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Preface to the Second Edition

It came as a complete surprise to me that I wrote a statistics book. It is even more sur-
prising how popular the book has become. But I had set out to write the statistics book that
I wish I could have had in graduate school. No one should have to learn this stuft the way I
did. I am glad there is an audience to benefit from the book.

It consumed five years to write it. There was an initial set of course notes, melted down
and hammered into a first 200-page manuscript. I discarded that first manuscript. But it
taught me the outline of the book I really wanted to write. Then, several years of teaching
with the manuscript further refined it.

Really, I could have continued refining it every year. Going to press carries the penalty of
freezing a dynamic process of both learning how to teach the material and keeping up with
changes in the material. As time goes on, I see more elements of the book that I wish I had
done differently. I've also received a lot of feedback on the book, and that feedback has given
me ideas for improving it.

So in the second edition, I put those ideas into action. The major changes are:

The R package has some new tools. The map tool from the first edition is still here, but
now it is named quap. This renaming is to avoid misunderstanding. We just used it to get
a quadratic approximation to the posterior. So now it is named as such. A bigger change is
that map2stan has been replaced by ulam. The new ulam is very similar to map2stan, and
in many cases can be used identically. But it is also much more flexible, mainly because it
does not make any assumptions about GLM structure and allows explicit variable types. All
the map2stan code is still in the package and will continue to work. But now ulam allows for
much more, especially in later chapters. Both of these tools allow sampling from the prior
distribution, using extract.prior, as well as the posterior. This helps with the next change.

Much more prior predictive simulation. A prior predictive simulation means simulating
predictions from a model, using only the prior distribution instead of the posterior distri-
bution. This is very useful for understanding the implications of a prior. There was only a
vestigial amount of this in the first edition. Now many modeling examples have some prior
predictive simulation. I think this is one of the most useful additions to the second edition,
since it helps so much with understanding not only priors but also the model itself.

More emphasis on the distinction between prediction and inference. Chapter 5, the chap-
ter on multiple regression, has been split into two chapters. The first chapter focuses on
helpful aspects of regression; the second focuses on ways that it can mislead. This allows as
well a more direct discussion of causal inference. This means that DAGs—directed acyclic
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graphs—make an appearance. The chapter on overfitting, Chapter 7 now, is also more di-
rect in cautioning about the predictive nature of information criteria and cross-validation.
Cross-validation and importance sampling approximations of it are now discussed explicitly.

New model types. Chapter 4 now presents simple splines. Chapter 7 introduces one kind
or robust regression. Chapter 12 explains how to use ordered categorical predictor variables.
Chapter 13 presents a very simple type of social network model, the social relations model.
Chapter 14 has an example of a phylogenetic regression, with a somewhat critical and hetero-
dox presentation. And there is an entirely new chapter, Chapter 16, that focuses on models
that are not easily conceived of as GLMMs, including ordinary differential equation models.

Some new data examples. There are some new data examples, including the Japanese cherry
blossoms time series on the cover and a larger primate evolution data set with 300 species
and a matching phylogeny.

More presentation of raw Stan models. There are many more places now where raw Stan
model code is explained. I hope this makes a transition to working directly in Stan easier.
But most of the time, working directly in Stan is still optional.

Kindness and persistence. Asin the first edition, I have tried to make the material as kind as
possible. None of this stuff is easy, and the journey into understanding is long and haunted.
It is important that readers expect that confusion is normal. This is also the reason that I
have not changed the basic modeling strategy in the book.

First, I force the reader to explicitly specify every assumption of the model. Some readers
of the first edition lobbied me to use simplified formula tools like brms or rstanarm. Those
are fantastic packages, and graduating to use them after this book is recommended. But
I don't see how a person can come to understand the model when using those tools. The
priors being hidden isn’'t the most limiting part. Instead, since linear model formulas like
y ~ (1|x) + z don’'t show the parameters, nor even all of the terms, it is not easy to see
how the mathematical model relates to the code. It is ultimately kinder to be a bit cruel and
require more work. So the formula lists remain. Youll thank me later.

Second, half the book goes by before MCMC appears. Some readers of the first edi-
tion wanted me to start instead with MCMC. I do not do this because Bayes is not about
MCMC. We seek the posterior distribution, but there are many legitimate approximations
of it. MCMC is just one set of strategies. Using quadratic approximation in the first half also
allows a clearer tie to non-Bayesian algorithms. And since finding the quadratic approxima-
tion is fast, it means readers don’t have to struggle with too many things at once.

Thanks. Many readers and colleagues contributed comments that improved upon the first
edition. There are too many to name individually. Several anonymous reviewers provided
many pages of constructive criticism. Bret Beheim and Aki Vehtari commented on multi-
ple chapters. My colleagues at the Max Planck Institute for Evolutionary Anthropology in
Leipzig made the largest contributions, by working through draft chapters and being relent-
lessly honest.

Richard McElreath
Leipzig, 14 December 2019
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Masons, when they start upon a building,
Are careful to test out the scaffolding;

Make sure that planks won't slip at busy points,
Secure all ladders, tighten bolted joints.

And yet all this comes down when the job’s done
Showing off walls of sure and solid stone.

So if, my dear, there sometimes seem to be
Old bridges breaking between you and me

Never fear. We may let the scaffolds fall
Confident that we have built our wall.

(“Scaffolding” by Seamus Heaney, 1939-2013)

This book means to help you raise your knowledge of and confidence in statistical mod-
eling. It is meant as a scaffold, one that will allow you to construct the wall that you need,
even though you will discard it afterwards. As a result, this book teaches the material in of-
ten inconvenient fashion, forcing you to perform step-by-step calculations that are usually
automated. The reason for all the algorithmic fuss is to ensure that you understand enough
of the details to make reasonable choices and interpretations in your own modeling work.
So although you will move on to use more automation, it'’s important to take things slow at
first. Put up your wall, and then let the scaffolding fall.

Audience

The principle audience is researchers in the natural and social sciences, whether new
PhD students or seasoned professionals, who have had a basic course on regression but
nevertheless remain uneasy about statistical modeling. This audience accepts that there is
something vaguely wrong about typical statistical practice in the early twenty-first century,
dominated as it is by p-values and a confusing menagerie of testing procedures. They see al-
ternative methods in journals and books. But these people are not sure where to go to learn
about these methods.

As a consequence, this book doesn’t really argue against p-values and the like. The prob-
lem in my opinion isn’t so much p-values as the set of odd rituals that have evolved around

xi
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them, in the wilds of the sciences, as well as the exclusion of so many other useful tools. So
the book assumes the reader is ready to try doing statistical inference without p-values. This
isn't the ideal situation. It would be better to have material that helps you spot common mis-
takes and misunderstandings of p-values and tests in general, as all of us have to understand
such things, even if we don’t use them. So I've tried to sneak in a little material of that kind,
but unfortunately cannot devote much space to it. The book would be too long, and it would
disrupt the teaching flow of the material.

It’s important to realize, however, that the disregard paid to p-values is not a uniquely
Bayesian attitude. Indeed, significance testing can be—and has been—formulated as a Bayes-
ian procedure as well. So the choice to avoid significance testing is stimulated instead by
epistemological concerns, some of which are briefly discussed in the first chapter.

Teaching strategy

The book uses much more computer code than formal mathematics. Even excellent
mathematicians can have trouble understanding an approach, until they see a working algo-
rithm. This is because implementation in code form removes all ambiguities. So material of
this sort is easier to learn, if you also learn how to implement it.

In addition to any pedagogical value of presenting code, so much of statistics is now com-
putational that a purely mathematical approach is anyways insufficient. As you’ll see in later
parts of this book, the same mathematical statistical model can sometimes be implemented
in different ways, and the differences matter. So when you move beyond this book to more
advanced or specialized statistical modeling, the computational emphasis here will help you
recognize and cope with all manner of practical troubles.

Every section of the book is really just the tip of an iceberg. I've made no attempt to be
exhaustive. Rather I've tried to explain something well. In this attempt, I've woven a lot of
concepts and material into data analysis examples. So instead of having traditional units on,
for example, centering predictor variables, I've developed those concepts in the context of a
narrative about data analysis. This is certainly not a style that works for all readers. But it
has worked for a lot of my students. I suspect it fails dramatically for those who are being
forced to learn this information. For the internally motivated, it reflects how we really learn
these skills in the context of our research.

How to use this book

This book is not a reference, but a course. It doesn’t try to support random access.
Rather, it expects sequential access. This has immense pedagogical advantages, but it has
the disadvantage of violating how most scientists actually read books.

This book has a lot of code in it, integrated fully into the main text. The reason for this is
that doing model-based statistics in the twenty-first century requires simple programming.
The code is really not optional. Everyplace, I have erred on the side of including too much
code, rather than too little. In my experience teaching scientific programming, novices learn
more quickly when they have working code to modify, rather than needing to write an algo-
rithm from scratch. My generation was probably the last to have to learn some programming
to use a computer, and so coding has gotten harder and harder to teach as time goes on. My

students are very computer literate, but they sometimes have no idea what computer code
looks like.
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What the book assumes. This book does not try to teach the reader to program, in the most
basic sense. It assumes that you have made a basic effort to learn how to install and process
data in R. In most cases, a short introduction to R programming will be enough. I know
many people have found Emmanuel Paradis’ R for Beginners helpful. You can find it and
many other beginner guides here:

http://cran.r-project.org/other-docs.html

To make use of this book, you should know already that y<-7 stores the value 7 in the sym-
bol y. You should know that symbols which end in parentheses are functions. You should
recognize a loop and understand that commands can be embedded inside other commands
(recursion). Knowing that R vectorizes a lot of code, instead of using loops, is important. But
you don’t have to yet be confident with R programming.

Inevitably you will come across elements of the code in this book that you haven't seen
before. I have made an effort to explain any particularly important or unusual programming
tricks in my own code. In fact, this book spends a lot of time explaining code. I do this
because students really need it. Unless they can connect each command to the recipe and
the goal, when things go wrong, they won’t know whether it is because of a minor or major
error. The same issue arises when I teach mathematical evolutionary theory—students and
colleagues often suffer from rusty algebra skills, so when they can’t get the right answer, they
often don’t know whether it’s because of some small mathematical misstep or instead some
problem in strategy. The protracted explanations of code in this book aim to build a level of
understanding that allows the reader to diagnose and fix problems.

Why R. This book uses R for the same reason that it uses English: Lots of people know it
already. R is convenient for doing computational statistics. But many other languages are
equally fine. I recommend Python (especially PyMC) and Julia as well. The first edition
ended up with code translations for various languages and styles. Hopefully, the second
edition will as well.

Using the code. Code examples in the book are marked by a shaded box, and output from
example code is often printed just beneath a shaded box, but marked by a fixed-width type-
face. For example:

print( "All models are wrong, but some are useful." )

[1] "All models are wrong, but some are useful."

Next to each snippet of code, you’ll find a number that you can search for in the accompa-
nying code snippet file, available from the book’s website. The intention is that the reader
follow along, executing the code in the shaded boxes and comparing their own output to that
printed in the book. I really want you to execute the code, because just as one cannot learn
martial arts by watching Bruce Lee movies, you can’t learn to program statistical models by
only reading a book. You have to get in there and throw some punches and, likewise, take
some hits.

If you ever get confused, remember that you can execute each line independently and
inspect the intermediate calculations. That’s how you learn as well as solve problems. For
example, here’s a confusing way to multiply the numbers 10 and 20:

R code
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X <= 1:2

X <= x*x10
x <= log(x)
X <- sum(x)
X <= exp(x)
X

200

If you don’t understand any particular step, you can always print out the contents of the sym-
bol x immediately after that step. For the code examples, this is how you come to understand
them. For your own code, this is how you find the source of any problems and then fix them.

Optional sections. Reflecting realism in how books like this are actually read, there are two
kinds of optional sections: (1) Rethinking and (2) Overthinking. The Rethinking sections
look like this:

Rethinking: Think again. The point of these Rethinking boxes is to provide broader context for the
material. They allude to connections to other approaches, provide historical background, or call out
common misunderstandings. These boxes are meant to be optional, but they round out the material
and invite deeper thought.

The Overthinking sections look like this:

Overthinking: Getting your hands dirty. These sections, set in smaller type, provide more detailed
explanations of code or mathematics. This material isn't essential for understanding the main text.
But it does have a lot of value, especially on a second reading. For example, sometimes it matters how
you perform a calculation. Mathematics tells that these two expressions are equivalent:

p1 = log(0.01°%)
P2 = 200 x log(0.01)

But when you use R to compute them, they yield different answers:

( log( 0.014200 ) )
( 200 * log(0.01) )

[1] -Inf

[1] -921.034

The second line is the right answer. This problem arises because of rounding error, when the computer
rounds very small decimal values to zero. This loses precision and can introduce substantial errors in
inference. As a result, we nearly always do statistical calculations using the logarithm of a probability,
rather than the probability itself.

You can ignore most of these Overthinking sections on a first read.

The command line is the best tool. Programming at the level needed to perform twenty-
first century statistical inference is not that complicated, but it is unfamiliar at first. Why
not just teach the reader how to do all of this with a point-and-click program? There are
big advantages to doing statistics with text commands, rather than pointing and clicking on
menus.
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Everyone knows that the command line is more powerful. But it also saves you time
and fulfills ethical obligations. With a command script, each analysis documents itself, so
that years from now you can come back to your analysis and replicate it exactly. You can
re-use your old files and send them to colleagues. Pointing and clicking, however, leaves
no trail of breadcrumbs. A file with your R commands inside it does. Once you get in the
habit of planning, running, and preserving your statistical analyses in this way, it pays for
itself many times over. With point-and-click, you pay down the road, rather than only up
front. It is also a basic ethical requirement of science that our analyses be fully documented
and repeatable. The integrity of peer review and the cumulative progress of research depend
upon it. A command line statistical program makes this documentation natural. A point-
and-click interface does not. Be ethical.

So we don’t use the command line because we are hardcore or elitist (although we might
be). We use the command line because it is better. It is harder at first. Unlike the point-and-
click interface, you do have to learn a basic set of commands to get started with a command
line interface. However, the ethical and cost saving advantages are worth the inconvenience.

How you should work. But I would be cruel, if I just told the reader to use a command-line
tool, without also explaining something about how to do it. You do have to relearn some
habits, but it isn’t a major change. For readers who have only used menu-driven statistics
software before, there will be some significant readjustment. But after a few days, it will
seem natural to you. For readers who have used command-driven statistics software like
Stata and SAS, there is still some readjustment ahead. I'll explain the overall approach first.
Then I'll say why even Stata and SAS users are in for a change.

The sane approach to scripting statistical analyses is to work back and forth between
two applications: (1) a plain text editor of your choice and (2) the R program running in a
terminal. There are several applications that integrate the text editor with the R console. The
most popular of these is RStudio. It has a lot of options, but really it is just an interface that
includes both a script editor and an R terminal.

A plain text editor is a program that creates and edits simple formatting-free text files.
Common examples include Notepad (in Windows) and TextEdit (in Mac OS X) and Emacs
(in most *NIX distributions, including Mac OS X). There is also a wide selection of fancy
text editors specialized for programmers. You might investigate, for example, RStudio and
the Atom text editor, both of which are free. Note that MSWord files are not plain text.

You will use a plain text editor to keep a running log of the commands you feed into the
R application for processing. You absolutely do not want to just type out commands directly
into R itself. Instead, you want to either copy and paste lines of code from your plain text
editor into R, or instead read entire script files directly into R. You might enter commands
directly into R as you explore data or debug or merely play. But your serious work should be
implemented through the plain text editor, for the reasons explained in the previous section.

You can add comments to your R scripts to help you plan the code and remember later
what the code is doing. To make a comment, just begin a line with the # symbol. To help clar-
ify the approach, below I provide a very short complete script for running a linear regression
on one of R’s built-in sets of data. Even if you don’t know what the code does yet, hopefully
you will see it as a basic model of clarity of formatting and use of comments.

# Load the data:
# car braking distances in feet paired with speeds in km/h

R code
0.4
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# see ?cars for details
data(cars)

# fit a linear regression of distance on speed
m <- Im( dist ~ speed , data=cars )

# estimated coefficients from the model
coef(m)

# plot residuals against speed
plot( resid(m) ~ speed , data=cars )

Even those who are familiar with scripting Stata or SAS will be in for some readjust-
ment. Programs like Stata and SAS have a different paradigm for how information is pro-
cessed. In those applications, procedural commands like PROC GLM are issued in imitation
of menu commands. These procedures produce a mass of default output that the user then
sifts through. R does not behave this way. Instead, R forces the user to decide which bits of
information she wants. One fits a statistical model in R and then must issue later commands
to ask questions about it. This more interrogative paradigm will become familiar through the
examples in the text. But be aware that you are going to take a more active role in deciding
what questions to ask about your models.

Installing the rethinking R package

The code examples require that you have installed the rethinking R package. This
package contains the data examples and many of the modeling tools that the text uses. The
rethinking package itself relies upon another package, rstan, for fitting the more advanced
models in the second half of the book.

You should install rstan first. Navigate your internet browser to mc-stan.org and
follow the instructions for your platform. You will need to install both a C++ compiler
(also called the “tool chain”) and the rstan package. Instructions for doing both are at
mc-stan.org. Then from within R, you can install rethinking with this code:

install.packages(c("coda","mvtnorm","devtools","dagitty"))
library(devtools)
devtools::install_github("rmcelreath/rethinking")

Note that rethinking is not on the CRAN package archive, at least not yet. You'll always be
able to perform a simple internet search and figure out the current installation instructions
for the most recent version of the rethinking package. If you encounter any bugs while us-
ing the package, you can check github.com/rmcelreath/rethinking to see if a solution
is already posted. If not, you can leave a bug report and be notified when a solution becomes
available. In addition, all of the source code for the package is found there, in case you aspire
to do some tinkering of your own. Feel free to “fork” the package and bend it to your will.
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1 The Golem of Prague

In the sixteenth century, the House of Habsburg controlled much of Central Europe, the
Netherlands, and Spain, as well as Spain’s colonies in the Americas. The House was maybe
the first true world power. The Sun shone always on some portion of it. Its ruler was also
Holy Roman Emperor, and his seat of power was Prague. The Emperor in the late sixteenth
century, Rudolph II, loved intellectual life. He invested in the arts, the sciences (including
astrology and alchemy), and mathematics, making Prague into a world center of learning
and scholarship. It is appropriate then that in this learned atmosphere arose an early robot,
the Golem of Prague.

A golem (GoH-lem) is a clay robot from Jewish folklore, constructed from dust and fire
and water. It is brought to life by inscribing emet, Hebrew for “truth,” on its brow. Animated
by truth, but lacking free will, a golem always does exactly what it is told. This is lucky,
because the golem is incredibly powerful, able to withstand and accomplish more than its
creators could. However, its obedience also brings danger, as careless instructions or unex-
pected events can turn a golem against its makers. Its abundance of power is matched by its
lack of wisdom.

In some versions of the golem legend, Rabbi Judah Loew ben Bezalel sought a way to
defend the Jews of Prague. As in many parts of sixteenth century Central Europe, the Jews of
Prague were persecuted. Using secret techniques from the Kabbalah, Rabbi Judah was able
to build a golem, animate it with “truth,” and order it to defend the Jewish people of Prague.
Not everyone agreed with Judah’s action, fearing unintended consequences of toying with
the power of life. Ultimately Judah was forced to destroy the golem, as its combination of
extraordinary power with clumsiness eventually led to innocent deaths. Wiping away one
letter from the inscription emet to spell instead met, “death,” Rabbi Judah decommissioned
the robot.

1.1. Statistical golems

Scientists also make golems.! Our golems rarely have physical form, but they too are
often made of clay, living in silicon as computer code. These golems are scientific models.
But these golems have real effects on the world, through the predictions they make and the
intuitions they challenge or inspire. A concern with “truth” enlivens these models, but just
like a golem or a modern robot, scientific models are neither true nor false, neither prophets
nor charlatans. Rather they are constructs engineered for some purpose. These constructs
are incredibly powerful, dutifully conducting their programmed calculations.
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FIGURE 1.1. Example decision tree, or flowchart, for selecting an appropri-
ate statistical procedure. Beginning at the top, the user answers a series of
questions about measurement and intent, arriving eventually at the name
of a procedure. Many such decision trees are possible.

Sometimes their unyielding logic reveals implications previously hidden to their design-
ers. These implications can be priceless discoveries. Or they may produce silly and dan-
gerous behavior. Rather than idealized angels of reason, scientific models are powerful clay
robots without intent of their own, bumbling along according to the myopic instructions
they embody. Like with Rabbi Judah’s golem, the golems of science are wisely regarded with
both awe and apprehension. We absolutely have to use them, but doing so always entails
some risk.

There are many kinds of statistical models. Whenever someone deploys even a simple
statistical procedure, like a classical ¢-test, she is deploying a small golem that will obediently
carry out an exact calculation, performing it the same way (nearly®) every time, without
complaint. Nearly every branch of science relies upon the senses of statistical golems. In
many cases, it is no longer possible to even measure phenomena of interest, without making
use of a model. To measure the strength of natural selection or the speed of a neutrino or
the number of species in the Amazon, we must use models. The golem is a prosthesis, doing
the measuring for us, performing impressive calculations, finding patterns where none are
obvious.

However, there is no wisdom in the golem. It doesn’t discern when the context is inap-
propriate for its answers. It just knows its own procedure, nothing else. It just does as it’s told.



1.1. STATISTICAL GOLEMS 3

And so it remains a triumph of statistical science that there are now so many diverse golems,
each useful in a particular context. Viewed this way, statistics is neither mathematics nor a
science, but rather a branch of engineering. And like engineering, a common set of design
principles and constraints produces a great diversity of specialized applications.

This diversity of applications helps to explain why introductory statistics courses are so
often confusing to the initiates. Instead of a single method for building, refining, and cri-
tiquing statistical models, students are offered a zoo of pre-constructed golems known as
“tests” Each test has a particular purpose. Decision trees, like the one in FIGURE 1.1, are
common. By answering a series of sequential questions, users choose the “correct” proce-
dure for their research circumstances.

Unfortunately, while experienced statisticians grasp the unity of these procedures, stu-
dents and researchers rarely do. Advanced courses in statistics do emphasize engineering
principles, but most scientists never get that far. Teaching statistics this way is somewhat
like teaching engineering backwards, starting with bridge building and ending with basic
physics. So students and many scientists tend to use charts like FIGURE 1.1 without much
thought to their underlying structure, without much awareness of the models that each proce-
dure embodies, and without any framework to help them make the inevitable compromises
required by real research. It’s not their fault.

For some, the toolbox of pre-manufactured golems is all they will ever need. Provided
they stay within well-tested contexts, using only a few different procedures in appropriate
tasks, a lot of good science can be completed. This is similar to how plumbers can do a lot
of useful work without knowing much about fluid dynamics. Serious trouble begins when
scholars move on to conducting innovative research, pushing the boundaries of their spe-
cialties. It’s as if we got our hydraulic engineers by promoting plumbers.

Why aren’t the tests enough for research? The classical procedures of introductory sta-
tistics tend to be inflexible and fragile. By inflexible, I mean that they have very limited ways
to adapt to unique research contexts. By fragile, I mean that they fail in unpredictable ways
when applied to new contexts. This matters, because at the boundaries of most sciences,
it is hardly ever clear which procedure is appropriate. None of the traditional golems has
been evaluated in novel research settings, and so it can be hard to choose one and then to
understand how it behaves. A good example is Fisher’s exact test, which applies (exactly) to
an extremely narrow empirical context, but is regularly used whenever cell counts are small.
I have personally read hundreds of uses of Fisher’s exact test in scientific journals, but aside
from Fisher’s original use of it, I have never seen it used appropriately. Even a procedure like
ordinary linear regression, which is quite flexible in many ways, being able to encode a large
diversity of interesting hypotheses, is sometimes fragile. For example, if there is substan-
tial measurement error on prediction variables, then the procedure can fail in spectacular
ways. But more importantly, it is nearly always possible to do better than ordinary linear
regression, largely because of a phenomenon known as OVERFITTING (Chapter 7).

The point isn’t that statistical tools are specialized. Of course they are. The point is that
classical tools are not diverse enough to handle many common research questions. Every
active area of science contends with unique difficulties of measurement and interpretation,
converses with idiosyncratic theories in a dialect barely understood by other scientists from
other tribes. Statistical experts outside the discipline can help, but they are limited by lack of
fluency in the empirical and theoretical concerns of the discipline.

Furthermore, no statistical tool does anything on its own to address the basic problem
of inferring causes from evidence. Statistical golems do not understand cause and effect.



4 1. THE GOLEM OF PRAGUE

They only understand association. Without our guidance and skepticism, pre-manufactured
golems may do nothing useful at all. Worse, they might wreck Prague.

What researchers need is some unified theory of golem engineering, a set of principles for
designing, building, and refining special-purpose statistical procedures. Every major branch
of statistical philosophy possesses such a unified theory. But the theory is never taught in
introductory—and often not even in advanced—courses. So there are benefits in rethinking
statistical inference as a set of strategies, instead of a set of pre-made tools.

1.2. Statistical rethinking

A lot can go wrong with statistical inference, and this is one reason that beginners are
so anxious about it. When the goal is to choose a pre-made test from a flowchart, then the
anxiety can mount as one worries about choosing the “correct” test. Statisticians, for their
part, can derive pleasure from scolding scientists, making the psychological battle worse.

But anxiety can be cultivated into wisdom. That is the reason that this book insists on
working with the computational nuts and bolts of each golem. If you don’t understand how
the golem processes information, then you can't interpret the golem’s output. This requires
knowing the model in greater detail than is customary, and it requires doing the computa-
tions the hard way, at least until you are wise enough to use the push-button solutions.

There are conceptual obstacles as well, obstacles with how scholars define statistical ob-
jectives and interpret statistical results. Understanding any individual golem is not enough,
in these cases. Instead, we need some statistical epistemology, an appreciation of how sta-
tistical models relate to hypotheses and the natural mechanisms of interest. What are we
supposed to be doing with these little computational machines, anyway?

The greatest obstacle that I encounter among students and colleagues is the tacit belief
that the proper objective of statistical inference is to test null hypotheses.® This is the proper
objective, the thinking goes, because Karl Popper argued that science advances by falsifying
hypotheses. Karl Popper (1902-1994) is possibly the most influential philosopher of science,
at least among scientists. He did persuasively argue that science works better by developing
hypotheses that are, in principle, falsifiable. Seeking out evidence that might embarrass our
ideas is a normative standard, and one that most scholars—whether they describe themselves
as scientists or not—subscribe to. So maybe statistical procedures should falsify hypotheses,
if we wish to be good statistical scientists.

But the above is a kind of folk Popperism, an informal philosophy of science common
among scientists but not among philosophers of science. Science is not described by the falsi-
fication standard, and Popper recognized that.* In fact, deductive falsification is impossible
in nearly every scientific context. In this section, I review two reasons for this impossibility.

(1) Hypotheses are not models. The relations among hypotheses and different kinds of
models are complex. Many models correspond to the same hypothesis, and many
hypotheses correspond to a single model. This makes strict falsification impossible.

(2) Measurement matters. Even when we think the data falsify a model, another ob-
server will debate our methods and measures. They don't trust the data. Sometimes
they are right.

For both of these reasons, deductive falsification never works. The scientific method cannot
be reduced to a statistical procedure, and so our statistical methods should not pretend. Sta-
tistical evidence is part of the hot mess that is science, with all of its combat and egotism and
mutual coercion. If you believe, as I do, that science does often work, then learning that it
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doesn’t work via falsification shouldn’t change your mind. But it might help you do better
science. It might open your eyes to many legitimately useful functions of statistical golems.

Rethinking: Is NHST falsificationist? Null hypothesis significance testing, NHST, is often identified
with the falsificationist, or Popperian, philosophy of science. However, usually NHST is used to falsify
a null hypothesis, not the actual research hypothesis. So the falsification is being done to something
other than the explanatory model. This seems the reverse from Karl Popper’s philosophy.®

1.2.1. Hypotheses are not models. When we attempt to falsify a hypothesis, we must work
with a model of some kind. Even when the attempt is not explicitly statistical, there is always
a tacit model of measurement, of evidence, that operationalizes the hypothesis. All models
are false,® so what does it mean to falsify a model? One consequence of the requirement
to work with models is that it’s no longer possible to deduce that a hypothesis is false, just
because we reject a model derived from it.

Lets explore this consequence in the context of an example from population biology
(FIGURE 1.2). Beginning in the 1960s, evolutionary biologists became interested in the pro-
posal that the majority of evolutionary changes in gene frequency are caused not by natural
selection, but rather by mutation and drift. No one really doubted that natural selection is re-
sponsible for functional design. This was a debate about genetic sequences. So began several
productive decades of scholarly combat over “neutral” models of molecular evolution.” This
combat is most strongly associated with Motoo Kimura (1924-1994), who was perhaps the
strongest advocate of neutral models. But many other population geneticists participated.
As time has passed, related disciplines such as community ecology® and anthropology’ have
experienced (or are currently experiencing) their own versions of the neutrality debate.

Let’s use the schematic in FIGURE 1.2 to explore connections between motivating hy-
potheses and different models, in the context of the neutral evolution debate. On the left,
there are two stereotyped, informal hypotheses: Either evolution is “neutral” (Hy) or natu-
ral selection matters somehow (H;). These hypotheses have vague boundaries, because they
begin as verbal conjectures, not precise models. There are hundreds of possible detailed pro-
cesses that can be described as “neutral,” depending upon choices about population struc-
ture, number of sites, number of alleles at each site, mutation rates, and recombination.

Once we have made these choices, we have the middle column in FIGURE 1.2, detailed
PROCESS MODELS of evolution. Pgs and Pyp differ in that one assumes the population size
and structure have been constant long enough for the distribution of alleles to reach a steady
state. The other imagines instead that population size fluctuates through time, which can
be true even when there is no selective difference among alleles. The “selection matters”
hypothesis H; likewise corresponds to many different process models. I've shown two big
players: a model in which selection always favors certain alleles and another in which selec-
tion fluctuates through time, favoring different alleles.°

An important feature of these process models is that they express causal structure. Dif-
ferent process models formalize different cause and effect relationships. Whether analyzed
mathematically or through simulation, the direction of time in a model means that some
things cause other things, but not the reverse. You can use such models to perform experi-
ments and probe their causal implications. Sometimes these probes reveal, before we even
turn to statistical inference, that the model cannot explain a phenomenon of interest.

In order to challenge process models with data, they have to be made into statistical
models. Unfortunately, statistical models do not embody specific causal relationships. A
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Hypotheses Process models  Statistical models
Poa
Neutral,
equilibrium
“Evolution
is neutral” POB —
Neutral,
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FIGURE 1.2. Relations among hypotheses (left), detailed process models
(middle), and statistical models (right), illustrated by the example of “neu-
tral” models of evolution. Hypotheses (H) are typically vague, and so cor-
respond to more than one process model (P). Statistical evaluations of hy-
potheses rarely address process models directly. Instead, they rely upon
statistical models (M), all of which reflect only some aspects of the process
models. As a result, relations are multiple in both directions: Hypotheses
do not imply unique models, and models do not imply unique hypotheses.
This fact greatly complicates statistical inference.

statistical model expresses associations among variables. As a result, many different process
models may be consistent with any single statistical model.

How do we get a statistical model from a causal model? One way is to derive the ex-
pected frequency distribution of some quantity—a “statistic’—from the causal model. For
example, a common statistic in this context is the frequency distribution (histogram) of the
frequency of different genetic variants (alleles). Some alleles are rare, appearing in only a
few individuals. Others are very common, appearing in very many individuals in the popu-
lation. A famous result in population genetics is that a model like Po4 produces a power law
distribution of allele frequencies. And so this fact yields a statistical model, My, that pre-
dicts a power law in the data. In contrast the constant selection process model P predicts
something quite different, Myy.

Unfortunately, other selection models (P,g) imply the same statistical model, My, as the
neutral model. They also produce power laws. So we've reached the uncomfortable lesson:

(1) Any given statistical model (M) may correspond to more than one process model
(P).

(2) Any given hypothesis (H) may correspond to more than one process model (P).

(3) Any given statistical model (M) may correspond to more than one hypothesis (H).
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Now look what happens when we compare the statistical models to data. The classical ap-
proach is to take the “neutral” model as a null hypothesis. If the data are not sufficiently
similar to the expectation under the null, then we say that we “reject” the null hypothesis.
Suppose we follow the history of this subject and take P, as our null hypothesis. This implies
data corresponding to M. But since the same statistical model corresponds to a selection
model P;p, it's not clear what to make of either rejecting or accepting the null. The null
model is not unique to any process model nor hypothesis. If we reject the null, we can’t
really conclude that selection matters, because there are other neutral models that predict
different distributions of alleles. And if we fail to reject the null, we can’t really conclude that
evolution is neutral, because some selection models expect the same frequency distribution.

This is a huge bother. Once we have the diagram in FIGURE 1.2, it’s easy to see the prob-
lem. But few of us are so lucky. While population genetics has recognized this issue, scholars
in other disciplines continue to test frequency distributions against power law expectations,
arguing even that there is only one neutral model.!! Even if there were only one neutral
model, there are so many non-neutral models that mimic the predictions of neutrality, that
neither rejecting nor failing to reject the null model carries much inferential power.

So what can be done? Well, if you have multiple process models, a lot can be done. If
it turns out that all of the process models of interest make very similar predictions, then
you know to search for a different description of the evidence, a description under which
the processes look different. For example, while Py and P,z make very similar power law
predictions for the frequency distribution of alleles, they make very dissimilar predictions
for the distribution of changes in allele frequency over time. Explicitly compare predictions
of more than one model, and you can save yourself from some ordinary kinds of folly.

Statistical models can be confused in other ways as well, such as the confusion caused by
unobserved variables and sampling bias. Process models allow us to design statistical models
with these problems in mind. The statistical model alone is not enough.

Rethinking: Entropy and model identification. One reason that statistical models routinely corre-
spond to many different detailed process models is because they rely upon distributions like the nor-
mal, binomial, Poisson, and others. These distributions are members of a family, the EXPONENTIAL
FAMILY. Nature loves the members of this family. Nature loves them because nature loves entropy,
and all of the exponential family distributions are MAXIMUM ENTROPY distributions. Taking the nat-
ural personification out of that explanation will wait until Chapter 10. The practical implication is
that one can no more infer evolutionary process from a power law than one can infer developmental
process from the fact that height is normally distributed. This fact should make us humble about what
typical regression models—the meat of this book—can teach us about mechanistic process. On the
other hand, the maximum entropy nature of these distributions means we can use them to do useful
statistical work, even when we can’t identify the underlying process.

1.2.2. Measurement matters. The logic of falsification is very simple. We have a hypothesis
H, and we show that it entails some observation D. Then we look for D. If we don't find it,
we must conclude that H is false. Logicians call this kind of reasoning modus tollens, which
is Latin shorthand for “the method of destruction.” In contrast, finding D tells us nothing
certain about H, because other hypotheses might also predict D.

A compelling scientific fable that employs modus tollens concerns the color of swans.
Before discovering Australia, all swans that any European had ever seen had white feathers.
This led to the belief that all swans are white. Let’s call this a formal hypothesis:

Hy: All swans are white.
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When Europeans reached Australia, however, they encountered swans with black feathers.
This evidence seemed to instantly prove Hy to be false. Indeed, not all swans are white. Some
are certainly black, according to all observers. The key insight here is that, before voyaging
to Australia, no number of observations of white swans could prove Hy to be true. However
it required only one observation of a black swan to prove it false.

This is a seductive story. If we can believe that important scientific hypotheses can be
stated in this form, then we have a powerful method for improving the accuracy of our the-
ories: look for evidence that disconfirms our hypotheses. Whenever we find a black swan,
Ho, must be false. Progress!

Seeking disconfirming evidence is important, but it cannot be as powerful as the swan
story makes it appear. In addition to the correspondence problems among hypotheses and
models, discussed in the previous section, most of the problems scientists confront are not so
logically discrete. Instead, we most often face two simultaneous problems that make the swan
fable misrepresentative. First, observations are prone to error, especially at the boundaries
of scientific knowledge. Second, most hypotheses are quantitative, concerning degrees of
existence, rather than discrete, concerning total presence or absence. Let’s briefly consider
each of these problems.

1.2.2.1. Observation error. All observers agree under most conditions that a swan is ei-
ther black or white. There are few intermediate shades, and most observers’ eyes work simi-
larly enough that there will be little disagreement about which swans are white and which are
black. But this kind of example is hardly commonplace in science, at least in mature fields.
Instead, we routinely confront contexts in which we are not sure if we have detected a dis-
confirming result. At the edges of scientific knowledge, the ability to measure a hypothetical
phenomenon is often in question as much as the phenomenon itself. Here are two examples.

In 2005, a team of ornithologists from Cornell claimed to have evidence of an individual
Ivory-billed Woodpecker (Campephilus principalis), a species thought extinct. The hypothe-
sis implied here is:

Ho: The Ivory-billed Woodpecker is extinct.

It would only take one observation to falsify this hypothesis. However, many doubted the
evidence. Despite extensive search efforts and a $50,000 cash reward for information leading
to a live specimen, no satistying evidence has yet (by 2020) emerged. Even if good physical
evidence does eventually arise, this episode should serve as a counterpoint to the swan story.
Finding disconfirming cases is complicated by the difficulties of observation. Black swans
are not always really black swans, and sometimes white swans are really black swans. There
are mistaken confirmations (false positives) and mistaken disconfirmations (false negatives).
Against this background of measurement difficulties, scientists who already believe that the
Ivory-billed Woodpecker is extinct will always be suspicious of a claimed falsification. Those
who believe it is still alive will tend to count the vaguest evidence as falsification.

Another example, this one from physics, focuses on the detection of faster-than-light
(FTL) neutrinos.!? In September 2011, a large and respected team of physicists announced
detection of neutrinos—small, neutral sub-atomic particles able to pass easily and harm-
lessly through most matter—that arrived from Switzerland to Italy in slightly faster-than-
lightspeed time. According to Einstein, neutrinos cannot travel faster than the speed of light.
So this seems to be a falsification of special relativity. If so, it would turn physics on its head.
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The dominant reaction from the physics community was not “Einstein was wrong!” but
instead “How did the team mess up the measurement?” The team that made the measure-
ment had the same reaction, and asked others to check their calculations and attempt to
replicate the result.

What could go wrong in the measurement? You might think measuring speed is a sim-
ple matter of dividing distance by time. It is, at the scale and energy you live at. But with
a fundamental particle like a neutrino, if you measure when it starts its journey, you stop
the journey. The particle is consumed by the measurement. So more subtle approaches are
needed. The detected difference from light-speed, furthermore, is quite small, and so even
the latency of the time it takes a signal to travel from a detector to a control room can be
orders of magnitude larger. And since the “measurement” in this case is really an estimate
from a statistical model, all of the assumptions of the model are now suspect. By 2013, the
physics community was unanimous that the FTL neutrino result was measurement error.
They found the technical error, which involved a poorly attached cable.!* Furthermore, neu-
trinos clocked from supernova events are consistent with Einstein, and those distances are
much larger and so would reveal differences in speed much better.

In both the woodpecker and neutrino dramas, the key dilemma is whether the falsifi-
cation is real or spurious. Measurement is complicated in both cases, but in quite different
ways, rendering both true-detection and false-detection plausible. Popper was aware of this
limitation inherent in measurement, and it may be one reason that Popper himself saw sci-
ence as being broader than falsification. But the probabilistic nature of evidence rarely ap-
pears when practicing scientists discuss the philosophy and practice of falsification.!* My
reading of the history of science is that these sorts of measurement problems are the norm,
not the exception.!”

1.2.2.2. Continuous hypotheses. Another problem for the swan story is that most inter-
esting scientific hypotheses are not of the kind “all swans are white” but rather of the kind:

Hy: 80% of swans are white.
Or maybe:
Hy: Black swans are rare.

Now what are we to conclude, after observing a black swan? The null hypothesis doesn’t
say black swans do not exist, but rather that they have some frequency. The task here is
not to disprove or prove a hypothesis of this kind, but rather to estimate and explain the
distribution of swan coloration as accurately as we can. Even when there is no measurement
error of any kind, this problem will prevent us from applying the modus tollens swan story
to our science.!

You might object that the hypothesis above is just not a good scientific hypothesis, be-
cause it isn't easy to disprove. But if that’s the case, then most of the important questions
about the world are not good scientific hypotheses. In that case, we should conclude that the
definition of a “good hypothesis” isn’t doing us much good. Now, nearly everyone agrees
that it is a good practice to design experiments and observations that can differentiate com-
peting hypotheses. But in many cases, the comparison must be probabilistic, a matter of
degree, not kind.'”

1.2.3. Falsification is consensual. The scientific community does come to regard some hy-
potheses as false. The caloric theory of heat and the geocentric model of the universe are no
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longer taught in science courses, unless it’s to teach how they were falsified. And evidence
often—but not always—has something to do with such falsification.

But falsification is always consensual, not logical. Inlight of the real problems of measure-
ment error and the continuous nature of natural phenomena, scientific communities argue
towards consensus about the meaning of evidence. These arguments can be messy. After the
fact, some textbooks misrepresent the history so it appears like logical falsification.'® Such
historical revisionism may hurt everyone. It may hurt scientists, by rendering it impossible
for their own work to live up to the legends that precede them. It may make science an easy
target, by promoting an easily attacked model of scientific epistemology. And it may hurt
the public, by exaggerating the definitiveness of scientific knowledge.'”

1.3. Tools for golem engineering

So if attempting to mimic falsification is not a generally useful approach to statistical
methods, what are we to do? We are to model. Models can be made into testing procedures—
all statistical tests are also models?®—but they can also be used to design, forecast, and argue.
Doing research benefits from the ability to produce and manipulate models, both because
scientific problems are more general than “testing” and because the pre-made golems you
maybe met in introductory statistics courses are ill-fit to many research contexts. You may
not even know which statistical model to use, unless you have a generative model in addition.

If you want to reduce your chances of wrecking Prague, then some golem engineering
know-how is needed. Make no mistake: You will wreck Prague eventually. But if you are a
good golem engineer, at least you'll notice the destruction. And since you'll know a lot about
how your golem works, you stand a good chance to figure out what went wrong. Then your
next golem won't be as bad. Without engineering training, you’re always at someone’s mercy.

We want to use our models for several distinct purposes: designing inquiry, extracting
information from data, and making predictions. In this book I've chosen to focus on tools
to help with each purpose. These tools are:

(1) Bayesian data analysis
(2) Model comparison

(3) Multilevel models

(4) Graphical causal models

These tools are deeply related to one another, so it makes sense to teach them together. Un-
derstanding of these tools comes, as always, only with implementation—you can’t compre-
hend golem engineering until you do it. And so this book focuses mostly on code, how to
do things. But in the remainder of this chapter, I provide introductions to these tools.

1.3.1. Bayesian data analysis. Supposing you have some data, how should you use it to learn
about the world? There is no uniquely correct answer to this question. Lots of approaches,
both formal and heuristic, can be effective. But one of the most effective and general answers
is to use Bayesian data analysis. Bayesian data analysis takes a question in the form of a model
and uses logic to produce an answer in the form of probability distributions.

In modest terms, Bayesian data analysis is no more than counting the numbers of ways
the data could happen, according to our assumptions. Things that can happen more ways
are more plausible. Probability theory is relevant because probability is just a calculus for
counting. This allows us to use probability theory as a general way to represent plausibility,
whether in reference to countable events in the world or rather theoretical constructs like
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parameters. The rest follows logically. Once we have defined the statistical model, Bayesian
data analysis forces a purely logical way of processing the data to produce inference.

Chapter 2 explains this in depth. For now, it will help to have another approach to com-
pare. Bayesian probability is a very general approach to probability, and it includes as a
special case another important approach, the FREQUENTIST approach. The frequentist ap-
proach requires that all probabilities be defined by connection to the frequencies of events
in very large samples.?! This leads to frequentist uncertainty being premised on imaginary
resampling of data—if we were to repeat the measurement many many times, we would end
up collecting a list of values that will have some pattern to it. It means also that parameters
and models cannot have probability distributions, only measurements can. The distribution
of these measurements is called a SAMPLING DISTRIBUTION. This resampling is never done,
and in general it doesn't even make sense—it is absurd to consider repeat sampling of the
diversification of song birds in the Andes. As Sir Ronald Fisher, one of the most important
frequentist statisticians of the twentieth century, put it:*?

[...] the only populations that can be referred to in a test of significance
have no objective reality, being exclusively the product of the statistician’s
imagination [...]

But in many contexts, like controlled greenhouse experiments, it’s a useful device for describ-
ing uncertainty. Whatever the context, it’s just part of the model, an assumption about what
the data would look like under resampling. Its just as fantastical as the Bayesian gambit of
using probability to describe all types of uncertainty, whether empirical or epistemological.**

But these different attitudes towards probability do enforce different trade-ofts. Con-
sider this simple example where the difference between Bayesian and frequentist probability
matters. In the year 1610, Galileo turned a primitive telescope to the night sky and became
the first human to see Saturn’s rings. Well, he probably saw a blob, with some smaller blobs
attached to it (FIGURE 1.3). Since the telescope was primitive, it couldn’t really focus the im-
age very well. Saturn always appeared blurred. This is a statistical problem, of a sort. There’s
uncertainty about the planet’s shape, but notice that none of the uncertainty is a result of vari-
ation in repeat measurements. We could look through the telescope a thousand times, and
it will always give the same blurred image (for any given position of the Earth and Saturn).
So the sampling distribution of any measurement is constant, because the measurement is
deterministic—there’s nothing “random” about it. Frequentist statistical inference has a lot
of trouble getting started here. In contrast, Bayesian inference proceeds as usual, because
the deterministic “noise” can still be modeled using probability, as long as we don't identify
probability with frequency. As a result, the field of image reconstruction and processing is
dominated by Bayesian algorithms.>*

In more routine statistical procedures, like linear regression, this difference in proba-
bility concepts has less of an effect. However, it is important to realize that even when a
Bayesian procedure and frequentist procedure give exactly the same answer, our Bayesian
golems aren’t justifying their inferences with imagined repeat sampling. More generally,
Bayesian golems treat “randomness” as a property of information, not of the world. Nothing
in the real world—excepting controversial interpretations of quantum physics—is actually
random. Presumably, if we had more information, we could exactly predict everything. We
just use randomness to describe our uncertainty in the face of incomplete knowledge. From
the perspective of our golem, the coin toss is “random,” but it’s really the golem that is ran-
dom, not the coin.
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FIGURE 1.3. Saturn, much like Galileo must have seen it. The true shape
is uncertain, but not because of any sampling variation. Probability theory
can still help.

Note that the preceding description doesn’t invoke anyone’s “beliefs” or subjective opin-
ions. Bayesian data analysis is just a logical procedure for processing information. There is
a tradition of using this procedure as a normative description of rational belief, a tradition
called BAYEsiaNIsM.2®> But this book neither describes nor advocates it. In fact, I'll argue
that no statistical approach, Bayesian or otherwise, is by itself sufficient.

Before moving on to describe the next two tools, it’s worth emphasizing an advantage of
Bayesian data analysis, at least when scholars are learning statistical modeling. This entire
book could be rewritten to remove any mention of “Bayesian.” In places, it would become
easier. In others, it would become much harder. But having taught applied statistics both
ways, I have found that the Bayesian framework presents a distinct pedagogical advantage:
many people find it more intuitive. Perhaps the best evidence for this is that very many sci-
entists interpret non-Bayesian results in Bayesian terms, for example interpreting ordinary
p-values as Bayesian posterior probabilities and non-Bayesian confidence intervals as Bayes-
ian ones (you’'ll learn posterior probability and confidence intervals in Chapters 2 and 3).
Even statistics instructors make these mistakes.?® Statisticians appear doomed to republish
the same warnings about misinterpretation of p-values forever. In this sense then, Bayesian
models lead to more intuitive interpretations, the ones scientists tend to project onto sta-
tistical results. The opposite pattern of mistake—interpreting a posterior probability as a
p-value—seems to happen only rarely.

None of this ensures that Bayesian analyses will be more correct than non-Bayesian anal-
yses. It just means that the scientist’s intuitions will less commonly be at odds with the actual
logic of the framework. This simplifies some of the aspects of teaching statistical modeling.

Rethinking: Probability is not unitary. It will make some readers uncomfortable to suggest that
there is more than one way to define “probability” Aren’t mathematical concepts uniquely correct?
They are not. Once you adopt some set of premises, or axioms, everything does follow logically in
mathematical systems. But the axioms are open to debate and interpretation. So not only is there
“Bayesian” and “frequentist” probability, but there are different versions of Bayesian probability even,
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relying upon different arguments to justify the approach. In more advanced Bayesian texts, you’ll
come across names like Bruno de Finetti, Richard T. Cox, and Leonard “Jimmie” Savage. Each of
these figures is associated with a somewhat different conception of Bayesian probability. There are
others. This book mainly follows the “logical” Cox (or Laplace-]Jeffreys-Cox-Jaynes) interpretation.
This interpretation is presented beginning in the next chapter, but unfolds fully only in Chapter 10.

How can different interpretations of probability theory thrive? By themselves, mathematical en-
tities don't necessarily “mean” anything, in the sense of real world implication. What does it mean to
take the square root of a negative number? What does it mean to take a limit as something approaches
infinity? These are essential and routine concepts, but their meanings depend upon context and an-
alyst, upon beliefs about how well abstraction represents reality. Mathematics doesn’t access the real
world directly. So answering such questions remains a contentious and entertaining project, in all
branches of applied mathematics. So while everyone subscribes to the same axioms of probability,
not everyone agrees in all contexts about how to interpret probability.

Rethinking: A little history. Bayesian statistical inference is much older than the typical tools of
introductory statistics, most of which were developed in the early twentieth century. Versions of
the Bayesian approach were applied to scientific work in the late 1700s and repeatedly in the nine-
teenth century. But after World War I, anti-Bayesian statisticians, like Sir Ronald Fisher, succeeded
in marginalizing the approach. All Fisher said about Bayesian analysis (then called inverse probabil-
ity) in his influential 1925 handbook was:?’

[...] the theory of inverse probability is founded upon an error, and must be wholly

rejected.
Bayesian data analysis became increasingly accepted within statistics during the second half of the
twentieth century, because it proved not to be founded upon an error. All philosophy aside, it worked.
Beginning in the 1990s, new computational approaches led to a rapid rise in application of Bayesian
methods.?® Bayesian methods remain computationally expensive, however. And so as data sets have
increased in scale—millions of rows is common in genomic analysis, for example—alternatives to or
approximations to Bayesian inference remain important, and probably always will.

1.3.2. Model comparison and prediction. Bayesian data analysis provides a way for models
to learn from data. But when there is more than one plausible model—and in most mature
fields there should be—how should we choose among them? One answer is to prefer models
that make good predictions. This answer creates a lot of new questions, since knowing which
model will make the best predictions seems to require knowing the future. We'll look at two
related tools, neither of which knows the future: CROSS-VALIDATION and INFORMATION
CRITERIA. These tools aim to compare models based upon expected predictive accuracy.

Comparing models by predictive accuracy can be useful in itself. And it will be even
more useful because it leads to the discovery of an amazing fact: Complex models often
make worse predictions than simpler models. The primary paradox of prediction is OVER-
FITTING.?? Future data will not be exactly like past data, and so any model that is unaware
of this fact tends to make worse predictions than it could. And more complex models tend
towards more overfitting than simple ones—the smarter the golem, the dumber its predic-
tions. So if we wish to make good predictions, we cannot judge our models simply on how
well they fit our data. Fitting is easy; prediction is hard.

Cross-validation and information criteria help us in three ways. First, they provide use-
ful expectations of predictive accuracy, rather than merely fit to sample. So they compare
models where it matters. Second, they give us an estimate of the tendency of a model to
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overfit. This will help us to understand how models and data interact, which in turn helps
us to design better models. We'll take this point up again in the next section. Third, cross-
validation and information criteria help us to spot highly influential observations.

Bayesian data analysis has been worked on for centuries. Information criteria are com-
paratively very young and the field is evolving quickly. Many statisticians have never used
information criteria in an applied problem, and there is no consensus about which metrics
are best and how best to use them. Still, information criteria are already in frequent use
in the sciences, appearing in prominent publications and featuring in prominent debates.>
Their power is often exaggerated, and we will be careful to note what they cannot do as well
as what they can.

Rethinking: The Neanderthal in you. Even simple models need alternatives. In 2010, a draft genome
of a Neanderthal demonstrated more DNA sequences in common with non-African contemporary
humans than with African ones. This finding is consistent with interbreeding between Neanderthals
and modern humans, as the latter dispersed from Africa. However, just finding DNA in common
between modern Europeans and Neanderthals is not enough to demonstrate interbreeding. It is also
consistent with ancient structure in the African continent.’! In short, if ancient northeast Africans
had unique DNA sequences, then both Neanderthals and modern Europeans could possess these
sequences from a common ancestor, rather than from direct interbreeding. So even in the seemingly
simple case of estimating whether Neanderthals and modern humans share unique DNA, there is
more than one process-based explanation. Model comparison is necessary.

1.3.3. Multilevel models. In an apocryphal telling of Hindu cosmology;, it is said that the
Earth rests on the back of a great elephant, who in turn stands on the back of a massive turtle.
When asked upon what the turtle stands, a guru is said to reply, “it’s turtles all the way down.”

Statistical models don’t contain turtles, but they do contain parameters. And parameters
support inference. Upon what do parameters themselves stand? Sometimes, in some of
the most powerful models, it’s parameters all the way down. What this means is that any
particular parameter can be usefully regarded as a placeholder for a missing model. Given
some model of how the parameter gets its value, it is simple enough to embed the new model
inside the old one. This results in a model with multiple levels of uncertainty, each feeding
into the next—a MULTILEVEL MODEL.

Multilevel models—also known as hierarchical, random effects, varying effects, or mixed
effects models—are becoming de rigueur in the biological and social sciences. Fields as di-
verse as educational testing and bacterial phylogenetics now depend upon routine multilevel
models to process data. Like Bayesian data analysis, multilevel modeling is not particularly
new. But it has only been available on desktop computers for a few decades. And since
such models have a natural Bayesian representation, they have grown hand-in-hand with
Bayesian data analysis.

One reason to be interested in multilevel models is because they help us deal with over-
fitting. Cross-validation and information criteria measure overfitting risk and help us to
recognize it. Multilevel models actually do something about it. What they do is exploit an
amazing trick known as PARTIAL POOLING that pools information across units in the data
in order to produce better estimates for all units. The details will wait until Chapter 13.

Partial pooling is the key technology, and the contexts in which it is appropriate are
diverse. Here are four commonplace examples.
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(1) To adjust estimates for repeat sampling. When more than one observation arises
from the same individual, location, or time, then traditional, single-level models
may mislead us.

(2) To adjust estimates for imbalance in sampling. When some individuals, locations, or
times are sampled more than others, we may also be misled by single-level models.

(3) To study variation. If our research questions include variation among individuals
or other groups within the data, then multilevel models are a big help, because they
model variation explicitly.

(4) To avoid averaging. Pre-averaging data to construct variables can be dangerous.
Averaging removes variation, manufacturing false confidence. Multilevel models
preserve the uncertainty in the original, pre-averaged values, while still using the
average to make predictions.

All four apply to contexts in which the researcher recognizes clusters or groups of measure-
ments that may differ from one another. These clusters or groups may be individuals such
as different students, locations such as different cities, or times such as different years. Since
each cluster may well have a different average tendency or respond differently to any treat-
ment, clustered data often benefit from being modeled by a golem that expects such variation.

But the scope of multilevel modeling is much greater than these examples. Diverse
model types turn out to be multilevel: models for missing data (imputation), measurement
error, factor analysis, some time series models, types of spatial and network regression, and
phylogenetic regressions all are special applications of the multilevel strategy. And some
commonplace procedures, like the paired t-test, are really multilevel models in disguise.
Grasping the concept of multilevel modeling may lead to a perspective shift. Suddenly single-
level models end up looking like mere components of multilevel models. The multilevel
strategy provides an engineering principle to help us to introduce these components into a
particular analysis, exactly where we think we need them.

I want to convince the reader of something that appears unreasonable: multilevel regres-
sion deserves to be the default form of regression. Papers that do not use multilevel models
should have to justify not using a multilevel approach. Certainly some data and contexts do
not need the multilevel treatment. But most contemporary studies in the social and natural
sciences, whether experimental or not, would benefit from it. Perhaps the most important
reason is that even well-controlled treatments interact with unmeasured aspects of the indi-
viduals, groups, or populations studied. This leads to variation in treatment effects, in which
individuals or groups vary in how they respond to the same circumstance. Multilevel mod-
els attempt to quantify the extent of this variation, as well as identify which units in the data
responded in which ways.

These benefits don’t come for free, however. Fitting and interpreting multilevel mod-
els can be considerably harder than fitting and interpreting a traditional regression model.
In practice, many researchers simply trust their black-box software and interpret multilevel
regression exactly like single-level regression. In time, this will change. There was a time
in applied statistics when even ordinary multiple regression was considered cutting edge,
something for only experts to fiddle with. Instead, scientists used many simple procedures,
like ¢-tests. Now, almost everyone uses multivariate tools. The same will eventually be true
of multilevel models. Scholarly culture and curriculum still have some catching up to do.
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Rethinking: Multilevel election forecasting. One of the older applications of multilevel modeling is
to forecast the outcomes of elections. In the 1960s, John Tukey (1915-2000) began working for the
National Broadcasting Company (NBC) in the United States, developing real-time election prediction
models that could exploit diverse types of data: polls, past elections, partial results, and complete re-
sults from related districts. The models used a multilevel framework similar to the models presented
in Chapters 13 and 14. Tukey developed and used such models for NBC through 1978.* Contempo-
rary election prediction and poll aggregation remains an active topic for multilevel modeling.*®

1.3.4. Graphical causal models. When the wind blows, branches sway. If you are human,
you immediately interpret this statement as causal: The wind makes the branches move. But
all we see is a statistical association. From the data alone, it could also be that the branches
swaying makes the wind. That conclusion seems foolish, because you know trees do not
sway their own branches. A statistical model is an amazing association engine. It makes
it possible to detect associations between causes and their effects. But a statistical model
is never sufficient for inferring cause, because the statistical model makes no distinction
between the wind causing the branches to sway and the branches causing the wind to blow.
Facts outside the data are needed to decide which explanation is correct.

Cross-validation and information criteria try to guess predictive accuracy. When I in-
troduced them above, I described overfitting as the primary paradox in prediction. Now we
turn to a secondary paradox in prediction: Models that are causally incorrect can make better
predictions than those that are causally correct. As a result, focusing on prediction can system-
atically mislead us. And while you may have heard that randomized controlled experiments
allow causal inference, randomized experiments entail the same risks. No one is safe.

I will call this the IDENTIFICATION problem and carefully distinguish it from the prob-
lem of raw prediction. Consider two different meanings of “prediction.” The simplest applies
when we are external observers simply trying to guess what will happen next. In that case,
tools like cross-validation are very useful. But these tools will happily recommend models
that contain confounding variables and suggest incorrect causal relationships. Why? Con-
founded relationships are real associations, and they can improve prediction. After all, if
you look outside and see branches swaying, it really does predict wind. Successful predic-
tion does not require correct causal identification. In fact, as you'll see later in the book,
predictions may actually improve when we use a model that is causally misleading.

But what happens when we intervene in the world? Then we must consider a second
meaning of “prediction” Suppose we recruit many people to climb into the trees and sway
the branches. Will it make wind? Not much. Often the point of statistical modeling is to pro-
duce understanding that leads to generalization and application. In that case, we need more
than just good predictions, in the absence of intervention. We also need an accurate causal
understanding. But comparing models on the basis of predictive accuracy—or p-values or
anything else—will not necessarily produce it.

So what can be done? What is needed is a causal model that can be used to design one or
more statistical models for the purpose of causal identification. As I mentioned in the neu-
tral molecular evolution example earlier in this chapter, a complete scientific model contains
more information than a statistical model derived from it. And this additional information
contains causal implications. These implications make it possible to test alternative causal
models. The implications and tests depend upon the details. Newton’s laws of motion for
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example precisely predict the consequences of specific interventions. And these precise pre-
dictions tell us that the laws are only approximately right.

Unfortunately, much scientific work lacks such precise models. Instead we must work
with vaguer hypotheses and try to estimate vague causal effects. Economics for example has
no good quantitative model for predicting the effect of changing the minimum wage. But the
very good news is that even when you don't have a precise causal model, but only a heuristic
one indicating which variables causally influence others, you can still do useful causal infer-
ence. Economics might, for example, be able to estimate the causal effect of changing the
minimum wage, even without a good scientific model of the economy.

Formal methods for distinguishing causal inference from association date from the first
half of the twentieth century, but they have more recently been extended to the study of
measurement, experimental design, and the ability to generalize (or transport) results across
samples.’* We'll meet these methods through the use of a GRAPHICAL CAUSAL MODEL.
The simplest graphical causal model is a DIRECTED ACYCLIC GRAPH, usually called a DAG.
DAGs are heuristic—they are not detailed statistical models. But they allow us to deduce
which statistical models can provide valid causal inferences, assuming the DAG is true.

But where does a DAG itself come from? The terrible truth about statistical inference
is that its validity relies upon information outside the data. We require a causal model with
which to design both the collection of data and the structure of our statistical models. But
the construction of causal models is not a purely statistical endeavor, and statistical analysis
can never verify all of our assumptions. There will never be a golem that accepts naked data
and returns a reliable model of the causal relations among the variables. We're just going to
have to keep doing science.

Rethinking: Causal salad. Causal inference requires a causal model that is separate from the statisti-
cal model. The data are not enough. Every philosophy agrees upon that much. Responses, however,
are diverse. The most conservative response is to declare “causation” to be unprovable mental candy,
like debating the nature of the afterlife.” Slightly less conservative is to insist that cause can only be
inferred under strict conditions of randomization and experimental control. This would be very lim-
iting. Many scientific questions can never be studied experimentally—human evolution, for example.
Many others could in principle be studied experimentally, but it would be unethical to do so. And
many experiments are really just attempts at control—patients do not always take their medication.

But the approach which dominates in many parts of biology and the social sciences is instead
CAUSAL SALAD.*® Causal salad means tossing various “control” variables into a statistical model,
observing changes in estimates, and then telling a story about causation. Causal salad seems founded
on the notion that only omitted variables can mislead us about causation. But included variables can
just as easily confound us. When tossing a causal salad, a model that makes good predictions may still
mislead about causation. If we use the model to plan an intervention, it will get everything wrong.
There will be examples in later chapters.

1.4. Summary

This first chapter has argued for a rethinking of popular statistical and scientific phi-
losophy. Instead of choosing among various black-box tools for testing null hypotheses,
we should learn to build and analyze multiple non-null models of natural phenomena. To
support this goal, the chapter introduced Bayesian inference, model comparison, multilevel
models, and graphical causal models. The remainder of the book is organized into four parts.
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(1) Chapters 2 and 3 are foundational. They introduce Bayesian inference and the basic
tools for performing Bayesian calculations. They move quite slowly and emphasize
a purely logical interpretation of probability theory.

(2) The next five chapters, 4 through 8, build multiple linear regression as a Bayesian
tool. This tool supports causal inference, but only when we analyze separate causal
models that help us determine which variables to include. For this reason, you'll
learn basic causal reasoning supported by causal graphs. These chapters emphasize
plotting results instead of attempting to interpret estimates of individual parame-
ters. Problems of model complexity—overfitting—also feature prominently. So
you’'ll also get an introduction to information theory and predictive model com-
parison in Chapter 7.

(3) The third part of the book, Chapters 9 through 12, presents generalized linear mod-
els of several types. Chapter 9 introduces Markov chain Monte Carlo, used to fit the
models in later chapters. Chapter 10 introduces maximum entropy as an explicit
procedure to help us design and interpret these models. Then Chapters 11 and 12
detail the models themselves.

(4) The last part, Chapters 13 through 16, gets around to multilevel models, as well as
specialized models that address measurement error, missing data, and spatial co-
variation. This material is fairly advanced, but it proceeds in the same mechanistic
way as earlier material. Chapter 16 departs from the rest of the book in deploying
models which are not of the generalized linear type but are rather scientific models
expressed directly as statistical models.

The final chapter, Chapter 17, returns to some of the issues raised in this first one.

At the end of each chapter, there are practice problems ranging from easy to hard. These
problems help you test your comprehension. The harder ones expand on the material, intro-
ducing new examples and obstacles. Some of the hard problems are quite hard. Don’t worry,
if you get stuck from time to time. Working in groups is a good way to get unstuck, just like
in real research.



2 Small Worlds and Large Worlds

When Cristoforo Colombo (Christopher Columbus) infamously sailed west in the year
1492, he believed that the Earth was spherical. In this, he was like most educated people of
his day. He was unlike most people, though, in that he also believed the planet was much
smaller than it actually is—only 30,000 km around its middle instead of the actual 40,000
km (FIGURE 2.1).%” This was one of the most consequential mistakes in European history. If
Colombo had believed instead that the Earth was 40,000 km around, he would have correctly
reasoned that his fleet could not carry enough food and potable water to complete a journey
all the way westward to Asia. But at 30,000 km around, Asia would lie a bit west of the coast
of California. It was possible to carry enough supplies to make it that far. Emboldened in
part by his unconventional estimate, Colombo set sail, eventually landing in the Bahamas.

Colombo made a prediction based upon his view that the world was small. But since he
lived in a large world, aspects of the prediction were wrong. In his case, the error was lucky.
His small world model was wrong in an unanticipated way: There was a lot of land in the
way. If he had been wrong in the expected way, with nothing but ocean between Europe and
Asia, he and his entire expedition would have run out of supplies long before reaching the
East Indies.

Colombo’s small and large worlds provide a contrast between model and reality. All sta-
tistical modeling has these two frames: the small world of the model itself and the large world
we hope to deploy the model in.*® Navigating between these two worlds remains a central
challenge of statistical modeling. The challenge is greater when we forget the distinction.

The sMALL WORLD is the self-contained logical world of the model. Within the small
world, all possibilities are nominated. There are no pure surprises, like the existence of a huge
continent between Europe and Asia. Within the small world of the model, it is important to
be able to verify the model’s logic, making sure that it performs as expected under favorable
assumptions. Bayesian models have some advantages in this regard, as they have reasonable
claims to optimality: No alternative model could make better use of the information in the
data and support better decisions, assuming the small world is an accurate description of the
real world.*

The LARGE WORLD is the broader context in which one deploys a model. In the large
world, there may be events that were not imagined in the small world. Moreover, the model
is always an incomplete representation of the large world, and so will make mistakes, even
if all kinds of events have been properly nominated. The logical consistency of a model in
the small world is no guarantee that it will be optimal in the large world. But it is certainly a
warm comfort.

19
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In this chapter, you will begin to build Bayesian models. The way that Bayesian models
learn from evidence is arguably optimal in the small world. When their assumptions approx-
imate reality, they also perform well in the large world. But large world performance has to
be demonstrated rather than logically deduced. Passing back and forth between these two
worlds allows both formal methods, like Bayesian inference, and informal methods, like peer
review, to play an indispensable role.

This chapter focuses on the small world. It explains probability theory in its essential
form: counting the ways things can happen. Bayesian inference arises automatically from
this perspective. Then the chapter presents the stylized components of a Bayesian statistical
model, a model for learning from data. Then it shows you how to animate the model, to
produce estimates.

All this work provides a foundation for the next chapter, in which youll learn to sum-
marize Bayesian estimates, as well as begin to consider large world obligations.

Rethinking: Fast and frugal in the large world. The natural world is complex, as trying to do science
serves to remind us. Yet everything from the humble tick to the industrious squirrel to the idle sloth
manages to frequently make adaptive decisions. But it’s a good bet that most animals are not Bayesian,
if only because being Bayesian is expensive and depends upon having a good model. Instead, animals
use various heuristics that are fit to their environments, past or present. These heuristics take adaptive
shortcuts and so may outperform a rigorous Bayesian analysis, once costs of information gathering
and processing (and overfitting, Chapter 7) are taken into account.*> Once you already know which
information to ignore or attend to, being fully Bayesian is a waste. It’s neither necessary nor sufficient
for making good decisions, as real animals demonstrate. But for human animals, Bayesian analysis
provides a general way to discover relevant information and process it logically. Just don’t think that
it is the only way.

2.1. The garden of forking data

Our goal in this section will be to build Bayesian inference up from humble beginnings,
so there is no superstition about it. Bayesian inference is really just counting and comparing
of possibilities. Consider by analogy Jorge Luis Borges’ short story “The Garden of Forking
Paths” The story is about a man who encounters a book filled with contradictions. In most
books, characters arrive at plot points and must decide among alternative paths. A protag-
onist may arrive at a man’s home. She might kill the man, or rather take a cup of tea. Only
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one of these paths is taken—murder or tea. But the book within Borges’ story explores all
paths, with each decision branching outward into an expanding garden of forking paths.

This is the same device that Bayesian inference offers. In order to make good inference
about what actually happened, it helps to consider everything that could have happened.
A Bayesian analysis is a garden of forking data, in which alternative sequences of events
are cultivated. As we learn about what did happen, some of these alternative sequences are
pruned. In the end, what remains is only what is logically consistent with our knowledge.

This approach provides a quantitative ranking of hypotheses, a ranking that is maximally
conservative, given the assumptions and data that go into it. The approach cannot guarantee
a correct answer, on large world terms. But it can guarantee the best possible answer, on
small world terms, that could be derived from the information fed into it.

Consider the following toy example.

2.1.1. Counting possibilities. Suppose theres a bag, and it contains four marbles. These
marbles come in two colors: blue and white. We know there are four marbles in the bag,
but we don’t know how many are of each color. We do know that there are five possibilities:
(1) [0000],(2) [@000],(3) [@@00], (4) [@@@®O], (5) (@ ® ®@®]. These are the only
possibilities consistent with what we know about the contents of the bag. Call these five
possibilities the conjectures.

Our goal is to figure out which of these conjectures is most plausible, given some evi-
dence about the contents of the bag. We do have some evidence: A sequence of three mar-
bles is pulled from the bag, one at a time, replacing the marble each time and shaking the bag
before drawing another marble. The sequence that emerges is: ® O@®, in that order. These
are the data.

So now let’s plant the garden and see how to use the data to infer what’s in the bag.
Let’s begin by considering just the single conjecture, [ OO O], that the bag contains one
blue and three white marbles. On the first draw from the bag, one of four things could
happen, corresponding to one of four marbles in the bag. So we can visualize the possibilities
branching outward:

o O

(©) (©)

QL
Notice that even though the three white marbles look the same from a data perspective—
we just record the color of the marbles, after all—they are really different events. This is
important, because it means that there are three more ways to see O than to see @.

Now consider the garden as we get another draw from the bag. It expands the garden
out one layer:

Now there are 16 possible paths through the garden, one for each pair of draws. On the
second draw from the bag, each of the paths above again forks into four possible paths. Why?
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FIGURE 2.2. The 64 possible paths generated by assuming the bag contains
one blue and three white marbles.

Because we believe that our shaking of the bag gives each marble a fair chance at being drawn,
regardless of which marble was drawn previously. The third layer is built in the same way,
and the full garden is shown in FIGURE 2.2. There are 4° = 64 possible paths in total.

As we consider each draw from the bag, some of these paths are logically eliminated.
The first draw tuned out to be @, recall, so the three white paths at the bottom of the garden
are eliminated right away. If you imagine the real data tracing out a path through the garden,
it must have passed through the one blue path near the origin. The second draw from the
bag produces O, so three of the paths forking out of the first blue marble remain. As the
data trace out a path, we know it must have passed through one of those three white paths
(after the first blue path), but we don’t know which one, because we recorded only the color
of each marble. Finally, the third draw is @. Each of the remaining three paths in the middle
layer sustain one blue path, leaving a total of three ways for the sequence ® O @ to appear,
assuming the bag contains [@ OO O]. FIGURE 2.3 shows the garden again, now with logically
eliminated paths grayed out. We can’t be sure which of those three paths the actual data took.
But as long as we're considering only the possibility that the bag contains one blue and three
white marbles, we can be sure that the data took one of those three paths. Those are the only
paths consistent with both our knowledge of the bag’s contents (four marbles, white or blue)
and the data (@0 ®).

This demonstrates that there are three (out of 64) ways for a bag containing [@ OO O]
to produce the data ® O®. We have no way to decide among these three ways. The infer-
ential power comes from comparing this count to the numbers of ways each of the other
conjectures of the bag’s contents could produce the same data. For example, consider the
conjecture [OOOO]. There are zero ways for this conjecture to produce the observed data,
because even one @ is logically incompatible with it. The conjecture (@ @ @ @] is likewise
logically incompatible with the data. So we can eliminate these two conjectures, because
neither provides even a single path that is consistent with the data.

FIGURE 2.4 displays the full garden now, for the remaining three conjectures: [@ OO QO],
(@@00], and [@®@@O]. The upper-left wedge displays the same garden as FIGURE 2.3.
The upper-right shows the analogous garden for the conjecture that the bag contains three
blue marbles and one white marble. And the bottom wedge shows the garden for two blue
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FIGURE 2.3. After eliminating paths inconsistent with the observed se-
quence, only 3 of the 64 paths remain.

and two white marbles. Now we count up all of the ways each conjecture could produce the
observed data. For one blue and three white, there are three ways, as we counted already. For
two blue and two white, there are eight paths forking through the garden that are logically
consistent with the observed sequence. For three blue and one white, there are nine paths
that survive.

To summarize, we've considered five different conjectures about the contents of the bag,
ranging from zero blue marbles to four blue marbles. For each of these conjectures, we've
counted up how many sequences, paths through the garden of forking data, could potentially
produce the observed data, ® O @:

Conjecture Ways to produce @ O @

[O00O0] 0x4x0=0
(@000] 1x3x1=3
(@@00] 2x2x2=28
(@@@O] 3x1x3=9
(000@] 4x0x4=0

Notice that the number of ways to produce the data, for each conjecture, can be computed
by first counting the number of paths in each “ring” of the garden and then by multiplying
these counts together. This is just a computational device. It tells us the same thing as F1G-
URE 2.4, but without having to draw the garden. The fact that numbers are multiplied during
calculation doesn’t change the fact that this is still just counting of logically possible paths.
This point will come up again, when you meet a formal representation of Bayesian inference.

So what good are these counts? By comparing these counts, we have part of a solution
for a way to rate the relative plausibility of each conjectured bag composition. But it’s only a
part of a solution, because in order to compare these counts we first have to decide how many
ways each conjecture could itself be realized. We might argue that when we have no reason
to assume otherwise, we can just consider each conjecture equally plausible and compare the
counts directly. But often we do have reason to assume otherwise.
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FIGURE 2.4. The garden of forking data, showing for each possible compo-
sition of the bag the forking paths that are logically compatible with the data.

