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Preface

This book is an exposition of statistical methodology that focuses on ideas and concepts,
and makes extensive use of graphical presentation. It avoids, as much as possible, the use
of mathematical symbolism. It is particularly aimed at scientists who wish to do statistical
analyses on their own data, preferably with reference as necessary to professional statistical
advice. It is intended to complement more mathematically oriented accounts of statistical
methodology. It may be used to give students with a more specialist statistical interest
exposure to practical data analysis.

While no prior knowledge of specific statistical methods or theory is assumed, there is a
demand that readers bring with them, or quickly acquire, some modest level of statistical
sophistication. Readers should have some prior exposure to statistical methodology, some
prior experience of working with real data, and be comfortable with the typing of analysis
commands into the computer console. Some prior familiarity with regression and with
analysis of variance will be helpful.

We cover a range of topics that are important for many different areas of statistical
application. As is inevitable in a book that has this broad focus, there will be investigators
working in specific areas — perhaps epidemiology, or psychology, or sociology, or ecology —
who will regret the omission of some methodologies that they find important.

We comment extensively on analysis results, noting inferences that seem well-founded,
and noting limitations on inferences that can be drawn. We emphasize the use of graphs
for gaining insight into data — in advance of any formal analysis, for understanding the
analysis, and for presenting analysis results.

The data sets that we use as a vehicle for demonstrating statistical methodology have
been generated by researchers in many different fields, and have in many cases featured in
published papers. As far as possible, our account of statistical methodology comes from
the coalface, where the quirks of real data must be faced and addressed. Features that may
challenge the novice data analyst have been retained. The diversity of examples has benefits,
even for those whose interest is in a specific application area. Ideas and applications that
are useful in one area often find use elsewhere, even to the extent of stimulating new lines
of investigation. We hope that our book will stimulate such cross-fertilization.

To summarize: The strengths of this book include the directness of its encounter with
research data, its advice on practical data analysis issues, careful critiques of analysis
results, the use of modern data analysis tools and approaches, the use of simulation and
other computer-intensive methods — where these provide insight or give results that are
not otherwise available, attention to graphical and other presentation issues, the use of



XX Preface

examples drawn from across the range of statistical applications, and the inclusion of code
that reproduces analyses.

A substantial part of the book was derived, initially, from John Maindonald’s lecture
notes of courses for researchers, at the University of Newcastle (Australia) over 1996—
1997 and at The Australian National University over 1998-2001. Both of us have worked
extensively over the material in these chapters.

The R system

We use the R system for computations. It began in the early 1990s as a project of Ross
Thaka and Robert Gentleman, who were both at the time working at the University of
Auckland (New Zealand). The R system implements a dialect of the influential S lan-
guage, developed at AT&T Bell Laboratories by Rick Becker, John Chambers, and Allan
Wilks, which is the basis for the commercial S-PLUS system. It follows S in its close
linkage between data analysis and graphics. Versions of R are available, at no charge,
for 32-bit versions of Microsoft Windows, for Linux and other Unix systems, and for the
Macintosh. It is available through the Comprehensive R Archive Network (CRAN). Go to
http://cran.r-project.org/, and find the nearest mirror site.

The development model used for R has proved highly effective in marshalling high levels
of computing expertise for continuing improvement, for identifying and fixing bugs, and
for responding quickly to the evolving needs and interests of the statistical community.
Oversight of “base R” is handled by the R Core Team, whose members are widely drawn
internationally. Use is made of code, bug fixes, and documentation from the wider R user
community. Especially important are the large number of packages that supplement base
R, and that anyone is free to contribute. Once installed, these attach seamlessly into the
base system.

Many of the analyses offered by R’s packages were not, 20 years ago, available in any of
the standard statistical packages. What did data analysts do before we had such packages?
Basically, they adapted more simplistic (but not necessarily simpler) analyses as best they
could. Those whose skills were unequal to the task did unsatisfactory analyses. Those
with more adequate skills carried out analyses that, even if not elegant and insightful by
current standards, were often adequate. Tools such as are available in R have reduced the
need for the adaptations that were formerly necessary. We can often do analyses that better
reflect the underlying science. There have been challenging and exciting changes from the
methodology that was typically encountered in statistics courses 15 or 20 years ago.

In the ongoing development of R, priorities have been: the provision of good data
manipulation abilities; flexible and high-quality graphics; the provision of data analysis
methods that are both insightful and adequate for the whole range of application area
demands; seamless integration of the different components of R; and the provision of
interfaces to other systems (editors, databases, the web, etc.) that R users may require. Ease
of use is important, but not at the expense of power, flexibility, and checks against answers
that are potentially misleading.

Depending on the user’s level of skill with R, there will be some tasks where another
system may seem simpler to use. Note however the availability of interfaces, notably
John Fox’s Rcmdr, that give a graphical user interface (GUI) to a limited part of R. Such
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interfaces will develop and improve as time progresses. They may in due course, for many
users, be the preferred means of access to R. Be aware that the demand for simple tools
will commonly place limitations on the tasks that can, without professional assistance, be
satisfactorily undertaken.

Primarily, R is designed for scientific computing and for graphics. Among the packages
that have been added are many that are not obviously statistical — for drawing and coloring
maps, for map projections, for plotting data collected by balloon-borne weather instruments,
for creating color palettes, for working with bitmap images, for solving sudoko puzzles, for
creating magic squares, for reading and handling shapefiles, for solving ordinary differential
equations, for processing various types of genomic data, and so on. Check through the list
of R packages that can be found on any of the CRAN sites, and you may be surprised at
what you find!

The citation for John Chambers’ 1998 Association for Computing Machinery Software
award stated that S has “forever altered how people analyze, visualize and manipulate
data.” The R project enlarges on the ideas and insights that generated the S language. We
are grateful to the R Core Team, and to the creators of the various R packages, for bringing
into being the R system — this marvellous tool for scientific and statistical computing, and
for graphical presentation. We give a list at the end of the reference section that cites the
authors and compilers of packages that have been used in this book.

Influences on the modern practice of statistics

The development of statistics has been motivated by the demands of scientists for a method-
ology that will extract patterns from their data. The methodology has developed in a synergy
with the relevant supporting mathematical theory and, more recently, with computing. This
has led to methodologies and supporting theory that are a radical departure from the
methodologies of the pre-computer era.

Statistics is a young discipline. Only in the 1920s and 1930s did the modern framework
of statistical theory, including ideas of hypothesis testing and estimation, begin to take
shape. Different areas of statistical application have taken these ideas up in different ways,
some of them starting their own separate streams of statistical tradition. See, for example,
the comments in Gigerenzer et al. (1989) on the manner in which differences of historical
development have influenced practice in different research areas.

Separation from the statistical mainstream, and an emphasis on “black-box’ approaches,
have contributed to a widespread exaggerated emphasis on tests of hypotheses, to a neglect
of pattern, to the policy of some journal editors of publishing only those studies that show
a statistically significant effect, and to an undue focus on the individual study. Anyone
who joins the R community can expect to witness, and/or engage in, lively debate that
addresses these and related issues. Such debate can help ensure that the demands of sci-
entific rationality do in due course win out over influences from accidents of historical
development.

New computing tools

We have drawn attention to advances in statistical computing methodology. These have
made possible the development of new powerful tools for exploratory analysis of regression
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data, for choosing between alternative models, for diagnostic checks, for handling non-
linearity, for assessing the predictive power of models, and for graphical presentation. In
addition, we have new computing tools that make it straightforward to move data between
different systems, to keep a record of calculations, to retrace or adapt earlier calcula-
tions, and to edit output and graphics into a form that can be incorporated into published
documents.

New traditions of data analysis have developed — data mining, machine learning, and
analytics. These emphasize new types of data, new data analysis demands, new data analysis
tools, and data sets that may be of unprecedented size. Textual data and image data offer
interesting new challenges for data analysis. The traditional concerns of professional data
analysts remain as important as ever. Size of data set is not a guarantee of quality and
of relevance to issues that are under investigation. It does not guarantee that the source
population has been adequately sampled, or that the results will generalize as required to
the target population.

The best any analysis can do is to highlight the information in the data. No amount of
statistical or computing technology can be a substitute for good design of data collection,
for understanding the context in which data are to be interpreted, or for skill in the use of
statistical analysis methodology. Statistical software systems are one of several components
of effective data analysis.

The questions that statistical analysis is designed to answer can often be stated simply.
This may encourage the layperson to believe that the answers are similarly simple. Often,
they are not. Be prepared for unexpected subtleties. Effective statistical analysis requires
appropriate skills, beyond those gained from taking one or two undergraduate courses
in statistics. There is no good substitute for professional training in modern tools for
data analysis, and experience in using those tools with a wide range of data sets. No-
one should be embarrassed that they have difficulty with analyses that involve ideas that
professional statisticians may take 7 or 8 years of professional training and experience to
master.

Third edition changes and additions

The second edition added new material on survival analysis, random coefficient models,
the handling of high-dimensional data, and extended the account of regression methods.
This third edition has a more adequate account of errors in predictor variables, extends the
treatment and use of random forests, and adds a brief account of generalized linear mixed
models. The treatment of one-way analysis of variance, and a major part of the chapter on
regression, have been rewritten.

Two areas of especially rapid advance have been graphical user interfaces (GUIs), and
graphics. There are now brief introductions to two popular GUIs for R — the R Commander
(Remdr) and rattle. The sections on graphics have been substantially extended. There
is a brief account of the latticist and associated playwith GUIs for interfacing with R
graphics.

Code has again been extensively revised, simplifying it wherever possible. There are
changes to some graphs, and new graphs have been added.
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Conventions

Text that is R code, or output from R, is printed in a verbatim text style. For example,
in Chapter 1 we will enter data into an R object that we call austpop. We will use the


http://www.togaware.com

XXiv Preface

plot () function to plot these data. The names of R packages, including our own DAAG
package, are printed in italics.

Starred exercises and sections identify more technical items that can be skipped at a first
reading.

Solutions to exercises

Solutions to selected exercises, R scripts that have all the code from the book, and other
supplementary materials are available via the link given at http: //www.maths . anu.
edu.au/~johnm/r-book
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Content — how the chapters fit together

Chapter 1 is a brief introduction to R. Readers who are new to R should as a minimum
study Section 1.1, or an equivalent, before moving on to later chapters. In later study, refer
back as needed to Chapter 1, or forward to Chapter 14.

Chapters 2—4: Exploratory data analysis and review of elementary
statistical ideas

Chapters 2—4 cover, at greater depth and from a more advanced perspective, topics that
are common in introductory courses. Different readers will use these chapters differently,
depending on their statistical preparedness.

Chapter 2 (Styles of data analysis) places data analysis in the wider context of the
research study, commenting on some of the types of graphs that may help answer questions
that are commonly of interest and that will be used throughout the remainder of the text.
Subsections 2.1.7, 2.2.3 and 2.2.4 introduce terminology that will be important in later
chapters.

Chapter 3 (Statistical models) introduces the signal + noise form of regression model.
The different models for the signal component are too varied to describe in one chapter!
Coverage of models for the noise (random component) is, relative to their use in remaining
chapters, more complete.

Chapter 4 (A review of inference concepts) describes approaches to generalizing from
data. It notes the limitations of the formal hypothesis testing methodology, arguing that a
less formal approach is often adequate. It notes also that there are contexts where a Bayesian
approach is essential, in order to take account of strong prior information.

Chapters 5-13: Regression and related methodology

Chapters 5-13 are designed to give a sense of the variety and scope of methods that come,
broadly, under the heading of regression. In Chapters 5 and 6, the models are linear in
the explanatory variable(s) as well as in the parameters. A wide range of issues affect the
practical use of these models: influence, diagnostics, robust and resistant methods, AIC
and other model comparison measures, interpretation of coefficients, variable selection,
multicollinearity, and errors in x. All these issues are relevant, in one way or another,
throughout later chapters. Chapters 5 and 6 provide relatively straightforward contexts in
which to introduce them.
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The models of Chapters 5-13 give varying combinations of answers to the questions:

1. What is the signal term? Is it in some sense linear? Can it be described by a simple
form of mathematical equation?

2. s the noise term normal, or are there other possibilities?

Are the noise terms independent between observations?

4. Is the model specified in advance? Or will it be necessary to choose the model from a
potentially large number of possible models?

b

In Chapters 5-8, the models become increasingly general, but always with a model that is
linear in the coefficients as a starting point. In Chapters 5—7, the noise terms are normal and
independent between observations. The generalized linear models of Chapter 8 allow non-
normal noise terms. These are still assumed independent.! Chapter 9 (Time series models)
and Chapter 10 (Multilevel models and repeated measures) introduce models that allow, in
their different ways, for dependence between observations. In Chapter 9 the correlation is
with observations at earlier points in time, while in Chapter 10 the correlation might for
example be between different students in the same class, as opposed to different students
in different classes. In both types of model, the noise term is constructed from normal
components — there are normality assumptions.

Chapters 610 allowed limited opportunity for the choice of model and/or explanatory
variables. Chapter 11 (Tree-based classification and regression) introduces models that are
suited to a statistical learning approach, where the model is chosen from a large portfolio
of possibilities. Moreover, these models do not have any simple form of equation. Note the
usual implicit assumption of independence between observations — this imposes limitations
that, depending on the context, may or may not be important for practical use.

Chapter 12 (Multivariate data exploration and discrimination) begins with methods that
may be useful for multivariate data exploration — principal components, the use of distance
measures, and multi-dimensional scaling. It describes dimension reduction approaches that
allow low-dimensional views of the data. Subsection 12.2 moves to discriminant methods —
i.e., to regression methods in which the outcome is categorical. Subsection 12.3 identifies
issues that arise when the number of variables is large relative to the number of observations.
Such data is increasingly common in many different application areas.

It is sometimes possible to replace a large number of explanatory variables by one,
or a small number, of scoring variables that capture the relevant information in the data.
Chapter 13 investigates two different ways to create scores that may be used as explanatory
variables in regression. In the first example, the principal component scores are used. The
second uses propensity scores to summarize information on a number of covariates that are
thought to explain group differences that are, for the purposes of the investigation, nuisance
variables.

! Note, however, the extension to allow models with a variance that, relative to the binomial or Poisson, is inflated.
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This first chapter introduces readers to the basics of R. It provides the minimum of
information that is needed for running the calculations that are described in later chap-
ters. The first section may cover most of what is immediately necessary. The rest of the
chapter may be used as a reference. Chapter 14 extends this material considerably.

Most of the R commands will run without change in S-PLUS.

1.1 An overview of R
1.1.1 A short R session
R must be installed!

An up-to-date version of R may be downloaded from a Comprehensive R Archive Network
(CRAN) mirror site. There are links at http: //cran.r-project.org/. Installation
instructions are provided at the web site for installing R in Windows, Unix, Linux, and
version 10 of the Macintosh operating system.

For most Windows users, R can be installed by clicking on the icon that appears on
the desktop once the Windows setup program has been downloaded from CRAN. An
installation program will then guide the user through the process. By default, an R icon
will be placed on the user’s desktop. The R system can be started by double-clicking
on that icon.

Various contributed packages extend the capabilities of R. A number of these are a part
of the standard R distribution, but a number are not. Many data sets that are mentioned in
this book have been collected into our DAAG package that is available from CRAN sites.
This and other such packages can be readily installed, from an R session, via a live internet
connection. Details are given below, immediately prior to Subsection 1.1.2.

Using the console (or command line) window

The command line prompt (>) is an invitation to type commands or expressions. Once the
command or expression is complete, and the Enter key is pressed, R evaluates and prints
the result in the console window. This allows the use of R as a calculator. For example, type
2+2 and press the Enter key. Here is what appears on the screen:

> 242
[1] 4
>
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The first element is labeled [1] even when, as here, there is just one element! The final >
prompt indicates that R is ready for another command.

In a sense this chapter, and much of the rest of the book, is a discussion of what
is possible by typing in statements at the command line. Practice in the evaluation of
arithmetic expressions will help develop the needed conceptual and keyboard skills. For
example:

> 2*3*4*5 # * denotes 'multiply’

[1] 120

> sqgrt (10) # the square root of 10

[1] 3.162278

> pi # R knows about pi

[1] 3.141593

> 2*pi*6378 # Circumference of earth at equator (km)

# (radius at equator is 6378 km)
[1] 40074.16

Anything that follows a # on the command line is taken as comment and ignored by R.

A continuation prompt, by default +, appears following a carriage return when the
command is not yet complete. For example, an interruption of the calculation of 3*4"2
by a carriage return could appear as

> 3*%4"
+ 2
[1] 48

In this book we will omit both the command prompt (>) and the continuation prompt
whenever command line statements are given separately from output.

Multiple commands may appear on one line, with a semicolon (; ) as the separator. For
example,

> 3%472; (3*4)"2
[1] 48
[1] 144

Entry of data at the command line

Figure 1.1 gives, for each of the years 1800, 1850, ..., 2000, estimated worldwide totals
of carbon emissions that resulted from fossil fuel use. To enter the columns of data from
the table, and plot Carbon against Year as in Figure 1.1, proceed thus:

Year <- c(1800, 1850, 1900, 1950, 2000)
Carbon <- c(8, 54, 534, 1630, 6611)

## Now plot Carbon as a function of Year
Year, pch=16)

plot (Carbon
Note the following:

¢ The <- is a left angle bracket (<) followed by a minus sign (-). It means “the values on
the right are assigned to the name on the left”.
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Figure 1.1 Estimated worldwide annual totals of carbon emissions from fossil fuel use, in millions
of tonnes. Data are due to Marland ef al. (2003).

¢ The objects Year and Carbon are vectors which were each formed by joining
(concatenating) separate numbers together. Thus ¢ (8, 54, 534, 1630, 6611)
joined the numbers 8, 54, 534, 1630, 6611 together to form the vector Carbon. See
Subsection 1.2.2 for further details.

¢ TheconstructCarbon ~ Yearisagraphicsformula. Theplot () functioninterprets
this formula to mean “Plot Carbon as a function of Year” or “Plot Carbon on the
y-axis against Year on the x-axis”.

* The setting pch=16 (where pch is “plot character”) gives a solid black dot.

* Case is significant for names of R objects or commands. Thus, Carbon is different
from carbon.

This basic plot could be improved by adding more informative axis labels, changing sizes
of the text and/or the plotting symbol, adding a title, and so on. See Section 1.5.

Once created, the objects Year and Carbon are stored in the workspace, as part of the
user’s working collection of R objects. The workspace lasts only until the end of a session.
In order that the session can be resumed later, a copy or “image”” must be kept. Upon typing
d () to quit the session, you will be asked if you wish to save the workspace.

Collection of vectors into a data frame

The two vectors Year and Carbon created earlier are matched, element for element. It is
convenient to group them together into an object that has the name data frame, thus:

> fossilfuel <- data.frame(year=Year, carbon=Carbon)

Vv

fossilfuel # Display the contents of the data frame.
year carbon
1800 8
1850 54
1900 534
1950 1630
2000 6611

U W N
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The vector objects Year and Carbon become, respectively, the columns year and
carbon in the data frame. The vector objects Year and Carbon are then redundant, and
can be removed.

rm(Year, Carbon) # The rm() function removes unwanted objects
Figure 1.1 can now be reproduced, with a slight change in the x- and y-labels, using
plot(carbon ~ year, data=fossilfuel, pch=16)

The data=fossilfuel argument instructs plot () to start its search for each of
carbon and year by looking among the columns of fossilfuel.

There are several ways to identify columns by name. Here, note that the second column
can be referred to as fossilfuel[, 2],oras fossilfuel[, "carbon"], oras
fossilfuel$carbon.

Data frames are the preferred way to organize data sets that are of modest size. For
now, think of data frames as a rectangular row by column layout, where the rows are
observations and the columns are variables. Section 1.3 has further discussion of data
frames. Subsection 1.1.4 will demonstrate input of data from a file, into a data frame.

The R Commander Graphical User Interface (GUI) to R

Our discussion will usually assume use of the command line. Excellent GUI interfaces,
such as the R Commander, are also available.

Data input is very convenient with the R Commander. When importing data, a window
pops up offering a choice of common data formats. Data can be input from a text file, the
clipboard, URL, an Excel spreadsheet, or one of several statistical package formats (SPSS,
Stata, Minitab, SAS, ...). Refer to Section 14.1 for more details.

The working directory and the contents of the workspace

Each R session has a working directory. Within a session, the workspace is the default place
where R looks for files that are read from disk, or written to disk. In between sessions, it
is usual for the working directory to keep a workspace copy or “image” from which the
session can be restarted.

For a session that is started from a Windows icon, the initial working directory is the
Start in directory that appears by right clicking on the icon and then on Properties. Users
of the MacOS X GUI can change the default startup directory from within an R session
by clicking on the R menu item, then on Preferences, then making the necessary change
in the panel Initial working directory. On Unix or Linux sessions that are started from the
command line, the working directory is the directory in which R was started. In the event
of uncertainty, type getwd () to display the name of the working directory:

getwd ()

Objects that the user creates or copies from elsewhere go into the user workspace. To list
the workspace contents, type:

1s()
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The only object left over from the computations above should be fossilfuel. There
may additionally be objects that are left over from previous sessions (if any) in the same
directory, and that were loaded when the session started.

Quitting R

Use the g () function to quit (exit) from R:

al)

There will be a message asking whether to save the workspace image. Clicking Yes has
the effect that, before quitting, all the objects that remain in the workspace are saved in
a file that has the name .RData. Because it is a copy or “image” of the workspace, this
file is known as an image file. (Note that while delaying the saving of important objects
until the end of the session is acceptable when working in a learning mode, it is not in
general a good strategy when using R in production mode. Section 1.6 has advice on saving
and backing up through the course of a session. See also the more extended comments in
Subsection 14.2.2.)

Depending on the implementation, alternatives to typing g () may be to click on the File
menu and then on Exit, or to click on the X in the top right-hand corner of the R window.
(Under Linux, depending on the window manager that is used, clicking on X may exit from
the program, but without asking whether to save the workshop image. Check the behavior
on your installation.)

Note: The round brackets, when using g () to quit the session, are necessary because g
is a function. Typing g on its own, without the brackets, displays the text of the function
on the screen. Try it!

Installation of packages

Assuming access to a live internet connection, packages can be installed pretty much
automatically. Thus, for installation of the DAAG package under Windows, start R and
click on the Packages menu. From that menu, choose Install packages. If a mirror site has
not been set earlier, this gives a pop-up menu from which a site must be chosen. Once this
choice is made, a new pop-up window appears with the entire list of available R packages.
Click on DAAG to select it for installation. Control-click to select additional packages.
Click on OK to start downloading and installation.
For installation from the command line, enter, for example

install.packages ("DAAG")
install.packages (c("magic", "schoolmath"), dependencies=TRUE)

A further possibility, convenient if packages are to be installed onto a number of local
systems, is to download the files used for the installation onto a local directory or onto a
CD or DVD, and install from there.
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1.1.2 The uses of R

R has extensive capabilities for statistical analysis, that will be used throughout this book.
These are embedded in an interactive computing environment that is suited to many
different uses, some of which we now demonstrate.

R offers an extensive collection of functions and abilities

Most calculations that users may wish to perform, beyond simple command line compu-
tations, involve explicit use of functions. There are of course functions for calculating the
sum (sum () ), mean (mean () ), range (range () ), and length of a vector (length ()),
for sorting values into order (sort () ), and so on. For example, the following calculates
the range of the values in the vector carbon:

> range (fossilfuel$carbon)
[1] 8 6611

Here are examples that manipulate character strings:

> ## 4 cities

> fourcities <- c("Toronto", "Canberra", "New York", "London")
> ## display in alphabetical order

> sort (fourcities)

[1] "Canberra" "London" "New York" "Toronto"

> ## Find the number of characters in "Toronto"

> nchar ("Toronto")

(11 7

>

> ## Find the number of characters in all four city names at once
> nchar (fourcities)

[1] 7 8 8 6

R will give numerical or graphical data summaries

The data frame cars (datasets package) has columns (variables) speed and dist. Typing
summary (cars) gives summary information on its columns:

> summary (cars)

speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 lst Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

Thus, the range of speeds (first column) is from 4 mph to 25 mph, while the range of
distances (second column) is from 2 feet to 120 feet.
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Graphical summaries, including histograms and boxplots, are discussed and demon-
strated in Section 2.1. Try, for example:

hist (carsSspeed)

R is an interactive programming language

The following calculates the Fahrenheit temperatures that correspond to Celsius tempera-
tures 0, 10, ..., 40:

> celsius <- (0:4)*10
> fahrenheit <- 9/5*celsius+32
> conversion <- data.frame(Celsius=celsius, Fahrenheit=fahrenheit)
> print (conversion)
Celsius Fahrenheit
1 0 32
2 10 50
3 20 68
4 30 86
5 40 104

1.1.3 Online help

Familiarity with R’s help facilities will quickly pay dividends. R’s help files are compre-
hensive, and are frequently upgraded. Type help (help) or ?help to get information
on the help features of the system that is in use. To get help on, e.g., plot (), type:

?plot # Equivalent to help(plot)

The functions apropos () and help.search () search for functions that perform a
desired task. Examples are:

apropos ("sort") # Try, also, apropos ("sor")

# List all functions where "sort" is part of the name
help.search("sort") # Note that the argument is ‘sort’

# List functions with ’‘sort’ in the help page title or as an alias

Users are encouraged to experiment with R functions, perhaps starting by using the
function example () to run the examples on the relevant help page. Be warned however
that, even for basic functions, some examples may illustrate relatively advanced uses.

Thus, to run the examples from the help page for the function image (), type:

example (image)
par (ask=FALSE) # turn off the prompts

Press the return key to see each new plot. The par (ask=FALSE) on the second line of
code stops the prompts that will otherwise continue to appear, prior to the plotting of any
subsequent graph.

In learning to use a new function, it may be helpful to create a simple artificial data set,
or to extract a small subset from a larger data set, and use this for experimentation. For
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extensive experimentation, consider moving to a new working directory and working with
copies of any user data sets and functions.

The help pages, while not an encyclopedia on statistical methodology, have very extensive
useful information. They include: insightful and helpful examples, references to related
functions, and references to papers and books that give the relevant theory. Some abilities
will bring pleasant surprises. It can help enormously, before launching into the use of an R
function, to check the relevant help page!

Wide-ranging information access and searches

The functionhelp.start () opensabrowser interface to help information, manuals, and
helpful links. It may take practice, and time, to learn to navigate the wealth of information
that is on offer.

The function RSiteSearch () initiates (assuming a live internet connection) a search
of R manuals and help pages, and of the R-help mailing list archives, for key words
or phrases. The argument restrict allows some limited targeting of the search. See
help (RSiteSearch) for details.

Help in finding the right package

The CRAN Task Views can be a good place to start when looking for abilities of a par-
ticular type. The 23 Task Views that are available at the time of writing include, for
example: Bayesian inference, Cluster analysis, Finance, Graphics, and Time series. Go to
http://cran.r-project.org/web/views/

1.1.4 Input of data from a file

Code that will take data from the file fuel . txt that is in the working directory, entering
them into the data frame fossilfuel in the workspace is:

fossilfuel <- read.table("fuel.txt", header=TRUE)

Note the use of header=TRUE to ensure that R uses the first line to get header information
for the columns, usually in the form of column names.

Type fossilfuel at the command line prompt, and the data will be displayed almost
as they appear in Figure 1.1 (the only difference is the introduction of row labels in the R
output).

The function read. table () has the default argument sep="", implying that the
fields of the input file are separated by spaces and/or tabs. Other settings are sometimes
required. In particular:

fossilfuel <- read.table("fuel.csv", header=TRUE, sep=",")

reads data from a file fuel . csv where fields are separated by commas. For other options,
consult the help page for read. table (). See also Subsection 14.4.1.
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On Microsoft Windows systems, it is immaterial whether this file is called fuel. txt
or Fuel. txt. Unix file systems may, depending on the specific file system in use, treat
letters that have a different case as different.

1.1.5 R packages

This chapter and Chapter 2 will make frequent use of data from the MASS package (Venables
and Ripley, 2002) and from our own DAAG package. Various further packages will be used
in later chapters.

The packages base, stats, datasets, and several other packages, are automatically attached
at the beginning of a session. Other installed packages must be explicitly attached prior to
use. Use sessionInfo () to see which packages are currently attached. To attach any
further installed package, use the 1ibrary () function. For example,

> library (DAAG)
Loading required package: MASS

> sessionInfo()
R version 2.9.0 (2009-04-17)
i386-apple-darwin8.11.1

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] DAAG_0.98 MASS_7.2-46

Data sets that accompany R packages

Type data () to get a list of data sets (mostly data frames) in all packages that are in the
current search path. For information on the data sets in the datasets package, type

data (package="datasets") # Specify ’‘package’, not 'library’.

Replace "datasets" by the name of any other installed package, as required (type
library () to get the names of the installed packages). In most packages, these data
sets automatically become available once the package is attached. They will be brought
into the workspace when and if required. (A few packages do not implement the lazy
data mechanism. Explicit use of a command of the form data (airquality) is then
necessary, bringing the data object into the user’s workspace.)

1.1.6 Further steps in learning R

Readers who have followed the discussion thus far and worked through the examples may at
this point have learned enough to start on Chapter 2, referring as necessary to later sections
of this chapter, to R’s help pages, and to Chapter 14. The remaining sections of this chapter
cover the following topics:
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* Numeric, character, logical, and complex vectors (Section 1.2).
* Factors (Subsection 1.2.7).

¢ Data frames and matrices (Section 1.3).

¢ Functions for calculating data summaries (Section 1.4).

¢ Graphics and lattice graphics (Sections 1.5 and 15.5).

1.2 Vectors, factors, and univariate time series

Vectors, factors, and univariate time series are all univariate objects that can be included
as columns in a data frame. The vector modes that will be noted here (there are others) are
“numeric”, “logical”, and “character".

1.2.1 Vectors

Examples of vectors are

>c(2, 3, 5,2, 7, 1)
[1] 23 5271

> ¢(T, F, F, F, T, T, F)
[1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE

> c("Canberra", "Sydney", "Canberra", "Sydney")
[1] "Canberra" "Sydney" "Canberra" "Sydney"

The first of these is numeric, the second is logical, and the third is a character. The global
variables F (=FALSE) and T (=TRUE) can be a convenient shorthand when logical
values are entered.

1.2.2 Concatenation — joining vector objects

The function c (), used in Subsection 1.1.1 to join numbers together to form a vector, is
more widely useful. It may be used to concatenate any combination of vectors and vector
elements. In the following, we form numeric vectors x and y, that we then concatenate to
form a vector z:

> x <- ¢(2, 3,5, 2, 7, 1) # x then holds values 2, 3, 5, 2, 7, 1
> X

[1] 23 5271

>y <- c(10, 15, 12)

>y

[1] 10 15 12

> z <- c(x, v)

> z

[1] 2 3 52 7 1 10 15 12
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1.2.3 The use of relational operators to compare vector elements

Relational operators are <, <=, >, >=, ==, and ! =. For example, consider the carbon and
year columns of the data frame fossilfuel. For example:

> x <- c(3, 11, 8, 15, 12)

> x > 8

[1] FALSE TRUE FALSE TRUE TRUE
> x =8

[1] TRUE TRUE FALSE TRUE TRUE

For further information on relational operators consult help (Comparison),
help(Logic), and help (Syntax).

1.2.4 The use of square brackets to extract subsets of vectors

Note three common ways to extract elements of vectors. In each case, the identifying
information (in the simplest case, a vector of subscript indices) is enclosed in square
brackets.

1. Specify the indices of the elements that are to be extracted, e.g.,
> x <- c(3, 11, 8, 15, 12)
> x[c(2,4)] # Elements in positions 2
[1] 11 15 # and 4 only
2. Use negative subscripts to omit the elements in nominated subscript positions (take
care not to mix positive and negative subscripts):
> x[-c(2,3)] # Remove the elements in positions 2 and 3
[1] 3 15 12
3. Specify a vector of logical values. This extracts elements for which the logical value is
TRUE. The following extracts values of x that are greater than 10:
> x > 10
[1] FALSE TRUE FALSE TRUE TRUE
> x[x > 10]
[1] 11 15 12

Elements of vectors can be given names. Elements can then be extracted by name:

> heights <- c(Andreas=178, John=185, Jeff=183)
> heights[c("John", "Jeff")]
John Jeff

185 183

1.2.5 Patterned data
Use, for example, 5: 15 to generate all integers in a range, here between 5 and 15 inclusive:

> 5:15
[1] 5 6 7 8 9 10 11 12 13 14 15

Conversely, 15 : 5 will generate the sequence in the reverse order.
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The function seq () allows a wider range of possibilities. For example:

> seq(from=5, to=22, by=3) # The first value is 5. The final
# value is <= 22

[1] 5 8 11 14 17 20

## The above can be abbreviated to seq(5, 22, 3)

To repeat the sequence (2, 3, 5) four times over, enter

> rep(c(2,3,5), 4)
[1] 2352352352235

Patterned character vectors are also possible:

> c(rep("female", 3), rep("male", 2))
[1] "female" "female" "female" "male" "male"

1.2.6 Missing values

The missing value symbol is NA. As an example, consider the column branch of the data
set rainforest:

> library (DAAG)
> nbranch <- subset (rainforest, species=="Acacia mabellae")S$branch
> nbranch # Number of small branches (2cm or less)

[1] NA 35 41 50 NA NA NA NA NA 4 30 13 10 17 46 92

Any arithmetic expression that involves an NA generates NA as its result. Functions such
asmean () allow the argument na . rm=TRUE, so that NAs are omitted before proceeding
with the calculation. For example:

> mean (nbranch)

[1] NA
> mean (nbranch, na.rm=TRUE)
[1] 33.8

Other functions that behave similarly are sum (), median (), range (), and sd.
Arithmetic and logical expressions in which NAs appear return NA, thus:

> NA == 35
[1] NA

The unknown value might just possibly equal 35. This is a matter of strict logic, not
probability. Thus, the result is NA.

To replace all NAs by -999 (in most circumstances a bad idea) use the function
is.na(), thus:

> ## Replace all NAs by -999
> nbranch[is.na(nbranch)] <- -999
> nbranch
[11 -999 35 41 50 -999 -999 -999 -999 -999 4 30 13
[13] 10 17 46 92
> ## There is now no protection against use of the -999 values as
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> ## if they were legitimate numeric values
> mean (nbranch)
[1] -353.5 # Illegitimate calculation

Using a code such as -999 for missing values requires continual watchfulness to ensure
that it is never treated as a legitimate numeric value.

Missing values are discussed further in Subsection 1.4.6 and Section 14.7. For vectors of
mode numeric, other legal values that may require special attention are NaN (not a number;
e.g., 0/0), Inf (e.g., 1/0), and -Inf.

1.2.7 Factors

A factor is stored internally as a numeric vector with values 1,2, 3, ..., k. The value k is
the number of levels. The levels are character strings.

Consider a survey that has data on 691 females and 692 males. If the first 691 are females
and the next 692 males, we can create a vector of strings that holds the values, then turning
this vector into a factor, thus:

> ## Create character vector

> gender <- c(rep("female",691), rep("male",692))
> levels (gender) # For a character vector, this returns NULL
NULL

> ## From character vector, create factor
> gender <- factor (gender)

> levels (gender)

[1] "female" "male"

Internally, the factor gender is stored as 691 1s, followed by 692 2s. It has stored with it
a table that holds the information

1 female
2 male

In most contexts that seem to demand a character string, the 1 is translated into female
and the 2 intomale. The values female and male are the levels of the factor. By default,
the levels are in sorted order for the data type from which the factor was formed, so that
female precedes male. Hence:

> levels (gender)
[1] "female" "male"

Note that if gender had been an ordinary character vector, the outcome of the above
levels command would have been NULL.

The order of the factor levels is used, in graphs and tables, to determine the order in
which the levels will appear. To cause male to come before female, use

gender <- factor(gender, levels=c("male", "female"))

This syntax is available both when the factor is first created, and later to change the order
in an existing factor. Take care that the level names are correctly spelled. For example,
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specifying "Male" in place of "male" in the levels argument will cause all values
that were "male" to be coded as missing.

Note finally the function ordered (), which generates factors whose values can be
compared using the relational operators <, <=, >, >=, ==, and !=. Ordered factors are
appropriate for use with ordered categorical data. See Section 14.6 for further details.

1.2.8 Time series

The following are the numbers of workers (in 1000s) in the Canadian prairies for each
month from January 1995 through December 1996:'

numjobs <- c(982,981,984,982,981,983,983,983,983,979,973,979,
974,981,985,987,986,980,983,983,988,994,990,999)

The function ts () converts numeric vectors into time series objects. Frequently used
arguments of ts () are start, frequency, and end. The following turns numjobs
into a time series, which can then be plotted:

numjobs <- ts(numjobs, start=1995, frequency = 12)
plot (numjobs)

Use the function window () to extract a subset of the time series. For example, the
following extracts the last quarter of 1995 and the first few months of 1996:

firstl5 <- window (numjobs, start=1995.75, end=1996.25)

Multivariate time series can also be handled. See Subsections 2.1.5 and 14.9.7.

1.3 Data frames and matrices

Data frames are fundamental to the use of the R modeling and graphics functions. A data
frame is a more general object than a matrix, in the sense that different columns may have
different modes. All elements of any column must, however, have the same mode, i.e., all
numeric, or all factor, or all character, or all logical.

Included in the DAAG package is Cars93 . summary, created from the Cars93 data
set in the MASS package. Its contents are:

> Cars93.summary
Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C
Large 6 6 11 L
Midsize 4 6 22 M
Small 4 5 21 Sm
Sporty 2 4 14 Sp
Van 7 8 9 \Y

Ugg Alternatively, obtain from data frame jobs (DAAG)
library (DAAG)
numjobs <- jobsS$SPrairies
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The first three columns are numeric, and the fourth is a factor. Use the function class ()
to check this, e.g., enter class (Cars93.summarySabbrev). (The classification of
objects into classes is discussed in Subsection 1.4.2.)

On most systems, use of edit () allows access to a spreadsheet-like display of a data
frame or of a vector, where entries can be edited or new data added. For example,

Cars93.summary <- edit (Cars93.summary)

To close the spreadsheet, click on the File menu and then on Close. On Linux systems,
click on Quit to exit.

Displaying the first few, or last few, rows of a data frame

When used with a data frame (other possible arguments include vectors and functions), the
head () function displays the first lines of a data frame, while tail () displays the last
lines. For example,

> head(Cars93.summary, n=3) # Display the first 3 rows
(the default is 6)
Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C
Large 6 6 11 L
Midsize 4 6 22 M
> #

Note also the functions str () and summary (), both of which can be used to get summary
information on data frames, different in the two cases.

Column and row names

The function rownames () extracts the names of rows, while colnames () extracts
column names, thus:

rownames (Cars93 . summary) # Extract row names
colnames (Cars93.summary) # Extract column names

For use with data frames row.names () is an alternative to rownames (), while
names () is an alternative to colnames ().

The functions names () (or colnames ()) and rownames () can also be used to
assign new names. For example:

names (Cars93.summary) [3] <- "numCars"
names (Cars93.summary) <- c("minPass", "maxPass", "numCars", "code")

Subsets of data frames

Data frames are indexed by row and column number. Thus to extract the element in
the 4th row and 2nd column, specify Cars93.summary[4, 2]. Here are additional
examples:
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Cars93.summary[1:3, 2:3] # Rows 1-3 and columns 2-3

[
Cars93.summary([, 2:3] # Columns 2-3 (all rows)
Cars93.summary|[, c("No.of.cars", "abbrev")] # Cols 2-3, by name
Cars93.summaryl[, -c(2,3)] # omit columns 2 and 3

The subset () function offers an alternative way to extract rows and columns. For
example, the following extracts the first two rows:

subset (Cars93.summary,
subset=c (TRUE, TRUE, FALSE, FALSE, FALSE, FALSE))

Use the argument select to specify a subset of columns. See help (subset) for
details.

Use of the subscript notation to extract a column, as in Cars93.summary [, 117,
returns a vector. By contrast, extraction of the raw Cars93.summary[1l, ] returns
a data frame, necessary because this allows different elements (columns) to retain their
existing classes. Note also

¢ Useofunlist(Cars93.summary[1l, ]) returnsa vector, but with the side-effect
that the factor value in the final column is coerced to numeric. Such side-effects are
usually undesirable, with a result that may be meaningless.

* Avoid Cars93.summary[4], at least until the subtleties of its use are understood.
See Subsection 14.9.1. If used where Cars93.summary[, 4] was intended, the
calculation may fail or give an erroneous result.

Data frames are a specialized type of list

A list is an arbitrary collection of R objects. Here is a simple example, containing two
character vectors of differing lengths and a numeric vector:

> ## Cities with more than 2.5 million inhabitants

> USACanada <- list (USACities=c("NY", "LA", "Chicago"),

+ CanadaCities=c ("Toronto", "Montreal"),
+ millionsPop=c (USA=305.9, Canada=31.6))
>

> USACanada

SUSACities

[1] "NY" "LA" "Chicago"

$CanadaCities

[1] "Toronto" "Montreal"

SmillionsPop

USA Canada
305.9 31.6

Many of R’s modeling functions return their output as a list. Lists can be joined using
the function c (); in this and in several other respects they are “vectors”. Important
aspects of the syntax for working with data frames apply also to lists. Obviously, however,
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notions of “row’” and “column’ have no relevance to lists. See Subsection 14.9.1 for further
commentary.

1.3.1 Accessing the columns of data frames —with () and attach/()

In repeated computations with the same data frame, it is tiresome to keep repeating the
name of the data frame. The function with () is often helpful in this connection. Thus, an
alternative to ¢ (mean (cfsealSweight), median(cfsealS$Sweight)) is:

> ## cfseal (DAAG) has data on Cape Fur seals
> with(cfseal, c(mean(weight), median(weight)))
[1] 54.8 46.2

Curly brackets (braces) can be used to extend the scope of with () over several lines of
code:

> with(pair65, # stretch of rubber bands, from DAAG
+ {lenchange <- heated-ambient

+ c (mean (lenchange), median (lenchange))

+ 1)

[1] 6.33 6.00

An alternative is attach (). Once a data frame has been attached, its columns can be
referred to by name, without further need to give the name of the data frame. For example:

> year

Error: Object "year" not found

> attach(fossilfuel) # Attach data frame fossilfuel
> year

[1] 1800 1850 1900 1950 2000

> detach(fossilfuel) # Detach data frame

Be sure to detach data frames that are no longer in use. If more than one data frame is
attached that has the column year, there is obvious scope for confusion.

What happens if there is an object year in the workspace? References to year will
then take the object that is in the workspace, ignoring the column year in the attached
data frame. By contrast, use of with () ensures that the column, if present, is from the
specified data frame.

The attaching of a data frame extends the search list, which is the list of “databases”
where R looks for objects. See Section 14.2 for more details on this and other uses of
attach().

1.3.2 Aggregation, stacking, and unstacking

The aggregate () function yields a data frame that has the mean or value of another
specified function for each combination of factor levels. As an example, consider the
chickwts data frame which contains observations on the weights of 71 six-week-old
chicks who have been fed one of six kinds of feed. The columns of chickwts are named
weight and feed. To find the average weights for the different feed groups, type
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> chickwtAvs <- with(chickwts,
+ aggregate (weight, by=list(feed), mean))
> names (chickwtAvs) <- c("Feed Group", "Mean Weight")
> chickwtAvs
Feed Group Mean Weight
1 casein 323.5833
2 horsebean 160.2000
3 linseed 218.7500

See Subsection 14.9.5 for more information on the aggregate () function.

For stacking columns of a data frame, i.e., placing successive columns one under the
other, the function stack () is available. The following use of stack (), with data from
the data frame jobs, will be required for the use of these data in Subsection 2.1.5.

\2

library (DAAG)
head (jobs, 3)

\Y%

BC Alberta Prairies Ontario Quebec Atlantic Date

1 1752 1366 982 5239 3196 947 95.00000
2 1737 1369 981 5233 3205 946 95.08333
3 1765 1380 984 5212 3191 954 95.16667
> #
> Jobs <- stack(jobs, select = 1:6)
> # stack() concatenates selected data frame columns into a
> # single column named "values", & adds a factor named "ind"
> # that has the names of the concatenated columns as levels.
> head (Jobs, 3)

values ind
1 1752 BC
2 1737 BC
3 1765 BC
> #

For a further example, see Exercise 19.
The unstack () function reverses the stacking operation. For example, unstack
(Jobs) (ormore generally, unstack (Jobs, wvalues ~ ind))recoversthe original

data frame.

1.3.3* Data frames and matrices

The numeric values in the data frame fossilfuel might alternatively be stored in a
matrix with the same dimensions, i.e., 5 rows x 2 columns. The following enters these
same data as a matrix:

fossilfuelmat <- matrix(c (1800, 1850, 1900, 1950, 2000,
8, 54, 534, 1630, 6611), nrow=5)
colnames (fossilfuel) <- c("year", "carbon")
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Another possibility is the use of the function cbind () to combine two or more vectors
of the same length and type together into a matrix, thus:

fossilfuelmat <- cbind(year=c (1800, 1850, 1900, 1950, 2000),
carbon=c (8, 54, 534, 1630, 6611))

More generally, any data frame where all columns hold data that is all of the same type,
i.e., all numeric or all character or all logical, can alternatively be stored as a matrix. Storage
of numeric data in matrix rather than data frame format can speed up some mathematical
and other manipulations when the number of elements is large, e.g., of the order of several
hundreds of thousands. For further details, see Section 14.8.

Note that:

* Matrix elements are stored in column order in one long vector, i.e., columns are stacked
one above the other, with the first column first. Section 14.8 describes how to change
between a matrix with m rows and n columns, and a vector of length mn.

¢ The extraction of submatrices has the same syntax as for data frames. Thus, fossil-
fuelmat[2:3, ] extracts rows 2 and 3 of the matrix fossilfuelmat. (Be careful
not to omit the comma, causing the matrix to be treated as one long vector.)

* The names () function returns NULL when the argument is a matrix. Note however
rownames () and colnames (), which can be used either with data frames or
matrices.

* The function nrow () (e.g. nrow(fossilfuel) or nrow(fossilfuelmat))
returns the number of rows, while ncol () returns the number of columns.

1.4 Functions, operators, and loops

Functions are integral to the use of the R language. User-written functions are used in
exactly the same way as built-in functions. Examples will appear from time to time through
the book. An incidental advantage of putting code into functions is that the workspace is
not then cluttered with objects that are local to the function.

1.4.1 Common useful built-in functions

all() # returns TRUE if all values are TRUE
any () # returns TRUE if any values are TRUE
args () # information on the arguments to a function
cat () # prints multiple objects, one after the other
cumprod () # cumulative product
cumsum () # cumulative sum
diff () # form vector of first differences

# N. B. diff(x) has one less element than x
history() # displays previous commands used
is.factor () # returns TRUE if the argument is a factor
is.na() # returns TRUE if the argument is an NA

# NB also is.logical(), is.matrix(), etc.
length() # number of elements in a vector or of a list
1s() # list names of objects in the workspace
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mean () # mean of the elements of a vector

median () # median of the elements of a vector

order () # x[order(x)] sorts x (by default, NAs are last)
print () # prints a single R object

range () # minimum and maximum value elements of vector

sort () # sort elements into order, by default omitting NAs
rev() # reverse the order of vector elements

str () # information on an R object

unique () # form the vector of distinct values

which () # locates 'TRUE’ indices of logical vectors
which.max () # locates (first) maximum of a numeric vector
which.min() # locates (first) minimum of a numeric vector

with () # do computation using columns of specified data frame

Be sure to check, where this is relevant, the handling of missing values. In case of doubt,
consult the relevant help page. Refer back to Subsection 1.2.6.

The print () function

This is perhaps R’s most pervasive function. It is invoked whenever an object, or the result
of a computation, has its value returned to the command line. For example:

> x <= 2 # Assign to x the value 2; nothing is printed
> x # Equivalent to print (x)

[11 2

> x*5 # Equivalent to print (x*5)

[1] 10

It can be convenient to make an assignment and print the value. For this, enclose the
assignment in parentheses, i.e., in round brackets:

> (x <- 2) # Equivalent to: x <- 2; print(x)
[1] 2

Calculations in parallel across all elements of a vector

Subsection 1.1.2 gave an example in which arithmetic was carried out in parallel across all
elements of a vector. Many of R’s functions likewise operate in parallel on all elements of
arrays, matrices, and data frames.

Data summary functions — table () and sapply ()

Data summary functions that create tables of counts are:

table() # Form a table of counts
xtabs () # Form a table of totals

For example, the tinting data frame in DAAG contains columns specifying the sex
(sex, levels are £ and m) and age group (agegp, levels are younger and older) of
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participants in a study. The table () function can be used to count up the numbers of
observations in each sex—age group combination:

> library (DAAG) # tinting is from DAAG

> table(Sex=tinting$sex, AgeGroup=tintingSagegp)
AgeGroup

Sex younger older
f 63 28
m 28 63

By default, table () ignores NAs. For further details of table (), and for an example
of the use of xtabs (), see Subsection 2.2.1.

The function sapply () applies a function to each column of a data frame, or to each
element of a list. The following demonstrates its use to give the range, for all columns of
the data frame jobs (DAAG):

> sapply(jobs[, -71, range)

BC Alberta Prairies Ontario Quebec Atlantic
[1,1 1737 1366 973 5212 3167 941
[2,] 1840 1436 999 5360 3257 968

Utility functions

Type 1s () (or objects ()) to see the names of all objects in the workspace. One can
restrict the names to those with a defined pattern, e.g., starting with the letter p:”

ls (pattern="p") # List object names that include the letter "p"

ls (pattern=""p") # List object names that start with "p"

Type help(ls),help (grep), and help (glob2rx) for more details.

Various packages will add hidden files, whose first character is a full stop, to the
workspace. To see these files, type 1s (al1=TRUE). To clear the workspace completely,
type rm(list=1s(all=TRUE) ).

By default, the function dir () lists the contents of the working directory. See
Subsection 14.2.3 for further details on this and other utility functions.

1.4.2 Generic functions, and the class of an object

The printing of a data frame requires steps that are different from those for the printing of
a vector of numbers. Yet, in R, the same print () function handles both tasks. In order
to make this possible, all objects in R have a class, which can be used to decide how the
printing should be handled.

The print () function does not itself attend to the printing. Instead, if print ()
is called with a factor argument, print.factor () is used. For a data frame
print.data.frame () is used, and so on. Section 14.10 gives further details.

2 More generally, the pattern-matching conventions are the same as for grep (), which is modeled on the Unix grep
command.
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For objects (such as numeric vectors) that do not otherwise have a print method,
print.default () handles the printing.

For simple objects such as numbers and text strings, the class is determined informally.
More complex objects such as data frames carry a tag (an attribute) that specifies the class.
In either case, the function class () can be used to determine the class. See Section 14.10
for further details.

1.4.3 User-written functions

Here is a function that returns the mean and standard deviation of a vector of numbers:

mean.and.sd <- function(x) {
av <- mean (x)
sdev <- sd(x)
c (mean=av, SD=sdev)

}
Having constructed the function, we can apply it to a numeric vector, as in the following:

> distance <- ¢(148,182,173,166,109,141,166)
> mean.and.sd (distance)

mean SD
155.00 24.68

The variables av and sdev are local to the function. They cannot be accessed outside of
the internal function environment.

Many functions have default arguments which make it possible to run them without
specifying any data. We can modify the above function to have the default argument
x = rnorm(10). This generates a vector of 10 random numbers to which the function
is then applied.

mean.and.sd <- function(x = rnorm(10)) {
av <- mean (x)
sdev <- sd(x)
c (mean=av, SD=sdev)

}
Here is the result of one execution of the modified function:
> mean.and.sd()

mean SD
0.6576272 0.8595572

The structure of functions

The function mean .and. sd () has the following structure:
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function name argument(s)

—

mean.and.sd <- function (x=rnorm(10))
Junction av <- mean (x)

body  gdev <- sd(x)
return

value c(av = av, sd = sdev)

If the function body consists of just one statement that gives the return value, the curly
braces ({ }) are unnecessary. The return value, which must be a single object, is given by the
final statement of the function body. In the example above, the return value was the vector
consisting of the two named elements mean and sdev. For returning several objects that
are of different types, join them into a list.’

1.4.4 if Statements

Subsection 1.2.4 introduced the use of relational operators to create particular subsets of a
given vector.

The R system also has the flow control capabilities of traditional programming languages,
including if statements. The if function tests the truth of a given statement; if the
statement is true, the succeeding expression is evaluated. An else can be added to provide
an alternative expression to be evaluated in the case where the given statement is false.
For example, the following checks whether the mean for the carbon emissions exceeds the
median:

Carbon <- fossilfuel$carbon

> if (mean (Carbon) > median(Carbon)) print("Mean > Median") else
+ print ("Median <= Mean")

[1] "Mean > Median"

Here is another example:

> dist <- ¢ (148, 182, 173, 166, 109, 141, 166)

> dist.sort <- if (dist[1l] < 150)

+ sort(dist, decreasing=TRUE) else sort(dist)
> dist.sort

[1] 182 173 166 166 148 141 109

1.4.5 Selection and matching
A highly useful operator is $in%, used for testing set membership. For example:

> x <- rep(l:5, rep(3,5))

[1] 111 222333444555
> x[x %1n% c(2,4)]

[1] 2 2 2 4 4 4

3 ## Thus, to return the mean, SD and name of the input vector
## replace c(mean=av, SD=sdev) by
list (mean=av, SD=sdev, dataset = deparse(substitute(x)))
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We have picked out those elements of x that are either 2 or 4. To find which elements of
x are 2s, which 4s, and which are neither, use match (). Thus:

> match(x, c(2,4), nomatch=0)
[1] 0001 11000222000

The nomatch argument specifies the symbol to be used for elements that do not match.
Specifying nomatch=0 is often preferable to the default, which is NA.

1.4.6 Functions for working with missing values

Recall the use of the function is.na (), discussed in Subsection 1.2.6, to identify NAs.
Testing for equality with NAs does not give useful information.

Identification of rows that include missing values

Many of the modeling functions will fail unless action is taken to handle missing
values. Two functions that are useful for identifying or handling missing values are
complete.cases () andna.omit (). Applying the complete.cases () function
to a data frame returns a logical vector whose length is the number of rows and whose TRUE
values correspond to rows which do not contain any missing values. Thus, the following
identifies rows that hold one or more missing values:

> ## Which rows have missing values: data frame science (DAAG)
> gciencel[!complete.cases(science), 1
State PrivPub school class sex like Class
671 ACT public 19 1 <NA> 5 19.1
672 ACT public 19 1 <NA> 5 19.1

The function na . omit () omits any rows that contain missing values. For example,

> dim(science)
[1] 1385 7
> Science <- na.omit (science)
> dim(Science)
[1] 1383 7

It should be noted that there may be better alternatives to omitting missing values. There
is an extensive discussion in Harrell (2001, pp. 43-51). Often, the preferred approach is
to estimate the values that are missing as part of any statistical analysis. It is important to
consider why values are missing — is the probability of finding a missing value independent
of the values of variables that appear in the analysis?

1.4.7* Looping

A simple example of a for loop is*

4 Other looping constructs are
repeat <expression> # Place break somewhere inside
while (x > 0) <expression> # Or (x < 0), or etc.
Here <expression> is an R statement, or a sequence of statements that are enclosed within braces.
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> for (i in 1:3) print (i)

[1] 1
[1] 2
[1] 3

Here is a way to estimate the increase in population for each of the Australian states
and territories between 1917 and 1997, relative to 1917, using the data frame austpop.
Columns are 1: census year (by decade from 1917 through 1997); 2-9: the state and territory
populations that are of interest here; and 10: the national population.

## Relative population increase in Australian states: 1917-1997
## Data frame austpop (DAAG)
relGrowth <- numeric(8) # numeric(8) creates a numeric vector
# with 8 elements, all set equal to O

for (j in seqg(from=2, to=9)) {

relGrowth[j-1] <- (austpop[9, jl-austpop[l, j1)/

austpop[l, jl}
names (relGrowth) <- names (austpopl[c(-1,-10)1)

# We have used names() to name the elements of relGrowth

vV V.V + + V V V V V

relGrowth # Output is with options(digits=3)
NSw Vic Qld SA WA Tas NT ACT
2.30 2.27 3.98 2.36 4.88 1.46 36.40 102.33

Often, there is a better alternative to the use of a loop. See Subsection 14.5.3.

1.5 Graphicsin R

Later chapters will make extensive use both of base graphics (using plot (), etc.) and of
the more stylized graphs provided by lattice graphics. This section is a brief introduction
to plot () and allied functions that are included in R’s base graphics. Subsection 1.5.8
is a brief introduction to the more stylized graphical functions in the lattice package. Note
also the carefully structured abilities of the ggplot2 package, described in Section 15.2.
Base graphics are provided by the graphics package that is automatically attached
at startup. It includes the function plot () for creating scatterplots, and the functions
points(),lines(), text (), mtext (), and axis () that add to existing plots.
There is a wide range of other functions. To see some of the possibilities, enter

demo (graphics)

Press the Enter key to move to each new graph.

1.5.1 The function plot ( ) and allied functions

The data frame primates gives Bodywt and Brainwt, for five primate species. A basic
plot of Brainwt against Bodywt can be obtained thus:

plot (Brainwt Bodywt, data=primates) # plot(y x) syntax
or

with (primates, plot (Bodywt, Brainwt)) # plot(x, y) syntax
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Figure 1.2 Brain weight (g) versus body weight (kg). Data are from the primates data frame.

There are many possible refinements. A number of the most important are illustrated in
Plate 1, which supplements the discussion that follows.

Adding points, lines, text, and axis annotation
Figure 1.2 puts labels on the points.

## Place labels on points

plot (Brainwt ~ Bodywt, xlim=c (0, 300), data=primates)
# Specify xlim so that there is room for the labels

with(primates,

text (Brainwt Bodywt, labels=row.names (primates), pos=4))
# pos=4 places text to the right of the points. Other

# possibilities are: 1: below; 2: to the left; 3: above

Figure 1.2 has two further refinements. The y-axis limits were extended slightly. Small
vertical offsets were incorporated that raised the label Rhesus monkey and lowered the
label Potar monkey, avoiding overlap.’

Use points () to add points to a plot. Use 1ines () to add lines. Actually these
are aliases, differing only in the default for the parameter type; points () has
type = "p",while lines () has type = "1".

The function mtext (text, side, line, ...) adds text in the margin of the
current plot. The sides are numbered 1 (x-axis), 2 (y-axis), 3 (top), and 4 (right vertical
axis). By default, adj=0.5, which centers the text at the axis midpoint. Specify adj=0
to position the left extreme of the text at the left margin, and adj=1 to position its right
extreme at the right margin.

The axis () function gives fine control over axis ticks and labels. To use for the x-axis,
plot the initial graph with xaxt="n". Then call axis () with the argument side=1,
and with other arguments as required. See help (axis) for details.

S ## Plot Brainwt vs Bodywt, primates data frame
plot (Brainwt ~ Bodywt, xlim=c(0, 300), ylim=c(0,1500), data=primates)
yoff <- ¢(-.125,0,0,.125,0) *par()Scxy[2]
with(primates, text(x=Bodywt, y=Brainwt+yoff, labels=row.names (primates), pos=4))
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Fine control — parameter settings
Here are some of the parameters that commonly require attention:

* Plotting symbols: pch (choice of symbol); cex (“character expansion"); col (color).
Thus par (cex=1.2) increases the plot symbol size 20% above the default.

¢ Lines: 1ty (line type); 1wd (line width); col (color).

* Axislimits: x1im; y1lim. (Assuming xaxs="r", x-axis limits are by default extended
by 4% relative to the data limits. Specify xaxs="1" to make the default an exact fit to
the data limits. For the y-axis, replace xaxs by yaxs.)

* Axis annotation and labels: cex .axis (character expansion for axis annotation, inde-
pendently of cex); cex.labels (size of the axis labels); mgp (margin line for the
axis title, axis labels, and axis line; default is mgp=c (3, 1, 0)).

* Graph margins: mar (inner margins, clockwise from the bottom; the out-of-the-box
default ismar=c (5.1, 4.1, 4.1, 2.1),inlines out from the axis); oma (outer
margins, relevant when there are multiple graphs on the one graphics page).

¢ Plot shape: pty="s" gives a square plot (must be set using par () ).

* Multiple graphs on the one graphics page: Specify par (mfrow=c (m,n)) to get
an m rows by n columns layout of graphs on a page. The 1 by 4 layout of plots in
Figure 2.1 of Chapter 2 was obtained using par (mfrow=c (1,4)).

Type help (par) to get a (very extensive) complete list. Figure 15.1 and Plate | demon-
strate some of the possibilities.

In most (not all) instances, the change can be made either in a call to a plotting function
(e.g., plot (), points()), or using par (). If made in a call to a plotting function,
the change applies only to that call. If made using par (), changes remain in place until
changed again, or until a new device is opened.

It can be helpful to store the existing settings, so that they can be restored later. For this,
specify, for example:

oldpar <- par (cex=1.25)
# Use par(oldpar) to restore previous settings

1.5.2 The use of color

The default palette, which can be changed, has eight colors including “white”. These are
a small selection from the built-in colors. The function colors () returns the 657 names
of the built-in colors, some of them aliases for the same color.

In the following, points are in the colors of the current palette. These are recycled as
necessary.

theta <- (1:50)*0.92

plot (theta, sin(theta), col=1:50, pch=16, cex=4)

points (theta, cos(theta), co0l=51:100, pch=15, cex=4)

palette() # Names of the colors in the current palette

The following repeats the plot, but now using the function colors () to supply two sets
of 50 (mostly) different colors:
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plot (theta, sin(theta), col=colors()[1:50], pch=16, cex=4)
points (theta, cos(theta), col=colors()[51:100], pch=15, cex=4)

Where data from a two-way layout are presented on the one panel, different symbols can
be used for the different levels of one of the classifying factors, with different colors used
for the different levels of the other classifying factor. Care may be required in the choice
of colors, so that the colors show with clarity the distinctions that are required, and do not
clash. Section 15.2 has further discussion of color palettes.

