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PREFACE

Few agricultural research workers have the time to master the details of abstract
and sophisticated mathematics, yet they would like to gain a general understand-
ing of the logic and reasoning involved in the designing and conducting of
experiments. In short, they would like to learn enough of the basic principles of
statistics to be able to design experiments properly and to draw valid conclusions
from the results. This book is written to satisfy these needs. Mathematics beyond
simple arithmetic has been kept to a minimum. Many of the mathematical
relations are presented simply as facts without formal proof. Yet, every effort has
been made to make the discussion mathematically correct and to avoid the
dangers of oversimplification.

Separate chapters are devoted to each of seven experimental designs that
probably constitute over 90 percent of the designs used in agricultural research.
Four chapters are devoted to correlation and regression (linear, curvilinear, and
multiple). Regression is presented in the context of the analysis of variance as well
as a technique used in survey-type research. A special feature is a chapter on the
use of shortcut methods for handling regression when the experimental treatments
or observations are equally spaced.

For each technique emphasis is on a detailed, step-by-step procedure for
computing the essential statistics. The spiral binding has been chosen so the book
will lay open to enable users to follow a procedure in relation to their own work.
Yet, this is much more than a “cookbook.” In each case, the logic and reasoning
behind the analysis is explained. An entire chapter is devoted to the assumptions
underlying the analysis of variance and the ways of handling data that do not
satisfy these assumptions.

Special emphasis is given to the subject of mean separation (determining
which of several means are significantly different). It is evident from the current
agricultural research literature that there is a great deal of misunderstanding about
this subject. As a result, important conclusions justified by the data are often
overlooked. This is especially true with regard to the method known as the
functional analysis of variance or the method of orthogonal coefficients. This
extremely simple, yet powerful technique is unfamiliar to a large proportion of
agricultural research workers. This and other methods of mean separation are fully
discussed.

The forerunner of this book, Statistical Methods in Agricultural Research, was
used for several years to teach a methods course to extension agents and other
professional agriculturists. The revisions and additions in the development of the
present book make it more useful for this purpose. Special features are an
improved presentation of mean separation, instructions for the use of prepro-
grammed calculators to simplify calculations in the analysis of variance, a discus-
sion and example of a response surface, and a chapter, “Improving Precision,”
which discusses covariance, and the determination of the number of replications
required in experiments.
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LOGIC,
RESEARCH,
AND
EXPERIMENT

“The purpose of statistical science is to provide an objective basis for the
analyses of problems in which the data depart from the laws of exact
causality. A general logical system of inductive reasoning has been
devised, is applicable to data of this kind, and is now widely used in
scientific research. Some understanding of its principles is, therefore,
important both for research workers and for those whose interests lie in
the employment of technological advances resulting from research.
Especially is this true of the agricultural and biological sciences.”

D. ]J. Finney,
An Introduction to Statistical Science in Agriculture

The above quotation is a concise statement of the importance of statistical science
in agriculture. To grasp fully what is meant by a “logical system of inductive
reasoning,” we must review some elementary concepts of logic. When we classify
problems according to the system of reasoning employed in their solution, we find
that there are just two kinds of problems.

DEDUCTIVE AND INDUCTIVE REASONING

First, there is the kind of problem in which we are given some general principle or
set of principles and asked to determine what would happen under a specific set of
conditions. The type of reasoning employed, from the general to the particular, is
called deductive reasoning. A few examples will serve to make this concept clear.

Given the general formula for the area of a circle A=r? what is the area of a
circle whose radius is 6 inches?

Given a key and descriptions of the weeds of California, to what species does a
certain weed belong?

Given Boyle’s and Charles’ laws, how do we expect a certain volume of gas to
change when subjected to certain changes in pressure and temperature?
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Given some general principles of disease control, what yield response do we
expect from the application of a given dose of a fungicide to an acre of a particular
crop?

Given an unbiased coin whose probability of coming up heads when tossed is
one-half, what will happen when this coin is tossed 10 times?

Nearly all the problems encountered during our formal education were of this
type, where the solution required deductive reasoning. It is frequently said that
agriculturalists should be “well grounded in basic fundamentals.” This implies that
they should have at their command a large store of general principles and the skills
of deductive reasoning to apply these to specific cases.

The second type of problem is the opposite of the first. We are given some
specific cases and asked to arrive at some general principles that will apply to all
members of the class represented by these cases. The reasoning employed, from
the specific to the general, is called inductive reasoning. The following examples of
problems requiring inductive reasoning are analogous to those given above to
illustrate the deductive type of problems.

Given the areas and radii of several circles, what general formula can we give
expressing the relation between the areas and radii of all circles?

Given several specimens of an undescribed weed species, how would we describe
the species as a whole and express its relation to other species in a key?

Given a series of observations on the volume of a gas under different conditions of
pressure and temperature, what general laws will account for these observations?

Given the results of a series of disease control trials, what general recommenda-
tions can we make regarding the use of control methods?

Given the results of tossing a coin 10 times, what conclusions can we draw
regarding the bias or lack of bias of the coin?

Notice that all problems of this type have one thing in common—they start with a
group of observations. In some cases, as in the description of a new species, the
observations are simply made of phenomena as they occur in nature. Usually,
however, the observations are made under controlled conditions. The factors being
studied are made to vary in some systematic fashion by the application of
treatments. Other factors that might influence the observations are minimized as
much as is practical. We then have an experiment.

The Researcher’s Problem

We have said that nearly all problems encountered in our formal schooling are of
the type requiring deductive reasoning. We can also say that nearly all problems
encountered by an agriculturalist are those requiring inductive reasoning.

What is the typical problem that confronts the agricultural researcher? It
could be stated in these general terms: Will the use of a new or different practice
affect the outcome of some particular segment of agricultural enterprise, and if so,
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to what extent? Since this problem can never be answered with 100% certainty,
we must also consider the risk and cost of making an incorrect decision. This will
become clearer as we go along.

To answer such a problem, an experiment is generally required. In the
simplest experiment there may be only two treatments—the new practice and the
old. A more complicated experiment might include several rates or methods of
applying the new practice. Still more complex are those experiments in which the
effects of several practices are studied simultaneously.

Whatever the design of the experiment, its purpose is to provide a means of
making observations (probability sampling) that can be used for making plausible
generalizations about the practice under study. Arriving at such generalizations is
a typical problem in inductive reasoning.

The reader should not gain the impression that inductive reasoning involves
an independent line of thought distinct from deductive reasoning. Inductive
conclusions must always be checked by precise deductive methods.

The Element of Chance

Another phrase that appears in the quotation at the beginning of this chapter
requires some clarification. What is meant by “problems in which the data depart
from the laws of exact causality”?

Looking at the examples of problems given before, we note that there are
some important differences among them. In the problem of finding the area of a
circle there is no uncertainty regarding the answer. For any given radius, there can
be only a single answer.

The coin-tossing problem is quite different. The general assumption is that
the coin is not biased; but even with a single toss we are uncertain as to the result.
One of two results may be obtained, both being equally probable. The question of
what will happen when the coin is tossed 10 times has an even more uncertain
answer, for there are 11 possible results as to the number of heads that will turn
up, and these results differ in their probability of occurrence. Obviously, sampling
vagaries will occur in this case, for there is not a simple one-to-one relation
between cause and effect.

Such a situation is almost universal in the field of agriculture. No matter how
much scientists know about nutrition and physiology, they cannot predict precisely
what will be the gain in weight of a steer or the yield of a plot of potatoes under
given sets of conditions. Chance variations resulting from a multitude of causes
always make the results vary, no matter how much effort was put into controlling
all known factors.

The term chance is hard to define, but even without a clear definition, its
meaning is understood well enough to appreciate its importance in affecting
biological results. When the element of chance enters into a problem, real
difficulties are introduced. These are much more serious in the field of inductive
reasoning than in deductive reasoning,
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Consider the deductive problem of tossing an unbiased coin 10 times. By
deductive methods we can enumerate all 11 possible results and calculate the
probability of each fairly easily. For example, suppose we ask, “What is the
probability of getting the result of five heads and five tails?” This answer can be
found by calculating the value of

10!
51(51)(21°)

which turns out to be 0.246, or 24.6%. As the number of tosses is increased, or as
the initial assumptions are modified to include certain degrees of bias in the coin,
the calculations become more laborious, but they are still straightforward, and the
results are simple and definite. Fortunately, the theory of probability has been
developed by mathematicians, so that short-cut methods and tables are available
to reduce greatly the necessary calculations in complicated cases.

Now consider the inductive problem. If a coin is tossed 10 times and comes
up five heads and five tails, what can we say about the bias or lack of bias of the
coin? All we can say with certainty is that the coin was neither two-headed nor
two-tailed. If it were not biased, we would expect this result about 25% of the
times the trial was repeated. We can say with a high degree of probability of being
correct that the coin is not strongly biased in favor of either heads or tails. We
must remember that we can never make such a statement with complete certainty.
Even with a strongly biased coin (one that comes up heads 90% of the time), the
observed result of five heads and five tails would have been possible but not very
probable.

The only other statement we can make about the coin is that we feel fairly
confident that its degree of bias was somewhere between a slight bias in favor of
tails and a slight bias in favor of heads. Notice there is an infinity of possibilities in
this interval, and that zero bias is one of these. It is very important to realize that
with no other knowledge about the coin than the results of these 10 tosses, we are
not justified in concluding that the coin was unbiased. With more tosses, we can
narrow the interval of biases that could reasonably be expected to produce our
observed result, but we will never be able to state with certainty that the coin was
unbiased.

We have purposely avoided defining the terms strong and slight bias for the
sake of simplicity. However, it is possible by statistical methods to determine what
ranges of bias we will accept or reject depending on the degree of confidence we
wish to have in our conclusions.

We can now see that the answer to our question, “What can we say about the
bias of the coin?” was rather vague. The reader who is accustomed only to the
precise answers of deductive mathematics may be disappointed at the vagueness
of the answer. Yet, unsatisfactory as this may seem, the very nature of inductive
reasoning is such that the answer is the best we can give. As Alfred North
Whitehead, the great mathematical philosopher, has said, “The Theory of Induc-
tion is the despair of philosophy—and yet all our activities are based upon it.”
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The researcher should not despair in attempts to answer questions through
observations and experiments. However, it should be realized that answers can
never be absolute, and generalizations must be made with caution and only after
making careful observations and exercising the best systems of reasoning at one’s
command.

The Need for Statistical Evaluation

Most agriculturists readily see the need for statistical analysis to provide an
objective basis for evaluation, but some examples may be useful. If one harvests
two equal areas of wheat from a field, the grain yield from the two areas, whether
they be rod rows in length or halves of the entire field, will seldom be equal; the
weight of fruit from adjacent trees in an orchard is seldom the same; rates of
weight gain of any two animals of the same species and breed nearly always differ.
Differences of this sort among crop or animal units result from genetic and
environmental differences beyond the control of an experimenter. Although they
are not errors in the sense of being wrong, they represent the variability among
experimental units we call experimental error.

Once we recognize the existence of this variability, we realize the difficulty in
evaluating a new practice by applying it to a single experimental unit and then
comparing this unit to one that is similar but nontreated. The effect of the new
practice is confounded with unaccounted variability. Thus, an experiment with a
single replication provides a very poor measure of treatment effect; further, since
there are no two experimental units treated alike, it provides no measure of
experimental error. Statistical science overcomes these difficulties by requiring the
collection of experimental data that will allow an unbiased estimate of treatment
effects and the evaluation of treatment differences by tests of significance based
on measuring experimental error.

Treatment effects are estimated by applying treatments to at least two
experimental units (usually more) and averaging the results for each treatment.
Tests of significance assess the probability that treatment differences could have
occurred by chance alone.

There are three important principles inherent in all experimental designs that
are essential to the objectives of statistical science:

1. Replication. Replication means that a treatment is repeated two or more
times. Its function is to provide an estimate of experimental error and to
provide a more precise measure of treatment effects. The number of
replications that will be required in a particular experiment depends on
the magnitude of the differences you wish to detect and the variability of
the data with which you are working. Considering these two things at the
beginning of an experiment will save much frustration.

2. Randomization. Randomization is the assignment of treatments to experi-
mental units so that all units considered have an equal chance of receiving
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a treatment. It functions to assure unbiased estimates of treatment means
and experimental error.

3. Local control. This principle of experimental design allows for certain
restrictions on randomization to reduce experimental error. For example,
in the randomized complete block design, treatments are grouped into
blocks that are expected to perform differently, allowing a block effect to
be removed from the total variation in the trial.

RESEARCH, SCIENTIFIC METHOD, AND THE EXPERIMENT

Research can be broadly defined as systematic inquiry into a subject to discover
new facts or principles. The procedure for research is generally known as the
scientific method which, although difficult to define precisely, usually involves the
following steps:

1. Formulation of an hypothesis—a tentative explanation or solution.
2. Planning an experiment to objectively test the hypothesis.
3. Careful observation and collection of data from the experiment.

4, Interpretation of the experimental results. A consideration of the results in
the context of other known facts concerning the problem leads to
confirmation, rejection, or alteration of the hypothesis.

The experiment is an important tool of research. Some important characteris-
tics of a well-planned experiment are given below.

1. Simplicity. The selection of treatments and the experimental arrangement
should be as simple as possible, consistent with the objectives of the
experiment.

2. Degree of precision. The probability should be high that the experiment
will be able to measure differences with the degree of precision the
experimenter desires. This implies an appropriate design and sufficient
replication.

3. Absence of systematic error. The experiment must be planned to ensure
that experimental units receiving one treatment in no systematic way
differ from those receiving another treatment so that an unbiased estimate
of each treatment effect can be obtained.

4. Range of validity of conclusions. Conclusions should have as wide a range

Logic, Research, and Experiment 6



of validity as possible. An experiment replicated in time and space would
increase the range of validity of the conclusions that could be drawn from
it. A factorial set of treatments is another way for increasing the range of
validity of an experiment. In a factorial experiment the effects of one
factor are evaluated under varying levels of a second factor.

5. Calculation of degree of uncertainty. In any experiment there is always
some degree of uncertainty as to the validity of the conclusions. The
experiment should be designed so that it is possible to calculate the
probability of obtaining the observed results by chance alone.

STEPS IN EXPERIMENTATION

The selection of a procedure for research depends, to a large extent, on the subject
matter in which the research is being conducted and on the objectives of the
research. The research might be descriptive and involve a sampling survey, or it
might involve a controlled experiment or series of experiments. When an experi-
ment is involved there are a number of considerations that should be carefully
thought through if it is to be a success. The following are some of the more
important steps to be taken:

1. Definition of the problem. The first step in problem solving is to state
the problem clearly and concisely. If the problem cannot be defined,
there is little chance of it ever being solved. Once the problem is
understood, you should be able to formulate questions which, when
answered, will lead to solutions.

2. Statement of objectives. This may be in the form of questions to be
answered, the hypothesis to be tested, or the effects to be estimated.
Objectives should be written out in precise terms. This allows the
experimenter to plan the experimental procedures more effectively.
When there is more than one objective, they should be listed in order of
importance, as this might have a bearing on the experimental design. In
stating objectives, do not be vague or too ambitious.

3. Selection of treatments. The success of the experiment rests on the
careful selection of treatments, whose evaluation will answer the ques-

tions posed.

4. Selection of experimental material. In selecting experimental material,
the objectives of the experiment and the population about which in-
ferences are to be made must be considered. The material used should
be representative of the population on which the treatments will be
tested.
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10.

. Selection of experimental design. Here again a consideration of objectives

is important, but a general rule would be to choose the simplest design
that is likely to provide the precision you require.

. Selection of the unit for observation and the number of replications. For

example, in field experiments with plants, this means deciding on the
size and shape of field plots. In experiments with animals, this means
deciding on the number of animals to consider as an experimental unit.
Experience from other similar experiments is invaluable in making these
decisions. Both plot size and the number of replications should be
chosen to produce the required precision of treatment estimate.

Control of the effects of the adjacent units on each other. This is usually
accomplished through the use of border rows and by randomization of
treatments.

. Consideration of data to be collected. The data collected should properly

evaluate treatment effects in line with the objectives of the experiment.
In addition, consideration should be given to collection of data that will
explain why the treatments perform as they do.

. Outlining statistical analysis and summarization of results. Write out the

sources of variation and associated degrees of freedom in the analysis of
variance. Include the various F tests you may have planned. Consider
how the results might be used, and prepare possible summary tables or
graphs that will show the effects you expect. Compare these expected
results to the objectives of your experiment to see if the experiment will
give the answers you are looking for.

At this point it is well to provide for a review of your plans by a
statistician and by one or more of your colleagues. A review by others
may bring out points you have overlooked. Certain alterations or adjust-
ments may greatly enrich your experiment and make it possible to learn
considerably more from the work you are about to undertake.

Conducting the experiment. In conducting the experiment, use proce-
dures that are free from personal biases. Make use of the experimental
design in collecting data so that differences among individuals or dif-
ferences associated with order of collection can be removed from
experimental error. Avoid fatigue in collecting data. Immediately re-
check observations that seem out of line. Organize the collection of your
data to facilitate analysis and to avoid errors in recopying. If it is
necessary to copy data, check the copied figures against the originals
immediately.
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11. Analyzing data and interpreting results. All data should be analyzed as
planned and the results interpreted in the light of the experimental
conditions, hypothesis tested, and the relation of the results to facts
previously established. Remember that statistics do not prove anything
and that there is always a probability that your conclusions may be
wrong. Therefore, consider the consequences of making an incorrect
decision. Do not jump to a conclusion, even though it is statistically
significant if the conclusion appears out of line with previously estab-
lished facts. In this case, investigate the matter further.

12. Preparation of a complete, readable, and correct report of the research.
There is no such thing as a negative result. If the null hypothesis is not
rejected, it is positive evidence that there may be no real differences
among the treatments tested. Again, check with your colleagues and
provide for review of your conclusions. '

Although most of the above steps are nonstatistical, statistical analysis is an
important part of experimentation. Statistical science helps the researcher design
the experiment and objectively evaluate the resulting numerical data. As experi-
menters, few of us will have the time or the inclination to become competent

biometricians, but we can all learn and practice the three “R’s” of experimenta-
tion.

1. Replicate. This is the only way you will be able to measure the validity of
your conclusions from an experiment.

2. Randomize. Statistical analysis depends upon the assignment of treat-
ments to plots in a purely objective, random manner.

3. Request help. Ask for help when in doubt about how to design, execute,
or analyze an experiment. You are not expected to be an expert statisti-
cian, but you should know enough to understand the important principles
of scientific experimentation, to be on guard against the common pitfalls,
and to ask for help when you need it.

SUMMARY

Reasoning that proceeds from a general principle to a specific conclusion is a
deductive process. Inductive reasoning arrives at a general principle from a specific
conclusion. Experiments are conducted to provide specific facts from which
general conclusions or principles are established and thus involve inductive
reasoning,

9 Summary



Variability is a characteristic of biological material and creates the problem of
deciding whether differences between experimental units result from unaccounted
variability or real treatment effects. Statistical science helps overcome this diffi-
culty by requiring the collection of data to provide unbiased estimates of treat-
ment effects and the evaluation of treatment differences by tests of significance
based on measuring unaccounted variability.

Three important principles of experimental design are replication, randomiza-
tion, and local control.

The scientific method involves a flow process from known facts to hypothesis
to experimentation which furnishes more facts that will cancel, strengthen, or alter
the hypothesis.

A well-conceived and properly designed experiment should be as simple as
possible, have a high probability of achieving its objective, and avoid systematic
and biased errors. Its conclusions should have a wide range of validity, and data
collected from it must be analyzable by valid statistical procedures.

The procedure for experimentation involves defining a problem, stating
objectives, selecting treatments, selecting experimental material, selecting an
experimental design, selecting the experimental units and number of replications,
controlling the effects of adjacent units on each other, collection of data, and
analyzing, interpreting, and reporting results.
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SOME
BASIC
CONCEPTS

An experimental unit refers to the unit of experimental material to which a
treatment is applied. It can be a single leaf, a whole plant, an area of ground
containing many plants, a pot or a flat in the greenhouse, a single animal, several
animals, or an entire herd. The term plot is synonymous with experimental unit
and is frequently used in referring to plant experimental units. “Plot” is sometimes
incorrectly used in referring to an entire experiment that really consists of several
plots. A measurable characteristic of an experimental unit is called a variable. A
variable can be discrete (discontinuous), assuming only specific values, the number
of diseased plants per plot for example, or it can be continuous and assume any
value between certain limits, for example, the yield of grain from a plot of barley.
Individual measurements of a variable are called variates.

A treatment is a dosage of material or a method that is to be tested in the
experiment. A crop variety is a kind of a treatment. When a treatment is applied
to more than one experimental unit we have replication of that treatment. Two
experimental units treated alike constitute two replications (or replicates). Experi-
mental units receiving different treatments that have been replicated and arranged
in a suitable design constitute an experiment (or trial or test).

In a statistical sense, a population is a set of measurements or counts of a
single variable taken on all the units specified to be in the population. The
population may be relatively small, such as the grain production per acre of all the
barley fields in a specified area in a specified year, or it may be large, for example,
the heights of all men over 20 years of age in the United States or the yields that
would result from all possible plots of a given shape that could be arranged on an
experimental area. Even a small population usually involves a measurement on a
very large number of individuals or experimental units. We may have a population
of a variable from individual experimental units, a population of means of samples
of the variable, or a population of differences between pairs of sample means.

A sample is a set of measurements that constitutes part of a population. We
obtain information and make inferences about a population from a sample. For
this reason it is important that the sample be representative of the population. To
obtain a representative sample we use the principle of randomness. A random
sample is one in which any individual measurement is as likely to be included as
any other.

11 Some Basic Concepts
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Figure 2.1. Frequency distribution of refractometer readings of 10,000 onion
bulbs with the theoretical curve of normal distribution.

Populations are described by characteristics called parameters. Parameters are
fixed values. For example, the arithmetic mean of all the variates in a population is
a parameter. It has only one value, although we seldom know what it is. Samples
are described by the same characteristics, but when applied to samples they are
called statistics. The mean of a sample is a statistic. We calculate statistics from
samples to estimate population parameters, Statistics vary from sample to sample.

Different values of a variable have different frequencies of occurrence in the
population. To conveniently describe (characterize) a population, data from a large
sample are commonly organized by the construction of a frequency table, a
frequency histogram, and a frequency polygon. In a frequency table (Table 2.1),
variates are tallied as to the several class intervals in which they fall. The totals
can then be plotted as frequencies of occurrence for each class interval and a
frequency histogram constructed (see Fig. 2.1). Connecting the midpoints of the
class intervals gives a frequency polygon.

If we were to plot the frequency of yields of grain from many plots of barley,
the percentage of butterfat in milk from many cows, the gains in weight of many
groups of lambs, the number of scab lesions per potato in a thousand potatoes, or
the refractometer readings of many onion bulbs, the resulting graphs would show
several important features in common. The curves would all be approximately
bell-shaped, with the high point near the middle, representing the most common
class. They would slope off rather symmetrically on either side to rare, exceptional
classes at the two ends.

Most biological data (and, in fact, data in many other fields of application),
when plotted in a frequency curve, closely fit a mathematically defined curve
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TABLE 2.1.
A frequency table. Refractometer readings of 10,000 onion bulbs

Class Interval ~ Midpoint Tabulation Frequency
6.8- 7.2 7.0 M1 1 10
73- 7.7 75 13T 13T 14T 1111 19
7.8- 8.2 8.0 60
10.8-11.2 11.0 1600
11.3-11.7 11.5 1700
14.3-14.7 14.5 65
14.8-15.2 15.0 50
15.3-15.7 15.5 14T 1M MY 13T 1 25
15.8-16.2 16.0 4T 14T 14T 18T 20
16.3-16.7 16.5 13t 14T 11 12

called the normal frequency curve. In Figure 2.1 a normal frequency curve has
been superimposed over the frequency histogram and polygon of onion bulb
refractometer readings. Note how well the curve fits the distribution of the
sample.

THE NORMAL DISTRIBUTION

The imposing formula for describing a normal frequency curve is

f=— N o--w'/2
(eV2m)

where f is the frequency of occurrence of any given variate, y is any given variate,
N is the number of variates in the population, p is the population mean, and o is
the population standard deviation. Note that the normal curve describing the
frequency of occurrence of variates of different sizes can be plotted by the
calculation of just two parameters, p and o.

Normal distributions only vary from one another with respect to their mean
and /or standard deviation. The mean determines the position of a curve on the
horizontal axis. The standard deviation determines the amount of spread or
dispersion among the variates. Figure 2.2a shows two normal distributions with
identical standard deviations but different means. The two normal distributions in
Figure 2.2b have identical means but different standard deviations.

13 The Normal Distribution



Frequency (number of variates
for each y value)

Values for variates in the population (y’s)

Figure 2.2a. Normal distributions—standard deviations equal, means different.

f

Freguency (number of variates
for each y value)

Values for variates in the population (y's)

Figure 2.2b. Normal distributions—means equal, standard deviations different.

STATISTICAL NOTATION, MEANS, AND STANDARD
DEVIATIONS

To deal mathematically with variates, means, and totals, it is necessary to have a
system of notation to express procedures and relationships. In this book, com-
plicated notation is avoided as much as possible, since it is confusing to most
students. Nevertheless, if you continue to study statistics in other books, a brief
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introduction to the more or less standard system of notation may be helpful. We
say “more or less standard system of notation” because there is considerable
variability from book to book—to the frustration of all students. First, we discuss
the mean and standard deviation and in so doing learn some simple notation.

The most common and usually the best measure of central tendency is the
arithmetic mean. The symbols used to represent the arithmetic mean (hereafter
shortened to mean) are the Greek p for the mean of a population and Y or X for
the mean of a sample. Mu () is a parameter, a fixed value, that we seldom know,
and Y is a statistic, a value that varies from sample to sample drawn from the same
population.

The population mean is defined as

Y, + Y+ Yo+ +Yy
l"l= N

where Y;, Y,, and so forth are the variates of the population, and N is the number
of variates in the population. Thus, Yy is the Nth variate of the population.
Many books use X rather than Y to stand for a variable. However, this leads
to some confusion when you first study regression. In regression you consider the
values of the variable you are studying as Y values as they are plotted on the Y
(ordinate) axis of the graph; the X values, plotted on the X (abscissa) axis, are the
treatments of your experiment, for example, levels of fertilization. Thus it avoids
some confusion to call variates Y values at the start.
The mean () can be defined by a shorthand notation called a summation
notation.
N
2 Y,
=1
=N

In this shorthand, the Greek capital = (sigma) tells you to sum all the values of Y..
The summation index, i=1...N, says that the values of Y; go from the value of Y,
to that of Yy.

Since we seldom, if ever, know the value of u, we estimate it from a sample
mean, Y, which is defined as

2 Y,
— =1

r

where r represents the number of variates in the sample. When it is clear what Y’s
are to be summed, the notation is frequently shortened to XY, or even ZY.

For the sample of Table 2.2, Y=XY,/r=(3+4+5+2+1)/5=15/5=3
g/plant. Often, we wish to denote the difference between a variate (Y) and a
mean (Y). Such deviates are often represented by an italicized lowercase y or x.
Thus y=Y-Y, orx=X-X.
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TABLE 2.2. £
Dry weight of five plants, Y=3

Grams per plant
Y Y-Y (Y-Y)
3 0 0
4 1 1
5 2 4
2 -1 1
1 -2 4
S 15 0 10

There are two important properties of the mean: the sum of its deviates is
zero (column 2, Table 2.2), and the sum of squares of the deviates (column 3,
Table 2.2) is minimal, that is, the sum of squares of deviates from any other value
will be larger.

Other measures of central tendency, which we will not use in this book, are:
the median—the value situated at the center of the variates when these are
arranged in order of magnitude; if the number of variates is even, the median is
the average of the two central values; and the mode—the value of most frequent
occurrence. In a normal distribution the mean, median, and mode are equal.

The most common measure of dispersion, and the best for most purposes, is
the standard deviation and its square, the variance. The standard deviation of a
population, o, and the variance, 0%, when estimated from a sample are symbollzed

as s and 57, respectively.
The population variance is defined as

z (Yl - P)z
N

where N is the number of variates in the population. The best estimate of o from
a small sample (where r is less than 60), is defined as

(=]

02_

2(Y,-Y)
-

where r is the number of variates in the sample. Why use r—1 rather than r as the
divisor? If we know the value of p, the best estimate of o® from a sample is

2(Y,— F)g

r

P
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r being the number of variates in the sample. However, we seldom, if ever, know
the value of p, so in the numerator, we replace it with its estimator, Y. Now, while
Y is on the average equal to p, it varies from sample to sample and seldom is
exactly equal to p. We saw previously that Z(Y;—Y) is less than the sum of
squares of deviates from any value other than Y. Therefore, if Y is not exactly
equal to p, Z(Y,— Y)zlslessthanE(Y, )% This means that 2(Y,—Y)2/r will give
too small an estimate of o2, It turns out that the proper correction can be made by
using r— 1 in the denominator instead of r. In other words, on the average,

-V sv-pp
= =0g

r—1 r

2

The numerator, (Y, —Y)? is a sum of squares in this case the sum of the squares
of deviations of individual variates from their mean. The denominator, r—1, is
referred to as the degrees of freedom for the sample, usually one less than the
number of observations.