Rethinking: Justification. My justification for using paths through the garden as measures of relative
plausibility is humble: If we wish to reason about plausibility and remain consistent with ordinary
logic—statements about true and false—then we should obey this procedure.*! There are other justi-
fications that lead to the same mathematical procedure. Regardless of how you choose to philosoph-
ically justify it, notice that it actually works. Justifications and philosophy motivate procedures, but
it is the results that matter. The many successful real world applications of Bayesian inference may
be all the justification you need. Twentieth century opponents of Bayesian data analysis argued that
Bayesian inference was easy to justify, but hard to apply.*? That is luckily no longer true. Indeed, the
opposite is often true—scientists are switching to Bayesian approaches because it lets them use the
models they want. Just be careful not to assume that because Bayesian inference is justified that no
other approach can also be justified. Golems come in many types, and some of all types are useful.
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2.1.2. Combining other information. We may have additional information about the rel-
ative plausibility of each conjecture. This information could arise from knowledge of how
the contents of the bag were generated. It could also arise from previous data. Whatever the
source, it would help to have a way to combine different sources of information to update
the plausibilities. Luckily there is a natural solution: Just multiply the counts.

To grasp this solution, suppose we're willing to say each conjecture is equally plausible
at the start. So we just compare the counts of ways in which each conjecture is compatible
with the observed data. This comparison suggests that [@ @ ® O] is slightly more plausible
than (@ @ O O], and both are about three times more plausible than [@ OO O]. Since these
are our initial counts, and we are going to update them next, let’s label them prior.

Now suppose we draw another marble from the bag to get another observation: ®. Now
you have two choices. You could start all over again, making a garden with four layers to trace
out the paths compatible with the data sequence ® O@®®. Or you could take the previous
counts—the prior counts—over conjectures (0, 3, 8, 9, 0) and just update them in light of the
new observation. It turns out that these two methods are mathematically identical, as long
as the new observation is logically independent of the previous observations.

Here’s how to do it. First we count the numbers of ways each conjecture could produce
the new observation, @. Then we multiply each of these new counts by the prior numbers
of ways for each conjecture. In table form:

Waysto  Prior
Conjecture produce ® counts New count

[O00O0] 0 0 0x0=0
(@000] 1 3 3x1=3
(@@00] 2 8 8§ x2=16
(@e@@O] 3 9 9x3=27
(e00@@] 4 0 0x4=0

The new counts in the right-hand column above summarize all the evidence for each conjec-
ture. As new data arrive, and provided those data are independent of previous observations,
then the number of logically possible ways for a conjecture to produce all the data up to that
point can be computed just by multiplying the new count by the old count.

This updating approach amounts to nothing more than asserting that (1) when we have
previous information suggesting there are Worior Ways for a conjecture to produce a previous
observation Dpyior and (2) we acquire new observations Dy that the same conjecture can
produce in Wpe,, ways, then (3) the number of ways the conjecture can account for both
Dprior as well as Dyey, is just the product Wiior X Whey. For example, in the table above the
conjecture [@ ® OO] has Wpior = 8 ways to produce Dpior = @ O @. It also has Wyey, = 2
ways to produce the new observation Dpe,, = @. So there are 8 X 2 = 16 ways for the
conjecture to produce both Dprior and Diey. Why multiply? Multiplication is just a shortcut
to enumerating and counting up all of the paths through the garden that could produce all
the observations.

In this example, the prior data and new data are of the same type: marbles drawn from
the bag. But in general, the prior data and new data can be of different types. Suppose for
example that someone from the marble factory tells you that blue marbles are rare. So for
every bag containing (@ @ ® O], they made two bags containing [@ ® OO] and three bags
containing [@ OO O]. They also ensured that every bag contained at least one blue and one
white marble. We can update our counts again:
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Factory
Conjecture Prior count count New count
[OO00O0] 0 0 0x0=0
(@000] 3 3 3x3=9
(0@0OO0] 16 2 16 x 2 =32
(0@@O] 27 1 27 x1=27
(0000@] 0 0 0x0=0

Now the conjecture [@ ® O O] is most plausible, but barely better than (@ @ ® O]. Is there a
threshold difference in these counts at which we can safely decide that one of the conjectures
is the correct one? You'll spend the next chapter exploring that question.

Rethinking: Original ignorance. Which assumption should we use, when there is no previous infor-
mation about the conjectures? The most common solution is to assign an equal number of ways that
each conjecture could be correct, before seeing any data. This is sometimes known as the PRINCIPLE
OF INDIFFERENCE: When there is no reason to say that one conjecture is more plausible than another,
weigh all of the conjectures equally. This book does not use nor endorse “ignorance” priors. As we'll
see in later chapters, the structure of the model and the scientific context always provide information
that allows us to do better than ignorance.

For the sort of problems we examine in this book, the principle of indifference results in infer-
ences very comparable to mainstream non-Bayesian approaches, most of which contain implicit equal
weighting of possibilities. For example a typical non-Bayesian confidence interval weighs equally all
of the possible values a parameter could take, regardless of how implausible some of them are. In
addition, many non-Bayesian procedures have moved away from equal weighting, through the use of
penalized likelihood and other methods. We'll discuss this in Chapter 7.

2.1.3. From counts to probability. It is helpful to think of this strategy as adhering to a
principle of honest ignorance: When we dont know what caused the data, potential causes
that may produce the data in more ways are more plausible. This leads us to count paths
through the garden of forking data. We're counting the implications of assumptions.

It’s hard to use these counts though, so we almost always standardize them in a way that
transforms them into probabilities. Why is it hard to work with the counts? First, since
relative value is all that matters, the size of the counts 3, 8, and 9 contain no information of
value. They could just as easily be 30, 80, and 90. The meaning would be the same. It’s just
the relative values that matter. Second, as the amount of data grows, the counts will very
quickly grow very large and become difficult to manipulate. By the time we have 10 data
points, there are already more than one million possible sequences. We'll want to analyze
data sets with thousands of observations, so explicitly counting these things isn't practical.

Luckily, there’s a mathematical way to compress all of this. Specifically, we define the
updated plausibility of each possible composition of the bag, after seeing the data, as:

plausibility of [@ OO O] after seeing ® O @
o<
ways [@ OOO] can produce @O @
X

prior plausibility [@ 00 O]

That little o means proportional to. We want to compare the plausibility of each possible bag
composition. So it’ll be helpful to define p as the proportion of marbles that are blue. For
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(@000Q],p=1/4=0.25. Also let Dy,ey = @ O®. And now we can write:
plausibility of p after Dyey o< ways p can produce Dy, X prior plausibility of p

The above just means that for any value p can take, we judge the plausibility of that value p
as proportional to the number of ways it can get through the garden of forking data. This
expression just summarizes the calculations you did in the tables of the previous section.

Finally, we construct probabilities by standardizing the plausibility so that the sum of
the plausibilities for all possible conjectures will be one. All you need to do in order to stan-
dardize is to add up all of the products, one for each value p can take, and then divide each
product by the sum of products:

ways p can produce Dy, X prior plausibility p

lausibility of p after Dpey =
plausibility of p after summ of products

A worked example is needed for this to really make sense. So consider again the table from
before, now updated using our definitions of p and “plausibility”:

Ways to
Possible composition ~p  produce data Plausibility
[O00O0] 0 0 0
(@000] 0.25 3 0.15
(@@00] 0.5 8 0.40
(@@®@O0] 0.75 9 0.45
(00@@] 1 0 0

You can quickly compute these plausibilities in R:

ways <- c(©® , 3,8, 9, 0)
ways/sum(ways)

[1] 0.00 0.15 0.40 0.45 0.00

The values in ways are the products mentioned before. And sum(ways) is the denominator
“sum of products” in the expression near the top of the page.

These plausibilities are also probabilities—they are non-negative (zero or positive) real
numbers that sum to one. And all of the mathematical things you can do with probabilities
you can also do with these values. Specifically, each piece of the calculation has a direct
partner in applied probability theory. These partners have stereotyped names, so it’s worth
learning them, as you'll see them again and again.

e A conjectured proportion of blue marbles, p, is usually called a PARAMETER value.
It’s just a way of indexing possible explanations of the data.

o The relative number of ways that a value p can produce the data is usually called
a LIKELIHOOD. It is derived by enumerating all the possible data sequences that
could have happened and then eliminating those sequences inconsistent with the
data.

e The prior plausibility of any specific p is usually called the PRIOR PROBABILITY.

e The new, updated plausibility of any specific p is usually called the POSTERIOR
PROBABILITY.

In the next major section, you’ll meet the more formal notation for these objects and see how
they compose a simple statistical model.

R code
2.1
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Rethinking: Randomization. When you shuffle a deck of cards or assign subjects to treatments by
flipping a coin, it is common to say that the resulting deck and treatment assignments are randomized.
What does it mean to randomize something? It just means that we have processed the thing so that we
know almost nothing about its arrangement. Shuffling a deck of cards changes our state of knowledge,
so that we no longer have any specific information about the ordering of cards. However, the bonus
that arises from this is that, if we really have shuffled enough to erase any prior knowledge of the
ordering, then the order the cards end up in is very likely to be one of the many orderings with high
INFORMATION ENTROPY. The concept of information entropy will be increasingly important as we
progress, and will be unpacked in Chapters 7 and 10.

2.2. Building a model

By working with probabilities instead of raw counts, Bayesian inference is made much
easier, but it looks much harder. So in this section, we follow up on the garden of forking
data by presenting the conventional form of a Bayesian statistical model. The toy example
we'll use here has the anatomy of a typical statistical analysis, so it’s the style that youll grow
accustomed to. But every piece of it can be mapped onto the garden of forking data. The
logic is the same.

Suppose you have a globe representing our planet, the Earth. This version of the world
is small enough to hold in your hands. You are curious how much of the surface is covered
in water. You adopt the following strategy: You will toss the globe up in the air. When you
catch it, you will record whether or not the surface under your right index finger is water or
land. Then you toss the globe up in the air again and repeat the procedure.**> This strategy
generates a sequence of samples from the globe. The first nine samples might look like:

WLWWWLWLW

where W indicates water and L indicates land. So in this example you observe six W (water)

observations and three L (land) observations. Call this sequence of observations the data.
To get the logic moving, we need to make assumptions, and these assumptions constitute

the model. Designing a simple Bayesian model benefits from a design loop with three steps.

(1) Data story: Motivate the model by narrating how the data might arise.
(2) Update: Educate your model by feeding it the data.
(3) Evaluate: All statistical models require supervision, leading to model revision.

The next sections walk through these steps, in the context of the globe tossing evidence.

2.2.1. A data story. Bayesian data analysis usually means producing a story for how the
data came to be. This story may be descriptive, specifying associations that can be used to
predict outcomes, given observations. Or it may be causal, a theory of how some events
produce other events. Typically, any story you intend to be causal may also be descriptive.
But many descriptive stories are hard to interpret causally. But all data stories are complete,
in the sense that they are sufficient for specifying an algorithm for simulating new data. In
the next chapter, you'll see examples of doing just that, as simulating new data is useful not
only for model criticism but also for model construction.

You can motivate your data story by trying to explain how each piece of data is born. This
usually means describing aspects of the underlying reality as well as the sampling process.
The data story in this case is simply a restatement of the sampling process:

(1) The true proportion of water covering the globe is p.
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(2) A single toss of the globe has a probability p of producing a water (W) observation.
It has a probability 1 — p of producing a land (L) observation.
(3) Each toss of the globe is independent of the others.

The data story is then translated into a formal probability model. This probability model is
easy to build, because the construction process can be usefully broken down into a series of
component decisions. Before meeting these components, however, it’ll be useful to visualize
how a Bayesian model behaves. After you've become acquainted with how such a model
learns from data, we’ll pop the machine open and investigate its engineering.

Rethinking: The value of storytelling. The data story has value, even if you quickly abandon it and
never use it to build a model or simulate new observations. Indeed, it is important to eventually
discard the story, because many different stories correspond to the same model. As a result, showing
thata model does a good job does not in turn uniquely support our data story. Still, the story has value
because in trying to outline the story, often one realizes that additional questions must be answered.
Most data stories are much more specific than are the verbal hypotheses that inspire data collection.
Hypotheses can be vague, such as “it's more likely to rain on warm days” When you are forced to
consider sampling and measurement and make a precise statement of how temperature predicts rain,
many stories and resulting models will be consistent with the same vague hypothesis. Resolving that
ambiguity often leads to important realizations and model revisions, before any model is fit to data.

2.2.2. Bayesian updating. Our problem is one of using the evidence—the sequence of globe
tosses—to decide among different possible proportions of water on the globe. These propor-
tions are like the conjectured marbles inside the bag, from earlier in the chapter. Each possi-
ble proportion may be more or less plausible, given the evidence. A Bayesian model begins
with one set of plausibilities assigned to each of these possibilities. These are the prior plau-
sibilities. Then it updates them in light of the data, to produce the posterior plausibilities.
This updating process is a kind of learning, called BAYESIAN UPDATING. The details of this
updating—how it is mechanically achieved—can wait until later in the chapter. For now,
let’s look only at how such a machine behaves.

For the sake of the example only, let's program our Bayesian machine to initially assign
the same plausibility to every proportion of water, every value of p. We'll do better than this
later. Now look at the top-left plot in FIGURE 2.5. The dashed horizontal line represents this
initial plausibility of each possible value of p. After seeing the first toss, which is a “W,” the
model updates the plausibilities to the solid line. The plausibility of p = 0 has now fallen
to exactly zero—the equivalent of “impossible” Why? Because we observed at least one
speck of water on the globe, so now we know there is some water. The model executes this
logic automatically. You don’t have it instruct it to account for this consequence. Probability
theory takes care of it for you, because it is essentially counting paths through the garden of
forking data, as in the previous section.

Likewise, the plausibility of p > 0.5 has increased. This is because there is not yet any
evidence that there is land on the globe, so the initial plausibilities are modified to be consis-
tent with this. Note however that the relative plausibilities are what matter, and there isn’t
yet much evidence. So the differences in plausibility are not yet very large. In this way, the
amount of evidence seen so far is embodied in the plausibilities of each value of p.

In the remaining plots in FIGURE 2.5, the additional samples from the globe are intro-
duced to the model, one at a time. Each dashed curve is just the solid curve from the previous
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FIGURE 2.5. How a Bayesian model learns. Each toss of the globe produces
an observation of water (W) or land (L). The model’s estimate of the pro-
portion of water on the globe is a plausibility for every possible value. The
lines and curves in this figure are these collections of plausibilities. In each
plot, previous plausibilities (dashed curve) are updated in light of the latest
observation to produce a new set of plausibilities (solid curve).

plot, moving left to right and top to bottom. Every time a “W” is seen, the peak of the plausi-
bility curve moves to the right, towards larger values of p. Every time an “L” is seen, it moves
the other direction. The maximum height of the curve increases with each sample, meaning
that fewer values of p amass more plausibility as the amount of evidence increases. As each
new observation is added, the curve is updated consistent with all previous observations.
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Notice that every updated set of plausibilities becomes the initial plausibilities for the
next observation. Every conclusion is the starting point for future inference. However, this
updating process works backwards, as well as forwards. Given the final set of plausibilities
in the bottom-right plot of FIGURE 2.5, and knowing the final observation (W), it is possible
to mathematically divide out the observation, to infer the previous plausibility curve. So the
data could be presented to your model in any order, or all at once even. In most cases, you
will present the data all at once, for the sake of convenience. But it’s important to realize that
this merely represents abbreviation of an iterated learning process.

Rethinking: Sample size and reliable inference. It is common to hear that there is a minimum num-
ber of observations for a useful statistical estimate. For example, there is a widespread superstition
that 30 observations are needed before one can use a Gaussian distribution. Why? In non-Bayesian
statistical inference, procedures are often justified by the method’s behavior at very large sample sizes,
so-called asymptotic behavior. As a result, performance at small samples sizes is questionable.

In contrast, Bayesian estimates are valid for any sample size. This does not mean that more data
isn’t helpful—it certainly is. Rather, the estimates have a clear and valid interpretation, no matter the
sample size. But the price for this power is dependency upon the initial plausibilities, the prior. If
the prior is a bad one, then the resulting inference will be misleading. There’s no free lunch,** when
it comes to learning about the world. A Bayesian golem must choose an initial plausibility, and a
non-Bayesian golem must choose an estimator. Both golems pay for lunch with their assumptions.

2.2.3. Evaluate. The Bayesian model learns in a way that is demonstrably optimal, provided
that it accurately describes the real, large world. This is to say that your Bayesian machine
guarantees perfect inference within the small world. No other way of using the available
information, beginning with the same state of information, could do better.

Don’t get too excited about this logical virtue, however. The calculations may malfunc-
tion, so results always have to be checked. And if there are important differences between
the model and reality, then there is no logical guarantee of large world performance. And
even if the two worlds did match, any particular sample of data could still be misleading. So
it's worth keeping in mind at least two cautious principles.

First, the model’s certainty is no guarantee that the model is a good one. As the amount
of data increases, the globe tossing model will grow increasingly sure of the proportion of
water. This means that the curves in FIGURE 2.5 will become increasingly narrow and tall,
restricting plausible values within a very narrow range. But models of all sorts—Bayesian or
not—can be very confident about an inference, even when the model is seriously misleading.
This is because the inferences are conditional on the model. What your model is telling you
is that, given a commitment to this particular model, it can be very sure that the plausible
values are in a narrow range. Under a different model, things might look differently. There
will be examples in later chapters.

Second, it is important to supervise and critique your model’s work. Consider again the
fact that the updating in the previous section works in any order of data arrival. We could
shuffle the order of the observations, as long as six W’s and three Ls remain, and still end up
with the same final plausibility curve. That is only true, however, because the model assumes
that order is irrelevant to inference. When something is irrelevant to the machine, it won’t
affect the inference directly. But it may affect it indirectly, because the data will depend upon
order. So it is important to check the model’s inferences in light of aspects of the data it does
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not know about. Such checks are an inherently creative enterprise, left to the analyst and the
scientific community. Golems are very bad at it.

In Chapter 3, you'll see some examples of such checks. For now, note that the goal is
not to test the truth value of the model’s assumptions. We know the model’s assumptions
are never exactly right, in the sense of matching the true data generating process. Therefore
there’s no point in checking if the model is true. Failure to conclude that a model is false
must be a failure of our imagination, not a success of the model. Moreover, models do not
need to be exactly true in order to produce highly precise and useful inferences. All manner
of small world assumptions about error distributions and the like can be violated in the large
world, but a model may still produce a perfectly useful estimate. This is because models
are essentially information processing machines, and there are some surprising aspects of
information that cannot be easily captured by framing the problem in terms of the truth of
assumptions.*®

Instead, the objective is to check the model’s adequacy for some purpose. This usually
means asking and answering additional questions, beyond those that originally constructed
the model. Both the questions and answers will depend upon the scientific context. So it’s
hard to provide general advice. There will be many examples, throughout the book, and
of course the scientific literature is replete with evaluations of the suitability of models for
different jobs—prediction, comprehension, measurement, and persuasion.

Rethinking: Deflationary statistics. It may be that Bayesian inference is the best general purpose
method of inference known. However, Bayesian inference is much less powerful than wed like it
to be. There is no approach to inference that provides universal guarantees. No branch of applied
mathematics has unfettered access to reality, because math is not discovered, like the proton. Instead
it is invented, like the shovel.*6

2.3. Components of the model

Now that you've seen how the Bayesian model behaves, it’s time to open up the machine
and learn how it works. Consider three different things that we counted in the previous
sections.

(1) The number of ways each conjecture could produce an observation
(2) The accumulated number of ways each conjecture could produce the entire data
(3) The initial plausibility of each conjectured cause of the data

Each of these things has a direct analog in conventional probability theory. And so the usual
way we build a statistical model involves choosing distributions and devices for each that
represent the relative numbers of ways things can happen.

In this section, you'll meet these components in some detail and see how each relates to
the counting you did earlier in the chapter. The job in front of us is really nothing more than
naming all of the variables and defining each. We'll take these tasks in turn.

2.3.1. Variables. Variables are just symbols that can take on different values. In a scientific
context, variables include things we wish to infer, such as proportions and rates, as well as
things we might observe, the data. In the globe tossing model, there are three variables.

The first variable is our target of inference, p, the proportion of water on the globe. This
variable cannot be observed. Unobserved variables are usually called PARAMETERS. But
while p itself is unobserved, we can infer it from the other variables.
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The other variables are the observed variables, the counts of water and land. Call the
count of water W and the count of land L. The sum of these two variables is the number of
globe tosses: N = W + L.

2.3.2. Definitions. Once we have the variables listed, we then have to define each of them.
In defining each, we build a model that relates the variables to one another. Remember, the
goal is to count all the ways the data could arise, given the assumptions. This means, as in
the globe tossing model, that for each possible value of the unobserved variables, such as
p, we need to define the relative number of ways—the probability—that the values of each
observed variable could arise. And then for each unobserved variable, we need to define the
prior plausibility of each value it could take. I appreciate that this is all a bit abstract. So here
are the specifics, for the globe.

2.3.2.1. Observed variables. For the count of water W and land L, we define how plau-
sible any combination of W and L would be, for a specific value of p. This is very much like
the marble counting we did earlier in the chapter. Each specific value of p corresponds to a
specific plausibility of the data, as in FIGURE 2.5.

So that we don't have to literally count, we can use a mathematical function that tells
us the right plausibility. In conventional statistics, a distribution function assigned to an
observed variable is usually called a LikELIHOOD. That term has special meaning in non-
Bayesian statistics, however.*” We will be able to do things with our distributions that non-
Bayesian models forbid. So I will sometimes avoid the term likelihood and just talk about
distributions of variables. But when someone says, “likelihood,” they will usually mean a
distribution function assigned to an observed variable.

In the case of the globe tossing model, the function we need can be derived directly from
the data story. Begin by nominating all of the possible events. There are two: water (W) and
land (L). There are no other events. The globe never gets stuck to the ceiling, for example.
When we observe a sample of W’s and Ls of length N (nine in the actual sample), we need
to say how likely that exact sample is, out of the universe of potential samples of the same
length. That might sound challenging, but it’s the kind of thing you get good at very quickly,
once you start practicing.

In this case, once we add our assumptions that (1) every toss is independent of the other
tosses and (2) the probability of W is the same on every toss, probability theory provides
a unique answer, known as the binomial distribution. This is the common “coin tossing”
distribution. And so the probability of observing W waters and L lands, with a probability p
of water on each toss, is:

(W+L)!

Pr(W, Llp) = o p (1 - p)t

Read the above as:

The counts of “water” W and “land’ L are distributed binomially, with prob-
ability p of “water” on each toss.

And the binomial distribution formula is built into R, so you can easily compute the likeli-
hood of the data—six W’s in nine tosses—under any value of p with:

dbinom( 6 , size=9 , prob=0.5 )

[1] 0.1640625

R code



34 2. SMALL WORLDS AND LARGE WORLDS

That number is the relative number of ways to get six water, holding pat 0.5and N = W+ L
at nine. So it does the job of counting relative number of paths through the garden. Change
the 0.5 to any other value, to see how the value changes.

Much later in the book, in Chapter 10, we'll see that the binomial distribution is rather
special, because it represents the MAXIMUM ENTROPY way to count binary events. “Maxi-
mum entropy” might sound like a bad thing. Isn't entropy disorder? Doesn't “maximum
entropy” mean the death of the universe? Actually it means that the distribution contains
no additional information other than: There are two events, and the probabilities of each
in each trial are p and 1 — p. Chapter 10 explains this in more detail, and the details can
certainly wait.

Overthinking: Names and probability distributions. The “d” in dbinom stands for density. Func-
tions named in this way almost always have corresponding partners that begin with “r” for random

« »

samples and that begin with “p” for cumulative probabilities. See for example the help ?dbinom.

Rethinking: A central role for likelihood. A great deal of ink has been spilled focusing on how
Bayesian and non-Bayesian data analyses differ. Focusing on differences is useful, but sometimes
it distracts us from fundamental similarities. Notably, the most influential assumptions in both
Bayesian and many non-Bayesian models are the distributions assigned to data, the likelihood func-
tions. The likelihoods influence inference for every piece of data, and as sample size increases, the
likelihood matters more and more. This helps to explain why Bayesian and non-Bayesian inferences
are often so similar. If we had to explain Bayesian inference using only one aspect of it, we should
describe likelihood, not priors.

2.3.2.2. Unobserved variables. The distributions we assign to the observed variables typ-
ically have their own variables. In the binomial above, there is p, the probability of sampling
water. Since p is not observed, we usually call it a PARAMETER. Even though we cannot
observe p, we still have to define it.

In future chapters, there will be more parameters in your models. In statistical modeling,
many of the most common questions we ask about data are answered directly by parameters:

What is the average difference between treatment groups?

How strong is the association between a treatment and an outcome?
Does the effect of the treatment depend upon a covariate?

How much variation is there among groups?

You'll see how these questions become extra parameters inside the distribution function we
assign to the data.

For every parameter you intend your Bayesian machine to consider, you must provide a
distribution of prior plausibility, its PRIOR. A Bayesian machine must have an initial plausi-
bility assignment for each possible value of the parameter, and these initial assignments do
useful work. When you have a previous estimate to provide to the machine, that can become
the prior, as in the steps in FIGURE 2.5. Back in FIGURE 2.5, the machine did its learning one
piece of data at a time. As a result, each estimate becomes the prior for the next step. But this
doesn’t resolve the problem of providing a prior, because at the dawn of time, when N = 0,
the machine still had an initial state of information for the parameter p: a flat line specifying
equal plausibility for every possible value.
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So where do priors come from? They are both engineering assumptions, chosen to help
the machine learn, and scientific assumptions, chosen to reflect what we know about a phe-
nomenon. The flat prior in FIGURE 2.5 is very common, but it is hardly ever the best prior.
Later chapters will focus on prior choice a lot more.

There is a school of Bayesian inference that emphasizes choosing priors based upon the
personal beliefs of the analyst.*® While this suBjECTIVE BAYESIAN approach thrives in some
statistics and philosophy and economics programs, it is rare in the sciences. Within Bayesian
data analysis in the natural and social sciences, the prior is considered to be just part of
the model. As such it should be chosen, evaluated, and revised just like all of the other
components of the model. In practice, the subjectivist and the non-subjectivist will often
analyze data in nearly the same way.

None of this should be understood to mean that any statistical analysis is not inherently
subjective, because of course it is—lots of little subjective decisions are involved in all parts
of science. It’s just that priors and Bayesian data analysis are no more inherently subjective
than are likelihoods and the repeat sampling assumptions required for significance testing.*’
Anyone who has visited a statistics help desk at a university has probably experienced this
subjectivity—statisticians do not in general exactly agree on how to analyze anything but the
simplest of problems. The fact that statistical inference uses mathematics does not imply that
there is only one reasonable or useful way to conduct an analysis. Engineering uses math as
well, but there are many ways to build a bridge.

Beyond all of the above, there’s no law mandating we use only one prior. If you don’t
have a strong argument for any particular prior, then try different ones. Because the prior is
an assumption, it should be interrogated like other assumptions: by altering it and checking
how sensitive inference is to the assumption. No one is required to swear an oath to the
assumptions of a model, and no set of assumptions deserves our obedience.

Overthinking: Prior as probability distribution. You could write the prior in the example here as:

Pr(p) = ——

1-0
The prior is a probability distribution for the parameter. In general, for a uniform prior from ato b, the
probability of any point in the interval is 1/(b — a). If you're bothered by the fact that the probability
of every value of p is 1, remember that every probability distribution must sum (integrate) to 1. The
expression 1/(b — a) ensures that the area under the flat line from a to b is equal to 1. There will be
more to say about this in Chapter 4.

1.

Rethinking: Datum or parameter? It is typical to conceive of data and parameters as completely
different kinds of entities. Data are measured and known; parameters are unknown and must be
estimated from data. Usefully, in the Bayesian framework the distinction between a datum and a
parameter is not so fundamental. Sometimes we observe a variable, but sometimes we do not. In that
case, the same distribution function applies, even though we didn’t observe the variable. As a result,
the same assumption can look like a “likelihood” or a “prior;” depending upon context, without any
change to the model. Much later in the book (Chapter 15), you'll see how to exploit this deep identity
between certainty (data) and uncertainty (parameters) to incorporate measurement error and missing
data into your modeling.
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Rethinking: Prior, prior pants on fire. Historically, some opponents of Bayesian inference objected
to the arbitrariness of priors. It’s true that priors are very flexible, being able to encode many different
states of information. If the prior can be anything, isn't it possible to get any answer you want? Indeed
itis. Regardless, after a couple hundred years of Bayesian calculation, it hasn't turned out that people
use priors to lie. If your goal is to lie with statistics, youd be a fool to do it with priors, because such a
lie would be easily uncovered. Better to use the more opaque machinery of the likelihood. Or better
yet—don't actually take this advicel—massage the data, drop some “outliers,” and otherwise engage
in motivated data transformation.

It is true though that choice of the likelihood is much more conventionalized than choice of prior.
But conventional choices are often poor ones, smuggling in influences that can be hard to discover.
In this regard, both Bayesian and non-Bayesian models are equally harried, because both traditions
depend heavily upon likelihood functions and conventionalized model forms. And the fact that the
non-Bayesian procedure doesn’t have to make an assumption about the prior is of little comfort. This
is because non-Bayesian procedures need to make choices that Bayesian ones do not, such as choice of
estimator or likelihood penalty. Often, such choices can be shown to be equivalent to some Bayesian
choice of prior or rather choice of loss function. (You'll meet loss functions later in Chapter 3.)

2.3.3. A model is born. With all the above work, we can now summarize our model. The
observed variables W and L are given relative counts through the binomial distribution. So
we can write, as a shortcut:

W ~ Binomial(N, p)

where N = W + L. The above is just a convention for communicating the assumption that
the relative counts of ways to realize W in N trials with probability p on each trial comes from
the binomial distribution. And the unobserved parameter p similarly gets:

p ~ Uniform(0, 1)

This means that p has a uniform—flat—prior over its entire possible range, from zero to one.
As I mentioned earlier, this is obviously not the best we could do, since we know the Earth
has more water than land, even if we do not know the exact proportion yet.

Next, let’s see how to use these assumptions to generate inference.

2.4. Making the model go

Once you have named all the variables and chosen definitions for each, a Bayesian model
can update all of the prior distributions to their purely logical consequences: the POSTERIOR
DISTRIBUTION. For every unique combination of data, likelihood, parameters, and prior,
there is a unique posterior distribution. This distribution contains the relative plausibility
of different parameter values, conditional on the data and model. The posterior distribution
takes the form of the probability of the parameters, conditional on the data. In this case, it
would be Pr(p|W, L), the probability of each possible value of p, conditional on the specific
W and L that we observed.

2.4.1. Bayes’ theorem. The mathematical definition of the posterior distribution arises from
Baves’ THEOREM. This is the theorem that gives Bayesian data analysis its name. But the
theorem itself is a trivial implication of probability theory. Here’s a quick derivation of it,
in the context of the globe tossing example. Really this will just be a re-expression of the
garden of forking data derivation from earlier in the chapter. What makes it look different
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is that it will use the rules of probability theory to coax out the updating rule. But it is still
just counting.
The joint probability of the data W and L and any particular value of p is:

Pr(W,L,p) = Pr(W, L|p) Pr(p)

This just says that the probability of W, L and p is the product of Pr(W, L|p) and the prior
probability Pr(p). This is like saying that the probability of rain and cold on the same day is
equal to the probability of rain, when it’s cold, times the probability that it’s cold. This much
is just definition. But it’s just as true that:

Pr(W, L, p) = Pr(p|W,L) Pr(W, L)

All T've done is reverse which probability is conditional, on the right-hand side. It is still a
true definition. It’s like saying that the probability of rain and cold on the same day is equal
to the probability that it’s cold, when it’s raining, times the probability of rain. Compare this
statement to the one in the previous paragraph.

Now since both right-hand sides above are equal to the same thing, Pr(W, L, p), they are
also equal to one another:

Pr(W, L|p) Pr(p) = Pr(p|W,L) Pr(W, L)
So we can now solve for the thing that we want, Pr(p|W, L):
Pr(W,L|p) Pr(p)
Pr(W,L)
And this is Bayes’ theorem. It says that the probability of any particular value of p, consid-
ering the data, is equal to the product of the relative plausibility of the data, conditional on

p, and the prior plausibility of p, divided by this thing Pr(W, L), which I'll call the average
probability of the data. In word form:

Probability of the data x Prior
Average probability of the data

Pr(p|W, L) =

Posterior =

The average probability of the data, Pr(W, L), can be confusing. It is commonly called
the “evidence” or the “average likelihood,” neither of which is a transparent name. The prob-
ability Pr(W, L) is literally the average probability of the data. Averaged over what? Averaged
over the prior. It’s job is just to standardize the posterior, to ensure it sums (integrates) to
one. In mathematical form:

Pr(W,L) = E(Pr(W,L|p)) = /Pr(W,Lyp) Pr(p)dp

The operator E means to take an expectation. Such averages are commonly called marginals
in mathematical statistics, and so you may also see this same probability called a marginal
likelihood. And the integral above just defines the proper way to compute the average over a
continuous distribution of values, like the infinite possible values of p.

The key lesson is that the posterior is proportional to the product of the prior and the
probability of the data. Why? Because for each specific value of p, the number of paths
through the garden of forking data is the product of the prior number of paths and the new
number of paths. Multiplication is just compressed counting. The average probability on
the bottom just standardizes the counts so they sum to one. So while Bayes’ theorem looks
complicated, because the relationship with counting paths is obscured, it just expresses the
counting that logic demands.
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F1GURE 2.6. The posterior distribution as a product of the prior distribu-
tion and likelihood. Top: A flat prior constructs a posterior that is simply
proportional to the likelihood. Middle: A step prior, assigning zero proba-
bility to all values less than 0.5, results in a truncated posterior. Bottom: A
peaked prior that shifts and skews the posterior, relative to the likelihood.

FIGURE 2.6 illustrates the multiplicative interaction of a prior and a probability of data.
On each row, a prior on the left is multiplied by the probability of data in the middle to
produce a posterior on the right. The probability of data in each case is the same. The priors
however vary. As a result, the posterior distributions vary.

Rethinking: Bayesian data analysis isn’t about Bayes’ theorem. A common notion about Bayesian
data analysis, and Bayesian inference more generally, is that it is distinguished by the use of Bayes’
theorem. This is a mistake. Inference under any probability concept will eventually make use of Bayes’
theorem. Common introductory examples of “Bayesian” analysis using HIV and DNA testing are not
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uniquely Bayesian. Since all of the elements of the calculation are frequencies of observations, a non-
Bayesian analysis would do exactly the same thing. Instead, Bayesian approaches get to use Bayes’
theorem more generally, to quantify uncertainty about theoretical entities that cannot be observed,
like parameters and models. Powerful inferences can be produced under both Bayesian and non-
Bayesian probability concepts, but different justifications and sacrifices are necessary.

2.4.2. Motors. Recall that your Bayesian model is a machine, a figurative golem. It has built-
in definitions for the likelihood, the parameters, and the prior. And then at its heart lies a
motor that processes data, producing a posterior distribution. The action of this motor can
be thought of as conditioning the prior on the data. As explained in the previous section, this
conditioning is governed by the rules of probability theory, which defines a uniquely logical
posterior for set of assumptions and observations.

However, knowing the mathematical rule is often of little help, because many of the in-
teresting models in contemporary science cannot be conditioned formally, no matter your
skill in mathematics. And while some broadly useful models like linear regression can be
conditioned formally, this is only possible if you constrain your choice of prior to special
forms that are easy to do mathematics with. Wed like to avoid forced modeling choices of
this kind, instead favoring conditioning engines that can accommodate whichever prior is
most useful for inference.

What this means is that various numerical techniques are needed to approximate the
mathematics that follows from the definition of Bayes’ theorem. In this book, you’ll meet
three different conditioning engines, numerical techniques for computing posterior distri-
butions:

(1) Grid approximation
(2) Quadratic approximation
(3) Markov chain Monte Carlo (MCMC)

There are many other engines, and new ones are being invented all the time. But the three
you'll get to know here are common and widely useful. In addition, as you learn them, you’ll
also learn principles that will help you understand other techniques.

Rethinking: How you fit the model is part of the model. Earlier in this chapter, I implicitly defined
the model as a composite of a prior and a likelihood. That definition is typical. But in practical terms,
we should also consider how the model is fit to data as part of the model. In very simple problems,
like the globe tossing example that consumes this chapter, calculation of the posterior density is trivial
and foolproof. In even moderately complex problems, however, the details of fitting the model to
data force us to recognize that our numerical technique influences our inferences. This is because
different mistakes and compromises arise under different techniques. The same model fit to the same
data using different techniques may produce different answers. When something goes wrong, every
piece of the machine may be suspect. And so our golems carry with them their updating engines, as
much slaves to their engineering as they are to the priors and likelihoods we program into them.

2.4.3. Grid approximation. One of the simplest conditioning techniques is grid approxi-
mation. While most parameters are continuous, capable of taking on an infinite number of
values, it turns out that we can achieve an excellent approximation of the continuous pos-
terior distribution by considering only a finite grid of parameter values. At any particular
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value of a parameter, p/, it's a simple matter to compute the posterior probability: just mul-
tiply the prior probability of p’ by the likelihood at p’. Repeating this procedure for each
value in the grid generates an approximate picture of the exact posterior distribution. This
procedure is called GRID APPROXIMATION. In this section, you'll see how to perform a grid
approximation, using simple bits of R code.

Grid approximation will mainly be useful as a pedagogical tool, as learning it forces the
user to really understand the nature of Bayesian updating. But in most of your real modeling,
grid approximation isn’t practical. The reason is that it scales very poorly, as the number of
parameters increases. So in later chapters, grid approximation will fade away, to be replaced
by other, more efficient techniques. Still, the conceptual value of this exercise will carry
forward, as you graduate to other techniques.

In the context of the globe tossing problem, grid approximation works extremely well.
So let’s build a grid approximation for the model we've constructed so far. Here is the recipe:

(1) Define the grid. This means you decide how many points to use in estimating the
posterior, and then you make a list of the parameter values on the grid.

(2) Compute the value of the prior at each parameter value on the grid.

(3) Compute the likelihood at each parameter value.

(4) Compute the unstandardized posterior at each parameter value, by multiplying the
prior by the likelihood.

(5) Finally, standardize the posterior, by dividing each value by the sum of all values.

In the globe tossing context, here’s the code to complete all five of these steps:

# define grid
p_grid <- seq( from=0 , to=1 , length.out=20 )

# define prior
prior <- rep( 1 , 20 )

# compute likelihood at each value in grid
likelihood <- dbinom( 6 , size=9 , prob=p_grid )

# compute product of likelihood and prior
unstd.posterior <- likelihood * prior

# standardize the posterior, so it sums to 1
posterior <- unstd.posterior / sum(unstd.posterior)

The above code makes a grid of only 20 points. To display the posterior distribution now:

plot( p_grid , posterior , type="b" ,
xlab="probability of water" , ylab="posterior probability" )
mtext( "20 points" )

You'll get the right-hand plot in FIGURE 2.7. Try sparser grids (5 points) and denser grids
(100 or 1000 points). The correct density for your grid is determined by how accurate you
want your approximation to be. More points means more precision. In this simple example,
you can go crazy and use 100,000 points, but there won't be much change in inference after
the first 100.
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FIGURE 2.7. Computing posterior distribution by grid approximation. In
each plot, the posterior distribution for the globe toss data and model is
approximated with a finite number of evenly spaced points. With only 5
points (left), the approximation is terrible. But with 20 points (right), the
approximation is already quite good. Compare to the analytically solved,
exact posterior distribution in FIGURE 2.5 (page 30).

Now to replicate the different priors in FIGURE 2.5, try these lines of code—one at a
time—for the prior grid:

prior <- ifelse( p_grid < 6.5 , 0 , 1)
prior <- exp( -5*abs( p_grid - 0.5 ) )

The rest of the code remains the same.

Overthinking: Vectorization. One of R’s useful features is that it makes working with lists of numbers
almost as easy as working with single values. So even though both lines of code above say nothing
about how dense your grid is, whatever length you chose for the vector p_grid will determine the
length of the vector prior. In R jargon, the calculations above are vectorized, because they work on
lists of values, vectors. In a vectorized calculation, the calculation is performed on each element of
the input vector—p_grid in this case—and the resulting output therefore has the same length. In
other computing environments, the same calculation would require a loop. R can also use loops, but
vectorized calculations are typically faster. They can however be much harder to read, when you are
starting out with R. Be patient, and you’ll soon grow accustomed to vectorized calculations.

2.4.4. Quadratic approximation. We'll stick with the grid approximation to the globe toss-
ing posterior, for the rest of this chapter and the next. But before long you’ll have to resort to
another approximation, one that makes stronger assumptions. The reason is that the num-
ber of unique values to consider in the grid grows rapidly as the number of parameters in
your model increases. For the single-parameter globe tossing model, it’s no problem to com-
pute a grid of 100 or 1000 values. But for two parameters approximated by 100 values each,
that’s already 100? = 10,000 values to compute. For 10 parameters, the grid becomes many

R code
2.5
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billions of values. These days, it’s routine to have models with hundreds or thousands of pa-
rameters. The grid approximation strategy scales very poorly with model complexity, so it
won't get us very far.

A useful approach is QUADRATIC APPROXIMATION. Under quite general conditions, the
region near the peak of the posterior distribution will be nearly Gaussian—or “normal”—in
shape. This means the posterior distribution can be usefully approximated by a Gaussian
distribution. A Gaussian distribution is convenient, because it can be completely described
by only two numbers: the location of its center (mean) and its spread (variance).

A Gaussian approximation is called “quadratic approximation” because the logarithm of
a Gaussian distribution forms a parabola. And a parabola is a quadratic function. So this
approximation essentially represents any log-posterior with a parabola.

We'll use quadratic approximation for much of the first half of this book. For many of the
most common procedures in applied statistics—linear regression, for example—the approx-
imation works very well. Often, it is even exactly correct, not actually an approximation at
all. Computationally, quadratic approximation is very inexpensive, at least compared to grid
approximation and MCMC (discussed next). The procedure, which R will happily conduct
at your command, contains two steps.

(1) Find the posterior mode. This is usually accomplished by some optimization algo-
rithm, a procedure that virtually “climbs” the posterior distribution, as if it were a
mountain. The golem doesn’t know where the peak is, but it does know the slope
under its feet. There are many well-developed optimization procedures, most of
them more clever than simple hill climbing. But all of them try to find peaks.

(2) Once you find the peak of the posterior, you must estimate the curvature near the
peak. This curvature is sufficient to compute a quadratic approximation of the
entire posterior distribution. In some cases, these calculations can be done analyt-
ically, but usually your computer uses some numerical technique instead.

To compute the quadratic approximation for the globe tossing data, we'll use a tool in
the rethinking package: quap. Were going to be using quap a lot in the first half of this
book. It’s a flexible model fitting tool that will allow us to specify a large number of different
“regression” models. So it'll be worth trying it out right now. You’ll get a more thorough
understanding of it later.

To compute the quadratic approximation to the globe tossing data:

library(rethinking)
globe.ga <- quap(
alist(
W ~ dbinom( W+L ,p) , # binomial likelihood
p ~ dunif(0,1) # uniform prior

)
data=Tlist(W=6,L=3) )

# display summary of quadratic approximation
precis( globe.qa )

To use quap, you provide a formula, a list of data. The formula defines the probability of the
data and the prior. I'll say much more about these formulas in Chapter 4. Now let’s see the
output:

Mean StdDev 5.5% 94.5%



2.4. MAKING THE MODEL GO 43

n=9 n=18 n = 36
1o) © 1
N
o ] < A
NE
210 ™
0« N
c
@
0o | ~ A
[t} - -
i
o
S : . . o : . i o A1 : . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
proportion water proportion water proportion water

FIGURE 2.8. Accuracy of the quadratic approximation. In each plot, the
exact posterior distribution is plotted in blue, and the quadratic approxima-
tion is plotted as the black curve. Left: The globe tossing data with n = 9
tosses and w = 6 waters. Middle: Double the amount of data, with the
same fraction of water, n = 18 and w = 12. Right: Four times as much
data, n = 36 and w = 24.

p 0.67 0.16 0.42 0.92

The function precis presents a brief summary of the quadratic approximation. In this case,
it shows the posterior mean value of p = 0.67, which it calls the “Mean” The curvature is
labeled “StdDev” This stands for standard deviation. This value is the standard deviation of
the posterior distribution, while the mean value is its peak. Finally, the last two values in the
precis output show the 89% percentile interval, which you’ll learn more about in the next
chapter. You can read this kind of approximation like: Assuming the posterior is Gaussian, it
is maximized at 0.67, and its standard deviation is 0.16.

Since we already know the posterior, let's compare to see how good the approximation is.
I'll use the analytical approach here, which uses dbeta. I won't explain this calculation, but
it ensures that we have exactly the right answer. You can find an explanation and derivation
of it in just about any mathematical textbook on Bayesian inference.

# analytical calculation

W <- 6

L <- 3

curve( dbeta( x , W+1 , L+1 ) , from=0 , to=1 )

# quadratic approximation

curve( dnorm( x , 0.67 , 0.16 ) , lty=2 , add=TRUE )

You can see this plot (with a little extra formatting) on the left in FIGURE 2.8. The blue curve is
the analytical posterior and the black curve is the quadratic approximation. The black curve
does alright on its left side, but looks pretty bad on its right side. It even assigns positive
probability to p = 1, which we know is impossible, since we saw at least one land sample.
As the amount of data increases, however, the quadratic approximation gets better. In the
middle of FIGURE 2.8, the sample size is doubled to n = 18 tosses, but with the same fraction
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of water, so that the mode of the posterior is in the same place. The quadratic approximation
looks better now, although still not great. At quadruple the data, on the right side of the
figure, the two curves are nearly the same now.

This phenomenon, where the quadratic approximation improves with the amount of
data, is very common. It’s one of the reasons that so many classical statistical procedures
are nervous about small samples: Those procedures use quadratic (or other) approximations
that are only known to be safe with infinite data. Often, these approximations are useful
with less than infinite data, obviously. But the rate of improvement as sample size increases
varies greatly depending upon the details. In some models, the quadratic approximation can
remain terrible even with thousands of samples.

Using the quadratic approximation in a Bayesian context brings with it all the same con-
cerns. But you can always lean on some algorithm other than quadratic approximation, if
you have doubts. Indeed, grid approximation works very well with small samples, because
in such cases the model must be simple and the computations will be quite fast. You can also
use MCMC, which is introduced next.

Rethinking: Maximum likelihood estimation. The quadratic approximation, either with a uniform
prior or with a lot of data, is often equivalent to a MAXIMUM LIKELIHOOD ESTIMATE (MLE) and its
STANDARD ERROR. The MLE is a very common non-Bayesian parameter estimate. This correspon-
dence between a Bayesian approximation and a common non-Bayesian estimator is both a blessing
and a curse. Itis a blessing, because it allows us to re-interpret a wide range of published non-Bayesian
model fits in Bayesian terms. It is a curse, because maximum likelihood estimates have some curious
drawbacks, and the quadratic approximation can share them. We'll explore these drawbacks in later
chapters, and they are one of the reasons we’ll turn to Markov chain Monte Carlo for the second half
of the book.

Overthinking: The Hessians are coming. Sometimes it helps to know more about how the quadratic
approximation is computed. In particular, the approximation sometimes fails. When it does, chances
are you’'ll get a confusing error message that says something about the “Hessian.” Students of world
history may know that the Hessians were German mercenaries hired by the British in the eighteenth
century to do various things, including fight against the American revolutionary George Washington.
These mercenaries are named after a region of what is now central Germany, Hesse.

The Hessian that concerns us here has little to do with mercenaries. It is named after mathe-
matician Ludwig Otto Hesse (1811-1874). A Hessian is a square matrix of second derivatives. It is
used for many purposes in mathematics, but in the quadratic approximation it is second derivatives
of the log of posterior probability with respect to the parameters. It turns out that these derivatives
are sufficient to describe a Gaussian distribution, because the logarithm of a Gaussian distribution
is just a parabola. Parabolas have no derivatives beyond the second, so once we know the center of
the parabola (the posterior mode) and its second derivative, we know everything about it. And in-
deed the second derivative (with respect to the outcome) of the logarithm of a Gaussian distribution
is proportional to its inverse squared standard deviation (its “precision”: page 76). So knowing the
standard deviation tells us everything about its shape.

The standard deviation is typically computed from the Hessian, so computing the Hessian is
nearly always a necessary step. But sometimes the computation goes wrong, and your golem will
choke while trying to compute the Hessian. In those cases, you have several options. Not all hope is
lost. But for now it’s enough to recognize the term and associate it with an attempt to find the standard
deviation for a quadratic approximation.
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2.4.5. Markov chain Monte Carlo. There are lots of important model types, like multilevel
(mixed-effects) models, for which neither grid approximation nor quadratic approximation
is always satisfactory. Such models may have hundreds or thousands or tens-of-thousands
of parameters. Grid approximation routinely fails here, because it just takes too long—the
Sun will go dark before your computer finishes the grid. Special forms of quadratic approx-
imation might work, if everything is just right. But commonly, something is not just right.
Furthermore, multilevel models do not always allow us to write down a single, unified func-
tion for the posterior distribution. This means that the function to maximize (when finding
the MAP) is not known, but must be computed in pieces.

As aresult, various counterintuitive model fitting techniques have arisen. The most pop-
ular of these is MARKOV CHAIN MONTE CARLO (MCMC), which is a family of conditioning
engines capable of handling highly complex models. It is fair to say that MCMC is largely re-
sponsible for the insurgence of Bayesian data analysis that began in the 1990s. While MCMC
is older than the 1990s, affordable computer power is not, so we must also thank the en-
gineers. Much later in the book (Chapter 9), you'll meet simple and precise examples of
MCMC model fitting, aimed at helping you understand the technique.

The conceptual challenge with MCMC lies in its highly non-obvious strategy. Instead of
attempting to compute or approximate the posterior distribution directly, MCMC techniques
merely draw samples from the posterior. You end up with a collection of parameter values,
and the frequencies of these values correspond to the posterior plausibilities. You can then
build a picture of the posterior from the histogram of these samples.

We nearly always work directly with these samples, rather than first constructing some
mathematical estimate from them. And the samples are in many ways more convenient than
having the posterior, because they are easier to think with. And so that’s where we turn in
the next chapter, to thinking with samples.

Overthinking: Monte Carlo globe tossing. If you are eager to see MCMC in action, a working
Markov chain for the globe tossing model does not require much code. The following R code is
sufficient for a MCMC estimate of the posterior:

n_samples <- 1000

p <- rep( NA , n_samples )

p[1] <- 0.5

W <- 6

L <=3

for ( i in 2:n_samples ) {
p_new <- rnorm( 1 , p[i-1] , 0.1 )
if ( p_new < 0 ) p_new <- abs( p_new )
if ( p_new > 1 ) p_new <- 2 - p_new
q0 <- dbinom( W , W+L , p[i-1] )
gl <- dbinom( W , W+L , p_new )
p[i] <- ifelse( runif(l) < ql/q0® , p_new , p[i-1] )

The values in p are samples from the posterior distribution. To compare to the analytical posterior:

dens( p , xlim=c(0,1) )
curve( dbeta( x , W+l , L+1 ) , lty=2 , add=TRUE )

It’s weird. But it works. I'll explain this algorithm, the METROPOLIS ALGORITHM, in Chapter 9.
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2.5. Summary

This chapter introduced the conceptual mechanics of Bayesian data analysis. The target
of inference in Bayesian inference is a posterior probability distribution. Posterior probabil-
ities state the relative numbers of ways each conjectured cause of the data could have pro-
duced the data. These relative numbers indicate plausibilities of the different conjectures.
These plausibilities are updated in light of observations through Bayesian updating.

More mechanically, a Bayesian model is a composite of variables and distributional def-
initions for these variables. The probability of the data, often called the likelihood, provides
the plausibility of an observation (data), given a fixed value for the parameters. The prior
provides the plausibility of each possible value of the parameters, before accounting for the
data. The rules of probability tell us that the logical way to compute the plausibilities, after
accounting for the data, is to use Bayes’ theorem. This results in the posterior distribution.

In practice, Bayesian models are fit to data using numerical techniques, like grid approx-
imation, quadratic approximation, and Markov chain Monte Carlo. Each method imposes
different trade-offs.

2.6. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).

2E1. Which of the expressions below correspond to the statement: the probability of rain on Monday?

(1) Pr(rain)
Pr(rain|Monday)
(3) Pr(Monday|rain)
(4) Pr(rain, Monday)/ Pr(Monday)

2E2. Which of the following statements corresponds to the expression: Pr(Monday|rain)?

(1) The probability of rain on Monday.

(2) The probability of rain, given that it is Monday.

(3) The probability that it is Monday, given that it is raining.
(4) The probability that it is Monday and that it is raining.

2E3. Which of the expressions below correspond to the statement: the probability that it is Monday,
given that it is raining?

(1) Pr(Monday|rain)

(2) Pr(rain|Monday)

(3) Pr(rain|Monday)

( )

Pr( )

Pr(Monday)
(4) Pr(rain|Monday) Pr(Monday)/ Pr(rain)
Monday|rain) Pr(rain)/ Pr(Monday)

2E4. The Bayesian statistician Bruno de Finetti (1906-1985) began his 1973 book on probability the-
ory with the declaration: “PROBABILITY DOES NOT EXIST” The capitals appeared in the original,
so I imagine de Finetti wanted us to shout this statement. What he meant is that probability is a de-
vice for describing uncertainty from the perspective of an observer with limited knowledge; it has no
objective reality. Discuss the globe tossing example from the chapter, in light of this statement. What
does it mean to say “the probability of water is 0.77?
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2M1. Recall the globe tossing model from the chapter. Compute and plot the grid approximate
posterior distribution for each of the following sets of observations. In each case, assume a uniform
prior for p.

(1) W,w,w

(2) W,W, W, L

(3) LW, W,L, W,W,W

2M2. Now assume a prior for p that is equal to zero when p < 0.5 and is a positive constant when
p > 0.5. Again compute and plot the grid approximate posterior distribution for each of the sets of
observations in the problem just above.

2M3. Suppose there are two globes, one for Earth and one for Mars. The Earth globe is 70% covered
in water. The Mars globe is 100% land. Further suppose that one of these globes—you don’t know
which—was tossed in the air and produced a “land” observation. Assume that each globe was equally
likely to be tossed. Show that the posterior probability that the globe was the Earth, conditional on
seeing “land” (Pr(Earth|land)), is 0.23.

2M4. Suppose you have a deck with only three cards. Each card has two sides, and each side is either
black or white. One card has two black sides. The second card has one black and one white side. The
third card has two white sides. Now suppose all three cards are placed in a bag and shuffled. Someone
reaches into the bag and pulls out a card and places it flat on a table. A black side is shown facing up,
but you don’t know the color of the side facing down. Show that the probability that the other side is
also black is 2/3. Use the counting method (Section 2 of the chapter) to approach this problem. This
means counting up the ways that each card could produce the observed data (a black side facing up
on the table).

2M5. Now suppose there are four cards: B/B, B/W, W/W, and another B/B. Again suppose a card is
drawn from the bag and a black side appears face up. Again calculate the probability that the other
side is black.

2M6. Imagine that black ink is heavy, and so cards with black sides are heavier than cards with white
sides. As a result, it’s less likely that a card with black sides is pulled from the bag. So again assume
there are three cards: B/B, B/W, and W/W. After experimenting a number of times, you conclude that
for every way to pull the B/B card from the bag, there are 2 ways to pull the B/W card and 3 ways to
pull the W/W card. Again suppose that a card is pulled and a black side appears face up. Show that
the probability the other side is black is now 0.5. Use the counting method, as before.

2M7. Assume again the original card problem, with a single card showing a black side face up. Before
looking at the other side, we draw another card from the bag and lay it face up on the table. The face
that is shown on the new card is white. Show that the probability that the first card, the one showing
a black side, has black on its other side is now 0.75. Use the counting method, if you can. Hint: Treat
this like the sequence of globe tosses, counting all the ways to see each observation, for each possible
first card.

2H1. Suppose there are two species of panda bear. Both are equally common in the wild and live
in the same places. They look exactly alike and eat the same food, and there is yet no genetic assay
capable of telling them apart. They differ however in their family sizes. Species A gives birth to twins
10% of the time, otherwise birthing a single infant. Species B births twins 20% of the time, otherwise
birthing singleton infants. Assume these numbers are known with certainty, from many years of field
research.

Now suppose you are managing a captive panda breeding program. You have a new female panda
of unknown species, and she has just given birth to twins. What is the probability that her next birth
will also be twins?
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2H2. Recall all the facts from the problem above. Now compute the probability that the panda we
have is from species A, assuming we have observed only the first birth and that it was twins.

2H3. Continuing on from the previous problem, suppose the same panda mother has a second birth
and that it is not twins, but a singleton infant. Compute the posterior probability that this panda is
species A.

2H4. A common boast of Bayesian statisticians is that Bayesian inference makes it easy to use all of
the data, even if the data are of different types.

So suppose now that a veterinarian comes along who has a new genetic test that she claims can
identify the species of our mother panda. But the test, like all tests, is imperfect. This is the informa-
tion you have about the test:

o The probability it correctly identifies a species A panda is 0.8.

o The probability it correctly identifies a species B panda is 0.65.
The vet administers the test to your panda and tells you that the test is positive for species A. First
ignore your previous information from the births and compute the posterior probability that your
panda is species A. Then redo your calculation, now using the birth data as well.



3 Sampling the Imaginary

Lots of books on Bayesian statistics introduce posterior inference by using a medical test-
ing scenario. To repeat the structure of common examples, suppose there is a blood test that
correctly detects vampirism 95% of the time. In more precise and mathematical notation,
Pr(positive test result|vampire) = 0.95. It’s a very accurate test, nearly always catching real
vampires. It also make mistakes, though, in the form of false positives. One percent of the
time, it incorrectly diagnoses normal people as vampires, Pr(positive test result|mortal) =
0.01. The final bit of information we are told is that vampires are rather rare, being only 0.1%
of the population, implying Pr(vampire) = 0.001. Suppose now that someone tests positive
for vampirism. What’s the probability that he or she is a bloodsucking immortal?

The correct approach is just to use Bayes’ theorem to invert the probability, to compute
Pr(vampire|positive). The calculation can be presented as:

Pr(positive|vampire) Pr(vampire)

Pr(vampire|positive) = Pr(positive)

where Pr(positive) is the average probability of a positive test result, that is,
Pr(positive) = Pr(positive|vampire) Pr(vampire)
+ Pr(positive|mortal) (1 — Pr(vampire))

Performing the calculation in R:

Pr_Positive_Vampire <- 0.95
Pr_Positive_Mortal <- 0.01
Pr_Vampire <- 0.001
Pr_Positive <- Pr_Positive_Vampire x Pr_Vampire +
Pr_Positive_Mortal *x ( 1 - Pr_Vampire )
( Pr_Vampire_Positive <- Pr_Positive_VampirexPr_Vampire / Pr_Positive )

[1] ©.08683729

That corresponds to an 8.7% chance that the suspect is actually a vampire.

Most people find this result counterintuitive. And it’s a very important result, because
it mimics the structure of many realistic testing contexts, such as HIV and DNA testing,
criminal profiling, and even statistical significance testing (see the Rethinking box at the end
of this section). Whenever the condition of interest is very rare, having a test that finds all
the true cases is still no guarantee that a positive result carries much information at all. The
reason is that most positive results are false positives, even when all the true positives are
detected correctly.

49
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But I don'tlike these examples, for two reasons. First, there’s nothing uniquely “Bayesian”
about them. Remember: Bayesian inference is distinguished by a broad view of probability,
not by the use of Bayes’ theorem. Since all of the probabilities I provided above reference
frequencies of events, rather than theoretical parameters, all major statistical philosophies
would agree to use Bayes’ theorem in this case. Second, and more important to our work
in this chapter, these examples make Bayesian inference seem much harder than it has to
be. Few people find it easy to remember which number goes where, probably because they
never grasp the logic of the procedure. It’s just a formula that descends from the sky. If you
are confused, it is only because you are trying to understand.

There is a way to present the same problem that does make it more intuitive, however.
Suppose that instead of reporting probabilities, as before, I tell you the following:

(1) In a population of 100,000 people, 100 of them are vampires.
(2) Of the 100 who are vampires, 95 of them will test positive for vampirism.
(3) Of the 99,900 mortals, 999 of them will test positive for vampirism.

Now tell me, if we test all 100,000 people, what proportion of those who test positive for
vampirism actually are vampires? Many people, although certainly not all people, find this
presentation a lot easier.”® Now we can just count up the number of people who test positive:
95 4 999 = 1094. Out of these 1094 positive tests, 95 of them are real vampires, so that
implies:

Pr(vampire|positive) %> 0.087
vampi itive) = —— =~ 0.
1094

It’s exactly the same answer as before, but without a seemingly arbitrary rule.

The second presentation of the problem, using counts rather than probabilities, is often
called the frequency format or natural frequencies. Why a frequency format helps people in-
tuit the correct approach remains contentious. Some people think that human psychology
naturally works better when it receives information in the form a person in a natural envi-
ronment would receive it. In the real world, we encounter counts only. No one has ever seen
a probability, the thinking goes. But everyone sees counts (“frequencies”) in their daily lives.

Regardless of the explanation for this phenomenon, we can exploit it. And in this chap-
ter we exploit it by taking the probability distributions from the previous chapter and sam-
pling from them to produce counts. The posterior distribution is a probability distribution.
And like all probability distributions, we can imagine drawing samples from it. The sampled
events in this case are parameter values. Most parameters have no exact empirical realiza-
tion. The Bayesian formalism treats parameter distributions as relative plausibility, not as
any physical random process. In any event, randomness is always a property of informa-
tion, never of the real world. But inside the computer, parameters are just as empirical as
the outcome of a coin flip or a die toss or an agricultural experiment. The posterior defines
the expected frequency that different parameter values will appear, once we start plucking
parameters out of it.

Rethinking: The natural frequency phenomenon is not unique. Changing the representation of
a problem often makes it easier to address or inspires new ideas that were not available in an old
representation.” In physics, switching between Newtonian and Lagrangian mechanics can make
problems much easier. In evolutionary biology, switching between inclusive fitness and multilevel
selection sheds new light on old models. And in statistics, switching between Bayesian and non-
Bayesian representations often teaches us new things about both approaches.
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This chapter teaches you basic skills for working with samples from the posterior dis-
tribution. It will seem a little silly to work with samples at this point, because the posterior
distribution for the globe tossing model is very simple. It’s so simple that it's no problem to
work directly with the grid approximation or even the exact mathematical form.>> But there
are two reasons to adopt the sampling approach early on, before it’s really necessary.

First, many scientists are uncomfortable with integral calculus, even though they have
strong and valid intuitions about how to summarize data. Working with samples transforms
a problem in calculus into a problem in data summary, into a frequency format problem.
An integral in a typical Bayesian context is just the total probability in some interval. That
can be a challenging calculus problem. But once you have samples from the probability
distribution, it’s just a matter of counting values in the interval. An empirical attack on the
posterior allows the scientist to ask and answer more questions about the model, without
relying upon a captive mathematician. For this reason, it is easier and more intuitive to work
with samples from the posterior, than to work with probabilities and integrals directly.

Second, some of the most capable methods of computing the posterior produce nothing
but samples. Many of these methods are variants of Markov chain Monte Carlo techniques
(MCMC, Chapter 9). So if you learn early on how to conceptualize and process samples from
the posterior, when you inevitably must fit a model to data using MCMC, you will already
know how to make sense of the output. Beginning with Chapter 9 of this book, you will
use MCMC to open up the types and complexity of models you can practically fit to data.
MCMC is no longer a technique only for experts, but rather part of the standard toolkit of
quantitative science. So it's worth planning ahead.

So in this chapter we'll begin to use samples to summarize and simulate model output.
The skills you learn here will apply to every problem in the remainder of the book, even
though the details of the models and how the samples are produced will vary.

Rethinking: Why statistics can’t save bad science. The vampirism example at the start of this chapter
has the same logical structure as many different signal detection problems: (1) There is some binary
state that is hidden from us; (2) we observe an imperfect cue of the hidden state; (3) we (should) use
Bayes’ theorem to logically deduce the impact of the cue on our uncertainty.

Scientific inference is sometimes framed in similar terms: (1) An hypothesis is either true or false;
(2) we get a statistical cue of the hypothesis’ falsity; (3) we (should) use Bayes’ theorem to logically
deduce the impact of the cue on the status of the hypothesis. It’s the third step that is hardly ever done.
I'm not really a fan of this framing. But let’s consider a toy example, so you can see the implications.
Suppose the probability of a positive finding, when an hypothesis is true, is Pr(sig|true) = 0.95. That’s
the power of the test. Suppose that the probability of a positive finding, when an hypothesis is false,
is Pr(sig|false) = 0.05. That’s the false-positive rate, like the 5% of conventional significance testing.
Finally, we have to state the base rate at which hypotheses are true. Suppose for example that 1 in
every 100 hypotheses turns out to be true. Then Pr(true) = 0.01. No one knows this value, but the
history of science suggests it's small. See Chapter 17 for more discussion. Now compute the posterior:

Pr(pos|true) Pr(true) Pr(pos|true) Pr(true)
Pr(pos) ~ Pr(pos|true) Pr(true) + Pr(pos|false) Pr(false)

Plug in the appropriate values, and the answer is approximately Pr(true|pos) = 0.16. So a positive
finding corresponds to a 16% chance that the hypothesis is true. This is the same low base-rate phe-
nomenon that applies in medical (and vampire) testing. You can shrink the false-positive rate to 1%
and get this posterior probability up to 0.5, only as good as a coin flip. The most important thing to
do is to improve the base rate, Pr(true), and that requires thinking, not testing.>®

Pr(true|pos) =
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FIGURE 3.1. Sampling parameter values from the posterior distribution.
Left: 10,000 samples from the posterior implied by the globe tossing data
and model. Right: The density of samples (vertical) at each parameter value
(horizontal).

3.1. Sampling from a grid-approximate posterior

Before beginning to work with samples, we need to generate them. Here’s a reminder
for how to compute the posterior for the globe tossing model, using grid approximation.
Remember, the posterior here means the probability of p conditional on the data.

p_grid <- seq( from=0 , to=1 , length.out=1000 )
prob_p <- rep( 1 , 1000 )

prob_data <- dbinom( 6 , size=9 , prob=p_grid )
posterior <- prob_data * prob_p

posterior <- posterior / sum(posterior)

Now we wish to draw 10,000 samples from this posterior. Imagine the posterior is a bucket
full of parameter values, numbers such as 0.1, 0.7, 0.5, 1, etc. Within the bucket, each value
exists in proportion to its posterior probability, such that values near the peak are much more
common than those in the tails. We're going to scoop out 10,000 values from the bucket.
Provided the bucket is well mixed, the resulting samples will have the same proportions as
the exact posterior density. Therefore the individual values of p will appear in our samples
in proportion to the posterior plausibility of each value.
Here’s how you can do this in R, with one line of code:

samples <- sample( p_grid , prob=posterior , size=1le4 , replace=TRUE )

The workhorse here is sample, which randomly pulls values from a vector. The vector in
this case is p_grid, the grid of parameter values. The probability of each value is given by
posterior, which you computed just above.
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The resulting samples are displayed in FIGURE 3.1. On the left, all 10,000 (1e4) random
samples are shown sequentially.

plot( samples )

In this plot, it’s as if you are flying over the posterior distribution, looking down on it. There
are many more samples from the dense region near 0.6 and very few samples below 0.25. On
the right, the plot shows the density estimate computed from these samples.

library(rethinking)
dens( samples )

You can see that the estimated density is very similar to ideal posterior you computed via
grid approximation. If you draw even more samples, maybe 1e5 or 1e6, the density estimate
will get more and more similar to the ideal.

All you've done so far is crudely replicate the posterior density you had already com-
puted. That isn't of much value. But next it is time to use these samples to describe and
understand the posterior. That is of great value.

3.2. Sampling to summarize

Once your model produces a posterior distribution, the model’s work is done. But your
work has just begun. It is necessary to summarize and interpret the posterior distribution.
Exactly how it is summarized depends upon your purpose. But common questions include:

How much posterior probability lies below some parameter value?

How much posterior probability lies between two parameter values?

Which parameter value marks the lower 5% of the posterior probability?
Which range of parameter values contains 90% of the posterior probability?
Which parameter value has highest posterior probability?

These simple questions can be usefully divided into questions about (1) intervals of defined
boundaries, (2) questions about intervals of defined probability mass, and (3) questions about
point estimates. We'll see how to approach these questions using samples from the posterior.

3.2.1. Intervals of defined boundaries. Suppose I ask you for the posterior probability that
the proportion of water is less than 0.5. Using the grid-approximate posterior, you can just
add up all of the probabilities, where the corresponding parameter value is less than 0.5:

# add up posterior probability where p < 0.5
sum( posterior[ p_grid < 0.5 ] )

[1] 0.1718746

So about 17% of the posterior probability is below 0.5. Couldn’t be easier. But since grid ap-
proximation isn’t practical in general, it won’t always be so easy. Once there is more than one
parameter in the posterior distribution (wait until the next chapter for that complication),
even this simple sum is no longer very simple.

So let’s see how to perform the same calculation, using samples from the posterior. This
approach does generalize to complex models with many parameters, and so you can use
it everywhere. All you have to do is similarly add up all of the samples below 0.5, but also
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divide the resulting count by the total number of samples. In other words, find the frequency
of parameter values below 0.5:

sum( samples < 0.5 ) / le4

[1] ©0.1726

And that’s nearly the same answer as the grid approximation provided, although your answer
will not be exactly the same, because the exact samples you drew from the posterior will be
different. This region is shown in the upper-left plot in FIGURE 3.2. Using the same approach,
you can ask how much posterior probability lies between 0.5 and 0.75:

sum( samples > 0.5 & samples < 0.75 ) / le4

[1] 0.6059

So about 61% of the posterior probability lies between 0.5 and 0.75. This region is shown in
the upper-right plot of FIGURE 3.2.

Overthinking: Counting with sum. In the R code examples just above, I used the function sum
to effectively count up how many samples fulfill a logical criterion. Why does this work? It works
because R internally converts a logical expression, like samples < 0.5, toavector of TRUE and FALSE
results, one for each element of samples, saying whether or not each element matches the criterion.
Go ahead and enter samples < 0.5 on the R prompt, to see this for yourself. Then when you sum
this vector of TRUE and FALSE, R counts each TRUE as 1 and each FALSE as 0. So it ends up counting
how many TRUE values are in the vector, which is the same as the number of elements in samples
that match the logical criterion.

3.2.2. Intervals of defined mass. It is more common to see scientific journals reporting
an interval of defined mass, usually known as a CONFIDENCE INTERVAL. An interval of
posterior probability, such as the ones we are working with, may instead be called a CREDIBLE
INTERVAL. Were going to call it a COMPATIBILITY INTERVAL instead, in order to avoid the
unwarranted implications of “confidence” and “credibility”>* What the interval indicates
is a range of parameter values compatible with the model and data. The model and data
themselves may not inspire confidence, in which case the interval will not either.

These posterior intervals report two parameter values that contain between them a spec-
ified amount of posterior probability, a probability mass. For this type of interval, it is easier
to find the answer by using samples from the posterior than by using a grid approximation.
Suppose for example you want to know the boundaries of the lower 80% posterior probabil-
ity. You know this interval starts at p = 0. To find out where it stops, think of the samples
as data and ask where the 80th percentile lies:

quantile( samples , 0.8 )

80%
0.7607608
This region is shown in the bottom-left plot in FIGURE 3.2. Similarly, the middle 80% interval
lies between the 10th percentile and the 90th percentile. These boundaries are found using
the same approach:
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FIGURE 3.2. Two kinds of posterior interval. Top row: Intervals of defined
boundaries. Top-left: The blue area is the posterior probability below a pa-
rameter value of 0.5. Top-right: The posterior probability between 0.5 and
0.75. Bottom row: Intervals of defined mass. Bottom-left: Lower 80% poste-
rior probability exists below a parameter value of about 0.75. Bottom-right:
Middle 80% posterior probability lies between the 10% and 90% quantiles.

quantile( samples , c( 0.1 , 0.9 ) )

10% 90%
0.4464464 0.8118118
This region is shown in the bottom-right plot in FIGURE 3.2.

Intervals of this sort, which assign equal probability mass to each tail, are very common
in the scientific literature. We'll call them PERCENTILE INTERVALS (PI). These intervals do
a good job of communicating the shape of a distribution, as long as the distribution isn’t too
asymmetrical. But in terms of supporting inferences about which parameters are consistent
with the data, they are not perfect. Consider the posterior distribution and different intervals
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in FIGURE 3.3. This posterior is consistent with observing three waters in three tosses and a
uniform (flat) prior. It is highly skewed, having its maximum value at the boundary, p = 1.
You can compute it, via grid approximation, with:

p_grid <- seq( from=0 , to=1 , length.out=1000 )

prior <- rep(1,1000)

likelihood <- dbinom( 3 , size=3 , prob=p_grid )

posterior <- likelihood * prior

posterior <- posterior / sum(posterior)

samples <- sample( p_grid , size=1le4 , replace=TRUE , prob=posterior )

This code also goes ahead to sample from the posterior. Now, on the left of FIGURE 3.3, the
50% percentile compatibility interval is shaded. You can conveniently compute this from the
samples with PI (part of rethinking):

PI( samples , prob=0.5 )

25% 75%
0.7037037 0.9329329
This interval assigns 25% of the probability mass above and below the interval. So it pro-
vides the central 50% probability. But in this example, it ends up excluding the most prob-
able parameter values, near p = 1. So in terms of describing the shape of the posterior
distribution—which is really all these intervals are asked to do—the percentile interval can
be misleading.
In contrast, the right-hand plot in FIGURE 3.3 displays the 50% HIGHEST POSTERIOR
DENSITY INTERVAL (HPDI).>” The HPDI is the narrowest interval containing the specified
probability mass. If you think about it, there must be an infinite number of posterior intervals

Rethinking: Why 95%? The most common interval mass in the natural and social sciences is the
95% interval. This interval leaves 5% of the probability outside, corresponding to a 5% chance of the
parameter not lying within the interval (although see below). This customary interval also reflects
the customary threshold for statistical significance, which is 5% or p < 0.05. It is not easy to defend
the choice of 95% (5%), outside of pleas to convention. Ronald Fisher is sometimes blamed for this
choice, but his widely cited 1925 invocation of it was not enthusiastic:

“The [number of standard deviations] for which P = .05, or 1 in 20, is 1.96 or
nearly 2; it is convenient to take this point as a limit in judging whether a devia-

tion is to be considered significant or not”>®

Most people don't think of convenience as a serious criterion. Later in his career, Fisher actively
advised against always using the same threshold for significance.’®

So what are you supposed to do then? There is no consensus, but thinking is always a good idea.
If you are trying to say that an interval doesn’t include some value, then you might use the widest
interval that excludes the value. Often, all compatibility intervals do is communicate the shape of a
distribution. In that case, a series of nested intervals may be more useful than any one interval. For
example, why not present 67%, 89%, and 97% intervals, along with the median? Why these values?
No reason. They are prime numbers, which makes them easy to remember. But all that matters is
they be spaced enough to illustrate the shape of the posterior. And these values avoid 95%, since
conventional 95% intervals encourage many readers to conduct unconscious hypothesis tests.
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FIGURE 3.3. The difference between percentile and highest posterior den-
sity compatibility intervals. The posterior density here corresponds to a flat
prior and observing three water samples in three total tosses of the globe.
Left: 50% percentile interval. This interval assigns equal mass (25%) to both
the left and right tail. Asaresult, it omits the most probable parameter value,
p = 1. Right: 50% highest posterior density interval, HPDI. This interval
finds the narrowest region with 50% of the posterior probability. Such a
region always includes the most probable parameter value.

with the same mass. But if you want an interval that best represents the parameter values
most consistent with the data, then you want the densest of these intervals. That’s what the
HPDI is. Compute it from the samples with HPDI (also part of rethinking):

HPDI( samples , prob=0.5 )

|0.5 0.5]
0.8408408 1.0000000

This interval captures the parameters with highest posterior probability, as well as being no-
ticeably narrower: 0.16 in width rather than 0.23 for the percentile interval.