1.5.3 The importance of aspect ratio

Attention to aspect ratio is often crucial for creating graphs that reveal important features
of the data. The following simple graphs highlight this point:

## Plot sin(theta) vs theta, at regularly spaced values of theta
## sin() expects angles to be in radians

# multiply angles in degrees by pi/180 to get radians

plot ((0:20)*pi/10, sin((0:20)*pi/10))

plot((1:50)*0.92, sin((1:50)*0.92))

Readers might show the second of the graphs that now follows to their friends, asking them
to identify the pattern!

By holding with the left mouse button on the lower border until a double-sided arrow
appears and dragging upwards, the vertical dimension of the graph sheet can be shortened.
If sufficiently shortened, the pattern becomes obvious. The eye has difficulty in detecting
slope patterns where the slope is close to the horizontal or to the vertical.

Then try this:

par (mfrow=c(3,1)) # Gives a 3 by 1 layout of plots
plot((1:50)*0.92, sin((1:50)*0.92))
par (mfrow=c(1,1))

See Section 2.1 for further examples.

1.5.4 Dimensions and other settings for graphics devices

The shape of the graph sheet can be set when a new graphics page is started. On Microsoft
Windows systems, the function windows () (or win.graph ()) starts a new graphics
page on the screen display. On Unix X11 systems, specify x11 (). Under Macintosh OS X,
use quartz (). Available arguments include height (in inches), width (in inches), and
pointsize (there are 72.27 to an inch). The choice of pointsize, with a default that
varies between devices, affects character heights.(’ See help (Devices) for a full list of
the devices, including hardcopy devices, that are available on the particular system that is
in use.

6 Note that once a graph has been pasted (from the clipboard) or imported into Microsoft Word or Open Office or another
similar word processor, it can be enlarged or shrunk by pointing at one corner, holding down the left mouse button, and
pulling.



1.5 Graphics in R 29

1.5.5 The plotting of expressions and mathematical symbols

In commands such as text () and mtext (), character strings can be replaced by expres-
sions. For this purpose an expression is more general than an algebraic or mathematical
expression. Thus, the following code gives a grayed out circle, overlaid as in Plate 1B with
the formula for the area of a circle:

symbols (x=1.5, y=0, circles=1.2, xlim=c(0,3), ylim=c(-1.5,1.5),
bg="gray", inches=FALSE)
# inches=FALSE ensures that radius is in x-axis units

text (1.5, 0.5, expression("Area" == pi*phantom("’")*italic(r)”2))
# Use '==' to insert '='.
# Text or symbols that appear either side of '*’ are juxtaposed.
# Notice the use of phantom("’") to insert a small space.

By default, symbols (), like plot (), starts a new graphics frame. Various alternatives
to circles are available; see help (symbols) for details.’

Type help(plotmath) to get details of available forms of expression. Run
demo (plotmath) to see some of the possibilities for plotting mathematical symbols.
There are further brief details in Section 15.3. Figures 5.3, 10.7, and 15.2 will demonstrate
the use of expressions in annotation and/or labeling.

1.5.6 Identification and location on the figure region

Following the drawing of the initial graph, the two functions that may be used are:

¢ identify () labels points;
* locator () prints the co-ordinates of points.

In either case, the user positions the cursor at the location for which co-ordinates are
required, and clicks the left mouse button. Depending on the platform, the identification or
labeling of points may be terminated by pointing outside of the graphics area and clicking,
or by clicking with a button other than the first. If continued, the process will terminate after
some default number n of points, which the user can set. (For identify () the default
setting is the number of data points, while for locatoxr () the default is 500.)

As an example, identify two of the plotted points on the primates scatterplot:

plot (Brainwt Bodywt, data=primates)

with (primates,

identify (Brainwt Bodywt, labels=row.names (primates), n=2))

# Now click near 2 plotted points

7 ## To add the double-headed arrow and associated label, specify:

arrows (1.5, 0, 2.7, 0, length=.1, code=3) # code=3: arrows at both ends
# length is the length of the arrow head (in inches!)

text (2.1, -strheight("R"), expression(italic(r) == 1.2))
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1.5.7 Plot methods for objects other than vectors

We have seen how to plot a numeric vector y against a numeric vector x. The plot function
is a generic function that also has special methods for “plotting” various different classes
of object. For example, plot () accepts a data frame as argument. Try

## Use plot() with data frame trees (datasets)
plot (trees) # Gives a 3 x 3 layout of pairwise
# scatterplots among the three variables

This has the same effect as the function call pairs (trees).

The scatterplot matrix will be used extensively in Chapter 6 for scrutiny of regression
data. See, for example, Subsection 6.2.3. It will be an important tool, also, in the account
of multivariate methods in Chapter 12.

1.5.8 Lattice (trellis) graphics

Many of the analyses in later chapters compare different groups within the data. Visual
assessments that complement the analysis are indispensable. The lattice package has abili-
ties that are suited to such use. The layout on the page, the choice of plotting symbols and
colors, and the distinctions within panels, can be used to represent important aspects of
data structure. The syntax and graphics conventions are highly consistent across all lattice
functions. Lattice’s relatively automated provision of highly structured graphical layouts
has a cost — changes to the basic layout and structure may be complicated.

Lattice graphics versus base graphics — xyplot () versus plot ()

A Brainwt versus Bodywt scatterplot for the primates data, such as was given earlier,
might alternatively have been obtained using the function xyplot () from the lattice
package. The following, when typed on the command line, give a plot on the graphics
device:

## Plot Brainwt vs Bodywt, data frame primates (DAAG)

plot (Brainwt ~ Bodywt, data=primates) # base graphics
# ’'base’ graphics use the abilities of the graphics package
library(lattice)

xyplot (Brainwt ~ Bodywt, data=primates) # lattice

The mechanism that yields the plot is different in the two cases:

* plot () gives a graph as a side-effect of the command.
* xyplot () generates a graphics object. As this is output to the command line, the object
is “printed”, i.e., a graph appears.

The following illustrates the difference between the two functions:

invisible (plot (Brainwt Bodywt, data=primates)) # Graph appears

invisible (xyplot (Brainwt Bodywt, data=primates)) # No graph
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Figure 1.3 Height (ht) versus weight (wt), for two categories of athlete. The different plotting
symbols distinguish males from females. The data relate to Telford and Cunningham (1991).

The wrapper function invisible () suppresses command line printing, so that
invisible (xyplot(...)) does notyield a graph.

Inside a function, xyplot (. ..) prints a graph only if it is the return value from the
function, i.e., usually, is on the final line. In a file that is sourced (use source ()), no
graph will appear. Inside a function (except as mentioned), or in a file that is sourced, there
must be an explicit print (), i.e.,

print (xyplot (ACT year, data=austpop))

Panels of scatterplots — the use of xyplot ()

Graphics functions in the lattice package are designed to allow row by column layouts
of panels. Different panels are for different subsets of the data. Additionally, points
can be distinguished, within panels, according to some further grouping within the data.
Chapter 2 will make extensive use of lattice functions.

Figure 1.3 demonstrates the use of xyplot () with the ais data set (DAAG) that has
data on elite Australian athletes who trained at the Australian Institute of Sport. The plot
is restricted to rowers and swimmers. The two panels distinguish the two sports, while
different plotting symbols (on a color device, different colors will be used) distinguish
females from males. Here is suitable code:

trellis.device (color=FALSE)

xyplot (ht =~ wt | sport, groups=sex, pch=c(4,1), aspect=1l, data=ais,
auto.key=1list (columns=2), subset=sport%in%c("Row", "Swim"))

dev.off () # Close device

trellis.device() # Start new device, by default with color=TRUE

In the graphics formula ht ~ wt | sport, the vertical bar indicates that what fol-
lows, in this case sport, is a conditioning variable or factor. The graphical information
is broken down according to the factor levels or distinct values. The parameter aspect
controls the ratio of dimensions in the y and x directions.

The setting auto.key=1ist (columns=2) generates a simple key, with the two
key items side by side in two columns rather than one under another in a single column as
happens with the default setting columns=1.
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Plotting columns in parallel

Variables and/or factors can be plotted in parallel, on the same (out er=FALSE) or different
(outer=TRUE) panel(s). Separate the names with “+”. The following gives a simplified
version of Figure 2.10 in Subsection 2.1.5:

xyplot (Prairies+Atlantic ~ Date, outer=TRUE, data=jobs)

The data frame jobs has changes in number of jobs in different regions of Canada over
the period January 1995 to December 1996. Subsection 15.5.1 has further discussion on
the plotting of columns in parallel.

Selected lattice functions

dotplot (factor ~ numeric,..) # 1-dim. Display

stripplot (factor ~ numeric,..) # 1-dim. Display

barchart (character ~ numeric,..)

histogram( ~ numeric,..)

densityplot( ~ numeric,..) # Density plot

bwplot (factor ~ numeric,..) # Box and whisker plot
gamath (factor ~ numeric, ..) # normal probability plots
splom( ~ dataframe,..) # Scatterplot matrix
parallel ( ~ dataframe,..) # Parallel coordinate plots
cloud (numeric ~ numeric * numeric, ...) # 3D surface
wireframe (numeric ~ numeric * numeric, ...) # 3D scatterplot

In each instance, users can add conditioning variables.
Further points to note about the lattice package are:

* Because the lattice package implements the trellis style of graphics, several of the
functions that control stylistic features (color, plot characters, line type, etc.) have trellis
(where lattice might have seemed more natural) as part of their name.

¢ Lattice graphics functions cannot be mixed (or not easily) with the graphics func-
tions discussed earlier in Section 1.5. It is not possible to use points (), lines (),
text (), etc., to add features to a plot that has been created using a lattice graphics func-
tion. Instead, it is necessary to use functions that are special to lattice — 1points (),
llines (), ltext (), larrows (), and 1segments ().

Subsection 15.5.5 describes a mechanism for interacting with lattice plots.

1.5.9 Good and bad graphs

There is a difference!

Draw graphs so that they are unlikely to mislead. Ensure that they focus the eye on
features that are important, and avoid distracting features. Lines that are intended to attract
attention can be thickened.

In scatterplots, the intention is typically to draw attention to the points. If there are not
too many of them, the use of heavy black dots or other filled symbols will focus attention
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on the points, rather than on a fitted line or curve or on the axes. If they are numerous and
there is substantial overlap, it then makes better sense to use open symbols. Where there is
extensive overlap, ink will fill that region more densely. If there is so much overlap that the
use of black symbols would merge most points into a dense black mass, use of a shade of
gray may be helpful.®

Where the horizontal scale is continuous, patterns of change that are important to identify
should bank at an angle of roughly 45° above or below the horizontal. Depending on the
context, angles in the approximate range 20° to 70° may be satisfactory, and the aspect
ratio should be chosen accordingly. (This was the point of the sine curve example in
Subsection 1.5.3.) See Cleveland (1994) for further commentary.

Colors, or gray scales, can often be used to distinguish groupings in the data. Bear in
mind that the eye has difficulty in focusing simultaneously on widely separated colors that
are close together on the same graph.

1.5.10 Further information on graphics

Several further graphics functions will be introduced in Section 2.1. Note especially
hist () and boxplot (). See also Murrell (2005), Sarkar (2002, 2007).

Note the more detailed information in Chapter 15. Section 15.5 has an extended discus-
sion of the abilities of the lattice package. There is brief reference to the relatively specialist
abilities of the grid package, or which lattice is built. Section 15.6 discusses the ggplot2
package.

1.6 Additional points on the use of R
*Workspace management strategies

The default choice of working directory, which may be an R installation directory, is not a
good choice for long-term use, and should be changed. Subsection 1.1.1 explained how to
set the startup choice of working directory.

The working directory can be changed and a new workspace loaded in the course of a
session, either using the menu system, if available, or using command line instructions. See
Subsection 14.2.2.

In a session where there are extensive calculations, cautious users will from time to
time save the current workspace, perhaps first using rm () to remove objects that are no
longer required. The command save.image () will save everything in the workspace,
by default into the file . RData in the working directory. This can alternatively be done by
clicking on the relevant menu item, where such a menu is available. (The file that is saved
holds an image of the workspace at that point.)

It is good practice to use a separate working directory for each different project. The
ability to keep multiple image files in the one directory adds further flexibility. Use the
extension .RData for such files.”

8 Example of plotting with different shades of gray
plot(1l:4, 1:4, pch=16, col=c("gray20", "gray40", "gray60", "gray80"), cex=3)
9 In older versions of R for Windows, . rda was an alternative extension.
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Forward slashes and backslashes

Note that R syntax follows the Unix conventions and uses forward slashes, where Windows
expects backslashes. Thus to read in the file fuel. txt from the directory c:\data,

type
fossilfuel <- read.table("c:/data/fuel.txt")
# Alternative: Replace each "/" by "\\", ie, 2 backslashes

Setting the number of decimal places in output

Often, calculations will, by default, give more decimal places of output than are useful. In
the output that we give, we often reduce the number of decimal places below what R gives
by default. The options () function can be used to make a global change to the number
of significant digits that are printed. For example:

> sqgrt (10)

[1] 3.162278

> options(digits=2) # Change until further notice,
# or until end of session.

> sqgrt (10)

[1] 3.2

Note that options (digits=2) expresses a wish, which R will not always obey!
Rounding will sometimes introduce small inconsistencies. For example, in the calcula-

tions of Section 4.4:
1372
— =5.57
12

372
V2 x 5 =138

Note however that «/E x 5.57 =17.87.

Other option settings

Type help (options) to get further details. We will meet another important option
setting in Chapter 5. (Most of the output that we present uses the setting options (show.
signif.stars=FALSE), where the default is TRUE. This affects output in Chapter 5
and later chapters.)

Cosmetic issues

In our R code, we write, e.g., a <- b rather than a<-b, and y ~ x rather than y~x.
This is intended to help readability, perhaps a small step on the way to literate programming.
Such presentation details can make a large difference when others use the code.

Where output is obtained with the simple use of print () or summary (), we have in
general included this as the first statement in the output.
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*Common sources of difficulty

¢ It is important to tune the parameter settings of read. table () to the input data set.
See help (read. table) and Subsection 14.4.1 for further details.

¢ Character vectors that are included as columns in data frames become, by default,
factors. There are implications for the use of read. table (). See Subsection 14.4.1
and Section 14.6.

* In most contexts, factors are treated as vectors of character strings, with values given by
the factor levels. Use unclass () to extract the integer values if these, rather than the
levels are required. See Section 14.6.

¢ Keep in mind Section 14.7’s comments on the handling of missing values.

* The syntax fossilfuel[, 2] extracts the second column from the data frame
fossilfuel, yielding a numeric vector. Observe however that fossilfuel [2, ]
yields a data frame, rather than the numeric vector that the user may require. Specify
unlist (fossilfuel([2, 1) to obtain the vector of numeric values in the second
row of the data frame. See Subsection 14.9.1.

* The function sapply () is commonly used to carry out a computation across all
elements of a data frame. If used with a matrix, the computation will be carried out on
all matrix elements. See Subsection 14.9.5.

* Once a data frame has been attached, take care with assignments to either the name of
the data frame, or the name of a column. Assignment to the name of the data frame will
create a new local copy, while assigment to a column name will create a new object in
the workspace with that name. Later references to those names will then access the new
local copies.

¢ Data objects that individually or in combination occupy a large part of the available com-
puter memory can slow down all memory-intensive computations. See Subsection 14.2.2
for comment on associated workspace management issues. See also the opening com-
ments in Section 14.8. Note that most of the data objects that are used for our examples
are small and thus will not, except where memory is very small, make much individual
contribution to demands on memory.

Variable names in data sets

We will refer to a number of different data sets, many of them data frames in our DAAG
package. When we first introduce the data set, we will give both a general description of
the columns of values that we will use, and the names used in the data frame. In later
discussion, we will use the name that appears in the data frame whenever the reference is
to the particular values that appear in the column.

1.7 Recap

* One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can be
carried out in parallel, across all elements of a vector at once.
* Use g() to quit from R, usually taking care to save the workspace.
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¢ Help functions include help () (help page of a known function), help.search ()
(search for a specified word in the help page header), apropos () (search for function
names that include a specified character string), and help.start (start a browser
interface to help information).

¢ The function c () (concatenate) joins vector elements into vectors. It may be used for
logical and character vectors, as well as for numeric vectors.

* For simple forms of scatterplot use plot (), or the lattice function xyplot ().

* Important R data structures are vectors, factors, lists, and data frames. Vectors may
be of mode numeric, or logical, or character. Factors have mode “numeric” and class
“factor”.

¢ Data frames use a list structure to group columns, which must all have the same length,
together into a single R object. The different columns may be any mix of logical,
numeric, character, or factor.

¢ Contrast data frames with matrices. All matrix elements have the same mode. A matrix
is stored as one long vector that is formatted to appear in a row by column layout.

* Use is.na () toidentify elements that are NAs.

* The R system has extensive abilities for inputting data from rectangular files (see
help (read.table)), from spreadsheets, and from a variety of statistical package
formats. The R Commander GUI offers an easy means to access these abilities.

* Useattach() orwith () (temporary attachment) to give access to the columns of a
data frame, without the need to name the data frame whenever a column is accessed.

* The search path determines the order of search for objects that are accessed from the
command line, or that are not found in the enclosing environment of a function that
accesses them.

* Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

¢ Option settings, which users can change at their discretion, control such matters as the
number of significant digits that will be displayed in output.

¢ Commonly used generic functions include print (), plot (), and summary (). For
such functions, the result depends on the class of object that is given as argument.

* To make an assignment and print the value that is assigned, enclose the assigment

statement in round brackets. For example:
(x <= 2) # Equivalent to: x <- 2; print(x)

1.8 Further reading

Note that the exercises have various hints that extend the discussion in the body of the
chapter.

A version of An Introduction to R (R Development Core Team, 2009a), current at the
time of release, is included with the R distributions. It is available from the CRAN sites as
an independent document. (For a list of sites, goto http://cran.r-project.org.)
Books that include an introduction to R include Dalgaard (2008), Fox (2002).

At a more advanced level note Venables and Ripley (2002), which covers both S-PLUS
and R. This will be an important reference throughout this book.
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See also documents, including Maindonald (2008), that are listed under Contributed
Documentation on the CRAN sites. For careful detailed accounts of the R language, see
Chambers (2007), Gentleman (2008).

Books and papers that set out principles of good graphics include Cleveland (1993,
1994), Tufte (1997), Wainer (1997), and Wilkinson and Task Force on Statistical Inference
(1999). See also the imaginative uses of R’s graphical abilities that are demonstrated in
Murrell (2005). Maindonald (1992) comments very briefly on graphical design.

References for further reading

Chambers, J. M. 2007. Software for Data Analysis: Programming with R.

Cleveland, W. S. 1993. Visualizing Data.

Cleveland, W. S. 1994. The Elements of Graphing Data, revised edn.

Dalgaard, P. 2008. Introductory Statistics with R.

Fox, J. 2002. An R and S-PLUS Companion to Applied Regression.

Gentleman, R. 2008. R Programming for Bioinformatics.

Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand
Journal of Agricultural Research 35: 121-41.

Maindonald, J. H. 2008. Using R for Data Analysis and Graphics. Available as a pdf file
athttp://www.maths.anu.edu.au/~ johnm/r/usingR.pdf

Murrell, P. 2005. R Graphics.
http://www.stat.auckland.ac.nz/“paul /RGraphics/rgraphics.html

R Development Core Team. 2009a. An Introduction to R.

Tufte, E. R. 1997. Visual Explanations.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

Wainer, H. 1997. Visual Revelations.

Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in
psychology journals: guidelines and explanation. American Psychologist 54: 594—604.

See the references at the end of the book for fuller bibliographic details.

1.9 Exercises

1. The following table gives the size of the floor area (ha) and the price ($A000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.

area sale.price
694 192.
905 215.
802 215.
1366 274.
716 112.
963 185.
821 212.
714 220.
1018 276.
887 260.
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11 790 221.5
12 696 255.0
13 771 260.0
14 1006 293.0

15 1191 375.0
Type these data into a data frame with column names area and sale.price.

(a) Plotsale.price versus area.

(b) Usethe hist () command to plot a histogram of the sale prices.

(c) Repeat (a) and (b) after taking logarithms of sale prices.

(d) The two histograms emphasize different parts of the range of sale prices. Describe the
differences.

The orings data frame gives data on the damage that had occurred in US space shuttle launches
prior to the disastrous Challenger launch of 28 January 1986. The observations in rows 1, 2, 4,
11, 13, and 18 were included in the pre-launch charts used in deciding whether to proceed with
the launch, while remaining rows were omitted.

Create a new data frame by extracting these rows from orings, and plot total incidents
against temperature for this new data frame. Obtain a similar plot for the full data set.

For the data frame possum (DAAG package)

(a) Use the function str () to get information on each of the columns.
(b) Using the function complete.cases (), determine the rows in which one or more
values is missing. Print those rows. In which columns do the missing values appear?

For the data frame ais (DAAG package)

(a) Use the function str () to get information on each of the columns. Determine whether
any of the columns hold missing values.

(b) Make a table that shows the numbers of males and females for each different sport. In
which sports is there a large imbalance (e.g., by a factor of more than 2:1) in the numbers
of the two sexes?

Create a table that gives, for each species represented in the data frame rainforest, the
number of values of branch that are NAs, and the total number of cases.
[Hint: Use either !is.na () or complete.cases () to identify NAs.]

Create a data frame called Manitoba . lakes that contains the lake’s el evation (in meters
above sea level) and area (in square kilometers) as listed below. Assign the names of the lakes
using the row.names () function.

elevation area

Winnipeg 217 24387
Winnipegosis 254 5374
Manitoba 248 4624
SouthernIndian 254 2247
Cedar 253 1353
Island 227 1223
Gods 178 1151
Cross 207 755

Playgreen 217 657
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(a) Use the following code to plot Log2 (area) versus elevation, adding labeling infor-
mation (there is an extreme value of area that makes a logarithmic scale pretty much
essential):
attach (Manitoba.lakes)
plot (log2 (area) ~ elevation, pch=16, xlim=c(170,280))

# NB: Doubling the area increases log2(area) by 1.0

text (log2 (area) elevation,

labels=row.names (Manitoba.lakes), pos=4)

text (log2 (area) elevation, labels=area, pos=2)
title("Manitoba’s Largest Lakes")
detach (Manitoba.lakes)

Devise captions that explain the labeling on the points and on the y-axis. It will be necessary
to explain how distances on the scale relate to changes in area.

(b) Repeat the plot and associated labeling, now plotting area versus elevation, but
specifying log="y" in order to obtain a logarithmic y-scale. [Note: The log="y"
setting carries across to the subsequent text () commands. See Subsection 2.1.5 for an
example.]

Look up the help page for the R function dotchart (). Use this function to display the areas
of the Manitoba lakes (a) on a linear scale, and (b) on a logarithmic scale. Add, in each case,
suitable labeling information.

Using the sum () function, obtain a lower bound for the area of Manitoba covered by water.

The second argument of the rep () function can be modified to give different patterns. For
example, to get four 2s, then three 3s, then two 5s, enter
rep(c(2,3,5), c(4,3,2))

(a) What is the output from the following command?
rep(c(2,3,5), 4:2)

(b) Obtain a vector of four 4s, four 3s, and four 2s.

(¢) Theargument length.out canbe used to create a vector whose lengthis length. out.
Use this argument to create a vector of length 50 that repeats, as many times as necessary,
thesequence: 3 1 1 5 7

(d) The argument each can be used to form a vector in which each element in the first
argument is replaced by the specified number of repeats of itself. Use this to create a vector
in whicheachof 3 1 1 5 7 is replaced by four repeats of itself. Show, also, how this
can be done without use of the argument each.

The ~ symbol denotes exponentiation. Consider the following:
1000*((140.075)"5 - 1) # Interest on $1000, compounded
# annually at 7.5% p.a. for five years

(a) Evaluate the above expression.
(b) Modity the expression to determine the amount of interest paid if the rate is 3.5% p.a.
(c) Explain the result obtained when the exponent 5 is changed to seg (1, 10).

Run the following code:

gender <- factor(c(rep("female", 91), rep("male", 92)))
table (gender)

gender <- factor(gender, levels=c("male", "female"))
table (gender)
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gender <- factor (gender, levels=c("Male", "female"))
# Note the mistake: "Male" should be "male"
table (gender)
table (gender, exclude=NULL)
rm(gender) # Remove gender
Explain the output from the successive uses of table ().

Write a function that calculates the proportion of values in a vector x that exceed some value
cutoff.

(a) Use the sequence of numbers 1, 2, ..., 100 to check that this function gives the result that
is expected.

(b) Obtain the vector ex01 .36 from the Devore6 (or Devore7) package. These data give
the times required for individuals to escape from an oil platform during a drill. Use
dotplot () to show the distribution of times. Calculate the proportion of escape times
that exceed 7 minutes.

The following plots four different transformations of the Animals data from the MASS package.
What different aspects of the data do these different graphs emphasize? Consider the effect on
low values of the variables, as contrasted with the effect on high values.

par (mfrow=c (2, 2)) # 2 by 2 layout on the page

library (MASS) # Animals is in the MASS package
plot(brain ~ body, data=Animals)

plot (sqgrt (brain) sgrt (body), data=Animals)

plot (I(brain”0.1) ~ I(body”0.1), data=Animals)

# I() forces its argument to be treated "as is"
plot(log(brain) ~ log(body), data=Animals)
par (mfrow=c(1,1)) # Restore to 1 figure per page

Use the function abbreviate () to obtain six-character abbreviations for the row names in the
data frame cottonworkers (DAAG package). Plot survey1886 against census1886,
and plot avwage*surveyl886 against avwage*census1886, in each case using the
six-letter abbreviations to label the points. How should each of these graphs be interpreted?
[Hint: Be sure to specify I (avwage*surveyl1886) and I (avwage*census1886) when
plotting the second of these graphs.]

The data frame socsupport (DAAG) has data from a survey on social and other kinds of
support, for a group of university students. It includes Beck Depression Inventory (BDI) scores.
The following are two alternative plots of BDI against age:

plot (BDI ~ age, data=socsupport)

plot (BDI ~ unclass (age), data=socsupport)

For examination of cases where the score seems very high, which plot is more useful? Explain.
Why is it necessary to be cautious in making anything of the plots for students in the three oldest

age categories (25-30,31-40, 40+)?

Functions that can be useful for labeling points on graphs are abbreviate () (create abbre-
viated names), and paste () (create composite labels). A composite label might, for the data
from socsupport, give information about gender, country, and row number. Try the
following:

genderl <- with(socsupport, abbreviate(gender, 1))

table (genderl) # Examine the result
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country3 <- with(socsupport, abbreviate(country, 3))

table (country3) # Examine the result
Now use the following to create a label that can be used with text () or with identify ():
num <- with(socsupport, seq(along=gender)) # Generate row numbers

lab <- paste(genderl, country3, num, sep=":")
Use identify () toplace labels on all the points that the boxplots have identified as “outliers”.

17. Given a vector x, the following demonstrates alternative ways to create a vector of numbers
from 1 through n, where 7 is the length of the vector:
x <- c¢(8, 54, 534, 1630, 6611)
seqg(l, length(x))
seq(along=x)
Now set x <- NULL and repeat each of the calculations seq(1l, length(x)) and
seq (along=x). Which version of the calculation should be used in order to return a vector
of length 0 in the event that the supplied argument is NULL.

18. The Rabbit data frame in the MASS library contains blood pressure change measurements
on five rabbits (labeled as R1, R2,...,R5) under various control and treatment conditions.
Read the help file for more information. Use the unstack () function (three times) to convert
Rabbit to the following form:

Treatment Dose R1 R2 R3 R4 R5
1 Control 6.25 0.50 1.00 0.75 1.25 1.5

2 Control 12.50 4.50 1.25 3.00 1.50 1.5
6 Control 200.00 32.00 29.00 24.00 33.00 18.0
7 MDL 6.25 1.25 1.40 0.75 2.60 2.4
8 MDL 12.50 0.75 1.70 2.30 1.20 2.5
12 MDL 200.00 37.00 28.00 25.00 22.00 19.0

19. The data frame v1t (DAAG) consists of observations taken on a video lottery terminal during
a two-day period. Eight different objects can appear in each of three windows. Here, they are
coded from O through 7. Different combinations of the objects give prizes (although with small
probability). The first four rows are:
> head(vlt, 4) # first few rows of vlt

windowl window2 window3 prize night

1 2 0 0 0 1
2 0 5 1 0 1
3 0 0 0 0 1
4 2 0 0 0 1
> #

Use stack () to convert the first three columns of this data set to a case-by-variable format,
then creating a tabular summary of the results, broken down by window.
vlitcv <- stack(vlt[, 1:31)
head (vltcv) # first few rows of vltcv
table(vltcv$values, vltcv$ind)

# More cryptically, table(vltcv) gives the same result.
Does any window stand out as different?

20* The help page for iris (type help(iris)) gives code that converts the data in
iris3 (datasets package) to case-by-variable format, with column names “Sepal.Length”,
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“Sepal.Width”, “Petal.Length”, “Petal.Width”, and “Species”. Look up the help pages for the
functions that are used, and make sure that you understand them. Then add annotation to this
code that explains each step in the computation.

21* The following uses the for () looping function to plot graphs that compare the relative popu-

lation growth (here, by the use of a logarithmic scale) for the Australian states and territories.
oldpar <- par (mfrow=c(2,4))
for (i in 2:9){
plot (austpopl[, 1], log(austpop[, i]), xlab="Year",
yvlab=names (austpop) [1], pch=16, ylim=c(0,10))}
par (oldpar)
Find a way to do this without looping. [Hint: Use the function sapply (), with
austpopl[,2:9] as the first argument.]
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What is the best way to begin investigation of a new set of data? What forms of data
exploration will draw attention to obvious errors or quirks in the data, or to obvious clues
that the data contain? What checks are desirable before proceeding with an intended formal
analysis, or to help decide what formal analysis may be appropriate? What can be learned
from investigations that other researchers have done with similar data?

Competent statisticians have always used graphs to check their data. Numerical sum-
maries, such as an average, can be very useful, but important features of the data may be
missed without a glance at an appropriate graph. Careful consideration may be needed to
choose a graph that will be effective for the purpose in hand.

We will see in Chapter 3 that an integral part of statistical analysis is the development of
a model that accurately describes the data, clarifies what the data say, and makes prediction
possible. Without model assumptions, there cannot be a meaningful formal analysis! As
assumptions are strengthened, the chances of getting clear results improve. The price for
stronger assumptions is that, if wrong, the results may be wrong. Graphical techniques have
been developed for checking, to the extent possible, many of the assumptions that must be
made in practice.

Preliminary scrutiny of the data can readily degenerate into data snooping, so that the
analysis is unduly attuned to statistical artefacts of the particular data that are to be analyzed.
Under torture, the data readily yield false confessions. To avoid this, strict limits must be
placed on the extent to which the data are allowed to influence the choice of model for the
formal analysis.

Even if data have not been collected in a way that makes them suitable for formal
statistical analysis, exploratory techniques can often glean clues from them. However, it is
unwise, as too often happens, to rely on this possibility!

2.1 Revealing views of the data

The use of graphs to display and help understand data has a long tradition. John W. Tukey
formalized and extended this tradition, giving it the name Exploratory Data Analysis
(EDA). Tukey has had a huge influence on data analysis practices; see Hoaglin (2003).
A key concern is that data should, as far as possible, have the opportunity to speak for
themselves, prior to or as part of a formal analysis.

A use of graphics that is broadly in an EDA tradition continues to develop and evolve.
Statistical theory has an important role in suggesting forms of display that may be helpful
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and interpretable. Advances in computing have been important, facilitating the development
and use of many of the graphical tools now available. The best modern statistical software
makes a strong connection between data analysis and graphics, combining the computer’s
ability to crunch numbers and present graphs with the ability of a trained human eye to
detect pattern.

Graphical exploration after the style of EDA has at least four roles:

¢ It may suggest ideas and understandings that had not previously been contemplated.
This use of EDA fits well with the view of science as inductive reasoning.

¢ It may challenge the theoretical understanding that guided the initial collection of the
data. It then acquires a more revolutionary role. It becomes the catalyst, in the language
of Thomas Kuhn, for a paradigm shift.

¢ It allows the data to criticize an intended analysis and facilitates checks on assumptions.
Subsequent formal analysis can then proceed with greater confidence.

¢ It may reveal additional information, not directly related to the research question. It may,
for example, suggest fruitful new lines of research.

The next several subsections will describe the histogram and density plot, the stem-and-
leaf display, the boxplot, the scatterplot, the lowess smoother, and the trellis-style graphics
that are available in the lattice package. The lattice functions greatly extend the available
styles and layouts.

2.1.1 Views of a single sample
Histograms and density plots

The histogram is a basic (and over-used) EDA tool for displaying the frequency distribution
of a set of data. The area of each rectangle of a histogram is proportional to the number of
observations whose values lie within the width of the rectangle. A mound-shaped histogram
may make it plausible that the data follow a normal distribution (the “bell curve”). In small
samples, however, the shape can be highly irregular. In addition, the appearance can depend
on the choice of breakpoints, which is a further reason for caution in interpreting the shape.
It is often helpful to try more than one set of breakpoints.

The data set possum (DAAG package) has nine morphometric measurements on each
of 104 mountain brushtail possums, trapped at seven sites from southern Victoria to central
Queensland (data relate to Lindenmayer er al., 1995). Attention will be limited to the
measurements for 43 females, placing them in a subset data frame that will be called
fossum. The following code creates this subset data frame:

library (DAAG) # Ensure that the DAAG package is attached
## Form the subset of possum that holds data on females only
fossum <- subset (possum, sex=="f")

Panels A and B of Figure 2.1 exhibit histogram plots of the frequency distribution of the

total lengths of the female possums.’

L ## To get a 1 by 4 layout, precede with
par (mfrow = c(1,4))
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Figure 2.1 The histograms in panels A and B show the same data, but with a different choice of
breakpoints. In panels C and D, density plots are overlaid on the histograms from panels A and B,
respectively.

attach (fossum)

hist(totlngth, breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length (cm)", main ="A: Breaks at 72.5, 77.5, ...")

hist(totlngth, breaks = 75 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length (cm)", main="B: Breaks at 75, 80, ...")

The only difference in the construction of the two plots is the choice of breakpoints, but
one plot suggests that the distribution is asymmetric (skewed to the left), while the other
suggests symmetry.

A histogram is a crude form of a density estimate. A better alternative is, often, a smooth
density estimate, as in Figures 2.1C and D. Whereas the width of histogram bars must
be chosen somewhat subjectively, density estimates require the choice of a bandwidth
parameter that controls the amount of smoothing. In both cases, the software has default
choices that can work reasonably well.

dens <- density(totlngth)
xlim <- range(dens$x); ylim <- range (densSy)
hist (totlngth, breaks = 72.5 + (0:5) * 5, probability = T,
x1lim = x1lim, ylim = ylim, xlab="Total length (cm)", main=" ")
lines (dens)
hist (totlngth, breaks = 75 + (0:5) * 5, probability = T,
xlim = x1lim, ylim = ylim, xlab="Total length (cm)", main= " ")
lines (dens)
par (mfrow=c(1l,1)); detach(fossum)

The height of the density curve at any point is an estimate of the proportion of sample
values per unit interval, locally at that point. Observe that in Figures 2.1A and C, the cell
of the histogram between the breakpoints (87.5, 92.5] has a frequency of 22. As the total
frequency is 43, and the width of the cell is 5, this corresponds to a density of & = 0.102,
which is just a little smaller than the height of the density curve at its highest point or mode.

Much of the methodology in this book makes assumptions that hold exactly only if
the data follow a normal distribution (the “bell curve”), discussed in the next chapter.
Density curves are preferable to histograms for drawing attention to particular forms of



46 Styles of data analysis

The decimal point is 1 digit(s) to the right of the |

15 | 6

16 | —

16 | 5 Lower quartile is 179 (10th largest)
17 | 4

17 | 5678899 Median is 182 (19th largest)

18 | 00000011223

18 | 55666668899

19 | 123 N (Goprumter 5 o )
19 | 58

Figure 2.2 Stem-and-leaf display showing the heights of the 37 rowers in the ais data set. Anno-
tation has been added that identifies the lower quartile, the median, and the upper quartile.

non-normality, such as that associated with strong skewness in the distribution, but are
still not an adequate tool. A more effective way of checking for normality — the normal
probability plot — is described in Subsection 3.4.2. Density curves are useful for estimating
the population mode, i.e., the value that occurs most frequently.

Where data values have sharp lower and/or upper cutoff limits, use the arguments £rom
and to to specify those limits. For example, a failure time distribution may have a mode
close to zero, with a sharp cutoff at zero.

The stem-and-leaf display

The stem-and-leaf display is a fine-grained alternative to a histogram, for use in displaying
a single column of numbers. Figure 2.2 shows a stem-and-leaf plot of the heights of the 37
rowers in the ais data set. Code is:

with(ais, stem(ht[sport=="Row"]))

The data have been rounded to the nearest centimeter. The numbers that are displayed are,
in order of magnitude, 156, 165, 174, .. .. The display has broken these down as 150 + 6,
160 + 5, 170 4+ 4, . ... The column of numbers on the left of the vertical bars (15, 16, ...)
comprises the stem; these are the tens of centimeters parts of the numbers. The leaf part
for that number (6, 5, 4, . . .) is what remains after removing the stem; these are printed, in
order, to the right of the relevant vertical bar.

As there are 37 data values, the median or middle value is the 19th. Starting from the
156 leaf in the first line of the stem-and-leaf diagram and working down, 18 values precede
the 19th largest, and 18 values follow. Thus the median (or 50th percentile) is 182. The
first and third quartiles (the 25th and 75th percentiles) can be recovered in a similar way,
with the exact value depending on the details of the formula used for their calculation. For
present purposes the first quartile can be taken as the 10th largest value (= 179), while the
third quartile is the 28th largest value (= 186), or the 10th value when starting at the largest
and counting down. (The number 10 is the average of the ranks 1 and 19, while 28 is the
average of 19 and 39.)’

2 ## Use quantile() to obtain the quartiles of ht: data frame ais (DAAG package)
quantile(ais$ht[ais$Ssport=="Row"], prob=c(.25,.5,.75))
# For the 50th percentile (the 2nd quartile), an alternative is median()
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Figure 2.3 Boxplot, with annotation that explains boxplot features.

Boxplots

Like the histogram, the boxplot is a coarse summary. It allows a trained eye to comprehend
at a glance specific important features of the data. Figure 2.3 shows a boxplot of total lengths
of females in the possum data set, with annotation added that explains the interpretation
of boxplot features. Code that gives the boxplot, without the annotation, is:

## Base graphics boxplot function

with (fossum, boxplot(totlngth, horiz=TRUE))

## Alternative: lattice graphics bwplot function
bwplot ("totlngth, data=fossum)

Notice that one point lies outside the “whiskers” to the left, and is thus flagged as a
possible outlier. An outlier is a point that, in some sense, lies away from the main body of
the data. In identifying points that are flagged as possible outliers, the normal distribution
(to be discussed in Subsection 3.2.2) is taken as the standard. Using the default criterion one
point in 100 will on average, for data from a normal distribution, be flagged as a possible
outlier. Thus, in a boxplot display of 1000 values that are drawn at random from a normal
distribution, around 10 will be plotted out beyond the boxplot whiskers and thus flagged as
possible outliers. Subsection 2.1.7 has further comment on outliers.

The discussion of the normal and other distributions in Chapter 3 should help clarify
these ideas.

2.1.2 Patterns in univariate time series

In Figure 2.4, “measles” includes both what is nowadays called measles and the closely
related rubella or German measles.’ Panel A uses a logarithmic vertical scale. Panel B uses
an unlogged scale and takes advantage of the fact that deaths from measles are of the order,
in any year, of one thousandth of the population. Thus, deaths in thousands and population

in millions can be shown on the same scale.

3 For details of the data, and commentary, see Guy (1882), Stocks (1942), Senn (2003). (Guy’s interest was in the comparison
with smallpox mortality.) The population estimates (1ondonpop) are from Mitchell (1988).
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Figure 2.4 The two panels provide different insights into data on mortality from measles, in London
over 1629-1939. Panel A shows the numbers of deaths from measles in London for the period from
1629 through 1939 (black curve) and the London population (in thousands, black dots). A log scale
has been used (see Subsection 2.1.3 for details). The lower panel B shows the subset of the measles
data for the period 1840 through 1882 on the linear scale (black curve), together with the London
population (in thousands, black dots).

Simplified code is:
## Panel A
plot(logl0 (measles), xlab="", ylim=logl0 (c(1,5000*1000)),
yvlab=" Deaths; Population (log scale)", yaxt="n")

ytiks <- c¢(1, 10, 100, 1000, 1000000, 5000000)

## London population in thousands

londonpop <-

ts(c(1088,1258,1504,1778,2073,2491,2921,3336,3881,4266,

4563,4541,4498,4408), start=1801, end=1931, deltat=10)

points(loglO (londonpop*1000), pch=16, cex=.5)

axis (2, at=1loglO(ytiks), labels=paste(ytiks), las=2)

## Panel B

plot (window (measles, start=1840, end=1882), ylim=c (0, 4600),

yvaxt="n")
axis (2, at=(0:4)* 1000, labels=paste(0:4), las=2)

The function plot () recognizes that measles is a time series object, and calls the
plot method plot. ts () that is used for time series. For details, see help (plot.ts).
Notice the use, for panel B, of the function window () that extracts a subseries.
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Figure 2.5 Each of 17 panelists compared two milk samples for sweetness. One sample had one
unit of additive, while the other had four units of additive.

Panel A shows broad trends over time, but is of no use for identifying changes on the
time scale of a year or two. In panel B, the lines that show such changes are, mostly, at an
angle that is in the approximate range of 20° to 70° from the horizontal.

A sawtooth pattern, by which years in which there are many deaths are commonly
followed by years in which there are fewer deaths, is thus clearly evident. (To obtain
this level of detail for the whole period from 1629 until 1939, multiple panels would be
necessary.)

The following, with y-axis labeling in logarithms of numbers and omitting the population
estimates, demonstrates the combining of the two graphs on the one page:

## Panel A:
par (fig=c(0, 1, .38, 1)) # 38% to 100% of page, in y-direction
plot (logl0 (measles), ylab="loglO (Deaths)",
ylim=10gl0(c(1,5000*%1000)))
mtext (side=3, 1line=0.5, "A (1629-1939)", adj=0)
## Panel B: window from 1840 to 1882; more complete code
par (fig=c(0, 1, 0, .4), new=TRUE) # 0% to 38% of height of figure region
plot (window (measles, start=1840, end=1882), ylab="Deaths")
mtext (side=3, 1line=0.5, "B (1841-1881)", adj=0)
par (fig=c(0, 1, 0, 1)) # Restore default figure region

2.1.3 Patterns in bivariate data

The scatterplot is a simple but important tool for the examination of pairwise relationships.
We will illustrate with specific examples.

Figure 2.5 shows data from a tasting session where each of 17 panelists assessed the
sweetness of each of two milk samples, one with four units of additive, and the other with
one unit of additive. The line y = x has been added. The function rug () adds a “rug”,
i.e., short bars at right angles to one or other axis that show the distribution values along
that axis of the plot. The code is:

## Plot four vs one: data frame milk (DAAG)
xyrange <- range (milk)

plot (four one, data = milk, xlim = xyrange, ylim = xyrange,
pch = 16, pty="s") # pty="s": square plotting region
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Figure 2.6  Electrical resistance versus apparent juice content. Panel B repeats panel A, but with a
smooth curve fitted to the data.

rug (milk$one) # x-axis rug (default is side=1)
rug (milkS$four, side = 2) # y-axis rug
abline (0, 1)

There is a positive correlation between assessments for the two samples; if one was
rated as sweet, by and large so was the other. The line y = x assists in comparing the
two samples. Most panelists (13 out of 17) rated the sample with four units of additive as
sweeter than the sample with one unit of additive.

The fitting of a smooth trend curve

Figure 2.6 shows data from a study that measured both electrical resistance and apparent
juice content for a number of slabs of kiwifruit. The curve in panel B, obtained using
the lowess method that is discussed further in Subsection 7.5.4, estimates the relationship
between electrical resistance and apparent juice content. The code is:

## Plot ohms vs juice: data frame fruitohms (DAAG)
plot (ohms ~ juice, xlab="Apparent juice content (%)",
vlab="Resistance (ohmg)", data=fruitohms)
## Add a smooth curve, as in Panel B
with (fruitohms, lines(lowess(juice, ohms), lwd=2))
# With lwd=2, the curve is twice the default thickness

The fitted smooth curve shows a form of response that is clearly inconsistent with a
straight line. It suggests an approximate linear relationship for juice content up to somewhat
over 35%. Once the juice content reaches around 45%, the curve becomes a horizontal line,
and there is no evident further change in resistance. There is no obvious simple form of
equation that might be used to describe the curve.

A curve fitted using 1lowess () or another such smoothing function can provide a useful
benchmark against which to compare the curve given by a theoretical or other mathematical
form of equation that the data are thought to follow.
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Figure 2.7 Brain weight versus body weight, for 27 animals that vary greatly in size. Panel A uses
untransformed scales, while panel B uses logarithmic scales, on both axes.

What is the appropriate scale?

Figures 2.7A and B plot brain weight (g) against body weight (kg), for a number of different
animals:

## The following omits the labeling information

oldpar <- par (mfrow = c(1,2), pty="s")

## Plot brain vs body: data frame Animals (MASS package)
library (MASS)

plot (brain ~ body, data=Animals) # Panel A
plot(log(brain) ~ log(body), data=Animals) # Panel B
par (oldpar)

Figure 2.7A is almost useless. The axes should be transformed so that the data are spread
out more evenly. Here, we can do this by choosing a logarithmic scale. Multiplication by
the same factor (e.g., for the tick marks in Figure 2.7B, by a factor of 10) always gives the
same distance along the scale. If we marked points 1, 5, 25, 125, . . . along the vertical axis,
they would also lie an equal distance apart.

A logarithmic scale is appropriate for quantities that change multiplicatively. For exam-
ple, if cells in a growing organism divide and produce new cells at a constant rate, then the
total number of cells changes in a multiplicative manner, resulting in so-called exponential
growth. Growth in the bodily measurements of organisms may similarly be multiplicative,
with large organisms increasing in some time interval by the same approximate fraction
as smaller organisms. Random changes in the relative growth rate will produce adult
organisms whose size (e.g., height) is, on the logarithmic scale, approximately normally
distributed. The reason is that growth rate on a natural logarithmic scale (log,) equals the
relative growth rate. Derivation of this result is a straightforward use of the differential
calculus.

The logarithmic transformation is so commonly needed that it has seemed necessary to
introduce it at this point. Biologists, economists, and others should become comfortable
with its use. There is a brief discussion of other transformations in Chapter 5.
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Figure 2.8  Strip plot (panel A) and boxplot (panel B) displays of cuckoo egg lengths. Data, from
Latter (1902), are reproduced in summarized form in Tippett (1931).

2.1.4 Patterns in grouped data — lengths of cuckoo eggs

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted
and hatched by the host birds. In Figure 2.8 the egg lengths are grouped by the species
of the host bird, using both a strip plot display (panel A) and boxplot summaries
(panel B).

Strip plots and boxplots allow convenient side-by-side comparisons of different groups,
here the different host species. The main part of the code used for these plots is:

## Compare stripplot() with bwplot (), both from lattice package
stripplot (species ~ length, xlab="Length of egg (mm)", data=cuckoos)
bwplot (species ~ length, xlab="Length of egg (mm)", data=cuckoos,
scales=list (y=list (alternating=0)))
# alternating=0; omit y-axis labels

Eggs planted in wrens’ nests appear smaller than eggs planted in other birds’ nests. Apart
from several outlying egg lengths in the meadow pipit nests, the length variability within
each host species’ nest is fairly uniform.

Fuller details of the code are in the footnote.*

Comparing densities between groups — lattice style density plots

Lattice-style density plots can be useful for getting an indication of how distributions may
differ across different groups of data. Figure 2.9 compares the ear conch measurements

4 ## For tidier labels replace ".", in several of the species names, by a space
specnam <- with(cuckoos, sub(pattern=".", replacement=" ", levels(species), fixed=TRUE))
# fixed=TRUE: do not interpret "." as a ‘regular expression’,
## Panel A: Strip plot: data frame cuckoos (DAAG)
pltl <- stripplot(species ~ length, factor.levels=specnam, data=cuckoos)
print (update (pltl, xlab="Length of egg (mm)"),
position=c(0,0,0.55,1)) # xmin, ymin, xXmax, ymax

# Use print() to display lattice graphics objects
## Panel B: Box plot
plt2 <- bwplot(species ~ length, factor.levels=specnam, data=cuckoos)
print (update (plt2, xlab="Length of egg (mm)", scales=list(y=1list(alternating=0))),
newpage=FALSE, position=c(0.55,0,1,1))
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Figure 2.9 Density plot that compares the ear conch measurements for each of the two “populations”
of possums, for males and females separately.

of male and female possums, for each of two “populations” (Vic and other) of
possums:

## Density plot for earconch: data frame possum (DAAG package)

library(lattice)

densityplot (~“earconch | sex, groups=Pop, data=possum,
auto.key=1list (space="right"))

2.1.5% Multiple variables and times

Overlaying plots of several time series (sequences of measurements taken at regular inter-
vals) might seem appropriate for making direct comparisons. However, this approach will
only work if the scales are similar for the different series.

The data frame j obs (DAAG) gives the number of workers (in thousands) in the Canadian
labor force, broken down by region (BC, Alberta, Prairies, Ontario, Quebec, Atlantic), for
the 24-month period from January 1995 to December 1996. Over this time, Canada was
emerging from a deep economic recession. Columns 1-6 have the respective numbers for
six different regions. The ranges of values in the columns are:

> ## Apply function range to columns of data frame jobs (DAAG)
> sapply(jobs, range)

BC Alberta Prairies Ontario Quebec Atlantic Date
[1,] 1737 1366 973 5212 3167 941 95.00000
[2,] 1840 1436 999 5360 3257 968 96.91667

In order to see where the economy was taking off most rapidly, it is tempting to plot all
of the series on the same graph. In order that similar changes on the scale will correspond
to similar proportional changes, a logarithmic scale is used in Figure 2.10A:

## Simplified plot; all series in a single panel; use log scale
(simplejobsA.xyplot <-
xyplot (Ontario+Quebec+BC+Alberta+Prairies+Atlantic ~ Date,
outer=FALSE, data=jobs, type="b",
yvlab="Number of workers", scales=list(y=list(log="e")),
auto.key=1list (space="right", lines=TRUE)))
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Figure 2.10 Data are numbers in the labor force (thousands) for various regions of Canada, at
quarterly intervals over 1995-1996. Panel A uses the same logarithmic scale for all regions. Panel B
shows the same data as in panel A, but now with separate (“sliced”) logarithmic scales on which the
same percentage increase, e.g., by 1%, corresponds to the same distance on the scale, for all plots.
Distances between ticks are 0.02 on the log, scale, i.e., a change of almost exactly 2%.

The trellis object has been saved so that it can be updated, as demonstrated in the footnote,
to give the graph shown in Figure 2.10A.°

The use of column names that are joined with "+" has the result that the columns are
plotted in parallel. The regions have been taken in order of the number of jobs in December
1996 (or, in fact, at any other time). This ensures that the order of the labels in the key
matches the positioning of the points for the different regions. Code in the footnote shows
how the labeling on the x- and y-axes was obtained.

S ## Panel A: Update trellis object to improve x- and y-axis tick labels
datelabpos <- seqg(from=95, by=0.5, length=5)
datelabs <- format (seqg(from=as.Date("1Janl995", format="%d%b%Y"),

by="6 month", length=5), "%$b%y")
## Now create $y$-labels that have numbers, with log values underneath
ylabpos <- exp(pretty(log(unlist(jobs[,-7]1)), 5))
ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")

update (simplejobsA.xyplot, xlab="",
scales=1list(x=1list (at=datelabpos, labels=datelabs),
y=1list (at=ylabpos, labels=ylabels)))
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Figure 2.11 Labeling of the values for Alberta (1366, 1436) and Ontario (1752, 1840), with alter-
native logarithmic scale choices of labeling.

Because the labor forces in the various regions do not have similar sizes, it is impossible
to discern any differences among the regions from this plot. Plotting on the logarithmic
scale did not remedy this problem.°

Figure 2.10B shows a much preferable alternative. The six different panels use different
slices of the same logarithmic scale. Here is simplified code for Figure 2.9B. The regions
are again taken in the order of numbers of jobs in December 1996.

## Simplified code for Figure 2.9B

xyplot (Ontario+Quebec+BC+Alberta+Prairies+Atlantic ~ Date,
data=jobs, type="b", layout=c(3,2), ylab="Number of jobs",
scales=list (y=1list(relation="sliced", log=TRUE)),
outer=TRUE)

Use of outer=TRUE ensures that the separate columns (regions) are plotted on sep-
arate panels. Equal distances on the scale now correspond to equal relative changes.
It is now clear that Alberta and BC experienced the most rapid job growth during
the period, and that there was little or no job growth in Quebec and the Atlantic
region.

Even better, particularly if ready comprehension is important, would be to standardize
by dividing, e.g., by the respective number of persons aged 15 years and over at that time.
Exercise 11 at the end of the chapter explores this approach.

*Small proportional changes, on a scale of natural logarithms

Tick marks have been placed a distance 0.02 apart on a scale of natural logarithms or
log,. On a scale of natural logarithms a change of 0.02 is, to a close approximation, a 2%
change.

*Tick positions and labeling, on a logarithmic scale

The following are the changes in numbers employed, in each of Alberta and Ontario, from
January 1995 to December 1996. The changes are shown in actual numbers, and on scales
of logy, log,, and logyo. Figure 2.11 shows this graphically.

© Figure 2.10A might alternatively be plotted as a time series. For details, see Subsection 14.9.7.
7 Subsection 15.5.2 has code that gives the labeling shown in Figure 2.10B.
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Increase

Rel. change log, log, logio
Alberta (1366 to 1466; increase = 70) 1.051 0.072 0.050 0.022
Ontario (1752 to 1840; increase = 88) 1.050 0.070 0.049 0.021

From the beginning of 1995 to the end of 1996, Alberta increased by 70 from 1366 to
1436, which is a factor of 1436/1366 ~ 1.051. Ontario increased by 96 from 5239 to 5335,
which is a factor of 1.050. The proper comparison is not between the absolute increases of
70 and 96, but between relative increases by factors of 1.05 and 1.018.

For lattice functions, the arguments 1og=2 or log="e" or log=10 are available.
These use the relevant logarithmic axis labeling, as in Figure 2.11, for axis labels. In base
graphics, with the argument 1og="x", the default is to label in the original units.

An alternative, both for traditional and lattice graphics, is to enter the logged values,
using whatever basis is preferred (2 or "e" or 10), into the graphics formula. Unless other
tick labels are provided, the tick marks will then be labeled with the logged values for the
relevant basis.

2.1.6 Scatterplots, broken down by multiple factors

Data, in the data frame tinting (DAAG), are from an experiment that examined the
effects of the tinting of car windows on visual performance (data relate to Burns et al.,
1999). The main focus was on visual recognition tasks, where side window vision is
important. Columns are:

* Variables csoa (critical stimulus onset asynchrony, i.e., the time in milliseconds required
to recognize an alphanumeric target), it (inspection time, i.e., the time required for a
simple discrimination task), and age (age to the nearest year).

* The ordered factor tint (levels no, 1o, hi).

¢ Factors target (locon, i.e., low contrast; hicon, i.e., high contrast), sex
(f = female, m = male), and agegp (younger = a younger participant, in the 20s;
older = an older participant, in the 70s).

Each of 28 individuals was tested at each level of tint, for each of the two levels
of target. In all there are four factors (tint, target, sex, and agegp) that might
influence the values of csoa and it, and the relationship between them. Two of these
(tint and target) take different values for the same individual, while the other two
(sex and agegp) vary between individuals.

A first step might be to plot csoa against 1t for each combination of sex and agegp.
Use of the argument groups=target results in the use of different symbols (in a black
and white plot) or different colors, depending on whether the target is low contrast or high
contrast. Also, we can ask for a key. The code is

(target.xyplot <-
xyplot(csoa ™~ it | sex*agegp, data=tinting, groups=target,
auto.key=1list (columns=2)))
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Figure 2.12 Panel A plots csoa against it, for each combination of sex and agegp. Different
colors (gray and black) and symbols show different levels of target. Panel B shows the same
points, but different colors (printed in grayscale) now show different levels of tint. Notice, also,
the addition of smooth curves.

There are further possibilities for refinement. Figure 2.12A has used parameter settings that
specify the choice of colors (here gray or black), plotting symbols, and the placement of
the key.®

Observe that the longest times are for the high level of tinting. The relationship between
csoa and it seems much the same for both levels of contrast. A number of older males
have long response times with the low-contrast target. The analysis that will be presented
later, in Chapter 10, indicates that within-subject effects — the effect of tint and target —
stand up with greater clarity against the statistical noise than do effects of sex and
agegp. The reason is that tint and target are effects that can be assessed within
subjects, whereas the effects of sex and agegp involve a comparison across different
subjects.

Because there are six points for each subject, Figure 2.12A gives a visual impres-
sion that exaggerates the evidence for effects that are associated with sex and
agegp.

Fitting a trend curve, as in Figure 2.12B, makes the relationship clearer. The code for
including the smooth curve, without the other refinements of Figure 2.12B, is:

8 ## Settings used for Figure 2.12B (suitable for grayscale on a printed page)
update (target.xyplot,
par.settings=simpleTheme (col=c("black", "gray20"), pch=c(1l, 16)))
# In the above, par.settings changed settings for this use of xyplot()
## Note the use of simpleTheme() for changing settings; see help(simpleTheme)
## Use trellis.par.set() to change settings while the current device is in use
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(tint.xyplot <-

xyplot (csoa it|sex*agegp, groups=tint, data=tinting,
type=c("p", "smooth"), span=1.25, auto.key=list(columns=3)))
# "p": points; "smooth": a smooth curve

# With span=1.25, the smooth curve is close to a straight line

The footnote adds the details needed to give Figure 2.12B.°

2.1.7 What to look for in plots

This is not a complete account of what plots may reveal! Its purpose is to draw attention to
some of the more obvious possibilities.

Outliers

Outliers are points that appear to be isolated from the main body of the data. Such points
(whether errors or genuine values) are liable to distort any model that we fit. What appears
as an outlier depends, inevitably, on the view that is presented. On a fairly simple level, the
view is affected by whether or not, and how, the data are transformed.

Boxplots, and the normal probability plot that will be discussed in Subsection 3.4.2, are
useful for highlighting outliers in one dimension. Scatterplots may highlight outliers in two
dimensions. Some outliers will be apparent only in three or more dimensions. The presence
of outliers can indicate departure from model assumptions.

Asymmetry of the distribution

Most asymmetric distributions can be characterized as either positively skewed or negatively
skewed. Positive skewness is the commonest form of asymmetry. There is a long tail to the
right, values near the minimum are bunched up together, and the largest values are widely
dispersed. Provided that all values are greater than zero, a logarithmic transformation
typically makes such a distribution more symmetric. A distribution that is skew cannot be
normal. Severe skewness is typically a more serious problem for the validity of results than
other types of non-normality.

If values of a variable that takes positive values range by a factor of more than 10:1
then, depending on the application area context, positive skewness is to be expected. A
logarithmic transformation should be considered.

Changes in variability

Boxplots and histograms readily convey an impression of the extent of variability or
scatter in the data. Side-by-side boxplots such as in Figure 2.8B, or strip charts such as

9 ## Panel B, with refinements
themeB <- simpleTheme (col=c("skybluel", "skyblued")[c(2,1,2)], lwd=c(1,1,2),
pch=c(1,16,16)) # open, filled, filled
update (tint.xyplot, par.settings=themeB, legend=NULL,
auto.key=list (columns=3, points=TRUE, 1lines=TRUE))
# Set legend=NULL to allow new use of auto.key
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in Figure 2.8A, allow rough comparisons of the variability across different samples or
treatment groups. They provide a visual check on the assumption, common in many uses
of statistical models, that variability is constant across treatment groups.

Note, however, that it is easy to over-interpret such plots. Statistical theory offers useful
and necessary warnings about the potential for such over-interpretation. (The variability
in a sample, typically measured by the variance, is itself highly variable under repeated
sampling. Measures of variability will be discussed in Subsection 2.2.3.)

When variability increases as data values increase, the logarithmic transformation will
often help. If the variability is constant on a logarithmic scale, then the relative variation
on the original scale is constant.

Clustering

Clusters in scatterplots may suggest structure in the data that may or may not have been
expected. When we proceed to a formal analysis, this structure must be taken into account.
Do the clusters correspond to different values of some relevant variable? Outliers are a
special form of clustering.

Non-linearity

We should not fit a linear model to data where relationships are demonstrably non-linear.
Often it is possible to transform variables so that terms enter into the model in a manner
that is closer to linear. If not, the possibilities are wide-ranging, and we will canvass only a
small number of them. See especially Chapter 7.

If there is a theory that suggests the form of model, then this is a good starting point.
Available theory may, however, incorporate various approximations, and the data may tell
a story that does not altogether match the available theory. The data, unless they are flawed,
have the final say!

2.2 Data summary

Data summaries may: (1) be of interest in themselves; (2) give insight into aspects of data
structure that may affect further analysis; (3) be used as data for further analysis. In case
(3), it is necessary to ensure that important information, relevant to the analysis, is not lost.
If no information is lost, the gain in simplicity of analysis can make the use of summary
data highly worthwhile.

It is important, when data are summarized, not to introduce distortions that are artefacts
of the way that the data have been summarized — examples will be given. The question of
whether information in the data may have been lost or obscured has especial importance
for the summarizing of counts across the margins of multi-way tables, and for the use of
the correlation coefficient.