We will use the small sample in Table 2.2 to illustrate the calculation of s®
and s.

(YY) (3-37+@4-3)+(5-3+(@—3P+(1-9)?

e 5—1

_OF+QP+@°+(-1)"+(-2" _0+1+4+1+4 _10
- = =25

4 4 4
s=V2.5 =1.58 g/plant

For small samples without decimals where the mean happens to be a whole
number, s* and s can easily be calculated by the definition formula, but for larger
samples there is a shortcut method that is much easier to perform, especially when
a desk calculator is used. It can be proven that

2(Y,-¥)'=3Y,2 - ="

Therefore, a convenient working formula for s” is

Y2 e ) - i e
_ ’ X _~
s r—1

The right-hand term of the numerator is called the correction term or correction
factor and will be denoted in the book as C. C=(ZY,)?/r. The denominator (r—1)
is called the degrees of freedom (denoted by df) on which the variance is
based—in this case, one less than the number of variates in the sample.
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Applying this formula to the data of Table 2.2 gives

3+4+5+2+1)° 2
Ph St 12— . ) 55— 1
Bae 51 T 3
= —5%{2 217? =2.5, as before

Many desk and pocket calculators are programmed to compute a standard
deviation by depressing a key after entering a sample of variates. A calculator with
this capability greatly facilitates the computations in the analysis of variance
(acronym ANOVA). One caution—know whether your calculator computes s
using r or r—1 as a divisor. The divisor r is only used when the sample is large,
that is, when it contains at least 60 variates.

Other measures of dispersion are the range and the mean deviation. However,
they will not be discussed here because of the far greater utility of s* and s.

The variability among experimental units of experiments involving different
units of measurements and/or plot sizes can be compared by coefficients of
variation, which express the standard deviation per experimental unit as a percent
of the general mean of the experiment; thus CV = (s/Y)100. For example, consider
two experiments—one involving sugar beet root yield, where s=1.18 tons per acre
and the mean of all the plots is 30.5 tons per acre, and the other involving lima
beans, where the variable was seedlings per plot and s=5.8 and Y=82.7. The
coefficients of variation are (1.18/30.5)100=3.9% and (5.8/82.7)100=7.0%. A
comparison of the two indicates that there was 1.8 times (7.0/3.9) more variability
among the plots within a treatment of the lima bean experiment.

N =
Variates in a Two-Way Table i

Because of the design of the experiment or to facilitate computations, variates
often are arranged in a two-way table and symbolized as in Table 2.3. The symbol
for any variate in such a two-way table is Y;; or, in some books, X;. The i subscript
refers to the rows of the table that go from 1 to n, and j refers to the columns that
go from 1 to r. A particular variate is indicated by the intersection of a row and
column; for example, Yy, is the variate of row 2 and column 3.

Note the use of the dot subscript to indicate an operation over all the variates
in a row or column. Y, means the sum of all the variates of row 1. To indicate an
operation involving all the row totals, we use the symbol Y;; for example, ZY,*
indicates that you should square each row total and sum the squares. The mean of
row 1 is Y, which equals Y, /r which also equals Zf_,Y,;/r. This last formula
merely says “sum all the j’s of row 1 and divide by r, the number of j's.”

The use of such a system of notation (when you finally get used to it) saves
much space in indicating operations and relationships. We will use it sparingly and
almost always with a numerical example for illustration. To practice it a little, we
will use the real numbers of Table 2.4 along with the symbols of Table 2.3.

Some Basic Concepts 18



TABLE 2.3
Symbolic presentation of variates in a two-way table

Rows (i, Columns (j, Replications) Totals, Means,
Treatments) 1 2 3 -oor Y, Y
1 Yil Y e vme er Yl ?1
2 Y5, Yoo Y, Y, Y,
n Ya | Y o e B ~% Y,

Totals, Y Y, Yy o semeess Y, Y.
Means, {’_j ? 1 ?_2 fr ‘?
TABLE 2.4.

Sugar beet root yields (tons per acre) from an experiment with five treatments in
four replications

Treatments Replications (Columns) Totals Means
(Row) L. * 2 3 4=r Y Y,
1 15 18 17 18 68 17.0
2 16 15 13 16 60 15.0
3 23 25 22 24 94 23.5
4 20 16 14 16 66 16.5
5=n 20 17 15 16 68 17.0
Totals, Y 94 91 81 90 356=Y_
Means, Y, 188 182 162 180 17.8=Y_
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To indicate the computation of the sum of squares of all the variates in a
two-way table we would write,

ss=3 3 (¥,-1)
i=1j=1

The summation indices are often omitted, and sometimes one of the summation
signs is also omitted to shorten the expression to

ss=3(Y,~Y.)’

The first formula is more complete, as it identifies the summation limits for both
rows and columns, but when this is understood the second formula is sufficient.
To compute the SS by this formula for the data of Table 2.4,
SS=(15—17.8)+ (18— 17.8)*+ - - - +(15—17.8)*+ (16— 17.8)*=223.2
The series of dots, ..., means to continue the indicated operation throughout the
table, ending with the last two variates, 15 and 16. _
_ To compute the sum of squares among column means, we write, SSC=nZ(Y
—Y )%. This indicates that we take each column mean (Y ), subtract the genera.i
mean (Y ), square each difference [( )*], sum the squares (ﬁ), and multiply by the
number of variates (n) in each column. The significance of multiplying by n will be
pointed out shortly. For now, we are only interested in trying to follow this
confusing shorthand.
For Table 2.4,

$SC=5[ (18.8—17.8)°+(18.2—17.8)°+ (162 17.8)* + (18.0-17.8)* |
=5(3.76)

=18.8

SSC can also be computed from column totals as SSC=(ZY */n)—(Y */nr). For
Table 2.4, this says
_ 94491°+81°+90° _ 356
5 5(4)
=6355.6 —6336.8
=188

Now we return to the normal distribution and other relationships important to
statistical procedure.

SSC

SAMPLING FROM A NORMAL DISTRIBUTION

We commonly expose a number of plots or animals to a certain treatment. The
treatment effect is estimated by calculating the mean of the sample. We know that
repetitions of the experiment (in effect, drawing other samples) will produce a
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series of different means. One problem then is how well does a single mean
represent the true treatment effect? One approach to this problem is to calculate
confidence limits, a range of values within which the true mean of the treatment
effect will fall unless we have drawn a very unusual sample. Before we calculate
confidence limits for a treatment mean we should look at the relationship between
certain parameters of a population of individuals and a population of means
generated by repeated sampling from the parent population.

The Distribution of Sample Means

If all possible samples of a given size are drawn from a normally distributed
population of individual variates, the means of these samples will form a much
larger population than the parent population; the mean of the new population will
be the same as the parent population, but the standard deviation will be smaller.
In this kind of sampling, each variate of the parent population is identified, and
after a sample is drawn and the mean determined the sample is returned and
another one drawn. The process is repeated until all possible combinations of
variates appear together in a sample.

The standard deviation of the population of means is called the standard error
of a mean, or just standard error, and is symbolized by o;. When g; is estimated
from a sample its symbol is s;.

There is an important and very useful mathematical relationship between the
variance of the parent population and the variance of a population of means
drawn from it: c)—,2=02/r, where r is the sample size on which the population of
means is based. Figure 2.3 illustrates this relationship. With increasing sample size

0.8 -
/N ¥, T =.16 = number of plots from

06 which each y, is calculated

04

yir=4
0.2
¥; (population of individual
plot yields)
8 I ! ! 1 I

u Ib of grain/plot

Figure 2.3. Frequency distributions of populations of means, varying in sample
size, generated by repeated sampling from the same normally distrib-
uted population of plot grain yields. The distributions (all normal)
become narrower and taller as sample size increases according to the
relationship o;%=0"/r.
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(r) the distribution of means becomes narrower and taller, that is, the standard
deviation becomes smaller, but the mean remains the same. Because of this
relationship, 0;®=0"/r, we can estimate o;® from only a single sample by s;2=
s*/r. We use this relationship when we calculate a confidence interval about a
sample mean. The relationship is also used repeatedly in the ANOVA when we
wish to estimate the variance per plot, s?, form a series of means when we assume
each mean is from a sample drawn from the same population. In this case we
compute syg from the sample means as 55—,2= 2(Y, —Y)?/(n—1) and then estimate
s* by solving s;”=s"/r for s’=rs;%. We will discuss this in more detail later.

The t Distribution and Confidence Limits

Consider another repeated drawing of samples of a given size, say r=>5 as in
Figure 2.4. For each sample compute Y, s, s;, and another statistic, t, where
t=(Y—p)/s;. Now imagine organizing the large population of t values in a
frequency distribution. The frequency curve will look like the curve in Figure 2.4.

, BMY =F2 5?2 Yy-u
e | = 7 .o = = —
Spl. 1 =35, 5-1 - ol %
Population r=5§
3= Spl. 2 eresssessssssssssssssassssesssssrsssssresans ty
Variates
normally
distributed
Yy 5 SPLLM == crrrerersrsessscssasssininnenseean by

t values in a frequency
distribution

Relative frequency

-2
-2.776 2.776

Figure 2.4. Generation of the t distribution for sample size of 5. A t value is
computed for each of all the possible samples of five variates. Plotting
the frequencies of the t values gives a distribution that has fewer
values near the center and more toward the tails than is the case with
the normal distribution.
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There is a unique t distribution for each sample size. For a sample size of 5,
2.5% of the t values will be equal to or greater than 2.776, and 2.5% will be equal
to or less than —2.776. Table A.2 in the Appendix is a two-tailed t table where
probabilities are shown for obtaining *t values for the degrees of freedom for
different sample sizes. For example, for df =10, find that the *t value to be
expected with a probability of 0.01 (1%) is 3.169.

Figure 2.5 shows the t distribution for a sample size of 5 compared to the
normal distribution. Note that the t distribution is more variable than the normal
distribution. The larger the sample size, the closer t approaches a normal distribu-
tion. When t values are based on samples containing 60 or more variates, they
are approximately normally distributed, as thgy closely estimate a normally distrib-
uted statistic, Z, which is calculated as Z=Y—p/oy; t and Z only differ in the
denominator. With small samples, s; is quite vanable from sample to sample, and
therefore t is more variable than Z, whose denominator, o oy, is a constant. With
larger samples, however, sr is less variable, and therefore t values more closely
estimate Z values. For the last line of most t tables, where degrees of freedom are
infinite, t=Z7 (Table A.2). A table of areas under the normal curve corresponding
to Z values is not included in this book, as we seldom deal with samples large
enough to justify its use.

CONFIDENCE LIMITS. From any random sample, confidence limits (CL) can
be calculated within which p will fall with a specified confidence. This is done
by solving +t= (Y—p) /sy for p and calling the resulting two values confidence
limits: CL= Y+tsy If we wish to be 95% confident that CL will contain p, we

Normal (z) distribution
Y—p

4R - se——
5

t distribution (r = 5)

1 zort

t=-2776 z=-196 s =196 t=2776
pofzandt=0;00fzandt =1

Figure 2.5. Distribution of z compared to the t distribution based on a sample size
of 5. As sample size increases the t distribution approaches the normal
z distribution. (Values of t and z that exclude 5% of the area under
each curve are indicated.)
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multiply s; by a tabular t value depending on n—1 degrees of freedom and the 5%
level of probability (Table A2). For a sample where r=5, s; is multiplied by 2.776.

To illustrate, consider the sample of Table 2.2 where r=5,Y=3, and s*=2.5.
Then

5= % =0.707 and  CLg=3+2.776(0.707) =4.96 to 1.04 gm/plant

Thus, with a confidence of 95% we can say that p lies in this range. It is incorrect
to say that the probability is 95% that p lies within these confidence limits
because, based on the statistics of the particular sample, p will or will not lie in the
calculated interval. We may have drawn a sample whose Y and/or s* deviates
sufficiently from p and /or 0® so that CL g will not contain p. However the chance
of drawing such a sample is only 5%.

STATISTICAL HYPOTHESES AND TESTS OF SIGNIFICANCE

The statistical procedure for comparing two or more treatment means employs the
use of an assumption called the null hypothesis, which assumes that the treatments
have no effect. We then proceed to test the probability that means as divergent as
those of our samples would occur by chance alone if the samples were indeed
random samples from normally distributed populations with equal means and
variances. If our analysis leads to the conclusion that we could expect such mean
differences quite frequently by chance, we do not reject the null hypothesis and
conclude that we have no good evidence of a real treatment effect. If the analysis
indicates that the observed differences would rarely occur in random samples
drawn from populations with equal means and variances, we reject the null
hypothesis and conclude that at least one treatment had a real effect. At least one
of the means is said to be significantly different from the others.

If the probability is 5% or less that the observed variation among means could
occur by chance, we say that the means are significantly different. If the
probability is 1% or less that the observed variation among means could be
expected to occur by chance, the differences are said to be highly significant.

The fact that the null hypothesis is not rejected and that we conclude there
are no significant differences among the means does not prove that some of the
treatments had no effect. There is always a definite probability that there was a
real effect but that the experiment was too insensitive to detect the difference at
the desired level of probability.

At this point you should realize that there is nothing magic about the 5% level
of significance. The conlcusions you make concerning an experiment are your own,
not the statistician’s, and should be based on more than statistical evidence. The
logic of the conclusions should be considered in the light of what is already known
about the subject. Do not be too ready to accept a significant result if it does not
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make sense in the light of other known facts. There is always a chance that your
significant result occurred by chance and that you have made an error in rejecting
the null hypothesis.

Consider the consequences of being wrong. If the consequences are serious,
such as being wrong in recommending a change that would require a considerable
expense for a relatively small increased profit, you may hesitate to reject the null
hypothesis on the basis of a single test even though the results are significant at the
5% level. In such a situation additional testing is clearly in order.

On the other hand, if the consequences of being wrong are not serious, you
might reject the null hypothesis even though statistical analysis says you could
expect such a result by chance as often as 1 out of 15 or even 1 out of 10 times.
Consider, for example, the testing of a new inexpensive seed treatment when the
combined analysis of several field experiments falls just short of being significant at
the 5% level. Further, suppose that the results of several greenhouse experiments
have indicated that the new treatment gave significantly better protection against
the major pathogens that attack seedlings of the crop in question. In such a
situation you might be justified in rejecting the null hypothesis, even to the point
of recommending the practice to farmers, while you proceed to further test your
conclusions in additional field experiments.

The F Distribution

An F test is a ratio between two variances and is used to determine whether two
independent estimates of variance can be assumed to be estimates of the same
variance. This ratio was called F by George W. Snedecor in honor of Ronald A.
Fisher, a pioneer in the use of mathematical statistics in agriculture. In the analysis
of variance, the F test is used to test equality of means; that is, to answer the
question, Can it reasonably be assumed that the treatment means resulted from
sampling populations with equal means? This can be illustrated by a description of
how a portion of the F table could be determined.

Consider the following: From a normally distributed population (Fig. 2.6),
draw five samples (n=5), each containing a specified number of variates, nine for
example (r=9). Calculate the means of these five samples. Estimate o® by
calculating s* for each sample to give s,%...ss>. Sum these estimates of ¢ to obtain
an average (pooled) estimate: s>=(s,>+ ... +s,%) /5.

Now estimate the variance of means (of) from the means of the five samples:
s;>=2(Y, —Y )*/(5—1). From s;”, again estimate 0% using the relationship s?=rs?,
where r is the number of variates in each sample. Compute the variance ratio F,
where

5%, calculated from samples means

- s%, calculated by pooling sample variances

The degrees of freedom for the numerator are n—1=4 (where n is the number of
samples) and for the denominator n(r—1)=>5(8)=40 (where r is the number of
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Population

> Spl. 1 ==V, 5> 52 = Z(Y, — ¥,)2/(9-1)

Draw & (n) samples
of 9 (r) variates
each

> Spl. 5 —= Vg —>= 5.2

To compute F for a single drawing of 5 samples of 9 variates:
i (1) Estimate o;* as s;*=3(Y, —Y.)?/5—1 where Y =3Y, /5
(2) Estimate o® from the variability among the sample means
as: 5,7 = rs;” =95,
(3) Estimate o> from the variability within the samples as:
Sw=(s"+ ... +557)/5
Y ) ]

Sb
then F= — with df=
e 50-1) 40
Repeating this sampling procedure many times generates a
population of F values which when plotted looks like the

curve below.

F distribution for 4/40 degrees
of freedom.

Frequency of occurrence of
F values

1 2861 F

Figure 2.6. Repeated drawing of 5(n) samples of 9(r) variates each from a popula-
tion of normally distributed variates (Y,...Yy) to generate an F
distribution. Five percent of the F values will be 2.61 or larger (see
text).

variates in each sample). Now imagine that this sampling procedure is repeated
until all possible sets of samples have been drawn and recorded, the frequencies of
obtaining F values of various sizes have been recorded, and the frequency curve
has been plotted. The F value 2.61 is the value beyond which 5% of the calculated
values fall. This is the value for the 5% level found in an F table for 4 and 40
degrees of freedom (Table A.3). Similarly, F values can be determined for other
sample sizes, numbers of samples, and for other levels of probability (2.5%, 1%,
etc.).

Since both variances in the F ratio are estimates of the same variance (¢%), the
ratio will be close to 1 unless an unusual set of samples has been drawn. The F
distribution for the sample size we are considering (n=>5,r=9) will look like the
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graph in Figure 2.6. The area under the curve represents the frequency of
obtaining any given F value. For any given draw of a set of samples of n=5 and
r=9 the chances of the calculated F value being equal to or greater than 2.61 are
5%. Or, the chances are 95% that any given draw of such a set of samples will
produce an F value of less than 2.61. Note that the F test is a one-tailed test. That
is, we are not interested in the probability that F is equal to some value less than

L.
The above hypothetical sampling experiments are intended to show how t

and F distributions can be obtained by sampling from a population of normally
distributed variates. Tables for t and F are not determined by these laborious
sampling procedures but are calculated from precise and rather complicated
mathematical relationships. The use of F ratios in the ANOVA will be discussed in
the next and subsequent chapters.

SUMMARY

Experimental unit (or plot, for an area of ground in the field). The unit of
experimental material to which a treatment is applied.

Variable. A measurable characteristic of an experimental unit.

Variate. A specific measurement of a variable.

Population. A set of measurements (or counts) of a variable taken on all the
individuals specified to be in the population.

Sample. A set of measurements (variates) that constitute a part of a population.
Parameter. A characteristic of a population (e.g., the mean). A parameter is a fixed
value we seldom know. Parameters are estimated from samples. Parameters are
usually symbolized by Greek letters ( p, o, etc.).

Statistic. A characteristic of a sample—often used to estimate a parameter;
generally symbolized by Roman letter (Y, s, etc.).

Normal distribution. A mathematically defined, bell-shaped curve resulting from
plotting the frequencies of occurrence of values of a variate against the range of
the variate values. A normal distribution is uniquely described by its mean and
standard deviation.

The mean of a population of individual variates, p.

!
p= ET , where N is the number of individuals in the population.

The estimate of p from a sample, Y.

2,

r

Y=

, where r is the number of individuals in the sample.
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The variance of a population of individual variates, o®.

2_ 2 (Yi'_ﬂ)z
Wl i

The standard deviation of a population of individual variates, o.
o=Vo®

The estimate of o® from a sample, 5.

2
(2v)
> (Y,-Y) SY—=
&= — =7 (definition formula). = —1 (working formula)
Correction term, used in the working formula, C.
(Zy)
T
Estimate of o from a sample, s.
s=V¢
Coefficient of variation, CV.
CV= = (100)
¥

A population of means. The population of all possible means (Y’s) of a specified
sample size (r) drawn from a population of individuals.

The mean of a population of means, ps.

Y,
b= —E-—' =, where M is the number of sample means.

The variance of a population of means, o3°.
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The standard deviation of a population of means, or standard error, o,

5=Yo;
The relation between o* and af.
2 a*
e

where r is the number of variates in each sample mean (sample size).
The estimate of o5 from n samples, s;*.
2
2(n-Y)

2_
c A n—1
The estimate of o;” from a single sample of size r.

. E(Y‘_ﬂg(l)

- ["’w

r—1
Estimate of o® when s;” is known.

o®=rs;?, where r is the number of variates in each sample.

t, a statistic computed from a sample that expresses the difference between the
sample mean and the population mean in standard error units.

t=(Y-u)/s
Confidence limits of p, small sample.

F, the ratio between two estimates of o”.

_ s* calculated from sample means
s%, calculated by pooling sample variances
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3

THE
ANALYSIS OF
VARIANCE
AND
t TESTS

We now have the statistical concepts needed to understand the analysis of
variance. But before discussing complicated experiments, it will be informative to
see how we can use these concepts to analyze the simplest case of two treatments
when each has been randomly assigned to 5 of 10 experimental units. First we
explain what is done in the analysis of variance procedure, and then we show a
routine procedure for carrying out the computations.

ANOVA WITH TWO SAMPLES

We will use the data of Table 3.1 to illustrate the ANOVA procedure.
To determine the variability called experimental error, we compute the
variance of each sample (s> and s,%), assume they both estimate a common

TABLE 3.1.
Yields (100 Ib /acre) of wheat varieties 1 and 2 from plots to which
the varieties were randomly assigned

Varieties Replications Y, Y,
W 14 35 17 W 8 17 Y,
2 23 19 19 2 B 100 20 Y
185  185= Y
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variance (0%), and then estimate this common variance by pooling the sample

variances. I
2 (Yl;_Yl.)
I o

(19-17+ ... +(20—17)
5-1

Pooling s,* and s,* gives an estlmate of 0® based on variability within the samples,
which we will designate as s,

s SUHSY  65+40

=g T

Assuming the null hypothesis that these two samples are random samples
drawn from the same population and that, therefore, Y; and Y, both estimate the
same population mean (p), we estimate the variance of means (o s) from the
means of samples 1 and 2.

. 2 (¥.-1) _(17-185+(20-185)° _ (—15)°+(15)?

e A= S 2—-1 T 1 i

We again estimate ¢” using the relationship s;*>=s/r and solving for s*. Remem-
ber, r is the number of variates on which each sample mean is based. We will
designate this estimate of o as s,°.

s =15, =5(4.5) =22.5

We now have two estimates of 0%:s,* based on the variability within each
sample and s,? based on the variability between the samples. Assuming the null
hypothesis to be true, we would expect s, and s,* to be nearly alike since they
both estimate the same variance (0%). We can determine the probability of
obtaining divergent estimates of o by calculating an F ratio and referring to a
table of F values. For this F ratio we always put the variance estimated from the
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sample (treatment) means (s,%) as numerator and the variance estimated from the
individual variates as denominator. Thus, F=s,?/s 2

If the two treatments (samples) come from populations having different
means, s,> will contain a component reflecting this difference and will be larger
than s, For our experiment, F=22.5/5.25=4.29.

The numerator, s,% is based on 1 degree of freedom, since there are two
sample means. The denominator, s,% is based on pooling the degrees of freedom
within each sample. Each sample has 5 variates and therefore 4 df so the degrees
of freedom for s,% are 4+4=8.

From an F table (Table A.3), we look up the F values we would expect with a
specified probability if the null hypothesis is true and our sample means differ only
by chance. For degrees of freedom 1 (numerator) and 8 (denominator) we would
expect an F value of 4.29 or larger with a probability of about 7%. To put it
another way, if the true mean difference is zero (p, — ;= pz=0), the chance of
obtaining an estimate of pj=3 cwt per acre is about 7%. Usually, we are not
willing to gamble that this event (which has a 7% probability of occurrence) did
not occur; therefore it would be unwise to reject the null hypothesis and conclude
that the mean of variety 1 is really different from the mean of variety 2. On the
other hand, a mean variety difference of 3 cwt per acre, if real, represents a
considerable economic gain. Therefore, we might decide to evaluate the two
varieties in additional experiments.

A Cookbook Procedure

The following is a stepwise procedure for completing the ANOVA for the data of
Table 3.1 using a desk or pocket calculator.

1. Outline the ANOVA table (Table 3.2) by listing the sources of variation
and degrees of freedom. There are 10 experimental units in the experi-
ment and, therefore, 10—1 or 9 df in total. These total degrees of

TABLE 3.2.
ANOVA for the data of Table 3.1

Source Degrees of  Sum of Mean

of Freedom, Squares,  Square,  Observed Required F
Variation df SS MS F 10% 5%
Total 9 64.5
Varieties 1 22.5 22.5 4.29 346 532
Error 8 42.0 5.25
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freedom are then partitioned according to the experimental design. There
are two treatments; therefore, 2—1=1 df. Degrees of freedom for error
can always be obtained by subtraction, 9—1=8, but also, in this case, by
pooling degrees of freedom within each sample. There are 5 variates in
each sample, and therefore 5—1=4 df;4+4 =8 df for error.

2. Compute the sum of squares for varieties (SSV) and the mean square for

varieties (MSV).
Yt x2
SSV = 2% Y
r nr
_ 85°+100* _ 185°
5 2(5)
=3445.0-3422.5=22.5
Ssv _ 225
MSV= - =222 =995
(dpv 1

Note that we use totals, not means, in computing SSV. With a large computer
it is easy to use means in computing sums of squares, but with desk calculators it is
much easier and more accurate to use totals, since you avoid taking differences
and the rounding off of decimals in computing means. The following bit of algebra
illustrates why totals can be used in place of means to calculate sums of squares.

Based on the hypothesis that our two varieties are not different and both are
samples from the same population, we learned that a second estimate of o2 is
obtained by sb2=rs;2, where 5;2 is the variance of variety means and r is the
number of replications in each variety mean. The mean square for treatments
of Table 3.2 (varieties in this case) is ,°, that is MSV=rs;? Note that s;*=
2(Y; =Y )*/(n—1) and thus

MSV=r :
n—1

Since MSV=SSV/(n—1),SSV=r[2(Y, =Y ). In Chapter II we saw that
S(Y,—Y )*=2Y,2—(2Y,)*/n, so we can now write

(2) ]

SSV=r| > Y2~

n

Now we replace means with totals, noting that Y, =Y, /r and that 2Y, =Y /r and
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thus

L b

Y’ Y..g( 1 )]

Carrying out the indicated multiplication, r[ ], gives SSV=(2Y,*/r)—
(Y 2/m), which is the formula previously given. This formula involves some basic
rules you should learn in order to compute sums of square from totals.

(a) The first term, 2Y,?/r, tells you to sum the squares of the totals (variety
totals in this case) and divide by r, the number of variates making up
each total in the numerator. Students most often err in deciding on the
divisor and divide by the number of totals being squared rather than by
the number of variates in each total.

(b) The second term, Y ?/nr=(ZY,)*/nr, is known as the correction term or
correction factor. It is the square of the sum of all the variates in the
totals of the first term divided by the number of variates in the sum (Y )

being squared.

(¢) If all treatments do not have the same number of replications, each total
must be squared and divided by the number of variates it contains
before summing. Thus

LS s L% T
SST= ET‘ e ey g 5y v
; Er r T | i R 5 8

For example, if Y,5=18 of Table 3.1 is missing, the total for variety 2 is
100—18=82 and Y_is 85+82=167. Then

85° 822)_1672
SSV= (5 + 4 |~ 544 =3126-3099=27.

Now we continue with step 3 of the cookbook procedure.

3. Compute the total sum of squares (SS). This step is done just before
computing the sum of squares for error. With SS in the calculator, the
error sum of squares is then obtained by subtraction.

Y2
SS= EYZ——'~

185%

o 2 oY
(19°+ 142+ ... +18?) 20)

=3487.0—3422.5=64.5
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4. Compute the sum of squares and mean square for error (SSE and MSE).

SSE=58-SST=64.5—22.5=42.0
SSE _ 42.0

MSE = ﬁ = T =5.25
5. Calculate F ratio for varieties.
- MST _ 225 _
F=MsE = 525 =429

6. In Table A.3, look up the required F values for the levels of significance
you wish to compare. Degrees of freedom pertaining to the numerator of
the F ratios are read across the top of Table A.3 and degrees of freedom
for the denominator are read down the left side.

THE STANDARD DEVIATION KEY. Desk and pocket calculators that are
preprogrammed to compute a standard deviation or variance simplify computa-
tions in the ANOVA and eliminate the use of a correction term when treatment
replications are equal. First, be sure the calculator computes s or s* by dividing
the sum of squares by one less than the number of totals or means you enter,

that is s="/‘Y,—?)2/(r—l) . Use the following set of variates to check:

19, 14,15, 17,20. Enter each in turn with the appropriate key—often marked ZX.
After the last variate (20) is entered, depress the standard deviation key, usually
marked o. If the calculator divides by n— 1, the answer is 2.5495. If the divisor is
n, the answer is 2.2803.

Using a o key, MST and SST are computed as follows from the totals of Table
3.1:

Enter 85, enter 100,

Depress o(ans.=10.6066+), square o (ans.=112.5)

Divide by the number of variates in each total you entered, that is 5,
Answer=22.5=MST

Multiply MST by the degrees of freedom for treatment, that is 1. Answer=
22.5=S5ST.

The total SS is calculated by entering each variate (19,14,...,21,18), de-
pressing o (ans.=2.677 +), squaring o (ans.=7.166+), and multiplying by degrees
of freedom for total (9), answer =64.5.