So the HPDI has some advantages over the PI. But in most cases, these two types of
interval are very similar.’® They only look so different in this case because the posterior
distribution is highly skewed. If we instead used samples from the posterior distribution for
six waters in nine tosses, these intervals would be nearly identical. Try it for yourself, using
different probability masses, such as prob=0.8 and prob=0.95. When the posterior is bell
shaped, it hardly matters which type of interval you use. Remember, we're not launching
rockets or calibrating atom smashers, so fetishizing precision to the 5th decimal place will
not improve your science.

The HPDI also has some disadvantages. HPDI is more computationally intensive than PI
and suffers from greater simulation variance, which is a fancy way of saying that it is sensitive
to how many samples you draw from the posterior. It is also harder to understand and many
scientific audiences will not appreciate its features, while they will immediately understand a
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percentile interval, as ordinary non-Bayesian intervals are typically interpreted (incorrectly)
as percentile intervals (although see the Rethinking box below).

Overall, if the choice of interval type makes a big difference, then you shouldn’t be us-
ing intervals to summarize the posterior. Remember, the entire posterior distribution is the
Bayesian “estimate” It summarizes the relative plausibilities of each possible value of the
parameter. Intervals of the distribution are just helpful for summarizing it. If choice of in-
terval leads to different inferences, then youd be better off just plotting the entire posterior
distribution.

Rethinking: What do compatibility intervals mean? It is common to hear that a 95% “confidence”
interval means that there is a probability 0.95 that the true parameter value lies within the interval. In
strict non-Bayesian statistical inference, such a statement is never correct, because strict non-Bayesian
inference forbids using probability to measure uncertainty about parameters. Instead, one should say
that if we repeated the study and analysis a very large number of times, then 95% of the computed in-
tervals would contain the true parameter value. If the distinction is not entirely clear to you, then you
are in good company. Most scientists find the definition of a confidence interval to be bewildering,
and many of them slip unconsciously into a Bayesian interpretation.

But whether you use a Bayesian interpretation or not, a 95% interval does not contain the true
value 95% of the time. The history of science teaches us that confidence intervals exhibit chronic
overconfidence.” The word true should set off alarms that something is wrong with a statement like
“contains the true value” The 95% is a small world number (see the introduction to Chapter 2), only
true in the model’s logical world. So it will never apply exactly to the real or large world. It is what the
golem believes, but you are free to believe something else. Regardless, the width of the interval, and
the values it covers, can provide valuable advice.

3.2.3. Point estimates. The third and final common summary task for the posterior is to
produce point estimates of some kind. Given the entire posterior distribution, what value
should you report? This seems like an innocent question, but it is difficult to answer. The
Bayesian parameter estimate is precisely the entire posterior distribution, which is not a sin-
gle number, but instead a function that maps each unique parameter value onto a plausibility
value. So really the most important thing to note is that you don’t have to choose a point es-
timate. It's hardly ever necessary and often harmful. It discards information.

But if you must produce a single point to summarize the posterior, you'll have to ask and
answer more questions. Consider the following example. Suppose again the globe tossing
experiment in which we observe 3 waters out of 3 tosses, as in FIGURE 3.3. Let’s consider three
alternative point estimates. First, it is very common for scientists to report the parameter
value with highest posterior probability, a maximum a posteriori (MAP) estimate. You can
easily compute the MAP in this example:

p_grid[ which.max(posterior) ]

[1] 1
Or if you instead have samples from the posterior, you can still approximate the same point:

chainmode( samples , adj=0.01 )

[1] 0.9985486
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FIGURE 3.4. Point estimates and loss functions. Left: Posterior distribution
(blue) after observing 3 water in 3 tosses of the globe. Vertical lines show
the locations of the mode, median, and mean. Each point implies a different
loss function. Right: Expected loss under the rule that loss is proportional
to absolute distance of decision (horizontal axis) from the true value. The
point marks the value of p that minimizes the expected loss, the posterior
median.

But why is this point, the mode, interesting? Why not report the posterior mean or median?

mean( samples ) ?igde

median( samples )

[1] ©.8005558
[1] ©.8408408

These are also point estimates, and they also summarize the posterior. But all three—the
mode (MAP), mean, and median—are different in this case. How can we choose? FIGURE 3.4
shows this posterior distribution and the locations of these point summaries.

One principled way to go beyond using the entire posterior as the estimate is to choose
a LOSS FUNCTION. A loss function is a rule that tells you the cost associated with using any
particular point estimate. While statisticians and game theorists have long been interested
in loss functions, and how Bayesian inference supports them, scientists hardly ever use them
explicitly. The key insight is that different loss functions imply different point estimates.

Here’s an example to help us work through the procedure. Suppose I offer you a bet. Tell
me which value of p, the proportion of water on the Earth, you think is correct. I will pay
you $100, if you get it exactly right. But I will subtract money from your gain, proportional
to the distance of your decision from the correct value. Precisely, your loss is proportional
to the absolute value of d — p, where d is your decision and p is the correct answer. We could
change the precise dollar values involved, without changing the important aspects of this
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problem. What matters is that the loss is proportional to the distance of your decision from
the true value.

Now once you have the posterior distribution in hand, how should you use it to maxi-
mize your expected winnings? It turns out that the parameter value that maximizes expected
winnings (minimizes expected loss) is the median of the posterior distribution. Lets calcu-
late that fact, without using a mathematical proof. Those interested in the proof should follow
the endnote.®

Calculating expected loss for any given decision means using the posterior to average
over our uncertainty in the true value. Of course we don't know the true value, in most
cases. But if we are going to use our model’s information about the parameter, that means
using the entire posterior distribution. So suppose we decide p = 0.5 will be our decision.
Then the expected loss will be:

sum( posteriorxabs( 0.5 - p_grid ) )

[1] 0.3128752

The symbols posterior and p_grid are the same ones we've been using throughout this
chapter, containing the posterior probabilities and the parameter values, respectively. All
the code above does is compute the weighted average loss, where each loss is weighted by its
corresponding posterior probability. There’s a trick for repeating this calculation for every
possible decision, using the function sapply.

loss <- sapply( p_grid , function(d) sum( posterior*abs( d - p_grid ) ) )

Now the symbol loss contains a list of loss values, one for each possible decision, corre-
sponding the values in p_grid. From here, it’s easy to find the parameter value that mini-
mizes the loss:

p_grid[ which.min(loss) ]

[1] 0.8408408

And this is actually the posterior median, the parameter value that splits the posterior density
such that half of the mass is above it and half below it. Try median(samples) for compari-
son. It may not be exactly the same value, due to sampling variation, but it will be close.

So what are we to learn from all of this? In order to decide upon a point estimate, a
single-value summary of the posterior distribution, we need to pick a loss function. Different
loss functions nominate different point estimates. The two most common examples are the
absolute loss as above, which leads to the median as the point estimate, and the quadratic
loss (d — p)?, which leads to the posterior mean (mean(samples)) as the point estimate.
When the posterior distribution is symmetrical and normal-looking, then the median and
mean converge to the same point, which relaxes some anxiety we might have about choosing
a loss function. For the original globe tossing data (6 waters in 9 tosses), for example, the
mean and median are barely different.

In principle, though, the details of the applied context may demand a rather unique loss
function. Consider a practical example like deciding whether or not to order an evacuation,
based upon an estimate of hurricane wind speed. Damage to life and property increases
very rapidly as wind speed increases. There are also costs to ordering an evacuation when
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none is needed, but these are much smaller. Therefore the implied loss function is highly
asymmetric, rising sharply as true wind speed exceeds our guess, but rising only slowly as
true wind speed falls below our guess. In this context, the optimal point estimate would tend
to be larger than posterior mean or median. Moreover, the real issue is whether or not to
order an evacuation. Producing a point estimate of wind speed may not be necessary at all.

Usually, research scientists don’t think about loss functions. And so any point estimate
like the mean or MAP that they may report isn’t intended to support any particular decision,
but rather to describe the shape of the posterior. You might argue that the decision to make
is whether or not to accept an hypothesis. But the challenge then is to say what the relevant
costs and benefits would be, in terms of the knowledge gained or lost.®! Usually it’s better
to communicate as much as you can about the posterior distribution, as well as the data and
the model itself, so that others can build upon your work. Premature decisions to accept or
reject hypotheses can cost lives.®?

It’s healthy to keep these issues in mind, if only because they remind us that many of
the routine questions in statistical inference can only be answered under consideration of a
particular empirical context and applied purpose. Statisticians can provide general outlines
and standard answers, but a motivated and attentive scientist will always be able to improve
upon such general advice.

3.3. Sampling to simulate prediction

Another common job for samples is to ease SIMULATION of the model’s implied obser-
vations. Generating implied observations from a model is useful for at least four reasons.

(1) Model design. We can sample not only from the posterior, but also from the prior.
Seeing what the model expects, before the data arrive, is the best way to understand
the implications of the prior. We'll do a lot of this in later chapters, where there will
be multiple parameters and so their joint implications are not always very clear.

(2) Model checking. After a model is updated using data, it is worth simulating im-
plied observations, to check both whether the fit worked correctly and to investi-
gate model behavior.

(3) Software validation. In order to be sure that our model fitting software is working,
it helps to simulate observations under a known model and then attempt to recover
the values of the parameters the data were simulated under.

(4) Research design. If you can simulate observations from your hypothesis, then you
can evaluate whether the research design can be effective. In a narrow sense, this
means doing power analysis, but the possibilities are much broader.

(5) Forecasting. Estimates can be used to simulate new predictions, for new cases and
future observations. These forecasts can be useful as applied prediction, but also
for model criticism and revision.

In this final section of the chapter, we'll look at how to produce simulated observations and
how to perform some simple model checks.

3.3.1. Dummy data. Let’s summarize the globe tossing model that you've been working
with for two chapters now. A fixed true proportion of water p exists, and that is the target of
our inference. Tossing the globe in the air and catching it produces observations of “water”
and “land” that appear in proportion to p and 1 — p, respectively.
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Now note that these assumptions not only allow us to infer the plausibility of each possi-
ble value of p, after observation. That’s what you did in the previous chapter. These assump-
tions also allow us to simulate the observations that the model implies. They allow this,
because likelihood functions work in both directions. Given a realized observation, the like-
lihood function says how plausible the observation is. And given only the parameters, the
likelihood defines a distribution of possible observations that we can sample from, to simu-
late observation. In this way, Bayesian models are always generative, capable of simulating
predictions. Many non-Bayesian models are also generative, but many are not.

We will call such simulated data bumMY DATA, to indicate that it is a stand-in for actual
data. With the globe tossing model, the dummy data arises from a binomial likelihood:

N! w N-W

| — )N
win—wy? 1P
where W is an observed count of “water” and N is the number of tosses. Suppose N = 2, two
tosses of the globe. Then there are only three possible observations: 0 water, 1 water, 2 water.
You can quickly compute the probability of each, for any given value of p. Let’s use p = 0.7,
which is just about the true proportion of water on the Earth:

Pr(W‘Nap) -

dbinom( 0:2 , size=2 , prob=0.7 )

[1] ©0.09 0.42 0.49

This means that there’s a 9% chance of observing w = 0, a 42% chance of w = 1, and a 49%
chance of w = 2. If you change the value of p, you’ll get a different distribution of implied
observations.

Now we're going to simulate observations, using these probabilities. This is done by
sampling from the distribution just described above. You could use sample to do this, but
R provides convenient sampling functions for all the ordinary probability distributions, like
the binomial. So a single dummy data observation of W can be sampled with:

rbinom( 1 , size=2 , prob=0.7 )

[1] 1

That 1 means “1 water in 2 tosses.” The “r” in rbinom stands for “random.” It can also
generate more than one simulation at a time. A set of 10 simulations can be made by:

rbinom( 10 , size=2 , prob=0.7 )

1122212111602

Let’s generate 100,000 dummy observations, just to verify that each value (0, 1, or 2) appears
in proportion to its likelihood:

dummy_w <- rbinom( le5 , size=2 , prob=0.7 )
table(dummy_w) /1le5

dummy_w
0] 1 2
0.08904 0.41948 0.49148
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And those values are very close to the analytically calculated likelihoods further up. You will
see slightly different values, due to simulation variance. Execute the code above multiple
times, to see how the exact realized frequencies fluctuate from simulation to simulation.

Only two tosses of the globe isn't much of a sample, though. So now let’s simulate the
same sample size as before, 9 tosses.

dummy_w <- rbinom( le5 , size=9 , prob=0.7 )
simplehist( dummy_w , xlab="dummy water count" )

The resulting plot is shown in FIGURE 3.5. Notice that most of the time the expected obser-
vation does not contain water in its true proportion, 0.7. That’s the nature of observation:
There is a one-to-many relationship between data and data-generating processes. You should
experiment with sample size, the size input in the code above, as well as the prob, to see
how the distribution of simulated samples changes shape and location.

So that’s how to perform a basic simulation of observations. What good is this? There
are many useful jobs for these samples. In this chapter, we'll put them to use in examining
the implied predictions of a model. But to do that, we’ll have to combine them with samples
from the posterior distribution. That’s next.

Rethinking: Sampling distributions. Many readers will already have seen simulated observations.
SAMPLING DISTRIBUTIONS are the foundation of common non-Bayesian statistical traditions. In
those approaches, inference about parameters is made through the sampling distribution. In this
book, inference about parameters is never done directly through a sampling distribution. The poste-
rior distribution is not sampled, but deduced logically. Then samples can be drawn from the poste-
rior, as earlier in this chapter, to aid in inference. In neither case is “sampling” a physical act. In both
cases, it’s just a mathematical device and produces only small world (Chapter 2) numbers.

3.3.2. Model checking. MODEL CHECKING means (1) ensuring the model fitting worked
correctly and (2) evaluating the adequacy of a model for some purpose. Since Bayesian mod-
els are always generative, able to simulate observations as well as estimate parameters from
observations, once you condition a model on data, you can simulate to examine the model’s
empirical expectations.
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3.3.2.1. Did the software work? In the simplest case, we can check whether the software
worked by checking for correspondence between implied predictions and the data used to
fit the model. You might also call these implied predictions retrodictions, as they ask how
well the model reproduces the data used to educate it. An exact match is neither expected
nor desired. But when there is no correspondence at all, it probably means the software did
something wrong.

There is no way to really be sure that software works correctly. Even when the retro-
dictions correspond to the observed data, there may be subtle mistakes. And when you start
working with multilevel models, you'll have to expect a certain pattern of lack of correspon-
dence between retrodictions and observations. Despite there being no perfect way to ensure
software has worked, the simple check I'm encouraging here often catches silly mistakes,
mistakes of the kind everyone makes from time to time.

In the case of the globe tossing analysis, the software implementation is simple enough
that it can be checked against analytical results. So instead let’s move directly to considering
the model’s adequacy.

3.3.2.2. Is the model adequate? After assessing whether the posterior distribution is the
correct one, because the software worked correctly, it’s useful to also look for aspects of the
data that are not well described by the model’s expectations. The goal is not to test whether
the model’s assumptions are “true,” because all models are false. Rather, the goal is to assess
exactly how the model fails to describe the data, as a path towards model comprehension,
revision, and improvement.

All models fail in some respect, so you have to use your judgment—as well as the judg-
ments of your colleagues—to decide whether any particular failure is or is not important.
Few scientists want to produce models that do nothing more than re-describe existing sam-
ples. So imperfect prediction (retrodiction) is not a bad thing. Typically we hope to either
predict future observations or understand enough that we might usefully tinker with the
world. We'll consider these problems in future chapters.

For now, we need to learn how to combine sampling of simulated observations, as in the
previous section, with sampling parameters from the posterior distribution. We expect to
do better when we use the entire posterior distribution, not just some point estimate derived
from it. Why? Because there is a lot of information about uncertainty in the entire posterior
distribution. We lose this information when we pluck out a single parameter value and then
perform calculations with it. This loss of information leads to overconfidence.

Let’s do some basic model checks, using simulated observations for the globe tossing
model. The observations in our example case are counts of water, over tosses of the globe.
The implied predictions of the model are uncertain in two ways, and it’s important to be
aware of both.

First, there is observation uncertainty. For any unique value of the parameter p, there
is a unique implied pattern of observations that the model expects. These patterns of ob-
servations are the same gardens of forking data that you explored in the previous chapter.
These patterns are also what you sampled in the previous section. There is uncertainty in the
predicted observations, because even if you know p with certainty, you won’t know the next
globe toss with certainty (unless p = 0 or p = 1).

Second, there is uncertainty about p. The posterior distribution over p embodies this
uncertainty. And since there is uncertainty about p, there is uncertainty about everything
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FIGURE 3.6. Simulating predictions from the total posterior. Top: The fa-
miliar posterior distribution for the globe tossing data. Ten example pa-
rameter values are marked by the vertical lines. Values with greater poste-
rior probability indicated by thicker lines. Middle row: Each of the ten pa-
rameter values implies a unique sampling distribution of predictions. Bot-
tom: Combining simulated observation distributions for all parameter val-
ues (not just the ten shown), each weighted by its posterior probability, pro-
duces the posterior predictive distribution. This distribution propagates un-
certainty about parameter to uncertainty about prediction.

that depends upon p. The uncertainty in p will interact with the sampling variation, when
we try to assess what the model tells us about outcomes.

Wed like to propagate the parameter uncertainty—carry it forward—as we evaluate the
implied predictions. All that is required is averaging over the posterior density for p, while
computing the predictions. For each possible value of the parameter p, there is an implied
distribution of outcomes. So if you were to compute the sampling distribution of outcomes at
each value of p, then you could average all of these prediction distributions together, using the
posterior probabilities of each value of p, to get a POSTERIOR PREDICTIVE DISTRIBUTION.

FIGURE 3.6 illustrates this averaging. At the top, the posterior distribution is shown,
with 10 unique parameter values highlighted by the vertical lines. The implied distribution
of observations specific to each of these parameter values is shown in the middle row of
plots. Observations are never certain for any value of p, but they do shift around in response
to it. Finally, at the bottom, the sampling distributions for all values of p are combined,
using the posterior probabilities to compute the weighted average frequency of each possible
observation, zero to nine water samples.
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The resulting distribution is for predictions, but it incorporates all of the uncertainty
embodied in the posterior distribution for the parameter p. As a result, it is honest. While
the model does a good job of predicting the data—the most likely observation is indeed
the observed data—predictions are still quite spread out. If instead you were to use only a
single parameter value to compute implied predictions, say the most probable value at the
peak of posterior distribution, youd produce an overconfident distribution of predictions,
narrower than the posterior predictive distribution in FIGURE 3.6 and more like the sampling
distribution shown for p = 0.6 in the middle row. The usual effect of this overconfidence
will be to lead you to believe that the model is more consistent with the data than it really is—
the predictions will cluster around the observations more tightly. This illusion arises from
tossing away uncertainty about the parameters.

So how do you actually do the calculations? To simulate predicted observations for a
single value of p, say p = 0.6, you can use rbinom to generate random binomial samples:

w <- rbinom( le4 , size=9 , prob=0.6 )

This generates 10,000 (1e4) simulated predictions of 9 globe tosses (size=9), assuming p =
0.6. The predictions are stored as counts of water, so the theoretical minimum is zero and the
theoretical maximum is nine. You can use simplehist(w) (in the rethinking package) to
get a clean histogram of your simulated outcomes.

All you need to propagate parameter uncertainty into these predictions is replace the
value 0.6 with samples from the posterior:

w <- rbinom( le4 , size=9 , prob=samples )

The symbol samples above is the same list of random samples from the posterior distribu-
tion that you've used in previous sections. For each sampled value, a random binomial obser-
vation is generated. Since the sampled values appear in proportion to their posterior proba-
bilities, the resulting simulated observations are averaged over the posterior. You can manip-
ulate these simulated observations just like you manipulate samples from the posterior—you
can compute intervals and point statistics using the same procedures. If you plot these sam-
ples, you'll see the distribution shown in the right-hand plot in FIGURE 3.6.

The simulated model predictions are quite consistent with the observed data in this
case—the actual count of 6 lies right in the middle of the simulated distribution. There is
quite a lot of spread to the predictions, but a lot of this spread arises from the binomial pro-
cess itself, not uncertainty about p. Still, itd be premature to conclude that the model is
perfect. So far, we've only viewed the data just as the model views it: Each toss of the globe
is completely independent of the others. This assumption is questionable. Unless the person
tossing the globe is careful, it is easy to induce correlations and therefore patterns among
the sequential tosses. Consider for example that about half of the globe (and planet) is cov-
ered by the Pacific Ocean. As a result, water and land are not uniformly distributed on the
globe, and therefore unless the globe spins and rotates enough while in the air, the position
when tossed could easily influence the sample once it lands. The same problem arises in coin
tosses, and indeed skilled individuals can influence the outcome of a coin toss, by exploiting
the physics of it.%?

So with the goal of seeking out aspects of prediction in which the model fails, let’s look
at the data in two different ways. Recall that the sequence of nine tosses was WL W W W L
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FIGURE 3.7. Alternative views of the same posterior predictive distribution
(see FIGURE 3.6). Instead of considering the data as the model saw it, as
a sum of water samples, now we view the data as both the length of the
maximum run of water or land (left) and the number of switches between
water and land samples (right). Observed values highlighted in blue. While
the simulated predictions are consistent with the run length (3 water in a
row), they are much less consistent with the frequent switches (6 switches
in 9 tosses).

W L W. First, consider the length of the longest run of either water or land. This will provide
a crude measure of correlation between tosses. So in the observed data, the longest run is 3
W’s. Second, consider the number of times in the data that the sample switches from water
to land or from land to water. This is another measure of correlation between samples. In
the observed data, the number of switches is 6. There is nothing special about these two new
ways of describing the data. They just serve to inspect the data in new ways. In your own
modeling, you’ll have to imagine aspects of the data that are relevant in your context, for
your purposes.

FIGURE 3.7 shows the simulated predictions, viewed in these two new ways. On the
left, the length of the longest run of water or land is plotted, with the observed value of 3
highlighted by the bold line. Again, the true observation is the most common simulated ob-
servation, but with a lot of spread around it. On the right, the number of switches from water
to land and land to water is shown, with the observed value of 6 highlighted in bold. Now
the simulated predictions appear less consistent with the data, as the majority of simulated
observations have fewer switches than were observed in the actual sample. This is consis-
tent with lack of independence between tosses of the globe, in which each toss is negatively
correlated with the last.

Does this mean that the model is bad? That depends. The model will always be wrong
in some sense, be mis-specified. But whether or not the mis-specification should lead us to
try other models will depend upon our specific interests. In this case, if tosses do tend to
switch from W to L and L to W, then each toss will provide less information about the true
coverage of water on the globe. In the long run, even the wrong model we've used throughout
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the chapter will converge on the correct proportion. But it will do so more slowly than the
posterior distribution may lead us to believe.

Rethinking: What does more extreme mean? A common way of measuring deviation of observation
from model is to count up the tail area that includes the observed data and any more extreme data.
Ordinary p-values are an example of such a tail-area probability. When comparing observations to
distributions of simulated predictions, as in FIGURE 3.6 and FIGURE 3.7, we might wonder how far
out in the tail the observed data must be before we conclude that the model is a poor one. Because
statistical contexts vary so much, it’s impossible to give a universally useful answer.

But more importantly, there are usually very many ways to view data and define “extreme” Or-
dinary p-values view the data in just the way the model expects it, and so provide a very weak form of
model checking. For example, the far-right plot in FIGURE 3.6 evaluates model fit in the best way for
the model. Alternative ways of defining “extreme” may provide a more serious challenge to a model.
The different definitions of extreme in FIGURE 3.7 can more easily embarrass it.

Model fitting remains an objective procedure—everyone and every golem conducts Bayesian
updating in a way that doesn't depend upon personal preferences. But model checking is inherently
subjective, and this actually allows it to be quite powerful, since subjective knowledge of an empirical
domain provides expertise. Expertise in turn allows for imaginative checks of model performance.
Since golems have terrible imaginations, we need the freedom to engage our own imaginations. In
this way, the objective and subjective work together.**

3.4. Summary

This chapter introduced the basic procedures for manipulating posterior distributions.
Our fundamental tool is samples of parameter values drawn from the posterior distribution.
Working with samples transforms a problem of integral calculus into a problem of data sum-
mary. These samples can be used to produce intervals, point estimates, posterior predictive
checks, as well as other kinds of simulations.

Posterior predictive checks combine uncertainty about parameters, as described by the
posterior distribution, with uncertainty about outcomes, as described by the assumed like-
lihood function. These checks are useful for verifying that your software worked correctly.
They are also useful for prospecting for ways in which your models are inadequate.

Once models become more complex, posterior predictive simulations will be used for
a broader range of applications. Even understanding a model often requires simulating im-
plied observations. We'll keep working with samples from the posterior, to make these tasks
as easy and customizable as possible.

3.5. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).

Easy. The Easy problems use the samples from the posterior distribution for the globe tossing ex-
ample. This code will give you a specific set of samples, so that you can check your answers exactly.

p_grid <- seq( from=0 , to=1 , length.out=1000 )
prior <- rep( 1 , 1000 )

likelihood <- dbinom( 6 , size=9 , prob=p_grid )
posterior <- likelihood * prior

posterior <- posterior / sum(posterdior)
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set.seed(100)
samples <- sample( p_grid , prob=posterior , size=le4 , replace=TRUE )

Use the values in samples to answer the questions that follow.

3E1. How much posterior probability lies below p = 0.2?

3E2. How much posterior probability lies above p = 0.8?

3E3. How much posterior probability lies between p = 0.2 and p = 0.8?

3E4. 20% of the posterior probability lies below which value of p?

3E5. 20% of the posterior probability lies above which value of p?

3E6. Which values of p contain the narrowest interval equal to 66% of the posterior probability?

3E7. Which values of p contain 66% of the posterior probability, assuming equal posterior probabil-
ity both below and above the interval?

3MI1. Suppose the globe tossing data had turned out to be 8 water in 15 tosses. Construct the poste-
rior distribution, using grid approximation. Use the same flat prior as before.

3M2. Draw 10,000 samples from the grid approximation from above. Then use the samples to cal-
culate the 90% HPDI for p.

3M3. Construct a posterior predictive check for this model and data. This means simulate the distri-
bution of samples, averaging over the posterior uncertainty in p. What is the probability of observing
8 water in 15 tosses?

3M4. Using the posterior distribution constructed from the new (8/15) data, now calculate the prob-
ability of observing 6 water in 9 tosses.

3MS5. Start over at 3M1, but now use a prior that is zero below p = 0.5 and a constant above p = 0.5.
This corresponds to prior information that a majority of the Earth’s surface is water. Repeat each
problem above and compare the inferences. What difference does the better prior make? If it helps,
compare inferences (using both priors) to the true value p = 0.7.

3M6. Suppose you want to estimate the Earth’s proportion of water very precisely. Specifically, you
want the 99% percentile interval of the posterior distribution of p to be only 0.05 wide. This means
the distance between the upper and lower bound of the interval should be 0.05. How many times will
you have to toss the globe to do this?

Hard. The Hard problems here all use the data below. These data indicate the gender (male=1, fe-
male=0) of officially reported first and second born children in 100 two-child families.

birthl <- c(1,0,0,0,1,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0,1,0,0,0,1,0,
,0,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,
i,1,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1,1,1,0,0,1,0,1,1,0,
11071)1)1’0’171’1’1)

birth2 <- c(e,1,0,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,0,
i,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,
1’171)0’1’1’071’1’0517171)0’0’070’0’0517070)0’1’170’0’1’07071)1’
0,0,0,1,1,1,0,0,0,0)
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So for example, the first family in the data reported a boy (1) and then a girl (0). The second family
reported a girl (0) and then a boy (1). The third family reported two girls. You can load these two
vectors into R's memory by typing:

library(rethinking)
data(homeworkch3)

Use these vectors as data. So for example to compute the total number of boys born across all of these
births, you could use:

sum(birthl) + sum(birth2)

[1] 111

3H1. Using grid approximation, compute the posterior distribution for the probability of a birth
being a boy. Assume a uniform prior probability. Which parameter value maximizes the posterior
probability?

3H2. Using the sample function, draw 10,000 random parameter values from the posterior distri-
bution you calculated above. Use these samples to estimate the 50%, 89%, and 97% highest posterior
density intervals.

3H3. Use rbinom to simulate 10,000 replicates of 200 births. You should end up with 10,000 num-
bers, each one a count of boys out of 200 births. Compare the distribution of predicted numbers
of boys to the actual count in the data (111 boys out of 200 births). There are many good ways to
visualize the simulations, but the dens command (part of the rethinking package) is probably the
easiest way in this case. Does it look like the model fits the data well? That is, does the distribution
of predictions include the actual observation as a central, likely outcome?

3H4. Now compare 10,000 counts of boys from 100 simulated first borns only to the number of boys
in the first births, birth1l. How does the model look in this light?

3H5. The model assumes that sex of first and second births are independent. To check this assump-
tion, focus now on second births that followed female first borns. Compare 10,000 simulated counts
of boys to only those second births that followed girls. To do this correctly, you need to count the
number of first borns who were girls and simulate that many births, 10,000 times. Compare the
counts of boys in your simulations to the actual observed count of boys following girls. How does the
model look in this light? Any guesses what is going on in these data?



4 Geocentric Models

History has been unkind to Ptolemy. Claudius Ptolemy (born 90 CE, died 168 CE) was
an Egyptian mathematician and astronomer, famous for his geocentric model of the solar
system. These days, when scientists wish to mock someone, they might compare him to a
supporter of the geocentric model. But Ptolemy was a genius. His mathematical model of
the motions of the planets (FIGURE 4.1) was extremely accurate. To achieve its accuracy; it
employed a device known as an epicycle, a circle on a circle. It is even possible to have epi-
epicycles, circles on circles on circles. With enough epicycles in the right places, Ptolemy’s
model could predict planetary motion with great accuracy. And so the model was utilized
for over a thousand years. And Ptolemy and people like him worked it all out without the
aid of a computer. Anyone should be flattered to be compared to Ptolemy.

The trouble of course is that the geocentric model is wrong, in many respects. If you
used it to plot the path of your Mars probe, youd miss the red planet by quite a distance.
But for spotting Mars in the night sky, it remains an excellent model. It would have to be
re-calibrated every century or so, depending upon which heavenly body you wish to locate.
But the geocentric model continues to make useful predictions, provided those predictions
remain within a narrow domain of questioning.

The strategy of using epicycles might seem crazy, once you know the correct structure
of the solar system. But it turns out that the ancients had hit upon a generalized system of
approximation. Given enough circles embedded in enough places, the Ptolemaic strategy is
the same as a Fourier series, a way of decomposing a periodic function (like an orbit) into
a series of sine and cosine functions. So no matter the actual arrangement of planets and
moons, a geocentric model can be built to describe their paths against the night sky.

LINEAR REGRESSION is the geocentric model of applied statistics. By “linear regression,”
we will mean a family of simple statistical golems that attempt to learn about the mean and
variance of some measurement, using an additive combination of other measurements. Like
geocentrism, linear regression can usefully describe a very large variety of natural phenom-
ena. Like geocentrism, linear regression is a descriptive model that corresponds to many
different process models. If we read its structure too literally, we're likely to make mistakes.
But used wisely, these little linear golems continue to be useful.

This chapter introduces linear regression as a Bayesian procedure. Under a probability
interpretation, which is necessary for Bayesian work, linear regression uses a Gaussian (nor-
mal) distribution to describe our golem’s uncertainty about some measurement of interest.
This type of model is simple, flexible, and commonplace. Like all statistical models, it is
not universally useful. But linear regression has a strong claim to being foundational, in the
sense that once you learn to build and interpret linear regression models, you can more easily
move on to other types of regression which are less normal.
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~... epicycle

defer{rvzt“‘\\ FIGURE 4.1. The Ptolemaic Universe, in
' which complex motion of the planets in
: the night sky was explained by orbits
Earth o within orbits, called epicycles. The model
equant is incredibly wrong, yet makes quite good

" predictions.

4.1. Why normal distributions are normal

Suppose you and a thousand of your closest friends line up on the halfway line of a soccer
field (football pitch). Each of you has a coin in your hand. At the sound of the whistle, you
begin flipping the coins. Each time a coin comes up heads, that person moves one step
towards the left-hand goal. Each time a coin comes up tails, that person moves one step
towards the right-hand goal. Each person flips the coin 16 times, follows the implied moves,
and then stands still. Now we measure the distance of each person from the halfway line.
Can you predict what proportion of the thousand people who are standing on the halfway
line? How about the proportion 5 yards left of the line?

It’s hard to say where any individual person will end up, but you can say with great con-
fidence what the collection of positions will be. The distances will be distributed in approxi-
mately normal, or Gaussian, fashion. This is true even though the underlying distribution is
binomial. It does this because there are so many more possible ways to realize a sequence of
left-right steps that sums to zero. There are slightly fewer ways to realize a sequence that ends
up one step left or right of zero, and so on, with the number of possible sequences declining
in the characteristic bell curve of the normal distribution.

4.1.1. Normal by addition. Let’s see this result, by simulating this experiment in R. To show
that there’s nothing special about the underlying coin flip, assume instead that each step is
different from all the others, a random distance between zero and one yard. Thus a coin is
flipped, a distance between zero and one yard is taken in the indicated direction, and the
process repeats. To simulate this, we generate for each person a list of 16 random numbers
between —1 and 1. These are the individual steps. Then we add these steps together to get
the position after 16 steps. Then we need to replicate this procedure 1000 times. This is the
sort of task that would be harrowing in a point-and-click interface, but it is made trivial by
the command line. Here’s a single line to do the whole thing:

pos <- replicate( 1000 , sum( runif(16,-1,1) ) )



4.1. WHY NORMAL DISTRIBUTIONS ARE NORMAL 73

©
o
[=
Re]
3°
o
o
(’l) 4 I
1
1
)
o |
0 4 8 12 16
step number
4 steps 8 steps 16 steps
o
N
] o
o =4
2 ai =2 2
a a2 ao
= o
o
Q 8 | 8 |
IS : : - . o & T T T T P . - - T
-6 -3 0 3 6 6 -3 0 3 6 6 -3 0 3 6
position position position

FIGURE 4.2. Random walks on the soccer field converge to a normal dis-
tribution. The more steps are taken, the closer the match between the real
empirical distribution of positions and the ideal normal distribution, super-
imposed in the last plot in the bottom panel.

You can plot the distribution of final positions in a number of different ways, including
hist(pos) and plot(density(pos)). In FIGURE 4.2, I show the result of these random
walks and how their distribution evolves as the number of steps increases. The top panel
plots 100 different, independent random walks, with one highlighted in black. The vertical
dashes indicate the locations corresponding to the distribution plots underneath, measured
after 4, 8, and 16 steps. Although the distribution of positions starts off seemingly idiosyn-
cratic, after 16 steps, it has already taken on a familiar outline. The familiar “bell” curve of
the Gaussian distribution is emerging from the randomness. Go ahead and experiment with
even larger numbers of steps to verify for yourself that the distribution of positions is stabi-
lizing on the Gaussian. You can square the step sizes and transform them in a number of
arbitrary ways, without changing the result: Normality emerges. Where does it come from?

Any process that adds together random values from the same distribution converges to
a normal. But it’s not easy to grasp why addition should result in a bell curve of sums.®®
Here’s a conceptual way to think of the process. Whatever the average value of the source
distribution, each sample from it can be thought of as a fluctuation from that average value.
When we begin to add these fluctuations together, they also begin to cancel one another out.
A large positive fluctuation will cancel a large negative one. The more terms in the sum, the
more chances for each fluctuation to be canceled by another, or by a series of smaller ones
in the opposite direction. So eventually the most likely sum, in the sense that there are the
most ways to realize it, will be a sum in which every fluctuation is canceled by another, a sum
of zero (relative to the mean).®
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It doesn’t matter what shape the underlying distribution possesses. It could be uniform,
like in our example above, or it could be (nearly) anything else.®” Depending upon the un-
derlying distribution, the convergence might be slow, but it will be inevitable. Often, as in
this example, convergence is rapid.

4.1.2. Normal by multiplication. Here’s another way to get a normal distribution. Suppose
the growth rate of an organism is influenced by a dozen loci, each with several alleles that
code for more growth. Suppose also that all of these loci interact with one another, such that
each increase growth by a percentage. This means that their effects multiply, rather than add.
For example, we can sample a random growth rate for this example with this line of code:

prod( 1 + runif(12,0,0.1) )

This code just samples 12 random numbers between 1.0 and 1.1, each representing a pro-
portional increase in growth. Thus 1.0 means no additional growth and 1.1 means a 10%
increase. The product of all 12 is computed and returned as output. Now what distribution
do you think these random products will take? Let’s generate 10,000 of them and see:

growth <- replicate( 10000 , prod( 1 + runif(12,0,0.1) ) )
dens( growth , norm.comp=TRUE )

The reader should execute this code in R and see that the distribution is approximately nor-
mal again. I said normal distributions arise from summing random fluctuations, which is
true. But the effect at each locus was multiplied by the effects at all the others, not added. So
what's going on here?

We again get convergence towards a normal distribution, because the effect at each lo-
cus is quite small. Multiplying small numbers is approximately the same as addition. For
example, if there are two loci with alleles increasing growth by 10% each, the product is:

1.1 x1.1=1.21
We could also approximate this product by just adding the increases, and be off by only 0.01:
1.1x1.1=(1+40.1)(140.1)=1+02+0.01 ~ 1.2

The smaller the effect of each locus, the better this additive approximation will be. In this
way, small effects that multiply together are approximately additive, and so they also tend to
stabilize on Gaussian distributions. Verity this for yourself by comparing:

big <- replicate( 10000 , prod( 1 + runif(12,0,0.5) ) )
small <- replicate( 10000 , prod( 1 + runif(12,0,0.01) ) )

The interacting growth deviations, as long as they are sufficiently small, converge to a Gauss-
ian distribution. In this way, the range of causal forces that tend towards Gaussian distribu-
tions extends well beyond purely additive interactions.

4.1.3. Normal by log-multiplication. But wait, there’s more. Large deviates that are multi-
plied together do not produce Gaussian distributions, but they do tend to produce Gaussian
distributions on the log scale. For example:
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log.big <- replicate( 10000 , log(prod(l + runif(12,0,0.5))) )

Yet another Gaussian distribution. We get the Gaussian distribution back, because adding
logs is equivalent to multiplying the original numbers. So even multiplicative interactions
of large deviations can produce Gaussian distributions, once we measure the outcomes on
the log scale. Since measurement scales are arbitrary, there’s nothing suspicious about this
transformation. After all, it’s natural to measure sound and earthquakes and even informa-
tion (Chapter 7) on a log scale.

4.1.4. Using Gaussian distributions. We're going to spend the rest of this chapter using the
Gaussian distribution as a skeleton for our hypotheses, building up models of measurements
as aggregations of normal distributions. The justifications for using the Gaussian distribution
fall into two broad categories: (1) ontological and (2) epistemological.

By the ontological justification, the world is full of Gaussian distributions, approximately.
We're never going to experience a perfect Gaussian distribution. But it is a widespread pat-
tern, appearing again and again at different scales and in different domains. Measurement
errors, variations in growth, and the velocities of molecules all tend towards Gaussian distri-
butions. These processes do this because at their heart, these processes add together fluctu-
ations. And repeatedly adding finite fluctuations results in a distribution of sums that have
shed all information about the underlying process, aside from mean and spread.

One consequence of this is that statistical models based on Gaussian distributions can-
not reliably identify micro-process. This recalls the modeling philosophy from Chapter 1
(page 6). But it also means that these models can do useful work, even when they cannot
identify process. If we had to know the development biology of height before we could build
a statistical model of height, human biology would be sunk.

There are many other patterns in nature, so make no mistake in assuming that the Gauss-
ian pattern is universal. In later chapters, we'll see how other useful and common patterns,
like the exponential and gamma and Poisson, also arise from natural processes. The Gauss-
ian is a member of a family of fundamental natural distributions known as the EXPONENTIAL
FAMILY. All of the members of this family are important for working science, because they
populate our world.

But the natural occurrence of the Gaussian distribution is only one reason to build mod-
els around it. By the epistemological justification, the Gaussian represents a particular state
of ignorance. When all we know or are willing to say about a distribution of measures (mea-
sures are continuous values on the real number line) is their mean and variance, then the
Gaussian distribution arises as the most consistent with our assumptions.

That is to say that the Gaussian distribution is the most natural expression of our state
of ignorance, because if all we are willing to assume is that a measure has finite variance,
the Gaussian distribution is the shape that can be realized in the largest number of ways
and does not introduce any new assumptions. It is the least surprising and least informative
assumption to make. In this way, the Gaussian is the distribution most consistent with our
assumptions. Or rather, it is the most consistent with our golem’s assumptions. If you don’t
think the distribution should be Gaussian, then that implies that you know something else
that you should tell your golem about, something that would improve inference.

R code
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This epistemological justification is premised on INFORMATION THEORY and MAXIMUM
ENTROPY. We'll dwell on information theory in Chapter 7 and maximum entropy in Chap-
ter 10. Then in later chapters, other common and useful distributions will be used to build
generalized linear models (GLMs). When these other distributions are introduced, you’ll
learn the constraints that make them the uniquely most appropriate distributions.

For now, let’s take the ontological and epistemological justifications of just the Gaussian
distribution as reasons to start building models of measures around it. Throughout all of this
modeling, keep in mind that using a model is not equivalent to swearing an oath to it. The
golem is your servant, not the other way around.

Rethinking: Heavy tails. The Gaussian distribution is common in nature and has some nice proper-
ties. But there are some risks in using it as a default data model. The extreme ends of a distribution are
known as its tails. And the Gaussian distribution has some very thin tails—there is very little prob-
ability in them. Instead most of the mass in the Gaussian lies within one standard deviation of the
mean. Many natural (and unnatural) processes have much heavier tails. These processes have much
higher probabilities of producing extreme events. A real and important example is financial time
series—the ups and downs of a stock market can look Gaussian in the short term, but over medium
and long periods, extreme shocks make the Gaussian model (and anyone who uses it) look foolish.®®
Historical time series may behave similarly, and any inference for example of trends in warfare is
prone to heavy-tailed surprises.®”> We'll consider alternatives to the Gaussian later.

Overthinking: Gaussian distribution. You don’t have to memorize the Gaussian probability distri-
bution. You're computer already knows it. But some knowledge of its form can help demystify it. The
probability density (see below) of some value y, given a Gaussian (normal) distribution with mean p
and standard deviation o, is:

POl o) = ﬂ%p@yz—ou))

This looks monstrous. The important bit is just the (y — )2 bit. This is the part that gives the normal
distribution its fundamental quadratic shape. Once you exponentiate the quadratic shape, you get
the classic bell curve. The rest of it just scales and standardizes the distribution.

The Gaussian is a continuous distribution, unlike the discrete distributions of earlier chapters.
Probability distributions with only discrete outcomes, like the binomial, are called probability mass
functions and denoted Pr. Continuous ones like the Gaussian are called probability density functions,
denoted with p or just plain old f, depending upon author and tradition. For mathematical reasons,
probability densities can be greater than 1. Try dnorm(0,0,0.1), for example, which is the way to
make R calculate p(0[0,0.1). The answer, about 4, is no mistake. Probability density is the rate of
change in cumulative probability. So where cumulative probability is increasing rapidly, density can
easily exceed 1. But if we calculate the area under the density function, it will never exceed 1. Such
areas are also called probability mass. You can usually ignore these density/mass details while doing
computational work. But it’s good to be aware of the distinction. Sometimes the difference matters.

The Gaussian distribution is routinely seen without o but with another parameter, 7. The param-
eter T in this context is usually called precision and defined as 7 = 1/0%. When o is large, T is small.
This change of parameters gives us the equivalent formula (just substitute o = 1/4/7):

p(y|ﬂa7_) = \/Zexp(;fr(y /U')Z)

This form is common in Bayesian data analysis, and Bayesian model fitting software, such as BUGS
or JAGS, sometimes requires using 7 rather than o.
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4.2. A language for describing models

This book adopts a standard language for describing and coding statistical models. You
find this language in many statistical texts and in nearly all statistical journals, as it is general
to both Bayesian and non-Bayesian modeling. Scientists increasingly use this same language
to describe their statistical methods, as well. So learning this language is an investment, no
matter where you are headed next.

Here’s the approach, in abstract. There will be many examples later, but it is important
to get the general recipe before seeing these.

(1) First, we recognize a set of variables to work with. Some of these variables are ob-
servable. We call these data. Others are unobservable things like rates and averages.
We call these parameters.

(2) We define each variable either in terms of the other variables or in terms of a prob-
ability distribution.

(3) The combination of variables and their probability distributions defines a joint gen-
erative model that can be used both to simulate hypothetical observations as well
as analyze real ones.

This outline applies to models in every field, from astronomy to art history. The biggest
difficulty usually lies in the subject matter—which variables matter and how does theory tell
us to connect them?—not in the mathematics.

After all these decisions are made—and most of them will come to seem automatic to
you before long—we summarize the model with something mathy like:

yi ~ Normal(p;, o)
i = Bx;

B ~ Normal(0, 10)
o ~ Exponential(1)
x; ~ Normal(0, 1)

If that doesn’t make much sense, good. That indicates that you are holding the right textbook,
since this book teaches you how to read and write these mathematical model descriptions.
We won't do any mathematical manipulation of them. Instead, they provide an unambigu-
ous way to define and communicate our models. Once you get comfortable with their gram-
mar, when you start reading these mathematical descriptions in other books or in scientific
journals, you'll find them less obtuse.

The approach above surely isn’t the only way to describe statistical modeling, but it is a
widespread and productive language. Once a scientist learns this language, it becomes easier
to communicate the assumptions of our models. We no longer have to remember seemingly
arbitrary lists of bizarre conditions like homoscedasticity (constant variance), because we can
just read these conditions from the model definitions. We will also be able to see natural ways
to change these assumptions, instead of feeling trapped within some procrustean model type,
like regression or multiple regression or ANOVA or ANCOVA or such. These are all the
same kind of model, and that fact becomes obvious once we know how to talk about models
as mappings of one set of variables through a probability distribution onto another set of
variables. Fundamentally, these models define the ways values of some variables can arise,
given values of other variables (Chapter 2).
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4.2.1. Re-describing the globe tossing model. It's good to work with examples. Recall the
proportion of water problem from previous chapters. The model in that case was always:

W ~ Binomial(N, p)
p ~ Uniform(0, 1)

where W was the observed count of water, N was the total number of tosses, and p was the
proportion of water on the globe. Read the above statement as:

The count W is distributed binomially with sample size N and probability p.
The prior for p is assumed to be uniform between zero and one.

Once we know the model in this way, we automatically know all of its assumptions. We
know the binomial distribution assumes that each sample (globe toss) is independent of the
others, and so we also know that the model assumes that sample points are independent of
one another.

For now, we'll focus on simple models like the above. In these models, the first line de-
fines the likelihood function used in Bayes’ theorem. The other lines define priors. Both of
the lines in this model are STOCHASTIC, as indicated by the ~ symbol. A stochastic relation-
ship is just a mapping of a variable or parameter onto a distribution. It is stochastic because
no single instance of the variable on the left is known with certainty. Instead, the mapping is
probabilistic: Some values are more plausible than others, but very many different values are
plausible under any model. Later, we'll have models with deterministic definitions in them.

Overthinking: From model definition to Bayes’ theorem. To relate the mathematical format above
to Bayes theorem, you could use the model definition to define the posterior distribution:

Bi ial Unifa 0,1
Pr(plw, 1) — .1n0m}a (w|n, p) n‘1 orm(p|0,1)
J Binomial(w|n, p)Uniform(p|0, 1)dp
That monstrous denominator is just the average likelihood again. It standardizes the posterior to sum
to 1. The action is in the numerator, where the posterior probability of any particular value of p is
seen again to be proportional to the product of the likelihood and prior. In R code form, this is the

same grid approximation calculation you've been using all along. In a form recognizable as the above
expression:

w <- 6; n <- 9;

p_grid <- seq(from=0,to=1,length.out=100)
posterior <- dbinom(w,n,p_grid)xdunif(p_grid,0,1)
posterior <- posterior/sum(posterior)

Compare to the calculations in earlier chapters.

4.3. Gaussian model of height

Let’s build a linear regression model now. Well, it'll be a “regression” once we have a
predictor variable in it. For now, we'll get the scaffold in place and construct the predictor
variable in the next section. For the moment, we want a single measurement variable to
model as a Gaussian distribution. There will be two parameters describing the distribution’s
shape, the mean y and the standard deviation o. Bayesian updating will allow us to consider
every possible combination of values for 1« and o and to score each combination by its relative
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plausibility, in light of the data. These relative plausibilities are the posterior probabilities of
each combination of values p, .

Another way to say the above is this. There are an infinite number of possible Gaussian
distributions. Some have small means. Others have large means. Some are wide, with a large
o. Others are narrow. We want our Bayesian machine to consider every possible distribution,
each defined by a combination of i and o, and rank them by posterior plausibility. Posterior
plausibility provides a measure of the logical compatibility of each possible distribution with
the data and model.

In practice we'll use approximations to the formal analysis. So we won't really consider
every possible value of 1t and o. But that won't cost us anything in most cases. Instead the
thing to worry about is keeping in mind that the “estimate” here will be the entire posterior
distribution, not any point within it. And as a result, the posterior distribution will be a
distribution of Gaussian distributions. Yes, a distribution of distributions. If that doesn’t
make sense yet, then that just means you are being honest with yourself. Hold on, work
hard, and it will make plenty of sense before long.

4.3.1. Thedata. The data contained in data (Howell1) are partial census data for the Dobe
area !Kung San, compiled from interviews conducted by Nancy Howell in the late 1960s.”°
For the non-anthropologists reading along, the !Kung San are the most famous foraging
population of the twentieth century, largely because of detailed quantitative studies by people
like Howell. Load the data and place them into a convenient object with:

library(rethinking)
data(Howelll)
d <- Howelll

What you have now is a data frame named simply d. I use the name d over and over again
in this book to refer to the data frame we are working with at the moment. I keep its name
short to save you typing. A data frame is a special kind of object in R. It is a table with
named columns, corresponding to variables, and numbered rows, corresponding to individ-
ual cases. In this example, the cases are individuals. Inspect the structure of the data frame,
the same way you can inspect the structure of any symbol in R:

str( d )

'data.frame': 544 obs. of 4 variables:

$ height: num 152 140 137 157 145 ...

$ weight: num 47.8 36.5 31.9 53 41.3 ...

$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$male :int 100106010101 ...

We can also use rethinking’s precis summary function, which we’ll also use to summarize
posterior distributions later on:

precis( d )

'data.frame': 544 obs. of 4 variables:

mean sd 5.5% 94.5% histogram
height 138.26 27.60 81.11 165.74 s
weight 35.61 14.72 9.36 54.50 _me milllm.

R code
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age 29.34 20.75 1.00 66.13 [——
male 0.47 ©0.50 0.00 1.00 N ]
If you cannot see the histograms on your system, use instead precis(d,hist=FALSE). This
data frame contains four columns. Each column has 544 entries, so there are 544 individuals
in these data. Each individual has a recorded height (centimeters), weight (kilograms), age
(years), and “maleness” (0 indicating female and 1 indicating male).

We're going to work with just the height column, for the moment. The column con-
taining the heights is really just a regular old R vector, the kind of list we have been working
with in many of the code examples. You can access this vector by using its name:

d$height

Read the symbol $ as extract, as in extract the column named height from the data frame d.

All we want for now are heights of adults in the sample. The reason to filter out non-
adults for now is that height is strongly correlated with age, before adulthood. Later in the
chapter, I'll ask you to tackle the age problem. But for now, better to postpone it. You can
filter the data frame down to individuals of age 18 or greater with:

d2 <- d[ d$age >= 18 , ]

We'll be working with the data frame d2 now. It should have 352 rows (individuals) in it.

Overthinking: Data frames and indexes. The square bracket notation used in the code above is index
notation. It is very powerful, but also quite compact and confusing. The data frame d is a matrix, a
rectangular grid of values. You can access any value in the matrix with d[row, col], replacing row
and col with row and column numbers. If row or col are lists of numbers, then you get more than
one row or column. If you leave the spot for row or col blank, then you get all of whatever you leave
blank. For example, d[ 3 , 1 gives all columns at row 3. Typing d[,] just gives you the entire
matrix, because it returns all rows and all columns.

So what d[ d$age >= 18 , ] does is give you all of the rows in which d$age is greater-than-
or-equal-to 18. It also gives you all of the columns, because the spot after the comma is blank. The
result is stored in d2, the new data frame containing only adults. With a little practice, you can use
this square bracket index notion to perform custom searches of your data, much like performing a
database query.

It might seem like this whole data frame thing is unnecessary. If we're working with only one
column here, why bother with this d thing at all? You don’t have to use a data frame, as you can just
pass raw vectors to every command we'll use in this book. But keeping related variables in the same
data frame is a convenience. Once we have more than one variable, and we wish to model one as a
function of the others, you'll better see the value of the data frame. You won't have to wait long. More
technically, a data frame is a special kind of 1ist in R. So you access the individual variables with the
usual list “double bracket” notation, like d[[1]] for the first variable or d[['x']] for the variable
named x. Unlike regular lists, however, data frames force all variables to have the same length. That
isn’t always a good thing. In the second half of the book, we'll start using ordinary list collections
instead of data frames.

4.3.2. The model. Our goal is to model these values using a Gaussian distribution. First, go
ahead and plot the distribution of heights, with dens (d2$height). These data look rather
Gaussian in shape, as is typical of height data. This may be because height is a sum of many
small growth factors. As you saw at the start of the chapter, a distribution of sums tends
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to converge to a Gaussian distribution. Whatever the reason, adult heights from a single
population are nearly always approximately normal.

So it’s reasonable for the moment to adopt the stance that the model should use a Gauss-
ian distribution for the probability distribution of the data. But be careful about choosing
the Gaussian distribution only when the plotted outcome variable looks Gaussian to you.
Gawking at the raw data, to try to decide how to model them, is usually not a good idea. The
data could be a mixture of different Gaussian distributions, for example, and in that case
you won't be able to detect the underlying normality just by eyeballing the outcome distribu-
tion. Furthermore, as mentioned earlier in this chapter, the empirical distribution needn’t
be actually Gaussian in order to justify using a Gaussian probability distribution.

So which Gaussian distribution? There are an infinite number of them, with an infinite
number of different means and standard deviations. We're ready to write down the general
model and compute the plausibility of each combination of i and o. To define the heights
as normally distributed with a mean p and standard deviation o, we write:

h; ~ Normal(u, o)

In many books you'll see the same model written as h; ~ N'(u, o), which means the same
thing. The symbol & refers to the list of heights, and the subscript i means each individual
element of this list. It is conventional to use i because it stands for index. The index i takes on
row numbers, and so in this example can take any value from 1 to 352 (the number of heights
in d2$height). As such, the model above is saying that all the golem knows about each
height measurement is defined by the same normal distribution, with mean p and standard
deviation o. Before long, those little i’s are going to show up on the right-hand side of the
model definition, and you’ll be able to see why we must bother with them. So don't ignore
the i, even if it seems like useless ornamentation right now.

Rethinking: Independent and identically distributed. The short model above assumes that the val-
ues h; are independent and identically distributed, abbreviated i.i.d., iid, or IID. You might even see
the same model written:

hi S Normal(p, o).

“iid” indicates that each value h; has the same probability function, independent of the other 4 values
and using the same parameters. A moment’s reflection tells us that this is often untrue. For example,
heights within families are correlated because of alleles shared through recent shared ancestry.

The i.i.d. assumption doesn’t have to seem awkward, as long as you remember that probability is
inside the golem, not outside in the world. The i.i.d. assumption is about how the golem represents its
uncertainty. It is an epistemological assumption. It is not a physical assumption about the world, an
ontological one. E. T. Jaynes (1922-1998) called this the mind projection fallacy, the mistake of con-
fusing epistemological claims with ontological claims.”! The point isn’t that epistemology trumps
reality, but that in ignorance of such correlations the best distribution may be i.i.d.”* This issue will
return in Chapter 10. Furthermore, there is a mathematical result known as de Finetti’s theorem that
says values which are EXCHANGEABLE can be approximated by mixtures of i.i.d. distributions. Col-
loquially, exchangeable values can be reordered. The practical impact is that “i.i.d” cannot be read
literally. There are also types of correlation that do little to the overall shape of a distribution, only
affecting the sequence in which values appear. For example, pairs of sisters have highly correlated
heights. But the overall distribution of female height remains normal. Markov chain Monte Carlo
(Chapter 9) exploits this, using highly correlated sequential samples to estimate most any distribution
we like.
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To complete the model, were going to need some priors. The parameters to be estimated
are both 1 and o, so we need a prior Pr(y, o), the joint prior probability for all parameters.
In most cases, priors are specified independently for each parameter, which amounts to as-
suming Pr(u, o) = Pr(u) Pr(o). Then we can write:

h; ~ Normal(u, o) [likelihood]
i ~ Normal(178, 20) [ prior]
o ~ Uniform(0, 50) [o prior]

The labels on the right are not part of the model, but instead just notes to help you keep track
of the purpose of each line. The prior for x4 is a broad Gaussian prior, centered on 178 cm,
with 95% of probability between 178 + 40 cm.

Why 178 cm? Your author is 178 cm tall. And the range from 138 cm to 218 cm encom-
passes a huge range of plausible mean heights for human populations. So domain-specific
information has gone into this prior. Everyone knows something about human height and
can set a reasonable and vague prior of this kind. But in many regression problems, as you’ll
see later, using prior information is more subtle, because parameters don’t always have such
clear physical meaning.

Whatever the prior, it’s a very good idea to plot your priors, so you have a sense of the
assumption they build into the model. In this case:

curve( dnorm( x , 178 , 20 ) , from=100 , to=250 )

Execute that code yourself, to see that the golem is assuming that the average height (not
each individual height) is almost certainly between 140 cm and 220 cm. So this prior carries
alittle information, but not alot. The o prior is a truly flat prior, a uniform one, that functions
just to constrain o to have positive probability between zero and 50 cm. View it with:

curve( dunif( x , ® , 50 ) , from=-10 , to=60 )

A standard deviation like 0 must be positive, so bounding it at zero makes sense. How should
we pick the upper bound? In this case, a standard deviation of 50 cm would imply that 95%
of individual heights lie within 100 cm of the average height. That’s a very large range.

All this talk is nice. But it'll help to see what these priors imply about the distribution of
individual heights. The PRIOR PREDICTIVE simulation is an essential part of your modeling.
Once you've chosen priors for A, 11, and o, these imply a joint prior distribution of individual
heights. By simulating from this distribution, you can see what your choices imply about
observable height. This helps you diagnose bad choices. Lots of conventional choices are
indeed bad ones, and we'll be able to see this through prior predictive simulations.

Okay, so how to do this? You can quickly simulate heights by sampling from the prior,
like you sampled from the posterior back in Chapter 3. Remember, every posterior is also
potentially a prior for a subsequent analysis, so you can process priors just like posteriors.

sample_mu <- rnorm( le4 , 178 , 20 )

sample_sigma <- runif( le4 , 0 , 50 )

prior_h <- rnorm( le4 , sample_mu , sample_sigma )
dens( prior_h )
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mu ~ dnorm( 178, 20 ) sigma ~ dunif( 0, 50 )
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FIGURE 4.3. Prior predictive simulation for the height model. Top row:
Prior distributions for ;s and . Bottom left: The prior predictive simulation
for height, using the priors in the top row. Values at 3 standard deviations
shown on horizontal axis. Bottom right: Prior predictive simulation using
i ~ Normal(178, 100).

This density, as well as the individual densities for p and o, is shown in FIGURE 4.3. It dis-
plays a vaguely bell-shaped density with thick tails. It is the expected distribution of heights,
averaged over the prior. Notice that the prior probability distribution of height is not itself
Gaussian. This is okay. The distribution you see is not an empirical expectation, but rather
the distribution of relative plausibilities of different heights, before seeing the data.

Prior predictive simulation is very useful for assigning sensible priors, because it can be
quite hard to anticipate how priors influence the observable variables. As an example, con-
sider a much flatter and less informative prior for y, like ;1 ~ Normal(178, 100). Priors with
such large standard deviations are quite common in Bayesian models, but they are hardly
ever sensible. Let’s use simulation again to see the implied heights:

sample_mu <- rnorm( le4 , 178 , 100 )
prior_h <- rnorm( le4 , sample_mu , sample_sigma )
dens( prior_h )

R code
4.15
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The result is displayed in the lower right of FIGURE 4.3. Now the model, before seeing the
data, expects 4% of people, those left of the dashed line, to have negative height. It also
expects some giants. One of the tallest people in recorded history, Robert Pershing Wadlow
(1918-1940) stood 272 cm tall. In our prior predictive simulation, 18% of people (right of
solid line) are taller than this.

Does this matter? In this case, we have so much data that the silly prior is harmless. But
that won’t always be the case. There are plenty of inference problems for which the data alone
are not sufficient, no matter how numerous. Bayes lets us proceed in these cases. But only
if we use our scientific knowledge to construct sensible priors. Using scientific knowledge
to build priors is not cheating. The important thing is that your prior not be based on the
values in the data, but only on what you know about the data before you see it.

Rethinking: A farewell to epsilon. Some readers will have already met an alternative notation for a
Gaussian linear model:

h,‘ = u + €

€; ~ Normal(0, o)
This is equivalent to the h; ~ Normal(y, o) form, with the e standing in for the Gaussian density. But
this € form is poor form. The reason is that it does not usually generalize to other types of models.

This means it won’t be possible to express non-Gaussian models using tricks like €. Better to learn
one system that does generalize.

Overthinking: Model definition to Bayes’ theorem again. It can help to see how the model definition
on the previous page allows us to build up the posterior distribution. The height model, with its priors
for 1 and o, defines this posterior distribution:

Pr(p, olh) — [ I; Normal(h;| 1, 0)Normal(y:|178, 20) Uniform (o0, 50)
Ho o1 = J [ T1; Normal(h;| ¢, o)Normal (1178, 20) Uniform(c |0, 50)dudo

This looks monstrous, but it’s the same creature as before. There are two new things that make it seem
complicated. The first is that there is more than one observation in A, so to get the joint likelihood
across all the data, we have to compute the probability for each h; and then multiply all these likeli-
hoods together. The product on the right-hand side takes care of that. The second complication is
the two priors, one for 1 and one for o. But these just stack up. In the grid approximation code in
the section to follow, you’'ll see the implications of this definition in the R code. Everything will be
calculated on the log scale, so multiplication will become addition. But otherwise it’s just a matter of
executing Bayes’ theorem.

4.3.3. Grid approximation of the posterior distribution. Since this is the first Gaussian
model in the book, and indeed the first model with more than one parameter, it's worth
quickly mapping out the posterior distribution through brute force calculations. This isn’t
the approach I encourage in any other place, because it is laborious and computationally ex-
pensive. Indeed, it is usually so impractical as to be essentially impossible. But as always, it
is worth knowing what the target actually looks like, before you start accepting approxima-
tions of it. A little later in this chapter, you'll use quadratic approximation to estimate the
posterior distribution, and that’s the approach you’ll use for several chapters more. Once you
have the samples you’ll produce in this subsection, you can compare them to the quadratic
approximation in the next.
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Unfortunately, doing the calculations here requires some technical tricks that add little,
if any, conceptual insight. So I'm going to present the code here without explanation. You can
execute it and keep going for now, but later return and follow the endnote for an explanation
of the algorithm.”® For now, here are the guts of the golem:

mu.list <- seq( from=150, to=160 , length.out=100 ) z;gde
sigma.list <- seq( from=7 , to=9 , length.out=100 ) '
post <- expand.grid( mu=mu.list , sigma=sigma.list )
postSLL <- sapply( l:nrow(post) , function(i) sum(
dnorm( d2$height , post$mu[i] , postSsigma[i] , log=TRUE ) ) )
post$prod <- post$LL + dnorm( post$mu , 178 , 20 , TRUE ) +
dunif( post$sigma , 06 , 50 , TRUE )
post$prob <- exp( post$prod - max(post$prod) )
You can inspect this posterior distribution, now residing in post$prob, using a variety of
plotting commands. You can get a simple contour plot with:
. R code
contour_xyz( post$mu , post$sigma , postSprob ) 417
Or you can plot a simple heat map with:
. . R code
image_xyz( post$mu , post$sigma , postS$Sprob ) 418
The functions contour_xyz and image_xyz are both in the rethinking package.
4.3.4. Sampling from the posterior. To study this posterior distribution in more detail,
again I'll push the flexible approach of sampling parameter values from it. This works just
like it did in Chapter 3, when you sampled values of p from the posterior distribution for
the globe tossing example. The only new trick is that since there are two parameters, and
we want to sample combinations of them, we first randomly sample row numbers in post
in proportion to the values in post$prob. Then we pull out the parameter values on those
randomly sampled rows. This code will do it:
. _ R code
sample.rows <- sample( l:nrow(post) , size=le4 , replace=TRUE |, 4.19
prob=post$prob ) '
sample.mu <- post$mu[ sample.rows ]
sample.sigma <- postS$sigmal[ sample.rows ]
You end up with 10,000 samples, with replacement, from the posterior for the height data.
Take a look at these samples:
R code

plot( sample.mu , sample.sigma , cex=0.5 , pch=16 , col=col.alpha(rangi2,0.1) ) 4.0

I reproduce this plot in FIGURE 4.4. Note that the function col. alphais partofthe rethink-
ing R package. All it does is make colors transparent, which helps the plot in FIGURE 4.4
more easily show density, where samples overlap. Adjust the plot to your tastes by playing
around with cex (character expansion, the size of the points), pch (plot character), and the
0.1 transparency value.
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Now that you have these samples, you can describe the distribution of confidence in each
combination of ;s and o by summarizing the samples. Think of them like data and describe
them, just like in Chapter 3. For example, to characterize the shapes of the marginal posterior
densities of 1 and o, all we need to do is:

dens( sample.mu )
dens( sample.sigma )

The jargon “marginal” here means “averaging over the other parameters.” Execute the above
code and inspect the plots. These densities are very close to being normal distributions.
And this is quite typical. As sample size increases, posterior densities approach the normal
distribution. If you look closely, though, you'll notice that the density for o has a longer
right-hand tail. I'll exaggerate this tendency a bit later, to show you that this condition is
very common for standard deviation parameters.

To summarize the widths of these densities with posterior compatibility intervals:

PI( sample.mu )
PI( sample.sigma )

Since these samples are just vectors of numbers, you can compute any statistic from them
that you could from ordinary data: mean, median, or quantiile, for example.

Overthinking: Sample size and the normality of o’s posterior. Before moving on to using quadratic
approximation (quap) as shortcut to all of this inference, it is worth repeating the analysis of the height
data above, but now with only a fraction of the original data. The reason to do this is to demonstrate
that, in principle, the posterior is not always so Gaussian in shape. There’s no trouble with the mean,
(. For a Gaussian likelihood and a Gaussian prior on y, the posterior distribution is always Gaussian
as well, regardless of sample size. It is the standard deviation o that causes problems. So if you care
about c—often people do not—you do need to be careful of abusing the quadratic approximation.
The deep reasons for the posterior of o tending to have a long right-hand tail are complex. But
a useful way to conceive of the problem is that variances must be positive. As a result, there must be
more uncertainty about how big the variance (or standard deviation) is than about how small it is.
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For example, if the variance is estimated to be near zero, then you know for sure that it can’t be much
smaller. But it could be a lot bigger.

Let’s quickly analyze only 20 of the heights from the height data to reveal this issue. To sample
20 random heights from the original list:

d3 <- sample( d2Sheight , size=20 )

Now I'll repeat all the code from the previous subsection, modified to focus on the 20 heights in d3
rather than the original data. I'll compress all of the code together here.

mu.list <- seq( from=150, to=170 , length.out=200 )

sigma.list <- seq( from=4 , to=20 , length.out=200 )

post2 <- expand.grid( mu=mu.list , sigma=sigma.list )

post2SLL <- sapply( l:nrow(post2) , function(i)
sum( dnorm( d3 , mean=post2$mu[i] , sd=post2$sigmal[i] ,
log=TRUE ) ) )

post2$prod <- post2$LL + dnorm( post2$mu , 178 , 20 , TRUE ) +
dunif( post2$sigma , 6 , 50 , TRUE )

post2$Sprob <- exp( post2$prod - max(post2$prod) )

sample2.rows <- sample( l:nrow(post2) , size=le4 , replace=TRUE ,
prob=post2$prob )

sample2.mu <- post2$mu[ sample2.rows ]

sample2.sigma <- post2S$sigmal[ sample2.rows ]

plot( sample2.mu , sample2.sigma , cex=0.5 ,
col=col.alpha(rangi2,0.1) ,
xlab="mu" , ylab="sigma" , pch=16 )

After executing the code above, you’ll see another scatter plot of the samples from the posterior den-
sity, but this time you’ll notice a distinctly longer tail at the top of the cloud of points. You should
also inspect the marginal posterior density for o, averaging over y, produced with:

dens( sample2.sigma , norm.comp=TRUE )

This code will also show a normal approximation with the same mean and variance. Now you can
see that the posterior for ¢ is not Gaussian, but rather has a long tail towards higher values.

4.3.5. Finding the posterior distribution with quap. Now we leave grid approximation be-
hind and move on to one of the great engines of applied statistics, the QUADRATIC APPROXI-
MATION. Our interest in quadratic approximation, recall, is as a handy way to quickly make
inferences about the shape of the posterior. The posterior’s peak will lie at the MAXIMUM A
POSTERIORI estimate (MAP), and we can get a useful image of the posterior’s shape by using
the quadratic approximation of the posterior distribution at this peak.

To build the quadratic approximation, we'll use quap, a command in the rethinking
package. The quap function works by using the model definition you were introduced to ear-
lier in this chapter. Each line in the definition has a corresponding definition in the form of
R code. The engine inside quap then uses these definitions to define the posterior probability
at each combination of parameter values. Then it can climb the posterior distribution and
find the peak, its MAP. Finally, it estimates the quadratic curvature at the MAP to produce
an approximation of the posterior distribution. Remember: This procedure is very similar
to what many non-Bayesian procedures do, just without any priors.

Let’s begin by repeating the code to load the data and select out the adults:
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library(rethinking)
data(Howell1l)

d <- Howelll

d2 <- d[ dSage >= 18 , ]

Now we're ready to define the model, using R’s formula syntax. The model definition in this
case is just as before, but now we’ll repeat it with each corresponding line of R code shown
on the right-hand margin:

hiAJPJornuﬂ(u,a) height ~ dnorm(mu,sigma)
I AJPJornnﬂ(178,20) mu ~ dnorm(178,20)
o ~ Uniform(0, 50) sigma ~ dunif(0,50)

Now place the R code equivalents into an alist. Here’s an alist of the formulas above:

flist <- alist(
height ~ dnorm( mu , sigma ) ,
mu ~ dnorm( 178 , 20 ) ,
sigma ~ dunif( @ , 50 )

Note the commas at the end of each line, except the last. These commas separate each line
of the model definition.
Fit the model to the data in the data frame d2 with:

m4.1 <- quap( flist , data=d2 )

After executing this code, you'll have a fit model stored in the symbol m4. 1. Now take a look
at the posterior distribution:

precis( m4.1 )

mean sd 5.5% 94.5%
mu 154.61 0.41 153.95 155.27
sigma 7.73 0.29 T7.27 8.20

These numbers provide Gaussian approximations for each parameter’s marginal distribution.
This means the plausibility of each value of 4, after averaging over the plausibilities of each
value of o, is given by a Gaussian distribution with mean 154.6 and standard deviation 0.4.

The 5.5% and 94.5% quantiles are percentile interval boundaries, corresponding to an
89% compatibility interval. Why 89%? It’s just the default. It displays a quite wide interval,
so it shows a high-probability range of parameter values. If you want another interval, such
as the conventional and mindless 95%, you can use precis(m4.1,prob=0.95). But I don’t
recommend 95% intervals, because readers will have a hard time not viewing them as signif-
icance tests. 89 is also a prime number, so if someone asks you to justify it, you can stare at
them meaningfully and incant, “Because it is prime” That’s no worse justification than the
conventional justification for 95%.
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I encourage you to compare these 89% boundaries to the compatibility intervals from
the grid approximation earlier. You'll find that they are almost identical. When the posterior
is approximately Gaussian, then this is what you should expect.

Overthinking: Start values for quap. quap estimates the posterior by climbing it like a hill. To do
this, it has to start climbing someplace, at some combination of parameter values. Unless you tell it
otherwise, quap starts at random values sampled from the prior. But it’s also possible to specify a
starting value for any parameter in the model. In the example in the previous section, that means the
parameters i and o. Here’s a good list of starting values in this case:

start <- list(
mu=mean (d2$height),
sigma=sd(d2$height)
)
m4.1 <- quap( flist , data=d2 , start=start )

These start values are good guesses of the rough location of the MAP values.

Note that the list of start values is a regular 1ist, not an alist like the formula list is. The two
functions alist and 1ist do the same basic thing: allow you to make a collection of arbitrary R
objects. They differ in one important respect: list evaluates the code you embed inside it, while
alist does not. So when you define a list of formulas, you should use alist, so the code isn't ex-
ecuted. But when you define a list of start values for parameters, you should use 1ist, so that code
like mean (d2$height) will be evaluated to a numeric value.

The priors we used before are very weak, both because they are nearly flat and because
there is so much data. So I'll splice in a more informative prior for u, so you can see the
effect. All 'm going to do is change the standard deviation of the prior to 0.1, so it’s a very
narrow prior. I'll also build the formula right into the call to quap this time.

m4.2 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu ~ dnorm( 178 , 0.1 ) ,
sigma ~ dunif( @ , 50 )
) , data=d2 )
precis( m4.2 )

mean sd 5.5% 94.5%
mu 177.86 0.10 177.70 178.02
sigma 24.52 0.93 23.03 26.00

Notice that the estimate for 1 has hardly moved oft the prior. The prior was very concentrated
around 178. So this is not surprising. But also notice that the estimate for o has changed quite
a lot, even though we didn’t change its prior at all. Once the golem is certain that the mean
is near 178—as the prior insists—then the golem has to estimate o conditional on that fact.
This results in a different posterior for o, even though all we changed is prior information
about the other parameter.

4.3.6. Sampling from a quap. The above explains how to get a quadratic approximation of
the posterior, using quap. But how do you then get samples from the quadratic approxi-
mate posterior distribution? The answer is rather simple, but non-obvious, and it requires
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recognizing that a quadratic approximation to a posterior distribution with more than one
parameter dimension—z and o each contribute one dimension—is just a multi-dimensional
Gaussian distribution.