2.2.1 Counts

Data in the data frame nswpsidl (DAAG package) are derived from a study (Lalonde,
1986) that compared two groups of individuals with a history of unemployment problems —
one an “untreated” control group and the other a “treatment” group whose members were
exposed to a labor training program. Are the two groups genuinely comparable? This can
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be checked by comparing them with respect to various measures other than their exposure
(or not) to the labor training program.

Thus, what are the relative numbers in each of the two groups who had completed high
school (nodeg = 0), as opposed to those who had not (nodeg = 1)?

> ## Table of counts example: data frame nswpsidl (DAAG)
> tab <- with(nswpsidl, table(trt, nodeg, useNA="ifany"))
> dimnames (tab) <- list(trt=c("none", "training"),
+ educ = c("completed", "dropout"))
> tab
educ

trt completed dropout

none 1730 760

training 80 217

Notice the use of the argument useNA="1ifany" in the call to table (). This ensures
that any NAs in either of the margins of the table will be tabulated.

The training group has a much higher proportion of dropouts. Similar comparisons are
required for other factors and variables, examining joint as well as individual comparisons.
These data will be investigated further in Section 13.2.

If x1, x2,..., xn are all columns (factors or vectors) of the same length and each
is supplied as an argument to table (), the result is an n-way table. For example,
table(x1l, x2, x3) gives athree-way table. The first argument defines rows, though
it is printed horizontally if there is just one column. The second argument defines columns.
The table slices (rows by columns) that correspond to different values of the third argument
appear in succession down the page, and so on.

Addition over one or more margins of a table

Figure 2.13 illustrates the possible hazards of adding a multi-way table over one of its mar-
gins. Data are from a study (Charig, 1986) that compared outcomes for two different types
of surgery for kidney stones; A: open, which used open surgery, and B: ultrasound,
which used a small incision, with the stone destroyed by ultrasound.

Without additional information, the results are impossible to interpret. Different surgeons
will have preferred different surgery types, and the prior condition of patients will have
affected the choice of surgery type. The consequences of unsuccessful surgery may have
been less serious for ultrasound than for open surgery.

Code that gives the mosaic plot is:

stones <- array(c(81,6,234,36,192,71,55,25), dim=c(2,2,2),
dimnames=1ist (Success=c("yes", "no"),
Method=c ("open", "ultrasound"),
Size=c("<2cm", ">=2cm")))
# NB: The margins are 1l:Success, 2:Method, 3:Size
library (ved)
mosaic (stones, sort=3:1) # c.f. mosaicplot() in base graphics
# Re-ordering the margins gives a more interpretable plot.



2.2 Data summary 61

Method Success
open ultrasound yes no %Yes
Method Size
E ﬁ open <2cm 81 6 93.1
< >=2cm 192 71 73.0
g ==l ] 2 % ultrasound <2cm 234 36 86.7
2 a >=2cm 55 25 68.8
E g
T Add over Size
| |r__1 2 open 273 77 78.0
ultrasound 289 61 82.6

Figure 2.13 Mosaic plot for the kidney stone surgery data that is shown to the right of the figure.
Outcomes are for two different types of surgery for kidney stones. The overall (apparent) success
rates (78% for open surgery as opposed to 83% for ultrasound) favor ultrasound. The success rate for
each size of stone separately favors, in each case, open surgery.

Code that tabulates the data, giving a layout similar to that on the right of the
plot, is:

## Function to calculate percentage success rates

roundpc <- function(x)round(100*x[1]/sum(x), 1)

## Add "%Yes" to margin 1 (Success) of the table

stonesplus <- addmargins (stones, margin=1, FUN=c ("%Yes"=roundpc))

## Print table, use layout similar to that shown alongside plot
ftable(stonesplus, col.vars=1)

## Get sum for each margin 1,2 combination; i.e., sum over margin 3
stonesl2 <- margin.table(stones, margin=c(1,2))

stonesl2plus <- addmargins (stonesl2, margin=1, FUN=c ("%Yes"=roundpc))
ftable (stonesl2plus, col.vars=1) # Table based on sums over Size

An alternative to mosaic () in the ved package is mosaicplot () in base graphics.
The function mosaic () is more flexible and extensible. A footnote demonstrates how the
size of the text in the margins can be modified.'’

Tabulation that accounts for frequencies or weights — the xtabs () function

The function xtabs () will be illustrated with a further example that, again, demonstrates
the hazards of summarizing tabular or other data across factors that affect the frequencies
of the margins that are retained.

Each year the National Highway Traffic Safety Administration in the USA uses a random
sampling method, with sampling fractions that differ according to class of accident, to
collect data from all police-reported crashes in which there is a harmful event (people or

10 44 Add arguments that control size of textual components
mosaic (aperm(stones, 3:1), main=NULL, gp_varnames=gpar (fontsize=8),
labeling_args=list (gp_labels=gpar (fontsize=7),
legend_args=1list (fontsize=7)))
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property), and from which at least one vehicle is towed. The data in nassCDS (DAAG) are
restricted to front-seat occupants (DAAG)."!

Factors whose effect warrant investigation include, as a minimum: A: airbag (was
an airbag fitted?), S: seatbelt (was a seatbelt used?), and dvcat (F: a force of impact
measure). The letters A, S, and F will be used as abbreviations when tables are generated.

The column weight (national inflation factor) holds the inverses of the sampling
fraction estimates. The weight is designed to be the amount by which the contribution
for the relevant row should be multiplied when tables of numbers of deaths and numbers
of accidents are created. The following uses xtabs () to estimate numbers of front-seat
passengers alive and dead, classified by airbag use:

> library (DAAG)
> ## NB: The parentheses generate an implicit print (abtab)
> (Atab <- xtabs(weight ~ airbag + dead, data=nassCDS))
dead
airbag alive dead
none 5445245.90 39676.02
airbag 6622690.98 25919.11

The function addmargins () that was introduced above can be used to add the proportion
of deaths in the right margin:

> roundpc2 <- function(x)round(100*x[2]/sum(x), 2)
> addmargins (Atab, margin=2, FUN=c ("%Dead"=roundpc?2))

dead
airbag alive dead %Dead
none 5445245.90 39676.02 0.72
airbag 6622690.98 25919.11 0.39

The above might suggest that the deployment of an airbag substantially reduces the risk
of mortality. Consider, however:

> SAtab <- xtabs(weight seatbelt + airbag + dead, data=nassCDS)
> ftable(addmargins (SAtab, margin=3, FUN=c ("%Dead"=roundpc2?)),
+ col.vars=3)

dead alive dead %Dead

seatbelt airbag
none none 1342021.90 24066.65 1.76
airbag 871875.39 13759.94 1.55
belted none 4103224.00 15609.36 0.38
airbag 5750815.59 12159.17 0.21

In the earlier table (Atab), the results without airbags were mildly skewed (4.12:1.37)
to those for belted. Results with airbags were strongly skewed (57.6:8.86) to those for
none, that is, no seatbelt.

! They hold a subset of the columns from a corrected version of the data analyzed in Meyer and Finney (2005). See also
Farmer (2005) and Meyer (2006). More complete data are available from one of the web pages noted on the help page for
nassCDS.
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The reader may wish to try an analysis that accounts, additionally, for estimated force of
impact (dvcat):

FSAtab <- xtabs(weight ~ dvcat + seatbelt + airbag + dead,
data=nassCDS)
ftable (addmargins (FSAtab, margin=4, FUN=c ("%Dead"=roundpc2)),
col.vars=4)

The small differences that are now apparent, mostly unfavorable to airbags, are below any
reasonable threshold of statistical detectability.

Farmer (2005) argues that these data, tabulated as above, have too many uncertainties
and potential sources of bias to give reliable results. He presents a different analysis,
based on the use of front-seat passenger mortality as a standard against which to compare
driver mortality. Farmer’s analysis was limited to cars without passenger airbags. In the
absence of any effect from airbags, the ratio of driver mortality to passenger mortality
should be the same, irrespective of whether or not there was a driver airbag. Farmer found
a ratio of driver fatalities to passenger fatalities that was 11% lower in the cars with driver
airbags.

In addition to the functions discussed, note the function CrossTable () from the
gmodels package, which offers a choice of SPSS-like and SAS-like output formats.

2.2.2 Summaries of information from data frames

For obtaining summaries at combinations of different factor levels, the aggregate ()
function is often a good recourse. Note also the abilities of aaply () and allied functions
in Hadley Wickham’s plyr package.

Summary as a prelude to analysis — aggregate ()

The data frame kiwishade (from DAAG) has yield measurements from 48 vines. Plots,
made up of four vines each, were the experimental units. The analysis can be simplified by
first taking means over plots that had four vines each.

The 12 plots were divided into three blocks of four plots each. One block of four
was north-facing, a second block west-facing, and a third block east-facing. (Because the
trial was conducted in the Southern hemisphere, there is no south-facing block.) Shading
treatments were applied to whole plots, i.e., to groups of four vines, with each treatment
occurring once per block. The shading treatments were applied either from August to
December, December to February, February to May, or not at all. For more details of the
experiment, look ahead to Figure 10.4.

For comparing treatments, there is no loss of information from basing analysis on the
plot means. The four individual vine results that are averaged to give the plot mean are
multiple measurements on the same experimental unit, here a plot.

Figure 2.14 plots both the aggregated means and the individual vine results. As treatments
were applied to whole plots, the graph that shows the individual vine results exaggerates
the extent of information that is available, in each block, for comparing treatments. For
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Figure 2.14
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Individual vine yields © Plot means (4 vines) +
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The four panels are the four different plots. The solid gray points are plot means. The

open gray circles are yields for individual vines in the plot.

gaining a correct impression of the strength of the evidence, it is best to focus the eye on
the means, shown as +. The code for Figure 2.14 is given as a footnote.'”
The first few rows of the data frame are:

vield
101.11
108.02
106.67
100.30
92.64

U W N

block shade plot
north none north.none
north none north.none
north none north.none
north none north.none
west none west.none

The aggregate () function splits the data frame according to the specified combina-
tions of factor levels, and then applies a specified function to each of the resulting subgroups.
Here, it forms a data frame that has the mean for each combination of block and shading
treatment. The code, with the first line of output following, is:

> ## mean yield by block by shade: data frame kiwishade (DAAG)
> kiwimeans <- with(kiwishade,
+ aggregate (yield, by=list(block, shade), mean))
> names (kiwimeans) <- c("block", "shade", "meanyield")
> head(kiwimeans, 4)
block shade meanyield
1 east none 99.0250
> #

12 44 Individual vine means, by block and treatment
library(lattice)

## Panel function calls panel.dotplot(),
dotplot (shade

then panel.average()

yield | block, data=kiwishade, aspect=1,

panel=function(x,y, ...) {panel.dotplot(x, y, pch=1, col="gray40")

panel.average(x, y, type="p", col="black",
pch=3, cex=1.25)},

key=1list (space="top", columns=2, col=c("gray40", "black")
text=list(c("Individual vine yields", "Plot means (4 vines)")),
points=list (pch=c(1,3), cex=c(1,1.25))), layout=c(3,1)

# Note that parameter settings were given both in the calls to the
# panel functions and in the list supplied to key.
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Use of the aggregated data for analysis commits us to working with plot means. What
information is lost? If there were occasional highly aberrant values, use of medians might
be preferable. The data should have a say in determining the form of summary.

The benefits of data summary — dengue status example

Hales et al. (2002) examined the implications of climate change projections for the world-
wide distribution of dengue, a mosquito-borne disease that is a risk in hot and humid regions.
Dengue status, i.e., information on whether dengue had been reported during 1965-1973, is
available for 2000 administrative regions. Climate information is available on a much finer
scale, on a grid of about 80 000 pixels at 0.5° latitude and longitude resolution. Should the
analysis work with a data set that consists of 2000 administrative regions, or with the much
larger data set that has one row for each of the 80 000 pixels? The following are reasons
that might have argued for working with the summarized data:

* Dengue status is a summary figure that is given by administrative region. An analysis
that uses the separate data for the 80 000 pixels will, in effect, predict dengue status for
climate variable values that are in some sense averages for the administrative region.
Explicit averaging, prior to the analysis, gives the user control over the form of averaging
that will be used. If, for example, values for some pixels are extreme relative to other
pixels in the administrative region, medians may be more appropriate than means. In
some regions, the range of climatic variation may be extreme. The mean will give the
same weight to sparsely populated cold mountainous locations as to highly populated
hot and humid locations on nearby plains.

¢ Correlation between observations that are close together geographically, though still
substantial, will be less of an issue for the data set in which each row is an administrative
region. Points that repeat essentially identical information are a problem both for the
interpretation of plots and, often, for the analysis. Regions that are geographically close
will often have similar climates and the same dengue status.

* Analysis is more straightforward with data sets that are of modest size. It is easier to
do standard forms of data checking. The points that appear on plots are more nearly
independent. Standard forms of scatterplot less readily degenerate into a dense mass of
black ink.

There are many possible ways to calculate a central value, of which the mean and the
median are the most common. (In fact, however, the paper used the disaggregated data.)

2.2.3 Standard deviation and inter-quartile range

An important measure of variation in a population is the population standard deviation
(often written o), which is almost always unknown. The variance o2, which is the square
of the standard deviation, is widely used in formal inference.

The sample standard deviation, used to estimate the population standard deviation when
a random sample has been taken, is

[2(x — %)
§= =
n—1
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Table 2.1 Standard deviations for cuckoo egg data.

Hedge sparrow  Meadow pipit  Pied wagtail Robin  Tree pipit Wren

1.049 0.920 1.072 0.682 0.880 0.754

In words, take the difference of each data value from the mean, square, add the squared
differences together, divide by n — 1, and take the square root. In R, use the function
sd () to calculate the standard deviation, or var () to calculate the variance. The standard
deviation is in the same units as the original measurements. For s to be an accurate estimate
of o, the sample must be large.

Cuckoo eggs example

Consider again the data on cuckoo eggs that we discussed in Subsection 2.1.4. The group
standard deviations are listed in Table 2.1."
The variability in egg length is smallest when the robin is the host.

Degrees of freedom

The denominator n — 1 is the number of degrees of freedom remaining after estimating
the mean. With one data point, the sum of squares about the mean is zero, the degrees of
freedom are zero, and no estimate of the variance is possible. The degrees of freedom are
the number of data values, additional to the first data value.

In later chapters, standard deviation calculations will be based on the variation that
remains after fitting a model (most simply, a line) to the data. Degrees of freedom are
reduced by 1 for each model parameter that is estimated.

Other measures of variability

The standard deviation is similar in concept to the inter-quartile range H, which we saw in
Subsection 2.1.1 is the difference between the first and third quartiles. (The region between
the lower and upper quartiles takes in 50% of the data.)

For data that are approximately normally distributed, note the approximate relationship

s~ 0.75H.

If data are approximately normally distributed, one standard deviation either side of the
mean takes in roughly 68% of the data.

Note also the median absolute deviation, calculated using the function mad () . This cal-
culates the median of the absolute deviations from the median. By default this is multiplied
by 1.4286, to ensure that in a large sample of normally distributed values the value returned
should approximately equal the standard deviation.

3 ## SD of length, by species: data frame cuckoos (DAAG)
sapply (split (cuckoos$Slength, cuckoosSspecies), sd)
# Subsection 14.9.6 has information on split()
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The pooled standard deviation

Consider two independent samples of sizes n; and n,, respectively, randomly selected
from populations that have the same amount of variation but for which the means may
differ. Thus, two means must be estimated. The number of degrees of freedom remaining
for estimating the (common) standard deviation is n; + n, — 2. We compute the so-called
pooled standard deviation by summing squares of differences of each data value from their
respective sample mean, dividing by the degrees of freedom n; 4+ n, — 2, and taking the
square root:

DNt DN b Vi
P ny+n,—2 '

Use of this pooled estimate of the standard deviation is appropriate if variation in the two
populations is plausibly similar. The pooled standard deviation is estimated with more
degrees of freedom, and therefore, more accurately, than either of the separate standard
deviations.

Elastic bands example

Consider data from an experiment in which 21 elastic bands were randomly divided into
two groups, one of 10 and one of 11. Bands in the first group were immediately tested for
the amount that they stretched under a weight of 1.35 kg. The other group were dunked in
hot water at 65°C for four minutes, then left at air temperature for ten minutes, and then
tested for the amount that they stretched under the same 1.35 kg weight as before. The
results were:

Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253.5)

Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244.1)

The pooled standard deviation estimate is s = 10.91, with 19 (= 10 + 11 — 2) degrees
of freedom. Since the separate standard deviations (s; = 9.92; s, = 11.73) are similar, the
pooled standard deviation estimate is an acceptable summary of the variation in the data.

2.2.4 Correlation

The usual Pearson or product-moment correlation is a summary measure of linear rela-
tionship. Calculation of a correlation should always be accompanied by a check that the
relevant scatterplot shows a linear relationship. Often the addition of a smooth trend line
helps the assessment. Check also that the marginal distributions of the two variables are
roughly normal, or at least not highly skew. If the relationship is monotonic, but is not linear
and/or has asymmetric marginal distributions, it may be appropriate to use a Spearman rank
correlation. Examples of the needed code are:

> ## Correlation between body and brain: data frame Animals (MASS)
> ## Product--moment correlation

> with(Animals, cor (body, brain))

[1] -0.005341

> ## Product--moment correlation, after log transformation

> with(log(Animals), cor (body, brain))
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0894 0878 0458

Figure 2.15 Different relationships between y and x. In the second panel, the Pearson correlation
is 0.878, while the Spearman rank correlation is 0.928.

[1]

0.7795

>> ## Spearman rank correlation

>

[1]

with(Animals,
0.7163

cor (body, brain, method="spearman"))

The function cor. test () returns a confidence interval, and tests for no association.

1.
2.

Figure 2.15 gives four graphs to consider. For which does it make sense to calculate

A Pearson correlation coefficient?
A Spearman rank correlation?

The figure that appears in the upper left in each panel is the Pearson correlation. For the
second panel, the Pearson correlation is 0.878, while the Spearman correlation, which better
captures the strength of the relationship, is 0.928. Here a linear fit clearly is inadequate. The
magnitude of the correlation r, or of the squared correlation r2, does not of itself indicate
whether the fit is adequate.

Note also the Kendall correlation, obtained by specifying method="kendall" when

cor.test () is called. This is often used in contexts where the same individuals are
assessed by different judges. It estimates the probability that the two judges will assign the
same ranking to an individual.

Here are ways in which the use of correlation may mislead:

The usual interpretation of the magnitude of the coefficient assumes that sample pairs
(x, y) have been taken at random from a bivariate normal distribution. Observations must
be independent, and the separate marginal distributions of x and y must be approximately
normal. If, for example, the marginal distributions are highly asymmetric, the correlation
is likely to be smaller, with increased statistical variability.

There may be a subgroup structure in the data. If, for example, values of x and/or y are
quite different for males and females, then the correlation may only reflect a difference
between the sexes. Or, if random samples are taken from each of a number of villages and
the data are pooled, then it will be unclear whether any correlation reflects a correlation
between village averages or a correlation between individuals within villages, or a bit of
each. The interpretation is confused because the two correlations may not be the same,
and may even go in different directions. See Cox and Wermuth (1996).

Any correlation between a constituent and a total amount is likely to be, in part at
least, a mathematical artifact. Thus, consider a study of an anti-hypertensive drug that
hopes to determine whether the change y — x is larger for those with higher initial blood



2.3 Statistical analysis questions, aims, and strategies 69

pressure. If x and y have similar variances then, unfortunately, y — x will have a negative
correlation with x, whatever the influence of the initial blood pressure.

Note that while a correlation coefficient may sometimes be a useful single number
summary of the relationship between x and y, regression methods offer a much richer
framework for the examination of such relationships.

2.3 Statistical analysis questions, aims, and strategies

Logically, this section might have appeared at the beginning of the chapter, prior to any
discussion of analysis methods and approaches. It is here because the reader should by now
have a level of familiarity with several data sets that will be used as a basis for discussion.

Different questions, asked of the same data, will demand different analyses. Questions
of interest may, given the available data, be unanswerable. Data on house prices in London
may not have much relevance, if the interest is in house prices in New York or Paris!
Questions should be structured with issues of this type in mind.

Questions should be structured with a view to the intended use of results. Is the aim
scientific understanding, perhaps as in the example discussed below to determine whether
cuckoos do really match the eggs that they lay in the nests of other birds to the size and
color of the host eggs? Or is the aim prediction, perhaps to predict, based on recent prices
in the area and on house size, the price that purchasers may be willing to pay?

Effective use of the information in the data

Figure 2.6 was designed to elicit the relationship between electrical resistance and apparent
juice content, in kiwifruit. With the data we have, it would be bad practice to do a formal
statistical test to compare, for example, juice content of less than 30% with juice content
of more than 50%. Such an analysis would miss the relatively rich relationship that exists
between the apparent juice content and resistance.

The data are more informative than would be obtained by doing repeated trials, some
with a juice content of 30% and some with a juice content of 50%. Even worse would be a
study comparing resistance at 40% juice content with resistance at 50% juice content. Such
a study would have very little chance of finding anything of consequence.

Observational versus experimental data

Data from experiments appear throughout this book — examples are the data on the tinting
of car windows that was used for Figure 2.12 in Subsection 2.1.6, and the kiwifruit shading
data that were discussed in Subsection 2.2.2. Data from an experiment can, if well designed
with a view to answering the questions of interest, give highly reliable results. With data
from carefully designed experiments, perhaps the most serious danger is that the data will
be generalized beyond the limits imposed by the experimental conditions.

Observational data are another matter. Section 13.2 will discuss a comparison between
results from an experimental study on the effects of a work training program (those enrolled
in the study were randomly assigned to training and non-training groups), and results from
various sets of matched observational data that have been used in the attempt to answer the
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Table 2.2 Mean lengths of cuckoo eggs, compared with mean lengths of eggs laid by the
host bird species. More extensive data that bear on the comparison between cuckoo eggs
and host eggs are in the data frame cuckoohosts (DAAG).

Meadow  Hedge Tree Yellow
Host species pipit sparrow Robin Wagtails pipit Wren hammer

Length (cuckoo) 223 (45) 23.1(14) 225(16) 22.6(26) 23.1(15) 21.1(15) 22.6(9)
Length (host) 19.7(74) 200 (26) 202(57) 19.9(16) 20(27) 17.7(>) 21.6(32)

(Numbers in parentheses are numbers of eggs.)

same question. In this instance results from the use of observational data can be compared
with those from an experiment in which individuals were randomly assigned either to an
experimental or to a control group.

2.3.1 How relevant and how reliable are the data?

Latter (1902) collected the cuckoo egg data presented in Figure 2.8 in order to investigate
claims, made in Newton (1893-1896, p. 123), that the eggs that cuckoos lay in the nests
of other birds tend to match the eggs of the host bird in size, shape, and color. Figure 2.8
strongly indicated differences, depending on the host bird, in length. A further step is to
look for a relationship between the mean size of the cuckoo eggs for each specific host, and
the mean size of the host bird’s own eggs, using data such as in Table 2.2.

There are various difficulties with the data in Table 2.2. The cuckoo eggs and the host
eggs are from different nests, collected in the course of different investigations. Data on
the host eggs are from various sources. For the wren, the value is an indicative length from
Gordon (1894). There is thus a risk of biases, different for the different sources of data, that
limit the inferences that can be drawn.

There is a striking difference between wrens and other species. Not only are their own
eggs easily the smallest among the species considered; the eggs of the wren host are easily
the smallest, among any of the hosts. Whatever biases may exist in the data, it is unlikely
that they would be so large as to affect these major differences. Biases might well affect
comparisons between eggs in the nests of species other than wrens.

2.3.2 How will results be used?

Studies may be designed to help scientific understanding. Consider again the data in
Table 2.2. The interest of Latter’s paper is primarily in establishing whether there is a
relationship, and rather less in determining the nature of the relationship. Egg size and
shape is one of several pieces of evidence that Latter considers. Uniquely among the birds
listed, the architecture of wren nests makes it impossible for the birds to see the eggs. In
wren nests, the color of the cuckoo’s egg does not match the color of the wren’s eggs; for
the other species the color does mostly match. Latter concludes that Newton is right, that
the eggs that cuckoos lay tend to match the eggs of the host bird in size and shape in ways
that will make it difficult for hosts to distinguish their eggs from the cuckoo eggs.
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This is very different from the demands of the real-estate agent who may hope, on
the basis of last year’s prices in a city location, and floor area, to predict the prices that
purchasers will be willing to pay. Will a relationship that seems to work in one suburb
apply also in another suburb, or in a neighboring city? Accurate prediction is crucial, with a
perhaps reduced importance given to understanding the detailed reasons for any relationship
that may be apparent. It is important, also, to know the intended use of the data and hence
what sort of accuracy is important. Is it accuracy for purposes of making a prediction on
one of the suburb(s) used in obtaining the data? Or is it accuracy for making predictions in
new suburb(s)? In the latter case, data from multiple suburbs will be needed, and it must
be possible to treat the sampled suburbs as a random sample from the suburbs for which
predictions are required.

2.3.3 Formal and informal assessments

Statistical data analysis is, often, crucial to the answering of scientific questions. It does
not however stand alone, but must be interpreted against a background of subject area
knowledge and judgment. Qualitative judgments are inevitable at various points in studies
that generate data sets such as are analyzed in this book. Such judgments affect the use
of assumed subject area knowledge, the measurements that are taken, the design of data
collection, the choice of analysis, and the interpretation of analysis results. These judgments,
while they should be as informed as possible, cannot be avoided.
Two examples will now be given:

¢ In trials that evaluate therapies for conditions that commonly lead to early death, what
is the relevant measure? Is it survival time from diagnosis? Or is it more appropriate to
use a measure that takes account of quality of life over that time, which differs hugely
between different therapies? Two such measures are “Disability Adjusted Life Years”
(DALYs) and “Quality Adjusted Life Years” (QALYYS).

* The dataset nswpsidl (see Subsection 2.2.1 and Section 13.2) allows comparison of
two groups of individuals, both with a history of employment and related difficulties. A
focus of interest was income in 1978, subsequent to the study. Because the distribution
of income is highly skew, comparisons that are based directly on income will be biased
towards the experience of those few individuals whose incomes were very large. This
effect can be ameliorated by working with the logarithm of income. Or it might be more
appropriate to compare the median salaries of the two groups, after adjusting for the
effects of other variables.

In neither case is the interpretation of analysis results as simple as might initially appear.
There is an inevitable risk that assumed insights and judgments will carry large elements
of prejudice or personal bias. A well-designed study will allow some opportunity for study
results to challenge the assumed insights and understandings that have motivated the study.

Questionnaires and surveys

The scienceand socsupport dataframes (DAAG) are both from surveys. In both cases,
an important question is whether the questions measured what they claimed to measure.
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In the science data set, a focus of interest is the variable 1ike, which measured the
students’ liking for science. What did students understand by “science”? Was science, for
them, a way to gain and test knowledge of the world? Or was it a body of knowledge? Or,
more likely, was it a name for their experience of science laboratory classes (smells, bangs,
and sparks perhaps) and field trips?

In the socsupport data set, an important variable is Beck Depression Index or
BDI. The Beck Depression Index is a standard psychological measure of depression
(see, e.g., Streiner and Norman, 2003), derived from a carefully designed and tested
questionnaire.

In either case it is impossible to escape the question: “What was measured?”” This question
is itself amenable to experimental investigation. For the data frame science, answers to
other questions included in the survey shed some light. The Beck Depression Index is the
result of an extensive process of development and testing that has seemed to validate its
results, at least for populations on which it has been tested. Such background evidence
helps in assessing what is measured. Finally, however, there must be a qualitative judgment
that brings together subject area knowledge, background information and evidence, and the
results of the immediate statistical analysis.

2.3.4 Statistical analysis strategies

We have emphasized the importance of careful initial scrutiny of the data. Techniques of
a broadly EDA type have, in addition, a role in scrutinizing results from formal analysis,
in checking for possible model inadequacies, and perhaps in suggesting remedies. In later
chapters, we will discuss the use of diagnostic statistics and graphs in examination both
of the model used and of output from the analysis. These are an “after the event” form
of EDA. In the course of an analysis, the data analyst may move backwards and forwards
between exploratory analysis and more formal analyses.

2.3.5 Planning the formal analysis

Planning the formal analysis is one aspect of planning a research study. Such advance
planning should allow for the possibility of limited changes following preliminary
investigation.

An ideal is to have available data, and perhaps also analysis results, from a suitably
related earlier study. Use of such information to plan the analysis in advance reduces the
chance of biasing the new results in a direction that is closest to the analyst’s preference!
Even so, graphical checks of the data should precede formal analysis. There may be obvious
mistakes. The data may have surprises for the analyst.

If available at the beginning of the study, the information from the analysis of earlier data
may, additionally, be invaluable in the design of data collection for the new study. When
prior data are not available, a pilot study involving a small number of experimental runs
can sometimes provide this kind of information.

Where it is not altogether clear what to expect, careful preliminary examination is even
more necessary. In particular, the analyst should look for
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¢ outliers,

* clusters in the data,

* unexpected patterns within groups,

* between-group differences in the scatter of the data,

¢ whether there are unanticipated time trends associated, e.g., with order of data collection.

In all studies, it is necessary to check for obvious data errors or inconsistencies. In addition,
there should be checks that the data support the intended form of analysis.

2.3.6 Changes to the intended plan of analysis

What departures from the original plan are acceptable, and what are not? If the exploratory
analysis makes it clear that the data should be transformed in order to approximate normality
more closely, then use the transformation. It is sometimes useful to do both analyses (with
the untransformed as well as with the transformed data) and compare them.

On the other hand, if there are potentially a large number of comparisons that could be
made, the comparisons that will be considered should be specified in advance. Prior data,
perhaps from a pilot study, can assist in this choice. Any investigation of other comparisons
may be undertaken as an exploratory investigation, a preliminary to the next study.

Data-based selection of one or two comparisons from a much larger number is not
appropriate, since huge biases may be introduced. Alternatively, there must be allowance
for such selection in the assessment of model accuracy. The issues here are non-trivial, and
we defer further discussion until later.

2.4 Recap

Exploratory data analysis aims to allow the data to speak for themselves, often prior to or as
part of a formal analysis. It gives multiple views of the data that may provide useful insights.
Histograms, density plots, stem-and-leaf displays, and boxplots are useful for examining
the distributions of individual variables. Scatterplots are useful for looking at relationships
two at a time. If there are several variables, the scatterplot matrix provides a compact visual
summary of all two-way relationships.

Before analysis, look especially for

e outliers,

¢ skewness (e.g., a long tail) in the distribution of data values,

¢ clustering,

* non-linear bivariate relationships,

¢ indications of heterogeneous variability (i.e., differences in variability across samples),
¢ whether transformations seem necessary.

After analysis, check residuals for all these same features. Where relationships involve
several variables, adequate checks will be possible only after analysis.

Failure of the independence assumption is hard to detect, unless the likely form of
dependence is known and the sample is large. Be aware of any structure in the data that
may be associated with lack of independence.
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Do not allow the initial scrutiny of data to influence the analysis in ways that may lead
to over-interpretation.

2.5 Further reading

The books and papers on graphical presentation that were noted in Chapter 1 are equally
relevant to this chapter. The books Cleveland (1993, 1994) are especially pertinent to
the present chapter. Chatfield (2002) has a helpful and interesting discussion, drawing on
consulting experience, of approaches to practical data analysis.

On statistical presentation issues, and deficiencies in the published literature, see
Andersen (1990), Chanter (1981), Gardner et al. (1983), Maindonald (1992), Maindonald
and Cox (1984), Wilkinson and Task Force on Statistical Inference (1999). The Wilkinson
et al. paper has helpful comments on the planning of data analysis, the role of exploratory
data analysis, and so on. Nelder (1999) is forthright and controversial.

Two helpful web pages are

http://www.math.yorku.ca/SCS/friendly.html#graph and http://
www.rdg.ac.uk/ssc/publications/publications.html#under
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2.6 Exercises

1. Use the lattice function bwplot () to display, for each combination of site and sex in the
data frame possum (DAAG package), the distribution of ages. Show the different sites on the
same panel, with different panels for different sexes.

2. Do a stem-and-leaf display for the lengths of the female possums. On the display, identify the
position of the median, either at one of the leaves or between two leaves. Explain the reasoning
used to find the median, and use the function median () to check the result.
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Plot a histogram of the earconch measurements for the possum data. The distribution
should appear bimodal (two peaks). This is a simple indication of clustering, possibly due to sex
differences. Obtain side-by-side boxplots of the male and female earconch measurements.
How do these measurement distributions differ? Can you predict what the corresponding his-
tograms would look like? Plot them to check your answer.

For the data frame ais (DAAG package), draw graphs that show how the values of the hema-
tological measures (red cell count, hemoglobin concentration, hematocrit, white cell count, and
plasma ferritin concentration) vary with the sport and sex of the athlete.

Using the data frame cuckoohosts, plot clength against cbreadth, and hlength
against hbreadth, all on the same graph and using a different color to distinguish the first set
of points (for the cuckoo eggs) from the second set (for the host eggs). Join the two points that
relate to the same host species with a line. What does a line that is long, relative to other lines,
imply? Here is code that you may wish to use:
attach (cuckoohosts)
plot (c(clength, hlength), c(cbreadth, hbreadth),
col=rep(l:2,c(12,12)))

for(i in 1:12)lines(c(clength[i], hlength[il]),

c(cbreadth[i], hbreadth[i]))
text (hlength, hbreadth, abbreviate (rownames (cuckoohosts),8))
detach (cuckoohosts)

Enter and run the following code. Annotate it, describing each function and each function

argument:

deathrate <- ¢ (40.7, 36,27,30.5,27.6,83.5)

hosp <- c("Cliniques of Vienna (1834-63)\n(> 2000 cases pa)",
"Enfans Trouves at Petersburg\n(1845-59, 1000-2000 cases pa)",
"Pesth (500-1000 cases pa)",
"Edinburgh (200-500 cases pa)",
"Frankfort (100-200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor (hosp, levels=hospl[order (deathrate)])

dotplot (hosp~deathrate, xlim=c(0,95), xlab="Death rate per 1000 ",

type=c("h", "p"))
## Source: \cite{Nightingale}. Data are ascribed to Dr Le Fort

The dataset ex10 .22, on tomato yields, is available from the package Devore6 (or in wide
format from Devore7). Type

library (Devoreb) # ex10.22 is from Devoreb6

tomatoes <- ex10.22

This data frame gives tomato yields at four levels of salinity, as measured by electrical conduc-
tivity (EC, in nmho/cm).

(a) Obtain a scatterplot of yield against EC.

(b) Obtain side-by-side boxplots of yield for each level of EC.

(c) The third column of the data frame is a factor representing the four different levels of
EC. Comment upon whether the yield data are more effectively analyzed using EC as a
quantitative or qualitative factor.

Examine the help for the function mean (), and use it to learn about the trimmed mean. For
the total lengths of female possums, calculate the mean, the median, and the 10% trimmed
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mean. How does the 10% trimmed mean differ from the mean for these data? Under what
circumstances will the trimmed mean differ substantially from the mean?

Assuming that the variability in egg length for the cuckoo eggs data is the same for all host birds,
obtain an estimate of the pooled standard deviation as a way of summarizing this variability.
[Hint: Remember to divide the appropriate sums of squares by the number of degrees of freedom
remaining after estimating the six different means.]

Calculate the following three correlations:

with(Animals, cor (brain,body))

with(Animals, cor(log(brain), log(body)))

with(Animals, cor(log(brain),log(body), method="spearman"))
Comment on the different results. Which is the most appropriate measure of the relationship?

Figure 2.10 showed changes in labor force numbers, in six regions of Canada, in successive
quarters of 1995-1996. The population (in thousands) aged 15 years and over in each of these
regions was, according to the 1996 census: BC: 3955; Alberta: 2055; Prairies: 1604;
Ontario: 8249; Quebec: 5673; Atlantic: 1846. Plot a version of Figure 2.10 in which
the labor force numbers are standardized by division by the number in the relevant population.
Compare a plot that shows all regions in the same panel, with a plot that gives each region its own
panel and its own slice of a common scale, commenting on the advantages and disadvantages
of each. Is there now any reason to use a logarithmic scale?

The following code conveys information that has points of connection with the information in
Figure 2.14:

bwplot (shade ~ yield|block, data=kiwishade, layout=c(3,1))
Compare and contrast the information given by these two plots.

The galaxies data in the MASS library gives speeds on 82 galaxies (see the help file and
the references listed there for more information). Obtain a density plot for these data. Is the
distribution strongly skewed? Is there evidence of clustering?

The cpus data frame in the MASS library contains information on eight aspects for each of 209
different types of computers. Read the help page for more information.

(a) Construct a scatterplot matrix for these data. Should any of the variables be transformed
before further analysis is conducted?

(b) How well does estimated performance (estperf) predict performance (perf)? Study
this question by constructing a scatterplot of these two variables, after taking logarithms.
Do the plotted points scatter about a straight line or is there an indication of non-linearity?
Is variability in performance the same at each level of performance?
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Many regularities of nature are taken for granted in daily living — the rising and setting of
the sun, the effects of fire in burning anyone unfortunate enough to get too near, and so
on. Experience of the world, rather than logical deductive argument, has identified these
regularities. Scientific investigation, especially in the physical sciences, has greatly extended
and systematized awareness of regularities. Mathematical descriptions, i.e., models, have
been crucial for describing and quantifying these regularities.

As when any model is pressed into service, it is important to understand which features
generalize and which do not. An engineer’s scale model of a building may be helpful for
checking the routing of the plumbing but may give little indication of the acoustics of
seminar rooms that are included in the building. In medical research, mouse responses
to disease and to therapeutic agents are widely used as models for human responses.
Experimental responses in the mouse may indicate likely responses in humans.

In fundamental research in the physical sciences, deterministic models are often adequate.
Statistical variability may be so small that it can, for practical purposes, be ignored. In
applications of the physical sciences, variability may more commonly be a serious issue.
In studying how buildings respond to a demolition charge, there will be variation from one
occasion to another, even for identical buildings and identically placed charges. There will
be variation in which parts of the building break first, in what parts remain intact, and in
the trajectories of fragments. In the natural sciences, such variability is everywhere.

Statistical models rely on probabilistic forms of description that have wide application
over all areas of science. They often consist of a deterministic component, with a random
component added that is designed to account for residual variation.

3.1 Statistical models

As we saw in Chapter 2, consideration of a model stays somewhat in the background in
initial exploratory data analysis. The choice of model is crucial in formal analysis. The
choice may be influenced by previous experience with comparable data, by subject area
knowledge, and by cautious use of what may emerge from exploratory analysis.

Models should, wherever possible, be scientifically meaningful, but not at the cost of
doing violence to the data. The scientific context includes the analyses, if any, that other
researchers have undertaken with related or similar data. It can be important to note and use
such analyses critically. While they may give useful leads, there can be serious inadequacies
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Figure 3.1 Depression in lawn versus roller weight. Both lines were drawn by eye, with the dashed
line constrained to go through the origin.

in published analyses. For further detail and discussion, see relevant articles and books in
the list of references at the end of Chapter 2.

3.1.1 Incorporation of an error or noise component

Statistical models combine deterministic and random components. The random component
is often called noise or error and the deterministic component is sometimes thought of as
the signal. It may be helpful to think of the statistical error as the “rough”, and of the model
prediction as the “smooth”.

The error component models variation that cannot be accounted for by given information.
The simplest models assume that the elements of the error component are uncorrelated,
i.e., the size and sign (negative or positive) of one element give no information on the likely
size and sign of any other element.

Both noise and error are technical terms. Use of the word error does not imply that there
have been mistakes in the collection of the data, though mistakes can of course contribute
to making the variability unnecessarily large.

Figure 3.1 shows data from an experiment where different weights of roller were rolled
over different parts of a lawn, and the depression noted (data are from Stewart ez al., 1988). !
The data seem broadly consistent with the assumption of a signal by which depression is
proportional to roller weight, as implied by the solid line in Figure 3.1. Variation about this
signal is reflected in variation in the values for depression/weight. More generally,
it might be assumed that the signal is a line that does not necessarily assume strict propor-
tionality between depression and weight. The dashed line in Figure 3.1 is an example. It
allows for a systematic error in the measurement of depression.

' 44 Plot depression vs weight: data frame roller (DAAG)

plot (depression ~ weight, data = roller, xlim=c(0,1.04*max(weight)),
ylim=c(0,1.04*max (depression)),
xaxs="1i", yaxs="i", # "i"=inner: Fit axes exactly to the limits
xlab = "Weight of roller (t)", ylab = "Depression(mm)", pch = 16)

abline (0, 2.25) # A slope of 2.25 looks about right
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The model has the form:

observed value = model prediction + statistical error

ie, y=u+e

where u = Bx (no intercept), or 4 = o + Bx (with intercept). The model prediction (u) is
the signal component, while ¢ is the error component.
Substituting 4 = @ + B x weight in the equation:

depression = « + f x weight + noise.

Here o and B are constants which must be estimated. (For strict proportionality between
depression and weight, o will of course be zero.)

Use of subscripts allows identification of the individual points. Given observations (xj,
1), (x2, ¥2), . .., (Xn, Yu), W€ may write

yi =0+ pxi+ &

Predicting with models

The focus of interest — generally prediction and/or interpretation of model parameters —
may be different for different uses of model results. For the lawn roller data of Figure 3.1,
one focus of interest is the rate of increase of depression with increasing roller weight, i.e.,
the slope of the line. Another focus is model prediction, i.e., the fitted values. Models should
as far as possible yield inferences that, for their intended use, are acceptably accurate.

Model structure should reflect data structure. The model treats the pattern of change of
depression with roller weight as a deterministic or fixed effect. The measured values of
depression incorporate, in addition, a random effect that reflects variation from one part
of the lawn to another, differences in the handling of the roller, and measurement error.

Data from multiple lawns are essential, for anything more than informal judgment on
how results may generalize to other lawns. Such data would allow use of a model that
accounts for between-lawn variation, as well as for the within-lawn variation on which our
data give information. Chapter 10 will discuss models that might be tried, if data from
multiple lawns were available.

Which model is best?

Figure 3.2 shows two possible models for the lawn roller data, together with information
that may be helpful in assessing the adequacy of the model. In Figure 3.2A, a line (with
intercept) has been fitted, while Figure 3.2B has used lowess () to fit a smooth curve
through the data. Sometimes, the fitting of a curve such as in Figure 3.2B helps indicate
whether a line really is appropriate. Note that there is just one point that seems to be causing
the line, and the fitted curve, to bend down. In any case, there is no statistical justification
for fitting a curve rather than a line, as can be verified with a formal analysis; see Exercise 2
in Chapter 7. There is “over-fitting” in Figure 3.2B.
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Figure 3.2 In panel A a line has been fitted, while panel B has a smooth curve. Residuals (the
“rough”) appear as vertical lines. Positive residuals are black lines, while negative residuals are
dashed. Figures 3.2A and B were created using our function g3 .2 (), which is available from the
web page for the book. Interested readers can check the code.

3.1.2 Fitting models — the model formula

Formulae have already been used extensively to describe graphs that will be plotted using
plot () or another such function. Modeling functions likewise use formulae to describe
the role of variables and factors in models. Thus, the following model statement, with model
formula depression ~ weight, fits a line to the data of Figure 3.1:

## Fit line - by default, this fits intercept & slope.
## requires data frame roller (DAAG)

roller.lm <- lm(depression ~ weight, data=roller)

## Compare with the code used to plot the data

plot (depression ~ weight, data=roller)

## Add the fitted line to the plot

abline(roller.1lm)

The name roller . 1m, used for the output object, was chosen for mnemonic reasons — the
object was the result of 1m calculations on the roller data set. In the formula, weight
is the predictor or explanatory variable, while depression is the response.’

Fitted values, residuals, and coefficients

Residuals, which are the differences between observed values of depression, and pre-
dicted values of depression at the respective values of weight, are important for assessing
the accuracy of the model fit. A large error component generates large residuals, and works
against accurate prediction. Figure 3.2A exhibits the residuals for the lawn roller data after
fitting a straight line, while Figure 3.2B exhibits the residuals after fitting a smooth curve.
Positive residuals are represented by solid lines, while negative residuals are represented
by dashed lines.

2 ## For a model that omits the intercept term, specify
1lm(depression ~ -1 + weight, data=roller)
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Most of the information that is commonly required from model objects can be obtained by
the use of an extractor function. For example, fitted values and residuals can be calculated
with functions fitted () and resid():

> round(fitted(roller.1lm), 1)

1 2 3 4 5 6 7 8 9 10
3.0 6.2 6.7 10.7 12.0 14.2 15.0 18.2 24.0 31.0
> round(resid(roller.1lm), 1)

1 2 3 4 5 6 7 8 9 10
-1.0 -5.2 -1.7 -5.7 8.0 5.8 8.0 -8.2 6.0 -6.0

The coef () function gives the model coefficients:

> coef (roller.1lm)
(Intercept) weight
-2.087148 2.666746

Model objects

The model object, above saved as roller.1m, is a list. Although not always recom-
mended, we can access information in this list directly. For example, we can extract
element names as follows:

> names (roller.1lm) # Get names of list elements
[1] "coefficients" "residuals™" "effects" "rank"
[5] "fitted.values" "assign" "gr" "df.residual"
[9] "xlevels" "call" "terms" "model"

We can then extract information directly from a list element, such as the model coefficients:

> roller.lm$Scoef
(Intercept) weight
-2.087148 2.666746

For further discussion, see Subsection 14.10.2.

Summary information about model objects

To get a summary that includes coefficients, standard errors of coefficients, z-statistics, and
p-values, type

summary (roller.1lm)

3.2 Distributions: models for the random component

In this section, we briefly review the concepts of random variables and their distributions.
Our discussion will focus on the more commonly used models for count data and continuous
measurement data.
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3.2.1 Discrete distributions — models for counts

Counts of events or numbers of objects are examples of discrete random variables. The
possible values with their associated probabilities are referred to as a distribution. We
consider three important examples: Bernoulli, binomial, and Poisson distributions.

Bernoulli distribution

Successive tosses of a fair coin come up tails with probability 0.5, and heads with probability
0.5, independently between tosses. If we let X take the value 1 for a head and O for a tail,
then X is said to have a Bernoulli distribution with parameter 7 = 0.5.

More generally, we might consider an experiment or test with an uncertain outcome, but
where the possibilities are “success” (or “1”) and “failure” (or “0”). Success may occur
with probability 7, where 0 < 7w < 1.

Binomial distribution

The sum of a number of independent Bernoulli random variables is called a binomial
random variable. The number of successes in n independent tests (where success at each
trial occurs with probability ) has a binomial distribution with parameters n and 7.

The total number of heads in two tosses of a fair coin is a binomial random variable
with n = 2 and m = 0.5. We can use the function dbinom () to determine probabilities
of having 0, 1 or 2 heads in two coin tosses:’

## To get labeled output exactly as below, see the footnote
## dbinom(0:2, size=2, prob=0.5) # Simple version

0 1 2
0.25 0.50 0.25

On average, 25% of all pairs of coin tosses will result in no heads, 50% will have one head,
and 25% will have two heads.

The number of heads in four coin tosses can be modeled as binomial with n = 4 and
7 =0.5:

## dbinom(0:4, size=4, prob=0.5)
0 1 2 3 4
0.0625 0.2500 0.3750 0.2500 0.0625

To calculate the probability of no more than two heads, add up the probabilities of 0,
1, and 2 (0.0625 + 0.2500 + 0.3750 = 0.6875). The function pbinom () can be used to
determine such cumulative probabilities, thus:

pbinom(g=2, size=4, prob=0.5)

3 ## To get the labeling (0, 1, 2) as in the text, specify:
probs <- dbinom(0:2, size=2, prob=0.5)

names (probs) <- 0:2

probs
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For another example, suppose a sample of 50 manufactured items is taken from an
assembly line that produces 20% defective items, on average. To find the probability of
observing no more than four defectives in a sample, use:

> pbinom(g=4, size=50, prob=0.2)
[1] 0.0185

The probability of observing fewer than five defectives in the sample is 0.0185.

The function gbinom () goes in the other direction, from cumulative probabilities to
numbers of events; it is used to compute quantiles, a generalization of the more familiar
term percentiles. To calculate a 70th percentile of the distribution of the number of heads
in four coin tosses, type:

> gbinom(p = 0.70, size = 4, prob = 0.5)
[1] 3

Means and standard deviations

In four fair coin tosses, we expect to see two heads on average. In a sample of 50 manu-
factured items from a population where 20% are defective, we expect to see 10 defectives
on average. In general, we can compute the expected value or mean of a binomial random
variable using the formula nr.

The standard deviation is one way of summarizing the spread of a probability distribution;
it relates directly to the degree of uncertainty associated with predicting the value of
a random variable. High values reflect more uncertainty than low values. The formula
/nm (1 — ) gives the standard deviation for a binomial random variable. The standard
deviation of the number of heads in four coin tosses is 1, and for the number of defectives
in our sample of 50 items, it is 2.83. In an absolute sense, we will be able to predict the
number of heads more precisely than the number of defectives.

The variance is defined as the square of the standard deviation: for the binomial, it is
nw(l — ).

Poisson distribution

The Poisson distribution is often used to model the number of events that occur in a certain
time interval or for the numbers of defects that are observed in items such as manufactured
products.

The distribution depends on a parameter A (the Greek letter “lambda”), which happens
to coincide with the mean or expected value.

As an example, consider a population of raisin buns for which there are an average of
three raisins per bun, i.e., A = 3. Because of the mixing process, the number of raisins in
a particular bun is uncertain; the possible numbers of raisins are 0, 1, 2, .... Under the
Poisson model, we have the following probabilities for 0, 1, 2, 3, or 4 raisins in a bun:

## Probabilities of 0, 1, 2, 3, 4 raisins

## mean number of raisins per bun = 3
## dpois(x = 0:4, lambda = 3)
0 1 2 3 4

0.0498 0.1494 0.2240 0.2240 0.1680
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pnorm(1)
= 0,841
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Figure 3.3 A plot of the normal density. The horizontal axis is labeled in standard deviations (SDs)
distance from the mean. The area of the shaded region is the probability that a normal random variable
has a value less than one standard deviation above the mean.

The cumulative probabilities are:

## ppois(g = 0:4, lambda = 3)
0 1 2 3 4
0.0498 0.1991 0.4232 0.6472 0.8153

Thus, for example, the probability of finding two or fewer raisins in a bun is 0.4232.

The variance of a Poisson random variable is equal to its mean, i.e., A. Thus, the variance
of the number of raisins in a bun is 3, and the standard deviation is the square root of A:
1.73.

3.2.2 Continuous distributions

Models for measurement data are examples of continuous distribution. Calculations with
continuous distributions are a little different from calculations with discrete distributions.
While we can still speak of probabilities of measurements lying in specified intervals, it is
no longer useful to consider the probability of a measurement taking on a particular value.
A more useful concept is probability density. A continuous random variable is summarized
by its density function or curve. The area under any density curve between x = a andx = b
gives the probability that the random variable lies between those limits.

Normal distribution

The normal distribution, which has the bell-shaped density curve pictured in Figure 3.3,
is often used as a model for continuous measurement data (sometimes a transformation of
the data is required in order for the normal model to be useful). The height of the curve is
a function of the distance from the mean. The area under the density curve is 1.

The density curve plotted in Figure 3.3 corresponds to a normal distribution with a
mean of 0 and standard deviation 1. A normal distribution having mean O and standard
deviation 1 is referred to as the standard normal distribution. Multiplying a fixed value o
by a population of such normal variates changes the standard deviation to o. By adding a
fixed value p, we can change the mean to u, leaving the standard deviation unchanged.
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Here is code that plots the normal density function:*

## Plot the normal density, in the range -3 to 3

z <- pretty(c(-3,3), 30) # Find “30 equally spaced points

ht <- dnorm(z) # By default: mean=0, standard deviation=1
plot(z, ht, type="1l",xlab="Normal deviate",ylab="Density",yaxs="1i")
# yaxs="1i" locates the axes at the limits of the data

The function pnorm () calculates the cumulative probability, i.e., the area under the
curve up to the specified ordinate or x-value. For example, there is a probability of 0.841
that a normal deviate is less than 1:

> pnorm(1.0) # by default, mean=0 and SD=1
[1] 0.841

This corresponds to the area of the shaded region in Figure 3.3.° The function gqnorm ()
can be used to compute the normal quantiles. For example, the 90th percentile is 1.28:

> gnorm(.9) # 90th percentile; mean=0 and SD=1
[1] 1.28

The footnote has additional examples.°

Other continuous distributions

There are many other statistical models for continuous observations. The simplest model
is the uniform distribution, for which an observation is equally likely to take any value in a
given interval; the probability density of values is constant on a fixed interval.

Another model is the exponential distribution that gives high probability density to
positive values lying near 0; the density decays exponentially as the values increase. The
exponential distribution is commonly used to model times between arrivals of customers
to a queue. The exponential distribution is a special case of the chi-squared distribution.
The latter distribution arises, for example, when dealing with contingency tables. Details
on computing probabilities for these distributions can be found in the exercises.

4 The following gives a closer approximation to Figure 3.3:
## Plot the normal density, in the range -3.25 to 3.25
z <- pretty(c(-3.25,3.25), 30) # Find ~30 equally spaced points

ht <- dnorm(z) # By default: mean=0, standard deviation=1
plot(z, ht, type="1", xlab="Normal deviate", ylab="Ordinate", yaxs="i")
polygon(c(z[z <= 1.0], 1.0), c(dnorm(z[z <= 1.0]), 0), col="grey")

# Around 84.1% of the total area is to the left of the vertical line.
## Additional examples:
pnorm(0) # .5 (exactly half the area is to the left of the mean)

pnorm(-1.96) # .025
pnorm(1.96) # .975
pnorm(1.96, mean=2) # .484 (a normal distribution with mean 2 and SD 1)
pnorm(1.96, sd=2) # .836 (sd = standard deviation)
® ## Additional examples:
gnorm(0.841) # 1.0
gnorm(0.5) # 0
gnorm(0.975) # 1.96

gnorm(c(.1,.2,.3)) # -1.282 -0.842 -0.524 (10th, 20th and 30th percentiles)
gnorm(.1l, mean=100, sd=10) # 87.2 (10th percentile, mean=100, SD=10)
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Different ways to describe distributions

In Subsection 2.1.1 it was noted that, with the default boxplot settings, 1% of values that
are drawn at random from a normal distribution will on average be flagged as possible
outliers. If the distribution is not symmetric, more than 1% of points may lie outside the
whiskers, mostly at the lower end if the distribution is skewed (i.e., with a long tail) to the
left, and mostly at the upper end if the distribution is skewed to the right. If the distribution
is symmetric, but “heavy-tailed", then a higher proportion of values are out beyond the
boxplot whiskers on both sides.

3.3 Simulation of random numbers and random samples

In a simulation, repeated random samples are taken from a specified distribution. Statistics,
perhaps estimates that are derived from one or other model, can then be calculated for
each successive sample. Information is thus obtained on variation under repeated sampling.
This allows a check on results predicted by statistical theory. Or it may provide guidance
when theoretical results are not available or are of uncertain relevance. This section will
begin with simulation of discrete and continuous random variables and will close with a
discussion of random sampling from finite populations.

Ordinarily, it is undesirable to use the same random number seed in two or more suc-
cessive calls to a function that uses the random number generator. However, users will
sometimes, for purposes of checking a calculation, wish to repeat calculations with the
same sequence of random numbers as was generated in an earlier call. The following
uses set.seed () to make the call below to rbinom (10, size=1, p=.5) thus
reproducible:

set.seed(23286) # Use to reproduce the sample below
rbinom (10, size=1, p=.5)

The seed for the random number generator is stored in the workspace in a hidden
variable (.Random. seed) that changes whenever there has been a call to the random
number generator. This ensures that any new simulation will be independent of earlier
simulations.

When the workspace is saved, . Random. seed is stored as part of the workspace. This
ensures that, when the workspace is loaded again, the seed will be restored to its value
when the workspace was last saved. Any new simulations will then be independent of those
prior to the save. In order to take advantage of this feature, be sure to save the workspace
at the end of each session.

Sampling from discrete distributions

Values can be simulated from any of many different distributions. We will offer examples
of simulated binomial, Poisson, and normal samples.

As a first example, simulate a random sequence of 10 binary digits (Os or 1s) from a
population with a specified proportion of 1s, here 50% (i.e., a Bernoulli distribution):
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Figure 3.4 Each panel shows a simulated distribution of 50 values from a normal distribution with
mean = 10 and sd = 1. The underlying theoretical normal curve is overlaid on the leftmost panel.

> rbinom (10, size=1, p=.5) # 10 Bernoulli trials, prob=0.5
1000111010

The random sample is different on each occasion, depending on the seed.
To generate the numbers of daughters in a simulated sample of 25 four-child families,
assuming that males and females are equally likely, use the rbinom () function thus:
# For the sequence that follows, precede with set.seed(9388)
> rbinom (25, size=4, prob=0.5)
(11 31241203212324211122322022

Now simulate the number of raisins in 20 raisin buns, where the expected number of
raisins per bun is 3:

> set.seed(9388)
> rpois (20, 3)
[1] 3341 22311430113 10452

3.3.1 Sampling from the normal and other continuous distributions

The function rnorm () generates random deviates from the normal distribution. To gen-
erate 10 random values from a standard normal distribution, we type:

> options (digits=2) # Suggest number of digits to display
> rnorm(10) # 10 random values from the normal distribution
# For our sequence, precede with set.seed(3663)
[1] -0.599 -1.876 1.441 -1.025 0.612 -1.669 0.138 -0.099 1.010 0.013

Figure 3.4 demonstrates the use of simulation to indicate the extent of sample-to-sample
variation in histogram summaries of the data, when five independent random samples of
50 values are taken from a normal distribution. Figure 3.4 shows histograms from five such
samples.” Histograms do not discriminate well between sample values that are consistent

7 ## The following gives a rough equivalent of the figure:
set.seed (21) # Use to reproduce the data in the figure
par (mfrow=c(2,3))

x <- pretty(c(6.5,13.5), 40)
for(i in 1:5){
vy <- rnorm(50, mean=10, sd=1)
hist(y, prob=TRUE, xlim=c(6.5,13.5), ylim=c(0,0.5), main="")
lines(x, dnorm(x,10,1))
}

par (mfrow=c(1,1))



88 Statistical models

with a normal distribution, and sample values that are not. A better tool for assessing
normality, the normal probability plot, will be described in Subsection 3.4.2.

Calculations for other distributions, for example runif () to generate uniform random
numbers or rexp () to generate exponential random numbers, follow the same pattern.

runif(n = 20, min=0, max=1) # 20 numbers, uniform distn on (0, 1)
rexp(n=10, rate=3) # 10 numbers, exponential, mean 1/3.
## Exercises at the end of this chapter explore further possibilities.

3.3.2 Simulation of regression data

The following code shows how to simulate a sample of n observations from the model:
y=by+bix+e¢

where ¢ is normally distributed with standard deviation o. We take n = 8, the intercept to
be 2, the slope to be 3, and o to be 2.5 in our simulation, and we use a fixed equally spaced
design for the predictor values:

> options (digits=3)

>n <- 8; x <- sedg(l,n); sigma <- 2.5; b0 <- 2; bl <- 3
> error <- rnorm(n, sd=sigma)

> vy <- b0 + bl*x + error

>

> t(data.frame(x,vy))

(11 [,21 [,31 [,41 [,51 [,6]1 [,7]1 [,8]

1.00 2.00 3.00 4.0 5.0 6 7.0 8.0

y 6.85 8.96 9.49 12.2 19.1 20 26.2 28.5

b

Itis often useful to repeatedly simulate data from a fitted model, then re-fitting to each new
set of simulated data. This provides a check on variation under such repeated simulation.
The function simulate () can be used for this purpose.

Thus to do 10 simulations based on the model that was fitted to the roller data, do:

roller.lm <- lm(depression ~ weight, data=roller)
roller.sim <- simulate(roller.lm, nsim=20) # 20 simulations

The object roller. simis a data frame with 20 columns, i.e., one column for each of the
20 simulations. Each column has values of depression, simulated from the fitted model at
each level of weight. To visualize this output, enter

with(roller, matplot(weight, roller.sim, pch=1, ylim=range
(depression)) points(roller, pch=16)

3.3.3 Simulation of the sampling distribution of the mean

The sampling distribution of the mean is the distribution of the means of repeated random
samples of size n. The standard deviation of this sampling distribution has the name
standard error of the mean (SEM). If the population mean is u and the standard deviation
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Figure 3.5 The density curves are from simulations of the sampling distribution of the mean, for a
distribution that is mildly skew. Each density curve is from 1000 simulations, which is large enough

to give an accurate visual indication of the distribution.

is o, then

S
SEM = —.
Jn

The Central Limit Theorem will be important in the discussion of inference in Chapter 4.

This theorem implies that, for large enough n, this sampling distribution will closely approx-
imate the normal.® The sample size n needed so that the normal is a good approximation

will depend on the distribution of the population from which samples are taken.