With a little practice you can learn these simple rules and easily and quickly
do an ANOVA on a desk or pocket calculator. Remember, enter treatment or other
totals (or individual variates for calculating the total sum of squares), depress the
standard deviation key, square o to obtain o®, divide by the number of variates in
each total you entered (divide by 1 when calculating the total sum of
squares)—the answer is the mean square for the source of variation you are
computing.
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A POPULATION OF MEAN DIFFERENCES

In addition to an F test we can also use a t test to evaluate the odds that two
means are significantly different. First we need to see how a population of mean
differences is generated from a population of normally distributed variates; in
particular, we need to know how parameters of this new population are related to
parameters of the parent populations and to the populations of means also
generated in obtaining the population of mean differences.

If from two normally distributed populations, X, X,...,Xy and Y,,
Y,,...,Yy, we draw all possible samples of a given size and calculate their means,
we wﬂ] have two additional populations, X, X,,..., X, and Y,, YE, YM Now if
we take all possible pairs of means and subtract, thus, X ~Y. X —Yo. i X~
Yo Xo— Y00, Xo— Yoo, Xy — Yo We will have a fifth popu]atlon that of mean
differences (see Fig 3.1). The number of mean differences (Q) of this population
will be much larger than the populations of X, and Y,. If the number of means in
these two populations both equal M, then Q=M? The following relationships
among the means and standard deviations of these populations can be proven
mathematically but will merely be stated here. The mean of the mean differences
equals the difference between the means of the sample means from populations X
and Y, and this difference also equals the difference between the mean of
population X and population Y:

M = ™ = P = g RS =0

The variance of the population of mean differences is

> (d-na)
Q

and is equal to the sum of the variances of the respective means. Thus, 05*= 0.+
o— F You two samples, 03" is estimated by S3 from the variances of sample means:
sa =8 +s;%. Since s*=s2/r, a.ndsy =s2/r, s&=(s2/r)+ 2/r

The square root of the variance of mean dxfferences is gten called the
standard error of a difference. Often in statistical analyses, one variance is
estimated from another.

Important relationships among variances that you will use frequently are

o

2 2
_z___f 2 24 o2 2 5 o
S5 =7 53 =% t§; 53 T, + )

and when r,=r,=r and s,>=s >=s% then

y Y
_
3
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Five populations

Individual variates Sample means Mean differences
(1 (3) (4)

(5)

Spl. #1, r, variates X,

=
]
==l

" 8 8 & & & @ 0 8 @

_o"-loo..o--oa

=<
<

|
<l

!“\, variates

Means
(1 @ 3) 4 (5)
My |u'y i p’} (L]
By~ nu‘y = Uz — nu} = Ra
(if po=py #a=0)
Variances
- 2
2 .2 o= ol 2(d— 1)
a, Gy o3 05, 03-= —Q—
c? ol 2
o =0+07=—+ ri When 0,’=0,*=0® and r, =r, =1, then 05" = 2%
x y

Figure 3.1. The generation of populations of means and mean differences from
two populations of individual variates and relationships among para-
meters (see text).

t Tests for Significance
The formula for t as applied to a population of mean differences is t=(d — ) /s3.
For the experiment of Table 3.1 we want to know the probability that samples 1

and 2 could have come from populations having identical means ( ;= p,). This is
analogous to the discussion above where we referred to populations X and Y, only
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now we are calling them Y, and Y,. The mean difference of our sample means is
d=17-20=3(10% Ib/acre.
The standard error of the difference is

2 2
__zz_-\/isz_=@£=!l§=\/—_=
sd—\/ss, e 24 = 2.10 =1.449

Assuming the null hypothesis that p, = p,, (#3=0), t is calculated as

From Table A2 we can find the lowest value of t that has a 5% chance of
occurring. If we assume that o,>=a,? we look up t based on the pooled degrees of
freedom within the samples, in this case 4 +4=8. The expected t value for the 5%
level of probability is 2.306, and thus our treatment difference is again judged not
significant. Note that t*=F, that is, 2.072=4.285. Allowing for rounding errors this
equals our previously calculated F of 4.29.

A point to be emphasized is that the analysis of variance procedure and the
calculation of an F value leads to the same conclusions as the t test. Researchers
often express the idea that there is something unique and more powerful about the
t test compared to the F test of the analysis of variance. The tests are equivalent,
while the analysis of variance procedure is usually easier to carry out.

One additional point should be made with regard to the use of a t test: a t test
is appropriate when o, 0,. In this case the F test of the analysis of variance is not
valid. When 0,7 0, and r, =r,=r, the t value required for significance is for r—1
degrees of freedom. In our example r=>5 and the required t value at the 5% level
would be the tabular value for 4 df, or 2.776. When r,5r,, the required t value
must be calculated as it is somewhere between the tabular t for r, —1 and r,—1 df.
When o, 0, and r, #1, the required t is approximated by

tls;|2+tgs)_'52
t= 21—
% s,
where t; and t, are tabular t values for r, —1 and r, — 1 df, respectively.

CONFIDENCE LIMITS FOR A MEAN DIFFERENCE. For our example, we
have an estimate of the population mean difference, namely 3(100) 1b per acre,
and might wish to calculate a confidence interval within which the true population
mean difference will fall unless the samples we have drawn are very unusual. With
a confidence of 95%, we can say that pj lies within d *t i s, where t o is a tabular
value from Table A.2 for the degrees of freedom for error (Table 3.2). The 95%
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confidence limits are therefore
CLgs=3+2.306(1.449) =3+ 3.34 = —0.34 to 6.34(10%) Ib /acre

Note that this confidence interval includes zero, which is another way of showing
that the means of varieties 1 and 2 are not significantly different.

LEAST SIGNIFICANT DIFFERENCE. Least significant difference (LSD) is
discussed at greater length in Chapter 6, “Mean Separation,” but it is mentioned
here, since it is a form of the the t test we have been considering. The formula for
calculating the LSD between two means is: LSD=t sz, which is the second term
of the CL equation above. For experiments involving two treatments only, there is
no need to calculate LSD, as there is only one mean difference to consider and an
F or a t test tells whether the difference is significant.

A t TEST FOR PAIRED PLOTS. If we assume that the replicates of Table 3.1
are paired, we can determine the difference between each pair and analyze the
differences. Subtracting treatment 1 from treatment 2, we have the paired plot
differences 4, 5, 4, 4, —2. The mean of the differences is 3, that is, d=3; the
variance of the differences is

(43 +(5-3+--- +(—-2-3)°
51

S4o =

=32 _
" 8

The variance of the mean difference is estimated by sz*=s,*/r=8/5=1.6, and
the standard error of the mean difference is, s=1.265. The appropriate t test for
significance of the mean difference is

After you have completed Chapter V and understand the randomized complete
block design, assume that the replications of Table 3.1 are also blocks and do the
ANOVA and show that MST=22.5, MSE=4, F for varieties=5.62, and that the
standard error of a mean difference is

’ ’24
S3= # = —(5-—) =1.265 as above

Note that t*=F, that is, 2.37>=5.62. The point is that a t test for paired plots leads
to the identical statistical conclusion as the F test for the randomized complete
block design with two treatments. The latter is usually easier to compute.
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ROUNDING AND REPORTING NUMBERS

The terms precision and accuracy are often used synonymously, but in a statistical
sense, they have different meanings. Precision refers to the magnitude of the
difference between two treatments that an experiment is capable of detecting at a
given level of significance, while accuracy refers to the closeness with which a
particular measurement can be made. In a later chapter we will consider methods
for increasing the precision of an experiment, but here we will briefly discuss
accuracy in data collection and computations.

Whenever possible, original records should be collected in a manner to avoid
recopying. If electronic processing equipment is to be used, the collection of data
can be organized so that the original figures are used to punch data cards. This
prevents errors in recopying. If figures must be transferred, they should be
rechecked immediately.

At the time data are collected, they should be examined for out-of line
figures, and all such entries rechecked to prevent possible errors. There is enough
variation in biological data without allowing more to creep in through avoidable
mistakes.

In taking weights or other measurements on experimental units it is seldom
worthwhile to record figures to a number place less than one-fourth the standard
deviation per unit. If s is 6.96 Ib per experimental unit, 6.96/4=1.74. As the first
place is in the one’s position, data can be recorded to the closest pound. If s were
2.5 Ib/unit, 2.5/4=0.625, the first place is the tenth position, and data could be
recorded to the closest tenth of a pound.

The instrument used for weighing and measuring need be no more accurate
than required by the precision of the experiment. For example, if a series of
weighings are to be made and rounded off to the closest pound, the scale used can
be in whole pound units rather than divisions of a pound.

It is not incorrect to carry more digits than the variability of the data justify,
and with modern data-processing equipment this can be done easily, but in
reporting final results, superfluous digits should be dropped. Apply the above
rounding rule to treatment means and round them to the place indicated by taking
one-fourth of the standard error of a mean. If the standard deviation per
experimental unit is 6.96 1b and each treatment mean is based on five replications,
§=6.96/V5 =3.11 and 3.11/4=0.68, indicating that means should be rounded
off to one decimal place.

In doing an analysis of variance, it is best to carry the full number of figures
obtained from the uncorrected sum of squares; for example, if original data
contain one decimal, the sum of squares will contain two decimal places. Do not
round closer than this until reporting final results.

When rounding numbers the digit to be retained is rounded upward if the
digit to be dropped is greater than 5 or is 5 followed by a digit greater than zero.
If the amount following the 5 is zero, the digit to be rounded is rounded upward if
odd or left as is if it is even. For example, rounding 21.550 to the closest tenth
gives 21.6, but rounding 21.450 would give 21.4.
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FACTORIAL EXPERIMENTS

In a factorial experiment the effects of two or more factors are investigated
simultaneously. If the behavior of one factor is suspected of changing with changes
in another factor, this behavior can be tested by a factorial set of treatments laid
out in a suitable experimental design.

When two or more factors (each may be at two or more levels) are tested in
all possible combinations, the resulting treatments are said to be factorial. Dif-
ferential effects of one factor on another are called interactions. The discovery of
interactions broadens the conclusions of an experiment. The range of validity of
the experiment is increased—a desirable characteristic of a well-planned experi-
ment. Even if interactions do not occur in factorial experiments, the results are
more widely applicable because the main treatment effects have been shown to
hold over a wider range of conditions.

Examples of combinations of factors in an experiment are: testing varieties at
varying levels of soil fertility and evaluating the effect of a hormone on the gaining
ability of male versus female lambs.

A factorial set of treatments is illustrated in Table 3.3. The nine treatments
are all possible combinations of three dosage levels of an insecticide and three
dosage levels of a fungicide used as seed treatments for lima beans.

This set of treatments makes it possible to evaluate the relative contribution
of fungicide and insecticide to the emergence of lima bean seedlings. See Table 3.4
for treatment averages and Figure 3.2 for a graphic presentation of the results
illustrating the meaning of interaction.

In Figure 3.2, note the decrease in emergence with increased dose of
insecticide when the insecticide was used without the fungicide. That decrease did
not occur when a fungicide was added to the seed treatment. The differential
effect of insecticide, depending on whether or not a fungicide was used we call
interaction. If an interaction does not occur, the factorial arrangement multiplies

TABLE 3.3.
Lima bean seed treatments. A factorial combination of three dosage levels of a
fungicide with three dosage levels of an insecticide

Insecticide dose

Fungicide dose I, (none) I, 1
F) (none) Fol, Fol, Fol,
F, Fily Fil, Fil
F, Fyl, Fyl, F,L,
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Figure 3.2. Graphic presentation of averages of treatments in Table 3.4.

the number of replications for testing overall average effects of treatment compo-
nents. Note that there is no appreciable differential effect of insecticide on doses
F, and F, of the fungicide. In other words, there is no interaction of I XF with
respect to doses F, and F, of the fungicide. In this case, the best estimate of the
effect of fungicide doses F, and F, are the averages for these doses over all levels
of the insecticide. The resulting averages, F;, =92% and F,=91% (Table 3.4) are
based on 3 X the number of replications of an individual treatment. No superiority
of the higher dose of the fungicide is indicated.

Occasionally you may read about factorial designs. This terminology is not
strictly correct; it is the treatment combination that is factorial—not the design.

TABLE 3.4.
The effect of levels of fungicide and insecticide seed treatment on emergence of
lima bean seedlings ( values given are seedlings per 100 seeds).

Fungicide Insecticide (oz per 100 Ib seed) Average effect
(0z per 100 Ib seed) 0 (1,) (1) (1) of fungicide

]

Insecticide X Fungicide Means

0 (Fy) 68 58 48 59
13(F) 94 93 0 92
22(F,) 89 92 92 91
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THE ANALYSIS OF VARIANCE AND EXPERIMENTAL
DESIGN

The principal difference among experimental designs is the way in which experi-
mental units are grouped or classified. In all designs, experimental units are
classified by treatments, but in some they are further classified into blocks, rows,
main plots, and the like. The analysis of variance uses the means of these
groupings, called sources of variation, to estimate mean squares. A mean square
estimating the dispersion among plot measurements resulting from random causes
is also calculated—it is called experimental error. In the absence of real differences
resulting from means of treatments, blocks, or other sources of variation, these
mean squares will, on the average, be equal. Only rarely will one mean square
deviate greatly from another by chance alone. When an F test indicates that the
mean square from one of the sources of variation is significantly greater than the
mean square resulting from random effects, we say that there are real differences
among the means of that particular source of variation. But remember—there is
always a definite chance that we will be wrong in such a conclusion. It is up to the
experimenter to select the odds at which it is believed there are real effects.

It is customary to describe results that would be expected by chance 5% or
less as significant and those expected 1% or less as highly significant. When an
experimenter uses the phrase “the treatments are significantly different,” what is
really meant is that if the null hypothesis is true, the odds of obtaining such mean
treatment differences are only 5%. The experimenter is gambling that there was no
such chance occurrence in the experiment and that, therefore, the significant
result was due to a real treatment effect.

In the following chapters the principal features of each of the experimental
designs commonly used in field research are explained, an example is given for
each, and the procedure to follow in analyzing data is shown. The same set of data
is used for the first two designs, the completely randomized design and the
randomized complete block design. It illustrates the possible advantage of one
design over another, and it keeps the computations simple so that you can
concentrate on what is being done and why.

SUMMARY

The ANOVA in its simplest form of two treatments randomly assigned to an equal
number of experimental units involves the following procedure:

1. Calculating experimental error as the pooled variance of the two samples,
for example, MSE = (s,% +5,7) /2.

2. Computing a mean square for treatments (MST) based on the null
hypothesis that both sample means estimate a common population mean,
that is, MST=rs;” where r is the number of variates in each treatment
mean.
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3. Computing the F ratio: MST /MSE and comparing the calculated F value
to a tabular F value to indicate the probability of obtaining the calculated
F value by chance if the null hypothesis is true and both sample means

represent a common mean.

The statistical significance of a difference between two sample means can be
tested by the F ratio in an analysis of variance or by a t test. Both tests are
statistically equivalent, t*=F. The analysis of variance and the F test are usually
easier to compute.

The means of differences between all possible pairs of sample means from
two populations, X and Y, is symbolized by p; and is related to the means of
parent populations of means and individual variates as follows:

F'E=|“§".u§r=ﬂ-x'"l“'y

The variance of mean differences, o3® is estimated from two samples by s3”.

2 o2

i =5+ = rL + —— and when s2=s?=s’and r,;=r,=r,
= Ty

f=2

Avoid superfluous digits in reporting results. Round treatment means to the
number place indicated by one-fourth of the standard error of a mean.

A factorial experiment is one in which two or more factors, each at two or

more levels, are compared in all possible combinations.

Experimental designs arise from the way in which experimental units are
grouped or classified.
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4

THE
COMPLETELY
RANDOMIZED

DESIGN

This design, the simplest type possible, is set up by assigning treatments at random
to a previously determined set of experimental units. The design is the most
efficient in situations in which there is little variability among the units associated
with position in the experimental area, age, vigor, or other identifiable sources. It
is flexible with regard to the physical arrangement of the experimental units,
maximizes the degrees of freedom for estimating experimental error, and mini-
mizes the F value required for statistical significance. A disadvantage is that there
are often identifiable sources of variation among the experimental units, so that
other designs, when skillfully employed, usually are capable of reducing the
variability we call experimental error, which makes it possible to detect smaller,
significantly different treatment effects.

Any number of treatments may be tested in this design. It is desirable, but not
essential, to assign the same number of experimental units to each treatment. The
experiment of Table 3.1 is an example of this design with only two treatments.

RANDOMIZATION

A number can be arbitrarily assigned to each of the required number of field plots
or animals to be us2d in the experiment. The number of experimental units will be
the number of treatments X the number of replications. A table of random num-
bers is convenient to decide the experimental units to receive each treatment. If
each treatment is to be replicated four times, the first four random numbers
drawn will be assigned to treatment 1, the second four random numbers to
treatment 2, and so on. For example, suppose we wish to test three different
hormones, each at a single dose, to determine their effects on the weight-gaining
ability of lambs. Thus, including the control, we have four treatments. Assuming
the experimental unit to be a single lamb and that we will assign 4 lambs to each
treatment, we will use 16 lambs. The 16 lambs selected for the trial are each given
an ear tag with a number from 1 to 16. Using Table A.1, begin at a random two
digit point, for example, columns 5 and 6. Proceed down this column of two digit
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TABLE 4.1.

Weight gains of lambs grouped by treatment (pounds per animal per 100 days).
Numbers in parentheses are ear tag numbers of the 16 lambs assigned

to the trial and randomly selected to receive the indicated treatment

Treatment
Treatment Replications Total (Y,) Mean (Y,)
1(check) 47 (14) 52 (13) 62 (9) 51 (8 212 53
2 50 (12) 54 (11) 67 (6) 57 (5 298 57
3 57 (2) 53 (7) 69 (1) 57 (15 236 59
4 54 (3) 65 (4) 75 (10) 59 (16) 252 63
928=Y  58=Y

numbers, up columns 6 and 7 and down 7 and 8, assigning the first four numbers
(lambs) between 1 and 16 to treatment 1 (14, 13,9, 8), the second four to treatment
2 (12,11,6,5), the third four to treatment 3 (2,7;1,15). The remaining four lambs
(3,4,10,16) are assigned to treatment 4. After a feeding period, the weight gains of
the lambs are organized for analysis as in Table 4.1.

ANALYSIS OF VARIANCE

Sources of Variation and Degrees of Freedom

An analysis of variance table is started (Table 4.2), and the first two columns are
completed. There are only two sources of variation in the completely randomized
design; among experimental units within a treatment, which we call experimental
error, and that among treatment means.

Degrees of freedom are one less than the number of observations for each
source of variation: there are four treatments, therefore 3 df; there are four
experimental units per treatment, therefore, 3 df for each treatment X 4 treatments
gives 12 df for error. R/T means replications within treatments. The degrees of
freedom associated with the total variability in the experiment is one less than the
total number of experimental units: 16—1=15 df. Note that the degrees of
freedom associated with the sources of variation are additive. This makes it easy to
determine the degrees of freedom for error by subtraction from degrees of
freedom for total: 15—-3=12.
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To facilitate calculation of degrees of freedom and sum of squares for error,
we place total variation first in the analysis of variance table, but calculate its sum
of squares after the treatment sum of squares has been determined.

Correction Term (C)

Sums of Squares and Mean Squares

TREATMENT: SST AND MST. SST=(2Y,2/r)—C, where Y, =treatment totals
and r=number of replications in each treatment.

_ 212°4+228%+ ... +252°

SST n

—C=>54032—-53824=208

SST is entered in Table 4.2. Mean square for treatment (MST) is obtained by
dividing SST by df for treatment. MST=SST/df(T)=208/3=69.3, which is
entered in Table 4.2.

For calculators with standard deviation keys, MST =s.?/r, where s; is the
variance of a series of totals (in this case 212...252) and r is the number of variates
in each total. Then SST=df(MST). For this example, s;*=277.33, MST=
277.333/4=69.3 as before, and SST =3(69.3) =208 as before.

TABLE 4.2,
Analysis of variance
Degrees of Sumsof Mean .
freedom  squares squares Observed Bequired ¥
Source of variation (df) (ss) (ms) F % 1%

Total 15 854

Treatments 3 208 69.3 1.29 349 595

Error (R/T) 12 646 53.8
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TOTAL: SS. We do not need a MS for total as this contains variances for all the
sources of variation.

$8=2Y,*~C=47"+50"+ ... +59° — C=54678 — 53824 = 854.

ERROR. SSE=S§S—SST =854 —208 =646. MSE =SSE /df(E) =646 /12=53.8.

With a standard deviation key, SS= sijg(nr— 1) where sif is the variance of all
the variates in the experiment (47...59) and is 56.933; nr—1=4(4)—1=15, the
degrees of freedom for “total.” Thus, SS=56.933(15)=854 as before.

F Value

An F value for treatments is calculated by dividing MST by MSE: F=MST/MSE
=69.3/53.8=1.29. F values required for significance are found in Table A.3 for
degrees of freedom associated with MST across the top and MSE down the
left-hand side. Since the observed F value of 1.29 is considerably less than the
required F for the 5% level of significance, we would be wise to accept the null
hypothesis and conclude that there are no real differences among the treatments.
But remember, this does not prove that there are no differences among the
treatments. It may be that real treatment differences do exist but that the
experiment was not sensitive enough to detect them at the desired level of
probability.

THE WHAT AND WHY OF THE ANALYSIS

In testing the null hypothesis, we assume that there are no treatment effects, and
therefore the treatment means only vary as would be expected of samples drawn
from the same population. Thus the variance per experimental unit we call error
(0% can be estimated from the variability among the sample means using the
relationship s;*=s"/r and solving for s*, thus,

s=rs;=MST

The variance of means is

S(Y.-Y)  (53-587+...+(63—58)
2 _ - =17.33
n—1 4—-1

where n=number of treatment means. Then MST=rs;2=4(17.33)=69.3, an
estimate of the variability per experimental unit (0%) based on variability among
treatment means.
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The variance within each treatment gives an independent estimate of ¢ and
a weighted average of these variances is our best estimate based on the variability
within treatments. Thus,

(r—1)s,* + (1 — 1)gg* + (15— 1)s;®+ (r,—1)s,®

T =D 1)t

Note that each estimate of 6%(s,’, s,” etc.) is weighted by its degrees of freedom.
When all treatments have the same number of replications, that is, r;=r,=... =r,
=r, then

B .2+ 5,2+ 5.2 45,

n

52

where n is the number of treatments. In our experiment the variances within
treatments are:

— \2
3(Yy-Y.)  (47-53)%+...+(51—53)
g - —40.67
n—1 4-1

2 2
,  (50—57)*+...+(57-57)

2= =7 =52.67
2 _=a\
e (57—59)*+ ... +(57—59) 80
3 4—1
54—63)%+ ... + (59— 63)°
s42=( ) ( ) =74.0

4-1

The average of these variances gives the estimate of o* we call experimental error,

2 2 2 2
o PSP+ ST 406745267 +480+740 _ 21534 _
’ n 1 4 o

Now we have estimated the variance per experimental unit (%) in two ways: by
pooling variances within treatments (MSE) and by the variability among treatment
means, s)—,2, to obtain MST=rs)—,2. If the null hypothesis is true—that is, if all four
samples are random samples from the same population—we would expect MST to
be close to MSE and the ratio MST /MSE (the F value) to be close to 1 unless we
have drawn a very unusual set of samples. In this case, the ratio is 1.29, a value
that has a greater than 25% chance of occurring if there are no real treatment
differences. Thus, we choose not to reject the null hypothesis and conclude that
there are no significant differences. When we do find a significant difference
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among treatment means, the next step is to decide which means are different. This
is called mean separation. A discussion of this problem is given in Chapter 6.

SUMMARY

The completely randomized design is most useful where there are no identifiable
sources of variation among the experimental units other than treatment effects. It
is the most flexible with regard to the physical arrangement of experimental units.
It maximizes the degrees of freedom available for estimating the variance per
experimental unit (experimental error); and minimizes the F value required for
statistical significance.
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5

THE
RANDOMIZED
COMPLETE
BLOCK
DESIGN

In this design the treatments are assigned at random to a group of experimental
units called the block or replication. Block is the preferable term, as it avoids
confusion with replications of the completely randomized design. The object is to
keep the variability among experimental units within a block as small as possible
and to maximize differences among blocks. If there are no block differences, this
design will not contribute to precision in detecting treatment differences.

A block should consist of experimental units that are as uniform as possible.
To achieve uniformity, experimental units may be classified on the basis of age,
weight, general vigor, prior knowledge of gaining or yielding ability, or some other
characteristic that will provide uniformity within the classification. With crops,
adjacent field plots usually yield more alike than those separated by some distance.
Blocks can be kept compact by placing the plots, usually long and narrow in
shape, close together. The number of treatments should be as few as possible and
still meet the objectives of the experiment. As the block size increases, so does the
within-block variability. It is not necessary that each block be the same shape, but
in field experiments with crops, this is usually desirable, as differences in block
shapes usually increase within-block variability.

I Il I v
D A C C
A D D B
B C B D
C B A A
Low fertility High fertility

Figure 5.1. Four treatments replicated four times in a randomized complete block
design.
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When a productivity gradient is expected within the experimental area,
blocks should be laid across the gradient and plots within a block laid parallel to
the gradient as in Figure 5.1. Each treatment is assigned the same number of
times, usually once, to experimental units within a block, but all or certain
treatments can be replicated two or more times within a block. It is usually most
efficient to have a single replicate of each treatment per block. To minimize
experimental error, all precautions should be taken to treat the experimental units
within a block as uniformly as possible.

RANDOMIZATION

After experimental units have been grouped into the desired blocks, the treat-
ments are assigned at random to the units within each block, with a separate
randomization being made for each block. For example, the four treatments of
Figure 5.1 could be randomized in the following manner. Arbitrarily starting with
row 15 of Table A.1, we proceed across this row until we have selected the digits 1
through 4, representing treatments A through D: 4,1,2,3... is the order we will
assign the treatments in block I. Then continuing across row 15 and back (from
right to left) on row 16 we find 1,4,3,2 and assign the treatments in that order in
block II. Similarly, the randomization is completed for blocks III and IV.

ANALYSIS OF VARIANCE

The data we will analyze are the same we used in Chapter 4. The experiment was
to determine the effect of implanting a hormone, stilbestrol, on the weight-gaining
ability of male and female lambs. Thus the treatments were the factorial set of
Table 5.1, the two factors being sex and stilbestrol, each factor having two levels.
In this case, blocks were four different ranches. Thus the replications of Table 4.1
become blocks and the treatments become the factorial set of Table 5.1. The data
are reorganized in Table 5.2. The analysis of variance is given in Table 5.3.

TABLE 5.1.
Treatments to determine the effect of stilbestrol ear implants on the gaining ability
of wether and ewe lambs

Stilbestrol
Sex 0 3 mg/Animal
Female FS, FS,
Male MS, MS,
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TABLE 5.2.

Weight gains of lambs grouped by treatment and block (pounds per lamb per 100
days)

Block Treatment
Treatment I 11 111 IV total (Y;) mean (Yi‘)
A FS, 47 52 62 51 212 53
B MS, 50 54 67 57 298 57
C FS, 57 53 69 57 236 59
D MS, 4 65 74 59 252 63
Block total (Y,) 208 224 272 224 928=Y
Block mean (Y) 52 56 68 56 58=(Y)
TABLE 5.3.
Analysis of variance
Source of Required F
variation df SS MS Observed F 5% 1%
Total 15 854
Blocks 3 576 192.0 24.69 3.86 6.99
Treatments 3 208 69.3 8.91
Error (BT)* 9 70 7.78

“BT means the block by treatment interaction. It is the random failure of treatments to
show the same effect in all blocks and not a true interaction that would imply that
treatments respond differently in different blocks.

Sources of Variation and Degrees of Freedom

We now have an additional source of variation—that resulting from blocks. Since
each treatment occurs the same number of times in each block, differences among
blocks do not result from treatments but from other differences associated with
the blocks. This component of the total sum of squares can be removed and the
unaccounted error (experimental error) reduced accordingly.
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Degrees of freedom are one less than the number observations associated with
each source of variation. There are 16 experimental units (groups of lambs),
therefore 15 df. There are four blocks and four treatments and therefore 3 df for
each of these sources of variation. Error degrees of freedom can be found by
subtraction, 15—3—3=9 or by multiplying degrees of freedom for blocks by
degrees of freedom for treatments, 3 X3 =9, In this design, when each treatment is
replicated once in each block, degrees of freedom for error are always df
blocks X df treatments.

Correction Term
Y 2

m
where r is the number of replications and n is the number of treatments

928°
=225 _53804
C= ) =8

Sums of Squares and Mean Squares

2
J -0

BLOCKS. SSB=

2 2
=w—53824=54400—53824=576

Note that the divisor n, in the term EY_jz/ n is the number of variates making up
each total in the numerator; in this case the number of treatments.

SSB

SSB _ 576
B=—="-=192.0
MSB=3(B) ~ 3

Also, with a calculator programmed to compute a standard deviation: MSB=
sg~/n, where s, is the variance of the block totals, 208...224, and n is the number
of variates in each block total.

