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Growth Curve Analysis and Visualization Using R provides a prac-
tical, easy-to-understand guide to carrying out multilevel regression/
growth curve analysis (GCA) of time course or longitudinal data in the 
behavioral sciences, particularly cognitive science, cognitive neuro-
science, and psychology. With a minimum of statistical theory and 
technical jargon, the author focuses on the concrete issue of apply-
ing GCA to behavioral science data and individual differences. 

The book begins with discussing problems encountered when ana-
lyzing time course data, how to visualize time course data using the 
ggplot2 package, and how to format data for GCA and plotting. It 
then presents a conceptual overview of GCA and the core analysis 
syntax using the lme4 package and demonstrates how to plot model 
fits. The book describes how to deal with change over time that is 
not linear, how to structure random effects, how GCA and regression 
use categorical predictors, and how to conduct multiple simultane-
ous comparisons among different levels of a factor. It also compares 
the advantages and disadvantages of approaches to implementing 
logistic and quasi-logistic GCA and discusses how to use GCA to 
analyze individual differences as both fixed and random effects. The 
final chapter presents the code for all of the key examples along with 
samples demonstrating how to report GCA results.

Throughout the book, R code illustrates how to implement the analy-
ses and generate the graphs. Each chapter ends with exercises to 
test your understanding. The example datasets, code for solutions to 
the exercises, and supplemental code and examples are available on 
the author’s website.
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Preface

About This Book

This book is intended to be a practical, easy-to-understand guide to carrying
out growth curve analysis (multilevel regression) of time course or longitudinal
data in the behavioral sciences, particularly cognitive science, cognitive neu-
roscience, and psychology. Multilevel regression is becoming a more and more
prominent statistical tool in the behavioral sciences and it is especially useful
for time course data, so many researchers know they should use it, but they
do not know how to use it. In addition, analysis of individual differences (de-
velopmental, neuropsychological, etc.) is an important subject of behavioral
science research but many researchers don’t know how to implement analy-
sis methods that would help them quantify individual differences. Multilevel
regression provides a statistical framework for quantifying and analyzing indi-
vidual differences in the context of a model of the overall group effects. There
are several excellent, detailed textbooks on multilevel regression, but I believe
that many behavioral scientists have neither the time nor the inclination to
work through those texts. If you are one of these scientists – if you have time
course data and want to use growth curve analysis, but don’t know how –
then this book is for you. I have tried to avoid statistical theory and techni-
cal jargon in favor of focusing on the concrete issue of applying growth curve
analysis to behavioral science data and individual differences.

This book begins with a simple definition of time course or longitudinal
data and a discussion of problems with analyzing separate time bins or win-
dows using t-tests or ANOVAs. The first chapter will also provide a brief
introduction to using ggplot to visualize time course data and describe how
data need to be formatted for growth curve analysis and plotting. Chapter 2
will provide a basic overview of the structure of growth curve analysis (GCA)
and how it addresses the challenges described in Chapter 1. This chapter will
include the first two concrete examples of GCA, including the core analysis
syntax using lmer and how to plot model fits. Chapter 3 will describe how
to deal with change over time that is not linear, focusing on the potentially
difficult challenge of selecting a growth curve model form. Chapter 4 will cover
how to structure random effects, including how to analyze within-participant
designs and whether participants should be treated as fixed or random effects.
Chapter 5 will discuss how GCA (and regression more generally) uses categor-
ical predictors and how to conduct multiple simultaneous comparisons among

xv



xvi

different levels of a factor. Chapter 6 will explain why binary outcomes re-
quire logistic models, how to implement logistic and quasi-logistic GCA, and
the relative advantages and disadvantages of these approaches. Chapter 7 will
discuss how to use GCA to analyze individual differences when there is a sep-
arate measure of those differences and how to extract estimates of individual
effect sizes from the model itself.

Throughout this book, R code will be provided to demonstrate how to
implement the analyses and to generate the graphs. Each chapter also ends
with a few exercises so you can test your understanding. Chapter 8 presents
the code for all of the key examples along with sample write-ups demonstrating
how to report GCA results. The example datasets, code for solutions to the
self-test exercises, and other supplemental code and examples can be found
on the book website: http://www.danmirman.org/gca.

R

This book assumes minimal familiarity with R and no expertise in computer
programming. If you are unfamiliar with R, then consider this a great time to
start learning it. R (http://www.r-project.org/) is a free, open-source, cross-
platform system for statistical computing and graphics. For beginners, R in
a Nutshell by Joseph Adler is an accessible and comprehensive guide and
Code School has developed an excellent interactive online tutorial called Try R
(http://tryr.codeschool.com/). For those who are familiar with SAS or SPSS,
Robert Muenchen’s R for SAS and SPSS Users can help smooth the transi-
tion.

In addition to base R, there are many add-on packages that extend or
simplify its functionality. For the purposes of this book, only two additional
packages are required:

� lme4: This package implements linear mixed-effects (multilevel) regres-
sion and will be the primary tool for growth curve analysis.

� ggplot2: This package provides powerful and elegant graphing tools,
which will be used throughout the book to plot data and model fits.
The package website (http://ggplot2.org/) has documentation and other
useful resources.

A few other packages are not required, but will prove useful, including plyr

and reshape2 for manipulating data, stringr for working with character
strings (text), multcomp for making multiple simultaneous comparisons among
factor levels, and psych for miscellaneous tools and datasets that may be rele-
vant to researchers in the psychological sciences. I also highly recommend using
RStudio (http://www.rstudio.com/), which is a full-featured, cross-platform



xvii

integrated development environment for R. RStudio has many features that
make R a lot more user-friendly, including syntax highlighting, executing code
directly from the source editor, workspace and data viewers, plot history with
easy image export, and a package management and installation interface. For
more advanced users, it also offers project management tools and one-click
Sweave execution with PDF preview.

In addition to these relatively static resources, R has a very active and di-
verse online community, covering a huge range of topics (including the behav-
ioral and social sciences) for all levels, from beginners to advanced developers.
Cookbook for R (http://www.cookbook-r.com/) is a cookbook-style how-to
wiki that covers a wide range of topics, including a detailed guide to plotting
with ggplot2. R-bloggers (http://www.r-bloggers.com/) is a blog aggregator
that pulls together R-related blog posts from hundreds of bloggers and is a
great way to learn helpful tips and tricks and keep up with the cutting edge
in the world of R. If you get stuck, Stackoverflow (http://stackoverflow.com/)
is a question and answer site for professional and enthusiast programmers.
Many thousands of R questions have already been asked and answered on
the site, so the answer to your question might already be there. If it is not,
then you should join the community and ask it – the answers are usually
fast and helpful. For researchers in the language sciences, the R-lang mailing
list (https://mailman.ucsd.edu/mailman/listinfo/ling-r-lang-l) can be a help-
ful resource and multilevel modeling is a frequent topic of discussion on that
list.

Multilevel Regression

This book is meant to be a practical guide to implementing growth curve
analysis, not a comprehensive textbook on multilevel regression or hierarchi-
cal linear modeling. For those interested in a deeper and broader statistical
discussion of multilevel modeling, there are several excellent textbooks. Three
that I recommend are

� Gelman, A., & Hill, J. (2007). Data Analysis Using Multilevel/Hierarchical
Models. Cambridge University Press.

� Singer, J. D., & Willett, J. B. (2003). Applied Longitudinal Analysis:
Modeling Change and Event Occurrence. Oxford University Press.

� Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models:
Applications and Data Analysis Methods. Sage Publications.
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1.1 Chapter overview

This chapter will describe the main problems that growth curve analysis is
meant to address. First, it will define a particular kind of data, called time
course data or longitudinal data, which involve systematic relationships be-
tween observations at different time points. These relationships pose problems
for simple traditional analysis methods like t-tests.

Section 1.3 will discuss four kinds of problems and illustrate them with
concrete examples. First, using separate analyses for individual time bins or
time windows creates a trade-off between power (more data in each bin) and
temporal resolution (smaller time bins). Second, flexibility in selection of time
bins or windows for analysis introduces experimenter bias. Third, statistical
thresholding (p < 0.05 is significant but p > 0.05 is not) makes gradual change
look abrupt and creates the illusion that continuous processes are discrete.
Fourth, there is no clear way to quantify individual differences, which are an
important source of constraints for theories in the behavioral sciences.

Section 1.4 will provide a brief introduction to ggplot2, a powerful and
flexible package for graphing data in R. Section 1.5 will distinguish between
wide and long data formats and describe how to use the melt function to

1
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convert data from the wide to the long format, which is the right format for
growth curve analysis and for plotting with ggplot2. The rest of this book will
describe growth curve analysis, a multilevel regression method that addresses
the challenges discussed in this chapter, provide a guide to applying growth
curve analysis to time course data, and demonstrate how to use ggplot2 to
visualize time course data and growth curve model fits.

1.2 What are “time course data”?

Time course data are the result of making repeated observations or measure-
ments at multiple time points. These sorts of data are also called longitudi-
nal or, more generally, repeated measures data. Imagine that you measured a
child’s height annually from birth to 18 years old. You would have a series of
19 data points that describe how that child’s height changed over time during
those 18 years. In other words, the growth (height) time course for that child.

Two key properties distinguish time course data from other kinds of data.
The first is that groups of observations all come from one source, which is
called nested data. In the height example, the source was a particular child. If
you repeated this procedure for another child, you would now have two nested
series of data points corresponding to the two children in your study. The
heights of two randomly selected children may be uncorrelated, but the height
of a child at time t is strongly correlated with that child’s height at time t−1.
Nested observations are not independent and this non-independence needs to
be taken into account during data analysis. Capturing this nested structure
allows quantifying the particular pattern of correlation among data points for
an individual, which can reveal potentially interesting individual differences –
a taller child compared to a shorter child, whether the child had an earlier or
later growth spurt, etc.

In this example, the data were nested or grouped at the individual par-
ticipant level. The grouping can also be at a higher level. For example, if
you measured the weights of newborns at different hospitals every month for
a year, you would have data grouped by hospital, rather than by individual
child (each child was only weighed once, but each hospital’s newborns were
weighed every month). Groupings can also be at multiple levels; for example,
if you followed those children as they grew, you would have measurements
grouped by child and children grouped by hospital.

The second key property of longitudinal data is that the repeated mea-
surements are related by a continuous variable. Usually that variable is time,
as in the child growth example, but it can be any continuous variable. For
example, if you asked participants to name letters printed in different sizes,
you could examine the outcome (letter recognition accuracy) as a function of
the continuous predictor size. On the other hand, if you had presented let-
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ters from different alphabets (Latin, Cyrillic, Hebrew, etc.), that would be a
categorical predictor. For categorical predictors, one can only assess whether
the outcome was different between different categories (for example, if recog-
nition of Latin letters was better or worse than recognition of Cyrillic letters).
For continuous predictors, one can do that kind of simple comparison, but it
is also possible to assess the shape of the change – whether the relationship
between letter recognition accuracy and letter size follows a straight line, or
accuracy improves rapidly for smaller sizes and then reaches a plateau, or fol-
lows a U-shape. Because time is so frequently that critical continuous variable,
this book will typically refer to these sorts of data as “time course data” even
though the same issues apply to other continuous predictors.

As we will see, growth curve analysis (GCA) is a way to analyze nested
data that takes the grouping into account and provides a way to quantify and
assess the shapes of time course curves. Before getting into GCA, it will help
to understand the challenges of analyzing time course data in a little more
detail. That is, to understand why traditional methods like t-test and analysis
of variance (ANOVA) are not well-suited to these sorts of data. To do that,
the next section goes over some examples of the kinds of problems that come
up when analyzing time course data.

1.3 Key challenges in analyzing time course data

How should time course data be analyzed? A simple approach is to apply
traditional data analysis techniques like t-tests or ANOVAs. For example, we
could independently compare conditions at each time bin or time window.
This approach has a number of problems, which are easiest to demonstrate
with concrete examples.

1.3.1 Trade-off between power and resolution

The data in Figure 1.1 are based on an experiment that examined whether
words with high “transitional probability” (TP) would be learned faster than
words with low TP (Mirman, Magnuson, Graf Estes, & Dixon, 2008). Word
learning was predicted to be faster in the high TP condition than the low TP
condition. The training trials were grouped into blocks to examine the gradual
learning. The data in Figure 1.1 are the word “learning curves”: the partici-
pants started out near chance (50% correct, because there are two response
choices on each trial) and gradually got better, reaching about 90% correct at
the end of 10 blocks of training trials. Importantly, it looks like this learning
was faster for high TP words.

What kind of statistical test would provide the quantitative test of the
effect of TP on word learning? Faster word learning means that participants in
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FIGURE 1.1
Effect of transitional probability (TP) on novel word learning.

the High TP condition generally have higher accuracy, so we could do a t-test
comparing the High and Low TP conditions on overall accuracy. This turns out
to be only marginally statistically significant (t(54) = −1.69, p = 0.096). We
could do a repeated measures ANOVA with TP and Block as main effects and
look for a TP-by-Block interaction, which would indicate that the TP effect
differs across Blocks. For these data, we would get a strong main effect of Block
(i.e., participants in both conditions learned the novel words: F (9, 486) = 21.9,
p < 0.001) and a marginal main effect of TP (analogous to the overall t-
test: F (1, 54) = 2.87, p = 0.096), but no hint of a TP-by-Block interaction
(F (9, 486) = 1.02, p = 0.42).

Finally, we could run a series of t-tests comparing the TP conditions in
each Block to see if any of those t-test comparisons are significant. Conducting
such multiple comparisons increases the risk of a false positive result because
the likelihood of observing p < 0.05 in any one of the 10 blocks is much
higher than the nominal 5% false positive rate implied by p < 0.05. However,
even without correcting for multiple comparisons, block-by-block t-tests do
not seem to capture the difference in learning rate in a completely satisfying
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way (Table 1.1): there is just one block with a significant TP effect (block
4) and one block with a marginal TP effect (block 5). The problem is that

TABLE 1.1
Block-by-Block t-Test Results for Effect of TP on Novel Word Learning

Block t df p
1 0.73 54.00 0.47
2 -1.09 54.00 0.28
3 -0.84 54.00 0.40
4 -2.08 54.00 0.04
5 -1.83 54.00 0.07
6 -1.51 54.00 0.14
7 -1.32 54.00 0.19
8 -1.60 54.00 0.11
9 -0.72 54.00 0.48

10 -0.13 54.00 0.89

gradual change over time can be difficult to detect: because it is gradual, the
overall effect will be weak and because each time bin (trial block) has only
a small amount of data, individual time bin comparisons are underpowered.
In other words, there is a trade-off between statistical power, which requires
more data and therefore larger time windows, and temporal resolution, which
requires smaller time windows but undermines statistical power.

1.3.2 Possibility of experimenter bias

Consider the data in Figure 1.2, which are based on a spoken word comprehen-
sion experiment using eye-tracking (Magnuson, Dixon, Tanenhaus, & Aslin,
2007). The curves show the probability of fixating the named (“target”) pic-
ture over time, starting at word onset. How could we verify that the crossover
effect is statistically significant? We could divide the time range into an early
time window (before the crossover point) and a later time window (after the
crossover point) and test whether the condition effect is different in the two
time windows. However, if that crossover was not predicted, or even if just
the specific timing of the crossover point had not been predicted, then using
the observed data themselves to define the analysis would constitute a case of
“double-dipping,”which increases the rate of false positives (e.g., Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009).

1.3.3 Statistical thresholding

A third problem with bin-by-bin analyses is that statistical thresholding can
create spurious disagreements. That is, our inferential strategy of treating p-
values less than 0.05 as fundamentally different from those greater than 0.05
(or 0.10, if the researcher is feeling generous) can turn (noisy) gradual changes
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FIGURE 1.2
A crossover effect in target fixation probability.

into seemingly discrete, discontinuous differences. To illustrate this point, let’s
return to the word learning data, but to avoid any uncertainty, let’s define the
data in Figure 1.1 as the true underlying effect. Now we can generate simulated
data with that shape and variability. In this scenario, we know for a fact that
High TP words were learned faster, as shown in the top panel of Figure 1.3.
Twenty simulated replications of the experiment — all using the same true
underlying effect — were generated and analyzed with block-by-block t-tests
to test the reliability of this approach.

The results of these block-by-block t-tests are shown in the bottom panel of
Figure 1.3 with filled squares indicating a statistically significant advantage for
the High TP condition (p < 0.05) without correcting for multiple comparisons.
In 15 of the 20 replications the difference was significant in at least one block,
but in 5 there was not a single training block that showed a statistically
significant advantage for the High TP condition despite the fact that there was
a true advantage. Although failures to replicate are to be expected to some
degree (e.g., Francis, 2012), it is not hard to imagine skeptics taking this 25%
rate of failure to replicate as evidence that there is no effect. Their skepticism
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FIGURE 1.3
Top: Underlying data pattern for simulated replications of the effect of TP on
novel word learning. Bottom: Results of block-by-block t-tests for the 20 sim-
ulated replications. Filled squares indicate statistically significant differences
(p < 0.05, uncorrected).
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could be further bolstered by the striking variability across replications. Based
on the shape of the underlying model from which the data were generated,
one would expect that the blocks 4-7 would show the differences most reliably.
To some degree this was true — significant differences were detected most
frequently in these blocks — but that frequency was only 50-60%. Another
problem is that the number of blocks with p < 0.05 differed radically from
replication to replication (0 - 9 blocks) and in about half of these replications,
the p < 0.05 blocks were not contiguous (for example, in replication #10,
the TP effect was significant in Blocks 5 and 9, but not in 6, 7, or 8). All of
this inconsistency arose despite the data having been generated from a single,
continuous underlying effect (top panel of Figure 1.3). Given concerns about
replicability in the psychological sciences (e.g., the November 2012 issue of
Perspectives on Psychological Science), we need statistical methods that are
more robust than this.

1.3.4 Individual differences

In the previous example, each of the simulated replications had the same un-
derlying true effect and just differed due to simulation of a different random
set of individual participants. Traditional analyses like t-tests and ANOVA
assume random variation among individual participants and stop there, limit-
ing theories to describing a hypothetical prototypical individual. However, we
can ask a deeper question: what is the source of this variability among indi-
viduals? This is an important question because individual differences provide
unique constraints on our theories. Insofar as individuals differ from that pro-
totype, this tells us something about how the system (cognitive, psychological,
behavioral, neural, etc.) is organized. A good theory should not just account
for the overall average behavior of a system, but also for the ways in which
the system’s behavior varies. For example, a good theory of human language
processing should not only account for how typical college students process
language, but also how language processing develops from infancy through
adulthood into old age and how it breaks down, both in developmental and
acquired disorders. All of this variability is not random — it is structured by
the nature of the system — but we can’t understand that structure unless
we can quantify individual differences. Traditional data analysis methods like
t-tests and ANOVAs do not provide a method for doing this.

To sum up, time course data entail some unique data analysis challenges.
(1) Bin-by-bin analyses force a trade-off between statistical power and tem-
poral resolution. (2) Comparing different time windows has the potential to
introduce experimenter bias. (3) Normal variability can produce spurious dis-
agreements about time course effects due to statistical thresholding in bin-by-
bin analyses. (4) Traditional methods like t-tests and ANOVAs do not provide
a meaningful way to quantify individual differences, which are an important
source of constraints on theories. Growth curve analysis (GCA) provides a way
to address these challenges. Before statistically analyzing data it is important
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to be able to visually inspect it and to get it into the right format. The next
two sections will introduce a set of tools for visualizing time course data in R
and describe how to get data into the right format for analysis and plotting.

1.4 Visualizing time course data

So far, we’ve been talking about the challenges of analyzing time course data.
Time course data can also pose challenges for visualization, so it is important
to have powerful and easy-to-use tools for graphing. The R package ggplot2

is particularly good for two reasons: (1) the “Grammar of Graphics” approach
provides a flexible and powerful framework for visualizing data and (2) sum-
mary statistics like means and standard errors can be computed “on the fly.”
There are many excellent guides and tutorials for ggplot2, so this section will
only provide a brief introduction, focusing on time course data.

The “Grammar of Graphics” approach is somewhat different from typical
graphing frameworks. In programs like Excel or MATLAB®, you specify a
set of (x, y) coordinate pairs and the style (color, shape, etc.) of symbols
that will be placed at those locations. In ggplot, you first assign variables
in your data to properties of the graph. These assignments or mappings are
called the aesthetics of your graph. Then you select “geometries,” or geoms —
points, lines, bars, etc. — for those aesthetics. Once you get the hang of this
approach, it provides a consistent, easy to manipulate, and intuitive framework
for visualizing your data. Here are some examples using the built-in Orange

data set, which contains growth data for 5 orange trees.
In this book, each line of R code will begin with a > character, as it would

in the R console. You should be able to type or copy the code (without the
line-start character) directly into R and run it. In order to use the ggplot2

package, you first need to load it

> library(ggplot2)

The main function is ggplot, which takes two inputs (function inputs are
usually called arguments). The first input is the data frame that you want to
plot; in our case this is Orange. The second input uses the aes function to set
up the aesthetic mappings between variables in the data and visual properties
of the graph. By default, the first input to aes is mapped to the x-axis and
the second input is mapped to the y-axis (you can also specify this explicitly).
After that, you need to specify which aesthetic is being mapped. The code
below will produce a simple scatterplot of the Orange data.

> ggplot(Orange, aes(age, circumference, shape=Tree)) +

geom_point()

The first part
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FIGURE 1.4
A simple scatterplot.

> ggplot(Orange, aes(age, circumference, shape=Tree))

sets up the ggplot object using the Orange data set and defining the aes-
thetics: age on the x-axis, circumference on the y-axis, and the different
trees represented by different symbol shapes. ggplot will automatically rec-
ognize that age and circumference are continuous variables and Tree is a
categorical variable and treat them appropriately. The second part

> + geom_point()

tells ggplot that these mappings should be realized using points, which makes
the scatterplot in Figure 1.4. This use of the “+” operator in ggplot syntax
may seem a little strange at first, since it is not exactly performing an addition
operation, but it will quickly become second nature.

To add lines connecting the points (Figure 1.5), all you need to do is add
the line geom using geom_line(). Note that even though shape doesn’t apply
to the lines, the grouping of points by Tree is inherited by the line geom:

> ggplot(Orange, aes(age, circumference, shape=Tree)) +

geom_point() + geom_line()

One of the advantages of using ggplot is that it is easy to switch between
different types of graphs. For example, switching to a line graph with trees
represented by different line types is simply a matter of changing the mapping
of the Tree variable to the linetype aesthetic (Figure 1.6).
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FIGURE 1.5
A line graph with points.

> ggplot(Orange, aes(age, circumference, linetype=Tree)) +

geom_line()
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FIGURE 1.6
A line graph.
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This advantage is particularly nice when you want to switch between black-
and-white figures for publication and color figures for presentations. All you
need to do is change the mapping of the Tree variable to the color aesthetic,
which will be automatically applied to both the points and the lines (see book
website for examples):

> ggplot(Orange, aes(age, circumference, color=Tree)) +

geom_point() + geom_line()

Because Tree is a categorical variable, ggplot will pick contrasting colors for
the trees. If Tree had been a continuous variable, ggplot would have used a
continuous color gradient.

Sometimes data are too complicated for plotting on a single graph and
you might want to create subplots or small multiples, which are called facets
in ggplot. Facets are a series of similar plots that show different aspects
of the data in a way that makes them easy to compare. In ggplot, facets
are essentially another aesthetic dimension – you just need to specify which
variables should be faceted, albeit with slightly different syntax. In Figure 1.7
each tree is plotted in a separate facet.

> ggplot(Orange, aes(age, circumference)) +

facet_wrap(~ Tree) + geom_line()

By default, facet_wrap creates a ribbon of small plots, one for each of the
unique values in the given variable. To create a grid of facets with one variable
defining the rows and another defining the columns, use

> facet_grid(row_variable ~ column_variable)

Another great feature of ggplot is that it can compute summary statistics
“on the fly.” If you wanted to plot the mean growth pattern across all of the
trees, in many graphing programs, you would first have to compute that mean
and then plot those mean data. Within ggplot you can compute that mean
using stat_summary, which is very convenient because you can easily look at
individual data, then group data, then re-group or exclude individuals and
check how this affects the overall patterns, etc. In other graphing packages
this kind of exploration leaves you with a proliferation of different data sets
and it can be hard to remember which one is which. With ggplot, you can do
all this exploration using just your original data set. The way to do this is to
use stat_summary and tell it which summary statistic to compute and which
geom to use to visualize it. For example, this will plot the means of all trees
as a line (Figure 1.8):

> ggplot(Orange, aes(age, circumference)) +

stat_summary(fun.y=mean, geom="line")

To add an indication of the standard error, you need to compute that summary
statistic and map it to an appropriate geom, such as pointrange or errorbar
(Figure 1.9).
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Facet plot.
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FIGURE 1.8
Summary plot: A line representing the mean at each age.

> ggplot(Orange, aes(age, circumference)) +

stat_summary(fun.y=mean, geom="line") +

stat_summary(fun.data=mean_se, geom="pointrange")

There are a variety of summary functions that come built-in with ggplot

and you can write your own fairly easily. Note that the built-in standard
error function computes basic between-subject standard errors. If you have
within-subject variables and want to plot within-subject standard errors (e.g.,
Baguley, 2012), you will need to write an appropriate summary function.1

When creating figures for manuscripts or presentations, you may want to
override various ggplot defaults to make the graphs look exactly how you
want and to export the graphs at a particular size and resolution. The ggsave
function is a convenient way to write ggplot graphs to a variety of image
formats and allows specifying image dimensions and resolution. Here is an
example of how to create a publication-ready graph of the Orange data and the
result is plotted in Figure 1.10. There are, of course, many other customization
options, some of which will be demonstrated in examples throughout this book.

> ggplot(Orange, aes(age, circumference)) +

stat_summary(fun.y=mean, geom="line") +

stat_summary(fun.data=mean_se, geom="pointrange",

1Examples can be found on the Cookbook for R website: http://www.cookbook-
r.com/Graphs/Plotting means and error bars (ggplot2)/
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FIGURE 1.9
Summary plot: The line shows the mean; the vertical line through each point
shows the standard error.

size=1) +

theme_bw(base_size=10) +

labs(x="Age (days since Dec. 31, 1968)",

y="Trunk Circumference (mm)")

> ggsave("Orange.pdf", width=3, height=3, dpi=300)

1.5 Formatting data for analysis and plotting

If you are new to R, you may want to start with an introductory book or
tutorial to become familiar with the basic data types and data exploration
functions (see Preface for recommendations). In this section, the focus will be
on getting your data into the right format for the analysis and plotting meth-
ods described in the rest of the book. To begin, it will be helpful to distinguish
between two ways of formatting nested data: wide and long data formats. In
a wide format (also sometimes called multivariate), each row corresponds to
a participant (or other individual observational unit) and each observation
is in a separate column. For example, consider a subset of the affect data
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FIGURE 1.10
Average growth of orange trees. Error bars indicate ±SE.

set (from the psych package) that shows how negative affect is influenced by
viewing one of four different 9-minute film excerpts:

� Sad: a Frontline documentary about liberation of concentration camps

� Threat: the 1978 horror film Halloween

� Neutral: National Geographic film about the Serengeti plain

� Happy: the 1989 comedy Parenthood

(for details see Rafaeli & Revelle, 2006, or the data set documentation using
?affect)

> summary(affect.subset)

Study Film NA1 NA2

maps:160 Sad :83 Min. : 0.00 Min. : 0.00

flat:170 Threat :78 1st Qu.: 1.00 1st Qu.: 0.00

Neutral:85 Median : 2.00 Median : 3.00

Happy :84 Mean : 3.69 Mean : 4.65

3rd Qu.: 6.00 3rd Qu.: 7.00

Max. :28.00 Max. :30.00

Participants were tested before and after the films, so each participant (row)
has two observations of negative affect: pretest (NA1) and posttest (NA2). This
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is most clear if we examine the first few rows of the data frame using the head

function:

> head(affect.subset)

Study Film NA1 NA2

1 maps Neutral 2 4

2 maps Neutral 4 5

3 maps Neutral 2 1

4 maps Neutral 0 2

5 maps Neutral 13 13

6 maps Sad 1 2

This “wide” data format is convenient for some analyses, such as a paired-
samples t-test, but for many analyses, including repeated measures ANOVA
and growth curve analysis, and for plotting with ggplot2, the data need to
be rearranged into a long (or univariate) format. In a long format each row
corresponds to a single observation and the outcome data are all in one column
(as opposed to two or more columns corresponding to measurement occasions).
This essentially means stacking the values in the NA1 and NA2 columns (hence
the term long format), creating a new variable that will identify whether
the value came from NA1 or NA2, and repeating the appropriate values from
the other columns (Study and Film). This can be done manually, but the
function melt from the reshape2 package provides a powerful and easy-to-
use interface for doing this conversion. The syntax of the melt function makes
the distinction between two kinds of variables:

� id variables: information that identifies the observation, such as Subject,
Time, Condition, etc. These are separate columns in the original data
and will remain separate columns.

� measure variables: measurement values, such as reaction times, negative
affect scores, etc. These are separate columns in the original data and
will be converted into a new id variable consisting of the column names
and a value column consisting of the values.

The melt function takes a data frame (it also works on arrays and lists, but
only the data frame version is relevant for our purposes), a list of id variables,
and a list of measure variables. If only the id or only the measure variables
are specified, all other columns will be assumed to correspond to the other
category. Here is how to use melt to convert the affect.subset data frame
from wide to long format specifying that Study and Film are the id variables
and NA1 and NA2 are the measure variables:

> affect.melt <- melt(affect.subset, id=c("Study","Film"),

measure=c("NA1", "NA2"))

> summary(affect.melt)
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Study Film variable value

maps:320 Sad :166 NA1:330 Min. : 0.00

flat:340 Threat :156 NA2:330 1st Qu.: 0.00

Neutral:170 Median : 2.00

Happy :168 Mean : 4.17

3rd Qu.: 6.00

Max. :30.00

The summary shows that there is now a new column called variable that
contains the column names (NA1 and NA2) and a column called value that
contains the negative affect scores. These new column names are the default
values, but they can be specified in the call to melt to produce more informa-
tive variable names. Also, since the original data contain only id and measure
variables, we only need to specify one set (in this example, the id variables)
and can let the other variables become the other set by default:

> affect.melt <- melt(affect.subset, id=c("Study", "Film"),

variable.name="Test",

value.name="Negative.Affect")

> summary(affect.melt)

Study Film Test Negative.Affect

maps:320 Sad :166 NA1:330 Min. : 0.00

flat:340 Threat :156 NA2:330 1st Qu.: 0.00

Neutral:170 Median : 2.00

Happy :168 Mean : 4.17

3rd Qu.: 6.00

Max. :30.00

Now we can use ggplot to plot the data (Figure 1.11):

> ggplot(affect.melt, aes(Film, Negative.Affect, shape=Test))+

stat_summary(fun.data=mean_se, geom="pointrange") +

scale_shape_manual(values=c(1,16)) +

theme_bw(base_size=10)

1.5.1 A note on data aggregation

Throughout this book we will consider data that have just one observation at
the lowest level of nesting. That is, just one observation per participant per
time point (per condition, for within-participant manipulations). Raw data do
not always have this kind of structure. In particular, there are often multiple
trials per condition, which need to be either aggregated into a single obser-
vation (e.g., by averaging across trials) or modeled as an additional level of
nesting. Similarly, the sampling frequency might be much faster than behav-
ioral changes (for example, an eye-tracker might record eye position every 2ms,
but planning and executing an eye movement typically takes about 200ms),
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FIGURE 1.11
Effect of film type on negative affect. Error bars indicate ±SE.

which can produce many identical observations and lead to false positive re-
sults. Aggregating such oversampled data into larger time bins (e.g., 50ms) or
otherwise downsampling the raw data may help to avoid this problem. The
optimal approaches to aggregating or pre-processing data vary widely depend-
ing on the nature of the data, the research domain, and the research questions,
so it is not possible to offer a simple strategy here. Just keep in mind that the
analysis and visualization methods described in this book will assume that
the relevant aggregation and pre-processing have already been done; if they
have not, the results might be misleading or difficult to interpret.

1.6 Chapter recap

This chapter started with a simple definition of time course data, emphasizing
two key properties: observations are nested within individuals and related by
a continuous predictor. It then discussed problems with analyzing separate
time bins or windows using t-tests or ANOVAs: (1) defining time bins creates
a trade-off between statistical power and temporal resolution and (2) intro-
duces experimenter bias; (3) normal variability in the data is exaggerated by
statistical thresholding; and (4) the data can provide interesting insights into
individual differences, but t-tests and ANOVAs do not provide a meaningful
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way to quantify individual differences. The final two sections provided a brief
introduction to using ggplot2 to visualize time course data and described how
to use the melt to get data into the right format for analysis and plotting.
The next chapter will provide a conceptual overview of growth curve analysis
and begin demonstrating how to apply it to behavioral data.

