as identifying features within an image.

There are also many application-specific packages that can read more special-
ized formats and perform image manipulations relative to the area of research.
For example, there are packages such as fmri for reading and analyzing MRI
medical images. Another example is the raster package for reading and work-
ing with geographical maps (see Section 14.5).

Having read an image into R, the next step is to view the image. Some
packages provide functions for viewing an image by itself. For example, there
is the display() function in the EBImage package. However, if the image is
to be included as part of R graphics output, it is more useful to be able to draw
the image with either the rasterImage() function or the grid.raster()
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Figure 18.2
Two versions of a plot with a background image. In the top plot, a raster pho-
tograph of the Moon provides a backdrop and, in the bottom plot, the backdrop
is a vector cartoon of the Moon. The data on low tides and phases of the Moon
for Auckland in January 2010 were obtained from Land Information New Zealand
(http://hydro.linz.govt.nz).
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function because they allow the image to be drawn relative to the plot regions
and coordinate systems of an R plot (for example, Figure 18.2).

The best solution is for the package to provide a method for the as.raster()
function, to convert the image to a "raster" object. This allows the image
to be used directly with rasterImage() or grid.raster(). At the time
of writing few packages have provided this support, so another option is to
convert the image to a matrix or array, which the functions will also accept
and automatically convert.

As an example, the following code reads the Moon image (in a PGM format)
into R.

> library(pixmap)

> moon <- read.pnm("Moon/GPN-2000-000473.pgm")

The result, moon, is a "pixmapGrey" object. With an as.raster() method
defined for this type of object, drawing the image is as simple as the following
code.

> grid.raster(moon)

If no such method exists, the information in the object can be used to create
a matrix to draw, as in the following code.

> grid.raster(matrix(moon@grey, nrow=moon@size[1]))

In the case of pixmap, there is also a convenience function addlogo() for
adding an image to a traditional graphics plot.

18.2.1 Manipulating raster images

Once an image has been read into R, the result is typically something like
a matrix object. Because R has many facilities for working with matrix-like
objects, it is relatively simple to manipulate an image in R. For example,
cropping an image is simply a subsetting operation in R.

Figures 18.3 and 18.4 show a slightly more complex example. In this case,
the grayscale values from the right-hand image in Figure 18.3 are used to
set the alpha channel of the left-hand image in Figure 18.3; the result is
the image in Figure 18.4. Wherever the right image is black, the left image
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Figure 18.3
Two raster images that are used as the source material for producing the raster
image in Figure 18.4. The right-hand image is the same as in Figure 18.1. The
left-hand image is also courtesy of NASA
(http://grin.hq.nasa.gov/ABSTRACTS/GPN-2001-000013.html).

becomes transparent; where the right is white, the left remains the same, and
where the right is gray, the left becomes ghostly. This is achieved simply by
manipulating matrices (the code is available on the book web site).

18.3 Importing vector graphics

Examples of vector image formats include PDF, PostScript, and SVG. There
is only one package that is directly aimed at reading vector images into R, so
the choice of which package to use is straightforward.

18.3.1 The grImport package

In the simplest case, where the original is a simple PostScript image and all
that is needed is to draw the entire image somewhere on the page, the following
code will suffice to read the image into R.

> library(grImport)
> PostScriptTrace(system.file("extra", "comic_moon.ps",

package="RGraphics"))
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Figure 18.4
Manipulating raster images. The two images in Figure 18.3 have been combined to
form this image.

> vectorMoon <- readPicture("comic_moon.ps.xml")

The PostScriptTrace() function converts a PostScript image into an XML
format (using Ghostscript). This step only needs to be performed once for
each image; it creates a new file with .xml attached to the file name. The
readPicture function reads the XML file into R.

The object that is created, vectorMoon, can then be rendered using the
picture() function, which will draw the image in the current traditional
graphics plot region, or using the grid.picture() function, which will draw
the image in the current grid viewport, as in the following code.