MsB=58-102 and  SSB=3(192)=576

uy,?
TREATMENTS. SST=———C

2 2
ssT= 2124 3% _ 53504 ~ 54052 - 53824=208

MST=-S~S'~T—=¥

af(T) =i
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Using a standard deviation key after entering treatment totals 212...252 gives
16.653 and MST = 16.653% /4=69.3.

TOTAL. $§=3Y,*—C

SS=4724522+ ... +59°—C=54678 — 53824 =854

With a standard deviation key, enter 47...59 to get s=7.545. S§=7.545%(15)=
854.

ERROR. SSE=SS—SST—SSB

SSE=854—208—576="T0

If the various sums of squares are calculated in the above order, SSE is readily
obtained by subtraction, as soon as the total sum of squares is calculated.

SSE _ 70
B )
MSE E "9 8

THE WHAT AND WHY OF THE ANALYSIS

Before continuing with other aspects of the analysis of variance it will be helpful
to look at what was done and why in calculating each mean square.

Mean Square for Blocks

Assuming a lack of real differences among the block means (the null hypothesis
again), an estimate of the variability per experimental unit is calculated from the
variance of block means. Thus 52=MSB=nsyb2, where n=number of treatments
and s;* is the variance of block means. Note that this uses the relationship of a
variance of means to the variance per experimental unit, 52=ns)—,2. Since s,-,f=2(Y i
—Y )?/(r—1), the formula for MSB becomes:

2(¥,-1)°

MSB=n| ——

where ?,]- represents each block mean, Y is the general mean, and r is the number
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of block means. Calculating MSB gives:

— 4[(52—58) +(56;5f)1 +... +(56—58)° _ 4(1344) 1020

Mean Square for Treatments

Using the null hypothesis again and assuming no real differences among the
treatment means, =MST=rs;lz, where r=number of replications and s;f is the
variance of treatment means. This is another estimate of the variance per experi-
mental unit based on the variability among treatment means.

Again, the relationship between an estimated variance of means (s;°) and the
estimated variance of the individual variates of the parent population (s?) is used.
Expanding the formula gives

=(Y,-Y)
MST= ———
n—1

where Y, = each of the treatment means, and n is the number of treatments. SST is
the numerator, the denominator is degrees of freedom for treatment. The calcula-
tion gives

4 (53—58)"+(57—58)"+... +(63—58)°]  4(s0)

-1 =—3 —93

MST =

Mean Square for Error

MSE represents the variability among the experimental units that remain after the
other sources of variation have been removed. It is informative to see what is
involved in removing block and treatment effects. _

The model for the randomized complete block design is Y; =Y +T,+B,+e;.
This says that any cell of a two-way table like Table 5.2 is made up of the mean of
all the variates, Y, a treatment effect, T, a block effect, B, and a residual
component, e;, which is the unaccounted variability we call experimental error.

Each treatment and each block has its own effect defined as the difference
between the treatment or block mean and the general mean. For example, the
effect of treatment FS, is the same for all replications of this treatment and is
53 —58= —5. Symbolically the T; for FS;=Y, —Y , and all the treatment effects
are collectively symbolized as Y, —Y , where Y, is any one of several treatment
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means. Similarly the block effects are defined as B;= ¥, j -Y.
_Replacing the T and B with their defined effects we have Y= Y +(Y,-Y)
(Y_ Y )+e, Now we can rewrite the model to specify the error term for any

cell of the two-way table as ;=Y -Y —(Y,-Y)—(Y, ;— Y ). To determine e, for
example,

=62—58+5—10
=-1

The definition of e; can be simplified further for this model by removing
parentheses and cancehng a +Y_with the —Y_ to give

=Y~ Y, —Y,+Y.

and for e;;=62—68—53+58= —1 as before. When this is done for all cells of
Table 5.2, we produce a table of error terms, Table 5.4.

The sum of squares of these error terms divided by the total degrees of
freedom minus the degrees of freedom for the other identifiable sources of
variation, blocks, and treatments is the MSE, which is s?, the unaccounted
variability per experimental unit; thus

TABLE 5.4.
A table of error terms. The variates of Table 5.2 with treatment and block effects
removed

Block
Treatment I 1I III 1A%
FS, 0 1 -1 0
MS, -1 -1 0 2
FS, 4 —4 0 0
MS, -3 4 1 -2
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F VALUES

F ratios are used to evaluate the probabilities of obtaining treatment and block
means that vary as much as those of our experiment if there are no real treatment
or block differences. We have estimated ¢, the population variance per experi-
mental unit in three ways: (1) based on variation among treatment means (MST);
(2) based on variation among block means (MSB); (3) based on variability among
the experimental units with block and treatment effects removed (MSE). If there
are no differences resulting from block and treatments, all three mean squares
should be about equal.

MSB _ 192.0

F (blOCkS) d m e W =24.69
= MST _ 693 _
F (treatments) = MSE ~ 778 8.91

The required F values for statistical significance for degrees of freedom 3 (numera-
tor) and 9 (denominator) are found in Table A.3 and recorded in the analysis of
variance table (Table 5.3). Since our observed F value for blocks as well as for
treatments exceed that required for significance at the 1% level, we can say that if
the null hypotheses are true, the chances are less than 1 in 100 that our particular
sample of blocks or treatments could have occurred by chance alone. We are
willing to gamble that these chances did not occur, reject the null hypotheses, and
conclude that there are real block and treatment differences. The next step is to
determine which of the treatments are significantly different. This discussion is the
subject of Chapter 6. Before leaving the randomized complete block design, we
should comment on the improvement in efficiency over the completely rando-
mized design. Because of the existence of sizable block differences and the
removal of these block effects, the precision of our experiment was increased
allowing us to detect treatment differences that could not be detected by the
completely randomized design.

SUMMARY

In the randomized complete block design: Blocks are sets of experimental units
that are arranged or selected prior to the allocation of treatments so that the
existing variability is minimized within blocks and maximized between blocks.
Treatments are randomly assigned the same number of times (usually once) to the
experimental units within a block. An independent randomization is carried out
for each block. Compared to the completely randomized design, the degrees of
freedom for experimental error are reduced by the number of degrees of freedom
for blocks. Block variability is removed from experimental error. Thus the greater
the variability among blocks, the more efficient the design becomes in its ability to
detect possible treatment differences.

Summary 60



6

MEAN
SEPARATION

As we have seen, an experiment is conducted to answer certain questions the
investigator poses in advance. These questions are important in determining the
treatments to be included, the design of the experiment, and the appropriate
method for comparison of treatment means.

Usually, treatments can be selected that make it possible to carry out planned
F tests to answer important questions. For example, when two or more factors are
to be studied, a factorial set of treatments makes it possible to answer questions as
to how the factors may interact. And even if interactions are not present,
inferences concerning the average effects of the factors are more widely applicable
because each factor has been examined over a range of conditions. Levels of a
treatment can be planned to determine not only whether there is a response to the
treatment but also how best to characterize the response and to quantify the
dose-response relationship. Treatments may be classified into groups with common
characteristics and thus provide for meaningful F tests among the groups. Such
planned F tests allow more precise mean separation than do multiple comparison
tests. The latter should only be used where there are no logical relationships
among the treatments.

A significant F value immediately raises the question: Which of the mean
values are significantly different? Three widely used methods for mean separation
are briefly described below.

LEAST SIGNIFICANT DIFFERENCE

This test should not be used unless the F test is significant. Strictly speaking, LSD
should be used only to compare adjacent means in an array (means arranged in
order of magnitude). When it is used indiscriminately to test all possible dif-
ferences among several means, certain differences will be significant but not at the
level of significance chosen. Instead of making comparisons at the 5% level,
comparisons between means farther apart than two in an array will be made at
lower levels of significance. LSD can be used for comparing adjacent means, and
when it is used to make meaningful comparisons that are planned before the data
are examined, it should not lead to many errors. The great advantage of LSD is
that it is easy to calculate and provides a single figure for making comparisons.
As pointed out before, LSD is a form of the t test. Its formula is derived from
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the formula for the t test to test the statistical significance of the difference
between two means: t=(d—pg)/s; Let the difference between two means
(Y, —Yy=d) be the lower limit of the values we would expect 5% or more of the
time by chance alone in drawing samples of mean differences from a population of
mean differences where the mean is zero ( u3=0). We replace d with LSD and p3
with zero, and the formula becomes t=LSD/s;. Solving for LSD gives LSD=ts,
where s3=(s,%/r))+(s,>/15), 5,> and s,? are the estimated variances of plots
receiving treatments 1 and 2, respectively, and r, and r, are the number of
experimental units receiving treatments 1 and 2, respectively. In an analysis of
variance s, is assumed to estimate the same variance as s,> and r, is usually equal

to ry, therefore 18D=t\}552/ r , where s? is the mean square for error, r is the

number of replications, and t is the tabular t value for degrees of freedom for
error.

When comparing two treatments that are replicated a different number of
times: LSD-—-q/](sz/ r,)+(s?/rs) , where r, and r, are the number of replications
for each treatment.

To illustrate the use of LSD, we will use it to separate the means of our

lamb-stilbestrol experiment, Table 5.2 (Chapter 5). The mean effects are: FS,=
53; MS,=57; FS;="59; MS; =63 Ib gain per lamb per 100 days.

LSD g =t \/252 2262'\/

=2.262(1.972) =4.46 Ib per animal per 100 days

If we use LSD only to compare adjacent means, we conclude that there are no
differences; but the F value tells us that there are differences. Using it to compare
all means, we conclude that stilbestrol improved gaining ability in both female
(59—53=6) and male (63 —57=6) lambs. Differences in gaining ability associated
with sex are not significant.

Testing differences by LSD is, in effect, making a t test for each difference
and leads to the same statistical inference as F tests of the same differences.
Researchers are often confused on this point and try all three tests to show a
difference to be significant. Do not- do it! They all give the same result. To
iHustrate, take the difference FS,—MS;=53—57=—

(1) LSD=4.5. Therefore the difference is not significant.

2) t=(d—pg)/s;=4/1.972=2.028. The tabular t for the 5% level and 9 df=
2.262. Therefore, again, the difference is not significant.

(3) F=MS(FS,—MS,)/MSE. Since MS(FS,—MS,) is based on 1 df, it is also the
SS(MS, —FS,) and SS(MS, — FS,) = (228 + 212%) /4 — (228 + 212)* /8 = 24232 —
24200=32. F=232/7.78=4.11. The tabular F for the 5% level and 1 and 9 df is
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5.32. Therefore, once again, the difference is not significant. Note that t*=F=
2.0282=4.11. There is always this relation between the two tests and they both
lead to the same statistical conclusion.

LSD is a fixed-range test, since it provides one range for testing all differences.
Other, more conservative fixed-range tests, are Tukey’s and Scheffe’s (see Bancroft
reference at end of book).

MULTIPLE-RANGE TESTS

These tests are so named because they provide multiple ranges to make pairwise
comparisons among several means. With means arrayed from the lowest to the
highest, a multiple-range test gives significant ranges that become larger as the
means to be compared are further apart in the array. A conservative multiple-
range test that is considered to keep all mean separations at the level of
significance specified is the Student-Newman-Keuls procedure (see Bancroft refer-
ence). In this book, only Duncan’s multiple-range test is discussed, since it and /or
the intelligent use of LSD following a significant F for treatments are adequate
procedures for making logical pairwise comparisons.'

Duncan’s Multiple-Range Test

This test is the most widely used of several multiple-range tests available. It
provides protection against making mistakes inherent in the indiscriminate use of
the LSD test. The test is identical to LSD for adjacent means in an array but
requires progressively larger values for significance between means as they are
more widely separated in the array. This test is used most appropriately when
several unrelated treatments are included in an experiment, for example, for
making all possible comparisons among the yielding abilities of several varieties.
To illustrate the procedure, we will use the lamb implant experiment.

The test involves the calculation of shortest significant differences (D) for all
possible relative positions between the treatment means when they are arrayed in
order of magnitude. The D’s are then used in an orderly procedure to determine
statistical differences among the means. In most books the formula for D is given
as D=Qs;, where Q is a tabularized value (Table A.7 of Steel and Torrie, 1960)
depending upon the chosen level of significance, the degrees of freedom for error,
and the relative separation of means in the array, and s; is the standard error of a
mean and is VMSE /r =1/s®/r . In this book D= R(LSD), where R is a tabular
value from Tables A.4 and A.5, chosen for the level of significance, degrees of

'For a discussion of various tests for random pairwise comparisons see S. G. Carmer, and

M. R. Swanson, “An Evaluation of ten Pairwise Multiple Comparison Procedures by Monte
Carlo Methods,” Journal of the American Statistical Association, 68:66-74, 1973,
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freedom for error, and the position of means in the array; and LSD=t’\/‘Zs2_/r .In
Tables A.4 and A.5, the R values are computed from Q values to facilitate the
calculation of D from LSD.

Using our lamb experiment as an example, the procedure is as follows:
(1) Calculate the least significant difference.

[2(7.78
LSD‘05=t'V$ =2.262 (4 ) 446

(2) Calculate D for relative position in the array of means. Since there are four
means they can be 2, 3 or 4 apart. (Note: adjacent means are called 2 apart.)

Relative position in array (p of Table A.4) 2 3 4
Values of R, 5% level, Table A .4. 1.00 1.04 1.07
D=R(LSD) 45 46 48

(3) Arrange the means in order of magnitude and test for significant differences.

Treatment FS, MS, FS, MS,
Mean 53 57 59 63

Start by comparing the largest mean with the smallest, using the D for their
positions relative to each other in the array (in this case p=4, therefore D=4.8). If
the difference between these means equals or is larger than the D, the means are
significantly different. (63—53=10,D=4.8, therefore 63 is significantly larger
than 53). Next compare the largest mean with the next smallest (63—57=6,D=
4.6; 63 is significantly larger than 57). Then the largest with the next smallest
(63—59=4,D=4.5; 63 is not significantly different from 59). When a nonsignifi-
cant difference is found, a line can be drawn connecting these (and intervening)
means. Then repeat the process; start by comparing the second largest with the
smallest, and so forth.

There is an exception rule used with Duncan’s multiple-range test. It states
that a difference between two means cannot be declared significant if the two
means concerned are contained in a subset of means with a nonsignificant range.
Thus, if among five means in an array, A has been found not significantly different
from D, that is, ABCD E, and B is significantly different from E, it is not
necessary to test B against D and C as they are in a subset with a nonsignificant
range. The next step would be to test C against E, if this difference is not
significant, C and E are connected, A B C D E, and further testing is unnecessary.
This procedure avoids making tests between means that are already connected by
a line.
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(4) Indicate statistical significance by lines or letters.

MS, FS, MS, FS, MS, FS, MS, FS,
OR
63 59 57 53 63a  5%b 57bc 53¢

Means connected by the same line or followed by a common letter are not
significantly different at the 5% level. If letters are used, significant differences can
be shown even if the means are not arrayed.

In our example, note that mean comparisons by Duncan’s multiple-range test
or LSD lead to the same conclusions (MS,>MS, and FS;>FS;), but both tests
lead us to conclude that there is no significant difference in gains between males
and females (MS; # FS; and MS, # FS,).

PLANNED F TESTS

In planning an experiment, we can often provide for F tests to answer pertinent
questions. This involves partitioning the degrees of freedom and sum of squares for
treatments into component comparisons. The components may be class compari-
sons or response trends. They can be tested by partitioning the degrees of freedom
and sum of squares for treatment effects into meaningful single degrees of freedom
and associated sums of squares. Skillfully selected treatments can answer as many
independent questions as there are degrees of freedom. When the comparisons are
independent, they are said to be orthogonal—a desirable characteristic, as the
comparisons lead to clear-cut probability statements.

The power and simplicity of this method of mean separation is not appre-
ciated among research workers as fully as it should be. The method involves the
selection of orthogonal coefficients, and perhaps this term creates the impression
that it is complicated and difficult. This is far from true. Actually, the method has
three important advantages: (1) it enables one to answer specific, important
questions about treatment effects; (2) the computations are simple; and (3) it
provides a useful check on the treatment sum of squares.

Orthogonal Coefficients

The construction of a table of comparison coefficients is useful in checking for
orthogonality and in the calculation of component sums of squares. Coefficients
for trend comparisons come from tables of orthogonal polynomials such as Table
A.11. Coefficients for class comparisons are constructed using the following simple
rules.
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1. If two groups of equal size-are to be compared, simply assign coefficients
of +1 to the members of one group and —1 to those of the other group.
It is immaterial which group is assigned the positive coefficients.

2. In comparing groups containing different numbers of treatments, assign to
the first group, coefficients equal to the number of treatments in the
second group, and to the second group, coefficients of the opposite sign
equal to the number of treatments in the first group. Thus, if among five
treatments, the first two are to be compared to the last three, the
coefficients would be +3, +3, -2, —2, —2.

3. Reduce coefficients to the smallest possible integers. For example, in
comparing a group of two treatments with a group of four, by rule 2, we
have coefficients +4, +4, —2, —2, —2, —2, but these can be reduced
to +2, +2, —1, =1, —1, —L

4. Interaction coefficients can aiways be found by multiplying the corre-
sponding coefficients of the main effects.

Two rules are used to test independence of comparisons. Comparisons are
independent and therefore orthogonal when (1) the sum of the coefficients for
each comparison is zero and (2) the sum of the products of the corresponding
coefficients of any two comparisons is zero.

An example of the construction of a table of orthogonal coefficients may be
helpful. Suppose we are planning an experiment with a crop to test the efficiency
of phosphorus fertilization by three methods: broadcast (B), shallow band place-
ment (S), and deep band placement (D). For each one of these methods of
placement, we will apply phosphorus at two rates (P, and P;). A nonfertilized
treatment (NT) is included also to establish a response to the phosphorus fertilizer.
Across the top of the table (Table 6.1), we list the treatments. The comparison
coefficients are written in as we list the comparisons we will make.

1. Is there a response to P? This.can be decided by comparing NT with all
the treatments receiving P. Since there are six of these, NT gets a
coefficient of 6 and the others get —1, as they are being compared to a
single group. Having made a comparison involving a single treatment with
all the rest, we cannot use NT again if we want the comparisons to be
orthogonal, and therefore NT gets a coefficient of 0 in the comparisons
that follow.

2. Is the average response to P, greater than that to P,? This means

comparing P\B+P,S+P,D with P;B+P,S+P,D. Since there are two
groups, each of equal size, we assign +1 to one and —1 to the other.



. Over both levels of P, is band placement superior to broadcast that is,

P,S+P,D+P,S+P,D versus P,B+P,B. Now we are comparing a group
with four treatments with a group having two treatments and thus assign
coefficients of 4 to the treatments in the group of two and —2 to the
treatments in the group of four. Reducing these to the smallest possible
integer gives coefficients of 2 and — 1, respectively.

. Considering band placement only, is there a difference between shallow

and deep? That is, P,S+P,S versus P,D+P,D. The coefficients are 2 and
—2 and reduce to 1 and —1.

. Is the change in yield from P, to P, different for broadcast compared to

band placement? This is the interaction of comparisons 2 and 3, and
coefficients are found by multiplying the coefficients for these two
comparisons for each treatment, that is, 0(0)=0,1(2)=2,1(—1)=—
1,1(-1)=—1,-1@)=-2, —1(-=1)=1, —1(-1)=1.

. And finally, is there a change in yield from P, to P, that is different for

shallow compared to deep band placement? This is the interaction of
comparisons 2 and 4, and coefficients are determined by multiplication of
the coefficients for comparisons 2 and 4.

TABLE 6.1.
Coefficients for the partitioning of the sum of squares among six treatments into
six independent (orthogonal) comparisons.

Treatments

Comparison NT PB PS PD PB PS P,D
1. Response to P 6 =1 =1 | =1 = =] =1
2. Pvs. P, 0 1 1 1 -1 =1 -1
3. Bvs. S+D 0 2 -1 -1 2 -1 -1
4. Svs. D 0 0 1 -1 0 1 -1
5. (P,vs.Py)(Bvs.S+D) 0 2 -1 -1 -2 1 1
6. (P, vs. Py)(S vs. D) 0 0 1 -1 0 -1 1

NT =no treatment; P, and P, = phosphorus fertilizer at rates 1 and 2, respectively; B, S, and

D=broadcast, shallow band placement, and deep band placement, respectively.
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In Table 6.1, note that coefficients of all rows sum to zero and that the sum of the
products of the coefficients for the same treatments for any two comparisons sum
to zero. For example comparisons 1 and 5: 6(0)+(—1)2+(—=1)(—=1)+(—-1)(—1)+
(=1)(—=2)+(—11+(—1)1=0. Thus we can be sure that the comparisons are
orthogonal and that the sums of squares of the comparisons will add to the sums of
squares for the six treatments.

For a simple example in the use of class comparison coefficients we will again
use the lamb implant experiment.

Class Comparisons

In the selection of the treatments for this experiment, note that three specific
questions were asked: (1) Considering all lambs, does implanting affect gaining
ability? (2) Are there differences in gaining ability between male and female
lambs? (3) Is the effect of implanting the same for both sexes? The answer to each
of these questions involves a single degree of freedom. The coefficients for the
three comparisons are given in Table 6.2.

In the implant comparison we are comparing lambs of both sexes implanted
with stilbestrol with lambs of both sexes not implanted. This is a valid comparison,
as equal groups of male and female lambs received each level of stilbestrol.

In comparing gains for each sex we are comparing the average rate of gain of
all female lambs with that of all male lambs for both levels of stilbestrol. This also
is a valid comparison, since equal groups of lamb of each sex were implanted.

If implanting caused a significantly greater rate of gain in one sex than in the
other, we would say that there is a significant interaction between sex of lambs
and implant. Coefficients for this comparison (I X S) are determined by multiplying
the coefficients for each treatment of the first two lines of Table 6.2.

TABLE 6.2.

Comparisons, treatments, treatment totals, and coefficients for partitioning for
treatment sum of squares

Treatments and Treatment Totals

Comparison FS, FS, MS, MS,
212 236 228 252

Implant +1 -1 +1 -1
Sex +1 +1 —] —1
IXS +1 ~% =3 +1




To compute sums of squares, mean squares, and to make F tests, we proceed
as shown below and organize the results in Table 6.3.

In calculating the sums of squares for treatment components we will first use
the correction term procedure and then illustrate the use of the comparison
coefficients we constructed in Table 6.2. The latter procedure for calculating a
sum of squares only works when the sum of squares involves a single degree of
freedom.

SUM OF SQUARES FOR IMPLANT.
(212+228)* + (236 +252)°  (928)*

- 8 6
In using comparison coefficients, we use the following rule to calculate a sum of
squares: ,
( 2> CiYL)
§§= —vu—
r2e

where ¢, =comparison coefficients from Table 6.2, Y, =treatment totals, and
r=number of replicates.

_ [1(212)-1(236) +1(228) -1(252)]° (- 48)?

A[(PH (-1 (+ 1P+ (-1F] 4@ -y

SUM OF SQUARES FOR SEX.

(212+236)° + (228 +252)°  (928)°
SSS = 5 TR

TABLE 6.3.
Orthogonal partitioning of treatments of the lamb-implant experiment

Source of Observed Rogpired
Variation df SS MS F 5% 1%
Treatments 3 208 69.33 8.91 3.86 6.99
Implants 1 144 144 18.51 5.12 10.56
Sex 1 64 64 8.23
IXS 1 0 0 0
Error 9 70 7.78
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or by the coefficient method,

[1(212) +1(236) — 1(228) - 1(252) |*  (-32)*

SSS= =
> 4(4) 6 o4
SUM OF SQUARES FOR IXS.
SS(IXS)=SST—SSI—SSS=208—144—64=0
or with coefficients,
1(212) — 1(236) — 1(228) + 1(252) |*
ss(1><s)=[( ) —1(236) — 1(228) +1(252) | S
4(4) 16

Notice how much simpler the computations for the coefficient method are
than for the correction term procedure. In each case, only one number needs to be
squared instead of adding the squares of two large numbers, and a correction term
is not needed. Note also that the sum of the three component sums of squares is
exactly equal to the treatment sum of squares calculated in the usual manner,
furnishing a check on the calculations.

Since each sum of squares has only a single degree of freedom, the mean
square in each case is the same as the sum of squares.

F tests are made by dividing each mean square by MSE. Note that by using
these more sensitive F tests we have leamed something that neither the LSD nor
Duncan’s multiple-range tests told us. We now have good evidence that male
lambs gain faster than female lambs.

For another example of partitioning a treatment sum of squares into subcom-
ponents for planned F tests, see the section on Mean Separation in Chapter 7.

Trend Comparisons

It is often desirable to study a variable at several levels, for example, increments of
a fertilizer, dates of harvest, or doses of pesticide or herbicide. In these cases, the
experimenter is interested in the nature of the response of the experimental units
to the varying levels of a treatment. The statistical analysis should be designed to
evaluate the trend of the response.

Wherever possible, it is desirable to use an arithmetic series for levels of a
factor. Equally spaced intervals for a treatment dose or for a time series estimate
responses evenly throughout the range of the levels you choose and provide a
better base for curve fitting than do series where the intervals between successive
treatment levels are unequal. In addition, as you will see, there are great
advantages in computing sums of squares and in fitting regression equations.
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For a simple example we have chosen the lima bean seed treatment experi-
ment illustrated in Figure 3.2. Note that the doses of insecticide are equally
spaced: 0, 1/6, 1/3 oz of insecticide /100 Ib seed. One objective was to determine
the nature of the response to doses of insecticide with and without a fungicide
treatment. A portion of the data from this experiment is given in Table 6.4, and
the analysis of variance is in Table 6.5. Before proceeding with the trend
comparisons, note how the factorial treatments have been partitioned in Table 6.5
into main effects and interaction. The computations for the sum of squares for
treatments and the partitions follow.

3412 +290% + ... +460°
5

2240°
6(5)

SST= —-C, where C=

=176222.8 — 167253.33 = 8969.47

(314 +290 +244)% + (446 + 459 + 460)*
SSF= 5 — C=8003.33

(341 +446)° + (290 + 459)° + (244 +460)°
SSI= = —C=345.27

SS(F XT)=SST— SSF —SSI

=8969.47 — 8003.33 — 345.27 =620.87

TABLE 6.4.

Lima bean seedlings emerged from 100 seeds planted per plot. F, and F, are 0 and
2 2/3 oz fungicide /100 Ib seed respectively. 1, I;, and I, are 0, 1/6, and 1/3 oz
insecticide /100 Ib seed, respectively

Blocks
Treatment 1 I III v AY Y, %
F, I 55 69 71 78 68 341 68.2
F, 65 47 55 64 59 290 58.0
Fpb L 47 37 58 48 54 244 48.8
F, I, 91 76 92 92 95 446 89.2
F, 85 93 97 88 96 459 91.8
F, I 84 94 94 96 92 460 92.0
Y, 427 416 467 466 464  2240=Y_ 74.7=Y_
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TABLE 6.5.
Analysis of variance of lima bean seedling emergence

Source of Observed Required F
Variation df SS MS F 5% 1%
Total 29 10140.67

Blocks 4 401.00 100.25

Treatment 5 8969.47 1793.89
Fungicide 1 8003.33 8003.33 207.82 4.35 8.10
Insecticide 2 345.27 172.64 4.48 3.49 5.85
Fx1 2 620.87 310.44 8.05

Error 20 770.20 38.51

The significant interaction (FXI) indicates that the response to insecticide
depends on whether or not seeds were also treated with the fungicide. The
treatment means can be examined statistically for a significantly different linear
trend in emergence as insecticide dose increases for the two fungicide treatments.
Since there are two degrees of freedom for FXI, we can ask two independent
questions. Two appropriate questions are: Is there a significant difference in linear
response to insecticide for F, versus F,, and is there a significant difference in
some nonlinear response? To simplify the calculation of sums of squares, the first
step is to set up a table of comparison coefficients (Table 6.6).

TABLE 6.6
Comparison coefficients for determining response functions of lima bean seedling
emergence to dosage levels of insecticide.

Treatments and Treatment Totals

Flo Fl, Fl Fl Fl FlL

Comparison 341 290 244 446 459 460
Fungicide -1 -1 -1 1 1 1
Insecticide linear 1 0 -1 1 0 -
Insecticide nonlinear 1 -2 1 1 -2
FXxIL -1 0 1 1 0 =
FxINL o | 2 -1 1 -2 1
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The comparison “fungicide” is the same as in Table 6.5 and compares the
mean of all plots of F, with the mean of all plots of F,. It is a simple class
comparison, and since both groups to be compared are of equal size, a —1 is
assigned to the components of one group and a +1 to the components of the
other. The coefficients for “insecticide linear” and “insecticide nonlinear” are
taken from Table A.11 under n=3 for the three dosage levels of insecticide. We
can use the coefficients of Table A.11 whenever treatment levels are equally
spaced. Coefficients for FXIL and FXINL are obtained by multiplying the
coefficients for fungicide with those for insecticide linear or insecticide nonlinear.