1.7 Exercises

1. The ChickWeight data set contains data on the effect of diet on early
growth of chicks (?ChickWeight for more details). Use this data set to
practice plotting longitudinal data:

(a) Make a scatterplot that shows weights of individual chicks as a
function of time and diet.

(b) Make a summary plot that shows average weight over time for each
diet.

(c) Add an indicator of standard error to the averages.

(d) Customize the plot with more informative axis labels.

(e) Make color and black-and-white versions of the plot.

(f) Use ggsave to export the plot as an image file and specify an image
size and resolution.

2. The USArrests data set contains violent crime arrests (per 100,000 resi-
dents) in each of the 50 states in the USA in 1973 and the percent of the
population of each state that lived in urban areas (?USArrests for more
details on this data set, and try ?state for other information about US
states).

(a) Convert the USArrests data set from a wide to a long format so
that instead of separate variables for each crime type (Murder,
Assault, Rape), there is one variable that identifies the crime type
and one variable that contains the rates for each crime type for
each state.

(b) Make a scatterplot showing the relationship between each type of
violent crime rate and percent of population living in urban areas.

(c) Plot the violent crime types in separate panels (tip: try using the
scales and nrow or ncol options to customize the panels).
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2.1 Chapter overview

The previous chapter described the challenges of analyzing time course data.
This chapter will provide a conceptual overview of multilevel regression, which
is a way to address those challenges. First, regression methods explicitly model
time as a continuous variable, which is the natural way to quantify change over
time. In a regression framework, it is possible to move beyond modeling just
linear changes over time – Chapter 3 will describe how to capture non-linear
change over time. Second, multilevel regression provides a way to explictly
model the nested structure of time course data. A core aspect of multilevel
regression methods is that they simultaneously quantify both group-level and
individual-level patterns within a single analysis framework. In other words,
multilevel regression allows one to simultaneously describe the overall group
pattern (as in traditional methods) and to describe how individual participants
deviate from that pattern. The result is a quantitative description of the data
that follows the nested structure of the data, including individual differences.
Quantifying individual differences opens up entire new avenues for scientific
investigation and provides new constraints on accounts of the data. Third, the
regression framework provides an easy way to examine the effects of covariates,
thus allowing more complex and informative analyses than simple t-tests.

A few words about terminology: multilevel regression is a family of meth-
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ods that is part of the broader field of longitudinal and repeated-measures
data analysis techniques and goes by different names, including “multilevel re-
gression,” “hierarchical regression,” or “hierarchical linear modeling” (HLM),
and “growth curve analysis.” Throughout this book “multilevel regression” will
be used for general discussion of multilevel regression methods and “growth
curve analysis” (or more simply “GCA”) will be used when discussing specific
applications to the kinds of data we encounter in the psychological and neural
sciences.

This book is meant to be a practical guide to using multilevel regression
in the psychological and neural sciences. Statistical theory and proofs will
be side-stepped as much as possible, but we can’t proceed without a basic
overview of the underlying math. This chapter will provide that basic overview
– just enough to understand how to apply these methods to the kinds of
data we typically encounter, but without getting into all of the mathematical
details. Gelman and Hill (2007) and Singer and Willett (2003) provide more
complete technical treatments. After the basic overview, we will walk through
two simple (linear) applications of growth curve analysis to behavioral data.
These examples will include full R code for fitting the models, evaluating them,
and plotting the data and model fits.

2.2 Structure of a growth curve model

To introduce the basic structure of a growth curve model, let’s start with the
simple linear case illustrated in Figure 2.1. We can mathematically describe
the depicted relationship between outcome variable Y and Time as

Y = β0 + β1 · Time (2.1)

where β0 is the intercept (i.e., value of Y when Time = 0) and β1 is the slope
(i.e., the average change in Y for every unit of Time). In the context of a
regression model, that general relationship is elaborated to become a model
of the individual observations Yij for individual i at Time j:

Yij = β0i + β1i · Timej + εij (2.2)

where εij is the residual error, that is, the amount that actual observation Yij
differs from the predicted value (as shown in Figure 2.1). Residual errors are
generally assumed to be independent and identically distributed, meaning that
all εij come from the same distribution and that any particular εij value does
not provide any information about other values of εij .

In a multilevel regression framework, Equation 2.2 describes the “Level 1”
model. The reason it is called multilevel regression is that we can define a
“Level 2” model of the Level 1 coefficients β0i and β1i. For example, imagine
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FIGURE 2.1
Linear regression schematic: The solid line is the linear regression line for the
individual observations illustrated by the points. β0 is the intercept; β1 is the
slope.

that we ran a study with two conditions: a control condition that will serve as
the baseline and an experimental condition that we’ll call condition C. Now
the Level 2 model of the Level 1 intercept coefficient β0i will be:

β0i = γ00 + γ0C · C + ζ0i (2.3)

where γ00 is the baseline value of β0i, γ0C is the fixed effect (also sometimes
called structural effect) of condition C on the intercept, and ζ0i is the random
(also called residual or stochastic) deviation from that baseline for individual
i. This Level 2 model does two things. First, it allows condition C to have
a unique intercept that is different from the baseline intercept. Conceptually,
this is roughly like a t-test comparing condition C to the baseline and, typ-
ically, these are the effects of primary interest. Second, it defines a structure
for the random variation in the intercept: it says that all observations within
the set indexed by i should have the same intercept, which can differ for other
values of i. In other words, the random effect structure captures the nested
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structure of the data by specifying that all of the observations indexed by a
particular value of i correspond to a single intercept, which is different from
the intercepts for other values of i. In a typical case, i could refer to individual
participants in a study and ζ0i would vary randomly across participants.

It is important to distinguish the roles of fixed effects (γ) and random ef-
fects (ζ) in the model. One easy way to think about this is that fixed effects are
interesting in themselves. In other words, they are reproducible, fixed proper-
ties of the world. In studies of psychological and neural processes, these are
typically the experimental manipulations; for example, control vs. interven-
tion, placebo vs. active drug(s), nouns vs. verbs, working memory load, or age
of participants, and so on. Mathematically, the critical property is that fixed
effect coefficients are estimated independently and are unconstrained. So, for
example, each level of working memory load can have whatever γ parameter
best fits the data without any consideration of the other levels.

In contrast, random effects (ζ) correspond to the randomly sampled ob-
servational units over which you intend to generalize. The two most common
cases are that these will be either individual participants or individual items.
For example, in a study comparing processing of nouns vs. verbs, the random
effects could correspond to the particular nouns and verbs that were selected
by the researcher with the intention of making general claims about all nouns
and verbs. Conceptually, the notion is that these individual observational units
are sampled randomly from some population. The standard way to implement
this notion mathematically is by the constraint that random effects are drawn
from a normal distribution with a mean of 0. Unlike fixed effects, which are un-
constrained and independent, random effects are interdependent because they
are meant to reflect random variation in the population. As mentioned in
Chapter 1, this random variation may reflect interesting individual differences
and Chapter 7 will discuss in detail how this information can be extracted
and analyzed.

At the most general level, the goal of regression analysis is to find the pa-
rameters that best describe the data. To do this, we have to define what we
mean by“best.”One very powerful and flexible definition is to say that we want
parameters that maximize the likelihood of observing the actual data, which is
called maximum likelihood estimation or MLE. For standard (not multilevel)
linear regression, the traditional ordinary least squares (OLS) regression algo-
rithm can solve an equation to find the MLE parameter estimates, assuming
the errors are normally distributed. For multilevel models this direct method
is not possible (there is no closed-form solution), so an iterative algorithm
is used, which tries to gradually converge to the MLE parameter estimates.
However, it is not guaranteed to converge and the likelihood of convergence
failure tends to increase with the complexity of the model, especially of the
random effects structure.

Since the goal of MLE is to maximize the likelihood of observing the ac-
tual data, its goodness of fit is evaluated using the log-likelihood (LL) of the
data given the estimated parameters. Other measures of model fit, such as
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R2, have an inherently meaningful interpretation (proportion of variance ac-
counted for), but LL is only meaningful in the context of (meaningful) com-
parisons. That is, we can ask whether adding a critical parameter to the model
improves the model fit (LL) by a significant amount. This comparison is called
the likelihood ratio test (sometimes abbreviated LRT) because the difference
of two log-values is equal to the log of the ratio of those values. The crit-
ical statistic is −2 times the change in log-likelihood (−2 · ∆LL), which is
distributed as χ2 with degrees of freedom equal to the number of parame-
ters added to the model. Note that the LRT is used to evaluate the effect of
adding or removing one or more parameters; that is, when one model contains
a subset of the parameters of the other model, which are called nested models.

There exist other measures of model fit, such as the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) both of which are
computed from the log-likelihood with an adjustment for the number of free
parameters. In principle, these measures can be used to compare non-nested
models, but the difficulty is that the number of free parameters is not well-
defined for multilevel models. Specifically, it is not clear whether each random
effect estimate (i.e., each value of ζi) should be considered a free parameter or,
because the random effects are constrained to come from a normal distribution
with a mean of 0, only the estimated variance of that distribution is truly a free
parameter. For these reasons, we will just use the LRT for model comparisons.

2.3 A simple growth curve analysis

2.3.1 Effect of amantadine on recovery from brain injury

We can now start implementing growth curve analysis using R. This first
example will use an illustrative subset of data from a randomized placebo-
controlled study of the effect of amantadine on recovery from brain injury
(Giacino et al., 2012; thanks to Joseph Giacino, John Whyte, and their re-
search team for sharing these data). The study tested patients who were in
a vegetative or minimally conscious state 4 to 16 weeks after a traumatic
brain injury. Following baseline assessment, patients were randomly assigned
to receive either amantadine or placebo for 4 weeks (within-participants ma-
nipulations will be covered in Chapter 4). The primary outcome was the rate
of functional recovery over the 4 weeks of treatment, as measured using the
Disability Rating Scale (DRS), which ranges from 0 to 29, with higher scores
indicating greater disability.

As a first step, it is useful to just inspect the data set:

> summary(amant.ex)

Patient Group Week DRS

1008 : 5 Placebo :85 Min. :0 Min. : 7.0
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1009 : 5 Amantadine:65 1st Qu.:1 1st Qu.:17.0

1017 : 5 Median :2 Median :20.5

1042 : 5 Mean :2 Mean :19.3

1044 : 5 3rd Qu.:3 3rd Qu.:22.0

1054 : 5 Max. :4 Max. :28.0

(Other):120

The summary shows that there are four variables in the data:

� Patient: a patient ID code.

� Group: a group variable that has two levels, Placebo and Amantadine,
indicating which drug the patient received.

� Week: the week on which each observation was made, which ranges from
0 to 4.

� DRS: the outcome variable disability rating score.

Note that the summary function gives distributional information for the contin-
uous numeric variables Week and DRS (mean, median, and range) and number
of observations for the categorical variables Patient and Group.

> ggplot(amant.ex, aes(Week, DRS, shape=Group)) +

stat_summary(fun.data=mean_se, geom="pointrange")

Both groups seem to exhibit an approximately linear pattern of recovery
(Figure 2.2), so we can try to model these data with a simple linear model.
If the data did not look like straight lines, then straight-line models wouldn’t
describe the data properly. The next chapter describes how to handle more
complex data shapes. Adapting the Level 1 model from Equation 2.2 to these
data:

DRSij = β0i + β1i ·Weekj + εij (2.4)

We’ll evaluate the effect of amantadine by including Group as a fixed effect in
the Level 2 models:

β0i = γ00 + γ0Group ·Group+ ζ0i (2.5)

β1i = γ10 + γ1Group ·Group+ ζ1i (2.6)

The fixed effects γ0Group and γ1Group capture the systematic differences be-
tween groups (that is, the effect of the drug) in terms of starting DRS (γ0Group)
and rate of recovery (γ1Group). The random effects ζ0i and ζ1i capture (ran-
dom) individual variablity among patients in terms of their starting severity
(ζ0i) and rate of recovery (ζ1i).

To implement the analysis, we will use the lmer function from the lme4

package. First we need to load that package:

> library(lme4)
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FIGURE 2.2
Recovery as measured by reduction in the Disability Rating Scale (DRS) score
over the four weeks of the study for the placebo and amantadine groups.
Vertical lines indicate ± SE.

We start out with a “base” model of recovery that has the Level 1 structure
and the random effects, but no fixed effects of Group:

> m.base <- lmer(DRS ~ 1 + Week + (1 + Week | Patient),

data=amant.ex, REML=FALSE)

Let’s unpack the lmer syntax. The first argument is the model formula. The
tilde (~) operator can be read as “is a function of”: the left side specifies the
outcome variable and the right side specifies the predictors. In this case, DRS
is the outcome. The first set of predictors are the fixed effects

> 1 + Week

which correspond to the intercept (indicated by the 1) and the slope (Week).
The second set of predictors are the random effects

> (1 + Week | Patient)

which specify Patient-level random variablity in the baseline severity (inter-
cept: 1) and rate of recovery (slope: Week). In other words, it is the model
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described in Equations 2.4, 2.5, and 2.6 but without γ0Group and γ1Group.
Novice programmers may be unfamiliar with the vertical line “|” in the ran-
dom effects specification – this is called the “pipe” and is typically located
above the Enter key and produced by Shift+\. The second argument tells
lmer which data to use and the final argument tells it to use maximum likeli-
hood estimation to fit the model (as opposed to restricted maximum likelihood
estimation, which is not always appropriate for likelihood ratio tests).

To add a fixed effect of Group on the intercept we simply add + Group to
the fixed effects portion of the model formula

> m.0 <- lmer(DRS ~ 1 + Week + Group + (1 + Week | Patient),

data=amant.ex, REML=FALSE)

and, similarly, we can add the effect of Group on the linear term by using the
interaction syntax + Week:Group

> m.1 <- lmer(DRS ~ 1 + Week + Group + Week:Group +

(1 + Week | Patient), data=amant.ex, REML=FALSE)

Once we have each of these three models, we can test whether adding the
Group fixed effects improved model fit using the anova function, which will
do the model comparison for any number of models:

> anova(m.base, m.0, m.1)

Data: amant.ex

Models:

m.base: DRS ~ 1 + Week + (1 + Week | Patient)

m.0: DRS ~ 1 + Week + Group + (1 + Week | Patient)

m.1: DRS ~ 1 + Week + Group + Week:Group + (1 + Week | Patient)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

m.base 6 622 641 -305 610

m.0 7 623 644 -304 609 1.63 1 0.202

m.1 8 619 643 -302 603 5.56 1 0.018 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The anova output gives a reminder of the data set that was analyzed
and the models that were compared and then the key model comparisons,
including the χ2 test for improvement in model fit. The model goodness (log-
likelihood) is in the logLik column and the test statistic (−2 · ∆LL) is in
the Chisq column. The results indicate that adding a fixed effect of Group on
the intercept did not improve model fit (m.base - m.0 comparison: χ2(1) =
1.63, p = 0.2) and adding a fixed effect of Group on the slope did improve
model fit (m.0 - m.1 comparison: χ2(1) = 5.56, p = 0.018). In other words, the
two groups (placebo vs. amantadine) did not differ significantly at baseline
(intercept), but they did differ in their rate of recovery (slope).

The summary function will give a detailed summary of the model, including
the actual parameter estimates and their standard errors:



Conceptual overview of growth curve analysis 29

> summary(m.1)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: DRS ~ 1 + Week + Group + Week:Group +

(1 + Week | Patient)

Data: amant.ex

AIC BIC logLik deviance

619.26 643.35 -301.63 603.26

Random effects:

Groups Name Variance Std.Dev. Corr

Patient (Intercept) 3.198 1.788

Week 0.698 0.836 0.45

Residual 1.331 1.154

Number of obs: 150, groups: Patient, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.059 0.485 45.5

Week -0.700 0.221 -3.2

GroupAmantadine -1.428 0.737 -1.9

Week:GroupAmantadine -0.831 0.336 -2.5

Correlation of Fixed Effects:

(Intr) Week GrpAmn

Week 0.224

GroupAmntdn -0.658 -0.148

Wk:GrpAmntd -0.148 -0.658 0.224

By default, lmer treats the reference level of a factor as the baseline and esti-
mates parameters for the other levels. In this case, that means that the (In-

tercept) parameter refers to the placebo group’s intercept (22.06), the Week

parameter refers to the placebo group’s slope (-0.70), the GroupAmantadine

parameter refers to the amantadine group’s intercept relative to the placebo
group’s intercept (1.43 points lower), and the Week:GroupAmantadine param-
eter refers to the amantadine group’s slope relative to the placebo group’s
slope (0.83 points per week faster decrease).1

You might notice that the parameter estimates provided by the summary
do not have p-values. For these sorts of models the best test of statistical
significance is nested model comparisons like the ones conducted using the
anova function – where we test the improvement in model fit due to adding a
single parameter. For complex models this can be impractical, so later chapters
will discuss estimating parameter-specific p-values in more detail.

1These results are slightly different from those reported by Giacino et al. (2012) because
this example only analyzed a simplified subset of their data.
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2.3.2 Simplified model formula syntax

For expository purposes it was helpful to use a more verbose model formula
for m.1, but for convenience it can be shortened in two ways. First, lmer

will assume an intercept term by default, so it is not necessary to specify it
explicitly (0 can be used to override this default and eliminate the intercept
term, that is, force it to have a value of 0). Second, the asterisk operator (*)
can be used to specify “all main effects and interactions,” so Week + Group +

Week:Group can be shortened to Week*Group. Together, this means that the
syntax for m.1 can be substantially shortened:

> m.1_shorter <- lmer(DRS ~ Week*Group + (Week | Patient),

data=amant.ex, REML=FALSE)

and here is the summary to verify that the result is exactly the same:

> summary(m.1_shorter)

Linear mixed model fit by maximum likelihood ['lmerMod']

Formula: DRS ~ Week * Group + (Week | Patient)

Data: amant.ex

AIC BIC logLik deviance

619.26 643.35 -301.63 603.26

Random effects:

Groups Name Variance Std.Dev. Corr

Patient (Intercept) 3.198 1.788

Week 0.698 0.836 0.45

Residual 1.331 1.154

Number of obs: 150, groups: Patient, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.059 0.485 45.5

Week -0.700 0.221 -3.2

GroupAmantadine -1.428 0.737 -1.9

Week:GroupAmantadine -0.831 0.336 -2.5

Correlation of Fixed Effects:

(Intr) Week GrpAmn

Week 0.224

GroupAmntdn -0.658 -0.148

Wk:GrpAmntd -0.148 -0.658 0.224
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2.3.3 Plotting model fit

It is always a good idea to plot the model fit with the observed data. The
log-likelihood model fit statistic provides relative goodness of fit information
(i.e., the effect of group on slope improved model fit), but this doesn’t tell
us how good the fit actually was. In particular, it doesn’t tell us whether
the statistical effect corresponds to a scientifically important difference in the
data. It is very easy to add model fits to observed data using ggplot: we just
need to specify a new mapping for the y-variable (model-fitted values instead
of observed values; the other mappings are automatically inherited) and the
geom to represent the model fit. Since the model fit lines don’t have a point
shape, we can also map Group to the linetype aesthetic so make the lines
different between groups. We can get the fitted values for a lmer model object
by using the fitted function.

> ggplot(amant.ex, aes(Week, DRS, shape=Group)) +

stat_summary(fun.data=mean_se, geom="pointrange") +

stat_summary(aes(y=fitted(m.1), linetype=Group),

fun.y=mean, geom="line")

The model fit in Figure 2.3 appears to be quite good and it specifically
seems to capture the difference in rate of recovery between the placebo and
amantadine groups. For both groups, the first and last data points are slightly
above the line while the middle three points are slightly below it. This suggests
that there might be a small amount of curvature in the recovery pattern
– faster initial recovery that slows down over the course of the 4 weeks of
treatment. The next chapter will discuss how to model more complex data
curves.

2.4 Another example: Visual search response times

The primary focus of growth curve analysis – and longitudinal data analysis
techniques in general – is to capture change over time, so most of the examples
in this book will have some version of time as the main predictor. However,
many of the same issues hold for other sorts of repeated measures scenarios
with a continuous predictor. For example, response times in a conjunction
visual search task tend to be a linear function of the number of objects in
the display (called “set size”). In other words, when looking for a green letter
“N” among green “X’s” and brown “N’s,” response times are a linear function
of the number of letters on the screen (e.g., Treisman & Gelade, 1980). The
example data set VisualSearchEx contains results from a study that tested
15 participants with aphasia and 18 control participants in this task. We can
treat set size the same way that we treat time and evaluate how response time
changes as a function of set size for the two groups.
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FIGURE 2.3
Observed data (symbols, vertical lines indicate ±SE) and linear model fits for
recovery as measured by reduction in Disability Rating Scale (DRS) score over
the four weeks of the study for the placebo and amantadine groups.

> summary(VisualSearchEx)

Participant Dx Set.Size RT

0042 : 4 Aphasic:60 Min. : 1.0 Min. : 414

0044 : 4 Control:72 1st Qu.: 4.0 1st Qu.: 1132

0083 : 4 Median :10.0 Median : 1814

0166 : 4 Mean :12.8 Mean : 2261

0186 : 4 3rd Qu.:18.8 3rd Qu.: 2808

0190 : 4 Max. :30.0 Max. :12201

(Other):108

The four variables in the data frame are

� Participant: a numeric identifier for each unique participant in the
study (coded categorically).

� Dx: a categorical group factor (“Dx” is an abbreviation for “Diagnosis”).

� Set.Size: the number of objects in the display (1, 5, 15, or 30).

� RT: average response time for each participant at each set size.
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We build up the model the same way that we did for the amantadine example.
Start with a base model of response times (RT) as a function of set size
(Set.Size) and with individual participants varying in intercept and effect of
set size:

> m.base <- lmer(RT ~ Set.Size + (Set.Size | Participant),

data=VisualSearchEx, REML=FALSE)

Then we add the effects of diagnosis on the intercept and linear terms:

> m.0 <- lmer(RT ~ Set.Size + Dx + (Set.Size | Participant),

data=VisualSearchEx, REML=FALSE)

> m <- lmer(RT ~ Set.Size * Dx + (Set.Size | Participant),

data=VisualSearchEx, REML=FALSE)

Finally, we use the anova function to compare the models to evaluate the
effect of diagnosis on response times:

> anova(m.base, m.0, m)

Data: VisualSearchEx

Models:

m.base: RT ~ Set.Size + (Set.Size | Participant)

m.0: RT ~ Set.Size + Dx + (Set.Size | Participant)

m: RT ~ Set.Size * Dx + (Set.Size | Participant)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

m.base 6 2248 2265 -1118 2236

m.0 7 2241 2261 -1114 2227 8.58 1 0.0034 **

m 8 2241 2264 -1113 2225 2.01 1 0.1567

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and get the parameter estimates and their standard errors from the model
summary:

> coef(summary(m))

Estimate Std. Error t value

(Intercept) 2078.749 264.361 7.8633

Set.Size 73.494 11.229 6.5449

DxControl -1106.054 357.946 -3.0900

Set.Size:DxControl -21.737 15.204 -1.4297

The analysis results indicate that there was a substantial group effect on
the intercept and no effect on the slope. This can be seen in Figure 2.4: the
aphasic group has much slower response times, but the two lines are essentially
parallel (i.e., no difference in slope). Note that an effect on intercept and
an effect on slope can have radically different theoretical implications: the
intercept corresponds to a baseline or overall difference whereas the slope
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corresponds to a (linear) rate-of-change difference. One of the advantages of
using this kind of regression approach is that it can go beyond just testing for
differences – it can describe the shape of the differences.

Here is the code for generating Figure 2.4, which demonstrates the error-

bar geom and some customization options.

> ggplot(VisualSearchEx, aes(Set.Size, RT,

shape=Dx, linetype=Dx)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar",

linetype="solid", width=0.6) +

stat_summary(aes(y=fitted(m)), fun.y=mean, geom="line") +

scale_shape_manual(values=c(1, 2)) +

labs(x="Set Size", y="Response Time (ms)",

linetype="Group", shape="Group") +

theme_bw(base_size=10) +

theme(legend.justification=c(0,1), legend.position=c(0,1),

legend.background=

element_rect(fill="white", color="black"))

The first line uses the ggplot command to set up the mappings of the data
variables to different graph properties, including mapping Dx to both point
shape (for the observed data) and linetype (for the model fits). There are three
different data summaries: means of the observed data realized as points, means
and standard errors of the observed data realized as errorbars and customized
to have narrower crossbars (width argument) and to stop them from inheriting
the linetype mapping (i.e., without this override, the Control group errorbars
would be dashed), and mean of the model fit realized by lines. Specific point
shapes are selected using scale_shape_manual, which overrides the default
shape scale (the same approach works for defining other scales like color,
scale_color_manual, and linetype, scale_linetype_manual). The axis la-
bels are specified using labs and legend labels are treated the same way, in
keeping with the grammar of graphics approach. Legend position and appear-
ance is specified using theme.

2.5 Chapter recap

This chapter provided a basic overview of the math behind growth curve anal-
ysis and how it addresses the challenges described in Chapter 1. Using regres-
sion provides a way to treat time as a continuous variable instead of distinct
time bins and provides a way to explicitly model the nested structure of the
data. This chapter also introduced the distinction between fixed effects and
random (residual error) effects. Fixed effects are those factors that the analyst
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FIGURE 2.4
Conjunction visual search response times by participant group with linear
model fit lines.

believes to be reproducible, fixed properties of the world, and their parame-
ters are estimated independently. Random effects correspond to observational
units that the analyst believes to be random samples from some population
to which (s)he wishes to generalize. Random effects are constrained to come
from a normal distribution with a mean of 0, which is meant to capture the
assumption that they reflect random samples and makes them interdependent.
Because they correspond to individual observational units, random effects also
capture the nested structure of the data and provide a way to quantify indi-
vidual differences, which will be discussed in more detail in Chapter 7.

This chapter also provided the first two concrete examples of growth curve
analysis. We covered the core analysis syntax using the lmer function, how to
conduct model comparisons using the anova function, and how to plot model
fits using ggplot. The examples in this chapter constitute a starting point
– simple linear cases. The next chapters will build on this basic structure to
handle more complex situations.
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2.6 Exercises

The wisqars.suicide data frame contains annual suicide rate data by state
from 1999 to 2007 collected from the Web-based Injury Statistics Query and
Reporting System (WISQARS) hosted by the Centers for Disease Control and
Prevention. Use these data to analyze trends in suicide rates by geographic
region (tip: adjust the Year variable to treat 1999 as time 0 so that it corre-
sponds to the intercept).

1. Did the overall suicide rate in the US increase during this time period?
If yes, what was the estimated rate of change?

2. Did the regions differ in their initial (1999) suicide rates?

3. Did the regions differ in their rate of change of suicide rate during this
period?

4. Plot the observed and model-fit suicide rates by region for this time
period. Include an indicator of variability (e.g., standard error) for the
observed data. Make color and black-and-white versions.
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3.1 Chapter overview

The previous chapter provided a conceptual overview of growth curve analysis
and simple linear examples. Of course, time course data in the behavioral,
cognitive, and neural sciences are rarely straight lines. Typically, the data
have complex curved shapes, which means that the Level 1 model must also
have a curved shape. The choice of the Level 1 model defines a functional
form for the data; that is, the overall function or shape that will be used to
describe the group and individual data. This choice is very important because
it defines the framework for the whole analysis, so this chapter will describe
some options and factors involved in choosing a functional form with a focus on
one particularly good option: higher-order polynomials. This approach will be
demonstrated with a step-by-step walk through a complete example, including
how to estimate parameter-specific p-values and how to report growth curve
analysis results.

37
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3.2 Choosing a functional form

There are many different functional forms that one could potentially use to
model data. This section will discuss the three major considerations involved
in choosing a functional form for the kinds of data we typically encounter in
the behavioral sciences.

3.2.1 Function must be adequate for the shape of the data

The first and perhaps most obvious consideration is that the functional form
must be adequate for the shape of the data. For a functional form to be
“adequate,” it needs to be able to produce the shape of the observed data.
Consider the curvilinear data in the left panel of Figure 3.1. A straight line
(dotted line) clearly misses important aspects of the data, so it would not
be adequate. The dashed curve does much better: it captures the overall ap-
proximately U-shaped pattern, though it seems to have some small — but
systematic — deviations from the data. The solid curve fits the data even
better. Keep in mind that it is neither possible nor advisable to try to capture
every little blip in the data; doing so would overfit the data by forcing the
model to describe the noise in the data as well as the effects of interest.
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FIGURE 3.1
Left: Some hypothetical curvilinear data (black symbols) and three possible
model fits. Right: Residual errors plotted against fitted values to examine
systematic model deviations.

Distinguishing noise from potentially interesting effects is not always easy.
A key difference is that noise is, by definition, not systematic. So if there
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are systematic deviations of the observed data from the model fits, that sug-
gests that the functional form may not be adequate. It is sometimes easier to
see such systematic deviations by plotting the residual error (i.e., deviation)
against the model-predicted (fitted) values. This kind of plot shows what was
missed by the model. For example, the right panel of Figure 3.1 shows this
kind of plot for the worst and best models from the left panel. The residual
errors from the linear model (open circles) start out negative, progressively
become positive, then drop into the negatives again, which reflects the fact
that the linear model missed the U-shape in the data. The residual errors
from the non-linear model (filled circles) are not just closer to 0, they are also
unsystematic – sometimes a little above 0, sometimes a little below, without
any clear pattern. Systematic deviations can be more formally described in
terms of autocorrelated residuals, which can be used to quantitatively assess
whether a model is inadequate.

3.2.2 Dynamic consistency

When dealing with multilevel or nested data, we want the model to describe
the overall average pattern as well as the individual participants’ deviation
from that average. Since the overall average pattern is the average of the
individual participants, we want it to be true that if you fit the model to
each participant’s data individually and average together those parameter
estimates, you would get the same values as if you had averaged together
the data from all of the participants and fit the model to that average. This
property is called dynamic consistency : the model of the average data is equal
to the average of the models of individual participants’ data.

Higher-order polynomials comprise one family of functions with this prop-
erty. The term higher-order polynomials refers to polynomial functions of
order greater than 1; for example, Time2, Time3, Time4, etc. (the order or
degree of a polynomial function is the value of the largest power or expo-
nent in the function). These shapes are shown in Figure 3.2, where each panel
shows the shape of a single polynomial time term. A growth curve model using
higher-order polynomials would include multiple polynomial terms. For exam-
ple, a second-order polynomial Level 1 model would have three β parameters:

Yij = β0i + β1i · Timej + β2i · Time2j + εij (3.1)

which correspond to the three time terms: the intercept (β0i), the linear slope
(β1i), and the steepness of the quadratic curvature (β2i). The Level 2 models
of those parameters could then include condition (or other) effects on any or
all of those Level 1 parameters, just as described in the previous chapter.

As shown in Figure 3.2, polynomial functions capture non-linear change
over time, but if we consider Time2, Time3, etc., to be different predictors,
then the model is just like a standard multiple linear regression model with
different parameters for different predictors. In other words, polynomial func-
tions are non-linear in their variables (i.e., Time), but linear in their param-
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FIGURE 3.2
Schematic diagram of polynomial curve shapes. Each panel shows the shape
of just one polynomial term; a polynomial model fit can include a combination
of multiple terms.

eters. We can understand this distinction by considering functions that are
non-linear in both their variables and their parameters. One example is the
logistic power peak (LPP) function defined by Equation 3.2, which describes
the outcome variable Y at time j, in terms of curve amplitude α, curve width
β, peak location δ, and curve symmetry γ (for convenience the function is
written in two parts, with Equation 3.2a defining the overall LPP function
and Equation 3.2b defining a chunk that occurs twice in the overall function):

Yj = α (1 + τ)
−γ−1

γ τ(γ + 1)
γ+1
γ (3.2a)

τ = exp

(
Timej + β ln(γ)− δ

β

)
(3.2b)
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Unlike a polynomial function (e.g., Equation 3.1), the LPP function does
not look like a multiple linear regression equation. Its non-linearity is not just
a matter of having non-linear Time predictor(s), the variables also have non-
linear properties. Let’s take a closer look at what happens if we try to use this
function to model multilevel data.
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FIGURE 3.3
Consequences of lack of dynamic consistency in the logistic power peak func-
tion. The circles are the average of the observed data. The solid black line is
the model of those average data. The grey lines are the models of the indi-
vidual participants. The dashed line is the curve produced by averaging the
parameters from the models of the individual participants. The dashed line
does not match the solid line, nor does it reflect the central tendency of the
models of the individual participants.