As a consequence, when R constructs a quadratic approximation, it calculates not only
standard deviations for all parameters, but also the covariances among all pairs of param-
eters. Just like a mean and standard deviation (or its square, a variance) are sufficient to
describe a one-dimensional Gaussian distribution, a list of means and a matrix of variances
and covariances are sufficient to describe a multi-dimensional Gaussian distribution. To see
this matrix of variances and covariances, for model m4. 1, use:

vcov( m4.1 )

mu sigma
mu 0.1697395865 0.0002180593
sigma 0.0002180593 0.0849057933

The above is a VARIANCE-COVARIANCE matrix. It is the multi-dimensional glue of a qua-
dratic approximation, because it tells us how each parameter relates to every other param-
eter in the posterior distribution. A variance-covariance matrix can be factored into two
elements: (1) a vector of variances for the parameters and (2) a correlation matrix that tells
us how changes in any parameter lead to correlated changes in the others. This decomposi-
tion is usually easier to understand. So let’s do that now:

diag( vcov( m4.1 ) )
cov2cor( vcov( m4.1 ) )

mu sigma
0.16973959 0.08490579

mu sigma
mu 1.000000000 0.001816412
sigma 0.001816412 1.000000000

The two-element vector in the output is the list of variances. If you take the square root of this
vector, you get the standard deviations that are shown in precis output. The two-by-two
matrix in the output is the correlation matrix. Each entry shows the correlation, bounded
between —1 and +1, for each pair of parameters. The 1’s indicate a parameter’s correlation
with itself. If these values were anything except 1, we would be worried. The other entries
are typically closer to zero, and they are very close to zero in this example. This indicates
that learning y tells us nothing about o and likewise that learning o tells us nothing about
p. This is typical of simple Gaussian models of this kind. But it is quite rare more generally,
as you'll see in later chapters.

Okay, so how do we get samples from this multi-dimensional posterior? Now instead
of sampling single values from a simple Gaussian distribution, we sample vectors of values
from a multi-dimensional Gaussian distribution. The rethinking package provides a con-
venience function to do exactly that:

library(rethinking)
post <- extract.samples( m4.1 , n=1le4 )
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head (post)

mu sigma
1 155.0031 7.443893
2 154.0347 7.771255
3 154.9157 7.822178
4 154.4252 7.530331
5 154.5307 7.655490
6 155.1772 7.974603

You end up with a data frame, post, with 10,000 (1e4) rows and two columns, one column
for 1 and one for . Each value is a sample from the posterior, so the mean and standard
deviation of each column will be very close to the MAP values from before. You can confirm
this by summarizing the samples:

precis(post)

quap posterior: 10000 samples from m4.1
mean sd 5.5% 94.5% histogram
mu 154.61 0.41 153.95 155.27 ull

sigma 7.72 0.29 7.26 8.18 .

Compare these values to the output from precis(m4.1). And you can use plot(post)
to see how much they resemble the samples from the grid approximation in FIGURE 4.4
(page 86). These samples also preserve the covariance between y and o. This hardly matters
right now, because 1 and o don’t covary at all in this model. But once you add a predictor
variable to your model, covariance will matter a lot.

Overthinking: Under the hood with multivariate sampling. The function extract.samples is
for convenience. It is just running a simple simulation of the sort you conducted near the end of
Chapter 3. Here’s a peak at the motor. The work is done by a multi-dimensional version of rnorm,
mvrnorm. The function rnorm simulates random Gaussian values, while mvrnorm simulates random
vectors of multivariate Gaussian values. Here’s how to use it to do what extract.samples does:

library (MASS)
post <- mvrnorm( n=1e4 , mu=coef(m4.1) , Sigma=vcov(m4.1l) )

You don't usually need to use mvrnorm directly like this, but sometimes you want to simulate multi-
variate Gaussian outcomes. In that case, you'll need to access mvrnorm directly. And of course it’s
always good to know a little about how the machine operates. Later on, we’ll work with posterior
distributions that cannot be correctly approximated this way.

4.4. Linear prediction

What we've done above is a Gaussian model of height in a population of adults. But it
doesn’t really have the usual feel of “regression” to it. Typically, we are interested in modeling
how an outcome is related to some other variable, a PREDICTOR VARIABLE. If the predictor
variable has any statistical association with the outcome variable, then we can use it to predict
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the outcome. When the predictor variable is built inside the model in a particular way, we’ll
have linear regression.

So now let’s look at how height in these Kalahari foragers (the outcome variable) covaries
with weight (the predictor variable). This isn’t the most thrilling scientific question, I know.
But it is an easy relationship to start with, and if it seems dull, it’s because you don't have
a theory about growth and life history in mind. If you did, it would be thrilling. We'll try
later on to add some of that thrill, when we reconsider this example from a more causal per-
spective. Right now, I ask only that you focus on the mechanics of estimating an association
between two variables.

Go ahead and plot adult height and weight against one another:

library(rethinking)
data(Howelll); d <- Howelll; d2 <- d[ d$age >= 18 , ]
plot( d2$height ~ d2Sweight )

The resulting plot is not shown here. You really should do it yourself. Once you can see
the plot, you'll see that there’s obviously a relationship: Knowing a person’s weight helps you
predict height.

To make this vague observation into a more precise quantitative model that relates values
of weight to plausible values of height, we need some more technology. How do we take
our Gaussian model from the previous section and incorporate predictor variables?

Rethinking: What is “regression”? Many diverse types of models are called “regression.” The term
has come to mean using one or more predictor variables to model the distribution of one or more
outcome variables. The original use of term, however, arose from anthropologist Francis Galton’s
(1822-1911) observation that the sons of tall and short men tended to be more similar to the popula-
tion mean, hence regression to the mean.”*

The causal reasons for regression to the mean are diverse. In the case of height, the causal expla-
nation is a key piece of the foundation of population genetics. But this phenomenon arises statistically
whenever individual measurements are assigned a common distribution, leading to shrinkage as each
measurement informs the others. In the context of Galton’s height data, attempting to predict each
son’s height on the basis of only his father’s height is folly. Better to use the population of fathers.
This leads to a prediction for each son which is similar to each father but “shrunk” towards the over-
all mean. Such predictions are routinely better. This same regression/shrinkage phenomenon applies
at higher levels of abstraction and forms one basis of multilevel modeling (Chapter 13).

4.4.1. The linear model strategy. The strategy is to make the parameter for the mean of
a Gaussian distribution, y, into a linear function of the predictor variable and other, new
parameters that we invent. This strategy is often simply called the LINEAR MODEL. The linear
model strategy instructs the golem to assume that the predictor variable has a constant and
additive relationship to the mean of the outcome. The golem then computes the posterior
distribution of this constant relationship.

What this means, recall, is that the machine considers every possible combination of the
parameter values. With a linear model, some of the parameters now stand for the strength
of association between the mean of the outcome, p, and the value of some other variable.
For each combination of values, the machine computes the posterior probability, which is
a measure of relative plausibility, given the model and data. So the posterior distribution
ranks the infinite possible combinations of parameter values by their logical plausibility. As
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a result, the posterior distribution provides relative plausibilities of the different possible
strengths of association, given the assumptions you programmed into the model. We ask
the golem: “Consider all the lines that relate one variable to the other. Rank all of these lines
by plausibility, given these data” The golem answers with a posterior distribution.

Here’s how it works, in the simplest case of only one predictor variable. We'll wait until
the next chapter to confront more than one predictor. Recall the basic Gaussian model:

h; ~ Normal(u, o) [likelihood]
i ~ Normal(178,20) [14 prior]
o ~ Uniform(0, 50) [o prior]

Now how do we get weight into a Gaussian model of height? Let x be the name for the
column of weight measurements, d2$weight. Let the average of the x values be X, “ex bar”.
Now we have a predictor variable x, which is a list of measures of the same length as /. To get
weight into the model, we define the mean y as a function of the values in x. This is what it
looks like, with explanation to follow:

h; ~ Normal(p;, o) [likelihood]
i = a+ B(xi — x) [linear model]
« ~ Normal(178, 20) [ prior]
B~ Normal(O, 10) [3 prior]
o ~ Uniform(0, 50) [o prior]

Again, I've labeled each line on the right-hand side by the type of definition it encodes. We'll
discuss each in turn.

4.4.1.1. Probability of the data. Let’s begin with just the probability of the observed
height, the first line of the model. This is nearly identical to before, except now there is a
little index i on the w as well as the h. You can read h; as “each h” and p; as “each u.” The
mean p now depends upon unique values on each row i. So the little i on y; indicates that
the mean depends upon the row.

4.4.1.2. Linear model. The mean p is no longer a parameter to be estimated. Rather, as
seen in the second line of the model, y; is constructed from other parameters, o and 3, and
the observed variable x. This line is not a stochastic relationship—there is no ~ in it, but
rather an = in it—because the definition of y; is deterministic. That is to say that, once we
know « and (8 and x;, we know p; with certainty.

The value x; is just the weight value on row i. It refers to the same individual as the
height value, h;, on the same row. The parameters o and /3 are more mysterious. Where did
they come from? We made them up. The parameters y« and o are necessary and sufficient to
describe a Gaussian distribution. But o and /3 are instead devices we invent for manipulating
., allowing it to vary systematically across cases in the data.

You'll be making up all manner of parameters as your skills improve. One way to under-
stand these made-up parameters is to think of them as targets of learning. Each parameter is
something that must be described in the posterior distribution. So when you want to know
something about the data, you ask your golem by inventing a parameter for it. This will make
more and more sense as you progress. Here’s how it works in this context. The second line
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of the model definition is just:

pi = o+ B(x; — x)

What this tells the regression golem is that you are asking two questions about the mean of
the outcome.

(1) What is the expected height when x; = x? The parameter o answers this question,
because when x; = X, yt; = «.. For this reason, « is often called the intercept. But we
should think not in terms of some abstract line, but rather in terms of the meaning
with respect to the observable variables.

(2) What is the change in expected height, when x; changes by 1 unit? The parameter
[ answers this question. It is often called a “slope,” again because of the abstract
line. Better to think of it as a rate of change in expectation.

Jointly these two parameters ask the golem to find a line that relates x to h, a line that passes
through a when x; = x and has slope 3. That is a task that golems are very good at. It’s up
to you, though, to be sure it’s a good question.

Rethinking: Nothing special or natural about linear models. Note that there’s nothing special about
the linear model, really. You can choose a different relationship between v and 3 and pi. For example,
the following is a perfectly legitimate definition for y;:

Wi = aexp(—px;)
This does not define a linear regression, but it does define a regression model. The linear relationship
we are using instead is conventional, but nothing requires that you use it. It is very common in some
fields, like ecology and demography, to use functional forms for p that come from theory, rather than
the geocentrism of linear models. Models built out of substantive theory can dramatically outperform
linear models of the same phenomena.”> We'll revisit this point later in the book.

Overthinking: Units and regression models. Readers who had a traditional training in physical
sciences will know how to carry units through equations of this kind. For their benefit, here’s the
model again (omitting priors for brevity), now with units of each symbol added.

hicm ~ Normal(p;cm, ocm)
picm = acm + 3 %(x,-kg — xkg)

So you can see that 5 must have units of cm/kg in order for the mean y; to have units of cm. One of
the facts that labeling with units clears up is that a parameter like /3 is a kind of rate—centimeters per
kilogram. There’s also a tradition called dimensionless analysis that advocates constructing variables
so that they are unit-less ratios. In this context, for example, we might divide height by a reference
height, removing its units. Measurement scales are arbitrary human constructions, and sometimes
the unit-less analysis is more natural and general.

4.4.1.3. Priors. The remaininglinesin the model define distributions for the unobserved
variables. These variables are commonly known as parameters, and their distributions as pri-
ors. There are three parameters: «, 3, and 0. You've seen priors for o and o before, although
« was called p back then.

The prior for 3 deserves explanation. Why have a Gaussian prior with mean zero? This
prior places just as much probability below zero as it does above zero, and when 5 = 0,
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FIGURE 4.5. Prior predictive simulation for the height and weight model.
Left: Simulation using the 5 ~ Normal(0, 10) prior. Right: A more sensible
log() ~ Normal(0, 1) prior.

weight has no relationship to height. To figure out what this prior implies, we have to simulate
the prior predictive distribution. There is no other reliable way to understand.

The goal is to simulate heights from the model, using only the priors. First, let’s consider
a range of weight values to simulate over. The range of observed weights will do fine. Then
we need to simulate a bunch of lines, the lines implied by the priors for o and 3. Here’s how
to do it, setting a seed so you can reproduce it exactly:

set.seed(2971) zggde
N <- 100 # 100 lines ’
a <- rnorm( N , 178 , 20 )
b <- rnorm( N, 0 , 10 )
Now we have 100 pairs of o and /3 values. Now to plot the lines:

. . . R code
plot( NULL , xLlim=range(d2Sweight) , ylim=c(-100,400) , 4.39

xlab="weight" , ylab="height" )

abline( h=0 , lty=2 )

abline( h=272 , 1ty=1 , lwd=0.5 )

mtext( "b ~ dnorm(0,10)" )

xbar <- mean(d2$weight)

for ( i in 1:N ) curve( a[i] + b[i]lx(x - xbar) ,
from=min(d2$weight) , to=max(d2$weight) , add=TRUE |,
col=col.alpha("black",0.2) )

The result is displayed in FIGURE 4.5. For reference, I've added a dashed line at zero—no one
is shorter than zero—and the “Wadlow” line at 272 cm for the world’s tallest person. The
pattern doesn’t look like any human population at all. It essentially says that the relationship
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between weight and height could be absurdly positive or negative. Before we've even seen
the data, this is a bad model. Can we do better?

We can do better immediately. We know that average height increases with average
weight, at least up to a point. Let’s try restricting it to positive values. The easiest way to do
this is to define the prior as Log-Normal instead. If you aren’t accustomed to playing with
logarithms, that’s okay. There’s more detail in the box at the end of this section.

Defining 3 as Log-Normal(0,1) means to claim that the logarithm of 5 has a Normal(0,1)
distribution. Plainly:

8 ~ Log-Normal(0, 1)

R provides the dlnormand r lnorm densities for working with log-normal distributions. You
can simulate this relationship to see what this means for f3:

b <- rlnorm( 1le4 , 0 , 1)
dens( b , xlim=c(0,5) , adj=0.1 )

If the logarithm of 3 is normal, then f itself is strictly positive. The reason is that exp(x)
is greater than zero for any real number x. This is the reason that Log-Normal priors are
commonplace. They are an easy way to enforce positive relationships. So what does this
earn us? Do the prior predictive simulation again, now with the Log-Normal prior:

set.seed(2971)

N <- 100 # 100 lines
a <- rnorm( N , 178 , 20 )

b <- rlnorm( N , 6 , 1)

Plotting as before produces the right-hand plot in FIGURE 4.5. This is much more sensible.
There is still a rare impossible relationship. But nearly all lines in the joint prior for « and 3
are now within human reason.

We're fussing about this prior, even though as you'll see in the next section there is so
much data in this example that the priors end up not mattering. We fuss for two reasons.
First, there are many analyses in which no amount of data makes the prior irrelevant. In such
cases, non-Bayesian procedures are no better off. They also depend upon structural features
of the model. Paying careful attention to those features is essential. Second, thinking about
the priors helps us develop better models, maybe even eventually going beyond geocentrism.

Rethinking: What’s the correct prior? People commonly ask what the correct prior is for a given
analysis. The question sometimes implies that for any given set of data, there is a uniquely correct
prior that must be used, or else the analysis will be invalid. This is a mistake. There is no more a
uniquely correct prior than there is a uniquely correct likelihood. Statistical models are machines for
inference. Many machines will work, but some work better than others. Priors can be wrong, but
only in the same sense that a kind of hammer can be wrong for building a table.

In choosing priors, there are simple guidelines to get you started. Priors encode states of infor-
mation before seeing data. So priors allow us to explore the consequences of beginning with different
information. In cases in which we have good prior information that discounts the plausibility of some
parameter values, like negative associations between height and weight, we can encode that informa-
tion directly into priors. When we don’t have such information, we still usually know enough about
the plausible range of values. And you can vary the priors and repeat the analysis in order to study
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how different states of initial information influence inference. Frequently, there are many reasonable
choices for a prior, and all of them produce the same inference. And conventional Bayesian priors
are conservative, relative to conventional non-Bayesian approaches. We'll see how this conservatism
arises in Chapter 7.

Making choices tends to make novices nervous. There’s an illusion sometimes that default pro-
cedures are more objective than procedures that require user choice, such as choosing priors. If thats
true, then all “objective” means is that everyone does the same thing. It carries no guarantees of
realism or accuracy.

Rethinking: Prior predictive simulation and p-hacking A serious problem in contemporary applied
statistics is “p-hacking,” the practice of adjusting the model and the data to achieve a desired result.
The desired result is usually a p-value less then 5%. The problem is that when the model is adjusted in
light of the observed data, then p-values no longer retain their original meaning. False results are to
be expected. We don’t pay any attention to p-values in this book. But the danger remains, if we choose
our priors conditional on the observed sample, just to get some desired result. The procedure we've
performed in this chapter is to choose priors conditional on pre-data knowledge of the variables—
their constraints, ranges, and theoretical relationships. This is why the actual data are not shown in
the earlier section. We are judging our priors against general facts, not the sample. We'll look at how
the model performs against the real data next.

4.4.2. Finding the posterior distribution. The code needed to approximate the posterior is
a straightforward modification of the kind of code you've already seen. All we have to do
is incorporate our new model for the mean into the model specification inside quap and be
sure to add a prior for the new parameter, 8. Let’s repeat the model definition, now with the
corresponding R code on the right-hand side:

hiAJPJornJaK;q,a) height ~ dnorm(mu,sigma)
i = a+ B(xi — x) mu <- a + bx(weight-xbar)
a ~ Normal(178, 20) a ~ dnorm(178,20)
B ~ Log-Normal(0, 1) b ~ dlnorm(0,1)

o ~ Uniform(0, 50) sigma ~ dunif(e,50)

Notice that the linear model, in the R code on the right-hand side, uses the R assignment

operator, <-, even though the mathematical definition uses the symbol =. This is a code

convention shared by several Bayesian model fitting engines, so it’s worth getting used to the

switch. You just have to remember to use <- instead of = when defining a linear model.
That’s it. The above allows us to build the posterior approximation:

# load data again, since it's a long way back
library(rethinking)
data(Howelll); d <- Howelll; d2 <- d[ d$age >= 18 , ]

# define the average weight, x-bar
xbar <- mean(d2$weight)

# fit model
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m4.3 <- quap(

alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + bx( weight - xbar ) ,
a ~ dnorm( 178 , 20 ) ,
b ~ dlnorm( 06 , 1 ) ,
sigma ~ dunif( @ , 50 )

) , data=d2 )

Rethinking: Everything that depends upon parameters has a posterior distribution. In the model
above, the parameter 4 is no longer a parameter, since it has become a function of the parameters «
and (. But since the parameters « and ( have a joint posterior, so too does . Later in the chapter,
you'll work directly with the posterior distribution of y, even though it’s not a parameter anymore.
Since parameters are uncertain, everything that depends upon them is also uncertain. This includes
statistics like i, as well as model-based predictions, measures of fit, and everything else that uses pa-
rameters. By working with samples from the posterior, all you have to do to account for posterior
uncertainty in any quantity is to compute that quantity for each sample from the posterior. The result-
ing quantities, one for each posterior sample, will approximate the quantity’s posterior distribution.

Overthinking: Logs and exps, oh my. My experience is that many natural and social scientists have
naturally forgotten whatever they once knew about logarithms. Logarithms appear all the time in
applied statistics. You can usefully think of y = log(x) as assigning to y the order of magnitude of x.
The function x = exp(y) is the reverse, turning a magnitude into a value. These definitions will make
a mathematician shriek. But much of our computational work relies only on these intuitions.

These definitions allow the Log-Normal prior for (5 to be coded another way. Instead of defining a
parameter /3, we define a parameter that is the logarithm of 5 and then assign it a normal distribution.
Then we can reverse the logarithm inside the linear model. It looks like this:

m4.3b <- quap(

alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + exp(log_b)x( weight - xbar ),
a ~ dnorm( 178 , 20 ) ,
log_ b ~ dnorm( @ , 1) ,
sigma ~ dunif( 0 , 50 )

) , data=d2 )

Note the exp (Log_b) in the definition of mu. This is the same model as m4. 3. It will make the same
predictions. But instead of 3 in the posterior distribution, you get log(3). It is easy to translate
between the two, because 8 = exp(log(f)). In code form: b <- exp(log_b).

4.4.3. Interpreting the posterior distribution. One trouble with statistical models is that
they are hard to understand. Once you've fit the model, it can only report posterior distribu-
tion. This is the right answer to the question you asked. But it’s your responsibility to process
the answer and make sense of it.

There are two broad categories of processing: (1) reading tables and (2) plotting simu-
lations. For some simple questions, it’s possible to learn a lot just from tables of marginal
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values. But most models are very hard to understand from tables of numbers alone. A major
difficulty with tables alone is their apparent simplicity compared to the complexity of the
model and data that generated them. Once you have more than a couple of parameters in a
model, it is very hard to figure out from numbers alone how all of them act to influence pre-
diction. This is also the reason we simulate from priors. Once you begin adding interaction
terms (Chapter 8) or polynomials (later in this chapter), it may not even be possible to guess
the direction of influence a predictor variable has on an outcome.

So throughout this book, I emphasize plotting posterior distributions and posterior pre-
dictions, instead of attempting to understand a table. Plotting the implications of your mod-
els will allow you to inquire about things that are hard to read from tables:

(1) Whether or not the model fitting procedure worked correctly

(2) The absolute magnitude, rather than merely relative magnitude, of a relationship
between outcome and predictor

(3) The uncertainty surrounding an average relationship

(4) The uncertainty surrounding the implied predictions of the model, as these are
distinct from mere parameter uncertainty

In addition, once you get the hang of processing posterior distributions into plots, you can
ask any question you can think of, for any model type. And readers of your results will
appreciate a figure much more than they will a table of estimates.

So in the remainder of this section, I first spend a little time talking about tables of esti-
mates. Then I move on to show how to plot estimates that always incorporate information
from the full posterior distribution, including correlations among parameters.

Rethinking: What do parameters mean? A basic issue with interpreting model-based estimates is
in knowing the meaning of parameters. There is no consensus about what a parameter means, how-
ever, because different people take different philosophical stances towards models, probability, and
prediction. The perspective in this book is a common Bayesian perspective: Posterior probabilities
of parameter values describe the relative compatibility of different states of the world with the data, ac-
cording to the model. These are small world (Chapter 2) numbers. So reasonable people may disagree
about the large world meaning, and the details of those disagreements depend strongly upon context.
Such disagreements are productive, because they lead to model criticism and revision, something that
golems cannot do for themselves. In later chapters, you'll see that parameters can refer to observable
quantities—data—as well as unobservable values. This makes parameters even more useful and their
interpretation even more context dependent.

4.4.3.1. Tables of marginal distributions. With the new linear regression trained on the
Kalahari data, we inspect the marginal posterior distributions of the parameters:

precis( m4.3 )

mean sd 5.5% 94.5%
a 154.60 0.27 154.17 155.03
b 0.90 0.04 0.84 0.97
sigma 5.07 0.19 4.77 5.38

The first row gives the quadratic approximation for «, the second the approximation for 3,
and the third approximation for o. Let’s try to make some sense of them.
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Let’s focus on b (), because it's the new parameter. Since [ is a slope, the value 0.90
can be read as a person 1 kg heavier is expected to be 0.90 cm taller. 89% of the posterior
probability lies between 0.84 and 0.97. That suggests that 3 values close to zero or greatly
above one are highly incompatible with these data and this model. It is most certainly not
evidence that the relationship between weight and height is linear, because the model only
considered lines. It just says that, if you are committed to a line, then lines with a slope
around 0.9 are plausible ones.

Remember, the numbers in the default precis output aren't sufficient to describe the
quadratic posterior completely. For that, we also require the variance-covariance matrix.
You can see the covariances among the parameters with vcov:

round( vcov( m4.3 ) , 3 )

a b sigma
a 0.073 0.000 0.000
b 0.000 0.002 0.000

sigma 0.000 0.000 0.037

Very little covariation among the parameters in this case. Using pairs(m4.3) shows both
the marginal posteriors and the covariance. In the practice problems at the end of the chapter,
you'll see that the lack of covariance among the parameters results from CENTERING.

4.4.3.2. Plotting posterior inference against the data. It's almost always much more use-
tul to plot the posterior inference against the data. Not only does plotting help in interpret-
ing the posterior, but it also provides an informal check on model assumptions. When the
model’s predictions don’t come close to key observations or patterns in the plotted data,
then you might suspect the model either did not fit correctly or is rather badly specified. But
even if you only treat plots as a way to help in interpreting the posterior, they are invaluable.
For simple models like this one, it is possible (but not always easy) to just read the table of
numbers and understand what the model says. But for even slightly more complex models,
especially those that include interaction effects (Chapter 8), interpreting posterior distribu-
tions is hard. Combine with this the problem of incorporating the information in vcov into
your interpretations, and the plots are irreplaceable.

We're going to start with a simple version of that task, superimposing just the posterior
mean values over the height and weight data. Then we'll slowly add more and more infor-
mation to the prediction plots, until we've used the entire posterior distribution.

We'll start with just the raw data and a single line. The code below plots the raw data,
computes the posterior mean values for a and b, then draws the implied line:

plot( height ~ weight , data=d2 , col=rangi2 )
post <- extract.samples( m4.3 )

a_map <- mean(posts$a)

b_map <- mean(post$b)

curve( a_map + b_map*(x - xbar) , add=TRUE )

You can see the resulting plot in FIGURE 4.6. Each point in this plot is a single individual.
The black line is defined by the mean slope # and mean intercept . This is not a bad line.
It certainly looks highly plausible. But there are an infinite number of other highly plausible
lines near it. Let’s draw those too.



4.4. LINEAR PREDICTION 101

8 4
@ o
o |
23 FIGURE 4.6. Height in centimeters (vertical)
E’) " plotted against weight in kilograms (horizon-
= tal), with the line at the posterior mean plotted
© in black.
=

4.4.3.3. Adding uncertainty around the mean. The posterior mean line is just the poste-
rior mean, the most plausible line in the infinite universe of lines the posterior distribution
has considered. Plots of the average line, like FIGURE 4.6, are useful for getting an impres-
sion of the magnitude of the estimated influence of a variable. But they do a poor job of
communicating uncertainty. Remember, the posterior distribution considers every possible
regression line connecting height to weight. It assigns a relative plausibility to each. This
means that each combination of o and 3 has a posterior probability. It could be that there
are many lines with nearly the same posterior probability as the average line. Or it could be
instead that the posterior distribution is rather narrow near the average line.

So how can we get that uncertainty onto the plot? Together, a combination of o and
B define a line. And so we could sample a bunch of lines from the posterior distribution.
Then we could display those lines on the plot, to visualize the uncertainty in the regression
relationship.

To better appreciate how the posterior distribution contains lines, we work with all of
the samples from the model. Let’s take a closer look at the samples now:

post <- extract.samples( m4.3 )
post[1l:5,]

a b sigma
154.5505 0.9222372 5.188631
154.4965 0.9286227 5.278370
154.4794 0.9490329 4.937513
155.2289 0.9252048 4.869807
154.9545 0.8192535 5.063672

a bh w N

Each row is a correlated random sample from the joint posterior of all three parameters, using
the covariances provided by vcov (m4.3). The paired values of a and b on each row define a
line. The average of very many of these lines is the posterior mean line. But the scatter around
that average is meaningful, because it alters our confidence in the relationship between the
predictor and the outcome.

So now let’s display a bunch of these lines, so you can see the scatter. This lesson will be
easier to appreciate, if we use only some of the data to begin. Then you can see how adding
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in more data changes the scatter of the lines. So we’ll begin with just the first 10 cases in d2.
The following code extracts the first 10 cases and re-estimates the model:

N <- 10
dN <= d2[ 1:N , ]
mN <- quap(

alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + bx( weight - mean(weight) ) ,
a ~ dnorm( 178 , 20 ) ,
b ~ dlnorm( 06 , 1) ,
sigma ~ dunif( 6 , 50 )
) , data=dN )

Now let’s plot 20 of these lines, to see what the uncertainty looks like.

# extract 20 samples from the posterior
post <- extract.samples( mN , n=20 )

# display raw data and sample size
plot( dNSweight , dNSheight ,
xlim=range(d2$weight) , ylim=range(d2$height) ,
col=rangi2 , xlab="weight" , ylab="height" )
mtext(concat("N = ",N))

# plot the lines, with transparency
for (i in 1:20 )
curve( post$al[i] + postSb[i]*(x-mean(dN$weight)) ,
col=col.alpha("black",0.3) , add=TRUE )

The last line loops over all 20 lines, using curve to display each.

The result is shown in the upper-left plot in FIGURE 4.7. By plotting multiple regression
lines, sampled from the posterior, it is easy to see both the highly confident aspects of the
relationship and the less confident aspects. The cloud of regression lines displays greater
uncertainty at extreme values for weight.

The other plots in FIGURE 4.7 show the same relationships, but for increasing amounts
of data. Just re-use the code from before, but change N <- 10 to some other value. Notice
that the cloud of regression lines grows more compact as the sample size increases. This is a
result of the model growing more confident about the location of the mean.

4.4.3.4. Plotting regression intervals and contours. The cloud of regression lines in Fig-
URE 4.7 is an appealing display, because it communicates uncertainty about the relationship
in a way that many people find intuitive. But it's more common, and often much clearer, to
see the uncertainty displayed by plotting an interval or contour around the average regres-
sion line. In this section, I'll walk you through how to compute any arbitrary interval you
like, using the underlying cloud of regression lines embodied in the posterior distribution.

Focus for the moment on a single we1ight value, say 50 kilograms. You can quickly make
a list of 10,000 values of 1 for an individual who weighs 50 kilograms, by using your samples
from the posterior:
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FIGURE 4.7. Samples from the quadratic approximate posterior distribution
for the height/weight model, m4. 3, with increasing amounts of data. In each
plot, 20 lines sampled from the posterior distribution, showing the uncer-
tainty in the regression relationship.

post <- extract.samples( m4.3 )
mu_at_50 <- postSa + post$b x ( 50 - xbar )

The code to the right of the <- above takes its form from the equation for f;:

pi = o+ Bx; — x)

The value of x; in this case is 50. Go ahead and take a look inside the result, mu_at_50. It’s a
vector of predicted means, one for each random sample from the posterior. Since joint a and
b went into computing each, the variation across those means incorporates the uncertainty
in and correlation between both parameters. It might be helpful at this point to actually plot
the density for this vector of means:
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dens( mu_at_50 , col=rangi2 , lwd=2 , xlab="mu|weight=50" )

I reproduce this plot in FIGURE 4.8. Since the components of i have distributions, so too
does p. And since the distributions of « and 3 are Gaussian, so too is the distribution of
(adding Gaussian distributions always produces a Gaussian distribution).

Since the posterior for y is a distribution, you can find intervals for it, just like for any
posterior distribution. To find the 89% compatibility interval of y at 50 kg, just use the PI
command as usual:

PI( mu_at_50 , prob=0.89 )

5% 94%
158.5860 159.6706
What these numbers mean is that the central 89% of the ways for the model to produce the
data place the average height between about 159 cm and 160 cm (conditional on the model
and data), assuming the weight is 50 kg.

That’s good so far, but we need to repeat the above calculation for every weight value
on the horizontal axis, not just when it is 50 kg. We want to draw 89% intervals around the
average slope in Figure 4.6.

This is made simple by strategic use of the 1ink function, a part of the rethinking
package. What link will do is take your quap approximation, sample from the posterior
distribution, and then compute x for each case in the data and sample from the posterior
distribution. Here’s what it looks like for the data you used to fit the model:

mu <- link( m4.3 )
str(mu)

num [1:1000, 1:352] 157 157 158 157 157 ...

You end up with a big matrix of values of 1. Each row is a sample from the posterior distribu-
tion. The default is 1000 samples, but you can use as many or as few as you like. Each column
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is a case (row) in the data. There are 352 rows in d2, corresponding to 352 individuals. So
there are 352 columns in the matrix mu above.

Now what can we do with this big matrix? Lots of things. The function link provides
a posterior distribution of 1 for each case we feed it. So above we have a distribution of
 for each individual in the original data. We actually want something slightly different: a
distribution of 1 for each unique weight value on the horizontal axis. It's only slightly harder
to compute that, by just passing 1ink some new data:

# define sequence of weights to compute predictions for
# these values will be on the horizontal axis
weight.seq <- seq( from=25 , to=70 , by=1 )

# use link to compute mu

# for each sample from posterior

# and for each weight in weight.seq

mu <- link( m4.3 , data=data.frame(weight=weight.seq) )
str(mu)

num [1:1000, 1:46] 136 136 138 136 137 ...

And now there are only 46 columns in mu, because we fed it 46 different values for weight.
To visualize what you've got here, let’s plot the distribution of . values at each height.

# use type="n" to hide raw data
plot( height ~ weight , d2 , type="n" )

# loop over samples and plot each mu value
for ( i in 1:100 )
points( weight.seq , mu[i,] , pch=16 , col=col.alpha(rangi2,0.1) )

The result is shown on the left-hand side of FIGURE 4.9. At each weight value inweight.seq,
a pile of computed p values are shown. Each of these piles is a Gaussian distribution, like
that in FIGURE 4.8. You can see now that the amount of uncertainty in ; depends upon the
value of weight. And this is the same fact you saw in FIGURE 4.7.

The final step is to summarize the distribution for each weight value. We'll use apply,
which applies a function of your choice to a matrix.

# summarize the distribution of mu
mu.mean <- apply( mu , 2 , mean )
mu.PI <- apply( mu , 2 , PI , prob=0.89 )

Read apply (mu,2,mean) as compute the mean of each column (dimension “2”) of the matrix
mu. Now mu . mean contains the average y at each weight value, and mu . PI contains 89% lower
and upper bounds for each weight value. Be sure to take a look inside mu.mean and mu.PI,
to demystify them. They are just different kinds of summaries of the distributions in mu, with
each column being for a different weight value. These summaries are only summaries. The
“estimate” is the entire distribution.

You can plot these summaries on top of the data with a few lines of R code:
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FIGURE 4.9. Left: The first 100 values in the distribution of . at each weight
value. Right: The !Kung height data again, now with 89% compatibility in-
terval of the mean indicated by the shaded region. Compare this region to
the distributions of blue points on the left.

# plot raw data
# fading out points to make line and interval more visible
plot( height ~ weight , data=d2 , col=col.alpha(rangi2,0.5) )

# plot the MAP line, aka the mean mu for each weight
lines( weight.seq , mu.mean )

# plot a shaded region for 89% PI
shade( mu.PI , weight.seq )

You can see the results in the right-hand plot in FIGURE 4.9.

Using this approach, you can derive and plot posterior prediction means and intervals
for quite complicated models, for any data you choose. It’s true that it is possible to use
analytical formulas to compute intervals like this. I have tried teaching such an analytical
approach before, and it has always been disaster. Part of the reason is probably my own failure
as a teacher, but another part is that most social and natural scientists have never had much
training in probability theory and tend to get very nervous around [’s. 'm sure with enough
effort, every one of them could learn to do the mathematics. But all of them can quickly
learn to generate and summarize samples derived from the posterior distribution. So while
the mathematics would be a more elegant approach, and there is some additional insight
that comes from knowing the mathematics, the pseudo-empirical approach presented here
is very flexible and allows a much broader audience of scientists to pull insight from their
statistical modeling. And again, when you start estimating models with MCMC (Chapter 9),
this is really the only approach available. So it’s worth learning now.

To summarize, here’s the recipe for generating predictions and intervals from the poste-
rior of a fit model.
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(1) Use link to generate distributions of posterior values for ;.. The default behavior
of link is to use the original data, so you have to pass it a list of new horizontal axis
values you want to plot posterior predictions across.

(2) Use summary functions like mean or PI to find averages and lower and upper
bounds of p for each value of the predictor variable.

(3) Finally, use plotting functions like lines and shade to draw the lines and intervals.
Or you might plot the distributions of the predictions, or do further numerical
calculations with them. It’s really up to you.

This recipe works for every model we fit in the book. As long as you know the structure of
the model—how parameters relate to the data—you can use samples from the posterior to
describe any aspect of the model’s behavior.

Rethinking: Overconfident intervals. The compatibility interval for the regression line in FIGURE 4.9
clings tightly to the MAP line. Thus there is very little uncertainty about the average height as a
function of average weight. But you have to keep in mind that these inferences are always conditional
on the model. Even a very bad model can have very tight compatibility intervals. It may help if you
think of the regression line in FIGURE 4.9 as saying: Conditional on the assumption that height and
weight are related by a straight line, then this is the most plausible line, and these are its plausible bounds.

Overthinking: How link works. The function 1ink is not really very sophisticated. All it is doing
is using the formula you provided when you fit the model to compute the value of the linear model.
It does this for each sample from the posterior distribution, for each case in the data. You could
accomplish the same thing for any model, fit by any means, by performing these steps yourself. This
is how itd look for m4. 3.

post <- extract.samples(m4.3)

mu.link <- function(weight) post$a + post$bx( weight - xbar )
weight.seq <- seq( from=25 , to=70 , by=1 )

mu <- sapply( weight.seq , mu.link )

mu.mean <- apply( mu , 2 , mean )

mu.CI <- apply( mu , 2 , PI , prob=0.89 )

And the values in mu.mean and mu.CI should be very similar (allowing for simulation variance) to
what you got the automated way, using link.

Knowing this manual method is useful both for (1) understanding and (2) sheer power. What-
ever the model you find yourself with, this approach can be used to generate posterior predictions for
any component of it. Automated tools like 1ink save effort, but they are never as flexible as the code
you can write yourself.

4.4.3.5. Prediction intervals. Now let’s walk through generating an 89% prediction in-
terval for actual heights, not just the average height, ;1. This means well incorporate the
standard deviation ¢ and its uncertainty as well. Remember, the first line of the statistical
model here is:

h; ~ Normal(p;, o)

What you've done so far is just use samples from the posterior to visualize the uncertainty
in y;, the linear model of the mean. But actual predictions of heights depend also upon the
distribution in the first line. The Gaussian distribution on the first line tells us that the model
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expects observed heights to be distributed around i, not right on top of it. And the spread
around 1 is governed by o. All of this suggests we need to incorporate o in the predictions
somehow.

Here’s how you do it. Imagine simulating heights. For any unique weight value, you sam-
ple from a Gaussian distribution with the correct mean y for that weight, using the correct
value of o sampled from the same posterior distribution. If you do this for every sample
from the posterior, for every weight value of interest, you end up with a collection of simu-
lated heights that embody the uncertainty in the posterior as well as the uncertainty in the
Gaussian distribution of heights. There is a tool called sim which does this:

sim.height <- sim( m4.3 , data=list(weight=weight.seq) )
str(sim.height)

num [1:1000, 1:46] 140 131 136 137 142 ...

This matrix is much like the earlier one, mu, but it contains simulated heights, not distribu-
tions of plausible average height, 1.

We can summarize these simulated heights in the same way we summarized the distri-
butions of 1, by using apply:

height.PI <- apply( sim.height , 2 , PI , prob=0.89 )

Now height.PI contains the 89% posterior prediction interval of observable (according to
the model) heights, across the values of weight in weight. seq.

Let’s plot everything we've built up: (1) the average line, (2) the shaded region of 89%
plausible x, and (3) the boundaries of the simulated heights the model expects.

# plot raw data
plot( height ~ weight , d2 , col=col.alpha(rangi2,0.5) )

# draw MAP line
lines( weight.seq , mu.mean )

# draw HPDI region for line
shade( mu.HPDI , weight.seq )

# draw PI region for simulated heights
shade( height.PI , weight.seq )

The code above uses some objects computed in previous sections, so go back and execute
that code, if you need to.

In FIGURE 4.10, I plot the result. The wide shaded region in the figure represents the
area within which the model expects to find 89% of actual heights in the population, at each
weight. There is nothing special about the value 89% here. You could plot the boundary for
other percents, such as 67% and 97% (also both primes), and add those to the plot. Doing so
would help you see more of the shape of the predicted distribution of heights. I leave that as
an exercise for the reader. Just go back to the code above and add prob=0.67, for example,
to the call to PI. That will give you 67% intervals, instead of 89% ones.
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FIGURE 4.10. 89% prediction interval for
height, as a function of weight. The solid line
is the average line for the mean height at each

170

=3 weight. The two shaded regions show different
2 89% plausible regions. The narrow shaded in-
= & terval around the line is the distribution of p.
2 The wider shaded region represents the region
within which the model expects to find 89%

g of actual heights in the population, at each

weight.

Notice that the outline for the wide shaded interval is a little rough. This is the simulation
variance in the tails of the sampled Gaussian values. If it really bothers you, increase the
number of samples you take from the posterior distribution. The optional n parameter for
sim.height controls how many samples are used. Try for example:

sim.height <- sim( m4.3 , data=list(weight=weight.seq) , n=1le4 )
height.PI <- apply( sim.height , 2 , PI , prob=0.89 )

Run the plotting code again, and you’ll see the shaded boundary smooth out some. With
extreme percentiles, it can be very hard to get out all of the roughness. Luckily, it hardly
matters, except for aesthetics. Moreover, it serves to remind us that all statistical inference
is approximate. The fact that we can compute an expected value to the 10th decimal place
does not imply that our inferences are precise to the 10th decimal place.

Rethinking: Two kinds of uncertainty. In the procedure above, we encountered both uncertainty
in parameter values and uncertainty in a sampling process. These are distinct concepts, even though
they are processed much the same way and end up blended together in the posterior predictive simu-
lation. The posterior distribution is a ranking of the relative plausibilities of every possible combina-
tion of parameter values. The distribution of simulated outcomes, like height, is instead a distribution
that includes sampling variation from some process that generates Gaussian random variables. This
sampling variation is still a model assumption. It’s no more or less objective than the posterior distri-
bution. Both kinds of uncertainty matter, at least sometimes. But it's important to keep them straight,
because they depend upon different model assumptions. Furthermore, it’s possible to view the Gauss-
ian likelihood as a purely epistemological assumption (a device for estimating the mean and variance
of a variable), rather than an ontological assumption about what future data will look like. In that
case, it may not make complete sense to simulate outcomes.

Overthinking: Rolling your own sim. Just like with 1ink, it's useful to know a little about how
sim operates. For every distribution like dnorm, there is a companion simulation function. For the
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Gaussian distribution, the companion is rnorm, and it simulates sampling from a Gaussian distribu-
tion. What we want R to do is simulate a height for each set of samples, and to do this for each value
of weight. The following will do it:

post <- extract.samples(m4.3)

weight.seq <- 25:70

sim.height <- sapply( weight.seq , function(weight)

rnorm(

n=nrow(post) ,
mean=post$a + post$bx( weight - xbar ) ,
sd=postS$sigma ) )

height.PI <- apply( sim.height , 2 , PI , prob=0.89 )

The values in height.PI will be practically identical to the ones computed in the main text and
displayed in FIGURE 4.10.

4.5. Curves from lines

In the next chapter, you’ll see how to use linear models to build regressions with more
than one predictor variable. But before then, it helps to see how to model the outcome as a
curved function of a predictor. The models so far all assume that a straight line describes the
relationship. But there’s nothing special about straight lines, aside from their simplicity.

We'll consider two commonplace methods that use linear regression to build curves.
The first is POLYNOMIAL REGRESSION. The second is B-SPLINES. Both approaches work by
transforming a single predictor variable into several synthetic variables. But splines have
some clear advantages. Neither approach aims to do more than describe the function that
relates one variable to another. Causal inference, which we’ll consider much more beginning
in the next chapter, wants more.

4.5.1. Polynomial regression. Polynomial regression uses powers of a variable—squares
and cubes—as extra predictors. This is an easy way to build curved associations. Polyno-
mial regressions are very common, and understanding how they work will help scaffold later
models. To understand how polynomial regression works, let’s work through an example,
using the full !Kung data, not just the adults:

library(rethinking)
data(Howell1l)
d <- Howelll

Go ahead and plot( height ~ weight , d ). The relationship is visibly curved, now
that we've included the non-adult individuals.

The most common polynomial regression is a parabolic model of the mean. Let x be
standardized body weight. Then the parabolic equation for the mean height is:

pi = o+ Pixi + foxi

The above is a parabolic (second order) polynomial. The « + (31x; part is the same linear
function of x in a linear regression, just with a little “1” subscript added to the parameter
name, so we can tell it apart from the new parameter. The additional term uses the square
of x; to construct a parabola, rather than a perfectly straight line. The new parameter /3,
measures the curvature of the relationship.
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Fitting these models to data is easy. Interpreting them can be hard. We'll begin with
the easy part, fitting a parabolic model of height on weight. The first thing to do is to sTAN-
DARDIZE the predictor variable. We've done this in previous examples. But this is especially
helpful for working with polynomial models. When predictor variables have very large val-
ues in them, there are sometimes numerical glitches. Even well-known statistical software
can suffer from these glitches, leading to mistaken estimates. These problems are very com-
mon for polynomial regression, because the square or cube of a large number can be truly
massive. Standardizing largely resolves this issue. It should be your default behavior.

To define the parabolic model, just modify the definition of y;. Here’s the model:

h; ~ Normal(;, o) height ~ dnorm(mu,sigma)
ui==O£+’B1Xi+’52X% mu <- a + blxweight.s + b2*weight.s"2
a ~ Normal(178,20) a ~ dnorm(178,20)
B1 ~ Log-Normal(0, 1) bl ~ dlnorm(e,1)
B2 ~ Normal(0, 1) b2 ~ dnorm(0,1)
o ~ Uniform(0, 50) sigma ~ dunif(0,50)

The confusing issue here is assigning a prior for 3,, the parameter on the squared value
of x. Unlike /3;, we don’t want a positive constraint. In the practice problems at the end
of the chapter, you'll use prior predictive simulation to understand why. These polynomial
parameters are in general very difficult to understand. But prior predictive simulation does
help a lot.

Approximating the posterior is straightforward. Just modify the definition of mu so that
it contains both the linear and quadratic terms. But in general it is better to pre-process any
variable transformations—you don’t need the computer to recalculate the transformations
on every iteration of the fitting procedure. So I'll also build the square of weight_s as a
separate variable:

dSweight_s <- ( d$weight - mean(d$weight) )/sd(d$weight)
d$weight_s2 <- d$weight_s?2
m4.5 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + blxweight_s + b2*weight_s2 ,
a ~ dnorm( 178 , 20 ) ,
bl ~ dlnorm( @ , 1 ) ,
b2 ~ dnorm( 0 , 1 ) ,
sigma ~ dunif( 6 , 50 )
) , data=d )

Now; since the relationship between the outcome height and the predictor weight depends
upon two slopes, b1 and b2, it isn’t so easy to read the relationship off a table of coefficients:

precis( m4.5 )

mean sd 5.5% 94.5%
a 146.06 0.37 145.47 146.65
b1l 21.73 0.29 21.27 22.19
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FIGURE 4.11. Polynomial regressions of height on weight (standardized),
for the full !Kung data. In each plot, the raw data are shown by the circles.
The solid curves show the path of x4 in each model, and the shaded regions
show the 89% interval of the mean (close to the solid curve) and the 89%
interval of predictions (wider). Left: Linear regression. Middle: A second
order polynomial, a parabolic or quadratic regression. Right: A third order
polynomial, a cubic regression.

b2 -7.80 0.27 -8.24 -7.37
sigma 5.77 0.18 5.49 6.06

The parameter « (a) is still the intercept, so it tells us the expected value of height when
weight is at its mean value. But it is no longer equal to the mean height in the sample, since
there is no guarantee it should in a polynomial regression.”® And those 3; and 3, parameters
are the linear and square components of the curve. But that doesn’t make them transparent.

You have to plot these model fits to understand what they are saying. So let’s do that.
We'll calculate the mean relationship and the 89% intervals of the mean and the predictions,
like in the previous section. Here’s the working code:

weight.seq <- seq( from=-2.2 , to=2 , length.out=30 )

pred_dat <- list( weight_s=weight.seq , weight_s2=weight.seq"2 )
mu <- link( m4.5 , data=pred_dat )

mu.mean <- apply( mu , 2 , mean )

mu.PI <- apply( mu , 2 , PI , prob=0.89 )

sim.height <- sim( m4.5 , data=pred_dat )

height.PI <- apply( sim.height , 2 , PI , prob=0.89 )

Plotting all of this is straightforward:

plot( height ~ weight_s , d , col=col.alpha(rangi2,0.5) )
lines( weight.seq , mu.mean )

shade( mu.PI , weight.seq )

shade( height.PI , weight.seq )
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The results are shown in FIGURE 4.11. The left panel of the figure shows the familiar linear
regression from earlier in the chapter, but now with the standardized predictor and full data
with both adults and non-adults. The linear model makes some spectacularly poor predic-
tions, at both very low and middle weights. Compare this to the middle panel, our new
quadratic regression. The curve does a better job of finding a central path through the data.

The right panel in FIGURE 4.11 shows a higher-order polynomial regression, a cubic
regression on weight. The model is:

h; ~ Normal(p;, o)
i = a+ Bix;i + Boxi + Bax;

afAJqurnJaK178,20) a ~ dnorm(178,20)
p1 ~ Log-Normal(0, 1) bl ~ dlnorm(e,1)
B2 ~ Normal(0, 1) b2 ~ dnorm(@,1)
B3 ~ Normal(0, 1) b3 ~ dnorm(e,1)
o ~ Uniform(0, 50) sigma ~ dunif(0,50)

Fit the model with a slight modification of the parabolic model’s code:

dSweight_s3 <- d$weight_s”3
m4.6 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + blxweight_s + b2*weight_s2 + b3*weight_s3 ,
a ~ dnorm( 178 , 20 ) ,
bl ~ dlnorm( @ , 1 ) ,
b2 ~ dnorm( @ , 10 ) ,
b3 ~ dnorm( @ , 10 ) ,
sigma ~ dunif( 6 , 50 )
) , data=d )

Computing the curve and intervals is similarly a small modification of the previous code.
This cubic curve is even more flexible than the parabola, so it fits the data even better.

But it’s not clear that any of these models make a lot of sense. They are good geocentric
descriptions of the sample, yes. But there are two problems. First, a better fit to the sample
might not actually be a better model. That’s the subject of Chapter 7. Second, the model con-
tains no biological information. We aren't learning any causal relationship between height
and weight. We'll deal with this second problem much later, in Chapter 16.

Rethinking: Linear, additive, funky. The parabolic model of y; above is still a “linear model” of
the mean, even though the equation is clearly not of a straight line. Unfortunately, the word “linear”
means different things in different contexts, and different people use it differently in the same context.
What “linear” means in this context is that y; is a linear function of any single parameter. Such models
have the advantage of being easier to fit to data. They are also often easier to interpret, because they
assume that parameters act independently on the mean. They have the disadvantage of being used
thoughtlessly. When you have expert knowledge, it is often easy to do better than a linear model.
These models are geocentric devices for describing partial correlations. We should feel embarrassed
to use them, just so we don’t become satisfied with the phenomenological explanations they provide.
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Overthinking: Converting back to natural scale. The plots in FIGURE 4.11 have standard units on
the horizontal axis. These units are sometimes called z-scores. But suppose you fit the model using
standardized variables, but want to plot the estimates on the original scale. All that’s really needed is
first to turn off the horizontal axis when you plot the raw data:

plot( height ~ weight_s , d , col=col.alpha(rangi2,0.5) , xaxt="n" )

The xaxt at the end there turns off the horizontal axis. Then you explicitly construct the axis, using
the ax1is function.

at <- c(-2,-1,0,1,2)
labels <- atxsd(dSweight) + mean(dSweight)
axis( side=1 , at=at , labels=round(labels,l) )

The first line above defines the location of the labels, in standardized units. The second line then takes
those units and converts them back to the original scale. The third line draws the axis. Take a look at
the help ?axis for more details.

4.5.2. Splines. The second way to introduce a curve is to construct something known as
a SPLINE. The word spline originally referred to a long, thin piece of wood or metal that
could be anchored in a few places in order to aid drafters or designers in drawing curves.
In statistics, a spline is a smooth function built out of smaller, component functions. There
are actually many types of splines. The B-spLINE we'll look at here is commonplace. The “B”
stands for “basis,” which here just means “component.” B-splines build up wiggly functions
from simpler less-wiggly components. Those components are called basis functions. While
there are fancier splines, we want to start B-splines because they force you to make a number
of choices that other types of splines automate. You’ll need to understand B-splines before
you can understand fancier splines.

To see how B-splines work, we’ll need an example that is much wigglier—that’s a scien-
tific term—than the !Kung stature data. Cherry trees blossom all over Japan in the spring
each year, and the tradition of flower viewing (Hanami {t ) follows. The timing of the
blossoms can vary a lot by year and century. Let’s load a thousand years of blossom dates:

library(rethinking)
data(cherry_blossoms)
d <- cherry_blossoms
precis(d)

'data.frame': 1215 obs. of 5 variables:

mean sd 5.5% 94.5% histogram
year 1408.00 350.88 867.77 1948.23 INEEEREEEER
doy 104.54 6.41 94.43 115.00 _mil.
temp 6.14 0.66 5.15 7.29 .
temp_upper 7.19 0.99 5.90 8.90 s
temp_lower 5.10 0.85 3.79 6.37 .

See ?cherry_blossoms for details and sources. We're going to work with the historical
record of first day of blossom, doy, for now. It ranges from 86 (late March) to 124 (early
May). The years with recorded blossom dates run from 812 CE to 2015 CE. You should go



4.5. CURVES FROM LINES 115

ahead and plot doy against year to see (also see the figure on the next page). There might
be some wiggly trend in that cloud. It’s hard to tell.

Let’s try extracting a trend with a B-spline. The short explanation of B-splines is that
they divide the full range of some predictor variable, like year, into parts. Then they assign
a parameter to each part. These parameters are gradually turned on and off in a way that
makes their sum into a fancy, wiggly curve. The long explanation contains lots more details.
But all of those details just exist to achieve this goal of building up a big, curvy function from
individually less curvy local functions.

Here’s a longer explanation, with visual examples. Our goal is to approximate the blos-
som trend with a wiggly function. With B-splines, just like with polynomial regression, we
do this by generating new predictor variables and using those in the linear model, ;. Un-
like polynomial regression, B-splines do not directly transform the predictor by squaring or
cubing it. Instead they invent a series of entirely new, synthetic predictor variables. Each of
these synthetic variables exists only to gradually turn a specific parameter on and oft within
a specific range of the real predictor variable. Each of the synthetic variables is called a BAsIS
FUNCTION. The linear model ends up looking very familiar:

pi =+ wBj1 +wyBjs + w3Bi3 + ...

where B; , is the n-th basis function’s value on row i, and the w parameters are correspond-
ing weights for each. The parameters act like slopes, adjusting the influence of each basis
function on the mean ;. So really this is just another linear regression, but with some fancy,
synthetic predictor variables. These synthetic variables do some really elegant descriptive
(geocentric) work for us.

How do we construct these basis variables B? I display the simplest case in FIGURE 4.12,
in which I approximate the blossom date data with a combination of linear approximations.
First, I divide the full range of the horizontal axis into four parts, using pivot points called
KNOTS. The knots are shown by the + symbols in the top plot. I've placed the knots at even
quantiles of the blossom data. In the blossom data, there are fewer recorded blossom dates
deep in the past. So using even quantiles does not produce evenly spaced knots. This is why
the second knot is so far from the first knot. Don’t worry right now about the code to make
these knots. You'll see it later.

Focus for now just on the picture. The knots act as pivots for five different basis functions,
our B variables. These synthetic variables are used to gently transition from one region of
the horizontal axis to the next. Essentially, these variables tell you which knot you are close
to. Beginning on the left of the top plot, basis function 1 has value 1 and all of the others
are set to zero. As we move rightwards towards the second knot, basis 1 declines and basis 2
increases. At knot 2, basis 2 has value 1, and all of the others are set to zero.

The nice feature of these basis functions is that they make the influence of each parameter
quite local. At any point on the horizontal axis in FIGURE 4.12, only two basis functions have
non-zero values. For example, the dashed blue line in the top plot shows the year 1200. Basis
functions 1 and 2 are non-zero for that year. So the parameters for basis functions 1 and 2 are
the only parameters influencing prediction for the year 1200. This is quite unlike polynomial
regression, where parameters influence the entire shape of the curve.

In the middle plot in FIGURE 4.12, I show each basis function multiplied by its corre-
sponding weight parameter. I got these weights by fitting the model to the data. T'll show
you how to do that in a moment. Again focus on the figure for now. Weight parameters can
be positive or negative. So for example basis function 5 ends up below the zero line. It has
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FIGURE 4.12. Using B-splines to make local, linear approximations. Top:
Each basis function is a variable that turns on specific ranges of the predic-
tor variable. At any given value on the horizontal axis, e.g. 1200, only two
have non-zero values. Middle: Parameters called weights multiply the basis
functions. The spline at any given point is the sum of these weighted basis
functions. Bottom: The resulting B-spline shown against the data. Each
weight parameter determines the slope in a specific range of the predictor
variable.

negative weight. To construct a prediction for any given year, say for example 1200 again, we
just add up these weighted basis functions at that year. In the year 1200, only basis functions
1 and 2 influence prediction. Their sum is slightly above the zero (the mean).

Finally, in the bottom plot of FIGURE 4.12, I display the spline, as a 97% posterior interval
for u, over the raw blossom date data. All the spline seems to pick up is a change in trend
around 1800. You can probably guess which global climate trend this reflects. But there
is more going on in the data, before 1800. To see it, we can do two things. First, we can
use more knots. The more knots, the more flexible the spline. Second, instead of linear
approximations, we can use higher-degree polynomials.
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Let’s build up the code that will let you reproduce the plots in FIGURE 4.12, but also let
you change the knots and degree to anything you like. First, we choose the knots. Remem-
ber, the knots are just values of year that serve as pivots for our spline. Where should the
knots go? There are different ways to answer this question.”” You can, in principle, put the
knots wherever you like. Their locations are part of the model, and you are responsible for
them. Let’s do what we did in the simple example above, place the knots at different evenly-
spaced quantiles of the predictor variable. This gives you more knots where there are more
observations. We used only 5 knots in the first example. Now let’s go for 15:

d2 <- d[ complete.cases(dSdoy) , ] # complete cases on doy i;gde
num_knots <- 15
knot_list <- quantile( d2Syear , probs=seq(0,1,length.out=num_knots) )
Go ahead and inspect knot_11st to see that it contains 15 dates.
The next choice is polynomial degree. This determines how basis functions combine,
which determines how the parameters interact to produce the spline. For degree 1, as in
FIGURE 4.12, two basis functions combine at each point. For degree 2, three functions com-
bine at each point. For degree 3, four combine. R already has a nice function that will build
basis functions for any list of knots and degree. This code will construct the necessary basis
functions for a degree 3 (cubic) spline:
library(splines) Zgzde
B <- bs(d2Syear,
knots=knot_list[-c(1,num_knots)] ,
degree=3 , dintercept=TRUE )
The matrix B should have 827 rows and 17 columns. Each row is a year, corresponding to the
rows in the d2 data frame. Each column is a basis function, one of our synthetic variables
defining a span of years within which a corresponding parameter will influence prediction.
To display the basis functions, just plot each column against year:
plot( NULL , xlim=range(d2Syear) , ylim=c(0,1) , xlab="year" , ylab="basis" ) z;gde

for ( i in 1:ncol(B) ) lines( d2Syear , B[,i] )

I show these cubic basis functions in the top plot of FIGURE 4.13.

Now to get the parameter weights for each basis function, we need to actually define the
model and make it run. The model is just a linear regression. The synthetic basis functions
do all the work. Well use each column of the matrix B as a variable. We'll also have an
intercept to capture the average blossom day. This will make it easier to define priors on the
basis weights, because then we can just conceive of each as a deviation from the intercept.

In mathematical form, we start with the probability of the data and the linear model:

D; ~ Normal(u;, o)
K

pi = o+ Z WicByi
k=1
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FIGURE 4.13. A cubic spline with 15 knots. The top plot is, just like in the
previous figure, the basis functions. However now more of these overlap.
The middle plot is again each basis weighted by its corresponding parameter.
And the sum of these weighted basis functions, at each point, produces the
spline shown at the bottom, displayed as a 97% posterior interval of 1.
And then the priors:

a ~ Normal(100, 10)
w; ~ Normal(0, 10)
o ~ Exponential(1)

That linear model might look weird. But all it is doing is multiplying each basis value by
a corresponding parameter wy and then adding up all K of those products. This is just a
compact way of writing a linear model. The rest should be familiar. Although I will ask you
to simulate from those priors in the practice problems at the end of the chapter. You might
guess already that the w priors influence how wiggly the spline can be.

This is also the first time we've used an EXPONENTIAL DISTRIBUTION as a prior. Expo-
nential distributions are useful priors for scale parameters, parameters that must be positive.
The prior for o is exponential with a rate of 1. The way to read an exponential distribution
is to think of it as containing no more information than an average deviation. That average
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is the inverse of the rate. So in this case itis 1/1 = 1. If the rate were 0.5, the mean would be
1/0.5 = 2. We'll use exponential priors for the rest of the book, in place of uniform priors.
It is much more common to have a sense of the average deviation than of the maximum.

To build this model in quap, we just need a way to do that sum. The easiest way is to
use matrix multiplication. If you aren’t familiar with linear algebra in this context, that’s fine.
There is an Overthinking box at the end with some more detail about why this works. The
only other trick is to use a start list for the weights to tell quap how many there are.

R code

m4.7 <- quap( 4.76

alist(

D ~ dnorm( mu , sigma ) ,

mu <- a + B %% w ,

a ~ dnorm(100,10),

w ~ dnorm(0,10),

sigma ~ dexp(1l)
), data=1list( D=d2$doy , B=B ) ,
start=1list( w=rep( © , ncol(B) ) ) )

You can look at the posterior means if you like with precis(m4.7,depth=2). But it won't
reveal much. You should see 17 w parameters. But you can't tell what the model thinks from
the parameter summaries. Instead we need to plot the posterior predictions. First, here are
the weighted basis functions:

R code

post <- extract.samples( m4.7 ) 4.77

w <- apply( postSw , 2 , mean )

plot( NULL , xlim=range(d2Syear) , ylim=c(-6,6) ,
xlab="year" , ylab="basis * weight" )

for ( i in 1:ncol(B) ) lines( d2Syear , w[i]*B[,i] )

This plot, with the knots added for reference, is displayed in the middle row of FIGURE 4.13.
And finally the 97% posterior interval for y, at each year:

R code

mu <- link( m4.7 ) 4.78

mu_PI <- apply(mu,2,PI,0.97)
plot( d2Syear , d2$doy , col=col.alpha(rangi2,0.3) , pch=16 )
shade( mu_PI , d2$year , col=col.alpha("black",0.5) )

This is shown in the bottom of the figure. The spline is much wigglier now. Something
happened around 1500, for example. If you add more knots, you can make this even wigglier.
You might wonder how many knots is correct. We'll be ready to address that question in a few
more chapters. Really we'll answer it by changing the question. So hang on to the question,
and we'll turn to it later.

Distilling the trend across years provides a lot of information. But year is not really a
causal variable, only a proxy for features of each year. In the practice problems below, you’ll
compare this trend to the temperature record, in an attempt to explain those wiggles.

Overthinking: Matrix multiplication in the spline model. Matrix algebra is a stressful topic for many
scientists. If you have had a course in it, it’s obvious what it does. But if you haven't, it is mysterious.
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Matrix algebra is just a new way to represent ordinary algebra. It is often much more compact. So
to make model m4. 7 easier to program, we used a matrix multiplication of the basis matrix B by the
vector of parameters w: B %*% w. This notation is just linear algebra shorthand for (1) multiplying
each element of the vector w by each value in the corresponding row of B and then (2) summing up
each result. You could also fit the same model with the following less-elegant code:

m4.7alt <- quap(

alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + sapply( 1:827 , function(i) sum( B[i,]*w ) ) ,
a ~ dnorm(100,1),
w ~ dnorm(0,10),
sigma ~ dexp(1l)

)

data=list( D=d2$doy , B=B ) ,

start=1list( w=rep( @ , ncol(B) ) ) )

So you end up with exactly what you need: A sum linear predictor for each year (row). If you haven’t
worked with much linear algebra, matrix notation can be intimidating. It is useful to remember that it
is nothing more than the mathematics you already know, but expressed in a highly compressed form
that is convenient when working with repeated calculations on lists of numbers.

4.5.3. Smooth functions for a rough world. The splines in the previous section are just the
beginning. A entire class of models, GENERALIZED ADDITIVE MODELS (GAMs), focuses on
predicting an outcome variable using smooth functions of some predictor variables. The
topic is deep enough to deserve its own book.”®

4.6. Summary

This chapter introduced the simple linear regression model, a framework for estimating
the association between a predictor variable and an outcome variable. The Gaussian distri-
bution comprises the likelihood in such models, because it counts up the relative numbers of
ways different combinations of means and standard deviations can produce an observation.
To fit these models to data, the chapter introduced quadratic approximation of the posterior
distribution and the tool quap. It also introduced new procedures for visualizing prior and
posterior distributions.

The next chapter expands on these concepts by introducing regression models with more
than one predictor variable. The basic techniques from this chapter are the foundation of
most of the examples in future chapters. So if much of the material was new to you, it might
be worth reviewing this chapter now, before pressing onwards.

4.7. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).
4E1. In the model definition below, which line is the likelihood?
y; ~ Normal(u, o)
w ~ Normal(0, 10)

o ~ Exponential(1)

4E2. In the model definition just above, how many parameters are in the posterior distribution?
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4E3. Using the model definition above, write down the appropriate form of Bayes’ theorem that
includes the proper likelihood and priors.

4E4. In the model definition below, which line is the linear model?

y; ~ Normal(u, o)
pi = o+ Bx;

« ~ Normal(0, 10)
B ~ Normal(0, 1)
o ~ Exponential(2)

4E5. In the model definition just above, how many parameters are in the posterior distribution?

4M]1. For the model definition below, simulate observed y values from the prior (not the posterior).

y; ~ Normal(u, o)
u ~ Normal(0, 10)

o ~ Exponential(1)
4M?2. Translate the model just above into a quap formula.

4M3. Translate the quap model formula below into a mathematical model definition.

y ~ dnorm( mu , sigma ),
mu <- a + bx*x,

a ~ dnorm( 0 , 10 ),

b ~ dunif( 0, 1),
sigma ~ dexp( 1)

4M4. A sample of students is measured for height each year for 3 years. After the third year, you want
to fit a linear regression predicting height using year as a predictor. Write down the mathematical
model definition for this regression, using any variable names and priors you choose. Be prepared to
defend your choice of priors.

4M5. Now suppose I remind you that every student got taller each year. Does this information lead
you to change your choice of priors? How?

4M6. Now suppose I tell you that the variance among heights for students of the same age is never
more than 64cm. How does this lead you to revise your priors?

4M7. Refit model m4.3 from the chapter, but omit the mean weight xbar this time. Compare the
new model’s posterior to that of the original model. In particular, look at the covariance among the
parameters. What is different? Then compare the posterior predictions of both models.

4M8. In the chapter, we used 15 knots with the cherry blossom spline. Increase the number of knots
and observe what happens to the resulting spline. Then adjust also the width of the prior on the
weights—change the standard deviation of the prior and watch what happens. What do you think
the combination of knot number and the prior on the weights controls?
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4H1. The weights listed below were recorded in the Kung census, but heights were not recorded for
these individuals. Provide predicted heights and 89% intervals for each of these individuals. That is,
fill in the table below, using model-based predictions.

Individual | weight | expected height | 89% interval
1 46.95
2 43.72
3 64.78
4 32.59
5 54.63

4H2. Select out all the rows in the Howe111 data with ages below 18 years of age. If you do it right,
you should end up with a new data frame with 192 rows in it.

(a) Fit a linear regression to these data, using quap. Present and interpret the estimates. For
every 10 units of increase in weight, how much taller does the model predict a child gets?

(b) Plot the raw data, with height on the vertical axis and weight on the horizontal axis. Super-
impose the MAP regression line and 89% interval for the mean. Also superimpose the 89% interval
for predicted heights.

(c) What aspects of the model fit concern you? Describe the kinds of assumptions you would
change, if any, to improve the model. You don’t have to write any new code. Just explain what the
model appears to be doing a bad job of, and what you hypothesize would be a better model.

4H3. Suppose a colleague of yours, who works on allometry, glances at the practice problems just
above. Your colleague exclaims, “That’s silly. Everyone knows that it’s only the logarithm of body
weight that scales with height!” Let’s take your colleague’s advice and see what happens.

(a) Model the relationship between height (cm) and the natural logarithm of weight (log-kg). Use
the entire Howel11 data frame, all 544 rows, adults and non-adults. Can you interpret the resulting
estimates?

(b) Begin with this plot: plot( height ~ weight , data=Howelll ). Then use samples
from the quadratic approximate posterior of the model in (a) to superimpose on the plot: (1) the
predicted mean height as a function of weight, (2) the 97% interval for the mean, and (3) the 97%
interval for predicted heights.

4H4. Plot the prior predictive distribution for the parabolic polynomial regression model in the
chapter. You can modify the code that plots the linear regression prior predictive distribution. Can
you modify the prior distributions of «, 51, and f3; so that the prior predictions stay within the bio-
logically reasonable outcome space? That is to say: Do not try to fit the data by hand. But do try to
keep the curves consistent with what you know about height and weight, before seeing these exact
data.

4H5. Return to data(cherry_blossoms) and model the association between blossom date (doy)
and March temperature (temp). Note that there are many missing values in both variables. You may
consider a linear model, a polynomial, or a spline on temperature. How well does temperature trend
predict the blossom trend?

4H6. Simulate the prior predictive distribution for the cherry blossom spline in the chapter. Adjust
the prior on the weights and observe what happens. What do you think the prior on the weights is
doing?

4H8. The cherry blossom spline in the chapter used an intercept «, but technically it doesn’t require
one. The first basis functions could substitute for the intercept. Try refitting the cherry blossom spline
without the intercept. What else about the model do you need to change to make this work?
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One of the most reliable sources of waftles in North America, if not the entire world, is
a Waffle House diner. Waffle House is nearly always open, even just after a hurricane. Most
diners invest in disaster preparedness, including having their own electrical generators. Asa
consequence, the United States’ disaster relief agency (FEMA) informally uses Waffle House
as an index of disaster severity.”” If the Waffle House is closed, that’s a serious event.

It is ironic then that steadfast Waffle House is associated with the nation’s highest divorce
rates (FIGURE 5.1). States with many Waffle Houses per person, like Georgia and Alabama,
also have some of the highest divorce rates in the United States. The lowest divorce rates are
found where there are zero Waffle Houses. Could always-available waffles and hash brown
potatoes put marriage at risk?

Probably not. This is an example of a misleading correlation. No one thinks there is any
plausible mechanism by which Waffle House diners make divorce more likely. Instead, when
we see a correlation of this kind, we immediately start asking about other variables that are
really driving the relationship between waffles and divorce. In this case, Waffle House began
in Georgia in the year 1955. Over time, the diners spread across the Southern United States,
remaining largely within it. So Waffle House is associated with the South. Divorce is not a
uniquely Southern institution, but the Southern United States has some of the highest divorce
rates in the nation. So it’s probably just an accident of history that Waffle House and high
divorce rates both occur in the South.

Such accidents are commonplace. It is not surprising that Waftle House is correlated
with divorce, because correlation in general is not surprising. In large data sets, every pair
of variables has a statistically discernible non-zero correlation.®’ But since most correlations
do not indicate causal relationships, we need tools for distinguishing mere association from
evidence of causation. This is why so much effort is devoted to MULTIPLE REGRESSION, using
more than one predictor variable to simultaneously model an outcome. Reasons given for
multiple regression models include:

(1) Statistical “control” for confounds. A confound is something that misleads us about
a causal influence—there will be a more precise definition in the next chapter. The
spurious waftles and divorce correlation is one type of confound, where southern-
ness makes a variable with no real importance (Waffle House density) appear to
be important. But confounds are diverse. They can hide important effects just as
easily as they can produce false ones.

(2) Multiple and complex causation. A phenomenon may arise from multiple simul-
taneous causes, and causes can cascade in complex ways. And since one cause can
hide another, they must be measured simultaneously.

123
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FIGURE 5.1. The number of Wafifle House
diners per million people is associated with
divorce rate (in the year 2009) within the
United States. Each point is a State. “South-
ern” (former Confederate) States shown in
blue. Shaded region is 89% percentile in-
terval of the mean. These data are in
data(WaffleDivorce) in the rethinking
package.

Divorce rate
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(3) Interactions. The importance of one variable may depend upon another. For ex-
ample, plants benefit from both light and water. But in the absence of either, the
other is no benefit at all. Such INTERACTIONS occur very often. Effective inference
about one variable will often depend upon consideration of others.

In this chapter, we begin to deal with the first of these two, using multiple regression to
deal with simple confounds and to take multiple measurements of association. You’ll see how
to include any arbitrary number of main effects in your linear model of the Gaussian mean.
These main effects are additive combinations of variables, the simplest type of multiple vari-
able model. We'll focus on two valuable things these models can help us with: (1) revealing
spurious correlations like the Waffle House correlation with divorce and (2) revealing impor-
tant correlations that may be masked by unrevealed correlations with other variables. Along
the way, you'll meet CATEGORICAL VARIABLES, which require special handling compared
to continuous variables.

However, multiple regression can be worse than useless, if we don't know how to use
it. Just adding variables to a model can do a lot of damage. In this chapter, we'll begin to
think formally about cAUSAL INFERENCE and introduce graphical causal models as a way to
design and interpret regression models. The next chapter continues on this theme, describing
some serious and common dangers of adding predictor variables, ending with a unifying
framework for understanding the examples in both this chapter and the next.

Rethinking: Causal inference. Despite its central importance, there is no unified approach to causal
inference yet in the sciences. There are even people who argue that cause does not really exist; it’s just
a psychological illusion.®! And in complex dynamical systems, everything seems to cause everything
else. “Cause” loses intuitive value. About one thing, however, there is general agreement: Causal
inference always depends upon unverifiable assumptions. Another way to say this is that it’s always
possible to imagine some way in which your inference about cause is mistaken, no matter how careful
the design or analysis. A lot can be accomplished, despite this barrier.**
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FIGURE 5.2. Divorce rate is associated with both marriage rate (left) and
median age at marriage (right). Both predictor variables are standardized in
this example. The average marriage rate across States is 20 per 1000 adults,
and the average median age at marriage is 26 years.

5.1. Spurious association

Let’s leave waffles behind, at least for the moment. An example that is easier to under-
stand is the correlation between divorce rate and marriage rate (FIGURE 5.2). The rate at
which adults marry is a great predictor of divorce rate, as seen in the left-hand plot in the
figure. But does marriage cause divorce? In a trivial sense it obviously does: One cannot get
a divorce without first getting married. But there’s no reason high marriage rate must cause
more divorce. It’s easy to imagine high marriage rate indicating high cultural valuation of
marriage and therefore being associated with low divorce rate.