Each comparison of Table 6.6 involves a single degree of freedom, and so we
can compute sums of squares from: SS=(Z¢,Y;)*/(r=c;*); thus,

i (—341 — 290 — 244 + 446 + 459 + 460)°

5(6)
=8003.33
SS(IL) =
5(4)
=344.45
[341 —2(290) +244 + 446 — 2(459) + 460 ]
SS(INL) =
5(12)
=0.82
(—341 + 244 + 446 — 460)°
SS(FXIL)=
5(4)
=616.05
I e b i i)

5(12)
=4.82

Mean squares equal sums of squares, as each is based on a single degree of
freedom, and F values are calculated by dividing each by MSE as in Table 6.7.

Note that the sums of squares for the five treatment components of Table 6.7
add to the sum of squares for treatments of Table 6.5. This is a check on our
arithmetic; since the components are an orthogonal set, they must equal the sum
of squares partitioned.
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TABLE 6.7.

Mean squares and F values for testing the significance of responses to dosage levels
of insecticide

Observed Required F

Source of Variation df MS F 5% 1%
Fungicide 1 8003.33 207.8 4.35 8.10
Insecticide linear 1 344.45 8.9
Insecticide nonlinear 1 0.82 0.02
FxIL 1 616.05 16.0
FxINL 1 4.82 0.1
Error 20 38.51

The F values for F XIL and F XINL show a highly significant interaction for
the linear emergence of seedlings and no interaction to a response that differs from
linear. Thus the experiment can be neatly and appropriately summarized, as in
Figure 6.1, by linear regression lines that estimate the effect of increasing the dose
of insecticide when seeds are or are not also treated with a fungicide. The
calculation of the regression lines is left as practice after you learn regression in
Chapters 13 and 14.

100 |—
Seeds treated with fungicide
— %
y=896+84x

BO —
e
8 -
i Seeds not treated with fungicide
() |—
£ 60
w
*® =

40 —

5 1 |

0 1/6 1/3
Ounces of insecticide /100 Ib seed (x)

Figure 6.1. The effect of insecticide seed treatment, with and without a fungicide
treatment, on the emergence of lima bean seedlings.
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SUMMARY

The problem of deciding which treatment means are significantly different is
called mean separation. There are three general approaches to mean separation:
the use of least significant differences; the use of multiple-range tests; and through
planned F tests.

Least significant difference is calculated as follows:

B(MSE)
LSD=t

where t is a tabulated value chosen for the degrees of freedom for error and the
level of significance desired, MSE is the mean square for error, and r is the
number of variates on which the means to be separated are based. To separate two
means based on unequal numbers of variates,

LSD =t /MSE + MSE
n Ty

Duncan’s multiple-range test is the most popular of a number of range tests
available; it is calculated as D=R(LSD) where R is a tabular value for degrees of
freedom for error, level of significance, and distance apart of two means in an
array of treatment means. LSD is the least significant difference.

Planned F tests usually offer the most precise procedure for mean separation.
As many independent questions can be asked and answered by F tests as there are
degrees of freedom for treatments. The questions should be planned before the
experiment is conducted.

The sum of squares for a single degree of freedom can be calculated from a
set of coefficients whose sum is zero by the equation:

- ( > ciYi.)

ryef

where ¢, is the set of coefficients, Y, is a set of treatment totals, and r is the
number of variates making up each total. Two comparisons are orthogonal
(independent) if their coefficients and the products of corresponding coefficients
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add to zero. If as many orthogonal comparisons are made as there are degrees of

freedom for treatments, their sums of squares will add to the sum of squares for
treatments.

Coefficients for measuring trends can be obtained from Table A.11 if treat-

ment levels are equally spaced and from Table A.1la for some sets of unequally
spaced treatments.
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7

THE
LATIN
SQUARE

DESIGN

In this design the randomization of treatments is restricted further by grouping
them into columns as well as rows. Thus it is possible to remove variability from
experimental error associated with both these effects. Each treatment occurs the
same number of times (usually once) in each row and column. The design will
afford a more precise comparison of treatment effects than the randomized block
design only if there is appreciable variation associated with the columns.

Rows and columns may refer to the spacial distribution of experimental units
or to the order in which treatments are performed. In Figure 7.1, the treatments, _
A, B, and C, are three different makes of desk calculators to be tested; columns
are three different operators and rows are the six different times the three
operators test the machine. Each operator tests each machine two times and all
three machines are tested in each time period. Thus the effects of time period and
operators are measurable sources of variation that are independent of the
machines and can be removed from the total variability of the experiment,
reducing experimental error. This is an example of a double latin square. When

Column (operators)

Row I I III

(time periods) I B A C
II C B A

111 A C B

v B C A

A C A B

VI A B C

'
Figure 7.1. Three treatments in a double latin square. Sources of variation and
degrees of freedom are: rows=>5; columns=2; treatments =2; error=
8. Treatments (A, B, C), are three different desk calculators.
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Figure 7.2. A latin square with four seed treatments (A, B, C and D) assigned to
seeder units 1, 2, 3, and 4. The arrows indicate direction of planter
travel. Sources of variation and degrees of freedom are: blocks=3;
planter units=3; seed treatment=3; error=6.

the number of treatments is small and there is good reason to believe that there
will be appreciable effects of columns and rows, variation can be removed in two
directions by using two latin squares (each independently randomized).

There are times when a latin square may be advantageous when plots form a
continuous line. Consider, for example, an experiment designed to test four seed
treatments where individual plots are to be single rows throughout the experimen-
tal area. A seeder with four planter units is to be used. Planter units may differ in
seeding rate. To remove the planter effect, each seed treatment can be assigned to
a different seeder unit in each of four blocks so that each treatment is seeded the
same number of times by each seeding unit as in Figure 7.2.

A latin square requires at least as many replications as there are treatments
and therefore is not practical for experiments with a large number of treat-
ments. Most commonly used latin squares are those having from four to eight
treatments, with a single experimental unit per treatment in each column and row.

RANDOMIZATION

Start with any latin square (systematic or randomized) with the number of

treatments required for your experiment. For example, suppose we wish to

randomize six treatments, A, B, C, D, E, and F. We start with latin square below

(Fig. 7.3); go to a table of random numbers (Table A.1); pick an arbitrary starting
place, for example, row 5; and proceed across and back on row 6 assigning the -
numbers 1, 3, 5, 4, 2, 6 to rows 1 through 6. Continuing along row 6 of the table of
random numbers and back (right to left) on row 7, assign the numbers 4, 2, 5, 1, 3,

6 to the columns. The new latin square is now completed as in Figure 7.4 by

rearranging the rows and columns of the old square as indicated by the random

numbers.
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Columns
Rows 4 2 5 1 3 6
1 B D E F A C
3 C E A D F B
5 A F C B E D
4 D A F C B E
2 F B D E C A
6 E C B A D F

Figure 7.3. Procedure for rerandomization of a 6X6 latin square. Rows and
columns are to be rerandomized in the order indicated by a table of
random numbers. This results in the latin square of Figure 7.4.

Column Row totals,
Row I I il v v VI Y,
F D A B E C
I 282 29.1 32.1 33.1 311 | 324 1860
E B C F D A
I 310 295 29.4 248 330 | 306 1783
D E F c A B
m 30.6 28.8 21.7 30.8 319 | 301 | 1739
i A B D F E
v 33.1 304 28.8 314 267 | 319 | 1823
B F E A c D
v 29.9 25.8 30.3 303 335 | 323 1821
A C D E B F
Vi 308 29.7 27.4 29.1 307 | 214 169.1
Column totals
4 183.6 1733 169.7 1795 | 1869 |178.7 | 107L.7=Y_
Treatments
A(1) B(2) CE) D(4) E{5) | F(6)
(NH,),SO, | NH,NO, [ CO(NH,), | Ca(NO,), | Na NO, | No N
Totals,
Y, 186.1 182.1 188.9 1838 | 1822 |1486
Means,
Yi 310 30.4 315 306 304 | 248

Figure 7.4. A 6X6 latin square. Each treatment appears once in each row and in
each column. The treatments are five nitrogen source materials, all
applied to give 100 Ib of nitrogen per acre, and a nonfertilized control.
The values are sugar beet root yields in tons per acre.
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ANALYSIS OF VARIANCE

We will analyze the data of Figure 7.4 where the variates can be classified in three
ways: rows, columns, and treatments. Rows are the i's and go from 1 to r. The
columns are the j’s and go from 1 to c. Treatments are indicated by the k
subscript, and k goes from 1 to n. In the usual latin square, r=c=n.

We start by completing the first two columns of Table 7.1.

Sources of Variation and Degrees of Freedom

Degrees of freedom are, as usual, one less than the number of observations
associated with each source of variation: df total=rc—1=6(6) — 1=35; df rows=r
—1=6—1=5; df columns=c—1=6—1=35; df treatments=n—1=6—1=>5. De-
grees of freedom for error can be obtained by subtraction: 35—5—5—-5=20, or
by (r—1)(¢—1)—(n—1)=5(5)—5=20.

Correction Term

Sums of Squares and Mean Squares

ROWS
Y.? 2
SSR= ET = 1880+ HIBL _5190391=3219
where c is the number of plots in each row.
_ SSR _ 3219 _
MSR = _df(B) 5 6.438
COLUMNS
Sy,
$$C=——"-—c
where r is the number of plots in each column.
2 2
ssc= 1836+ +ITB8 319091 =33.67
SSC _ 33.67 _
MSC= a(C) S 6.734
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TABLE 7.1.
Analysis of variance, sugar beet nitrogen source trial

Degrees of Sumsof Mean Beq;u "
Freedom Squares Squares Observed ____ —
Source of Variation df SS MS F 5% 1%
Total 35 281.88
Rows 5 32.19 6.438 426 271 4.10
Columns 5 33.67 6.734 4.45
Treatments 5 185.77  37.154 24.56
Error (RC—T) 20 30.25 1.513
TREATMENTS
Y 2
L

r

where r is the number of replicates of each treatment.

2 2
ssT=1486"+... +182.2° 45459118577

6
SST 185.77
=——= =37.154
NSRS ED S

TOTAL
$S=3 Y, 2~ C=28.2"+32.1°+ ... +27.4°+29.1 - 3190391

=32185.79—31903.91 =281.88

ERROR
SSE =88 —SSR —SSC —SST=281.88 —32.19—33.67 — 185.77=30.25

CALCULATORS PROGRAMMED TO COMPUTE STANDARD DEVIATION.
The sums of squares and mean squares can also be computed from a standard
deviation of totals. For example, to compute SSR, enter each row total
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(186.0...169.1) with the appropriate entry key of your calculator and obtain the
standard deviation of the row totals=6.21496. Square the standard deviation and
divide by the number of variates in each total you entered: (6.21496)* /6=MSR =
6.4376. Multiplying by df(R)=SSR =6.4376(5) =31.19, as before.

F Values

All three F ratios are based on 5 and 20 degrees of freedom. The required values
for statistical significance are obtained from Table A.3 and entered in the analysis
of variance table. All three sources of variation are classified highly significant.
From this we conclude that there are real differences among rows and columns as
well as treatments.

MEAN SEPARATION

In planning the sugar beet experiment to evaluate the effects of different sources
of nitrogen, the investigator posed several questions that were to be answered by
partitioning the sum of squares for treatments into the orthogonal set of compari-
sons indicated in Table 7.2.

TABLE 7.2.
An orthogonal partitioning of the treatments of Figure 7.4.

Observed Segiced B
Source of Variation df SS MS F 5% 1%
Treatments 5 185.77 37.154 24.56 2.71 4.10
No Nvs. N 1 180.200 180.200 119.10 435 8.10
Organic N vs. inorganicN 1 3.816 3.816 2.52
Ammonium N vs. nitrate N 1 0.202 0.202 0.13
(NH,),SO, vs. NH,NO, 1 1.334 1.334 0.88
NaNO, vs. Ca(NO,), 1 0.213 0.213 0.14
Error 20 30.25 1.513
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TABLE 7.3.
Treatment coefficients to check for orthogonality of comparisons and to facilitate
the computation of sums of squares

Treatments and Treatment Totals
No N (NH,),SO, NH,NO, CO(NH,), Ca(NO,), NaNO;

Comparison 1486 186.1  182.1 188.9 183.8 182.2
NoNvs. N +5 =] =1 =] =1 —1
Organic N vs. inorganic N 0 g =1 +4 =i =1,
NH,—N vs. NO;—N 0 +1 #1 0 -1 -1
(NH,),SO, vs. NH,NO,4 0 +3 =1 0 0 0
Ca(NO;), vs. NaNO, 0 0 0 0 +1 —1

Note that all rows sum to zero and that the sum of the products of the corresponding
coefficients of any two comparisons is zero, and therefore the treatment comparisons are
orthogonal.

The coefficients for testing the orthogonality of the comparisons and for
completing Table 7.2 are shown in Table 7.3.
Sums of squares can be calculated as follows from the treatment totals:

186> , (1861+...+1822) 107172

SS(no N vs. N)= 8 0 6

=23680.327 + 28403.787 — 31903.914 = 180.200

When the comparison involves a single degree of freedom, the shorter method of
calculation using the orthogonal polynomials of Table 7.3 is: SS=(2cY )%/
(r=c?), where the ¢, are the coefficients of Table 7.3, the Y , are the treatment
totals, and r is the number of replicates in each treatment total. Thus

[5(148.6) — 186.1—182.1—188.9— 183.8—182.2]*
6(30)

SS(no N vs. N) =

The denominator, 6(30), is found by summing the squares of the coefficients of the
terms in the numerator and multiplying this by the number of variates making up
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each term of the numerator; thus
6[ (5% + (= 1°+(=1)*+(=1)*+(=1)*+(—1)*]=6(30)

188.9° (186.1+182.1+183.8+182.2)°

SS (organic N vs. inorganic N) = 5 i

(188.9+186.1+182.1+183.8+182.2)°  1g5.¢2 L3428 9212
30 6 24 30

Note that the third term is a new correction term.

=5947.202 4+ 22460.402 — 28403.787 = 3.816
The shorter calculation is

[4(188.9) —186.1—182.1-183.8—1822]"

" =3816
6(20)

(186.1+182.1)* +(183.8 + 182.2)*
12

SS(NH, —N vs. NO;—N) =

(186.1+182.1 + 183.8+182.2)*
24

_ 368.2°+366.0° _ 734.2°
12 2

=29460.603 — 22460.402 =0.201
Or

(186.1+182.1-183.8—182.2)°  (2.2)°
s 6(4) S

=(0.202

2
186.12+182.12  (186.1+182.1)
SS[ (NH,),SO, vs NH,NO; | = 8 - =

=11298.937 — 11297.603 = 1.334

The Latin Square Design 84



_ (186.1-182.1)° 40

=—=1333
2(6) 12

183.8°+182.9° _ (183.8+182.2)°
6 12

=11163.213—11163.000=0.213

SS[Ca(NO,), vs NaNO, | =

Mean squares are obtained by dividing the sums of squares by their associated
degrees of freedom; since, in this case, each comparison involves a single degree of
freedom, SS=MS.

F values are calculated by dividing each MS by MS for error. Required F
values are tabular values from Table A.3 for 1 and 20 df. We now have an F test
to answer each of the questions posed when the experiment was planned. The only
significant F value is for the comparison no N vs. N; all others are quite low,
leading to the conclusion that there was a response to nitrogen but that beets
responded similarly to all N sources.

SUMMARY

In a latin square:

Experimental units are organized into two categories other than treatments. These
two categories are usually referred to as rows and columns with regard to the
organization of data in a two way table.

Each treatment is assigned the same number of times (usually once) within each
category so that differences between categories are not due to treatment effects.
At least as many replications are required as there are treatments. Latin squares
are usually not practical with more than eight treatments.

Only when both categories (rows and columns) vary appreciably will the latin
square design improve the detection of treatment differences over the randomized
complete block.
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8
THE
SPLIT-PLOT
DESIGN

Split-plot designs, and a variation, the split-block, are frequently used for factorial
experiments in which the nature of the experimental material or the operations
involved make it difficult to handle all factor combinations in the same manner or
when the investigator wishes to increase precision in estimating certain effects and
is willing to sacrifice precision in estimating certain others. The basic split-plot
design involves assigning the treatments of one factor to main plots arranged in a
completely random, randomized complete block or a latin square design. The
treatments of the second factor are assigned to subplots within each main plot.
The design usually sacrifices precision in estimating the average effects of the
treatments assigned to main plots. It often improves the precision for comparing
the average effects of treatments assigned to subplots and, when interactions exist,
for comparing the effects of subplot treatments for a given main plot treatment.
This arises from the fact that experimental error for main plots is usually larger
than the experimental error used to compare subplot treatments. Usually, the error
term for subplot treatments is smaller than would be obtained if all treatment
combinations were arranged in a randomized complete block design.

Note the experiment of Figure 8.1. It involves two factors, nitrogen fertilizer
(N) at two levels (n=2) and green manures (G) of four types (g=4). The total
number of treatments for this trial are nXg=8. Note that all eight treatments
occur once in each of the three blocks but that within a block all treatments of a
common nitrogen level occur together. Also note that with respect to the nitrogen
levels, we have a randomized complete block with two treatments in three blocks.
The degrees of freedom for these six main plots are partitioned as for a ran-
domized complete block in the “split-plot” column of Table 8.1 where the two
designs are compared.

The restriction on the randomization of the treatments within a block results
in two error terms for the split-plot design. The main plot error is usually larger, as
it involves variability among the larger more widely spaced main plots, and the
subplot error is usually smaller, as it involves variability among closely spaced
subplots within the main plots.

The split-plot design can be used with more than two treatment factors, as it
is not necessary to have an additional split for each factor. For example, to test
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two varieties at two levels of nitrogen fertilizer applied at two different times,
main plots could be the four combinations of variety and nitrogen levels that could
be split for time of applying the nitrogen. One replication of this trial could be:

I

|
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|
I
|
|

T, T,

I

|

VaiNy
|
|
|
|

T, T,
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I

|

VN,
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T
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T

|

VaiN,
|
|
|
l

T,

BLOCK 1

With three factors (A,B,C) each at two or more levels, there are six different

possibilities for main plots: A, B, C, AB, AC, BC.

Each variation of the split-plot design imposes certain restrictions as to the
error term that may be used to test treatment effects. It is important, therefore, to
assign factors in a manner that gives the greatest precision for comparing the
interactions and average treatment effects in which you are most interested. Some
skill and experience are required in laying out split-plot experiments, and you are
urged to consult someone with experience in the use of this design.

TABLE 8.1.

ANOVA outline for the two factor experiment of Figure 8.1 as a split-plot and a
randomized complete block design. The brackets and arrows indicate appropriate
error terms for testing treatment effects in the two designs.

e Degrees of Freedom
Variation Split-Plot RCB*
Subplots ngb—1 23 23
Main plots nb—1 5 —
Blocks b-1 2 2
Nitrogen n—1 1:‘ 1
MP error (b=1)(n—1) 2 —
Green manures (g—1) - 3 3
NXG mn—1)g—1) 33 3
SP error b-1)[(g-1)+(n-1)(g-1)] 12 —
Error (RCB)* (b-1)[(n=1)+(g—1)+(n—1)(g—1)] 14
*Randomized complete block.
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-«—BLOCK ] ———> BLOCK II BLOCK III

A
| <A main plot | subplot
——
Nizo No Nigo No No Nigo

BV|V|F|B|BIBV|F|V|F|BY/V|B|V|F|B|BV|F|BV|V |B|[V|BV|B|F

.9125.3(19.3|22.2]15.5(18.9(13.8|21.0/18.0/26.7|24.8(24.2122.7|13.5|15.0|18.3]13.2|19.6{22.3|15.2 |28.4|27.6|25.4(20.5

Figure 8.1. Split-plot design. Main plots (N, N;) are nitrogen fertility levels. Subplots BV, V, F, B, are
green manure treatments. All plots are laid out in strips through the field in three blocks. Plot yields
of the sugar beet crop following the green manure treatments are given in tons of roots per acre.



RANDOMIZATION

The randomization of the treatments assigned to main plots is carried out as
prescribed for the design selected for the main plot treatments. Subplot treatments
are then randomized within each main plot, a separate randomization being made
for each main plot.

ANALYSIS OF VARIANCE

To illustrate computational procedure, we will use the experiment of Figure 8.1.
The trial was designed to test the effect of three green manure crops on the
subsequent production of sugar beets at two levels of nitrogen fertilization. At the

TABLE 8.2.
Sugar beet root yields (tons per acre) organized by treatments, main plots and
blocks.

Treatments Blocks (j)

Pounds N /acre (i)  Green Manure (k) 1 II I Totals Means

0 Fallow 138 135 132 405 13.5
Barley 155 150 152 45.7 15.2
Vetch 21.0 227 223 66.0 22.0
Barley-vetch 189 183 196 56.8 18.9
Main plot totals (Y,,) 692 695 703 209.0=Y, 17.4
120 Fallow 193 180 205 57.8 19.3
Barley 222 242 254 718 239
Vetch 253 248 284 785 26.2
Barley-vetch 259 267 276 802 26.7
Main plot totals (Yy,) 9.7 937 1019 2883=Y, 24.0
Block totals (Y, ) 1619 1632 1722 497.3=Y 20.7
Green Manures
F B v BV
Totals (Y ) 983 117.5 1445 137.0
Means (Y ;) 164 196 241 228

Symbols for treatment factors and levels:
N =nitrogen, n=2; G=green manure, g=4; B=block, b=3.
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TABLE 8.3.
Analysis of variance. Sugar beet, nitrogen X green manure experiment.

Observed Required F

Source of Variation df SS MS F 5% 1%
Subplots 23 516.12
Main plots 5 274.92
Blocks 2 787 3935
Nitrogen 1 26202 262.020 104.18 1851 98.49
Main plot error, BN 2 503 2515
Green manures 3 21526 71753 11899 349 595
NXG 3 1870 6233 1034
Subplot error, BG+B(NXG) 12 724  0.603

outset it was assumed that sugar beets would respond differently to the green
manures, depending on the level of nitrogen fertility, and thus the objective was to
compare the effect of the green manures as precisely as possible at each level of
fertility. Therefore the main plots were to be two levels of nitrogen fertilization
applied to the sugar beets at thinning time and replicated three times in a
randomized complete block design. Subplots were to be green manures, grown
during the fall and winter preceding the planting of sugar beets. The green
manure treatments were barley (B), vetch (V), barley and vetch grown together
(BV), and fallow (F). Nothing was allowed to grow in fallow plots prior to planting
sugar beets. The plots were laid out as in Figure 8.1. Yields of sugar beet following
the green manures are given for each subplot and organized for analysis in Table
8.2.

The first step is to determine sources of variation and associated degrees of
freedom—the first two columns of Table 8.3.

Sources of Variation and Degrees of Freedom

Total degrees of freedom in the experiment are one less than the number of
subplots, ngb —1=(2)(4)(3) —1=23. Main plots are listed as a source of variation
as their partition leads to df for main plot error; df(MP)=nb—1=2(3)—1=5.
Degrees of freedom for main plots are partitioned according to the design in which
they are arranged, in this case the randomized complete block: blocks=b—1=3
—1; nitrogen=n—1=2—1; main plot error, often called error a, =(b—1)(n—1)
=(3—1)(2—1). Degrees of freedom for green manures are (g—1)=4—1; and for
treatment factor interaction, NXG, =(n—1)(g—1)=(2—1)(4—1). Degrees of
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freedom for subplot error, usually called error b, can be obtained by subtraction,
paying attention to the indentation of the sources of variation, that is, 23—5—3—
3=12; or by the addition of degrees of freedom for the interaction of blocks with
green manures and nitrogen X green manures: (b—1)(g—1)+(b—1)n—1)(g—1)=
B-1)4-1)+@B-1)2-1)4—-1)=12.

Correction Term

Sums of Squares and Mean Squares
Blocks:

s 2N o 1619°+1632°+ 1722
n 2(4)

C=T7.8T.

Note that the denominator (8) is the number of variates making up each term in
the numerator.

MsB= 3B _ 787 _

= 3.935
df(B) 2
Nitrogen:
X 2
gb 3(4)
SSN _ 262.02
MSN=—— = =262.02
N T
Main plots:
) g 2
SS(MP)= = —C= Wt 10LY" _ o492

Main plot error:

SS(MPE) = SS(MP) — SSB — SSN =274.92 — 7.87— 262.02=5.03

SS(MPE) _ 5,03

MS(MPE) = T s

=2515
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Green manure treatments:

Y ,? 98.3%+ ... +137.0°
= . —C=—= — —(C=215.26
$5G=—% —C o
MSG = S5G_ _ 21526 _ -y 7=q

df(G) 3
N X GM:

2

EYi 2 2
SS(NXG)= b.k —C—SSN—SSG = 40.5 +.:.3.+80.2 —-C

—262.02—-215.26=18.70

_ SS(NXG) 1870

MS(NXG) = T R et

Subplots:
SS(SP) = EYijkz —-C=138+155%+... +27.6°—~C=516.12

Subplot error:
SS(SPE) = SS(SP) —SS(MP) —SSG — SS(N X G)
=516.12—274.92—-215.26 — 18.70="7.24

THE STANDARD DEVIATION KEY. With a calculator programmed to com-

pute s= E(Yi—f)gf(r—l} , sums of squares are obtained by the following
rule. Enter each total with the appropriate key. When all are entered, depress the
standard deviation key, square the displayed value to obtain s*, divide by the
number of variates making up each total entered, and multiply by df. For example,
SS(MP): Enter 69.2,69.5,...,101.9; depress standard deviation key=14.830;
square=219.9377; divide by 4=54.9844=MS(MP); multiply by 5=274.92=
SS(MP).

F Values
Nitrogen effects are tested using MS(MPE); green manures and the interaction of

nitrogen and green manures are tested using MS(SPE). F for N is 262.02/2.515=
104.18. F for NXG is 6.233/0.603=10.34. The highly significant F value for
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N X G indicates a difference in the comparative response of the sugar beet crop to
the green manures at the different fertility levels. The crux of the experiment is to
isolate and understand the interaction—a problem in mean separation and agro-
nomic interpretation.

MEAN SEPARATION

Pertinent F Tests

By partitioning the sum of squares for the NX G interaction, we gain insight into
the nature of the interaction. There are several ways this can be done, but
partitioning to answer the following three questions appears logical. Did the sugar
beets respond differently at the two nitrogen levels to: vetch versus no vetch:
fallow versus barley; vetch versus barley and vetch? Table 8.4 gives the treatment
totals and a set of orthogonal coefficients for use in calculating the interaction
components as well as other single degree of freedom comparisons.

To partition the 3 df for NXG we must first set down coefficients for
partitioning the main effects into single degree of freedom components.
Coefficients for N are simple, as there are only two groups. The four green manure
treatments are partitioned to answer the three questions posed for interaction, but
this is done for green manure effects over both levels of N: V+BV vs. F+B, F vs.

TABLE 8.4.
Orthogonal coefficients for the indicated comparisons.

Treatments, Treatment Totals and Means
NO Nlm

F B \'% BV F B v BV
Y, 405 457 660 568 578 718 785 802

Comparison Y, 135 152 220 189 193 239 262 267

1. N =1 =) =1 = I 1 I s
2. Vvs.noV -1 =1 1 1 =1 =1 1 1
3. Fvs. B -1 1 0 0 -1 1 0 0
4. Vvs. BV o 0 -1 1 0 0 -1 1
5. NX(V vs. no V) 1 1 -1 -1 =1 =1 I 1
6. NX(F vs. B) } el manling a8 tmlag el <10k, D
7. NX(V vs. BV) B B s ite, oriiDsin vy kel
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B, and V vs. BV. The calculation of sums of squares for these three comparisons
would add to the sum of squares for green manures in Table 8.3. These compari-
sons would not mean much, however, as we already know that the green manures
have a differential effect, depending on the N level, and our aim is to look at this
interaction in more detail by calculating F tests for comparisons 5, 6, and 7 of
Table 8.4. The coefficients for these comparisons are obtained by multiplying
coefficients for comparisons 1 and 2, 1 and 3, and 1 and 4.

Sums of squares for the three interaction components are computed as below
and entered in Table 8.5.

(40.5+45.7—66.0—56.8—57.8—71.8+78.5+80.2)
3(8)

SS[NX(Vvs.noV)]=

Again, note the use of the formula for calculating a sum of squares with a single
“degree of freedom: SS=(2¢,Y,,)*/(r=c?). In these cases all the coefficients (c;’s)
are *1, and it is not necessary to write them in the numerators.

(40.5—45.7—57.8+71.8)

SS[NX(F vs. B) | = 30 =6.453
SS[NX(V vs. BV) ] = 0 56‘83:)8'5 802 001

The three single degree of freedom F tests of Table 8.5 provide answers to the
three questions posed above.

TABLE 8.5.
Variance components for interaction.

Observed Required F

Source of Variation  df SS MS F 5% 1%
NXG 3 18.70 6.233 10.34 3.49 5.95
NX(V vs.no V) 1 2.344 2.344 3.88 4.75 9.33
N X (F vs. B) 1 6453 6453 10.70
NX(V vs. BV) 1 9901 9901 16.42
SPE 12 7.24 0.603

95 Mean Separation



NX(V VERSUS NO V). The differences in the response to vetch at N, compared
to Ny are not significantly different. Referring to the means of Table 8.4, the
change in mean plot yield for plots receiving vetch versus no vetch at N, is not
significantly different from the change in mean plot yield for plots receiving vetch
versus no vetch at Ny that is (22.0+18.9—13.5—15.2)/2=6.1 compared to
(26.2+26.7—19.3—23.9) /2=4.85 gives a difference of 6.1 —4.85=1.25, which is
not significantly different from zero. The divisor 2 is to keep the comparison on a
per plot basis.