The data for this example come from an eye-tracking experiment (Mirman
& Magnuson, 2009) in which the outcome measure was the probability of looks
(“fixation proportion”) to a particular object at each point in time. The black
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circles in Figure 3.3 show the overall average of the observed data from one
of the conditions in the experiment and the solid black line is the LPP model
fit to those average data. The LPP function has been used to analyze this
sort of fixation time course data (e.g., Scheepers, Keller, & Lapata, 2008) and
clearly fits the data very well. The grey lines in Figure 3.3 are the models
of data from individual participants (there were 38 participants) and these
also fit the individual data very well. However, when the parameters (α, β, δ,
and γ) from those individual participant models were averaged together, the
resulting model (dashed line) was substantially different from both the model
of the average data (solid black line) and the observed data (symbols). It also
did not reflect the central tendency of the individual participant models (grey
lines), which is most obvious in the later half of the time course, where the
dashed line is above all of the grey lines; that is, the average of the individual
models is higher than any of the individual models.

This mismatch between the central tendency of the individual models and
the average of the individual models poses quite serious problems. The biggest
one is that it makes standard inferential statistical methods useless. For ex-
ample, one might want to use a paired-samples t-test to evaluate whether the
α (amplitude) parameter was different between two conditions in the exper-
iment. The problem is that this test would be using the individual partici-
pants’ α parameters to evaluate whether the means for the two conditions
were different, but those means would no longer reflect a model of the actual
fixation data (i.e., those means would represent the dashed line in Figure 3.3,
which reflects neither the average data nor the individual models). Even if
one used other, more sophisticated model or parameter evaluation techniques,
they would necessarily be based on estimating means and variances from indi-
vidual observations, but those means and variances are linear properties and
the dynamically inconsistent LPP functional form has only non-linear proper-
ties. (For another discussion of the problems that arise when the model of the
average does not reflect the individual data see Brown & Heathcote, 2003.)

A corollary of this problem is that lack of dynamic consistency makes any
kind of individual differences analysis uninterpretable. For example, one might
want to test a correlation between individual participants’ α parameters and
scores on some other cognitive test. But, again, there is the problem that
the average of the individual parameters does not reflect the central tendency
of the individual models. In other words, it would mean running a linear
correlation using a non-linear variable. Even worse, the particular non-linearity
of the variable is very opaque, so it is hard to know what kind of artifacts it
will introduce into the correlation analysis.

Finally, recall from Chapter 2 that in a multilevel regression framework,
the random effect parameters are constrained to be drawn from a normal
distribution with a mean of 0. That is, the average of the individual deviations
(random effects) from the overall mean (fixed effects) is 0. Which is to say that
the average of the individual models is equal to the model of the average. This
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means that dynamic consistency is not just an important statistical property,
it is required for multilevel regression.

Logistic regression is one important class of regression models that might,
at first glance, appear not to be dynamically consistent. In fact, they are dy-
namically consistent and the easiest way to understand why is to think about
what parameters will be estimated by the model. In a polynomial logistic
regression, the estimated parameters will be polynomial coefficients, which
are dynamically consistent. In a non-linear regression model with a logistic
functional form, the estimated parameters are the parameters of the logis-
tic function, which are generally not dynamically consistent.1 Chapter 6 will
describe why logistic regression is important and how to use logistic GCA.

3.2.3 Making predictions: Fits and forecasts

Models can make two fundamentally different kinds of “predictions”: model
fits within the boundaries of the observed data and model forecasts for what
would happen outside of those boundaries. For forecast-type predictions it is
critical that the model have a functional form that matches the form of the
system that generated the observed data. If it does not, then its forecasts
are likely to be wrong. This is precisely the logic of cognitive or computa-
tional modeling (as opposed to statistical modeling): build a model that has
the hypothesized properties of the system under investigation and conduct
simulations of that model to see if it fits the observed data. Critically, mak-
ing novel predictions — that is, forecasts for what should happen outside the
boundaries of the data that were used to develop the model — is considered
the best test of computational models (for a good discussion of computational
modeling in cognitive science see McClelland, 2009). Computational models
are meant to implement theories and theories need to be falsifiable, so making
and testing falsifiable predictions is a critical aspect of computational mod-
eling. When a computational model’s prediction is found to be wrong, this
provides critical evidence that the model was wrong, either in theory or in
implementation, and is grounds for rejecting that model or at least preferring
an alternative (for more discussion of computational model evaluation and
rejection see Magnuson, Mirman, & Harris, 2012).

Fit-type predictions are more accurately called quantitative descriptions of
the observed data because their goal is to summarize the data patterns rather
than to make novel (falsifiable) predictions. It is useful to have a description
of the data that is not tied to a particular theory because the data are always
“true,” but a theory can be wrong. For example, imagine that we made some
very careful neuroanatomical measurements but then described them entirely
within the framework of phrenology (e.g., sizes of the organ of friendship, the
organ of courage, etc.). The measurements could have remained informative

1It may be possible to constrain the logistic function to be dynamically consistent, but
doing so is quite difficult and requires fairly complex programming, so it will not be covered
in this book.
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if they had been in theory-neutral units (like millimeters), but using phreno-
logical units meant that the measurements became useless once the theory
of phrenology was discredited. Returning to statistical modeling, let’s say we
have some data on the relationship between physical stimulus magnitude and
its perceived intensity. If we assume that Weber’s Law holds in this domain,
then stimulus magnitude and perceived intensity should have a power law re-
lationship, so we can fit a power law function and compute the Weber constant
for this domain. However, if it happens that Weber’s Law does not hold in this
domain, then the Weber constant is not a useful description of the data. Had
we described the data in a theory-neutral way, we would be able to evaluate
how well any theory accounts for the data, not just Weber’s Law.

It is also useful to have a quantitative description of the observed data be-
cause it allows quantitative comparisons with predictions from different the-
ories. A qualitative description such as “perceived intensity increases with
increasing physical stimulus magnitude” is a reasonable starting point, but
quickly becomes limited in terms of distinguishing between different accounts.
When the full set of the observed data are available for analysis, one can fit
multiple theoretical models directly to the observed data in order to obtain a
quantitative evaluation (e.g., Oberauer & Kliegl, 2006; Wagenmakers & Far-
rell, 2004). However, that evaluation would be limited to the particular models
(as discussed above), so it would be necessary to make all observed data pub-
licly available so that any future proposed theory could be compared to every
data set. This kind of data sharing is not the norm (though many argue that
it should be), so there remains a need for researchers to describe their find-
ings in a way that is formal enough to allow quantitative comparisons with
different theoretical models and independent of specific theories so the data
remain relevant as theories evolve and new theories emerge.

The bottom line is that computational and statistical models serve distinct
and complementary roles. Statistical models provide descriptions of large data
sets in terms of a small set of effects or patterns and quantify those effects
or patterns in ways that can be compared against any theoretical account.
Computational models instantiate a particular theory in a way that allows
concrete testing and making predictions. Because they serve complementary
roles, statistical and computational models can be combined to form a power-
ful two-pronged research strategy: using statistical models to describe the data
and using computational models to evaluate theories against those descriptions
(for examples of such a two-pronged strategy in the domain of spoken word
recognition see Mirman, Dixon, & Magnuson, 2008; Mirman et al., 2011).

3.3 Using higher-order polynomials
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3.3.1 Strengths and weaknesses

Higher-order polynomial functions satisfy the constraints described above.
They are not the only family of functions that do so and other functional forms
can be used for growth curve analysis (e.g., Cudeck & Harring, 2007; Grimm,
Ram, & Hamagami, 2011; Oberauer & Kliegl, 2006; Pinheiro & Bates, 2000),
but implementing these other models in lme4 is rather challenging (Bolker,
2013; Kliegl, 2013). This book will focus on polynomial GCA because it is
comparatively easy to implement and effective for most cases, but most of the
content applies to GCA regardless of the specific functional form. Polynomial
functions are dynamically consistent and a polynomial of sufficiently high or-
der is guaranteed to provide an arbitrarily good fit to the observed data (this is
known as Taylor’s Theorem). That is, for any set of observed data, polynomi-
als can describe those data in a dynamically consistent way and as accurately
as desired, if you just add enough polynomial terms (Time2, Time3, Time4,
etc.).

This is not to say that polynomial functions are without weaknesses. Poly-
nomial functions are not asymptotic – they don’t have flat plateau-like sections
(see Figure 3.2), so they can have difficulty fitting asymptotic data. For exam-
ple, a weight loss study might show that weight initially decreases and then
stabilizes at a final level. As shown by Taylor’s Theorem, polynomials can
capture this pattern, but it is not their intrinsic form. This difficulty may be
(partly) resolved by restricting the length of the tail data that are included
in the analysis: if by the 5th week participants are already very close to their
final weight and there is no change over the course of the next 5 weeks, per-
haps the analysis could just focus on the first 5 or 6 weeks. It is important
not to introduce experimenter bias by doing this kind of truncation. Ideally,
the researcher can use an unbiased method to define the time window for the
analysis. If that is not available, an alternative strategy is to conduct par-
allel analyses using a few different time windows (e.g., 4 weeks, 5 weeks, 6
weeks, etc.) and verify that the pattern of results is generally the same, so the
scientific claims will not depend too strongly on the specific analysis window.

It is also useful to consider why the data are asymptotic – asymptotes
can arise because the underlying process actually plateaued or due to floor
or ceiling effects. For example, proportions are bounded at 0 and 1, and tend
to plateau as they approach those bounds. In such cases it is better to use
logistic or quasi-logistic regression (described in Chapter 6) with a polynomial
functional form rather than non-linear functional forms.

More generally, it is important to keep in mind that the cognitive, neu-
ral, developmental, etc., processes under investigation are probably not poly-
nomial, so polynomials are a poor choice for forecast-type predictions. As
discussed in section 3.2.3, this sort of prediction is generally the realm of
computational or theoretical models, not of statistical models. The statistical
model’s goal is to provide a quantitative description of the data that can be
used to evaluate any theoretical model. As such, the positive statistical and
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implementational properties of higher-order polynomials outweigh their neg-
ative properties, but it is important to remember that polynomial functions
may be good at describing the patterns within the boundaries of the observed
data and should not be used to make predictions for what will happen outside
those boundaries.

3.3.2 Choosing polynomial order

Using higher-order polynomials requires choosing the specific order of the
polynomial to be used for each analysis. Is a quadratic function sufficient or
does it need to be cubic, or quartic, etc.? As a general guideline, it can be
helpful to think about the data in terms of how many times the curve changes
direction (more formally, this corresponds to the number of inflection points).
A flat line has zero changes of direction, so that could be modeled with a
zero-order polynomial (just the intercept: β0). A straight, non-flat line, has
an initial change of direction from flatness, so that could be modeled with a
first-order polynomial (β0+β1Time). A U-shaped curve has the initial change
from flatness and the reversal at the bottom of the U, so that could be modeled
by a second-order polynomial (β0 + β1Time + β2Time

2), and so on. This is
just a general starting point for generating intuitions about the appropriate
polynomial order for a particular data shape. There are a few different, more
formal approaches and it is probably best to consider all of them without
being too doctrinaire about any of them.

A statistical approach is to include only and all of the polynomial orders
that improve model fit. Following this approach, you could start with a simple
linear Level 1 model, then add a quadratic term and test whether it improves
model fit, then a cubic term, and so on, until the additions no longer improve
model fit. This approach has the advantage of statistical rigor, but it can lead
to the inclusion of uninterpretable effects.

A theoretical approach takes the complementary view: the model should
include only those terms for which the experimenter predicted an effect. This
approach is guaranteed to produce only interpretable results because only
predicted effects would be tested, but it can miss important unpredicted effects
if the model does not adequately capture the data.

One way to combine these two approaches is to use the statistical approach
to define the Level 1 model and the theoretical approach to constrain which
of the Level 2 models will have effects of manipulations. For example, if an ex-
perimenter predicted that some manipulation would produce a simple baseline
shift in some complex behavior, then the overall (Level 1) data shape might
require a high-order polynomial, but the condition (i.e., experimental manip-
ulation) effect could be included only in the Level 2 model of the intercept
term.

It is also useful to keep practical considerations in mind. Most common
data shapes can be captured with 4th-order or lower polynomials and terms
beyond the quadratic (2nd-order) become progressively more difficult to in-
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terpret. With that in mind, it is rarely advisable to go beyond 4th-order poly-
nomials.

3.3.3 Orthogonal polynomials

For higher-order polynomials, the individual time terms tend to be corre-
lated. For example, as the linear time term increases, so does the quadratic
time term. This kind of colinearity among predictors means that their param-
eter estimates cannot be evaluated independently because the predictors are
trying to capture some of the same variance in the data. Colinearity can also
undermine the stability of parameter estimates: small changes in the data,
such as the addition or deletion of a single data point or even just inherent
measurement noise, can lead to very large changes in the parameter estimates.
A relatively standard solution to the colinearity problem is to orthogonalize
the predictors, which removes their correlation. In the case of polynomials,
this means creating orthogonal polynomials.
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FIGURE 3.4
Examples of natural (left) and orthogonal (right) linear and quadratic poly-
nomials.

Figure 3.4 shows first-order (linear) and second-order (quadratic) polyno-
mial time functions with the natural polynomial version on the left and the
orthogonal polynomial version on the right. In both versions, the linear term
captures linear change and the quadratic captures U-shaped parabolic change,
but in the orthogonal version the two time terms are centered and scaled to
be in the same range of outcome values. The scaling is convenient because it
means that their parameter estimates will be on the same scale. More impor-
tantly, the centering makes the two time terms uncorrelated over the range of
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time values (that is, orthogonal), which means that their parameter estimates
will be independent.

Orthogonal polynomials are just a useful transformation of natural poly-
nomials. This transformation requires a specified range (time window) and
order. The range needs to be specified because the centering is specific to the
time window – the particular orthogonal polynomials in Figure 3.4 would no
longer be uncorrelated if they were extended to time values of 20 or -10. The
order needs to be specified because all of the terms need to be orthogonal
to all of the other terms. Conveniently, the R function poly will create an
orthogonal polynomial for a specified range and order. Practically, the main
implication of this is that one needs to choose the range and order before
running the analysis and changing the range or order (for example, analyzing
a smaller time window) requires re-starting from the initial step of creating
the orthogonal polynomial time terms.

Natural and orthogonal polynomial terms have the same shapes, but the
centering of orthogonal polynomials gives them slightly different interpreta-
tions compared to natural polynomials. A particularly important difference
concerns the intercept term. For natural polynomials, the intercept term cor-
responds to the y-intercept; that is, the outcome value when the predictor
value is 0. In many cases, this is a baseline value, which may be of special the-
oretical importance. For example, in the the previous chapter’s brain injury
recovery study example, the fact that there was no significant group effect
on the intercept indicated that the two groups were (approximately) equally
severely impaired before administration of the drug. This is important because
it means that the differences in recovery rate cannot be attributed to initial
severity. Conversely, studies that examine whether listeners use context in-
formation to predict or anticipate words during language comprehension may
specifically predict baseline differences (e.g., Barr, Gann, & Pierce, 2011).

For orthogonal polynomials, the intercept term corresponds to the overall
average, which can also be a useful measure. To concretely demonstrate the
difference, Figure 3.5 shows the brain injury recovery example from the pre-
vious chapter, with arrows indicating the natural and orthogonal intercepts.
The model predictions for the overall pattern are exactly the same for natural
and orthogonal versions, but the intercept terms correspond to different as-
pects of the data. In fact, the estimated group effect on the intercept is more
than twice as large for the orthogonal version than the natural version (3.09
vs. 1.43) because it reflects the average difference in severity between the two
groups across the whole duration of treatment, not just at the starting point.

In the brain injury recovery example it was important to know the y-
intercept, which made natural polynomials a more useful approach. In other
cases knowing the overall average (or “area under the curve”) is more useful.
For example, in the visual search example from the previous chapter, the
orthogonal intercept would estimate the overall mean reaction time difference
between the control and aphasic groups, which may be more informative than
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FIGURE 3.5
Natural and orthogonal intercepts in data from a study of the effect of aman-
tadine on recovery from brain injury.

the expected reaction time difference at set size 0 (i.e., when there are 0 objects
on the screen).

The bottom line is that natural polynomials allow testing for differences
at “Time 0,” so the natural polynomial approach is more useful when such
differences need to be tested. Otherwise, orthogonal polynomials are generally
better because the time terms are independent. The next section will discuss
interpreting higher-order polynomial effects in more detail.

3.3.4 Interpreting higher-order polynomial effects

To interpret polynomial effects in the context of complex data shapes it can
be useful to think of each term as a separate component for the observed data
curve. This is particularly useful for orthogonal polynomials because those
components are necessarily independent. Figure 3.6 shows how each (orthog-
onal) polynomial shape changes with changes of its coefficient. As coefficients
move toward 0, the function approaches a flat line; as the coefficients be-
come larger, the function becomes steeper. For negative coefficients, the shapes
would just be inverted (upside-down). “Steeper” means different things for the
different components: for the linear component, this is the familiar steeper
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ramp; for the quadratic component it is the sharpness of the (centered) peak;
similarly, for the cubic and quartic it is the sharpness of the peaks (two peaks
for the cubic, three peaks for the quartic).
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FIGURE 3.6
Schematic examples of orthogonal polynomial terms with different coefficients.

Understanding the polynomial components is a critical first step toward
understanding polynomial effects in a growth curve analysis – these are the
pieces that are being combined and manipulated when one fits a growth curve
model to real data. Of course, those analyses will involve multiple components
combined in complex ways, so understanding the components is only the first
step. A useful second step is visually comparing fits from models with and
without particular components to see how they differ. The next section will
walk through a step-by-step example of growth curve analysis using orthogonal
polynomials; the next chapter will include an example of plotting different
model fits to interpret effects of high-order polynomial terms.
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3.4 Example: Word learning

In Chapter 1, we saw that traditional t-test and ANOVA approaches were not
effective at capturing the effect of transitional probability (TP) on the rate
of novel word learning. These example data are taken from a real experiment
(Mirman, Magnuson, Graf Estes, & Dixon, 2008) and reproduced in Figure
3.7. Let’s analyze them using GCA. The first step should always be to look
at the data, both in text form and graphically.

> summary(WordLearnEx)

Subject TP Block Accuracy

244 : 10 Low :280 Min. : 1.0 Min. :0.000

253 : 10 High:280 1st Qu.: 3.0 1st Qu.:0.667

302 : 10 Median : 5.5 Median :0.833

303 : 10 Mean : 5.5 Mean :0.805

305 : 10 3rd Qu.: 8.0 3rd Qu.:1.000

306 : 10 Max. :10.0 Max. :1.000

(Other):500

The data frame contains 4 variables:

� Subject: A unique identifier for each participant. The identifier is nu-
meric, but treated as a categorical factor. The summary tells us that
there are 10 observations per participant.

� TP: A categorical between-participants factor with two levels, low and
high (within-participants manipulations will be covered in Chapter 4).
There are 280 observations in each condition, 10 for each of 28 partici-
pants.

� Block: A numeric variable indicating training block, ranging from 1 to
10.

� Accuracy: Proportion correct for a given participant in a given training
block, ranging from 0 to 1.

Here is the code for generating Figure 3.7:

> ggplot(WordLearnEx, aes(Block, Accuracy, shape=TP)) +

stat_summary(fun.y=mean, geom="line", size=1) +

stat_summary(fun.data=mean_se, geom="pointrange", size=1) +

theme_bw(base_size=10) +

coord_cartesian(ylim=c(0.5, 1.0)) +

scale_x_continuous(breaks=1:10)

For data like these, a second-order polynomial should suffice. We’ll use or-
thogonal polynomials for a few reasons. First, in the experiment, participants
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FIGURE 3.7
Effect of transitional probability (TP) on novel word learning.

learned to match a made-up spoken “word” like pibu with a novel geometric
shape. All of these “words” were completely novel and arbitrarily paired with
shapes and counterbalanced across participants. There were two shape choices
on each trial, so it is not very interesting that accuracy would start around
50%, making the y-intercept not very informative. On the other hand, the
overall mean accuracy does (partially) reflect faster learning, so the orthog-
onal intercept will be more informative. Second, orthogonal polynomials will
make the linear and quadratic terms uncorrelated, so we will be able to in-
dependently evaluate the linear slope and the steepness of the curvature. We
can use the poly function to create a second-order orthogonal polynomial in
the range of Block:

> t <- poly(unique(WordLearnEx$Block), 2)

Now we need to add those orthogonal polynomial values into the original data
frame aligned by Block. The following command will do that by creating two
new variables, ot1 and ot2 (for orthogonal time order 1 and orthogonal time
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order 2), in the WordLearnEx data frame and using Block as an index in the
orthogonal polynomial variable t:

> WordLearnEx[,paste("ot", 1:2, sep="")] <-

t[WordLearnEx$Block, 1:2]

We can re-check the data frame and see that the summary now shows the two
new variables:

> summary(WordLearnEx)

Subject TP Block Accuracy

244 : 10 Low :280 Min. : 1.0 Min. :0.000

253 : 10 High:280 1st Qu.: 3.0 1st Qu.:0.667

302 : 10 Median : 5.5 Median :0.833

303 : 10 Mean : 5.5 Mean :0.805

305 : 10 3rd Qu.: 8.0 3rd Qu.:1.000

306 : 10 Max. :10.0 Max. :1.000

(Other):500

ot1 ot2

Min. :-0.495 Min. :-0.348

1st Qu.:-0.275 1st Qu.:-0.261

Median : 0.000 Median :-0.087

Mean : 0.000 Mean : 0.000

3rd Qu.: 0.275 3rd Qu.: 0.174

Max. : 0.495 Max. : 0.522

Now we begin the analysis with a base model that just has the Level 1 structure
and the random effects, without any effects of TP:

> m.base <- lmer(Accuracy ~ (ot1+ot2) + (ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

This base model just captures the overall time course with a second-order
orthogonal polynomial and allows individual participants to vary randomly
(i.e., following a normal distribution with a mean of 0) on any of the three
components of the overall time course (intercept, linear, and quadratic). Now
we can add the experimental effects, starting with the fixed effect of TP on
the intercept:

> m.0 <- lmer(Accuracy ~ (ot1+ot2) + TP + (ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

then also on the linear term:

> m.1 <- lmer(Accuracy ~ (ot1+ot2) + TP + ot1:TP +

(ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)
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and finally the full model with effects of TP on all time terms, written in a
more compact form:

> m.2 <- lmer(Accuracy ~ (ot1+ot2)*TP + (ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

Now we can evaluate the effect of adding each term by using model compar-
isons:

> anova(m.base, m.0, m.1, m.2)

Data: WordLearnEx

Models:

m.base: Accuracy ~ (ot1 + ot2) + (ot1 + ot2 | Subject)

m.0: Accuracy ~ (ot1 + ot2) + TP + (ot1 + ot2 | Subject)

m.1: Accuracy ~ (ot1 + ot2) + TP + ot1:TP +

(ot1 + ot2 | Subject)

m.2: Accuracy ~ (ot1 + ot2) * TP + (ot1 + ot2 | Subject)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

m.base 10 -331 -288 175 -351

m.0 11 -330 -283 176 -352 1.55 1 0.213

m.1 12 -329 -277 176 -353 0.36 1 0.550

m.2 13 -333 -276 179 -359 5.95 1 0.015 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model comparison results show that the only effect of TP that significantly
improved model fit was on the quadratic term. Figure 3.8 shows the behavioral
data with the model fit, confirming that the model captured the faster novel
word learning in the high TP condition.

> ggplot(WordLearnEx, aes(Block, Accuracy, shape=TP)) +

stat_summary(aes(y=fitted(m.2), linetype=TP), fun.y=mean,

geom="line", size=1) +

stat_summary(fun.data=mean_se,geom="pointrange",size=1)+

theme_bw(base_size=10) +

coord_cartesian(ylim=c(0.5, 1.0)) +

scale_x_continuous(breaks=1:10)

3.5 Parameter-specific p-values

Model comparisons provide the best test of whether a particular effect made a
statistically significant contribution to model fit and this approach should be
used whenever possible. However, in some cases it may be valuable to evaluate
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FIGURE 3.8
Observed data and growth curve model fits for effect of transitional probability
(TP) on novel word learning.

individual parameter estimates independent of overall model comparisons. The
parameter estimates constitute a measure of effect size, so they can be useful
in discussions of the clinical or practical significance (as opposed to statistical
significance) of an effect. Also, when a predictor has more than two discrete
conditions, the default behavior for lmer is to treat one condition as the
baseline and estimate parameters for each of the other conditions (Chapter 5
will discuss how to handle this sort of situation in more detail). The model
comparison will then include the effect of adding all of those parameters (N−1,
for N conditions) and it will be impossible to tell which of the conditions is
different from the baseline. In this case, a parameter-specific evaluation of
statistical significance is needed.

In principle, the parameter-specific evaluation is a one-sample t-test eval-
uating whether the estimated parameter is different from 0. The t-value cor-
responds to the parameter estimate divided by its standard error, but the
problem is that, for multilevel regression parameters, the degrees of freedom
for that t-test are not well-defined, so a standard t-test can’t be done. One
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option is to use Markov Chain Monte Carlo (MCMC) simulation to gener-
ate a 95% confidence interval for each parameter estimate (e.g., Baayen et al.,
2008). However, this approach is limited in terms of the kinds of random effect
structures that it can handle and the resulting p-values can be severely anti-
conservative. That is, p < 0.05 is meant to indicate a less than 5% probability
of falsely detecting a non-existent effect, but the actual false alarm rate may
be substantially higher (as high as 20% in some cases; for a detailed analysis
see Barr et al., 2013).

A simple alternative is to use the normal distribution as an approximation.
As the number of degrees of freedom increases, the t distribution converges
to the normal distribution. This means that when the degrees of freedom are
relatively large, the normal distribution can be used as an approximation.
If the degrees of freedom are sufficiently large, then the specific number of
degrees of freedom will have little effect. Concretely, the t distribution for 10
degrees of freedom differs substantially from the t distribution for 15 degrees
of freedom but the t distributions for 510 and 515 degrees of freedom are
essentially identical. Time course data typically involve a large number of
observations relative to the number of fixed effect parameters in the model.
For example, in the word learning example there were 560 observations (10
training blocks for each of 56 participants) and only 6 fixed effect parameters.
Because the t distribution converges to the normal distribution when there are
many degrees of freedom and because time course data typically have many
observations, we can use the normal distribution to calculate approximate
p-values. These approximations will be somewhat anticonservative, but some
analyses suggest that the anticonservativity will not be too severe (e.g., a false
alarm under 10% for p < 0.05; see Barr et al., 2013).

To use the normal approximation, we first turn the model’s parameter
estimates into a new data frame. The fixed effect parameter estimates can be
extracted from the model summary using the coefs function:

> coefs <- data.frame(coef(summary(m.2)))

We then look up the p-value that corresponds to the absolute value of the t-
value in the normal distribution (using the pnorm function), subtract it from
1 to get the probability of a t-value exceeding the observed value, multiply it
by 2 to get a two-tailed p-value, and assign it to a new variable (called p) in
the coefs data frame

> coefs$p <- 2 * (1 - pnorm(abs(coefs$t.value)))

We can now see the full set of fixed effect parameter estimates and their p-
values:

> coefs

Estimate Std..Error t.value p

(Intercept) 0.7785250 0.021728 35.830648 0.0000e+00

ot1 0.2863155 0.037789 7.576772 3.5527e-14
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ot2 -0.0508493 0.033188 -1.532182 1.2548e-01

TPHigh 0.0529607 0.030728 1.723538 8.4791e-02

ot1:TPHigh 0.0010754 0.053441 0.020123 9.8395e-01

ot2:TPHigh -0.1164548 0.046934 -2.481234 1.3093e-02

The last three parameter estimates correspond to the effects of TP and these
results are quite similar to the model comparison results: only the effect of TP
on the quadratic term is statistically significant.

The lmerTest package offers a set of somewhat more sophisticated al-
ternative approximations. The simplest approach is just to let the lmerTest

package add parameter-specific p-values when fitting a model using lmer.
These p-values are calculated using Satterthwaite’s approximation for degrees
of freedom. Here is an example using the full model of the word learning data:

Start by loading the package:

> library(lmerTest)

then refit the model:

> m.2t <- lmer(Accuracy ~ (ot1+ot2)*TP + (ot1+ot2 | Subject),

data=WordLearnEx, REML=F)

The syntax is identical because it is the same lmer function, but now lmerTest

has calculated parameter-specific p-values, which can be seen in the summary:

> coef(summary(m.2t))

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.7785250 0.021728 56.008 35.830648 0.0000e+00

ot1 0.2863155 0.037789 62.507 7.576772 2.0520e-10

ot2 -0.0508493 0.033188 93.236 -1.532182 1.2886e-01

TPHigh 0.0529607 0.030728 56.008 1.723538 9.0308e-02

ot1:TPHigh 0.0010754 0.053441 62.507 0.020123 9.8401e-01

ot2:TPHigh -0.1164548 0.046934 93.236 -2.481234 1.4885e-02

Notice that the parameter estimates, standard errors, and t-values are un-
changed, because the model-fitting was identical, but the p-values are slightly
different from the normal approximation because the estimated degrees of
freedom are different.

3.6 Reporting growth curve analysis results

When describing study methods, the key principle is to provide enough infor-
mation for another researcher to be able to replicate the study. This general
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principle extends to statistical analysis methods as well: provide enough in-
formation that another researcher would be able to replicate your analysis.
Common analysis methods like t-tests and ANOVAs are so standardized that
it can be enough to simply identify the method. More sophisticated methods
like growth curve analysis have many possible variations, so it is important
to provide all of the key details of the analysis method and results. There are
three general categories of information that need to be included:

1. The model structure. The same general analysis framework can be
applied in many different ways, so it is not enough to say that you
used “multilevel modeling” or “growth curve analysis.” It is important
to clearly describe the functional form, all of the fixed effects, and the
random effects structure.

2. The basis for the inferential statistics. Readers need to know how
you made inferences about your model. That is, what method you used
for significance testing. For model comparisons, make sure to clearly
describe the models that were compared. For parameter-specific p-values
report that the normal approximation was used.

3. Complete model results, not just p-values. For model comparisons,
report the change in log-likelihood and the degrees of freedom (i.e., the
χ2 test). For parameter estimates, report the estimates and their stan-
dard errors (the t-values are optional because they are just the estimates
divided by standard errors).

It may also be a good idea to include information about the software used
to do the analysis. Here is an example of how these pieces might be combined
for the word learning example from section 3.4:

Growth curve analysis (Mirman, 2014) was used to analyze the
learning of the novel words over the course of 10 training blocks.
The overall learning curves were modeled with second-order or-
thogonal polynomials and fixed effects of TP on all time terms.
The low TP condition was treated as the baseline and parameters
were estimated for the high TP condition. The model also included
random effects of participants on all time terms. The fixed effects
of TP were added individually and their effects on model fit were
evaluated using model comparisons. Improvements in model fit
were evaluated using -2 times the change in log-likelihood, which
is distributed as χ2 with degrees of freedom equal to the number
of parameters added. All analyses were carried out in R version
3.0.2 using the lme4 package (version 1.0-5).

The effect of TP on the intercept did not improve model fit
(χ2(1) = 1.55, p = 0.213), nor did the effect of TP on the linear
term (χ2(1) = 0.358, p = 0.55). The effect of TP on the quadratic
term, however, did improve model fit (χ2(1) = 5.95, p = 0.0147),
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indicating that the low and high TP conditions differed in the rate
of word learning. Table 3.1 shows the fixed effect parameter es-
timates and their standard errors along with p-values estimated
using the normal approximation for the t-values.

TABLE 3.1
Parameter Estimates for Analysis of Effect of TP on Novel Word Learning

Estimate Std. Error t p
Intercept 0.779 0.022 35.831 0.000

Linear 0.286 0.038 7.577 0.000
Quadratic -0.051 0.033 -1.532 0.125

High TP: Intercept 0.053 0.031 1.724 0.085
High TP: Linear 0.001 0.053 0.020 0.984

High TP: Quadratic -0.116 0.047 -2.481 0.013

3.7 Chapter recap

This chapter focused on extending the basic version of growth curve analy-
sis beyond just straight lines. Modeling non-linear effects of time begins with
choosing an overall function or shape to describe the data, which is called
the functional form. Three principles for selecting a functional form were dis-
cussed: (1) it must be adequate to the data, (2) it must be dynamically consis-
tent, and (3) it must be able to make the kinds of predictions that the analyst
wants to make. Higher-order polynomials are one set of functional forms that
satisfy these constraints, with some important caveats regarding asymptotic
data and making forecast predictions. With this in mind, the chapter covered
how to choose polynomial order and a useful transformation — orthogonal
polynomials — that makes polynomial time terms independent.

Growth curve analysis using orthogonal polynomials was then demon-
strated with an analysis of word learning data. These data had been discussed
in Chapter 1 as an example of time course effects not captured by t-tests and
ANOVAs. The example showed how to generate the needed orthogonal poly-
nomials, analyze the data, interpret the results and plot the model fits. This
chapter also discussed two methods for evaluating statistical significance of
effects of interest. The better method is using model comparisons to evaluate
improvement in model fit due to particular effects. When parameter-specific
p-values are desired, the normal approximation provides a viable alternative
that is only somewhat anticonservative. The last section discussed three prin-
ciples for reporting growth curve analysis results: (1) report the full model
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structure, (2) report the basis for the inferential statistics, and (3) report
complete model results.