> grid.picture(vectorMoon)

Unfortunately, the situation is rarely this simple. For a start, the image may
not be in the PostScript format. In that case, the only option is to use another
software tool to convert the image to PostScript. Many tools exist to do this
job; ImageMagick is one and, for converting from an SVG image, Inkscape∗

∗http://inkscape.org/.
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produces good results. One danger is that, for complex vector images, some
tools may convert the image, or parts of it, to a raster format. A number of
other issues may also arise, mainly due to the fact that the content of a vector
image can vary much more than the content of a raster image.

A raster image can be thought of as simply a two-dimensional array of pixels.
There are many different ways that an array of pixels can be stored in a file,
but the image structure is fundamentally always the same and very simple.
This means that there are very few variations on how to read a raster image
into R or how to draw a raster image as part of an R plot. The functions to
read and draw raster images have relatively few arguments.

By contrast, a vector image is made up of a number of shapes or paths. There
may be very few paths, or very many paths. The paths may overlap each other
or even intersect with themselves. There may be text (letters are essentially
quite detailed and complex paths) and, in more complex cases, one path may
be used just to define a clipping region and not be drawn at all.

Sometimes, these complications mean that R will not be able to import an
image or it may not render the original image properly. In any case, reading
in a vector image and rendering the image may require more than a single
step. In particular, it may be necessary to work with individual paths within
a vector image and the grImport package provides several tools for doing so.

18.3.2 Manipulating vector images

One convenient feature is the ability to subset the object that is created by
the readPicture() function. For example, the following code just draws the
first four paths in the image (see Figure 18.6).

> grid.picture(vectorMoon[1:4])

There is also a picturePaths() function that allows each path to be inspected
in isolation. The following code shows the first six paths within the cartoon
Moon image (see Figure 18.5).

> picturePaths(vectorMoon[1:6], fill="white",
freeScales=TRUE, nr=2, nc=3)

It is also useful to note that the imported image is essentially just a series
of polygon outlines. The following code draws a “wireframe” version of the
Moon image by ignoring the colors from the original image and just drawing
the outline of each path (see Figure 18.6).
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Figure 18.5
The first six paths (shapes) in the cartoon Moon image from Figure 18.1.

Figure 18.6
On the left, a “subset” of the Moon image (Figure 18.1), consisting of only the first
four paths. On the right, the paths from the cartoon Moon image drawn as simple
outlines, ignoring the fill colors from the original image.

> grid.picture(vectorMoon, use.gc=FALSE)

These facilities can be used, for example, to exclude certain parts of an image,
or to render paths in a different order, which can sometimes be useful in
reproducing the original image faithfully with R graphics.
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Chapter summary

A number of packages provide functions for reading raster images into
R. The images can be drawn using traditional or grid graphical prim-
itives. The grImport package provides functions for reading vector
images into R and drawing them. Both raster and vector images can
be manipulated in R using standard data manipulation tools, such as
subsetting.
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Combining Graphics Systems

Chapter preview

This chapter describes the gridBase package, which makes it possible
to combine the output from the traditional graphics system with the
output from the grid graphics system.

The grid graphics system and the traditional graphics system work completely
independently of each other. This means that, while it is possible to produce
output from both systems on the same page, there should normally be no
expectation that the output from the two systems will correspond in any
sensible way.

This chapter describes the gridBase package, which provides functions that
can be used, in some situations, and with a little care, to overcome this in-
herent incompatibility and combine the output from the two systems in a
coherent manner.

19.1 The gridBase package

The grid graphics system offers more power and flexibility than the traditional
graphics system, and the lattice and ggplot2 packages provide some facilities
not available in the traditional graphics system. However, it is often necessary
to use the traditional system because many plotting functions in extension
packages for R are built on the traditional system. Clearly, a combination of
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the wide range of traditional plots and the power and flexibility of grid and
lattice would be desirable and this is what the gridBase package provides.

19.1.1 Annotating traditional graphics using grid

The gridBase package has one function, baseViewports(), that supports
adding grid output to a traditional graphics plot. This function creates a set
of grid viewports (see Section 6.5) that correspond to the current traditional
plot regions (see Section 3.1.1). By pushing these viewports, it is possible
to do simple annotations to a traditional plot, such as adding lines and text
using grid’s units to locate them relative to a wide variety of coordinate
systems, or to attempt more complex annotations involving pushing further
grid viewports.