A t test can also be used to make this comparison but will lead to the same
statistical conclusion. We show it here to point out the equivalence of the two
tests and to illustrate the greater ease of the F test. We are examining a difference
of differences: 6.1 —4.85=1.25. The appropriate t test is t=(d, —d,)/sg 3, where
d;=6.1, d;=4.85, and s5 _j is the standard error of a difference of differences

and is computed as
. /E 253
;i _][_2 B any JE e TR
Sdl—d,._. Sdl "'Sd2 — rl + r2

When si and s; estimate a common variance and r, =T, then
s;,j_;iﬂ=\/452/r =\/452/6 =V4(0.603)/6 =0.634. The divisor 6 is the number of
variates in the mean differences being compared—in this case each mean dif-
ference is the average of two means each based on three replicates.

Substituting into the above t formula gives t=(6.1 —4.85)/0.634=1.25/0.634
=197, a nonsignificant t value, since the required t for 12 df is 2.179. Note
t*=F=(1.97)*=3.88, the F value of Table 8.5.

NX(F VERSUS B). The difference between fallow and barley at N, is signifi-
cantly less than at Nj,,. That is, 15.2—13.5=1.7 is significantly less than 23.9—
19.3=4.6. Compared to fallow, the response to barley was 4.6—1.7=2.9 tons
/acre more with than without fertilizer N. Confidence limits for this difference of
differences can be calculated from CLgs=d, —d,*ts5 _5 where t is the tabular

value for 12 df and the 5% level; s5 _g =V4s*/r =1/4(0.603)/3 =0.897; and
CLgs=2.9+2.179(.897)=2.9+2.0=0.9 to 4.9 tons/acre. That is, with a confi-
dence of 95% we can say that, under these conditions, the beneficial effect of
barley green manure was between 0.9 and 4.9 tons/acre more when the sugar
beets were fertilized with nitrogen than when they were not.

N X (V VERSUS BV). There is a significant loss in root yield, 23.0—18.9=3.1
tons/acre, from the barley-vetch compared to the straight vetch green manure
that does not occur when the sugar beets are given N fertilizer, 26.2 —26.7= —0.5.
Confidence limits for the difference of differences are: CLg5=3.1—(—0.5)*
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TABLE 8.6.
The effect of green manures and nitrogen fertilization on sugar beet root yield.

Pounds of Green Manure Treatments
N per Acre Fallow Barley Vetch Barley-Vetch

Roots, Tons/Acre

0 13.5 15.2 22.0 18.9
120 19.3 23.9 26.2 26.7

LSD, 5%: between green manures at the same N level, 1.4; between green manures at
different N levels, 2.9.

2.179(0.897)=3.6+2.0=1.6 to 5.6 tons/acre.

This experiment might be summarized as in Tables 8.6 and 8.7. Table 8.6
presents the relevant effects of the experiment, and Table 8.7 gives the statistical
information germane to a discussion of the significant interaction. A common
procedure is to use single, double or triple asterisks to denote statistical signifi-
cance at the 5, 1, and 0.1% level, respectively. Means for the average effects of
nitrogen or green manures are not presented, as the strong interaction makes them
rather meaningless. The LSDs of Table 8.6 are not really necessary but do provide
approximate guides for interpreting the results.

TABLE 8.7.
Mean squares for interaction and interaction components of the effect of nitrogen
and green manure treatments on sugar beet root yield.

Source of
Variation df Mean Square
NXxG 3 6.233**
N X (V vs. no V) 1 2.344
N X(F vs. B) 1 6.453**
N X (V vs. BV) 1 9.901**
Subplot error 12 0.603
Main plot error 2 2.515
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Standard Errors and LSDs

At times, LSDs or multiple-range tests may be desirable. For these tests, standard
errors are calculated based on variability among experimental units to which
treatments are applied. With the split-plot design the calculation of standard
errors for certain kinds of treatment comparisons becomes more complicated, as
can be seen in Table 8.8, because we have two sources of experimental error—that
involving main plots and that involving subplots.

Note that the standard error for comparing subplot treatment means within a
main plot involves only the subplot error, but when comparisons are made
between subplot treatment means for different main plots, the standard error
involves both main plot and subplot errors. Skipping much tedious algebra, it turns
out that the latter standard error is a weighted average of Ea and Eb, the
weighting factor for Ea is 1, and that for Eb is b—1. As 1+b—1=b, the
denominator turns out to be br, where b is the number of subplot treatments and r
is the number of replications.

To illustrate computation, LSDs for all possible comparisons of the means of
the sugar beet green manure X nitrogen fertility trial of Table 8.2 are given below.

TABLE 8.8.
Standard errors for a split-plot design.

Standard Error of a Mean®
Means Compared (sy)

Main plot treatments: Ea
A —A, rb
Subplot treatments: Eb

Subplot treatments for the same main-plot treatment: 'Eb
Subplot treatments for different main plot treatments: (b—1)Eb+Ea
B,A;—BA; or BJA, —ByA, rb

“Note the use of s; in the determination of LSD or D: LSD=tV2 s;; D=R(LSD).
Ea=MS(MPE), Eb=MS(SPE), a=number of main plot treatments,

b= number of subplot treatments, r=number of replications.

A=treatments applied to main plots, B=treatments applied to subplots.
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LSD FOR DIFFERENCES BETWEEN MAIN PLOT TREATMENTS. (between
nitrogen means)
2(Ea)

rb

LSD s =t,
where t, is the tabular t value for df for Ea.

(2.515)

LSD s =4.303) [—575

=4.303(0.647) =2.8 tons/acre

LSD FOR DIFFERENCES BETWEEN SUBPLOT TREATMENTS. (among
green manure means)

2(Eb)

where t,, =tabular t value for df for Eb.

2(0.603)
3(2)

LSD o5 =2.179 =2.179(0.448) = 1.0 ton /acre

LSD FOR DIFFERENCES BETWEEN SUBPLOT TREATMENTS FOR THE
SAME MAIN PLOT TREATMENT. (among green manure means for the same
nitrogen level)

2(0.603
LSDgs=t,| /222 =2.179/ ( . ) —5.179(0.634) = L4 tons acre

LSD FOR DIFFERENCES BETWEEN SUBPLOT TREATMENTS FOR
DIFFERENT MAIN PLOT TREATMENTS. (to compare different green manure
means at different nitrogen levels or to compare means for the same green manure
treatment at different nitrogen levels)

LSD_us=tab\/2[(bﬁl)Eb+Ea]

rb

where t,, is a weighted t value somewhere between the tabular values for t, and t,
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and is calculated as follows:
(b—1)(Eb)(t,) +Ea(t,) (4—1)(0.603)(2.179) +2.515(4.303)

®" (b-1Eb+Ea (4—1)(0.603) +2.515
_ 14764 _
=Tns =414
2[ (4—1)(0.603) +2.515 |
LSD s=3.414 3d) =3.414(0.849) =2.9 tons/acre

If the eight treatment combinations had been randomized within each block,
the design would have been the randomized complete block. The error mean
square would then be

_ SS(MP) +SS(SP)

~ df(MP) +df(SP)

_5.03+7.24
2+12

=0.876

EMS

and the LSD for all treatment comparisons would be

2(0.876)
3

(Note, t is the tabular value for 14 df at the 5% level.)

A comparison of the LSDs indicate the relative efficiencies of the two designs
in separating treatment effects. Note the improved power (smaller LSDs) of the
split-plot in separating the means of the subplot treatments and the comparison of
subplot treatments within a main plot treatment and the loss of precision (larger
LSDs) in comparing main plot treatments and subplot treatments across main plot
treatments.

LSD=t =2.145(0.764) = 1.6 tons/acre

SUMMARY

The split-plot design is often useful for a factorial set of treatments. The design
involves the random assignment of one treatment factor or combination of factors
to main plots which are then split for the random assignment of another factor or
combination of factors. Compared to the randomized complete block design,
precision is lost in making comparisons among main plot treatments and subplot
treatments for different main plot treatments, but precision is often improved for
comparisons among subplot treatments and for subplot treatments within main
plot treatments.
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9

THE
SPLIT-SPLIT
PLOT

The addition of a third factor by splitting subplots of a split-plot design results in a
split-split plot. This technique is often quite useful for a three-factor experiment to
facilitate field operations or when it is desirable to keep treatment combinations
together. However, the additional restriction on randomization makes it necessary
to compute a third error term that is used to test for main effects of the factor
applied to the second split and for all interactions involving this factor. The
arrangement may have certain advantages in physical operations with the experi-
mental units, but the necessity for the third error term can make mean separation
quite complicated. You are urged to consult a biometrician before employing this
scheme.

Randomization procedure is the same as for the split-plot design, with the
subplots being split into sub-subplots, equal in number to the levels of factor three,
to which the third factor is randomly assigned—a new randomization for each set
of sub-subplots. Figure 9.1 illustrates the partial layout of a split-split plot to
evaluate the effects of dates of planting, aphid control, and date of harvest on the
control of aphid-borne sugar beet viruses. The procedure for the stepwise handling
of data from such an experiment will be illustrated with the effect of these
treatments on root yield.

ORGANIZATION OF DATA

Data are organized by treatments and blocks in Table 9.1. Table 9.2 is formed to
provide totals for the two-way interactions and main effects.

ANALYSIS OF VARIANCE

The completed analysis of variance is given in Table 9.3. The stepwise procedure
for completing the table is as follows.
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A main plot
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H, |H, |H,
24.3(23.8/20.9| <
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23.1{31.2140.2| ©
<
Figure 9.1. Features of a split-split plot for a sugar beet virus control experiment.

Main plots are dates of planting (P, Py, P;) arranged in randomized
complete blocks (I, II, III, IV). Subplots are not sprayed (S,) and
sprayed (S,) for aphid control. Sub-subplots are dates of harvest at 4
week intervals (H;, H,, H;). Sugarbeet root yields are shown for the
sub-subplots of the P; main plot in block IV. Complete data from this
experiment are organized in Table 9.1.




TABLE 9.1.

Sugar beet root yields (tons per acre), split-split plot, organized by treatment and

block.
Treatments Blocks (j)
Pi) Sk  H() 1 II I IV Totals Means
1 1 1 25.7 254 23.8 220 969 24.2
2 318 295 287 264 1164 29.1
3 346 372 29.1 23.7 1246 31.2
SP Totals
, 921 921 816 721 3379=Y,, 282
2 1 27.7 303 302 33.2 1214 30.4
2 380 406 346 310 1442 36.0
3 42.1 436 446 427 173.0 43.2
SP Totals
Yllg_ 107.8 1145 1094 1069 4386=Y,, 366
MP Totals
Y., 1999 2066 1910 1790 7765=Y,
2 1 1 28.9 247 278 234 1048 26.2
2 375 @15 .30 . 278 1278 32.0
3 38.4 32.5 312 298 1319 33.0
SP Totals
Y21 L. 1048 88.7 900 810 3645=Y,, 304
2 1 380 31.0 295 30.7 1292 32.3
2 369 319 315 359 1362 34.0
3 442 416 389 376 162.3 40.6
SP Totals
ers“ 119.1 1045 999 1042 427.7=Y,, 35.6
MP Totals
Y 2239 1932 1899 1852 7922=Y,
3 1 1 234 242 212 209 89.7 22.4
2 25.3 277 23,7 243 101.0 25.2
3 29.8 209 243 238 1078 27.0
SP Totals
Y:!jl. 785 818 692 69.0 2985=Y,,; 249
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TABLE 9.1.
Continued.

Treatments Blocks (j)
P(i) S(k) H(l) I I 111 IV Totals Means

2 1 208 230 252 231 921 23.0

2 290 320 265 312 1187 29.7
3 366 378 348 402 1494 374

SP Totals

Y 864 928 865 945 3602=Y,, 300

MP Totals

Y. 1649 1746 1557 1635 658.7=Y,

B Totals

Y 588.7 5744 5366 527.7 22274=Y

C=(22274)°/72=68907.0939, Y, i="71747.70

Symbols for treatment factors and levels: P=date of plant, p=23 dates; S=sprays for aphid
control, s=2; H=harvest date, h=3; B=blocks, b=4.

TABLE 9.2.
Totals for two-way interactions and main effects.

Totals for Two-Way Interactions
PXS(Y;y) PxH(Y, ) SXH(Y )
5, Sy H, H, H S S
P, 337.9° 4386 218.3° 2606 2976 H, 2914° 3427
P, 3645 4277 2340 2640 2942 H, 3452 399.1
P, 2985 3602 181.8 2197 2572 H; 3643 4847
Totals for Main Effects
Plant Date (Y; ) Spray Treatment (Y ;) Harvest Date (Y ))
P, P, Py S, Sy H, H, H,
7765 7922 6587 10009  1226.5 634.1 7443 8490

“From Table 9.1: total for P,S; over all harvests and blocks,
Total for P,H, over all sprays and blocks=96.9+121.4=218.3.
“Total for S;H, over all plant dates and blocks=96.9+104.8 + 89.7=291.4.
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TABLE 9.3.
Analysis of variance, split-split plot.

Observed Required F

Source of Variation df SS MS* F 5% 1%
Sub-subplots 71 2840.6061
Subplots 23 1542.8128
Main plots 11 698.9028
Blocks, B 3 1434561 47.8187
Plant dates, P 2 443.6886 221.8443 1191 5.14 10.92
Main plot error, BP 6 1117581 18.6264
Spray treatment, S 1 7068800 706.8800— 81.21 5.12 10.56
PxS 2 406875 203438 234 426 8.02
Subplot error, BS+B(PXS) 9 78.3425  8.7047—
Harvest dates, H 2 9623353 481.1676< 10280 326 525
PXH 4 131097 32774« 070 263 3.89
SXH 2 1278308 639154 1366 326 525
PxXSxH 4 440192 110048 235 263 3.89
Sub-subplot error, BH+ 36 168.4983  4.6805—

B(P X H)+B(SXH) +
B(P xS XxH)

#Brackets indicate formation of F ratios.

Sources of Variation and Degrees of Freedom

Degrees of freedom for the sources of variation listed in Table 9.3 are:
Sub-subplots = pshb — 1=23(2)(3)(4) —1=71

Subplots=psb —1=23
Main plots=pb—1=11
Blocks=b—1=3

Plant dates=p—1=2

Main plot error=(b—1)(p—1)=6, or 11-3—-2=6

Spray treatment=s—1=1
PXS=(p—-1)(s—1)=2

Subplot error=(b—1)(s—1)+(b—1)(p—1)(s—1)=3+6=9,

or23—11-2-1 =9
Harvest date=h—1=2
PxXH=(p—1)(h—1)=4
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SXH=(s—1)(h—1)=2

PXSXH=(p—1)s—1)(h—1)=4

Sub-subplot error=(b—1)(h—1)+(b—1)(p—1)(h—1)+Db-1)(s—1)(h—1)
+(b-1(p-1)(s—1)(h—1)=6+12+6+12=36,
or 71-23—-2—-4—-2—-4=36

If the 18 treatments of this experiment had been laid out in randomized
complete blocks, there would be a single error term with df=(b—1)(t—1)=3(17)
=51, which is the sum of the degrees of freedom for the three error terms of
Table 9.3 (6+9+36=>51). Thus the splitting of plots partitions degrees of freedom
and sums of squares for error into components having fewer degrees of freedom
but usually with each successive term having a smaller mean square. Compare the
mean squares for the three error terms in Table 9.3.

Correction Term

y Ay 2
e D024 = 68907.0939.

= phb ~ 32)(3)(4)

Sums of Squares and Mean Squares

;0 o 88T+ +51T
psh 3(2)(3)
3Y.? | _T165°+...+658.7

WEeTER 2(3)(4)

SSB= —C=143.4561

—C=443.6886

—C=698.9028

% S "
SS(MP) = S_hl i 199.9° +2.(.?;) 163.5%

SS(MPE) = SS(MP) — SSB — SSP=111.7581

3% 2% 1000.9% + 1226.5%
5= T sp))

—C="706.8800

>3} My 337.9%+ ... +360.22
S —C—SsP-sss= o

=40.6875

—C—SSP—SSS

SS(PXS)=

>x,! 2 2
SS(SP) = T”‘ —~gm Bl ¥, v +U5 oo 1524.8128

SS(SPE) =SS(SP) — SS(MP) — SSS — SS(P X S) =78.3425

Y & 2
SSH = 2ot _ o 6341 + ... +849.0°

psb T

The Split-split Plot 106



2

Y; ) 218.3%+ ... +257.22
- ~C—SSP—SSH= 2183 +... 2573 o _oop_seH
SUEN- = 2(4)
=13.1097
2y 2 2
SS(SXH)= 2o __ss5—ssH= 204 AT (o ooo oo
pb 3(4)
= 127.8308

2

2Y,
SS(P XS X H)= l;"" —C—SSP—S$SS — SSH — SS(P X §) — SS(P X H)— $S(S X H)

2
_ 969+ = +1494° - gsp—$5S—SSH—SS(PXS)

—SS(P X H)— S§(S X H) =44.0192
SS(SSP)=ZY,3* —~ C=25.7%+ ... +40.2% — C=2840.6061
SS(SSPE) = SS(SSP) — SS(SP) — SSH — SS(P X H) — SS(S X H) — SS(P X § X H)
= 168.4983
Mean squares are formed as usual by dividing SS’s by appropriate degrees of
freedom, for example, MS(SSPE) = 168.4983 /36 = 4.6805.

The Standard Deviation Key

With a calculator programmed to calculate S=V(Yi_?)2/ (r—1) , totals can be

entered to compute mean squares and sum of squares. For example, for SSB, enter
the block totals, 588.7, 574.4, 536.6, and 527.7; depress the standard deviation key,
$=29.3383; square s to give s’=860.7367; divide by the number of experimental
units in each of the totals squared (18) to give 47.8187 =MSB; multiply by df B(3)
to give 143.4561=SSB.

F Values

The main plot error mean square is used to test the effects of plant date; subplot
error MS to test the effects of spray treatment and the interaction PXS; and
sub-subplot error MS to test the remaining sources of variation—those associated
with the sub-subplot treatments.

MEAN SEPARATION

The actual procedure used for mean separation will depend on the nature of the
treatments, the questions the experimenter set out to answer, and the results of the
initial analysis. For our example, the analysis tells us that the effects of the spray
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treatments and harvest dates were similar for all dates of planting (nonsignificant
F values for P XS, PXH, and PXSXH) but that the plants that were sprayed for
aphid control behaved quite differently with respect to harvest date than did
plants that were not sprayed (highly significant F value for S X H).

Partitioning Interaction

Table 9.4 is set up to examine the S X H interaction in more detail. The means of
Table 9.4 show increasing root yield as the harvest season progresses, with an
indication of a more rapid rate of yield increase for the S, compared to the S,
treatment. Since the harvest dates were at four-week intervals, we can use the
coefficients of Table A.11 under n=3 to make it easy to partition the sum of
squares for harvest date into a component to account for a linear increase with
advancing harvest date and a residual component to show the portion of the sum
of squares not accounted for by a linear trend. With the 2 df for harvest date
partitioned, we can partition the 2 df for SXH into a linear and residual effect.
Using the mean square for SSP error (Table 9.3), we calculate the F values of
Table 9.4 and find a highly significant difference in the linear response of the §;
compared to the S, treatment with respect to date of harvest. There is also a
significant S X H residual component due to the small increase in root yield from

TABLE 94.
Coefficients for partitioning sums of squares due to spray treatment, harvest date,
and the S X H interaction; the resulting mean squares; and F ratios.

S X H Treatments

S;H, SH, SH; SH, SH, SH,
Totals 291.4 345.2 364.3 342.7 399.1 484.7 Mean
Comparison Means 24.3 28.8 304 286 333 404 Squares F*

S =1 =1 " =1 1 1 1 706.8800

H Linear =] 0 I =1 0 1 962.1252 205.6
H Residual 1 -2 1 1 -2 1 02101 <1
SXHL 1 0 -1 =1 0 1 994752 21.25
SxXHR -1 2 -1 1 -2 1 28.3556  6.06

*F values are calculated by dividing the mean squares by the mean square for the SSP error
of Table 9.3. The tabular F required for statistical significance is for 1 and 36 df and for
5%=4.11 and for 1%="7.39.
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harvest two to harvest three for S, (28.8 to 30.4 tons/acre) compared to the much
larger increase for S, (33.3 to 40.4 tons/acre). A biological interpretation that
makes sense is that the sugar beets not sprayed for virus suppression show a
progressively lower rate of growth as the harvest season advances, while the plants
with less virus show a more or less constant rate of growth over the time interval
of the three harvests. This interpretation can be illustrated as in Figure 9.2 by
showing the increase in root yield over the harvest periods as linear for the S,
treatment and quadratic for the S, treatment. It would not be appropriate to
extrapolate beyond the harvest dates involved, as both trend lines would level off
as winter approached and not continue upward as indicated for S, or decline as
the quadratic equation predicts for S;,. Within the limits of the harvest dates,
however, both equations graphically illustrate the effect of the more severe level
of virus infestation on the root yield of sugar beets and provide an objective
procedure for estimating yield for the two treatments over the fall harvest period.

The calculation of the regression equations of Figure 9.2 is left as an exercise
after you have learned the shortcut regression methods of Chapter 15. The
procedure for computing the single degree of freedom mean squares of Table 9.4
are given below.

(—291.4—345.2 —364.3+342.7+399.1 + 484.7)°

13)6 =706.8800

SS Sprays=

Note the use of the formula for calculating a single degree of freedom sum of
squares: SS=(Zc,Y,)?/(rZc?). The ¢;s are class comparison coefficients of Table
94, and r is the number of variates in each term of the numerator. Here
r=bp=4(3).

(—291.4+364.3—342.7+484.7)°

SS(H Linear)= T =962.1252

[291.4—2(345.2) +364.3+342.7—2(399.1) +484.7]*
4(3)12

SS(H Residual)=
=0.2101

(291.4—364.3—342.7 +484.7)°
4(3)4

SS(SXHL)= =99.4752
[ —291.4+2(345.2) — 364.3+342.7— 2(399.1) +484.7]*

SS(S X HR) = T

=28.3556

As checks on arithmetic, note that SS(H Linear)+ SS(H Residual)=SSH of
Table 9.3 and that SS(S X HL) +SS(S X HR) = SS(S X H) of Table 9.3.
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Figure 9.2. Effect of vector control on the fall growth of sugar beets. The
difference in the two lines shows the nature of the S XH interaction.
The equations can be used to estimate root yields produced by the two
treatments over the fall harvest period.

Standard Errvors and LSD’s

For some experiments involving split-split plots it may be desirable to separate
certain means by LSD or multiple-range tests, and thus it is necessary to know the
appropriate standard errors for use in these tests. Standard errors for testing main
effects of the factors applied to main plots and subplots and for their interactions
are the same as given in Table 8.8 except that c(number of factor C treatments) is
a multiplier in each denominator. Standard errors for separating means of the
factor applied to the sub-subplots and for interactiong with the other two factors
are given in Table 9.5 along with t values that must be calculated for certain
comparisons.

For a complete summary of the results of an experiment, it is usually good
practice to give the means of the highest order of treatment factor combinations
and the means of the factor combinations that appear particularly relevant to the
conclusions to be made along with some procedure for approximate mean separa-
tion. For our example, Table 9.6 gives the means of plant date X spray treatment X
date of harvest, the plant date means, and the means of the highly significant
interaction, SXH. Footnotes to the table give LSD’s for approximate mean
separation. The computation of these LSD’s, all at the 5% level, using the standard
errors of Tables 8.8 and 9.5, are shown below ,
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TABLE 9.5.
Standard errors and t computations for the separation of means involving C
treatments.

Means Compared Standard Error (s;) t Values®
Ec
C means =5 t.
C means for same A "f% t,
C means for same B V% L
B means for same or (c—1)Ec+Eb _ (c—1)Ect_+Ebt,,
different C rac (c—1)Ec+Eb
A means for same or (c—1)Ec+Ea _ (e—1)Ect +Eat,
different C the b= Tc—T)Ec+Ea
C means for same A and B "J% t.
B means for same A and (c—1)Ec+Eb _ (c—1)Ect +Ebt,
same or different C re "~ (c—1)Ec+Eb
A means for same or (c—1)Ec+(b—1)Eb+Ea =b(c—l]t¢+(b—l}Ebtb+Eat‘
different B and C rbe b(c—1)+(b—1)Eb+Ea

*ta 4, t, indicate tabular t values from Table A.2 for degrees of freedom for Ea, Eb, and
Ec, respectively.

Key: A, B, and C are treatments applied to mainplots, subplots, and sub-subplots at levels a,
b, and c, respectively; r is the number of replications. Ea, Eb, and Ec are main, subplot, and
sub-subplot error mean squares, respectively. To compute LSD and D, note that
LSD=tV2 s; and D=R(LSD).

LSD, PLANT DATE MEANS. LSD=t,}/(2Ea)/rbc . Note that ¢ has been
included in the denominator of this formula from Table 8.8 to keep the standard
error on a sub-subplot basis.

LSD =2.447)/[ 2(18.6264) ] /4(2)3 =2.447(1.246) =3.0 tons /acre.

LSD, H MEANS FOR SAME P AND S TREATMENTS. For example, P,S,H, —

P,S,H, LSD=ty/[(2Ec)/r =2.028\/[2(4.6805)]/4 =2.028(1.530)=3.1 tons
/acre. Note that t_ is based on 36 df and is determined by linear interpolation
between tabular t's from Table A.2 for 35 and 40 df.
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TABLE 9.6.

Effect of plant date, spray treatment and date of harvest on sugar beet root
production.

Spray Harvest Date Plant
Plant Date Treatment 8/27 9/24 10/22 Date Means*

(Roots, tons/acre)

P X $X H means®

3/2 No 24.2 29.1 31.2
32.3

Yes 30.4 36.0 43.2

4/2 No 26.2 32.0 33.0
33.0

Yes 32.3 34.0 40.6

5/2 No 22.4 95.2 27.0
27.4

Yes 23.0 29.7 374

Spray treatment X harvest date means®
Not sprayed 24.3 28.8 30.4
Sprayed 28.6 33.3 40.4

*LSD, 5%: 3.0

PLSD, 5% between harvest dates for same plant date and spray treatment: 3.1; between
spray treatments for the same plant date and same or different harvest date: 3.7; between
plant date means for the same or different spray treatment or harvest date: 4.4. The P XS
X H interaction is not significant at the 5% level.

°LSD, 5% between H dates for the same spray treatment: 1.8; between spray treatments
for the same or different H date: 2.1. The SX H interaction is significant at the 0.1% level.

LSD, SPRAY TREATMENT MEANS FOR THE SAME P AND THE SAME OR
DIFFERENT H. For example, P,S,;H, —P,S;H, or P,S,H, —P,S,H,.

b [(c—1)Ec+Eb | (c—1)Ect, +Ebt,
= oo oo = (c—1)Ec+Eb

)(4.6805)2.028 + 8.7047(2.262)
tbc= - =2.141
(3 1)4.6805 + 8.7047
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[ (3—1)4.6805+8.7047 |
LSD=2.141 0 =2.141(1.735) =3.7 tons/acre

LSD, PLANT DATE MEANS FOR SAME OR DIFFERENT S AND H. For
example, P,S,H, —P,S,H, or P,S;H, —P,S H,.

2[b(c—1)Ec+ (b—1)Eb+Ea
LSD=ta,,c=\/ |Bte—1) rbf: ) ] t, =2.242

(see Table 9.5 for formula)

[2(3—1)4.6805+ (2 —1)7.7047 + 18.6264 |
LST‘=2.242\/§ TOR

=2.242(1.959) =4.4 tons/acre

LSD, H DATE MEANS FOR SAME §. For example, S,H, —S,H,.

LSD= EE" =228 / =2.028(0.883) = 1.8 tons /acre

LSD, S MEANS FOR SAME OR DIFFERENT H. For example, S,H, —S,H, or
SIHI_S2H2'

LSD=tbc\/ 2 (c—1)Ec+Eb]

ac

_ 2[(3—-1)4.6805+8.7047]
2.141\/ TR =2.141(1.002)

=2.1 tons/acre

SUMMARY

The split-split plot is an extension of the split-plot principle with subplots being
split into sub-subplots to which a third treatment factor is assigned. The analysis of
variance is more complicated in that there are three error terms for testing
treatment effects. Usually, the factor assigned to sub-subplots and the interactions
involving this factor are more precisely evaluated than are the other treatment
components. Mean separation is complicated by the three error terms.
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10

THE
SPLIT
BLOCK

In this variation of the split-plot design, the subunit treatments are applied in
strips across an entire replication of main plot treatments. If the main plots are in
a latin square, the subunit treatments can be in strips across an entire row or
column of main plots. This arrangement often facilitates physical operations
concerning the subunits but sacrifices precision in comparing the main effects of
factor B. It often improves precision in comparing the AB interaction, especially in
comparing B means for a given A treatment. When this is the primary effect in
which you are interested, the design is quite useful. Before employing it, however,
it is wise to consult with someone experienced in its use.