3.8 Exercises

The CP data frame contains auditory discrimination data (d′, called“d prime”)
for two continua of eight stimuli. The continua were created by morphing be-
tween two sounds from different categories, either along a temporal acoustic
dimension or along a spectral acoustic dimension. The hypothesis was that
there would be “categorical perception” — better discrimination near the cat-
egory boundary than near the endpoints — for the temporal dimension but
not for the spectral dimension (Mirman, Holt, & McClelland, 2004).

1. Analyze these data using growth curve analysis with second-order or-
thogonal polynomials. Which polynomial terms show statistically signif-
icant effects of continuum type?

2. Estimate parameter-specific p-values using the normal distribution. How
does this evaluation of the effects of continuum type compare with the
model comparisons approach? Repeat using lmerTest.

3. Plot the observed and model-fit d′ by continuum. Include an indicator of
variability (e.g., standard error) for the observed data. Make color and
black-and-white versions.
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4.1 Chapter overview

This chapter will focus on how to structure the random effects for a growth
curve analysis. The general principle is keep it maximal (Barr et al., 2013):
the random effects should include as much of the structure of the data as
possible. With this principle in mind, we will extend the between-participants
GCA described in the previous chapter to deal with within-participant effects.

These practical issues will then lead to a more general discussion of whether
participants should be treated as fixed or random effects. In addition to an-
swering this question, this discussion will provide a deeper understanding of
the difference between fixed and random effects, which is critical to under-
standing multilevel modeling and will be of particular relevance to researchers
interested in individual differences.

The final section will describe how to use visual comparisons to aid in the
interpretation of polynomial time terms. At first blush, this may not seem to
be related to structuring random effects, but, as we will see, this kind of visual
comparison requires manipulating random effects.

61
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4.2 “Keep it maximal”

Recall from Chapter 2 that random effects correspond to the observational
units in the study and capture the nested structure of the data. A full or
maximal random effect structure is the case where all of the factors that
could hypothetically vary across individual observational units are allowed to
do so. Let’s revisit the word learning model from the previous chapter:

> m.2 <- lmer(Accuracy ~ (ot1+ot2)*TP + (ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

The Level 1 model describes the overall word learning time course as a second-
order orthogonal polynomial. The observational units — the study partici-
pants — are assumed to represent random deviations from this overall pat-
tern. This means that, in principle, individual participants could vary on any
of the three time terms: the intercept, linear, or quadratic terms. To capture
this, we include all of them in the random effects specification (recall that the
intercept is included by default):

> (ot1+ot2 | Subject)

For this model, this is the full or maximal random effect structure. Table 4.1
contains the parameter estimates for this model. What would happen if we

TABLE 4.1
Parameter Estimates Using Maximal Random Effect Structure

Estimate Std. Error t p
Intercept 0.779 0.022 35.831 0.000

Linear 0.286 0.038 7.577 0.000
Quadratic -0.051 0.033 -1.532 0.125

High TP: Intercept 0.053 0.031 1.724 0.085
High TP: Linear 0.001 0.053 0.020 0.984

High TP: Quadratic -0.116 0.047 -2.481 0.013

omitted one of the time terms from the random effects structure? Here is the
same model but with only the intercept and linear terms in the random effects:

> m.1r <- lmer(Accuracy ~ (ot1+ot2)*TP + (ot1 | Subject),

data=WordLearnEx, REML=FALSE)

The new parameter estimates (Table 4.2) are exactly the same, but the stan-
dard errors are smaller, which makes their effects more statistically significant.
Omitting the quadratic random effect term told the model that all participants
should have the same quadratic term, which pushed all of the variability to
the fixed effects, thus making them look more significant. More generally, Barr
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TABLE 4.2
Parameter Estimates Using only Intercept and Linear Terms in the Random
Effect Structure

Estimate Std. Error t p
Intercept 0.779 0.022 35.847 0.000

Linear 0.286 0.037 7.789 0.000
Quadratic -0.051 0.030 -1.681 0.093

High TP: Intercept 0.053 0.031 1.724 0.085
High TP: Linear 0.001 0.052 0.021 0.983

High TP: Quadratic -0.116 0.043 -2.722 0.006

et al. (2013) used Monte Carlo simulation to show that maximal random ef-
fects structures minimize false alarm rates without substantial loss of power
(for additional discussion of how to structure random effects for mixed designs
with both within-subject and between-subject factors, see Barr, 2013).

As described in Chapter 2, growth curve models are fit using an iterative
algorithm that tries to find (converge to) the set of parameters that maximizes
the likelihood of observing the actual data. Models with complex random
effects structures can take a long time to converge and can fail to converge.
If the maximal model does not converge, it may be necessary to simplify
the random effect structure, that is, to remove some terms from the random
effects. As we saw in the word learning example, removing a time term from
the random effects primarily reduces the standard error of the corresponding
fixed effect estimate, making it look more significant and (based on the results
of Barr et al., 2013) inflating the false alarm rate. This means that the most
important random effect terms are those that correspond to the fixed effects of
interest. For example, in higher-order polynomial models, some of the higher-
order terms may be of less interest and thus good candidates for removal from
random effects. But remember that this is only a last resort if a model with
the maximal random effect structure fails to converge.

Another approach is to remove the random effect correlations. By default,
the random effects structure specified by

> (ot1+ot2 | Subject)

tells lmer to estimate the three participant-level random effects (intercept,
linear, and quadratic) and their pairwise correlations. You can see these cor-
relations on the right side of the Random effects section near the beginning
of the model summary, excerpted here:

Groups Name Std.Dev. Corr

Subject (Intercept) 0.1037

ot1 0.1242 -0.33

ot2 0.0792 -0.28 -0.82

Residual 0.1567
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It is possible to remove those correlations, effectively setting them to 0, by
specifying the three random effects separately using the following syntax:

> m.nocorr <- lmer(Accuracy ~ (ot1+ot2)*TP + (1 | Subject) +

(0+ot1 | Subject) + (0+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

Now those correlations are absent from the summary of the random effects
(notice that the residual variance is now larger because these reduced random
effects capture less variance):

Groups Name Std.Dev.

Subject (Intercept) 0.1032

Subject.1 ot1 0.1105

Subject.2 ot2 0.0105

Residual 0.1600

As with removing other random effect terms, this does not affect the fixed
effect parameter estimates, but it does affect their standard errors (see Table
4.3). In their simulations, Barr et al. (2013) found that removing random effect

TABLE 4.3
Parameter Estimates for Model without Random Effect Correlations

Estimate Std. Error t p
Intercept 0.779 0.022 35.847 0.000

Linear 0.286 0.037 7.789 0.000
Quadratic -0.051 0.030 -1.678 0.093

High TP: Intercept 0.053 0.031 1.724 0.085
High TP: Linear 0.001 0.052 0.021 0.983

High TP: Quadratic -0.116 0.043 -2.717 0.007

correlations resulted in the smallest increase in false alarm rates, so these may
also be good candidates for removal when it is necessary to simplify the random
effect structure. Keep in mind, however, that Barr et al. did not examine time
course data and these correlations may play a bigger role for time course data.
For example, note the very strong negative correlation between ot1 and ot2

random effects, which probably reflects the fact that individuals who learned
the words faster have steeper positive slopes (higher ot1) and more sharply
(negatively) curved learning curves (lower ot2) – Chapter 7 will discuss how
to use random effects to quantify individual differences in more detail. Until
systematic analyses of the sort conducted by Barr et al. are conducted for
time course data, it remains unclear how much the false alarm rate will be
inflated by removing the random effect correlations in analyses of time course
data.

To summarize, the best strategy is to start with a maximal random effects
structure that includes all time terms. If this model fails to converge, it may
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help to simplify the random effects structure by removing some of the terms.
Removing terms from the random effects will not change the fixed effect es-
timates, but it will change their standard errors, which will make them look
more statistically significant and possibly increase the likelihood of a Type I
error (i.e., a false positive). If you need to simplify the random effect structure,
the best candidates appear to be the random effect correlations and random
effects corresponding to fixed effects that are not of primary interest.

4.3 Within-participant effects

So far, all of the examples have considered only between-participant manipu-
lations where there is only one time series of observations per participant. In
many studies there are multiple time series per participant, for example, due to
within-participant manipulations where each participant completes multiple
conditions. In such cases this additional level of nesting needs to be represented
in the random effects. Let’s walk through an example using data on the time
course of word recognition. In this study, participants were shown four pictures
on a computer screen, then they heard the name of one of the pictures and
had to click on it. There were two kinds of words: words like horse and bed,
which occur frequently in typical language use (“high” frequency words) and
words like mouse and comb, which occur less frequently in typical language
use (“low” frequency words). Each participant heard both kinds of words, so
this was a within-participant manipulation. The participants’ eye movements
were tracked as they completed this word-to-picture matching task and the
data correspond to each participant’s probability of fixating the target picture
at each point in time.

> summary(TargetFix)

Subject Time timeBin Condition

708 : 30 Min. : 300 Min. : 1 High:150

712 : 30 1st Qu.: 450 1st Qu.: 4 Low :150

715 : 30 Median : 650 Median : 8

720 : 30 Mean : 650 Mean : 8

722 : 30 3rd Qu.: 850 3rd Qu.:12

725 : 30 Max. :1000 Max. :15

(Other):120

meanFix sumFix N

Min. :0.0286 Min. : 1.0 Min. :33.0

1st Qu.:0.2778 1st Qu.:10.0 1st Qu.:35.8

Median :0.4558 Median :16.0 Median :36.0

Mean :0.4483 Mean :15.9 Mean :35.5

3rd Qu.:0.6111 3rd Qu.:21.2 3rd Qu.:36.0

Max. :0.8286 Max. :29.0 Max. :36.0
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The TargetFix data frame contains the following variables:

� Subject: a participant ID

� Time: milliseconds from the start of the spoken word, ranging from 300ms
to 1000ms in 50ms time bins

� timeBin: the same time bins represented as 1 to 15 for convenience in
fitting the polynomials

� Condition: the word type, high frequency or low frequency

� meanFix: the proportion of trials on which the target picture was fixated
for each participant, in each condition, in each time bin

� sumFix and N: the numerator and denominator, respectively, for com-
puting the fixation proportions. These will be relevant in Chapter 6,
when we discuss growth curve analyses for binary outcome variables
(i.e., looking vs. not-looking at the target)

Here is code to plot these data, using a semi-transparent ribbon to repre-
sent the standard error (Figure 4.1). The color=NA option removes lines from
the ribbon edges and the alpha=0.3 sets the level of transparency/opacity.

> ggplot(TargetFix, aes(Time, meanFix, linetype=Condition)) +

stat_summary(fun.data=mean_se, geom="ribbon",

color=NA, alpha=0.3) +

stat_summary(fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(y="Fixation Proportion",

x="Time since word onset (ms)")

The target fixation proportion starts out approximately at chance (there were
four pictures, so chance probability is 25%) and gradually rises until most
looks are on the target, indicating that participants have recognized the word
and found the corresponding picture. It is clear (and not surprising) that high
frequency words were recognized faster than low frequency words.

As with the word learning data, we start by creating an orthogonal poly-
nomial. The target fixation data have three changes of direction (inflection
points): the initial change from flatness, then an early increase when fixation
proportions begin to rise rapidly, and the last near the end when they begin
to plateau. Using the general guideline from the previous chapter, this means
that we will need a third-order polynomial to capture these data.

> t <- poly(unique(TargetFix$timeBin), 3)

then we append it to the TargetFix data frame, making sure to align the
orthogonal polynomial values with their corresponding time bins.
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FIGURE 4.1
Target fixation time course for high and low frequency words. Ribbon repre-
sents ±SE.

> TargetFix[,paste("ot", 1:3, sep="")] <-

t[TargetFix$timeBin, 1:3]

For convenience, we’ll skip to the full model and use the normal approxima-
tion to get p-values. We’ll also use the bobyqa optimizer instead of the default
Nelder-Mead optimizer – in general, the two optimizers produce almost iden-
tical results, but bobyqa seems to converge somewhat more reliably.

> m.full <- lmer(meanFix ~ (ot1+ot2+ot3)*Condition +

(ot1+ot2+ot3 | Subject) +

(ot1+ot2+ot3 | Subject:Condition),

control=lmerControl(optimizer = "bobyqa"),

data=TargetFix, REML=FALSE)

The first line contains the fixed effects and the second and third lines contain
the model’s two sets of random effects. The first set

> (ot1+ot2+ot3 | Subject)
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captures participant-level variability in overall spoken word recognition time
course, that is, across both word frequency conditions. The second set

> (ot1+ot2+ot3 | Subject:Condition)

captures participant-by-condition variability; that is, differences in individual
participants’ sensitivity to the manipulation. To get a better understanding of
what this means, it will help to look at the actual random effect values, which
can be extracted from the model object using the ranef function:

> ranef(m.full)

$`Subject:Condition`

(Intercept) ot1 ot2 ot3

708:High 0.0122778 -0.131207 -0.1298541 0.01514974

708:Low -0.0612169 0.170376 0.0622766 0.01231449

712:High 0.0212282 0.082904 0.0280306 0.02000116

712:Low -0.0144528 0.044843 0.0325511 -0.01729650

715:High 0.0123634 0.059716 0.0551747 -0.02499504

715:Low -0.0086839 0.105990 0.1303139 -0.03947449

720:High 0.0100855 0.083385 0.0745981 -0.04445714

720:Low 0.0347270 -0.354064 -0.3136092 0.07583080

722:High 0.0161374 -0.083817 -0.2057153 0.00095489

722:Low -0.0146185 0.048801 0.0978763 -0.01446828

725:High -0.0360243 0.019823 0.0763439 0.00073756

725:Low 0.0680030 -0.115198 -0.0433394 0.02575001

726:High 0.0732496 -0.019889 0.0464758 0.00593915

726:Low -0.0211906 0.031605 0.0195368 0.00968963

730:High -0.0646790 0.188067 0.0932936 0.02108594

730:Low 0.0132856 -0.018365 0.0416385 -0.03930511

734:High 0.0303379 -0.213237 -0.0452559 0.03463086

734:Low 0.0158956 0.114272 -0.0129925 -0.02218751

736:High -0.0749766 0.014255 0.0069084 -0.02904712

736:Low -0.0117485 -0.028259 -0.0142522 0.00914695

$Subject

(Intercept) ot1 ot2 ot3

708 -0.00015795 0.0108620 -0.0035599 -0.00493085

712 0.01102197 0.1069207 -0.0093299 -0.03651407

715 0.01137522 0.1148167 -0.0109608 -0.03965103

720 -0.00207073 -0.0130026 -0.0003585 0.00374228

722 0.01382768 0.1622380 -0.0200789 -0.05817441

725 -0.01782716 -0.2073434 0.0253441 0.07419975

726 -0.00020340 -0.0269480 0.0076148 0.01166406

730 -0.00172924 -0.0167750 0.0014638 0.00572876

734 0.00105459 0.0033764 0.0011498 -0.00047767

736 -0.01529097 -0.1341449 0.0087155 0.04441316
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attr(,"class")

[1] "ranef.mer"

The ranef function returns a list of two data frames, corresponding to the
two sets of random effects and named by the term to the right of the pipe
in the model specification. Let’s start with the second data frame in the list,
which contains the Subject-level random effects. The rows are the individual
participants and the columns are the time terms. The values are the random
effects, which capture how that individual’s time course differed from the
group mean with respect to that particular time term. Looking at the first
row, we see that participant #708 had an intercept that was very close to
the average (-0.00016), a linear slope that was somewhat more positive than
the average (0.0109), a quadratic curvature that was slightly more negative
than average (-0.0036), and a cubic curvature that was slightly more negative
than the average (-0.0049). These values describe each participant’s deviation
from the overall group pattern in terms of the time variables that were used
to describe the overall group pattern. Notice that condition is not represented
in these random effects, so they correspond to overall, condition-independent,
individual differences.

Now let’s go back to the first data frame in the list, Subject:Condition,
which contains a random effect estimate for each participant-by-condition
combination for each time term. The principle is the same, except now we
have moved one level down in the nesting hierarchy to consider separately the
two sets of observations for each participant – one set for each of the within-
participant conditions. For example, taking the first two values in the left-most
column, this says that the intercept for participant #708 in the High condi-
tion was slightly higher than the overall average (0.0123) and the intercept
in the Low condition was somewhat lower than the overall average (-0.0612).
Chapter 7 will describe how these values can be used to calculate effect sizes
for individual participants.

Together, the two sets of random effects capture the expected variability in
the data at the individual participant level (the Subject random effects) and
at the participant-by-condition level (Subject-by-Condition random effects) as
well as the nested structure of the data (individual observations grouped by
condition and by participant).

4.3.1 An alternative within-participant random effect struc-
ture

The focus of this book is on using multilevel regression to analyze time course
data, but the same general approach can be applied to other kinds of nested
data. In time course data, multiple observations from the same individual
are related by a continuous time variable; in other nested data, the multiple
observations might simply correspond to different trials on which there was a
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different (discrete) stimulus item. For example, in our study of recognition of
high and low frequency words, there were 36 words of each type. For such data,
multilevel regression models are a useful tool for simultaneously capturing the
random variability among participants and among items (e.g., Baayen et al.,
2008; Barr et al., 2013). In such crossed random effects models it is typical to
place the condition random effects on the left side of the pipe in the random
effect structure, which are sometimes called random slopes of condition (this
terminology is potentially confusing with time slopes, so we’ll continue to
discuss them in terms of the left and right side of the pipe). Here is how that
approach would look for the target fixation example data:

> m.Left <- lmer(meanFix ~ (ot1+ot2+ot3)*Condition +

((ot1+ot2+ot3)*Condition | Subject),

control=lmerControl(optimizer = "bobyqa"),

data=TargetFix, REML=FALSE)

Looking at the random effect estimates from this model might help with
understanding how this is different from the random effects structure described
in the previous section.

> ranef(m.Left)

$Subject

(Intercept) ot1 ot2 ot3 ConditionLow

708 0.0129823 -0.127326 -0.1404948 -0.0213955 -0.071949

712 0.0355779 0.192963 0.0173607 -0.0041654 -0.039625

715 0.0261574 0.182484 0.0027405 -0.0016630 -0.026146

720 0.0091999 0.064358 0.0806459 -0.0635344 0.022465

722 0.0280798 0.087190 -0.2205424 -0.0824442 -0.034123

725 -0.0579212 -0.198721 0.1311462 0.0682712 0.106360

726 0.0722703 -0.042654 0.0651959 0.0257667 -0.088813

730 -0.0665132 0.176032 0.0988989 0.0374008 0.079989

734 0.0335393 -0.210460 -0.0313207 0.0383864 -0.018863

736 -0.0933725 -0.123867 -0.0036302 0.0033772 0.070706

ot1:ConditionLow ot2:ConditionLow ot3:ConditionLow

708 0.315895 0.2030291 0.0438445

712 -0.054206 0.0228135 -0.0767239

715 0.015228 0.1157983 -0.1061287

720 -0.441935 -0.3913959 0.1671132

722 0.135545 0.2958944 0.0073066

725 -0.111273 -0.1766832 0.0240645

726 0.082522 -0.0703233 0.0154962

730 -0.226211 -0.0320487 -0.1061425

734 0.323745 0.0363369 -0.0378409

736 -0.039309 -0.0034211 0.0690110

attr(,"class")

[1] "ranef.mer"
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For each participant, there are 8 random effect estimates corresponding to
each of the two conditions (High and Low) by each of the four time terms
(intercept, slope, quadratic, and cubic). This is different from the random
effect structure in the previous section in two important ways.

First, since random effects are meant to model the variability in the data in
terms of random samples from a normal distribution, it represents a different
idea about how that sampling works. Putting Condition on the right side
of the pipe treats every participant-by-condition time series as an individual
sample drawn from a single distribution, which means estimating two variance
parameters per time term (one for Subject and one for Subject:Condition)
and two correlation parameters for each pair of time terms. These estimates
are printed near the top of the model summary:

Groups Name Std.Dev. Corr

Subject:Condition (Intercept) 0.0405

ot1 0.1404 -0.43

ot2 0.1124 -0.33 0.72

ot3 0.0417 0.13 -0.49 -0.43

Subject (Intercept) 0.0124

ot1 0.1195 0.91

ot2 0.0165 -0.42 -0.76

ot3 0.0421 -0.85 -0.99 0.83

Residual 0.0438

In contrast, putting Condition on the left side creates separate distributions
for each condition, which means estimating separate variance parameters per
level of Condition for each time term and separate correlation parameters for
each time term-by-level combination:

Groups Name Std.Dev. Corr

Subject (Intercept) 0.0519

ot1 0.1570 0.18

ot2 0.1094 -0.29 0.03

ot3 0.0490 -0.28 -0.37 0.63

ConditionLow 0.0649 -0.89 -0.13 0.49 0.34

ot1:ConditionLow 0.2285 0.38 -0.46 -0.62 0.10 -0.56

ot2:ConditionLow 0.1889 0.20 0.08 -0.81 -0.22 -0.43 0.74

ot3:ConditionLow 0.0862 -0.08 -0.40 -0.06 -0.47 0.06 -0.27 -0.43

Residual 0.0430

The upshot is that putting Condition on the left side creates a more flex-
ible model with fewer assumptions (e.g., not assuming equal variance across
conditions), but at the cost of a substantial increase in the number of param-
eters that need to be estimated. For this example, with 4 time terms and 2
conditions, it is a difference between 36 and 20 parameters. This difference in
number of parameters also means that models with Condition on the left side
of the pipe will take longer to fit (for this example it was 0.92sec vs. 2.84sec)
and are more likely to fail to converge.
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Second, having separate participant and participant-by-condition random
effects allows for participant-level random effect estimates that are indepen-
dent of individual conditions (that is, collapsed across the two conditions).
Such random effects might be useful for describing individual participants’
overall time course. For example, participant #722 had a very positive ot1

random effect estimate (0.162) and a very negative ot2 random effect estimate
(-0.02), suggesting that his or her overall word recognition was much faster
than average. The alternative structure with Condition to the left of the pipe
does not provide this kind of estimate, though an analog could be computed
by averaging together the two condition-specific random effect estimates for
each participant.

> 0.5 *

(ranef(m.Left)$Subject[,1:4] + ranef(m.Left)$Subject[,5:8])

(Intercept) ot1 ot2 ot3

708 -2.9483e-02 0.094284 0.0312672 0.01122449

712 -2.0238e-03 0.069379 0.0200871 -0.04044464

715 5.7761e-06 0.098856 0.0592694 -0.05389581

720 1.5832e-02 -0.188788 -0.1553750 0.05178941

722 -3.0215e-03 0.111368 0.0376760 -0.03756879

725 2.4219e-02 -0.154997 -0.0227685 0.04616784

726 -8.2715e-03 0.019934 -0.0025637 0.02063144

730 6.7378e-03 -0.025090 0.0334251 -0.03437083

734 7.3381e-03 0.056642 0.0025081 0.00027279

736 -1.1333e-02 -0.081588 -0.0035257 0.03619410

The consequences of these differences are not obvious without a thorough
and systematic analysis, but the additional assumptions are relatively rea-
sonable (e.g., equal variance across conditions) and the benefits in terms of
computational time and convergence are noticeable. For these reasons, speci-
fying separate Subject and Subject-by-Condition random effects as in section
4.3 is the recommended approach, but the alternative can be used if a more
flexible model is needed.

4.4 Participants as random vs. fixed effects

The conceptual overview in Chapter 2 described the traditional logic that if
a factor is interesting in itself and its levels are fixed in the world and repro-
ducible, then they should be considered fixed effects; if the levels correspond to
randomly sampled observational units, then they should be considered random
effects. Following this logic, the preceding examples all treated participants as
random effects. However, researchers interpret this logic in different ways.
For example, in two articles describing how to apply multilevel regression to
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fixation time course data, one treated participants as random effects (Barr,
2008) and the other treated them as fixed effects (Mirman, Dixon, & Magnu-
son, 2008). This section will work through the consequences of this decision
and provide some guidelines for choosing which approach is more appropriate
for a particular situation. In general, this discussion will focus on participant
effects because our primary analyses typically focus on data aggregated by
participants, but the same issues and principles hold for items in a by-items
analysis.

The critical difference is that when participants are treated as a fixed effect,
each participant’s parameters are estimated independently. When participants
are treated as a random effect, each participant’s parameters are constrained
to be random deviations from the population mean parameters, with the de-
viations assumed to conform to a normal distribution with mean equal to 0.
This additional constraint means that each individual’s parameter estimates
from a random-participant-effects model will be weighted averages of the pa-
rameter estimates from a fixed-participant-effects model and the group-level
parameter estimates. Put simply, the parameter estimates reflect both the
individual participant’s data and the whole group data – each participant’s
individual random effect parameter estimates are influenced by the other par-
ticipants’ data. As a result, they tend to“shrink” toward the population mean.
This shrinkage can have positive and negative consequences. When individual
participant estimates are allowed to be fully independent (i.e., treated as fixed
effects), they provide better (that is, independent) estimates of differences be-
tween individual participants. The downside is that the resulting model can
overfit the data – modeling every tiny difference between participants may tell
us more about the trees than the forest.

Figure 4.2 shows an example of this shrinkage. The data were taken from
a study that used eye tracking to examine semantic competition effects during
spoken word comprehension (Mirman & Magnuson, 2009; the same data were
used to demonstrate dynamic inconsistency in Chapter 3). While doing a
spoken word-to-picture matching task, participants were (briefly) more likely
to look at pictures that were semantically related to the target than unrelated
pictures. The overall time course of this effect (Level 1) was modeled with
a fourth-order orthogonal polynomial, with Level 2 fixed effects of picture
relatedness (related vs. unrelated), and participants treated as either fixed or
random effects. Figure 4.2 shows the effect of this difference on the intercept
and linear parameter estimates for individual participants. When participants
were treated as random effects, the estimates were much more tightly clustered
around the population mean (indicated by the black vertical and horizontal
lines).

It is important to keep in mind that although this decision affected the
individual participant parameter estimates, the condition parameter estimates
(related vs. unrelated) came out exactly the same because this study had
a balanced within-participant design (i.e., there were related and unrelated
distractors for all participants). However, because of the additional constraints
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FIGURE 4.2
Shrinkage effect on individual participant intercept and linear term parameter
estimates. For each participant, the arrow shows the change in the parameter
estimate from a model that treats participants as fixed effects (open circles)
to a model that treats participants as random effects (filled circles). The black
vertical and horizontal lines indicate the population-level fixed effect.

of treating participants as random effects, the participant effects captured less
variance, thus the standard errors for the condition fixed effect parameter
estimates were larger. As a result, treating participants as random effects
yields a more conservative estimate of group-level effects.

Another important consequence is that treating participants as fixed ef-
fects gives the model much more flexibility, so it is able to attain a much
better model fit (participants as fixed effect: LL = 1189; participants as ran-
dom effect: LL = 1024). The log-likelihood always increases when indepen-
dent parameters are added to a model, but, as described in Chapter 2, we
can test whether the additional parameters significantly improve model fit by
evaluating the change in the deviance statistic (−2 · ∆LL). In this case, the
additional participant fixed effect parameters did significantly improve model
fit (χ2(170) = 329, p < 0.0001). This example illustrates a fundamental ten-
sion between building a model that provides the best statistical description
of the data and a model that instantiates the research question. In many
studies (including the study from which these data were drawn), researchers
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are interested in generalizing from their sample to a larger population, so the
individual variability reflects the variability in the population. Treating par-
ticipants as random effects instantiates this premise in a way that makes the
condition fixed effect estimates more conservative, so it is appropriate for that
research question.

When deciding whether to treat participants as random or fixed effects,
one needs to consider the research goals and the homogeneity and normality
of the sample population. If the goal is to generalize, then the researcher is
essentially forced to assume that the sample is drawn from a homogeneous
population (otherwise generalization would be impossible) and should treat
participants as a random effect. However, this form of generalization is not al-
ways the goal. For example, neurological case studies inform cognitive theories
by showing what must be possible (as in an existence proof) and by generating
new hypotheses. In such contexts, the goal is to describe the observed data as
accurately as possible and treating participants as fixed effects may be more
appropriate. Since participant fixed effect parameters better capture individ-
ual differences, they may provide a better approach for studying individual
differences (e.g., Mirman et al., 2011; and the individual differences example
in Mirman, Dixon, & Magnuson, 2008). In such cases, it may be advantageous
to acquire independent parameter estimates for the participants by treating
them as fixed effects rather than random effects. Finally, for hypothetically
homogeneous populations like typical college students, treating participants
as random effects may the better approach; but for clearly non-homogeneous
populations like neurological patients (who have unique clinical and neurolog-
ical presentations, even if their diagnosis is the same) treating participants as
fixed effects may be more appropriate.

In sum, for typical experiments, treating participants (or items) as random
effects appropriately reflects the typical assumption that each observational
unit is a randomly drawn sample from the population to which the researcher
hopes to generalize. Treating participants as fixed effects is a legitimate al-
ternative, but should be explicitly justified based on sample properties (e.g.,
non-random sampling from a non-homogeneous or non-normal distribution)
or research goals (e.g., description of present data rather than generalization
to a population).

4.5 Visualizing effects of polynomial time terms

One of the challenges of using polynomial functions in growth curve analyses
is interpreting effects on polynomial time terms, especially the higher-order
terms. Interpreting the effects of lower-order terms like the intercept and linear
slope is relatively easy, but it can be hard to know what aspect of the time
course is being captured by a significant effect on the cubic or quartic term.
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One solution to this problem is to just not include effects on these higher-order
terms in the model. However, although they can be difficult to interpret, the
higher-order terms can capture interesting and important aspects of the data.
In such cases, direct visual comparisons can help both the researcher and the
reader understand those effects. We’ll work through an example where the
cubic and quartic terms capture an important effect and demonstrate how to
use visual comparisons to interpret those results.

The example data come from an experiment using the same eye-tracking
paradigm as the other examples in this chapter. On each trial in this exper-
iment, participants had to click on the picture that matched a spoken word.
The display contained four pictures: the target and three distractors. Two of
those distractors were completely unrelated to the target, but one distractor
was related to the target either because they had a similar general function
(for example, toaster and coffee-maker are both used to prepare breakfast;
this was called the function condition) or because they were typically used to-
gether in some way (for example, toaster and bread are used together to make
toast; this was called the thematic condition). The participants tended to look
at these related distractors (competitors) more than at the unrelated distrac-
tors and, more importantly, the looks to the thematic competitor tended to
happen earlier than the looks to the function competitor, suggesting that this
kind of relation was recognized more quickly (Kalénine et al., 2012). Here is
a data frame containing the relevant data:

> summary(FunctTheme)

Subject Time meanFix Condition

21 :102 Min. : 500 Min. :0.0000 Function:765

24 :102 1st Qu.: 700 1st Qu.:0.0625 Thematic:765

25 :102 Median : 900 Median :0.1333

27 :102 Mean : 900 Mean :0.2278

28 :102 3rd Qu.:1100 3rd Qu.:0.3113

40 :102 Max. :1300 Max. :1.0000

(Other):918

Object

Target :510

Competitor:510

Unrelated :510

Here is a plot of those data (Figure 4.3):

> ggplot(FunctTheme, aes(Time, meanFix, linetype=Object)) +

facet_wrap(~ Condition) +

stat_summary(fun.y=mean, geom="line") +

stat_summary(fun.data=mean_se, geom="ribbon",

color=NA, alpha=0.3) +

theme_bw(base_size=10) +

labs(x="Time Since Word Onset (ms)",
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y="Fixation Proportion") +

theme(legend.justification=c(0,1),

legend.position=c(0,1),

legend.background=

element_rect(color="black", fill="white")) +

scale_linetype_manual(values=

c("solid", "dashed", "dotted"))
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FIGURE 4.3
Time course of fixations to targets (solid lines), related competitors (dashed
lines), and unrelated distractors (dotted lines) in the function (left panel) and
thematic (right panel) relation conditions. Ribbon represents ±SE.