Another predictor associated with divorce is the median age at marriage, displayed in
the right-hand plot in FIGURE 5.2. Age at marriage is also a good predictor of divorce rate—
higher age at marriage predicts less divorce. But there is no reason this has to be causal,
either, unless age at marriage is very late and the spouses do not live long enough to get a
divorce.

Lets load these data and standardize the variables of interest:

# load data and copy
library(rethinking)
data(WaffleDivorce)
d <- WaffleDivorce

# standardize variables

d$D <- standardize( d$Divorce )

dSM <- standardize( d$Marriage )

d$SA <- standardize( d$MedianAgeMarriage )

R code
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You can replicate the right-hand plot in the figure using a linear regression model:

D; ~ Normal(u;, o)
pi = a+ BaAi

a ~ Normal(0,0.2)
B4 ~ Normal(0,0.5)

o ~ Exponential(1)

D; is the standardized (zero centered, standard deviation one) divorce rate for State i, and
A, is State 7’s standardized median age at marriage. The linear model structure should be
familiar from the previous chapter.

What about those priors? Since the outcome and the predictor are both standardized, the
intercept o should end up very close to zero. What does the prior slope 84 imply? If B4 = 1,
that would imply that a change of one standard deviation in age at marriage is associated
likewise with a change of one standard deviation in divorce. To know whether or not that is
a strong relationship, you need to know how big a standard deviation of age at marriage is:

sd( d$MedianAgeMarriage )

[1] 1.24363

So when 34 = 1, a change of 1.2 years in median age at marriage is associated with a full
standard deviation change in the outcome variable. That seems like an insanely strong rela-
tionship. The prior above thinks that only 5% of plausible slopes are more extreme than 1.
We'll simulate from these priors in a moment, so you can see how they look in the outcome
space.

To compute the approximate posterior, there are no new code tricks or techniques here.
But I'll add comments to help explain the mass of code to follow.

m5.1 <- quap(

alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + bA x A,
a ~ dnorm( 0 , 0.2 ) ,
bA ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )

) , data = d )

To simulate from the priors, we can use extract.prior and link as in the previous chapter.
I'll plot the lines over the range of 2 standard deviations for both the outcome and predictor.
That’ll cover most of the possible range of both variables.

set.seed(10)

prior <- extract.prior( m5.1 )

mu <- link( m5.1 , post=prior , data=list( A=c(-2,2) ) )

plot( NULL , xlim=c(-2,2) , ylim=c(-2,2) )

for ( i in 1:50 ) lines( c(-2,2) , mu[i,] , col=col.alpha("black",0.4) )
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FIGURE 5.3 displays the result. You may wish to try some vaguer, flatter priors and see how
quickly the prior regression lines become ridiculous.

Now for the posterior predictions. The procedure is exactly like the examples from the
previous chapter: 1ink, then summarize with mean and PI, and then plot.

# compute percentile interval of mean ?gode
A_seq <- seq( from=-3 , to=3.2 , length.out=30 ) '
mu <- link( m5.1 , data=list(A=A_seq) )
mu.mean <- apply( mu , 2, mean )
mu.PI <- apply( mu , 2 , PI )
# plot it all
plot( D ~ A , data=d , col=rangi2 )
lines( A_seq , mu.mean , lwd=2 )
shade( mu.PI , A_seq )
If you inspect the precis output, you'll see that posterior for 34 is reliably negative, as seen
in FIGURE 5.2.
You can fit a similar regression for the relationship in the left-hand plot:
R code
m5.2 <- quap( 5.6

alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + bM x M ,
a ~ dnorm( 6 , 0.2 ) ,
bM ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )

) , data = d )

As you can see in the figure, this relationship isn’t as strong as the previous one.

But merely comparing parameter means between different bivariate regressions is no
way to decide which predictor is better. Both of these predictors could provide independent
value, or they could be redundant, or one could eliminate the value of the other.
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To make sense of this, we're going to have to think causally. And then, only after we've
done some thinking, a bigger regression model that includes both age at marriage and mar-
riage rate will help us.

5.1.1. Think before you regress. There are three observed variables in play: divorce rate
(D), marriage rate (M), and the median age at marriage (A) in each State. The pattern we
see in the previous two models and illustrated in FIGURE 5.2 is symptomatic of a situation in
which only one of the predictor variables, A in this case, has a causal impact on the outcome,
D, even though both predictor variables are strongly associated with the outcome.

To understand this better, it is helpful to introduce a particular type of causal graph
known as a DAG, short for DIRECTED ACYCLIC GRAPH. Graph means it is nodes and con-
nections. Directed means the connections have arrows that indicate directions of causal in-
fluence. And acyclic means that causes do not eventually flow back on themselves. A DAG
is a way of describing qualitative causal relationships among variables. It isn’t as detailed as
a full model description, but it contains information that a purely statistical model does not.
Unlike a statistical model, a DAG will tell you the consequences of intervening to change a
variable. But only if the DAG is correct. There is no inference without assumption.

The full framework for using DAGs to design and critique statistical models is compli-
cated. So instead of smothering you in the whole framework right now, I'll build it up one
example at a time. By the end of the next chapter, you'll have a set of simple rules that let
you accomplish quite a lot of criticism. And then other applications will be introduced in
later chapters.

Let’s start with the basics. Here is a possible DAG for our divorce rate example:

A > M

D

If you want to see the code to draw this, see the Overthinking box at the end of this section. It
may not look like much, but this type of diagram does a lot of work. It represents a heuristic
causal model. Like other models, it is an analytical assumption. The symbols A, M, and D
are our observed variables. The arrows show directions of influence. What this DAG says is:

(1) A directly influences D
(2) M directly influences D
(3) A directly influences M

These statements can then have further implications. In this case, age of marriage influences
divorce in two ways. First it has a direct effect, A — D. Perhaps a direct effect would arise
because younger people change faster than older people and are therefore more likely to grow
incompatible with a partner. Second, it has an indirect effect by influencing the marriage rate,
which then influences divorce, A — M — D. If people get married earlier, then the marriage
rate may rise, because there are more young people. Consider for example if an evil dictator
forced everyone to marry at age 65. Since a smaller fraction of the population lives to 65 than
to 25, forcing delayed marriage will also reduce the marriage rate. If marriage rate itself has
any direct effect on divorce, maybe by making marriage more or less normative, then some
of that direct effect could be the indirect effect of age at marriage.
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To infer the strength of these different arrows, we need more than one statistical model.
Modelm5. 1, the regression of D on A, tells us only that the total influence of age at marriage is
strongly negative with divorce rate. The “total” here means we have to account for every path
from A to D. There are two such paths in this graph: A — D, adirect path,and A - M — D,
an indirect path. In general, it is possible that a variable like A has no direct effect at all on an
outcome like D. It could still be associated with D entirely through the indirect path. That
type of relationship is known as MEDIATION, and we'll have another example later.

As you’'ll see however, the indirect path does almost no work in this case. How can we
show that? We know from m5. 2 that marriage rate is positively associated with divorce rate.
But thatisn't enough to tell us that the path M — D s positive. It could be that the association
between M and D arises entirely from A’s influence on both M and D. Like this:

A > M

D

This DAG is also consistent with the posterior distributions of models m5. 1 and m5.2. Why?
Because both M and D “listen” to A. They have information from A. So when you inspect
the association between D and M, you pick up that common information that they both got
from listening to A. You’'ll see a more formal way to deduce this, in the next chapter.

So which is it? Is there a direct effect of marriage rate, or rather is age at marriage just
driving both, creating a spurious correlation between marriage rate and divorce rate? To find
out, we need to consider carefully what each DAG implies. That'’s what’s next.

Rethinking: What’s a cause? Questions of causation can become bogged down in philosophical
debates. These debates are worth having. But they don’t usually intersect with statistical concerns.
Knowing a cause in statistics means being able to correctly predict the consequences of an interven-
tion. There are contexts in which even this is complicated. For example, it isn't possible to directly
change someone’s body weight. Changing someone’s body weight would mean intervening on an-
other variable, like diet, and that variable would have other causal effects in addition. But being
underweight can still be a legitimate cause of disease, even when we can’t intervene on it directly.

Overthinking: Drawing a DAG. There are several packages for drawing and analyzing DAGs. In this
book, we'll use dagitty. Itis both an R package and something you can use in your internet browser:
http://www.dagitty.net/. To draw the simple DAG you saw earlier in this section:

library(dagitty)

dag5.1 <- dagitty( "dag{ A -> D; A -> M; M -> D }" )
coordinates(dag5.1) <- list( x=c(A=0,D=1,M=2) , y=c(A=0,D=1,M=0) )
drawdag( dag5.1 )

The -> arrows in the DAG definition indicate directions of influence. The coordinates function lets
you arrange the plot as you like.
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5.1.2. Testable implications. How do we use data to compare multiple, plausible causal
models? The first thing to consider is the TESTABLE 1MPLICATIONS of each model. Con-
sider the two DAGs we have so far considered:

A > M A > M

D D

Any DAG may imply that some variables are independent of others under certain condi-
tions. These are the model’s testable implications, its CONDITIONAL INDEPENDENCIES. Con-
ditional independencies come in two forms. First, they are statements of which variables
should be associated with one another (or not) in the data. Second, they are statements of
which variables become dis-associated when we condition on some other set of variables.

What does “conditioning” mean? Informally, conditioning on a variable Z means learn-
ing its value and then asking if X adds any additional information about Y. If learning X
doesn’t give you any more information about Y, then we might say that Y is independent of
X conditional on Z. This conditioning statement is sometimes written as: Y L X|Z. This
is very weird notation and any feelings of annoyance on your part are justified. We'll work
with this concept a lot, so don’t worry if it doesn’t entirely make sense right now. You'll see
examples very soon.

Let’s consider conditional independence in the context of the divorce example. What are
the conditional independencies of the DAGs at the top of the page? How do we derive these
conditional independencies? Finding conditional independencies is not hard, but also not
at all obvious. With a little practice, it becomes very easy. The more general rules can wait
until the next chapter. For now, let’s consider each DAG in turn and inspect the possibilities.

For the DAG on the left above, the one with three arrows, first note that every pair of
variables is correlated. This is because there is a causal arrow between every pair. These
arrows create correlations. So before we condition on anything, everything is associated
with everything else. This is already a testable implication. We could write it:

DUA DUM AUM

That [ thing means “not independent of” If we now look in the data and find that any pair of
variables are not associated, then something is wrong with the DAG (assuming the data are
correct). In these data, all three pairs are in fact strongly associated. Check for yourself. You
can use cor to measure simple correlations. Correlations are sometimes terrible measures of
association—many different patterns of association with different implications can produce
the same correlation. But they do honest work in this case.

Are there any other testable implications for the first DAG above? No. It will be easier to
see why, if we slide over to consider the second DAG, the one in which M has no influence
on D. In this DAG, it is still true that all three variables are associated with one another. A is
associated with D and M because it influences them both. And D and M are associated with
one another, because M influences them both. They share a cause, and this leads them to be
correlated with one another through that cause. But suppose we condition on A. All of the
information in M that is relevant to predicting D is in A. So once we've conditioned on A,
M tells us nothing more about D. So in the second DAG, a testable implication is that D is
independent of M, conditional on A. In other words, D Ll M|A. The same thing does not
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happen with the first DAG. Conditioning on A does not make D independent of M, because
M really influences D all by itself in this model.

In the next chapter, I'll show you the general rules for deducing these implications. For
now, the dagitty package has the rules built in and can find the implications for you. Here’s
the code to define the second DAG and display the implied conditional independencies.

DMA_dag2 <- dagitty('dag{ D <- A -> M }")
impliedConditionalIndependencies( DMA_dag2 )

D _|[|[_M ] A
The first DAG has no conditional independencies. You can define it and check with this:

DMA_dagl <- dagitty('dag{ D <- A ->M -> D }')
impliedConditionalIndependencies( DMA_dagl )

There are no conditional independencies, so there is no output to display.

Let’s try to summarize. The testable implications of the first DAG are that all pairs of vari-
ables should be associated, whatever we condition on. The testable implications of the second
DAG are that all pairs of variables should be associated, before conditioning on anything, but
that D and M should be independent after conditioning on A. So the only implication that
differs between these DAGs is the last one: D 1. M|A.

To test this implication, we need a statistical model that conditions on A, so we can see
whether that renders D independent of M. And that is what multiple regression helps with.
It can address a useful descriptive question:

Is there any additional value in knowing a variable, once I already know all of
the other predictor variables?

So for example once you fit a multiple regression to predict divorce using both marriage rate
and age at marriage, the model addresses the questions:

(1) After I already know marriage rate, what additional value is there in also knowing
age at marriage?

(2) After Ialready know age at marriage, what additional value is there in also knowing
marriage rate?

The parameter estimates corresponding to each predictor are the (often opaque) answers to
these questions. The questions above are descriptive, and the answers are also descriptive. It
is only the derivation of the testable implications above that gives these descriptive results a
causal meaning. But that meaning is still dependent upon believing the DAG.

Rethinking: “Control” is out of control. Very often, the question just above is spoken of as “statisti-
cal control,” as in controlling for the effect of one variable while estimating the effect of another. But
this is sloppy language, as it implies too much. Statistical control is quite different from experimental
control, as we'll explore more in the next chapter. The point here isn’t to police language. Instead, the
point is to observe the distinction between small world and large world interpretations. Since most
people who use statistics are not statisticians, sloppy language like “control” can promote a sloppy
culture of interpretation. Such cultures tend to overestimate the power of statistical methods, so re-
sisting them can be difficult. Disciplining your own language may be enough. Disciplining another’s
language is hard to do, without seeming like a fastidious scold, as this very box must seem.

R code
5.8

R code
5.9
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5.1.3. Multiple regression notation. Multiple regression formulas look a lot like the poly-
nomial models at the end of the previous chapter—they add more parameters and variables
to the definition of ;. The strategy is straightforward:

(1) Nominate the predictor variables you want in the linear model of the mean.

(2) For each predictor, make a parameter that will measure its conditional association
with the outcome.

(3) Multiply the parameter by the variable and add that term to the linear model.

Examples are always necessary, so here is the model that predicts divorce rate, using both
marriage rate and age at marriage.

D; ~ Normal(u;, o) [probability of data]
Wi = o+ ByM; + BaAi [linear model]
a ~ Normal(0,0.2) [prior for c]
Bm ~ Normal(0,0.5) [prior for By
Ba ~ Normal(O, 0.5) [prior for B4]
o ~ Exponential(1) [prior for o]

You can use whatever symbols you like for the parameters and variables, but here I've chosen
R for marriage rate and A for age at marriage, reusing these symbols as subscripts for the
corresponding parameters. But feel free to use whichever symbols reduce the load on your
OWn memory.

So what does it mean to assume p; = o+ SByM; + 54 A;? Mechanically, it means that the
expected outcome for any State with marriage rate M; and median age at marriage A, is the
sum of three independent terms. If you are like most people, this is still pretty mysterious.
The mechanical meaning of the equation doesn’t map onto a unique causal meaning. Let’s
take care of the mechanical bits first, before returning to interpretation.

Overthinking: Compact notation and the design matrix. Often, linear models are written using a
compact form like:

n
Hi =+ Z Bixii
=1

where j is an index over predictor variables and # is the number of predictor variables. This may be
read as the mean is modeled as the sum of an intercept and an additive combination of the products of
parameters and predictors. Even more compactly, using matrix notation:

m = Xb

where m is a vector of predicted means, one for each row in the data, b is a (column) vector of param-
eters, one for each predictor variable, and X is a matrix. This matrix is called a design matrix. It has
as many rows as the data, and as many columns as there are predictors plus one. So X is basically a
data frame, but with an extra first column. The extra column is filled with 1s. These 1s are multiplied
by the first parameter, which is the intercept, and so return the unmodified intercept. When X is
matrix-multiplied by b, you get the predicted means. In R notation, this operation is X %% b.
We're not going to use the design matrix approach. But it’s good to recognize it, and sometimes
it can save you a lot of work. For example, for linear regressions, there is a nice matrix formula for
the maximum likelihood (or least squares) estimates. Most statistical software exploits that formula.
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5.1.4. Approximating the posterior. To fit this model to the divorce data, we just expand
the linear model. Here’s the model definition again, with the code on the right-hand side:

D; ~ Normal(u;, o) D ~ dnorm(mu,sigma)
Wi = o+ ByM; + BaA; mu <- a + bMxM + bA%A
Gfﬁirqornuﬂ(0,0.Z) a ~ dnorm(0,0.2)
Om NNormal(O,O.S) bM ~ dnorm(0,0.5)
Ba NNormal(O,O.S) bA ~ dnorm(0,0.5)
0'~/ExponenﬁaK1) sigma ~ dexp(1)

And here is the quap code to approximate the posterior distribution:

m5.3 <- quap( ?igde
alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + bMx*M + bA*A ,
a ~ dnorm( @ , 0.2 ) ,
bM ~ dnorm( @ , 0.5 ) ,
bA ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data = d )
precis( m5.3 )
mean sd 5.5% 94.5%
a 0.00 0.10 -0.16 0.16
bM -0.07 0.15 -0.31 0.18
bA  -0.61 0.15 -0.85 -0.37
sigma 0.79 0.08 0.66 0.91
The posterior mean for marriage rate, bM, is now close to zero, with plenty of probability
of both sides of zero. The posterior mean for age at marriage, bA, is essentially unchanged.
It will help to visualize the posterior distributions for all three models, focusing just on the
slope parameters 84 and [5y:
_ R code
plot( coeftab(m5.1,m5.2,m5.3), par=c("bA","bM") ) 511
bA
m53 | ————
m5.2
m5.1 —_—
bM
m5.3 —_—
m5.2 I a—
5.1
-0.5 0.0 0.5
Estimate

The posterior means are shown by the points and the 89% compatibility intervals by the
solid horizontal lines. Notice how bA doesn’t move, only grows a bit more uncertain, while
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bM is only associated with divorce when age at marriage is missing from the model. You can
interpret these distributions as saying:

Once we know median age at marriage for a State, there is little or no addi-
tional predictive power in also knowing the rate of marriage in that State.

In that weird notation, D 1. M|A. This tests the implication of the second DAG from earlier.
Since the first DAG did not imply this result, it is out.

Note that this does not mean that there is no value in knowing marriage rate. Consistent
with the earlier DAG, if you didn’t have access to age-at-marriage data, then youd definitely
find value in knowing the marriage rate. M is predictive but not causal. Assuming there
are no other causal variables missing from the model (more on that in the next chapter),
this implies there is no important direct causal path from marriage rate to divorce rate. The
association between marriage rate and divorce rate is spurious, caused by the influence of age
of marriage on both marriage rate and divorce rate. T'll leave it to the reader to investigate
the relationship between age at marriage, A, and marriage rate, M, to complete the picture.

But how did model m5.3 achieve the inference that marriage rate adds no additional
information, once we know age at marriage? Let’s draw some pictures.

Overthinking: Simulating the divorce example. The divorce data are real data. See the sources in
?WaffleDivorce. But it is useful to simulate the kind of causal relationships shown in the previous
DAG: M <~ A — D. Every DAG implies a simulation, and such simulations can help us design
models to correctly infer relationships among variables. In this case, you just need to simulate each
of the three variables:

N <- 50 # number of simulated States
age <- rnorm( N ) # sim A

mar <- rnorm( N , -age ) # sim A -> M
div <= rnorm( N , age ) # sim A -> D

Now if you use these variables in models m5. 1,m5. 2, and m5. 3, you'll see the same pattern of posterior
inferences. It is also possible to simulate that both A and M influence D: div <- rnorm(N, age +
mar ). In that case, a naive regression of D on A will overestimate the influence of A, just like a
naive regression of D on M will overestimate the importance of M. The multiple regression will help
sort things out for you in this situation as well. But interpreting the parameter estimates will always
depend upon what you believe about the causal model, because typically several (or very many) causal
models are consistent with any one set of parameter estimates. We'll discuss this later in the chapter
as MARKOV EQUIVALENCE.

5.1.5. Plotting multivariate posteriors. Let’s pause for a moment, before moving on. There
are a lot of moving parts here: three variables, some strange DAGs, and three models. If you
feel at all confused, it is only because you are paying attention.

It will help to visualize the model’s inferences. Visualizing the posterior distribution
in simple bivariate regressions, like those in the previous chapter, is easy. There’s only one
predictor variable, so a single scatterplot can convey a lot of information. And so in the
previous chapter we used scatters of the data. Then we overlaid regression lines and intervals
to both (1) visualize the size of the association between the predictor and outcome and (2)
to get a crude sense of the ability of the model to predict the individual observations.

With multivariate regression, you'll need more plots. There is a huge literature detail-
ing a variety of plotting techniques that all attempt to help one understand multiple linear
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regression. None of these techniques is suitable for all jobs, and most do not generalize be-
yond linear regression. So the approach I take here is to instead help you compute whatever
you need from the model. I offer three examples of interpretive plots:

(1) Predictor residual plots. These plots show the outcome against residual predictor
values. They are useful for understanding the statistical model, but not much else.

(2) Posterior prediction plots. These show model-based predictions against raw data,
or otherwise display the error in prediction. They are tools for checking fit and
assessing predictions. They are not causal tools.

(3) Counterfactual plots. These show the implied predictions for imaginary experi-
ments. These plots allow you to explore the causal implications of manipulating
one or more variables.

Each of these plot types has its advantages and deficiencies, depending upon the context and
the question of interest. In the rest of this section, I show you how to manufacture each of
these in the context of the divorce data.

5.1.5.1. Predictor residual plots. A predictor residual is the average prediction error when
we use all of the other predictor variables to model a predictor of interest. That’s a compli-
cated concept, so we'll go straight to the example, where it will make sense. The benefit of
computing these things is that, once plotted against the outcome, we have a bivariate regres-
sion that has already conditioned on all of the other predictor variables. It leaves the variation
that is not expected by the model of the mean, (i, as a function of the other predictors.

In our model of divorce rate, we have two predictors: (1) marriage rate M and (2) median
age at marriage A. To compute predictor residuals for either, we just use the other predictor
to model it. So for marriage rate, this is the model we need:

M; ~ Normal(p;, o)
pi = o+ PBA;
a ~ Normal(0,0.2)
B ~ Normal(0, 0.5)

o ~ Exponential(1)

As before, M is marriage rate and A is median age at marriage. Note that since we standard-
ized both variables, we already expect the mean « to be around zero, as before. So 'm reusing
the same priors as earlier. This code will approximate the posterior:

m5.4 <- quap(

alist(
M ~ dnorm( mu , sigma ) ,
mu <- a + bAM * A ,
a ~ dnorm( 0 , 0.2 ) ,
bAM ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )

) , data = d )

And then we compute the RESIDUALS by subtracting the observed marriage rate in each State
from the predicted rate, based upon the model above:

R code
5.13
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FIGURE 5.4. Understanding multiple regression through residuals. The top
row shows each predictor regressed on the other predictor. The lengths of
the line segments connecting the model’s expected value of the outcome,
the regression line, and the actual value are the residuals. In the bottom
row, divorce rate is regressed on the residuals from the top row. Bottom left:
Residual variation in marriage rate shows little association with divorce rate.
Bottom right: Divorce rate on age at marriage residuals, showing remaining
variation, and this variation is associated with divorce rate.

RE??Z mu <- link(m5.4)

mu_mean <- apply( mu , 2 , mean )
mu_resid <- dSM - mu_mean

When a residual is positive, that means that the observed rate was in excess of what the model
expects, given the median age at marriage in that State. When a residual is negative, that
means the observed rate was below what the model expects. In simpler terms, States with
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positive residuals have high marriage rates for their median age of marriage, while States
with negative residuals have low rates for their median age of marriage. It'll help to plot
the relationship between these two variables, and show the residuals as well. In FIGURE 5.4,
upper left, I show m5. 4 along with line segments for each residual. Notice that the residuals
are variation in marriage rate that is left over, after taking out the purely linear relationship
between the two variables.

Now to use these residuals, let’s put them on a horizontal axis and plot them against the
actual outcome of interest, divorce rate. In FIGURE 5.4 also (lower left), I plot these residuals
against divorce rate, overlaying the linear regression of the two variables. You can think of
this plot as displaying the linear relationship between divorce and marriage rates, having
conditioned already on median age of marriage. The vertical dashed line indicates marriage
rate that exactly matches the expectation from median age at marriage. So States to the right
of the line have higher marriage rates than expected. States to the left of the line have lower
rates. Average divorce rate on both sides of the line is about the same, and so the regression
line demonstrates little relationship between divorce and marriage rates.

The same procedure works for the other predictor. The top right plot in FIGURE 5.4
shows the regression of A on M and the residuals. In the lower right, these residuals are used
to predict divorce rate. States to the right of the vertical dashed line have older-than-expected
median age at marriage, while those to the left have younger-than-expected median age at
marriage. Now we find that the average divorce rate on the right is lower than the rate on the
left, as indicated by the regression line. States in which people marry older than expected for
a given rate of marriage tend to have less divorce.

So what’s the point of all of this? There’s conceptual value in seeing the model-based
predictions displayed against the outcome, after subtracting out the influence of other pre-
dictors. The plots in FIGURE 5.4 do this. But this procedure also brings home the message
that regression models measure the remaining association of each predictor with the out-
come, after already knowing the other predictors. In computing the predictor residual plots,
you had to perform those calculations yourself. In the unified multivariate model, it all hap-
pens automatically. Nevertheless, it is useful to keep this fact in mind, because regressions
can behave in surprising ways as a result. We'll have an example soon.

Linear regression models do all of this simultaneous measurement with a very specific
additive model of how the variables relate to one another. But predictor variables can be
related to one another in non-additive ways. The basic logic of statistical conditioning does
not change in those cases, but the details definitely do, and these residual plots cease to be
useful. Luckily there are other ways to understand a model. That’s where we turn next.

Rethinking: Residuals are parameters, not data. There is a tradition, especially in parts of biology,
of using residuals from one model as data in another model. For example, a biologist might regress
brain size on body size and then use the brain size residuals as data in another model. This procedure
is always a mistake. Residuals are not known. They are parameters, variables with unobserved values.
Treating them as known values throws away uncertainty. The right way to adjust for body size is to
include it in the same model,%* preferably a model designed in light of an explicit causal model.

5.1.5.2. Posterior prediction plots. It’s important to check the model’s implied predic-
tions against the observed data. This is what you did in Chapter 3, when you simulated
globe tosses, averaging over the posterior, and comparing the simulated results to the ob-
served. These kinds of checks are useful in many ways. For now, we'll focus on two uses.
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(1) Did the model correctly approximate the posterior distribution? Golems do make
mistakes, as do golem engineers. Errors can be more easily diagnosed by compar-
ing implied predictions to the raw data. Some caution is required, because not all
models try to exactly match the sample. But even then, you'll know what to expect
from a successful approximation. You'll see some examples later (Chapter 13).

(2) How does the model fail? Models are useful fictions. So they always fail in some
way. Sometimes, a model fits correctly but is still so poor for our purposes that it
must be discarded. More often, a model predicts well in some respects, but not in
others. By inspecting the individual cases where the model makes poor predictions,
you might get an idea of how to improve it. The difficulty is that this process is
essentially creative and relies upon the analyst’s domain expertise. No robot can
(yet) do it for you. It also risks chasing noise, a topic we’ll focus on in later chapters.

How could we produce a simple posterior predictive check in the divorce example? Let’s
begin by simulating predictions, averaging over the posterior.

# call link without specifying new data
# so it uses original data
mu <- link( m5.3 )

# summarize samples across cases
mu_mean <- apply( mu , 2 , mean )
mu_PI <- apply( mu , 2 , PI )

# simulate observations

# again no new data, so uses original data
D_sim <= sim( m5.3 , n=1le4 )

D_PI <- apply( D_sim , 2 , PI )

This code is similar to what you've seen before, but now using the original observed data.
For multivariate models, there are many different ways to display these simulations. The

simplest is to just plot predictions against observed. This code will do that, and then add aline

to show perfect prediction and line segments for the confidence interval of each prediction:



5.1. SPURIOUS ASSOCIATION 139

plot( mu_mean ~ d$D , col=rangi2 , ylim=range(mu_PI) , ?igde

xlab="0Observed divorce" , ylab="Predicted divorce" )
abline( a=0 , b=1 , lty=2 )
for ( i in l:nrow(d) ) lines( rep(d$D[i],2) , mu_PI[,i] , col=rangi2 )

The resulting plot appears in FIGURE 5.5. It’s easy to see from this arrangement of the sim-
ulations that the model under-predicts for States with very high divorce rates while it over-
predicts for States with very low divorce rates. That's normal. This is what regression does—it
is skeptical of extreme values, so it expects regression towards the mean. But beyond this gen-
eral regression to the mean, some States are very frustrating to the model, lying very far from
the diagonal. I've labeled some points like this, including Idaho (ID) and Utah (UT), both of
which have much lower divorce rates than the model expects them to have. The easiest way
to label a few select points is to use identify:

R code
5.17

identify( x=d$D , y=mu_mean , labels=d$Loc )
After executing the line of code above, R will wait for you to click near a point in the active
plot window. It'll then place a label near that point, on the side you choose. When you are
done labeling points, press your right mouse button (or press ESc, on some platforms).
What is unusual about Idaho and Utah? Both of these States have large proportions of
members of the Church of Jesus Christ of Latter-day Saints. Members of this church have
low rates of divorce, wherever they live. This suggests that having a finer view on the demo-
graphic composition of each State, beyond just median age at marriage, would help.

Rethinking: Stats, huh, yeah what is it good for? Often people want statistical modeling to do things
that statistical modeling cannot do. For example, wed like to know whether an effect is “real” or rather
spurious. Unfortunately, modeling merely quantifies uncertainty in the precise way that the model
understands the problem. Usually answers to large world questions about truth and causation depend
upon information not included in the model. For example, any observed correlation between an out-
come and predictor could be eliminated or reversed once another predictor is added to the model.
But if we cannot think of the right variable, we might never notice. Therefore all statistical models are
vulnerable to and demand critique, regardless of the precision of their estimates and apparent accu-
racy of their predictions. Rounds of model criticism and revision embody the real tests of scientific
hypotheses. A true hypothesis will pass and fail many statistical “tests” on its way to acceptance.

Overthinking: Simulating spurious association. One way that spurious associations between a pre-
dictor and outcome can arise is when a truly causal predictor, call it X, influences both the outcome,
¥, and a spurious predictor, X, This can be confusing, however, so it may help to simulate this sce-
nario and see both how the spurious data arise and prove to yourself that multiple regression can
reliably indicate the right predictor, X,e,. So here’s a very basic simulation:

R code
N <- 100 # number of cases 5.18
x_real <- rnorm( N ) # x_real as Gaussian with mean © and stddev 1
x_spur <= rnorm( N , x_real ) # X_spur as Gaussian with mean=x_real
y <= rnorm( N , x_real ) # y as Gaussian with mean=x_real
d <- data.frame(y,x_real,x_spur) # bind all together in data frame
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Now the data frame d has 100 simulated cases. Because x_real influences both y and x_spur, you
can think of x_spur as another outcome of x_rea€l, but one which we mistake as a potential predictor
of y. As a result, both X, and xp,, are correlated with y. You can see this in the scatterplots from
pairs(d). But when you include both x variables in a linear regression predicting y, the posterior
mean for the association between y and X, will be close to zero.

5.1.5.3. Counterfactual plots. A second sort of inferential plot displays the causal impli-
cations of the model. I call these plots COUNTERFACTUAL, because they can be produced for
any values of the predictor variables you like, even unobserved combinations like very high
median age of marriage and very high marriage rate. There are no States with this combi-
nation, but in a counterfactual plot, you can ask the model for a prediction for such a State,
asking questions like “What would Utah’s divorce rate be, if it's median age at marriage were
higher?” Used with clarity of purpose, counterfactual plots help you understand the model,
as well as generate predictions for imaginary interventions and compute how much some
observed outcome could be attributed to some cause.

Note that the term “counterfactual” is highly overloaded in statistics and philosophy. It
hardly ever means the same thing when used by different authors. Here, I use it to indicate
some computation that makes use of the structural causal model, going beyond the posterior
distribution. But it could refer to questions about both the past and the future.

The simplest use of a counterfactual plot is to see how the outcome would change as you
change one predictor at a time. If some predictor X took on a new value for one or more cases
in our data, how would the outcome Y have changed? Changing just one predictor X might
also change other predictors, depending upon the causal model. Suppose for example that
you pay young couples to postpone marriage until they are 35 years old. Surely this will also
decrease the number of couples who ever get married—some people will die before turning
35, among other reasons—decreasing the overall marriage rate. An extraordinary and evil
degree of control over people would be necessary to really hold marriage rate constant while
forcing everyone to marry at a later age.

So let’s see how to generate plots of model predictions that take the causal structure into
account. The basic recipe is:

(1) Pick a variable to manipulate, the intervention variable.

(2) Define the range of values to set the intervention variable to.

(3) For each value of the intervention variable, and for each sample in posterior, use
the causal model to simulate the values of other variables, including the outcome.

In the end, you end up with a posterior distribution of counterfactual outcomes that you can
plot and summarize in various ways, depending upon your goal.
Let’s see how to do this for the divorce model. Again we take this DAG as given:

A > M

D

To simulate from this, we need more than the DAG. We also need a set of functions that tell
us how each variable is generated. For simplicity, we'll use Gaussian distributions for each
variable, just like in model m5. 3. But model m5. 3 ignored the assumption that A influences
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M. We didn't need that to estimate A — D. But we do need it to predict the consequences
of manipulating A, because some of the effect of A acts through M.

To estimate the influence of A on M, all we need is to regress A on M. There are no
other variables in the DAG creating an association between A and M. We can just add this
regression to the quap model, running two regressions at the same time:

data(WaffleDivorce)

d <- list()

d$SA <- standardize( WaffleDivorce$MedianAgeMarriage )
d$D <- standardize( WaffleDivorce$Divorce )

d$M <- standardize( WaffleDivorceSMarriage )

m5.3_A <- quap(
alist(
## A -> D <- M
D ~ dnorm( mu , sigma ) ,
mu <- a + bM*M + bAx*A ,
a ~ dnorm( 0 , 0.2 ) ,

bM ~ dnorm( @ , 0.5 ) ,
bA ~ dnorm( 0 , 0.5 ) ,
sigma ~ dexp( 1),

## A > M
M ~ dnorm( mu_M , sigma_M ),
mu_M <- aM + bAM*A,
aM ~ dnorm( @ , 0.2 ),
bAM ~ dnorm( @ , 0.5 ),
sigma_M ~ dexp( 1 )
) , data = d )

Look at the precis(5.3_A) summary. You'll see that M and A are strongly negatively asso-
ciated. If we interpret this causally, it indicates that manipulating A reduces M.

The goal is to simulate what would happen, if we manipulate A. So next we define a
range of values for A.

A_seq <- seq( from=-2 , to=2 , length.out=30 )

This defines a list of 30 imaginary interventions, ranging from 2 standard deviations below
and 2 above the mean. Now we can use sim, which you met in the previous chapter, to
simulate observations from model m5.3_A. But this time we'll tell it to simulate both M and
D, in that order. Why in that order? Because we have to simulate the influence of A on M
before we simulate the joint influence of A and M on D. The vars argument to sim tells it
both which observables to simulate and in which order.

# prep data
sim_dat <- data.frame( A=A_seq )

# simulate M and then D, using A_seq
s <- sim( m5.3_A , data=sim_dat , vars=c("M","D") )

R code
5.19

R code
5.20

R code
5.21
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FIGURE 5.6. Counterfactual plots for the multivariate divorce model, m5. 3.
These plots visualize the predicted effect of manipulating age at marriage A
on divorce rate D. Left: Total causal effect of manipulating A (horizontal)
on D. This plot contains both paths, A — Dand A - M — D. Right:
Simulated values of M show the estimated influence A — M.

That’s all there is to it. But do at least glance at the Overthinking box at the end of this
section, where I show you the individual steps, so you can perform this kind of counterfactual
simulation for any model fit with any software. Now to plot the predictions:

plot( sim_dat$A , colMeans(s$D) , ylim=c(-2,2) , type="1" ,
xlab="manipulated A" , ylab="counterfactual D" )

shade( apply(s$D,2,PI) , sim_dat$A )

mtext( "Total counterfactual effect of A on D" )

The resulting plot is shown in FIGURE 5.6 (left side). This predicted trend in D includes both
paths: A - Dand A -+ M — D. We found previously that M — D is very small, so the
second path doesn’t contribute much to the trend. But if M were to strongly influence D, the
code above would include the effect. The counterfactual simulation also generated values for
M. These are shown on the right in FIGURE 5.6. The object s from the code above includes
these simulated M values. Try to reproduce the figure yourself.

Of course these calculations also permit numerical summaries. For example, the ex-
pected causal effect of increasing median age at marriage from 20 to 30 is:

# new data frame, standardized to mean 26.1 and std dev 1.24
sim2_dat <- data.frame( A=(c(20,30)-26.1)/1.24 )

s2 <- sim( m5.3_A , data=sim2_dat , vars=c("M","D") )

mean( s2$D[,2] - s2$D[,1] )

[1] -4.591425

This is a huge effect of four and one half standard deviations, probably impossibly large.
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FIGURE 5.7. The counterfactual effect of ma-
nipulating marriage rate M on divorce rate D.
Since M — D was estimated to be very small,
there is no strong trend here. By manipulating
_ M, we break the influence of A on M, and this
removes the association between M and D.
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The trick with simulating counterfactuals is to realize that when we manipulate some
variable X, we break the causal influence of other variables on X. This is the same as saying
we modify the DAG so that no arrows enter X. Suppose for example that we now simulate
the effect of manipulating M. This implies the DAG:

A M

NS

D

The arrow A — M is deleted, because if we control the values of M, then A no longer influ-
ences it. It’s like a perfectly controlled experiment. Now we can modify the code above to
simulate the counterfactual result of manipulating M. We'll simulate a counterfactual for an
average state, with A = 0, and see what changing M does.

R code

sim_dat <- data.frame( M=seq(from=-2,to=2,length.out=30) 524

s <= sim( m5.3_A , data=sim_dat , vars="D" )

, A=0 )

plot( sim_dat$M , colMeans(s) , ylim=c(-2,2) , type="1" ,
xlab="manipulated M" , ylab="counterfactual D" )

shade( apply(s,2,PI) , sim_dat$M )

mtext( "Total counterfactual effect of M on D" )

We only simulate D now—note the vars argument to sim() in the code above. We don’t
simulate A, because M doesn’t influence it. I show this plot in FIGURE 5.7. This trend is less
strong, because there is no evidence for a strong influence of M on D.

In more complex models with many potential paths, the same strategy will compute
counterfactuals for an exposure of interest. But as you'll see in later examples, often it is
simply not possible to estimate a plausible, un-confounded causal effect of some exposure
X on some outcome Y. But even in those cases, there are still important counterfactuals to
consider. So we'll return to this theme in future chapters.
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Overthinking: Simulating counterfactuals. The example in this section used sim() to hide the de-
tails. But simulating counterfactuals on your own is not hard. It just uses the model definition.
Assume we've already fit model m5.3_A, the model that includes both causal paths A — D and
A — M — D. We define a range of values that we want to assign to A:

A_seq <- seq( from=-2 , to=2 , length.out=30 )

Next we need to extract the posterior samples, because we'll simulate observations for each set of
samples. Then it really is just a matter of using the model definition with the samples, as in previous
examples. The model defines the distribution of M. We just convert that definition to the correspond-
ing simulation function, which is rnorm in this case:

post <- extract.samples( m5.3_A )
M_sim <- with( post , sapply( 1:30 ,
function(i) rnorm( 1e3 , aM + bAMxA_seq[i] , sigma_M ) ) )

I used the wi th function, which saves us having to type post$ in front of every parameter name. The
linear model inside rnorm comes right out of the model definition. This produces a matrix of values,
with samples in rows and cases corresponding to the values in A_seq in the columns. Now that we
have simulated values for M, we can simulate D too:

D_sim <- with( post , sapply( 1:30 ,
function(i) rnorm( 1e3 , a + bA*A_seq[i] + bMxM_sim[,i] , sigma ) ) )

If you plot A_seq against the column means of D_sim, you'll see the same result as before. In complex
models, there might be many more variables to simulate. But the basic procedure is the same.

5.2. Masked relationship

The divorce rate example demonstrates that multiple predictor variables are useful for
knocking out spurious association. A second reason to use more than one predictor variable
is to measure the direct influences of multiple factors on an outcome, when none of those
influences is apparent from bivariate relationships. This kind of problem tends to arise when
there are two predictor variables that are correlated with one another. However, one of these
is positively correlated with the outcome and the other is negatively correlated with it.

You'll consider this kind of problem in a new data context, information about the com-
position of milk across primate species, as well as some facts about those species, like body
mass and brain size.3* Milk is a huge investment, being much more expensive than gestation.
Such an expensive resource is likely adjusted in subtle ways, depending upon the physiolog-
ical and development details of each mammal species. Let’s load the data into R first:

library(rethinking)
data(milk)

d <- milk

str(d)

You should see in the structure of the data frame that you have 29 rows for 8 variables. The
variables we'll consider for now are kcal.per.g (kilocalories of energy per gram of milk),
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mass (average female body mass, in kilograms), and neocortex. perc (percent of total brain
mass that is neocortex mass).

A popular hypothesis has it that primates with larger brains produce more energetic
milk, so that brains can grow quickly. Answering questions of this sort consumes a lot of
effort in evolutionary biology, because there are many subtle statistical issues that arise when
comparing species. It doesn’'t help that many biologists have no reference model other than
a series of regressions, and so the output of the regressions is not really interpretable. The
causal meaning of statistical estimates always depends upon information outside the data.

We won't solve these problems here. But we will explore a useful example. The question
here is to what extent energy content of milk, measured here by kilocalories, is related to the
percent of the brain mass that is neocortex. Neocortex is the gray, outer part of the brain
that is especially elaborate in some primates. We'll end up needing female body mass as
well, to see the masking that hides the relationships among the variables. Let’s standardize
these three variables. As in previous examples, standardizing helps us both get a reliable
approximation of the posterior as well as build reasonable priors.

d$K <- standardize( dSkcal.per.g )
dSN <- standardize( d$neocortex.perc )
dSM <- standardize( log(dSmass) )

The first model to consider is the simple bivariate regression between kilocalories and
neocortex percent. You already know how to set up this regression. In mathematical form:

K; ~ Normal(u;, o)
pi = o+ BNN;

where K is standardized kilocalories and N is standardized neocortex percent. We still need
to consider the priors. But first let’s just try to run this as a quap model with some vague
priors, because there is another key modeling issue to address first.

m5.5_draft <- quap(

alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bNxN ,
a ~dnorm( 06 , 1) ,
bN ~ dnorm( @ , 1 ) ,
sigma ~ dexp( 1 )

) , data=d )

When you execute this code, you’'ll get a confusing error message:

Error in quap(alist(K ~ dnorm(mu, sigma), mu <- a + bN * N, a ~ dnorm(0,
initial value in 'vmmin' is not finite

The start values for the parameters were 1invalid. This could be caused by

missing values (NA) in the data or by start values outside the parameter

constraints. If there are no NAs, try using explicit start values.

What has gone wrong here? This particular error message means that the model didn’t return

a valid probability for even the starting parameter values. In this case, the culprit is the
missing values in the N variable. Take a look inside the original variable and see for yourself:
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5.29

R code
5.30



R code
5.31

R code
5.32

R code
5.33

R code
5.34

146 5. THE MANY VARIABLES & THE SPURIOUS WAFFLES

d$neocortex.perc

[1] 55.16 NA NA NA NA 64.54 64.54 67.64 NA 68.85 58.85 61.69
[13] 60.32 NA NA 69.97 NA 70.41 NA 73.40 NA 67.53 NA 71.26
[25] 72.60 NA 70.24 76.30 75.49

Each NA in the output is a missing value. If you pass a vector like this to a likelihood func-
tion like dnorm, it doesn’t know what to do. After all, what’s the probability of a missing
value? Whatever the answer, it isn’t a number, and so dnorm returns a NaN. Unable to even
get started, quap (or rather optim, which does the real work) gives up and barks about some
weird thing called vmm+in not being finite. This kind of opaque error message is unfortunately
the norm in R. The additional part of the message suggesting NA values might be responsible
is just quap taking a guess.

This is easy to fix. What you need to do here is manually drop all the cases with missing
values. This is known as a COMPLETE CASE ANALYSIS. More automated model fitting com-
mands, like 1m and glm, will silently drop such cases for you. But this isn't always a good
thing. First, it’s validity depends upon the process that caused these particular values to go
missing. In Chapter 15, you’ll explore this in much more depth. Second, once you start com-
paring models, you must compare models fit to the same data. If some variables have missing
values that others do not, automated tools will silently produce misleading comparisons.

Let’s march forward for now, dropping any cases with missing values. It's worth learning
how to do this yourself. To make a new data frame with only complete cases, use:

dcc <- d[ complete.cases(dSK,d$N,dsM) , ]

This makes a new data frame, dcc, that consists of the 17 rows from d that have no missing
values in any of the variables listed inside complete.cases. Now let's work with the new
data frame. All that is new in the code is using dcc instead of d:

m5.5_draft <- quap(

alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bNx*N ,
a ~dnorm( @ , 1) ,
bN ~ dnorm( @ , 1 ) ,
sigma ~ dexp( 1 )

) , data=dcc )

Before considering the posterior predictions, let’s consider those priors. As in many simple
linear regression problems, these priors are harmless. But are they reasonable? It is impor-
tant to build reasonable priors, because as the model becomes less simple, the priors can
be very helpful, but only if they are scientifically reasonable. To simulate and plot 50 prior
regression lines:

prior <- extract.prior( m5.5_draft )
xseq <- c(-2,2)
mu <- link( m5.5_draft , post=prior , data=list(N=xseq) )
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a ~dnorm(0, 1) a ~dnorm(0, 0.2)
bN ~ dnorm(0, 1) bN ~ dnorm(0, 0.5)

kilocal per g (std)
0

kilocal per g (std)
0

-2
1

-2
1

-2 -1 0 1 2 2 -1 0 1 2
neocortex percent (std) neocortex percent (std)

FIGURE 5.8. Prior predictive distributions for the first primate milk model,
m5.5. Each plot shows a range of 2 standard deviations for each variable.
Left: The vague first guess. These priors are clearly silly. Right: Slightly less
silly priors that at least stay within the potential space of observations.

plot( NULL , xlim=xseq , ylim=xseq )
for ( i in 1:50 ) lines( xseq , mu[i,] , col=col.alpha("black",0.3) )

The result is displayed on the left side of FIGURE 5.8. I've shown a range of 2 standard de-
viations for both variables. So that is most of the outcome space. These lines are crazy. As
in previous examples, we can do better by both tightening the « prior so that it sticks closer
to zero. With two standardized variables, when predictor is zero, the expected value of the
outcome should also be zero. And the slope Sy needs to be a bit tighter as well, so that it
doesn’t regularly produce impossibly strong relationships. Here’s an attempt:

R code

m5.5 <- quap( 535

alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bN*N ,
a ~ dnorm( @ , 0.2 ) ,
bN ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )

) , data=dcc )

If you plot these priors, you'll get what is shown on the right side of FIGURE 5.8. These are
still very vague priors, but at least the lines stay within the high probability region of the
observable data.

Now let’s look at the posterior:
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precis( m5.5 )

mean sd 5.5% 94.5%
a 0.04 0.15 -0.21 0.29
bN 0.13 0.22 -0.22 0.49
sigma 1.00 0.16 0.74 1.26

From this summary, you can possibly see that this is neither a strong nor very precise asso-
ciation. The standard deviation is almost twice the posterior mean. But as always, it's much
easier to see this if we draw a picture. Tables of numbers are golem speak, and we are not
golems. We can plot the predicted mean and 89% compatibility interval for the mean to see
this more easily. The code below contains no surprises. But if have extended the range of N
values to consider, in xseq, so that the plot looks nicer.

xseq <- seq( from=min(dcc$N)-0.15 , to=max(dcc$N)+0.15 , length.out=30 )
mu <- link( m5.5 , data=list(N=xseq) )

mu_mean <- apply(mu,2,mean)

mu_PI <- apply(mu,2,PI)

plot( K ~ N , data=dcc )

lines( xseq , mu_mean , lwd=2 )

shade( mu_PI , xseq )

I display this plot in the upper-left of FIGURE 5.9. The posterior mean line is weakly positive,
but it is highly imprecise. A lot of mildly positive and negative slopes are plausible, given this
model and these data.

Now consider another predictor variable, adult female body mass, mass in the data
frame. Let’s use the logarithm of mass, log(mass), as a predictor as well. Why the logarithm
of mass instead of the raw mass in kilograms? It is often true that scaling measurements like
body mass are related by magnitudes to other variables. Taking the log of a measure trans-
lates the measure into magnitudes. So by using the logarithm of body mass here, we're saying
that we suspect that the magnitude of a mother’s body mass is related to milk energy, in a
linear fashion. Much later, in Chapter 16, you'll see why these logarithmic relationships are
almost inevitable results of the physics of organisms.

Now we construct a similar model, but consider the bivariate relationship between kilo-
calories and body mass. Since body mass is also standardized, we can use the same priors
and stay within possible outcome values. But if you were a domain expert in growth, you
could surely do better than this.

m5.6 <- quap(
alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bMxM ,
a ~ dnorm( 0 , 0.2 ) ,
bM ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data=dcc )
precis(m5.6)
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FIGURE 5.9. Milk energy and neocortex among primates. In the top two
plots, simple bivariate regressions of kilocalories per gram of milk (K) on
(left) neocortex percent (N) and (right) log female body mass (M) show
weak associations. In the bottom row, a model with both neocortex percent
(N) and log body mass (M) shows stronger associations.

mean sd 5.5% 94.5%
0.05 0.15 -0.20 0.29
-0.28 0.19 -0.59 0.03
0.95 0.16 0.70 1.20

Log-mass is negatively associated with kilocalories. This association does seem stronger than
that of neocortex percent, although in the opposite direction. It is quite uncertain though,
with a wide compatibility interval that is consistent with a wide range of both weak and
stronger relationships. This regression is shown in the upper-right of FIGURE 5.9. You should
modify the code that plotted the upper-left plot in the same figure, to be sure you understand
how to do this.
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Now let’s see what happens when we add both predictor variables at the same time to the
regression. This is the multivariate model, in math form:

K; ~ Normal(u;, o)
pi = o+ ByN; + BuM;
a ~ Normal(0,0.2)
fn ~ Normal(0,0.5)
Bm ~ Normal(0,0.5)
o ~ Exponential(1)

Approximating the posterior requires no new tricks:

Rg?g; m5.7 <- quap(
alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bNx*N + bM*M ,
a ~ dnorm( @ , 0.2 ) ,
bN ~ dnorm( @ , 0.5 ) ,
bM ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data=dcc )
precis(m5.7)
mean sd 5.5% 94.5%
a 0.07 0.13 -0.15 0.28
bN 0.68 0.25 0.28 1.07
bM -0.70 0.22 -1.06 -0.35
sigma 0.74 0.13 0.53 0.95
By incorporating both predictor variables in the regression, the posterior association of both
with the outcome has increased. Visually comparing this posterior to those of the previous
two models helps to see the pattern of change:
Rgfjg plot( coeftab( m5.5 , m5.6 , m5.7 ) , pars=c("bM","bN") )
bM
m5.7
m5.6 —_—
m5.5
bN
m5.7
m5.6
m5.5
-1.0 -0.5 0.0 0.5 1.0
Estimate

The posterior means for neocortex percent and log-mass have both moved away from zero.
Adding both predictors to the model seems to have made their estimates move apart.
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What happened here? Why did adding neocortex and body mass to the same model
lead to stronger associations for both? This is a context in which there are two variables
correlated with the outcome, but one is positively correlated with it and the other is negatively
correlated with it. In addition, both of the explanatory variables are positively correlated with
one another. Try a simple pairs( ~K + M + N , dcc ) plot to appreciate this pattern of
correlation. The result of this pattern is that the variables tend to cancel one another out.

This is another case in which multiple regression automatically finds the most revealing
cases and uses them to produce inferences. What the regression model does is ask if species
that have high neocortex percent for their body mass have higher milk energy. Likewise, the
model asks if species with high body mass for their neocortex percent have higher milk energy.
Bigger species, like apes, have milk with less energy. But species with more neocortex tend
to have richer milk. The fact that these two variables, body size and neocortex, are correlated
across species makes it hard to see these relationships, unless we account for both.

Some DAGs will help. There are at least three graphs consistent with these data.

\/ \/ \@/

Beginning on the left, the first possibility is that body mass (M) influences neocortex percent
(N). Both then influence kilocalories in milk (K). Second, in the middle, neocortex could
instead influence body mass. The two variables still end up correlated in the sample. Finally,
on the right, there could be an unobserved variable U that influences both M and N, produc-
ing a correlation between them. In this book, I'll circle variables that are unobserved. One
of the threats to causal inference is that there are potentially many unobserved variables that
influence an outcome or the predictors. We'll consider this more in the next chapter.

Which of these graphs is right? We can’t tell from the data alone, because these graphs
imply the same set of CONDITIONAL INDEPENDENCIES. In this case, there are no conditional
independencies—each DAG above implies that all pairs of variables are associated, regardless
of what we condition on. A set of DAGs with the same conditional independencies is known
as a MARKOV EQUIVALENCE set. In the Overthinking box on the next page, I'll show you
how to simulate observations consistent with each of these DAGs, how each can produce
the masking phenomenon, and how to use the dagitty package to compute the complete
set of Markov equivalent DAGs. Remember that while the data alone can never tell you
which causal model is correct, your scientific knowledge of the variables will eliminate a
large number of silly, but Markov equivalent, DAGs.

The final thing wed like to do with these models is to finish FIGURE 5.9. Lets make
counterfactual plots again. Suppose the third DAG above is the right one. Then imagine ma-
nipulating M and N, breaking the influence of U on each. In the real world, such experiments
are impossible. If we change an animal’s body size, natural selection would then change the
other features to match it. But these counterfactual plots do help us see how the model views
the association between each predictor and the outcome. Here is the code to produce the
lower-left plot in FIGURE 5.9 (page 149).
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xseq <- seq( from=min(dcc$M)-0.15 , to=max(dcc$M)+0.15 , length.out=30 )
mu <- link( m5.7 , data=data.frame( M=xseq , N=0 ) )

mu_mean <- apply(mu,2,mean)

mu_PI <- apply(mu,2,PI)

plot( NULL , xlim=range(dccsSM) , ylim=range(dccS$SK) )

lines( xseq , mu_mean , lwd=2 )

shade( mu_PI , xseq )

You should try to reproduce the lower-right plot by modifying this code. In the practice
problems, I'll ask you to consider what would happen, if you chose one of the other DAGs at
the top of the page.

Overthinking: Simulating a masking relationship. Just as with understanding spurious association
(page 139), it may help to simulate data in which two meaningful predictors act to mask one another.
In the previous section, I showed three DAGs consistent with this. To simulate data consistent with
the first DAG:

#M -> K <= N

#M ->N

n <- 100

M <= rnorm( n )

N <= rnorm( n , M)

K <= rnorm( n , N- M)

d_sim <- data.frame(K=K,N=N,M=M)

You can quickly see the masking pattern of inferences by replacing dcc with d_sim in models m5.5,
m5.6, and m5.7. Look at the precis summaries and you'll see the same masking pattern where the
slopes become more extreme in m5. 7. The other two DAGs can be simulated like this:

#M -> K <= N

#N->M

n <- 100

N <= rnorm( n )

M <= rnorm( n , N )

K <= rnorm( n , N - M)

d_sim2 <- data.frame(K=K,N=N,M=M)

#M -> K <- N
#M<-U->N
n <- 100

U <= rnorm( n )
N <= rnorm( n , U )
M <= rnorm( n , U )

K <= rnorm( n , N - M)
d_sim3 <- data.frame(K=K,N=N,M=M)

In the primate milk example, it may be that the positive association between large body size and
neocortex percent arises from a tradeoft between lifespan and learning. Large animals tend to live
a long time. And in such animals, an investment in learning may be a better investment, because
learning can be amortized over a longer lifespan. Both large body size and large neocortex then
influence milk composition, but in different directions, for different reasons. This story implies that
the DAG with an arrow from M to N, the first one, is the right one. But with the evidence at hand,
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we cannot easily see which is right. To compute the MARKOV EQUIVALENCE set, lets define the first
DAG and ask dagitty to do the hard work:

dag5.7 <- dagitty( "dag{ IS{.ZCl?Lde
M -> K <= N
M->N1}")

coordinates(dag5.7) <- list( x=c(M=0,K=1,N=2) , y=c(M=0.5,K=1,N=0.5) )
MElist <- equivalentDAGs(dag5.7)

Now MEl1ist should contain six different DAGs. To plot them all, you can use drawdag (MElist).
Which of these do you think you could eliminate, based upon scientific knowledge of the variables?

5.3. Categorical variables

A common question for statistical methods is to what extent an outcome changes as a
result of presence or absence of a category. A category here means discrete and unordered.
For example, consider the different species in the milk energy data again. Some of them are
apes, while others are New World monkeys. We might want to ask how predictions should
vary when the species is an ape instead of a monkey. Taxonomic group is a CATEGORICAL
VARIABLE, because no species can be half-ape and half-monkey (discreteness), and there
is no sense in which one is larger or smaller than the other (unordered). Other common
examples of categorical variables include:

e Sex: male, female
e Developmental status: infant, juvenile, adult
e Geographic region: Africa, Europe, Melanesia

Many readers will already know that variables like this, routinely called FACTORS, can
easily be included in linear models. But what is not widely understood is how these variables
are represented in a model. The computer does all of the work for us, hiding the machinery.
But there are some subtleties that make it worth exposing the machinery. Knowing how the
machine (golem) works both helps you interpret the posterior distribution and gives you
additional power in building the model.

Rethinking: Continuous countries. With automated software and lack of attention, categorical vari-
ables can be dangerous. In 2015, a high-impact journal published a study of 1170 children from
six countries, finding a strong negative association between religiosity and generosity.®® The paper
caused a small stir among religion researchers, because it disagreed with the existing literature. Upon
reanalysis, it was found that the country variable, which is categorical, was entered as a continuous
variable instead. This made Canada (value 2) twice as much “country” as the United States (value 1).
After reanalysis with country as a categorical variable, the result vanished and the original paper has
been retracted. This is a happy ending, because the authors shared their data. How many cases like
this exist, undiscovered because the data have never been shared and are possible lost forever?

5.3.1. Binary categories. In the simplest case, the variable of interest has only two cate-
gories, like male and female. Let’s rewind to the Kalahari data you met in Chapter 4. Back
then, we ignored sex when predicting height, but obviously we expect males and females to
have different averages. Take a look at the variables available:
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data(Howell1l)
d <- Howelll
str(d)

'data.frame': 544 obs. of 4 variables:

$ height: num 152 140 137 157 145 ...

$ weight: num 47.8 36.5 31.9 53 41.3 ...

$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$male : int 10010106101 ...

The male variable is our new predictor, an example of a INDICATOR VARIABLE. Indicator
variables—sometimes also called “dummy” variables—are devices for encoding unordered
categories into quantitative models. There is no sense here in which “male” is one more than
“female” The purpose of the male variable is to indicate when a person in the sample is
“male” So it takes the value 1 whenever the person is male, but it takes the value 0 when the
person belongs to any other category. It doesn't matter which category is indicated by the 1.
The model won't care. But correctly interpreting the model demands that you remember, so
it’s a good idea to name the variable after the category assigned the 1 value.

There are two ways to make a model with this information. The first is to use the indicator
variable directly inside the linear model, as if it were a typical predictor variable. The effect of
an indicator variable is to turn a parameter on for those cases in the category. Simultaneously,
the variable turns the same parameter oft for those cases in another category. This will make
more sense, once you see it in the mathematical definition of the model. Consider again a
linear model of height, as in Chapter 4. Now well ignore weight and the other variables and
focus only on sex.

h; ~ Normal(p;, o)
pi = a+ Bnm;

a ~ Normal(178, 20)
Bm ~ Normal(0, 10)

o ~ Uniform(0, 50)

where £ is height and m is the dummy variable indicating a male individual. The parameter
Bm influences prediction only for those cases where m; = 1. When m; = 0, it has no effect
on prediction, because it is multiplied by zero inside the linear model, a + /3,,,m;, canceling it
out, whatever its value. This is just to say that, when m; = 1, the linear modelis p1; = o+ B
And when m; = 0, the linear model is simply p; = .

Using this approach means that /3, represents the expected difference between males
and females in height. The parameter « is used to predict both female and male heights. But
male height gets an extra 3,,. This also means that « is no longer the average height in the
sample, but rather just the average female height. This can make assigning sensible priors a
little harder. If you don’t have a sense of the expected difference in height—what would be
reasonable before seeing the data?—then this approach can be a bother. Of course you could
get away with a vague prior in this case—there is a lot of data.

Another consequence of having to assign a prior to the difference is that this approach
necessarily assumes there is more uncertainty about one of the categories—“male” in this
case—than the other. Why? Because a prediction for a male includes two parameters and
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therefore two priors. We can simulate this directly from the priors. The prior distributions
for u for females and males are:

mu_female <- rnorm(le4,178,20)
mu_male <- rnorm(le4,178,20) + rnorm(le4,0,10)
precis( data.frame( mu_female , mu_male ) )

'data.frame': 10000 obs. of 2 variables:

mean sd 5.5% 94.5% histogram
mu_female 178.41 20.04 146.30 209.94 _ .
mu_male 177.97 22.40 142.39 214.82 =

The prior for males is wider, because it uses both parameters. While in a regression this
simple, these priors will wash out very quickly, in general we should be careful. We aren’t
actually more unsure about male height than female height, a priori. Is there another way?

Another approach available to us is an INDEX VARIABLE. An index variable contains
integers that correspond to different categories. The integers are just names, but they also let
us reference a list of corresponding parameters, one for each category. In this case, we can
construct our index like this:

d$sex <- +dfelse( d$male==1, 2 , 1)
str( d$sex )

num [1:544] 2 112121212 ...

Now “1” means female and “2” means male. No order is implied. These are just labels. And
the mathematical version of the model becomes:

h; ~ Normal(p;, o)

Hi = Ogpx]i]

aj ~ Normal(178,20) forj=1..2
o ~ Uniform(0, 50)

What this does is create a list of o parameters, one for each unique value in the index variable.
So in this case we end up with two o parameters, named «; and ;. The numbers correspond
to the values in the index variable sex. I know this seems overly complicated, but it solves
our problem with the priors. Now the same prior can be assigned to each, corresponding to
the notion that all the categories are the same, prior to the data. Neither category has more
prior uncertainty than the other. And as you’ll see in a bit, this approach extends effortlessly
to contexts with more than two categories.
Let’s approximate the posterior for the above model, the one using an index variable.

m5.8 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a[sex] ,
a[sex] ~ dnorm( 178 , 20 ) ,
sigma ~ dunif( @ , 50 )
) , data=d )
precis( m5.8 , depth=2 )
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mean sd 5.5% 94.5%
al[l] 134.91 1.61 132.34 137.48
al[2] 142.58 1.70 139.86 145.29
sigma 27.31 0.83 25.98 28.63

Note the depth=2 that I added to precis. This tells it to show any vector parameters, like
our new a vector. Vector (and matrix) parameters are hidden by precies by default, because
sometimes there are lots of these and you don’t want to inspect their individual values. You’ll
see what I mean in later chapters.

Interpreting these parameters is easy enough—they are the expected heights in each cat-
egory. But often we are interested in differences between categories. In this case, what is
the expected difference between females and males? We can compute this using samples
from the posterior. In fact, I'll extract posterior samples into a data frame and insert our
calculation directly into the same frame:

post <- extract.samples(m5.8)
postsdiff_fm <- post$al[,1] - post$al,2]
precis( post , depth=2 )

quap posterdior: 10000 samples from m5.8

mean sd 5.5% 94.5% histogram
.84 25.95 128.63 ol
.59 132.37 137.42 s
.71 139.90 145.35 .
.33 -11.41 -3.97 il

Our calculation appears at the bottom, as a new parameter in the posterior. This is the ex-
pected difference between a female and male in the sample. This kind of calculation is called
a CONTRAST. No matter how many categories you have, you can use samples from the pos-
terior to compute the contrast between any two.

sigma 27.29
all] 134.91
al2] 142.60
diff_fm -7.70

N P = O

5.3.2. Many categories. Binary categories are easy, whether you use an indicator variable
or instead an index variable. But when there are more than two categories, the indicator
variable approach explodes. You'll need a new indicator variable for each new category. If
you have k unique categories, you need k — 1 indicator variables. Automated tools like R’s
1m do in fact go this route, constructing k — 1 indicator variables for you and returning k — 1
parameters (in addition to the intercept).

But we'll instead stick with the index variable approach. It does not change at all when
you add more categories. You do get more parameters, of course, just as many as in the
indicator variable approach. But the model specification looks just like it does in the bi-
nary case. And the priors continue to be easier, unless you really do have prior information
about contrasts. It is also important to get used to index variables, because multilevel models
(Chapter 13) depend upon them.

Let’s explore an example using the primate milk data again. We're interested now in the
clade variable, which encodes the broad taxonomic membership of each species:

data(milk)
d <- milk
levels(dS$clade)
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[1] "Ape" "New World Monkey" "Old World Monkey" "Strepsirrhine"

We want an index value for each of these four categories. You could do this by hand, but just
coercing the factor to an integer will do the job:

dSclade_id <- as.integer( dSclade )

Let’s use a model to measure the average milk energy in each clade. In math form:
K; ~ Normal(u;, o)
Hi = Ccrapg[i]
aj ~ Normal(0,0.5) forj=1..4

o ~ Exponential(1)

Remember, K is the standardized kilocalories. I widened the prior on « a little, to allow
the different clades to disperse, if the data wants them to. But I encourage you to play with
that prior and repeatedly re-approximate the posterior so you can see how the posterior
differences among the categories depend upon it. Firing up quap now:

d$K <- standardize( dSkcal.per.g )
m5.9 <- quap(
alist(
K ~ dnorm( mu , sigma ),
mu <- a[clade_id],
a[clade_id] ~ dnorm( 6 , 0.5 ),
sigma ~ dexp( 1 )
) , data=d )
labels <- paste( "a[" , 1:4 , "]:" , levels(dSclade) , sep="" )
plot( precis( m5.9 , depth=2 , pars="a" ) , labels=labels ,
xlab="expected kcal (std)" )

a[1]:Ape —e—
a[2]:New World Monkey S
a[3]:0ld World Monkey —_—
a[4]:Strepsirrhine —_—

-1.0 -0.5 0.0 0.5 1.0

expected kcal (std)

I used the optional labels argument to augment the parameter names a[1] through a[4]
with the clade names from the original variable. In practice, you have to be very careful to
keep track of which index values go with which categories. Don’t trust R’s factor variable
type to necessarily do things right.

If you have another kind of categorical variable that youd like to add to the model, the
approach is just the same. For example, let’s randomly assign these primates to some made
up categories: [1] Gryffindor, [2] Hufflepuff, [3] Ravenclaw, and [4] Slytherin.

set.seed(63)
dShouse <- sample( rep(l:4,each=8) , size=nrow(d) )
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Now we can include these categories as another predictor in the model:

Rcsogz m5.10 <- quap(

alist(
K ~ dnorm( mu , sigma ),
mu <- a[clade_id] + h[house],
a[clade_id] ~ dnorm( 6 , 0.5 ),
h[house] ~ dnorm( @ , 0.5 ),
sigma ~ dexp( 1 )

) , data=d )

If you inspect the posterior, you'll see that Slytherin stands out.

Rethinking: Differences and statistical significance. A common error in interpretation of parameter
estimates is to suppose that because one parameter is sufficiently far from zero—is “significant”—and
another parameter is not—is “not significant”—that the difference between the parameters is also
significant. This is not necessarily s0.¢ This isn’t just an issue for non-Bayesian analysis: If you want
to know the distribution of a difference, then you must compute that difference, a cONTRAST. It
isn’t enough to just observe, for example, that a slope among males overlaps a lot with zero while the
same slope among females is reliably above zero. You must compute the posterior distribution of the
difference in slope between males and females. For example, suppose you have posterior distributions
for two parameters, Srand 3,,. 37s mean and standard deviation is 0.1540.02, and 3,,’s is 0.02£0.10.
So while f3is reliably different from zero (“significant”) and 3, is not, the difference between the two
(assuming they are uncorrelated) is (0.15 — 0.02) & 1/0.02% + 0.12 ~ 0.13 = 0.10. The distribution
of the difference overlaps a lot with zero. In other words, you can be confident that (3 is far from zero,
but you cannot be sure that the difference between 3rand 3, is far from zero.

In the context of non-Bayesian significance testing, this phenomenon arises from the fact that
statistical significance is inferentially powerful in one way: difference from the null. When /5, over-
laps with zero, it may also overlap with values very far from zero. Its value is uncertain. So when you
then compare (3, to 31, that comparison is also uncertain, manifesting in the width of the posterior
distribution of the difference 3r — 3,,. Lurking underneath this example is a more fundamental mis-
take in interpreting statistical significance: The mistake of accepting the null hypothesis. Whenever
an article or book says something like “we found no difference” or “no effect,” this usually means
that some parameter was not significantly different from zero, and so the authors adopted zero as the
estimate. This is both illogical and extremely common.

5.4. Summary

This chapter introduced multiple regression, a way of constructing descriptive models
for how the mean of a measurement is associated with more than one predictor variable. The
defining question of multiple regression is: What is the value of knowing each predictor, once
we already know the other predictors? The answer to this question does not by itself provide
any causal information. Causal inference requires additional assumptions. Simple directed
acyclic graph (DAG) models of causation are one way to represent those assumptions. In
the next chapter we'll continue building the DAG framework and see how adding predictor
variables can create as many problems as it can solve.



5.5. PRACTICE 159

5.5. Practice

Problems are labeled Easy (E), Medium (M), and Hard (H).

5E1. Which of the linear models below are multiple linear regressions?

(1) pi=a+ Bx;

(2) pi = Bxxi + Bezi

(3) pi=a+B(x—z)
(4) pi = o+ Bexi + Bezi

5E2. Write down a multiple regression to evaluate the claim: Animal diversity is linearly related to
latitude, but only after controlling for plant diversity. You just need to write down the model definition.

5E3. Write down a multiple regression to evaluate the claim: Neither amount of funding nor size
of laboratory is by itself a good predictor of time to PhD degree; but together these variables are both
positively associated with time to degree. Write down the model definition and indicate which side of
zero each slope parameter should be on.

5E4. Suppose you have a single categorical predictor with 4 levels (unique values), labeled A, B, C
and D. Let A; be an indicator variable that is 1 where case i is in category A. Also suppose B;, C;,
and D; for the other categories. Now which of the following linear models are inferentially equivalent
ways to include the categorical variable in a regression? Models are inferentially equivalent when it’s
possible to compute one posterior distribution from the posterior distribution of another model.

(1) pi = oo+ BaA; + BB; + BpD;

(2) pi = o+ BaA; + BBi + BcCi + BpD;

(3) pi = a+ BsBi + BcCi + BpD;

(4) pi = apA; + apB; + acCi + apD;

(5) pi = aa(1 — Bi = C; — D;) + aB; + acC; + apD;

5M1. Invent your own example of a spurious correlation. An outcome variable should be correlated
with both predictor variables. But when both predictors are entered in the same model, the correlation
between the outcome and one of the predictors should mostly vanish (or at least be greatly reduced).

5M2. Invent your own example of a masked relationship. An outcome variable should be correlated
with both predictor variables, but in opposite directions. And the two predictor variables should be
correlated with one another.

5M3. It is sometimes observed that the best predictor of fire risk is the presence of firefighters—
States and localities with many firefighters also have more fires. Presumably firefighters do not cause
fires. Nevertheless, this is not a spurious correlation. Instead fires cause firefighters. Consider the
same reversal of causal inference in the context of the divorce and marriage data. How might a high
divorce rate cause a higher marriage rate? Can you think of a way to evaluate this relationship, using
multiple regression?

5M4. In the divorce data, States with high numbers of members of the Church of Jesus Christ of
Latter-day Saints (LDS) have much lower divorce rates than the regression models expected. Find a
list of LDS population by State and use those numbers as a predictor variable, predicting divorce rate
using marriage rate, median age at marriage, and percent LDS population (possibly standardized).
You may want to consider transformations of the raw percent LDS variable.
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5M5. One way to reason through multiple causation hypotheses is to imagine detailed mechanisms
through which predictor variables may influence outcomes. For example, it is sometimes argued that
the price of gasoline (predictor variable) is positively associated with lower obesity rates (outcome
variable). However, there are at least two important mechanisms by which the price of gas could
reduce obesity. First, it could lead to less driving and therefore more exercise. Second, it could lead to
less driving, which leads to less eating out, which leads to less consumption of huge restaurant meals.
Can you outline one or more multiple regressions that address these two mechanisms? Assume you
can have any predictor data you need.

5H1. In the divorce example, suppose the DAG is: M — A — D. What are the implied conditional
independencies of the graph? Are the data consistent with it?

5H2. Assuming that the DAG for the divorce example is indeed M — A — D, fit a new model and
use it to estimate the counterfactual effect of halving a State’s marriage rate M. Use the counterfactual
example from the chapter (starting on page 140) as a template.

5H3. Return to the milk energy model, m5.7. Suppose that the true causal relationship among the
variables is:

M > N

K

Now compute the counterfactual effect on K of doubling M. You will need to account for both the
direct and indirect paths of causation. Use the counterfactual example from the chapter (starting on
page 140) as a template.

5H4. Here is an open practice problem to engage your imagination. In the divorce date, States in
the southern United States have many of the highest divorce rates. Add the South indicator variable
to the analysis. First, draw one or more DAGs that represent your ideas for how Southern American
culture might influence any of the other three variables (D, M or A). Then list the testable implications
of your DAGs, if there are any, and fit one or more models to evaluate the implications. What do you
think the influence of “Southerness” is?
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It seems like the most newsworthy scientific studies are the least trustworthy. The more
likely it is to kill you, if true, the less likely it is to be true. The more boring the topic, the
more rigorous the results. How could this widely believed negative correlation exist? There
doesn’t seem to be any reason for studies of topics that people care about to produce less
reliable results. Maybe popular topics attract more and worse researchers, like flies drawn to
the smell of honey?

Actually all that is necessary for such a negative correlation to arise is that peer reviewers
care about both newsworthiness and trustworthiness. Whether it is grant review or journal
review, if editors and reviewers care about both, then the act of selection itself is enough to
make the most newsworthy studies the least trustworthy. In fact, it’s hard to imagine how
scientific peer review could avoid creating this negative correlation. And, dear reader, this
fact will help us understand the perils of multiple regression.

Here’s a simple simulation to illustrate the point.®” Suppose a grant review panel receives
200 research proposals. Among these proposals, there is no correlation at all between trust-
worthiness (rigor, scholarship, plausibility of success) and newsworthiness (social welfare
value, public interest). The panel weighs trustworthiness and newsworthiness equally. Then
they rank the proposals by their combined scores and select the top 10% for funding.