Figure 10.1 illustrates a single replicate of split-plots compared to a split-
block. In the latter, note that the subunit treatments are continuous across the
entire block of main plots, and thus each subunit treatment splits the block.
Another term applicable to this layout is strip-plot, as both A and B treatments are
in strips. The A and B treatments are independently randomized in each replica-
tion.

Table 10.1 shows the partitioning of degrees of freedom for the two layouts of
Figure 10.1, assuming four replications for each layout. Note that the split-block
arrangement necessitates the division of the split-plot error b into two error terms
and provides fewer degrees of freedom for testing B treatment main effects. But

Ay Ay Ay As Ay Ay Ay Ay As Ay
Y ETEEE T

B, |By| B, B, | B, [B,|B | B | BB : B B
Rep I Rep B, 3 3 B, B,
B, B, B, B, B,

B,|B,|B, |B,|B;|B;| B; | B B
4 1 1 4 3 2 3 4 Bﬂ 4 Bl BI BI Bl B]
Split-plot Split-block

Figure 10.1. A single replicate of split plots compared to a split block. The
experiment involves five treatments of factor A and four treatments
of factor B. In a split-plot layout, B treatments are independently
randomized within each A treatment plot, while in a split block, the
B treatments are in strips across the entire block of A plots.
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TABLE 10.1.
Degrees of freedom for the split-plot design and the split-block variation of
Figure 10.1.

Source of Degrees of Freedom
Variation Split-Plot Split-Block
Subplots rab—1 79 79

Main plots a—] 19 19

Blocks r—1 3 3

A a—1 4 4:-!

MP error (r—1)(a—1) 12— Error a 12 —Error a
B b=1 3 3
AXB (a=1)b-1) 12 12
Strip-plot error (r=1)(b-1) 9 Error b
Subplot error (r—=1)a—1)(b—1 45 Error b* 36— Error ¢

r=4 replications, a=>5 factor A treatments, b=4 factor B treatments. Brackets and arrows

indicate the use of appropriate error terms for F tests.
*Combines df for error b and c of the split-block.

since variability associated with the strips across the main plots is now removed
from the splii-plot error b to give error c of the split-block layout, the latter is
smaller and often provides a more precise F test for testing for interactions.

Figure 10.2 gives the layout of an experiment designed to examine the effect
of nitrogen fertilizer rate on sugar beet root yield for different harvest times. The
main plots are four nitrogen fertilizer rates arranged in a 44 latin square.
Subunit treatments are five dates of harvest. The subplots to be harvested at each
date are in strips through an entire column of main plots. The harvest date strips
are rerandomized for each column of main plots. Harvest operations are easier to
conduct when the plots to be harvested on a certain date form a continuous
column. This arrangement, however, necessitates the calculation of a separate
error term to test for the main effect of harvest dates. The root yield for each
subplot is given in Figure 10.2 along with totals for main plots, rows, columns, and
harvest date strip-plots. These data, along with the treatment totals of Table 10.2,
are required to compute the sums of squares for the ANOVA of Table 10.3. The
procedure for these calculations follows the table.
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Columns—I 1 m wv
Rows M« He H, Hy H, H, H, H, H, H, H, H, H, H, H, H, H, H, H, H, Y,
=" [ Y- 1
J' s NSO S N160 N-0 N3a20 rows
1 [264|29.3[10.1|23.1|18.2 [34.2[18.5| 22.4| 30.3|108] 8.4 | 292|156|20.7|24.8|30.2|24.0| 30.8 |10.4 | 22.4 l
(107.1) (116.2) (98.7) 117.8 4398
(N plot total)
| |
‘Nazo N-0 N8O IN160
1 [312(342]103(259(19.2|21.3[125(16.7]19.1 [ 52 | 108 [31.0|16.9)|21.2|26.0|29.2|24.3 | 35.2|11.2 | 209
(1208 (T4.8) (105.9 (120.8) 4223
N160 N8O N320 N-0
11 |28.0|31.2|102|223|169295 |169 (204|266 95| 98 [309|18.1 |239|288| 136 (139|164 6.1 | 105
(109.6 (102.9) 1115 (60.5) 3845
N-D N320 N160 N8O
IV [101(114| 23 | 98 | B8 |319(178(228(202| 74 | 85 [326]172 |226(28.7| 23.1|209|232| 9.0 |159
(42.4) (109.1) (109.8) (92.1) 353.4
Y, 957 329 64.0 85.7 1052 315 B78 108.3 83.1 36.7
106.1 812 1169 82.3 329 123.7 88.6 96.1 1056 69.7
Y, columns—379.9 403.0 4259 391.2 Y =1600.0

Figure 10.2. Layout of a sugar beet experiment, plot yields (tons of roots per acre)
and totals. Main plot treatments are pounds of fertilizer N per acre
arranged in a 44 latin square. Subplot treatments are five dates of
harvest at three-week intervals. Note that the same harvest date
continues through all N plots in a column; thus each column of main
plots becomes a “split-block.” The number of weeks from planting to
harvest for H; through Hj are, respectively, 20, 23, 26, 29, and 32.
Note that any subplot can be identified as Y, where i=row (r=4),
j=column (c=4), k= nitrogen rate (n=4), and 1=harvest (h=>5).
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TABLE 10.2.
Treatment totals and means, sugar beet experiment of Figure 10.2.

Harvest Date
N rate 1 2 3 4 5 Y,
Totals (Y 4,)
0 22.0 474 61.1 69.8 76.1 276.4
80 39.4 67.9 85.6 105.0 110.1 408.0
160 40.7 74.4 91.9 120.1 129.3 456.4
320 37.9 i 96.6 122.1 125.1 459.2
Y, 140.0 267.2 335.2 417.0 440.6 Y =1600.0
Means
0 5% 11.8 15.3 17.4 19.0
80 9.8 17.0 214 26.2 275
160 10.2 18.6 23.0 30.0 32.3
320 9.5 19.4 242 30.5 313

ANALYSIS OF VARIANCE
Degrees of Freedom

The degrees of freedom for the sources of variation of Table 10.3 are as follows.
Note rows, r=4; columns, c=4; nitrogen rate, n=4; harvest dates, h=>5.

Subplots rch—1=4(4)(5)—1=79 Errora (r—1)(c—1)—(n—1)=3(3)—3=6

Main plots rc—1=4(4)—1=15 H dates (h—1)=(5—1)=4

Rows r—1=4-1=3 Errorb (c—1)(h—1)=3(4)=12
Columns c¢—1=4-1=3 NXH (n—-1)(h—-1)=34)=12

Nratess (n—1)=4—1=3 Error ¢ (c—1)(n—1)(h—1)=3(3)(4)=36

Correction Term

Y2
C=mh

where r is the number of replications, n is the number of N levels, and h is the
number of harvest dates.

1600°
4(4)(5)

C= =32000.00
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TABLE 10.3.
Analysis of variance. Split-block design

Required F
Source of Variation df SS MS Observed F 5% 1%
Subplots 79 5542.680
Main plots 15 1503.720
Rows 3 224,657 74.886
Columns 3 58.063 19.354
N levels 3  1101.328 367.109 18.41 476 9.78
Error a, RC-N 6 119.672 19.945
H dates 4 3710.765 927.691 111.92 3.26 541
Error b, CH 12 99.467 8.289
NxH 12 157.147 13.096 6.59 203 272
Error ¢, C(INXH) 36 71.581 1.988
Sums of Squares
Y. *
SSR= = C
2 9
_ 439.8°+ ... +3534 — C=32994 657 — C=294.657
4(5)
Y. 2
e
SSC= o C
_379.9°+ ... 43918 . _ao0c00e1 c—58063
4(5)
SSN= 2y G
T th
2 2
=264+, +4592° o _4310) 398 C=1101.328
4(5)
SS(main plots) = T —

_107.%+... +92.1°
5

—C=33503.720— C=1503.720
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SS(Ea) = SS(main plots) — SSR —SSC — SSN

=1503.720 — 224.657 — 58.063 — 1101.328 = 119.672

ZY,,,I2

SSH = -C
2
_ 140.0°+ ... +4406 — C=35710.765— C =3610.765
4(4)
EY,j,|2
SS(Eb) = —C—SSC—SSH
_9%5.7+ - +69.7 _ - _csc—ssH
=35868.295 — C —SSC — SSH =99.467
X i
SS(NxH)= —=— —C—SSN—SSH

o 20+...+1251°
4

=236969.240 — C — SSN — SSH = 157.147

—C—S5N —SSH

SS(subplots) = 2Y* — C
=26.42429.3%+... +15.92—-C=37542.68—-C
=5542.680
SS(Ec) = SS(subplots) — SS(M plots) — SSH — SS(Eb) — SS(N x H)

=5542.680 — 1503.720 — 3710.765 — 99.467 — 157.147
=T1.581

Mean Squares

Mean squares are obtained by dividing sums of squares by the degrees of freedom
associated with each. For example:

SS(Ec) _ 71581 _

1.988
df(Ec) 36

MS(Ec) =
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The Standard Deviation Key

The use of a correction term can be avoided with a calculator programmed to

compute s=‘){Z(YI—?)2/ (r=1) . To compute any mean square, enter the ap-
propriate totals, obtain s®, and divide by the number of variates in each total
entered. For example, to compute SSR, enter 439.8, 422.3, 384.5, 353.4; depress
the key to give s=238.7003; square 38.7003 to give 1497.7133; divide by 20 to give
74.886 = MSR; multiply by 3 (i.e., df R) to obtain 224.657=SSR.

F Values and Mean Separation

F values are determined by dividing mean squares by appropriate error terms; Ea
for nitrogen, Eb for harvest date, and Ec for the N XH interaction.

The highly significant F value for N X H indicates a different response to N
depending on harvest date. An understanding of this interaction is crucial to the
interpretation of the results. By partitioning N rates and H dates into polynomial
trend comparisions, we can also partition the sum of squares for N X H to learn the
nature of the interaction. Polynomial coefficients for partitioning unequally spaced
nitrogen rates are not easy to come by, which is one of the reasons for stressing
equally spaced treatment rates. Some of these coefficients are given in Table
A.l1la, in which coefficients for our four N rates are under the series 0, 1, 2, 4.
Coefficients for partitioning the five equally spaced harvest dates are in Table
A.11 under n=>5. The coefficients for N rates and harvest dates are assigned to the
treatments of our experiment in Table 10.4. Interaction coefficients are obtained
by multiplication. For example, the coefficients for NL XHL are: —7(—2)=14,
—7(—1)=7, —7(0)=0, and so forth. Note that coefficients for all the comparisons
meet the two rules for orthogonality given in Chapter 6 and thus the sums of
squares for the single degree of freedom comparisons will add to each multiple
degree of freedom sum of squares partitioned, thus providing a test of computa-
tional accuracy.

The single degree of freedom sums of squares are computed using the rule
SS=3(c,Y)?/(r=c®), where c; are the comparison coefficients, Y; are treatment
totals, and r is the number of variates in each total. For example, the sum of
squares associated with the linear response to nitrogen is

SHihi [—7(22.0)—7(4:(.:()}; .o +9(125.1) ] -

The other single df sums of squares are computed similarly and entered in Table
10.4.

F tests are made using the appropriate error mean squares from Table 10.3:
error a for the N comparisons, error b for the H comparisons, and error ¢ for the
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TABLE 10.4.

Orthogonal coefficients for partitioning the treatment sum of squares into single degree of freedom trend comparisons, the

resulting sums of squares, and their statistical significance.

N Rates, Harvest Dates, and Treatment Totals

No Nsg Niao Nago Statistical
Significance
1 2 3 4 5  § 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Sum of of 1 df
Comparisons 220 474 611 698 761 394 679 856 1050 110.1 407 744 919 1201 1203 379 775 966 1221 1251 df Squares Comparisons”
N rates 3 1101328
Linear - = =T == =3 =P =F =F. =3 1 1 1 1 1 9 9 9 ] 8 1 730.730 -
Quadratic 7 i § i ; 7 =4 -4 =4 -4_ -2 -8 -8 -8 -3 -8 5 5 5 5 5 1 359583 i
Residual -3 —=§ -3 —3 —3 8 8 8 8 - - - i = 1 1 1 1 I I 11.005 ns
H dates 4 3710.765
Linear =8 Tl 0 1 2 -2 -1 0 1 Bio—il =% 0 1 g =2 =1 0 1 2 1 3525.006 il
Quadratic 2 -1 -2 —1 2 g2 = =8 =1 2 £ =1 @ = 2 2 -1 -2 -1 2 1 166980 ol
Cubic - i1 2 B =% I =1 2 B -2 1,=1 2 0o -2 E =1 2 [ S - R - 0.006 ns
Residual L -4 6 —4 1 1 -4 6 -4 1 1 -4 B v-a 1 b= & ~4 1 1 18.772 ns
NxH 12 157.147
NL xHL 14 7 0 -7 —-M 6 3 0 -3 -8 -2 =1 0 1 2 —-18 -9 0 9 18 1 98,899 .«
NLxHQ -14 7 14 7 -4 -6 3 [ 3 -6 g ol =% = 2 18 -9 -18 -9 8 1 5.194 ns
NLxHC 7 -4 0 4 =7 3 -6 o 8 =3 =1 2 o -2 1 -9 18 0 -18 9 1 1015 ns
NLXHR - 7 28 -—42 -7 =3 12 -18 . =3 1 =4 i i i 1 9 -3 54 -38 % 1 5.043 ns
NQxHL -14 -7 0 7 14 8 4 0 —4 -3 16 8 0 -8 -8 =10 -8& 0 5 10 1 38.660 e
NQxHQ 4 -7 -14 -7 14 -8 4 8 4 —B8B-=18 8 16 8 -16 10 -8§ -10 -5 0 1 2.595 ns
NQxHC -7 14 0 —-14 4 ='§ 0 8 —4 8 -18 o 6 -8 -5 10 0 -10 5 1 1.359 ns
NQxHR 7 —-28 42 28 T =4 168 -24 8 -4 -8 32 -48 a2 -8 5 -20 30 -2 5 1 1.557 ns
NR x HL 6 3 0 —3 & =18 -8 0 8 16 12 6 H =% 18 =& "1 0 1 2 1 1.536 ns
NExHQ - 6 3 ] 3~ 6 -8 -16 -8 6 -12 6 12 B, =1k 2—1 -8 =1 2 1 0.755 ns
NR xHC 3 -6 0 8 -3 =8 16 0 =18 8 6 —-12 0 -12 B-= ¥ 2 o -2 i G ¢ 0.384 ns
NRExXHR - 3 12 -18 I 8 -32 48 -32 B -8 24 -3 U -6 : I 8 -4 X 4 0.151 ns

“To determine F ratios, use appropriate error MS’s from Table 10.3: Ea for N

rates, Eb for H dates, and Ec for N XH comparisons.



NXH comparisons. For example, F for the interaction comparison NL XHL=
98.899,/1.988 =49.75, which far exceeds the tabular value from Table A.3 of 7.39
for significance at the 1% level (df=1 and 36). Note that NL X HL. and NQ X HL
are the only two components of the NXH interaction that are statistically
significant.

To proceed further and show an appropriate way to present the results of this
experiment requires some understanding of polynomial and multiple regression,
and so we will delay this until Chapter 16. (If you wish to see how it comes out,
look at page 262.) For now, note that the total of the six significant single degree
of freedom sums of squares account for 99% of the sum of squares due to all 19
treatment components, that is, (730.730+ 359.593 +3525.006 + 166.980 + 98.899 +
38.659) /(1101.328 +3710.765 + 157.147) = 0.990.

STANDARD ERRORS

Table 10.5 gives standard errors to use for mean separation by LSD and multiple-
range tests.

TABLE 10.5.
Standard Errors for a Split-Block.

Means Compared Standard Error (s;) t Values
A means % t
Eb
B means oy t,
A means for the same (b—1)Ec+Ea o (b—1)Ec(t,) +Ea(t,)
or different B rb e (b—1)Ec+Ea
—1)Ec+Eb -
B means for the same A (i———)c— t = (a—1)Ec(t.) + Eb(t,)
ra (a—1)Ec+Eb

A= treatments applied to the main plots, B= treatments applied to the subplots; a, b, and r
are the number of main plot treatments, subplot treatments, and replications, respectively;
Ea, Eb, and Ec are error mean squares; t,, t,, t. are tabular t values for df for Ea, Eb, and
Ec, respectively. To compute LSD and D, note that LSD=tV2 s;, and to compute
Duncan’s multiple range, D=R(LSD).
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To illustrate the use of Table 10.5, we will compute interaction LSD’s to
compare the means of Table 10.2. Neither LSD’s nor multiple-range tests would,
however, be appropriate for separating the means of this experiment, as a great
deal more can be learned by the more powerful method of Chapter 16.

LSD (5%) between N means for the same or different H.

LSD:tm\f[(b—lzfc+Ea]
(b—1)Ec(t,) +Ea

(t)  (5—1)1.988(2.028) +19.945(2.447)

*  (b—1)Ec+Ea (5—1)1.988+19.945
_ 649321 _
27897 ~ 2328

[(5—1)1.988+19.945

LSD=2.328
4(5)

=2.328(1.670) =3.4 tons/acre

LSD (5%) between H means for the same N.

LS!)m:tbc\/ﬂ[(al—l)r:i\:wEb]
(a—1)Ec(t.)

+Eb(th)  (4—1)1.988(2.028) +8.289(2.179)

T T (a—1)Ec+Eb (4—1)1.988 +8.289
_ 30.1567 _
=453 116
[(4—1)1.988+8.289
LSD=2.116 ) =2.116(1.335) =2.8 tons/acre
SUMMARY

In the split-block arrangement:

A block of plots receiving the treatments of factor A is split, so that each
treatment of factor B occurs in a continuous strip across the block. An indepen-
dent randomization of the treatments of factor B is made for each block of plots of
factor A.

The advantages of the layout are the facilitation of physical operations and the
possibility of greater precision in estimation of the AXB interaction.

The disadvantages are a loss in precision in determining the effects of factor B,
more complex computations, and complications in mean separation.
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SUBPLOTS
AS
REPEATED
OBSERVATIONS

The split-plot principle can be applied to experiments where successive observa-
tions are made on the same whole units over a period of time. For example, a
fertilizer trial or variety trial with a perennial crop might be harvested several
times during a year and/or for two or more years. The plots to which the
treatments are assigned can be called main plots, and the several harvests can be
called subplots. A subplot in this case, however, differs from the usual subplot in
that it consists of data taken from the entire main plot rather than from a
designated portion as is the case with the usual split-plot.

There are no unusual problems in analyzing data on a main plot basis for a
single observation date or for the totals over several dates of observation. But F
values arising from testing the effects of successive observations and the interac-
tion of main plot treatments with successive observations may not be distributed
as F, and too many significant effects may result.

A stepwise procedure and suggestions for handling data from such experi-
ments are given in the following example. The data are dry matter forage yields
from an alfalfa variety trial. There are four varieties randomized in five complete
blocks. To simplify matters, we will consider data from only four harvests, two
early and two late, and only for two years.

ANALYSIS FOR EACH SET OF OBSERVATIONS

An ANOVA should be carried out for each harvest.The organization of data as in
Table 11.1 generates the necessary totals to complete an ANOVA for each harvest
as well as for an annual analysis.

The ANOVA for each harvest is given in Table 11.2. The degrees of freedom
and sums of squares for “varieties” are partitioned as shown because varieties 1
and 2 are closely related, variety 2 being a selection from variety 1. The procedure
for completing an ANOVA for a single harvest date is given below Table 11.2 for
harvest 1.
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TABLE 11.1.

First-year data from an alfalfa variety trial laid out as a randomized complete block
with tour varieties(v=4), five blocks (b="5), and four harvests (h=4). Data are tons
per acre of dry alfalfa.

Blocks (j)

Variety (i) Harvest(k) 1 2 3 4 5 b (% Y
1 1 2.69 240 323 287 327 1446 2.89*
2 1 287 3.05 309 290 298 14.89 2.98
3 1 312 327 341 348 319 1647 3.29
4 1 323 323 316 301 305 1568 3.14

Y, 1191 11.95 1289 1226 1249 61.50=Y ,
1 2 2.74 191 347 287 343 1442 2.88
2 2 250 290 323 298 305 1466 2.93
3 2 292 263 367 290 325 1537 3.07
4 2 350 289 339 290 316 1584 3.17
Y 1166 1033 13.76 11.65 12.89 60.29=Y,
1 3 167 122 229 218 230 9.66 1.93
2 3 147 185 203 182 151 8.68 1.74
3 3 167 142 281 151 176 917 1.83
4 3 260 192 236 192 214 1094 2.19

Ys 741 641 949 743 771 3845=Y,

1 4 192 145 163 160 196 856 1.71
2 4 200 203 171 160 196 930 1.86
3 4 203 196 185 18 240 10.06 2.01
4 4 207 189 192 182 178 948 1.90
o 802 733 711 684 810 3740=Y,
Variety X block totals _
(main plots, Y;;) Y, Y.
1 902 698 1062 952 1096 47.10 9.42°
2 884 983 1006 930 950 4753 9.51
3 974 928 11.74 971 1060 51.07 10.21
4 1140 993 1083 965 1013 51.94 10.39
; 39.00 36.02 4325 38.18 41.19 197.64=Y

*In tons per acre per harvest. "In tons per acre per year.
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TABLE 11.2.
Analysis of variance for each harvest of the first year

Har 1 Har 2 Har 3 Har 4
Source of
Variation
df SS MS SS MS SS MS ss MS
Total 19 1.1801 3.1045 3.3016 0.8376
Blocks 4 01651 00413 1.7249 04312 12562 03140 03112 0.0778
Varieties 3 04729 0.1576 0.2547 0.0849 05660 0.1887 0.2205 0.0765
1+2vs. 3+4 1 03920 03920* 02268 02268 0.1567 01567 0.1411 0.1411*
1vs. 2 1 0018 00185 00058 00058 00960 0.0960 00548 0.0548
3vs. 4 1 00624 00624 00221 0.0221 03133 03133 00336 0.0336
Error 12 05421 0.0452 1.1249 0.0937 14794 01233 0.2969 00247

*Ratio of MS to error MS exceeds tabular F required for significance at the 5% level.
Tabular Fy s (1 and 12 df)=4.75.

V =varieties, v=4; H = harvests, h=4; B=Dblocks, b=5.

Y.* 6150
C=——=—""" = E
vhb ~ 4(4)5 189.1125
Y2 2
SSB= v-;l _c= 1191 +':4' +1249" _ - _0 1651

SsvV

3Y, 2 2 "
- bl.i —C= 14.46"+ 5 +15.68 —C=04729

SS(V1+2 vs. 3+4) = (14.46+ 14.89 — 16.47 — 15.68)% /5(4) =0.3920.

Note that this single degree of freedom computation and the two that follow
involve the use of the rule: $§=(Zc,Y,?/(r=c?). For these three computations the
¢'sare all + or —1.

(14.46 — 14.89)*

SS(V1 vs. V2) = ~—————— =0.
(V1 vs. V2) 52) 0.0185

S5V va. Vi (16.47—15.68)* S
VS. = 5(2) =(.0624

SS(total) =2.69*+ ... +3.05* — C=1.1801
SS(error) = SS(total) — SSB — SSV = 0.5421
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Mean squares are obtained by dividing SS’s by appropriate degrees of free-
dom, for example, MSV=0.4729/3=0.1576. F values for testing variety effects
are found by dividing MS’s for variety components by the mean square for error
for that particular harvest, for example, for harvest 1, F for V1+2 vs. V3+4=
0.3920/0.0452=8.67. Varieties 3 and 4 average 0.28, 0.27, 0.18, and 0.17 tons/
acre more than varieties 1 and 2 for harvests 1 through 4, respectively. Since the
difference (V1+2)—(V3+4) is statistically significant for harvests 1 and 4, it
appears logical to assume real differences for this comparison for harvests 2 and 3
also, even though F values are not significant at the 5% level.

Annual Analysis

An annual analysis is carried out and organized as in Table 11.3. A stepwise
procedure for the computations, identical to those used in a split-plot, are given
below.

TABLE 11.3.
Analysis of variance, first year, alfalfa variety trial

Tabular F
Source of Variation df SS MS F 5% 1%
Subplots 79 34.8690
Main plots 19 5.0769
Blocks, B 4 1.9386 0.4846
Varieties, V 3 0.9014 03005« 161 349 595
142 vs. 3+4 1 0.8778 0.8778=1 4.71 4.75 933
1vs.2 1 0.0046 0.0046 -
3vs. 4 1 0.0189 0.0189-
MP error, BV 12 2.2369 0.1864—
Harvests, H 3(1) 264452 881511552 4.49* 8.53°
VxH 9(3) 0.6217 0.0690= 121 3.24* 5.29°

Subplot error, BH+B(V XH) 48(16) 2.7252 0.0568—

*Tabular F values are for degrees of freedom in parentheses.

Y. 19764
vhb  4(4)5

C= =488.2696
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Note that putting h in the denominator keeps the observations on a per-harvest
basis.

sspo 2V _ oo 3900+ .. +4119°

vh 4(4) ¢

=420.2082 — C=1.9386

If you have a calculator preprogrammed to compute s=\ /(Yi—ﬂz /(r—1) , SSB

and the other sums of squares can be found by the following procedure: enter the
appropriate totals, get s, square s, and divide s* by the number of variates in each
total entered. The result is MS which, multiplied by the appropriate degrees of
freedom equals SS. For example, s* of block totals=7.75437. Divide by 16=
0.48465 = MSB. Multiply by 4=1.9386=SSB.

b2} Bl 2
SSV = L _C= 47,10+ +51.94°

b 1() &

=489.1710 - C=0.9014

(EciYi.,)z
SS(V1+2vs. 3+4)= ———

bh=c?
Note that the comparison coefficients, the ¢;’s, are all + or —1.

(47.10+47.53—51.07 — 51.94)°
5(4)4

SS(V1+2vs.3+4)=

=0.8778

b4 2 ... 2
ss(mp)=(%)-c=9-°2 21013 c-5.0769

SS(MP error) = SS(MP) — SSB — SSV =2.2369

) e
SSH= —o* _ o BL50°+--- +37.40° _
bh 5(4)

C

=26.4452
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> fit
ss(v><H)=( = )—C—SSV—SSH

b

_ 1446+ - -- +9.48°

5 —C—-SSV—-SSH

=0.6217
SS(subplots) =2Y,,2— C=(2.69+ - - - +1.78%)—C

=523.1386 — C =34.8690
Note also that

SS(SP) = SS(total) for H, + - - - +SS(total)H, + SSH

=1.1801+ - - - +0.8376+26.4452 = 34.8690

SS(SP error) = SS(SP) — SS(MP) — SSH— SS(V X H)
=34.8690 —5.0769 — 26.4452 — 0.6217 = 2.7252

Mean squares are obtained by dividing sums of squares by degrees of freedom, for
example, MSV =0.9014 /3 =0.3005.

F Values and Mean Separation

The brackets connecting mean squares of Table 11.3 indicate the error terms used
in calculating F ratios. F values for harvests and VX H should be large before
concluding the existence of real differences. A conservative approach recom-
mended by many statisticians is to require larger F values for significance. It is
suggested that degrees of freedom for harvest date be used to divide degrees of
freedom for H, VXH, and subplot error (values in parentheses in Table 11.3) and
to select tabular F values on the basis of the resulting degrees of freedom (those in
Table 11.3 with the superscript a). Considering the larger F value for harvests,
there is little doubt that there are real differences among the mean effects of
harvest dates. There is no evidence for a real interaction of VXH.

Note that most of the variability among varieties is due to V1+2 vs. V3+4
and that the F value for this comparison is nearly significant at the 5% level.

STANDARD ERRORS. Standard errors used in LSD and multiple-range tests are
the same as for the normal split-plot design with respect to the mean effects of the
factor applied to the main plots (in this case varieties), but they differ from the
split-plot for means of the repeated observation (harvest dates) and the interaction
of main plot treatment X repeated observation (VXH). In the following discus-
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sion, we more or less follow the procedure given by Steel and Torrie (1960).
For a review of the use of a standard error in the calculation of LSD and

Duncan’s multiple-range test, see Chapter 6. Briefly, LSD =ts3 and D=R(LSD).

1. Comparing two A means, V,—V,

(MP error)
a. On a per-harvest basis: s3= =%

(0.1864)
=Y~ LsmRlinee)=0ittesere
2h(MP error)
b. On an annual basis: s3= —
(4)(0.1864)

s=\—5— =05461 LSD=2.179(0.5461) = 1.19 tons/acre

2. Comparing two B means, H, —

ﬁ SP error)
53=

(0.0568)
————— =00754  LSD=2.120(0.0754) =0.16 tons/acre

TV s
where t gy is for 16 df.

3. Comparing two A means at the same level of B, V,H,—V,H,

where E, is the error for the analysis of the harvest under consideration.
For H,

(0.0452)
5§ = S gl s5=0.1345,
LSD =2.179(0.1345) = 0.29 tons /acre

4. Comparing two B means for the same or different A, V,H,—V H, or
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V1Hu _'Vsz

2(E, +E,)
2b

S3=
where E, and E, are error MS’s for the two harvests and are averaged.

o (0.0452 +0.0937) P

LSD=2.179(0.1667) = 0.36 tons/acre

COMBINING TWO OR MORE YEARS

In addition to analyzing the performance of varieties for each year, the researcher
usually is interested in variety performance over a series of years and the possible
interaction of varieties with years. Several years’ results, involving several harvests
each year, may be combined as a split-split-plot analysis with varieties as main
plots, years as split-plots, and harvests as split-split plots. However, the interaction
of varieties X years X harvests usually is not of primary importance. Annual
analyses plus an analysis of yearly whole plot totals over a séries of years is usually
all that is required in making decisions as to varietal suitability.