To prepare the data for growth curve analysis, it will be convenient to
have a timeBin variable that represents time as bins in the analysis instead
of milliseconds since word onset

> FunctTheme$timeBin <- FunctTheme$Time/50 - 9

Now we can create a fourth-order orthogonal polynomial in the range of time-
Bin

> t <- poly(1:max(FunctTheme$timeBin), 4)

insert it into the data frame, aligned by timeBin
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> FunctTheme[, paste("ot", 1:4, sep="")] <-

t[FunctTheme$timeBin, 1:4]

and fit the full model:

> m.full <- lmer(meanFix ~ (ot1+ot2+ot3+ot4)*Object*Condition +

(ot1+ot2+ot3+ot4 | Subject) +

(ot1+ot2+ot3+ot4 | Subject:Object:Condition),

data=subset(FunctTheme, Object != "Target"),

control=lmerControl(optimizer="bobyqa"),

REML=FALSE)

The fixed effects contain all four polynomial time terms (and the inter-
cept is included by default) and all of their interactions with Object and with
Condition and the Object:Condition interaction. The effects of Object will
capture the difference between related and unrelated distractors; the effects of
Condition will capture the differences between the Function and Thematic
conditions; and the Object:Condition interaction is the most important be-
cause these effects are the ones that will capture how the type of relation
(Condition) modulates the time course of looks to the related vs. unrelated
distractors. As in section 4.3, there are two sets of random effects: one set
at the Subject level to capture overall individual differences and one set at
the lowest level of nesting in the data (Subject:Object:Condition). Finally,
because we are only interested in comparing the related vs. unrelated distrac-
tors, we exclude the target fixations from the analysis data using the subset

function.
We can plot the model fit to check that the model actually fit the data

reasonably well. For convenience, we’ll combine the subset of behavioral data
that was analyzed (exclude the target) and the model fit into one data frame:

> data.comp <- data.frame(

subset(FunctTheme, Object != "Target"),

GCA_Full=fitted(m.full))

This makes it easier to make a combined plot of the behavioral data and model
fit (Figure 4.4):

> ggplot(data.comp, aes(Time, meanFix, shape=Object)) +

facet_wrap(~ Condition) +

stat_summary(fun.data=mean_se, geom="pointrange") +

stat_summary(aes(y=GCA_Full, linetype=Object),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(x="Time Since Word Onset (ms)",

y="Fixation Proportion") +

theme(legend.justification=c(1,1),

legend.position=c(1,1),
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legend.background=

element_rect(color="black", fill="white"))
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FIGURE 4.4
Time course of fixations to related competitors (circles, solid lines) and un-
related distractors (triangles, dashed lines) in the function (left panel) and
thematic (right panel) relation conditions. Symbols represent behavioral data
(±SE); lines represent full GCA model fits.

The model fits the behavioral data quite well. To evaluate the experimental
effects, we can compute the p-values using the normal approximation:

> coefs.full <- as.data.frame(coef(summary(m.full)))

> coefs.full$p <- format.pval(

2*(1-pnorm(abs(coefs.full[,"t value"]))))

and extract the critical Object:Condition interaction parameters using the
str_detect function from the stringr package:

> library(stringr)

> coefs.full[str_detect(rownames(coefs.full),

"*ObjectUnrelated:ConditionThematic"),]

Estimate Std. Error

ObjectUnrelated:ConditionThematic -0.0041636 0.017089
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ot1:ObjectUnrelated:ConditionThematic 0.0658778 0.077445

ot2:ObjectUnrelated:ConditionThematic -0.0475679 0.043617

ot3:ObjectUnrelated:ConditionThematic -0.1561839 0.051811

ot4:ObjectUnrelated:ConditionThematic 0.0757088 0.033078

t value p

ObjectUnrelated:ConditionThematic -0.24364 0.807512

ot1:ObjectUnrelated:ConditionThematic 0.85064 0.394969

ot2:ObjectUnrelated:ConditionThematic -1.09059 0.275451

ot3:ObjectUnrelated:ConditionThematic -3.01450 0.002574

ot4:ObjectUnrelated:ConditionThematic 2.28881 0.022090

The statistically significant effects of the interaction are only on the cubic and
quartic terms. It would be nice if this statistical difference corresponded to
the earlier vs. later competition effect shown in Figure 4.4, but it is hard to
be sure because those higher-order terms are hard to mentally visualize. To
simplify that, we can physically visualize the effects of those terms by fitting a
reduced model with those specific effects removed and then visually comparing
the model fits.

For statistical model comparisons, as discussed in Chapter 2, we would only
remove the fixed effects and compare the models using the anova function.
For this sort of visual comparison, we need to remove both the fixed effects
and the corresponding random effects. If we just removed the fixed effects, the
random effects would pick up some of that variance and it would be hard to see
the differences in the plots. Because we will be removing specific interaction
terms, we’ll have to use a somewhat less compact model formula:

> m.red <- lmer(meanFix ~ (ot1+ot2+ot3+ot4)*Object +

(ot1+ot2+ot3+ot4)*Condition +

(ot1+ot2)*Object*Condition +

(ot1+ot2+ot3+ot4 | Subject) +

(ot1+ot2 | Subject:Object:Condition),

control=lmerControl(optimizer="bobyqa"),

data=subset(FunctTheme, Object != "Target"),

REML=FALSE)

The reduced fixed effect interaction term is in the third line and the reduced
random effect interaction term is in the fifth line. For convenience, we’ll add
this model fit to the data frame that already has the behavioral data and the
full model fit.

> data.comp$GCA_Reduced <- fitted(m.red)

We could try to plot these behavioral data and both model fits, but that would
mean plotting 12 time series in one figure, which would be hard to make sense
of. Since what we really care about is the difference between the fixation
time courses for competitor and the unrelated objects, we can simplify the
figure by plotting just the difference between them, which is typically called
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the “competition effect.” First, we have to calculate those differences for each
participant, at each time point, in each condition.

The plyr package provides tools to do this sort of calculation efficiently.
The plyr package implements a split-apply-combine strategy: the data set
is split into subsets, some operation is applied to those subsets, then the results
are combined to create a new data set. The key functions in the plyr package
have names that look like **ply where each * corresponds to the format of
the input or output data set (respectively) and can be a for an array, l for a
list, or d for a data frame. Since we’re starting with a data frame and we want
to end up with a data frame, we’ll use ddply:

> ES <- ddply(data.comp, .(Subject, Time, Condition),

summarize,

Competition = meanFix[Object=="Competitor"] -

meanFix[Object=="Unrelated"],

GCA_Full = GCA_Full[Object=="Competitor"] -

GCA_Full[Object=="Unrelated"],

GCA_Reduced = GCA_Reduced[Object=="Competitor"] -

GCA_Reduced[Object=="Unrelated"])

The first input to ddply is the starting data frame, in our case it is data.comp.
The next input is a list of variables that define the subsets – there will be a
subset for every unique combination of values among these variables. Since we
wanted to compute the effect size for each participant, at each time point, in
each condition, the list of variables is .(Subject, Time, Condition). After
these are specified, we need to tell ddply what operation to apply to each
subset. In our case, we define a data summary that consists of differences
between competitor and unrelated fixations (observed or model-predicted).
Here is a summary of the resulting data frame:

> summary(ES)

Subject Time Condition Competition

21 : 34 Min. : 500 Function:255 Min. :-0.2812

24 : 34 1st Qu.: 700 Thematic:255 1st Qu.:-0.0625

25 : 34 Median : 900 Median : 0.0000

27 : 34 Mean : 900 Mean : 0.0214

28 : 34 3rd Qu.:1100 3rd Qu.: 0.0702

40 : 34 Max. :1300 Max. : 0.4000

(Other):306

GCA_Full GCA_Reduced

Min. :-0.2394 Min. :-0.3123

1st Qu.:-0.0375 1st Qu.:-0.0231

Median : 0.0143 Median : 0.0209

Mean : 0.0214 Mean : 0.0215

3rd Qu.: 0.0760 3rd Qu.: 0.0630

Max. : 0.3320 Max. : 0.2610
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Now we can plot the observed competition effects in both conditions along
with the predictions from the full and reduced models (Figure 4.5).

> ggplot(ES, aes(Time, Competition,

shape=Condition, linetype=Condition)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(aes(y=GCA_Full), fun.y=mean, geom="line") +

stat_summary(aes(y=GCA_Reduced), fun.y=mean, geom="line",

color="gray") +

theme_bw(base_size=10) +

labs(x="Time Since Word Onset (ms)", y="Competition") +

theme(legend.justification=c(1,1), legend.position=c(1,1),

legend.background=

element_rect(color="black", fill="white")) +

scale_shape_manual(values=c(1,16))
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FIGURE 4.5
Time course of competition. Symbols represent the behavioral data, black lines
represent the full model, grey lines represent the reduced model.

The full model (black lines) very clearly captured the time course difference
between the earlier competition effect for the thematic condition (dashed line)
and the later competition effect for the function condition (solid line). After we
removed the cubic and quartic terms, the reduced model (grey lines) predicted
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almost identical time courses for these two conditions. This visual comparison
indicates that those statistically significant effects on the higher-order terms
really were capturing the early-vs.-late competition difference.

4.6 Chapter recap

This chapter covered several issues regarding structuring random effects for
growth curve analysis. The first was the general principle that random effects
should be maximal – that they should capture as much of the structure of
the data as possible. Because maximal random effect structures can cause
convergence problems, this chapter also discussed how to simplify random
effect structures when necessary. The second major topic was how to structure
random effects for within-participant effects. The recommended approach is
to use two sets of random effects: one set at the participant level and one at
the lowest level in the nested structure, that is, the level of individual time
series (e.g., participant-by-condition).

The third topic was whether participants should be treated as random or
fixed effects. Treating participants (or items) as random effects captures the
standard assumption that they are random samples from the population and
the goal is to generalize to that population. However, treating participants
as fixed effects can be justified when the assumptions or goals are different.
In addition to answering this specific question, discussing the consequences of
these two approaches provided an opportunity for a deeper discussion of the
difference between fixed and random effects.

The last section in this chapter demonstrated how to use visual compar-
isons of full and reduced models to interpret the effects of higher-order polyno-
mial time terms. Although the general idea is the same as statistical compar-
isons, the compared model structures are somewhat different. For statistical
model comparisons only one aspect of the model should be different so that
the comparison can definitively evaluate the statistical significance of that as-
pect. Typically, that aspect is a fixed effect and the random effect structure
should be kept constant. In contrast, for visual comparisons, both the fixed
and corresponding random effects need to be reduced in order to make a clear
visual comparison. Note that these two kinds of comparisons are not compet-
ing alternatives. They are meant to be used together: statistical comparison
for formal evaluation and visual comparison to facilitate interpretation.
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4.7 Exercises

1. Use the TargetFix data set to explore how random effect structure
affects fixed effect estimates. Start from a simple model that only has
Subject random effects and gradually add Subject:Condition random
effects (intercept, linear, quadratic, cubic). For the addition of each time
term to the Subject:Condition random effects, how do each of the fixed
effect estimates change? How do their standard errors change? How do
their t-values and p-values change?

2. Make plots showing the effect of Condition on each of the time terms
(intercept, linear, quadratic, and cubic) for the TargetFix data. Use
these plots to explain what aspect of the data is captured by each term.
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5.1 Chapter overview

This chapter will focus on categorical predictor variables. So far, we have
primarily discussed how to model the relationship between a continuous pre-
dictor, typically time, and a continuous outcome, such as Disability Rating
Scale score. However, like most studies in the psychological and neural sci-
ences, the examples have typically also included a categorical predictor that
had discrete levels, such as control vs. treatment or high vs. low frequency.

For the purposes of regression, categorical variables need to be converted
into numeric values. In most statistical software packages, including R, this
happens “under the hood” without requiring the analyst to specify how it
should be done, but it is important to understand how that conversion is done
because it affects the interpretation of the parameter estimates. Section 5.2
will discuss the two most common ways of doing this: treatment or dummy
coding, which is the default in R, and sum or deviation coding, which is the
most common alternative.

When a categorical predictor has more than two levels or conditions, the
analyst may wish to compare different pairs, that is, to evaluate multiple
pairwise comparisons. Section 5.3 will cover two approaches to conducting
such comparisons: re-fitting the model after re-coding the predictor and using
the multcomp package to make those comparisons within a single model.

85
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5.2 Coding categorical predictors

5.2.1 In simple linear regression

Coding categorical variables is a general issue that applies to every kind of
regression, so let’s begin with a very simple linear regression example that
does not have any nested observations. Let’s say we conducted a survey of
100 people to examine the relationship between income, education level, and
gender. Half of the participants were male and half were female, half of each
of those groups only completed high school and the other half received a
bachelor’s degree. Table 5.1 shows our observed means in thousands of dollars
(these invented data that are loosely based on U.S. Census Bureau’s 2012
Annual Social and Economic Supplement). In a summary, the reference level

TABLE 5.1
Mean Income (in $1000) by Education and Gender

Education Female Male (all)
1 HS 25.962 39.470 32.716
2 College 54.297 84.536 69.417
3 (all) 40.130 62.003 51.067

of a factor is listed first, so we can see that Female is the reference level for
Gender and HS is the reference level for Education.

> summary(dat)

Subject Gender Education Income

1 : 1 Female:50 HS :50 Min. :11.0

2 : 1 Male :50 College:50 1st Qu.:33.3

3 : 1 Median :46.3

4 : 1 Mean :51.1

5 : 1 3rd Qu.:69.0

6 : 1 Max. :96.5

(Other):94

This means that in a simple linear regression, these levels will be treated as
the baseline for their respective factors and parameters will be estimated for
the other levels:

> m <- lm(Income ~ Education*Gender, data=dat)

> summary(m)$coefficients

Estimate Std. Error t value

(Intercept) 25.962 1.3616 19.0674

EducationCollege 28.335 1.9256 14.7148

GenderMale 13.508 1.9256 7.0149



Categorical predictors 87

EducationCollege:GenderMale 16.731 2.7232 6.1437

Pr(>|t|)

(Intercept) 2.0688e-34

EducationCollege 2.4094e-26

GenderMale 3.2337e-10

EducationCollege:GenderMale 1.8255e-08

The consequence of this coding scheme is that the (Intercept) parame-
ter corresponds to the mean income level for females with only a high school
education, the EducationCollege parameter corresponds to the increase in
income for females with a bachelor’s degree, the GenderMale parameter cor-
responds to the income difference between males with a high school education
and females with a high school education. In other words, these parameter es-
timates correspond to the simple effects of education or gender at the baseline
level of the other predictor. This is called treatment or dummy coding and is
numerically represented by treating the reference or baseline level as 0 and
the other level as 1. We can see this by using the contrasts function:

> contrasts(dat$Gender)

Male

Female 0

Male 1

Simple effects are informative in some cases, particularly when there is a
meaningful baseline or reference level, but often we are interested in estimating
the main effects of predictors; for example, the average income difference
between high school graduates and college graduates across both genders,
not just for females. To do this, we need to use sum or deviation coding. This
change can be made using the C function. We’ll create a new gender variable
so we don’t overwrite the original treatment-coded factor:

> dat$GenderSum <- C(dat$Gender, sum)

The sum-coded factor uses -1 and 1 to represent the two levels, so the baseline
(0) is the combination (i.e., sum) of both of the levels.

> contrasts(dat$GenderSum)

[,1]

Female 1

Male -1

When we re-fit the model using the new sum-coded gender factor,

> m.sum <- lm(Income ~ Education*GenderSum, data=dat)

we see that the parameter estimates now capture the main effect of education:
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> summary(m.sum)$coefficients

Estimate Std. Error t value

(Intercept) 32.7164 0.96281 33.9803

EducationCollege 36.7004 1.36161 26.9536

GenderSum1 -6.7540 0.96281 -7.0149

EducationCollege:GenderSum1 -8.3654 1.36161 -6.1437

Pr(>|t|)

(Intercept) 2.5881e-55

EducationCollege 1.4407e-46

GenderSum1 3.2337e-10

EducationCollege:GenderSum1 1.8255e-08

The (Intercept) parameter is now the mean income level for all survey re-
sponders with only a high school education (it is equal to the HS row mean
in Table 5.1), the EducationCollege parameter is the increase in income for
all responders with a bachelor’s degree (the difference between the HS and
College row means in Table 5.1), and the GenderSum1 parameter is half of
the income difference between males with a high school education and females
with a high school education (i.e., the difference between the mean for males
and the overall mean). In other words, EducationCollege is the main effect
of education and GenderSum1 is the simple effect of gender for responders
with a high school education. The overall fit of the model is no different, but
these parameter estimates may more intuitively answer our research questions.
The next section will demonstrate how coding categorical predictors works in
growth curve analyses.

5.2.2 In growth curve analysis

Let’s revisit the effect of amantadine on recovery from brain injury (first dis-
cussed in Chapter 2) and focus on the categorical Group variable.

> summary(amant.ex)

Patient Group Week DRS

1008 : 5 Placebo :85 Min. :0 Min. : 7.0

1009 : 5 Amantadine:65 1st Qu.:1 1st Qu.:17.0

1017 : 5 Median :2 Median :20.5

1042 : 5 Mean :2 Mean :19.3

1044 : 5 3rd Qu.:3 3rd Qu.:22.0

1054 : 5 Max. :4 Max. :28.0

(Other):120

The reference level for the Group variable is Placebo (it is listed first in the
summary). Just like lm in the previous section, lmer will treat this level as
the baseline and estimate parameters for the other level, Amantadine.
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> m.amant <- lmer(DRS ~ Week*Group + (Week | Patient),

data=amant.ex, REML=F)

> coef(summary(m.amant))

Estimate Std. Error t value

(Intercept) 22.05882 0.48485 45.4964

Week -0.70000 0.22117 -3.1650

GroupAmantadine -1.42805 0.73654 -1.9389

Week:GroupAmantadine -0.83077 0.33598 -2.4726

The first two parameters are the intercept and slope (rate) of recovery
specifically for the Placebo group. The next two parameters are the Amanta-

dine group’s intercept and slope relative to the Placebo group. That is, the
Amantadine group started out 1.43 points lower and recovered 0.83 points per
week faster than the Placebo group.

For this example, treatment coding is a very sensible approach because
the Placebo group is meant to be a baseline and we are interested in whether
the Amantadine group differs from this baseline at the start of the study
(intercept) and in the rate of recovery (slope). As we saw with the income
example, using treatment coding can make the parameter estimates difficult
to interpret when there is not an obvious baseline level.

For example, consider data (Figure 5.1) from a motor learning task (like
learning to play Guitar Hero) that had a low and a high difficulty version and
20 participants completed both versions under normal (control) conditions
and while impaired (such as the influence of alcohol).

> summary(MotorLearning)

SubjID Difficulty Condition Trial

9101 : 120 High:1200 Control :1200 Min. : 1.0

9103 : 120 Low :1200 Impaired:1200 1st Qu.: 8.0

9105 : 120 Median :15.5

9107 : 120 Mean :15.5

9109 : 120 3rd Qu.:23.0

9111 : 120 Max. :30.0

(Other):1680

Accuracy

Min. :0.000

1st Qu.:0.333

Median :0.750

Mean :0.634

3rd Qu.:1.000

Max. :1.000

In this case, we have a factorial design with two categorical predictor variables:
difficulty (low vs. high) and condition (control vs. impaired). By default, both
of these are coded using treatment contrasts:
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FIGURE 5.1
Accuracy in low and high difficulty versions of a motor learning task under
control (left) and impaired (right) conditions. Vertical lines through points
indicate ±SE.

> contrasts(MotorLearning$Difficulty)

Low

High 0

Low 1

> contrasts(MotorLearning$Condition)

Impaired

Control 0

Impaired 1

If we fit the model using these defaults, we will see that the parameter
estimates will be somewhat counterintuitive and difficult to interpret. First
we need to set up a third-order orthogonal polynomial:

> t <- poly(1:30, 3)

> MotorLearning[, paste("ot", 1:3, sep="")] <-

t[MotorLearning$Trial, 1:3]

now we fit the model as usual:

> m.ML <- lmer(Accuracy ~ (ot1+ot2+ot3) *

Difficulty*Condition +

(ot1+ot2+ot3 | SubjID) +
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(ot1+ot2+ot3 |

SubjID:Difficulty:Condition),

data=MotorLearning, REML=FALSE)

For this model, the base time parameters

Estimate Std. Error t value

(Intercept) 0.621111 0.045521 13.6445

ot1 1.108204 0.135490 8.1792

ot2 -0.441038 0.082074 -5.3737

ot3 0.049899 0.082410 0.6055

correspond to the overall baseline level of the data, so these parameters capture
the motor learning time course for the high difficulty version in the control
condition. The DifficultyLow parameter estimates

Estimate Std. Error t value

DifficultyLow 0.090139 0.049596 1.8175

ot1:DifficultyLow -0.224954 0.159613 -1.4094

ot2:DifficultyLow -0.229082 0.101129 -2.2653

ot3:DifficultyLow 0.184674 0.085386 2.1628

correspond to the simple effect of difficulty in the control condition; that is,
the time course of motor learning for the low difficulty version in the control
condition relative to the high difficulty version in the control condition. The
ConditionImpaired parameter estimates

Estimate Std. Error t value

ConditionImpaired -0.0798611 0.049596 -1.610223

ot1:ConditionImpaired -0.0469771 0.159613 -0.294319

ot2:ConditionImpaired 0.2823096 0.101129 2.791592

ot3:ConditionImpaired 0.0071204 0.085386 0.083391

similarly correspond to the simple effect of condition in the high difficulty
version (the high difficulty version in the impaired condition relative to the
high difficulty version in the control condition). The final set of parameter
estimates

Estimate Std. Error

DifficultyLow:ConditionImpaired 0.030417 0.07014

ot1:DifficultyLow:ConditionImpaired 0.143392 0.22573

ot2:DifficultyLow:ConditionImpaired -0.235602 0.14302

ot3:DifficultyLow:ConditionImpaired -0.068590 0.12075

t value

DifficultyLow:ConditionImpaired 0.43366

ot1:DifficultyLow:ConditionImpaired 0.63525

ot2:DifficultyLow:ConditionImpaired -1.64736

ot3:DifficultyLow:ConditionImpaired -0.56802
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captures the difference between the low and high difficulty versions in the
impaired condition relative to the control condition. The simple effects of
difficulty (low vs. high in the control condition) and condition (control vs.
impaired for the high difficulty version) are not very informative – it would
be more informative if the parameters reflected the overall (main) effects of
difficulty (low vs. high across both conditions) and impairment (control vs.
impaired across both versions of the task).

There are a few steps we can take to make these parameter estimates
easier and more intuitive to interpret. First, the default is for factor levels to
be ordered alphabetically with the first level serving as the reference. This
happens to be fine for condition because control is a sensible reference level
and happens to be alphabetically earlier than impaired. For difficulty, the low
difficulty version is a more intuitive baseline than the high difficulty version.
The relevel function can be used to set the reference level for a factor:

> MotorLearning$Difficulty <-

relevel(MotorLearning$Difficulty, "Low")

and we can check that the reference level really did change using contrasts:

> contrasts(MotorLearning$Difficulty)

High

Low 0

High 1

Second, to have the model estimate main effects instead of simple effects,
we need to change the contrasts for both factors from treatment to sum coding.
As before, we’ll use the C function to change the contrasts and create a new
condition variable so we don’t overwrite the original treatment-coded factors:

> MotorLearning$DifficultySum <-

C(MotorLearning$Difficulty, sum)

> MotorLearning$ConditionSum <-

C(MotorLearning$Condition, sum)

and check the new contrast codings:

> contrasts(MotorLearning$DifficultySum)

[,1]

Low 1

High -1

> contrasts(MotorLearning$ConditionSum)

[,1]

Control 1

Impaired -1
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When we re-fit the model using these factors, the parameter estimates will
be more intuitive:

> m.MLsum <- lmer(Accuracy ~ (ot1+ot2+ot3) *

DifficultySum*ConditionSum +

(ot1+ot2+ot3 | SubjID) +

(ot1+ot2+ot3 |

SubjID:DifficultySum:ConditionSum),

data=MotorLearning, REML=FALSE)

The base time parameters now correspond to the overall time course of motor
learning, which is a sensible baseline:

Estimate Std. Error t value

(Intercept) 0.63385 0.033908 18.6934

ot1 1.00809 0.093829 10.7439

ot2 -0.47332 0.053861 -8.7878

ot3 0.12865 0.063698 2.0197

The DifficultySum1 parameter estimates

Estimate Std. Error t value

DifficultySum1 0.052674 0.017535 3.0039

ot1:DifficultySum1 -0.076629 0.056432 -1.3579

ot2:DifficultySum1 -0.173441 0.035754 -4.8509

ot3:DifficultySum1 0.075190 0.030188 2.4907

correspond to the overall (main) effect of difficulty; that is, the time course of
learning in the low difficulty version (coded as 1) relative to the high difficulty
version (coded as -1), across the two conditions. Notice that the estimated
effects of difficulty are now substantially stronger because instead of just es-
timating the simple effect for the control condition, now the main effect is
estimated including the impaired condition, where the effect of difficulty was
larger.

The ConditionSum1 parameter estimates

Estimate Std. Error t value

ConditionSum1 0.032326 0.017535 1.84354

ot1:ConditionSum1 -0.012360 0.056432 -0.21902

ot2:ConditionSum1 -0.082254 0.035754 -2.30054

ot3:ConditionSum1 0.013587 0.030188 0.45009

correspond to the main effect of condition: the difference in motor learning
time course for the control condition (coded as 1) relative to the impaired
condition (coded as -1), across both versions of the task. Notice that the signs
on the parameter estimates are reversed compared to the treatment coding
because now the control condition is coded as 1 and the impaired condition is
coded as -1 instead of 0 and 1, respectively.

The parameter estimates for the highest-level interactions
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Estimate Std. Error t value

DifficultySum1:ConditionSum1 -0.0076042 0.017535 -0.43366

ot1:DifficultySum1:ConditionSum1 -0.0358481 0.056432 -0.63525

ot2:DifficultySum1:ConditionSum1 0.0589004 0.035754 1.64736

ot3:DifficultySum1:ConditionSum1 0.0171475 0.030188 0.56802

maintain the same interpretation as in the original model (the difference be-
tween the low and high difficulty versions in the impaired condition relative
to the control condition), though their values are reversed (because the con-
dition contrast was reversed) and divided by 4 because the contrast range for
each of the two factors was doubled when they went from treatment coding
(range: 0 to 1) to sum coding (range: -1 to 1). This difference in the values
of the parameter estimates is just a superficial scale difference, which is re-
flected in the standard errors also being 4 times smaller and the t-values being
identical for both kinds of contrast coding.1 This equivalence is only true for
the highest-level interactions because these mean the same thing under either
contrast structure. The lower-level effects (difficulty and condition effects) cor-
respond to different comparisons depending on the contrast structure, so these
parameter estimates and inferential statistics will be different.

It is perhaps useful to remind ourselves that these changes of reference level
and contrast coding only serve to make the parameter estimates more intuitive
and do not change the overall model fit. For example, the log likelihoods of
our original model and the model with improved factor coding are exactly the
same:

> logLik(m.ML)

'log Lik.' 1164.8 (df=37)

> logLik(m.MLsum)

'log Lik.' 1164.8 (df=37)

Finally, given that the coding of the factor levels and the contrasts determines
how the parameter estimates should be interpreted, it is generally a good idea
to describe these aspects of the model when reporting the results.

1A variant of sum coding, called deviation coding, avoids this difference by using -0.5
and 0.5 instead of -1 and 1. However, deviation coding is not available as a built-in contrast
in R, so it would require hand-coding. This hand-coding is not too difficult, but to keep
things simple and to reduce entry points for human errors, we’ll use sum coding instead of
deviation coding. If you intend to interpret the actual parameter estimate values – not just
their direction and statistical significance – then you need to keep the contrast coding scale
in mind.
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5.3 Multiple comparisons

So far we have considered only categorical predictors that have two levels, with
parameters estimated for one level relative to the other. When there are more
than two levels, there will be N -1 such relationships, where N is the number of
levels and 1 is subtracted for the reference level. To demonstrate how to deal
with categorical predictors that have more than two levels let’s look at some
data from the Moss Aphasia Psycholinguistics Project Database (Mirman et
al., 2010). We’ll analyze change in proportion of picture naming responses that
were semantic errors (such as saying “horse” to a picture of a cow) for a group
of aphasic patients. Each patient completed the picture naming test five times
over the course of several weeks (see also Schwartz & Brecher, 2000). The
numbering of the tests starts from 0 so that the intercept term in the model
will capture performance on the first test, which is the baseline assessment.
The patients are grouped by aphasia subtype: Anomic (N=6), Conduction
(N=9), or Wernicke’s (N=8). The data are shown in Figure 5.2.

It looks like the proportion of semantic errors tends to decrease for Anomic
aphasic patients, stay about the same for Conduction aphasic patients, and
increase for Wernicke’s aphasic patients. Let’s test this using growth curve
analysis. Since we only have five observations per participant, using a higher-
order polynomial might overfit the data, so we’ll just use a first-order (linear)
growth curve analysis and since the first test is a potentially interesting base-
line, we’ll use a natural polynomial instead of orthogonal polynomial.

> m.sem <- lmer(Semantic.error ~ TestTime * Diagnosis +

(TestTime | SubjectID),

data=NamingRecovery, REML=FALSE)

To interpret the parameter estimates

> coef(summary(m.sem))

Estimate Std. Error t value

(Intercept) 0.0457667 0.0077762 5.88546

TestTime -0.0086850 0.0035242 -2.46440

DiagnosisConduction -0.0151489 0.0100391 -1.50899

DiagnosisWernicke -0.0048992 0.0102870 -0.47625

TestTime:DiagnosisConduction 0.0073083 0.0045497 1.60633

TestTime:DiagnosisWernicke 0.0128538 0.0046621 2.75709

we extend the basic logic of treatment coding to three levels: the Anomic
group is the reference level, so it is treated as the baseline and parameters are
estimated for the Conduction and Wernicke’s groups relative to the Anomic
group. The (Intercept) is the baseline (TestT ime = 0) proportion of se-
mantic errors for the Anomic group and TestTime is the slope for the Anomic
group. The other parameter estimates comprise a set of pairwise comparisons:
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FIGURE 5.2
Proportion of semantic errors in picture naming for three groups of aphasic
patients across five test administrations. Error bars indicate ±SE.

DiagnosisConduction is the baseline difference between the Anomic and
Condition groups, TestTime:DiagnosisConduction is the slope difference
between the Anomic and Conduction groups, and DiagnosisWernicke and
TestTime:DiagnosisWernicke are the analogous comparisons of the Anomic
and Wernicke’s groups. From these parameter estimates (and using t > 2 as
an approximate threshold for p < 0.05) we can tell that the Anomic group
has a significant decline in semantic errors (Estimate = -0.0087, SE = 0.0035)
and that the difference between the Anomic and Wernicke’s groups increases
over time (Estimate = 0.013, SE = 0.0047).

These comparisons give us a lot of information, but do not answer all the
questions we might ask. For example, we are missing the pairwise comparison
between the Conduction and Wernicke’s groups. We also don’t know whether
the Wernicke’s group exhibits a significant overall increase in semantic errors
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or just an increase relative to the Anomic group (which, remember, is having a
decrease in semantic errors). We can answer both of these questions by setting
the Wernicke’s group to be the reference level for the Diagnosis factor

> NamingRecovery$DiagnosisW <-

relevel(NamingRecovery$Diagnosis, "Wernicke")

and re-fitting the model.

> m.semW <- lmer(Semantic.error ~ TestTime*DiagnosisW +

(TestTime | SubjectID),

data=NamingRecovery, REML=FALSE)

> coef(summary(m.semW))

Estimate Std. Error t value

(Intercept) 0.0408675 0.0067344 6.06846

TestTime 0.0041687 0.0030520 1.36589

DiagnosisWAnomic 0.0048992 0.0102870 0.47625

DiagnosisWConduction -0.0102497 0.0092556 -1.10741

TestTime:DiagnosisWAnomic -0.0128537 0.0046621 -2.75709

TestTime:DiagnosisWConduction -0.0055454 0.0041946 -1.32203

This version of the model provides pairwise comparisons between the
Wernicke’s and Conduction groups (intercept: DiagnosisWConduction, slope:
TestTime:DiagnosisWConduction) and a test of whether the Wernicke’s
group exhibits a significant increase in semantic errors (it does not: the t-
value for the TestTime parameter estimate is less than 2).