At the end of this section, I show the code to simulate this thought experiment. Fig-
URE 6.1 displays the full sample of simulated proposals, with those selected in blue. I've
drawn a simple linear regression line through the selected proposals. There’s the negative
correlation, —0.77 in this example. Strong selection induces a negative correlation among
the criteria used in selection. Why? If the only way to cross the threshold is to score high, it is
more common to score high on one item than on both. Therefore among funded proposals,
the most newsworthy studies can actually have less than average trustworthiness (less than 0
in the figure). Similarly the most trustworthy studies can be less newsworthy than average.

This general phenomenon has been recognized for a long time. It is sometimes called
BERKSON’s PARADOX.®® But it is easier to remember if we call it the selection-distortion
effect. Once you appreciate this effect, you'll see it everywhere. Why do so many restaurants
in good locations have bad food? The only way a restaurant with less-than-good food can
survive is if it is in a nice location. Similarly, restaurants with excellent food can survive even
in bad locations. Selection-distortion ruins your city.

What does this have to do with multiple regression? Unfortunately, everything. The
previous chapter demonstrated some amazing powers of multiple regression. It can smoke
out spurious correlations and clear up masking effects. This may encourage the view that,
when in doubt, just add everything to the model and let the oracle of regression sort it out.
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FIGURE 6.1. Why the most newsworthy stud-
ies might be the least trustworthy. 200 re-
search proposals are ranked by combined
trustworthiness and newsworthiness. The top
10% are selected for funding. While there is
no correlation before selection, the two crite-
ria are strongly negatively correlated after se-
lection. The correlation here is —0.77.

trustworthiness
0

newsworthiness

Regression will not sort it out. Regression is indeed an oracle, but a cruel one. It speaks
in riddles and delights in punishing us for asking bad questions. The selection-distortion
effect can happen inside of a multiple regression, because the act of adding a predictor in-
duces statistical selection within the model, a phenomenon that goes by the unhelpful name
COLLIDER BIAS. This can mislead us into believing, for example, that there is a negative as-
sociation between newsworthiness and trustworthiness in general, when in fact it is just a
consequence of conditioning on some variable. This is both a deeply confusing fact and one
that is important to understand in order to regress responsibly.

This chapter and the next are both about terrible things that can happen when we simply
add variables to a regression, without a clear idea of a causal model. In this chapter, we'll ex-
plore three different hazards: multicollinearity, post-treatment bias, and collider bias. We'll
end by tying all of these examples together in a framework that can tell us which variables we
must and must not add to a model in order to arrive at valid inferences. But this framework
does not do the most important step for us: It will not give us a valid model.

Overthinking: Simulated science distortion. Simulations like this one are easy to do in R, or in any
other scripting language, once you have seen a few examples. In this simulation, we just draw some
random Gaussian criteria for a sample of proposals and then select the top 10% combined scores.

set.seed(1914)

N <- 200 # num grant proposals

p <- 0.1 # proportion to select

# uncorrelated newsworthiness and trustworthiness
nw <- rnorm(N)

tw <= rnorm(N)

# select top 10% of combined scores

s <- nw + tw # total score

q <- quantile( s , 1-p ) # top 10% threshold
selected <- ifelse( s >= q , TRUE , FALSE )
cor( tw[selected] , nw[selected] )

I chose a specific seed so you can replicate the result in FIGURE 6.1, but if you rerun the simulation
without the set. seed line, you’ll see there is nothing special about the seed I used.
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6.1. Multicollinearity

It is commonly true that there are many potential predictor variables to add to a regres-
sion model. In the case of the primate milk data, for example, there are 7 variables available
to predict any column we choose as an outcome. Why not just build a model that includes
all 72 There are several hazards.

Let’s begin with the least of your worries: MULTICOLLINEARITY. Multicollinearity means
a very strong association between two or more predictor variables. The raw correlation isn't
what matters. Rather what matters is the association, conditional on the other variables in
the model. The consequence of multicollinearity is that the posterior distribution will seem
to suggest that none of the variables is reliably associated with the outcome, even if all of the
variables are in reality strongly associated with the outcome.

This frustrating phenomenon arises from the details of how multiple regression works.
In fact, there is nothing wrong with multicollinearity. The model will work fine for predic-
tion. You will just be frustrated trying to understand it. The hope is that once you understand
multicollinearity, you will better understand regression models in general.

Let’s begin with a simple simulation. Then we'll turn to the primate milk data again and
see multicollinearity in a real data set.

6.1.1. Multicollinear legs. Imagine trying to predict an individual’s height using the length
of his or her legs as predictor variables. Surely height is positively associated with leg length,
or at least our simulation will assume it is. Nevertheless, once you put both legs (right and
left) into the model, something vexing will happen.

The code below will simulate the heights and leg lengths of 100 individuals. For each,
firsta height is simulated from a Gaussian distribution. Then each individual gets a simulated
proportion of height for their legs, ranging from 0.4 to 0.5. Finally, each leg is salted with a
little measurement or developmental error, so the left and right legs are not exactly the same
length, as is typical in real populations. At the end, the code puts height and the two leg
lengths into a common data frame.

N <- 100 # number of individuals
set.seed(909)

height <- rnorm(N,10,2) # sim total height of each

leg_prop <= runif(N,0.4,0.5) # leg as proportion of height
leg_left <- leg_propxheight + # sim left leg as proportion + error

rnorm( N , @ , 0.02 )
leg_right <- leg_prop*height + # sim right leg as proportion + error
rnorm( N , 0 , 0.02 )
# combine into data frame
d <- data.frame(height,leg_left,leg_right)

Now let’s analyze these data, predicting the outcome height with both predictors, leg_left
and leg_right. Before approximating the posterior, however, consider what we expect. On
average, an individual’s legs are 45% of their height (in these simulated data). So we should
expect the beta coeflicient that measures the association of a leg with height to end up around
the average height (10) divided by 45% of the average height (4.5). Thisis 10/4.5 ~ 2.2. Now
let’s see what happens instead. I'll use very vague, bad priors here, just so we can be sure that
the priors aren’t responsible for what is about to happen.
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m6.1 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + blxleg_left + brxleg_right ,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
br ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )
) , data=d )
precis(mé6.1)

mean sd 5.5% 94.5%

a 0.98 0.28 0.53 1.44
bl 0.21 2.53 -3.83 4.25
br 1.78 2.53 -2.26 5.83
sigma 0.62 0.04 0.55 0.69

Those posterior means and standard deviations look crazy. This is a case in which a graphical
view of the precis output is more useful, because it displays the posterior means and 89%
intervals in a way that allows us with a glance to see that something has gone wrong here:

plot(precis(m6.1))

a ——
b
br
sigma e
-4 -2 0 2 4 6
Value

Go ahead and try the simulation a few more times, omitting the set. seed line. If both legs
have almost identical lengths, and height is so strongly associated with leg length, then why
is this posterior distribution so weird? Did the posterior approximation work correctly?

It did work correctly, and the posterior distribution here is the right answer to the ques-
tion we asked. The problem is the question. Recall that a multiple linear regression answers
the question: What is the value of knowing each predictor, after already knowing all of the
other predictors? So in this case, the question becomes: What is the value of knowing each
leg’s length, after already knowing the other leg’s length?

The answer to this weird question is equally weird, but perfectly logical. The posterior
distribution is the answer to this question, considering every possible combination of the
parameters and assigning relative plausibilities to every combination, conditional on this
model and these data. It might help to look at the joint posterior distribution for b1 and br:

post <- extract.samples(mé6.1)
plot( bl ~ br , post , col=col.alpha(rangi2,0.1) , pch=16 )

The resulting plot is shown on the left of FIGURE 6.2. The posterior distribution for these
two parameters is very highly correlated, with all of the plausible values of b1 and br lying
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FIGURE 6.2. Left: Posterior distribution of the association of each leg with
height, from model mé6. 1. Since both variables contain almost identical in-
formation, the posterior is a narrow ridge of negatively correlated values.
Right: The posterior distribution of the sum of the two parameters is cen-
tered on the proper association of either leg with height.

along a narrow ridge. When b1 is large, then br must be small. What has happened here
is that since both leg variables contain almost exactly the same information, if you insist on
including both in a model, then there will be a practically infinite number of combinations
of b1l and br that produce the same predictions.

One way to think of this phenomenon is that you have approximated this model:

yi ~ Normal(u;, o)
pi = o+ Sixi + Box;

The variable y is the outcome, like height in the example, and x is a single predictor, like the
leg lengths in the example. Here x is used twice, which is a perfect example of the problem
caused by using both leg lengths. From the golem’s perspective, the model for y; is:

pi = a+ (b1 + Ba)xi

All T've done is factor x; out of each term. The parameters 3; and /3, cannot be pulled apart,
because they never separately influence the mean . Only their sum, 3, + (3,, influences pi.. So
this means the posterior distribution ends up reporting the very large range of combinations
of 51 and 3, that make their sum close to the actual association of x with y.

And the posterior distribution in this simulated example has done exactly that: It has
produced a good estimate of the sum of b1 and br. Here’s how you can compute the posterior
distribution of their sum, and then plot it:

sum_blbr <- post$bl + posts$br
dens( sum_blbr , col=rangi2 , lwd=2 , xlab="sum of bl and br" )

And the resulting density plot is shown on the right-hand side of FIGURE 6.2. The posterior
mean is in the right neighborhood, a little over 2, and the standard deviation is much smaller
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than it is for either component of the sum, b1 or br. If you fit a regression with only one of
the leg length variables, you'll get approximately the same posterior mean:

m6.2 <- quap(
alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + blxleg_left,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )
) , data=d )
precis(mé6.2)

mean sd 5.5% 94.5%
a 1.00 0.28 0.54 1.45
bl 1.99 0.06 1.89 2.09
sigma 0.62 0.04 0.55 0.69

That 1.99 is almost identical to the mean value of sum_b1lbr.

The basic lesson is only this: When two predictor variables are very strongly correlated
(conditional on other variables in the model), including both in a model may lead to confu-
sion. The posterior distribution isn’t wrong, in such cases. It’s telling you that the question
you asked cannot be answered with these data. And that’s a great thing for a model to say,
that it cannot answer your question. And if you are just interested in prediction, you'll find
that this leg model makes fine predictions. It just doesn’t make any claims about which leg
is more important.

This leg example is clear and cute. But it is also purely statistical. We aren’t asking any
serious causal questions here. Let’s try a more causally interesting example next.

6.1.2. Multicollinear milk. Intheleglength example, it’s easy to see that including both legs
in the model is a little silly. But the problem that arises in real data sets is that we may not
anticipate a clash between highly correlated predictors. And therefore we may mistakenly
read the posterior distribution to say that neither predictor is important. In this section, we
look at an example of this issue with real data.

Let’s return to the primate milk data from earlier in the chapter:

library(rethinking)

data(milk)

d <- milk

d$K <- standardize( dSkcal.per.g )
dS$F <- standardize( dS$perc.fat )

dSL <- standardize( dS$perc.lactose )

In this example, we are concerned with the perc. fat (percent fat) and perc. lactose (per-
cent lactose) variables. We'll use these to model the total energy content, kcal.per.g. The
code above has already standardized these three variables. You're going to use these three
variables to explore a natural case of multicollinearity. Note that there are no missing values,
NA, in these columns, so there’s no need here to extract complete cases. But you can rest
assured that quap, unlike reckless functions like 1m, would never silently drop cases.
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Start by modeling kcal.per.g as a function of perc. fat and perc.lactose, but in
two bivariate regressions. Look back in Chapter 5 (page 147), for a discussion of these priors.

# kcal.per.g regressed on perc.fat 2;Ode
m6.3 <- quap(
alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bFxF ,
a ~ dnorm( 0 , 0.2 ) ,
bF ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data=d )
# kcal.per.g regressed on perc.lactose
m6.4 <- quap(
alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bLxL ,
a ~ dnorm( 0 , 0.2 ) ,
bL ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data=d )
precis( m6.3 )
precis( m6.4 )
mean sd 5.5% 94.5%
a 0.00 0.08 -0.12 0.12
bF 0.86 0.08 0.73 1.00
sigma 0.45 0.06 0.36 0.54
mean sd 5.5% 94.5%
a 0.00 0.07 -0.11 0.11
bL -0.90 0.07 -1.02 -0.79
sigma 0.38 0.05 0.30 0.46
The posterior distributions for bF and bL are essentially mirror images of one another. The
posterior mean of bF is as positive as the mean of bL is negative. Both are narrow posterior
distributions that lie almost entirely on one side or the other of zero. Given the strong associ-
ation of each predictor with the outcome, we might conclude that both variables are reliable
predictors of total energy in milk, across species. The more fat, the more kilocalories in the
milk. The more lactose, the fewer kilocalories in milk. But watch what happens when we
place both predictor variables in the same regression model:
m6.5 <- quap( gigde

alist(
K ~ dnorm( mu , sigma ) ,
mu <- a + bFxF + bLxL ,
a ~ dnorm( 0 , 0.2 ) ,
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bF ~ dnorm( @ , 0.5 ) ,
bL ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
)
data=d )

precis( m6.5 )

mean sd 5.5% 94.5%
a 0.00 0.07 -0.11 06.11
bF 0.24 0.18 -0.05 0.54
bL -0.68 0.18 -0.97 -0.38
sigma 0.38 0.05 0.30 0.46

Now the posterior means of both bF and bL are closer to zero. And the standard deviations
for both parameters are twice as large as in the bivariate models (m6.3 and m6.4).

This is the same statistical phenomenon as in the leg length example. What has happened
is that the variables perc.fat and perc.lactose contain much of the same information.
They are almost substitutes for one another. As a result, when you include both in a regres-
sion, the posterior distribution ends up describing a long ridge of combinations of bF and
bL that are equally plausible. In the case of the fat and lactose, these two variables form
essentially a single axis of variation. The easiest way to see this is to use a pairs plot:

pairs( ~ kcal.per.g + perc.fat + perc.lactose , data=d , col=rangi2 )

I display this plot in FIGURE 6.3. Along the diagonal, the variables are labeled. In each scat-
terplot off the diagonal, the vertical axis variable is the variable labeled on the same row and
the horizontal axis variable is the variable labeled in the same column. For example, the
two scatterplots in the first row in FIGURE 6.3 are kcal.per.g (vertical) against perc. fat
(horizontal) and then kcal.per.g (vertical) against perc.lactose (horizontal). Notice
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that percent fat is positively correlated with the outcome, while percent lactose is negatively
correlated with it. Now look at the right-most scatterplot in the middle row. This plot is the
scatter of percent fat (vertical) against percent lactose (horizontal). Notice that the points
line up almost entirely along a straight line. These two variables are negatively correlated,
and so strongly so that they are nearly redundant. Either helps in predicting kcal.per.g,
but neither helps as much once you already know the other.

In the scientific literature, you might encounter a variety of dodgy ways of coping with
multicollinearity. Few of them take a causal perspective. Some fields actually teach students
to inspect pairwise correlations before fitting a model, to identify and drop highly correlated
predictors. This is a mistake. Pairwise correlations are not the problem. It is the conditional
associations—not correlations—that matter. And even then, the right thing to do will de-
pend upon what is causing the collinearity. The associations within the data alone are not
enough to decide what to do.

What is likely going on in the milk example is that there is a core tradeoff in milk com-
position that mammal mothers must obey. If a species nurses often, then the milk tends to
be watery and low in energy. Such milk is high in sugar (lactose). If instead a species nurses
rarely, in short bouts, then the milk needs to be higher in energy. Such milk is very high in
fat. This implies a causal model something like this:

L - ©) > F

K

The central tradeoff decides how dense, D, the milk needs to be. We haven’t observed this
variable, so it’s shown circled. Then fat, F, and lactose, L, are determined. Finally, the com-
position of F and L determines the kilocalories, K. If we could measure D, or had an evolu-
tionary and economic model to predict it based upon other aspects of a species, that would
be better than stumbling through regressions.

The problem of multicollinearity is a member of a family of problems with fitting models,
a family sometimes known as NON-IDENTIFIABILITY. When a parameter is non-identifiable,
it means that the structure of the data and model do not make it possible to estimate the
parameter’s value. Sometimes this problem arises from mistakes in coding a model, but
many important types of models present non-identifiable or weakly identifiable parameters,
even when coded completely correctly. Nature does not owe us easy inference, even when
the model is correct.

In general, there’s no guarantee that the available data contain much information about
a parameter of interest. When that’s true, your Bayesian machine will return a posterior
distribution very similar to the prior. Comparing the posterior to the prior can therefore
be a good idea, a way of seeing how much information the model extracted from the data.
When the posterior and prior are similar, it doesn’t mean the calculations are wrong—you
got the right answer to the question you asked. But it might lead you to ask a better question.

Rethinking: Identification guaranteed; comprehension up to you. Technically speaking, identifia-
bility is not a concern for Bayesian models. The reason is that as long as the posterior distribution is
proper—which just means that it integrates to 1—then all of the parameters are identified. But this
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technical fact doesn’t also mean that you can make sense of the posterior distribution. So it’s probably
better to speak of weakly identified parameters in a Bayesian context. But the difference may be only
technical. The truth is that even when a DAG says a causal effect should be identifiable, it may not be
statistically identifiable. We have to work just as hard at the statistics as we do at the design.

Overthinking: Simulating collinearity. To see how imprecise of the posterior increases with associ-
ation between two predictors, let’s use a simulation. The code below makes a function that generates
correlated predictors, fits a model, and returns the standard deviation of the posterior distribution
for the slope relating perc. fat to kcal.per.g. Then the code repeatedly calls this function, with
different degrees of correlation as input, and collects the results.

library(rethinking)
data(milk)
d <- milk
sim.coll <- function( r=0.9 ) {
d$x <- rnorm( nrow(d) , mean=rxd$perc.fat ,
sd=sqrt( (1-rA2)xvar(dsperc.fat) ) )
m <- lm( kcal.per.g ~ perc.fat + x , data=d )
sqrt( diag( vcov(m) ) )[2] # stddev of parameter
}
rep.sim.coll <- function( r=0.9 , n=100 ) {
stddev <- replicate( n , sim.coll(r) )
mean (stddev)
}
r.seq <- seq(from=0,t0=0.99,by=0.01)
stddev <- sapply( r.seq , function(z) rep.sim.coll(r=z,n=100) )
plot( stddev ~ r.seq , type="1" , col=rangi2, lwd=2 , xlab="correlation" )

So for each correlation value in r.seq, the code generates 100 regressions and returns the average
standard deviation from them. This code uses implicit flat priors, which are bad priors. So it does
exaggerate the effect of collinear variables. When you use informative priors, the inflation in standard
deviation can be much slower.

6.2. Post-treatment bias

It is routine to worry about mistaken inferences that arise from omitting predictor vari-
ables. Such mistakes are often called OMITTED VARIABLE BIAS, and the examples from the
previous chapter illustrate it. It is much less routine to worry about mistaken inferences
arising from including variables. But INCLUDED VARIABLE BIAS is real. Carefully random-
ized experiments can be ruined just as easily as uncontrolled observational studies. Blindly
tossing variables into the causal salad is never a good idea.

Included variable bias takes several forms. The first is POST-TREATMENT BIAS.® Post-
treatment bias is a risk in all types of studies. The language “post-treatment” comes in fact
from thinking about experimental designs. Suppose for example that you are growing some
plants in a greenhouse. You want to know the difference in growth under different anti-
fungal soil treatments, because fungus on the plants tends to reduce their growth. Plants are
initially seeded and sprout. Their heights are measured. Then different soil treatments are
applied. Final measures are the height of the plant and the presence of fungus. There are
four variables of interest here: initial height, final height, treatment, and presence of fungus.
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Final height is the outcome of interest. But which of the other variables should be in the
model? If your goal is to make a causal inference about the treatment, you shouldn’t include
the fungus, because it is a post-treatment effect.

Lets simulate some data, to make the example more transparent and see what exactly
goes wrong when we include a post-treatment variable.

set.seed(71)
# number of plants
N <- 100

# simulate initial heights
h® <- rnorm(N,10,2)

# assign treatments and simulate fungus and growth
treatment <- rep( 0:1 , each=N/2 )

fungus <- rbinom( N , size=1 , prob=0.5 - treatmentx0.4 )
hl <- h® + rnorm(N, 5 - 3xfungus)

# compose a clean data frame
d <- data.frame( ho=h0 , hl=hl , treatment=treatment , fungus=fungus )
precis(d)

mean sd 5.5% 94.5% histogram
he 9.96 2.10 6.57 13.08 o Bemm
hl 14.40 2.69 10.62 17.93 -
treatment 0.50 0.50 0.00 1.00 [ | | ]
fungus 0.23 0.42 0.00 1.00 |

Now you should have a data frame d with the simulated plant experiment data.

Rethinking: Causal inference heuristics. The danger of post-treatment bias has been known for a
long time. So many scientists have been taught the heuristic that while it is risky to condition on post-
treatment variables, pre-treatment variables are safe. This heuristic may lead to sensible estimates in
many cases. But it is not principled. Pre-treatment variables can also create bias, as you'll see later
in this chapter. There is nothing wrong, in principle, with heuristics. They are safe in the context for
which they were developed. But we still need principles to know when to deploy them.

6.2.1. A prior is born. When designing the model, it helps to pretend you don't have the
data generating process just above. In real research, you will not know the real data gener-
ating process. But you will have a lot of scientific information to guide model construction.
So let’s spend some time taking this mock analysis seriously.

We know that the plants at time t = 1 should be taller than at time ¢ = 0, whatever scale
they are measured on. So if we put the parameters on a scale of proportion of height at time
t = 0, rather than on the absolute scale of the data, we can set the priors more easily. To
make this simpler, let’s focus right now only on the height variables, ignoring the predictor
variables. We might have a linear model like:

hy ;i ~ Normal(y;, o)
i = hoi X p
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where hy ; is plant i’s height at time ¢ = 0, h; ; is its height at time = 1, and p is a parameter
measuring the proportion of hy ; that h; ; is. More precisely, p = hy ;/ho ;. If p = 1, the plant
hasn’t changed at all from time t = 0 to time t = 1. If p = 2, it has doubled in height. So if
we center our prior for p on 1, that implies an expectation of no change in height. That is less
than we know. But we should allow p to be less than 1, in case the experiment goes horribly
wrong and we kill all the plants. We also have to ensure that p > 0, because it is a proportion.
Back in Chapter 4 (page 96), we used a Log-Normal distribution, because it is always positive.
Let’s use one again. If we use p ~ Log-Normal(0, 0.25), the prior distribution looks like:

sim_p <- rlnorm( le4 , 0 , 0.25 )
precis( data.frame(sim_p) )

'data.frame': 10000 obs. of 1 variables:
mean sd 5.5% 94.5% histogram

sim_p 1.03 0.26 0.67 1.48 _ llla

So this prior expects anything from 40% shrinkage up to 50% growth. Let’s fit this model, so
you can see how it just measures the average growth in the experiment.

m6.6 <- quap(
alist(
hl ~ dnorm( mu , sigma ),
mu <- h0x*p,
p ~ dlnorm( @ , 0.25 ),
sigma ~ dexp( 1 )
), data=d )
precis(mé6.6)

mean sd 5.5% 94.5%
p 1.43 0.02 1.40 1.45
sigma 1.79 0.13 1.59 1.99

About 40% growth, on average. Now to include the treatment and fungus variables. We'll
include both of them, following the notion that wed like to measure the impact of both the
treatment and the fungus itself. The parameters for these variables will also be on the pro-
portion scale. They will be changes in proportion growth. So we're going to make a linear
model of p now.
hy i ~ Normal(p;, o)
i = hoi X p
p = a+ BrT; + BrF;
a ~ Log-Normal(0, 0.25)
B ~ Normal(0,0.5)
Br ~ Normal(0, 0.5)
o ~ Exponential(1)
The proportion of growth p is now a function of the predictor variables. It looks like any

other linear model. The priors on the slopes are almost certainly too flat. They place 95% of
the prior mass between —1 (100% reduction) and +1 (100% increase) and two-thirds of the
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prior mass between —0.5 and +0.5. After we finish this section, you may want to loop back
and try simulating from these priors. Here’s the code to approximate the posterior:

m6.7 <- quap(
alist(
hl ~ dnorm( mu , sigma ),
mu <- hO * p,
p <- a + btxtreatment + bf*xfungus,
a ~ dlnorm( 0 , 0.2 ) ,
bt ~ dnorm( @ , 0.5 ),
bf ~ dnorm( @ , 0.5 ),
sigma ~ dexp( 1 )
), data=d )
precis(m6.7)

mean sd 5.5% 94.5%
a 1.48 0.02 1.44 1.52
bt 0.00 0.03 -0.05 0.05
bf -0.27 0.04 -0.33 -0.21
sigma 1.41 0.10 1.25 1.57

That a parameter is the same as p before. And it has nearly the same posterior. The marginal
posterior for bt, the effect of treatment, is solidly zero, with a tight interval. The treatment is
not associated with growth. The fungus seems to have hurt growth, however. Given that we
know the treatment matters, because we built the simulation that way, what happened here?

6.2.2. Blocked by consequence. The problem is that fungus is mostly a consequence of
treatment. This is to say that fungus is a post-treatment variable. So when we control
for fungus, the model is implicitly answering the question: Once we already know whether
or not a plant developed fungus, does soil treatment matter? The answer is “no,” because soil
treatment has its effects on growth through reducing fungus. But we actually want to know,
based on the design of the experiment, is the impact of treatment on growth. To measure
this properly, we should omit the post-treatment variable fungus. Here’s what the inference
looks like in that case:

m6.8 <- quap(
alist(
hl ~ dnorm( mu , sigma ),
mu <- hO * p,
p <- a + btxtreatment,
a ~ dlnorm( @ , 0.2 ),
bt ~ dnorm( @ , 0.5 ),
sigma ~ dexp( 1 )
), data=d )
precis(mé6.8)

mean sd 5.5% 94.5%
a 1.38 0.03 1.34 1.42
bt 0.08 0.03 0.03 0.14
sigma 1.75 0.12 1.55 1.94

R code
6.16

R code
6.17



R code
6.18

R code
6.19

174 6. THE HAUNTED DAG & THE CAUSAL TERROR

Now the impact of treatment is clearly positive, as it should be. It makes sense to control
for pre-treatment differences, like the initial height ho, that might mask the causal influence
of treatment. But including post-treatment variables can actually mask the treatment itself.
This doesn’t mean you don’t want the model that includes both treatment and fungus. The
fact that including fungus zeros the coefficient for treatment suggests that the treatment
works for exactly the anticipated reasons. It tells us about mechanism. But a correct inference
about the treatment still depends upon omitting the post-treatment variable.

6.2.3. Fungus and d-separation. It helps to look at this problem in terms of a DAG. In this
case, I'll show you how to draw it using the dagitty R package, because we are going to use
that package now to do some graph analysis.

library(dagitty)
plant_dag <- dagitty( "dag {
H_0 -> H_1
F->H_1
T->F
"
coordinates( plant_dag ) <- list( x=c(H_06=0,T=2,F=1.5,H_1=1) ,
y=c(H_0=0,T=0,F=0,H_1=0) )
drawdag( plant_dag )

Ho—————— > Hy «—— F «—— T

So the treatment T influences the presence of fungus F which influences plant height at time
1, H;. Plant height at time 1 is also influenced by plant height at time 0, Hy. Thats our
DAG. When we include F, the post-treatment effect, in the model, we end up blocking the
path from the treatment to the outcome. This is the DAG way of saying that learning the
treatment tells us nothing about the outcome, once we know the fungus status.

An even more DAG way to say this is that conditioning on F induces D-SEPARATION.
The “d” stands for directional.®® D-separation means that some variables on a directed graph
are independent of others. There is no path connecting them. In this case, H; is d-separated
from T, but only when we condition on F. Conditioning on F effectively blocks the directed
path T — F — Hj, making T and H; independent (d-separated). In the previous chapter,
you saw the notation H; 1L T|F for this kind of statement, when we discussed implied con-
DITIONAL INDEPENDENCIES. Why does this happen? There is no information in T about
H, that is not also in F. So once we know F, learning T provides no additional information
about H;. You can query the implied conditional independencies for this DAG:

impliedConditionalIndependencies(plant_dag)

F _||_ Ho
HO _||_ T
H1L _||_ T | F

There are three. The third one is the focus of our discussion. But the other two implications
provide ways to test the DAG. What F 1l Hj and Hy 1L T say is that the original plant
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height, Hy, should not be associated with the treatment T or fungus F, provided we do not
condition on anything.

Obviously the problem of post-treatment variables applies just as well to observational
studies as it does to experiments. But in experiments, it can be easier to tell which variables
are pre-treatment, like ho, and which are post-treatment, like fungus. In observational stud-
ies, it is harder to know. But there are many traps in experiments as well.”! For example,
conditioning on a post-treatment variable can not only fool you into thinking the treatment
doesn’t work. It can also fool you into thinking it does work. Consider the DAG below:

N/
Q)

In this graph, the treatment T influences fungus F, but fungus doesn’t influence plant growth.
Maybe the plant species just isn’t bothered by this particular fungus. The new variable M is
moisture. It influences both H; and F. M is circled to indicate that it is unobserved. Any
unobserved common cause of H; and F will do—it doesn’t have to be moisture of course.
A regression of H; on T will show no association between the treatment and plant growth.
But if we include F in the model, suddenly there will be an association. Let’s try it. T'll just
modify the plant growth simulation so that fungus has no influence on growth, but moisture
M influences both H; and F:

set.seed(71)

N <- 1000

ho <- rnorm(N,10,2)

treatment <- rep( 0:1 , each=N/2 )

M <- rbern(N)

fungus <- rbinom( N , size=1 , prob=0.5 - treatment*0.4 + 0.4xM )

hl <= hO + rnorm( N , 5 + 3%M )

d2 <- data.frame( h6=h® , hl=hl , treatment=treatment , fungus=fungus )

Rerun the models from earlier, models m6.7 and m6. 8, using the data in d2 now. You'll see
that including fungus again confounds inference about the treatment, this time by making
it seem like it helped the plants, even though it had no effect.

This result is rather mysterious. Why should M have this effect? The next section is all
about effects like this.

Rethinking: Model selection doesn’t help. In the next chapter, you'll learn about model selection
using information criteria. Like other model comparison and selection schemes, these criteria help in
contrasting and choosing model structure. But such approaches are no help in the example presented
just above, since the model that includes fungus both fits the sample better and would make better
out-of-sample predictions. Model m6.7 misleads because it asks the wrong question, not because it
would make poor predictions. As argued in Chapter 1, prediction and causal inference are just not
the same task. No statistical procedure can substitute for scientific knowledge and attention to it. We
need multiple models because they help us understand causal paths, not just so we can choose one or
another for prediction.
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6.3. Collider bias

At the start of the chapter, I argued that all that is necessary for scientific studies to
show a negative association between trustworthiness and newsworthiness is that selection
processes—grant and journal review—care about both. Now I want to explain how this same
selection phenomenon can happen inside a statistical model. When it does, it can seriously
distort our inferences, a phenomenon known as COLLIDER BIAS.

Let’s consider a DAG for this example. The model is that trustworthiness (T) and news-
worthiness (N) are not associated in the population of research proposals submitted to grant
review panels. But both of them influence selection (S) for funding. This is the graph:

The fact that two arrows enter S means it is a COLLIDER. The core concept is easy to under-
stand: When you condition on a collider, it creates statistical—but not necessarily causal—
associations among its causes. In this case, once you learn that a proposal has been selected
(S), then learning its trustworthiness (T) also provides information about its newsworthiness
(N). Why? Because if, for example, a selected proposal has low trustworthiness, then it must
have high newsworthiness. Otherwise it wouldn't have been funded. The same works in re-
verse: If a proposal has low newsworthiness, wed infer that it must have higher than average
trustworthiness. Otherwise it would not have been selected for funding.

This is the informational phenomenon that generates the negative association between T
and N in the population of selected proposals. And it means we have to pay attention to pro-
cesses that select our sample of observations and may distort associations among variables.
But the same phenomenon will also generate a misleading association inside a statistical
model, when you include the collider as a predictor variable. If you are not careful, you can
make an erroneous causal inference. Let’s consider an extended example.

6.3.1. Collider of false sorrow. Consider the question of how aging influences happiness. If
we have a large survey of people rating how happy they are, is age associated with happiness?
If so, is that association causal? Here, I want to show you how controlling for a plausible
confound of happiness can actually bias inference about the influence of age.”?

Suppose, just to be provocative, that an individual’s average happiness is a trait that is
determined at birth and does not change with age. However, happiness does influence events
in one’s life. One of those events is marriage. Happier people are more likely to get married.
Another variable that causally influences marriage is age: The more years you are alive, the
more likely you are to eventually get married. Putting these three variables together, this is
the causal model:

H > M < A

Happiness (H) and age (A) both cause marriage (M). Marriage is therefore a collider. Even
though there is no causal association between happiness and age, if we condition on marriage—
which means here, if we include it as a predictor in a regression—then it will induce a statis-
tical association between age and happiness. And this can mislead us to think that happiness
changes with age, when in fact it is constant.
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To convince you of this, let's do another simulation. Simulations are useful in these ex-
amples, because these are the only times when we know the true causal model. If a procedure
cannot figure out the truth in a simulated example, we shouldn't trust it in a real one. We're
going to do a fancier simulation this time, using an agent-based model of aging and marriage
to produce a simulated data set to use in a regression. Here is the simulation design:

(1) Each year, 20 people are born with uniformly distributed happiness values.

(2) Each year, each person ages one year. Happiness does not change.

(3) At age 18, individuals can become married. The odds of marriage each year are
proportional to an individual’s happiness.

(4) Once married, an individual remains married.

(5) After age 65, individuals leave the sample. (They move to Spain.)

I've written this algorithm into the rethinking package. You can run it out for 1000 years
and collect the resulting data:

library(rethinking)
d <- sim_happiness( seed=1977 , N_years=1000 )
precis(d)

'data.frame': 1300 obs. of 3 variables:

mean sd 5.5% 94.5% histogram
age 33.0 18.77 4.00 62.00 HEEEIEEEEEEEE
married 0.3 0.46 0.00 1.00 [ | -
happiness 0.0 1.21 -1.79 1.79 Inlnnlisll

These data comprise 1300 people of all ages from birth to 65 years old. The variables corre-
spond to the variables in the DAG above, and the simulation itself obeys the DAG.

I've plotted these data in FIGURE 6.4, showing each individual as a point. Filled points
are married individuals. Age is on the horizontal, and happiness the vertical, with the hap-
piest individuals at the top. At age 18, they become able to marry, and then gradually more
individuals are married each year. So at older ages, more individuals are married. But at all
ages, the happiest individuals are more likely to be married.

Suppose you come across these data and want to ask whether age is related to happiness.
You don’t know the true causal model. But you reason, reasonably, that marriage status
might be a confound. If married people are more or less happy, on average, then you need to
condition on marriage status in order to infer the relationship between age and happiness.

So let’s consider a multiple regression model aimed at inferring the influence of age on
happiness, while controlling for marriage status. This is just a plain multiple regression, like
the others in this and the previous chapter. The linear model is this:

Hi = Qpi] + BaAi

where MID[i] is an index for the marriage status of individual i, with 1 meaning single and
2 meaning married. This is just the categorical variable strategy from Chapter 4. It’s easier
to make priors, when we use multiple intercepts, one for each category, than when we use
indicator variables.

Now we should do our duty and think about the priors. Let’s consider the slope 54 first,
because how we scale the predictor A will determine the meaning of the intercept. We'll
focus only on the adult sample, those 18 or over. Imagine a very strong relationship between
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FIGURE 6.4. Simulated data, assuming that happiness is uniformly dis-
tributed and never changes. Each point is a person. Married individuals
are shown with filled blue points. At each age after 18, the happiest individ-
uals are more likely to be married. At later ages, more individuals tend to be
married. Marriage status is a collider of age and happiness: A — M <+ H.
If we condition on marriage in a regression, it will mislead us to believe that
happiness declines with age.

age and happiness, such that happiness is at its maximum at age 18 and its minimum at age
65. It'll be easier if we rescale age so that the range from 18 to 65 is one unit. This will do it:

d2 <- d[ d$age>17 , ] # only adults
d2SA <- ( d2Sage - 18 ) / ( 65 - 18 )

Now this new variable A ranges from 0 to 1, where 0 is age 18 and 1 is age 65. Happiness
is on an arbitrary scale, in these data, from —2 to +2. So our imaginary strongest rela-
tionship, taking happiness from maximum to minimum, has a slope with rise over run of
(2 = (=2))/1 = 4. Remember that 95% of the mass of a normal distribution is contained
within 2 standard deviations. So if we set the standard deviation of the prior to half of 4, we
are saying that we expect 95% of plausible slopes to be less than maximally strong. That isn’t
a very strong prior, but again, it at least helps bound inference to realistic ranges. Now for
the intercepts. Each « is the value of p; when A; = 0. In this case, that means at age 18. So
we need to allow « to cover the full range of happiness scores. Normal(0, 1) will put 95% of
the mass in the —2 to +2 interval.

Finally, let’s approximate the posterior. We need to construct the marriage status index
variable, as well. T'll do that, and then immediately present the quap code.

d2$mid <- d2$married + 1
m6.9 <- quap(
alist(
happiness ~ dnorm( mu , sigma ),
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mu <- a[mid] + bAxA,
a[mid] ~ dnorm( 6 , 1 ),
bA ~ dnorm( 0 , 2 ),
sigma ~ dexp(1l)
) , data=d2 )
precis(m6.9,depth=2)

mean sd 5.5% 94.5%

a[l] -0.23 0.06 -0.34 -0.13
a[2] 1.26 0.08 1.12 1.40
bA -0.75 0.11 -0.93 -0.57
sigma 0.99 0.02 0.95 1.03

The model is quite sure that age is negatively associated with happiness. Wed like to compare
the inferences from this model to a model that omits marriage status. Here it is, followed by
a comparison of the marginal posterior distributions:

R code
m6.10 <- quap( 6.24

alist(
happiness ~ dnorm( mu , sigma ),
mu <- a + bA*A,
a ~dnorm( 6 , 1),
bA ~ dnorm( 0 , 2 ),
sigma ~ dexp(1l)

) , data=d2 )

precis(mé6.10)

mean sd 5.5% 94.5%
a 0.00 0.08 -0.12 0.12
bA 0.00 0.13 -0.21 0.21
sigma 1.21 0.03 1.17 1.26

This model, in contrast, finds no association between age and happiness.

The pattern above is exactly what we should expect when we condition on a collider. The
collider is marriage status. It is a common consequence of age and happiness. As a result,
when we condition on it, we induce a spurious association between the two causes. So it
looks like, to model m6. 9, that age is negatively associated with happiness. But this is just a
statistical association, not a causal association. Once we know whether someone is married
or not, then their age does provide information about how happy they are.

You can see this in FIGURE 6.4. Consider only the blue points, the married people.
Among only the blue points, older individuals have lower average happiness. This is because
more people get married as time goes on, so the mean happiness among married people ap-
proaches the population average of zero. Now consider only the open points, the unmarried
people. Here it is also true that mean happiness declines with age. This is because happier
individuals migrate over time into the married sub-population. So in both the married and
unmarried sub-populations, there is a negative relationship between age and happiness. But
in neither sub-population does this accurately reflect causation.

It’s easy to plead with this example. Shouldn’t marriage also influence happiness? What
if happiness does change with age? But this misses the point. If you don’t have a causal
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model, you can’t make inferences from a multiple regression. And the regression itself does
not provide the evidence you need to justify a causal model. Instead, you need some science.

6.3.2. Thehaunted DAG. Collider bias arises from conditioning on a common consequence,
as in the previous example. If we can just get our graph sorted, we can avoid it. But it isn’t
always so easy to see a potential collider, because there may be unmeasured causes. Unmea-
sured causes can still induce collider bias. So I'm sorry to say that we also have to consider
the possibility that our DAG may be haunted.

Suppose for example that we want to infer the direct influence of both parents (P) and
grandparents (G) on the educational achievement of children (C).”® Since grandparents also
presumably influence their own children’s education, there is an arrow G — P. This sounds
pretty easy, so far. It’s similar in structure to our divorce rate example from the last chapter:

G ——P

C

But suppose there are unmeasured, common influences on parents and their children, such
as neighborhoods, that are not shared by grandparents (who live on the south coast of Spain
now). Then our DAG becomes haunted by the unobserved U:

G—— P

AN
©

“

Now P is a common consequence of G and U, so if we condition on P, it will bias inference
about G — C, even if we never get to measure U. I don’t expect that fact to be immediately
obvious. So let’s crawl through a quantitative example.

First, let’s simulate 200 triads of grandparents, parents, and children. This simulation
will be simple. We'll just project our DAG as a series of implied functional relationships. The
DAG above implies that:

(1) Pissome function of Gand U
(2) Cissome function of G, P, and U
(3) Gand U are not functions of any other known variables

Cc

We can make these implications into a simple simulation, using rnorm to generate simulated
observations. But to do this, we need to be a bit more precise than “some function of”” So I'll
invent some strength of association:

N <- 200 # number of grandparent-parent-child triads
b_GP <- 1 # direct effect of G on P

b_GC <- 0 # direct effect of G on C

b_PC <- 1 # direct effect of P on C

b U<- 2 # direct effect of U on P and C
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These parameters are like slopes in a regression model. Notice that I've assumed that grand-
parents G have zero effect on their grandkids C. The example doesn’t depend upon that
effect being exactly zero, but it will make the lesson clearer. Now we use these slopes to draw
random observations:

set.seed (1)

<- 2xrbern( N , 0.5 ) - 1

<= rnorm( N )

<= rnorm( N , b_GP*G + b_UxU )

<= rnorm( N , b_PC*P + b_GC*xG + b_UxU )
<- data.frame( C=C , P=P , G=G , U=U )

o 0O U o C

I've made the neighborhood effect, U, binary. This will make the example easier to under-
stand. But the example doesn't depend upon that assumption. The other lines are just linear
models embedded in rnorm.

Now what happens when we try to infer the influence of grandparents? Since some of
the total effect of grandparents passes through parents, we realize we need to control for
parents. Here is a simple regression of C on P and G. Normally I would advise standardizing
the variables, because it makes establishing sensible priors a lot easier. But I'm going to keep
the simulated data on its original scale, so you can see what happens to inference about the
slopes above. If we changed the scale, we shouldn't expect to get those values back. But if
we leave the scale alone, we should be able to recover something close to those values. So I
apologize for using vague priors here, just to push forward in the example.

m6.11 <- quap(
alist(
C ~ dnorm( mu , sigma ),
mu <- a + b_PCxP + b_GCxG,
a ~dnorm( @ , 1),
c(b_PC,b_GC) ~ dnorm( ©@ , 1 ),
sigma ~ dexp( 1 )
), data=d )
precis(m6.11)

mean sd 5.5% 94.5%
a -0.12 0.10 -0.28 0.04
b_PC 1.79 0.04 1.72 1.86
b_GC -0.84 0.11 -1.01 -0.67
sigma 1.41 0.07 1.30 1.52

The inferred effect of parents looks too big, almost twice as large as it should be. That isn’t
surprising. Some of the correlation between P and Cis due to U, and the model doesn’t know
about U. That’s a simple confound. More surprising is that the model is confident that the
direct effect of grandparents is to hurt their grandkids. The regression is not wrong. But a
causal interpretation of that association would be.

How does collider bias arise in this case? Consider FIGURE 6.5. Note that I did stan-
dardize the variables to make this plot. So the units on the axes are standard deviations. The
horizontal axis is grandparent education. The vertical is grandchild education. There are
two clouds of points. The blue cloud comprises children who live in good neighborhoods
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Parents in 45th to 60th centiles

~ 4 good neighborhoods o)

FIGURE 6.5. Unobserved confounds and col-
lider bias. In this example, grandparents influ-
ence grandkids only indirectly, through par-
ents. However, unobserved neighborhood ef-
fects on parents and their children create the
illusion that grandparents harm their grand-
kids education. Parental education is a col-
lider: Once we condition on it, grandparental
bad neighborhoods education becomes negatively associated with
: ° : : : : grandchild education.
3 2 1 0 1 2
grandparent education (G)

1

0

-1

grandchild education (C)

-2
1

(U = 1). The black cloud comprises children who live in bad neighborhoods (U = —1). No-
tice that both clouds of points show positive associations between G and C. More educated
grandparents have more educated grandkids, but this effect arises entirely through parents.
Why? Because we assumed it is so. The direct effect of G in the simulation is zero.

So how does the negative association arise, when we condition on parents? Conditioning
on parents is like looking within sub-populations of parents with similar education. So let’s
try that. In FIGURE 6.5, I've highlighted in filled points those parents between the 45th and
60th centiles of education. There is nothing special of this range. It just makes the phenom-
enon easier to see. Now if we draw a regression line through only these points, regressing
C on G, the slope is negative. There is the negative association that our multiple regression
finds. But why does it exist?

It exists because, once we know P, learning G invisibly tells us about the neighborhood
U, and U is associated with the outcome C. I know this is confusing. As I keep saying, if you
are confused, it is only because you are paying attention. So consider two different parents
with the same education level, say for example at the median 50th centile. One of these
parents has a highly educated grandparent. The other has a poorly educated grandparent.
The only probable way, in this example, for these parents to have the same education is if
they live in different types of neighborhoods. We can't see these neighborhood effects—we
haven’'t measured them, recall—but the influence of neighborhood is still transmitted to the
children C. So for our mythical two parents with the same education, the one with the highly
educated grandparent ends up with a less well educated child. The one with the less educated
grandparent ends up with the better educated child. G predicts lower C.

The unmeasured U makes P a collider, and conditioning on P produces collider bias. So
what can we do about this? You have to measure U. Here’s the regression that conditions
also on U:

m6.12 <- quap(
alist(
C ~ dnorm( mu , sigma ),
mu <- a + b_PCxP + b_GCxG + b_U*U,
a ~dnorm( 6 , 1),
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c(b_PC,b_GC,b_U) ~ dnorm( 6 , 1 ),
sigma ~ dexp( 1 )
), data=d )
precis(m6.12)

mean sd 5.5% 94.5%

a -0.12 0.07 -0.24 -0.01
b_PC 1.01 0.07 ©0.91 1.12
b_GC -0.04 0.10 -0.20 ©0.11
b_U 2.00 0.15 1.76 2.23

sigma 1.02 0.05 0.94 1.10
And those are the slopes we simulated with.

Rethinking: Statistical paradoxes and causal explanations. The grandparents example serves as
an example of SIMPSON’s PARADOX: Including another predictor (P in this case) can reverse the
direction of association between some other predictor (G) and the outcome (C). Usually, Simpson’s
paradox is presented in cases where adding the new predictor helps us. But in this case, it misleads
us. Simpson’s paradox is a statistical phenomenon. To know whether the reversal of the association
correctly reflects causation, we need something more than just a statistical model.”*

6.4. Confronting confounding

In this chapter and in the previous one, there have been several examples of how we can
use multiple regression to deal with confounding. But we have also seen how multiple regres-
sion can cause confounding—controlling for the wrong variables ruins inference. Hopefully
I have succeeded in scaring you away from just adding everything to a model and hoping re-
gression will sort it out, as well as inspired you to believe that effective inference is possible,
if we are careful enough and knowledgable enough.

But which principles explain why sometimes leaving out variables and sometimes adding
them can produce the same phenomenon? Are there other causal monsters lurking out there,
haunting our graphs? We need some principles to pull these examples together.

Let’s define CONFOUNDING as any context in which the association between an outcome
Y and a predictor of interest X is not the same as it would be, if we had experimentally deter-
mined the values of X.”> For example, suppose we are interested in the association between
education E and wages W. The problem is that in a typical population there are many un-
observed variables U that influence both E and W. Examples include where a person lives,
who their parents are, and who their friends are. This is what the DAG looks like:

u

7N

E > W

If we regress W on E, the estimate of the causal effect will be confounded by U. It is con-
founded, because there are two paths connecting Eand W: (1) E - Wand (2) E <~ U — W.
A “path” here just means any series of variables you could walk through to get from one vari-
able to another, ignoring the directions of the arrows. Both of these paths create a statistical
association between E and W. But only the first path is causal. The second path is non-causal.
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Why? Because if only the second path existed, and we changed E, it would not change W.
Any causal influence of E on W operates only on the first path.

How can we isolate the causal path? The most famous solution is to run an experiment.
If we could assign education levels at random, it changes the graph:

u

N\

E > W

Manipulation removes the influence of U on E. The unobserved variables do not influence
education when we ourselves determine education. With the influence of U removed from
E, this then removes the path E < U — W. It blocks the second path. Once the path is
blocked, there is only one way for information to go between E and W, and then measuring
the association between E and W would yield a useful measure of causal influence. Manipu-
lation removes the confounding, because it blocks the other path between E and W.

Luckily, there are statistical ways to achieve the same result, without actually manipulat-
ing E. How? The most obvious is to add U to the model, to condition on U. Why does this
also remove the confounding? Because it also blocks the flow of information between E and
W through U. It blocks the second path.

To understand why conditioning on Ublocks the path E <— U — W, think of this path in
isolation, as a complete model. Once you learn U, also learning E will give you no additional
information about W. Suppose for example that U is the average wealth in a region. Regions
with high wealth have better schools, resulting in more education E, as well as better paying
jobs, resulting in higher wages W. If you don’t know the region a person lives in, learning
the person’s education E will provide information about their wages W, because E and W are
correlated across regions. But after you learn which region a person lives in, assuming there
is no other path between E and W, then learning E tells you nothing more about W. This
is the sense in which conditioning on U blocks the path—it makes E and W independent,
conditional on U.

6.4.1. Shutting the backdoor. Blocking confounding paths between some predictor X and
some outcome Y is known as shutting the BACKkDOOR. We don’t want any spurious associ-
ation sneaking in through a non-causal path that enters the back of the predictor X. In the
example above, the path E <— U — W is a backdoor path, because it enters E with an arrow
and also connects E to W. This path is non-causal—intervening on E will not cause a change
in W through this path—but it still produces an association between E and W.

Now for some good news. Given a causal DAG, it is always possible to say which, if any,
variables one must control for in order to shut all the backdoor paths. It is also possible to say
which variables one must not control for, in order to avoid making new confounds. And—
some more good news—there are only four types of variable relations that combine to form
all possible paths. So you really only need to understand four things and how information
flows in each of them. I'll define the four types of relations. Then we’ll work some examples.

FIGURE 6.6 shows DAGs for each elemental relation. Every DAG, no matter how big and
complicated, is built out of these four relations. Let’s consider each, going left to right.

(1) The first type of relation is the one we worked with just above, a FORK: X - Z — Y.
This is the classic confounder. In a fork, some variable Z is a common cause of X
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The Fork The Pipe The Collider The Descendant
X

NSO SN N

Y

FIGURE 6.6. The four elemental confounds. Any directed acyclic graph is
built from these elementary relationships. From left to right: X 1l Y|Z in
both the Fork and the Pipe, X |{. Y|Z in the Collider, and conditioning on
the Descendent D is like conditioning on its parent Z.

and Y, generating a correlation between them. If we condition on Z, then learning
X tells us nothing about Y. X and Y are independent, conditional on Z.

(2) The second type of relation is a PIPE: X — Z — Y. We saw this when we discussed
the plant growth example and post-treatment bias: The treatment X influences fun-
gus Z which influences growth Y. If we condition on Z now, we also block the path
from X to Y. So in both a fork and a pipe, conditioning of the middle variable
blocks the path.

(3) The third type of relation is a COLLIDER: X — Z < Y. You met colliders earlier
in this chapter. Unlike the other two types of relations, in a collider there is no
association between X and Y unless you condition on Z. Conditioning on Z, the
collider variable, opens the path. Once the path is open, information flows between
X and Y. However neither X nor Y has any causal influence on the other.

(4) The fourth relation is the DESCENDENT. A descendent is a variable influenced by
another variable. Conditioning on a descendent partly conditions on its parent. In
the far right DAG in FIGURE 6.6, conditioning on D will also condition, to a lesser
extent, on Z. The reason is that D has some information about Z. In this example,
this will partially open the path from X to Y, because Z is a collider. But in general
the consequence of conditioning on a descendent depends upon the nature of its
parent. Descendants are common, because often we cannot measure a variable
directly and instead have only some proxy for it.

No matter how complicated a causal DAG appears, it is always built out of these four
types of relations. And since you know how to open and close each, you (or your computer)
can figure out which variables you need to include or not include. Here’s the recipe:

(1) List all of the paths connecting X (the potential cause of interest) and Y (the out-
come).

(2) Classify each path by whether it is open or closed. A path is open unless it contains
a collider.

(3) Classify each path by whether it is a backdoor path. A backdoor path has an arrow
entering X.

(4) If there are any open backdoor paths, decide which variable(s) to condition on to
close it (if possible).

Let’s consider some examples.
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6.4.2. Tworoads. The DAG below contains an exposure of interest X, an outcome of interest
Y, an unobserved variable U, and three observed covariates (A, B, and C).

'
@\B

l

X

v

We are interested in the X — Y path, the causal effect of X on Y. Which of the observed
covariates do we need to add to the model, in order to correctly infer it? To figure this out,
look for backdoor paths. Aside from the direct path, there are two paths from X to Y:

1) X+~ U+A—->C—Y
2) X+~ U—-B+C—Y

These are both backdoor paths that could confound inference. Now ask which of these paths
is open. If a backdoor path is open, then we must close it. Ifa backdoor path is closed already,
then we must not accidentally open it and create a confound.

Consider the first path, passing through A. This path is open, because there is no collider
within it. There is just a fork at the top and two pipes, one on each side. Information will
flow through this path, confounding X — Y. It is a backdoor. To shut this backdoor, we
need to condition on one of its variables. We can’t condition on U, since it is unobserved.
That leaves A or C. Either will shut the backdoor. You can ask your computer to reproduce
this analysis, to analyze the graph and find the necessary variables to control for in order to
block the backdoor. The dagitty R package provides adjustmentSets for this purpose:

library(dagitty)
dag_6.1 <- dagitty( "dag {
U [unobserved]

X =>Y
X<=U<K-A->C->Y
U->B<-2C

)

adjustmentSets( dag_6.1 , exposure="X" , outcome="Y" )

{cr{Az}

Conditioning on either C or A would suffice. Conditioning on C is the better idea, from
the perspective of efficiency, since it could also help with the precision of the estimate of
X — Y. Notice that conditioning on U would also work. But since we told dagitty that U
is unobserved (see the code above), it didn’t suggest it in the adjustment sets.

Now consider the second path, passing through B. This path does contain a collider,
U — B < C. It is therefore already closed. That is why adjustmentSets above did not
mention B. In fact, if we do condition on B, it will open the path, creating a confound. Then
our inference about X — Y will change, but without the DAG, we won’'t know whether that
change is helping us or rather misleading us. The fact that including a variable changes the
X — Y coeflicient does not always mean that the coefficient is better now. You could have
just conditioned on a collider.
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6.4.3. Backdoor waffles. Asafinal example, let’s return to the Waffle House and divorce rate
correlation from the introduction to Chapter 5. We'll make a DAG, use it to find a minimal
set of covariates, and use it as well to derive the testable implications of the DAG. This is
important, because sometimes you really can test whether your DAG is consistent with the
evidence. The data alone can never tell us when a DAG is right. But the data can tell us when
a DAG is wrong.

We're interested in the total causal effect of the number of Waffle Houses on divorce rate
in each State. Presumably, the naive correlation between these two variables is spurious.
What is the minimal adjustment set that will block backdoor paths from Waffle House to
divorce? Let’s make a graph:

S \\\\\\\k > W
/ M \ |
A > D

In this graph, S is whether or not a State is in the southern United States, A is median age
at marriage, M is marriage rate, W is number of Waffle Houses, and D is divorce rate. This
graph assumes that southern States have lower ages of marriage (S — A), higher rates of
marriage both directly (S — M) and mediated through age of marriage (S -+ A — M), as

well as more waffles (S — W). Age of marriage and marriage rate both influence divorce.
There are three open backdoor paths between W and D. Just trace backwards, starting at

W and ending up at D. But notice that all of them pass first through S. So we can close them
all by conditioning on S. That’s all there is to it. Your computer can confirm this answer:

library(dagitty)

dag_6.2 <- dagitty( "dag {
A -> D

A M ->D

A<-S -—>M

S W ->D

1)

adjustmentSets( dag_6.2 , exposure="W" , outcome="D" )

{A M} {S}]
We could control for either A and M or for S alone.

This DAG is obviously not satisfactory—it assumes there are no unobserved confounds,
which is very unlikely for this sort of data. But we can still learn something by analyzing
it. While the data cannot tell us whether a graph is correct, it can sometimes suggest how a
graph is wrong. Earlier, we discussed CONDITIONAL INDEPENDENCIES, which are some of a
model’s testable implications. Conditional independencies are pairs of variables that are not
associated, once we condition on some set of other variables. By inspecting these implied
conditional independencies, we can at least test some of the features of a graph.

Now that you know the elemental confounds, you are ready to derive any DAG’s con-
ditional independencies on your own. You can find conditional independencies using the
same path logic you learned for finding and closing backdoors. You just have to focus on a
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pair of variables, find all paths connecting them, and figure out if there is any set of variables
you could condition on to close them all. In a large graph, this is quite a chore, because there
are many pairs of variables and possibly many paths. But your computer is good at such
chores. In this case, there are three implied conditional independencies:

impliedConditionalIndependencies( dag_6.2 )

A_|l_w]|Ss
D _[I- S| A, M, W
M _||_W]|S

Read the first as “median age of marriage should be independent of (_| | _) Waftle Houses,
conditioning on (|) a State being in the south” In the second, divorce and being in the
south should be independent when we simultaneously condition on all of median age of
marriage, marriage rate, and Waffle Houses. Finally, marriage rate and Waftle Houses should
be independent, conditioning on being in the south.

In the practice problems at the end of this chapter, I'll ask you to evaluate these implica-
tions, as well as try to assess the causal influence of Waffle Houses on divorce.

Rethinking: DAGs are not enough. If you don’t have a real, mechanistic model of your system, DAGs
are fantastic tools. They make assumptions transparent and easier to critique. And if nothing else,
they highlight the danger of using multiple regression as a substitute for theory. But DAGs are not a
destination. Once you have a dynamical model of your system, you don't need a DAG. In fact, many
dynamical systems have complex behavior that is sensitive to initial conditions, and so cannot be use-
fully represented by DAGs.”® But these models can still be analyzed and causal interventions designed
from them. In fact, domain specific structural causal models can make causal inference possible even
when a DAG with the same structure cannot decide how to proceed. Additional assumptions, when
accurate, give us power.

The fact that DAGs are not useful for everything is no argument against them. All theory tools
have limitations. I have yet to see a better tool than DAGs for teaching the foundations of and obstacles
to causal inference. And general tools like DAGs have added value in abstracting away from specific
details and teaching us general principles. For example, DAGs clarify why experiments work and
highlight threats to experiments like differential measurement error (Chapter 15).

Overthinking: A smooth operator. To define confounding with precise notation, we need to adopt
something called the Do-0PERATOR.” Confounding occurs when:

Pr(Y|X) # Pr(Y|do(X))

That do(X) means to cut all of the backdoor paths into X, as if we did a manipulative experiment. The
do-operator changes the graph, closing the backdoors. The do-operator defines a causal relationship,
because Pr(Y|do(X)) tells us the expected result of manipulating X on Y, given a causal graph. We
might say that some variable X is a cause of Y when Pr(Y|do(X)) # Pr(Y|do(not-X)). The ordinary
conditional probability comparison, Pr(Y|X) # Pr(Y|not-X), is not the same. It does not close the
backdoor. Note that what the do-operator gives you is not just the direct causal effect. It is the total
causal effect through all forward paths. To get a direct causal effect, you might have to close more
doors. The do-operator can also be used to derive causal inference strategies even when some back
doors cannot be closed. We'll look at one example in a later chapter.
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6.5. Summary

Multiple regression is no oracle, but only a golem. It is logical, but the relationships it de-
scribes are conditional associations, not causal influences. Therefore additional information,
from outside the model, is needed to make sense of it. This chapter presented introductory
examples of some common frustrations: multicollinearity, post-treatment bias, and collider
bias. Solutions to these frustrations can be organized under a coherent framework in which
hypothetical causal relations among variables are analyzed to cope with confounding. In all
cases, causal models exist outside the statistical model and can be difficult to test. However,
it is possible to reach valid causal inferences in the absence of experiments. This is good
news, because we often cannot perform experiments, both for practical and ethical reasons.

6.6. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).

6E1. List three mechanisms by which multiple regression can produce false inferences about causal
effects.

6E2. For one of the mechanisms in the previous problem, provide an example of your choice, perhaps
from your own research.

6E3. List the four elemental confounds. Can you explain the conditional dependencies of each?

6E4. How is a biased sample like conditioning on a collider? Think of the example at the open of the
chapter.

6M1. Modify the DAG on page 186 to include the variable V, an unobserved cause of C and Y:
C <~ V — Y. Reanalyze the DAG. How many paths connect X to Y? Which must be closed? Which
variables should you condition on now?

6M2. Sometimes, in order to avoid multicollinearity, people inspect pairwise correlations among
predictors before including them in a model. This is a bad procedure, because what matters is the
conditional association, not the association before the variables are included in the model. To high-
light this, consider the DAG X — Z — Y. Simulate data from this DAG so that the correlation
between X and Z is very large. Then include both in a model prediction Y. Do you observe any
multicollinearity? Why or why not? What is different from the legs example in the chapter?

6M3. Learning to analyze DAGs requires practice. For each of the four DAGs below, state which
variables, if any, you must adjust for (condition on) to estimate the total causal influence of X on Y.

PANEWAN
ZANEVAN

6H1. Use the Waflle House data, data(WaffleDivorce), to find the total causal influence of num-
ber of Waftle Houses on divorce rate. Justify your model or models with a causal graph.
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6H2. Build a series of models to test the implied conditional independencies of the causal graph
you used in the previous problem. If any of the tests fail, how do you think the graph needs to be
amended? Does the graph need more or fewer arrows? Feel free to nominate variables that aren’t in
the data.

All three problems below are based on the same data. The data in data(foxes) are 116 foxes from
30 different urban groups in England. These foxes are like street gangs. Group size varies from 2 to
8 individuals. Each group maintains its own urban territory. Some territories are larger than others.
The area variable encodes this information. Some territories also have more avgfood than others.
We want to model the weight of each fox. For the problems below, assume the following DAG:

area %"@

.

Vi
avgfood ————————» groupsize // / /L

NP

weight

6H3. Use a model to infer the total causal influence of area on weight. Would increasing the area
available to each fox make it heavier (healthier)? You might want to standardize the variables. Re-
gardless, use prior predictive simulation to show that your model’s prior predictions stay within the
possible outcome range.

6H4. Now infer the causal impact of adding food to a territory. Would this make foxes heavier?
Which covariates do you need to adjust for to estimate the total causal influence of food?

6H5. Now infer the causal impact of group size. Which covariates do you need to adjust for? Looking
at the posterior distribution of the resulting model, what do you think explains these data? That is,
can you explain the estimates for all three problems? How do they go together?

6H6. Consider your own research question. Draw a DAG to represent it. What are the testable
implications of your DAG? Are there any variables you could condition on to close all backdoor
paths? Are there unobserved variables that you have omitted? Would a reasonable colleague imagine
additional threats to causal inference that you have ignored?

6H7. Forthe DAG you made in the previous problem, can you write a data generating simulation for
it? Can you design one or more statistical models to produce causal estimates? If so, try to calculate
interesting counterfactuals. If not, use the simulation to estimate the size of the bias you might expect.
Under what conditions would you, for example, infer the opposite of a true causal effect?



7 Ulysses’ Compass

Mikotaj Kopernik (also known as Nicolaus Copernicus, 1473-1543): Polish astronomer,
ecclesiastical lawyer, and blasphemer. Famous for his heliocentric model of the solar sys-
tem, Kopernik argued for replacing the geocentric model, because the heliocentric model
was more “harmonious.” This position eventually lead (decades later) to Galileo’s famous
disharmony with, and trial by, the Church.

This story has become a fable of science’s triumph over ideology and superstition. But
KoperniK’s justification looks poor to us now, ideology aside. There are two problems: The
model was neither particularly harmonious nor more accurate than the geocentric model.
The Copernican model was very complicated. In fact, it had similar epicycle clutter as the
Ptolemaic model (FIGURE 7.1). Kopernik had moved the Sun to the center, but since he still
used perfect circles for orbits, he still needed epicycles. And so “harmony” doesn't quite
describe the model’s appearance. Just like the Ptolemaic model, the Kopernikan model was
effectively a Fourier series, a means of approximating periodic functions. This leads to the
second problem: The heliocentric model made exactly the same predictions as the geocentric
model. Equivalent approximations can be constructed whether the Earth is stationary or
rather moving. So there was no reason to prefer it on the basis of accuracy alone.

Kopernik didn’t appeal just to some vague harmony, though. He also argued for the
superiority of his model on the basis of needing fewer causes: “We thus follow Nature, who
producing nothing in vain or superfluous often prefers to endow one cause with many ef-
fects”® And it was true that a heliocentric model required fewer circles and epicycles to
make the same predictions as a geocentric model. In this sense, it was simpler.

Scholars often prefer simpler theories. This preference is sometimes vague—a kind of
aesthetic preference. Other times we retreat to pragmatism, preferring simpler theories be-
cause their simpler models are easier to work with. Frequently, scientists cite a loose princi-
ple known as OCKHAM’S RAZOR: Models with fewer assumptions are to be preferred. In the
case of Kopernik and Ptolemy, the razor makes a clear recommendation. It cannot guarantee
that Kopernik was right (he wasn't, after all), but since the heliocentric and geocentric mod-
els make the same predictions, at least the razor offers a clear resolution to the dilemma. But
the razor can be hard to use more generally, because usually we must choose among models
that differ in both their accuracy and their simplicity. How are we to trade these different
criteria against one another? The razor offers no guidance.

This chapter describes some of the most commonly used tools for coping with this trade-
off. Some notion of simplicity usually features in all of these tools, and so each is commonly
compared to Ockham’s razor. But each tool is equally about improving predictive accuracy.
So they are not like the razor, because they explicitly trade-off accuracy and simplicity.

191
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Ptolemaic Model Copernican Model

FIGURE 7.1. Ptolemaic (left) and Copernican (right) models of the solar
system. Both models use epicycles (circles on circles), and both models
produce exactly the same predictions. However, the Copernican model re-
quires fewer circles. (Not all Ptolemaic epicycles are visible in the figure.)

So instead of Ockham’s razor, think of Ulysses’ compass. Ulysses was the hero of Homer’s
Odyssey. During his voyage, Ulysses had to navigate a narrow straight between the many-
headed beast Scylla—who attacked from a cliff face and gobbled up sailors—and the sea
monster Charybdis—who pulled boats and men down to a watery grave. Passing too close
to either meant disaster. In the context of scientific models, you can think of these monsters
as representing two fundamental kinds of statistical error:

(1) The many-headed beast of OVERFITTING, which leads to poor prediction by learn-
ing too much from the data

(2) The whirlpool of UNDERFITTING, which leads to poor prediction by learning too
little from the data

There is a third monster, the one you met in previous chapters—confounding. In this
chapter you'll see that confounded models can in fact produce better predictions than models
that correctly measure a causal relationship. The consequence of this is that, when we design
any particular statistical model, we must decide whether we want to understand causes or
rather just predict. These are not the same goal, and different models are needed for each.
However, to accurately measure a causal influence, we still have to deal with overfitting. The
monsters of overfitting and underfitting are always lurking, no matter the goal.

Our job is to carefully navigate among these monsters. There are two common families
of approaches. The first approach is to use a REGULARIZING PRIOR to tell the model not to
get too excited by the data. This is the same device that non-Bayesian methods refer to as
“penalized likelihood” The second approach is to use some scoring device, like INFORMA-
TION CRITERIA O CROSS-VALIDATION, to model the prediction task and estimate predictive
accuracy. Both families of approaches are routinely used in the natural and social sciences.
Furthermore, they can be—maybe should be—used in combination. So it’s worth under-
standing both, as you're going to need both at some point.
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In order to introduce information criteria, this chapter must also introduce INFORMA-
TION THEORY. If this is your first encounter with information theory, it'll probably seem
strange. But some understanding of it is needed. Once you start using information criteria—
this chapter describes AIC, DIC, WAIC, and PSIS—you’ll find that implementing them is
much easier than understanding them. This is their curse. So most of this chapter aims to
fight the curse, focusing on their conceptual foundations, with applications to follow.

It's worth noting, before getting started, that this material is hard. If you find yourself
confused at any point, you are normal. Any sense of confusion you feel is just your brain cor-
rectly calibrating to the subject matter. Over time, confusion is replaced by comprehension
for how overfitting, regularization, and information criteria behave in familiar contexts.

Rethinking: Stargazing. The most common form of model selection among practicing scientists is
to search for a model in which every coeflicient is statistically significant. Statisticians sometimes call
this STARGAZING, as it is embodied by scanning for asterisks (**) trailing after estimates. A colleague
of mine once called this approach the “Space Odyssey,” in honor of A. C. Clarke’s novel and film. The
model that is full of stars, the thinking goes, is best.

But such a model is not best. Whatever you think about null hypothesis significance testing in
general, using it to select among structurally different models is a mistake—p-values are not designed
to help you navigate between underfitting and overfitting. As you’ll see once you start using AIC and
related measures, predictor variables that improve prediction are not always statistically significant. It
is also possible for variables that are statistically significant to do nothing useful for prediction. Since
the conventional 5% threshold is purely conventional, we shouldn’t expect it to optimize anything.

Rethinking: Is AIC Bayesian? AIC is not usually thought of as a Bayesian tool. There are both his-
torical and statistical reasons for this. Historically, AIC was originally derived without reference to
Bayesian probability. Statistically, AIC uses MAP estimates instead of the entire posterior, and it re-
quires flat priors. So it doesn’t look particularly Bayesian. Reinforcing this impression is the existence
of another model comparison metric, the BAYESIAN INFORMATION CRITERION (BIC). However, BIC
also requires flat priors and MAP estimates, although it’s not actually an “information criterion”

Regardless, AIC has a clear and pragmatic interpretation under Bayesian probability, and Akaike
and others have long argued for alternative Bayesian justifications of the procedure.”” And as you’ll
see later in the book, more obviously Bayesian information criteria like WAIC provide almost exactly
the same results as AIC, when AIC’s assumptions are met. In this light, we can fairly regard AIC as
a special limit of a Bayesian criterion like WAIC, even if that isn't how AIC was originally derived.
All of this is an example of a common feature of statistical procedures: The same procedure can be
derived and justified from multiple, sometimes philosophically incompatible, perspectives.

7.1. The problem with parameters

In the previous chapters, we saw how adding variables and parameters to a model can
help to reveal hidden effects and improve estimates. You also saw that adding variables can
hurt, in particular when we lack a trusted causal model. Colliders are real. But sometimes we
don’t care about causal inference. Maybe we just want to make good predictions. Consider
for example the grandparent-parent-child example from the previous chapter. Just adding
all the variables to the model will give us a good predictive model in that case. That we don’t
understand what is going on is irrelevant. So is just adding everything to the model okay?

The answer is “no.” There are two related problems with just adding variables. The first
is that adding parameters—making the model more complex—nearly always improves the
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fit of a model to the data.!'® By “fit” I mean a measure of how well the model can retrodict
the data used to fit the model. There are many such measures, each with its own foibles. In
the context of linear Gaussian models, R? is the most common measure of this kind. Often
described as “variance explained,’ R? is defined as:

R — var(outcome) — var(residuals) ) var(residuals)
B var(outcome) B var(outcome)

Being easy to compute, R? is popular. Like other measures of fit to sample, R? increases as
more predictor variables are added. This is true even when the variables you add to a model
are just random numbers, with no relation to the outcome. So it’s no good to choose among
models using only fit to the data.

Second, while more complex models fit the data better, they often predict new data
worse. Models that have many parameters tend to overfit more than simpler models. This
means that a complex model will be very sensitive to the exact sample used to fit it, leading
to potentially large mistakes when future data is not exactly like the past data. But simple
models, with too few parameters, tend instead to underfit, systematically over-predicting or
under-predicting the data, regardless of how well future data resemble past data. So we can’t
always favor either simple models or complex models.

Let’s examine both of these issues in the context of a simple example.

7.1.1. More parameters (almost) always improve fit. OVERFITTING occurs when a model
learns too much from the sample. What this means is that there are both regular and irregular
features in every sample. The regular features are the targets of our learning, because they
generalize well or answer a question of interest. Regular features are useful, given an objective
of our choice. The irregular features are instead aspects of the data that do not generalize and
so may mislead us.

Opverfitting happens automatically, unfortunately. In the kind of statistical models we've
seen so far in this book, adding additional parameters will always improve the fit of a model
to the sample. Later in the book, beginning with Chapter 13, you’ll meet models for which
adding parameters does not necessarily improve fit to the sample, but may well improve
predictive accuracy.

Here’s an example of overfitting. The data displayed in FIGURE 7.2 are average brain
volumes and body masses for seven hominin species.!®! Let’s get these data into R, so you
can work with them. I'm going to build these data from direct input, rather than loading a
pre-made data frame, just so you see an example of how to build a data frame from scratch.

sppnames <- c( "afarensis","africanus","habilis","boisei",
"rudolfensis","ergaster","sapiens")

brainvolcc <- c( 438 , 452 , 612, 521, 752, 871, 1350 )

masskg <- c¢( 37.0 , 35.5 , 34.5 , 41.5 , 55.5 , 61.0 , 53.5 )

d <- data.frame( species=sppnames , brain=brainvolcc , mass=masskg )

Now you have a data frame, d, containing the brain size and body size values. It's not un-
usual for data like this to be highly correlated—brain size is correlated with body size, across
species. A standing question, however, is to what extent particular species have brains that
are larger than wed expect, after taking body size into account. A common solution is to fita
linear regression that models brain size as a linear function of body size. Then the remaining
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variation in brain size can be modeled as a function of other variables, like ecology or diet.
This is the same “statistical control” strategy explained in previous chapters.

Controlling for body size, however, depends upon having a good functional mapping
of the association between body size and brain size. We've just used linear functions so far.
But why use a line to relate body size to brain size? It’s not clear why nature demands that
the relationship among species be a straight line. Why not consider a curved model, like a
parabola? Indeed, why not a cubic function of body size, or even a spline? There’s no reason
to suppose a priori that brain size scales only linearly with body size. Indeed, many readers
will prefer to model a linear relationship between log brain volume and log body mass (an
exponential relationship). But thats not the direction I'm headed with this example. The
lesson here will arise, no matter how we transform the data.

Let’s fit a series of increasingly complex model families and see which function fits the
data best. We'll use polynomial regressions, so review Section 4.5 (page 110) if necessary.
Importantly, recall that polynomial regressions are common, but usually a bad idea. In this
example, I will show you that they can be a very bad idea when used blindly. But the splines
from Chapter 4 will suffer the same basic problem. In the practice problems at the end of the
chapter, you will return to this example and try it with splines.