Figure 3.5 shows the simulated sampling distribution of the mean, for samples from a
distribution that is mildly skew. Even for a sample size of 3, much of the skewness has
gone. Code that generates samples from the sampling distribution of means of the required

sample sizes is:

skew population
0.5, sd = 0.3))
## Means across rows of a dimension nsamp x sampsize matrix of

## Function to generate n sample values;
sampvals <- function (n)exp(rnorm(n, mean =

## sample values gives nsamp means of samples of size sampsize.
FUN=mean)
1,

samplingDist <- function(sampsize=3, nsamp=1000,

apply (matrix (sampvals (sampsize*nsamp), ncol=sampsize), FUN)
c(3,10,30)

## Simulate means of samples of 3,

size <-

9 and 30; place in dataframe

df <- data.frame(y3=samplingDist (sampsize=sizel[l]),
v9=samplingDist (sampsize=size[2]),
v30=samplingDist (sampsize=size[3]))

The following then gives a slightly simplified version of Figure 3.5:

## Simulate source population (sampsize=1)
vy <- samplingDist (sampsize=1)
data = df, outer=TRUE,

FALSE, panel =

densityplot (Ty3+y9+y30, layout

plot.points = function (x,

8 More precisely, the distribution of the sample mean approximates the normal distribution with arbitrary accuracy, for a
sample that is large enough, provided the measurements are independent, and their standard deviation is finite. There are
similar results for a number of other sample statistics.
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panel .densityplot(x, ..., col = "black")
panel.densityplot(y, col = "gray40", lty = 2, ...)
1)

Code that will reproduce the strip panel labels is in the footnote.” The plots can alterna-

tively be obtained using the function sampdist () (DAAG), with default arguments. The
skewness of the population can be increased by increasing sd in the call to sampvals ().

3.3.4 Sampling from finite populations

We can use the sample () function to generate a simple random sample from a given set
of numbers. Suppose, for example, that names on an electoral roll are numbered from 1 to
9384. We can obtain a random sample of 15 individuals as follows:

> ## For the sequence below, precede with set.seed(3676)

> sample(1:9384, 15, replace=FALSE)

[1] 9178 2408 8724 173 106 4664 3787 6381 5098 3228 8321
165 7332 9036 540

This gives the numerical labels for the 15 individuals that we should include in our sample.
The task is then to find them! The option replace=FALSE gives a without-replacement
sample, i.e., it ensures that no one is included more than once.

To randomly assign 10 plants (labeled from 1 to 10, inclusive) to one of two equal-sized
groups, control and treatment, the following code could be used:

## For the sequence below, precede with set.seed(366)

# sample(1:10) gives a random re-arrangement (permutation)
# of 1, 2, ..., 10

SControl

[1] 6 83 79

>
> gsplit(sample(seqg(1:10)), rep(c("Control", "Treatment"), 5))
>
>

STreatment
[1] 5 4 2 1 10

We then assign plants 6, 8, 3, 7, and 9 to the control group. By choosing the plants in such
a manner, we avoid biases that could arise, for example, due to choosing healthier-looking
plants for the treatment group.

With-replacement samples

We can randomly sample from the set {1, 2, ..., 10}, allowing for repeated observations,
by using:

> sample(1:10, replace=TRUE)
[1] 7521231576

9 ## Use strip.custom to customize the strip labeling
doStrip <- strip.custom(strip.names = TRUE, factor.levels = as.expression(size),
var.name = "Sample size", sep = expression(" = "))
## Then include the argument ’‘strip=doStrip’ in the call to densityplot
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Cluster sampling

Cluster sampling is one of many different probability-based variants on simple random
sampling. See Barnett (2002). In surveys of human populations cluster-based sampling,
e.g., samples of households or of localities, with multiple individuals from each chosen
household or locality, is likely to introduce a cluster-based form of dependence. The analysis
must then take account of this clustering. Standard inferential methods require adaptation
to take account of the fact that it is the clusters that are independent, not the individuals
within the clusters. Donner and Klar (2000) describe methods that are designed for use in
health research.

Simulation in teaching and research

The R package animation (Xie and Cheng, 2008) has a number of simulations that are
intended for use in teaching or self-instruction. In statistical theory and practice, simulation
is widely used to determine the statistical properties of models and/or of model statistics in
cases where it has not been possible to derive analytical results.

3.4 Model assumptions

Common model assumptions are normality, independence of the elements of the error
term, and homogeneity of variance (i.e., the standard deviations of all measurements are
the same).

If certain assumptions fail to hold, a statistical method may be invalid. Other assumptions
may not be as important; we say that the method used is robust against those assumptions.
Much of the art of applied statistics comes from knowing which assumptions are important
and need careful checking. There are few hard and fast rules.

3.4.1 Random sampling assumptions — independence

Typically, the data analyst has a sample of values that will be used as a window into a wider
population. Ideally, data should be gathered in such a way that the independence assumption
is guaranteed. This is why randomization is so important in designed experiments, and why
random sampling is so important in designed sample surveys.

Elementary analysis methods can be modified or extended in various ways to handle
modifications of the simple independent random sampling scheme. For example, we can
modify the methodology to handle analyses of data from a random sample of clusters of
individuals.

In practice, analysts may make the random sampling assumption when the selection
mechanism does not guarantee randomness. Inferences from data that are chosen haphaz-
ardly are inevitably less secure than when we have random samples. Random selection
avoids the conscious or unconscious biases that result when survey or other samplers make
their own selection, or take whatever items seem suitable.

Where there has not been explicit use of a random sampling mechanism, it is necessary to
consider carefully how this may have affected the data. Is some form of dependence structure
likely? Temporal and spatial dependence arise because values that are close together in time
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or space are relatively more similar. Is there clustering that arises because all individuals
within chosen streets, or within chosen families, have been included. Two individuals in
the same family or in the same street may be more similar than two individuals chosen at
random from the same city suburb.

Often samples are chosen haphazardly, e.g., an experimenter may pick a few plants from
several different parts of a plot. Or a survey interviewer may, in a poor-quality survey,
seek responses from individuals who can be found in a shopping center. Self-selected
samples can be particularly unsatisfactory, e.g., those readers of a monthly magazine who
are sufficiently motivated to respond to a questionnaire that is included with the magazine.

Failure of the independence assumption is a common reason for wrong statistical infer-
ences. Detecting failure of the independence assumption is often difficult. Tests for inde-
pendence are at best an occasionally useful guide. They are of little use unless we have
some idea how the assumption may have failed, and the sample is large! It is in general
better to try to identify the nature of any possible dependence, and use a form of analysis
that allows for it.

Models that do not obviously reflect mechanisms that generated the data can sometimes
be useful for prediction. They can also, if their deficiencies are not understood or if they are
used inappropriately, be misleading. Careful checking that the model is serving its intended
purpose, and caution, are necessary.

3.4.2 Checks for normality

Many data analysis methods rest on the assumption that the data are normally distributed.
Real data are unlikely to be exactly normally distributed.

Broadly, gross departures from normality are a cause for concern. Small departures are
of no consequence. Check especially for data that are skew. Check also for data that take
a small number of discrete values, perhaps as a result of excessive rounding. Whether a
specific form of departure will matter depends on the use made of the data.

For modest-sized samples, only gross departures will be detectable. For small samples
(e.g., less than about 10), it is typically necessary to rely on sources of evidence that are
external to the data, e.g., previous experience with similar data.

Graphical tools for checking for normality

As noted in Subsection 2.1.1, histograms are not an effective means for assessing whether
the distribution is plausibly normal. Refer back to the five histograms shown in Figure 3.4,
from five independent random samples of 50 values from a normal distribution. None of
these histograms showed a close resemblance to a theoretical normal distribution.

The normal probability plot

A better tool for assessing normality is the normal probability (or quantile—quantile) plot.
The data values are sorted, then plotted against the ordered values that might be expected
if the data really were from a normal distribution. If the data are from a normal distribution,
the plot should approximate a straight line. Figure 3.6 shows normal probability plots for
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Figure 3.6 Normal probability plots for the same random normal data as in Figure 3.4.

the same five sets of 50 normally distributed values as were displayed in Figure 3.4. The
code is:

## Use greference() (DAAG)
## With seed=21, the random numbers are as in the previous figure
greference (m=50, seed=21, nrep=5, nrows=1) # 50 values per panel

An alternative is to use the lattice function ggmath ().'” To obtain a single plot of this
type, the function ggnorm (), which relies on functions from base graphics, may be used.
Specify, e.g., ggnorm (rnorm (50) ).

Displays such as Figure 3.6 help the data analyst to calibrate the eye, to get a feel for
the nature and extent of departures from linearity that are to be expected in random normal
samples of the specified size, here 50. It is useful to repeat the process several times. Such
plots give a standard against which to compare the normal probability plot for the sample.

Note that, by plotting against the ordered values that might be expected from the relevant
distribution, the methodology allows a comparison with any distribution that is of interest.

The sample plot, set alongside plots for random normal data

Consider data from an experiment that tested the effect of heat on the stretchiness of elastic
bands. Eighteen bands were first tested for amount of stretch under a load that stretched the
bands by a small amount (the actual load was 425 g, thought small enough not to interfere
with the elastic qualities of the bands). This information was used to arrange bands into
nine pairs, such that the two members of a pair had similar initial stretch. One member
of each pair, chosen at random, was placed in hot water (60—65 °C) for four minutes. The
other member of the pair remained at ambient temperature. All bands were then measured
for amount of stretch under a load of 1.35 kg weight. Table 3.1 shows the results.

In the next chapter, the heated—ambient differences will be the basis for various statistical
calculations. Is the distribution consistent with the assumption of normality? The normal
probability plot for these data is in the lower left panel of Figure 3.7. The other seven plots
are for samples (all of size 9) of simulated random normal values. They give a standard
against which to compare the plot for the experimental data. There is no obvious feature that
distinguishes the plot in the lower left panel from the seven reference plots. The code is:

10 44 Set seed to get the same data as earlier
library (lattice)
ggmath (“rnorm(50*5) |rep(1:5,rep(50,5)), layout=c(5,1), aspect=1)
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Table 3.1 Eighteen elastic bands were divided into nine pairs, with
bands of similar stretchiness placed in the same pair. One member of
each pair was placed in hot water (60—65 °C) for four minutes, while
the other was left at ambient temperature. After a wait of about

10 minutes, the amounts of stretch, under a 1.35 kg weight, were
recorded.

Pair #

Heated (mm) 244 255 253 254 251 269 248 252 292

Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 =3 6
0 5 10 15 0 5 10 15
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Figure 3.7 The lower left panel is the normal probability plot for heated—ambient differences.
Remaining panels show plots for samples of nine numbers from a normal distribution.

## Compare normal probability plot for normal-ambient difference
## with simulated normal values: data frame pair65 (DAAG)
greference (pair65Sheated - pairé65Sambient, nrep=8)

The function greference () is from the DAAG package.

How close to normal is the sampling distribution of the mean?

Often, the interest is in the normality of the sampling distribution of a mean or other
statistic. Figure 3.8 simulates repeated sampling from the same mildly skew distribution
as in Figure 3.5. Instead of density curves, the normal probability plots are shown. The
normal probability plot for a sample from the population is the gray dashed line. This
plot can be obtained by replacing densityplot () by ggmath () in the code for
Figure 3.5. Alternatively, use the function sampdist () (DAAG), with the argument
plot.type="qgqgq".
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Figure 3.8 The normal probability plots are from simulations of the sampling distribution of the
mean, for the same mildly skew distribution as in Figure 3.5. The plot for the population is shown
in gray. The panels show the plots for samples of respective sizes 3, 9, and 30. Each is from 1000
simulations.

Notice that the plot for the sampling distribution is increasingly linear, with a reduced
slope, as one goes from n = 3 to n = 9 to n = 30. The reduced slope reflects the reduced
SEM, which goes from 7 to 7 to Ao

Formal statistical testing for normality?

Both formal statistical tests for normality and less formal graphical checks are of limited
usefulness. With small or modest-sized samples, only gross departures are likely to be
detected. Large samples will show departures from normality that may be too small to have
any practical consequence for standard forms of statistical analysis. For a statistic such as
a mean or a regression slope, the effects of averaging may give a close approximation to
normality, even when the underlying population is clearly not normally distributed. (This
is a consequence of the “Central Limit Theorem” that was discussed in Subsection 3.3.3.)

Depending then on the specific context, normality may not be an important issue for
analyses where samples are large. Tests for normality will detect non-normality in contexts
where there is the least reason to be concerned about it.

3.4.3 Checking other model assumptions

In Chapter 2, we discussed a number of exploratory techniques that can aid in checking
whether the standard deviation is the same for all observations in a data set. Following
analysis, a plot of residuals against fitted values may give useful indications. For example,
residuals may tend to fan out as fitted values increase, giving a “funnel” effect, a fairly
sure sign that the standard deviation is increasing. Alternatively, or additionally, there may
be evidence of outliers — one or more unusually large residuals. The major concern may
however be to identify points, whether or not outliers, that have such high influence that
they distort model estimates.

3.4.4 Are non-parametric methods the answer?

Non-parametric methods have been developed to handle situations where normality or other
model assumptions are in question, and where it might be difficult to pose an alternative
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model. These methods are only sometimes useful, and they still depend on assumptions,
and we still need assurance that these assumptions are realistic. If used in a way that ignores
structure in the data that we should be modeling, we risk missing insights that parametric
methods may provide. Building too little structure into a model can be just as bad as building
in too much structure.

There is a trade-off between the strength of model assumptions and the ability to find
effects. Newer methodologies such as lowess smoothing are welcome and useful additions
to the statistical toolbox. However, if we assume a linear relationship, we may be able to
find it, where we will find nothing if we look for a general form of smooth curve or a
completely arbitrary relationship. This is why simple non-parametric approaches are often
unsatisfactory — they assume too little. Often they assume much less than we know to be
true. Johnson (1995) has useful comments on the role of non-parametric tests. In part, the
objection is to a view of non-parametric modeling that is too limited.

3.4.5 Why models matter — adding across contingency tables

The multi-way table UCBAdmi ssions (datasets package) has admission frequencies, by
sex, for the six largest departments at the University of California at Berkeley in 1973
(Bickel et al., 1975). Do the data provide evidence, across the University as a whole, of
sex-based discrimination? Note the margins of the table:

> str (UCBAdmissions)
table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "aA" "B" "C" "D"

First, calculate overall admission rates (percentages) for females and males.

> ## Tabulate by Admit and Gender

> byGender <- margin.table (UCBAdmissions, margin=1:2)

> round (100*prop.table (byGender, margin=2) ["Admitted", 1, 1)
Male Female
44.5 30.4

Admission rates will now be calculated for individual departments:

> ## Admission rates, by department
> round (100*prop. table (UCBAdmissions,
+ margin=2:3) ["Admitted", , 1, 1)
Dept
Gender A B C D E F
Male 62.1 63 36.9 33.1 27.7 5.9
Female 82.4 68 34.1 34.9 23.9 7.0

As a fraction of those who applied, females were strongly favored in department A, and
males somewhat favored in departments C and E.
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Look now, for each department, at the numbers of males applying as a proportion of the
total number of male applicants, and similarly for females:

> ## Calculate totals, by department, of males & females applying
> (applicants <- margin.table (UCBAdmissions, margin=2:3))
Dept
Gender A B C D E F
Male 825 560 325 417 191 373
Female 108 25 593 375 393 341
> ## Calculate proportions of male & female applicants
> round (100*prop.table (applicants, margin=1), 1)
Dept
Gender A B C D E F
Male 30.7 20.8 12.1 15.5 7.1 13.9
Female 5.9 1.4 32.3 20.4 21.4 18.6

Relatively few females (5.9%) applied to department A, while a high proportion (32.3% and
21.4% respectively) applied to departments C and E where admission rates were relatively
low. The very high number of males applying to departments A and B has biased the male
rates towards the relatively high admission rates in those departments, while the relatively
high number of females applying to departments C, D and F biased the overall female rates
towards the low admission rates in those departments. The overall bias arose because males
favored departments where there were a relatively larger number of places.

What model is in mind? Is the aim to compare the chances of admission for a randomly
chosen female with the chances of admission for a randomly chosen male? The relevant
figure is then the overall admission rate of 30.4% for females, as against 44.5% for males.
Or, is the interest in the chances of a particular student who has decided on a department? A
female had a much better chance than a male in department A, while a male had a slightly
better chance in departments C and E.

Here, information was available on the classifying factor on which it was necessary to
condition. This will not always be the case. In any such tabulation, it is always possible that
there is some further variable that, when conditioned on, can reverse or otherwise affect an
observed association.

The results that give the overall proportions are, for these data and depending on the
intended use, an unsatisfactory and potentially misleading summary. The phenomenon that
they illustrate, known as Simpson’s paradox or as the Yule-Simpson effect, is discussed in
Aldrich (1995), Simpson (1951).

In any overall analysis, the effect of the classifying (or conditioning) factor sex must
be explicitly incorporated in the model. There are various ways to do this. Section 8.3
demonstrates one suitable approach. See also Exercise 11 in Chapter 4, and the references
given there.

3.5 Recap

Statistical models have both deterministic and random error components, or signal com-
ponents and noise components. In simpler cases, which include most of the cases we
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consider,
observation = signal + noise.
After fitting a model, we have
observation = fitted value + residual
which we can think of as
observation = smooth component + rough component.

The hope is that the fitted value will recapture most of the signal, and that the residual will
contain mostly noise. Unfortunately, as the relative contribution of the noise increases,

¢ it becomes harder to distinguish between signal and noise,
¢ it becomes harder to decide between competing models.

Model assumptions, such as normality, independence, and constancy of the variance, should
be checked, to the extent that this is possible.

3.6 Further reading

Finding the right statistical model is an important part of statistical problem-solving.
Chatfield (2002, 2003b) has helpful comments. Clarke (1968) has a useful discussion
of the use of models in archaeology. See also the very different points of view of Breiman
and Cox (as discussant) in Breiman (2001). Our stance is much closer to Cox than to
Breiman. See also our brief comments on Bayesian modeling in Section 4.10.

Johnson (1995) comments critically on the limitations of widely used non-parametric
methods. See Hall (2001) for an overview of non-parametrics from a modern perspective.

References for further reading

Breiman, L. 2001. Statistical modeling: the two cultures. Statistical Science 16: 199—
215.

Chatfield, C. 2002. Confessions of a statistician. The Statistician 51: 1-20.

Chatfield, C. 2003b. Problem Solving. A Statistician’s Guide, 2nd edn.

Clarke, D. 1968. Analytical Archaeology.

Hall, P. 2001. Biometrika centenary: non-parametrics. Biometrika 88: 143—65.

Johnson, D. H. 1995. Statistical sirens: the allure of non-parametrics. Ecology 76: 1998—
2000.

3.7 Exercises

1. The distance that a body, starting at rest, falls under gravity in # seconds is commonly given as
d= % gt?, where g >~ 9.8 msec™2. The equation can be modified to take account of the effects of
air resistance, which will vary with barometric pressure and other atmospheric conditions. Will
a time—distance relationship that is obtained for a human dummy that falls from a height of some
thousands of meters be useful in predicting the time—distance relationship for another dummy,
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or for a human, falling at another time from a similar height? Or is the situation comparable to
that for the lawn roller data in Subsection 3.1.1, where the relationship is likely to be different
for different lawns? [Humans have very occasionally survived falls from such heights. See
http://www.greenharbor.com/fffolder/ffresearch.html]

Hooke’s law of elasticity is an approximation which states that the amount by which a spring or
other elastic body deforms is proportional to the applied force. Data are obtained for one spring.
Can those data be used to make predictions for another spring that has been manufactured in
the same way? How can the accuracy of such predictions be tested?

An experimenter intends to arrange experimental plots in four blocks. In each block there are
seven plots, one for each of seven treatments. Use the function sample () to find four random
permutations of the numbers 1 to 7 that will be used, one set in each block, to make the
assignments of treatments to plots.

Usey <- rnorm(100) to generate a random sample of size 100 from a normal distribution.

(a) Calculate the mean and standard deviation of y.

(b) Use aloop to repeat the above calculation 25 times. Store the 25 means in a vector named
av. Calculate the standard deviation of the values in av.

(c) Create a function that performs the calculations described in (b). Run the function several
times, showing each of the distributions of 25 means in a density plot.

To simulate samples from normal populations having different means and standard deviations,
the mean and sd arguments can be used in rnorm (). Simulate a random sample of size 20
from a normal population having a mean of 100 and a standard deviation of 10.

Use mfrow to set up the layout for a 3 by 4 array of plots. In the top 4 panels, show normal
probability plots for 4 separate “random” samples of size 10, all from a normal distribution. In
the middle 4 panels, display plots for samples of size 100. In the bottom 4 panels, display plots
for samples of size 1000. Comment on how the appearance of the plots changes as the sample
size changes.

The function runi f () generates a sample from a uniform distribution, by default on the interval
Oto 1. Try x <- runif (10), and print out the resulting numbers. Then repeat Exercise 5
above, but taking samples from a uniform distribution rather than from a normal distribution.
What shape do the plots follow?

The function pexp (x, rate=r) can be used to compute the probability that an exponential
variable is less than x. Suppose the time between accidents at an intersection can be modeled
by an exponential distribution with a rate of 0.05 per day. Find the probability that the next
accident will occur during the next three weeks.

Use the function rexp () to simulate 100 exponential random numbers with rate 0.2. Obtain a
density plot for the observations. Find the sample mean of the observations. Compare with the
population mean (the mean for an exponential population is 1/rate).

This exercise investigates simulation from other distributions. The statement x <-
rchisg(10, 1) generates 10 random values from a chi-squared distribution with one
degree of freedom. The statement x <- rt (10, 1) generates 10 random values from a
t-distribution with one degree of freedom. Make normal probability plots for samples of various
sizes from each of these distributions. How large a sample is necessary, in each instance, to
obtain a consistent shape?


http://www.greenharbor.com/fffolder/ffresearch.html
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The following data represent the total number of aberrant crypt foci (abnormal growths in
the colon) observed in seven rats that had been administered a single dose of the carcinogen
azoxymethane and sacrificed after six weeks (thanks to Ranjana Bird, Faculty of Human Ecology,
University of Manitoba for the use of these data):

87 53 72 90 78 85 83

Enter these data and compute their sample mean and variance. Is the Poisson model appropriate
for these data? To investigate how the sample variance and sample mean differ under the Poisson
assumption, repeat the following simulation experiment several times:

X <- rpois (7, 78.3)

mean (x); var (x)

A Markov chain is a data sequence which has a special kind of dependence. For example, a fair
coin is tossed repetitively by a player who begins with $2. If “heads” appear, the player receives
one dollar; otherwise, she pays one dollar. The game stops when the player has either $0 or $5.
The amount of money that the player has before any coin flip can be recorded — this is a Markov
chain. A possible sequence of plays is as follows:
Player’s fortune: 2 1 2 3 4 3 2 3 2 3 2 1 O
CoinTossresut: T H H H T T H T H T T T
Note that all we need to know in order to determine the player’s fortune at any time is the
fortune at the previous time as well as the coin flip result at the current time. The probability
of an increase in the fortune is 0.5 and the probability of a decrease in the fortune is 0.5. The
transition probabilities can be summarized in a transition matrix:

S O O O
o
o
W
(=)
o
W
(=l el eiNe)

The (i, j) entry of this matrix is the probability of making a change from the value i to the
value j. Here, the possible values of i and j are 0, 1, 2, ..., 5. According to the matrix, there
is a probability of 0 of making a transition from $2 to $4 in one play, since the (2, 4) element
is 0; the probability of moving from $2 to $1 in one transition is 0.5, since the (2, 1) element
is 0.5.

The following function can be used to simulate N values of a Markov chain sequence, with
transition matrix P:
Markov <- function (N=100, initial.value=1l, P)

{
X <- numeric (N)
X[1] <- initial.value + 1 # States 0:5; subscripts 1:6
n <- nrow(P)
for (i in 2:N){
X[i] <- sample(l:n, size=1, prob=P[X[i-1], 1)}
X -1
}

Simulate 15 values of the coin flip game, starting with an initial value of $2. Repeat the simulation
several times.
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13. A Markov chain for the weather in a particular season of the year has the transition matrix, from
one day to the next:

Sun  Cloud Rain
Sun 0.6 02 0.2
Cloud 0.2 04 0.4
Rain 04 03 0.3

Pb =

It can be shown, using linear algebra, that in the long run this Markov chain will visit the states
according to the stationary distribution:

Sun  Cloud Rain
0.641 0.208 0.151

A result called the ergodic theorem allows us to estimate this distribution by simulating the
Markov chain for a long enough time.

(a) Simulate 1000 values, and calculate the proportion of times the chain visits each of
the states. Compare the proportions given by the simulation with the above theoretical
proportions.

(b) Hereis code that calculates rolling averages of the proportions over a number of simulations
and plots the result. It uses the function rollmean () from the zoo package.
plotmarkov <-

function(n=10000, start=0, window=100, transition=Pb, npanels=5) {
xc2 <- Markov(n, start, transition)
mav0 <- rollmean(as.integer (xc2==0), window)
mavl <- rollmean(as.integer (xc2==0), window)
npanel <- cut(l:length(mav0), breaks=seqg(from=1, to=length(mav0),
length=npanels+1), include.lowest=TRUE)
df <- data.frame(av0=mav0, avl=mavl, x=1:length (mav0),
gp=npanel)
print (xyplot (avO+avl ~ x \ gp, data=df, layout=c(1l,npanels),
type="1", par.strip.text=list(cex=0.65),
scales=1list (x=1list(relation="free"))))
}
Try varying the number of simulations and the width of the window. How wide a window
is needed to get a good sense of the stationary distribution? This series settles down rather
quickly to its stationary distribution (it “burns in” quite quickly). A reasonable width of
window is, however, needed to give an accurate indication of the stationary distribution.
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A random sample is a set of values drawn independently from a larger population. A
(uniform) random sample has the characteristic that all members of the population have
an equal chance of being drawn. In the previous chapter, we discussed the implications
of drawing repeated random samples from a normally distributed population, where the
probability that a value lies in a given interval is governed by the normal density. This
chapter will expand upon that discussion by using the idea of a sampling distribution, with
its associated standard error, to assess estimation accuracy. Confidence intervals and tests
of hypotheses offer a formal basis for inference, based on the sampling distribution. We
will comment on weaknesses in the hypothesis testing framework.

4.1 Basic concepts of estimation

This section will introduce material that is fundamental to inference.

4.1.1 Population parameters and sample statistics

Parameters, such as the mean (1) or standard deviation (o ), numerically summarize various
aspects of a population. Such parameters are usually unknown and are estimated using
statistics calculated using a random sample taken from the population. The sample mean
is an example of a statistic, and it is used to estimate the population mean.

Other commonly used statistics are the proportion, standard deviation, variance, median,
the quartiles, the slope of a regression line, and the correlation coefficient. Each may be
used as an estimate of the corresponding population parameter.

4.1.2 Sampling distributions

Subsection 3.3.3 introduced the sampling distribution of the mean: the distribution of
sample means, under repeated random sampling. The standard deviation of this sampling
distribution is called the standard error of the mean (SEM). The SEM is a measure of the
accuracy of the sample mean, as an estimate of the population mean.

The challenge is to use the one sample that is available, together with the assumption of
independent and identically distributed sample values, to infer the sampling distribution of
the mean. Two approaches will be described. The first, used in the main part of this chapter,
relies on statistical theory — the Central Limit Theorem. The second, relying on repeated
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resampling from the one available sample, will be the subject of Subsections 4.7.3 and
4.7.4.

Reliance on the Central Limit Theorem

As a consequence of the Central Limit Theorem, the sampling distribution of the mean can,
for a population with mean px and standard deviation o, often be well approximated by a
normal distribution with mean p and standard deviation o /+/n. An estimate of the SEM is
thus

s
SEM = ﬁ

where s is an estimator of the population standard deviation o. Refer back to Figure 3.5

(Subsection 3.3.3).

This deceivingly simple formula, relating the SEM to the standard deviation, hides quite
complex mathematical ideas. Note that if the data are not independent, then the formula
does not apply.

Other statistics, such as the sample proportion, have their own sampling distributions.
Often, these sampling distributions are also reasonably well approximated by a normal
distribution.

4.1.3 Assessing accuracy — the standard error

A small SEM suggests that the sample mean is close to the population mean, while a large
SEM allows for the possibility that the sample and population means may differ widely.

The data frame pair65, shown earlier in Table 3.1, has information on nine sets of
paired comparisons, leading to nine differences in the amount of stretch under a 1.35 kg
weight. These were:

Difference 19 8 4 1 6 10 6 =3 6

The mean is 6.33, the SD is s = 6.10, and SEM = 6.10/\/§ =2.03." We may report:
“The mean change is 6.33 [SEM 2.03], based on n = 9 values”, or “The mean change is
6.10/2.03 (= 3.11) times the standard error”.

4.1.4 The standard error for the difference of means

Where there are two independent samples of size n; and n,, the comparison is usually in
the form of a difference:
X1 — X2

where X; and X, denote the respective sample means. If the corresponding standard errors
are denoted by SEM; and SEM,, then the standard error of the difference (SED) is

SED = ,/SEM? + SEM3.

! ## Calculate heated-ambient; take heated & ambient from columns of pair65
test <- with(pair65, heated-ambient)
c(mean = mean(test), SD = sd(test), SEM = sd(test)/sqgrt(length(test)))
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If all SEMs are the same, then for all comparisons,
SED = +/2 x SEM.

It is sometimes reasonable to assume equality of the standard deviations in the populations
from which the samples are drawn. Then

SEM, = Ln SEM, = \/Ln_
A/

()

and the formula can be written as

1 1
SED=s | —+ —
ni ny
where s is the pooled standard deviation estimate described in Subsection 2.2.3.
As an example, consider the unpaired elastic band experiment data of Subsection 2.2.3.
The pooled standard deviation estimate is 10.91. Hence, the SED is 10.91 x ,/ L4 ﬁ =

10
4777

4.1.5* The standard error of the median

For data from a normal distribution, there is a similarly simple formula for the standard
error of the median. It is

TS s
B} ﬁ ~ 1.25 ﬁ
The standard error of the median is thus about 25% greater than the standard error of the
mean. For data from a normal distribution, the population mean can be estimated more
precisely than can the population median.

Consider again the cuckoos data. The median and standard error for the median of the
egg lengths in the wrens’ nests are 21.0 and 0.244, respectively.’

A different formula for the standard error of the median, one that depends on the
distribution, must be used when the data cannot reasonably be approximated by a normal

SEmedian =

model.

2 ## Heated vs ambient; unpaired elastic band data
heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- ¢(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)

vl <- var (heated) # 10 numbers; 10-1 = 9 d.f.
v2 <- var (ambient) # 11 numbers; 11-1 = 10 d.f.
v <- (9*vl + 10*v2)/(9+10) # Pooled estimate of variance

# Estimate SED; variances may not be equal

c(seml = sqgrt(vl/10), sem2 = sqgrt(v2/11l), sed = sqrt(vl/10 + v2/11)
# Estimate SED; use pooled estimate

c(sd = sqgrt(v), sed = sqgrt(vl/10 + v2/11)

## median and SD for length, by species: data frame cuckoos (DAAG)
wren <- split(cuckoos$length, cuckoosS$Sspecies)Swren

median (wren)

n <- length(wren)

sgrt (pi/2) *sd(wren) /sgrt (n) # this SE computation assumes normality
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Figure4.1 Panel A overlays the density for a normal distribution with the density for a 7-distribution
with 8 d.f. Panel B overlays the density for a ¢-distribution with 3 d.f.

4.1.6 The sampling distribution of the t-statistic

The formula

t—X_M
~ SEM

counts the number of standard error units between the true value © and the sample estimate
X. It can be thought of as a standardized distance between the true mean and the sample
mean.

The variability in ¢ has two sources: the sampling variability of X and the sampling
variability of SEM. The replacing of ¢ by s introduces an uncertainty that is larger as the
degrees of freedom n — 1 in s are smaller. Hence the use of a ¢-distribution with n — 1
degrees of freedom (d.f.), where if o was known precisely a normal distribution would be
used. The ¢-statistic becomes more and more like a standard normal random variable as the
sample size increases.

Figure 4.1B shows the density curve for a normal distribution overlaid with those for
t-distributions with 8 and 3 d.f. respectively. The main difference, in each case, is in
the tails, and much larger for the ¢-distribution with the smaller d.f., 3 as opposed to 8.
In the terminology of Subsection 3.2.2, the ¢-distribution is heavy-tailed — heavier for
smaller than for larger degrees of freedom.

For the data in the data frame pair65, the relevant inference is suitably based on the
mean d of the differences that were observed when the bands were heated. In order to
standardize this mean difference, it needs to be divided by its standard error SE[d], i.e., the
relevant statistic is

d d 6.33

SE[d] _ s/v0 247

The mean is 3.11 times the magnitude of the standard error.
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Figure 4.2 Calculation of the endpoints of the symmetrically placed region that encloses 95% of
the probability: (A) for a normal distribution, and (B) for a #-distribution with 8 d.f. In each panel,
the upper 2.5% of the area under the curve is shaded in gray.

4.2 Confidence intervals and tests of hypotheses

Calculations with the t-distribution

Calculations for the ¢-distribution follow the same pattern as those shown for the normal
distribution in Subsection 3.2.2, but now with a distribution whose standard deviation is
the SEM, which has to be estimated. There are two sorts of calculation that may be useful,
both of which can be related to Figure 4.2:

Given the distance from the mean, calculate the area under the curve. Thus, calculate
the area under the density curve within some specified number of standard errors either
side of the mean. For this, use functions that have p as their initial letter, here pnoxrm ()
and pt:

> # Plus or minus 1.96SE normal distribution limits, e.g.

> pnorm(1.96) - pnorm(-1.96)

[1] 0.95

> # Plus or minus 2.31SE t distribution (8 df) limits, e.g.
> pt(2.31, 8) - pt(-2.31,8) # 2.31 SEs either side

[1] 0.95

Given an area under the curve, calculate the limit or limits. Thus, what distance from
the mean gives an area under the curve, up to and including that point, that takes some
specified value? For this, use functions that have q as their initial letter, here gnorm ()

and gt () :

> gnorm(0.975) # normal distribution

[1] 1.96

> gt (0.975, 8) # t-distribution with 8 d.f.
[1] 2.31

Confidence intervals of 95% or 99%

The second of these statements makes it possible to say that in sampling from the sampling
distribution of tg = d=IL 95, of the values of tg will lie between —2.31 and 2.31, i.e., that

Gk
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Table 4.1 Comparison of normal distribution endpoints (multipliers for
the SEM) with the corresponding t-distribution endpoints on 8 d.f.

Number of SEMs
Probability enclosed ~ Cumulative
between limits probability  Normal distribution  ¢-Distribution (8 d.f.)
68.3% 84.1% 1.0 1.07
95% 97.5% 1.96 2.31
99% 99.5% 2.58 3.36
99.9% 99.95% 3.29 5.04

d — o will lie between —2.31s and 2.31s. In other words, in 95% of such samples d will
lie within a distance 2.31s of . Furthermore (see Table 4.1, or enter gt (0.995, 8)),
in 99% of such samples d will lie within a distance 3.36s of y. This leads immediately to
the following “confidence” (or coverage) interval for u:

95% CI: (6.33 —2.03 x 2.31,6.33 4 2.03 x 2.31) = (1.64, 11.02)
99% CI: (6.33 —2.03 x 3.36,6.33 +2.03 x 3.36) = (—0.49, 13.15)

Code that may be used (here, for a 95% confidence interval) is:*

## 95% CI for mean of heated-ambient: data frame pair65 (DAAG)
with(pair65, t.test(heated, ambient, paired=TRUE,
conf.level=0.95)S$conf.int)

The confidence interval has been constructed so that most often, when the sample is taken
in the way that the one available sample has been taken, it will include the population
mean. The two common choices for the long-run proportion of similar samples for which
the corresponding intervals should contain the population mean are 95% and 99%.

Tests of hypotheses

If the confidence interval for the population mean does not contain zero, this is equivalent to
rejection of the hypothesis that the population mean is zero. Starting from a 95% confidence
interval, the “significance level” for the testis p = 1 — 0.95 = 0.05.

In the example just considered, the 95% confidence interval does not contain zero,
while the (wider) 99% confidence interval does contain zero. Thus the hypothesis that the
population mean is zero is rejected for p = 0.05, but not for p = 0.01. The value of p that
is on the borderline between rejection and non-rejection is termed the p-value.

This value can be obtained by doubling the probability that the 7-statistic is less than

—mean/SEM = —6.33/2.03

## Probability that t-statistic (8 d.f.) is less than -6.33/2.03
> 1-pt(6.33/2.03, 8) # Equals pt(-6.33/2.03, 8)
[1] 0.00713

4 ## Detailed calculations; 95% CI for mean of heated-ambient
pair65.diff <- with(pair65, heated-ambient)

pair65.n <- length(pair65.diff)

pair65.se <- sd(pair65.diff) /sqrt(pair65.n)

mean (pair65.diff) + gt(c(.025,.975),8)*pair65.se
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Doubling 0.00713 to determine the sum of the probabilities in the two tails yields p = 0.014.
The result may be summarized in the statement: “Based on the sample mean of 6.33, the
population mean is greater than zero (p = 0.014)”.

Formal hypothesis testing requires the statement of null and alternative hypotheses.
Taking the population mean to be w, the null hypothesis is

Hoi M:O

while the alternative hypothesis is p # 0.

The formal methodology of hypothesis testing may seem contorted. A small p-value
makes the null hypothesis appear implausible. It is not a probability statement about the
null hypothesis itself, or for that matter about its alternative. All it offers is an assessment
of implications that flow from accepting the null hypothesis. A straw man is set up, the
statement that . = 0. The typical goal is to knock down this straw man. By its very nature,
hypothesis testing lends itself to various abuses.

What is a small p-value?

At what point is a p-value small enough to be convincing? The conventional p = 0.05
(= 5%) cutoff is too large, if results from the experiment are to be made the basis for a
recommendation for changes to farming practice or to medical treatment. It may be too
small when the interest is in deciding which effects merit further experimental or other
investigation. There must be a careful balancing of the likely costs and benefits of any such
recommendation, having regard to the statistical evidence. In any particular case, consider
carefully:

¢ Isthere other relevant evidence, additional to that summarized in a p-value or confidence
interval?

* What is the most helpful way to present results: a p-value, or a confidence interval, or
something else again?

t-Distribution versus the normal distribution

Table 4.1 compares the normal distribution multipliers with those for a 7-distribution with
8 d.f., for several different choices of area under the curve. Changing from a normal
distribution to a ¢-distribution with 8 d.f. led to a small change, from 1.0 to 1.07, for
enclosing the central 68.3% of the area. There is a substantial difference, giving an increase
from 1.96 to 2.31, for enclosing 95% of the area.

How good is the normal theory approximation?

For random samples from a distribution that is close to symmetric, the approximation
is often adequate, even for samples as small as 3 or 4. In practice, we may know little
about the population from which we are sampling. Even if the main part of the population
distribution is symmetric, occasional aberrant values are to be expected. Such aberrant



4.2 Confidence intervals and tests of hypotheses 109

Table 4.2  Formulae for confidence intervals and tests of hypothesis based on the
t-distribution.

Confidence interval Test statistic d.f.
: 7+t SE[d __d_ _
One-sample ¢t d = 7.4 SE[d] t = SE[] n—1
6.10 _ 633
e.g. 6.33 +2.306 x ) L= 65 8
Two-sample t %, — % = fo; SE[%2 — %] r= % ni+n,—2
eg. 253.5 — 244.1£2.09 x 1091,/ + & 1= 235=2841 9

= 253.5 — 244.12.09 x 4.77 = (=0.6, 19.4) 1091 x /55 +

Here, 1. is the 97.5th percentile of a z-statistic with 8 d.f. (one-sample example) or 19 d.f. (two-
sample example). (The 97.5th percentile is the same as the two-sided 5% critical value.)

values do, perhaps fortunately, work in a conservative direction — they make it more
difficult to detect genuine differences. The take-home message is that, especially in small
samples, the probabilities and quantiles can be quite imprecise. They are rough guides,
intended to assist researchers in making a judgment.

4.2.1 A summary of one- and two-sample calculations

Confidence intervals for a mean difference, or for a difference of means, have the form
difference =+ #-critical value x standard error of difference.

The ¢-statistic has the form

difference

standard error of difference

Given ¢, the p-value for a (two-sided) test is defined as
P(T >1t)4+ P(T < —1)

where T has a ¢-distribution with the appropriate number of degrees of freedom. A small
p-value corresponds to a large value of ||, regarded as evidence that the true difference is
non-zero and leading to the rejection of the null hypothesis.

Table 4.2 lists confidence intervals and tests in the one- and two-sample cases.” The
single-sample example is for the paired elastic band data that we discussed at the beginning
of this section. The example that we use for the two-sample calculations was discussed in
Subsection 2.2.3.

S ## t-test and confidence interval calculations

heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c¢(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
t.test (heated, ambient, var.equal=TRUE)
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Figure 4.3 Second versus first member, for each pair. The first panel is for the ambient/heated
elastic band data from Subsection 4.1.6, while the second is for Darwin’s plants.

When is pairing helpful?

Figure 4.3 shows, for two different sets of paired data, a plot of the second member of
the pair against the first.° The first panel is for the paired elastic band data of Subsection
4.1.6, while the second panel (for the data set mignonette) is from the biologist Charles
Darwin’s experiments that compared the heights of crossed plants with the heights of self-
fertilized plants (data, for the wild mignonette Reseda lutea, are from p. 118 of Darwin,
1877). Plants were paired within the pots in which they were grown, with one plant on one
side and one on the other.

For the paired elastic band data there is a clear correlation, and the standard error of the
difference is much less than the root mean square of the two separate standard errors. For
Darwin’s data there is little evidence of correlation. The standard error of differences of
pairs is about equal to the root mean square of the two separate standard errors. For the
elastic band data, the pairing was helpful; it led to a low SED. The pairing was not helpful
for Darwin’s data (note that Darwin (cited above) gives other data sets where the pairing
was helpful, in the sense of allowing a more accurate comparison).

If the data are paired, then the two-sample ¢-test corresponds to the wrong model! It is
appropriate to use the one-sample approach, whether or not there is evidence of correlation
between members of the same pair.

What if the standard deviations are unequal?

If variances are heterogeneous (unequal variances or standard deviations), the ¢-statistic
based on the pooled variance estimate is inappropriate. The Welch procedure gives an
adequate approximation, unless degrees of freedom are very small. The Welch statistic is

% ## heated vs ambient: pair65 (DAAG); and cross vs self: mignonette (DAAG)
par (mfrow=c(1,2))

plot (heated ~ ambient,

data=pairé65) ;

abline (0,

1)

# left panel

with(pair65, abline (mean (heated-ambient), 1, lty=2))
plot(cross ~ self, data=mignonette); abline(0, 1) # right panel
with (mignonette, abline(mean(cross-self), 1, 1lty=2))

par (mfrow =

c(l,1))
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the difference in means divided by a standard error of difference that allows for unequal
variances, i.e.,
X2 — X1

t= ,
SED

where

5 St
_+_

SED = .
ny ni

If the two variances are unequal this does not have a z-distribution. However, critical
values are quite well approximated by the critical values of a 7-distribution with degrees
of freedom given by a readily calculated function of the observed sample variances and
sample sizes. The most commonly used approximation is that of Welch (1949), leading to
the name Welch test. For details, see Miller (1986). The function t . test () has the Welch
test as its default; unequal variances are assumed unless the argument var . equal=TRUE
is given.

Note that if n; = n, then the statistic is the same as for the 7-test that is based on the
pooled estimate of variance. However, the degrees of freedom are likely to be reduced.

Different ways to report results

For the paired elastic band data of Table 3.1, the mean difference in amount of stretch
before and after heating is 6.33, with a standard deviation of 6.10. The standard error of this
difference (SED) is thus 6.10/+/9 = 2.03. The bare minimum of information that should
be reported is: “The mean change is 6.33 [SED 2.03, n = 9]”. In engineering and physical
science contexts where the aim is to accompany a report of the mean with a statement of
its precision, this may be enough. It is most appropriate when differences are large, of the
order of more than five times the SEM for any individual treatment or four times the SED
for comparing two means.

Confidence intervals and hypothesis testing give this form of report a more interpretive
twist. Here are some of the various alternatives:’

1. The mean change is 6.33 [SED 2.03, n = 9].

2. The t-statisticis t = 6.333/2.034 = 3.11, on 8 (= 9 — 1) degrees of freedom. In other
words, the difference is 3.11 times the standard error.

3. A 95% confidence interval for the change is

(6.33 — 2.306 x 2.034,6.33 4 2.306 x 2.034), i.e., (1.64, 11.02).

[The multiplier, equal to 2.306, is the 5% two-sided critical value for a z-statistic on
8(=9—-1)df]

7 ## Different ways to report results: calculations
pair65.diff <- with(pair65, heated-ambient)
n <- length(pair65.diff)
av <- mean(pair65.diff); sd <- sqgrt(var(pair65.diff)); se <- sd/sqgrt(n)
print (c (mean=av, SED=se, "mean/SED"=av/se)) # Items 1 and 2
t.test(pair65.diff) # Items 3 and 4
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Table 4.3  Approximate 95%
confidence interval, assuming

0.35 <m <0.65.
Approximate 95%
n confidence interval
25 p £20%
100 p +10%
400 pt5%
1000 p£3.1%

4. We reject the null hypothesis that the true mean difference is 0 (p = 0.014) — see
Subsection 4.2.1 for definitions.
[The two-sided p-value for r = 3.11 on 8 d.f. is 0.014.]

Alternative 1 is straightforward. The ¢-statistic (alternative 2) expresses the change as a
multiple of its standard error. The conventional wisdom is that the change is worthy of note
if the p-value is less than 0.05 or, equivalently, if the 95% confidence interval does not
contain 0. For this, the ¢-statistic must be somewhat greater than 1.96, i.e., for all practical
purposes >2.0. For small degrees of freedom, the 7-statistic must be substantially greater
than 2.0.

Readers who have difficulty with alternatives 3 and 4 may find it helpful to note that
these restate and interpret the information in alternatives 1 and 2. If standard errors are
not enough and formal inferential information is required, confidence intervals may be
preferable to formal tests of hypotheses.

4.2.2 Confidence intervals and tests for proportions

We assume that individuals are drawn independently and at random from a binomial
population where individuals are in one of two categories — male as opposed to female, a
favorable treatment outcome as opposed to an unfavorable outcome, survival as opposed to
non-survival, defective as opposed to non-defective, Democrat as opposed to Republican,
etc. Let r be the population proportion. In a sample of size n, the proportion in the category
of interest is denoted by p. Then,

SE[p] =+/n(l —m)/n.

An upper bound for SE[ p] is 1/(24/n). If 7 is between about 0.35 and 0.65, the inaccuracy
in taking SE[p] as 1/(24/n) is small.

This approximation leads to the confidence intervals shown in Table 4.3. Note again that
the approximation is poor if 7 is outside the range 0.35 to 0.65.

An alternative is to use the estimator

— 1 —
SE[p] =\/¥-
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An approximate 95% confidence bound for the proportion r is then

1 —
p+ 196,/ PL=P)
n

4.2.3 Confidence intervals for the correlation

The correlation measure that we discuss here is the Pearson or product—-moment correlation,
which measures linear association.

The standard error of the correlation coefficient is typically not a useful statistic. The dis-
tribution of the sample correlation, under the usual assumptions (e.g., bivariate normality),
is too skew. The function cor.test () may be used to test the null hypothesis that the
sample has been drawn from a population in which the correlation p is zero. For given x,
the distribution of y is assumed normal, independently for different ys and with mean given
by a linear function of x.

Classical methods for comparing the magnitudes of correlations, or for calculation of a
confidence interval for the correlation, rely on the assumption that the joint distribution of
(x, y) is bivariate normal. In addition to the assumption for the test that p = 0, we need to
know that x is normally distributed, independently between (x, y) pairs. This assumption
is required for the default confidence interval that cor.test () outputs. In practice, it
may be enough to check that both x and y have normal distributions.

4.2.4 Confidence intervals versus hypothesis tests

Those who have problems with confidence intervals and (especially) tests of hypotheses
(often called significance tests) are in good company. There is increasing support for the
view that they should play a relatively minor role in statistical analysis or be eliminated
altogether.

The methodology is too often abused. Papers that present a large number of significance
tests are, typically, not making good use of the data. It becomes difficult to know what to
make of the results. Among a large number of tests, some will be significant as a result of
chance.

Misunderstandings are common in the literature, even among mature researchers. A
p-value does not allow the researcher to say anything about the probability that either
hypothesis, the null or its alternative, is true. Then why use them? Perhaps the best that can
be said is that hypothesis tests often provide a convenient and quick answer to questions
about whether effects seem to stand out above background noise. However if all that
emerges from an investigation are a few p-values, we have to wonder what has been
achieved.

Because of these problems, there are strong moves away from hypothesis testing and
towards confidence intervals. Tukey (1991) argues strongly, and cogently, that confidence
intervals are more informative and more honest than p-values. He argues

Statisticians classically asked the wrong question — and were willing to answer with a lie, one that
was often a downright lie. They asked “Are the effects of A and B different?”” and they were willing
to answer “no”.
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All we know about the world teaches us that the effects of A and B are always different — in some
decimal place — for every A and B. Thus asking “Are the effects different?” is foolish. What we
should be answering first is “Can we tell the direction in which the effects of A differ from the effects
of B?” In other words, can we be confident about the direction from A to B? Is it “up”, “down”, or
“uncertain”? [Tukey, 1991]

Tukey argues that we should never conclude that we “accept the null hypothesis”. Rather,
our uncertainty is about the direction in which A may differ from B. Confidence intervals
do much better at capturing the nature of this uncertainty.

Guidelines for significance testing

Few scientific papers make more than half-a-dozen points that are of consequence. Any
significance tests should be closely tied to these main points, preferably with just one
or two tests for each point that is made. Keep any significance tests and p-values in the
background. Once it is apparent that an effect is statistically significant, the focus of interest
should shift to its pattern and magnitude, and to its scientific significance.

It is poor practice to perform ¢-tests for each comparison between treatments when the
real interest is (or should be) in the overall pattern of response. Where the response depends
on a continuous variable, it is often pertinent to ask whether, e.g., the response keeps on
rising (falling), or whether it rises (falls) to a maximum (minimum) and then falls (rises).

Significance tests should give the researcher, and the reader of the research paper,
confidence that the effects that are discussed are real! The focus should then move to
the substantive scientific issues. Statistical modeling can be highly helpful for this. The
interest is often, finally, in eliciting the patterns of response that the data present.

4.3 Contingency tables

Table 4.4 is from US data that were used in the evaluation of labor training programs,
aimed at individuals who had experienced economic and social difficulties. The table
shows numbers of high school graduates and dropouts who had participated in a labour
training program (NSW group) and those who had not participated (PSID3 group).® These
data will be discussed further in Section 13.2.

A glance at the table suggests that the proportion of high school dropouts in the NSW
group is much higher than in the PSID3 group. The chi-squared test for no association is
described in the next subsection; it can be used to check this formally:

> # To agree with hand calculation below, specify correct=FALSE
> chisqg.test (with(nswpsid3, table(trt, nodeg)), correct=FALSE)

X-squared = 19.9, df = 1, p-value = 8.189e-06

8 ## Compare number with a high school qualification, between ‘untreated’ rows
## from data frame psid3 and ‘treated’ rows from nswdemo
library (DAAG) # Data are from DAAG
nswpsid3 <- rbind(psid3, subset(nswdemo, trt==1))
table (nswpsid3$trt, nswpsid3snodeg)
# PSID3 males are coded 0; NSW male trainees are coded 1.
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Table 4.4 Contingency table derived from
data that relates to the Lalonde (1986)

paper.
High school

graduate certificate

Yes No

PSID3 males 63 65

NSW male trainees 80 217

Table 4.5 The calculated expected values for the contingency table in Table 4.4.

High school graduate
Yes No Total ~ Row proportion
PSID3 63 (115) 65 (12.95) 128 128/425 = 0.301
NSW74 trainees 80 (267.0) 217 (30.05) 297 217/425 = 0.699
Total 143 282 425

Column proportion  143/425 = 0.336  282/425 = 0.664

The small p-value confirms that high school dropouts are more strongly represented in the
NSW data.

The mechanics of the chi-squared test

The null hypothesis is that the proportion of the total in each cell is, to within random
error, the result of multiplying a row proportion by a column proportion. The independence
assumption, i.e., the assumption of independent allocation to the cells of the table, is
crucial.

Assume there are I rows and J columns. The expected value in cell (i, j) is calculated
as

E;; = (proportion for row i) x (proportion for column j) x total.

We can then obtain a score for each cell of the table by computing the absolute value
of the difference between the expected value and the observed value (with the continuity
correction that is the default, 0.5 would be subtracted at this point), squaring, dividing the
result by the expected value, and replacing any negative scores by zero. Summing over all
scores gives the chi-squared statistic.

Under the null hypothesis the chi-squared statistic has an approximate chi-squared dis-
tribution with (I — 1)(J — 1) degrees of freedom. In Table 4.5, the values in parentheses
are the expected values E;;.
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Table 4.6  Contingency table compiled
Sfrom Hobson (1988, Table 12.1, p. 248).

Object moves

Dreamer moves Yes No
Yes 5 17
No 3 85

The expected values are found by multiplying the column totals by the row proportions.
(Alternatively, the row totals can be multiplied by the column proportions.) Thus 117 x
0.591 = 69.15, 196 x 0.591 = 115.85, etc.

An example where a chi-squared test may not be valid

In Table 4.6 we summarize information that Hobson (1988) derived from drawings of
dreams, made by an unknown person that he calls “The Engine Man”. Among other
information Hobson notes, for each of 110 drawings of dreams made, whether the dreamer
moves, and whether an object moves. Dreamer movement may occur if an object moves,
but is relatively rare if there is no object movement. (Note that Hobson does not give the
form of summary that we present in Table 4.6.)

It may also seem natural to do a chi-squared test for no association.” This gives x> = 7.1
(1d.f.), p = 0.008.

A reasonable rule, for the use of the chi-squared approximation, may be that all expected
values should be at least 2 (Miller, 1986), a requirement that is satisfied for this application
of the test. A check is to do a Fisher exact test. In this instance the Fisher exact test'’
surprisingly, exactly the same result as the chi-squared test, i.e., p = 0.008.

A more serious concern is that there is a time sequence to the dreams. Thus, there could
well be runs of dreams of the same type. Hobson gives the numbers of the dreams in
sequence. Assuming these represent the sequence in time, this would allow a check of the
strength of any evidence for runs. Hobson’s table has information that our tabular summary
(Table 4.6) has not captured.

gives,

4.3.1 Rare and endangered plant species

The calculations for a test for no association in a two-way table can sometimes give useful
insight, even where a formal test of statistical significance would be invalid. The example
that now follows (Table 4.7) illustrates this point. Data are from species lists for various
regions of Australia. Species were classified CC, CR, RC and RR, with C denoting common
and R denoting rare. The first code letter relates to South Australia and Victoria, and the

% ## Engine man data
engineman <- matrix(c(5,3,17,85), 2,2)
chisqg.test (engineman)

10 £isher.test (engineman)
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Table 4.7 Cross-classification of
species occurring in South Australia/
Victoria and in Tasmania.

Habitat type
Common/rare
classification D W WD
cc 37 190 94
CR 23 59 23
RC 10 141 28
RR 15 58 16

second to Tasmania. They were further classified by habitat according to the Victorian
register, where D = dry only, W = wet only, and WD = wet or dry."!

We use a chi-squared calculation to check whether the classification into the different
habitats is similar for the different rows. Details of the calculations are:

> (x2 <- chisqg.test (rareplants))
Pearson’s Chi-squared test

data: rareplants
X-squared = 35, df = 6, p-value = 4.336e-06

This low p-value should attract a level of skepticism. We do not have a random sample
from some meaningful larger population. Suppose that there is clustering, so that species
come in closely related pairs, with both members of the pair always falling into the same
cell of the table. This will inflate the chi-squared statistic by a factor of 2 (the net effect
of inflating the numerator by 22, and the denominator by 2). There probably is some such
clustering, though different from that of this simplistic example. Such clustering will inflate
the chi-squared statistic by an amount that the available information does not allow us to
estimate.

The standard Pearson chi-squared tests rely on multinomial sampling assumptions, with
counts entering independently into the cells. Where it is possible to form replicate tables,
the assumption should be tested.

Figure 4.4 shows expected number of species, by habitat.'”

"I ## Enter the data thus:
rareplants <- matrix(c(37,190,94,23,59,23,10,141,28,15,58,16), ncol=3,
byrow=TRUE, dimnames=list(c("CC","CR","RC","RR"), c("D","W","WD")))
12 44 Expected number of species, by habitat (calculate x2 as above)
x2E <- stack(data.frame (t (x2$expected)))
habitat <- rep(c(1,2,3), 4)
plot (x2E$values ~ habitat, axes=FALSE, xlim=c (0.5, 3.5), pch=16,
xlab="habitat", ylab="Expected Number of Species")
text (x2E$Svalues ~ habitat, labels=x2E$ind, pos=rep(c(4,4,2,2),3))
axis(l, at=seqg(l,3), labels=c("D", "W", "WD"))
axis(2); box()
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Figure 4.4 Expected number of species, by habitat, for the rareplants data.

Examination of departures from a consistent overall row pattern

The investigator then needs to examine the nature of variation with the row clas-
sification. For this, it is helpful to look at the residuals; these are calculated as
(observed — expected) /expected’:

> x2 <- chisqg.test (rareplants)
> ## Standardized residuals
> residuals (x2)
D w WD
CC -0.369 -1.1960 2.263
CR 2.828 -1.0666 -0.275
RC -2.547 2.3675 -2.099
RR 1.242 0.0722 -1.023

The null hypothesis implies that the expected relative numbers in different columns are
the same in every row. The chi-squared residuals show where there may be departures
from this pattern. In large tables these will, under the null hypothesis, behave like random
normal deviates with mean zero and variance one. The values that should be noted, if the
assumptions required for a chi-squared test are satisfied, are those whose absolute value
is somewhat greater than 2.0. For the present table, there are five standardized residuals
whose value is substantially greater than 2.0. It is these, and especially the two that are
largest, that should perhaps attract attention.

Notice that the CC species are, relative to the overall average, over-represented in the
WD classification, the CR species are over-represented in the D classification, while the RC
species are under-represented in D and WD and over-represented in W.

For reference, here is the table of expected values:

> x2S$expected

D W WD
CC 39.3 207.2 74.5
CR 12.9 67.8 24.4
RC 21.9 115.6 41.5
RR 10.9 57.5 20.6
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4.3.2 Additional notes
Interpretation issues

Having found an association in a contingency table, what does it mean? The interpretation
will differ depending on the context. The incidence of gastric cancer is relatively high in
Japan and China. Do screening programs help? Here are two ways in which the problem
has been studied:

¢ In along-term follow-up study, patients who have undergone surgery for gastric cancer
may be classified into two groups — a “screened” group whose cancer was detected by
mass screening, and an “unscreened” group who presented at a clinic or hospital with
gastric cancer. The death rates over the subsequent five- or ten-year period are then
compared. For example, the five-year mortality may be around 58% in the unscreened
group, compared with 72% in the screened group, out of approximately 300 patients in
each group.

¢ Inaprospective cohort study, two populations — a screened population and an unscreened
population — may be compared. The death rates in the two populations over a ten-year
period may then be compared. For example, the annual death rate may be of the order of
60 per 100 000 for the unscreened group, compared with 30 per 100 000 for the screened
group, in populations of several thousand individuals.

In the long-term follow-up study, the process that led to the detection of cancer was
different between the screened and unscreened groups. The screening may lead to surgery
for some cancers that would otherwise lie dormant long enough that they would never
attract clinical attention. The method of detection is a confounding factor. It is necessary,
as in the prospective cohort study, to compare all patients in a screened group with all
patients in an unscreened group. Even so, it is necessary, in a study where assignment of
participants is not random, to be sure that the two populations are comparable.

Modeling approaches

Modeling approaches typically work with data that record information on each case sepa-
rately. Data where there is a binary (yes/no) outcome, and where logistic regression may
be appropriate, are an important special case. Chapter 8 gives further details.

4.4 One-way unstructured comparisons

Figure 4.5 displays data from a one-way unstructured comparison between three treatments.
The weights of the plants were measured after two months on respective treatments: water
concentrated nutrient, and concentrated nutrient plus the selective herbicide 2,4-D. Data
are:

tomato <-
data. frame (weight=

c(l1.5, 1.9, 1.3, 1.5, 2.4, 1.5, # water
1.5, 1.2, 1.2, 2.1, 2.9, 1.6, # Nutrient
1.9, 1.6, 0.8, 1.15, 0.9, 1.6), # Nutrient+24D
trt = rep(c("water", "Nutrient", "Nutrient+24D"),
c(6, 6, 6)))



120 A review of inference concepts

Nutrient+24D oo o o o
Nutrient o oo o o
Water o o o o
T T T T
1.0 1.5 2.0 25
Weight

Figure 4.5 Weights of tomato plants, after two months of the three treatments.

## Make water the first level of trt. It will then appear as
## the initial level in the graphs. In aov or 1lm calculations,
## it will be the baseline or reference level.
tomato$trt <- relevel (tomato$trt, ref="water")

Figure 4.5 can be obtained with:
stripplot (trt“weight, aspect=0.6, data=tomato)

The strip plots display “within-group” variability, as well as giving an indication of differ-
ences among the group means. Variances seem similar for the three treatments.

There is a single explanatory factor (trt), with one level for each of the different
treatments that were applied. A simple-minded approach is to calculate the means for
each of the three treatments, and then examine all three pairwise comparisons. With three
comparisons this is, arguably, a reasonable strategy.

If there were four treatments, there would be six comparisons, and it really would become
desirable to do one analysis rather than six. We would certainly not want to draw six graphs,
one for each pair of treatments that are compared. Hence the use of an analysis of variance
(really, as noted above, the fitting of a linear model) to do an overall analysis. We will first
examine an overall visual summary of the analysis results, then examine the analysis.

The tomato data — a visual summary

The function onewayPlot (), from the DAAG package, provides a convenient visual
summary of results, shown in Figure 4.6. The code is:

## Do analysis of variance calculations
tomato.aov <- aov(weight ~ trt, data=tomato)
## Summarize results graphically
oneway.plot (obj=tomato.aov)

Notice that the graph gives two different assessments of the least difference that should
be treated as “significant”. These use different criteria:

¢ The 5% least significant difference (LSD) is designed so that, under the null model (no
differences), significant differences will be found in 5% of comparisons.