This re-referencing approach works fine, but it can be very laborious and
time-consuming for more complex situations that require multiple re-levelings.
Plus, if we look closely at the parameter estimates, we see that all of the infor-
mation we need was actually present in the original model. Since the Anomic
group is a common reference point, we could get the Conduction-Wernicke’s
comparison (DiagnosisWConduction: -0.0102) by computing the difference
between the Conduction-Anomic and Wernicke’s-Anomic comparisons:
DiagnosisConduction - DiagnosisWernicke = -0.0151 - -0.0049 = -0.0102

The multcomp package provides a relatively easy way to do these sorts of
comparisons using just the original model. First, we need to set up a contrast
matrix that defines the comparisons that we want to test. Each column in
this matrix corresponds to a parameter estimate from the original model, in
the order that they appear in the output. So the first column corresponds to
(Intercept), the second column to TestTime, the fourth column to Diagno-

sisWernicke, etc. Each row in the contrast matrix corresponds to a contrast
that we want to test and the elements in the matrix are weights for that con-
trast. The simplest case is when the contrast we want to test corresponds to
an estimated parameter: we put a 1 in that column and a 0 in all of the oth-
ers. For example, for the slope difference between the Anomic and Wernicke’s
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groups (which is estimated by TestTime:DiagnosisWernicke), we just put a
1 in the sixth column. To test the slope difference between Conduction and
Wernicke’s aphasics, we put a -1 in the fifth column and a 1 in the sixth
column. Here is a contrast matrix for testing all pairwise group differences in
this model, with informative labels for each comparison:

> contrast.matrix = rbind(

"Anomic vs. Conduction" = c(0, 0, 1, 0, 0, 0),

"Anomic vs. Wernicke" = c(0, 0, 0, 1, 0, 0),

"Conduction vs. Wernicke" = c(0, 0, -1, 1, 0, 0),

"Slope: Anomic vs. Conduction" = c(0, 0, 0, 0, 1, 0),

"Slope: Anomic vs. Wernicke" = c(0, 0, 0, 0, 0, 1),

"Slope: Conduction vs. Wernicke" = c(0, 0, 0, 0, -1, 1))

Now we can use this contrast matrix to test the pairwise comparisons. First,
we load the multcomp package:

> library(multcomp)

Then we use the glht function to compute the pairwise comparisons defined
by the contrast matrix within the context of the model (m.sem):

> comps <- glht(m.sem, contrast.matrix)

We can use the summary function to get a list of the parameter estimates,
standard errors, z-values, and p-values for each of those comparisons:

> summary(comps)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Semantic.error ~ TestTime * Diagnosis +

(TestTime | SubjectID), data = NamingRecovery, REML = FALSE)

Linear Hypotheses:

Estimate Std. Error z value

Anomic vs. Conduction == 0 -0.01515 0.01004 -1.51

Anomic vs. Wernicke == 0 -0.00490 0.01029 -0.48

Conduction vs. Wernicke == 0 0.01025 0.00926 1.11

Slope: Anomic vs. Conduction == 0 0.00731 0.00455 1.61

Slope: Anomic vs. Wernicke == 0 0.01285 0.00466 2.76

Slope: Conduction vs. Wernicke == 0 0.00555 0.00419 1.32

Pr(>|z|)

Anomic vs. Conduction == 0 0.490

Anomic vs. Wernicke == 0 0.986

Conduction vs. Wernicke == 0 0.759

Slope: Anomic vs. Conduction == 0 0.426

Slope: Anomic vs. Wernicke == 0 0.032 *

Slope: Conduction vs. Wernicke == 0 0.618



Categorical predictors 99

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

By default, the p-values are adjusted, that is, corrected for multiple compar-
isons. A number of different corrections are available, including no correction
(just the p-values estimated from the normal distribution as we’ve done be-
fore):

> summary(comps, test = adjusted("none"))

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Semantic.error ~ TestTime * Diagnosis +

(TestTime | SubjectID), data = NamingRecovery, REML = FALSE)

Linear Hypotheses:

Estimate Std. Error z value

Anomic vs. Conduction == 0 -0.01515 0.01004 -1.51

Anomic vs. Wernicke == 0 -0.00490 0.01029 -0.48

Conduction vs. Wernicke == 0 0.01025 0.00926 1.11

Slope: Anomic vs. Conduction == 0 0.00731 0.00455 1.61

Slope: Anomic vs. Wernicke == 0 0.01285 0.00466 2.76

Slope: Conduction vs. Wernicke == 0 0.00555 0.00419 1.32

Pr(>|z|)

Anomic vs. Conduction == 0 0.1313

Anomic vs. Wernicke == 0 0.6339

Conduction vs. Wernicke == 0 0.2681

Slope: Anomic vs. Conduction == 0 0.1082

Slope: Anomic vs. Wernicke == 0 0.0058 **

Slope: Conduction vs. Wernicke == 0 0.1862

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- none method)

5.4 Chapter recap

This chapter provided a basic guide to handling categorical predictors. Section
5.2 explained how a categorical predictor is converted to numeric values for
the purposes of regression. The default approach is to consider the reference
level of the categorical variable to be the baseline and estimate parameters
for each of the other levels relative to this baseline. This is called treatment
or dummy coding. Treatment coding is simple and works well in many cases,
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but it can produce parameter estimates that are difficult or counterintuitive
to interpret. This is particularly true for factorial designs that have more than
one categorical predictor, in which case the parameter estimates correspond
to simple effects rather than main effects. Sum or deviation coding, in which
the levels are coded as opposite deviations from an intermediate baseline,
provides a useful alternative that produces more easily interpretable parameter
estimates.

Section 5.3 described two ways to conduct multiple pairwise comparisons
among levels of a categorical predictor variable that has more than two levels.
The first was to fit multiple versions of the same model setting different levels
of the factor as the baseline. This approach is easy to implement, but it is
repetitive, can be time-consuming, and has more opportunity to introduce
typo or copy-and-paste errors. An alternative is to fit just one model and
build a contrast matrix that defines the comparisons of interest, then use the
glht function from the multcomp package to evaluate those comparisons. This
function also provides access to built-in corrections for multiple comparisons,
although those corrections may or may not be desired or appropriate.

Changes of contrast coding and reference levels affect the parameter esti-
mates, but not the overall model fit. In other words, they may change what
the model tells you about your data, but not how well the model fits the data.
Also, keep in mind that these issues apply to regression in general, not just
growth curve analysis or multilevel regression, so the topics covered in this
chapter may prove useful for other regression analyses.

5.5 Exercises

1. The FunctTheme data frame contains data on the time course of acti-
vation of thematic and function relationships (discussed in Chapter 4).
The study was a factorial design with two categorical predictor variables:
Condition (Function vs. Thematic) and Object (related Competitor

vs. Unrelated distactor; omit the Target object for this exercise).

(a) Analyze the competition data using GCA with fourth-order orthog-
onal polynomials and the default treatment coding of the factors.
Interpret the parameter estimates – explicitly identify which aspect
of the data or comparison is captured by each parameter estimate.

(b) Re-code the factors to make the parameter estimates more intuitive
to interpret: set the Unrelated object to be the reference level for
the Object factor and change the contrast coding for the Condition
factor from treatment to sum. Fit a new GCA model and explain
any changes in the parameter estimates.
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2. Use the full model of the WISQARS suicide data to test all pairwise
comparisons between regions.

(a) Which regions differ from which other regions in terms of baseline
suicide rate?

(b) Which regions differ from which other regions in terms of rate of
change of suicide rate?

(c) Re-analyze the data with orthogonal time to estimate differences
in overall suicide rate instead of “baseline” differences in 1999. Are
any of the results different?
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6.1 Chapter overview

So far, all of the examples have treated the outcome variables as continuous –
as if the outcome variable could hypothetically take any value. This is approx-
imately true for variables such as reaction time or income, but it is not true
for variables such as accuracy, which can only take a specific set of discrete
values, such as “correct” or “incorrect.” This chapter will begin by describing
the problems that can arise from treating such binary outcome variables (also
called dichotomous variables) as if they are continuous.

It will then describe two logistic extensions of the basic GCA approach
that appropriately treat binary variables. The first applies multilevel logistic
regression directly to the binary outcome data. The second uses the empiri-
cal logit transformation to rescale the binary outcome data to a continuous
variable and then applies the same linear approach described in the previ-
ous chapters. The chapter will conclude with a demonstration of how to plot
model fits from logistic GCA.

6.2 Why binary outcomes need logistic analyses

In the psychological and neural sciences we typically treat outcome (or re-
sponse) variables as continuous – as if they could have any value. However,
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this is often not true: in any binary choice task (such as answering yes-no
questions, word-to-picture matching, lexical decision, fixating one object vs.
another, and many others), the outcome on a given trial can only take one
of two values. The same is true when more open-ended tasks, such as picture
naming or problem solving, are made binary by scoring responses as correct
vs. incorrect. Binary variables follow a binomial distribution and have two
properties that make standard linear statistics inappropriate.

The first is that the range of possible sample means (e.g., proportion of
correct responses) is bounded between 0 and 1. Linear statistics do not include
these bounds in the analysis, which can lead to spurious and uninterpretable
results (such as predicting accuracies greater than 1 or lower than 0). Also,
these floor and ceiling bounds can make data look asymptotic (i.e., the data
tend to plateau near 0 and 1), which can seem like justification for fitting
sigmoid or other asymptotic functions instead of polynomial functions. How-
ever, binary data can be asymptotic for two very different reasons. If the data
are asymptotic because the underlying psychological processes are asymptotic,
then a non-linear function might be justified (though recall the discussion in
Chapter 3 about the dangers involved in choosing such a function). On the
other hand, the data might be asymptotic because the nature of the task and
measurement creates floor and ceiling effects (as would happen in a binary
choice task), not because the underlying process is asymptotic. In this case,
logistic regression is the right solution to the problem of asymptotic data.

The second issue is that the variance is not constant (homogeneous) over
the range of possible proportions: it is larger near the middle (0.5) than near
the ends (1.0 or 0.0). To get an intuitive sense of why this is true, imagine
flipping a fair coin 10 times. The central tendency is to get 5 “heads” and 5
“tails”outcomes, but of course sometimes you will get 4“heads”or 6“heads”or
maybe even only 2 or 3“heads.”In other words, there will be a lot of variability.
Now imagine flipping a very biased coin that only comes up “heads” 5% of the
time. In a sample of 10 flips, you will probably only have 0 or 1“heads,”maybe
2 “heads” – there will be much less variability in the outcome. This property
is illustrated in Figure 6.1, which shows the binomial distribution’s variance
at different levels of sample proportions (i.e., probability of “heads”) for a
few different sample sizes (i.e., number of coin flips). Although the variance
distortion gets smaller for larger sample sizes, it is an intrinsic property of the
binomial distribution.

The larger variance in the middle of the range means that, for any ob-
served sample, differences in the middle of the range are less reliable than
differences near the ends. This non-homogeneity of variance in binomial data
can cause linear analysis methods to produce incorrect results, both false pos-
itives and false negatives. To demonstrate this, imagine a treatment or train-
ing study that tested three groups of 15 participants. The groups differ in
the initial severity of their impairment. The participants complete a 30-trial
pretest before the intervention and then complete it again after the interven-
tion (posttest). The fictitious data are shown in Figure 6.2. The mild severity
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FIGURE 6.1
Variance of sample proportion as a function of true probability of outcome
and sample size.

group improved from about 90% correct to about 96% correct, the moderate
severity group improved from about 60% correct to about 85% correct, and
the most severely impaired group improved from about 5% correct to about
31% correct. On this linear percent-correct scale, the mild group shows the
smallest improvement (about 6%) and the moderate and severe groups show
about the same amount of improvement (about 25%). The linear regression
results for group differences in amount of change from pretest to posttest (Ta-
ble 6.1) reflect this pattern: the mild group showed a smaller change than the
moderate and severe groups, which were nearly identical to one another.

However, the moderate group’s performance was closer to the middle of
the range, so it should be more variable, so maybe that difference is less
meaningful. Indeed, a logistic regression (Table 6.2) reveals a very different
pattern: the change from pretest to postest was not significantly different
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Pretest and posttest performance for each group.

TABLE 6.1
Change from Pretest to Posttest: Linear Regression Results

Estimate Std. Error z value Pr(>|z|)
Mild vs. Moderate 5.800 0.958 6.052 0.000

Mild vs. Severe 5.867 0.958 6.121 0.000
Moderate vs. Severe 0.067 0.958 0.070 0.945

between the mild and moderate groups, but it was significantly larger for the
severe group. In other words, getting 7 or 8 more correct responses out of 30
trials (about 25%) means a lot more when you start out getting only 1 or 2
correct than when you start out getting 18 correct. Conversely, getting 2 more
correct responses when you were already getting 27 right out of 30 means as
much as getting 7 or 8 more when you started in the middle of the range.
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TABLE 6.2
Change from Pretest to Posttest: Logistic Regression Results

Estimate Std. Error z value Pr(>|z|)
Mild vs. Moderate 0.347 0.333 1.043 0.297

Mild vs. Severe 1.113 0.375 2.973 0.003
Moderate vs. Severe 0.766 0.291 2.633 0.008

In sum, binary outcome data follow a binomial distribution, which is
bounded at proportions of 0 and 1, and has systematically non-homogeneous
variance. These properties can produce spurious results, both false posi-
tives and false negatives. Logistic regression correctly models these proper-
ties and provides more reliable results for analyses of binary outcomes (for a
more mathematically detailed discussion with additional examples, see Jaeger,
2008). The next two sections will discuss and demonstrate how to perform lo-
gistic growth curve analyses.

6.3 Logistic GCA

Logistic regression models the binomial process that produces binary data,
so the outcome variable in the data set needs to be those binary data. In
other words, it is not sufficient to know that a particular participant was 90%
correct. The model needs to know whether that 90% was 9 out of 10 trials or
90 out of 100 trials. This information can be provided as a binary vector of
0’s and 1’s where each value corresponds to a single trial, or, more compactly,
as counts of the number of “successes” and the number of “failures” or number
of trials.

In Chapter 4 we used linear GCA to analyze fixation data on the time
course of recognition for high and low frequency words. Fixation is a binary
variable — at each point in time, participants either fixate the target or they
don’t — so let’s revisit those data with logistic GCA.

> summary(TargetFix)

Subject Time timeBin Condition

708 : 30 Min. : 300 Min. : 1 High:150

712 : 30 1st Qu.: 450 1st Qu.: 4 Low :150

715 : 30 Median : 650 Median : 8

720 : 30 Mean : 650 Mean : 8

722 : 30 3rd Qu.: 850 3rd Qu.:12

725 : 30 Max. :1000 Max. :15

(Other):120

meanFix sumFix N



108 Growth Curve Analysis and Visualization Using R

Min. :0.0286 Min. : 1.0 Min. :33.0

1st Qu.:0.2778 1st Qu.:10.0 1st Qu.:35.8

Median :0.4558 Median :16.0 Median :36.0

Mean :0.4483 Mean :15.9 Mean :35.5

3rd Qu.:0.6111 3rd Qu.:21.2 3rd Qu.:36.0

Max. :0.8286 Max. :29.0 Max. :36.0

As discussed in Chapter 4, participants were asked to pick which one of four
pictures matched a spoken word and the gradual rise in fixations on the target
picture reveals the gradual comprehension of the spoken word. In Chapter 4,
the outcome variable was meanFix: the proportion of trials on which the target
picture was fixated by each participant, in each condition, in each time bin.
Logistic GCA will use the numerator and denominator from computing that
proportion: N is the number of trials for each participant in each condition
(that is, the number of opportunities to fixate the target picture) and sumFix

is the number of trials on which the target was fixated by each participant in
each condition in each time bin.

As in Chapter 4, we prepare the data for analysis by creating a third-order
orthogonal polynomial

> t <- poly(unique(TargetFix$timeBin), 3)

and appending the orthogonal polynomial values to the TargetFix data frame,
aligned with their corresponding time bins.

> TargetFix[,paste("ot", 1:3, sep="")] <-

t[TargetFix$timeBin, 1:3]

The model syntax will be very similar to the linear GCA in Chapter 4, with
two critical differences. First, the outcome variable will be a pair of columns:
the counts of successes (sumFix) and the counts of failures (N−sumFix). This
pair will be created by using the function cbind (column bind). Second, we
need to use the generalized form of multilevel regression, so we use the glmer

function and specify that the error distribution should be of the binomial
family. Here is the syntax for the full model:

> m.log <- glmer(cbind(sumFix, N-sumFix) ~

(ot1+ot2+ot3)*Condition +

(ot1+ot2+ot3 | Subject) +

(ot1+ot2 | Subject:Condition),

data=TargetFix, family=binomial)

Compared to linear models, logistic models are more susceptible to conver-
gence failures with complex random effect structures. In fact, the full logistic
GCA model for these data did not converge and it was necessary to simplify
the Subject:Condition random effect by removing the cubic term. Logistic
models also take substantially longer to fit than linear models do (for this
example, it was about 10 times longer).
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When examining the model results, the summary output for a logistic GCA
model will automatically use the normal distribution to estimate p-values for
the fixed effects (Table 6.3). The results from a linear GCA model that used
meanFix as the outcome variable and the full random effect structure are
shown in Table 6.4. The parameter estimates are quite different between the
two models because the outcomes are on different scales (linear vs. logistic),
though in this case the interpretation of the Condition effects would be largely
the same: there were significant effects of Condition on the intercept and on the
quadratic term, indicating faster word recognition for high frequency words
than low frequency words.

TABLE 6.3
Target Fixation: Logistic GCA Results

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.117 0.065 -1.785 0.074

ot1 2.819 0.298 9.457 0.000
ot2 -0.559 0.169 -3.306 0.001
ot3 -0.321 0.127 -2.520 0.012

ConditionLow -0.262 0.091 -2.877 0.004
ot1:ConditionLow 0.064 0.331 0.194 0.846
ot2:ConditionLow 0.695 0.239 2.903 0.004
ot3:ConditionLow -0.071 0.166 -0.425 0.670

TABLE 6.4
Target Fixation: Linear GCA Results

Estimate Std. Error t p
(Intercept) 0.477 0.014 34.458 0.000

ot1 0.639 0.060 10.654 0.000
ot2 -0.110 0.038 -2.848 0.004
ot3 -0.093 0.023 -4.002 0.000

ConditionLow -0.058 0.019 -3.093 0.002
ot1:ConditionLow 0.000 0.066 0.005 0.996
ot2:ConditionLow 0.164 0.054 3.033 0.002
ot3:ConditionLow -0.002 0.027 -0.077 0.938

6.4 Quasi-logistic GCA: Empirical logit

As we’ve seen, small differences near the endpoints (0 and 1) can have very big
impacts on a logistic scale. Because studies have a finite (and often relatively
small) number of trials, there is some granularity to the observed proportions.
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For example, in a study with 20 trials, it is only possible to observe values of
100% correct, 95% correct, 90% correct, etc., but the logistic scale difference
between those values is very large. Logistic regression relies on the logit or log-
odds transformation, which is given in Equation 6.1, where Y is the number
of “successes” and N is the number of trials (i.e., p = Y/N).

logit(Y,N) = log

(
Y

N − Y

)
(6.1)

This function is undefined when Y = N (i.e., p = 1) because it would mean
dividing by 0, and when Y = 0 (i.e., p = 0) because log(0) is undefined. So in
addition to problems due to low resolution near the boundaries, perfect scores
(i.e., p = 0 or p = 1) can undermine the accuracy of logistic regression.

One solution to these problems is to use quasi -logistic regression. In partic-
ular, a useful alternative is the empirical logit transformation, which employs
a logistic scale but incorporates an adjustment for the granularity of the data
(for more discussion and examples, see Barr, 2008). The empirical logit trans-
formation (Equation 6.2) adds a 0.5 adjustment factor, which avoids both of
the undefined boundary conditions and scales with the number of observations
(the adjustment becomes functionally smaller as the number of observations
increases).

elogit(Y,N) = log

(
Y + 0.5

N − Y + 0.5

)
(6.2)

Figure 6.3 shows the logit transformation (solid line) along with the em-
pirical logit approximation at a relatively large number of trials (N = 100,
dashed line) and a relatively small number of trials (N = 10, dotted line).
When the number of trials is relatively large, the empirical logit very closely
approximates the logit function, but when the number of trials is relatively
small, the very steep change near the endpoints is mitigated. This is exactly
the behavior we want if we’re concerned that the small number of trials might
make our estimates of p unreliable near the endpoints.

To use the empirical logit in GCA, we first need to compute the empiri-
cal logit transformation from the observed “successes” and number of trials.
Returning to the fixation data, we’ll compute the empirical logit:

> TargetFix$elog <- with(TargetFix,

log((sumFix+0.5) / (N-sumFix+0.5)))

The with function takes a data frame and an expression, and evaluates the
expression in the environment of the data frame. This is a convenient shortcut
and makes the code a little easier to read: instead of typing TargetFix$N-

TargetFix$sumFix+0.5 you can just type N-sumFix+0.5.
We can further improve the model by assigning weights to observations

based on their reliability. That is, we can explicitly tell the model that em-
pirical logit values that are based on fewer trials and that are closer to the
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Logit transformation (solid line) and the empirical logit approximation at
N=100 (dashed line) and N=10 (dotted line).

endpoints are less reliable and should have less weight in the regression. To
do this, we compute weights w based on the variance of the empirical logit
function as given in Equation 6.3:

w(Y,N) =
1

Y + 0.5
+

1

N − Y + 0.5
(6.3)

In our fixation data set, implementing that equation will look like this:

> TargetFix$wts <- with(TargetFix,

1/(sumFix+0.5) + 1/(N-sumFix+0.5))

Now we can fit a standard linear GCA model using elog as the outcome
variable and the inverse of wts as the weights (so the less reliable near-endpoint
values will have less weight):
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> m.elog <- lmer(elog ~ (ot1+ot2+ot3)*Condition +

(ot1+ot2+ot3 | Subject) +

(ot1+ot2+ot3 | Subject:Condition),

control=lmerControl(optimizer="bobyqa"),

data=TargetFix, weights=1/wts, REML=F)

As with the linear GCA on fixation proportions (meanFix), the empirical logit
GCA can handle the full random effects structure, the computation is faster,
and the results do not (by default) include p-values. The empirical logit model
results are shown in Table 6.5. As in the other two models, there are strong
effects of Condition on the intercept and quadratic terms. Notice also that the
parameter estimates are fairly similar to the logistic GCA results in Table 6.3
because the data are now on the same (logistic) scale, though the parameter
estimates are not exactly the same because the empirical logit is only an
approximation of the true logit values computed by the logistic regression.

TABLE 6.5
Target Fixation: Empirical Logit GCA Results

Estimate Std. Error t p
(Intercept) -0.113 0.022 -5.062 0.000

ot1 2.725 0.102 26.798 0.000
ot2 -0.545 0.058 -9.334 0.000
ot3 -0.303 0.037 -8.098 0.000

ConditionLow -0.248 0.031 -8.010 0.000
ot1:ConditionLow 0.032 0.113 0.288 0.773
ot2:ConditionLow 0.689 0.082 8.430 0.000
ot3:ConditionLow -0.084 0.045 -1.855 0.064

6.5 Plotting model fits

The fitted function returns estimated probabilities even for logistic models,
so plotting model fits for logistic GCA models is essentially the same as plot-
ting model fits for linear GCA models. Figure 6.4 shows the observed data and
model fits for the three different versions of GCA discussed in this chapter,
generated using code of the form

> ggplot(TargetFix, aes(Time, Observed, shape=Condition)) +

stat_summary(fun.data=mean_se, geom="pointrange") +

stat_summary(aes(y=Fit, linetype=Condition),

fun.y=mean, geom="line") +

ylab("Outcome") + theme_bw(base_size=10)
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where Observed is the name of the variable with the observed data and Fit

is the name of the variable with the model fit.

6.6 Chapter recap

This chapter covered how to deal with binary outcome variables. Linear statis-
tics, including ANOVA, linear regression, and GCA methods from previous
chapters, are not appropriate for binary outcome variables because the range
of possible outcome values is bounded at 0 and 1 and because the variance is
not constant over that range. Logistic regression provides a way to appropri-
ately model binary data, including capturing asymptotic patterns that arise
due to floor and ceiling effects. The syntax for logistic GCA is very similar to
the syntax for linear GCA. This chapter covered two possible implementations:
logistic GCA and quasi-logistic GCA using empirical logits.

Logistic GCA can be implemented by specifying the outcome variable as
either a binary column of 0’s and 1’s or a pair of columns containing the count
of “successes” (number of 1’s) and the count of “failures” (number of 0’s),
and the distribution family as binomial. This approach is the true logistic
regression approach adapted to GCA. The downside of this approach is that
it takes substantially longer to fit such models and they have more difficulty
with convergence, which may require simplifying the random effects.

Also, when the number of trials is not very large, the granularity of the
data will cause values close to the bounds to be problematic for true logistic
regression. In this case, it may be more effective to take a quasi-logistic ap-
proach implemented using the empirical logit transformation. The empirical
logit approximates the true logit, but incorporates an adjustment that avoids
the boundary condition problems. This approach also has the benefits of faster
computation and being able to handle more complex random effect structures.

6.7 Exercises

The word learning accuracy data in WordLearnEx are proportions from a bi-
nary response variable (correct/incorrect). Re-analyze these data using logistic
and quasi-logistic GCA and compare the results to linear GCA from Chapter
3.

1. Convert the accuracy proportions to number of correct and incorrect
responses (there were 6 trials per block). Compute the empirical logits
and corresponding weights.
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2. Analyze the data using logistic GCA. Are the results different from linear
GCA? If so, how and why?

3. Analyze the data using quasi-logistic GCA with empirical logits. Are
the results different from linear GCA? If so, how and why? Are they
different from logistic GCA? If so, how and why?

4. Plot the model fits for each of the analyses.
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7.1 Chapter overview

Every researcher that has run a study with human (or non-human animal)
participants has seen individual differences. Some participants show a large
effect, some show no effect; some show an early effect, some show a later effect,
etc. There are two ways of thinking about this variability. The first is to treat
all of this variability as random noise and simply ask whether there is some sig-
nal (a statistically reliable effect) present within that noise. There is no doubt
that some amount of random noise is present in all behavioral data: even in
the simplest reaction time experiments, screen refresh rates and other com-
puter timing issues will introduce a small amount of measurement noise into
the data. A t-test or ANOVA treats variability as random noise that serves
as the background for estimating the reliability of the signal. However, it is
also possible that some of the variability we observe is not completely random,
that it is systematically related to properties of the individual participants.
Such systematic effects should have implications for the theory being tested.
In other words, whatever phenomenon or process is being studied, system-
atic individual differences provide additional insights into that phenomenon
or process. Growth curve analysis (and multilevel regression more generally)
provides a statistical tool to quantify systematic individual differences, which
can then be used to extract new insights. How to do that is the subject of this
chapter.
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The first method will be familiar from other regression-based approaches: if
the individual difference variable is known and measured in advance (IQ, age,
impairment severity, etc.), then it can be added to the growth curve model as
a fixed effect. Like other fixed effects, it can be added as an effect on specific
time terms (intercept, linear, quadratic, etc.) to evaluate individual differences
in particular aspects of the growth trajectory. Section 7.2 will discuss and
demonstrate how to apply this method of individual difference analysis in the
context of a linear growth curve analysis.

The second method is to use the random effects as estimates of how each
participant differs from the overall group pattern. This approach is useful when
the individual differences of interest are internal to the study itself (i.e., there
is no external measure that could be entered as a fixed effect) or when the
individual differences need to be quantified for an analysis that is impossible
or impractical to integrate with GCA (for example, neuroimaging analyses).
Section 7.3 will briefly review random effects (Chapters 2 and 4 covered ran-
dom effects in more detail) and demonstrate how to extract and manipulate
random effects from a growth curve model and use them to quantify individual
differences.

7.2 Individual differences as fixed effects

The simplest approach to analyzing individual differences is just to treat them
the same way we have treated study manipulations throughout this book: by
adding them as fixed effects to the model. This approach works well when the
individual differences are based on some assessment that is outside of the data
being analyzed. For example, the time course of learning to perform some cog-
nitive task (for example, learning a set of new words) might be influenced by
participant age or working memory span or severity of language impairment.
In this type of case, in addition to the experimental task, we could administer
a test of working memory span (or language impairment severity, etc.) and
include that score as a fixed effect in the growth curve model of word learning.

Two things are important to keep in mind when taking this approach.
First, participants can be randomly assigned to experimental conditions, but
their individual differences are not randomly assigned, so the results will al-
ways be subject to “third variable” explanations. That is, rather than the
measured individual differences directly causing the differences on the exper-
imental task, there may be some third variable that is responsible for both
the individual differences and the variation in experimental task performance.
Second, the individual difference predictors can be individual-level continuous
variables (for example, each participant’s unique age) or they can be group-
level categorical variables (for example, children vs. adults), but the latter will
be subject to power issues if the groups are small. One of the advantages of
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using regression-based methods over ANOVAs is that ANOVAs only handle
categorical predictors, but regression modeling allows continuous predictors,
which often have more power to detect differences.

In general, many considerations that are familiar from multiple regression
methods will be relevant to testing individual differences using fixed effects,
including continuous vs. categorical predictors and concerns about collinear-
ity between predictors. The key difference is that in multilevel (growth curve)
models, individual-level predictors are tested for their effect on the set of obser-
vations corresponding to that individual. Let’s work through an example using
a subset of data from a longitudinal study of reading development (from the
ELDEL project, see Caravolas et al., 2012, 2013, and http://www.eldel.eu/.
Thanks to Markéta Caravolas, Charles Hulme, and the ELDEL team for shar-
ing these data).

We will analyze data from 181 children learning to read English. The chil-
dren were tested six times, approximately at the middle and end of each
school year for three years, starting from reception year (kindergarten, when
they were approximately five years old) until the end of second grade. The
Time variable will be represented as months from Time 1 (baseline) testing
so that the intercept term will correspond to baseline performance. At each of
these six test times, each child’s reading ability was assessed by showing them
a picture and four printed words and asking them to pick the word that cor-
responds to the picture (“picture-word matching,” pwmcor). Figure 7.1 shows
the overall improvement in picture-word matching performance (i.e., learning
to read), which followed an approximately linear trajectory.

In addition to the measure of reading ability, at Time 1, children were
tested on four other measures that may be related to learning to read. These
are the measures of individual differences that will be tested to examine the
cognitive factors that predict development of reading:

Verbal memory span (wdspan1) Children were asked to repeat, in order,
lists of familiar words.

Letter knowledge (lk1) Children were asked to pronounce the sounds and
names of each letter of the English alphabet.

Rapid automatized naming (ran1) Children were asked to name, as
quickly as they could, five familiar items (objects or colors) and to repeat
this list eight times.

Phoneme awareness (pa1) Children were asked to pronounce the first or
last sound in fake words and to blend two segments into a word.

Here is a summary of the data set:

> summary(ELDEL)

id wdspan1 lk1 ran1

ABBTUS : 6 Min. :1.00 Min. :-1.450 Min. :-1.687
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FIGURE 7.1
Overall development of reading ability.