The simplest model that relates brain size to body size is the linear one. It will be the
first model we consider. Before writing out the model, let’s rescale the variables. Recall from
earlier chapters that rescaling predictor and outcome variables is often helpful in getting the
model to fit and in specifying and understanding the priors. In this case, we want to stan-
dardize body mass—give it mean zero and standard deviation one—and rescale the outcome,
brain volume, so that the largest observed value is 1. Why not standardize brain volume as
well? Because we want to preserve zero as a reference point: No brain at all. You can’t have
negative brain. I don’t think.

dSmass_std <- (dSmass - mean(d$mass))/sd(dSmass)
dSbrain_std <- dSbrain / max(dSbrain)

R code
7.2
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Now here’s the mathematical version of the first linear model. The only trick to note is
the log-normal prior on ¢. This will make it easier to keep o positive, as it should be.

b; ~ Normal(pu;, o)

pi = o+ Bmy;

a ~ Normal(0.5,1)

B ~ Normal(0, 10)

o ~ Log-Normal(0, 1)

This simply says that the average brain volume b; of species i is a linear function of its body
mass m;. Now consider what the priors imply. The prior for « is just centered on the mean
brain volume (rescaled) in the data. So it says that the average species with an average body
mass has a brain volume with an 89% credible interval from about —1 to 2. That is ridicu-
lously wide and includes impossible (negative) values. The prior for 3 is very flat and cen-
tered on zero. It allows for absurdly large positive and negative relationships. These priors
allow for absurd inferences, especially as the model gets more complex. And that’s part of
the lesson, so let’s continue to fit the model now:

m7.1 <- quap(

alist(
brain_std ~ dnorm( mu , exp(log_sigma) ),
mu <- a + bx*mass_std,
a ~ dnorm( 6.5 , 1),
b ~ dnorm( 06 , 10 ),
log_sigma ~ dnorm( @ , 1 )

), data=d )

I've used exp (log_sigma) in the likelihood, so that the result is always greater than zero.

Rethinking: OLS and Bayesian anti-essentialism. It would be possible to use ORDINARY LEAST
SQUARES (OLS) to get posterior distributions for these brain size models. For example, you could use
R’s simple 1m function to get the posterior distribution for m6. 1. You won't get a posterior for sigma
however.

m7.1_OLS <- lm( brain_std ~ mass_std , data=d )
post <- extract.samples( m7.1_0OLS )

OLS is not considered a Bayesian algorithm. But as long as the priors are vague, minimizing the sum
of squared deviations to the regression line is equivalent to finding the posterior mean. In fact, Carl
Friedrich Gauss originally derived the OLS procedure in a Bayesian framework.'%* Back then, nearly
all probability was Bayesian, although the term “Bayesian” wouldn’t be used much until the twentieth
century. In most cases, a non-Bayesian procedure will have an approximate Bayesian interpretation.
This fact is powerful in both directions. The Bayesian interpretation of a non-Bayesian procedure
recasts assumptions in terms of information, and this can be very useful for understanding why a
procedure works. Likewise, a Bayesian model can be embodied in an efficient, but approximate,
“non-Bayesian” procedure. Bayesian inference means approximating the posterior distribution. It
does not specify how that approximation is done.
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Before pausing to plot the posterior distribution, like we did in previous chapters, let’s
focus on the R?, the proportion of variance “explained” by the model. What is really meant
here is that the linear model retrodicts some proportion of the total variation in the outcome
data it was fit to. The remaining variation is just the variation of the residuals (page 135).

The point of this example is not to praise R but to bury it. But we still need to compute
it before burial. This is thankfully easy. We just compute the posterior predictive distribu-
tion for each observation—you did this in earlier chapters with sim. Then we subtract each
observation from its prediction to get a residual. Then we need the variance of both these
residuals and the outcome variable. This means the actual empirical variance, not the vari-
ance that R returns with the var function, which is a frequentist estimator and therefore
has the wrong denominator. So we'll compute variance the old fashioned way: the average
squared deviation from the mean. The rethinking package includes a function var2 for
this purpose. In principle, the Bayesian approach mandates that we do this for each sample
from the posterior. But R? is traditionally computed only at the mean prediction. So we'll
do that as well here. Later in the chapter you’ll learn a properly Bayesian score that uses the
entire posterior distribution.

set.seed(12)

s <= sim( m7.1 )

r <- apply(s,2,mean) - ds$brain_std
resid_var <- var2(r)

outcome_var <- var2( dS$brain_std )
1 - resid_var/outcome_var

[1] 0.4774589

We'll want to do this for the next several models, so let’s write a function to make it repeatable.
If you find yourself writing code more than once, it is usually saner to write a function and
call the function more than once instead.

R2_is_bad <- function( quap_fit ) {
s <- sim( quap_fit , refresh=0 )
r <- apply(s,2,mean) - d$brain_std
1 - var2(r)/var2(dsbrain_std)

Now for some other models to compare to m7. 1. We'll consider five more models, each
more complex than the last. Each of these models will just be a polynomial of higher degree.
For example, a second-degree polynomial that relates body size to brain size is a parabola.
In math form, it is:

b; ~ Normal(y;, o)

pi = o+ Bym; + 52“1,2

a ~ Normal(0.5, 1)

f3; ~ Normal(0, 10) forj=1..2
o ~ Log-Normal(0, 1)

R code
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This model family adds one more parameter, 3,, but uses all of the same data asm7. 1. To do
this model in quap, we can define 3 as a vector. The only trick required is to tell quap how
long that vector is by using a start list:
RC?E; m7.2 <- quap(
alist(
brain_std ~ dnorm( mu , exp(log_sigma) ),
mu <- a + b[l]*mass_std + b[2]*mass_std"2,
a ~ dnorm( 0.5 , 1),
b ~ dnorm( 06 , 10 ),
log_sigma ~ dnorm( @ , 1 )
), data=d , start=list(b=rep(0,2)) )

The next four models are constructed in similar fashion. The models m7. 3 through m7.6 are
just third-degree, fourth-degree, fifth-degree, and sixth-degree polynomials.
chﬂg m7.3 <- quap(
’ alist(
brain_std ~ dnorm( mu , exp(log_sigma) ),
mu <- a + b[1l]*mass_std + b[2]*mass_std?2 +
b[3]xmass_std”3,
a ~ dnorm( 0.5 , 1),
b ~ dnorm( 0 , 10 ),
log_sigma ~ dnorm( @ , 1 )
), data=d , start=list(b=rep(0,3)) )

m7.4 <- quap(

alist(
brain_std ~ dnorm( mu , exp(log_sigma) ),
mu <- a + b[1l]*mass_std + b[2]*mass_std?2 +

b[3]xmass_std?3 + b[4]*mass_std"4,

a ~ dnorm( 0.5 , 1),
b ~ dnorm( 0 , 10 ),
log_sigma ~ dnorm( @ , 1 )

), data=d , start=list(b=rep(0,4)) )

m7.5 <= quap(
alist(
brain_std ~ dnorm( mu , exp(log_sigma) ),
mu <- a + b[l]*mass_std + b[2]*mass_std?2 +
b[3]*mass_std?3 + b[4]*mass_std”"4 +
b[5]xmass_std?5,
a ~ dnorm( 0.5 , 1),
b ~ dnorm( 0 , 10 ),
log_sigma ~ dnorm( @ , 1 )
), data=d , start=list(b=rep(0,5)) )

That last model, m7. 6, has one trick in it. The standard deviation is replaced with a constant
value 0.001. The model will not work otherwise, for a very important reason that will become
clear as we plot these monsters. Here’s the last model:
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m7.6 <- quap(
alist(
brain_std ~ dnorm( mu , 0.001 ),
mu <- a + b[l]*mass_std + b[2]*mass_std?2 +
b[3]*mass_std?3 + b[4]*mass_std”"4 +
b[5]*mass_std?5 + b[6]*mass_std"6,
a ~ dnorm( 0.5 , 1),
b ~ dnorm( 6 , 10 )
), data=d , start=list(b=rep(0,6)) )

Now to plot each model. We'll follow the steps from earlier chapters: extract samples
from the posterior, compute the posterior predictive distribution at each of several locations
on the horizontal axis, summarize, and plot. For m7. 1:

post <- extract.samples(m7.1)

mass_seq <- seq( from=min(d$mass_std) , to=max(d$mass_std) , length.out=100 )
1 <- link( m7.1 , data=list( mass_std=mass_seq ) )

mu <- apply( L , 2 , mean )

ci <= apply( 1L, 2 , PI )

plot( brain_std ~ mass_std , data=d )

lines( mass_seq , mu )

shade( ci , mass_seq )

I show this plot and all the others, with some cosmetic improvements (see brain_plot for
the code), in FIGURE 7.3. Each plot also displays R2. As the degree of the polynomial defining
the mean increases, the R? always improves, indicating better retrodiction of the data. The
fifth-degree polynomial has an R? value of 0.99. It almost passes exactly through each point.
The sixth-degree polynomial actually does pass through every point, and it has no residual
variance. It’s a perfect fit, R? = 1. That is why we had to fix the sigma value—if it were
estimated, it would shrink to zero, because the residual variance is zero when the line passes
right through the center of each point.

However, you can see from looking at the paths of the predicted means that the higher-
degree polynomials are increasingly absurd. This absurdity is seen most easily in FIGURE 7.3,
m7.6, the most complex model. The fit is perfect, but the model is ridiculous. Notice that
there is a gap in the body mass data, because there are no fossil hominins with body mass
between 55 kg and about 60 kg. In this region, the predicted mean brain size from the high-
degree polynomial models has nothing to predict, and so the models pay no price for swing-
ing around wildly in this interval. The swing is so extreme that I had to extend the range of
the vertical axis to display the depth at which the predicted mean finally turns back around.
At around 58 kg, the model predicts a negative brain size! The model pays no price (yet) for
this absurdity, because there are no cases in the data with body mass near 58 kg.

Why does the sixth-degree polynomial fit perfectly? Because it has enough parameters
to assign one to each point of data. The model’s equation for the mean has 7 parameters:

i = o+ Bim; + Bami + Bam; + Bami + Psm? + Bems

and there are 7 species to predict brain sizes for. So effectively, this model assigns a unique
parameter to reiterate each observed brain size. This is a general phenomenon: If you adopt
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FIGURE 7.3. Polynomial linear models of increasing degree for the hominin
data. Each plot shows the posterior mean in black, with 89% interval of
the mean shaded. R? is displayed above each plot. In order from top-left:
First-degree polynomial, second-degree, third-degree, fourth-degree, fifth-
degree, and sixth-degree.
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a model family with enough parameters, you can fit the data exactly. But such a model will
make rather absurd predictions for yet-to-be-observed cases.

Rethinking: Model fitting as compression. Another perspective on the absurd model just above is to
consider that model fitting can be considered a form of DATA COMPRESSION. Parameters summarize
relationships among the data. These summaries compress the data into a simpler form, although
with loss of information (“lossy” compression) about the sample. The parameters can then be used
to generate new data, effectively decompressing the data.

When a model has a parameter to correspond to each datum, such as m7. 6, then there is actually
no compression. The model just encodes the raw data in a different form, using parameters instead.
Asaresult, welearn nothing about the data from such a model. Learning about the data requires using
a simpler model that achieves some compression, but not too much. This view of model selection is
often known as MINIMUM DESCRIPTION LENGTH (MDL).!%3

7.1.2. Too few parameters hurts, too. The overfit polynomial models fit the data extremely
well, but they suffer for this within-sample accuracy by making nonsensical out-of-sample
predictions. In contrast, UNDERFITTING produces models that are inaccurate both within
and out of sample. They learn too little, failing to recover regular features of the sample.

Another way to conceptualize an underfit model is to notice that it is insensitive to the
sample. We could remove any one point from the sample and get almost the same regression
line. In contrast, the most complex model, m7.86, is very sensitive to the sample. If we re-
moved any one point, the mean would change alot. You can see this sensitivity in FIGURE 7.4.
In both plots what I've done is drop each row of the data, one at a time, and re-derive the
posterior distribution. On the left, each line is a first-degree polynomial, m7. 1, fit to one of
the seven possible sets of data constructed from dropping one row. The curves on the right
are instead different fourth-order polynomials, m7.4. Notice that the straight lines hardly
vary, while the curves fly about wildly. This is a general contrast between underfit and overfit
models: sensitivity to the exact composition of the sample used to fit the model.

Overthinking: Dropping rows. The calculations needed to produce FIGURE 7.4 are made easy by a
trick of R’s index notation. To drop a row 1 from a data frame d, just use:

d_minus_i <- d[ -i , ]

This means drop the i-th row and keep all of the columns. Repeating the regression is then just a matter
of looping over the rows. Look inside the function brain_loo_plot in the rethinking package to
see how the figure was drawn and explore other models.

Rethinking: Bias and variance. The underfitting/overfitting dichotomy is often described as the
BIAS-VARIANCE TRADE-OFFE.!™ While not exactly the same distinction, the bias-variance trade-off
addresses the same problem. “Bias” is related to underfitting, while “variance” is related to overfitting.
These terms are confusing, because they are used in many different ways in different contexts, even
within statistics. The term “bias” also sounds like a bad thing, even though increasing bias often leads
to better predictions.
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FIGURE 7.4. Underfitting and overfitting as under-sensitivity and over-
sensitivity to sample. In both plots, a regression is fit to the seven sets of
data made by dropping one row from the original data. Left: An underfit
model is insensitive to the sample, changing little as individual points are
dropped. Right: An overfit model is sensitive to the sample, changing dra-
matically as points are dropped.

7.2. Entropy and accuracy

So how do we navigate between the hydra of overfitting and the vortex of underfitting?
Whether you end up using regularization or information criteria or both, the first thing you
must do is pick a criterion of model performance. What do you want the model to do well
at? We'll call this criterion the target, and in this section you'll see how information theory
provides a common and useful target.

The path to out-of-sample deviance is twisty, however. Here are the steps ahead. First,
we need to establish a measurement scale for distance from perfect accuracy. This will re-
quire a little information theory, as it will provide a natural measurement scale for the dis-
tance between two probability distributions. Second, we need to establish deviance as an
approximation of relative distance from perfect accuracy. Finally, we must establish that
it is only deviance out-of-sample that is of interest. Once you have deviance in hand as a
measure of model performance, in the sections to follow you’ll see how both regularizing
priors and information criteria help you improve and estimate the out-of-sample deviance
of a model.

This material is complicated. You don’t have to understand everything on the first pass.

7.2.1. Firing the weatherperson. Accuracy depends upon the definition of the target, and
there is no universally best target. In defining a target, there are two major dimensions to
worry about:

(1) Cost-benefit analysis. How much does it cost when we’re wrong? How much do we
win when we're right? Most scientists never ask these questions in any formal way,
but applied scientists must routinely answer them.
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(2) Accuracy in context. Some prediction tasks are inherently easier than others. So
even if we ignore costs and benefits, we still need a way to judge “accuracy” that
accounts for how much a model could possibly improve prediction.

It will help to explore these two dimensions in an example. Suppose in a certain city,
a certain weatherperson issues uncertain predictions for rain or shine on each day of the
year.!% The predictions are in the form of probabilities of rain. The currently employed
weatherperson predicted these chances of rain over a 10-day sequence, with the actual out-
comes shown below each prediction:

Day [1 2 3 4 5 6 7 8 9 10
Prediction| 1 1 1 06 06 06 06 06 0.6 0.6
Observed S o I o JE o JE o JHE o JE 03

A newcomer rolls into town and boasts that he can best the current weatherperson by always
predicting sunshine. Over the same 10-day period, the newcomer’s record would be:

Day |1 2 3 4 5 6 7 8 9 10
Predicton| 0 0 0 O O 0 O O 0 O
Observed Eo N o JiE o I o I o ik o o3

“So by rate of correct prediction alone,” the newcomer announces, “I'm the best person for
the job”

The newcomer is right. Define hit rate as the average chance of a correct prediction. So
for the current weatherperson, she gets 3 x 1 4+ 7 x 0.4 = 5.8 hits in 10 days, for a rate of
5.8/10 = 0.58 correct predictions per day. In contrast, the newcomer gets 3 x 0+7 x 1 = 7,
for 7/10 = 0.7 hits per day. The newcomer wins.

7.2.1.1. Costs and benefits. But it’s not hard to find another criterion, other than rate of
correct prediction, that makes the newcomer look foolish. Any consideration of costs and
benefits will suffice. Suppose for example that you hate getting caught in the rain, but you also
hate carrying an umbrella. Let’s define the cost of getting wet as —5 points of happiness and
the cost of carrying an umbrella as —1 point of happiness. Suppose your chance of carrying
an umbrella is equal to the forecast probability of rain. Your job is now to maximize your
happiness by choosing a weatherperson. Here are your points, following either the current
weatherperson or the newcomer:

Day 1 2 3 4 5 6 7 8 9 10
Observed I I I < I
Points

Current -1 -1 -1 —-06 —-06 —-06 —-06 —06 —06 -—0.6
Newcomer | —5 -5 -5 0 0 0 0 0 0 0

So the current weatherperson nets you 3 x (—1) 4+ 7 x (—0.6) = —7.2 happiness, while the
newcomer nets you —15 happiness. So the newcomer doesn't look so clever now. You can
play around with the costs and the decision rule, but since the newcomer always gets you
caught unprepared in the rain, it's not hard to beat his forecast.
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7.2.1.2. Measuring accuracy. But even if we ignore costs and benefits of any actual deci-
sion based upon the forecasts, there’s still ambiguity about which measure of “accuracy” to
adopt. There’s nothing special about “hit rate.” The question to focus on is: Which definition
of “accuracy” is maximized by knowing the true model generating the data? Surely we can’t
do better than that.

Consider computing the probability of predicting the exact sequence of days. This means
computing the probability of a correct prediction for each day. Then multiply all of these
probabilities together to get the joint probability of correctly predicting the observed se-
quence. This is the same thing as the joint likelihood, which you've been using up to this
point to fit models with Bayes’ theorem. This is the definition of accuracy that is maximized
by the correct model.

In this light, the newcomer looks even worse. The probability for the current weather-
person is 13 x 0.47 ~ 0.005. For the newcomer, it'’s 03 x 17 = 0. So the newcomer has zero
probability of getting the sequence correct. This is because the newcomer’s predictions never
expect rain. So even though the newcomer has a high average probability of being correct
(hit rate), he has a terrible joint probability of being correct.

And the joint probability is the measure we want. Why? Because it appears in Bayes’ the-
orem as the likelihood. It’s the unique measure that correctly counts up the relative number
of ways each event (sequence of rain and shine) could happen. Another way to think of this
is to consider what happens when we maximize average probability or joint probability. The
true data-generating model will not have the highest hit rate. You saw this already with the
weatherperson: Assigning zero probability to rain improves hit rate, but it is clearly wrong.
In contrast, the true model will have the highest joint probability.

In the statistics literature, you will sometimes see this measure of accuracy called the
LOG SCORING RULE, because typically we compute the logarithm of the joint probability and
report that. If you see an analysis using something else, either it is a special case of the log
scoring rule or it is possibly much worse.

Rethinking: Calibration is overrated. Its common for models to be judged by their CALIBRATION.
If a model predicts a 40% chance of rain, then it is said to be “calibrated” if it actually rains on 40%
of such predictions. The problem is that calibrated predictions do not have to be good. For example,
if it rains on 40% of days, then a model that just predicts a 40% chance of rain on every day will
be perfectly calibrated. But it will also be terribly inaccurate. Nor do good predictions have to be
calibrated. Suppose a forecaster always has 100% confidence in each forecast and correctly predicts
the weather on 80% of days. The forecaster is accurate, but he is not calibrated. He is overconfident.

Here’s a real example. The forecasting website www.fivethirtyeight.com makes many predictions.
Their calibration for sporting events is almost perfect.'® But their accuracy is often barely better than
guessing. In contrast, their political predictions are less calibrated, but more accurate on average.

Terms like “calibration” have various meanings. So it’s good to provide and ask for contextual
definitions.!”” The posterior predictive checks endorsed in this book, for example, are sometimes
called “calibration checks.”

7.2.2. Information and uncertainty. So we want to use the log probability of the data to
score the accuracy of competing models. The next problem is how to measure distance from
perfect prediction. A perfect prediction would just report the true probabilities of rain on
each day. So when either weatherperson provides a prediction that differs from the target,
we can measure the distance of the prediction from the target. But what kind of distance
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should we adopt? It's not obvious how to go about answering this question. But there turns
out to be a unique and optimal answer.

Getting to the answer depends upon appreciating what an accuracy metric needs to do.
It should appreciate that some targets are just easier to hit than other targets. For example,
suppose we extend the weather forecast into the winter. Now there are three types of days:
rain, sun, and snow. Now there are three ways to be wrong, instead of just two. This has to be
reflected in any reasonable measure of distance from the target, because by adding another
type of event, the target has gotten harder to hit.

It’s like taking a two-dimensional archery bullseye and forcing the archer to hit the tar-
get at the right time—a third dimension—as well. Now the possible distance between the
best archer and the worst archer has grown, because there’s another way to miss. And with
another way to miss, one might also say that there is another way for an archer to impress.
As the potential distance between the target and the shot increases, so too does the potential
improvement and ability of a talented archer to impress us.

The solution to the problem of how to measure distance of a model’s accuracy from a
target was provided in the late 1940s.!% Originally applied to problems in communication
of messages, such as telegraph, the field of INFORMATION THEORY is now important across
the basic and applied sciences, and it has deep connections to Bayesian inference. And like
many successful fields, information theory has spawned many bogus applications, as well.!?

The basic insight is to ask: How much is our uncertainty reduced by learning an outcome?
Consider the weather forecasts again. Forecasts are issued in advance and the weather is
uncertain. When the actual day arrives, the weather is no longer uncertain. The reduction
in uncertainty is then a natural measure of how much we have learned, how much “infor-
mation” we derive from observing the outcome. So if we can develop a precise definition of
“uncertainty;,” we can provide a baseline measure of how hard it is to predict, as well as how
much improvement is possible. The measured decrease in uncertainty is the definition of
information in this context.

Information: The reduction in uncertainty when we learn an outcome.

To use this definition, what we need is a principled way to quantify the uncertainty in-
herent in a probability distribution. So suppose again that there are two possible weather
events on any particular day: Either it is sunny or it is rainy. Each of these events occurs
with some probability, and these probabilities add up to one. What we want is a function
that uses the probabilities of shine and rain and produces a measure of uncertainty.

There are many possible ways to measure uncertainty. The most common way begins
by naming some properties a measure of uncertainty should possess. These are the three
intuitive desiderata:

(1) The measure of uncertainty should be continuous. If it were not, then an arbitrarily
small change in any of the probabilities, for example the probability of rain, would
result in a massive change in uncertainty.

(2) The measure of uncertainty should increase as the number of possible events in-
creases. For example, suppose there are two cities that need weather forecasts. In
the first city, it rains on half of the days in the year and is sunny on the others. In
the second, it rains, shines, and hails, each on 1 out of every 3 days in the year. Wed
like our measure of uncertainty to be larger in the second city, where there is one
more kind of event to predict.
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(3) The measure of uncertainty should be additive. What this means is that if we first
measure the uncertainty about rain or shine (2 possible events) and then the uncer-
tainty about hot or cold (2 different possible events), the uncertainty over the four
combinations of these events—rain/hot, rain/cold, shine/hot, shine/cold—should
be the sum of the separate uncertainties.

There is only one function that satisfies these desiderata. This function is usually known as
INFORMATION ENTROPY, and has a surprisingly simple definition. If there are n different
possible events and each event i has probability p;, and we call the list of probabilities p, then
the unique measure of uncertainty we seek is:

H(p) = —Elog(p;) = — Z pilog(pi) (7.1)

In plainer words:

The uncertainty contained in a probability distribution is the average log-probability
of an event.

“Event” here might refer to a type of weather, like rain or shine, or a particular species of bird
or even a particular nucleotide in a DNA sequence.

While it's not worth going into the details of the derivation of H, it is worth pointing
out that nothing about this function is arbitrary. Every part of it derives from the three
requirements above. Still, we accept H(p) as a useful measure of uncertainty not because of
the premises that lead to it, but rather because it has turned out to be so useful and productive.

An example will help to demystify the function H(p). To compute the information en-
tropy for the weather, suppose the true probabilities of rain and shine are p; = 0.3 and
p2 = 0.7, respectively. Then:

H(p) = —(p1log(p1) + p2log(p2)) =~ 0.61

As an R calculation:

p<-c(0.3,0.7)
-sum( pxlog(p) )

[1] 0.6108643

Suppose instead we live in Abu Dhabi. Then the probabilities of rain and shine might be more
like p; = 0.01 and p, = 0.99. Now the entropy would be approximately 0.06. Why has the
uncertainty decreased? Because in Abu Dhabi it hardly ever rains. Therefore there’s much
less uncertainty about any given day, compared to a place in which it rains 30% of the time.
It’s in this way that information entropy measures the uncertainty inherent in a distribution
of events. Similarly, if we add another kind of event to the distribution—forecasting into
winter, so also predicting snow—entropy tends to increase, due to the added dimensionality
of the prediction problem. For example, suppose probabilities of sun, rain, and snow are
p1 = 0.7, p» = 0.15, and p3 = 0.15, respectively. Then entropy is about 0.82.

These entropy values by themselves don’t mean much to us, though. Instead we can use
them to build a measure of accuracy. That comes next.

Overthinking: More on entropy. Above I said that information entropy is the average log-probability.
But there’s also a —1 in the definition. Multiplying the average log-probability by —1 just makes the
entropy H increase from zero, rather than decrease from zero. It’s conventional, but not functional.
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The logarithms above are natural logs (base e), but changing the base rescales without any effect on
inference. Binary logarithms, base 2, are just as common. As long as all of the entropies you compare
use the same base, you'll be fine.

The only trick in computing H is to deal with the inevitable question of what to do when p; = 0.
The log(0) = —o0, which won't do. However, CHopital’s rule tells us that lim,, ¢ p;log(p;) = 0. So
just assume that 01log(0) = 0, when you compute H. In other words, events that never happen drop
out. Just remember that when an event never happens, there’s no point in keeping it in the model.

Rethinking: The benefits of maximizing uncertainty. Information theory has many applications.
A particularly important application is MAXIMUM ENTROPY, also known as MAXENT. Maximum
entropy is a family of techniques for finding probability distributions that are most consistent with
states of knowledge. In other words, given what we know, what is the least surprising distribution?
It turns out that one answer to this question maximizes the information entropy, using the prior
knowledge as constraint.!’’ If you do this, you actually end up with the posterior distribution. So
Bayesian updating is entropy maximization. Maximum entropy features prominently in Chapter 10,
where it will help us build generalized linear models (GLMs).

7.2.3. From entropy to accuracy. It’s nice to have a way to quantify uncertainty. H provides
this. So we can now say, in a precise way, how hard it is to hit the target. But how can we use
information entropy to say how far a model is from the target? The key lies in DIVERGENCE:

Divergence: The additional uncertainty induced by using probabilities from
one distribution to describe another distribution.

This is often known as Kullback-Leibler divergence or simply KL divergence, named after the
people who introduced it for this purpose.!!!

Suppose for example that the true distribution of events is p; = 0.3,p, = 0.7. If we
believe instead that these events happen with probabilities g; = 0.25, g, = 0.75, how much
additional uncertainty have we introduced, as a consequence of using ¢ = {q1, 42} to ap-
proximate p = {p;,p>}? The formal answer to this question is based upon H, and has a
similarly simple formula:

Dxi(p,q) = Zp,-(log(pi) — log(%’)) = ZP:‘ log <Z:>

In plainer language, the divergence is the average difference in log probability between the
target (p) and model (q). This divergence is just the difference between two entropies: The
entropy of the target distribution p and the cross entropy arising from using q to predict p
(see the Overthinking box on the next page for some more detail). When p = g, we know
the actual probabilities of the events. In that case:

Dx1(p,q) = Dx1(p,p) = ZPi(lOg(Pi) —log(pi)) =0

There is no additional uncertainty induced when we use a probability distribution to repre-
sent itself. That's somehow a comforting thought.

But more importantly, as g grows more different from p, the divergence Dk, also grows.
FIGURE 7.5 displays an example. Suppose the true target distribution is p = {0.3,0.7}.
Suppose the approximating distribution g can be anything from g = {0.01,0.99} to g =
{0.99,0.01}. The first of these probabilities, g;, is displayed on the horizontal axis, and the
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FIGURE 7.5. Information divergence of an ap-
proximating distribution g from a true dis-
tribution p. Divergence can only equal zero
when g = p (dashed line). Otherwise, the di-
vergence is positive and grows as g becomes
more dissimilar from p. When we have more
than one candidate approximation ¢, the g
with the smallest divergence is the most ac-
curate approximation, in the sense that it in-
duces the least additional uncertainty.
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vertical displays the divergence Dy (p, q). Only exactly where g = p, at g; = 0.3, does the
divergence achieve a value of zero. Everyplace else, it grows.

What divergence can do for us now is help us contrast different approximations to p. As
an approximating function q becomes more accurate, Dy (p, q) will shrink. So if we have
a pair of candidate distributions, then the candidate that minimizes the divergence will be
closest to the target. Since predictive models specify probabilities of events (observations),
we can use divergence to compare the accuracy of models.

Overthinking: Cross entropy and divergence. Deriving divergence is easier than you might think.
The insight is in realizing that when we use a probability distribution g to predict events from another
distribution p, this defines something known as cross entropy: H(p, q) = — > . p;log(g;). The notion
is that events arise according the the p’s, but they are expected according to the ¢’s, so the entropy is
inflated, depending upon how different p and q are. Divergence is defined as the additional entropy
induced by using q. So it’s just the difference between H(p), the actual entropy of events, and H(p, q):

Dx.(p,q) = H(p,q) — H(p)
=~ pilog(a) — (= pilog(p)) = — Y pi(log(q) — log(p:))
So divergence really is measuring how far ¢ is from the target p, in units of entropy. Notice that

which is the target matters: H(p, q) does not in general equal H(g, p). For more on that fact, see the
Rethinking box that follows.

Rethinking: Divergence depends upon direction. In general, H(p, q) is not equal to H(q, p). The
direction matters, when computing divergence. Understanding why this is true is of some value, so
here’s a contrived teaching example.

Suppose we get in a rocket and head to Mars. But we have no control over our landing spot,
once we reach Mars. Let’s try to predict whether we land in water or on dry land, using the Earth to
provide a probability distribution g to approximate the actual distribution on Mars, p. For the Earth,
q = {0.7,0.3}, for probability of water and land, respectively. Mars is very dry, but let’s say for the
sake of the example that there is 1% surface water, so p = {0.01,0.99}. If we count the ice caps,
that’s not too big a lie. Now compute the divergence going from Earth to Mars. It turns out to be
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Dg_.m = Dxi(p, q) = 1.14. That’s the additional uncertainty induced by using the Earth to predict
the Martian landing spot. Now consider going back the other direction. The numbers in p and g stay
the same, but we swap their roles, and now Dy;_,g = Dx1.(g, p) = 2.62. The divergence is more than
double in this direction. This result seems to defy comprehension. How can the distance from Earth
to Mars be shorter than the distance from Mars to Earth?

Divergence behaves this way as a feature, not a bug. There really is more additional uncertainty
induced by using Mars to predict Earth than by using Earth to predict Mars. The reason is that, going
from Mars to Earth, Mars has so little water on its surface that we will be very very surprised when
we most likely land in water on Earth. In contrast, Earth has good amounts of both water and dry
land. So when we use the Earth to predict Mars, we expect both water and land, to some extent, even
though we do expect more water than land. So we won't be nearly as surprised when we inevitably
arrive on Martian dry land, because 30% of Earth is dry land.

An important practical consequence of this asymmetry, in a model fitting context, is that if we
use a distribution with high entropy to approximate an unknown true distribution of events, we will
reduce the distance to the truth and therefore the error. This fact will help us build generalized linear
models, later on in Chapter 10.

7.2.4. Estimating divergence. At this point in the chapter, dear reader, you may be won-
dering where the chapter is headed. At the start, the goal was to deal with overfitting and
underfitting. But now we've spent pages and pages on entropy and other fantasies. It’s as if
I promised you a day at the beach, but now you find yourself at a dark cabin in the woods,
wondering if this is a necessary detour or rather a sinister plot.

It is a necessary detour. The point of all the preceding material about information theory
and divergence is to establish both:

(1) How to measure the distance of a model from our target. Information theory gives
us the distance measure we need, the KL divergence.

(2) How to estimate the divergence. Having identified the right measure of distance,
we now need a way to estimate it in real statistical modeling tasks.

Item (1) is accomplished. Item (2) remains for last. Youre going to see now that the diver-
gence leads to using a measure of model fit known as deviance.

To use Dky, to compare models, it seems like we would have to know p, the target proba-
bility distribution. In all of the examples so far, I've just assumed that p is known. But when
we want to find a model g that is the best approximation to p, the “truth,” there is usually no
way to access p directly. We wouldn't be doing statistical inference, if we already knew p.

But there’s an amazing way out of this predicament. It helps that we are only interested
in comparing the divergences of different candidates, say g and r. In that case, most of p just
subtracts out, because there is a Elog(p;) term in the divergence of both g and r. This term
has no effect on the distance of g and r from one another. So while we don’t know where p is,
we can estimate how far apart g and r are, and which is closer to the target. It’s as if we can’t
tell how far any particular archer is from hitting the target, but we can tell which archer gets
closer and by how much.

All of this also means that all we need to know is a model’s average log-probability:
Elog(g;) for q and Elog(r;) for r. These expressions look a lot like log-probabilities of out-
comes you've been using already to simulate implied predictions of a fit model. Indeed, just
summing the log-probabilities of each observed case provides an approximation of Elog(g;).
We don’t have to know the p inside the expectation.



210 7. ULYSSES’ COMPASS

So we can compare the average log-probability from each model to get an estimate of the
relative distance of each model from the target. This also means that the absolute magnitude
of these values will not be interpretable—neither Elog(q;) nor Elog(r;) by itself suggests a
good or bad model. Only the difference E log(q;) — Elog(r;) informs us about the divergence
of each model from the target p.

To put all this into practice, it is conventional to sum over all the observations i, yielding
a total score for a model g:

S(q) = Zlog(qi)

This kind of score is a log-probability score, and it is the gold standard way to compare the
predictive accuracy of different models. It is an estimate of Elog(g;), just without the final
step of dividing by the number of observations.

To compute this score for a Bayesian model, we have to use the entire posterior distribu-
tion. Otherwise, vengeful angels will descend upon you. Why will they be angry? If we don’t
use the entire posterior, we are throwing away information. Because the parameters have dis-
tributions, the predictions also have a distribution. How can we use the entire distribution of
predictions? We need to find the log of the average probability for each observation i, where
the average is taken over the posterior distribution. Doing this calculation correctly requires
a little subtlety. The rethinking package has a function called 1ppd—LOG-POINTWISE-
PREDICTIVE-DENSITY—t0 do this calculation for quap models. If you are interested in the
subtle details, however, see the box at the end of this section. To compute lppd for the first
model we fit in this chapter:

R code

713 set.seed(1)

lppd( m7.1 , n=1e4 )

[1] ©0.6098668 0.6483438 0.5496093 0.6234934 0.4648143 0.4347605 -0.8444633

Each of these values is the log-probability score for a specific observation. Recall that there
were only 7 observations in those data. If you sum these values, you’ll have the total log-
probability score for the model and data. What do these values mean? Larger values are
better, because that indicates larger average accuracy. It is also quite common to see some-
thing called the pEVIANCE, which is like a Ippd score, but multiplied by —2 so that smaller
values are better. The 2 is there for historical reasons.!!?

Overthinking: Computing the Ippd. The Bayesian version of the log-probability score is called the
LOG-POINTWISE-PREDICTIVE-DENSITY. For some data y and posterior distribution O:

Ippd(y.©) = 3 log ¢ 3~ p(3/6)

where S is the number of samples and ©; is the s-th set of sampled parameter values in the posterior
distribution. While in principle this is easy—you just need to compute the probability (density) of
each observation i for each sample s, take the average, and then the logarithm—in practice it is not so
easy. The reason is that doing arithmetic in a computer often requires some tricks to retain precision.
In probability calculations, it is usually safest to do everything on the log-probability scale. Here’s the
code we need, to repeat the calculation in the previous section:
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set.seed(1)

logprob <- sim( m7.1 , 11l=TRUE , n=1e4 )

n <- ncol(logprob)

ns <- nrow(logprob)

f <= function( i ) log_sum_exp( logprob[,i] ) - log(ns)
( lppd <= sapply( 1:n , f ) )

You should see the same values as before. The code first calculates the log-probability of each obser-
vation, using sim. You used sim in Chapter 4 to simulate observations from the posterior. It can also
just return the log-probability, using 11=TRUE. It returns a matrix with a row for each sample and a
column for each observation. Then the function f does the hard work. log_sum_exp computes the
log of the sum of exponentiated values. So it takes all the log-probabilities for a given observation,
exponentiates each, sums them, then takes the log. But it does this in a way that is numerically stable.
Then the function subtracts the log of the number of samples, which is the same as dividing the sum
by the number of samples.

7.2.5. Scoring the right data. The log-probability score is a principled way to measure dis-
tance from the target. But the score as computed in the previous section has the same flaw
as R?: It always improves as the model gets more complex, at least for the types of models
we have considered so far. Just like R?, log-probability on training data is a measure of retro-
dictive accuracy, not predictive accuracy. Let’'s compute the log-score for each of the models
from earlier in this chapter:

set.seed(1)
sapply( list(m7.1,m7.2,m7.3,m7.4,m7.5,m7.6) , function(m) sum(lppd(m)) )

[1] 2.490390 2.565982 3.695910 5.380871 14.089261 39.445390

The more complex models have larger scores! But we already know that they are absurd. We
simply cannot score models by their performance on training data. That way lies the monster
Scylla, devourer of naive data scientists.

It is really the score on new data that interests us. So before looking at tools for improving
and measuring out-of-sample score, let’s bring the problem into sharper focus by simulating
the score both in and out of sample. When we usually have data and use it to fit a statistical
model, the data comprise a TRAINING SAMPLE. Parameters are estimated from it, and then
we can imagine using those estimates to predict outcomes in a new sample, called the TEST
SAMPLE. R is going to do all of this for you. But here’s the full procedure, in outline:

(1) Suppose there’s a training sample of size N.

(2) Compute the posterior distribution of a model for the training sample, and com-
pute the score on the training sample. Call this score Diyqip.

(3) Suppose another sample of size N from the same process. This is the test sample.

(4) Compute the score on the test sample, using the posterior trained on the training
sample. Call this new score Dieg.

The above is a thought experiment. It allows us to explore the distinction between accuracy
measured in and out of sample, using a simple prediction scenario.

To visualize the results of the thought experiment, what we’ll do now is conduct the
above thought experiment 10,000 times, for each of five different linear regression models.

R code
7.14

R code
7.15
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FIGURE 7.6. Deviance in and out of sample. In each plot, models with dif-
ferent numbers of predictor variables are shown on the horizontal axis. De-
viance across 10,000 simulations is shown on the vertical. Blue shows de-
viance in-sample, the training data. Black shows deviance out-of-sample,
the test data. Points show means, and the line segments show +1 standard
deviation.

The model that generates the data is:

yi ~ Normal(p;, 1)
Hi = (O.IS)XL,' — (0.4))@7,'

This corresponds to a Gaussian outcome y for which the intercept is &« = 0 and the slopes
for each of two predictors are 5; = 0.15 and 3, = —0.4. The models for analyzing the
data are linear regressions with between 1 and 5 free parameters. The first model, with 1 free
parameter to estimate, is just a linear regression with an unknown mean and fixed 0 = 1.
Each parameter added to the model adds a predictor variable and its beta-coeflicient. Since
the “true” model has non-zero coeflicients for only the first two predictors, we can say that
the true model has 3 parameters. By fitting all five models, with between 1 and 5 parameters,
to training samples from the same processes, we can get an impression for how the score
behaves, both inside and outside the training sample.

FIGURE 7.6 shows the results of 10,000 simulations for each model type, at two differ-
ent sample sizes. The function that conducts the simulations is sim_train_test in the
rethinking package. If you want to conduct more simulations of this sort, see the Over-
thinking box on the next page for the full code. The vertical axis is scaled as —2 x lppd,
“deviance,” so that larger values are worse. In the left-hand plot in FIGURE 7.6, both training
and test samples contain 20 cases. Blue points and line segments show the mean plus-and-
minus one standard deviation of the deviance calculated on the training data. Moving left
to right with increasing numbers of parameters, the average deviance declines. A smaller
deviance means a better fit. So this decline with increasing model complexity is the same
phenomenon you saw earlier in the chapter with R?.
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But now inspect the open points and black line segments. These display the distribu-
tion of out-of-sample deviance at each number of parameters. While the training deviance
always gets better with an additional parameter, the test deviance is smallest on average for
3 parameters, which is the data-generating model in this case. The deviance out-of-sample
gets worse (increases) with the addition of each parameter after the third. These additional
parameters fit the noise in the additional predictors. So while deviance keeps improving (de-
clining) in the training sample, it gets worse on average in the test sample. The right-hand
plot shows the same relationships for larger samples of N = 100 cases.

The size of the standard deviation bars may surprise you. While it is always true on
average that deviance out-of-sample is worse than deviance in-sample, any individual pair
of train and test samples may reverse the expectation. The reason is that any given training
sample may be highly misleading. And any given testing sample may be unrepresentative.
Keep this fact in mind as we develop devices for comparing models, because this fact should
prevent you from placing too much confidence in analysis of any particular sample. Like all
of statistical inference, there are no guarantees here.

On that note, there is also no guarantee that the “true” data-generating model will have
the smallest average out-of-sample deviance. You can see a symptom of this fact in the de-
viance for the 2 parameter model. That model does worse in prediction than the model with
only 1 parameter, even though the true model does include the additional predictor. This is
because with only N = 20 cases, the imprecision of the estimate for the first predictor pro-
duces more error than just ignoring it. In the right-hand plot, in contrast, there is enough
data to precisely estimate the association between the first predictor and the outcome. Now
the deviance for the 2 parameter model is better than that of the 1 parameter model.

Deviance is an assessment of predictive accuracy, not of truth. The true model, in terms
of which predictors are included, is not guaranteed to produce the best predictions. Likewise
a false model, in terms of which predictors are included, is not guaranteed to produce poor
predictions.

The point of this thought experiment is to demonstrate how deviance behaves, in the-
ory. While deviance on training data always improves with additional predictor variables,
deviance on future data may or may not, depending upon both the true data-generating pro-
cess and how much data is available to precisely estimate the parameters. These facts form
the basis for understanding both regularizing priors and information criteria.

Overthinking: Simulated training and testing. To reproduce FIGURE 7.6, sim.train.test is run
10,000 (1e4) times for each of the 5 models. This code is sufficient to run all of the simulations:

N <= 20
kseq <- 1:5
dev <- sapply( kseq , function(k) {
print(k);
r <- replicate( le4 , sim_train_test( N=N, k=k ) );
c( mean(r[1,]) , mean(r[2,]) , sd(r[1,]) , sd(r[2,]) )
1)

If you use Mac OS or Linux, you can parallelize the simulations by replacing the replicate line with:

r <- mcreplicate( le4 , sim_train_test( N=N, k=k ) , mc.cores=4 )

R code
7.16

R code
7.17
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Set mc. cores to the number of processor cores you want to use for the simulations. Once the sim-
ulations complete, dev will be a 4-by-5 matrix of means and standard deviations. To reproduce the
plot:

plot( 1:5 , dev[1,] , ylim=c( min(dev[1:2,])-5 , max(dev[1:2,])+10 ) ,
xlim=c(1,5.1) , xlab="number of parameters" , ylab="deviance" ,
pch=16 , col=rangi2 )

mtext( concat( "N = ",N ) )

points( (1:5)+0.1 , dev[2,] )

for ( i in kseq ) {
pts_in <- dev[1,i] + c(-1,+1)*dev[3,1]
pts_out <- dev[2,i] + c(-1,+1)*dev[4,1i]
lines( c(i,i) , pts_in , col=rangi2 )
lines( c(i,i)+0.1 , pts_out )

By altering this code, you can simulate many different train-test scenarios. See ?sim_train_test
for additional options.

7.3. Golem taming: regularization

What if I told you that one way to produce better predictions is to make the model worse
at fitting the sample? Would you believe it? In this section, we’ll demonstrate it.

The root of overfitting is a model’s tendency to get overexcited by the training sample.
When the priors are flat or nearly flat, the machine interprets this to mean that every parame-
ter value is equally plausible. As a result, the model returns a posterior that encodes as much
of the training sample—as represented by the likelihood function—as possible.

One way to prevent a model from getting too excited by the training sample is to use a
skeptical prior. By “skeptical,” I mean a prior that slows the rate of learning from the sample.
The most common skeptical prior is a REGULARIZING PRIOR. Such a prior, when tuned
properly, reduces overfitting while still allowing the model to learn the regular features of a
sample. If the prior is too skeptical, however, then regular features will be missed, resulting
in underfitting. So the problem is really one of tuning. But as you’ll see, even mild skepticism
can help a model do better, and doing better is all we can really hope for in the large world,
where no model nor prior is optimal.

In previous chapters, I forced us to revise the priors until the prior predictive distribution
produced only reasonable outcomes. As a consequence, those priors regularized inference.
In very small samples, they would be a big help. Here I want to show you why, using some
more simulations. Consider this Gaussian model:

yi ~ Normal(p;, o)
pi = a + Bx;
a ~ Normal(0, 100)
B ~ Normal(0, 1)
o ~ Exponential(1)
Assume, as is good practice, that the predictor x is standardized so that its standard deviation

is 1 and its mean is zero. Then the prior on « is a nearly flat prior that has no practical effect
on inference, as you've seen in earlier chapters.
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But the prior on 3 is narrower and is meant to regularize. The prior § ~ Normal(0, 1)
says that, before seeing the data, the machine should be very skeptical of values above 2 and
below —2, as a Gaussian prior with a standard deviation of 1 assigns only 5% plausibility to
values above and below 2 standard deviations. Because the predictor variable x is standard-
ized, you can interpret this as meaning that a change of 1 standard deviation in x is very
unlikely to produce 2 units of change in the outcome.

You can visualize this prior in FIGURE 7.7 as the dashed curve. Since more probability
is massed up around zero, estimates are shrunk towards zero—they are conservative. The
other curves are narrower priors that are even more skeptical of parameter values far from
zero. The thin solid curve is a stronger Gaussian prior with a standard deviation of 0.5. The
thick solid curve is even stronger, with a standard deviation of only 0.2.

How strong or weak these skeptical priors will be in practice depends upon the data
and model. So let’s explore a train-test example, similar to what you saw in the previous
section (FIGURE 7.6). This time we'll use the regularizing priors pictured in FIGURE 7.7,
instead of flat priors. For each of five different models, we simulate 10,000 times for each of
the three regularizing priors above. FIGURE 7.8 shows the results. The points are the same
flat-prior deviances as in the previous section: blue for training deviance and black for test
deviance. The lines show the train and test deviances for the different priors. The blue lines
are training deviance and the black lines test deviance. The style of the lines correspond to
those in FIGURE 7.7.

Focus on the left-hand plot, where the sample size is N = 20, for the moment. The
training deviance always increases—gets worse—with tighter priors. The thick blue trend is
substantially larger than the others, and this is because the skeptical prior prevents the model
from adapting completely to the sample. But the test deviances, out-of-sample, improve (get
smaller) with the tighter priors. The model with three parameters is still the best model
out-of-sample, and the regularizing priors have little impact on its deviance.

But also notice that as the prior gets more skeptical, the harm done by an overly complex
model is greatly reduced. For the Normal(0, 0.2) prior (thick line), the models with 4 and 5
parameters are barely worse than the correct model with 3 parameters. If you can tune the
regularizing prior right, then overfitting can be greatly reduced.
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FIGURE 7.8. Regularizing priors and out-of-sample deviance. The points in
both plots are the same as in FIGURE 7.6. The lines show training (blue)
and testing (black) deviance for the three regularizing priors in FIGURE 7.7.
Dashed: Each beta-coefficient is given a Normal(0, 1) prior. Thin solid:
Normal(0, 0.5). Thick solid: Normal(0, 0.2).

Now focus on the right-hand plot, where sample size is N = 100. The priors have much
less of an effect here, because there is so much more evidence. The priors do help. But
overfitting was less of a concern to begin with, and there is enough information in the data
to overwhelm even the Normal(0, 0.2) prior (thick line).

Regularizing priors are great, because they reduce overfitting. But if they are too skep-
tical, they prevent the model from learning from the data. When you encounter multilevel
models in Chapter 13, you'll see that their central device is to learn the strength of the prior
from the data itself. So you can think of multilevel models as adaptive regularization, where
the model itself tries to learn how skeptical it should be.

Rethinking: Ridge regression. Linear models in which the slope parameters use Gaussian priors,
centered at zero, are sometimes known as RIDGE REGRESSION. Ridge regression typically takes as
input a precision A that essentially describes the narrowness of the prior. A > 0 results in less over-
fitting. However, just as with the Bayesian version, if A is too large, we risk underfitting. While not
originally developed as Bayesian, ridge regression is another example of how a statistical procedure
can be understood from both Bayesian and non-Bayesian perspectives. Ridge regression does not
compute a posterior distribution. Instead it uses a modification of OLS that stitches A into the usual
matrix algebra formula for the estimates. The function lm. ridge, built into R’s MASS library, will fit
linear models this way.

Despite how easy it is to use regularization, most traditional statistical methods use no regular-
ization at all. Statisticians often make fun of machine learning for reinventing statistics under new
names. But regularization is one area where machine learning is more mature. Introductory machine
learning courses usually describe regularization. Most introductory statistics courses do not.
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7.4. Predicting predictive accuracy

All of the preceding suggests one way to navigate overfitting and underfitting: Evaluate
our models out-of-sample. But we do not have the out-of-sample, by definition, so how can
we evaluate our models on it? There are two families of strategies: CROSS-VALIDATION and
INFORMATION CRITERIA. These strategies try to guess how well models will perform, on
average, in predicting new data. We'll consider both approaches in more detail. Despite
subtle differences in their mathematics, they produce extremely similar approximations.

7.4.1. Cross-validation. A popular strategy for estimating predictive accuracy is to actually
test the model’s predictive accuracy on another sample. This is known as CROSS-VALIDATION,
leaving out a small chunk of observations from our sample and evaluating the model on the
observations that were left out. Of course we don’t want to leave out data. So what is usually
done is to divide the sample in a number of chunks, called “folds” The model is asked to
predict each fold, after training on all the others. We then average over the score for each
fold to get an estimate of out-of-sample accuracy. The minimum number of folds is 2. At
the other extreme, you could make each point observation a fold and fit as many models as
you have individual observations. You can perform cross-validation on quap models using
the cv_quap function in the rethinking package.

How many folds should you use? This is an understudied question. A lot of advice states
that both too few and too many folds produce less reliable approximations of out-of-sample
performance. But simulation studies do not reliably find that this is the case.!!® It is ex-
tremely common to use the maximum number of folds, resulting in leaving out one unique
observation in each fold. This is called LEAVE-ONE-OUT CROSS-VALIDATION (often abbrevi-
ated as LOOCV). Leave-one-out cross-validation is what we’ll consider in this chapter, and
it is the default in cv_quap.

The key trouble with leave-one-out cross-validation is that, if we have 1000 observations,
that means computing 1000 posterior distributions. That can be time consuming. Luckily,
there are clever ways to approximate the cross-validation score without actually running the
model over and over again. One approach is to use the “importance” of each observation to
the posterior distribution. What “importance” means here is that some observations have
a larger impact on the posterior distribution—if we remove an important observation, the
posterior changes more. Other observations have less impact. It is a benign aspect of the uni-
verse that this importance can be estimated without refitting the model.''* The key intuition
is that an observation that is relatively unlikely is more important than one that is relatively
expected. When your expectations are violated, you should change your expectation more.
Bayesian inference works the same way. This importance is often called a weight, and these
weights can be used to estimate a model’s out-of-sample accuracy.

Smuggling a bunch of mathematical details under the carpet, this strategy results in a
useful approximation of the cross-validation score. The approximation goes by the awkward
name of PARETO-SMOOTHED IMPORTANCE SAMPLING CROSS-VALIDATION.!!® We'll call
it PSIS for short, and the PSIS function will compute it. PSIS uses importance sampling,
which just means that it uses the importance weights approach described in the previous
paragraph. The Pareto-smoothing is a technique for making the importance weights more
reliable. Pareto is the name of a small town in northern Italy. But it is also the name of
an Italian scientist, Vilfredo Pareto (1848-1923), who made many important contributions.
One of these is known as the PARETO DISTRIBUTION. PSIS uses this distribution to derive



218 7. ULYSSES’ COMPASS

more reliable cross-validation score, without actually doing any cross-validation. If you want
a little more detail, see the Overthinking box below.

The best feature of PSIS is that it provides feedback about its own reliability. It does this
by noting particular observations with very high weights that could make the PSIS score
inaccurate. We'll look at this in much more detail both later in this chapter and in several
examples in the remainder of the book.

Another nice feature of cross-validation and PSIS as an approximation is that it is com-
puted point by point. This pointwise nature provides an approximate—sometimes very
approximate—estimate of the standard error of our estimate of out-of-sample deviance. To
compute this standard error, we calculate the CV or PSIS score for each observation and then
exploit the central limit theorem to provide a measure of the standard error:

Spsis = 1/ N'var(psis;)

where N is the number of observations and psis; is the PSIS estimate for observation i. If this
doesn’t quite make sense, be sure to look at the code box at the end of this section (page 222).

Overthinking: Pareto-smoothed cross-validation. Cross-validation estimates the out-of-sample
LOG-POINTWISE-PREDICTIVE-DENSITY (lppd, page 210). If you have N observations and fit the
model N times, dropping a single observation y; each time, then the out-of-sample lppd is the sum
of the average accuracy for each omitted y;.
NS
Ippdey = ; 3 ; log Pr(yi|0_;)

where s indexes samples from a Markov chain and 6_; ; is the s-th sample from the posterior distri-
bution computed for observations omitting y;.

Importance sampling replaces the computation of N posterior distributions by using an estimate
of the importance of each i to the posterior distribution. We draw samples from the full posterior dis-
tribution p(#|y), but we want samples from the reduced leave-one-out posterior distribution p(6|y_;).
So we re-weight each sample s by the inverse of the probability of the omitted observation:'!®

1
r(6s) =
) =55

This weight is only relative, but it is normalized inside the calculation like this:

N S
Ippd;s = Z log PR ’;(95)17()’1|95>
i=1 Zs:l 1’(95 )
And that is the importance sampling estimate of out-of-sample Ippd.
We haven’t done any Pareto smoothing yet, however. The reason we need to is that the weights
r(6;) can be unreliable. In particular, if any r(6) is too relatively large, it can ruin the estimate of Ippd
by dominating it. One strategy is to truncate the weights so that none are larger than a theoretically
derived limit. This helps, but it also biases the estimate. What PSIS does is more clever. It exploits the
fact that the distribution of weights should have a particular shape, under some regular conditions.
The largest weights should follow a generalized PARETO DISTRIBUTION:
1

p(rlu,0,k) = o (1 + k(r — u)o ™)
where u is the location parameter, o is the scale, and k is the shape. For each observation y;, the largest
weights are used to estimate a Pareto distribution and then smoothed using that Pareto distribution.
This works quite well, both in theory and practice.'’” The best thing about the approach however
is that the estimates of k provide information about the reliability of the approximation. There will
be one k value for each y;. Larger k values indicate more influential points, and if k > 0.5, then the
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Pareto distribution has infinite variance. A distribution with infinite variance has a very thick tail.
Since we are trying to smooth the importance weights with the distribution’s tail, an infinite variance
makes the weights harder to trust. Still, both theory and simulation suggest PSIS’s weights perform
well as long as k < 0.7. When we start using PSIS, you'll see warnings about large k values. These are
very useful for identifying influential observations.

7.4.2. Information criteria. The second approach is the use of INFORMATION CRITERIA
to compute an expected score out of sample. Information criteria construct a theoretical
estimate of the relative out-of-sample KL divergence.

If you look back at FIGURE 7.8, there is a curious pattern in the distance between the
points (showing the train-test pairs with flat priors): The difference is approximately twice
the number of parameters in each model. The difference between training deviance and
testing deviance is almost exactly 2 for the first model (with 1 parameter) and about 10 for
the last (with 5 parameters). This is not a coincidence but rather one of the coolest results in
machine learning: For ordinary linear regressions with flat priors, the expected overfitting
penalty is about twice the number of parameters.

This is the phenomenon behind INFORMATION CRITERIA. The best known information
criterion is the AKATKE INFORMATION CRITERION, abbreviated AIC.!'® AIC provides a sur-
prisingly simple estimate of the average out-of-sample deviance:

AIC = Dyyain + 2p = —2lppd + 2p

where p is the number of free parameters in the posterior distribution. As the 2 is just there
for scaling, what AIC tells us is that the dimensionality of the posterior distribution is a
natural measure of the model’s overfitting tendency. More complex models tend to overfit
more, directly in proportion to the number of parameters.

AIC is of mainly historical interest now. Newer and more general approximations exist
that dominate AIC in every context. But Akaike deserves tremendous credit for the initial
inspiration. See the box further down for more details. AIC is an approximation that is
reliable only when:

(1) The priors are flat or overwhelmed by the likelihood.
(2) The posterior distribution is approximately multivariate Gaussian.
(3) The sample size N is much greater!!® than the number of parameters k.

Since flat priors are hardly ever the best priors, we’ll want something more general. And when
you get to multilevel models, the priors are never flat by definition. There is a more general
criterion, the DEVIANCE INFORMATION CRITERION (DIC). DIC is okay with informative
priors, but still assumes that the posterior is multivariate Gaussian and that N > k.!2°

Overthinking: The Akaike inspiration criterion. The Akaike Information Criterion is a truly ele-
gant result. Hirotugu Akaike (FR#5AR, 1927-2009) explained how the insight came to him: “On
the morning of March 16, 1971, while taking a seat in a commuter train, I suddenly realized that the
parameters of the factor analysis model were estimated by maximizing the likelihood and that the
mean value of the logarithmus of the likelihood was connected with the Kullback-Leibler information
number.”'?! Must have been some train. What was at the heart of Akaike’s realization? Mechanically,
deriving AIC means writing down the goal, which is the expected KL divergence, and then making
approximations. The expected bias turns out to be proportional to the number of parameters, pro-
vided a number of assumptions are approximately correct.
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We'll focus on a criterion that is more general than both AIC and DIC. Sumio Watanabe’s
(831478 %) WIDELY APPLICABLE INFORMATION CRITERION (WAIC) makes no assump-
tion about the shape of the posterior.!?? It provides an approximation of the out-of-sample
deviance that converges to the cross-validation approximation in a large sample. But in a
finite sample, it can disagree. It can disagree because it has a different target—it isn't trying
to approximate the cross-validation score, but rather guess the out-of-sample KL divergence.
In the large-sample limit, these tend to be the same.

How do we compute WAIC? Unfortunately, it’s generality comes at the expense of a more
complicated formula. But really it just has two pieces, and you can compute both directly
from samples from the posterior distribution. WAIC is just the log-posterior-predictive-
density (Ippd, page 210) that we calculated earlier plus a penalty proportional to the variance
in the posterior predictions:

WAIC(y, ) = —2(lppd — 3" vary log p(l6) )

penalty term

where y is the observations and O is the posterior distribution. The penalty term means,
“compute the variance in log-probabilities for each observation i, and then sum up these
variances to get the total penalty” So you can think of each observation as having its own
personal penalty score. And since these scores measure overfitting risk, you can also assess
overfitting risk at the level of each observation.

Because of the analogy to Akaike’s original criterion, the penalty term in WAIC is some-
times called the EFFECTIVE NUMBER OF PARAMETERS, labeled pya;c. This label makes histor-
ical sense, but it doesn’t make much mathematical sense. As we'll see as the book progresses,
the overfitting risk of a model has less to do with the number of parameters than with how
the parameters are related to one another. When we get to multilevel models, adding param-
eters to the model can actually reduce the “effective number of parameters” Like English
language spelling, the field of statistics is full of historical baggage that impedes learning.
No one chose this situation. It’s just cultural evolution. I'll try to call the penalty term “the
overfitting penalty” But if you see it called the effective number of parameters elsewhere,
you'll know it is the same thing.

The function WAIC in the rethinking package will compute WAIC for a model fit with
quap or ulam or rstan (which we'll use later in the book). If you want to see a didactic
implementation of computing Ippd and the penalty term, see the Overthinking box at the
end of this section. Seeing the mathematical formula above as computer code may be what
you need to understand it.

Like PSIS, WAIC is pointwise. Prediction is considered case-by-case, or point-by-point,
in the data. Several things arise from this. First, WAIC also has an approximate standard
error (see calculation in the Overthinking box on page 222). Second, since some observa-
tions have stronger influence on the posterior distribution, WAIC notes this in its pointwise
penalty terms. Third, just like cross-validation and PSIS, because WAIC allows splitting up
the data into independent observations, it is sometimes hard to define. Consider for example
a model in which each prediction depends upon a previous observation. This happens, for
example, in a time series. In a time series, a previous observation becomes a predictor vari-
able for the next observation. So it’s not easy to think of each observation as independent or
exchangeable. In such a case, you can of course compute WAIC as if each observation were
independent of the others, but it’s not clear what the resulting value means.
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This caution raises a more general issue with all strategies to guess out-of-sample accu-
racy: Their validity depends upon the predictive task you have in mind. And not all predic-
tion can reasonably take the form that we've been assuming for the train-test simulations in
this chapter. When we consider multilevel models, this issue will arise again.

Rethinking: Information criteria and consistency. As mentioned previously, information criteria
like AIC and WAIC do not always assign the best expected Dy to the “true” model. In statisti-
cal jargon, information criteria are not CONSISTENT for model identification. These criteria aim to
nominate the model that will produce the best predictions, as judged by out-of-sample deviance, so
it shouldn’t surprise us that they do not also do something that they aren’t designed to do. Other
metrics for model comparison are however consistent. So are information criteria broken?

They are not broken, if you care about prediction.!?* Issues like consistency are nearly always
evaluated asymptotically. This means that we imagine the sample size N approaching infinity. Then
we ask how a procedure behaves in this large-data limit. With practically infinite data, AIC and
WAIC and cross-validation will often select a more complex model, so they are sometimes accused
of “overfitting” But at the large-data limit, the most complex model will make predictions identical
to the true model (assuming it exists in the model set). The reason is that with so much data every
parameter can be very precisely estimated. And so using an overly complex model will not hurt
prediction. For example, as sample size N — oo the model with 5 parameters in FIGURE 7.8 will tell
you that the coefficients for predictors after the second are almost exactly zero. Therefore failing to
identify the “correct” model does not hurt us, at least not in this sense. Furthermore, in the natural
and social sciences the models under consideration are almost never the data-generating models. It
makes little sense to attempt to identify a “true” model.

Rethinking: What about BIC and Bayes factors? The BAYESIAN INFORMATION CRITERION, abbre-
viated BIC and also known as the Schwarz criterion,'* is more commonly juxtaposed with AIC. The
choice between BIC or AIC (or neither!) is not about being Bayesian or not. There are both Bayesian
and non-Bayesian ways to motivate both, and depending upon how strict one wishes to be, neither
is Bayesian. BIC is related to the logarithm of the average likelihood of a linear model. The average
likelihood is the denominator in Bayes™ theorem, the likelihood averaged over the prior. There is a
venerable tradition in Bayesian inference of comparing average likelihoods as a means to comparing
models. A ratio of average likelihoods is called a BAYEs FACTOR. On the log scale, these ratios are
differences, and so comparing differences in average likelihoods resembles comparing differences in
information criteria. Since average likelihood is averaged over the prior, more parameters induce a
natural penalty on complexity. This helps guard against overfitting, even though the exact penalty is
not the same as with information criteria.

Many Bayesian statisticians dislike the Bayes factor approach,'* and all admit that there are
technical obstacles to its use. One problem is that computing average likelihood is hard. Even when
you can compute the posterior, you may not be able to estimate the average likelihood. Another
problem is that, even when priors are weak and have little influence on posterior distributions within
models, priors can have a huge impact on comparisons between models.

It’s important to realize, though, that the choice of Bayesian or not does not also decide between
information criteria or Bayes factors. Moreover, there’s no need to choose, really. We can always
use both and learn from the ways they agree and disagree. And both information criteria and Bayes
factors are purely predictive criteria that will happily select confounded models. They know nothing
about causation.
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Overthinking: WAIC calculations. To see how the WAIC calculations actually work, consider a
simple regression fit with quap:

R%??S data(cars)
m <- quap(
alist(
dist ~ dnorm(mu,sigma),
mu <- a + b*speed,
a ~ dnorm(0,100),
b ~ dnorm(0,10),
sigma ~ dexp(l)
) , data=cars )
set.seed(94)
post <- extract.samples(m,n=1000)
WEe'll need the log-likelihood of each observation i at each sample s from the posterior:
R code

7.20 n_samples <- 1000
logprob <- sapply( 1l:n_samples ,
function(s) {
mu <- post$a[s] + post$b[s]xcars$speed
dnorm( cars$dist , mu , post$sigmal[s] , log=TRUE )
1)

You end up with a 50-by-1000 matrix of log-likelihoods, with observations in rows and samples in
columns. Now to compute lppd, the Bayesian deviance, we average the samples in each row, take
the log, and add all of the logs together. However, to do this with precision, we need to do all of the
averaging on the log scale. This is made easy with a function log_sum_exp, which computes the log
of a sum of exponentiated terms. Then we can just subtract the log of the number of samples. This
computes the log of the average.

R code
791 n_cases <- nrow(cars)

lppd <- sapply( 1:n_cases , function(i) log_sum_exp(logprob[i,]) - log(n_samples) )

Typing sum(1ppd) will give you Ippd, as defined in the main text. Now for the penalty term, pwarc.
This is more straightforward, as we just compute the variance across samples for each observation,
then add these together:

R
%?g; pWAIC <- sapply( 1l:n_cases , function(i) var(logprob[i,]) )

And sum(pWAIC) returns pwaic, as defined in the main text. To compute WAIC:

RC7(.)§§ -2%( sum(lppd) - sum(pWAIC) )

[1] 423.3154

Compare to the output of the WAIC function. There will be simulation variance, because of how the
samples are drawn from the quap fit. But that variance remains much smaller than the standard error
of WAIC itself. You can compute the standard error by computing the square root of number of cases
multiplied by the variance over the individual observation terms in WAIC:

R code .
724 Wwaic_vec <- -2x( lppd - pWAIC )

sqrt( n_casesx*var(waic_vec) )
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[1] 17.81628

As models get more complicated, all that usually changes is how the log-probabilities, Logprob, are
computed.

Note that each individual observation has its own penalty term in the pWAIC vector we calculated
above. This provides an interesting opportunity to study how different observations contribute to
overfitting. You can get the same vectorized pointwise output from the WAIC function by using the
pointwise=TRUE argument.

7.4.3. Comparing CV, PSIS, and WAIC. With definitions of cross-validation, PSIS, and
WAIC in hand, let’s conduct another simulation exercise. This will let us visualize the esti-
mates of out-of-sample deviance that these criteria provide, in the same familiar context as
earlier sections. Our interest for now is in seeing how well the criteria approximate out-of-
sample accuracy. Can they guess the overfitting risk?

FIGURE 7.9 shows the results of 1000 simulations each for the five familiar models with
between 1 and 5 parameters, simulated under two different sets of priors and two different
sample sizes. The plot is complicated. But taking it one piece at a time, all the parts are
already familiar. Focus for now just on the top-left plot, where N = 20. The vertical axis is
the out-of-sample deviance (—2 x lppd). The open points show the average out-of-sample
deviance for models fit with flat priors. The filled points show the average out-of-sample
deviance for models fit with regularizing priors with a standard deviation of 0.5. Notice that
the regularizing priors overfit less, just as you saw in the previous section about regularizing
priors. So that isn't new.

We are interested now in how well CV, PSIS, and WAIC approximate these points. Still
focusing on the top-left plot in FIGURE 7.9, there are trend lines for each criterion. Solid
black trends show WAIC. Solid blue trends show full cross-validation, computed by fitting
the model N times. The dashed blue trends are PSIS. Notice that all three criteria do a good
job of guessing the average out-of-sample score, whether the models used flat (upper trends)
or regularizing (lower trends) priors. Provided the process generating data remains the same,
it really is possible to use a single sample to guess the accuracy of our predictions.

While all three criteria get the expected out-of-sample deviance approximately correct,
it is also true that in any particular sample they usually miss it by some amount. So we
should look at the average error as well. The upper-right plot makes the average error of each
measure easier to see. Now the vertical axis is the average absolute difference between the
out-of-sample deviance and each criterion. WAIC (black trend) is slightly better on average.
The bottom row repeats these plots for a larger sample size, N = 100. With a sample this
large, in a family of models this simple, all three criteria become identical.

PSIS and WAIC perform very similarly in the context of ordinary linear models.!?® If
there are important differences, they lie in other model types, where the posterior distribu-
tion is not approximately Gaussian or in the presence of observations that strongly influence
the posterior. CV and PSIS have higher variance as estimators of the KL divergence, while
WAIC has greater bias. So we should expect each to be slightly better in different contexts.'?”
However, in practice any advantage may be much smaller than the expected error. Watan-
abe recommends computing both WAIC and PSIS and contrasting them. If there are large
differences, this implies one or both criteria are unreliable.

Estimation aside, PSIS has a distinct advantage in warning the user about when it is
unreliable. The k values that PSIS computes for each observation indicate when the PSIS
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FIGURE 7.9. WAIC and cross-validation as estimates of the out-of-sample
deviance. The top row displays 1000 train-test simulations with N = 20.
The bottom row shows 1000 simulations with N = 1000. In each plot, there
are two sets of trends. The open points are unregularized. The filled points
are for regularizing o = 0.5 priors. Left: The vertical axis is absolute de-
viance. Points are the average test deviance. The black line is the average
WAIC estimate. Blue is the leave-one-out cross-validation (CV) score, and
dashed blue is the PSIS approximation of the cross-validation score. Right:
The same data, but now shown on the scale of average error in approximat-
ing the test deviance.

score may be unreliable, as well as identify which observations are at fault. We'll see later
how useful this can be.

Rethinking: Diverse prediction frameworks. The train-test gambit we've been using in this chapter
entails predicting a test sample of the same size and nature as the training sample. This most certainly
does not mean that information criteria can only be used when we plan to predict a sample of the
same size as training. The same size just scales the out-of-sample deviance similarly. It is the distance
between the models that is useful, not the absolute value of the deviance. Nor do cross-validation and
information criteria require that the data generating model be one of the models being considered.
That was true in our simulations. But it isn’t a requirement for them to help in identifying good
models for prediction.
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But the train-test prediction task is not representative of everything we might wish to do with
models. For example, some statisticians prefer to evaluate predictions using a PREQUENTIAL frame-
work, in which models are judged on their accumulated learning error over the training sample.!?
And once you start using multilevel models, “prediction” is no longer uniquely defined, because the
test sample can differ from the training sample in ways that forbid use of some the parameter esti-
mates. We'll worry about that issue in Chapter 13.

Perhaps a larger concern is that our train-test thought experiment pulls the test sample from
exactly the same process as the training sample. This is a kind of uniformitarian assumption, in which
future data are expected to come from the same process as past data and have the same rough range of
values. This can cause problems. For example, suppose we fit a regression that predicts height using
body weight. The training sample comes from a poor town, in which most people are pretty thin.
The relationship between height and weight turns out to be positive and strong. Now also suppose
our prediction goal is to guess the heights in another, much wealthier, town. Plugging the weights
from the wealthy individuals into the model fit to the poor individuals will predict outrageously tall
people. The reason is that, once weight becomes large enough, it has essentially no relationship with
height. WAIC will not automatically recognize nor solve this problem. Nor will any other isolated
procedure. But over repeated rounds of model fitting, attempts at prediction, and model criticism, it
is possible to overcome this kind of limitation. As always, statistics is no substitute for science.

7.5. Model comparison

Lets review the original problem and the road so far. When there are several plausi-
ble (and hopefully un-confounded) models for the same set of observations, how should we
compare the accuracy of these models? Following the fit to the sample is no good, because
fit will always favor more complex models. Information divergence is the right measure of
model accuracy, but even it will just lead us to choose more and more complex and wrong
models. We need to somehow evaluate models out-of-sample. How can we do that? A meta-
model of forecasting tells us two important things. First, flat priors produce bad predictions.
Regularizing priors—priors which are skeptical of extreme parameter values—reduce fit to
sample but tend to improve predictive accuracy. Second, we can get a useful guess of predic-
tive accuracy with the criteria CV, PSIS, and WAIC. Regularizing priors and CV/PSIS/WAIC
are complementary. Regularization reduces overfitting, and predictive criteria measure it.

That's the road so far, the conceptual journey. And thats the hardest part. Using tools
like PSIS and WAIC is much easier than understanding them. Which makes them quite
dangerous. That is why this chapter has spent so much time on foundations, without doing
any actual data analysis.

Now let’s do some analysis. How do we use regularizing priors and CV/PSIS/WAIC?
A very common use of cross-validation and information criteria is to perform MODEL SE-
LECTION, which means choosing the model with the lowest criterion value and then dis-
carding the others. But you should never do this. This kind of selection procedure dis-
cards the information about relative model accuracy contained in the differences among the
CV/PSIS/WAIC values. Why are the differences useful? Because sometimes the differences
are large and sometimes they are small. Just as relative posterior probability provides ad-
vice about how confident we might be about parameters (conditional on the model), relative
model accuracy provides advice about how confident we might be about models (conditional
on the set of models compared).
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Another reason to never select models based upon WAIC/CV/PSIS alone is that we
might care about causal inference. Maximizing expected predictive accuracy is not the same
as inferring causation. Highly confounded models can still make good predictions, at least
in the short term. They won't tell us the consequences of an intervention, but they might
help us forecast. So we need to be clear about our goals and not just toss variables into the
causal salad and let WAIC select our meal.

So what good are these criteria then? They measure expected predictive value of a vari-
able on the right scale, accounting for overfitting. This helps in testing model implications,
given a set of causal models. They also provide a way to measure the overfitting tendency
of a model, and that helps us both design models and understand how statistical inference
works. Finally, minimizing a criterion like WAIC can help in designing models, especially
in tuning parameters in multilevel models.

So instead of model selection, we'll focus on MODEL COMPARISON. This is a more general
approach that uses multiple models to understand both how different variables influence
predictions and, in combination with a causal model, implied conditional independencies
among variables help us infer causal relationships.

We'll work through two examples. The first emphasizes the distinction between compar-
ing models for predictive performance versus comparing them in order to infer causation.
The second emphasizes the pointwise nature of model comparison and what inspecting in-
dividual points can reveal about model performance and mis-specification. This second ex-
ample also introduces a more robust alternative to Gaussian regression.

7.5.1. Model mis-selection. We must keep in mind the lessons of the previous chapters: In-
ferring cause and making predictions are different tasks. Cross-validation and WAIC aim
to find models that make good predictions. They don't solve any causal inference problem.
If you select a model based only on expected predictive accuracy, you could easily be con-
founded. The reason is that backdoor paths do give us valid information about statistical
associations in the data. So they can improve prediction, as long as we don’t intervene in the
system and the future is like the past. But recall that our working definition of knowing a
cause is that we can predict the consequences of an intervention. So a good PSIS or WAIC
score does not in general indicate a good causal model.