The baseViewports() function returns a list of three grid viewports. The first
corresponds to the traditional graphics inner region. This viewport is relative
to the entire device and it only makes sense to push this viewport from the
“top level” (i.e., only when no other grid viewports have been pushed). The
second viewport corresponds to the traditional graphics figure region and is
relative to the inner region, and it only makes sense to push it after the inner
viewport has been pushed. The third viewport corresponds to the traditional
graphics plot region and is relative to the figure region, and it only makes
sense to push it after the other two viewports have been pushed in the correct
order.

A simple application of this facility involves adding text to the margins of a
traditional graphics plot at an arbitrary orientation. The traditional graphics
function mtext() allows text to be located in terms of a number of lines away
from the plot region, but only at rotations of 0 or 90 degrees. The traditional
graphics text() function allows arbitrary rotations, but only locates text
relative to the user coordinate system in effect in the plot region (which is
inconvenient for locating text in the margins of the plot). By contrast, the
grid function grid.text() allows arbitrary rotations and can be used in any
grid viewport. In the following, a traditional graphics plot is created with
the x-axis tick labels left off.

> midpts <- barplot(1:10, col="gray90", axes=FALSE)
> axis(2)
> axis(1, at=midpts, labels=FALSE)

In the next code, baseViewports() is used to create grid viewports that
correspond to the traditional graphics plot and those viewports are pushed.
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Figure 19.1
Annotating a traditional plot with grid. Most of the plot is drawn using the tra-
ditional barplot() function, but the x-axis labels are drawn using grid.text() to
make use of both a convenient coordinate system (lines of text away from the x-axis)
and the ability to rotate text to any angle.

> library(gridBase)
> vps <- baseViewports()
> pushViewport(vps$inner, vps$figure, vps$plot)

Finally, rotated labels are drawn using grid.text() (and the viewports are
popped to clean up). The final output is shown in Figure 19.1.

> grid.text(c("one", "two", "three", "four", "five",
"six", "seven", "eight", "nine", "ten"),

x=unit(midpts, "native"), y=unit(-1, "lines"),
just="right", rot=60)

> popViewport(3)

19.1.2 Traditional graphics in grid viewports

The gridBase package provides several functions for adding traditional graph-
ics output to grid output. There are three functions that allow traditional
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graphics plotting regions to be aligned with the current grid viewport. These
make it possible to draw one or more traditional graphics plots within a grid
viewport. The fourth function, gridPAR(), provides a set of graphical pa-
rameter settings so that traditional graphics par() settings can be made to
correspond to some of the current grid graphical parameter settings.

The first three functions are gridOMI(), gridFIG(), and gridPLT(). They
return the appropriate par() values for setting the traditional graphics inner,
figure, and plot regions, respectively.

The main usefulness of these functions is to allow the user to create a complex
layout using grid and then draw a traditional graphics plot within relevant
elements of that layout. The following example uses this idea to create a
lattice plot where the panels contain dendrograms drawn using traditional
graphics functions.

The first step just involves preparing some data to plot. A dendrogram object
is created and cut it into four subtrees.∗

> hc <- hclust(dist(USArrests), "ave")
> dend1 <- as.dendrogram(hc)
> dend2 <- cut(dend1, h=70)

Next, some dummy-variables are created that correspond to the four subtrees.

> x <- 1:4
> y <- 1:4
> height <- factor(round(sapply(dend2$lower,

attr, "height")))

Now a lattice panel function is defined to draw the dendrograms. The first
thing this panel function does is push a viewport that is smaller than the
viewport lattice creates for the panel. The purpose of this is to ensure that
there is enough room for the labels on the dendrogram. The space variable
contains a measure of the length of the longest label. The panel function then
calls gridPLT() and makes the traditional graphics plot region correspond to
the viewport that has just been pushed. It also sets new=TRUE so that the
following call to plot() does not start a new page. Finally, the traditional
plot() function is used to draw the dendrogram (and then the viewport is
popped).