* The 5% honest significant difference (HSD) is designed so that, under the null model,
the maximum difference will be significant in 5% of experiments.
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Figure 4.6 Graphical presentation of results from the analysis of the tomato weight data. Means that
differ by more than the LSD (least significant difference) are different, at the 5% level, in a z-test that
compares the two means. Tukey’s honest significant difference (HSD) takes into account the number

of means that are compared. See the text for details.

The LSD is commonly regarded as overly lax, while the HSD may be overly conservative.
There are a variety of alternatives to the HSD that are less conservative; see the more detailed
discussion of multiple comparisons in the next subsection.

The simplicity of Figure 4.6 is appealing, but it is important to note the assumption
that the standard error of difference is the same for all treatment comparisons. As all three
treatments have the same number of observations, it is enough for the variance to be the

same for all treatments.

The analysis of variance table

The analysis of variance table is given by the anova () function, thus:

> anova (tomato.aov)
Analysis of Variance Table

Response: weight
Df Sum Sg Mean Sg F value Pr (>F)

trt 2 0.63 0.31 1.2 0.33
Residuals 15 3.91 0.26

Observe that the residual mean squared error is 3.21. Note that two degrees of freedom are
associated with estimating the variance of the three group means. Each treatment contributes
6 — 1 = 5 d.f. to the pooled or residual sum of squares, giving 3 x 5 = 15 d.f. in all. Note
that 2 (for trt) plus 15 (for Residuals) equals 17, which is one less than the number of
observations. Estimation of the overall mean accounts for the remaining degree of freedom.
The Mean Sqg (“mean square”) column has estimates of between-sample (trt) and
within-sample variability (Residuals). The between-sample variance can be calculated
by applying the function var () to the vector of treatment means, then multiplying by
the common sample size, in this case 6. The within-sample variability estimate is, effec-
tively, a pooled variance estimate for the three treatments. Each mean square is the result
from dividing the Sum Sqg (“sum of squares”) column by the appropriate degrees of

freedom.
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In the absence of systematic differences between the sample means, the two mean squares
will have the same expected value, and their ratio (the F-statistic) will be near 1. Systematic
differences between the sample means will add extra variation into the treatment mean
square, with no effect on the residual mean square, resulting in an expected F-statistic that
is larger than 1. In the output above, the F-statistic is 0.33, on 3 and 8 degrees of freedom,
with p = 0.33. There is no convincing indication that there are indeed differences among
the treatment means. Interest then turns to teasing out the nature of those differences.

The one-way analysis of variance formally tests whether the variation among the means
is greater than what might occur simply because of the natural variation within each group.
This comparison is based on the F-statistic, which is given in the output column headed F
value. An F-statistic that is much larger than 1 points to the conclusion that the means
are different. The p-value is designed to assist this judgment.

Figure 4.6 is one of a number of graphical presentation possibilities for a one-way layout.
Others are (1) a side-by-side comparison of the histograms — but there are too few values
for that; (2) density plots — again there are too few values; and (3) a comparison of the
boxplots — this works quite well with 12 values for each treatment.

4.4.1 Multiple comparisons

In Figure 4.6 we gave two “yardsticks” — the LSD and the HSD — against which to com-
pare differences between means. Because neither of these suggested a difference between
treatments, the choice between them was not of great consequence. Also, there were
just three treatment levels, so that the difference between the LSD and the HSD is not
large.

The 5% HSD is designed so that, under the null model (no difference between treatments),
the maximum difference will be greater than the HSD in 5% of experiments. In other words,
the 5% relates to an experiment-wise error rate, defined as just described. The HSD is an
appropriate yardstick against which to compare treatment differences if the demand is for
a 5% or other specified probability of finding a difference between the largest and smallest
means when there was no difference in the populations from which they were drawn.

Contrast this with the 5% least significant difference (LSD). This is designed, if used
without a preliminary F'-test, to give a 5% comparison-wise error rate.

A reasonable practical strategy is to do a preliminary analysis of variance F-test. If
that suggests differences between the means, then it is of interest to use both yardsticks in
comparing them. The LSD gives an anti-conservative yardstick, i.e., one that, in the absence
of the preliminary F-test, would be somewhat biased towards finding differences. Tukey’s
HSD gives a stricter conservative yardstick, i.e., one that is somewhat biased against finding
differences. Ignoring changes in degrees of freedom and possible associated changes in the
standard error, the HSD will increase as the number of treatment groups that are to be
compared increases.

*Microarray data — severe multiplicity

Multiple tests are a serious issue in the analysis of microarray data, where an individual
slide (or sometimes, as for Plate 2, half-slide) may yield information on some thousands



4.4 One-way unstructured comparisons 123

of genes. Each slide (or, here, half-slide) is commonly used to compare, for each of a large
number of genes, the gene expression in two samples of genetic material.

The experiment that led to Plate 2 was designed to investigate changes in gene expression
between the pre-settlement free-swimming stage of coral, and the post-settlement stage. For
3042 genes (one for each of 3042 spots), which showed an increase in gene expression and
which a decrease? Note that each panel in Plate 2 has 3072 spots; this includes 30 blanks.
Where there was an increase, the spot should be fairly consistently blue, or bluish, over all
six panels. Where there was a decrease, the spot should be fairly consistently yellow, or
yellowish.

Here, all that will be attempted is to give broad indications of the experimental procedure,
and subsequent processing, that led to the plots shown in Plate 2. The slides are first printed
with probes, with one probe per spot. Each probe is designed to check for evidence of
the expression of one gene. The two samples are separately labeled so that when later a
spot “lights up” under a scanner, it will be possible to check for differences in the signal
intensity.

After labeling the separate samples, mixing them, and wiping the mixture over the slide
or half-slide, and various laboratory processing steps, a scanner was used to determine,
for each spot, the intensities generated from the two samples. Various corrections are then
necessary, leading finally to the calculation of logarithms of intensity ratios. Essentially, it
is logarithms of intensity ratios that are shown in Plate 2.

For these data there are, potentially, 3042 ¢-statistics. This is small, by the standards of
microarray experiments. There are severe problems of multiplicity to address. Details of a
defensible approach to analyzing the data shown in Plate 2 will be posted on the web site
for the book.

For further information on the analysis of microarray data, see Smyth (2004). For back-
ground on the coral data, see Grasso ez al. (2008).

4.4.2 Data with a two-way structure, i.e., two factors

Consider now data from an experiment that compared wild type (wt) and genetically
modified rice plants (ANU843), each with three different chemical treatments. A first
factor relates to whether F10 or NHAC1 or NH4NO3 is applied. A second factor relates to
whether the plant is wild type (wt) or ANU843.

There are 72 sets of results, i.e., two types (variety) x three chemical treatments
(fert) x 6 replicates, with the experimental setup repeated across each of two blocks
(Block). Figures 4.7A and B show alternative perspectives on these data.'”

13 44 Simplified version of code
library (lattice)

## Panel A
dotplot (trt ~ ShootDryMass, data=rice, aspect=1,
panel=function(x,y, ...) {panel.dotplot(x, y, pch=1, col="gray40")

panel .average (x, y, type="p", col="black",
pch=3, cex=1.25)},
xlab="Shoot dry mass (g)")
## Panel B
with(rice, interaction.plot(fert, variety, ShootDryMass,
xlab="Level of first factor"))
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Figure 4.7 Both panels are for rice shoot dry mass data. Panel A shows a one-way strip plot, with
different strips for different treatment regimes. Treatment means are shown with a large +. The
interaction plot in panel B shows how the effect of fertilizer (the first factor) changes with variety
(the second factor). Data relate to Perrine et al. (2001).

Figure 4.7B shows a large difference between ANU843 and wild type (wt) for the F10
treatment. For the other treatments, there is no detectable difference. A two-way analysis
will show a large interaction.

Note, finally, that the treatments were arranged in two blocks. In general, this has
implications for the analysis. This example will be discussed again in Chapter 7, where
block effects will be taken into account.

4.4.3 Presentation issues

The discussion so far has treated all comparisons as of equal interest. Often they are not.
There are several possibilities:

* Interest may be in comparing treatments with a control, with comparisons between
treatments of lesser interest.

¢ Interest may be in comparing treatments with one another, with any controls used as
a check that the order of magnitude of the treatment effect is pretty much what was
expected.

¢ There may be several groups of treatments, with the chief interest in comparisons
between the different groups.

Any of these situations should lead to specifying in advance the specific treatment compar-
isons that are of interest.

Often, however, scientists prefer to regard all treatments as of equal interest. Results
may be presented in a graph that displays, for each factor level, the mean and its associated
standard error. Alternatives to displaying bars that show the standard error may be to show
a 95% confidence interval for the mean, or to show the standard deviation. Displaying or
quoting the standard deviation may be appropriate when the interest is not in comparing
level means, but in obtaining an idea of the extent to which the different levels are clearly
separated.
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Figure 4.8 Distance traveled (distance.traveled) by model car, as a function of starting
point (starting.point), up a 20° ramp.

In any case:

¢ For graphical presentation, use a layout that reflects the data structure, i.e., a one-way
layout for a one-way data structure, and a two-way layout for a two-way data structure.

¢ Explain clearly how error bars should be interpreted — &£ SE limits, &= 95% confidence
interval, £ SED limits, or whatever. Or if the intention is to indicate the variation in
observed values, the SD (standard deviation) may be more appropriate.

* Where there is more than one source of variation, explain what source(s) of “error” is/are
represented. It is pointless and potentially misleading to present information on a source
of error that is of little or no interest, e.g., on analytical error when the relevant “error”
for the treatment comparisons that are of interest arises from fruit-to-fruit variation.

4.5 Response curves

The table shown to the right of Figure 4.8 exhibits data that are strongly structured. A model
car was released three times at each of four different distances (starting.point) up
a 20° ramp. The experimenter recorded distances traveled from the bottom of the ramp
across a concrete floor. Figure 4.8 shows a plot of these data.'* What is the pattern of the
response? This should be handled as a regression problem rather than as an analysis of
variance problem. It would be particularly nonsensical to examine all pairwise comparison,
thus doing violence to the treatment structure, and confusing interpretation. Response curve
analyses should be used whenever appropriate in preference to comparison of individual
pairs of means.

For these data, the physics can be used to suggest the likely form of response. Where no
such help is available, careful examination of the graph, followed by systematic examination
of plausible forms of response, may suggest a suitable form of response curve.

14 44 Data frame modelcars (DAAG)
plot (distance.traveled ~ starting.point, data=modelcars,
xlim=c(0,12.5), xaxs="i", xlab = "Distance up ramp (cm)",
ylab="Distance traveled (cm)")
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Table 4.8 Each tester made
two firmness tests on each of

five fruit.

Fruit Tester Firmness Mean
1 1 6.8,7.3 7.05
2 1 72,73 7.25
3 1 74,73 7.35
4 1 6.8,7.6 7.2
5 1 7.2,6.5 6.85
6 2 7.7,7.7 7.7
7 2 74,7.0 7.2
8 2 7.2,7.6 7.4
9 2 6.7,6.7 6.7

10 2 7.2,6.8 7.0

Steps that are suitable for use with data that appear to follow a relatively simple form of
response are:

1. Does a straight line explain the data better than assuming a random scatter about a
horizontal line?

2. Does a quadratic response curve offer any improvement?

3. Would a cubic curve do better still?

Notice that at this stage we are not concerned to say that a quadratic or cubic curve is a
good description of the data. All we are examining is whether such a curve captures an
important part of the pattern of change. If it does, but the curve is still not quite right, it
may be worthwhile to look for a different form of curve that does fit the data adequately.
A representation of the response curve in terms of coefficients of orthogonal polynomials
provides information that makes it relatively easy to address questions 1-3. Consider, for
example, a model that has terms in x and x2. Orthogonal polynomials re-express this
combination of terms in such a way that the coefficient of the “linear” term is independent
of the coefficient of the “quadratic” term. Higher-order (cubic, . . . ) orthogonal polynomial
terms can of course be fitted, and it remains the case that the coefficients are mutually
independent. There is some further limited discussion of orthogonal polynomials in Section
7.4. Steel et al. (1993) discuss the practical use of orthogonal polynomials in some detail.

4.6 Data with a nested variation structure

Ten apples are taken from a box. A randomization procedure assigns five to one tester, and
the other five to another tester. Each tester makes two firmness tests on each of their five
fruit. Firmness is measured by the pressure needed to push the flat end of a piece of rod
through the surface of the fruit. Table 4.8 gives the results, in N/m?.

For comparing the testers, we have five experimental units for each tester, not ten. One
way to do a ¢-test is to take means for each fruit. We then have five values (means, italicized)
for one treatment, that we can compare with the five values for the other treatment.
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What happens if we ignore the data structure, and compare ten values for one tester with
ten values for the other tester? This pretends that we have ten experimental units for each
tester. The analysis will suggest that the treatment means are more accurate than is really
the case. We obtain a pretend standard error that is not the correct standard error of the
mean. We are likely to under-estimate the standard error of the treatment difference.

4.6.1 Degrees of freedom considerations

For comparison of two means when the sample sizes n; and n; are small, it is important to
have as many degrees of freedom as possible for the denominator of the ¢-test. It is worth
tolerating possible bias in some of the calculated SEDs in order to gain extra degrees of
freedom.

The same considerations arise in the one-way analysis of variance, and we pursue the
issue in that context. It is illuminating to plot out, side by side, say 10 SEDs based on
randomly generated normal variates, first for a comparison based on 2 d.f., then 10 SEDs
for a comparison based on 4 d.f., etc.

A formal statistical test is thus unlikely, unless the sample is large, to detect differences
in variance that may have a large effect on the result of the test. It is therefore necessary to
rely on judgment. Both past experience with similar data and subject area knowledge may
be important. In comparing two treatments that are qualitatively similar, differences in the
population variance may be unlikely, unless the difference in means is at least of the same
order of magnitude as the individual means. If the means are not much different then it is
reasonable, though this is by no means inevitable, to expect that the variances will not be
much different.

If the treatments are qualitatively different, then differences in variance may be expected.
Experiments in weed control provide an example where it would be surprising to find a
common variance. There will be few weeds in all plots where there is effective weed control,
and thus little variation. In control plots, or for plots given ineffective treatments, there may
be huge variation.

If there do seem to be differences in variance, it may be possible to model the variance
as a function of the mean. It may be possible to apply a variance-stabilizing transformation.
Or the variance may be a smooth function of the mean. Otherwise, if there are just one or
two degrees of freedom per mean, use a pooled estimate of variance unless the assumption
of equal variance seems clearly unacceptable.

4.6.2 General multi-way analysis of variance designs

Generalization to multi-way analysis of variance raises a variety of new issues. If each
combination of factor levels has the same number of observations, and if there is no
structure in the error (or noise), the extension is straightforward. The extension is less
straightforward when one or both of these conditions are not met. For unbalanced data
from designs with a simple error structure, it is necessary to use the 1m () (linear model)
function. The 1me () function in the nlme package, or alternatively 1mer () in the Ime4
package, is able to handle problems where there is structure in the error term, including
data from unbalanced designs. See Chapter 9 for further details.
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Table 4.9 These are the same data as in Table 3.1.

Pair #

1 2 3 4 5 6 7 8 9

Heated (mm) 244 255 253 254 251 269 248 252 292
Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 -3 6

4.7 Resampling methods for standard errors, tests, and confidence intervals

There are many different resampling methods. All rely on the selection of repeated samples
from a “population” that is constructed using the sample data. In general, there are too many
possible samples to take them all, and we therefore rely on repeated random samples. In
this section, we demonstrate permutation and bootstrap methods. We start with permutation
tests, illustrating their use for the equivalent of one-sample and two-sample ¢-tests.

4.7.1 The one-sample permutation test

Consider the paired elastic band data of Table 3.1 again, reproduced here as Table 4.9.

If the treatment has made no difference, then an outcome of 244 for the heated band
and 225 for the ambient band might equally well have been 225 for the heated band and
244 for the ambient band. A difference of 19 becomes a difference of —19. There are
2% = 512 permutations, and a mean difference associated with each permutation. We then
locate the mean difference for the data that we observed within this permutation distribution.
The p-value is the proportion of values that are as large in absolute value as, or larger than,
the mean for the data.

The absolute values of the nine differences are

Difference 19 8 4 1 6 10 6 3 6

In the permutation distribution, these each have an equal probability of taking a positive
or a negative sign. There are 2° possibilities, and hence 2° = 512 different values for d.
The possibilities that give a mean difference that is as large as or larger than in the actual
sample, where the value for pair 8 has a negative sign, are

Difference 19 8 4 1 6 10 6 3 6
19 8 4 -1 6 10 6 3 6
19 8 4 1 6 10 6 -3 6

There are another three possibilities that give a mean difference that is of the same absolute
value, but negative. Hence p = 6/512 = 0.0117.

In general, when the number of pairs is large, it will not be feasible to use such an
enumeration approach to get information on relevant parts of the upper and lower tails
of the distribution. We therefore take repeated random samples from the permutation
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Figure 4.9 Density curves for two samples of 2000 each from the permutation distribution of the
difference in means, for the two-sample elastic band data.

distribution. The function onetPermutation () in our DAAG package may be used for
this.

4.7.2 The two-sample permutation test

Suppose we have n; values in one group and n; in a second, with n = n; + n,. The
permutation distribution results from taking all possible samples of n, values from the total
of n values. For each such sample, we calculate

mean of the n, values that are selected — mean of remaining n; values.

The permutation distribution is the distribution of all such differences of means. We locate
the differences of means for the actual samples within this permutation distribution.

The calculation of the full permutation distribution is not usually feasible. We therefore
take perhaps 1000 samples from this distribution. The function twot .permutation ()
that is in our DAAG package may be used for this repeated sampling.

Thus consider the data from Subsection 4.2.2:

Ambient: 254 252 239 240 250 256 267 249 259 269 (mean = 253.5)
Heated: 233 252 237 246 255 244 248 242 217 257 254 (mean = 244.1)

Figure 4.9 shows two estimates of the permutation distribution that were obtained by
taking, in each instance, 2000 random samples from this distribution. The point where the
difference in means falls with respect to this distribution (253.5 — 244.1 = 9.4) has been
marked, as has minus this difference."”

5 ## Draw one curve only; permutation distribution of difference in means
x1l <- two65%ambient; x2 <- two65Sheated; x <- c(xl, x2)
nl <- length(xl); n2 <- length(x2); n <- nl+n2
dbar <- mean(x2) - mean(xl)
z <- numeric(2000)
for(i in 1:2000){
mn <- sample(n, n2, replace=FALSE)
dbardash <- mean(x[mn]) - mean(x[-mn])
z[1]<- dbardash
}
plot(density(z), yaxs="i"
abline (v = dbar)
abline(v = -dbar, 1lty=2)
signif ((sum(z > abs(dbar)) + sum (z< -abs(dbar)))/length(z), 3)
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The density estimate corresponding to the solid line gave a p-value of 0.051. The density
estimate corresponding to the dashed line gave a p-value of 0.060. Use of a larger sample
size will of course lead to more accurate p-values.

4.7.3* Estimating the standard error of the median: bootstrapping

The formula given in Subsection 4.1.3 for the SEM has the same form, irrespective of the
distribution, providing that the sample is chosen randomly. By contrast, the formula for
the standard error of the median (Subsection 4.1.5) applies only when data are normally
distributed.

The bootstrap estimate of the standard error of the median avoids this requirement, and
avoids also the need to look for some alternative distribution that may be a better fit to
the data. A comparison between the bootstrap estimate and the normal theory estimate
allows an assessment of the seriousness of any bias that may result from non-normality.
We proceed to calculate the bootstrap estimate of the standard error for the median length
for the eggs that were in wrens’ nests. (The boot package (Canty, 2002) is needed for all
bootstrap examples.) We will use the result as a check on our earlier computation.

The idea is as follows. In estimating the standard error of the median, we are seeking
the standard deviation of medians that could be obtained for all possible samples of egg
lengths in wrens’ nests. Of course, we have access to one sample only, but if our sample is
of reasonable size and has been collected properly it should give us a good approximation
to the entire population.

We estimate the standard deviation of the median by computing sample medians for each
of the resamples and taking the standard deviation of all of these medians. Even though the
resamples are not genuine new samples, this estimate for the standard error of the median
has good statistical properties, for purposes of estimating the standard error of the median.

Here is the output from R for the egg lengths from the wrens’ nests:

> ## bootstrap estimate of median of wren length: data frame cuckoos
DAAG)

wren <- split(cuckoos$length, cuckoosS$species)Swren

library (boot)

## First define median.fun(), with two required arguments:

(

>

>

>

> ## data specifies the data vector,

> ## indices selects vector elements for a each resample

> median.fun <- function(data, indices) {median(datal[indices])}

> ## Call boot(), with statistic=median.fun, R = # of resamples

> (wren.boot <- boot(data = wren, statistic = median.fun, R = 999))

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = wren, statistic = median.fun, R = 999)

Bootstrap Statistics
original bias std. error
tl* 21 0.061 0.225
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The original estimate of the median was 21. The bootstap estimate of the standard error is
0.225, based on 999 resamples. Compare this with the slightly larger standard error estimate
of 0.244 given by the normal theory formula in Subsection 4.1.5. The bootstrap estimate of
the standard error will of course differ somewhat between different runs of the calculation.
Also given is an estimate of the bias, i.e., of the tendency to under- or over-estimate the
median.

4.7.4 Bootstrap estimates of confidence intervals

The usual approach to constructing confidence intervals is based on a statistical theory
that relies, in part, on the assumption of normally distributed observations. Sometimes this
theory is too complicated to work out, and/or the normal assumption is not applicable. In
such cases, the bootstrap may be helpful. We demonstrate the use of the methodology to
calculate confidence intervals for the median and for the correlation.

Several different confidence intervals can be calculated using bootstrap replicates of
the data. The function boot.ci () handles five of these. The perc (percentile) type
is probably the most commonly used method; it is not the most accurate. The bca type
(bias corrected accelerated or BC,) will often give a substantial improvement. Efron and
Tibshirani (1993) give a clear description of these methods, together with theoretical
justification for the use of the BC, method.

Bootstrap 95% confidence intervals for the median

As when computing bootstrap standard errors, we calculate sample medians for a large
number of resamples. The endpoints for the 95% percentile confidence interval are calcu-
lated as the 2.5 and 97.5 percentiles of the resulting distribution of medians. The endpoints
for the BC, confidence interval are calculated in a more complicated way; Efron and
Tibshirani (1993) can be consulted for the details.

> median.fun <- function(data, indices) {median(data[indices])}
> ## Call the boot() function, with statistic=median.fun

> wren <- cuckoos[cuckoosS$Sspecies=="wren", "length"]

> (wren.boot <- boot (data=wren, statistic=median.fun, R=9999))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL

boot.ci (boot.out = wren.boot, type = c("perc", "bca"))
Intervals

Level Percentile BCa

95% (20.9, 22.0 ) (20.0, 21.0 )

Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

Interestingly, the BC, interval is slightly narrower than the cruder percentile interval in
this example. The warning may be taken as an indication that the calculation should be
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run again, with a larger number (perhaps 99 999) of resamples. Such warnings may arise
because of outliers in the data. Use ggnorm (wren) to check that this is not an issue for
these data.

The correlation coefficient

Bootstrap methods do not require bivariate normality. Independence between observations,
i.e., between (x, y) pairs, is as important as ever. Note however that a correlation of, e.g.,
0.75 for a non-normal distribution may have quite different implications from a correlation
of 0.75 when normality assumptions apply.

We will compute 95% confidence intervals for the correlation between chest and
belly for the possum data frame:'°

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL

boot.ci (boot.out = possum.boot, type = c("perc", "bca"))
Intervals

Level Percentile BCa

95% (0.476, 0.709 ) (0.468, 0.704 )

Calculations and Intervals on Original Scale

The bootstrap — parting comments

Bootstrap methods are not a panacea. We must respect the structure of the data; any
form of dependence in the data must be taken into account. There are contexts where the
bootstrap is invalid and will mislead. As a rough guideline, the bootstrap is unlikely to
be satisfactory for statistics, including maximum, minimum and range, that are functions
of sample extremes. The bootstrap is usually appropriate for statistics from regression
analysis — means, variances, coefficient estimates, and correlation coefficients. It also
works reasonably well for medians and quartiles, and other such statistics. See Davison
and Hinkley (1997), Efron and Tibshirani (1993). See also the references in the help page
for the boot () function in the boot package.

4.8* Theories of inference

Formal statistical methodologies are of two broad types: frequentist and Bayesian. The
frequentist approach is usually based on the concept of likelihood; given the model, what
is the probability of obtaining a sample similar to that observed? Parameter values are

16 44 Bootstrap estimate of 95% CI of cor(chest, belly): data frame possum (DAAG)
possum. fun <- function(data, indices) {
chest <- data$chest[indices]
belly <- dataSbelly[indices]
cor (belly, chest)
}
possum.boot <- boot (possum, possum.fun, R=9999)
boot.ci (possum.boot, type=c("perc", "bca"))
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assumed to be unknown constants, and estimates are chosen to maximize this likelihood.
This has been the approach that we have followed for most of this chapter.

Another type of methodology, broadly known as “Bayesian” uses Bayes’ theorem. The
essential idea is that we might have prior information (knowledge or belief) about the distri-
bution of a parameter value before taking a sample of observations. This prior information
can be updated using the sample and the rules of probability.

4.8.1 Maximum likelihood estimation

Consider the model
yi=p+e, i=12,...,n

where p is an unknown constant, and where the errors ¢ are assumed to be independent
and normally distributed with mean 0 and variance 2.

The probability density for the ith y-value is normal with mean u and variance o 2.
Because of the independence assumption, the probability density of the entire sample of
ys is simply the product of these normal densities. This product is the likelihood. The
maximum likelihood estimates are the values of u and ¢ which maximize this function. A
calculus argument can be used to see that the estimates are 3 and s+/(n — 1)/n.

Note that the usual estimator of the standard deviation differs slightly from the maximum
likelihood estimator; the denominator in the usual variance estimate is the number of degrees
of freedom (n — 1 in this case), while it is n for the maximum likelihood estimate; this
difference is negligible in large samples.

For an example, consider the observed differences between heated and ambient,
assuming an independent normal errors model:

funlik <- function(mu, sigma, x=with(pair65, heated-ambient))
prod (dnorm(x, mu, sigma))

In practice, it is more convenient to work with the loglikelihood, rather than the likelihood.
Maximizing on the log scale leads to exactly the same estimates as on the original scale.
Try the following:

> log(funlik (6.3, 6.1)) # Close to estimated mean and SD
[1] -28.549

> log(funlik(6.33, 5.75)) # Close to the actual mle’s

[1] -28.520

> log(funlik (7, 5.75))

[1] -28.580

4.8.2 Bayesian estimation

As noted earlier, the Bayesian methodology provides a way to update our prior information
about the model parameters using sample information.

Usually, the prior information is summarized in the form of a probability law called
the prior distribution of the model parameters. Interest usually centers on the posterior
distribution of the parameters, which is proportional to the product of the likelihood and
the prior distribution.
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A simple application of Bayes’ theorem is as follows. The incidence of HIV in adult
Australian males (1549 years) who do not have any known risk factor may be of the order
of 1in 100000, i.e., the prior probability of infection is 0.00001. A person in this group has
an initial test (for example, it may be required in order to obtain a US green card) that has a
specificity of 0.01%, i.e., for every 10 000 people tested, there will on average be one false
positive. How should such an individual interpret the result? If 100 000 individuals take the
test, one will on average have AIDS and will almost certainly return a positive test. On the
other hand there will, on average, be close to 10 false positives (0.1% of 99 999).

Not infected Infected

10000 x 0.001 = 10 (false) positives 1 true positive

The posterior odds that the person has AIDS are thus close to 1:10, certainly a narrowing
from the prior odds of 1:99 999.

Note that, as often happens when Bayesian calculations are used, the prior information
is not very precise. What we can say is that the prior probability is, in the case mentioned,
very low.

Bayesian estimation with normal prior and normal likelihood

A relatively simple example is that of a normal likelihood (as considered in the previous
section) where the unobserved true mean is now also assumed to have a normal distribution,
but this time with mean 440 and variance 0. The posterior density of the mean is then normal
with mean

ny + oo’ /og
n+o?/o}

and variance

o2

n+ao2/o}

This assumes that o2 is actually known; an estimate can be obtained using the sample
variance. Alternatively, we could put a prior distribution on this parameter as well.

In problems where the model contains many parameters, each with its own prior distri-
bution, the exact calculation of the posterior distribution for each parameter can be quite
involved. Fortunately, in recent years, a simulation technique (called Markov Chain Monte
Carlo, or MCMC) has been shown to give very effective approximations to these posterior
distributions. Calculations must run for long enough that the posterior distribution reaches
a steady state that is independent of the starting values of parameters. The steady state or
stationary distribution is designed to be the posterior distribution of the parameter(s) of
interest.

Exercise 12 in Chapter 3, and the two following exercises, demonstrated the simulation
of finite state Markov chains. Section 5.9 will demonstrate the use of Bayesian MCMC for
straight line regression.
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4.8.3 If there is strong prior information, use it!

Any methodology that ignores strong prior information is inappropriate, and may be highly
misleading. Diagnostic testing (the AIDS test example mentioned above) and criminal
investigations provide cogent examples.

Using the hypothesis testing framework, we take the null hypothesis Hy, in the AIDS
test example, to be the hypothesis that the individual does not have HIV. Given this null
hypothesis, the probability of a positive result is 0.0001. Therefore the null hypothesis is
rejected. As we saw, the prior information makes such a conclusion entirely inappropriate.

In a serious criminal case, the police might scrutinize a large number of potential perpe-
trators. A figure of 10 000 or more is entirely within the range of possibility. Suppose there
is a form of incriminating evidence that is found in one person in 1000.

Scrutiny of 10 000 potential perpetrators will on average net 10 suspects. Suppose one
of these is later charged. The probability of such incriminating evidence, assuming that the
defendant is innocent, is indeed 0.001. The police screening will net around 10 innocent
people along with, perhaps, the one perpetrator. The following summarizes the expected
result of the police search for a suspect. It is optimistic in its assumption that the perpetrator
will be among those netted.

Not the perpetrator The perpetrator

10000 x 0.001 = 10 (false) positives 1 true positive

This evidence leads to odds of 1:10 or worse, i.e., less than 10%, that the defendant is
guilty. On its own, it should be discounted.

The interpretation of results from medical tests for AIDS is discussed in detail in
Gigerenzer (2002). The calculations just given made an informal use of Bayesian method-
ology. Such an approach is essential when, as here, there is strong prior knowledge. Where
there is no strong prior knowledge and the prior assessment of probabilities is little more
than a guess, a Bayesian analysis may nevertheless be insightful.

4.9 Recap
Dos and don’ts

* Do examine appropriate plots.

* Ensure that the analysis and graphs reflect any important structure in the data.

* Always present means, standard errors, and numbers for each group. Results from formal
significance tests have secondary usefulness.

* The use of a large number of significance tests readily leads to data summaries that
lack coherence and insight. Consider whether there is an alternative and more coherent
analysis that would provide better insight.

¢ Reserve multiple range tests for unstructured data.

* Think about the science behind the data. What analysis will best reflect that science?
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* The aim should be an insightful and coherent account of the data, placing it in the context
of what is already known. Ensure that the statistical analysis assists this larger purpose.

4.10 Further reading

On general issues of style and approach, see Wilkinson and Task Force on Statistical Infer-
ence (1999), Maindonald (1992), Krantz (1999) and Gigerenzer (1998, 2002). See also
the statistical good practice guidelines at the website http: / /www.ssc.rdg.ac.uk/
publications/publications.html. Miller (1986) has extensive comment on
consequences of failure of assumptions, and on how to handle such failures. On the design
of experiments, and on analysis of the resulting data, see Cox (1958), Cox and Reid (2000).
We include further brief discussion of the design and analysis of experiments in Chapter 10.

Formal hypothesis testing, which at one time had become almost a ritual among
researchers in psychology, is now generating extensive controversy, reflected in the contri-
butions to Harlow ef al. (1997). The review of the Harlow et al. book in Krantz (1999) is
a good guide to the controversy. See also Gigerenzer (1998), Wilkinson and Task Force on
Statistical Inference (1999), Nicholls (2000).

Gigerenzer et al. (1989) give interesting historical background to different styles and
approaches to inference that have grown up in one or other area of statistical application.
Wonnacott and Wonnacott (1990) have an elementary account of Bayesian methodology.
See also Gelman er al. (2003), Gill (2008). There is a helpful brief summary of Bayesian
methodology, including Bayesian modeling, in Chapters 4, 6 and 7 of Bolker (2008).
Gigerenzer (2002) demonstrates the use of Bayesian arguments in several important prac-
tical contexts, including AIDS testing and screening for breast cancer.

Chapter 4 of Senn (2003) has interesting comments on competing theories of statistical
inference. Young and Smith (2005) give a terse and remarkably comprehensive exposition
of competing theories, which does however make relatively severe technical demands.
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4.11 Exercises

1. Using the data set nswdemo (DAAG), determine 95% confidence intervals for: (a) the 1975
mean incomes of each group; (b) the 1978 mean incomes of each group. Finally, calculate a
95% confidence interval for the difference in mean income between treated and controls in
1978.

2. Draw graphs that show, for degrees of freedom between 1 and 100, the change in the 5%
critical value of the 7-statistic. Compare a graph on which neither axis is transformed with a
graph on which the respective axis scales are proportional to log(z-statistic) and log(degrees
of freedom). Which graph gives the more useful visual indication of the change in the 5%
critical value of the ¢-statistic with increasing degrees of freedom?

3. Generate arandom sample of 10 numbers from a normal distribution with mean 0 and standard
deviation 2. Use t.test () to test the null hypothesis that the mean is 0. Now generate a
random sample of 10 numbers from a normal distribution with mean 1.5 and standard deviation
2. Againuse t . test () totest the null hypothesis that the mean is 0. Finally write a function
that generates a random sample of #» numbers from a normal distribution with mean p and
standard deviation 1, and returns the p-value for the test that the mean is O.

4. Use the function that was created in Exercise 3 to generate 50 independent p-values, all with
a sample size n = 10 and with mean i = 0. Use ggplot (), with the argument setting x =
qunif (ppoints (50) ), tocompare the distribution of the p-values with that of a uniform
random variable, on the interval [0, 1]. Comment on the plot.

5. The following code draws, in a 2 x 2 layout, 10 boxplots of random samples of 1000 from a
normal distribution, 10 boxplots of random samples of 1000 from a ¢-distribution with 7 d.f.,
10 boxplots of random samples of 200 from a normal distribution, and 10 boxplots of random
samples of 200 from a ¢-distribution with 7 d.f.:
oldpar <- par (mfrow=c(2,2))
tenfoldl1000 <- rep(1:10, rep(1000,10))
boxplot (split (rnorm(1000*10), tenfoldl000), ylab="normal - 1000")

boxplot (split (rt(1000*10, 7), tenfoldl000),
vlab=expression(t[7]*" - 1000"))

tenfoldl00 <- rep(1:10, rep(100, 10))

boxplot (split (rnorm(100*10), tenfoldl00), ylab="normal - 100")

boxplot (split (rt (100*10, 7), tenfoldl00),
vlab=expression(t[7]*" - 100"))

par (oldpar)
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Refer back to the discussion of heavy-tailed distributions in Subsection 3.2.2, and comment
on the different numbers and configurations of points that are flagged as possible outliers.

Here we generate random normal numbers with a sequential dependence structure:
vl <- rnorm(51)

y <- y1[-1] + y1[-51]
acf (yl) # acf is ‘autocorrelation function’

# (see Chapter 9)
acft (y)
Repeat this several times. There should be no consistent pattern in the ac £ plot for different
random samples y'1. There will be a fairly consistent pattern in the ac £ plot for v, a result of
the correlation that is introduced by adding to each value the next value in the sequence.

Create a function that does the calculations in the first two lines of the previous exercise.
Put the calculation in a loop that repeats 25 times. Calculate the mean and variance for each
vector vy that is returned. Store the 25 means in the vector av, and store the 25 variances in
the vector v. Calculate the variance of av.

The following use the data frame nswpsid3, created as in footnote 8:

(a) For each column of the data set nswpsid3 after the first, compare the control group
(trt==0) with the treatment group (trt==1). Use overlaid density plots to compare
the continuous variables, and two-way tables to compare the binary (0/1) variables.
Where are the greatest differences?

(b) Repeat the comparison, but now for the data set nswdemo.

(c) Compare and contrast the two sets of results. Read carefully the help pages for psid3
and for nswdemo, and comment on why the different thrust of the two sets of results is
perhaps not surprising.

In a study that examined the use of acupuncture to treat migraine headaches, consenting
patients on a waiting list for treatment for migraine were randomly assigned in a 2:1:1 ratio
to acupuncture treatment, a “sham” acupuncture treatment in which needles were inserted at
non-acupuncture points, and waiting-list patients whose only treatment was self-administered
(Linde er al., 2005). (The “sham” acupuncture treatment was described to trial participants
as an acupuncture treatment that did not follow the principles of Chinese medicine.) Analyze
the following two tables. What, in each case, are the conclusions that should be drawn from
the analyses? Comment on implications for patient treatment and for further research:

(a) Outcome is classified according to numbers of patients who experienced a greater than
50% reduction in headaches over a four-week period, relative to a pre-randomization

baseline:
Acupuncture  Sham acupuncture ~ Waiting list
> 50% reduction 74 43 11
< 50% reduction 71 38 65

(b) Patients who received the acupuncture and sham acupuncture treatments were asked to
guess their treatment. Results were:
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Acupuncture  Sham acupuncture

Chinese 82 30
Other 17 26
Don’t know 30 16

Usemosaicplot () todisplay the table rareplants (Subsection 4.3.1) that was created
using code in footnote 11. Annotate the mosaic plot to draw attention to the results that
emerged from the analysis in Subsection 4.3.1.

The table UCBAdmissions was discussed in Subsection 2.2.1. The following gives a table
that adds the 2 x 2 tables of admission data over all departments:

## UCBAdmissions is in the datasets package

## For each combination of margins 1 and 2, calculate the sum
UCBtotal <- apply (UCBAdmissions, c(1,2), sum)

What are the names of the two dimensions of this table?

(a) From the table UCBAdmissions, create mosaic plots for each faculty separately. (If
necessary refer to the code given in the help page for UCBAdmissions.)

(b) Compare the information in the table UCBtotal with the result from applying the
function mantelhaen. test () to the table UCBAdmissions. Compare the two
sets of results, and comment on the difference.

(c) The Mantel-Haenzel test is valid only if the male-to-female odds ratio for admission is
similar across departments. The following code calculates the relevant odds ratios:
apply (UCBAdmissions, 3, function (x)

(x[1,1]1*x[2,2])/(x[1,2]1*x[2,1]1))
Is the odds ratio consistent across departments? Which department(s) stand(s) out as
different? What is the nature of the difference?

[For further information on the Mantel-Haenszel test, see the help page for mantel-
haen. test and Agresti (2002, pp. 287f).]

Tables 4.10A and B contain fictitious data that illustrate issues that arise in combining data
across tables. To enter the data for Table 4.10A, type:
admissions <- array(c(30,30,10,10,15,5,30,10),

dim=c(2,2,2))
and similarly for Table 4.10B. The third dimension in each table is faculty, as required for
using faculty as a stratification variable for the Mantel-Haenzel test. From the help page for
mantelhaen. test (), extract and enter the code for the function wool€£ (). Apply the
function woolf (), followed by the function mantelhaen. test (), to the data of each
of Tables 4.10A and B. Explain, in words, the meaning of each of the outputs. Then apply the
Mantel-Haenzel test to each of these tables.

The function overlapDensity () in the DAAG package can be used to visualize the
unpaired version of the 7-test. Type in
## Compare densities for ambient & heated: list two65 (DAAG)
with (two65, overlapDensity(ambient, heated))
# Do overlapDensity (ambient, heated) with ambient and heated
# taken, if not found elsewhere, from the columns of two65
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Table 4.10  These illustrate the dangers of adding over contingency
tables. In B, biases that go in different directions in the two faculties have
canceled in the table of totals.

A:
Engineering Sociology Total
Male Female Male Female Male Female

Admit 30 10 Admit 15 30 Admit 45 40
Deny 30 10 Deny 5 10 Deny 35 20
B:

Admit 30 20 Admit 10 20 Admit 40 40
Deny 30 10 Deny 5 25 Deny 35 35

in order to observe estimates of the stretch distributions of the ambient (control) and heated
(treatment) elastic bands.

For constructing bootstrap confidence intervals for the correlation coefficient, it is advisable
to work with the Fisher z-transformation of the correlation coefficient. The following lines of
R code show how to obtain a bootstrap confidence interval for the z-transformed correlation
between chest and belly in the possum data frame. The last step of the procedure is to
apply the inverse of the z-transformation to the confidence interval to return it to the original
scale. Run the following code and compare the resulting interval with the one computed
without transformation. Is the z-transform necessary here?
z.transform <- function(r) .5*log((l+r)/(1l-r))
(exp(2*z)-1)/ (exp(2*z) +1)
possum. fun <- function(data,
chest <- data$chest[indices]
belly <- dataSbelly[indices]
chest) )}
possum.boot <- boot (possum, possum.fun, R=999)
z.inverse (boot.ci (possum.boot, type="perc")S$percent[4:5])
# See help (bootci.object). The 4th and 5th elements of
# the percent list element hold the interval endpoints.

z.inverse <- function(z)
indices) {

z.transform(cor (belly,

The 24 paired observations in the data setmignonet te were from five pots. The observations
are in order of pot, with the numbers 5, 5, 5, 5, 4 in the respective pots. Plot the data in a
way that shows the pot to which each point belongs. Also do a plot that shows, by pot, the
differences between the two members of each pair. Do the height differences appear to be
different for different pots?

Add code to the function mean.and.sd (), defined in Subsection 1.4.3 for calculation of
a 95% confidence interval for the mean. Recall that the multiplier for the standard error is
gt (0.975, nu), where nu is the number of degrees of freedom for the standard deviation
estimate.

Use the function rexp () to simulate 100 random observations from an exponential distri-
bution with rate 1. Use the bootstrap (with 99 999 replications) to estimate the standard error
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of the median. Repeat several times. Compare with the result that would be obtained using
the normal approximation, i.e., /7 /(2n).

Low doses of the insecticide toxaphene may cause weight gain in rats (Chu ez al., 1988).
A sample of 20 rats are given toxaphene in their diet, while a control group of 8 rats are
not given toxaphene. Assume further that weight gain among the treated rats is normally
distributed with a mean of 60 g and a standard deviation of 30 g, while weight gain among
the control rats is normally distributed with a mean of 10 g and a standard deviation of 50 g.
Using simulation, compare confidence intervals for the difference in mean weight gain, using
the pooled variance estimate and the Welch approximation. Which type of interval is correct
more often?

Repeat the simulation experiment under the assumption that the standard deviations are
40 g for both samples. Is there a difference between the two types of interval now? Hint: Is
one of the methods giving systematically larger confidence intervals? Which type of interval
do you think is best?

The following simulation experiment investigates least-squares estimation of the mean:
set.seed(32083)
X <- rnorm(100, mean=3, sd=7)
Next, confirm that the sample mean of the values in x is near 4.642. Now plot the sum of
squared deviations from u:

100

D -’
i=1

as a function of u, using the following code:
lsfun <- function(mu) apply(outer(x, mu, "-")"2, 2, sum)
curve(lsfun, from=4.6, to=4.7)
Repeat this experiment for different samples, noting where the minimum of the sum of the
squares is located each time.

Experiment with the pair65 example and plot various views of the likelihood function,
either as a surface using the persp () function or as one-dimensional profiles using the
curve () function. Is there a single maximizer? Where does it occur?

Suppose the mean reaction time to a particular stimulus has been estimated in several previous
studies, and it appears to be approximately normally distributed with mean 0.35 seconds with
standard deviation 0.1 seconds. On the basis of 10 new observations, the mean reaction time is
estimated to be 0.45 seconds with an estimated standard deviation of 0.15 seconds. Based on
the sample information, what is the maximum likelihood estimator for the true mean reaction
time? What is the Bayes’ estimate of the mean reaction time?

Plot the likelihood function for the mean in the normal errors model for the pair65 differ-
ences. Assume a normal prior distribution with mean 6.0 and standard deviation 5.0. Plot the
prior distribution as well as the posterior distribution of the mean. Is it reasonable to view the
posterior distribution as a compromise between the prior distribution and the likelihood?
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Data for which the models of this chapter may be appropriate can be displayed as a
scatterplot. The focus will be on the straight line model, though the use of transformations
makes it possible to accommodate specific forms of non-linear relationship within this
framework. By convention, the x-variable, plotted on the horizontal axis, has the role of
explanatory variable. The y-variable, plotted on the vertical axis, has the role of response
or outcome variable.

Many of the issues that arise for these simple regression models are fundamental to any
study of regression methods. Various special applications of linear regression raise their
own specific issues. One such special application, discussed in Subsection 5.6.2, is to size
and shape data.

Scrutiny of the scatterplot should precede regression calculations. Such a plot may
indicate that the intended regression is plausible, or it may reveal unexpected features.

If there are many observations, it is often useful to compare the fitted line with a fitted
smooth curve. If this differs substantially from an intended line, then straight line regression
may be inappropriate, as in Figure 2.6. The fitting of such smooth curves will be a major
focus of Chapter 7.

5.1 Fitting a line to data
How accurate is the line?

Application of the summary function to an 1m object from a straight line regression, as
in Subsection 5.1.1 following, gives a standard error for each of a and b. Standard errors
of predicted values may also or alternatively be of interest; we defer discussion of these
until Section 5.3. Determination of these standard errors requires the specific statistical
assumptions that will now be noted.

In the model

yi=o+pxi +e

the assumptions are that given x;, the response y; is from a normal distribution with mean
o + Bx;, and that the y; are sampled independently. Equivalently, the ¢; are independently
and identically distributed as normal variables with mean 0 and variance o2.

With different assumptions (e.g., a sequential correlation between successive data points),

the standard errors will be different.
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5.1.1 Summary information — lawn roller example

As described in Subsection 3.1.2, we use the R model formula depression weight
to supply the model information to the function 1m () . We then use summary () to display

the output:'

> library (DAAG)

> ## Fit 1m model: data from roller (DAAG); output in roller.lm
> roller.lm <- 1lm(depression ~ weight, data = roller)

> ## Use the extractor function summary () to summarize results
> summary (roller.1lm)

Call:

Im(formula = depression ~ weight, data = roller)

Residuals:
Min 10 Median 30 Max
-8.18 -5.58 -1.35 5.92 8.02

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -2.09 4.75 -0.44 0.6723
weight 2.67 0.70 3.81 0.0052

Residual standard error: 6.74 on 8 degrees of freedom
Multiple R-Squared: 0.644, Adjusted R-squared: 0.6
F-statistic: 14.5 on 1 and 8 DF, p-value: 0.00518

Following a numerical summary of the residuals, there is a table of the estimated regres-
sion coefficients and their standard errors. The intercept of the fitted lineisa = —2.09 (SE =
4.75), while the estimated slope is b = 2.67 (SE = 0.70).

The p-value for the slope (testing the null hypothesis that 8 = true slope = 0) is small,
consistent with the evident linear trend. The p-value for the intercept (testing o = 0) is
0.67, i.e., the difference from zero may well be random sampling error. Thus, consistently
with the intuition that depression should be proportional to weight, it would be reasonable
to fit a model that lacks an intercept term. We leave this as an exercise for the reader.’

The standard deviation of the noise term, here identified as the residual standard error, is
6.735. We defer comment on R? and the F-statistic until Subsection 5.1.4.

5.1.2 Residual plots

The residuals provide information about the noise term in the model, and allow limited
checks on model assumptions. Note however that, in such a small data set, departures from
assumptions will be hard to detect.

" ## Global options used for this and most later output
options (show.signif.stars=FALSE, digits=4)
# show.signif.stars=FALSE suppresses interpretive features that,
# for our use of the output, are unhelpful.
2 ## Fit model that omits intercept term; i.e., vy = bx
1lm(depression ~ -1 + weight, data=roller)
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Normal Q-Q Plot
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Figure 5.1 Diagnostic plots for the regression of Figure 3.2A. Panel A plots residuals against fitted
values. Panel B is a normal probability plot of residuals, giving a visual check whether data are
consistent with a normal error distribution.

Two common checks, both available by using the plot () function with an 1m object,
are:

* A plot of residuals versus fitted values, as in Figure 5.1A. This allows a visual check for
any pattern in the residuals that might suggest a curve rather than a line.

* A normal probability plot of residuals, as in Figure 5.1B. If residuals are from a normal
distribution points should lie, to within statistical error, close to a line.

Code for these plots is:*

## A: Plot residuals vs fitted values; B: normal probability plot
plot(roller.lm, which = 1:2)

Note that if the argument which is left at its default, i.e., type plot (roller.1lm),
there are two further plots. These further default plots will be demonstrated later.

In Figure 5.1A, there is a suggestion of clustering in the residuals, but no clear indication
that there should be a curve rather than a line.

For interpreting the normal probability plot in Figure 5.1B, the eye needs a reference
standard. It is useful to compare a plot such as Figure 5.1B against a number of independent
plots from computer-generated normal data with the same number of observations, as in
Figure 5.2, thus in effect calibrating the eye. The function greference () (DAAG) may
be used to generate suitable plots:*

## Normal probability plot, plus 7 reference plots
greference (residuals(roller.1lm), nrep=8, nrows=2)

3 For side-by-side plots, precede with par (mfrow=c (1,2)).
A T Alternatively, use the following code:

test <- residuals(roller.lm); n <- length(test)

av <- mean(test); sdev <- sd(test)

y <- c(test, rnorm(7*n, av, sdev))

fac <- c(rep("residuals(roller.1lm)",n), paste("reference", rep(l:7, rep(n,7))))
fac <- factor(fac, levels=unique(fac))

library (lattice)

ggmath (™ y\fac, aspect=1, layout=c(4,2))
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Figure 5.2 The normal probability plot for the regression of Figure 3.2A is shown in the lower left
panel. Other panels show normal probability plots for computer-generated normal data.

5.1.3 Iron slag example: is there a pattern in the residuals?

Now consider an example where there is an evident pattern in residuals from a straight
line regression. The data compare two methods for measuring the iron content in slag —
a magnetic method and a chemical method (data are from Roberts, 1974, p. 126). The
chemical method requires greater effort and is presumably expensive, while the magnetic
method is quicker and easier.

Figure 5.3A suggests that the straight line model is wrong.” The smooth curve (shown
with a dashed line) gives a better indication of the pattern in the data. Panel B shows the
residuals from the straight line fit.° The non-linearity is now more evident. Panel C plots
observed values against predicted values.” Panel D allows a visual check on whether the
error variance is constant.® There are theoretical reasons for plotting the square root of
absolute values of the residuals on the vertical axis in panel D.

Taken at face value, Figure 5.3D might seem to indicate that the variance decreases with
increasing value of magnetic. Note, however, that the residuals are from the straight line
model, which Figures 5.3A and B suggested was inappropriate. Thus the plot in panel D

S ## Panel A: chemical vs magnetic (Data frame ironslag from DAAG)
plot (chemical ~ magnetic, data=ironslag)
ironslag.lm <- lm(chemical ~ magnetic, data=ironslag)
abline(ironslag.lm)
with(ironslag, lines(lowess (chemical ~ magnetic, £=.9), 1lty=2))
% ## Panel B: Residuals from straight line fit, vs magnetic
res <- residuals(ironslag.lm)
plot(res ~ magnetic, xlab="Residual", data=ironslag)
with(ironslag, lines(lowess(res ~ magnetic, f=.9), 1lty=2)
7 ## Panel C: Observed vs predicted
vhat <- fitted(ironslag.lm)
plot (chemical ~ yhat, data=ironslag, xlab="Predicted chemical", ylab="Chemical")
with(ironslag, lines(lowess (chemical ~ yhat, f=.9), 1lty=2))
8 ## Panel D: Check whether error variance seems constant
sgrtabs <- sqgrt(abs(res))
plot (sgrtabs ~ yhat, data=ironslag, xlab = "Predicted chemical",
yvlab = expression(sqgrt(abs(residual))), type = "n")
panel.smooth (yvhat, sgrtabs, span = 0.95)
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Figure 5.3 Chemical test of iron content in slag versus magnetic test. The fitted curves used the
lowess smooth. In panel D, the downward slope suggests lower variance for larger fitted values. See
however Figure 5.4.
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Figure 5.4 Residuals (panel A), and square root of absolute values of residuals (panel B), for the
lowess smooth for the data of Figure 5.3. (Exercise 8 at the end of the chapter has the R code.)

may be misleading. For an accurate assessment, it is necessary to examine the equivalent
plot for residuals from the smooth curve.

Figure 5.4 shows the plot of residuals from the smooth curve versus magnetic, together
with the plot of square root of absolute values of residuals against predicted chemical test
result. Any suggestion of heterogeneity is now of small consequence.

Where there is genuine heterogeneity of variance, and an accurate estimate of the variance
at each data point is available, data points should be weighted proportionately to the
reciprocal of the variance. Getting an estimate to within some constant of proportionality
is enough. It may be possible to guess at a suitable functional form for the change in
variance with x or (equivalently, since y = a 4 bx) with y. For example, the variance may
be proportional to y.
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5.1.4 The analysis of variance table

The analysis of variance table breaks the sum of squares about the mean, for the y-variable,
into two parts: a part that is accounted for by the deterministic component of the model, i.e.,
by a linear function of weight, and a part attributed to the noise component or residual.
For the lawn roller example, the analysis of variance table is:

> anova(roller.1lm)
Analysis of Variance Table

Response: depression

Df Sum Sg Mean Sg F value Pr (>F)
weight 1 657.97 657.97 14.503 0.005175
Residuals 8 362.93 45.37

The total sum of squares (about the mean) for the 10 observations is 1020.9 (= 658.0 +
362.9; we round to one decimal place). Including weight reduced this by 658.0,
giving a residual sum of squares equal to 362.9. For comparing the reduction with
the residual, it is best to look at the column headed Mean Sq, i.e., mean square. The
mean square for weight was 658.0; this compares with a mean square of 45.4 for the
residual.

The degrees of freedom can be understood thus: Two points determine a line. With
just two observations, both residuals would be zero, yielding no information about the
noise. Every additional observation beyond two yields one additional degree of freedom
for estimating the noise variance. Thus with 10 points, 10 — 2 (= 8) degrees of freedom are
available (in the residuals) for estimating the noise variance. (Where a line is constrained
to pass through the origin, one point is enough to determine the line, and with 10 points the
variance would be estimated with 9 degrees of freedom.)

This table has the information needed for calculating R? (also known as the “coefficient of
determination”) and adjusted R?. The R? statistic is the square of the correlation coefficient,
and is the sum of squares due to weight divided by the total sum of squares:

o2 6580

~ 10209 T

while

362.9/8

adjusted R> = 1 — ————
1020.9/9

= 0.60.

Adjusted R? takes into account the number of degrees of freedom, and is in general
preferable to R?. Neither statistic gives any direct indication of how well the regression
equation will predict when applied to a new data set. Subsection 6.3.2 will argue against
use of these statistics, and suggest alternatives. See also Section 5.4.

5.2 Outliers, influence, and robust regression

The data displayed in Figure 5.5, with data shown on the right, are for a collection of eight
softback books. Additionally, the figure shows the fitted regression line, with information
on the residuals from the line.
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Figure 5.5 Volumes (<m?®) and weights (g), for eight softback books. The figure also shows the
fitted regression line, with information on the residuals from the line.
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Figure 5.6 Diagnostic plots for Figure 5.5.

Here is the output from the regression calculations:

## Fit 1lm model:
> softbacks.lm <- 1lm(weight ~

(DAAG)
data=softbacks)

data frame softbacks
volume,
> summary (softbacks.1lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
41.372 97.559 0.42 0.68629
0.686 0.106 6.47 0.00064

(Intercept)
volume

Figure 5.6 shows regression diagnostics. Suitable code is:

par (mfrow=c (2,2)) # Use par (mfrow=c(1l,4))
plot (softbacks.lm, which=1:4)

# By default, plots 1:3 and 5
par (mfrow=c(1,1))

for layout in figure

[which=c(1:3,5)] are given

We should already be familiar with plots A and B from Figure 5.6. For regression with
one explanatory variable, plot A is equivalent to a plot of residuals against the explanatory
variable. Plot C, which is not of much interest for the present data, is designed for examining
the constancy of the variance. Plot D identifies residuals that are influential in determining
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the form of the regression line. Points with Cook’s distances that are greater than one,
or whose Cook’s distances are substantially larger than for other points, may warrant
investigation. The largest two residuals in Figure 5.6D, for observations 4 and 6, are
identified with their row labels. For the sof tbacks data, the row labels are the observation
numbers.

Cook’s distance is a measure of influence; it measures the extent to which the line would
change if the point were omitted. Although observation 6 has the largest residual, its Cook’s
distance is relatively small. Observation 4 has the largest Cook’s distance. In part, the value
is large because this point is at the extreme end of the range of x-values. Itis a high leverage
point that exerts a greater pull on the regression line than observations closer to the center
of the range. Since its y-value is lower than would be predicted by the line, it pulls the line
downward.

Diagnostic plots, such as Figure 5.6, are not definitive. Rather, they draw attention to
points that require further investigation. Here, with only eight points, it would not make
sense to omit any of them, especially as points 4 and 6 are both, for different reasons,
candidates for omission.

It may, on checking, turn out that an outlier has arisen from a recording or similar error.
Where an outlier seems a genuine data value, it is good practice to do the analysis both
with and without the outlier. If retention of an apparent outlier makes little difference to
the practical use and interpretation of the results, it is usually best to retain it in the main
analysis. If an outlier that seems a genuine data value is omitted from the main analysis, it
should be reported along with the main analysis, and included in graphs.

Robust regression

Robust regression offers a half-way house between including outliers and omitting them
entirely. Rather than omitting outliers, it downweights them, reducing their influence on the
fitted regression line. This has the additional advantage of making outliers stand out more
strongly against the line. The MASS package has the robust regression function r1m().
Note also the resistant regression function 1gs (), also in the MASS package. Resistant
regression methods aim to ensure that outliers do not contribute to the regression fit. For
both robust and resistant methods, it is important that residuals have an approximately
symmetric distribution. See further, Section 6.3 and Exercise 14 at the end of Chapter 6.

5.3 Standard errors and confidence intervals

Recall that since two parameters (the slope and intercept) have been estimated, the error
mean square is calculated with n — 2 degrees of freedom. As a consequence, the standard
errors for the slope and for predicted values are calculated with n — 2 degrees of freedom.
Both involve the use of the square root of the error mean square.

Additionally, as will be demonstrated in Subsection 5.3.2, the predict () function can
be used to obtain standard errors and/or confidence intervals for predicted values. A wide
confidence interval for the regression slope implies that intervals for predicted values will
likewise be wide.
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5.3.1 Confidence intervals and tests for the slope

A 95% confidence interval for the regression slope is
b =+ t975SE,

where ¢ 975 is the 97.5% point of the ¢-distribution with n — 2 degrees of freedom, and SE,,
is the standard error of b.

We demonstrate the calculation for the roller data. From the second row of the
Coefficients table in the summary output of Subsection 5.1.1, the slope estimate is
2.67, with SE = 0.70. The ¢-critical value for a 95% confidence interval on 10 —2 =8
degrees of freedom is f.975 = 2.30. Therefore, the 95% confidence interval is:”

2.67+£23x0.7=(1.1,4.3).

If the 95% confidence interval for b contains 0, the null hypothesis that the slope is zero
will be rejected at the 95% significance level. (For the testing of such hypotheses, refer
back to Subsection 5.1.1.)

5.3.2 SEs and confidence intervals for predicted values

There are two types of predictions: prediction of points on the line, and prediction of a
new data value. The SE estimates of predictions for new data values take account both of
uncertainty in the line and of the variation of individual points about the line. Thus the SE
for prediction of a new data value is larger than that for prediction of points on the line.

Table 5.1 shows expected values of the depression, with SEs, for various roller weights. '
The column headed SE indicates the precision of points on the line. The column headed
SE.OBS indicates the precision with which new observations can be predicted. For deter-
mining SE.OBS, there are two sources of uncertainty: the standard error for the fitted value
(estimated at 3.6 in row 1) and the noise standard error (estimated at 6.74) associated with
a new observation.

Figure 5.7 shows 95% pointwise confidence bounds for the fitted line.'' It bears empha-
sizing that the validity of these calculations depends crucially on the appropriateness of the
fitted model for the given data.

% ## Code for confidence interval calculations
SEb <- summary (roller.lm)Scoefficients([2, 2]
coef (roller.1lm) [2] + gt(c(0.025,.975), 8)*SEb
1044 Code to obtain fitted values and standard errors (SE, then SE.OBS)
fit.with.se <- predict(roller.lm, se.fit=TRUE)
fit.with.se$se.fit # SE
sqgrt(fit.with.seSse.fit"2+fit.with.seSresidual.scale”2) # SE.OBS
## Plot depression vs weight, with 95\% pointwise bounds for the fitted line
plot (depression ~ weight, data=roller, xlab = "Weight of Roller (tonnes)",
ylab = "Depression in Lawn (mm)", pch = 16)
roller.lm <- 1lm(depression ~ weight, data = roller)
abline(roller.lm$coef, 1lty = 1)
xy <- data.frame(weight = pretty(rollerSweight, 20))
vhat <- predict(roller.lm, newdata = xy, interval="confidence")
ci <- data.frame(lower=yhat[, "lwr"], upper=yhat[, "upr"]
lines (xy$weight, ci$lower, lty = 2, 1lwd=2, col="grey")
lines (xySweight, ciSupper, lty = 2, lwd=2, col="grey")
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Table 5.1 Observed and fitted values of depression at the given
weight values, together with two different types of SE. The column
headed SE gives the precision of the predicted value. The column headed
SE.OBS gives the precision of a new observation.