ABIARM : 6 1st Qu.:2.00 1st Qu.:-0.114 1st Qu.:-0.623

ABIHAR : 6 Median :3.00 Median : 0.343 Median :-0.115

ABIJON : 6 Mean :2.61 Mean : 0.409 Mean : 0.196

AIDGRI : 6 3rd Qu.:3.00 3rd Qu.: 0.941 3rd Qu.: 0.802

AISELE : 6 Max. :4.00 Max. : 2.102 Max. : 3.684

(Other):1050

pa1 pwmcor Month

Min. :-1.39468 Min. : 1.0 Min. : 0.0

1st Qu.:-0.00416 1st Qu.: 8.0 1st Qu.: 4.0

Median : 0.62316 Median :13.0 Median :13.0

Mean : 0.52247 Mean :15.9 Mean :13.7

3rd Qu.: 1.04767 3rd Qu.:23.0 3rd Qu.:22.0

Max. : 1.88485 Max. :61.0 Max. :30.0

NA's :82

Not surprisingly, the individual difference measures were correlated with one
another, particularly letter knowledge and phoneme awareness:

> cor(subset(ELDEL, Month == 0,

select=c("wdspan1", "lk1", "ran1", "pa1")))

wdspan1 lk1 ran1 pa1

wdspan1 1.00000 0.32789 -0.20032 0.37344

lk1 0.32789 1.00000 -0.35685 0.66537
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ran1 -0.20032 -0.35685 1.00000 -0.40747

pa1 0.37344 0.66537 -0.40747 1.00000

As in multiple regression more generally, this means that the estimated effect
of any one predictor will depend on which other predictors are included in the
model. For example, the effect of letter knowledge will be different depending
on whether phoneme awareness is or is not included in the model. Let’s begin
by building a base model that just describes the overall development of reading
skill:

> eldel.base <- lmer(pwmcor ~ Month + (Month | id),

data=ELDEL, REML=FALSE)

We can test whether letter knowledge at Time 1 was related to initial reading
ability by adding an effect of lk1 on the intercept (recall that Time 1 testing
was at Month 0, so this corresponds to the intercept):

> eldel.lk <- lmer(pwmcor ~ Month + lk1 + (Month | id),

data=ELDEL, REML=FALSE)

and using the anova function to test whether there was a significant improve-
ment in model fit:

> anova(eldel.base, eldel.lk)

Data: ELDEL

Models:

eldel.base: pwmcor ~ Month + (Month | id)

eldel.lk: pwmcor ~ Month + lk1 + (Month | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

eldel.base 6 5863 5893 -2926 5851

eldel.lk 7 5818 5852 -2902 5804 47.5 1 5.6e-12

eldel.base

eldel.lk ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There was a very significant improvement in model fit and examining the
parameter estimates

> coef(summary(eldel.lk))

Estimate Std. Error t value

(Intercept) 5.85898 0.258831 22.6363

Month 0.68128 0.024079 28.2932

lk1 2.36959 0.285090 8.3117

shows that the estimate for the lk1 term was positive – children with better
letter knowledge at baseline were also better at reading at baseline. The same
approach can be used to assess the effect of phoneme awareness:
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> eldel.pa <- lmer(pwmcor ~ Month + pa1 + (Month | id),

data=ELDEL, REML=FALSE)

> anova(eldel.base, eldel.pa)

Data: ELDEL

Models:

eldel.base: pwmcor ~ Month + (Month | id)

eldel.pa: pwmcor ~ Month + pa1 + (Month | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

eldel.base 6 5863 5893 -2926 5851

eldel.pa 7 5821 5856 -2904 5807 43.9 1 3.4e-11

eldel.base

eldel.pa ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Like letter knowledge, phoneme awareness was strongly related to initial read-
ing ability and examining the parameter estimates reveals that the effect was
similarly positive:

> coef(summary(eldel.pa))

Estimate Std. Error t value

(Intercept) 5.58944 0.282083 19.8149

Month 0.68084 0.024113 28.2349

pa1 2.36917 0.307314 7.7093

Indeed, the two parameter estimates were nearly identical (lk1: 2.3696, pa1:
2.3692), which is a good reminder that phoneme awareness and letter knowl-
edge were strongly positively correlated (r = 0.665). That is, both phoneme
awareness and letter knowledge were positively related to reading ability, but
it is hard to know how much of those effects is due to their shared contribu-
tions and how much is due to their unique contributions. To assess the unique
contributions, we need to compare the effect of adding each term to a model
that already has the other term. Since we already have models with the two
effects individually, we just need to build a combined model that has both
effects:

> eldel.lk.pa <- lmer(pwmcor ~ Month + lk1 + pa1 +

(Month | id), data=ELDEL, REML=FALSE)

Now we can evaluate the unique contribution of letter knowledge by comparing
this combined model to one that only has phoneme awareness:

> anova(eldel.pa, eldel.lk.pa)

Data: ELDEL

Models:

eldel.pa: pwmcor ~ Month + pa1 + (Month | id)
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eldel.lk.pa: pwmcor ~ Month + lk1 + pa1 + (Month | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

eldel.pa 7 5821 5856 -2904 5807

eldel.lk.pa 8 5808 5847 -2896 5792 15.7 1 7.5e-05

eldel.pa

eldel.lk.pa ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The effect of letter knowledge still highly significantly improves model fit,
though notice that the improvement is much smaller than when phoneme
awareness was not already included (-2LL: 16 vs. 47). We can use the analogous
comparison to test the unique effect of phoneme awareness:

> anova(eldel.lk, eldel.lk.pa)

Data: ELDEL

Models:

eldel.lk: pwmcor ~ Month + lk1 + (Month | id)

eldel.lk.pa: pwmcor ~ Month + lk1 + pa1 + (Month | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

eldel.lk 7 5818 5852 -2902 5804

eldel.lk.pa 8 5808 5847 -2896 5792 12.2 1 0.00049

eldel.lk

eldel.lk.pa ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The effect of phoneme awareness on baseline reading ability significantly im-
proved model fit even when letter knowledge was already in the model, though
again the improvement was substantially smaller (-2LL: 12 vs. 44). These com-
parisons indicate that phoneme awareness and letter knowledge made both
shared and unique contributions to baseline reading ability.

If we are only interested in some of the predictor variables and simply
want to control for the remaining predictors as nuisance variables, then we
could add those control variables into the base model and measure the unique
contribution(s) of adding the variable(s) of interest. In a more neutral or
exploratory situation, we may want to evaluate the unique contribution of each
variable when all other predictors are in the model. To do this for the intercept
term (i.e., baseline reading ability), we can build a model that includes the
effects of all four predictors on the intercept:

> eldel.intercepts <- lmer(pwmcor ~ Month +

wdspan1 + lk1 + ran1 + pa1 +

(Month | id),

data=ELDEL, REML=FALSE)
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Then use the drop1 function to evaluate the effects of removing (dropping)
individual predictors from this model: drop1 will cycle through fitting the
relevant models and computing the comparisons and return the results in a
compact form, we just need to specify the χ2 test to make sure we get the
right model comparison statistic:

> drop1(eldel.intercepts, test="Chisq")

Single term deletions

Model:

pwmcor ~ Month + wdspan1 + lk1 + ran1 + pa1 + (Month | id)

Df AIC LRT Pr(Chi)

<none> 5802

Month 1 6101 301.6 < 2e-16 ***

wdspan1 1 5800 0.2 0.69574

lk1 1 5814 14.5 0.00014 ***

ran1 1 5809 9.8 0.00172 **

pa1 1 5807 7.4 0.00670 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The LRT column is the likelihood ratio test statistic (i.e., the χ2) and the
right-most column is the corresponding p-value. It looks like the verbal span
measure was not significantly related to baseline reading ability, but each of
the other three variables uniquely contributed to the model.

Using the same strategy, we can evaluate the effect of these individual
difference predictors on the rate of learning to read. We begin by fitting a full
model that includes the effects of all predictors on the intercept and on the
linear slope (Month):

> eldel.full <- lmer(pwmcor ~ Month *

(wdspan1 + lk1 + ran1 + pa1) +

(Month | id),

data=ELDEL, REML=FALSE)

then evaluate the effect of single term deletions (these will be just the effects
on the slope):

> drop1(eldel.full, test="Chisq")

Single term deletions

Model:

pwmcor ~ Month * (wdspan1 + lk1 + ran1 + pa1) + (Month | id)

Df AIC LRT Pr(Chi)

<none> 5752

Month:wdspan1 1 5750 0.51 0.47405

Month:lk1 1 5763 13.24 0.00027 ***
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Month:ran1 1 5758 8.08 0.00448 **

Month:pa1 1 5751 1.08 0.29779

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results show that letter knowledge and rapid automatized naming signif-
icantly predicted the rate at which children learned to read (recall that letter
knowledge and rapid automatized naming were only measured at baseline, so
they were predictive in the temporal sense as well as the statistical sense).
Phoneme awareness had been associated with reading ability at baseline, but
did not predict the rate of learning to read.

Notice that we included the effect of wdspan1 on the intercept in the
full model even though the previous test had shown that this term did not
significantly improve model fit. The effect of wdspan1 on the intercept may not
have been statistically significantly different from 0, but excluding it would
have forced the model to treat it as if it were exactly 0, which could have
a distorting effect on the estimation of the effect of wdspan1 on the linear
term (rate of learning to read). As a general rule, it is a bad idea to include
higher-order effects without also including the lower-order effects. That said,
since neither the intercept nor the slope effect of verbal span was significant,
it would be reasonable to re-run the analyses excluding both terms from the
model (in this case, the results were nearly identical).

7.2.1 Visualizing model fit

As demonstrated in previous chapters, we can plot the overall model fit by
simply using the fitted function to get the model-fit values from the full
model object. Note that we will need to explicitly exclude the missing pwmcor

values – they wouldn’t be plotted anyway (because they are missing) and they
were excluded from the model fit, but if we don’t exclude them, ggplot will
return an error because the data sets will appear to be of different lengths.
The resulting plot is shown in Figure 7.2.

> ggplot(subset(ELDEL, !is.na(pwmcor)), aes(Month, pwmcor)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar", width=1) +

stat_summary(aes(y=fitted(eldel.full)),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(y="Picture-Word Matching Score")

Standard two-dimensional plots are great for representing two-variable
data and additional categorical variables can be relatively easily represented
by linetypes, point shapes, separate panels, etc. However, showing the re-
lationships among more than two continuous variables can be very difficult.
Heatmaps and contour plots can be effective for visualizing some three-variable
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FIGURE 7.2
Overall development of reading ability (error bars indicate ±SE) with line
showing the full model fit.

data sets. When other strategies fail, it may be necessary to discretize a vari-
able — create a categorical variable out of a continuous one — in order to
make an interpretable plot. Here is how we might do that in order to see the
effect of letter knowledge on learning to read.

First, we need to create categorical variable that groups values of letter
knowledge, for example, using a median split:

> ELDEL$LK <- factor(ELDEL$lk1 >= median(ELDEL$lk1),

levels=c("FALSE", "TRUE"),

labels=c("Low", "High"))

The factor function will turn its first input into a categorical variable with
levels corresponding to the unique values in the set. In this case, that first input
is a logical operation testing whether the letter knowledge score is greater than
or equal to the median letter knowledge score. This will return logical values
(TRUE or FALSE), which are not very informative level names, so the next two
inputs tell the factor function to apply different labels to those levels. FALSE
will become Low (values less than the median) and TRUE will become High

(values greater than or equal to the median). A similar strategy could be used
to divide letter knowledge into three, four, or more quantile groups by first
using the quantile function to find the break points:

> b <- quantile(ELDEL$lk1[ELDEL$Month==0],

probs=seq(0, 1, by=1/3))
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then using the cut function to divide the letter knowledge variable at those
break points and label the resulting factor levels:

> ELDEL$LK3 <- cut(ELDEL$lk1, breaks=b, include.lowest=TRUE,

labels=c("Low", "Medium", "High"))

Now we can plot the data using different shapes for the levels of letter knowl-
edge and different linetypes for the model fits (Figure 7.3):

> ggplot(subset(ELDEL, !is.na(pwmcor)), aes(Month, pwmcor,

shape=LK3)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar", width=1) +

stat_summary(aes(y=fitted(eldel.full), linetype=LK3),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(y="Picture-Word Matching Score",

shape="Letter\nKnowledge",

linetype="Letter\nKnowledge") +

theme(legend.position=c(0,1),

legend.justification=c(0,1),

legend.background=element_rect(color="black",

fill="white"))

Note that the model used the continuous measure of letter knowledge, so this
grouping is just a visualization aid that will apply in the same way to both
the observed and model fit values.

7.3 Individual differences as random effects

Modeling individual differences as fixed effects is a good strategy when we
have a measure of individual differences that is separate from the outcome
variable itself, like a measure of letter knowledge that is separate from our
measure of reading ability, and we can add that measure into the model.
However, this is not always possible. For example, we might be interested in
how effects in two conditions within the study are related to one another,
or how between-participant differences in overall curve shape are related to
within-participant differences between conditions (e.g., how processing speed
differences are related to effect size). For these sorts of research questions, we
can use the random effects to estimate effect sizes and use those effect sizes in
subsequent analyses.

Let’s consider an extremely simple case to see how random effects provide
a way to quantify individual effect sizes. Figure 7.4 shows the performance Y
of two participants (A and B) in two conditions (0 and 1). The dashed lines
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FIGURE 7.3
Development of reading ability (symbols, error bars indicate ±SE) grouped
by tertile split on letter knowledge at study start. Lines indicate fit from the
full growth model.

represent the condition means: YC=0 = 6, YC=1 = 9. The arrows represent the
participant-by-condition random effects, each labeled with its corresponding ζ.
We can use these random effects to compute effect sizes for individual subjects
by computing the difference, for each participant, between the condition 1
random effect estimate and the condition 0 random effect estimate:

Participant A: ζA1 − ζA0 = 1− (−1) = 2

Participant B: ζB1 − ζB0 = (−1)− 1 = −2

These effect sizes confirm the visually obvious fact that participant A had
a larger effect size (difference between conditions) than participant B did.
Indeed, in this minimal example, the difference between their effect sizes (4)
is exactly the same value as we would get if we directly computed the difference
between conditions for each participant (Participant A: 5; Participant B: 1)
and took the difference between those scores. However, random effects are
computed within a model of overall group performance, which offers a number
of advantages that will be discussed in more detail in section 7.3.2.

Note that using random effects to compute individual effect sizes produces
effect sizes that are symmetric around 0 – they correspond to the effect size
relative to the group mean effect size. That is, participant B’s -2 effect size
does not necessarily indicate a reversal; rather, it means that the effect size
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FIGURE 7.4
A simple example of two participants with different condition effect sizes.
Dashed lines represent condition means; arrows represent random effect esti-
mates.

was 2 units less than the overall group difference between conditions. We can
think of this simple example as individual estimates of effect sizes based on
the intercept term. In the context of a growth curve analysis, the same general
approach can be used to quantify individual differences on linear, quadratic,
etc., time course terms. The following example will demonstrate how to do
this using data from an eye-tracking study.

7.3.1 Example: Function and thematic knowledge following
stroke

These data come from an eye-tracking study of 17 participants with left hemi-
sphere stroke (Kalénine, Mirman, & Buxbaum, 2012). Participants saw four
pictures of objects and had to pick the one that matched the word they heard.
The key research question was the time course of fixations to objects that were
semantically related to the target compared to unrelated objects, and the se-
mantic relationships could be either functional (e.g., broom - sponge, which
serve a similar cleaning function) or thematic (e.g., broom - dustpan, which
are used together). The overall time course is shown in Figure 7.5, though
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the more interesting question was whether there was any relationship between
activation of these two different kinds of semantic knowledge across the 17
participants. Since the eye data are the measure of activation patterns, we
don’t have something to enter as a fixed effect into the model. We’ll have
to use the random effects to estimate effect sizes and then test correlations
between those.

Function
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FIGURE 7.5
Distractor fixation proportion time course for function (top panel) and the-
matic (bottom panel) relations in 17 participants with left hemisphere stroke.
Grey shading indicates ±SE; vertical black lines show the bounds of the anal-
ysis time window.

We will analyze data from 500ms to 2000ms after word onset and only the
distractor fixations (not the target object fixations), so let’s start by creating
a GCA-appropriate subset data set:

> FunctThemePts.gca <- subset(FunctThemePts,
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Time >= 500 & Time <= 2000 &

Object != "Target")

> summary(FunctThemePts.gca)

subj Condition Object Time

206 : 124 Function:1054 Target : 0 Min. : 500

281 : 124 Thematic:1054 Competitor:1054 1st Qu.: 850

419 : 124 Unrelated :1054 Median :1250

2221 : 124 Mean :1250

1088 : 124 3rd Qu.:1650

1238 : 124 Max. :2000

(Other):1364

timeBin meanFix sumFix N

Min. :30 Min. :0.0000 Min. : 0.00 Min. :12.0

1st Qu.:37 1st Qu.:0.0625 1st Qu.: 1.00 1st Qu.:15.0

Median :45 Median :0.1000 Median : 2.00 Median :16.0

Mean :45 Mean :0.1119 Mean : 2.56 Mean :15.4

3rd Qu.:53 3rd Qu.:0.1667 3rd Qu.: 4.00 3rd Qu.:16.0

Max. :60 Max. :0.5000 Max. :12.00 Max. :16.0

It will be easier to make and align the orthogonal polynomial time variable if
we shift the timeBin variable so that the first bin in the analysis is labeled
“1”:

> FunctThemePts.gca$timeBin <- FunctThemePts.gca$timeBin - 29

Now we can create the fourth-order orthogonal polynomial:

> t <- poly((unique(FunctThemePts.gca$timeBin)), 4)

and insert it into the data frame:

> FunctThemePts.gca[, paste("ot", 1:4, sep="")] <-

t[FunctThemePts.gca$timeBin, 1:4]

The next step is to fit separate models for the distractor fixation time course
in the function condition:

> m.funct <- lmer(meanFix ~ (ot1+ot2+ot3+ot4)*Object +

(ot1+ot2+ot3+ot4 | subj) +

(ot1+ot2 | subj:Object),

data=subset(FunctThemePts.gca,

Condition=="Function"),

control=lmerControl(optimizer="bobyqa"),

REML=FALSE)

and the thematic condition:
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> m.theme <- lmer(meanFix ~ (ot1+ot2+ot3+ot4)*Object +

(ot1+ot2+ot3+ot4 | subj) +

(ot1+ot2 | subj:Object),

data=subset(FunctThemePts.gca,

Condition=="Thematic"),

control=lmerControl(optimizer="bobyqa"),

REML=FALSE)

Recall that the ranef function can be used to extract random effects. Our
models will have two sets of random effects, which we can see using the str

(structure) function (vec.len is an optional argument that determines how
many of the “first few” elements are displayed for each vector; it is used here
just to keep the output from running into the margins):

> str(ranef(m.funct), vec.len=2)

List of 2

$ subj:Object:'data.frame': 34 obs. of 3 variables:

..$ (Intercept): num [1:34] -0.0327 0.0254 ...

..$ ot1 : num [1:34] 0.0339 0.0726 ...

..$ ot2 : num [1:34] -0.1538 0.0143 ...

$ subj :'data.frame': 17 obs. of 5 variables:

..$ (Intercept): num [1:17] 0.025 -0.0134 ...

..$ ot1 : num [1:17] 0.0924 -0.0454 ...

..$ ot2 : num [1:17] -0.1915 0.0375 ...

..$ ot3 : num [1:17] 0.1124 -0.0677 ...

..$ ot4 : num [1:17] 0.0386 0.0474 ...

- attr(*, "class")= chr "ranef.mer"

the head function is also useful for seeing how a data frame is set up:

> head(ranef(m.funct)$"subj:Object")

(Intercept) ot1 ot2

206:Competitor -0.03274632 0.033860 -0.1538105

206:Unrelated 0.02538758 0.072615 0.0143118

281:Competitor 0.00664979 -0.043948 -0.0596063

281:Unrelated -0.02003123 -0.055298 0.1158190

419:Competitor -0.00063844 0.246673 -0.0012456

419:Unrelated -0.00929344 -0.152940 0.0568354

The participant:object codes are row names, but it will be helpful to make
them variables in the data frame and divide the participant and object pieces
into separate variables. We can get the row names using the rownames function
and split them up using the colsplit function (from the reshape2 package):

> re.id <- colsplit(row.names(ranef(m.funct)$"subj:Object"),

":", c("Subject", "Object"))
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Now we combine them with the random effect estimates:

> re.funct <- data.frame(re.id, ranef(m.funct)$"subj:Object")

> head(re.funct)

Subject Object X.Intercept. ot1

206:Competitor 206 Competitor -0.03274632 0.033860

206:Unrelated 206 Unrelated 0.02538758 0.072615

281:Competitor 281 Competitor 0.00664979 -0.043948

281:Unrelated 281 Unrelated -0.02003123 -0.055298

419:Competitor 419 Competitor -0.00063844 0.246673

419:Unrelated 419 Unrelated -0.00929344 -0.152940

ot2

206:Competitor -0.1538105

206:Unrelated 0.0143118

281:Competitor -0.0596063

281:Unrelated 0.1158190

419:Competitor -0.0012456

419:Unrelated 0.0568354

To compute the effect size, we need to compute the difference between the
competitor and unrelated random effect estimates for each participant. The
ddply function from the plyr package provides a simple way to do this (this
function was introduced in Chapter 4):

> ES.funct <- ddply(re.funct, .(Subject), summarize,

Function_Intercept = X.Intercept.[Object=="Competitor"] -

X.Intercept.[Object=="Unrelated"],

Function_Linear = ot1[Object=="Competitor"] -

ot1[Object=="Unrelated"])

Now we do the same steps for the thematic condition, first extracting the
random effects:

> re.theme <- data.frame(

colsplit(row.names(ranef(m.theme)$"subj:Object"),

":", c("Subject", "Object")),

ranef(m.theme)$"subj:Object")

then computing the effect sizes:

> ES.theme <- ddply(re.theme, .(Subject), summarize,

Thematic_Intercept = X.Intercept.[Object=="Competitor"] -

X.Intercept.[Object=="Unrelated"],

Thematic_Linear = ot1[Object=="Competitor"] -

ot1[Object=="Unrelated"])

Finally, we combine the function and thematic condition effect sizes into a
single data frame:
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> ES <- merge(ES.funct, ES.theme)

> head(ES)

Subject Function_Intercept Function_Linear Thematic_Intercept

1 206 -0.0581339 -0.038755 0.0309626

2 281 0.0266810 0.011349 0.0153672

3 419 0.0086550 0.399613 -0.0018655

4 1088 -0.0032830 -0.156276 -0.0845982

5 1238 -0.0133492 -0.139859 -0.0220510

6 1392 -0.0031964 0.191226 0.0615263

Thematic_Linear

1 -0.1528792

2 0.0039936

3 -0.1459968

4 -0.0619093

5 -0.0155540

6 -0.3531367

This data frame contains all of the data we need to test the correlation between
function and thematic condition effect sizes. Starting with the intercept term
(i.e., overall fixation proportion for the related competitors compared to the
unrelated distractors):

> cor.test(ES$Function_Intercept, ES$Thematic_Intercept)

Pearson's product-moment correlation

data: ES$Function_Intercept and ES$Thematic_Intercept

t = -2.3602, df = 15, p-value = 0.03223

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.80075 -0.05300

sample estimates:

cor

-0.52039

For the intercept term, there was a significant negative correlation (r = −0.52,
p = 0.032), indicating that participants who showed larger function compe-
tition effects tended to show smaller thematic competition effects, and vice
versa. There was a similar negative correlation pattern for the linear term
(r = −0.65, p = 0.0043).

> cor.test(ES$Function_Linear, ES$Thematic_Linear)

Pearson's product-moment correlation

data: ES$Function_Linear and ES$Thematic_Linear

t = -3.3571, df = 15, p-value = 0.004322

alternative hypothesis: true correlation is not equal to 0
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95 percent confidence interval:

-0.86372 -0.25445

sample estimates:

cor

-0.65499

Figure 7.6 shows these correlations as scatterplots of the individual partic-
ipants’ function and thematic competition effect sizes on the intercept and
linear terms.
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FIGURE 7.6
Scatterplots of individual function and thematic competition effect sizes on
intercept (left) and linear (right) terms.

7.3.2 Individual differences, not individual models

The simple example in Figure 7.4 might suggest a simpler alternative: why
not just fit separate models for each participant and examine the individual
effect sizes estimated by individual participant models? The problem with
this approach is that it will over -estimate the individual differences by con-
sidering each participant independently of the group. By modeling the group
data and the individual variation within a single model, multilevel (growth
curve) models provide an estimate of individual effect sizes that combine each
individual’s pattern with the overall pattern of the group – of which that in-
dividual is (presumably) a member. This is closely related to the shrinkage
issue discussed in Chapter 4: effect size estimates from multilevel models will
tend to be pulled (shrunk) toward the overall group mean.

We can demonstrate this in a simple example with simulated reaction time
(RT) data for 15 participants in two conditions. For the “easy” condition, the
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reaction times were drawn from a normal distribution with a mean of 800ms
and a standard deviation of 30ms. The individual condition effect sizes were
drawn from a normal distribution with a mean of 20ms (i.e., performance
in the “hard” condition was about 20ms slower) and a standard deviation of
10ms. A summary of the generated data is shown in Table 7.1.

TABLE 7.1
Simulated RT Data: Mean (SD) for Easy and Hard Conditions, Difference
between Means and Results of a Paired-Samples t-Test.

Easy Hard Difference t p
801 (25.9) 822 (28.4) 21.2 7.9 1.52e-06

Using these simulated data, we can compute individual effect sizes in two
different ways: (1) using random effect estimates from a multilevel model of
the full group data and (2) by individually subtracting the easy condition
RT from the hard condition RT for each participant (analogous to fitting
individual models for each participant). The average of the estimated effect
sizes is the same1 for both approaches (corresponding to the difference value
in Table 7.1), but the individual-models approach produces a much wider
distribution of individual effect sizes, as shown in the left panel of Figure 7.7.
In other words, the multilevel model partitions the variance among overall
group effects, individual participant effects, and noise, whereas the individual
models assign all variability to individual participant effects.

The same pattern arises if we re-analyze the eye-tracking data from sec-
tion 7.3.1 using separate fourth-order orthogonal polynomial models for each
individual participant. The right panel in Figure 7.7 shows the individual par-
ticipant effect sizes on the linear term in the function condition estimated from
a group model’s random effects as in section 7.3.1 and from individual partic-
ipant models. As in the simulated data example, fitting independent models
for each participant produces a wider distribuction of effect size estimates. In
a sense, the problem with using individual models is the reverse of the prob-
lem with using t-tests and ANOVAs: whereas t-tests and ANOVAs treat all
variability as noise, individual models treat all variability as individual differ-
ences. Multilevel models describe the data simultaneously at the group and
individual levels, so they partition the variability among group effects (fixed
effects), participant effects (random effects), and residual error. As a result,
their individual effect size estimates take into account an estimate of the over-
all group-level effect size and truly random noise to arrive at a more informed
estimate of individual differences. (For more discussion of these issues and
another real data example see Kliegl et al., 2011; for an accessible statistical
discussion of shrinkage and individual estimates see Efron & Morris, 1977).

1For the group model effect sizes, the fixed effect (group average) was added to the
random effect estimates to get true effect size estimates rather than relative effect size
estimates.
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FIGURE 7.7
Comparisons of individual effect size estimates based on random effects from
a group model and based on individual participant models. Left: Simulated
RT data. Right: Function activation linear term.

7.3.3 Using effect sizes for subsequent analyses

Another context for using random effects to quantify individual effect sizes is
when you need to quantify individual differences for an analysis that can’t
practically be implemented within GCA. For example, voxel-based lesion-
symptom mapping (e.g., Bates et al., 2003; Schwartz et al., 2011) is a technique
for investigating the neural basis of behavior. The general approach is to test
each small region of brain tissue (voxel) for behavioral differences between
participants with vs. without damage in that region (a correction for multiple
comparisons is typically applied). The individual tests are usually t-tests or
simple regressions, which are easy to implement and fast to execute. Adapting
this method to GCA would mean, for each voxel, fitting a separate growth
curve model with brain damage status of that voxel as a fixed effect. Even if
software were developed to make this possible, it would be impractical because
it would require fitting many thousands of growth curve models (possibly hun-
dreds of thousands), which could take weeks to compute even if each model
only takes a few seconds. A more practical approach is to compute individual
participant effect size estimates as described in this chapter and use them as
the behavioral measure in a standard VLSM analysis. More generally, using
random effects to compute individual effect sizes makes them available for
analyses that are impossible or impractical to integrate into GCA.
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7.4 Chapter recap

This chapter described and demonstrated two methods for using growth curve
analysis (and multilevel regression more generally) to analyze individual dif-
ferences. The first method is simply an extension of multiple regression to the
GCA framework: add the individual difference measure as a fixed effect into
the growth curve model. This allows testing the effects of individual differences
on different aspects of the growth curves (intercept, linear slope, quadratic,
etc.). The standard properties and concerns of multiple regression also ap-
ply to this method (continuous vs. categorical predictors, collinear predictors,
etc.).

The second method is to use the random effects to estimate individual par-
ticipant effect sizes. This approach is useful when there is no separate measure
that could be added as a fixed effect into the model, or doing so would be com-
putationally impractical. This method makes use of the fact that multilevel
models estimate group-level (fixed) effects, individual-level (random) effects,
and residual error. The individual-level random effects provide estimates of
how individuals deviate from the overall group pattern, which is a measure
of relative effect size that takes into consideration the overall group pattern
as well as the residual error. In essence, the model’s estimate of the group-
level effect serves as an anchor that allows the model to estimate individual
effect sizes as corresponding to individual deviation from the group mean and
residual noise. This tends to shrink estimates of individual effect sizes toward
the group mean compared to fitting separate models for each individual par-
ticipant, which cannot estimate the group-level effect and therefore attributes
all variability to individual differences. On the assumption that the partic-
ipants in the sample do constitute a meaningful group with an informative
group-level effect, fitting separate models for individual participants tends to
over-estimate the variability of individual effect sizes.

7.5 Exercises

The CohortRhyme example data set contains data from an eye-tracking ex-
periment (Mirman et al., 2011) similar to the one described in section 7.3.1,
except this one investigated phonological competition between cohorts (e.g.,
penny–pencil) and rhymes (e.g., carrot–parrot). Three groups of participants
were tested: five individuals with Broca’s aphasia, three individuals with Wer-
nicke’s aphasia, and 12 control participants.

1. Use fourth-order orthogonal polynomials to analyze (separately) the co-
hort and rhyme competition effects.
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(a) Test group differences in cohort and rhyme competition effects.

(b) Evaluate all pairwise group comparisons for different time terms
(see Chapter 5).

(c) Make a multi-panel plot that shows cohort and rhyme competition
effects for each of the groups (you may want to use facet_grid).

2. Compute individual participant’s cohort and rhyme competition effects
on the intercept, linear, and quadratic time terms (tip: remember to
remove the group fixed effect so that these effect sizes will be relative to
the overall mean, not the diagnosis group mean).

3. Test correlations between cohort and rhyme effect sizes for the full set
of participants and separately for the control and aphasic participants.

4. Make a multi-panel scatterplot that shows the correlations for the inter-
cept, linear, and quadratic terms in separate panels as in Figure 7.6 (tip:
you may need to use dcast, which is the companion function to melt

that lets you convert from a long data format to a wide data format).
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The purpose of this chapter is to provide simple and complete templates for
analysis code, model output, and example write-ups. These are meant to serve
as a “quick reference” for looking up code syntax without wading through the
narrative of the main book text. Each example will begin with a quick reminder
of the data, then provide the code for analysis with minimal comments so you
can copy and paste it. The # can be used to mark comments in R code –
these lines are not executed by R and it is good programming practice to
use comments so that you can have a record of what each section of code
is supposed to do. For detailed discussion of each example, refer back to the
appropriate chapter for each example. The code blocks will include model
output and code for plotting the observed data and model fits. Each example
will conclude with a brief write-up demonstrating how the analysis strategy
and results could be reported in a journal article or other scientific publication.

For each of the examples, the lme4 and ggplot2 packages will need to be
loaded:

> library(lme4)

> library(ggplot2)

8.1 Linear change

These data are from a randomized placebo-controlled study of the effect of
amantadine on recovery from brain injury (Giacino et al., 2012). After a base-

141



142 Growth Curve Analysis and Visualization Using R

line assessment, patients who were in a vegetative or minimally conscious
state received either amantadine or placebo for 4 weeks and their functional
recovery was measured using the Disability Rating Scale (DRS).

> # inspect the data to check variable names and types

> summary(amant.ex)

Patient Group Week DRS

1008 : 5 Placebo :85 Min. :0 Min. : 7.0

1009 : 5 Amantadine:65 1st Qu.:1 1st Qu.:17.0

1017 : 5 Median :2 Median :20.5

1042 : 5 Mean :2 Mean :19.3

1044 : 5 3rd Qu.:3 3rd Qu.:22.0

1054 : 5 Max. :4 Max. :28.0

(Other):120

> # fit base model

> amant.base <- lmer(DRS ~ 1 + Week + (1 + Week | Patient),

data=amant.ex, REML=F)

> # gradually add effects of treatment group

> # add effect of group on intercept (baseline assessment)

> amant.0 <- lmer(DRS ~ 1 + Week+Group + (1 + Week | Patient),

data=amant.ex, REML=F)

> # add effect of group on linear slope (rate of recovery)

> amant.1 <- lmer(DRS ~ 1 + Week*Group + (1 + Week | Patient),

data=amant.ex, REML=F)

> # compare models

> anova(amant.base, amant.0, amant.1)

Data: amant.ex

Models:

amant.base: DRS ~ 1 + Week + (1 + Week | Patient)

amant.0: DRS ~ 1 + Week + Group + (1 + Week | Patient)

amant.1: DRS ~ 1 + Week * Group + (1 + Week | Patient)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

amant.base 6 622 641 -305 610

amant.0 7 623 644 -304 609 1.63 1 0.202

amant.1 8 619 643 -302 603 5.56 1 0.018 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # examine parameter estimates from full model

> coef(summary(amant.1))

Estimate Std. Error t value

(Intercept) 22.05882 0.48485 45.4964

Week -0.70000 0.22117 -3.1650

GroupAmantadine -1.42805 0.73654 -1.9389

Week:GroupAmantadine -0.83077 0.33598 -2.4726
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> # plot data with full model fit

> p1 <- ggplot(amant.ex, aes(Week, DRS, shape=Group)) +

stat_summary(fun.data=mean_se, geom="pointrange") +

stat_summary(aes(y=fitted(amant.1), linetype=Group),

fun.y=mean, geom="line") +

theme_bw(base_size=10)

> # save this plot as a PDF file, specify size and resolution

> ggsave("amantFit.pdf", p1, width=4.5, height=3.5, dpi=300)

Example write-up:

The data were fit using a linear growth model with fixed effects
of group (amantadine vs. placebo) on the intercept (baseline as-
sessment) and linear (rate of recovery) terms and random effects
of participants on the intercept and slope to model individual dif-
ferences in initial severity and rate of recovery. The fixed effects of
group were added individually and their effects on model fit were
evaluated using model comparisons. Improvements in model fit
were evaluated using -2 times the change in log-likelihood, which
is distributed as χ2 with degrees of freedom equal to the number
of parameters added. All analyses were carried out in R version
3.0.2 using the lme4 package (version 1.0-5).