For example, recall the plant growth example from the previous chapter. The model that
conditions on fungus will make better predictions than the model that omits it. If you return
to that section (page 171) and run models m6.6, m6.7, and m6.8 again, we can compare
their WAIC values. To remind you, mé6.6 is the model with just an intercept, m6.7 is the
model that includes both treatment and fungus (the post-treatment variable), and m6. 8 is
the model that includes treatment but omits fungus. It's m6 . 8 that allows us to correctly infer
the causal influence of treatment.

To begin, let’s use the WAIC convenience function to calculate WAIC for mé6. 7:

set.seed(11)
WAIC( m6.7 )

WAIC lppd penalty std_err
1 361.4511 -177.1724 3.5532 14.17035
The first value is the guess for the out-of-sample deviance. The other values are (in order):
lppd, the effective number of parameters penalty, and the standard error of the WAIC value.
The Overthinking box in the previous section shows how to calculate these numbers from



7.5. MODEL COMPARISON 227

scratch. To make it easier to compare multiple models, the rethinking package provides a
convenience function, compare:

set.seed(77)
compare( m6.6 , m6.7 , m6.8 , func=WAIC )

WAIC SE dWAIC dSE pWAIC weight

m6.7 361.9 14.26 0.0 NA 3.8 1
m6.8 402.8 11.28 40.9 10.48 2.6 (0]
m6.6 405.9 11.66 44.0 12.23 1.6 (0]

PSIS will give you almost identical values. You can add func=PSIS to the compare call to
check. What do all of these numbers mean? Each row is a model. Columns from left to right
are: WAIC, standard error (SE) of WAIC, difference of each WAIC from the best model,
standard error (dSE) of this difference, prediction penalty (pWAIC), and finally the Akaike
weight. Each of these needs a lot more explanation.

The first column contains the WAIC values. Smaller values are better, and the models are
ordered by WAIC, from best to worst. The model that includes the fungus variable has the
smallest WAIC, as promised. The pwAIC column is the penalty term of WAIC. These values
are close to, but slightly below, the number of dimensions in the posterior of each model,
which is to be expected in linear regressions with regularizing priors. These penalties are
more interesting later on in the book.

The dWAIC column is the difference between each model’s WAIC and the best WAIC in
the set. So it’s zero for the best model and then the differences with the other models tell
you how far apart each is from the top model. So mé6. 7 is about 40 units of deviance smaller
than both other models. The intercept model, m6.6, is 3 units worse than m6.8. Are these
big differences or small differences? One way to answer that is to ask a clearer question:
Are the models easily distinguished by their expected out-of-sample accuracy? To answer
that question, we need to consider the error in the WAIC estimates. Since we don't have the
target sample, these are just guesses, and we know from the simulations that there is a lot of
variation in WAIC’s error.

That is what the two standard error columns, SE and dSE, are there to help us with. SE
is the approximate standard error of each WAIC. In a very approximate sense, we expect
the uncertainty in out-of-sample accuracy to be normally distributed with mean equal to
the reported WAIC value and a standard deviation equal to the standard error. When the
sample is small, this approximation tends to dramatically underestimate the uncertainty. But
it is still better than older criteria like AIC, which provide no way to gauge their uncertainty.

Now to judge whether two models are easy to distinguish, we don't use their standard
errors but rather the standard error of their difference. What does that mean? Just like
each WAIC value, each difference in WAIC values also has a standard error. To compute the
standard error of the difference between models m6.7 and mé. 8, we just need the pointwise
breakdown of the WAIC values:

set.seed(91)

waic_m6.7 <- WAIC( m6.7 , pointwise=TRUE )$WAIC
waic_m6.8 <- WAIC( m6.8 , pointwise=TRUE )$WAIC
n <- length(waic_m6.7)

diff_m6.7_m6.8 <- waic_m6.7 - waic_m6.8

R code
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sqrt( nxvar( diff_m6.7_m6.8 ) )

[1] 10.35785

This is the value in the second row of the compare table. It’s slightly different, only because
of simulation variance. The difference between the models is 40.9 and the standard error is
about 10.4. If we imagine the 99% (corresponding to a z-score of about 2.6) interval of the
difference, it’ll be about:

40.0 + c(-1,1)*10.4%*2.6

[1] 12.96 67.04

So yes, these models are very easy to distinguish by expected out-of-sample accuracy. Model
m6.7 is a lot better. You might be able to see all of this better, if we plot the compare table:

plot( compare( m6.6 , m6.7 , m6.8 ) )

WAIC

m6.7 .
m6.8 .
m6.6

[ ]
0]

350 360 370 380 390 400 410 420
deviance

The filled points are the in-sample deviance values. The open points are the WAIC values.
Notice that naturally each model does better in-sample than it is expected to do out-of-
sample. The line segments show the standard error of each WAIC. These are the values in
the column labeled SE in the table above. So you can probably see how much better m6.7
is than m6.8. What we really want however is the standard error of the difference in WAIC
between the two models. That is shown by the lighter line segment with the triangle on it,
between m6.7 and m6. 8.

What does all of this mean? It means that WAIC cannot be used to infer causation.
We know, because we simulated these data, that the treatment matters. But because fungus
mediates treatment—it is on a pipe between treatment and the outcome—once we condition
on fungus, treatment provides no additional information. And since fungus is more highly
correlated with the outcome, a model using it is likely to predict better. WAIC did its job. Its
job is not to infer causation. Its job is to guess predictive accuracy.

That doesn’t mean that WAIC (or CV or PSIS) is useless here. It does provide a useful
measure of the expected improvement in prediction that comes from conditioning on the
fungus. Although the treatment works, it isn’t 100% effective, and so knowing the treatment
is no substitute for knowing whether fungus is present.

Similarly, we can ask about the difference between models m6. 8, the model with treat-
ment only, and model m6 . 6, the intercept model. Model mé6 . 8 provides pretty good evidence
that the treatment works. You can inspect the posterior again, if you have forgotten. But
WAIC thinks these two models are quite similar. Their difference is only 3 units of deviance.
Let’s calculate the standard error of the difference, to highlight the issue:
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set.seed(92)

waic_m6.6 <- WAIC( m6.6 , pointwise=TRUE )$WAIC
diff_m6.6_m6.8 <- waic_m6.6 - waic_mé6.8

sqrt( nxvar( diff_m6.6_m6.8 ) )

[1] 4.858914

The compare table doesn’t show this value, but it did calculate it. To see it, you need the dSE
slot of the return:

set.seed(93)
compare( m6.6 , m6.7 , m6.8 )@dSE

mé.6 mé.7 m6.8
mé .6 NA 12.20638 4.934353
m6.7 12.206380 NA 10.426576
m6.8 4.934353 10.42658 NA

This matrix contains all of the pairwise difference standard errors for the models you com-
pared. Notice that the standard error of the difference for m6.6 and m6. 8 is bigger than the
difference itself. We really cannot easily distinguish these models on the basis of WAIC. Note
that these contrasts are possibly less reliable than the standard errors on each model. There
isn’t much analytical work on these contrasts yet, but before long there should be.!?

Does this mean that the treatment doesn’t work? Of course not. We know that it works.
We simulated the data. And the posterior distribution of the treatment effect, bt in m6.8,
is reliably positive. But it isn’t especially large. So it doesn’t do much alone to improve pre-
diction of plant height. There are just too many other sources of variation. This result just
echoes the core fact about WAIC (and CV and PSIS): It guesses predictive accuracy, not
causal truth. A variable can be causally related to an outcome, but have little relative im-
pact on it, and WAIC will tell you that. That is what is happening in this case. We can use
WAIC/CV/PSIS to measure how big a difference some variable makes in prediction. But we
cannot use these criteria to decide whether or not some effect exists. We need the posterior
distributions of multiple models, maybe examining the implied conditional independencies
of a relevant causal graph, to do that.

The last element of the compare table is the column we skipped over, weight. These
values are a traditional way to summarize relative support for each model. They always sum
to 1, within a set of compared models. The weight of a model i is computed as:

e exp(—0.54A))
1 >_jexp(—0.54)

where A, is the difference between model i’s WAIC value and the best WAIC in the set.
These are the dWAIC values in the table. These weights can be a quick way to see how big the
differences are among models. But you still have to inspect the standard errors. Since the
weights don’t reflect the standard errors, they are simply not sufficient for model comparison.
Weights are also used in MODEL AVERAGING. Model averaging is a family of methods for
combining the predictions of multiple models. For the sake of space, we won't cover it in
this book. But see the endnote for some places to start.!*°
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Rethinking: WAIC metaphors. Here are two metaphors to help explain the concepts behind using
WAIC (or another information criterion) to compare models.

Think of models as race horses. In any particular race, the best horse may not win. But it's more
likely to win than is the worst horse. And when the winning horse finishes in half the time of the
second-place horse, you can be pretty sure the winning horse is also the best. But if instead it’s a photo-
finish, with a near tie between first and second place, then it is much harder to be confident about
which is the best horse. WAIC values are analogous to these race times—smaller values are better,
and the distances between the horses/models are informative. Akaike weights transform differences
in finishing time into probabilities of being the best model/horse on future data/races. But if the track
conditions or jockey changes, these probabilities may mislead. Forecasting future racing/prediction
based upon a single race/fit carries no guarantees.

Think of models as stones thrown to skip on a pond. No stone will ever reach the other side
(perfect prediction), but some sorts of stones make it farther than others, on average (make better
test predictions). But on any individual throw, lots of unique conditions avail—the wind might pick
up or change direction, a duck could surface to intercept the stone, or the thrower’s grip might slip. So
which stone will go farthest is not certain. Still, the relative distances reached by each stone therefore
provide information about which stone will do best on average. But we can’t be too confident about
any individual stone, unless the distances between stones is very large.

Of course neither metaphor is perfect. Metaphors never are. But many people find these to be
helpful in interpreting information criteria.

7.5.2. Outliers and other illusions. In the divorce example from Chapter 5, we saw in the
posterior predictions that a few States were very hard for the model to retrodict. The State
of Idaho in particular was something of an OUTLIER (page 5.5). Individual points like Idaho
tend to be very influential in ordinary regression models. Let’s see how PSIS and WAIC
represent that importance. Begin by refitting the three divorce models from Chapter 5.

library(rethinking)

data(WaffleDivorce)

d <- WaffleDivorce

d$A <- standardize( dsMedianAgeMarriage )
d$D <- standardize( ds$Divorce )

dSM <- standardize( d$Marriage )

m5.1 <- quap(

alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + bA x A,
a ~ dnorm( 0 , 0.2 ) ,
bA ~ dnorm( 06 , 0.5 ) ,
sigma ~ dexp( 1 )

) , data = d )

m5.2 <- quap(
alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + bM *x M ,
a ~ dnorm( 0 , 0.2 ) ,
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bM ~ dnorm( @ , 0.5 ) ,
sigma ~ dexp( 1 )
) , data = d )

m5.3 <- quap(

alist(
D ~ dnorm( mu , sigma ) ,
mu <- a + bMxM + bAxA |
a ~ dnorm( 0 , 0.2 ) ,
bM ~ dnorm( 0 ,
bA ~ dnorm( 0 ,
sigma ~ dexp( 1

) , data = d )

Look at the posterior summaries, just to remind yourself that marriage rate (M) has little
association with divorce rate (D), once age at marriage (A) is included in m5.3. Now let’s
compare these models using PSIS:

set.seed(24071847)
compare( m5.1 , m5.2 , m5.3 , func=PSIS )

PSIS SE dPSIS dSE pPSIS weight
m5.1 127.6 14.69 0.0 NA 4.7 0.71
m5.3 129.4 15.10 1.8 0.90 5.9 0.29
m5.2 140.6 11.21 13.1 10.82 3.8 0.00

There are two important things to consider here. First note that the model that omits mar-
riage rate, m5. 1, lands on top. This is because marriage rate has very little association with
the outcome. So the model that omits it has slightly better expected out-of-sample perfor-
mance, even though it actually fits the sample slightly worse than m5. 3, the model with both
predictors. The difference between the top two models is only 1.8, with a standard error of
0.9, so the models make very similar predictions. This is the typical pattern, whenever some
predictor has a very small association with the outcome.
Second, in addition to the table above, you should also receive a message:

Some Pareto k values are very high (>1).

This means that the smoothing approximation that PSIS uses is unreliable for some points.
Recall from the section on PSIS that when a point’s Pareto k value is above 0.5, the impor-
tance weight can be unreliable. Furthermore, these points tend to be outliers with unlikely
values, according to the model. As a result, they are highly influential and make it difficult
to estimate out-of-sample predictive accuracy. Why? Because any new sample is unlikely to
contain these same outliers, and since these outliers were highly influential, they could make
out-of-sample predictions worse than expected. WAIC is vulnerable to outliers as well. It
doesn’t have an automatic warning. But it does have a way to measure this risk, through the
estimate of the overfitting penalty.

Let’slook at the individual States, to see which are causing the problem. We can do this by
adding pointwise=TRUE to PSIS. When you do this, you get a matrix with each observation
on a row and the PSIS information, including individual Pareto k values, in columns. I'll also
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plot the individual “penalty” values from WAIC, to show the relationship between Pareto k
and the information theoretic prediction penalty.

set.seed (24071847)

PSIS_m5.3 <- PSIS(m5.3,pointwise=TRUE)

set.seed(24071847)

WAIC_m5.3 <- WAIC(m5.3,pointwise=TRUE)

plot( PSIS_m5.3%k , WAIC_m5.3Spenalty , xlab="PSIS Pareto k" ,
ylab="WAIC penalty" , col=rangi2 , lwd=2 )

This plot is shown in FIGURE 7.10. Individual points are individual States, with Pareto k on
the horizontal axis and WAIC’s penalty term. The State of Idaho (ID, upper-right corner)
has both a very high Pareto k value (above 1) and a large penalty term (over 2). As you saw
back in Chapter 5, Idaho has a very low divorce rate for its age at marriage. As a result, it
is highly influential —it exerts more influence on the posterior distribution than other States
do. The Pareto k value is double the theoretical point at which the variance becomes infinite
(shown by the dashed line). Likewise, WAIC assigns Idaho a penalty over 2. This penalty
term is sometimes called the “effective number of parameters,” because in ordinary linear
regressions the sum of all penalty terms from all points tends to be equal to the number of
free parameters in the model. But in this case there are 4 parameters and the total penalty is
closer to 6—check WAIC (m5.3). The outlier Idaho is causing this additional overfitting risk.

What can be done about this? There is a tradition of dropping outliers. People some-
times drop outliers even before a model is fit, based only on standard deviations from the
mean outcome value. You should never do that—a point can only be unexpected and highly
influential in light of a model. After you fit a model, the picture changes. If there are only a
few outliers, and you are sure to report results both with and without them, dropping outliers
might be okay. But if there are several outliers and we really need to model them, what then?

A basic problem here is that the Gaussian error model is easily surprised. Gaussian
distributions (introduced at the start of Chapter 4) have very thin tails. This means that very
little probability mass is given to observations far from the mean. Many natural phenomena
do have very thin tails like this. Human height is a good example. But many phenomena do
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FIGURE 7.11. Thin tails and influential observations. The Gaussian distribu-
tion (blue) assigns very little probability to extreme observations. It has thin
tails. The Student-t distribution with shape v = 2 (black) assigns more prob-
ability to extreme events. These distributions are compared on the proba-
bility (left) and log-probability (right) scales.

not. Instead many phenomena have thicker tails with rare, extreme observations. These are
not measurement errors, but real events containing information about natural process.

One way to both use these extreme observations and reduce their influence is to employ
some kind of ROBUST REGRESSION. A “robust regression” can mean many different things,
but usually it indicates a linear model in which the influence of extreme observations is re-
duced. A common and useful kind of robust regression is to replace the Gaussian model
with a thicker-tailed distribution like STUDENT’s T (or “Student-t”) distribution.'! This dis-
tribution has nothing to do with students. The Student-t distribution arises from a mixture
of Gaussian distributions with different variances.!*? If the variances are diverse, then the
tails can be quite thick.

The generalized Student-t distribution has the same mean p and scale o parameters as
the Gaussian, but it also has an extra shape parameter v that controls how thick the tails
are. The rethinking package provides Student-t as dstudent. When v is large, the tails
are thin, converging in the limit v = oo to a Gaussian distribution. But as v approaches 1,
the tails get thicker and rare extreme observations occur more often. FIGURE 7.11 compares
a Gaussian distribution (in blue) to a corresponding Student-t distribution (in black) with
v = 2. The Student-t distribution has thicker tails, and this is most obvious on the log
scale (right), where the Gaussian tails shrink quadratically—a normal distribution is just an
exponentiated parabola remember—while the Student-t tails shrink much more slowly.

If you have a very large data set with such events, you could estimate v. Financial time
series, taken over very long periods, are one example. But when using robust regression, we
don’t usually try to estimate v/, because there aren’t enough extreme observations to do so.
Instead we assume v is small (thick tails) in order to reduce the influence of outliers. For
example, if we use the severity of wars since 1950 to estimate a trend, the estimate is likely
biased by the fact that big conflicts like the first and second World Wars are rare. They reside
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in the thick tail of war casualties.!*> A reasonable estimate depends upon either a longer
time series or judicious use of a thick tailed distribution.
Let’s re-estimate the divorce model using a Student-t distribution with v = 2.

m5.3t <- quap(

alist(
D ~ dstudent( 2 , mu , sigma ) ,
mu <- a + bMx*M + bA*A ,
a ~ dnorm( @ , 0.2 ) ,
bM ~ dnorm( ©@ , O
bA ~ dnorm( 0@ , O.
sigma ~ dexp( 1 )

) , data = d )

When you compute PSIS now, PSIS(m5.3t), you won't get any warnings about Pareto k
values. The relative influence of Idaho has been much reduced. How does this impact the
posterior distribution of the association between age at marriage and divorce? If you com-
pare models m5.3t and m5. 3, you'll see that the coefficient bA has gotten farther from zero
when we introduce the Student-t distribution. This is because Idaho has a low divorce rate
and a low median age at marriage. When it was influential, it reduced the association be-
tween age at marriage and divorce. Now it is less influential, so the association is estimated
to be slightly larger. But the consequence of using robust regression is not always to increase
an association. It depends upon the details.

Another thing that thick-tailed distributions make possible is control over how conflict
between prior and data is handled. We'll revisit this point in a later chapter, once you have
started using Markov chains and can derive non-Gaussian posterior distributions.

Rethinking: The Curse of Tippecanoe. One concern with model comparison is, if we try enough
combinations and transformations of predictors, we might eventually find a model that fits any sample
very well. But this fit will be badly overfit, unlikely to generalize. And WAIC and similar metrics
will be fooled. Consider by analogy the Curse of Tippecanoe.** From the year 1840 until 1960, every
United States president who was elected in a year ending in the digit 0 (which happens every 20 years)
has died in office. William Henry Harrison was the first, elected in 1840 and died of pneumonia the
next year. John E Kennedy was the last, elected in 1960 and assassinated in 1963. Seven American
presidents died in sequence in this pattern. Ronald Reagan was elected in 1980, but despite at least
one attempt on his life, he managed to live long after his term, breaking the curse. Given enough time
and data, a pattern like this can be found for almost any body of data. If we search hard enough, we
are bound to find a Curse of Tippecanoe.

Fiddling with and constructing many predictor variables is a great way to find coincidences, but
not necessarily a great way to evaluate hypotheses. However, fitting many possible models isn’t always
a dangerous idea, provided some judgment is exercised in weeding down the list of variables at the
start. There are two scenarios in which this strategy appears defensible. First, sometimes all one wants
to do is explore a set of data, because there are no clear hypotheses to evaluate. This is rightly labeled
pejoratively as DATA DREDGING, when one does not admit to it. But when used together with model
averaging, and freely admitted, it can be a way to stimulate future investigation. Second, sometimes
we need to convince an audience that we have tried all of the combinations of predictors, because
none of the variables seem to help much in prediction.
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7.6. Summary

This chapter has been a marathon. It began with the problem of overfitting, a univer-
sal phenomenon by which models with more parameters fit a sample better, even when the
additional parameters are meaningless. Two common tools were introduced to address over-
fitting: regularizing priors and estimates of out-of-sample accuracy (WAIC and PSIS). Reg-
ularizing priors reduce overfitting during estimation, and WAIC and PSIS help estimate the
degree of overfitting. Practical functions compare in the rethinking package were intro-
duced to help analyze collections of models fit to the same data. If you are after causal esti-
mates, then these tools will mislead you. So models must be designed through some other
method, not selected on the basis of out-of-sample predictive accuracy. But any causal esti-
mate will still overfit the sample. So you always have to worry about overfitting, measuring
it with WAIC/PSIS and reducing it with regularization.

7.7. Practice

Problems are labeled Easy (E), Medium (M), and Hard (H).

7E1. State the three motivating criteria that define information entropy. Try to express each in your
own words.

7E2. Suppose a coin is weighted such that, when it is tossed and lands on a table, it comes up heads
70% of the time. What is the entropy of this coin?

7E3. Suppose a four-sided die is loaded such that, when tossed onto a table, it shows “1” 20%, “2”
25%, “3” 25%, and “4” 30% of the time. What is the entropy of this die?

7E4. Suppose another four-sided die is loaded such that it never shows “4”. The other three sides
show equally often. What is the entropy of this die?

7M1. Write down and compare the definitions of AIC and WAIC. Which of these criteria is most
general? Which assumptions are required to transform the more general criterion into a less general
one?

7M2. Explain the difference between model selection and model comparison. What information is
lost under model selection?

7M3. When comparing models with an information criterion, why must all models be fit to exactly
the same observations? What would happen to the information criterion values, if the models were
fit to different numbers of observations? Perform some experiments, if you are not sure.

7M4. What happens to the effective number of parameters, as measured by PSIS or WAIC, as a prior
becomes more concentrated? Why? Perform some experiments, if you are not sure.

7M5. Provide an informal explanation of why informative priors reduce overfitting.



236 7. ULYSSES’ COMPASS

7M6. Provide an informal explanation of why overly informative priors result in underfitting.

7H1. In 2007, The Wall Street Journal published an editorial (“We’re Num-
ber One, Alas”) with a graph of corporate tax rates in 29 countries plot-
ted against tax revenue. A badly fit curve was drawn in (reconstructed
at right), seemingly by hand, to make the argument that the relationship
between tax rate and tax revenue increases and then declines, such that
higher tax rates can actually produce less tax revenue. I want you to actu-
ally fit a curve to these data, found in data(Laffer). Consider models
that use tax rate to predict tax revenue. Compare, using WAIC or PSIS, a
straight-line model to any curved models you like. What do you conclude 0 10 20 30
about the relationship between tax rate and tax revenue?

10

7H2. In the Laffer data, there is one country with a high tax revenue that is an outlier. Use PSIS
and WAIC to measure the importance of this outlier in the models you fit in the previous problem.
Then use robust regression with a Student’s t distribution to revisit the curve fitting problem. How
much does a curved relationship depend upon the outlier point?

7H3. Consider three fictional Polynesian islands. On each there is a Royal Ornithologist charged by
the king with surveying the bird population. They have each found the following proportions of 5
important bird species:

Species A Species B Species C Species D  Species E

Island 1 0.2 0.2 0.2 0.2 0.2
Island 2 0.8 0.1 0.05 0.025 0.025
Island 3 0.05 0.15 0.7 0.05 0.05

Notice that each row sums to 1, all the birds. This problem has two parts. It is not computationally
complicated. But itis conceptually tricky. First, compute the entropy of each island’s bird distribution.
Interpret these entropy values. Second, use each island’s bird distribution to predict the other two.
This means to compute the KL divergence of each island from the others, treating each island as if it
were a statistical model of the other islands. You should end up with 6 different KL divergence values.
Which island predicts the others best? Why?

7H4. Recall the marriage, age, and happiness collider bias example from Chapter 6. Run models
m6.9 and m6. 10 again (page 178). Compare these two models using WAIC (or PSIS, they will produce
identical results). Which model is expected to make better predictions? Which model provides the
correct causal inference about the influence of age on happiness? Can you explain why the answers
to these two questions disagree?

7H5. Revisit the urban fox data, data(foxes), from the previous chapter’s practice problems. Use
WAIC or PSIS based model comparison on five different models, each using weight as the outcome,
and containing these sets of predictor variables:

(1) avgfood + groupsize + area

(2) avgfood + groupsize

(3) groupsize + area

(4) avgfood

(5) area
Can you explain the relative differences in WAIC scores, using the fox DAG from the previous chap-
ter? Be sure to pay attention to the standard error of the score differences (dSE).



8 Conditional Manatees

The manatee (Trichechus manatus) is a slow-moving, aquatic mammal that lives in warm,
shallow water. Manatees have no natural predators, but they do share their waters with motor
boats. And motor boats have propellers. While manatees are related to elephants and have
very thick skins, propeller blades can and do kill them. A majority of adult manatees bear
some kind of scar earned in a collision with a boat (FIGURE 8.1, top).!®

The Armstrong Whitworth AW.38 Whitley was a frontline Royal Air Force bomber.
During the second World War, the AW.38 carried bombs and pamphlets into German ter-
ritory. Unlike the manatee, the AW.38 has fierce natural enemies: artillery and interceptor
fire. Many planes never returned from their missions. And those that survived had the scars
to prove it (FIGURE 8.1, bottom).

How is a manatee like an AW.38 bomber? In both cases—manatee propeller scars and
bomber bullet holes—wed like to do something to improve the odds, to help manatees and
bombers survive. Most observers intuit that helping manatees or bombers means reducing
the kind of damage we see on them. For manatees, this might mean requiring propeller
guards (on the boats, not the manatees). For bombers, itd mean adding armor to the parts
of the plane that show the most damage.

But in both cases, the evidence misleads us. Propellers do not cause most of the injury
and death caused to manatees. Rather autopsies confirm that collisions with blunt parts of
the boat, like the keel, do far more damage. Similarly, up-armoring the damaged portions of
returning bombers did little good. Instead, improving the AW.38 bomber meant armoring
the undamaged sections.'*® The evidence from surviving manatees and bombers is mislead-
ing, because it is conditional on survival. Manatees and bombers that perished look different.
A manatee struck by a keel is less likely to live than another grazed by a propeller. So among
the survivors, propeller scars are common. Similarly, bombers that returned home conspic-
uously lacked damage to the cockpit and engines. They got lucky. Bombers that never re-
turned home were less so. To get the right answer, in either context, we have to realize that
the kind of damage seen is conditional on survival.

CONDITIONING is one of the most important principles of statistical inference. Data,
like the manatee scars and bomber damage, are conditional on how they get into our sample.
Posterior distributions are conditional on the data. All model-based inference is conditional
on the model. Every inference is conditional on something, whether we notice it or not.

And a large part of the power of statistical modeling comes from creating devices that
allow probability to be conditional of aspects of each case. The linear models you've grown to
love are just crude devices that allow each outcome y; to be conditional on a set of predictors
for each case i. Like the epicycles of the Ptolemaic and Kopernikan models (Chapters 4 and
7), linear models give us a way to describe conditionality.

237
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FIGURE 8.1. TOP: Dorsal scars for 5 adult Florida manatees. Rows of short
scars, for example on the individuals Africa and Flash, are indicative of pro-
peller laceration. BoTTOM: Three exemplars of damage on AW.38 bombers
returning from missions.

Simple linear models frequently fail to provide enough conditioning, however. Every
model so far in this book has assumed that each predictor has an independent association
with the mean of the outcome. What if we want to allow the association to be conditional?
For example, in the primate milk data from the previous chapters, suppose the relationship
between milk energy and brain size varies by taxonomic group (ape, monkey, prosimian).
This is the same as suggesting that the influence of brain size on milk energy is conditional
on taxonomic group. The linear models of previous chapters cannot address this question.

To model deeper conditionality—where the importance of one predictor depends upon
another predictor—we need INTERACTION (also known as MODERATION). Interaction is
a kind of conditioning, a way of allowing parameters (really their posterior distributions)
to be conditional on further aspects of the data. The simplest kind of interaction, a linear
interaction, is built by extending the linear modeling strategy to parameters within the lin-
ear model. So it is akin to placing epicycles on epicycles in the Ptolemaic and Kopernikan
models. It is descriptive, but very powerful.

More generally, interactions are central to most statistical models beyond the cozy world
of Gaussian outcomes and linear models of the mean. In generalized linear models (GLMs,
Chapter 10 and onwards), even when one does not explicitly define variables as interacting,
they will always interact to some degree. Multilevel models induce similar effects. Common
sorts of multilevel models are essentially massive interaction models, in which estimates (in-
tercepts and slopes) are conditional on clusters (person, genus, village, city, galaxy) in the
data. Multilevel interaction effects are complex. They’re not just allowing the impact of a
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predictor variable to change depending upon some other variable, but they are also estimat-
ing aspects of the distribution of those changes. This may sound like genius, or madness, or
both. Regardless, you can’t have the power of multilevel modeling without it.

Models that allow for complex interactions are easy to fit to data. But they can be con-
siderably harder to understand. And so I spend this chapter reviewing simple interaction
effects: how to specify them, how to interpret them, and how to plot them. The chapter
starts with a case of an interaction between a single categorical (indicator) variable and a
single continuous variable. In this context, it is easy to appreciate the sort of hypothesis that
an interaction allows for. Then the chapter moves on to more complex interactions between
multiple continuous predictor variables. These are harder. In every section of this chapter,
the model predictions are visualized, averaging over uncertainty in parameters.

Interactions are common, but they are not easy. My hope is that this chapter lays a solid
foundation for interpreting generalized linear and multilevel models in later chapters.

Rethinking: Statistics all-star, Abraham Wald. The World War II bombers story is the work of Abra-
ham Wald (1902-1950). Wald was born in what is now Romania, but immigrated to the United States
after the Nazi invasion of Austria. Wald made many contributions over his short life. Perhaps most
germane to the current material, Wald proved that for many types of rules for making statistical de-
cisions, there will exist a Bayesian rule that is at least as good as any non-Bayesian one. Wald proved
this, remarkably, beginning with non-Bayesian premises, and so anti-Bayesians could not ignore it.
This work was summarized in Wald’s 1950 book, published just before his death.'*” Wald died much
too young, from a plane crash while touring India.

8.1. Building an interaction

Africa is special. The second largest continent, it is the most culturally and genetically
diverse. Africa has about 3 billion fewer people than Asia, but it has just as many living lan-
guages. Africa is so genetically diverse that most of the genetic variation outside of Africa
is just a subset of the variation within Africa. Africa is also geographically special, in a puz-
zling way: Bad geography tends to be related to bad economies outside of Africa, but African
economies may actually benefit from bad geography.

To appreciate the puzzle, look at regressions of terrain ruggedness—a particular kind of
bad geography—against economic performance (log GDP!*® per capita in the year 2000),
both inside and outside of Africa (FIGURE 8.2). The variable rugged is a Terrain Rugged-
ness Index!'?® that quantifies the topographic heterogeneity of a landscape. The outcome
variable here is the logarithm of real gross domestic product per capita, from the year 2000,
rgdppc_2000. We use the logarithm of it, because the logarithm of GDP is the magnitude
of GDP. Since wealth generates wealth, it tends to be exponentially related to anything that
increases it. This is like saying that the absolute distances in wealth grow increasingly large,
as nations become wealthier. So when we work with logarithms instead, we can work on a
more evenly spaced scale of magnitudes. Regardless, keep in mind that a log transform loses
no information. It just changes what the model assumes about the shape of the association
between variables. In this case, raw GDP is not linearly associated with anything, because of
its exponential pattern. But log GDP is linearly associated with lots of things.

What is going on in this figure? It makes sense that ruggedness is associated with poorer
countries, in most of the world. Rugged terrain means transport is difficult. Which means
market access is hampered. Which means reduced gross domestic product. So the reversed
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FIGURE 8.2. Separate linear regressions inside and outside of Africa, for log-
GDP against terrain ruggedness. The slope is positive inside Africa, but
negative outside. How can we recover this reversal of the slope, using the
combined data?

relationship within Africa is puzzling. Why should difficult terrain be associated with higher
GDP per capita?

If this relationship is at all causal, it may be because rugged regions of Africa were pro-
tected against the Atlantic and Indian Ocean slave trades. Slavers preferred to raid easily
accessed settlements, with easy routes to the sea. Those regions that suffered under the slave
trade understandably continue to suffer economically, long after the decline of slave-trading
markets. However, an outcome like GDP has many influences, and is furthermore a strange
measure of economic activity. And ruggedness is correlated with other geographic features,
like coastlines, that also influence the economy. So it is hard to be sure what’s going on here.

The causal hypothesis, in DAG form, might be (but see the Overthinking box at the end
of this section):

R—>G<«—C

N

where R is terrain ruggedness, G is GDP, C is continent, and U is some set of unobserved
confounds (like distance to coast). Lets ignore U for now. You’'ll consider some confounds
in the practice problems at the end. Focus instead on the implication that R and C both
influence G. This could mean that they are independent influences or rather that they interact
(one moderates the influence of the other). The DAG does not display an interaction. That’s
because DAGs do not specify how variables combine to influence other variables. The DAG
above implies only that there is some function that uses R and C to generate G. In typical
notation, G = f(R, C).

So we need a statistical approach to judge different propositions for f(R, C). How do we
make a model that produces the conditionality in FIGURE 8.2? We could cheat by splitting
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the data into two data frames, one for Africa and one for all the other continents. But it’s not
a good idea to split the data in this way. Here are four reasons.

First, there are usually some parameters, such as o, that the model says do not depend
in any way upon continent. By splitting the data table, you are hurting the accuracy of the es-
timates for these parameters, because you are essentially making two less-accurate estimates
instead of pooling all of the evidence into one estimate. In effect, you have accidentally as-
sumed that variance differs between African and non-African nations. Now, there’s nothing
wrong with that sort of assumption. But you want to avoid accidental assumptions.

Second, in order to acquire probability statements about the variable you used to split the
data, cont_africa in this case, you need to include it in the model. Otherwise, you have a
weak statistical argument. Isn’t there uncertainty about the predictive value of distinguishing
between African and non-African nations? Of course there is. Unless you analyze all of the
data in a single model, you can’t easily quantify that uncertainty. If you just let the posterior
distribution do the work for you, you’ll have a useful measure of that uncertainty.

Third, we may want to use information criteria or another method to compare models.
In order to compare a model that treats all continents the same way to a model that allows
different slopes in different continents, we need models that use all of the same data (as
explained in Chapter 7). This means we can’t split the data for two separate models. We have
to let a single model internally split the data.

Fourth, once you begin using multilevel models (Chapter 13), you'll see that there are
advantages to borrowing information across categories like “Africa” and “not Africa” This is
especially true when sample sizes vary across categories, such that overfitting risk is higher
within some categories. In other words, what we learn about ruggedness outside of Africa
should have some effect on our estimate within Africa, and visa versa. Multilevel models
(Chapter 13) borrow information in this way, in order to improve estimates in all categories.
When we split the data, this borrowing is impossible.

Overthinking: Not so simple causation. The terrain ruggedness DAG in the preceding section is
simple. But the truth isn't so simple. Continent isn’t really the cause of interest. Rather there are
hypothetical historical exposures to colonialism and the slave trade that have persistent influences
on economic performance. Terrain features, like ruggedness, that causally reduced those historical
factors may indirectly influence economy. Like this:

G

NN

R—>H<«—C

1z

H stands for historical factors like exposure to slave trade. The total causal influence of R contains
both a direct path R — G (this is presumably always negative) and an indirect path R - H — G. The
second path is the one that covaries with continent C, because H is strongly associated with C. Note
that the confounds U could influence any of these variables (except for C). If for example distance to
coast is really what influenced H in the past, not terrain ruggedness, then the association of terrain
ruggedness with GDP is non-causal. The data contain a large number of potential confounds that
you might consider. Natural systems like this are terrifyingly complex.
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8.1.1. Makingarugged model. Let’s see how to recover the reversal of slope, within a single
model. We'll begin by fitting a single model to all the data, ignoring continent. This will let
us think through the model structure and priors before facing the devil of interaction. To
get started, load the data and preform some pre-processing:

library(rethinking)
data(rugged)
d <- rugged

# make log version of outcome
d$log_gdp <- log( dSrgdppc_2000 )

# extract countries with GDP data
dd <- d[ complete.cases(d$rgdppc_2000) , ]

# rescale variables
dd$log_gdp_std <- dd$log_gdp / mean(dd$log_gdp)
ddSrugged_std <- dd$rugged / max(dd$rugged)

Each row in these data is a country, and the various columns are economic, geographic, and
historical features.!* Raw magnitudes of GDP and terrain ruggedness aren’t meaningful
to humans. So I've scaled the variables to make the units easier to work with. The usual
standardization is to subtract the mean and divide by the standard deviation. This makes a
variable into z-scores. We don’t want to do that here, because zero ruggedness is meaningful.
So instead terrain ruggedness is divided by the maximum value observed. This means it ends
up scaled from totally flat (zero) to the maximum in the sample at 1 (Lesotho, a very rugged
and beautiful place). Similarly, log GDP is divided by the average value. So it is rescaled as a
proportion of the international average. 1 means average, 0.8 means 80% of the average, and
1.1 means 10% more than average.
To build a Bayesian model for this relationship, we'll again use our geocentric skeleton:
log(y;) ~ Normal(u;, o)
pi = o+ B(ri —7)

where y; is GDP for nation i, r; is terrain ruggedness for nation 7, and 7 is the average rugged-
ness in the whole sample. Its value is 0.215—most nations aren’t that rugged. Remember
that using 7 just makes it easier to assign a prior to the intercept cv.

The hard thinking here comes when we specify priors. If you are like me, you don’t
have much scientific information about plausible associations between log GDP and terrain
ruggedness. But even when we don’t know much about the context, the measurements them-
selves constrain the priors in useful ways. The scaled outcome and predictor will make this
easier. Consider first the intercept, «, defined as the log GDP when ruggedness is at the
sample mean. So it must be close to 1, because we scaled the outcome so that the mean is 1.
Let’s start with a guess at:

a ~ Normal(1,1)

Now for 3, the slope. If we center it on zero, that indicates no bias for positive or negative,
which makes sense. But what about the standard deviation? Let’s start with a guess at 1:

B ~ Normal(0, 1)
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We'll evaluate this guess by simulating prior predictive distributions. The last thing we need
is a prior for 0. Let’s assign something very broad, ¢ ~ Exponential(1). In the problems at
the end of the chapter, I'll ask you to confront this prior as well. But we'll ignore it for the
rest of this example.

All together, we have our first candidate model for the terrain ruggedness data:

m8.1 <- quap(

alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a + bx( rugged_std - 0.215 ) ,
a ~dnorm( 1, 1) ,
b ~ dnorm( 06 , 1) ,
sigma ~ dexp( 1 )

) , data=dd )

We're not going to look at the posterior predictions yet, but rather at the prior predictions.
Let’s extract the prior and plot the implied lines. We'll do this using link.

set.seed(7)
prior <- extract.prior( m8.1 )

# set up the plot dimensions

plot( NULL , xlim=c(0,1) , ylim=c(0.5,1.5) ,
xlab="ruggedness" , ylab="log GDP" )

abline( h=min(dd$log_gdp_std) , lty=2 )

abline( h=max(dd$log_gdp_std) , lty=2 )

# draw 50 lines from the prior

rugged_seq <- seq( from=-0.1 , to=1.1 , length.out=30 )

mu <- link( m8.1 , post=prior , data=data.frame(rugged_std=rugged_seq) )
for ( i in 1:50 ) lines( rugged_seq , mu[i,] , col=col.alpha("black",0.3) )

The result is displayed on the left side of FIGURE 8.3. The horizontal dashed lines show the
maximum and minimum observed log GDP values. The regression lines trend both positive
and negative, as they should, but many of these lines are in impossible territory. Considering
only the measurement scales, the lines have to pass closer to the point where ruggedness is
average (0.215 on the horizontal axis) and proportional log GDP is 1. Instead there are lots
of lines that expect average GDP outside observed ranges. So we need a tighter standard
deviation on the « prior. Something like & ~ Normal(0, 0.1) will put most of the plausibility
within the observed GDP values. Remember: 95% of the Gaussian mass is within 2 standard
deviations. So a Normal(0,0.1) prior assigns 95% of the plausibility between 0.8 and 1.2.
That is still very vague, but at least it isn’t ridiculous.

At the same time, the slopes are too variable. It is not plausible that terrain ruggedness
explains most of the observed variation in log GDP. An implausibly strong association would
be, for example, a line that goes from minimum ruggedness and extreme GDP on one end to
maximum ruggedness and the opposite extreme of GDP on the other end. I've highlighted
such a line in blue. The slope of such a line must be about 1.3 — 0.7 = 0.6, the difference
between the maximum and minimum observed proportional log GDP. But very many lines
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FIGURE 8.3. Simulating in search of reasonable priors for the terrain rugged-
ness example. The dashed horizontal lines indicate the minimum and max-
imum observed GDP values. Left: The first guess with very vague priors.
Right: The improved model with much more plausible priors.

in the prior have much more extreme slopes than this. Under the 5 ~ Normal(0, 1) prior,
more than half of all slopes will have absolute value greater than 0.6.

sum( abs(prior$b) > 0.6 ) / length(priorsb)

[1] 0.545

Let’s try instead 5 ~ Normal(0, 0.3). This prior makes a slope of 0.6 two standard deviations
out. That is still a bit too plausible, but it’s a lot better than before.
With these two changes, now the model is:

m8.1 <- quap(

alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a + bx( rugged_std - 0.215 ) ,
a ~dnorm( 1, 0.1 ) ,
b ~ dnorm( @ , 0.3 ) ,
sigma ~ dexp(1l)

) , data=dd )

You can extract the prior and plot the implied lines using the same code as before. The result
is shown on the right side of FIGURE 8.3. Some of these slopes are still implausibly strong.
But in the main, this is a much better set of priors. Let’s look at the posterior now:

precis( m8.1 )

mean sd 5.5% 94.5%
a 1.00 0.01 0.98 1.02
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b 0.00 0.05 -0.09 0.09

sigma ©0.14 0.01 0.12 0.15

Really no overall association between terrain ruggedness and log GDP. Next we'll see how to
split apart the continents.

Rethinking: Practicing for when it matters. The exercise in FIGURE 8.3 is really not necessary in this
example, because there is enough data, and the model is simple enough, that even awful priors get
washed out. You could even use completely flat priors (don’t!), and it would all be fine. But we practice
doing things right not because it always matters. Rather, we practice doing things right so that we
are ready when it matters. No one would say that wearing a seat belt was a mistake, just because you
didn’t get into an accident.

8.1.2. Adding an indicator variable isn’t enough. The first thing to realize is that just in-
cluding an indicator variable for African nations, cont_africa here, won't reveal the re-
versed slope. It's worth fitting this model to prove it to yourself, though. I'm going to walk
through this as a simple model comparison exercise, just so you begin to get some applied
examples of concepts you've accumulated from earlier chapters. Note that model compari-
son here is not about selecting a model. Scientific considerations already select the relevant
model. Instead it is about measuring the impact of model differences while accounting for
overfitting risk.

To build a model that allows nations inside and outside Africa to have different inter-
cepts, we need to modify the model for y; so that the mean is conditional on continent. The
conventional way to do this would be to just add another term to the linear model:

pi = a+ B(ri — 1) + yA;

where A; is cont_africa, a 0/1 indicator variable. But let’s not follow this convention. In
fact, this convention is often a bad idea. It took me years to figure this out, and I'm trying to
save you from the horrors I've seen. The problem here, and in general, is that we need a prior
for . Okay, we can do priors. But what that prior will necessarily do is tell the model that
;i for a nation in Africa is more uncertain, before seeing the data, than p; outside Africa.
And that makes no sense. This is the same issue we confronted back in Chapter 4, when I
introduced categorical variables.

There is a simple solution: Nations in Africa will get one intercept and those outside
Africa another. This is what u; looks like now:

Hi = Ccrpli] + B(ri - 7)
where CID is an index variable, continent ID. It takes the value 1 for African nations and 2 for
all other nations. This means there are two parameters, o; and «, one for each unique index
value. The notation cID[i] just means the value of cID on row i. I use the bracket notation
with index variables, because it is easier to read than adding a second level of subscript, acp,-
We can build this index ourselves:

# make variable to index Africa (1) or not (2)
ddscid <- 1difelse( dd$cont_africa==1 , 1 , 2 )

Using this approach, instead of the conventional approach of adding another term with the
0/1 indicator variable, doesn't force us to say that the mean for Africa is inherently less certain
than the mean for all other continents. We can just reuse the same prior as before. After all,

R code
8.7



R code
8.8

R code
8.9

R code
8.10

R code
8.11

246 8. CONDITIONAL MANATEES

whatever Africa’s average log GDDP, it is surely within plus-or-minus 0.2 of 1. But keep in
mind that this is structurally the same model youd get in the conventional approach. It is
just much easier this way to assign sensible priors. You could easily assign different priors to
the different continents, if you thought that was the right thing to do.

To define the model in quap, we add brackets in the linear model and the prior:

m8.2 <- quap(

alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + bx( rugged_std - 0.215 ) ,
alcid] ~ dnorm( 1 , 0.1 ) ,
b ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )

) , data=dd )

Now to compare these models, using WAIC:

compare( m8.1 , m8.2 )

WATIC SE dWAIC dSE pWAIC weight
m8.2 -252.4 15.38 0.0 NA 4.2 1
m8.1 -188.6 13.20 63.9 15.13 2.8 0

m8. 2 gets all the model weight. And while the standard error of the difference in WAIC is 15,
the difference itself is 64. So the continent variable seems to be picking up some important
association in the sample. The precis output gives a good hint. Note that we need to use
depth=2 to display the vector parameter a. With only two parameters in a, it wouldn’t be
bad to display it by default. But often a vector like this has hundreds of values, and you don’t
want to see each one in a table.

precis( m8.2 , depth=2 )

mean sd 5.5% 94.5%
al1l] 0.88 0.02 0.85 0.91
al2] 1.05 0.601 1.03 1.07
b -0.05 0.05 -0.12 0.03
sigma 0.11 0.01 ©0.10 0.12

The parameter a[1] is the intercept for African nations. It seems reliably lower than a[2].
The posterior contrast between the two intercepts is:

post <- extract.samples(m8.2)
diff_al_a2 <- post$a[,1] - posts$Sal,2]
PI( diff_al_a2 )

5% 94%
-0.1990056 -0.1378378

The difference is reliably below zero. Let’s plot the posterior predictions for m8.2, so you
can see how, despite its predictive superiority to m8. 1, it still doesn’t manage different slopes



8.1. BUILDING AN INTERACTION 247

1.3

1.2

1

oo
og)o
Oo@
o ©°
o

o

o

log GDP (as proportion of mean)
1.0 1.1 .
IO 1
o
o8
@O (o]
9la°
o
n .
=z
&l
z
§.

o * FIGURE 8.4. Including an indicator for
African nations has no effect on the slope.
African nations are shown in blue. Non-
%’%@Oo e o ° African nations are shown in black. Regres-
o sion means for each subset of nations are

[e]
® 0 O Africa * . . .
M shown in corresponding colors, along with

™ . & o 97% intervals shown by shading.

0.9
1

0.8
1

0.7

0.0 0.2 0.4 0.6 0.8 1.0
ruggedness (standardized)

inside and outside of Africa. To sample from the posterior and compute the predicted means
and intervals for both African and non-African nations:

rugged.seq <- seq( from=-0.1 , to=1.1 , length.out=30 )
# compute mu over samples, fixing cid=2 and then cid=1
mu.NotAfrica <- link( m8.2 ,

data=data.frame( cid=2 , rugged_std=rugged.seq ) )
mu.Africa <- link( m8.2 ,

data=data.frame( cid=1 , rugged_std=rugged.seq ) )
# summarize to means and intervals
mu.NotAfrica_mu <- apply( mu.NotAfrica , 2 , mean )
mu.NotAfrica_ci <- apply( mu.NotAfrica , 2 , PI , prob=0.97 )
mu.Africa_mu <- apply( mu.Africa , 2 , mean )
mu.Africa_ci <- apply( mu.Africa , 2 , PI , prob=0.97 )

I show these posterior predictions (retrodictions) in FIGURE 8.4. African nations are shown
in blue, while nations outside Africa are shown in gray. What you've ended up with here
is a rather weak negative relationship between economic development and ruggedness. The
African nations do have lower overall economic development, and so the blue regression line
is below, but parallel to, the black line. All including a dummy variable for African nations
has done is allow the model to predict a lower mean for African nations. It can’t do anything
to the slope of the line. The fact that WAIC tells you that the model with the dummy variable
is hugely better only indicates that African nations on average do have lower GDP.

Rethinking: Why 97%? In the code block just above, and therefore also in FIGURE 8.4, I used 97%
intervals of the expected mean. This is a rather non-standard percentile interval. So why use 97%? In
this book, I use non-standard percents to constantly remind the reader that conventions like 95% and
5% are arbitrary. Furthermore, boundaries are meaningless. There is continuous change in probabil-
ity as we move away from the expected value. So one side of the boundary is almost equally probable
as the other side. Also, 97 is a prime number. That doesn't mean it is a better choice than any other
number here, but it’s no less silly than using a multiple of 5, just because we have five digits on each
hand. Resist the tyranny of the Tetrapoda.
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8.1.3. Adding an interaction does work. How can you recover the change in slope you saw
at the start of this section? You need a proper interaction effect. This just means we also
make the slope conditional on continent. The definition of y; in the model you just plotted,
in math form, is:

Hi = Ccrpli] + B(ri - ?)

And now we'll double-down on our indexing to make the slope conditional as well:

i = Ccrpli] + /BCID[i}(ri - ?)

And again, there is a conventional approach to specifying an interaction that uses an indica-
tor variable and a new interaction parameter. It would look like this:

Hi = Ccrpl] + (ﬁ + 'YAi)(ri - ?)

where A; is a 0/1 indicator for African nations. This is equivalent to our index approach,
but it is much harder to state sensible priors. Any prior we put on v makes the slope inside
Africa more uncertain than the slope outside Africa. And again that makes no sense. But
in the indexing approach, we can easily assign the same prior to the slope, no matter which
continent.

To approximate the posterior of this new model, you can just use quap as before. Here’s
the code that includes an interaction between ruggedness and being in Africa:

m8.3 <- quap(

alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
alcid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( @6 , 0.3 ) ,
sigma ~ dexp( 1 )

) , data=dd )

Let’s inspect the marginal posterior distributions:

precis( m8.5 , depth=2 )

mean sd 5.5% 94.5%
al1] 0.89 0.02 0.86 0.91
al2] 1.05 0.601 1.03 1.07
b[1] 0.13 0.07 0.01 0.25
b[2] -0.14 0.05 -0.23 -0.06

sigma 0.11 0.01 0.10 0.12

The slope is essentially reversed inside Africa, 0.13 instead of —0.14.

How much does allowing the slope to vary improve expected prediction? Let’s use PSIS
to compare this new model to the previous two. You could use WAIC here as well. It'll give
almost identical results. But it won’t give us a sweet Pareto k warning.

compare( m8.1 , m8.2 , m8.3 , func=PSIS )

Some Pareto k values are high (>0.5).
PSIS SE dPSIS dSE pPSIS weight
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m8.3 -258.7 15.33 0.0 NA 5.3 0.97
m8.2 -251.8 15.43 6.9 6.81 4.5 0.03
m8.1 -188.7 13.31 70.0 15.52 2.7 0.00

Model family m8 . 3 has more than 95% of the weight. That’s very strong support for including
the interaction effect, if prediction is our goal. But the modicum of weight given to m8.2
suggests that the posterior means for the slopes in m8 . 3 are a little overfit. And the standard
error of the difference in PSIS between the top two models is almost the same as the difference
itself. If you plot PSIS Pareto k values for m8. 3, you’ll notice some influential countries.

plot( PSIS( m8.3 , pointwise=TRUE )S$Sk )

You'll explore this in the practice problems at the end of the chapter. This is possibly a good
context for robust regression, like the Student-t regression we did in Chapter 7.

Remember that these comparisons are not reliable guides to causal inference. They just
suggest how important features are for prediction. Real causal effects may not be impor-
tant for overall prediction in any given sample. Prediction and inference are just different
questions. Still, overfitting always happens. So anticipating and measuring it matters for
inference as well.

8.1.4. Plotting the interaction. Plotting this model doesn't really require any new tricks.
The goal is to make two plots. In the first, we'll display nations in Africa and overlay the
posterior mean regression line and the 97% interval of that line. In the second, we'll display
nations outside of Africa instead.

# plot Africa - cid=1
d.Al <- dd[ dd$cid==1 , ]
plot( d.AlSrugged_std , d.AlSlog_gdp_std , pch=16 , col=rangi2 ,

xlab="ruggedness (standardized)" , ylab="log GDP (as proportion of mean)" ,

xlim=c(0,1) )
mu <- link( m8.3 , data=data.frame( cid=1 , rugged_std=rugged_seq ) )
mu_mean <- apply( mu , 2 , mean )
mu_ci <= apply( mu , 2 , PI , prob=0.97 )
lines( rugged_seq , mu_mean , lwd=2 )
shade( mu_ci , rugged_seq , col=col.alpha(rangi2,0.3) )

Rethinking: All Greek to me. We use these Greek symbols @ and 3 because it is conventional. They
don’t have special meanings. If you prefer some other Greek symbol like w—why should o get all
the attention?—feel free to use that instead. It is conventional to use Greek letters for unobserved
variables (parameters) and Roman letters for observed variables (data). That convention does have
some value, because it helps others read your models. But breaking the convention is not an error,
and sometimes it is better to use a familiar Roman symbol than an unfamiliar Greek one like & or .
If your readers cannot say the symbol’s name, it could make understanding the model harder.

A core problem with the convention of using Greek for unobserved and Roman for observed
variables is that in many models the same variable can be both observed and unobserved. This hap-
pens, for example, when data are missing for some cases. It also happens in “occupancy” detection
models, where specific values of the outcome (usually zero) cannot be trusted. We will deal with these
issues explicitly in Chapter 15.
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FIGURE 8.5. Posterior predictions for the terrain ruggedness model, includ-
ing the interaction between Africa and ruggedness. Shaded regions are 97%
posterior intervals of the mean.

mtext ("African nations")

# plot non-Africa - cid=2

d.A® <- dd[ dd$cid==2 , ]

plot( d.A0@Srugged_std , d.A0Slog_gdp_std , pch=1 , col="black" ,
xlab="ruggedness (standardized)" , ylab="1log GDP (as proportion of mean)"
xlim=c(0,1) )

mu <- link( m8.3 , data=data.frame( cid=2 , rugged_std=rugged_seq ) )

mu_mean <- apply( mu , 2 , mean )

mu_ci <= apply( mu , 2 , PI , prob=0.97 )

lines( rugged_seq , mu_mean , lwd=2 )

shade( mu_ci , rugged_seq )

mtext ("Non-African nations")

And the result is shown in FIGURE 8.5. Finally, the slope reverses direction inside and outside
of Africa. And because we achieved this inside a single model, we could statistically evaluate
the value of this reversal.

8.2. Symmetry of interactions

Buridan’s ass is a toy philosophical problem in which an ass who always moves towards
the closest pile of food will starve to death when he finds himself equidistant between two
identical piles. The basic problem is one of symmetry: How can the ass decide between two
identical options? Like many toy problems, you can’t take this one too seriously. Of course
the ass will not starve. But thinking about how the symmetry is broken can be productive.

Interactions are like Buridan’s ass. Like the two piles of identical food, a simple inter-
action model contains two symmetrical interpretations. Absent some other information,
outside the model, there’s no logical basis for preferring one over the other. Consider for
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example the GDP and terrain ruggedness problem. The interaction there has two equally
valid phrasings.

(1) How much does the association between ruggedness and log GDP depend upon
whether the nation is in Africa?
(2) How much does the association of Africa with log GDP depend upon ruggedness?

While these two possibilities sound different to most humans, your golem thinks they are
identical. In this section, we'll examine this fact, first mathematically. Then we'll plot the
ruggedness and GDP example again, but with the reverse phrasing—the association between
Africa and GDP depends upon ruggedness.

Consider yet again the model for y;:

Hi = Oleppli] + BCIDM(ri —7)

The interpretation previously has been that the slope is conditional on continent. But it’s also
fine to say that the intercept is conditional on ruggedness. It’s easier to see this if we write
the above expression another way:

pi = (2 = cm;)(ay + P (ri — 7)) + (€1D; — 1) (0 + Ba(ri — 7))

cin[i]=1 cip[i]=2

This looks weird, but it’s the same model. When cip; = 1, only the first term, the Africa
parameters, remains. The second term vanishes to zero. When instead cip; = 2, the first
term vanishes to zero and only the second term remains. Now if we imagine switching a
nation to Africa, in order to know what this does for the prediction, we have to know the
ruggedness (unless we are exactly at the average ruggedness, 7).

It'll be helpful to plot the reverse interpretation: The association of being in Africa with
log GDP depends upon terrain ruggedness. What we'll do is compute the difference between
a nation in Africa and outside Africa, holding its ruggedness constant. To do this, you can
just run link twice and then subtract the second result from the first:

rugged_seq <- seq(from=-0.2,to=1.2,length.out=30)

muA <- link( m8.3 , data=data.frame(cid=1,rugged_std=rugged_seq) )
muN <- link( m8.3 , data=data.frame(cid=2,rugged_std=rugged_seq) )
delta <- muA - muN

Then you can summarize and plot the difference in expected log GDP contained in delta.

The result is shown in FIGURE 8.6. This plot is counter-factual. There is no raw data here.
Instead we are seeing through the model’s eyes and imagining comparisons between iden-
tical nations inside and outside Africa, as if we could independently manipulate continent
and also terrain ruggedness. Below the horizontal dashed line, African nations have lower
expected GDP. This is the case for most terrain ruggedness values. But at the highest rugged-
ness values, a nation is possibly better off inside Africa than outside it. Really it is hard to
find any reliable difference inside and outside Africa, at high ruggedness values. It is only in
smooth nations that being in Africa is a liability for the economy.

This perspective on the GDP and terrain ruggedness is completely consistent with the
previous perspective. It’s simultaneously true in these data (and with this model) that (1) the
influence of ruggedness depends upon continent and (2) the influence of continent depends
upon ruggedness. Indeed, something is gained by looking at the data in this symmetrical
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FIGURE 8.6. The other side of the interaction
between ruggedness and continent. The ver-
tical axis is the difference in expected propor-
tional log GDP for a nation in Africa and one
outside Africa. At low ruggedness, we expect
“moving” a nation to Africa to hurt its econ-
omy. But at high ruggedness, the opposite is
true. The association between continent and
economy depends upon ruggedness, just as
much as the association between ruggedness
and economy depends upon continent.

0.1

Africa higher GDP
Africa lower GDP

-0.1

expected difference log GDP
0.2

-0.3

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
ruggedness

perspective. Just inspecting the first view of the interaction, back on page 250, it's not obvi-
ous that African nations are on average nearly always worse off. It’s just at very high values
of rugged that nations inside and outside of Africa have the same expected log GDP. This
second way of plotting the interaction makes this clearer.

Simple interactions are symmetric, just like the choice facing Buridan’s ass. Within the
model, there’s no basis to prefer one interpretation over the other, because in fact they are the
same interpretation. But when we reason causally about models, our minds tend to prefer
one interpretation over the other, because it’s usually easier to imagine manipulating one of
the predictor variables instead of the other. In this case, it's hard to imagine manipulating
which continent a nation is on. But it’s easy to imagine manipulating terrain ruggedness,
by flattening hills or blasting tunnels through mountains.'*! If in fact the explanation for
Africa’s unusually positive relationship with terrain ruggedness is due to historical causes,
not contemporary terrain, then tunnels might improve economies in the present. At the
same time, continent is not really a cause of economic activity. Rather there are historical
and political factors associated with continents, and we use the continent variable as a proxy
for those factors. It is manipulation of those other factors that would matter.

8.3. Continuous interactions

I want to convince the reader that interaction effects are difficult to interpret. They are
nearly impossible to interpret, using only posterior means and standard deviations. Once in-
teractions exist, multiple parameters are in play at the same time. It is hard enough with the
simple, categorical interactions from the terrain ruggedness example. Once we start mod-
eling interactions among continuous variables, it gets much harder. It’s one thing to make
a slope conditional upon a category. In such a context, the model reduces to estimating a
different slope for each category. But it’s quite a lot harder to understand that a slope varies
in a continuous fashion with a continuous variable. Interpretation is much harder in this
case, even though the mathematics of the model are essentially the same.

In pursuit of clarifying the construction and interpretation of CONTINUOUS INTERAC-
TIONS among two or more continuous predictor variables, in this section I develop a simple
regression example and show you a way to plot the two-way interaction between two contin-
uous variables. The method I present for plotting this interaction is a triptych plot, a panel of
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three complementary figures that comprise a whole picture of the regression results. There’s
nothing magic about having three figures—in other cases you might want more or less. In-
stead, the utility lies in making multiple figures that allow one to see how the interaction
alters a slope, across changes in a chosen variable.

8.3.1. A winter flower. The data in this example are sizes of blooms from beds of tulips
grown in greenhouses, under different soil and light conditions.!*> Load the data with:

library(rethinking) gigde
data(tulips)

d <- tulips

str(d)

'data.frame': 27 obs. of 4 variables:

$ bed : Factor w/ 3 levels "a","b","¢c": 1111111112 ...
$water : int 1 112223331...

$ shade : int 123 1231231...

$ blooms: num 0 0 111 183.5 59.2 ...

The blooms column will be our outcome—what we wish to predict. The water and shade
columns will be our predictor variables. water indicates one of three ordered levels of soil
moisture, from low (1) to high (3). shade indicates one of three ordered levels of light ex-
posure, from high (1) to low (3). The last column, bed, indicates a cluster of plants from the
same section of the greenhouse.

Since both light and water help plants grow and produce blooms, it stands to reason that
the independent effect of each will be to produce bigger blooms. But we'll also be interested
in the interaction between these two variables. In the absence of light, for example, it’s hard
to see how water will help a plant—photosynthesis depends upon both light and water. Like-
wise, in the absence of water, sunlight does a plant little good. One way to model such an
interdependency is to use an interaction effect. In the absence of a good mechanistic model
of the interaction, one that uses a theory about the plant’s physiology to hypothesize the
functional relationship between light and water, then a simple linear two-way interaction is
a good start. But ultimately it’s not close to the best that we could do.

8.3.2. The models. I'm going to focus on just two models: (1) the model with both water
and shade but no interaction and (2) the model that also contains the interaction of water
with shade. You could also inspect models that contain only one of these variables, water
or shade, and I encourage the reader to try that at the end and make sure you understand
the full ensemble of models.

The causal scenario is simply that water (W) and shade (S) both influence blooms (B):
W — B« S. Asbefore, this DAG doesn’t tell us the function through which W and S jointly
influence B, B = f(W, S). In principle, every unique combination of W and S could have a
different mean B. The convention is to do something much simpler. We'll start simple.

The first model, containing no interaction at all (only “main effects”), begins this way:

B; ~ Normal(u;, o)
i = o+ Bw (Wi — W) + Bs(Si — §)
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where B; is the value of blooms on row i, W; is the value of water, and S; is the value of
shade. The symbols W and S are the means of water and shade, respectively. All together,
this is just a linear regression with two predictors, each centered by subtracting its mean.

To make estimation easier, let’s center W and S and scale B by its maximum:

dSblooms_std <- dSblooms / max(d$blooms)
dSwater_cent <- dSwater - mean(dS$water)
d$shade_cent <- d$shade - mean(d$shade)

Now blooms_std ranges from 0 to 1, and both water_cent and shade_cent range from
—1 to 1. I've scaled blooms by its maximum observed value, for three reasons. First, the
large values on the raw scale will make optimization difficult. Second, it will be easier to
assign a reasonable prior this way. Third, we don’t want to standardize blooms, because zero
is a meaningful boundary we want to preserve.

When rescaling variables, a good goal is to create focal points that you have prior infor-
mation about, prior to seeing the actual data. That way we can assign priors that are not
obviously crazy. And in thinking about those priors, we might realize that the model makes
no sense. But this is only possible if we think about the relationship between measurements
and parameters. The exercise of rescaling and assigning priors helps. Even when there are
enough data that choice of priors is not crucial, this thought exercise is useful.

There are three parameters (aside from o) in this model, so we need three priors. As a
first, vague guess:

a ~ Normal(0.5,1)
Bw ~ Normal(0, 1)
Bs ~ Normal(0, 1)

Centering the prior for « at 0.5 implies that, when both water and shade are at their mean
values, the model expects blooms to be halfway to the observed maximum. The two slopes
are centered on zero, implying no prior information about direction. This is obviously less
information than we have—basic botany informs us that water should have a positive slope
and shade a negative slope. But these priors allow us to see which trend the sample shows,
while still bounding the slopes to reasonable values. In the practice problems at the end of
the chapter, I'll ask you to use your botany instead.

The prior bounds on the parameters come from the prior standard deviations, all set to
1 here. These are surely too broad. The intercept v must be greater than zero and less than
one, for example. But this prior assigns most of the probability outside that range:

a <- rnorm( le4 , 0.5 , 1 ); sum( a < 0 | a> 1) / length( a )

[1] o.6126

If it’s 0.5 units from the mean to zero, then a standard deviation of 0.25 should put only 5%
of the mass outside the valid internal. Let’s see:

a <- rnorm( le4 , 0.5 , 0.25 ); sum( a < O | a > 1 ) / length( a )

[1] 0.0486
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Much better. What about those slopes? What would a very strong effect of water and shade
look like? How big could those slopes be in theory? The range of both water and shade is 2—
from —1 to 1 is 2 units. To take us from the theoretical minimum of zero blooms on one end
to the observed maximum of 1—a range of 1 unit—on the other would require a slope of 0.5
from either variable—0.5 x 2 = 1. So if we assign a standard deviation of 0.25 to each, then
95% of the prior slopes are from —0.5 to 0.5, so either variable could in principle account
for the entire range, but it would be unlikely. Remember, the goals here are to assign weakly
informative priors to discourage overfitting—impossibly large effects should be assigned low
prior probability—and also to force ourselves to think about what the model means.
All together now, in code form:

m8.4 <- quap(

alist(
blooms_std ~ dnorm( mu , sigma ) ,
mu <- a + bwxwater_cent + bs*shade_cent ,
a ~ dnorm( 0.5 , 0.25 ) ,
bw ~ dnorm( @ , 0.25 ) ,
bs ~ dnorm( 0 , 0.25 ) ,
sigma ~ dexp( 1 )

) , data=d )

It’s a good idea at this point to simulate lines from the prior. But before doing that, let’s
define the interaction model as well. Then we can talk about how to plot predictions from
interactions and see both prior and posterior predictions together.

To build an interaction between water and shade, we need to construct p so that the
impact of changing either water or shade depends upon the value of the other variable. For
example, if water is low, then decreasing the shade can’t help as much as when water is high.
We want the slope of water, By, to be conditional on shade. Likewise for shade being condi-
tional on water (remember Buridan’s interaction, page 250). How can we do this?

In the previous example, terrain ruggedness, we made a slope conditional on the value of
a category. When there are, in principle, an infinite number of categories, then it’s harder. In
this case, the “categories” of shade and water are, in principle, infinite and ordered. We only
observed three levels of water, but the model should be able to make a prediction with a water
level intermediate between any two of the observed ones. With continuous interactions, the
problem isn't so much the infinite part but rather the ordered part. Even if we only cared
about the three observed values, wed still need to preserve the ordering, which is bigger
than which. So what to do?

The conventional answer is to reapply the original geocentrism that justifies a linear re-
gression. When we have two variable, an outcome and a predictor, and we wish to model
the mean of the outcome such that it is conditional on the value of a continuous predictor x,
we can use a linear model: ;; = o 4+ [x;. Now in order to make the slope § conditional on
yet another variable, we can just recursively apply the same trick.

For brevity, let W; and S; be the centered variables. Then if we define the slope Sy with
its own linear model ~yy:

pi = o+ yw,iWi + BsS;
Yw,i = Bw + BwsSi

R code
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Now 7y, is the slope defining how quickly blooms change with water level. The parameter
Bw is the rate of change, when shade is at its mean value. And By is the rate change in vy ;
as shade changes—the slope for shade on the slope of water. Remember, it’s turtles all the
way down. Note the i in y ;—it depends upon the row i, because it has §; in it.

We also want to allow the association with shade, s, to depend upon water. Luckily,
because of the symmetry of simple interactions, we get this for free. There is just no way
to specify a simple, linear interaction in which you can say the effect of some variable x
depends upon z but the effect of z does not depend upon x. I explain this in more detail in
the Overthinking box at the end of this section. The impact of this is that it is conventional
to substitute yy; into the equation for /1; and just state:

pi = o+ (Bw + PwsSi) Wi + 5sSi = a + BwW; + BsSi + BwsSiWi
——
YW, i

Ijust distributed the W; and then placed the S;W; term at the end. And that’s the conventional
form of a continuous interaction, with the extra term on the far right end holding the product
of the two variables.

Let’s put this to work on the tulips. The interaction model is:

B; ~ Normal(p;, o)
pi = o+ Bw Wi + BsSi + BwsWiS;

The last thing we need is a prior for this new interaction parameter, Sys. This is hard, because
these epicycle parameters don't have clear natural meaning. Still, implied predictions help.
Suppose the strongest plausible interaction is one in which high enough shade makes water
have zero effect. That implies:

Yw,i = Bw + BwsSi = 0

If we set S; = 1 (the maximum in the sample), then this means the interaction needs to
be the same magnitude as the main effect, but reversed: Sws = —/fSw. That is the largest
conceivable interaction. So if we set the prior for Sy to have the same standard deviation
as S, maybe that isn't ridiculous. All together now, in code form:

m8.5 <- quap(

alist(
blooms_std ~ dnorm( mu , sigma ) ,
mu <- a + bwxwater_cent + bsxshade_cent + bws*water_cent*shade_cent ,
a ~ dnorm( 0.5 , 0.25 ) ,
bw ~ dnorm( 0 , 0.25 ) ,
bs ~ dnorm( @ , 0.25 ) ,
bws ~ dnorm( @ , 0.25 ) ,
sigma ~ dexp( 1 )

) , data=d )

And that’s the structure of a simple, continuous interaction. You can inspect the precis
output. You'll see that bws is negative. What does that imply, on the outcome scale? It’s really
not easy to imagine from the parameters alone, especially since the values in the predictors
are both negative and positive.

So next, let’s figure out how to plot these creatures.
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Overthinking: How is interaction formed? As in the main text, if you substitute vy ; into 1; above
and expand:

pi = o+ (Bw + BwsSi) Wi + BsSi = a + Bw Wi + BsSi + BwsSiWi
Now it’s possible to refactor this to construct a «ys ; that makes the association of shade with blooms
depend upon water:
wi = o+ BwWi + 7s.:Si
¥s,i = Bs + BswWi
So both interpretations are simultaneously true. You could even put both «y definitions into 4 at the
same time:
i = o+ yw,iWi + 7s,iS;i
Yw,i = Bw + BwsSi
vs,i = Bs + BswWi
Note that I defined two different interaction parameters: Sys and Ssw. Now let’s substitute the
definitions into  and start factoring:
pi = o+ (Bw + BwsSi) Wi + (Bs + BswWi)S;
= a+ PwW;+ BsSi + (Bws + Bsw) WiS;
The only thing we can identify in such a model is the sum Byws + Bsw, so really the sum is a single
parameter (dimension in the posterior). It's the same interaction model all over again. We just cannot
tell the difference between water depending upon shade and shade depending upon water.
A more principled way to construct ; is to start with the derivatives dp;/OW; = Bw + BwsS:
and Ou;/0S; = Bs + BwsW;. Finding a function p; that satisfies both yields the traditional model.
By including boundary conditions and other prior knowledge, you can use the same strategy to find

fancier functions. But the derivation could be harder. So you might want to consult a friendly neigh-
borhood mathematician in that case.

8.3.3. Plotting posterior predictions. Golems (models) have awesome powers of reason,
but terrible people skills. The golem provides a posterior distribution of plausibility for com-
binations of parameter values. But for us humans to understand its implications, we need to
decode the posterior into something else. Centered predictors or not, plotting posterior pre-
dictions always tells you what the golem is thinking, on the scale of the outcome. That’s why
we've emphasized plotting so much. But in previous chapters, there were no interactions. As
a result, when plotting model predictions as a function of any one predictor, you could hold
the other predictors constant at any value you liked. So the choice of which values to set the
un-viewed predictor variables to hardly mattered.

Now that’ll be different. Once there are interactions in a model, the effect of changing
a predictor depends upon the values of the other predictors. Maybe the simplest way to go
about plotting such interdependency is to make a frame of multiple bivariate plots. In each
plot, you choose different values for the un-viewed variables. Then by comparing the plots
to one another, you can see how big of a difference the changes make.

That’s what we did for the terrain ruggedness example. But there we needed only two
plots, one for Africa and one for everyplace else. Now we'll need more. Here’s how you
might accomplish this visualization, for the tulip data. I'm going to make three plots in a
single panel. Such a panel of three plots that are meant to be viewed together is a TRIPTYCH,
and triptych plots are very handy for understanding the impact of interactions. Here’s the
strategy. We want each plot to show the bivariate relationship between water and blooms,
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FIGURE 8.7. Triptych plots of posterior predicted blooms across water and
shade treatments. Top row: Without an interaction between water and
shade. Bottom row: With an interaction between water and shade. Each
plot shows 20 posterior lines for each level of shade.

as predicted by the model. Each plot will plot predictions for a different value of shade. For
this example, it is easy to pick which three values of shade to use, because there are only
three values: —1, 0, and 1. But more generally, you might use a representative low value, the
median, and a representative high value.

Here’s the code to draw posterior predictions for m8. 4, the non-interaction model. This
will loop over three values for shade, compute posterior predictions, then draw 20 lines from
the posterior.

par (mfrow=c(1,3)) # 3 plots in 1 row
for (s in -1:1 ) {
idx <- which( d$shade_cent==s )
plot( dSwater_cent[idx] , dSblooms_std[idx] , xlim=c(-1,1) , ylim=c(0,1) ,
xlab="water" , ylab="blooms" , pch=16 , col=rangi2 )
mu <- link( m8.4 , data=data.frame( shade_cent=s , water_cent=-1:1 ) )
for ( i in 1:20 ) lines( -1:1 , mu[i,] , col=col.alpha("black",0.3) )

The result is shown in FIGURE 8.7, along with the same type of plot for the interaction model,
m8.5. Notice that the top model believes that water helps—there is a positive slope in each
plot—and that shade hurts—the lines sink lower moving from left to right. But the slope



8.3. CONTINUOUS INTERACTIONS 259

m8.4 prior: shade = -1 m8.4 prior: shade =0 m8.4 prior: shade = 1
(2] (2] n
€ € S
<} I} o)
o K] o
o) — Ne) e}
O F—=——-———-"=—=—-—- O F—-————— - —=-
1 0 1 1 0 1 1 0 1
water water water
m8.5 prior: shade = 1
%) %] wF == ____j_
§ § § o <
9 9 S ° —==
Keo) Keo) Ko} = ~ N
oIS OS> =
1 0 1 1 0 1 1 0 1
water water water

FiGure 8.8. Triptych plots of prior predicted blooms across water and
shade treatments. Top row: Without an interaction between water and
shade. Bottom row: With an inte