Predictor  Observed
weight depression Fitted SE SE.OBS

1 1.9 2 30 3.6 7.6 V3.6 +6.742
2 3.1 1 62 30 7.4 V3.0 +6.742
3 33 5 6.7 29 73

.10 12.4 25 310 49 8.3

30

Depression in lawn (mm)

T T T T T T
0 2 4 6 8 10
Weight of roller (tonnes)

Figure 5.7 Lawn depression, for various weights of roller, with fitted line and showing 95% point-
wise confidence bounds for points on the fitted line.

5.3.3* Implications for design

An emphasis of this subsection is that the choice of location of the x-values, which is a
design issue, is closely connected with sample size considerations. Increasing the sample
size is not the only, or necessarily the best, way to improve precision.

The estimated variance of the slope estimate is

2

) S
SE;, = —,
ns?
where we define
=\2
§2 — > i(xi — X)
X n *

Here s is the error mean square, i.e., s is the estimated SD for the population from which
the residuals are taken. The expected value of SEj is

2 o’
EISE}] = —.
X

Now consider two alternative ways to reduce SE; by a factor of 2:
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Figure 5.8 Two rubber band experiments, with different ranges of x-values. The dashed curves are
pointwise 95% confidence bounds for points on the fitted line. Note that, for the panel on the right, the
axis labels appear above the panel, as is done for lattice plots. Data are from elasticl (left panel,
7 points) and elastic?2 (right panel, 9 points), both from DAAG. Even with 9 points as against 7,
the right panel has much wider pointwise bounds.

* By fixing the configuration of x-values, but multiplying by 4 the number of values at
each discrete x-value, s, is unchanged. As n increases by a factor of 4, the expected
value of SE? reduces by a factor of 4, and SE,, by a factor of 2.

¢ Alternatively, increasing the average separation between x-values by a factor of 2 will
reduce SE,, by a factor of 2.

Spreading out the x-values achieves the same reduction in SE;, as increasing the number of
points. Checking for linearity over the extended range of x-values is, however, important.

Reducing SE,, reduces the standard error of the fitted values as well. Figure 5.8 shows the
effect of increasing the range of x-values (the code for both panels is a ready adaptation of
the code for Figure 5.7). Both experiments used the same rubber band. The first experiment
used a much wider range of values of x (= amount by which the rubber band was stretched).
For the left panel of Figure 5.8, s, = 10.8, while for the right panel, s, = 4.3.

5.4 Assessing predictive accuracy

The training data estimate of predictive accuracy, derived by direct application of model
predictions to the data from which the regression relationship was derived, gives in general
an optimistic assessment. There is a mutual dependence between the model prediction
and the data used to derive that prediction. It is because of this dependence that degrees
of freedom for the variance are adjusted to take account of the number of parameters
estimated.

The issue becomes more important in contexts, such as the classification models that will
be discussed in Chapter 11 and Section 12.2, where no satisfactory theoretical adjustment
for the dependence is available. The simple models discussed in the present chapter are a
good context in which to demonstrate general approaches that address this issue.
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Table 5.2  Floor area and sale price, for 15 houses in
Aranda, a suburb of Canberra, Australia.

Row number area bedrooms sale.price
1 694 4 192.0
2 905 4 215.0

15 1191 6 375.0

5.4.1 Training/test sets and cross-validation

An ideal is to assess the performance of the model on a new data set. It is good practice
to split the data into two sets: the training set is for developing the model, and the fest
set is for testing predictions. This is a valid procedure, if the test set can be regarded as
a random sample of the population to which predictions will be applied. If there are too
few data to make it reasonable to divide data into training and test sets, then the method of
cross-validation can be used.

Cross-validation extends the training/test set approach. As with that approach, it estimates
predictive accuracy for data that are sampled from the population in the same way as the
existing data. The data are divided into k sets (or folds), where k is typically in the range 3
to 10. Each of the k sets becomes in turn the test set, with the remaining data forming the
training set. The predictive accuracy assessments from the k folds are combined to give a
measure of the predictive performance of the model. This may be done for several different
measures of predictive performance.

5.4.2 Cross-validation — an example

We present an example of the use of cross-validation with a small data set. In order to
simplify the discussion, we will use threefold validation only.

Table 5.2 shows data on floor area and sale price for 15 houses in a suburb of Canberra, in
1999. Rows of data have been numbered from 1 to 15. For demonstrating cross-validation,
we use a random number sampling system to divide the data up into three equal groups.'”

The observation numbers for the three groups we obtain are:

2 3 12 13 15
157 8 14
4 6 9 10 11

Rerunning the calculations will of course lead to a different division into three groups.
At the first pass (fold 1) the first set of rows will be set aside as the test data, with
remaining rows making up the training data. Each such division between training data and

12 44 Split row numbers randomly into 3 groups
rand <- sample(1:15)%%3 + 1
# a%%3 is the remainder of a, modulo 3
# Subtract from a the largest multiple of 3 that is <= a; take remainder
(1:15) [rand == 1] # Observation numbers for the first group
(1:15) [rand == 2] # Observation numbers for the second group
(1:15) [rand == 3] # Observation numbers for the third group.
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Figure 5.9 Graphical summary of threefold cross-validation for the house sale data (Table 5.2). The
line is fitted leaving out the corresponding “test” set of points. Predictions for these omitted points
are used to assess predictive accuracy.

test data is known as a fold. At the second pass (fold 2) the second set of rows will be
set aside as the test data, while at the third pass (fold 3) the third set of rows will be set
aside as the test data. A crucial point is that at each pass the data that are used for testing
are separate from the data used for prediction. Figure 5.9 is a visual summary, obtained by
using the function CV1m () (DAAG) with the default setting plotit=TRUE.

The following summary of the cross-validation results includes, for each fold, estimates
of the mean square error.

> ## Cross-validate 1m calculations: data frame houseprices (DAAG)
> houseprices.lm <- Im(sale.price ~ area, data=houseprices)
> CVlm(houseprices, houseprices.lm, plotit=TRUE)

fold 1
Observations in test set: 2 3 12 13 15
Floor area 905.0 802.00 696.0 771.0 1191

Predicted price 225.9 208.63 190.9 203.4 274
Observed price 215.0 215.00 255.0 260.0 375

Residual -10.9 6.37 64.1 56.6 101
Sum of squares = 17719 Mean square = 3544 n =25
fold 2

Observations in test set: 1 5 7 8 14

Floor area 694.0 716 821.0 714.00 1006.0
Predicted price 222.4 225 238.6 224.97 262.2
Observed price 192.0 113 212.0 220.00 293.0
Residual -30.4 -113 -26.6 -4.97 30.8
Sum of squares = 15269 Mean square = 3054 n=2>5

fold 3
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Observations in test set: 4 6 9 10 11

Floor area 1366 963.0 1018.0 887.00 790.00
Predicted price 412 278.4 296.6 253.28 221.22
Observed price 274 185.0 276.0 260.00 221.50
Residual -138 -93.4 -20.6 6.72 0.28

Sum of squares = 28127 Mean square = 5625 n =25
Overall ms
4074

At each fold, the training set consists of the remaining rows of data.
To obtain the estimate of the error mean square, take the total of the sums of squares and
divide by 15. This gives

s = (17719 + 15269 + 28 127)/15 = 4074.

Actually, what we have is an estimate of the error mean square when we use only two-thirds
of the data. Thus we expect the cross-validated error to be larger than the error if all the
data could be used. We can reduce the error by doing 10-fold rather than threefold cross-
validation. Or we can do leave-one-out cross-validation, which for these data is 15-fold
cross-validation.

Contrast s> = 4074 with the estimate s> = 2323 that we obtained from the model-based
estimate in the regression output for the total data.'?

5.4.3* Bootstrapping

We first indicate how resampling methods can be used to estimate the standard error of slope
of a regression line. Recalling that the standard error of the slope is the standard deviation
of the sampling distribution of the slope, we need a way of approximating this sampling
distribution. One way of obtaining such an approximation is to resample the observations
or cases directly. For example, suppose five observations have been taken on a predictor x
and response y:

(x1, y1), (x2, ¥2), (x3, y3), (X4, ya), (x5, y5).

Generate five random numbers with replacement from the set {1, 2, 3,4, 5}: 3,5, 5, 1, 2,
say. The corresponding resample is then

(x3, ¥3), (X5, ¥5), (X5, ¥5), (X1, Y1), (X2, ¥2).

Note we are only demonstrating the so-called case-resampling approach. Another approach
involves fitting a model and resampling the residuals. Details for both methods are in
Davison and Hinkley (1997, Chapter 6). A regression line can be fit to the resampled
observations, yielding a slope estimate. Repeatedly taking such resamples, we obtain a
distribution of slope estimates, the bootstrap distribution.

3 ## Estimate of sigma”2 from regression output
summary (houseprices.lm)$sigma”2
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As an example, consider the regression relating sale.price to area in the
houseprices data. We will compute a bootstrap estimate of the standard error of the
slope. For comparison purposes, note first the estimate given by 1m () : 0.0664.

> houseprices.lm <- Im(sale.price area, data=houseprices)
> gsummary (houseprices.lm) $Scoef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.750 60.3477 1.17 0.2621
area 0.188 0.0664 2.83 0.0142

In order to use the boot () function, we need a function that will evaluate the slope for
each of the bootstrap resamples:

houseprices.fn <- function (houseprices, index) {
house.resample <- houseprices[index, ]
house.lm <- Im(sale.price ~ area, data=house.resample)
coef (house.1lm) [2] # slope estimate for resampled data

}

We then use the boot () function to make 999 calls to the houseprices. fn () function
with different randomly generated resamples from the data frame houseprices.

> set.seed(1028) # use to replicate the exact results below
> library (boot) # ensure that the boot package is loaded

> ## requires the data frame houseprices (DAAG)
>

(houseprices.boot <- boot (houseprices, R=999, statistic=houseprices.fn))

Bootstrap Statistics
original bias std. error
tl* 0.188 0.0169 0.0916

The output shows us the original slope estimate, a bootstrap estimate of the bias of this
estimate, and the standard error estimate: 0.0916. This standard error was computed from
the standard deviation of the 999 resampled slope estimates.

By changing the statistic argument in the boot () function appropriately, we can com-
pute standard errors and confidence intervals for fitted values. Here we use the predict ()
function to obtain predictions for the given area:

housepred.fn <- function (houseprices, index) {
house.resample <- houseprices[index, ]
house.lm <- Im(sale.price ~ area, data=house.resample)
predict (house.lm, newdata=data.frame (area=1200))

}

For example, a 95% confidence interval for the expected sale price of a house (in Aranda)
having an area of 1200 square feet is (249 000, 363 000).'*

4 44 959 CI for predicted price of 1200 square foot house
housepred.boot <- boot (houseprices, R=999, statistic=housepred.fn)
boot.ci (housepred.boot, type="perc") # "basic" is an alternative to "perc"
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Figure 5.10 (A) Plot of bootstrap distributions of prediction errors for regression relating
sale.price to area, each based on 200 bootstrap estimates of the prediction error. (B) Ratios of
bootstrap prediction standard errors to model-based prediction standard errors.

The bootstrap procedure can be used to gain additional insight into how well a regression
model is making predictions. Regression estimates for each resample are used to compute
predicted values at all of the original values of the predictor. The differences (i.e., the
prediction errors) between the observed responses and these resampled predictions can be
plotted against observation number. Repeating this procedure a number of times gives a
distribution of the prediction errors at each observation. Figure 5.10 A displays a prediction
error plot for the houseprices data.'” Note the large variability in the prediction error
associated with observation 4. We can use the same bootstrap output to estimate the standard
errors. These can be compared with the usual estimates obtained by 1m. Figure 5.10B
displays ratios of the bootstrap standard errors to the model-based standard errors.'® In
this case, the model-based standard errors are generally smaller than the bootstrap standard
errors. A cautious data analyst might prefer the bootstrap standard errors.

We can also compute an estimate of the aggregate prediction error, as an alternative to
the cross-validation estimate obtained in the previous subsection. There are a number of
ways to do this, and some care should be taken. We refer the interested reader to Davison
and Hinkley (1997, Section 6.4).

15 ## Bootstrap estimates of prediction errors of house prices
houseprices2.fn <- function (houseprices, index)
{
house.resample <- houseprices[index, ]
house.lm <- Ilm(sale.price ~ area, data=house.resample)
houseprices$sale.price - predict (house.lm, houseprices) # resampled prediction
# errors
}
n <- length(housepricesSarea); R <- 200
houseprices2.boot <- boot (houseprices, R=R, statistic=houseprices2.fn)
house.fac <- factor(rep(l:n, rep(R, n)))
plot (house.fac, as.vector (houseprices2.boot$t), ylab="Prediction Errors",
xlab="House")
16 44 Ratios of bootstrap to model-based standard errors
bootse <- apply(houseprices2.boots$t, 2, sd)
usualse <- predict.lm(houseprices.lm, se.fit=TRUE)$se.fit
plot (bootse/usualse, ylab="Ratio of Bootstrap SE’s to Model-Based SE’s",
xlab="House", pch=16)
abline (1, 0)
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Commentary

The cross-validation and bootstrap estimates of mean square error are valid, provided we
can assume a homogeneous variance. This is true even if data values are not independent.
However, the estimate of predictive error applies only to data that have been sampled in the
same way as the data that are used as the basis for the calculations. They assume that the
target population will be highly comparable to the source population that generated
the data. In the present instance, the estimate of predictive accuracy applies only to 1999
house prices in the same city suburb.

Such standard errors may have little relevance to the prediction of house prices in
another suburb, even if thought to be comparable, or to prediction for more than a
very short period of time into the future. This point has relevance to the use of regres-
sion methods in business “data mining” applications. A prediction that a change will
make cost savings of $500000 in the current year may have little relevance to subse-
quent years. The point has special force if changes will take years rather than months to
implement.

A realistic, though still not very adequate, assessment of accuracy may be derived by
testing a model that is based on data from previous years on a test set that is formed from the
current year’s data. Predictions based on the current year’s data may, if other features of the
business environment do not change, have a roughly comparable accuracy for prediction a
year into the future. If the data series is long enough, we might, starting at a point part-way
through the series, compare predictions one year into the future with data for that year.
The estimated predictive accuracy would be the average accuracy for all such predictions.
A more sophisticated approach might involve incorporation of temporal components into
the model, i.e., use of a time series model. See Maindonald (2003) for more extended
commentary on such issues.

5.5 Regression versus qualitative anova comparisons — issues of power

An analysis that fails to take advantage of structure in the data may fail to find what is
there. Figure 5.11 shows six sets of data that have been simulated to follow a linear trend.
Simulation of regression models was discussed in Subsection 3.3.2.

The first p-value tests for linear trend, while the second p-value tests for qualitative
differences between treatment effects, ignoring the fact that the levels are quantitative
(note that the test for linear trend is equivalent to the test for a linear contrast from the
aov () function that is available when the explanatory term is an ordered factor). A test
for linear trend is more powerful than an analysis of variance that treats the five levels as
qualitatively different levels. In repeated simulations of Figure 5.11, the p-values in the
test for linear trend will on average be smaller than in the analysis of variance that makes
qualitative comparisons between the five levels.

To get a clear indication of the effect, we need a more extensive simulation. Figure 5.12
plots results from 200 simulations. Both axes use a scale of log(p/(1 — p)). On the vertical
axis are the p-values for a test for linear trend, while the horizontal axis plots p-values for
an aov test for qualitative differences. The majority of points (for this simulation, 91%) lie
below the line y = x.
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Figure 5.11 Test for linear trend, versus analysis of variance comparison that treats the levels as
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slope 0.8, SD = 2, and 4 replications per level.

01 09
|

0.001
1
#A
2

p-value: Test for linear trend

T T T
0.001 041 0.9
p-value: Qualitative aov comparison

Figure 5.12 This plot compares p-values from a test for linear trend with p-values from an analysis
of variance test for qualitative differences, in each of 200 sets of simulated results. The line y = x is
superimposed.

The function simulateLinear () in our DAAG package allows readers to exper-
iment with such simulations. Write the p-values for a test for linear trend as p;, and
the p-values for the analysis of variance test for qualitative differences as p,. Spec-
ifying type="density" gives overlaid plots of the densities for the two sets of
p-values, both on a scale of log(p/(1 — p)), together with a plot of the density of
log(pi /(1 — pp)) —log(p./(1 — pa)). As the data are paired, this last plot is the preferred
way to make the comparison.

The pattern of change

There are other reasons for fitting a line or curve, where this is possible, rather than fitting
an analysis of variance model that has a separate parameter for each separate level of
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Figure 5.13 The above panels show some alternative response curves. The formula for j gives the
power family transformation of y that will make ¥ a linear function of x. Thus, if y = log(x), then
the transformation j = exp(y) will make ¥ a linear function of x.

the explanatory variable. Fitting a line (or a curve) allows interpolation between successive
levels of the explanatory variable. It may be reasonable to hazard prediction a small distance
beyond the range of the data. The pattern of response may give scientific insight.

5.6 Logarithmic and other transformations
5.6.1* A note on power transformations

Among the more common transformations for continuous data are:

* Logarithmic. This is often the right transformation for size measurements (linear,
surface, volume or weight) of biological organisms. Some data may be too skewed even
for a logarithmic transformation. For example, counts of insects on leaves may have this
character.

* Square root or cube root. These are milder than the logarithmic transformation. If linear
measurements on insects are normally distributed, then we might expect the cube root
of weight to be approximately normally distributed. The square root is useful for data
for counts of “rare events”. The power transformation generalizes the transformations
that we have just discussed. Examples of power transformations are y2, y*3, y3, etc.
Figure 5.13 shows a number of response curves, and describes the particular power
transformation that would make the relationship linear.

If the ratio of largest to smallest data value is greater than 10, and especially if it is more
than 100, then the logarithmic transformation should be tried as a matter of course. Check
this advice against the response curves shown in Figure 5.13.
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Figure 5.14 Heart weight versus body weight, for 30 Cape fur seals.

We have so far mentioned only transformation of y. We might alternatively transform x,
or transform both x and y.

*General power transformations

For X # 0, the power transformation replaces a value y by y*. The logarithmic transforma-
tion corresponds to A = 0. In order to make this connection, a location and scale correction
is needed. The transformation is then

-1 .
Y0) = . ifA £0,

y(A) = log(y), ifA=0.

¢ If the small values of a variable need to be spread, make A smaller.
¢ If the large values of a variable need to be spread, make A larger.

This is called the Box—Cox transformation, as proposed in Box and Cox (1964).

The function boxcox () (MASS), whose syntax is similar to that of 1m (), can be
used to obtain data-driven estimates of A. An exercise at the end of the chapter pursues
investigation of boxcox ().

5.6.2 Size and shape data — allometric growth

The logarithmic transformation is commonly important for morphometric data, i.e., for
data on the size and shape of organisms. Figure 5.14 uses logarithmic scales to plot heart
weight against body weight, for 30 seals that had been snared in trawl nets as an unintended
consequence of commercial fishing (Stewardson et al., 1999).

For each animal, the data provide information at just one point in time, when they died.
The data thus have limited usefulness for the study of growth profiles through time. At best,
if conditions have not changed too much over the lifetimes of the animals in the sample,
the data may provide an indication of the average of the population growth profiles. If, e.g.,
sample ages range from 1 to 10 years, it is pertinent to ask how food availability may have
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changed over the past 10 years, and whether this may have had differential effects on the
different ages of animal in the sample.

The allometric growth equation

The allometric growth equation is

y =ax®

where x may, e.g., be body weight and y heart weight. It may alternatively be written
logy =loga + blogx,
ie.,
Y = A+ bX,
where
Y =logy, A=loga, and X =logx.

Thus, we have an equation that can be fitted by linear regression methods, allowing predic-
tion of values of Y given a value for X. If b = 1, then the two organs (e.g., heart and body
weight) grow at the same rate.

Here is the R output for the calculations that fit the regression line in Figure 5.14:

> summary (cfseal.lm <- 1lm(log(heart) ~ log(weight), data=cfseal))

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2043 0.2113 5.7 4.1le-06
log (weight) 1.1261 0.0547 20.6 < 2e-16

Residual standard error: 0.18 on 28 degrees of freedom
Multiple R-Squared: 0.938, Adjusted R-squared: 0.936
F-statistic: 424 on 1 and 28 DF, p-value: <2e-16

Note that the estimate of the exponent b (= 1.126) differs from 1.0 by 2.3
(= 0.126/0.0547) times its standard error. Thus for these data, the relative rate of increase
seems slightly greater for heart weight than for body weight. We have no interest in the
comparison between b and zero, for which the f-statistic and p-value in the regression
output are appropriate (authors sometimes present p-values that focus on the comparison
with zero, even though their interest is in the comparison with 1.0. See Table 10 and other
similar tables in Gihr and Pilleri (1969, p. 43)). For an elementary discussion of allometric
growth, see Schmidt-Nielsen (1984).

5.7 There are two regression lines!

At this point, we note that there are two regression lines — a regression line for y on x, and
a regression line for x on y. It makes a difference which is the explanatory variable, and
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Figure 5.15 Each plot shows both the regression line for y on x (solid line), and the regression line
for x on y (dotted line). In panel A the lines are quite similar, while in panel B where the correlation
is smaller, the lines are quite different. Plot A is for the data of Table 3.1, while B is for a leaf data
set.

which the dependent variable. The two lines are quite different if the correlation is small.
Figure 5.15 illustrates the point for two other data sets.

An alternative to a regression line

There are yet other possibilities. A perspective that makes good sense for the seal organ
growth data s that there is an underlying linear functional relationship. The analysis assumes
that observed values of log(organ weight) and log(body weight) differ from the values for
this underlying functional relationship by independent random amounts. The line that is
obtained will lie between the regression line for y on x and the line for x on y. See Sprent
(1966). Exercise 12 demonstrates a method for finding such a line.

5.8 The model matrix in regression

For many of the uses of the 1m () function in later chapters, it will be important to
understand the use of the model matrix to structure calculations for practical computation.
This is especially true for Chapter 7. Straight line regression is a simple context in which
to introduce these ideas.

In straight line regression, the model or X matrix has two columns — a column of 1s and
a column that holds values of the explanatory variable x. As fitted, the straight line model is

Y=a+bx
which we can write as
y=1xa+x xb.

For an example, we return to the lawn roller data. The model matrix, with the y-vector
alongside, is given in Table 5.3. To obtain the model matrix, specify:

model .matrix(roller.lm)
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Table 5.3 The model matrix, for the lawn
roller data, with the vector of observed values
in the column to the right.

X y
weight (t) depression (mm)
1 1.9 2
1 3.1 1
1 33 5
1 4.8 5
1 53 20
1 6.1 20
1 6.4 23
1 7.6 10
1 9.8 30
1 124 25

Table 5.4 The use of the model matrix for calculation of fitted values and
residuals, in fitting a straight line to the lawn roller data.

Model matrix

x 2.67

Multiply and add to Compare with  Residual =
x —2.09  weight yield fitted value y observed y y—7y
1 1.9 —2.14267x 19= 298 2 2-298
1 3.1 —21+4267x 31= 6.18 1 1—-6.18
1 33 —21+4267x 33= 671 5 5-6.71
1 4.8 —2.1+2.67 x 48=10.71 5 5—-10.71
1 53 —2.1+2.67 x 53=12.05 20 20 — 12.05
1 6.1 —2.1+2.67 x 6.1=14.18 20 20 — 14.18
1 6.4 —2.1 4267 x 64=1498 23 23 — 14.98
1 7.6 —2.1+267x 7.6=18.18 10 10 — 18.18
1 9.8 —2.1+2.67 x 9.8=24.05 30 30 — 24.05
1 124 —2.1 +2.67 x 124 =30.98 25 25 —30.98

For each row, we take some multiple of the value in the first column, another multiple of
the value in the second column, and add them. Table 5.4 shows how calculations proceed
given the estimates of a and b obtained earlier.

Note also the simpler (no intercept) model. For this:

y = bx.

In this case the model matrix has only a single column, containing the values of x.
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5.9* Bayesian regression estimation using the MCMCpack package

Subsection 4.8.2 discussed ideas of Bayesian estimation, drawing attention to the use of
the Markov Chain Monte Carlo (MCMC) simulation technique to generate successive
parameter estimates. The simulation process must be allowed to burn in, i.e., run for long
enough that the posterior distribution reaches a steady state that is independent of the
starting values of parameters.

The MCMCpack package has the function MCMCregress (), with a similar syntax
to 1m(), that can be used for regression calculations. The following is intended as a
straightforward demonstration of the methodology, albeit for an example where use of the
function 1m () might in practice be preferable.

The default is to assume independent uniform priors for the regression coefficients, to
allow the simulation to run for 10000 iterations, and to take the first 1000 iterations as
burn-in. Here is the code and accompanying output, for the roller data:

> library (MCMCpack)
> roller.mcmc <- MCMCregress (depression ~ weight, data=roller)
> summary (roller.mcmc)

Iterations = 1001:11000
Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) -2.00 5.486 0.05486 0.05422
weight 2.65 0.812 0.00812 0.00843
sigma?2 60.47 40.610 0.40610 0.57218

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) -12.80 -5.38 -1.99 1.29 9.25
weight 1.01 2.17 2.66 3.16 4.26
sigma2 21.01 35.40 49.39 71.42 166.23

Because estimates from the previous iteration are the starting values for the current iteration,
the sequence of estimates is Markovian and there is a lag 1 partial autocorrelation. The time
series SE in the final column is designed to adjust for this autocorrelation. (See Section 9.1
for the relevant time series concepts. Specifically, it is assumed that the sequence of estimates
follows an autoregressive process of order 1.) The standard error is inflated to take account
of the correlation between successive estimates. Notice that the coefficient estimates are
very similar to those obtained in Subsection 5.1.1 using 1m (), while the SEs (both sets)
are slightly larger.
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Figure 5.16 Diagnostic plots for the Bayesian analysis that used MCMCregress ().

There is a plot method for objects of class mcmc that allows a check on whether an
adequate number of iterations were allowed for burn-in. Figure 5.16 shows this information.
The layout has been changed somewhat from the default. The code is:

mat <- matrix(c(l:6), byrow=TRUE, ncol=2)
# panels are 1, then 2, ... 6. Layout=dim(mat), i.e., 3 by 2
layout (mat, widths=rep(c(2,1),3), heights=rep(1,6))
# NB: widths & heights are relative
plot (roller.mcmc, auto.layout=FALSE, ask=FALSE, col="gray40")
# The method is plot.mcmc ()

These plots are unremarkable. For this very simple model, burn-in occurs quickly, and
none of the plots show any indication of a trend. The posterior distributions of the model
coefficients all look plausibly normal.

The coda package, on which MCMCpack depends, has several other functions that
give diagnostic information that may be helpful in interpreting the MCMC results. See
help (package="coda").

5.10 Recap

In exploring the relationships in bivariate data, the correlation coefficient can be a crude
and unduly simplistic summary measure. Keep in mind that it measures linear association.
Wherever possible, use the richer and more insightful regression framework.



5.12 Exercises 167

The model matrix, together with the coefficients, allows calculation of predicted values.
The coefficients give the values by which the values in the respective columns must be
multiplied. These are then summed over all columns. In later chapters, we will use the
model matrix formulation to fit models that are not inherently linear.

In the study of regression relationships, there are many more possibilities than regression
lines. If a line is adequate, use that. It is in any case useful to fit a smooth curve, to see
whether it suggests systematic departure from a line.

Simple alternatives to straight line regression using the original data are:

* Transform x and/or y.
¢ Use polynomial regression.
¢ Fit a smoothing curve.

Following the calculations:

* Plot residuals against fitted values.
¢ If it seems necessary, do a plot that checks homogeneity of variance.

Use of the function plot (), with an 1m model, gives both these plots, by default as the
first and third plots (cf. panels A and C in Figure 5.6.)

For size and shape data, the equation that assumes allometric variation is a good starting
point. Relationships between the logarithms of the size variables are linear.

The line for the regression of y on x is different from the line for the regression of x
on y. The difference between the two lines is most marked when the correlation is small.

5.11 Methodological references

We refer the reader to the suggestions for further reading at the end of Chapter 6.

5.12 Exercises

1. The data sets elasticl and elastic2 were obtained using the same apparatus, including
the same rubber band, as the data frame elasticband. Using a different symbol and/or a
different color, plot the data from the two data frames elasticl and elastic?2 on the same
graph. Do the two sets of results appear consistent?

2. For each of the data sets elasticl and elastic2, determine the regression of stretch
on distance. In each case determine

(i) fitted values and standard errors of fitted values and
(ii) the R? statistic. Compare the two sets of results. What is the key difference between the
two sets of data?

Use the robust regression function r1m() from the MASS package to fit lines to the data
in elasticl and elastic2. Compare the results with those from use of 1m (). Compare
regression coefficients, standard errors of coefficients, and plots of residuals against fitted values.

3. Using the data frame cars (datasets), plot distance (i.e., stopping distance) versus speed.
Fit a line to this relationship, and plot the line. Then try fitting and plotting a quadratic curve.
Does the quadratic curve give a useful improvement to the fit? [Readers who have studied the
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relevant physics might develop a model for the change in stopping distance with speed, and
check the data against this model.]

Calculate volumes (volume) and page areas (area) for the books on which information is
given in the data frame oddbooks (DAAG).

(a) Plot log(weight) against log (volume), and fit a regression line.

(b) Plot log (weight) against log (area), and again fit a regression line.

(c) Which of the lines (a) and (b) gives the better fit?

(d) Repeat (a) and (b), now with 1og (density) in place of log (weight) as the depen-
dent variable. Comment on how results from these regressions may help explain the results
obtained in (a) and (b).

In the data set pressure (datasets), examine the dependence of pressure on temperature.
[The relevant theory is that associated with the Claudius—Clapeyron equation, by which the
logarithm of the vapor pressure is approximately inversely proportional to the absolute temper-
ature. For further details of the Claudius—Clapeyron equation, search on the internet, or look in
a suitable reference text.]

Look up the help page for the function boxcox () from the MASS package, and use this function
to determine a transformation for use in connection with Exercise 5. Examine diagnostics for
the regression fit that results following this transformation. In particular, examine the plot
of residuals against temperature. Comment on the plot. What are its implications for further
investigation of these data?

Annotate the code that gives panels B and D of Figure 5.3, explaining what each function does,
and what the function arguments are.

The following is a simplified version of the code used for the two panels of Figure 5.4:
## requires the data frame ironslag (DAAG)

xy <- with(ironslag, lowess (chemical ~ magnetic))

chemfit <- approx(xy$x, xySy, xout=ironslag$magnetic, ties=
"ordered") Sy

res2 <- with(ironslag, chemical - chemfit)

plot(res2 ~ magnetic, data=ironslag) # Panel A

abline(v=0, 1lty=2)

sgrtabs2 <- sgrt(abs(res2))

plot (sgrtabs2 chemfit, type="n") # Panel B
panel.smooth(chemfit, sgrtabs2)

Examine the help page for Lowess (), and explain why the call to approx () is needed.

In the data frame nswdemo (DAAG), plot 1978 income (re78) against 1975 income (re75).
What features of the plot make the fitting of a regression relationship a challenge?

(a) Restricting attention to observations for which both re78 and re75 are non-zero, plot
log (re78) against log (re75), and fit a trend curve. Additionally, fit a regression line
to the plot. Does the regression line accurately describe the relationship. In what respects
is it deficient?

(b) Now examine the diagnostic plot that is obtained by using plot () with the regression
object as parameter. What further light does this shed on the regression line model?

Write a function which simulates simple linear regression data from the model
y=2+4+3x+¢

where the noise terms are independent normal random variables with mean 0 and variance 1.



11.

5.12 Exercises 169

Using the function, simulate two samples of size 10. Consider two designs: first, assume
that the x-values are independent uniform variates on the interval [—1, 1]; second, assume that
half of the x-values are —1s, and the remainder are 1s. In each case, compute slope estimates,
standard error estimates, and estimates of the noise standard deviation. What are the advantages
and disadvantages of each type of design?

For each of the data sets elasticl and elastic2, simulate artificial data from the model
that was fitted.

(a) Thus, after fitting the elasticl data using
el.lm <- Im(distance ~ stretch, data=elasticl)
simulate artificial data from this model (conditional on the stretch measurements) using
elasticlSnewdistance <-
cbind(rep(1l, 7), elasticlS$Sstretch)%*%coef(el.lm) +
rnorm(7, sd=summary(el.lm)S$sigma)
(b) Investigate the use of the function simulate () as an alternative to using the above code.
(¢) Now, regress newdistance against stretch and obtain side-by-side residual plots for
the original data and the artificial data. Repeat this procedure several times. Does it seem
that the outliers in the original residual plot are consistent with the fitted model? Apply the
same procedure to the elastic2 data.
[Technically, the methodology used here is that of a parametric bootstrap.]

12¥ The following function returns the coefficient of the estimated linear functional relationship

between x and y:
"funRel" <-
function (x=leafshape$logpet, y=leafshape$Sloglen, scale=c(1,1)){
## Find principal components rotation; see Section 11.1
## Here (unlike 11.1) the interest is in the final component
Xy.prc <- prcomp (cbind(x,y), scale=scale)
b <- xy.prc$Srotation[,2]/scale
bxy <- -b[1l]/b[2] # slope - functional egn line
c(bxy = bxy)
}
## Try the following:
funRel (scale=c(1,1)) # Take x and y errors as equally important
funRel (scale=c(1,10)) # Error is mostly in y; structural relation
# line is close to regression line of y on x
funRel (scale=c(10,1)) # Error is mostly in x

## Note that all lines pass through (xbar, ybar)

(a) Note where, for each of the three settings of the argument scale, the values of the
functional coefficient lie in the range between b, , and b;{,, where b, . is the slope of the
regression line of y on x and b, is the slope of the regreséion line of x on y.

(b) Repeat this for each of the data frames softbacks and elastic2 and (with the
variables 1ogpet and loglen) leafshapel?.

(c) Explain the effect of changing the settings of the argument scale.
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In straight line regression, a response variable y is regressed on a single explanatory vari-
able x. Multiple linear regression generalizes this methodology to allow multiple explana-
tory or predictor variables. The focus may be on accurate prediction. Or it may, alternatively
or additionally, be on the regression coefficients themselves. Be warned that interpreting
the regression coefficients is not as straightforward as it might appear.

The discussion will emphasize the use of model diagnostics, and of graphs that give
insight into the model fit. Diagnostic checks are intended to assist in the tuning of models
so that they perform well when used for their intended purpose, and do not give unexpected
and perhaps unpleasant surprises. For example, a model fit that is unduly affected by
influential outliers may give results that are less than satisfactory with the main body of
the data. This is one of several common types of departure from model assumptions that
diagnostic checks may bring to attention.

6.1 Basic ideas: a book weight example

The book weight example has two x-variables in the regression equation. In the data shown
in Figure 6.1 and printed to the right of the figure, seven books with hardback covers have
been added to the eight softbacks. Code for the figure is:

## Plot weight vs volume: data frame allbacks (DAAG)
plot (weight ~ volume, data=allbacks, pch=c(16,1) [unclass(cover)])
# unclass(cover) gives the integer codes that identify levels
with(allbacks, text(weight ~ volume, labels=paste(1:15),
pos=c(2,4) [unclass(cover)]))

Explanatory variables are the volume of the book ignoring the covers, and the total area
of the front and back covers. We might expect that

weight of book = by + b; x volume + b, x area of covers.

The intercept, by, may not be needed. However, we will retain it for the moment. Later, we
can decide whether to set it to zero. Here is the regression output:

> summary (allbacks.lm <- 1lm(weight volume+area, data=allbacks))

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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Figure 6.1 Weight versus volume, for seven hardback and eight softback books. Filled dots are
hardbacks, while open dots are softbacks. Selected data are shown to the right of the graph.

(Intercept) 22.4134 58.4025 0.38 0.70786
volume 0.7082 0.0611 11.60 7e-08
area 0.4684 0.1019 4.59 0.00062

Residual standard error: 77.7 on 12 degrees of freedom

Multiple R-Squared: 0.928, Adjusted R-squared: 0.917
F-statistic: 77.9 on 2 and 12 DF, p-value: 1.34e-007

> ## coefficient estimates and SEs only: summary (allbacks.lm)Scoef

The coefficient estimates are by = 22.4, by = 0.708, and b, = 0.468. Standard errors
and p-values are provided for each estimate. Note that the p-value for the intercept suggests
that it cannot be distinguished from 0, as we guessed earlier. The p-value for volume tests
b1 = 0, in the equation that has both volume and area as explanatory variables.

The estimate of the noise standard deviation (the residual standard error) is 77.7. There
are now 15 — 3 = 12 degrees of freedom for the residual; we start with 15 observations
and estimate three parameters. In addition, there are two versions of R

The output is geared towards various tests of hypotheses. The F'-statistic allows an overall
test of significance of the regression. The null hypothesis for this test is that all coefficients
(other than the intercept) are 0. Here, we obviously reject this hypothesis and conclude that
the equation does have explanatory power.

The ¢-statistics and associated p-values should however be used informally, rather than
as a basis for formal tests of significance. Even in this simple example, the output has four
p-values. This may not be too bad, but what if there are six or eight p-values? There are
severe problems in interpreting results from such a multiplicity of formal tests, with varying
amounts of dependence between the various tests.

The information on individual regression coefficients can readily be adapted to obtain a
confidence interval for the coefficient. The 5% critical value for a ¢-statistic with 12 degrees
of freedom s 2.18." Thus, a 95% confidence interval for vo lume is 0.708 £ 2.18 x 0.0611,

! ## 5% critical value; t-statistic with 12 d.f.
gt (0.975, 12)
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i.e., it ranges from 0.575 to 0.841. As for the tests of hypotheses that were noted, these
confidence intervals are not independent between parameters.

A sequential analysis of variance table assesses the contribution of each predictor variable
to the model in turn, assuming inclusion of previously assessed variables. It can be obtained
using the anova () function.

> anova(allbacks.1lm)
Analysis of Variance Table

Response: weight
Df Sum Sg Mean Sg F value Pr(>F)

volume 1 812132 812132 134.7 7e-08
area 1 127328 127328 21.1 0.00062
Residuals 12 72373 6031

This table gives the contribution of volume after fitting the overall mean, then the
contribution of area after fitting both the overall mean and volume. The p-value for
area in the anova table must agree with that in the main regression output, since both these
p-values test the contribution of area after including volume in the model. The p-values
for volume will differ if there is a correlation between volume and area. Here, the
correlation of volume with area is 0.00135, i.e., small.” As a consequence, the p-values
for volume are very nearly equal.

Finally, note the model matrix that has been used in the least square calculations:

> model .matrix (allbacks.lm)

(Intercept) volume area
1 1 885 382

1 1228 396
1 412 0
15 1 1034 0

Predicted values are given by multiplying the first column by b (=22.4), the second by b;
(=0.708), the third by b, (=0.468), and adding.

6.1.1 Omission of the intercept term

We now investigate the effect of leaving out the intercept. Here is the regression output:

> allbacks.1lm0 <- 1Im(weight -l+volume+area, data=allbacks)

> summary (allbacks.1mO0)

Coefficients:

2 ## Correlation of volume with area
with(allbacks, cor(volume,area))
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Figure 6.2 Diagnostic plots for the model that fits weight as a function of volume and area,
omitting the intercept.

Estimate Std. Error t value Pr(>|t])
0.7289 0.0277 26.34 1.1le-12
0.4809 0.0934 5.15 0.00019

volume
area

75.1 on 13 degrees of freedom
Adjusted R-squared: 0.99
3.8e-014

Residual standard error:
Multiple R-Squared: 0.991,

F-statistic: 748 on 2 and 13 DF, p-value:

The regression coefficients now have smaller standard errors. The reason is that, in the
model that included the intercept, there was a substantial negative correlation between the
estimate of the intercept and the coefficient estimates. The reduction in standard error is
greater for the coefficient of volume, where the correlation was —0.88, than for area,
where the correlation was —0.32. Correlations between estimates can be obtained by setting
corr=TRUE in the call to summary ():

## Display correlations between estimates of model coefficients

summary (allbacks.lm, corr=TRUE)

6.1.2 Diagnostic plots

Figure 6.2 displays useful information for checking on the adequacy of the model fit to the
allbacks data. It used the code:

par (mfrow=c (2,2)) # Get all 4 plots on one page
plot (allbacks.1mO0)

par (mfrow=c(1,1))

Figure 6.2 gives the default set of diagnostic plots. By comparison with Figure 5.6D in
Section 5.2, it disentangles the contributions that the residual and the leverage make to the
influence. Note the large residual (panel A) for observation 13. Note also that observation
13 lies outside the 0.5 contour of Cook’s distance, well out towards the contour for a Cook’s
distance of 1. Thus it is a (somewhat) influential point. The Cook’s distance measure, which
was mentioned in Section 5.2, will be discussed in more detail in Subsection 6.3.1.
Should we omit observation 13? The first task is to check the data, which are however
correct. The book is a computing book, with a smaller height to width ratio than any of the
other books. It has heavier paper, though differences in the paper may not be immediately
obvious. It may be legitimate to omit it from the main analysis, but noting the omission
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Table 6.1 Distance (dist), height climbed (c1imb), and record times (time),
for four of the 23 Northern Irish hill races.

Name dist (mi) climb (ft) time (h) timef (h)
1 Binevenagh 7.5 1740 0.86 1.06
2 Slieve Gullion 4.2 1110 0.47 0.62
3 Glenariff Mountain 5.9 1210 0.70 0.89
23 BAREF Turkey Trot 5.7 1430 0.71 0.94

of this one book that had a much higher weight-to-volume ratio than other books. The
following omits observation 13:

> allbacks.1lml3 <- lm(weight ~ -1l+volume+area, data=allbacks[-13, ])

> summary (allbacks.1ml3)

Coefficients:

Estimate Std. Error t value Pr(>|t])
volume 0.6949 0.0163 42.6 1.8e-14
area 0.5539 0.0527 10.5 2.1le-07

Residual standard error: 41 on 12 degrees of freedom
Multiple R-Squared: 0.997, Adjusted R-squared: 0.997
F-statistic: 2.25e+003 on 2 and 12 DF, p-value: 3.33e-016

The residual standard error is substantially smaller (41 instead of 75.1) in the absence
of observation 13. Observation 11 now has a Cook’s distance that is close to 1, but does
not stand out in the plot of residuals. This is about as far as it is reasonable to go in the
investigation of diagnostic plots. With just 15 points, there is a risk of over-interpretation.

6.2 The interpretation of model coefficients

If an aim is a scientific understanding that involves interpretation of model coefficients,
then it is important to fit a model whose coefficients are open to the relevant interpretations.
Different formulations of the regression model, or different models, may serve different
explanatory purposes. Predictive accuracy is in any case a consideration, and is often the
main interest.

Three examples will demonstrate issues for the interpretation of model coefficients. The
first is a data set on record times, distances, and amounts of climb for Northern Irish hill
races. The second has data on mouse brain weight, litter size, and body weight. The third
has data on book dimensions and weight, from a highly biased sample of books.

6.2.1 Times for Northern Irish hill races

The data set nihills (DAAG), from which Table 6.1 has selected observations, gives
distances (dist), heights climbed (c1imb), male record times (t ime), and female record
times (timef), for 23 Northern Irish hill races.
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Figure 6.3 Scatterplot matrix for the nihills data (Table 6.1). Panel A uses the untransformed
scales, while panel B uses logarithmic scales.

We begin with scatterplot matrices, both for the untransformed data (Figure 6.3A), and
for the log transformed data (Figure 6.3B). Attention is limited to the male results.” The
diagonal panels give the x-variable names for all plots in the column above or below, and
the y-variable names for all plots in the row to the left or right. Note that the vertical axis
labels alternate between the axis on the extreme left and the axis on the extreme right, and
similarly for the horizontal axis labels. This avoids a proliferation of axis labels on the
extreme left and lower axes.

Apart from a possible outlier, the relationship between dist and c1imb seems approx-
imately linear. The same is true when logarithmic scales are used, and the outlier is now
much less evident. Nonlinear relationships are undesirable, in part, because they create
problems for the interpretation of diagnostic plots.

The following are reasons for investigating the taking of logarithms:

¢ The range of values of t ime is large (3.9:0.32, i.e., >10:1), and similarly for dist and
climb. The times are bunched up towards zero, with a long tail. In such instances, use
of a logarithmic transformation is likely to lead to a more symmetric distribution.

* One point in particular has a time that is more than twice that of the next largest t ime,
as is evident in Figure 6.3A. The values of dist and climb similarly stand out as
much larger than for other points. In a regression that uses the untransformed variables,
this point will have a much greater say in determining the regression equation than any

3 4# : data frame nihills (DAAG)
## Panel A: Scatterplot matrix, untransformed data, data frame nihills (DAAG)
library(lattice); library (DAAG)

splom(~ nihills[, c("dist","climb","time")], cex.labels=1.2,
varnames=c ("dist\n(miles)", "climb\n(feet)", "time\n(hours)"))

## Panel B: log transformed data

splom(~ log(nihills[, c("dist","climb","time")]), cex.labels=1.2,

varnames=c ("dist\n(log miles)", "climb\n(log feet)", "time\n(log hours)"))
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Figure 6.4 Diagnostic plots for the regression of log (time) onlog (dist) and log (climb).

other point. In the terminology of Subsection 6.3.1, it has large leverage. Even after
taking logarithms (Figure 6.3B), its leverage remains large, but not quite so dominating.
¢ It can be expected that t ime will increase more than linearly at very long times, and
similarly for c1imb, as physiological demands on the human athlete move closer to
limits of human endurance.
* Such relationship as is evident between the explanatory variables (dist and climb) is
more nearly linear on the logarithmic scale of Figure 6.3B.

Additionally, use of a logarithmic scale may help stabilize the variance.
These considerations suggest fitting the equation

log(time) = a + b log(dist) + by log(climb).
This is equivalent to the power relationship
time = A(dist)” (climb)?,

where a = log(A).
Now fit the model and examine the diagnostic plots (shown in Figure 6.4):

nihills.Ilm <- 1Im(log(time) ~ log(dist) + log(climb), data = nihills)
plot(nihills.1m)

The diagnostic plots do not indicate problems, apart from the moderately large residual
associated with the Meelbeg Meelmore race.
The estimates of the coefficients (a, b; and b,) are:

> summary (nihills.1lm) Scoef
Estimate Std. Error t value Pr(>|t])

(Intercept) -4.961 0.2739 -18.1 7.09%9e-14

log(dist) 0.681 0.0552 12.3 8.19e-11

log(climb) 0.466 0.0453 10.3 1.98e-09
Estimate Std. Error t value Pr(>|t])

Interpreting the coefficients
The estimated equation is

log(time) = —4.96 +0.68 x log(dist)+ 0.47 x log(climb).
[SE = 0.27] [SE = 0.055] [SE = 0.045]
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Exponentiating both sides of this equation, and noting exp(—4.96) = 0.0070, gives
time = 0.00070 x dist®®® x c1imp™.

This equation implies that for a given height of climb, the time taken is smaller for the
second three miles than for the first three miles. The relative rate of increase in time is 68%
of the relative rate of increase in distance. Is this plausible?

The answer comes from examination of the implications of holding c1imb constant.
For a given value of c1imb, short races will be steep while for long races the slope will be
relatively gentle. Thus a coefficient that is less than 1.0 is unsurprising.

A meaningful coefficient for Logdist

The coefficient for logdist will be more meaningful if we regress on logdist and
log(climb/dist). Then we find:

> lognihills <- log(nihills)

> names (lognihills) <- paste("log", names(nihills), sep="")

> lognihills$logGrad <- with(nihills, log(climb/dist))

> nihillsG.1lm <- lm(logtime ~ logdist + logGrad, data=lognihills)
> summary (nihillsG.1m) Scoef

Estimate Std. Error t value Pr(>|t])
Estimate Std. Error t value Pr(>|t])

(Intercept) -4.961 0.2739 -18.1 7.09e-14
logdist 1.147 0.0346 33.2 5.90e-19
logGrad 0.466 0.0453 10.3 1.98e-09

The coefficient of logdist is now, reassuringly, greater than 1. The coefficient of
logdist depends, critically, on what other explanatory variables are used!

There is another, related, benefit. The correlation between logdist and logGra-
dient is —0.065, negligible relative to the correlation of 0.78 between 1logdist and
logclimb.* Because the correlation between logdist and logGradient is so small,
the coefficient of 1logdist (=1.124) in the regression on logdist alone is almost
identical to the coefficient of 1ogdist (=1.147) in the regression on logdist and
logGradient.

The standard error of the coefficient of 1logdist is smaller — 0.035 as against 0.055 —
when the second explanatory variable is logGradient rather than 1logclimb. Note
that the predicted values do not change. The models nihills.lmnihillsG.1m are
different mathematical formulations of the same underlying model.

6.2.2 Plots that show the contribution of individual terms

For simplicity, the discussion will assume just two explanatory variables, x| and x,, with
the intention of showing the contribution of each in turn to the model.

4 ## Correlations of logGrad and logclimb with logdist
with(lognihills, cor(cbind(logGrad, logclimb), logdist))
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Figure 6.5 The solid lines show the respective contributions of the two model terms, in the regression
of logtime on logdist and logclimb. Partial residuals (specify partial .resid=TRUE)
and an associated smooth curve (specify smooth=panel . smooth) have been added.

The fitting of a regression model makes it possible to write:
y=bo+bix; +byxr+e (6.1)
=F+e, 6.2)

where ¥ = by + bix; + bax,.
Another way to write the model that is to be fitted is:

y—y=a+bi(x; —X1)+ by(xp — %) +e.

It is a fairly straightforward algebraic exercise to show that a = 0. Notice that, for fitting
the model in this form:

* The observations are y — ¥, with mean zero.

¢ The first explanatory variable is x; — X;, with mean zero, and the first term in the model
is b1(x1 — X1), with mean zero.

¢ The second explanatory variable is x, — ¥,, with mean zero, and the first term in the
model is by (x; — X1), with mean zero.

The residuals e are exactly the same as before, and have mean zero.
The fitted model can then be written:
y=3+bi(x; — %) +ba(xa —X2) +e
=J+t+6H+e.
This neatly splits the response value y into three parts — an overall mean ¥, a term that is
due to x, a term that is due to x,, and a residual e. Moreover, the values of #; and #, sum,

in each case, to zero.
The predict () function has an option (type="terms") that gives #; and ¢,.

yvterms <- predict(nihills.lm, type="terms")

The first column of yterms has the values of #; = b;(x; — X), while the second has the
values of #,. Values in both these columns sum to zero. The solid lines of the component
plus residual plot in Figure 6.5 show the contributions of the individual terms to the model.
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The solid line in the left panel shows a plot of b;(x; — X;) against x;, while the solid line
in the right panel shows a plot of b,(x; — X,) against x;.

The lines can be obtained directly with the termplot () command. As the contributions
of the terms are linear on a logarithmic scale, a plot in which the x-axis variables are the
log transformed variables will serve the purpose best. We therefore refit the equation before
using termplot (), thus:

lognihills <- log(nihills)

names (lognihills) <- paste("log", names(nihills), sep="")

nihills.lm <- Im(logtime ~ logdist + logclimb, data = lognihills)

## To show points, specify partial.resid=TRUE

## For a smooth curve, specify smooth=panel.smooth

termplot (nihills.lm, partial.resid=TRUE, smooth=panel.smooth,
col.res="gray30")

The plotted points are the partial residuals, for the respective term.

* The vector f; + e =y — 1, holds the partial residuals for x; given x,, i.e., they account
for that part of the response that is not explained by the term in x;.
* The vector t, + e holds the partial residuals for x; given x;.

The smooth curve that has been passed through the partial residuals is designed to help in
assessing any departure from the lines. Both plots show a hint of curvature, more pronounced
for logdist than 1ogclimb. The difference from a line is however small, and may not
be of much practical consequence.

Each plot indicates the pattern in the residuals when there is no change to the linear
pattern of response that is assumed for the other variable. Both plots suggest a slight but
noticeable departure from linearity, though in the right panel largely due to a single point.
Further investigation, if it should seem warranted, can best proceed using methods for
fitting smooth curves that will be described in Chapter 7.

6.2.3 Mouse brain weight example

The 1itters data frame (DAAG library) has observations on brain weight, body weight,
and litter size of 20 mice. As Figure 6.6 makes clear, the explanatory variables 1size and
bodywt are strongly correlated. Code for obtaining a simplified version of Figure 6.6 is:’

pairs(litters) # For improved labeling, see the footnote.

Observe now that, in a regression with brainwt as the dependent variable, the coeffi-
cient for 1size has adifferent sign (—ve versus +ve) depending on whether or not bodywt

S ## Scatterplot matrix for data frame litters (DAAG); labels as in figure
library(lattice)
splom(~litters, varnames=c("lsize\n\n(litter size)", "bodywt\n\n(Body Weight)",
"brainwt\n\n (Brain Weight)"))
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Figure 6.6 Scatterplot matrix for the litters data set. Data relate to Wainright et al. (1989).

also appears as an explanatory variable. Both coefficients are significant (p < 0.05). Here
are the calculations:

> ## Regression of brainwt on lsize

> summary (lm(brainwt ~ lsize, data = litters))$coef
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.44700 0.00962 46.44 3.39e-20

lsize -0.00403 0.00120 -3.37 3.44e-03

> ## Regression of brainwt on lsize and bodywt
> summary (1lm(brainwt ~ lsize + bodywt, data = litters))S$coef
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.17825 0.07532 2.37 0.03010
lsize 0.00669 0.00313 2.14 0.04751
bodywt 0.02431 0.00678 3.59 0.00228

The coefficients have different interpretations in the two cases:

¢ In the first regression, variation in brainwt is being explained only with 1size,
regardless of bodywt. No adjustment has been made for the fact that bodywt increases
as 1size decreases: individuals having small values of 1size have brainwt values
corresponding to large values of bodywt, while individuals with large values of 1size
have brainwt values corresponding to low bodywt values.

* In the multiple regression, the coefficient for 1size is a measure of the change in
brainwt with 1size, when bodywt is held constant. For any particular value of
bodywt, brainwt increases with 1size. This was a noteworthy finding for the
purposes of the study.

The results are consistent with the biological concept of brain sparing, whereby the nutri-
tional deprivation that results from large litter sizes has a proportionately smaller effect on
brain weight than on body weight.
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Figure 6.7 Panel A is the scatterplot matrix for the logarithms of the variables in the oddbooks
data frame. Books were selected in such a way that weight increased with decreasing thickness. Panel
B has the scatterplot matrix for the logarithms of the derived variables density and area, together
with log (thick) and log (weight).

6.2.4 Book dimensions, density, and book weight

The way that data are sampled can affect the coefficients. This section will examine data,
sampled in a deliberately biased way, on the effect of book dimensions (thickness, height,
and width) on book weight.

Figure 6.7A shows a scatterplot matrix for logged measurements, from the data frame
oddbooks, on 12 soft-cover books. Figure 6.7B is for later reference.® Books were
selected in such a way that weight increased with decreasing thickness, reflected in the
strong negative correlation between log(weight) and log(thick).

It might be expected that weight would be proportional to volume, i.e., w = tbh and

fog(w) = log(r) + log(b) + log(h) 6.3)

where w = weight, t = thick, b = breadth, and h = height.

Although equation (6.3) seems plausible, there can be no guarantee that it will give a
result that makes sense for data where there have been strong constraints on the choice of
books. We will fit models in which the fitted values take the following forms:

1 : log(w) = ag + a;(log(t) + log(b) + log(h))
2 : log(w) = ag + a; log(t) + ax(log(b) + log(h))
3 :log(w) = ap + a; log(t) + a, log(b) + a3 log(h)

% ## Code for Panel A
splom(~log(oddbooks), varnames=c ("thick\n\nlog (mm)", "breadth\n\nlog(cm)",
"height\n\nlog(cm)", "weight\n\nlog(g)"), pscales=0)
## Code for Panel B
oddothers <-
with (oddbooks,
data.frame (density = weight/ (breadth*height*thick),
area = breadth*height, thick=thick, weight=weight))
splom(~log(oddothers), pscales=0,
varnames=c ("log(density)", "log(area)", "log(thick)", "log(weight)"))
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Figure 6.8 Panel A plots log(weight) against log(thick) + log(breadth) + log(height). The
dashed line shows the fitted values for model 1. Panel B plots observed values against fitted values
for model 2, with the line y = x superposed. Panel C plots observed values against fitted values for
model 3 and again shows the line y = x.

Figure 6.8 assists comparison of these models. The coefficients in the fitted equations,
with SEs in square brackets underneath, are:’

1:log(w) = —8.9 + 1.7 x (log(t) + log(b) + log(h))
[SE=2.7]  [0.31]

2 : log(w) = —1.6 + 0.48log(¢) + 1.10(log(b) + log(h))
[2.9] [0.42] [0.28]

3 :log(w) = —0.72 4+ 0.461log(z) + 1.88log(h) + 0.151log(h))
13.2] [0.43] [1.07] [1.27]

Transforming back to a relationship between weight and volume, the result for model 1
is that weight o« volume!”, implying that weight increases faster than volume. As the
volume of books increases, their density increases. Almost certainly, the effect has arisen
because the books with larger page sizes are printed on heavier paper.

Note that the predicted values in model 2 are very similar to those for model 3. The
coefficient of area in model 2 indicates that, for a given value of thick, weight is very
nearly proportional to page area.

Note finally that the regression of 1og (weight) on log (thick) yields:

> coef (summary (1lm(log(weight) ~ log(thick), data=oddbooks)))
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.69 0.708 13.7 8.35e-08

log(thick) -1.07 0.219 -4.9 6.26e-04

The implication is that weight decreases as thick increases. For these data, it does!
The oddbooks data were contrived to give a skewed picture of the way that book
weight varies with dimensions. Correlations between area and thick, and between both
area and thick and density of paper, make it impossible to use multiple regression to
separate the effects of these different variables. The one fairly solid piece of information

7 ## Details of calculations
volume <- apply(oddbooks[, 1:3], 1, prod)

area <- apply(oddbooks[, 2:3], 1, prod)

lobl.1lm <- Im(log(weight) ~ log(volume), data=oddbooks)

lob2.1lm <- Im(log(weight) ~ log(thick)+log(area), data=oddbooks)

lob3.1lm <- Im(log(weight) ~ log(thick)+log(breadth)+log(height), data=oddbooks)

coef (summary (lobl.1lm))
## Similarly for coefficients and SEs for other models
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that is available from these data is obtained by using our knowledge of what the relationship
should be, to indicate how density changes with area or thick, thus:

> book.density <- oddbooks$Sweight/volume
> bookDensity.lm <- 1lm(log(book.density) ~ log(area), data=oddbooks)
> coef (summary (bookDensity.1lm))
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.109 0.5514 -9.27 3.18e-06
log (area) 0.419 0.0958 4.37 1.39e-03

Observational data is very susceptible to such bias. For example solar radiation, wind-
speed, temperature, and rainfall may change systematically with distance up a hillside, and
it may be impossible to distinguish the effects of the different factors on plant growth or
on the ecology. Worse, effects may be at work that will be discerned only from substantial
understanding of the physical processes and which are not obvious from the measured data.

6.3 Multiple regression assumptions, diagnostics, and efficacy measures

At this point, as a preliminary to setting out a general strategy for fitting multiple regression
models, we describe the assumptions that underpin multiple regression modeling. Given
the explanatory variables xi, x, ..., x,, the assumptions are that:

* The expectation E[y] is some linear combination of x, X2, ..., Xp:
Elyl =a+ Bix1 + Boxa + - - + Bpxp.

* The distribution of y is normal with mean E[y] and constant variance, independently
between observations.

In general, the assumption that E[y] is a linear combination of the xs is likely to be false.
It may, however, be a good approximation. In addition, there are simple checks that, if
the assumption fails, may indicate the nature of the failure. The assumption may be hard
to fault when the range of variation of each explanatory variable is small relative to the
noise component of the variation in y, so that any non-linearity in the effects of explanatory
variables is unlikely to show up. Even where there are indications that it is not entirely
adequate, a simple form of multiple regression model may be a reasonable starting point
for analysis, on which we can then try to improve.

6.3.1 Outliers, leverage, influence, and Cook’s distance

This extends earlier discussions of regression diagnostics in Section 5.2 and Subsection
6.1.2.

Detection of outliers

Outliers can be hard to detect. Two (or more) outliers that are influential may mask each
other. If this seems a possible issue, it is best to work with residuals from a resistant fit.
Resistant fits aim to completely ignore the effect of outliers. Use of this methodology
will be demonstrated in Subsection 6.4.3. See also Exercise 14 at the end of the chapter.
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Figure 6.9 The left panel is a snapshot of a three-dimensional dynamic graphic plot. The two points
that have the largest leverage in the regression of logtime on logdist and 1ogclimb have been
labeled. In the right panel, standardized residuals are plotted against leverages. Contours are shown
for Cook’s distances of 0.5 and 1.0.

This demonstrates the type of aberrant results that may result from resistant regression, if
residuals do not have an approximately symmetric distribution.

Dynamic graphic exploration can be helpful. Abilities in the rgl package for dynamic
three-dimensional plots can be accessed conveniently from the graphics menu of the R
Commander GUI. The rgobi package (Cook and Weisberg, 1999) has very extensive abilities
for dynamic graphic exploration.

*Leverage and the hat matrix

What difference does replacing of y; by y; + A;, while leaving other y-values unchanged,
make to the fitted surface. There is a straightforward answer; the fitted value changes from
yi to ¥; + hy; A;, where h;; is the leverage for that point.