The data and model fits are shown in Figure 8.1. There was no ef-
fect of group on the intercept (χ2(1) = 1.63, p = 0.202), indicating
that there were no baseline differences between the groups (as ex-
pected, because participants were randomly assigned to groups).
There was a significant effect of group on the linear slope term
(χ2(1) = 5.56, p = 0.0183), indicating faster recovery in the aman-
tadine group compared to the placebo group. This difference was
approximately 0.831 (SE = 0.336) points per week faster recovery
for the amantadine group compared to the placebo group.

8.2 Orthogonal polynomials

These data are from an experiment testing the effect of transitional probability
(TP) on learning novel words (Mirman, Magnuson, et al., 2008). Participants
learned a set of novel words through trial-and-error: on each trial they saw two
novel objects and heard a novel word, picked which object had been named,
and received feedback. The outcome variable is accuracy (proportion correct
responses), which starts out near chance (approx. 50% correct) and gradually
reaches an asymptote around 90% correct.
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FIGURE 8.1
Observed data (symbols, vertical lines indicate ±SE) and linear model fits
(lines) for functional recovery for the placebo and amantadine groups.

> # inspect the data to check variable names and types

> summary(WordLearnEx)

Subject TP Block Accuracy

244 : 10 Low :280 Min. : 1.0 Min. :0.000

253 : 10 High:280 1st Qu.: 3.0 1st Qu.:0.667

302 : 10 Median : 5.5 Median :0.833

303 : 10 Mean : 5.5 Mean :0.805

305 : 10 3rd Qu.: 8.0 3rd Qu.:1.000

306 : 10 Max. :10.0 Max. :1.000

(Other):500

> # create second-order orthogonal polynomial

> t <- poly(unique(WordLearnEx$Block), 2)

> # create orthogonal polynomial time variables in data frame

> WordLearnEx[,paste("ot", 1:2, sep="")] <-

t[WordLearnEx$Block, 1:2]

> # fit base model

> WordLearn.base <- lmer(Accuracy ~ (ot1+ot2) +

(ot1+ot2 | Subject),
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data=WordLearnEx, REML=FALSE)

> # add effect of TP on intercept

> WordLearn.0 <- lmer(Accuracy ~ (ot1+ot2) + TP +

(ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

> # add effect of TP on linear term

> WordLearn.1 <- lmer(Accuracy ~ (ot1+ot2) + TP + ot1:TP +

(ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

> # add effect of TP on quadratic term

> WordLearn.2 <- lmer(Accuracy ~ (ot1+ot2)*TP +

(ot1+ot2 | Subject),

data=WordLearnEx, REML=FALSE)

> # compare models

> anova(WordLearn.base, WordLearn.0,

WordLearn.1, WordLearn.2)

Data: WordLearnEx

Models:

WordLearn.base: Accuracy ~ (ot1 + ot2) + (ot1 + ot2 |

Subject)

WordLearn.0: Accuracy ~ (ot1 + ot2) + TP + (ot1 + ot2 |

Subject)

WordLearn.1: Accuracy ~ (ot1 + ot2) + TP + ot1:TP + (ot1 +

ot2 | Subject)

WordLearn.2: Accuracy ~ (ot1 + ot2) * TP + (ot1 + ot2 |

Subject)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

WordLearn.base 10 -331 -288 175 -351

WordLearn.0 11 -330 -283 176 -352 1.55 1 0.213

WordLearn.1 12 -329 -277 176 -353 0.36 1 0.550

WordLearn.2 13 -333 -276 179 -359 5.95 1 0.015

WordLearn.base

WordLearn.0

WordLearn.1

WordLearn.2 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

1

> # get parameter estimates and estimate p-values

> WordLearn.coefs <- data.frame(coef(summary(WordLearn.2)))
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> WordLearn.coefs$p <-

2*(1-pnorm(abs(WordLearn.coefs$t.value)))

> WordLearn.coefs

Estimate Std..Error t.value p

(Intercept) 0.7785250 0.021728 35.830648 0.0000e+00

ot1 0.2863155 0.037789 7.576772 3.5527e-14

ot2 -0.0508493 0.033188 -1.532182 1.2548e-01

TPHigh 0.0529607 0.030728 1.723538 8.4791e-02

ot1:TPHigh 0.0010754 0.053441 0.020123 9.8395e-01

ot2:TPHigh -0.1164548 0.046934 -2.481234 1.3093e-02

> # plot data with full model fit

> p2 <- ggplot(WordLearnEx, aes(Block, Accuracy, shape=TP)) +

stat_summary(aes(y=fitted(WordLearn.2), linetype=TP),

fun.y=mean, geom="line") +

stat_summary(fun.data=mean_se, geom="pointrange") +

theme_bw(base_size=10) +

coord_cartesian(ylim=c(0.5, 1.0)) +

scale_shape_manual(values=c(1,16)) +

scale_x_continuous(breaks=1:10)

> # save as a PDF file

> ggsave("WordLearnExFit.pdf", p2,

width=4.5, height=4, dpi=300)

Example write-up:

Growth curve analysis (Mirman, 2014) was used to analyze the
learning of the novel words over the course of 10 training blocks.
The overall learning curves were modeled with second-order or-
thogonal polynomials and fixed effects of TP on all time terms.
The low TP condition was treated as the baseline and parameters
were estimated for the high TP condition. The model also included
random effects of participants on all time terms. The fixed effects
of TP were added individually and their effects on model fit were
evaluated using model comparisons. Parameter-specific p-values
were estimated using the normal approximation (i.e., treating the
t-value as a z -value). All analyses were carried out in R version
3.0.2 using the lme4 package (version 1.0-5).

The effect of TP on the intercept did not improve model fit
(χ2(1) = 1.55, p = 0.213), nor did the effect of TP on the linear
term (χ2(1) = 0.358, p = 0.55). The effect of TP on the quadratic
term, however, did improve model fit (χ2(1) = 5.95, p = 0.0147),
indicating that the low and high TP conditions differed in the rate
of word learning. The data and model fits are shown in Figure 8.2
and Table 8.1 shows the fixed effect parameter estimates and their
standard errors along with corresponding t- and p-values.
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FIGURE 8.2
Observed data (symbols, vertical lines indicate ±SE) and growth curve model
fits (lines) for effect of transitional probability (TP) on novel word learning.

TABLE 8.1
Parameter Estimates for Analysis of Effect of TP on Novel Word Learning

Estimate Std. Error t p
Intercept 0.779 0.022 35.831 0.000

Linear 0.286 0.038 7.577 0.000
Quadratic -0.051 0.033 -1.532 0.125

High TP: Intercept 0.053 0.031 1.724 0.085
High TP: Linear 0.001 0.053 0.020 0.984

High TP: Quadratic -0.116 0.047 -2.481 0.013

8.3 Within-subject manipulation

These data come from an eye-tracking study of how word frequency affects
the time course of spoken word recognition. Participants were presented with
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four pictures of familiar objects, heard a spoken word, and had to click on the
matching object. Some of words were high frequency (very common) and some
were low frequency (relatively less common); each participant heard both kinds
of words. Participants’ eye movements were tracked and the critical outcome
measure is proportion of fixations on the target object in successive 50ms time
bins.

> # inspect the data to check variable names and types

> summary(TargetFix)

Subject Time timeBin Condition

708 : 30 Min. : 300 Min. : 1 High:150

712 : 30 1st Qu.: 450 1st Qu.: 4 Low :150

715 : 30 Median : 650 Median : 8

720 : 30 Mean : 650 Mean : 8

722 : 30 3rd Qu.: 850 3rd Qu.:12

725 : 30 Max. :1000 Max. :15

(Other):120

meanFix sumFix N

Min. :0.0286 Min. : 1.0 Min. :33.0

1st Qu.:0.2778 1st Qu.:10.0 1st Qu.:35.8

Median :0.4558 Median :16.0 Median :36.0

Mean :0.4483 Mean :15.9 Mean :35.5

3rd Qu.:0.6111 3rd Qu.:21.2 3rd Qu.:36.0

Max. :0.8286 Max. :29.0 Max. :36.0

> # create third-order orthogonal polynomial

> t <- poly(unique(TargetFix$timeBin), 3)

> # create orthogonal polynomial time variables in data frame

> TargetFix[,paste("ot", 1:3, sep="")] <-

t[TargetFix$timeBin, 1:3]

> # fit full model

> TargFix.full <- lmer(meanFix ~ (ot1+ot2+ot3)*Condition +

(ot1+ot2+ot3 | Subject) +

(ot1+ot2+ot3 |

Subject:Condition),

control=lmerControl(optimizer="bobyqa"),

data=TargetFix, REML=FALSE)

> # get parameter estimates and estimate p-values

> TargFix.coefs <- data.frame(coef(summary(TargFix.full)))

> TargFix.coefs$p <-

2*(1-pnorm(abs(TargFix.coefs$t.value)))

> TargFix.coefs

Estimate Std..Error t.value p

(Intercept) 0.47732275 0.013852 34.4577764 0.0000e+00

ot1 0.63856037 0.059935 10.6541796 0.0000e+00

ot2 -0.10959793 0.038488 -2.8475730 4.4054e-03
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ot3 -0.09326119 0.023302 -4.0022000 6.2756e-05

ConditionLow -0.05811224 0.018787 -3.0932260 1.9799e-03

ot1:ConditionLow 0.00031882 0.065786 0.0048463 9.9613e-01

ot2:ConditionLow 0.16354551 0.053930 3.0325447 2.4250e-03

ot3:ConditionLow -0.00208691 0.027044 -0.0771678 9.3849e-01

> # plot data with full model fit

> p3 <- ggplot(TargetFix,

aes(Time, meanFix, shape=Condition)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar") +

stat_summary(aes(y=fitted(TargFix.full),

linetype=Condition),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(x="Time since word onset (ms)",

y="Fixation proportion",

shape="Word\nFrequency", linetype="Word\nFrequency")

> # save plot as a PDF file

> ggsave("TargFixFit.pdf", p3, width=4.5, height=3, dpi=300)
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FIGURE 8.3
Observed data (symbols, error bars indicate ±SE) and growth curve model
fits (lines) for effect of word frequency on the time course of spoken word
recognition.

Example write-up:
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Growth curve analysis (Mirman, 2014) was used to analyze the
time course of fixation from 300ms to 1000ms after word onset
(i.e., from the earliest word-driven fixations to when target fixa-
tions had plateaued). The overall time course of target fixations
was captured with a third-order (cubic) orthogonal polynomial
with fixed effects of condition (low vs. high frequency) on all time
terms, and participant and participant-by-condition random ef-
fects on all time terms. The high frequency condition was treated
as the reference (baseline) and relative parameters estimated for
the low frequency condition. Statistical significance (p-values) for
individual parameter estimates was assessed using the normal ap-
proximation (i.e., treating the t-value as a z -value). All analyses
were carried out in R version 3.0.2 using the lme4 package (version
1.0-5).

The data and model fits are shown in Figure 8.3. There was a sig-
nificant effect of frequency on the intercept (Estimate = −0.0581,
SE = 0.0188, p = 0.00198), indicating overall higher fixation
probability for the high frequency words than the low frequency
words. There was also an effect of frequency on the quadratic term
(Estimate = 0.164, SE = 0.0539, p = 0.00243), reflecting faster
recognition of high frequency words than low frequency words. Fre-
quency did not have significant effects on the linear or cubic terms
(both p > 0.9).

8.4 Logistic GCA

These are the same data as in the previous example: the time course of target
picture fixation from a study in which participants had to pick which of four
pictures matched a spoken word. For this example, the outcome variable is
a pair of integer values: the number of target fixations and the number of
non-target fixations. Construction of the third-order orthogonal polynomial
will not be repeated here because it is identical to the previous example.

> # inspect the data to check variable names and types

> summary(TargetFix)

Subject Time timeBin Condition

708 : 30 Min. : 300 Min. : 1 High:150

712 : 30 1st Qu.: 450 1st Qu.: 4 Low :150

715 : 30 Median : 650 Median : 8

720 : 30 Mean : 650 Mean : 8

722 : 30 3rd Qu.: 850 3rd Qu.:12

725 : 30 Max. :1000 Max. :15
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(Other):120

meanFix sumFix N ot1

Min. :0.0286 Min. : 1.0 Min. :33.0 Min. :-0.418

1st Qu.:0.2778 1st Qu.:10.0 1st Qu.:35.8 1st Qu.:-0.239

Median :0.4558 Median :16.0 Median :36.0 Median : 0.000

Mean :0.4483 Mean :15.9 Mean :35.5 Mean : 0.000

3rd Qu.:0.6111 3rd Qu.:21.2 3rd Qu.:36.0 3rd Qu.: 0.239

Max. :0.8286 Max. :29.0 Max. :36.0 Max. : 0.418

ot2 ot3

Min. :-0.2906 Min. :-0.456

1st Qu.:-0.2283 1st Qu.:-0.246

Median :-0.0415 Median : 0.000

Mean : 0.0000 Mean : 0.000

3rd Qu.: 0.2699 3rd Qu.: 0.246

Max. : 0.4723 Max. : 0.456

> # fit full model

> # Note: The full random effects model did not converge,

> # so the random effects were simplified by removing

> # the cubic term from the Subject:Condition random effect

> TargFix.log <- glmer(cbind(sumFix, N-sumFix) ~

(ot1+ot2+ot3)*Condition +

(ot1+ot2+ot3 | Subject) +

(ot1+ot2 | Subject:Condition),

data=TargetFix, family=binomial)

> # inspect parameter estimates

> coef(summary(TargFix.log))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.116808 0.065421 -1.78549 7.4182e-02

ot1 2.818568 0.298037 9.45709 3.1663e-21

ot2 -0.558929 0.169087 -3.30558 9.4781e-04

ot3 -0.320873 0.127327 -2.52006 1.1733e-02

ConditionLow -0.261509 0.090896 -2.87701 4.0146e-03

ot1:ConditionLow 0.064199 0.330985 0.19396 8.4621e-01

ot2:ConditionLow 0.695116 0.239426 2.90327 3.6929e-03

ot3:ConditionLow -0.070570 0.165858 -0.42548 6.7049e-01

> # plot data with full model fit

> p4 <- ggplot(TargetFix, aes(Time,meanFix,shape=Condition))+

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar") +

stat_summary(aes(y=fitted(TargFix.log), linetype=Condition),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(x="Time since word onset (ms)",

y="Fixation proportion",



152 Growth Curve Analysis and Visualization Using R

shape="Word\nFrequency", linetype="Word\nFrequency")

> # save plot as a PDF file

> ggsave("TargFixLogisticFit.pdf", p4,

width=4.5, height=3, dpi=300)
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FIGURE 8.4
Observed target fixation proportion (symbols, error bars indicate ±SE) and
logistic growth curve model fits (lines) for effect of word frequency on the time
course of spoken word recognition.

Example write-up:

Logistic growth curve analysis (Mirman, 2014) was used to analyze
the time course of fixation from 300ms to 1000ms after word onset
(i.e., from the earliest word-driven fixations to when target fixa-
tions had plateaued). The overall time course of target fixations
was captured with a third-order (cubic) orthogonal polynomial
with fixed effects of condition (low vs. high frequency) on all time
terms, and participant and participant-by-condition random ef-
fects on all time terms except the cubic (the model did not converge
with the full random effect structure, so this higher-order term
was removed because the cubic term was not expected to capture
key frequency condition differences). The high frequency condition
was treated as the reference (baseline) and relative parameters es-
timated for the low frequency condition. Statistical significance
(p-values) for individual parameter estimates was assessed using
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the normal approximation (i.e., treating the t-value as a z -value).
All analyses were carried out in R version 3.0.2 using the lme4
package (version 1.0-5).

The data and model fits are shown in Figure 8.4. There was a sig-
nificant effect of frequency on the intercept (Estimate = −0.262,
SE = 0.0909, p = 0.00401), indicating overall higher odds of fixat-
ing the target for the high frequency words than the low frequency
words. There was also an effect of frequency on the quadratic term
(Estimate = 0.695, SE = 0.239, p = 0.00369), reflecting faster
recognition of high frequency words than low frequency words.
Word frequency did not have significant effects on the linear or
cubic terms (both p > 0.6).

8.5 Quasi-logistic GCA

Continuing with the data from the previous two examples, this example will
use the empirical logit transformation to approximate logistic regression.

> # inspect the data to check variable names and types

> summary(TargetFix)

Subject Time timeBin Condition

708 : 30 Min. : 300 Min. : 1 High:150

712 : 30 1st Qu.: 450 1st Qu.: 4 Low :150

715 : 30 Median : 650 Median : 8

720 : 30 Mean : 650 Mean : 8

722 : 30 3rd Qu.: 850 3rd Qu.:12

725 : 30 Max. :1000 Max. :15

(Other):120

meanFix sumFix N ot1

Min. :0.0286 Min. : 1.0 Min. :33.0 Min. :-0.418

1st Qu.:0.2778 1st Qu.:10.0 1st Qu.:35.8 1st Qu.:-0.239

Median :0.4558 Median :16.0 Median :36.0 Median : 0.000

Mean :0.4483 Mean :15.9 Mean :35.5 Mean : 0.000

3rd Qu.:0.6111 3rd Qu.:21.2 3rd Qu.:36.0 3rd Qu.: 0.239

Max. :0.8286 Max. :29.0 Max. :36.0 Max. : 0.418

ot2 ot3

Min. :-0.2906 Min. :-0.456

1st Qu.:-0.2283 1st Qu.:-0.246

Median :-0.0415 Median : 0.000

Mean : 0.0000 Mean : 0.000
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3rd Qu.: 0.2699 3rd Qu.: 0.246

Max. : 0.4723 Max. : 0.456

> # compute empirical logit

> TargetFix$elog <- with(TargetFix,

log((sumFix+0.5) / (N-sumFix+0.5)))

> # compute weights

> TargetFix$wts <- with(TargetFix,

1/(sumFix+0.5) + 1/(N-sumFix+0.5))

> # fit full model

> TargetFix.elog <- lmer(elog ~ (ot1+ot2+ot3)*Condition +

(ot1+ot2+ot3 | Subject) +

(ot1+ot2+ot3 | Subject:Condition),

control=lmerControl(optimizer="bobyqa"),

data=TargetFix, weights=1/wts,

REML=FALSE)

> # get p-values for parameter estimates

> TargetFixElog.coefs <-

data.frame(coef(summary(TargetFix.elog)))

> TargetFixElog.coefs$p <-

2*(1-pnorm(abs(TargetFixElog.coefs$t.value)))

> TargetFixElog.coefs

Estimate Std..Error t.value p

(Intercept) -0.113221 0.022365 -5.06248 4.1384e-07

ot1 2.725035 0.101688 26.79789 0.0000e+00

ot2 -0.544865 0.058374 -9.33410 0.0000e+00

ot3 -0.302512 0.037358 -8.09756 6.6613e-16

ConditionLow -0.247764 0.030934 -8.00957 1.1102e-15

ot1:ConditionLow 0.032470 0.112802 0.28785 7.7346e-01

ot2:ConditionLow 0.688879 0.081721 8.42963 0.0000e+00

ot3:ConditionLow -0.084307 0.045440 -1.85533 6.3549e-02

> # plot data with full model fit

> p5 <- ggplot(TargetFix, aes(Time, elog, shape=Condition)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar") +

stat_summary(aes(y=fitted(TargetFix.elog),

linetype=Condition),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(x="Time since word onset (ms)",

y="Fixation empirical logit",

shape="Word\nFrequency", linetype="Word\nFrequency")

> # save plot as a PDF file

> ggsave("TargFixElogFit.pdf", p5,

width=4.5, height=3, dpi=300)
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FIGURE 8.5
Observed target fixation empirical log-odds (symbols, error bars indicate±SE)
and growth curve model fits (lines) for effect of word frequency on the time
course of spoken word recognition.

Example write-up:

Growth curve analysis (Mirman, 2014) was used to analyze the
time course of fixation from 300ms to 1000ms after word onset
(i.e., from the earliest word-driven fixations to when target fix-
ations had plateaued). The empirical logit transformation (Barr,
2008) was used to accommodate the categorical nature of the data
(fixating the target picture or not) in a way that is robust to values
at or near the boundaries (0 and 1). The overall time course of tar-
get fixations was captured with a third-order (cubic) orthogonal
polynomial with fixed effects of condition (low vs. high frequency)
on all time terms, and participant and participant-by-condition
random effects on all time terms. The high frequency condition
was treated as the reference (baseline) and relative parameters
estimated for the low frequency condition. Statistical significance
(p-values) for individual parameter estimates was assessed using
the normal approximation (i.e., treating the t-value as a z -value).
All analyses were carried out in R version 3.0.2 using the lme4
package (version 1.0-5).

The data and model fits are shown in Figure 8.5. There was a sig-
nificant effect of frequency on the intercept (Estimate = −0.248,
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SE = 0.0309, p = 1.11e − 15), indicating overall higher fixation
probability for the high frequency words than the low frequency
words. There was also an effect of frequency on the quadratic term
(Estimate = 0.689, SE = 0.0817, p = 0), reflecting faster recogni-
tion of high frequency words than low frequency words. Frequency
did not have significant effects on the linear or cubic terms.

8.6 Individual differences as fixed effects

The data for this example come from a longitudinal study of English reading
development in 181 children (from the ELDEL project, see Caravolas et al.,
2012, 2013, and http://www.eldel.eu/). The example will show how to test
the effect of four predictors (verbal span, letter knowledge, rapid naming, and
phoneme awareness) that were measured at the start of the study on individual
differences in the rate of learning to read.

> # Examine the data to check variable names and types

> summary(ELDEL)

id wdspan1 lk1 ran1

ABBTUS : 6 Min. :1.00 Min. :-1.450 Min. :-1.687

ABIARM : 6 1st Qu.:2.00 1st Qu.:-0.114 1st Qu.:-0.623

ABIHAR : 6 Median :3.00 Median : 0.343 Median :-0.115

ABIJON : 6 Mean :2.61 Mean : 0.409 Mean : 0.196

AIDGRI : 6 3rd Qu.:3.00 3rd Qu.: 0.941 3rd Qu.: 0.802

AISELE : 6 Max. :4.00 Max. : 2.102 Max. : 3.684

(Other):1050

pa1 pwmcor Month

Min. :-1.39468 Min. : 1.0 Min. : 0.0

1st Qu.:-0.00416 1st Qu.: 8.0 1st Qu.: 4.0

Median : 0.62316 Median :13.0 Median :13.0

Mean : 0.52247 Mean :15.9 Mean :13.7

3rd Qu.: 1.04767 3rd Qu.:23.0 3rd Qu.:22.0

Max. : 1.88485 Max. :61.0 Max. :30.0

NA's :82

> # Fit a model with an overall development effect (Month) and

> # effects of all predictors on baseline reading

> # performance (the intercept)

> ELDEL.intercepts <- lmer(pwmcor ~ Month + wdspan1 +

lk1 + ran1 + pa1 +

(Month | id),

data=ELDEL, REML=FALSE)

> # Evaluate effects of individual predictors on baseline
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> # performance

> ints <- drop1(ELDEL.intercepts, test="Chisq")

> # Fit full model

> ELDEL.full <- lmer(pwmcor ~ Month *

(wdspan1 + lk1 + ran1 + pa1) +

(Month | id),

data=ELDEL, REML=FALSE)

> # Evaluate effects of individual predictors on rate of

> # reading development

> full <- drop1(ELDEL.full, test="Chisq")

> # Compute median split of letter knowledge for visualization

> ELDEL$LK <- factor(ELDEL$lk1 >= median(ELDEL$lk1),

levels=c("FALSE", "TRUE"),

labels=c("Low", "High"))

> # Plot effect of letter knowledge on reading development

> p6 <- ggplot(subset(ELDEL, !is.na(pwmcor)),

aes(Month, pwmcor, shape=LK)) +

stat_summary(fun.y=mean, geom="point") +

stat_summary(fun.data=mean_se, geom="errorbar", width=1)+

stat_summary(aes(y=fitted(ELDEL.full), linetype=LK),

fun.y=mean, geom="line") +

theme_bw(base_size=10) +

labs(y="Picture-Word Matching Score",

shape="Letter\nKnowledge",

linetype="Letter\nKnowledge") +

theme(legend.position=c(0,1), legend.justification=c(0,1),

legend.background=element_rect(color="black",

fill="white"))

> # save plot as a PDF file

> ggsave("ELDEL.pdf", p6, width=4.5, height=4, dpi=300)

Example write-up:

The picture-word matching performance data were fit starting
from a base linear growth model that modeled overall reading de-
velopment with an intercept term (average reading ability at study
start) and a linear slope term (rate of reading development over the
30 months of the study) and random effects of participants on the
intercept and slope. Because the predictors of interest (verbal span,
letter knowledge, rapid automatized naming, and phoneme aware-
ness) were all moderately correlated with one another, a backwards
elimination strategy was used to evaluate their unique contribu-
tions. To examine the effects of these critical predictors on initial
reading ability, all four fixed effects were added to the base model,
then each one was removed individually (leaving the other three
in the model) and its unique effect evaluated by the reduction in
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FIGURE 8.6
Observed development of reading ability (symbols, error bars indicate ±SE)
grouped by median split on letter knowledge at study start. Lines indicate fit
from full growth model.

model fit. Changes in model fit were evaluated using -2 times the
change in log-likelihood, which is distributed as χ2 with degrees
of freedom equal to the number of parameters added (which was 1
for all comparisons). To examine the effects of the critical predic-
tors on rate of reading development, a full model was constructed
that contained effects of all of the predictors on the intercept and
linear slope; then the effects of each of the four critical predictors
on the slope was removed individually and the reduction in model
fit evaluated. All analyses were carried out in R version 3.0.2 using
the lme4 package (version 1.0-5).

The complete results of the model comparisons are shown in Table
8.2. Reading ability at study start was significantly predicted by
letter knowledge, rapid automatized naming (RAN), and phoneme
awareness, but not by verbal span. The rate of reading develop-
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TABLE 8.2
Model Comparison Results Evaluating Effects of Removing Single Parameters
on Model Fit

Intercept: Chisq p Slope: Chisq p
Verbal Span 0.153 0.696 0.513 0.474

Letter Knowledge 14.487 <0.001 13.241 <0.001
RAN 9.824 0.002 8.080 0.004

Phoneme Awareness 7.352 0.007 1.084 0.298

ment was significantly predicted by letter knowledge and rapid au-
tomatized naming, but not by verbal span or phoneme awareness.
To visualize the effect of letter knowledge (which was the strongest
predictor of both initial reading ability and rate of reading devel-
opment), Figure 8.6 shows the observed data and model fit, with
the participants median-split into high and low letter knowledge
groups (all predictors were treated as continuous variables in the
analyses; this discrete grouping was only used to create a simpler
visual representation of the effects).

8.7 Individual differences as random effects

These data are from an eye-tracking experiment investigating the time course
of activation of function and thematic knowledge in 17 participants with left
hemisphere stroke (Kalénine, Mirman, & Buxbaum, 2012). Participants were
presented with four pictures of familiar objects, heard a spoken word, and had
to click on the matching object. One of the distractor objects was related to
the target either because it serves a similar function (e.g., broom - sponge)
or because it is typically used together with the target (e.g., broom - dust-
pan). The critical measure was fixation proportions on the related competitor
relative to unrelated distractors in successive 50ms time bins from 500ms to
2000ms after word onset.

> # inspect the data

> summary(FunctThemePts)

subj Condition Object Time

206 : 486 Function:4113 Target :2733 Min. :-1000

281 : 486 Thematic:4086 Competitor:2733 1st Qu.: 0

419 : 486 Unrelated :2733 Median : 1000

1088 : 486 Mean : 1000

1238 : 486 3rd Qu.: 2000

1392 : 486 Max. : 3000
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(Other):5283

timeBin meanFix sumFix N

Min. : 0 Min. :0.0000 Min. : 0.00 Min. :12.0

1st Qu.:20 1st Qu.:0.0312 1st Qu.: 1.00 1st Qu.:15.0

Median :40 Median :0.1250 Median : 2.00 Median :16.0

Mean :40 Mean :0.1777 Mean : 3.26 Mean :15.4

3rd Qu.:60 3rd Qu.:0.2500 3rd Qu.: 5.00 3rd Qu.:16.0

Max. :80 Max. :1.0000 Max. :16.00 Max. :16.0

> # subset data for analysis

> FunctThemePts.gca <- subset(FunctThemePts,

Time >= 500 & Time <= 2000 &

Object != "Target")

> # adjust timeBin variable to start at 1

> FunctThemePts.gca$timeBin <- FunctThemePts.gca$timeBin - 29

> # make 4th-order orthogonal polynomial

> t <- poly((unique(FunctThemePts.gca$timeBin)), 4)

> # append it to data frame

> FunctThemePts.gca[, paste("ot", 1:4, sep="")] <-

t[FunctThemePts.gca$timeBin, 1:4]

> # fit separate models for Function and Thematic competition

> m.funct <- lmer(meanFix ~ (ot1+ot2+ot3+ot4)*Object +

(ot1+ot2+ot3+ot4 | subj) +

(ot1+ot2 | subj:Object),

data=subset(FunctThemePts.gca,

Condition=="Function"),

control=lmerControl(optimizer="bobyqa"),

REML=FALSE)

> m.theme <- lmer(meanFix ~ (ot1+ot2+ot3+ot4)*Object +

(ot1+ot2+ot3+ot4 | subj) +

(ot1+ot2 | subj:Object),

data=subset(FunctThemePts.gca,

Condition=="Thematic"),

control=lmerControl(optimizer="bobyqa"),

REML=FALSE)

> # extract subject-by-object random effects

> # Function condition

> re.id <- colsplit(row.names(ranef(m.funct)$"subj:Object"),

":", c("Subject", "Object"))

> re.funct <- data.frame(re.id, ranef(m.funct)$"subj:Object")

> # Thematic condition

> re.theme <- data.frame(

colsplit(row.names(ranef(m.theme)$"subj:Object"),

":", c("Subject", "Object")),

ranef(m.theme)$"subj:Object")

> # compute effect sizes
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> ES.funct <- ddply(re.funct, .(Subject), summarize,

Function_Intercept = X.Intercept.[Object=="Competitor"] -

X.Intercept.[Object=="Unrelated"],

Function_Linear = ot1[Object=="Competitor"] -

ot1[Object=="Unrelated"])

> ES.theme <- ddply(re.theme, .(Subject), summarize,

Thematic_Intercept = X.Intercept.[Object=="Competitor"] -

X.Intercept.[Object=="Unrelated"],

Thematic_Linear = ot1[Object=="Competitor"] -

ot1[Object=="Unrelated"])

> # combine effect size estimates

> ES <- merge(ES.funct, ES.theme)

> # test the correlations

> # intercept term

> cor.test(ES$Function_Intercept, ES$Thematic_Intercept)

Pearson's product-moment correlation

data: ES$Function_Intercept and ES$Thematic_Intercept

t = -2.3602, df = 15, p-value = 0.03223

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.80075 -0.05300

sample estimates:

cor

-0.52039

> # linear term

> cor.test(ES$Function_Linear, ES$Thematic_Linear)

Pearson's product-moment correlation

data: ES$Function_Linear and ES$Thematic_Linear

t = -3.3571, df = 15, p-value = 0.004322

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.86372 -0.25445

sample estimates:

cor

-0.65499

Example write-up:

The time course of distractor fixations from 500ms to 2000ms af-
ter word onset was modeled using growth curve analysis (Mirman,
2014) with fourth-order orthogonal polynomials. Separate mod-
els were fit for the function and thematic conditions with fixed
effects of object (related competitor vs. unrelated distractor) on
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FIGURE 8.7
Scatterplots of individual function and thematic competition effect sizes on
intercept (left) and linear (right) terms.

all time terms, participant random effects on all time terms, and
participant-by-object random effects on the intercept, linear, and
quadratic time terms. The participant-by-object random effect es-
timates were used to compute individual participant effect sizes
estimates by, for each participant, subtracting the random effect
estimate for the unrelated distractor from the estimate for the re-
lated competitor. The intercept term captures overall differences in
fixation proportions between the related and unrelated distractors
and the linear term captures differences in the slope of the decrease
in distractor fixations, so these terms were most directly related to
competition effect sizes (the higher-order terms capture differences
in curvature that were less directly relevant to competition effect
size in this study). Therefore the effect sizes were estimated using
the intercept and linear term random effects only, from the sep-
arate function and thematic condition models. All analyses were
carried out in R version 3.0.2 using the lme4 package (version 1.0-
5).

Figure 8.7 shows scatterplots of individual participant function
and thematic competition effect sizes for the intercept (left panel)
and linear (right panel) terms. For the intercept term, there was
a significant negative correlation between function and thematic
condition effect sizes across the 17 participants (r = −0.52, p =
0.032), indicating that participants who showed larger function
competition effects tended to show smaller thematic competition
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effects, and vice versa. There was a similar negative correlation
pattern for the linear term (r = −0.65, p = 0.0043).
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