∗This example uses data on violent crimes in the United States, available as the USAr-

rests data set in the datasets package.
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> space <- 1.2 * max(stringWidth(rownames(USArrests)))
> dendpanel <- function(x, y, subscripts, ...) {

pushViewport(viewport(gp=gpar(fontsize=8)),
viewport(y=unit(0.95, "npc"), width=0.9,

height=unit(0.95, "npc") - space,
just="top"))

par(plt=gridPLT(), new=TRUE, ps=8)
plot(dend2$lower[[subscripts]], axes=FALSE)
popViewport(2)

}

Now the main plot can be drawn, using lattice to set up the arrangement of
panels and strips (grid viewports) and the panel function defined above to
draw a traditional graphics dendrogram in each panel.

> library(lattice)

The final plot is produced by a call to the xyplot() function (see Figure 19.2).

> plot.new()
> print(xyplot(y ~ x | height, subscripts=TRUE,

xlab="", ylab="",
strip=strip.custom(style=4),
scales=list(draw=FALSE),
panel=dendpanel),

newpage=FALSE)

The code above includes a call to plot.new() before the call to xyplot(). It
is generally a good idea to start the new page with a call to plot.new() like
this, rather than with grid.newpage(), or a high-level lattice or ggplot2
function, because the grid-based functions tend to be more accepting of the
fact that there may already be other drawing on the page.

This also explains the explicit call to print() around the xyplot() call, so
that the newpage argument can be used to prevent xyplot() from starting
its own new page.

19.1.3 Problems and limitations

The functions provided by the gridBase package allow the user to mix output
from two quite different graphics systems and there are limits to how much
the systems can be combined:
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Figure 19.2
Embedding a traditional plot within lattice output. The arrangement of the panels
and the drawing of axes and strips is all done by lattice using grid, but the contents
of each panel is a dendrogram plot produced by the traditional graphics system.
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� It is not possible to embed traditional graphics output within a grid
viewport that is rotated.

� There are certain traditional graphics functions that modify settings like
omi and fig themselves (e.g., coplot()). Output from these functions
will not embed properly within grid viewports.

� The calculations used to match grid graphics settings with traditional
graphics settings (and vice versa) are only valid if the device size does
not change. If these functions are used to draw into a window, then the
window is resized, the traditional graphics and grid settings will almost
certainly no longer match and the graph may become nonsensical. This
also applies to copying output between devices of different sizes.

The recordGraphics() function provides one way to avoid this prob-
lem, though proper use of the function requires expert knowledge. A
very naive use is shown in the following code.

> plot.new()
> recordGraphics({ print(xyplot(y ~ x | height,

subscripts=TRUE,
xlab="", ylab="",
strip=strip.custom(style=4),
scales=list(draw=FALSE),
panel=dendpanel),

newpage=FALSE)
},
list(),
globalenv())

Some other solutions to this problem are discussed in Section 8.3.11.

Chapter summary

The gridBase package provides functions for aligning grid viewports
with traditional graphics plot regions. This makes it possible to draw
grid-based output within a traditional plot and traditional graphics
output within grid viewports, including lattice and ggplot2 plots.





Bibliography

Daniel Adler and Duncan Murdoch. rgl: 3D Visualization Device System
(OpenGL), 2010. R package version 0.91.

Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley
Longman, 2nd edition, 1990.

Felix Andrews. latticist: A Graphical User Interface for Exploratory Visuali-
sation, 2010a. R package version 0.9-43.

Felix Andrews. playwith: A GUI for Interactive Plots Using GTK+, 2010b.
R package version 0.9-52.

Baptiste Auguie. gridExtra: Functions in grid Graphics, 2010. R package
version 0.7.

Richard A. Becker and John M. Chambers. Extending the S System. Chapman
& Hall, 1985.

Richard A. Becker, William S. Cleveland, and Ming-Jen Shyu. The visual
design and control of trellis display. Journal of Computational and Graphical
Statistics, 5:123–155, 1996.

Richard A. Becker, Allan R. Wilks, and R version by Ray Brownrigg. mapdata:
Extra Map Databases, 2010a. R package version 2.1-3.

Richard A. Becker, Allan R. Wilks, and R version by Ray Brownrigg and
Thomas P Minka. maps: Draw Geographical Maps, 2010b. R package
version 2.1-4.

Roger Bivand, Friedrich Leisch, and Martin Mächler. pixmap: Bitmap Images
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