The leverage values h;; are the diagonal elements of the so-called hat matrix that can
be derived from the model matrix. (The name of the hat matrix H is due to the fact that
the vector of fitted values (“hat” values) is related to the observed response vector by
Yy = Hy.) Large values represent high leverage. Use the function hatvalues () to obtain
the leverages, thus:

> as.vector (hatvalues(nihills.1lm)) # as.vector() strips off names
[1] 0.119 0.074 0.134 0.109 0.085 0.146 0.052 0.146 0.247 0.218
[11] 0.090 0.057 0.056 0.127 0.049 0.103 0.175 0.214 0.444 0.090
[21] 0.139 0.048 0.077

The largest leverage, for observation 19, is 0.44. As this is more than three times the average
value of 0.13, it warrants attention. (There are p = 3 coefficients and n = 23 observations,
so that the average is p/n = 0.13.)

The left panel of Figure 6.9 is a snapshot of a three-dimensional dynamic graphic plot that
shows the regression plane in the regression of logtime on logdist and logclimb.
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The two points that have the largest leverage have been labeled. The right panel is a plot of

residuals against leverage values, in which the Cook’s distances are shown as contours.
The snapshot in the left panel can be obtained from the 3D graph submenu on the R

Commander’s Graphs pulldown menu, then rotating the graph to give the view shown.

Alternatively, enter from the command line the code that is given in Section 15.7. To rotate
the display, hold down the left mouse button and move the mouse. Try it! The snapshot is
a poor substitute for the experience of rotating the display on a computer screen!

The right panel can be obtained thus:

## Residuals versus leverages

plot(nihills.lm, which=5, add.smooth=FALSE)

## The points can alternatively be plotted using

## plot (hatvalues (model.matrix(nihills.lm)), residuals(nihills.lm))

Influential points and Cook’s distance

Data points that distort the fitted response are “influential”. Such distortion is a combined
effect of the size of the residual, and its leverage. The Cook’s distance statistic is a commonly
used measure of “influence”. It measures, for each observation, the change in model
estimates when that observation is omitted. It measures the combined effect of leverage
and of the magnitude of the residual. Recall the guideline that was given in Section 5.2,
that any Cook’s distance of 1.0 or more, or that is substantially larger than other Cook’s
distances, should be noted.

Any serious distortion of the fitted response may lead to residuals that are hard to interpret
or even misleading. Thus it is wise to check the effect of removing any highly influential
data points before proceeding far with the analysis.

Influence on the regression coefficients

In addition to the diagnostic plots, it is useful to investigate the effect of each observation on
the estimated regression coefficients. One approach is to calculate the difference in the coef-
ficient estimates obtained with and without each observation. The function dfbetas ()
does these calculations and standardizes the resulting differences, i.e., they are divided by a
standard error estimate. These are more readily interpretable than absolute differences. For
the regression model fit to the allbacks data set, without the intercept term, the values
are shown in Figure 6.10.

If the distributional assumptions are satisfied, standardized changes that are larger than
2 can be expected, for a specified coefficient, in about 1 observation in 20. Here, the only
change that seems worthy of note is for volume in observation 13. For absolute changes,
should they be required, use the function 1m.influence ().

Outliers, influential or not, should be taken seriously

Outliers, influential or not, should never be disregarded. Careful scrutiny of the original data
may reveal an error in data entry that can be corrected. Alternatively, their exclusion may be
aresult of use of the wrong model, so that with the right model they can be re-incorporated.
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Figure 6.10 Standardized changes in regression coefficients, for the model that was fitted to the
allbacks data set. The points for the one row (row 13) where the change for one of the coefficients
was greater than 2 in absolute value are labeled with the row number.

If apparently genuine outliers remain excluded from the final fitted model, they must be
noted in the eventual report or paper. They should be included, separately identified, in
graphs.

*Additional diagnostic plots

The functions in the car package, designed to accompany Fox (2002), greatly extend the
range of diagnostic plots. See the examples and references included on the help pages for
this package. As an indication of what is available, try

library(car)
leverage.plots(allbacks.1lm, term.name="volume",
identify.points=FALSE)

6.3.2 Assessment and comparison of regression models

The measures that will be discussed all focus on predictive accuracy, assuming that data
used for fitting the model can be treated as a random sample from the data that will
be used in making predictions. This assumption may be incorrect. Also, as pointed out
earlier, predictive accuracy may not be the only or the most important consideration.
It is nonetheless always an important consideration, even where interpretation of model
parameters is the primary focus of interest.

R? and adjusted R?

The R? and adjusted R? that are included in the default output from summary . Im () (cf.
Section 6.1) are commonly used to give a rough sense of the adequacy of a model. R? is the
proportion of the sum of squares about the mean that is explained by the model. Adjusted
R?, which is the proportion of the mean sum of squares that is explained, is preferable to
R?. Neither is appropriate for comparisons between different studies, where the ranges of
values of the explanatory variables may be different. Both are likely to be largest in those
studies where the range of values of the explanatory variables is greatest.

The R? statistic (whether or not adjusted) has a more legitimate use for comparing
different models for the same data. For this purpose, however, AIC and related statistics are
much preferable. The next subsection will discuss these “information measure” statistics.
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AIC and related statistics

These statistics are designed to choose, from among a small number of alternatives, the
model with the best predictive power. Statistics that are in use include the Akaike Informa-
tion Criterion (AIC), Mallows’ C,,, and various elaborations of the AIC. The AIC criterion
and related statistics can be used for more general models than multiple regression. We
give the version that is used in R.

The model that gives the smallest value is preferred, whether for the AIC or for the C,
statistic. The variance estimate & is often determined from the full model.

Another statistic is the Bayesian Information Criterion (BIC), which is claimed as an
improvement on the AIC. The AIC is inclined to over-fit, i.e., to choose too complex a
model.

Calculation of R’s version of the AIC

Let n be the number of observations, let p be the number of parameters that have been
fitted, and let RSS denote the residual sum of squares. Then, if the variance is known, R
takes the AIC statistic as

RSS
AIC = —- +2p + const.
o

where, here, the constant term arises from the assumption of an i.i.d. normal distribution
for the errors. In the more usual situation where the variance is not known, R takes the AIC
statistic as

RSS
AIC = nlog (—) + 2p + const.
n

The BIC (Schwarz’s Bayesian criterion) statistic, which replaces 2 p by log(n) x p, penal-
izes models with many parameters more strongly.

The C,, statistic differs from the AIC statistic only by subtraction of 7, and by omission
of the constant term. It is

RSS
C, =nlog - +2p —n.

6.3.3 How accurately does the equation predict?

The best test of how well an equation predicts is the accuracy of its predictions. We
can measure this theoretically, by examining, e.g., 95% confidence intervals for predicted
values. Alternatively we can use cross-validation, or another resampling procedure, to
assess predictive accuracy. Both methods (theoretical and cross-validation) for assessing
predictive accuracy assume that the sample is randomly drawn from the population that is
of interest, and that any new sample for which predictions are formed is from that same
population.

Earlier, we noted that a quadratic term in 1dist would probably improve the model
slightly. We can accommodate this by replacing 1logdist by poly (logdist, 2), or
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Figure 6.11 Residuals versus predicted values for the hill race data. The vertical limits of the
bounding curves are 95% pointwise confidence limits, with the predicted value subtracted off. Black
points and 95% curves are for the model that is linear in 1ogdist, Gray points and 95% curves are
for the model that is quadratic in 1ogdist. Panel A uses logarithmic scales, with the points labeled
on the untransformed scale.

by poly(logdist, 2, raw=TRUE) if coefficients are required that are immediately
interpretable. Orthogonal polynomials will be discussed in Section 7.4.

The following table gives 95% coverage (confidence) intervals for predicted times in
the regression of log(time) on log(climb) and log(dist), for the first few
observations from the data set nihills:

> lognihills <- log(nihills)

> names (lognihills) <- paste("log", names (nihills), sep="")

> nihills.Ilm <- Im(logtime ~ logdist + logclimb, data = lognihills)
## Coverage intervals; use exp() to undo the log transformation

> exp(predict(nihills.1lm, interval="confidence"))[1:5, ]
fit 1lwr upr

Binevenagh 0.893 0.845 0.944

Slieve Gullion 0.488 0.467 0.510

Glenariff Mountain 0.640 0.604 0.679

Donard & Commedagh 1.126 1.068 1.187

McVeigh Classic 0.570 0.544 0.597

Prediction intervals from the model that replaces 1 ogGrad by 1ogclimb will be identical.

Figure 6.11 shows these prediction intervals graphically. Panel A plots the points on
a scale of time, while panel B plots the points on a scale of log (time). The 95%
pointwise intervals apply to the fitted values, that is, to the values on the vertical axis.
Fitted values and 95% confidence bounds are shown both for the model that is linear in
log (dist) and for the model that is quadratic in 1og (dist) 8

Notice that the bounds for the quadratic model are narrower within the main body of
the data, but fan out as time increases. The quadratic bounds better indicate the uncertainty
in the predictions for large times. Note the trade-off between bias for the model that
lacks the quadratic term, and increased variance for the model that includes the quadratic
term.

8 ## Model that is quadratic in logdist
nihills2.1lm <- Im(logtime ~ poly(logdist,2) + logclimb, data = lognihills)
citimes2 <- exp(predict(nihills2.1lm, interval="confidence"))
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This assessment of predictive accuracy has important limitations:

1. TItis crucially dependent on the model assumptions — independence of the data points,
homogeneity of variance, and normality. If the theoretical assumptions are wrong, per-
haps because of clustering or other forms of dependence, then these prediction intervals
will also be wrong. Departures from normality are commonly of less consequence than
the other assumptions.

2. Ttapplies only to the population from which these data have been sampled. If the sample
for which predictions are made is really from a different population, or is drawn with
a different sampling bias, the assessments of predictive accuracy will be wrong. Thus
it might be hazardous to use the above model to predict winning times for hill races in
England or Mexico or Tasmania.

Point 2 can be addressed only by testing the model against data from these other locations.
Thus, it is interesting to compare the results from the Scottish hil1s2000 data with
results from the Northern Irish nihills data. The results are broadly comparable. We
leave further investigation of this comparison to the exercises.

Better still, where this is possible, is to use data from multiple locations to develop a
model that allows for variation between locations as well as variation within locations.
Chapter 10 discusses models that are, in principle, suitable for such applications.

We might consider cross-validation, or the bootstrap, or another resampling method.
Cross-validation and other resampling methods can cope, to a limited extent and depending
on how they are used, with lack of independence. Note that neither this nor any other such
internal method can address sampling bias. Heterogeneity is just as much an issue as for
model-based assessments of accuracy. Thus for the hill race data, if there is no adjustment
for changing variability with increasing length of race:

1. If we use the untransformed data, cross-validation will exaggerate the accuracy for
long races and be slightly too pessimistic for short races.

2. If we use the log transformed data, cross-validation will exaggerate the accuracy for
short races and under-rate the accuracy for long races.

6.4 A strategy for fitting multiple regression models

Careful graphical scrutiny of the explanatory variables is an essential first step. This may
lead to any or all of:

* Transformation of some or all variables.

* Replacement of existing variables by newly constructed variables that are a better
summary of the information. For example, we might want to replace variables x; and x,
by the new variables x; + x; and x; — x3.

* Omission of some variables.

Why are linear relationships between explanatory variables preferable?

Where there are many explanatory variables, the class of models that would result from
allowing all possible transformations of explanatory variables is too wide to be a satisfac-
tory starting point for investigation. The following are reasons for restricting attention to
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transformations, where available, that lead to scatterplots in which relationships between
explanatory variables are approximately linear.

¢ If relationships between explanatory variables are non-linear, diagnostic plots may be
misleading. See Cook and Weisberg (1999).

* Approximately linear relationships ensure that all explanatory variables have similar
distributions, preferably distributions that are not asymmetric to an extent that gives the
smallest or largest points undue leverage.

¢ If relationships are linear, it is useful to check the plots of explanatory variables against
the response variable for indications of the relationship with the dependent variable.
Contrary to what might be expected, this is more helpful than looking at the plots of the
response variable against explanatory variables.

Surprisingly often, logarithmic or other standard forms of transformation give more sym-
metric distributions, lead to scatterplots where the relationships appear more nearly linear,
and make it straightforward to identify a regression equation that has good predictive
power.

6.4.1 Suggested steps

Here are steps that are reasonable to follow. They involve examination of the distributions
of values of explanatory variables, and of the pairwise scatterplots.

¢ Examine the distribution of each of the explanatory variables, and of the dependent
variable. Look for any instances where distributions are highly skew, or where there are
outlying values. Check whether any outlying values may be mistakes.

¢ Examine the scatterplot matrix involving all the explanatory variables. (Including the
dependent variable is, at this point, optional.) Look first for evidence of non-linearity
in the plots of explanatory variables against each other. Look for values that appear as
outliers in any of the pairwise scatterplots.

* Note the ranges of each of the explanatory variables. Do they vary sufficiently to affect
values of the dependent variable?

* How accurately are each of the explanatory variables measured? At worst, the inaccuracy
may be so serious that it is unlikely that any effect can be detected, and/or that coefficients
of other explanatory variables are seriously in error. Section 6.7 has further details.

¢ If some pairwise plots show evidence of non-linearity, consider use of transformation(s)
to give more nearly linear relationships.

* Where the distribution is skew, consider transformations that may lead to a more sym-
metric distribution.

* Look for pairs of explanatory variables that are so highly correlated that they appear to
give the same information. Do scientific considerations help in judging whether both
variables should be retained? For example, the two members of the pair may measure
what is essentially the same quantity. Note however that there will be instances where
the difference, although small, is important. Section 8.2 has an example.
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Figure 6.12  Scatterplot matrix for the hi11s2000 data (Table 6.1).

6.4.2 Diagnostic checks
Checks should include:

* Plot residuals against fitted values. For initial checks, consider the use of residuals from
a resistant regression model. Check for patterns in the residuals, and for the fanning out
(or in) of residuals as the fitted values change. (Do not plot residuals against observed
values. This is potentially deceptive; there is an inevitable positive correlation.)

¢ Examine the Cook’s distance statistics. If it seems helpful, examine standardized versions
of the drop-1 coefficients directly, using dfbetas (). It may be necessary to delete
influential data points and refit the model.

¢ Foreach explanatory variable, construct a component plus residual plot, to check whether
any of the explanatory variables require transformation.

A further question is whether multiple regression methodology is adequate, or whether
a non-linear form of equation may be required. Ideas of “structural dimension”, which
are beyond the scope of the present text, become important. The package dr (dimension
reduction) addresses such issues.

6.4.3 An example — Scottish hill race data

Thedatainhills2000 is comparable tonihil1ls, but for Scotland rather than Northern
Ireland. Again, we will work on the logarithmic scale and limit attention to the male results.
Figure 6.12 shows the scatterplot matrix.” Apart from a possible outlier, the relationship
between dist and climb seems approximately linear on the log scale.

O ## Scatterplot matrix: data frame hills2000 (DAAG), log scales
splom (™ log(hills2000[, c("dist","climb","time")]), cex.labels=1.2,
varnames=c ("dist\n(log miles)", "climb\n(log feet)", "time\n(log hours)"))
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Figure 6.13 Plots of residuals against fitted values from the regression of log(time) on
log(climb) and log(dist). Panel A is from the least squares (1m) fit, while panel B is
for a resistant fit that uses 1gs from the MASS package. Note that the resistant fit relies on repeated
sampling of the data, and will differ slightly from one run to the next.

The help page for races2000 (hills2000 is a subset of races2000) suggests
uncertainty about the distance for the Caerketton race in row 42. We will include Caerketton
during our initial analysis and check whether it appears to be an outlier.

Figure 6.13 shows residuals (A) from a least squares (1m) fit and (B) from a resistant 1gs
fit, in both cases plotted against fitted values. Resistant fits completely ignore the effects of
large residuals. By default, even if almost half the observations are outliers, the effect on
the fitted model would be small. See the help page for 1gs for more information. The code
is:

## Panel A

1lhills2k.1lm <- 1Im(log(time) ~ log(climb) + log(dist),
data = hills2000)

plot(lhills2k.1lm, caption="", which=1)

## Panel B

library (MASS) # 1lgs() is in the MASS package

1hills2k.lgs <- lgs(log(time) ~ log(climb) + log(dist),

data = hills2000)
reres <- residuals(lhills2k.lgs)
refit <- fitted(lhills2k.lgs)
big3 <- which(abs(reres) >= sort(abs(reres), decreasing=TRUE) [3])

plot (reres refit, xlab="Fitted values (resistant fit)",
yvlab="Residuals (resistant fit)")

lines (lowess (reres refit), col=2)

text (reres[big3] ~ refit[big3], labels=rownames (hills2000) [big3],

pos=4-2* (refit[big3] > mean(refit)), cex=0.8)

Caerketton shows up rather clearly as an outlier, in both panels. Its residual in panel 1
is —0.356 (visual inspection might suggest —0.35). The predicted log(time) for this race is
conveniently written as log(time). Then

log(time) — log(time) = —0.356.
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Figure 6.14 The solid lines show the respective contributions of the two model terms, in the
regression of logtime on logdist and logclimb. Partial residuals, and an associated smooth
curve, have been added.

Thus
ti ti
l0g(ms ) = —0.356, i.e., = ~ exp —0.356 = 0.7.
time time

Thus the time given for this race is 70% of that predicted by the regression equation, a very
large difference indeed. The standardized difference is —3; this can be seen by use of

plot(lhills2k.1lm, which=2)

If the model is correct and residuals are approximately normally distributed, a residual of
this magnitude will occur about 2.6 times in 1000 residuals. '’

The resistant fit in panel B suggests that Beinn Lee and 12 Trig Trog are also outliers.
These outliers may be a result of non-linearity. We nextuse termplot () tocheck whether
log(dist) and/or log (climb) should enter the model non-linearly.

The contribution of the separate terms

In order to get a plot that is easy to interpret, it is best to transform the variables before
entering them into the model, thus:

## Create data frame that has logs of time, dist & climb

1hills2k <- log(hills2000[, c("dist", "climb", "time")])

names (1hills2k) <- paste("log", names(lhills2k), sep="")

1hills2k.lm <- Im(logtime ~ logdist+logclimb, data=1hills2k)

termplot (1lhills2k.1lm, partial.resid=TRUE, smooth=panel.smooth,
col.res="gray30")

Figure 6.14 shows the result. There is a small but clear departure from linearity, most
evident for 1ogdist. The linear model does however give a good general summary of
the indications in the data. If the shortest and longest of the races are left out, it appears
entirely adequate.

> ## Probability of a value <= -3 or >= 3
> 2 * pnorm(-3)
107111 0.0027
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It is necessary to model the departure from linearity before proceeding further with
checking residuals. A quadratic term in 1ogdist will work well here.

A resistant fit that has a polynomial term in 1logdist

The quadratic term needs to be entered as I (logdist”2); this ensures that
I(logdist”2) is taken as the square, rather than as an interaction of logdist with
itself. It is however better, as will be explained in Section 7.4, to combine logdist
and I (logdist”2) together into a single orthogonal polynomial “term”. Subsequent
use of the termplot () function then shows the combined effects from logdist and
I(logdist”2). Here is the code:

> reres2 <- residuals(lgs(logtime ~ poly(logdist,2)+logclimb, data=lhills2k))
> reres2[order (abs (reres2), decreasing=TRUE) [1:4]]
Caerketton Beinn Lee Yetholm Ardoch Rig

-0.417 0.299 0.200 0.188

As might have been expected, Caerketton is now the only large residual. In the sequel, we
therefore omit Caerketton.

Refining the model

The component plus residual plot suggested taking a quadratic function of distance. Another
possibility might be to add the interaction term logdist:logclimb or, equivalently
(as these are continuous variables), I (logdist*logclimb). The following compares
these possibilities, using AIC as a criterion. (Lower AIC is better.)

> addl (1lhills2k.1lm, ~ logdist+I(logdist”2)+logclimb+logdist:logclimb,
+ test="F")
Single term additions

Model:
logtime ~ logdist + logclimb

Df Sum of Sg RSS AIC F value Pr (F)
<none> 0.77 -233.89
I(logdist™2) 1 0.17 0.61 -245.52 14.331 0.000399
logdist:logclimb 1 0.06 0.71 -236.69 4.651 0.035682

On its own, the AIC value is pretty meaningless. What matters is the comparison between
the values of the statistic for the different models. A smaller AIC is preferred; it indicates
that the model has better predictive power. Clearly the quadratic term in 1logdist is doing
the job much better.

We now examine the diagnostic plots for the model that includes poly (logdist, 2).
The code is:

1hills2k.1m2 <- Ilm(logtime ~ poly(logdist,2)+logclimb, data=1hills2k[-42, 1)
plot(lhills2k.1lm2)

Figure 6.15 shows the result.
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Figure 6.15 Diagnostic plots from the fit of 1logtime to a polynomial of degree 2 in logdist
and logclimb.

Note that poly (logdist,2) generates orthogonal polynomial contrasts. To get a
result in which the parameters are coefficients of 1logdist and logdist”2, repeat the
fit specifying the quadratic term as poly (logdist, 2, raw=TRUE) .

Additionally, the reader may wish to check that adding the interaction term to a model
that already has the quadratic term gives no useful improvement.'' It will be found that use
of the interaction term increases the AIC slightly.

The model without the interaction term

As noted earlier, the model that is linear in logdist and 1ogclimb would be adequate
for many practical purposes. The coefficients are:

> 1hills2k.1lm <- Im(logtime ~ logdist+logclimb, data=1hills2k[-42, ])
> summary (1lhills2k.1lm) $coef
Estimate Std. Error t value Pr(>|t])

(Intercept) -4.023 0.1865 -21.6 1.33e-27
logdist 0.778 0.0335 23.2 3.89e-29
logclimb 0.317 0.0302 10.5 1.90e-14

The estimated equation is:
log(time) = —4.02 4+ 0.78 log(dist) 4 0.32log(climb).
By noting that exp(—4.02) = 0.018, this can be rewritten as

time = 0.018 x dist®”® x c1imb’32.

Are “errors in x” an issue?

Most distances are given to the nearest half mile, and may in any case not be known at
all accurately. The error is, however, likely to be small relative to the range of values of
distances, so that the attenuation effects that will be discussed in Section 6.7 are likely to
be small and of little consequence. See Section 6.7 for the theory that is relevant to the
assessment of likely attenuation effects.

## Check addition of interaction term
1 23d1 (1hills2k.1m2, ~ poly(logdist,2)+logclimb+logdist:logclimb)
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What happens if we do not transform?

If we avoid transformation and do not allow for increasing variability for the longer races
(see Exercise 6 at the end of the chapter for further development), we find several outlying
observations, with the race that has the longest time highly influential.

Venables and Ripley (2002, p. 154) point out that it is reasonable to expect that variances
will be larger for longer races. Using dist as a surrogate for time, they give observations
weights of 1/dist 2. This is roughly equivalent, in its effect on the variance, to our use
of log (time) as the dependent variable.

6.5 Problems with many explanatory variables

Variable selection is an issue when the aim is to obtain the best prediction possible. Be sure
to distinguish the variable selection problem from that of determining which variables have
greatest explanatory power. If the interest is in which variables have useful explanatory
power, then the choice of variables will depend on which quantities are to be held constant
when the effects of other quantities are estimated. There should in any case be an initial
exploratory investigation of explanatory variables, as described in Section 6.4, leading
perhaps to transformation of one or more of the variables.

One suggested rule is that there should be at least 10 times as many observations as
variables, before any use of variable selection takes place. For any qualitative factor, subtract
one from the number of levels, and count this as the number of variables contributed by
that factor. This may be a reasonable working rule when working with relatively noisy data
where none of the variables have a dominant effect. There are important contexts where it
is clearly inapplicable.

For an extended discussion of state-of-the-art approaches to variable selection, we refer
the reader to Harrell (2001), Hastie ez al. (2009, Sections 4.3 and 4.7). The technically
demanding paper by Rao and Wu (2001) was, at the time of publication, a good summary
of the literature on model selection.

We begin by noting strategies that are designed, broadly, to keep to a minimum the
number of different models that will be compared. The following strategies may be used
individually, or in combination.

1. A first step may be an informed guess as to what variables/factors are likely to be
important. An extension of this approach classifies explanatory variables into a small
number of groups according to an assessment of scientific “importance”. Fit the most
important variables first, then add the next set of variables as a group, checking whether
the fit improves from the inclusion of all variables in the new group.

2. Interaction effects are sometimes modeled by including pairwise multiples of explana-
tory variables, e.g., x; X x; as well as x; and x,. Use is made of an omnibus check for
all interaction terms, rather than checking for interaction effects one at a time.

3. Principal components analysis is one of several methods that may be able to identify
a small number of components, i.e., combinations of the explanatory variables, that
together account for most of the variation in the explanatory variables. In favorable
circumstances, one or more of the first few principal components will prove to be
useful explanatory variables, or may suggest useful simple forms of summary of the
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original variables. In unfavorable circumstances, the components will prove irrelevant!
See Section 13.1 and Harrell (2001, Sections 4.7 and 8.6) for further commentary and
examples. See Chapter 13 for examples.

4. Discriminant analysis can sometimes be used to identify a summary variable. There is
an example in Chapter 13.

6.5.1 Variable selection issues

We caution against giving much credence to output from conventional automatic variable
selection techniques — various forms of stepwise regression, and best subsets regression. The
resulting regression equation may have poorer genuine predictive power than the regression
that includes all explanatory variables. The standard errors and ¢-statistics typically ignore
the effects of the selection process; estimates of standard errors, p-values, and F'-statistics
will be optimistic. Estimates of regression coefficients are biased upwards in absolute
value — positive coefficients will be larger than they should be, and negative coefficients
will be smaller than they should be. See Harrell (2001) for further discussion.

Variable selection — a simulation with random data

Repeated simulation of a regression problem where the data consist entirely of noise will
demonstrate the extent of the problem. In each regression there are 41 vectors of 100
numbers that have been generated independently and at random from a normal distribution.
In these data:'”

1. The first vector is the response variable y.
2. The remaining 40 vectors are the variables xi, x2, ..., X40.

If we find any regression relationships in these data, this will indicate faults with our
methodology. (In computer simulation, we should not however totally discount the possi-
bility that a quirk of the random number generator will affect results. We do not consider
this an issue for the present simulation!)

We perform a best subsets regression in which we look for the three x-variables that
best explain y. (This subsection has an example that requires access to the leaps package,
implemented by Thomas Lumley using Fortran code by Alan Miller. Before running the
code, be sure that leaps is installed.)"”

Call:
Im(formula =y ~ -1 + xx[, subvar])

12 44 Generate a 100 by 40 matrix of random normal data
Yy <- rnorm(100)
xX <- matrix(rnorm(4000), ncol = 40)
dimnames (xx)<- list (NULL, paste("X",1:40, sep=""))
3 ## Find the best fitting model
library (leaps)

xx.subsets <- regsubsets(xx, y, method = "exhaustive", nvmax = 3, nbest = 1)
subvar <- summary (xx.subsets)$which[3,-1]

best3.1lm <- Im(y ~ -1l+xx[, subvarl])

print (summary (best3.1lm, corr = FALSE))

## The following call to bestsetNoise() (from DAAG) achieves the same purpose

bestsetNoise (m=100, n=40)
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Coefficients:

Estimate Std. Error t value Pr(>|t])
xx[, subvar]X1l2 0.2204 0.0896 2.46 0.0156
xx[, subvar]X23 -0.1431 0.0750 -1.91 0.0593
xx[, subvar]X28 0.2529 0.0927 2.73 0.0076

Residual standard error: 0.892 on 97 degrees of freedom
Multiple R-Squared: 0.132, Adjusted R-squared: 0.105
F-statistic: 4.93 on 3 and 97 DF, p-value: 0.00314

Note that two of the three variables selected have p-values less than 0.05.
When we repeated this experiment 10 times, the outcomes were as follows. Categories
are exclusive:

Instances

All three variables selected were significant at p < 0.01 1
All three variables had p < 0.05 3
Two out of three variables had p < 0.05 3
One variable with p < 0.05 3

Total 10

In the modeling process there are two steps:

1. Select variables.
2. Do aregression and determine SEs and p-values, etc.

The p-value calculations have taken no account of step 1. Our ability to find “significance”
in data sets that consist only of noise is evidence of a large bias.

Cross-validation that accounts for the variable selection process

Cross-validation is one way to determine realistic standard errors and p-values. At each
cross-validation step, we repeat both of steps 1 and 2 above, i.e., both the variable selection
step and the comparison of predictions from the regression equation with data different
from that used in forming the regression equation.

Estimates of regression coefficients and standard errors should similarly be based on
fitting regressions, at each fold, to the test data for that fold. The issue here is that the
equation must be fitted to data that were not used for variable selection. The estimates from
the separate folds must then be combined.

Regression on principal components

Regression on principal components, which we discussed briefly in the preamble to this
section and will demonstrate in Section 13.1, may sometimes be a useful recourse. Hastie
et al. (2009) discuss principal components regression alongside a number of other methods
that are available. Note especially the “shrinkage” methods, which directly shrink the
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coefficients. The function lars (), in the package with the same name, implements a class
of methods of this type that has the name least angle regression, allowing also for variable
selection. See Efron er al. (2003).

6.6 Multicollinearity

Some explanatory variables may be linearly related to combinations of one or more of
the other explanatory variables. Technically, this is known as multicollinearity. For each
multicollinear relationship, there is one redundant variable.

The approaches that we have advocated — careful thinking about the background science,
careful initial scrutiny of the data, and removal of variables whose effect is already accounted
for by other variables — will generally avoid the more extreme effects of multicollinearity
that we will illustrate. Milder consequences are pervasive, especially for observational data.

An example — compositional data

The data set Coxite, in the compositions package, has the mineral compositions of
25 rock specimens of coxite type. Each composition consists of the percentage by weight of
five minerals, the depth of location, and porosity. The names of the minerals are abbreviated
to A = albite, B = blandite, C = cornite, D = daubite, and E = endite. The analysis that
follows is a relatively crude use of these data. For an analysis that uses a method that is
designed for compositional data, see Aitchison (2003).

Figure 6.16 shows the scatterplot matrix. Notice that the relationship between D and E
is close to linear. Also, the percentages of the five minerals sum, in each row, to 100. The
code for Figure 6.16 is:

library (compositions)

data (Coxite) # For pkg compositions, needed to access data
coxite <- as.data.frame (Coxite) # From matrix, create data frame
## Scatterplot matrix for data frame coxite

pairs (coxite)

We will look for a model that explains porosity as a function of mineral composition.
Here is a model that tries to use all six explanatory variables:

> coxiteAll.lm <- 1lm(porosity ~ A+B+C+D+E+depth, data=coxite)
> summary (coxiteAll.lm)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])

(Intercept) -217.7466 253.4439 -0.86 0.40
A 2.6486 2.4825 1.07 0.30
B 2.1915 2.6015 0.84 0.41
c 0.2113 2.2271 0.09 0.93
D 4.9492 4.6720 1.06 0.30

NA NA NA NA

depth 0.0145 0.0333 0.44 0.67
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Figure 6.16  Scatterplot matrix for the variables in the constructed Cox1i te data set.

Residual standard error: 0.649 on 19 degrees of freedom
Multiple R-squared: 0.936, Adjusted R-squared: 0.919
F-statistic: 55.1 on 5 and 19 DF, p-value: 1.18e-10

Notice that:

* The variable E, because it is a linear combination of earlier variables, adds no information
additional to those variables. Effectively, its coefficient has been set to zero.

* None of the individual coefficients comes anywhere near the usual standards of statistical
significance.

* The overall regression fit, with a p-value of 1.18 x 107!, is highly significant.

The overall regression fit has good predictive power, notwithstanding the inability to
tease out the contributions of the individual coefficients. Figure 6.17 shows 95% pointwise
confidence intervals for fitted values at several points within the range. Pointwise confidence
bounds can be obtained thus:

hat <- predict(coxiteAll.lm, interval="confidence", level=0.95)

The object that is returned is a matrix, with columns fit (fitted values), lwr (lower
confidence limits), and upr (upper confidence limits).
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Fitted values, with 95% Cls
(Points are observed porosities)

Fitted values

Figure 6.17 Line y = x, with 95% pointwise confidence bounds for fitted values shown at several
locations along the range of fitted values. The points show the observed porosities at each of the fitted
values.

6.6.1 The variance inflation factor

The variance inflation factor (VIF) measures the effect of correlation with other variables in
increasing the standard error of a regression coefficient. If x ;, with values x;; ( = 1, ..., n)
is the only variable in a straight line regression model, and b; is the estimated coefficient,
then:

o2

n
var[b;] = —, where s;; = Z(xi,- — %)
sjj i=1
and o2 is the variance of the error term in the model. When further terms are included in
the regression model, this variance is inflated, as a multiple of o2, by the variance inflation
factor. Notice that the VIF depends only on the model matrix. It does not reflect changes in

the residual variance.
In order to obtain VIFs, we need to explicitly omit E (or one of A, B, C, or D) from the
model, thus:

> vif (lm(porosity ~ A+B+C+D+depth, data=coxite))
A B C D depth
2717.82 2484.98 192.59 566.14 3.42

Given the size of these factors, it is unsurprising that none of the individual coefficients can
be estimated meaningfully.

It is reasonable to try a model that uses those variables that, individually, correlate most
strongly with porosity. Here are the correlations:

> cor(coxiteSporosity, coxite)

A B C D E depth porosity
[1,]1 0.869 -0.551 -0.723 -0.32 -0.408 -0.147 1
Thus we try:

> summary (coxiteABC.1lm <- lm(porosity A+B+C, data=coxite))
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Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 53.3046 13.2219 4.03 0.00060
A -0.0125 0.1558 -0.08 0.93700
B -0.5867 0.1513 -3.88 0.00087
C -2.2188 0.3389 -6.55 1.7e-06

> vif (coxiteABC.1lm)
A B C
10.94 8.59 4.56

It is then reasonable to simplify this to:

> summary (coxiteBC.lm <- Ilm(porosity B+C, data=coxite))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 52.2571 1.7831 29.3 < 2e-16
B -0.5753 0.0508 -11.3 1.2e-10
C -2.1949 0.1562 -14.1 1.8e-12
> vif (coxiteBC.1m)
B C
1.01 1.01

Using the AIC statistic to compare this model with the model that used all six explanatory
variables, we have:

> AIC(coxiteAll.lm, coxiteBC.1lm)
df AIC

coxiteAll.lm 7 56.5

coxiteBC.1lm 4 52.5

The simpler model wins. Predictions from this simpler model should have slightly narrower
confidence bounds than those shown in Figure 6.17. Verification of this is left as an exercise.

Numbers that do not quite add up

Now round all the percentages to whole numbers, and repeat the analysis that uses all six
available explanatory variables.

> coxiteR <- coxite
> coxiteR[, 1:5] <- round(coxiteR[, 1:5])

> summary (1lm(porosity ~ ., data=coxiteR))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.4251 23.4043 -0.06 0.95212
A 0.5597 0.2457 2.28 0.03515
B 0.0157 0.2403 0.07 0.94865
C -1.3180 0.2940 -4.48 0.00029
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D 0.9748 0.4222 2.31 0.03305
E -0.5530 0.5242 -1.05 0.30543
depth -0.0149 0.0223 -0.67 0.51310

Residual standard error: 0.708 on 18 degrees of freedom
Multiple R-squared: 0.927, Adjusted R-squared: 0.903
F-statistic: 38.3 on 6 and 18 DF, p-value: 2.69e-09

> vif (lm(porosity ~ .-E, data=coxiteR))
A B C D depth
16.96 16.49 3.28 4.66 1.25

This result may seem surprising. Noise has been introduced that has removed some of the
correlation, so that C now appears significant even when all other explanatory variables are
included. Perhaps more surprising is the p = 0.033 for D.

While this is contrived, we have from time to time seen comparable effects in computer
output that researchers have brought us for scrutiny.

6.6.2 Remedies for multicollinearity

Asnoted at the beginning of the section, careful initial choice of variables, based on scientific
knowledge and careful scrutiny of relevant exploratory plots of explanatory variables, will
often avert the problem. Occasionally, it may be possible to find or collect additional data
that will reduce correlations among the explanatory variables.

Ridge regression is one of several approaches that may be used to alleviate the effects of
multicollinearity, in inflating coefficients and their standard errors. We refer the reader to
the help page for the function 1m.ridge () in the MASS package and to the discussions in
Berk (2008), Myers (1990), Harrell (2001). For a less elementary and more comprehensive
account, see Hastie er al. (2009). Use of the function 1m.ridge () requires the user
to choose the tuning parameter 1ambda. Typically, the analyst tries several settings and
chooses the value that, according to one of several available criteria, is optimal. Principal
components regression is another possible remedy.

6.7 Errorsin x

The issues that are canvassed here have large practical importance. It can be difficult to
assess the implications of the theoretical results for particular practical circumstances.

The discussion so far has been assumed: either that the explanatory variables are measured
with negligible error, or that the interest is in the regression relationship given the observed
values of explanatory variables. This subsection draws attention to the effect that errors
in the explanatory variables can have on regression slope. Discussion is mainly on the
relatively simple “classical” errors in x model.

With a single explanatory variable, the effect under the classical “errors in x”” model is to
reduce the expected magnitude of the slope, that is, the slope is attenuated. Furthermore, the
estimated slope is less likely to be distinguishable from statistical noise. For estimating the
magnitude of the error and consequent attenuation of the slope, there must be information
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additional to that shown in a scatterplot of y versus x. There must be a direct comparison
with values that are measured with negligible error.

The study of the measurement of dietary intake that is reported in Schatzkin ef al. (2003)
illustrates some of the key points. The error in the explanatory variable, as commonly
measured, was shown to be larger and of greater consequence than most researchers had
been willing to contemplate.

Measurement of dietary intake

The 36-page Diet History Questionnaire is a Food Frequency Questionnaire (FFQ) that
was developed and evaluated at the US National Cancer Institute. In large-scale trials that
look for dietary effects on cancer and on other diseases, it has been important to have an
instrument for measuring food intake that is relatively cheap and convenient. (Some trials
have cost US$100 000 000 or more.)

The FFQ asks for details of food intake over the previous year for 124 food items. It
queries frequency of intake and, for most items, portion sizes. Supplementary questions
query such matters as seasonal intake and food type. More detailed food records may be
collected at specific times, which can then be used to calibrate the FFQ results. One such
instrument is a 24-hour dietary recall, which questions participants on their dietary intake
in the previous 24 hours.

Schatzkin et al. (2003) compared FFQ measurements with those from Doubly Labeled
Water, used as an accurate but highly expensive biomarker. They conclude that the FFQ
is too inaccurate for its intended purpose. The 24-hour dietary recall, although better, was
still seriously inaccurate.

In some instances, the standard deviation for estimated energy intake was seven times
the standard deviation, between different individuals, of the reference. There was a bias in
the relationship between FFQ and reference that further reduced the attenuation factor, to
0.04 for women and to 0.08 for men. For the relationship between the 24-hour recalls and
the reference, the attenuation factors were 0.1 for women and 0.18 for men, though these
can be improved by use of repeated 24-hour recalls.

These results raise serious questions about what such studies can achieve, using presently
available instruments that are sufficiently cheap and convenient that they can be used in
large studies. Carroll (2004) gives an accessible summary of the issues. Subsection 10.7.6
has further brief comment on the modeling issues.

Simulations of the effect of measurement error

Suppose that the underlying regression relationship that is of interest is:

yi = a + Bx; + ¢&;, where var[g;] =0’ (i=1,...,n).

Lets, = \/ Zl'.’zl(x,- — ¥)?/(n — 1) be the standard deviation of the values that are measured
without error.
Take the measured values as

wi = x; + 1;, where var[n;] = s? 72

The 5, are assumed independent of the ¢;.
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Figure 6.18 The fitted solid lines show the change in the regression line as the error in x
changes. The underlying relationship, shown with the dashed line, is in each instance y = 15+
1.5x. For the definition of 7, see the text. This figure was obtained by use of the DAAG function
errorsINx (), with default arguments.

Figure 6.18 shows results from a number of simulations that use the w; as the explanatory
values. If T = 0.4 (the added error has a variance that is 40% of s, ), the effect on the slope
is modest. If T = 2, the attenuation is severe. The function errorsINx () (DAAG) can
be used for additional simulations such as are shown in Figure 6.18.

An estimate of the attenuation in the slope is, to a close approximation:

Here, X has the name reliability ratio.

If, for example, T = 0.4, then A ~ 0.86. Whether a reduction in the estimated slope
by a factor of 0.86 is of consequence will depend on the application. Often there will be
more important concerns. Very small attenuation factors (large attenuations), e.g., less than
0.1 such as were found in the Schatzkin er al. (2003) study, are likely to have serious
consequences for the use of analysis results.

Points to note are:

* From the data used in the panels of Figure 6.18, it is impossible to estimate t, or to
know the underlying x; values. This can be determined only from an investigation that
compares the w; with an accurate, i.e., for all practical purposes error-free, determination
of the x;.

¢ A test for § = 0 can be undertaken in the usual way, but with reduced power to detect
an effect that may be of interest.
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* The ¢-statistic for testing 8 = 0 is affected in two ways; the numerator is reduced by an
expected factor of A, while the standard error that appears in the numerator increases.
Thus if A = 0.1, the sample size required to detect a non-zero slope is inflated by more
than the factor of 100 that is suggested by the effect on the slope alone.

*Two explanatory variables

Consider first the case where one predictor is measured with error, and others without
error. The coefficient of the variable that is measured with error is attenuated, as in
the single variable case. The coefficients of other variables may be reversed in sign, or
show an effect when there is none. See Carroll er al. (2006, pp. 52-55) for summary
comment.

Suppose that

y = Bix1 + Paxr +&.

If wy is unbiased for x; and the measurement error 7 is independent of x; and x;, then least
squares regression with explanatory variables w; and x, yields an estimate of A8, where if
p is the correlation between x; and x;:

1—p?
1= p2 T
A new feature is the bias in the least squares estimate of 8,. The naive least squares
estimator estimates

s
B2 + Bi(1 — A) Y12, where y1; = ,os—l. (6.4)
2

Here, y, is the coefficient of x; in the least squares regression of x; on x;, s; = SD[x]
and s, = SD[x,]. The estimate of 8, may be substantially different from zero, even though
B> = 0. Where B, # 0, the least squares estimate can be reversed in sign from S,. Some of
the effect of x; is transferred to the estimate of the effect of x,.

Two explanatory variables, one measured without error — a simulation

The function errorsINx () (DAAG), when supplied with a non-zero value for the argu-
ment gpdi £ £, simulates the effect when the variable that is measured without error codes
for a categorical effect. Figure 6.19 had gpdiff=1.5. Two lines appear, suggesting a
“treatment” effect where there was none.

The function errorsINseveral () simulates a model where there are two continuous
variables x; and x,. The default choice of arguments has

Br=15p8=0p=-05,s =5, =2, 7 = 1.5, var[e] = 0.25.

Measurement error variances are xp: slzrz, x2: 0. Then A = 0.25, y;, = —0.5, and the
expected value for the naive least squares estimator of §; is

Bo + Bi(1 — My12 = 0+ 1.5 x 0.75 x (=0.5) = —0.5675.

Here is a simulation result, with default arguments as noted:
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Figure 6.19 In the simulations whose results are shown here, y is a linear function of x. The mean
value of x is 12.5 for the first level (“ct1”) of a grouping variable, and 14.0 for the second level
(“trt”) of the grouping variable. In the panel on the left, the values of x are measured without error.
In the middle and right panels, independent errors have been added to x from distributions with SDs
that are 0.8 and 1.6 times that of the within-group standard deviation of x. The SEDs are conditional
onw = xWITHerr.

> errorsINseveral ()

Intercept bl b2
Values for simulation 2.482 1.500 0.000
Estimates: no error in x1 2.554 1.494 0.009
LS Estimates: error in x1 35.448 0.400 -0.597

An arbitrary number of variables

Where two or more variables are measured with substantial error, there is an increased
range of possibilities for transferring some part or parts of effects between variables. By
specifying the arguments V and xerrV, the function errorsINseveral () canbe used
for simulations with an arbitrary correlation structure for the explanatory variables, and
with an arbitrary variance—covariance matrix for the added errors.'*

*The classical error model versus the Berkson error model

In the classical model, E[w;|x;] = x;. In the Berkson model, E[x;|w;] = w;. This may be
a realistic model in an experiment where w; is an instrument setting, but the true value
varies randomly about the instrument setting. For example, the temperature in an oven or
kiln may be set to w;, but the resulting (and unknown) actual temperature is x;. In straight
line regression, the coefficient is then unbiased, but the variance of the estimate of the
coefficient increases.

141 B is the vector of coefficients in the model without errors in the measured values, V corresponds in the obvious way to V,
and U to xerrV, then an estimate for the resulting least squares estimates for regression on the values that are measured
with error is 8'V(V + U)~'. Note that Zeger et al. (2000, p. 421) have an initial 7' (our U), where V is required.
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Zeger et al. (2000) discuss the practical consequences of both types of error, though
giving most of their attention to the classical model. In their context, realistic models may
have elements of both the classical and Berkson models.

6.8 Multiple regression models — additional points

The following notes should help dispel any residual notion that this chapter’s account of
multiple regression models has covered everything of importance.

6.8.1 Confusion between explanatory and response variables

As an example, we return to the allbacks data. We compare the coefficients in the
equation for predicting area given volume and weight with the rearranged coefficients
from the equation that predicts weight given volume and area:

> coef(lm(area ~ volume + weight, data=allbacks))
(Intercept) volume weight

35.459 -0.964 1.361
> b <- as.vector (coef (lm(weight ~ volume + area, data=allbacks)))
> c("_Intercept_"=-b[1l]/b[3], volume=-b[2]/b[3], weight=1/b[3])
_Intercept_ volume weight

-47.85 -1.51 2.13

Only if the relationship is exact, so that predicted time is the same as observed time, will
the equations be exactly the same. For examples from the earth sciences literature, see
Williams (1983).

Unintended correlations

Suppose that x; (i =1,2,...,n) are results from a series of controls, while y; (i =
1,2, ..., n) are results from the corresponding treated group. It is tempting to plot y — x
versus x. Unfortunately, there is likely to be a negative correlation between y — x and
x, though this is not inevitable. This emphasizes the desirability of maintaining a clear
distinction between explanatory and response variables. See the example in Sharp et al.
(1996).

6.8.2 Missing explanatory variables

Here the issue is use of the wrong model for the expected value. With the right “balance”
in the data, the expected values are unbiased or nearly unbiased. Where there is serious
imbalance, the bias may be huge.

Figure 6.20 relates to data collected in an experiment on the use of painkillers (Gordon
etal., 1995). Pain was measured as a VAS (Visual-Analogue Scale) score. Researchers were
investigating differences in the pain score between the two analgesic treatments, without
and with baclofen.
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Figure 6.20 Does baclofen, following operation (additional to earlier painkiller), reduce pain?
Subgroup numbers, shown below each point in the graph, weight the overall averages when sex is
ignored.

Notice that the overall comparison (average for baclofen versus average for no baclofen)
goes in a different direction from the comparison for the two sexes separately. As the two
treatment groups had very different numbers of men and women, and as there was a strong
sex effect, an analysis that does not account for the sex effect gives an incorrect estimate of
the treatment effect (Cohen, 1996).

The overall averages in Figure 6.20 reflect the following subgroup weighting effects (f
is shorthand for female and m for male):

Baclofen: 15f to 3m, i.e., & to % (a little less than f average)
7

> 18
No baclofen: 7f to 9m, i.e. to % ~ %-way between m & f)

> 16

There is a sequel. More careful investigation revealed that the response to pain has a
different pattern over time. For males, the sensation of pain declined more rapidly over
time.

Strategies

(i) Simple approach. Calculate means for each subgroup separately.
Overall treatment effect is average of subgroup differences.
Effect of baclofen (reduction in pain score from time 0) is:

Females: 3.479 — 4.151 = —0.672 (—ve, therefore an increase)
Males: 1.311 — 1.647 = —0.336
Average over male and female = —0.5 x (0.672 + 0.336) = —0.504

(i) Fit a model that accounts for sex and baclofen effects. y = overall mean + sex
effect + baclofen effect + interaction.
(At this point, we are not including an error term.)

When variables or factors are omitted from models, values of the outcome variable are
as far as possible accounted for using those that remain. The mouse brain weight example
in Subsection 6.2.3 can be understood in this way. Bland and Altman (2005) give several
examples of published results where conclusions have been vitiated by effects of this

type.
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Another example of this same type, albeit in the context of contingency tables, was
discussed in Subsection 3.4.5. The analysis of the UCB admissions data in Section 8.3
formulates the analysis of contingency table data as a regression problem.

6.8.3* The use of transformations

Often there are scientific reasons for transformations. Thus, suppose we have weights w
of individual apples, but the effects under study are more likely to be related to surface
area. We should consider using x = w3 as the explanatory variable. If the interest is in
studying relative, rather than absolute, changes, it may be best to work with the logarithms
of measurements.

Statisticians use transformations for one or more of the following reasons:

1. To form a straight line or other simple relationship.

2. To ensure that the “scatter” of the data is similar for all categories, i.e., to ensure that
the boxplots all have a similar shape. In more technical language, the aim is to achieve
homogeneity of variance.

3. To make the distribution of data more symmetric and closer to normal.

If there is a transformation that deals with all these issues at once, we are fortunate. It may
greatly simplify the analysis.

A log transformation may both remove an interaction and give more nearly normal data.
It may, on the other hand, introduce an interaction where there was none before. Or a
transformation may reduce skewness while increasing heterogeneity. The availability of
direct methods for fitting special classes of model with non-normal errors, for example
the generalized linear models that we will discuss in Chapter 8, has reduced the need for
transformations.

6.8.4* Non-linear methods — an alternative to transformation?

This is a highly important area for which, apart from the present brief discussion, we have
not found room in the present book. We will investigate the use of the R nls () function
(stats package) to shed light on the loglinear model that we used for the hill race data in
Subsection 6.2.1.

The analysis of Subsection 6.2.1 assumed additive errors on the transformed logarithmic
scale. This implies, on the untransformed scale, multiplicative errors. We noted that the
assumption of homogeneity of errors was in doubt.

One might alternatively assume that the noise term is additive on the untransformed
scale, leading to the non-linear model

y:x‘f‘x§+s

where y = time, x; = dist, and x, = climb.

We will use the nls () non-linear least squares function to estimate o and S. The
procedure used to solve the resulting non-linear equations is iterative, requiring starting
values for « and . We use the estimates from the earlier loglinear regression as starting
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values. Because we could be taking a square or cube of the c1imb term, we prefer to work
with the variable c1imb.mi thatis obtained by dividing c1imb by 5280, so that numbers
are of modest size:

nihills$Sclimb.mi <- nihillsS$climb/5280

nihills.nls0 <- nls(time ~ (dist”alpha) *(climb.mi"beta), start =
c(alpha = 0.68, beta = 0.465), data = nihills)

plot (residuals(nihills.nls0) ~ log(predict(nihills.nls0)))

Output from the summary () function includes the following:

Parameters:

Estimate Std. Error t value Pr(>|t])
alpha 0.31516 0.00806 39.1 <2e-16
beta 0.81429 0.02949 27.6 <2e-16

These parameter estimates differ substantially from those obtained under the assumption
of multiplicative errors. This is not an unusual occurrence; the non-linear least squares
problem has an error structure that is different from the linearized least-squares problem
solved earlier. Residuals suggest a non-linear pattern.

Another possibility, that allows t ime to increase non-linearly with climb.mi, is

Y=o+ fx —i—yxg—i—s.
We then fit the model, using an arbitrary starting guess:

nihills.nls <- nls(time ~ gamma + deltal*dist”alpha +
delta2*climb.mi " beta,

start=c(gamma = .045, deltal = .09, alpha = 1,
delta2=.9, beta = 1.65), data=nihills)
plot (residuals (nihills.nls) ~ log(predict(nihills.nls)))

The starting values were obtained by fitting an initial model in which alpha was con-
strained to equal 1. The result is:

Parameters:
Estimate Std. Error t value Pr(>|t])

gamma 0.1522 0.0714 2.13 0.04708
deltal 0.0399 0.0284 1.41 0.17694
alpha 1.3102 0.2709 4.84 0.00013
delta2 0.8657 0.0922 9.39 2.3e-08
beta 1.5066 0.1810 8.32 1.4e-07

Estimate Std. Error t value Pr(>|t])

There are no obvious outliers in the residual plot. In addition, there is no indication
of an increase in the variance as the fitted values increase. Thus, a variance-stabilizing
transformation or the use of weighted least squares is unnecessary.
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6.9 Recap

A coefficient in a multiple regression equation predicts the effect of a variable when other
variables are held constant. Coefficients can thus be different, sometimes dramatically, for
a different choice of explanatory variables.

Regression equation predictions are for the data used to derive the equation, and reflect
any sampling biases that affect that data. Biases that arise because data were not randomly
sampled from the population can lead to predictions that, for the population as a whole, are
seriously astray.

Plots that can be useful for checking regression assumptions and/or for checking whether
results may be unduly influenced by individual data points include: scatterplot matrices of
the variables in the regression equation, plots of residuals against fitted values, partial
residual plots such as are provided by the termplot () function (these are a better guide
than plots of residuals against individual explanatory variables), normal probability plots
of residuals, scale—location plots, and Cook’s distance and related plots.

Robust methods downweight points that may be outliers. Resistant regression methods
are designed to completely remove the contribution of outliers to the regression fit.

6.10 Further reading

Faraway (2004) is a wide-ranging account that covers many of the important practical issues.
Harrell (2001) is likewise wide-ranging, with an emphasis on biostatistical applications.
Again it has a great deal of useful practical advice. Weisberg (1985) offers a relatively
conventional approach. Cook and Weisberg (1999) rely heavily on graphical explorations
to uncover regression relationships. Venables and Ripley (2002) is a basic reference for
using R for regression calculations. See also Fox (2002). Hastie et al. (2009) offer wide-
ranging challenges for the reader who would like to explore beyond the forms of analysis
that we have described.

On variable selection, which warrants more attention than we have given it, see Bolker
(2008), Harrell (2001), Hastie er al. (2009), Venables (1998). There is certain to be, in the
next several years, substantial enhancement to what R packages offer in this area. Bolker’s
account extends (p. 215) to approaches that weight and average models.

Rosenbaum (2002) is required reading for anyone who wishes to engage seriously with
the analysis of data from observational studies. Results can rarely be interpreted with the
same confidence as for a carefully designed experimental study. There are however checks
and approaches that, depending on the context, can be helpful in assessing the credence
that should be given one or other interpretation of analysis results.

On errors in variables, see Carroll ef al. (2006). Linear models are a special case of
non-linear models.

Several of the studies that are discussed in Leavitt and Dubner (2005), some with major
public policy relevance, relied to a greater or lesser extent on regression methods. References
in the notes at the end of their book allow interested readers to pursue technical details
of the statistical and other methodology. The conflation of multiple sources of insight and
evidence is invariably necessary, in such studies, if conclusions are to carry conviction.

Especially hazardous is the use of analyses where there are multiple potential confound-
ing variables, i.e., variables whose effects must be accounted for if coefficients for remaining
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variables are to be genuinely suggestive of a causal link. Not only must confounders be
included; their effects, including possible interaction effects, must be correctly modeled.
Controversy over studies on the health effects of moderate alcohol consumption provide a
good example; see, for example, Jackson et al. (2005).

For commentary on the use of regression and other models for predictive purposes, see
Maindonald (2003).

Structural equation models allow, in addition to explanatory variables and dependent
variables, intermediate variables that are dependent with respect to one or more of the
explanatory variables, and explanatory with respect to one or more of the dependent vari-
ables. Cox and Wermuth (1996) and Edwards (2000) describe approaches that use regression
methods to elucidate the relationships. Cox and Wermuth is useful for the large number
of examples and for its illuminating comments on practical issues, while Edwards is more
up-to-date in its account of the methodology.

Bates and Watts (1988) discuss non-linear models in detail. A more elementary presen-
tation is given in one of the chapters of Myers (1990).
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6.11 Exercises

The data set cities lists the populations (in thousands) of Canada’s largest cities over 1992
to 1996. There is a division between Ontario and the West (the so-called “have” regions) and
other regions of the country (the “have-not” regions) that show less rapid growth. To identify the
“have” cities we can specify
## Set up factor that identifies the ‘have’ cities
## Data frame cities (DAAG)
citiesShave <- factor((cities$SREGION=="ON") |
(citiesSREGION=="WEST"))
Plot the 1996 population against the 1992 population, using different colors to distinguish the
two categories of city, both using the raw data and taking logarithms of data values, thus:
plot (POP1996 ~ POP1992, data=cities,
col=as.integer (citiesS$have))
plot(log (POP1996) ~ log(POP1992), data=cities,
col=as.integer (citiesShave))
Which of these plots is preferable? Explain.
Now carry out the regressions
cities.lml <- 1m(POP1996 ~ have+POP1992, data=cities)
cities.lm2 <- 1lm(log(POP1996) ~ have+log(POP1992),
data=cities)
and examine diagnostic plots. Which of these seems preferable? Interpret the results.

Inthe data set cement (MASS package), examine the dependence of y (amount of heat produced)
on x1, x2, x3 and x4 (which are proportions of four constituents). Begin by examining the
scatterplot matrix. As the explanatory variables are proportions, do they require transformation,
perhaps by taking log(x /(100 — x))? What alternative strategies might be useful for finding an
equation for predicting heat?

Use the model that was fitted to the data in nihills to give predicted values for the data in
hills2000. Plot these against predicted values from the model fitted to hil1s2000, and
use differences from observed values of 1og (time) to estimate a prediction variance that is
relevant when Northern Irish data are used to predict Scottish times. Would you expect this
variance to be larger or smaller than the estimated error variance from the hi1l1ls2000 model
fit? Is this expectation born out?

The data frame hil1s2000 (DAAG) updates the 1984 information in the data set hills. Fit
regression models, for men and women separately, based on the data in hi1lls. Check whether
they fit satisfactorily over the whole range of race times. Compare the two equations.

Section 6.1 used 1m () to analyze the allbacks data that are presented in Figure 6.1. Repeat the
analysis using (1) the function r1m () in the MASS package, and (2) the function 1gs () in the
MASS package. Compare the two sets of results with the results in Section 6.1.

The following investigates the consequences of not using a logarithmic transformation for the
nihills dataanalysis. The second differs from the firstin having a dist x climb interaction
term, additional to linear terms in dist and c1limb.

(a) Fit the two models:
nihills.lm <- 1lm(time ~ dist+climb, data=nihills)
nihills2.1lm <- lm(time ~ dist+climb+dist:climb, data=nihills)

anova (nihills.lm, nihills2.1lm)
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(b) Using the F-test result, make a tentative choice of model, and proceed to examine diag-
nostic plots. Are there any problematic observations? What happens if these points are
removed? Refit both of the above models, and check the diagnostics again.

Check the variance inflation factors for bodywt and 1lsize for the model
brainwt ~ bodywt + lsize, fitted to the 1itters data set. Comment.

Apply the 1m. ridge () function to the 1itters data, using the generalized cross-validation
(GCV) criterion to choose the tuning parameter. (GCV is an approximation to cross-validation.)

(a) In particular, estimate the coefficients of the model relating brainwt to bodywt and
1size and compare with the results obtained using 1m ().

(b) Using both ridge and ordinary regression, estimate the mean brain weight when litter
size is 10 and body weight is 7. Use the bootstrap, with case-resampling, to compute
approximate 95% percentile confidence intervals using each method. Compare with the
interval obtained using predict.lm().

Compare the ranges of dist and c1limb in the data frames nihills and hi11s2000. In
which case would you expect it to be more difficult to find a model that fits well? For each of
these data frames, fit both the model based on the formula

log(time) ~ log(dist) + log(climb)

and the model based on the formula

time ~ alpha*dist + beta*I(climb”2)

Is there one model that gives the best fit in both cases?

The data frame table.b3 in the MPV package contains data on gas mileage and 11 other
variables for a sample of 32 automobiles.

(a) Construct a scatterplot of v (mpg) versus x1 (displacement). Is the relationship between
these variables non-linear?

(b) Use the xyplot () function, and x11 (type of transmission) as a group variable. Is a
linear model reasonable for these data?

(c) Fit the model relating y to x1 and x11 which gives two lines having possibly different
slopes and intercepts. Check the diagnostics. Are there any influential observations? Are
there any influential outliers?

(d) Plot the residuals against the variable x7 (number of transmission speeds), again using
x11 as a group variable. Is there anything striking about this plot?

The following code is designed to explore effects that can result from the omission of explanatory
variables:

> x1 <- runif (10) # predictor which will be missing
> x2 <- rbinom(10, 1, 1-x1) # observed predictor which depends
> # on missing predictor

>y <- 5*x1 + x2 + rnorm(10,sd=.1) # simulated model; coef

> # of x2 is positive

> y.1lm <- 1lm(y ~ factor(x2)) # model fitted to observed data
> coef (y.1lm)
(Intercept) factor(x2)1
2.8224119 -0.6808925 # effect of missing variable:
# coefficient of x2 has wrong sign
x1 + factor(x2)) # correct model

> yv.1Im2 <- Im(y
> coef (y.1lm2)
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12.

13.

14.

Multiple linear regression

(Intercept) x1 factor(x2)1

0.06654892 4.91216206 0.92489061 # coef estimates are now OK
What happens if x2 is generated according to x2 <- rbinom(10, 1, x1)?
x2 <- rbinom (10, 1, .5)?

Fit the model investigated in Subsection 6.8.4, omitting the parameter «. Investigate and com-
ment on changes in the fitted coefficients, standard errors, and fitted values.

Figure 6.19 used the function errorsINx (), with the argument gpdiff=1.5, to simulate
data in which the regression relationship y = 15 + 1.5x is the same in each of two groups
(called ctl and trt). The left panel identifies the two fitted lines when the explanatory
variable is measured without error. These are, to within statistical error, identical. The right
panel shows the fitted regression lines when random error of the same order of magnitude as
the within-groups variation in x is added to x, giving the column of values zWITHerr.

(a) Run the function for several different values of gpdiff in the interval (0, 1.5), and plot
the estimate of the treatment effect against gpdiff.

(b) Run the function for several different values of timesSDz in the interval (0, 1.5), and
plot the estimate of the treatment effect against gpdi f£.

(¢) Run the function with beta = c(-1.5,0). How does the estimate of the treatment
effect change, as compared withb = ¢ (1.5, 0) ? Explain the change.

Fit the following two resistant regressions, in each case plotting the residuals against Year.
library (MASS}

nraw.lgs <- lgs(northRain ~ SOI + CO2, data=bomregions)

north.lgs <- 1lgs(I(northRain”(1/3)) ~ SOI + CO2, data=bomregions)
par (mfrow=c(2,1))

plot(residuals (nraw.lgs) ~ Year, data=bomregions)

Year, data=bomregions)

plot(residuals (north.1lgs)
par (mfrow=c(1,1))
Compare, also, normal probably plots for the two sets of residuals.

(a) Repeat the calculations several times. Comment on the extent of variation, from one run
to the next, in the regression coefficients.

(b) Based on examination of the residuals, which regression model seems more acceptable:
nraw.lgs or north.lgs?

(c) Compare the two sets of regression coefficients. Can you explain why they are so very
different?

(More careful modeling will take into account the temporal sequence in the observations. See
Section 9.2 for an analysis that does this.)
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The model matrix X is fundamental to all calculations for a linear model. The model matrix
carries the information needed to calculate the fitted values that correspond to any particular
choice of coefficients. There is a one-to-one correspondence between columns of X and
regression coefficients.

In Chapter 6, the columns of the model matrix contained the observed values of the
explanatory variables, perhaps after transformation. Fitted values were obtained by multi-
plying the first column by the first coefficient (usually the intercept), the second column by
the second coefficient, and so on across all columns. The sum of the products in any row is
the fitted value for that row.

This chapter will explore new ways to relate the columns of the model matrix to the
explanatory variables, where a variable may be either a vector of numeric values, or a
factor. Vectors of zeros and ones (columns of “dummy” variables) can be used to handle
factor levels, but as noted below there are other possibilities. For modeling a quadratic
form of response, we take values of x as one of the columns and values of x? as another.
The model matrix framework also allows the modeling of many other forms of non-linear
response. As before, the regression calculations find the set of coefficients that best predicts
the observed responses, in the sense of minimizing the sum of squares of the residuals.

The latter part of this chapter will describe the fitting of smooth curves and surfaces that
do not necessarily have a simple parametric form of mathematical description. Although not
as convenient as linear or other simple parametric relationships, such curves and surfaces
do allow the calculation of predicted values and associated standard error estimates. For
many purposes, this is all that is needed.

7.1 Levels of a factor — using indicator variables
7.1.1 Example — sugar weight

Figure 7.1 displays data from an experiment that compared an unmodified wild-type plant
with three different genetically modified (GM) forms (data are in the data set sugar in
our DAAG package). The measurements are weights (mg) of sugar that were obtained by
breaking down the cellulose. There is a single explanatory factor (treatment), with one
level for each of the different control agents. For convenience, we will call the factor levels
Control, A (GM1), B (GM2), and C (GM3)."

! stripplot (trt weight, pch=0, xlab="Weight (mg)", data=sugar, aspect=0.5))
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Control A B (@
C | moo (WT9) (GM1) (GM2) (GMB3)
B o oo 82.0 58.3 68.1 50.7
A o o 97.8 67.9 70.8 47.1
69.9 59.3 63.6 48.9
Control o o o Mean —
' ' ' ' ' ' 83.2 61.8 67.5 48.9

50 60 70 80 90 100
Weight (mg)

“ WT = Wild Type; GM = Genetically Modified

Figure 7.1 Weights (weight) of sugar extracted from a control (wild-type) plant, and from three
different genetically modified plant types.

We could reduce the apparent difference in variability between treatments by work-
ing with 1og (weight). For present illustrative purposes, we will however work with
the variable weight, leaving as an exercise for the reader the analysis that works with
log (weight).

The model can be fitted either using the function 1m () or using the function aov ().
The two functions give different default output.

For any problem that involves factor(s), there are several different ways to set up the
model matrix. A common strategy (on a vanilla setup, the default) is to set up one of the
treatment levels as a baseline or reference, with the effects of other treatment levels then
measured from the baseline. Here it makes sense to set Control (Wild) as the baseline.

Before proceeding, it may pay to do the following check:

> options () $Scontrasts # Check the default factor contrasts

unordered ordered
"contr.treatment" "contr.poly"
> ## If your output does not agree with the above, then enter
> options (contrasts=c("contr.treatment", "contr.poly"))

The reason for this check will become apparent shortly.

With Control as baseline, a one-way analysis of variance of the data in Figure 7.1 has
the model matrix that is shown in Table 7.1; values of the response (sugarsweight)
have been added in the final column. The following checks the order of the levels in the
column trt and prints the model matrix:

> levels (sugarS$Strt) # Note the order of the levels
[1] "Control" "A" "B c

> sugar.aov <- aov(weight ~ trt, data=sugar)

> model.matrix (sugar.aov)

Here are the results from the least squares calculations:

> summary.lm(sugar.aov) # NB: summary.lm(),

+ # not summary () or summary.aov ()
Call:

aov (formula = weight ~ trt, data = sugar)

Residuals:
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Table 7.1 Model matrix for the analysis of variance
calculation for the data in Figure 7.1. The values of
the response are in the final column.

Control (baseline) A B C weight
1 0 0 0 82.0
1 0 0 0 97.8
1 0 0 0 69.9
1 1 0 0 58.3
1 1 0 0 67.9
1 1 0 0 59.3
1 0 1 0 68.1
1 0 1 0 70.8
1 0 1 0 63.6
1 0 0 1 50.7
1 0 0 1 47.1
1 0 0 1 48.9
Min 10 Median 30 Max
-13.333 -2.783 -0.617 2.175 14.567
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 83.23 4.47 18.61 7.2e-08
trtA -21.40 6.33 -3.38 0.00960
trtB -15.73 6.33 -2.49 0.03768
trtC -34.33 6.33 -5.43 0.00062

Residual standard error: 7.75 on 8 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.713
F-statistic: 10.1 on 3 and
8 degrees of freedom, p-value: 0.00425

The row labeled (Intercept) gives the estimate (= 83.23) for the baseline, i.e.,
Control. The remaining coefficients (differences from the baseline) are:

A: weight differs by —21.40.
B: weight differs by —15.73.
C: weight differs by —34.33.

All three differences from the control are significant at the conventional 5% level.

In Table 7.2, the multiples determined by the least squares calculations are shown above
each column. Also shown is y, which is the fitted or predicted value, calculated either as
fitted(sugar.aov) oraspredict (sugar.aov).

Residuals can be obtained by subtracting the predicted values (y) in Table 7.2 from the
observed values (y) in Table 7.1.

In this example, the estimate for each treatment is the treatment mean. Regression
calculations have given us a complicated way to compute averages! The methodology
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Table 7.2 At the head of each column is the multiple, as determined by
least squares, that is taken in forming the fitted values.

Control: 83.2 A: =214 B: —15.7 C:.-343 Fitted value

1 0 0 0 83.2
1 0 0 0 83.2
1 0 0 0 83.2
1 1 0 0 61.8
1 1 0 0 61.8
1 1 0 0 61.8
1 0 1 0 67.5
1 0 1 0 67.5
1 0 1 0 67.5
1 0 0 1 48.9
1 0 0 1 48.9
1 0 0 1 48.9

shows its power to better effect in more complex models, where there is no such simple
alternative.

Use of the overall analysis of variance F-test, prior to these individual comparisons, is
often a sufficient safeguard against over-interpretation of the results of such comparisons.
Nevertheless, insight may be gained from assessing differences against Tukey’s experimen-
twise HSD criterion that was discussed in Subsection 4.4.1.

> sem <- summary.lm(sugar.aov)S$sigma/sqgrt(3) # 3 results/trt
> # Alternatively, sem <- 6.33/sqgrt(2)

> gtukey (p=.95, nmeans=4, df=8) * sem

1] 20.26

Using this stricter criterion, B cannot be distinguished from the control, and A, B and C
cannot be distinguished from each other.

7.1.2 Different choices for the model matrix when there are factors

In the language used in the R help pages, different choices of contrasts are available,
with each different choice leading to a different model matrix. The different choices thus
give different mathematical descriptions for the same model. The coefficients (parameters)
change and must be interpreted differently. The fitted values and the analysis of variance
table do not change. The choice of contrasts may call for careful consideration, in order to
obtain coefficient estimates with the interpretation that is most helpful for the problem in
hand. Or, more than one run of the analysis may be necessary, to gain information on all
effects of interest.

The default (treatment) choice of contrasts uses the initial factor level as baseline, as we
have noted. Different choices of the baseline or reference level lead to different versions
of the model matrix. The other common choice, i.e., sum contrasts, uses the average of
treatment effects as the baseline.
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In order to use sum contrasts in place of treatment contrasts, specify options
(contrasts=c("contr.sum", "contr.poly")). Itis also possible to set con-
trasts separately for each factor. See help (C).

Here is the output when the baseline is the average of the treatment effects, i.e., from
using the sum contrasts:”

> oldoptions <- options(contrasts=c("contr.sum", "contr.poly"))
> # The mean over all treatment levels is now the baseline.
> # (The second setting ("contr.poly") is for ordered factors.)
> summary.lm(aov(weight ~ trt, data = sugar))
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 65.37 2.24 29.23 2.0e-09
trtl 17.87 3.87 4.61 0.0017
trt2 -3.53 3.87 -0.91 0.3883
trt3 2.13 3.87 0.55 0.5968

Residual standard error: 7.75 on 8 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.713
F-statistic: 10.1 on 3 and

8 degrees of freedom, p-value: 0.00425

> options (oldoptions) # Restore default treatment contrasts

Note the differences from the output from the default choice of contrasts. The baseline,
labeled (Intercept), is now the treatment mean. This equals 65.37. Remaining coeffi-
cients are differences, for Control and for treatment levels A and B, from this mean. The
sum of the differences for all three treatments is zero. Thus the difference for C is (rounding

up)
—(17.87 —3.53 +2.13) = —16.5.

The estimates (means) are:

Control: 65.37 + 17.87 = 83.2.
A:65.37—-3.53 =061.8.
B: 6537 +2.13 = 67.5.
C: 65.37 — 16.5 = 48.9.

Note also the possibility of using helmert contrasts. For a factor that has two levels,
helmert contrasts lead to a parameter estimate that is just half that for treatment contrasts.
For factors with more than two levels, the parameter estimates that are associated with
helmert contrasts rarely correspond to the scientific questions that are of interest.

For ordered factors, polynomial contrasts are the default. There is a brief discussion of
contrasts in Section 14.6.

2 The first vector element specifies the choice of contrasts for factors (i.e., unordered factors), while the second specifies the
choice for ordered factors.
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7.2 Block designs and balanced incomplete block designs

Data in the data frame rice (DAAG) were displayed in Figure 4.7. They were from an
experiment where the plants were laid out in blocks, with each treatment combination
occurring once in each block. As all combinations of factors occur equally often in each
block, the experimental design is a complete block design.

The data in appletaste are from a balanced incomplete block design (BIBD). In this
particular BIBD, one treatment is left out of each block, but in such a way that the number
of blocks in which a treatment is left out is the same for all treatments. (More generally,
the requirement for a BIBD is that all treatments must occur together equally often in the
same block.)

Blocks should be chosen so that conditions are as uniform as possible within each block.
In a glasshouse (or greenhouse) experiment all plants in a single block should be in a similar
position in the glasshouse, with a similar exposure to light.

7.2.1 Analysis of the rice data, allowing for block effects

In general, there should be allowance for block differences when data from block designs
are analyzed. Otherwise, if there are substantial differences between blocks, treatment
effects are likely to be masked by these substantial block differences. The interest is in
knowing the extent to which treatment differences are consistent across blocks, irrespective
of block-to-block differences that affect all plants in a block pretty much equally.

The analysis of variance table is a useful first point of reference, for examining results:

> ricebl.aov <- aov(ShootDryMass Block + variety * fert,
data=rice)
> summary (ricebl.aov)

Df Sum Sg Mean Sg F value Pr(>F)

Block 1 3528 3528 10.9 0.0016
variety 1 22685 22685 70.1 6.4e-12
fert 2 7019 3509 10.8 8.6e-05
variety:fert 2 38622 19311 59.7 1.9e-15
Residuals 65 21034 324

This makes it clear that there are substantial differences between blocks.
Use summary.1lm() to obtain details of the effects:

> summary.lm(ricebl.aov)

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) 115.33 5.61 20.56 < 2e-16
Block2 -14.00 4.24 -3.30 0.0016
varietyANU843 -101.00 7.34 -13.75 < 2e-16
fertNH4C1 -58.08 7.34 -7.91 4.2e-11
fertNH4NO3 -35.00 7.34 -4.77 1.1le-05
varietyANU843: fertNH4C1 97.33 10.39 9.37 1.le-13
varietyANU843: fertNH4NO3 99.17 10.39 9.55 5.4e-14
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Residual standard error: 18 on 65 degrees of freedom
Multiple R-Squared: 0.774, Adjusted R-squared: 0.753
F-statistic: 37 on 6 and 65 DF, p-value: <2e-16

The above residual standard error, i.e., 18.0 on 65 degrees of freedom, may be compared
with a standard error of 19.3 on 66 degrees of freedom when there is no allowance for block
effects.’

Because this was a complete balanced design, the function model . tables () can be
used to obtain a summary of treatment effects in a pleasantly laid out form. Any visual
summary of results should, at a minimum, include the information given in Figure 4.7. (Do
nottry tousemodel . tables () for anything other than complete balanced designs. Even
for balanced “incomplete” results such as will now be discussed, results will be incorrect.)

7.2.2 A balanced incomplete block design

In tasting experiments, a number of different products, e.g., wines, are to be compared. If
presented with too many different specimens to test, tasters can become confused, even
when precautions are taken (including washing the palette) to minimize carry-over effects
from one product to another. Hence it is usual to limit the number of products given to any
one taster.

In the example that will now be given, the products were different varieties of apple,
identified by the numerical codes 298, 493, 649, and 937. The 20 tasters were divided
into four groups of five. For each group of five tasters, a different product was omitted.
Panelists made a mark on a line that gave their rating of aftertaste (0 for extreme
dislike; 150 for extreme approval). The following is a summary of the experimental design:

> table(appletasteSproduct, appletaste$Spanelist)

abcdefghijklmnopgrst
298 1111100000111 1111111
493 1111111111 00000111112
649 0000011111111 1111111
937 1111111111111 1100000

The tasters play the role that blocks would play in a field design. In spite of differences
in the way that different raters use the scale (some will tend to score low and some high),
there may be acceptable consistency in their comparative ratings of the products.

For analysis, it is necessary only to specify factors panelist and product as explana-
tory factors.

> sapply (appletaste, is.factor) # panelist & product are factors
aftertaste panelist product

FALSE TRUE TRUE
> summary (appletaste.aov <- aov(aftertaste ~ panelist + product,
+ data=appletaste))

3 ## AOV calculations, ignoring block effects
rice.aov <- aov(ShootDryMass ~ variety * fert, data=rice)
summary.lm(rice.aov) $sigma
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Figure 7.2 These plots show the respective contributions of the factors panelist and product
to aftertaste scores, in an apple tasting experiment.

Df Sum Sg Mean Sg F value Pr (>F)
panelist 19 30461 1603 2.21 0.019
product 3 34014 11338 15.60 1.0e-06
Residuals 37 26892 727

There are differences between the ratings of different panelists, but they are of minor
consequence relative to differences between products.

Figure 7.2 shows the partial residual plot, obtained using the function termplot ()
with the argument partial=TRUE; this gives a useful summary of the results. Notice
that ratings seem generally lower for the final few raters. Had product quality deteriorated
over time?

In its present form, this function is useful only for displaying the effects of fac-
tors for which no interaction terms are present. As noted above, do not try to use
model. tables () to obtain estimates of effects; the results, for this incomplete block
design, will be incorrect.

7.3 Fitting multiple lines

Multiple regression can be used to fit multiple lines. In the example that follows
(Table 7.3), there are measurements of vapor pressure (vapPress) and of the differ-
ence between leaf and air temperature (tempDi f £), for three different levels of carbon
dioxide.

Possibilities we may want to consider are:

* Model 1 (constant response): y = a.

* Model 2 (a single line): y = a + bx.

* Model 3 (three parallel lines): y = a; + a»z» + aszzz + bx.
(For the low CO; group (zp = 0 and z3 = 0) the constant term is a;; for the medium
CO; group (zo = 1 and z3 = 0) the constant term is a; + a,; while for the high CO,
group (zp = 0 and z3 = 1) the constant term is a; + a3.)

* Model 4 (three separate lines): y = a; + a»22 + aszzz + bix + bazox + b3zsx.
(Here, z, and z3 are as in model 3 (panel B). For the low CO, group (z; = 0 and z;3 = 0)
the slope is b;; for the medium CO; group (z; = 1 and z3 = 0) the slope is b; + bs;
while for the high CO; group (z; = 0 and z3 = 1) the slope is b; + b3.)
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Table 7.3  Selected rows, Table 7.4 Model matrix for fitting three
showing values of CO21level, parallel lines (model 3) to the data of Table 7.5.
vapPress and tempDiff, The y-values are in the separate column to the
from the data set 1eaftemp. right.
CO2level vapPress tempDiff (Inter-
low 188 136 cept) Medium High vapPress tempDiff
low 2.20 0.60 1 0 0 1.88 1.36
. . ... 1 0 0 22 0.6
medium 2.38 1.94
medium 2.72 0.83 1 1 0 2.38 1.94
1 1 0 2.72 0.83
high 2.56 1.50
high 2.55 0.85 1 0 1 2.56 1.5

1 0 1 2.55 0.85

Table 7.5 Model matrix for fitting three separate lines (model 4), with y-values in the
separate column to the right.

Medium: High:

(Intercept) Medium High vapPress vapPress vapPress tempDiff
1 0 0 1.88 0 0 1.36

1 0 0 2.2 0 0 0.6

1 1 0 2.38 2.38 0 1.94

1 1 0 2.72 2.72 0 0.83

1 0 1 2.56 0 2.56 1.5

1 0 1 2.55 0 2.55 0.85

Selected rows from the model matrices for model 3 and model 4 are displayed in Tables 7.4
and 7.5, respectively.
The statements used to fit the four models are:

## Fit various models to columns of data frame leaftemp (DAAG)
leaf.1lml <- Im(tempDiff ~ 1 , data = leaftemp)
leaf.1lm2 <- lm(tempDiff ~ vapPress, data = leaftemp)
leaf.1lm3 <- Im(tempDiff ~ CO2level + vapPress, data = leaftemp)
leaf.1lm4 <- Im(tempDiff ~ CO2level + vapPress

+ vapPress:CO2level, data = leaftemp)

Recall that CO2level is a factor and vapPress is a variable. Technically,
vapPress:C0O21level is an interaction. The effect of an interaction between a factor
and a variable is to allow different slopes for different levels of the factor.

The analysis of variance table is helpful in making a choice between these models:
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Table 7.6  Analysis of variance information. The starting point is a model that has only
an intercept or “constant" term. The entries in rows 1-3 of the Df column and of the
Sum of Sqg column are then sequential decreases from fitting, in turn, vapPress,
then three parallel lines, and then finally three separate lines.

Df Sum of Sg Meansquare F Pr (<F)
vapPress 1 5.272 5.272 11.3  0.0014  Reduction in SS due
(variable) to fitting one line
Three parallel 2 6.544 3.272 7.0 0.0019  Additional reduction
lines in SS due to fitting
two parallel lines
Three different 2 2.126 1.063 23 0.1112  Additional reduction
lines in SS due to fitting
two separate lines
Residuals 61 40.000 0.656

> anova (leaf.lml, leaf.lm2, leaf.lm3, leaf.lm4d)

Analysis of Variance Table

Model 1: tempDiff ~ 1

Model 2: tempDiff ~ vapPress

Model 3: tempDiff ~ CO2level + vapPress

Model 4: tempDiff ~ CO2level + vapPress + CO2level:vapPress
Res.Df RSS Df Sum of Sg F Pr (>F)

1 61 40.00

2 60 34.73 1 5.272 11.33 0.0014

3 58 28.18 2 6.544 7.03 0.0019

4 56 26.06 2 2.126 2.28 0.1112

This is a sequential analysis of variance table. Thus, the quantity in the sum of squares
column (Sum of Sq)isthe reduction in the residual sum of squares due to the inclusion of
that term, given that earlier terms had already been included. The Df (degrees of freedom)
column gives the change in the degrees of freedom due to the addition of that term. Table 7.6
explains this in detail.

The analysis of variance table suggests use of the parallel line model, shown in panel
B of Figure 7.3. The reduction in the mean square from model 3 (panel B in Figure 7.3)
to model 4 (panel C) in the analysis of variance table has a p-value equal to 0.1112. The
coefficients and standard errors for model 3 are:

> summary (leaf.1lm3)

Call:
Im(formula = tempDiff ~ CO2level + vapPress,
data = leaftemp)
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Figure 7.3 A sequence of models fitted to the plot of tempDiff versus vapPress, for low,
medium and high levels of CO21evel. Panel A relates to model 2, panel B to model 3, and panel C
to model 4.
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Figure 7.4 Diagnostic plots for the parallel line model of Figure 7.3.
Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 2.685 0.560 4.80 1.16e-05
CO2levelmedium 0.320 0.219 1.46 0.14861
CO2levelhigh 0.793 0.218 3.64 0.00058
vapPress -0.839 0.261 -3.22 0.00213

0.69707 on 58 degrees of freedom
0.259

Residual standard error:
Multiple R-Squared: 0.295,
8.106 on 3 and
58 degrees of freedom,

Adjusted R-squared:
F-statistic:

p-value: 0.000135

The coefficients in the equations for this parallel line model are given in the annotation for
Figure 7.3B. For the first equation (low CO,), the constant term is 2.685; for the second
equation (medium CQO,), the constant term is 2.685 + 0.320 = 3.005; while for the third
equation, the constant term is 2.685 + 0.793 = 3.478.

In addition, we examine a plot of residuals against fitted values, and a normal probability
plot of residuals (Figure 7.4). These plots seem unexceptional.
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Figure 7.5 Plot of number of grains per head versus seeding rate, for the barley seeding rate data
shown to the right of the figure, with fitted quadratic curve. The model matrix for fitting a quadratic
curve is shown on the far right. Data relate to McLeod (1982).

7.4 Polynomial regression

Polynomial regression provides a straightforward way to model simple forms of departure
from linearity. The simplest case is where the response curve has a simple cup-up or cup-
down shape. For a cup-down shape, the curve has some part of the profile of a path that
follows the steepest slope up a rounded hilltop towards the summit and down over the other
side. For a cup-up shape the curve passes through a valley. Such cup-down or cup-up shapes
can often be modeled quite well using quadratic, i.e., polynomial with degree 2, regression.
For this the analyst uses x> as well as x as explanatory variables. If a straight line is not
adequate, and the departure from linearity suggests a simple cup-up or cup-down form of
response, then it is reasonable to try a quadratic regression. The calculations are formally
identical to those for multiple regression.

To avoid numerical problems, it is often preferable to use orthogonal polynomial regres-
sion. Interested readers may wish to pursue for themselves the use of orthogonal polynomial
regression, perhaps using as a starting point Exercise 18 at the end of the chapter. Orthog-
onal polynomials have the advantage that the coefficient(s) of lower-order terms (linear,
...) do(es) not change when higher-order terms are added. One model fit, with the highest-
order term present that we wish to consider, provides the information needed to make
an assessment about the order of polynomial that is required. The orthogonal polynomial
coefficients must be translated back into coefficients of powers of x (these are not of course
independent), if these are required.

Figure 7.5 shows number of grains per head (averaged over eight replicates), for different
seeding rates of barley. A quadratic curve has been fitted. The code is:

## Fit quadratic curve: data frame seedrates (DAAG)
data =

ensures that the result from

seedrates.lm2 <- lm(grain ~ rate + I(rate”2), seedrates)
# The wrapper function I()

# calculating rate”™2 is treated as a variable in its own right.

plot (grain ~ rate, data = seedrates, pch = 16,
xlim = c (50, 160), cex=1.4)
new.df <- data.frame(rate = (1:14) * 12.5) # for plotting the fitted curve
hat2 <- predict(seedrates.lm2, newdata = new.df, interval="predict",
coverage = 0.95)
lines (new.dfS$rate, hat2[, "fit"], lty = 2, 1lwd=2)
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The quadratic regression appears, from visual inspection, a good fit to the data. The fitted
model may be written

Yy =a+bx; +byx,

where x; = x, and x, = x2. Thus, the model matrix has a column of 1s, a column of values
of x, and a column that has values of x2.
Here is the output from R:

> summary (seedrates.lm2, corr=TRUE)

Call:
Im(formula = grain ~ rate + I(rate”2), data = seedrates)
Coefficients:
Value Std. Error t value Pr(>|t])
(Intercept) 24.060 0.456 52.799 0.000
rate -0.067 0.010 -6.728 0.021
I(rate”2) 0.000 0.000 3.497 0.073

Residual standard error: 0.115 on 2 degrees of freedom
Multiple R-Squared: 0.996

F-statistic: 256 on 2 and 2 degrees of freedom,

the p-value is 0.0039

Correlation of Coefficients:

(Intercept) rate
rate -0.978
I(rate”™2) 0.941 -0.989

(In a model formula, rate”2 will be interpreted as rate:rate = rate. Hence the
use of I(rate”2) to denote the square of rate.) Observe the high correlations between
the coefficients. Note in particular the large negative correlation between the coefficients
for rate and I(rate”2). Forcing the coefficient for rate to be high would lead to a
low coefficient for I(rate”2), and so on.

In orthogonal polynomial regression, the separate terms rate and I(rate”2) are
replaced by the single term poly (rate, 2), i.e., an orthogonal polynomial of degree 2
in rate. The fitted values will be identical, but the coefficients are then coefficients of the
orthogonal polynomials, not coefficients of rate and I(rate”2).

7.4.1 Issues in the choice of model

The coefficient of the x? term in the quadratic model fell short of statistical significance at
the 5% level. Fitting the x? leaves only two degrees of freedom for error. For prediction,
our interest is likely to be in choosing the model that is on balance likely to give the more
accurate predictions; for this, use of the model that includes the quadratic term may be
preferred.
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Figure 7.6 Number of grains per head versus seeding rate, with fitted line (solid) and fitted quadratic
curve (dashed). Also shown are 95% pointwise confidence bounds.

Figure 7.6 shows both a fitted line and a fitted curve, in both cases with 95% confidence
bounds.* It shows a quadratic curve (dashed line) as well as a line (solid line). In addition,
the graph shows 95% pointwise confidence bounds for the expected number of grains per
head, both about the line and about the curve.

The curve is a better fit to the data than the line. For a short distance beyond the final
data point, it almost certainly gives a better estimate than does the line. Notice that the
confidence bounds for the curve are much wider, beyond a rate of about 160, than the line.
Not only does the line almost certainly give a biased estimate, it also gives unrealistically
narrow bounds for that estimate. If the model is wrong, it will give wrong estimates of
predictive accuracy. This is especially serious for extrapolation beyond the limits of the
data.

Beyond the limits of the data, it would be unwise to put much trust in either the line or
the curve. Our point is that the bounds for the quadratic curve do better reflect uncertainty
in the curve that ought to be fitted. We could try other, single-parameter, models. Selecting
a model from a number of choices that allow for the curvature may not however be much
different, in its effect on the effective degrees of freedom, from adding an x> term. The wider
confidence bounds for the quadratic model reflect this uncertainty in choice of model, better
than results from any individual model that has one parameter additional to the intercept.

We can in fact fit the data well by modeling grain as a linear function of 1og (rate).
This model seems intuitively more acceptable; the fitted value of grain continues to

4 ## Fit line, fit curve, determine pointwise bounds, and create the plots
CIcurves <-
function (form=grain~rate, data=seedrates, 1lty=1, col=3,
newdata=data.frame (rate=seq(from=50, to=175, by=25))){
seedrates.lm <- lm(form, data=data)
x <- newdatal[, all.vars(form) [2]]
hat <- predict(seedrates.lm, newdata=newdata, interval="confidence")

lines(spline(x, hat[, "fit"1))
lines(spline(x, hat[, "lwr"]), lty=lty, col=col)
lines(spline(x, hat[, "upr"]), lty=1lty, col=col)

}
plot(grain ~ rate, data=seedrates, xlim=c(50,175), ylim=c(15.5,22))
CIcurves|()
CIcurves (form=grain~rate+I(rate”2), lty=2)
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decrease as the rate increases beyond the highest rate used in the experiment. This is
perhaps the model that we should have chosen initially on scientific grounds.

7.5* Methods for passing smooth curves through data

In the previous section, we used the linear model framework to fit a curve that had x and
x2, etc. terms. This framework can be adapted to fit higher-order polynomial curves to
regression data. For a polynomial of degree m, the model matrix must have, in addition to
a column of 1s, columns that hold values of x, x2, ..., x™. Polynomials can be effective
when a curve of degree m equal to 2 or 3 is appropriate. Polynomial curves where m is
greater than 3 can be problematic. High-degree polynomials tend to move up and down
between the data values in a snake-like manner. Splines, or piecewise polynomials, which
we now consider, are usually preferable to polynomials of degree greater than 3.

A spline curve joins two or more polynomial curves, and is sometimes called a piecewise
polynomial curve. The locations of the joints are called knots.

The following is a simple piecewise linear spline function, with a knot at x = 2:

Y =3+4x — 5(x — 222 (7.1)

The indicator [ takes the value 1, when x > 2 and the value 0, when x < 2. For values of
x less than 2, this spline function behaves as a straight line with slope 4, but for x greater
than 2, the slope switchesto4 —5 = —1.

More generally, spline functions take the form

Y = by Po(x) + b1 P(x) + - - - + by Pr(x)

where the b;s are constant coefficients, and the functions P;(x) are either polynomial
functions like the first two terms of equation (7.1), or polynomial functions multiplied by
indicators like the last term in equation (7.1).

Given a set of knots, there are many different ways to choose the P;(x). Some choices
that are useful in practice may involve relatively complicated forms of algebraic expression
that are different from those used in our definition. The P;(x) are known as basis functions.

A particularly convenient set of basis functions for splines is referred to as B-splines.
Given data of the form (xy, y1), (x2, ¥2), ..., (X», ¥»), We can write a regression model in
terms of these B-spline functions as:

Yy =boBo(x) + b1 By(x) + - - + by By(x) + ¢

where ¢ represents an error term as in the previous chapter. Written in this form, it is clear
that a spline regression model can be fit using the same methods as for fitting multiple
regression models. The columns of the model matrix are constructed from evaluating each
of the B-splines at each of the values of x. Once the basis functions have been evaluated,
the 1m () function can be used to carry out the estimation of the regression coefficients.

Natural splines, implemented using the function ns () from the splines package, are
an alternative to B-splines. For natural splines, the slope of the curve is constrained to be
constant at and beyond the boundary knots. For B-splines, there are no boundary constraints,
though there are boundary knots that anchor the spline basis. By default, these are placed
at the limits of the data.



232 Exploiting the linear model framework

Table 7.7 Resistance (ohms) versus apparent juice content. The table shows a selection
of the data.

Juice Juice Juice Juice

(%) Ohms (%) Ohms (%) Ohms (%) Ohms
4 4860 33 20 7500 65 41.5 3350 123 58.5 3650
5 5860 34 20.5 8500 66 42.5 2700 124 58.5 3750

55 6650 35 21.5 5600 67 43 2750 125 585 4550
7.5 7050 36 21.5 6950 68 43 3150 126 595 3300
8.5 5960 37 21.5 7200 69 43 3250 127 60 3600

128 9 9850

[ N U R S

The number of degrees of freedom (df) additional to the intercept will be specified for
the spline curve, with the software then allowed to determine the number and location of
internal join points (=knots). For B-splines, the number of internal knots is df - degree,
where degree is the degree (by default 3) of the piecewise polynomial. For natural
splines, the number of internal knots is df - degree + 2, where degree must be 3. (The
difference in df is a result of the boundary constraints.) In either case, internal knots are
by default placed at equally spaced quantiles of the data.

The use of regression splines, using B-spline or N-spline bases, will be demonstrated
in the next subsection. The discussion will then move to more general types of smoothing
terms. We will take a simple example where there is just one explanatory variable, and try
several different methods on it.

7.5.1 Scatterplot smoothing — regression splines

We have (in Table 7.7) the apparent juice content and resistance (in ohms) for 128 slabs of
fruit (these data relate to Harker and Maindonald, 1994). Figure 7.7 shows four different

curves fitted to these data:’ Figures 7.7A and B show spline curves, the first with one
knot and the second with two knots. Figures 7.7C and D show, for comparison, third- and
fourth-degree polynomials. The polynomials do quite well here relative to the splines. Also
shown are 95% pointwise confidence intervals for the fitted curves.

Diagnostic plots can be used, just as for the models considered in earlier chapters, to
highlight points that are associated with large residuals, or that are having a strong influence

S ## Fit various models to columns of data frame fruitohms (DAAG)
library(splines)
## Panel A
plot (ohms ~ juice, cex=0.8, xlab="Apparent juice content (%)",

yvlab="Resistance (ohms)", data=fruitohms)
CIcurves (form=ohms ~ ns(juice, 2), data=fruitohms,
newdata=data. frame (juice=pretty (fruitohms$juice, 20)))

## For panels B, C, D replace form = ohms ~ ns(juice,2) by:

## form = ohms ~ ns(juice,3) # panel B: nspline, df = 4
## ohms ~ poly(juice,2) # panel C: polynomial, df = 3
## ohms ~ poly(juice,3) # panel D: polynomial, df = 4

# For more information on poly (), see help(poly) and Exercise 15.
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B: N-spline, 2 internal knots (d.f. = 3 + 1)

Resistance (ohms)

Resistance (ohms)

T T T T T T T T T T T T

10 20 30 40 50 60 10 20 30 40 50 60
Figure 7.7 Different smooth curves fitted to the data of Table 7.7. The dashed lines show 95%
pointwise confidence bounds for the fitted curve. In panels A and B, vertical lines show the locations

of the knots. The degrees of freedom (“df” or “degree”) shown are those supplied to ns () or
poly (). These must in each case be increased by one to allow for the intercept.
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Figure 7.8 Diagnostic plots for the fitted model given in Figure 7.7A.

on the curve. Figure 7.8 shows the default diagnostic plots for the fitted model shown in
Figure 7.7A.°

Apart from the large residual associated with point 52 (at 32.5% apparent juice content),
these plots show nothing of note. The curves have bent to accommodate points near the
extremes that might otherwise have appeared as outliers.

Here is the summary information:

> summary (fruit.lm2)

® ## Fit degree 2 normal spline, plot diagnostics
par (mfrow = c(2,2))
fruit.1lm2 <- lm(ohms ~ ns(juice,2), data=fruitohms)
# for panel B: ns(juice, 3)
plot (fruit.1lm2)
par (mfrow = c(1,1))
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A: Degree 2 N-spline B: Degree 3 N-spline
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Figure 7.9 Panel A shows the N-spline basis curves (one knot) fitted in Figure 7.7A. The fitted
curve, obtained by multiplying the values by —8596 and —2108, respectively, summing, and adding
an intercept of 8041, is shown below. Panel B (two knots) relates, similarly, to Figure 7.7B.

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 8041 260 30.9 < 2e-16
ns (juice, 2)1 -8596 578 -14.9 < 2e-16
ns (juice, 2)2 -2105 357 -5.9 3.3e-08

Residual standard error: 1030 on 125 degrees of freedom
Multiple R-Squared: 0.701, Adjusted R-squared: 0.696
F-statistic: 146 on 2 and 125 DF, p-value: <2e-16

Attention is best focused on the fitted curve, ignoring the fact that the curve can be
constructed by the smooth joining of separate cubic curves, or as a linear combination of
basis functions. Nevertheless, comments that will help make sense of the coefficients and
standard errors in the R output may be helpful. To help understand how the curve has been
formed as a linear combination of basis functions, we plot graphs that show the curves
for which these are the coefficients. For this, we plot the relevant column of the X-matrix
against x, and join up the points, as in Figure 7.9.”

7 ## Display the basis curves as in panel A
mm2 <- model.matrix(fruit.lm2)

ylim <- range (mm2[, -1]

plot (mm2[, 2] ~ juice, ylim=ylim, xlab="Apparent Juice Content (%)",
ylab="Spline basis functions", type="1l", data=fruitohms)

lines (fruitohms$juice, mm2[, 3], col="gray")

# NB: Values of juice are already ordered
## For panel B basis curves: mm3 <- model.matrix(fruit.lm3), etc.
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Looking back again at the coefficients, basis curve 2 (with a coefficient of —8596) seems
more strongly represented than the other basis curve.

Compare sets of N-spline basis functions with sets of polynomial basis functions. An
orthogonal polynomial basis gives successively more accurate approximations to the data.
A set of polynomial basis functions of degree 3 is the set of degree 2 with another basis
function added. For the splines this is not the case. All the basis functions change if
another degree of freedom is added. For given degrees of freedom, the prediction that they
combine to give is accurate. If one basis function is dropped from the set of basis functions,
predictions will be disastrously inaccurate. Instead, it is necessary to find a complete new
set of basis functions for a spline curve with the reduced degrees of freedom.

The regression splines that we described above are attractive because they fit easily
within a linear model framework, i.e., we can fit them by specifying an appropriate X-
matrix. There are a wide variety of other methods, most of which do not fit within the linear
model framework required for use of 1m ().

7.5.2* Roughness penalty methods and generalized additive models

In the use of regression splines in the previous subsection, the approach was to specify the
degrees of freedom for the spline curve; knots were then located at equal quantiles of the
data. This is unlikely to be optimal. Use of too few knots can lead to a curve that fails to
capture all of the nuances of the regression function while choosing too many can result in
excessive bumpiness, i.e., the details of the curve capture noise.

The function gam () in the mgcv package implements generalized additive models
(GAMs). The function s () is used to generate smoothing terms. A brief explanation will
now be provided of some of the methods that are available, in the mgcv package, for
generating smoothing terms. For more extended information, attach the mgcv package, and
type help (smooth. terms).

The roughness penalty approach is designed to reduce or remove arbitrariness that can
result from the choice of the number and placement of knots. Cubic smoothing spline
methods assign a knot to each predictor value, while applying a roughness penalty that
constrains the fitted spline to smoothly pass through the cloud of observations. Note that
without such a constraint, the spline would interpolate the observations, usually rendering
arough curve.

In order to reduce the time and memory requirements, knots can be placed at a subset
of the predictor values. Even so, there will be many more knots than would be used in
the absence of a roughness penalty. The “cubic regression splines” that are provided in
the mgcv package place knots at equally spaced quantiles of the data, as does the function
smooth.spline () (stats package). Penalized splines, as implemented by pspline ()
in the survival package, are another approach that places knots at values that are evenly
spaced through the data.

Thin plate splines circumvent the overt choice of knots. The roughness penalty is, on
its own, enough to determine a set of basis functions. The basis functions do, moreover,
plausibly give successively more accurate approximations. They generalize in a natural
manner to the fitting of smooth surfaces, in an arbitrary number of dimensions. In practice,
in order to keep computational demands within reason, a low rank approximation is used,
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resulting in a much reduced number of basis functions. Wood (2006) calls these thin plate
regression splines.
The fruitohms data set furnishes examples:

library (mgcv)

## Thin plate regression splines (bs="tp")

fruit.tp <- gam(ohms ~ s(juice, bs="tp"), data=fruitohms)
## Plot points, fitted curve, and +/- 1SE limits

plot (fruit.tp, residuals=TRUE)

## Cubic regression splines (bs="cr")

fruit.cr <- gam(ohms ~ s(juice, bs="cr"), data=fruitohms)
## Plot points, fitted curve, and +/- 1SE limits

plot (fruit.cr, residuals=TRUE)

Note also the gam package, which ports to R the code used for the gam () function in
S-PLUS.

7.5.3 Distributional assumptions for automatic choice of roughness penalty

The residual sum of squares is increased by a roughness (or wiggliness) penalty that is
a multiple A of the integral of the squared second derivative, to give a penalized sum of
squares. Parameter estimates (multiples of the basis terms) are chosen to minimize this
penalized residual sum of squares.

The gam () function’s default method for choosing X is a variant of generalized cross-
validation. This relies on an analytical approximation to the expected value of the cross-
validation estimate of the residual sum of squares. All automatic methods for choosing
the penalty assume that errors are independently and identically distributed (i.i.d.), with
implications that users will do well to keep in mind.

Sequential correlation structures, which are the major focus of Chapter 9, are a common
type of departure from i.i.d. errors. Where there is a sequential correlation structure in the
data, the methodology will — if possible — use a smooth curve to account for it. The pattern
that is thus extracted will not be reproducible under a re-run of the process. Exercise 19 at
the end of the chapter is designed to illustrate this point.

7.5.4 Other smoothing methods

Lowess curves are a popular alternative to spline curves. Figure 2.6 showed a curve that was
fitted to the £ruitohms data using the function Lowess () , which always uses a resistant
form of smoothing. The curve is thus relatively insensitive to large residuals. Special steps
are taken to avoid distortions due to end effects. As implemented in R, 1lowess () is not
available for use when there are multiple explanatory variables, and there is no mechanism
(or theory) for calculating pointwise confidence bounds.

The loess () function is an alternative to lowess () that is able to handle multi-
dimensional smoothing. The default for loess () is a non-resistant smooth; for a resistant
smooth, specify family=symmetric.
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Figure 7.10 A monotonic decreasing spline curve has been fitted to the points shown in Figures 7.7
and 7.9.

Both 1lowess () and 1loess () implement a locally weighted regression methodology.
The following description is directly relevant to Lowess () ; calculations for loess ()
follow the same general pattern. The method is said to be local, because the fitted value
m(x) at a point x uses only the data within a specified neighborhood of x. Points nearest to x
are given highest weight. Those farther away are given little or no weight. Outlier resistance
is achieved by assigning low weight to observations which generate large residuals; this
allows for curves which are relatively unaffected by the presence of outliers. An iterative
method is used, with the residual at the previous iteration determining the weight at the
current iteration.

Kernel smoothing methods further widen the range of possibilities. For example, see the
documentation for the function locpoly () in the KernSmooth package.

On lowess smoothing, see Cleveland (1981). There is a useful brief discussion of smooth-
ing methods in Venables and Ripley (2002) and a fuller discussion of kernel smoothing,
splines, and lowess in Fan and Gijbels (1996). See also Hall (2001).

*Monotone curves

Constraints can be included that force curves to be monotone increasing or monotone
decreasing. The function monoproc () in the monoProc package can be used, starting
with a fit using 1oess () or another function whose output follows the same conventions,
to create a monotone fit, as in Figure 7.10.

The code is:

library (monoProc)
fit.mono <- monoproc (loess (ohms~juice, data=fruitohms),
bandwidth=0.1, monol="decreasing",
gridsize=30)
plot (ohms ~ juice, data=fruitohms,
xlab="Apparent juice content (%)", ylab="Resistance (ohms)")
lines (fit.mono)
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Table 7.8 Average dewpoint (dewpt), for available combinations of
monthly averages of minimum temperature (mintemp) and maximum
temperature (maxtemp). The table shows a selection of the data.

maxtemp mintemp dewpt maxtemp mintemp dewpt
1 18 8 7 67 38 26 20
2 18 10 10 68 40 18 5
3 20 6 5 69 40 20 8
4 20 8 7 70 40 22 11
5 20 10 9 71 40 24 14
72 40 26 17
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Figure 7.11 Representation of average dewpoint (dewpt) as the sum of an effect due to minimum
temperature (mintemp), and an effect due to maximum temperature (maxtemp). (Data are from
Table 7.8.) The dashed lines are 95% pointwise confidence bounds.

7.6 Smoothing with multiple explanatory variables

Attention will now move to models with multiple explanatory variables. Table 7.8 has data
on monthly averages of minimum temperature, maximum temperature, and dewpoint. For
the background to these data, see Linacre (1992), Linacre and Geerts (1997). The dewpoint
is the maximum temperature at which the relative humidity reaches 100%. Monthly data
were obtained for a large number of sites worldwide. For each combination of minimum
and maximum temperature, the average dewpoint was then determined.

7.6.1 An additive model with two smooth terms

Figure 7.11 shows a representation of these data using an additive model with two spline-
smoothing terms. A simplified version of the code used for the fit and for the graph is:

## Regression of dewpt vs maxtemp: data frame dewpoint (DAAG)
library (mgcv)

ds.gam <- 1lm(dewpt s (mintemp) + s (maxtemp), data=dewpoint)

oldpar <- par (mfrow = c(1,2), pty="s")



7.6 Smoothing with multiple explanatory variables 239

20 25 30 35 40
I I | 1 1 1 1 | I 1 1 1 | I I

mintempRange mintempRange mintempRange
1.0 ° =
o o
— - o o o o -
< 05 0 © ° o
S 888 o o 0,06, o 2
o ° o ° o 6 _ o o 8
8 0028 5o °0 - >
T - T 000, —=2 o 0%0,0 o ° 7o
®go° o© o © <]
o0 050 o © 0,0 o© o 8
05 - %o o 6 o 6 [
[o] o [o] o o
o
T T T T T T T T T T T T T T T
20 25 30 35 40 20 25 30 35 40

Maximum temperature

Figure 7.12 Plot of residuals against maximum temperature, for three different ranges of values
of minimum temperature. Panel strips are shaded to show the range of values of the conditioning
variable.

plot(ds.gam, se=2) # se=2: Show 2SE limits
## Try also: plot(ds.gam, se=2, residuals=TRUE, pch=1, cex=0.4)
par (oldpar)

We can write the model as

y=u+ filkx) + folx2) + ¢

where y = dewpt, x| = maxtemp, and x, = mintemp.

Here w is estimated by the mean of y, so that the estimates of f;(x;) and f>(x;) give
differences from this overall mean. In Figure 7.11, both f(x;) and f>(x;) are modeled by
spline functions with five degrees of freedom. The left panel is a plot of the estimate of
f1(x1) against x|, while the right panel plots f>(x;) against x,.

There is no obvious reason why the additive model should work so well. In general, we
might expect an interaction term, i.e., we might expect that f;(x;) would be different for
different values of x;, or equivalently that f,(x;) would be different for different values
of x;. Even where the effects are not additive, an additive model is often a good starting
approximation. We can fit the additive model, and then check whether there are departures
from it that require examination of the dependence of y upon x; and x, jointly.

One check is to take, e.g., for x; =mintemp, three perhaps overlapping ranges of values,
which we might call “low”, “medium”, and “high”. For this purpose we are then treating
mintemp as a conditioning variable. We then plot residuals against Su = maxtemp for
each range of values of x1, as in Figure 7.12. If there is a pattern in these plots that changes
with the range of the conditioning variable, this is an indication that there are non-additive
effects that require attention.®

8 ## Residuals vs maxtemp, for different mintemp ranges
library (lattice)
mintempRange <- equal.count (dewpointS$Smintemp, number=3)
xyplot (residuals (ds.1lm) ~ maxtemp \ mintempRange, data=dewpoint, aspect=1,
layout=c(3,1), type=c("p", "smooth"),
xlab="Maximum temperature", ylab="Residual")
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7.6.2* A smooth surface

If it is suspected that the additive model is inappropriate, an alternative is to use a thin plate
regression spline basis for mintemp and maxtemp jointly. For this, specify:

ds.tp <- gam(dewpt s (mintemp, maxtemp), data=dewpoint)
vis.gam(ds.tp, plot.type="contour") # gives a contour plot of the
# fitted regression surface

vis.gam(ds.gam, plot.type="contour") # cf. model with 2 smooth terms

Three-dimensional perspective plots can also be obtained with the argument
plot.type="persp".

7.7 Further reading

There is a review of the methodologies we have described, and of extensions, in Venables
and Ripley (2002). See also references on the help pages for functions in the locfit and
mgcv packages. Eubank (1999) gives a comprehensive and readable introduction to the use
of splines in non-parametric regression. Maindonald (1984) has an elementary introduction
to B-splines, starting with piecewise linear functions. Faraway (2006) is a wide-ranging
and practically oriented account that starts with Generalized Linear Models. Wood (2006)
is even more wide-ranging, with stronger technical demands. It has extensive coverage of
Linear Models and Generalized Linear Models, then proceeding to an account of Gener-
alized Additive Models and Generalized Additive Mixed Models that makes heavy use of
various forms of spline bases.

References for further reading

Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing, 2nd edn.

Faraway, J. J. 2006. Extending the Linear Model with R. Generalized Linear, Mixed Effects
and Nonparametric Regression Models.

Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning. Data
Mining, Inference and Prediction, 2nd edn.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

Wood, S. N. 2006. Generalized Additive Models. An Introduction with R.

7.8 Exercises
1. Reanalyze the sugar weight data of Subsection 7.1.1 using 1og (weight) inplace of weight.

2. Use anova () to compare the two models:
roller.lm <- lm(depression~weight, data=roller)
roller.1lm2 <- lm(depression~weight+I (weight”2), data=roller)
Is there any justification for including the squared term?

3. Use the method of Section 7.3 to compare, formally, the regression lines for the two data frames
elasticl and elastic2 from Exercise 1 in Chapter 5.
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4. The data frame toycars consists of 27 observations on the distance (in meters) traveled by
one of three different toy cars on a smooth surface, starting from rest at the top of a 16-inch-long
ramp tilted at varying angles (measured in degrees). Because of differing frictional effects for
the three different cars, we seek three regression lines that relate distance traveled to angle.

(a) As afirst try, fit three lines that have the same slope but different intercepts.

(b) Note the value of R? from the summary table. Examine the diagnostic plots carefully. Is
there an influential outlier? How should it be treated?

(c) The physics of the problem actually suggests that the three lines should have the same
intercept (very close to 0, in fact), and possibly differing slopes, where the slopes are
inversely related to the coefficient of dynamic friction for each car. Fit the model, and note
that the value of R? is slightly lower than that for the previously fitted model. Examine
the diagnostic plots. What has happened to the influential outlier? In fact, this is
an example where it is inadvisable to take R? too seriously; in this case, a more care-
fully considered model can accommodate all of the data satisfactorily. Maximizing R>
does not necessarily give the best model!

5. The data frame cuckoos holds data on the lengths and breadths of eggs of cuckoos, found in
the nests of six different species of host birds. Fit models for the regression of length on breadth
that have:

A: asingle line for all six species.
B: different parallel lines for the different host species.
C: separate lines for the separate host species.

Use the anova () function to print out the sequential analysis of variance table. Which of the
three models is preferred? Print out the diagnostic plots for this model. Do they show anything
worthy of note? Examine the output coefficients from this model carefully, and decide whether
the results seem grouped by host species. How might the results be summarized for reporting
purposes?

6. Fit the three models A, B and C from the previous exercise, but now using the robust regression
function r1m () from the MASS package. Do the diagnostic plots look any different from those
from the output from 1m () ? Is there any substantial change in the regression coefficients?

7. Apply polynomial regression to the seismic timing data in the data frame geophones. Specif-
ically, check the fits of linear, quadratic, cubic, and quartic (degree = 4) polynomial estimates
of the expected thickness as a function of distance. What do you observe about the fitted quar-
tic curve? Do any of the fitted curves capture the curvature of the data in the region where
distance is large?

8. Apply spline regression to the geophones data frame. Specifically, regress thickness against
distance, and check the fits of 4-, 5- and 6-degree-of-freedom cases. Which case gives the best
fit to the data? How does this fitted curve compare with the polynomial curves obtained in the
previous exercise? Calculate pointwise confidence bounds for the 5-degree-of-freedom case.

9. In the data frame worldRecords (DAAG): (i) fit log (Time) as a linear function of
log (Distance); (ii) fit log (Time) as a polynomial of degree 4 in 1log (Distance);
(iii) fit log (Time) as a natural spline function of degree 4 in 1og (Distance).

(a) Use anova () to compare the fits (i) and (ii).
(b) Compare the R? statistics from the fits (i), (ii) and (iii). Do they convey useful information
about the adequacy of the models?
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(¢) For each of (i), (ii) and (iii), plot residuals against log(Distance). Which model best
accounts for the pattern of change of time with log(Distance)? For what range(s) of
distances does there seem, for all three models, to be some apparent residual bias?

Apply lowess () to the geophones data as in the previous two exercises. You will need to
experiment with the £ argument, since the default value oversmooths this data. Small values of
£ (less than 0.2) give a very rough plot, while larger values give a smoother plot. A value of
about 0.25 seems a good compromise.

Check the diagnostic plots for the results of Exercise 8 for the 5-degree-of-freedom case. Are
there any influential outliers?

Continuing to refer to Exercise 8, obtain plots of the spline basis curves for the 5-degree-of-
freedom case. That is, plot the relevant column of the model matrix against y.

Apply the penalized spline to the geophones data using the default arguments in mgcv’s s ()
function. Is this a satisfactory fit to the data? The argument k controls the number of knots. Try
setting k to 20, and examine the fit. How might an “optimal” value of k be selected?

The ozone data frame holds data, for nine months only, on ozone levels at the Halley Bay
station between 1956 and 2000. (See Christie (2000), Shanklin (2001) for the scientific back-
ground.) Up-to-date data are available from the web site given under help (ozone, pack-
age="DAAG"). Replace zeros by missing values. Determine, for each month, the number of
missing values. Plot the October levels against Year, and fit a smooth curve. At what point does
there seem to be clear evidence of a decline? Plot the data for other months also. Do other
months show a similar pattern of decline?

The wages1833 data frame holds data on the wages of Lancashire cotton factory workers in
1833. Plot male wages against age and fit a smooth curve. Repeat using the numbers of male
workers as weights. Do the two curves seem noticeably different? Repeat the exercise for female
workers. [See Boot and Maindonald (2008) for background information on these data.]

Clutton-Brock er al. (1999) studied how the time that adult meerkats spent on guarding varied
with the size of the group. (Studies were conducted in the Kalahari Gemsbok Park in South
Africa.) Approximate percentages of time were:

Group size 1: 50,47; 2: 26; 3: 26; 4: 24,23; 5: 19; 6: 13; 7: 3.

(NB: These numbers were read off from a graph.)

Model the percentage of time as a function of group size.

From the data set cricketers extract the subset for which year (year of birth) is in the
range 1840 to 1960, inclusive. Fit the following:

(a) A polynomial of degree 2 in year.
(b) A polynomial of degree 3 in year.

Plot the fitted curves on a graph of proportion left-handed versus year of birth. Does the
polynomial of degree 3 give any worthwhile improvement over a polynomial of degree 2?
Compare also with a regression B-spline of degree 3; i.e., bs (year, 3).

18 Compare the two results:

seedrates.lm <- lm(grain rate + I(rate”2), data=seedrates)
seedrates.pol <- lm(grain ~ poly(rate,2), data=seedrates)
Check that the fitted values and residuals from the two calculations are the same, and that

the ¢-statistic and p-value are the same for the coefficient labeled poly (rate, 2)2 in the
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polynomial regression as for the coefficient labeled I (rate”2) in the regression on rate
and rate”2.

Check that the coefficients remain the same if, in the calculation of seedrates.1m,
rate + I(rate”2) isreplaced by poly(rate, 2, raw=TRUE).

Regress the second column of model.matrix(seedrates.pol) on rate and
I(rate”2), and similarly for the third column of model .matrix (seedrates.pol).
Hence, express the first and second orthogonal polynomial terms as functions of rate and
rate”2.

19 The following fits a gam model to data that have a strong sequential correlation (see Section 9.1
for the basic time series concepts assumed in this exercise):
library (mgcv)
xy <- data.frame(x=1:200, y=arima.sim(list(ar=0.75), n=200))
df.gam <- gam(y ~ s(x), data=xy)
plot (df.gam, residuals=TRUE)

(a) Run the code several times. (Be sure, on each occasion, to simulate a new data frame xy.)
Is the function gam () overfitting? What is overfitting in this context? Compare with the
result from re-running the code with ar=0.

(b) Repeat, now with ar=-0. 75 in the code that generates the sequentially correlated series.
Why is the result so very different?



Generalized linear models and survival analysis

The straight line regression model we considered in Chapter 5 had the form
y=a+Bx+e

where, if we were especially careful, we would add a subscript i to each of y, x, and ¢.
In this chapter, we will resume with models where there is just one x, as in Chapter 5, in
order to keep the initial discussion simple. Later, we will add more predictor variables, as
required.

The regression model can be written

Ely] = a + Bx

where E is expectation. This form of the equation is a convenient point of departure for
moving to generalized linear models, abbreviated to GLMs. This class of models, first
introduced in the 1970s, gives a unified theoretical and computational approach to models
that had previously been treated as distinct. They have been a powerful addition to the data
analyst’s armory of statistical tools.

The present chapter will limit attention to a few important special cases. The chapter
will end with a discussion of survival methods. Survival methods, while having important
theoretical connections with generalized linear models, require a distinct theoretical and
computational treatment.

8.1 Generalized linear models

Generalized linear models (GLMs) differ in two ways from the models used in earlier
chapters. They allow a more general form of expression for the expectation, and they allow
various types of non-normal error terms. Logistic regression models are perhaps the most
widely used GLM.

8.1.1 Transformation of the expected value on the left

GLMs allow a transformation f() to the left-hand side of the regression equation, i.e., to
E[y]. The result specifies a linear relation with x. In other words,

S ElD) =a+px



8.1 Generalized linear models 245

2 o 0.999
s ., - 0.99
g

o 27 0.9

5 o -0.5

S -21 - 0.1

o

-4 L 0.01
8 -7 o001

T T T T T
00 02 04 06 08 1.0
Proportion

Figure8.1 Thelogitorlog(odds) transformation. Shown here is a plot of log(odds) versus proportion.
Notice how the range is stretched out at both ends.

where f() is a function, which is usually called the /ink function. In the fitted model, we call
« + Bx the linear predictor, while E[y] is the expected value of the response. The function
[ transforms from the scale of the response to the scale of the linear predictor.

Some common examples of link functions are: f(x) = x, f(x) = 1/x, f(x) = log(x),
and f(x) = log(x/(1 — x)). The last, shown in Figure 8.1, is the logit link that is the link
function for logistic regression.! Observe that these functions are all monotonic, i.e., they
increase or (in the case of 1/x) decrease with increasing values of x.

8.1.2 Noise terms need not be normal

We may write
y=Elyl+e.

Here, the elements of y may have a distribution different from the normal. Common
distributions are the binomial where y is the number responding out of a given total n, and
the Poisson where y is a count.

Even more common may be models where the random component differs from the
binomial or Poisson by having a variance that is larger than the mean. The analysis proceeds
as though the distribution were binomial or Poisson, but the theoretical binomial or Poisson
variance estimates are replaced by a variance that is estimated from the data. Such models
are called, respectively, quasi-binomial models and quasi-Poisson models.

8.1.3 Log odds in contingency tables

With proportions that range from less than 0.1 to greater than 0.9, it is not reasonable to
expect that the expected proportion will be a linear function of x. A transformation (link
function) such as the logit is required. A good way to think about logit models is that they

! ## Simplified plot showing the logit link function

p <- (1:999)/1000

gitp <- log(p/(1 - p))

plot(p, gitp, xlab = "Proportion", ylab = "", type = "1", pch = 1)
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Table 8.1 Terminology used for logistic regression (or more generally for generalized
linear models), compared with multiple regression terminology.

Regression Logistic regression

Degrees of freedom Degrees of freedom

Sum of squares (SS) Deviance (D)

Mean sum of squares (divide by degrees of Mean deviance (divide by degrees of freedom)
freedom)

Fit models by minimizing the residual sum of Fit models by minimizing the deviance.
squares.

work on a log(odds) scale. If p is a probability (e.g., that horse A will win the race), then
the corresponding odds are p/(1 — p), and

log(odds) = log(p/(1 — p)) = log(p) — log(1 — p).

Logistic regression provides a framework for analyzing contingency table data. Let us
now recall the fictitious admissions data presented in Table 4.10. The observed proportion
of students (male and female) admitted into Engineering is 40/80 = 0.5. For Sociology,
the admission proportion is 15/60 = 0.25. Thus, we have

log(odds) = 10g(0.5/0.5) = O for Engineering,
log(odds) = log(0.75/0.25) = 1.0986 for Sociology.

What determines whether a student will be admitted to Engineering? What determines
whether a student will be admitted to Sociology? Is age a factor? Logistic regression allows
us to model log(odds of admission) as a function of age, or as a function of any other
predictor that we may wish to investigate.

For such data, we may write

log(odds) = constant + effect due to faculty + effect due to gender.

This now has the form of a linear model.

8.1.4 Logistic regression with a continuous explanatory variable

The likelihood is the joint probability of the observed data values, given the model parame-
ters. It is thus a function of the model parameters. The deviance is minus twice the logarithm
of the likelihood. Maximizing the likelihood is equivalent to minimizing the deviance.

The fitting of the logistic model is accomplished by minimizing deviances. A deviance
has a role very similar to a sum of squares in regression (in fact, if the data are normally
distributed, the two quantities are equivalent). This aspect of the analogy between regression
and logistic regression is furnished by Table &.1.

Data for the example that now follows are in the data frame anesthetic (DAAG).
Thirty patients were given an anesthetic agent that was maintained at a predetermined
(alveolar) concentration for 15 minutes before making an incision. It was then noted
whether the patient moved, i.e., jerked or twisted. The interest is in estimating how the
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Figure 8.2  Plot, versus concentration, of proportion of patients not moving, for each of six different
alveolar concentrations. The horizontal line is the proportion of no-moves over the data as a whole.
Data are displayed to the right of the plot.

probability of jerking or twisting varies with increasing concentration of the anesthetic
agent.

We take the response as nomove, because the proportion then increases with increas-
ing concentration. The totals and proportions, for each of the six concentrations, can be
calculated thus:

library (DAAG)
anestot <- aggregate (anesthetic[, c("move", "nomove")],

by=1list (conc=anesthetic$conc), FUN=s