To illustrate the procedure for combining yearly total variety plot yields over
a period of years, we will use data from two years only. The procedure is the same
as for the analysis of harvests within a year. Table 11.4 provides the necessary

data. Note that the variety X block totals of year 1, Table 11.1, are the data for
year 1 in Table 11.4.

The Analysis for Each Year

The annual analysis needed is the main plot analysis of Table 11.3 for each year.
Since we now want the data on a per-plot per-year basis rather than on a per-plot
per-harvest basis as for Table 11.3, we multiply the sums of squares of Table 11.3
by the number of harvests to complete Table 11.5. Thus, for year 1 the ANOVA of
Table 11.5 is completed by

SSB=(SSB for year 1)4=(1.9386)4="7.7544
SSV = (0.9014)4 = 3.6056
SS error = (2.2369)4=8.9476
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TABLE 11.4.

Tons of dry forage per main plot per year for years 1 and 2, alfalfa variety trial.
(Note that data for year 1 are the same as for the bottom portion of Table 11.1),

Blocks (j)
Variety () Year®) 1 2 3 4 5 Yo Yo
1 1 9.02 698 1062 952 1096 47.10 9.42
2 1 884 9.83 1006 930 950 47.53 9.51
3 1 974 928 11.74 971 1060 51.07 10.21
4 1 11.40 993 1083 9.65 1013 51.94 10.39
Y, 3900 3602 4324 3818 4119 197.64=Y
1 2 11.88 11.33 11.81 1222 1065 57.89 11.58
2 2 12.15 1098 1220 11.30 1254 59.15 11.83
3 2 1292 11.95 1205 11.88 13.19 61.99 12.40
4 2 11.74 11.62 1154 1200 11.74 58.64 11.73
Y, 4869 4586 47.60 4740 4812 237.67=Y,
Variety X block totals
(main plots, Y;;) Y. Y.
1 2090 1831 2243 21.74 21.64 104.99 10.50
2 20.99 20.79 2226 20.60 22.04 106.68 10.67
3 22.66 21.23 23.79 21.59 23.79 113.06 11.31
4 23.14 2155 2237 21.65 21.87 110.58 11.06
Y, 8669 8188 9085 8558 8931 43531=Y_
TABLE 11.5.
Analyses of variance of total yield per plot for each year.
Sourceof Year 1 Year 2
Variation df s MS s MS
Blocks 4 7.7544 1.9386 1.1261 0.2815
Varieties 3 3.6054 2.2018 1.9254 0.6418
1+2vs 3+4 1 3.5112 3.5112 0.6444 0.6444
1vs. 2 1 0.0184 0.0184 0.1588 0.1588
3vs. 4 1 0.0756 0.0756 0.1122 0.1122
Error 12 8.9476 0.7456 3.7462 0.3120
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The same procedure is used to complete Table 11.5 for year 2. Note that in the
second year there were no statistically significant variety effects but that the major

portion of the variability among “varieties” was due to the comparison, variety
1+2vs. 3+4,

Putting the Years Together

The ANOVA of Table 11.6 is completed from the data of Table 11.4 and combines
the yearly totals over the two years in a manner analogous to combining harvests
within a year (Table 11.3). The sums of squares are obtained as shown below.
Mean squares are sums of squares divided by their own degrees of freedom.

TABLE 11.6.
ANOVA of annual yields over two years,

Tabular F
Source of Variation df SS MS F 5% 1%
Subplots 39 67.1654
Main plots 19  14.0138
Blocks, B 4 6.1058  1.5264
Varieties, V 3 40323 1.3441-— 4.16 349 595
1+2vs3+4 1 35820 3.5820=<— 11.09 4.75 9.33
1vs2 1 01428  0.1428 =
3vs4 1 03075 0.3075=
MP error, VB 12 3.8757 0.3230—
Years 1  40.0600 40.0600=— 55.29 449 8.53
VXY 3 1.4985  0.4995-
(V142 vs. 3+4) XY 1 05736 0.5736=
(V1vs. 2) XY 1 00344 0.0344 <
(V3 vs. 4) XY 1 08904 0.8904 <

Subplot error, BY +B (VXY) 16 11.5931 0.7246—

V=varieties, v=4; B=blocks, b=5; Y=years, y=2.

_ 86.69°+ ... +89.31°
4(2)

—C=6.1058
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3y, ¢ 2
g e oo JOLO0F . HLIDSP | oo anon
by 5(2)

(Zey,)*
byZc?

SS(V1+2vs. 3+4)=

where c; are class comparison coefficients, in this case + and —1.

(104.99 +106.68 — 113.06 — 110.58)*

SS(V1+2 vs. 3+4)= 5@ =3.5820

S5 VB (104.99—106.68)* iR

(V1vs. V2)= 52 =0.
113.06 —110.58

V3 vs. V4) = —=222— ~ 2099 () 3075

SS(V3 vs. V4) 52)2
3y,° 20.90°+ ... +21.872

SS(MP)= —— —C= == 2l —C=14
(MP) o 405) C=14.0138

SS(MP error) = SS(MP) — SSB— SSV =3.8757

2 2
SSy =~k _ o 197.642+23767 _ ~_ 10 0600
vb 45)

2

BT
SS(VXY)= 5= —C—SSV—SSY

2
_ 47.10°+ 5 +58.64 —C—SSV—SSY =1.4985

This interaction sum of squares is partitioned by attention to the class comparison
coefficients given in Table 11.7.
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TABLE 11.7.
Orthogonal coefficients for partitioning year and variety comparisons,

Annual Variety Totals
ViY, VoY, VY, VY, VY, V.Y, VoY, V.Y,
Comparison 47.10 4753 51.07 5194 57.89 59.15 61.99 58.64

Y

1 + + + - - - -
V1+2vs. 3+4 + F 5 = + + - -
V1 vs. 2 e = 0 0 + = 0 0
Vivs. 4 0 0 % = 0 0 + ==
(VI+2vs. 3+4)XY + + - - - - + +
(V1 vs. 2) XY ¥ = 0 0 = + 0 0
(V3 vs. 4) XY 0 0 + = 0 0 = &

SS(V1+2 vs. 3+4) XY

(47.10+47.53 — 51.07 — 51.94 — 57.89 — 59.15 + 61.99 + 58.64)
5(8)

=0.5736

(47.10—47.53 - 57.89+59.15)*
SS(V1 vs. 2) XY= =

5(4)

(51.07—51.94 — 61.99+58.64)"

SS(V3 vs. 4) XY= wbiiin

5(4)

Yy, 9.022+ ... +11.74

SS(Subplot =iy . _
{Subplote) = gy 4(5)2 C
=67.1654

SS(SP error) = SS(SP) — SS(MP) — SSY — SS(V X Y) = 11.5931

F values are determined by dividing MS’s by the error term indicated by the
brackets and arrows of Table 11.6. There are no indications for interactions of
varieties with years, but the large F value for years indicates a real year effect
despite the doubtful wisdom of using the subplot error MS to make the F test. The
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fact that MS subplot error is larger than the MS MP error lends justification to this

conclusion.
Note that there is little doubt that varieties 3 and 4 are superior to 1 and 2,

since the F value exceeds the tabular 1% value. There is no evidence that variety 2
is really better than 1 or that variety 3 is better than 4.

STANDARD ERRORS. The calculation of standard errors is analogous to that for
the annual analysis. Standard errors and LSDs pertinent to the significant effects
of this analysis are given below.

(MP error)
1. Comparing two variety means: s3= T
(0.3230)
Sa= W =0.2542 LSD=2.179(0.2542) = 0.55
2(MP error)

2. Comparing variety 1 and 2 vs 3 and 4: s3= ———byT

=0.1797  LSD=2.179(0.1797)=0.39

In calculating standard errors, a rule to follow is that the denominator should
equal the number of variates going into the means to be compared. Thus, 2 is
placed in the denominator because we are comparing the mean of variates 1 and 2
with the mean of variates 3 and 4.

SUMMARY

Periodic sampling of main plots for yield, as repeated harvests of perennial variety
plots, repeated picking of fruit from the same trees, or repeated sampling of soil
plots over time for nutrient content are most properly analyzed as the split-plot
design. Data are analyzed as for split-plots, but caution should be used in
concluding that there are real effects for the repeated observation and its interac-
tions with main plot treatments unless F values are large.
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12

TRANSFORMATIONS

(WHAT TO DO
WHEN DATA

BREAK THE RULES)

Research workers who are content to learn the “recipes” for carrying out an
analysis of variance, without attempting to learn and understand the underlying
principles, may be headed for serious trouble. Whether they realize it or not, they
are making certain assumptions about the data when they perform an analysis of
variance. If the data do not conform to these assumptions, such an analysis may
cause workers to reach conclusions that are not justified. They may also overlook
important conclusions that would be reached if the data were properly analyzed.

ASSUMPTIONS OF THE ANALYSIS OF VARIANCE

The assumptions on which an analysis of variance is based are briefly as follows:
1. The error terms are randomly, independently, and normally distributed.
2. The variances of different samples are homogeneous.
3. Variances and means of different samples are not correlated.

4, The main effects are additive.

We now discuss these four assumptions in more detail.

Normality

Fortunately, deviations from the assumption of normality do not affect the validity
of the analysis of variance too seriously. There are tests for normality, but it is
rather pointless to apply them unless the number of samples we are dealing with is
fairly large. Independence implies that there is no relation between the size of the
error terms and the experimental grouping to which they belong. Since adjacent
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plots in a field tend to be more closely related to each other than randomly
scattered plots, it is important to avoid having all plots receiving a given treatment
occupying adjacent positions in the field. This is one of the main reasons for the
insistence on not dividing a plot receiving a certain treatment into subplots and
referring to these as replicates. The best insurance against seriously violating the
first assumption of the analysis of variance is to carry out the randomization
appropriate to the particular experimental design you are using.

Homogeneity of Variances

The first reference in this book to analysis of variance (Chapter 3), dealt with a
simple example with two treatments each replicated five times. You will note that
we assumed that the variances within each treatment both estimated a common
variance. We therefore felt justified in using the average of these two variances as
a better estimate of ¢® than either one alone. Similarly, in Chapter 4 we used a
“pooled error mean square,” or an average of four variances to give us the best
estimate of the common variance.

If the variances within different treatments were, in fact, different, we would
not be justified in pooling them. Suppose, for example, that the replicates in two of
the treatments were actually samples from populations with large variances, while
those of the other two treatments were from populations with much smaller
variances. It should be obvious that the difference required for significance would
be greater for the two highly variable treatments than for the two less variable
ones. Averaging the large and small variances could give very misleading results.
The difference between the two treatments with large variances might be declared
significant when, in reality, it could easily have occurred by chance. On the other
hand, the difference between the two treatments with small variances might be
declared nonsignificant when, in fact, it was real. The following data from a
hypothetical experiment with four treatments, each replicated five times, will
illustrate this situation:

Replicate
Treatment 1 2 3 4 5 Total Mean s

A 3 1 5 4 2 15 3 2.5
B 6 8 7 E 5 30 6 2.5
C 12 6 9 3 15 45 9 22.5
D 20 14 11 17 8 70 14 22.5
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Carrying out the analysis of variance in the usual way, we get:

Source of variation df SS MS F
Treatments 3 330 110 8.8**
Error 16 200 125

Note that the error mean square is the average of the four individual

variances within the treatments. The F value is highly significant. Let us now
calculate an LSD:

LSD s =tV2EMS/r =2.12V5 =4.74

Since the mean difference between treatments A and B is only 3, we would

conclude that this was not significant. The mean difference between C and D is 5,
and this would be called significant at the 5% level. We note, however, that the
variances of C and D are nine times as large as those of A and B. The assumption
that the variances are homogeneous is open to considerable doubt. It would,
therefore, be more reasonable to analyze A and B separately from C and D.

The analysis for A and B is:

Source of variation df SS MS F
Treatments 1 22.5 22.5 9*
Error 8 20.0 2.5

For C and D:
Source of variation df SS MS F
Treatments 1 62.5 62.5 2.78ns
Error 8 180 22.5

We are now led to just the opposite conclusions regarding the differences between
A and B and between C and D. Later we will show how to test data for
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homogeneity of variances. As to what we can do when we encounter data in which
the variances are not homogeneous, there are several courses we can follow. First,
we can separate the data into groups such that the variances within each group are
homogeneous. Then each group can be analyzed separately as we did in the
example above. Second, we can use a method described in more advanced
statistics texts, which involves a rather complicated procedure of weighting means
according to their variances. Third, we might be able to transform the data in such
a way that they will be homogeneous. We discuss this method further on in this
chapter.

Independence of Means and Variances

In some data, there is a definite relation between the means of samples and their
variances. This is a special case and the most common cause of heterogeneity of
variance. A positive correlation between means and variances is often encountered
when there is a wide range of sample means.

Suppose, for example, that an experimenter was testing the effects of several
insecticides on aphids and measuring the effectiveness by counting the number of
aphids per leaf after application. If the means of two rather ineffective treatments
were 305 and 315, he would naturally hesitate to attach much importance to this
difference. On the other hand, if the means of two other treatments were 5 and
15, he might be inclined to feel that this difference was appreciable, impressed
with the fact that one of these was three times as large as the other. Under the
assumption that the variances are homogeneous and unrelated to the means, he
would have to attach as much importance to the difference between 305 and 315
as that between 5 and 15, for the actual differences are the same in both cases. He
probably would have an uneasy feeling that something was wrong. An examination
of the various samples would almost certainly reveal that, in general, the samples
with high means would also have large variances and those with low means would
have small variances. Thus the assumption that the means and variances are not
correlated would be false, and an ordinary analysis of variance of the raw data
would not be valid.

Let us take a more extreme example. Some experimenters want to test the
effect of a new vitamin on the weights of animals. They wish to include a wide
range of animals in their tests, so they choose mice, chickens, and sheep. Common
sense would tell us that a difference of a half pound in the mean weights of two
lots of sheep would be considered negligible and easily attributed to chance. A
difference of a half pound in the mean weights of two lots of chickens would be
considered very large, but not beyond the realm of possibility. A difference of a
half pound in the mean weights of two lots of mice would be looked upon as
utterly fantastic. Admittedly this is an extreme and almost absurd example, but it
serves to emphasize the point that the assumption of the independence of
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variances and means should not be accepted blindly. We should examine the data
and, if necessary, test the validity of the assumption before we proceed with an
analysis of variance.

Other types of data that often show a relation between variances and means
are data based on counts and data consisting of proportions or percentages. Now,
suppose that we find that there is a relation between variances and means. Does
this mean we are forced to abandon the analysis of variance as a method for
analyzing the data? Fortunately, it is often not the case. We can frequently
transform the data in such a way that the assumption of independence between
variances and means will be valid. Then we can proceed with an analysis of
variance on the transformed data.

Additivity

For each experimental design there is a mathematical model called a linear
additive model. For a completely randomized design, this model is Y,=Y+t,+e;,
which says that the value of any experimental unit is made up of the general mean
plus the treatment effect plus an error term. The corresponding model for a
randomized complete block design is Y;=Y+t+b;+e;, which says that any
experimental unit is made up of the general mean plus a treatment effect plus a
block effect plus an error term. The important thing to note in these models is that
the terms are added, hence the term additivity.

The model for a randomized complete block, for example, implies that a
treatment effect is the same for all blocks and that the block effect is the same for
all treatments. In other words, if a treatment is found to increase the yield a
certain average amount above the general mean, it is assumed that it has this same
effect in the high-yielding blocks as in the low-yielding blocks.

One can conceive of many situations where this assumption would not be
correct. For example, in an experiment to test the effect of N on yield, some
blocks might yield less than others because of a low natural nitrogen level in the
soil. We might expect the plots in such blocks to benefit more from the addition of
nitrogen than plots in blocks where the natural supply of nitrogen was already
adequate. On the other hand, suppose that the low yield was due to an inadequate
moisture supply. We might then expect the addition of nitrogen to do very little
good in these low-yielding blocks but produce an appreciable increase in yield in
blocks in which there was sufficient water. Another situation might be one in
which the effect of a treatment is to increase the yield by a certain percentage or
proportion. This is referred to as a multiplicative treatment effect.

In any of the above cases, the assumption of additivity would be incorrect;
this fact must be recognized in analyzing the data. In the case of multiplicative
treatment effects, there are again transformations that will change the data to fit
the additive model.
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TESTS FOR VIOLATIONS OF THE ASSUMPTIONS

We are now ready to give some specific examples of data that fail to meet one or
more of the assumptions of the analysis of variance. We show how to test these

assumptions and the ways in which the data may be transformed so that they will
conform. Table 12.1 gives some hypothetical data that might be obtained from an

experiment such as that discussed earlier, dealing with the effects of a new vitamin
on mice, chickens, and sheep.

TABLE 12.1.

Weights, in pounds, of vitamin-treated and control animals, in a randomized
complete block experiment

Block
Treatment I In I v Total Mean
Mice—control 0.18 0.30 0.28 0.44 1.2 0.3
Mice—vitamin 0.32 0.40 0.42 0.46 1.6 04
Subtotals 0.50 0.70 0.70 0.90 2.8 0.35
Chickens—control 2.0 3.0 18 2.8 9.6 2.40
Chickens—vitamin 2.5 33 2.5 33 11.6 2.90
Subtotals 45 6.3 4.3 6.1 21.2 2.65
Sheep—control 108.0 140.0 135.0 165.0 548.0 137.0
Sheep—vitamin 127.0 153.0 148.0 176.0 604.0 151.0
Subtotals 235.0 293.0 283.0 341.0 1152.0 144.0
Grand totals 240.0 300.0 288.0 348.0 1176.0 49.0

Analyzing the data by the methods used in Chapters 5 and 6 results in the

following analysis of variance:

Source of variation SS MS F
Blocks 3 984.00 328.00 2.63
Treatments 5 108,713.68 21,742.74 174 43**

Species 2 108,321.16 54,160.58 434.51**

Vitamins 1 142.11 142.11 1.14

Species X Vitamins 2 250.41 125.20 1.00
Error 5 1,869.72 124.65

Transformations (What to Do When Data Break the Rules) 144



The highly significant difference among species does not surprise us at all. It
does seem very strange that we did not find a significant difference due to
vitamins, especially since every animal in every replicate receiving the vitamin
showed a greater weight than the corresponding control animal. It also seems
strange that we find no evidence of interaction between vitamin effects and
species, since the apparent response to vitamins is so different in the different
species. If we accept this analysis at its face value, we would have to conclude that
the experiment was virtually a total failure. All we seemed to learn was that mice,
chickens, and sheep differ in weight. Even here, if we partition the species effect
into two comparisons, one comparing sheep with chickens and mice; the other
comparing chickens with mice, we find we cannot even show a significant
difference between chickens and mice.

Let us look at the data with the assumptions of the analysis of variance in
mind and see what can be done if some of the assumptions prove false. First, we
can look at the error terms to see whether they are randomly, independently, and
normally distributed. To do this we remove the general mean, the treatment
effects, and the block effects from each cell of the table as we did in Chapter 5.
This gives a table of error terms, Table 12.2.

TABLE 12.2.
Error components in vitamin experiment

Block
Treatment 1 11 11 v Total
Mice—control 8.88 —1.00 0.98 —8.86 0
Mice—vitamin 8.92 —1.00 1.02 —894 0
Chickens—control 8.60 —0.40 0.40 —8.60 0
Chickens—vitamin 8.60 —0.60 0.60 —8.60 0
Sheep—control —20.00 2.00 —1.00 19.00 0
Sheep—vitamin —15.00 1.00 —2.00 16.00 0
Totals 0 0 0 0

These error terms certainly do not appear to be randomly distributed. They
are apparently not independent, because in each block the error terms for the two
members of each species are closely related. Finally, their distribution looks as
though it deviates from normal considerably, since there are two modal classes,
one between 8.5 and 9.0 and the other between —8.5 and —9.0. The first
assumption of an analysis of variance did not stand up very well under close
scrutiny.
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TABLE 12.3.
Variances and their logs for groups in vitamin experiment

Treatment df 52 Coded s? Log coded s
Mice—control 3 0.0115 115 1.06
Mice—vitamin 8 0.0035 3.5 0.54
Chickens—control 3 0.3467 346.7 2.54
Chickens—vitamin 3 02133 213.3 2.33
Sheep—control 3 546.0 546,000. 5.74
Sheep—vitamin 3 425.3 425,300. 5.63

Totals 18 971,875. 17.84
Mean 161,979.
Log of mean 5.209

Next, we examine the assumption of the homogeneity of variances. To do this,
we need to learn a test known as Bartlett’s Test for Homogeneity of Variances.

First, we need to calculate the variance among the four replicates of each
treatment combination. For the mouse controls this will be

0.18%+0.30> +0.28% +0.44*— (1.2% /4)
number of replicates — 1

=0.0115

After each such variance is computed, they are entered in a table as shown in
Table 12.3.

The purpose of coding the variances is to avoid negative logarithms. We can
multiply the variances by any constant we choose without altering the test. It is
desirable to have all the coded values be 1 or greater, so we have coded by
multiplying each s by 1000. It is easiest to use common logarithms; two digits in
the mantissa are usually sufficient. The mean of the coded variances is found by
dividing their total by the number of samples, and the log of this mean is entered.
We are now ready to calculate what is called the unadjusted chi-square.

The general formula for samples of unequal size is

x> =2.3026(logs? x =df) — Z(df xlogs?)

When the samples are all of the same size, as in our example, this reduces to
x> =2.3026 df(nlogs* — Zlogs?)
=2.3026(3)[ 6(5.209) — 17.84]
=92.66
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The factor 2.3026 in these formulas is the factor for converting common logs to
natural logs, n is the number of samples, and df is the degrees of freedom per
sample.

The unadjusted chi-square must be adjusted by dividing by a correction
factor, C. When the sample sizes are unequal, the required formula is

c=1+ 3(71_1—) (z5- =
With equal sample sizes, this formula reduces to
dLid (n+1)
3n(df)
In our example,
C=1+ 3(67)'(3) =113

Then x* adjusted = x* unadjusted /C=92.66/1.13=82.00.

We now refer to chi-square Table A.6 at 5 degrees of freedom (one less than
the number of samples) and find that 82 far exceeds the tabular value at the 0.1%
level of significance (20.517). The evidence that the variances are heterogeneous is
therefore very convincing.

The next assumption to examine is that of independence between the means
and variances. A quick glance at the data is sufficient to convince us that this
assumption is certainly incorrect because the high means have very large variances
and the low means have very small variances.

An important question to answer, in order to decide which transformation to
use, is whether it is the variances or the standard deviations that are more nearly
proportional to the means. We construct a table of ratios as shown in Table 12.4.

TABLE 12.4.
Ratios of variances and standard deviations to means in vitamin experiment

Treatment Y s,-2 5; Siz/ Y s/ Y
M-C 0.3 0.01147 0.107 0.04 0.36
M-V 0.4 0.00347 0.059 0.01 0.15
C-C 2.4 0.3467 0.589 0.14 0.24
C-v 2.9 0.2133 0.462 0.07 0.16
S-C 137.0 546.0 23.367 3.98 0.17
S-v 151.0 425.3 20.624 2.82 0.14
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We see that the ratio of variances to means increases markedly with the
means, while the ratio of standard deviations to means remains fairly constant. (In
other words, the standard deviations are roughly proportional to the means.)
Incidentally, if the variances and means were unrelated, both of these ratios would
be expected to decrease as the means increase.

The final assumption to examine is that of additivity. Under this assumption
we would expect the block effects to be approximately the same for all treatments.
From Table 12.1 we see that the average difference between block 1 and block 4
was 18 1b. However, the average differences between these two blocks in the case
of mice, chickens, and sheep were 0.2, 0.8, and 53.0 Ib, respectively.

The formal test for additivity is called Tukey’s test. This test is applicable to
any two-way classification such as a randomized complete block experiment in
which the data are classified by blocks and treatments.

We need a table such as Table 12.5, that contains the raw data from Table
12.1 with the block and treatment effects calculated in the margins.

Note that the sums of both block effects and treatment effects add to zero. To
carry out the additivity test we need to calculate

Q=2 (Y. -Y)(¥,-Y)

which says that we multiply each cell in the table by the corresponding treatment
and block effects and sum all the products.
In our example

Q=0.18(—48.7)(—9.0) + ... +176.0(102.0)(9.0) =90,140.56

TABLE 12.5.
Calculation of block and treatment effects

Treatment
Block Mean Effect
Treatment I 1l 111 v Y,) Y, -Y
M-C 0.18 0.30 0.28 0.44 0.3 —487
M-V 0.32 0.40 0.42 0.46 0.4 ~486
CQ 2.00 3.00 1.80 2.80 2.4 —46.6
(oAY 2.50 3.30 2.50 3.30 2.9 —46.1
B 1080 1400 1350 1650 1370 88.0
S-v 1270 1530 1480 1760 1510 102.0
Mean 40.0 50.0 48.0 58.0 49.0
Y-Y -9.0 1.0 -1.0 9.0
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The sum of squares for nonadditivity is then found as follows:
(Q* X total experimental units)
(SSTr X SSB)

SS nonadditivity =

Applying this equation to our example gives
(90,140.56% X 24)
(108,713.68 X 984.0)

=1822.94

SS nonadditivity =

This is a portion of the block X treatment or error sum of squares, which can be
partitioned as follows:

Source of Variation df SS MS F
Error (B X Tr) 15 1869.72
Nonadditivity 1 1822.94 1822.94 545.79
Residual 14 46.78 3.34

The F value observed far exceeds the required F value of 8.86 at the 1% level for 1
and 14 degrees of freedom (from Table A.3), so there is strong evidence that the
assumption of additivity is incorrect.

We have now checked all the assumptions of the analysis of variance and
found that our data does not satisfy any of them. It is no wonder that the analysis
of variance gave disappointing results.

Perhaps the most sensible way of analyzing these data is to handle each
species separately. The analyses are as follows:

Species Source of variation df SS MS F

Mice Blocks 3 0.0400 0.0133 8.31
Vitamins 1 0.0200 0.0200 12.50*
Error 3 0.0048 0.0016

Chickens  Blocks 3 1.64 0.547 41.00**
Vitamins J 0.50 0.500 375t
Error 3 0.04 0.013

Sheep Blocks 3 2834.0 9447 157.4**
Vitamins 1 392.0 392.0 66.3**
Error 3 18.0 6.0
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These results are certainly much more satisfactory than the original overall analysis
of variance. These analyses are valid, because within any one species the data
conform to the basic assumptions quite well. The only shortcoming of these
analyses is that they tell us little about whether the different species react similarly
to the vitamins. This is perhaps not a very important question, and in practice the
research worker would no doubt be content to stop at this point. However, we will
follow the other procedure of transforming the data to show the remarkable results
that can be achieved.

THE LOG TRANSFORMATION

We must now answer the question of how to transform the data. Whenever we
have data where the standard deviations (not the variances) of samples are roughly
proportional to the means, the most effective transformation is a log transforma-
tion. Another criterion for deciding on this transformation is the evidence of
multiplicative rather than additive main effects. Both of these criteria are met in
the data we are dealing with, so we will try transforming the data to logs and see
what happens.

TABLE 12.6.
Data of vitamin experiment transformed to log 10X

Block
Species—Treatment 1 II I v Total Mean
Mice—control 026 048 0.45 0.64 1.83 04575
Mice—vitamin 051 060 0.62 0.66 239 0.5975
Subtotals 0.77 1.08 1.07 1.30 422 05275

Chickens—control 1.30 148 1.26 145 549 13725
Chickens—vitamin 140 152 1.40 1.52 584  1.4600

Subtotals 2.70 3.00 2.66 2.97 11.33  1.41625
Sheep—control 3.03 3.15 3.13 3.22 1253  3.1325
Sheep—vitamin 3.10 3.18 3.17 3.25 12.70 3.1750

Subtotals 6.13 6.33 6.30 6.47 25.23 3.15375
Totals 9.60 10.41 10.03 10.74 40.78
Means 1.60 1.735 1.672 1.790 1.69917
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Before we start, a few general remarks about applying this transformation.
Data with negative values cannot be transformed in this way. If there are zeros in
the data, we are faced with the problem that the log of zero is minus infinity. To
get around this, it is recommended that a 1 be added to each data point before
transforming, Data containing a large number of zeros would probably be handled
better by some other method. Logarithms to any base can be used, but common
logarithms (to the base 10) are generally the easiest. Before transforming, it is
legitimate to multiply all data points by a constant, since this has no effect on the
subsequent analyses. This is a good idea if any of the data points are less than 1,
for in this way we can avoid negative logarithms.

In the data we are working with, there are no zeros, but the lowest value is
0.18, so we will multiply all the data by 10 before taking the logs. This gives us a
table of transformed values (Table 12.6).

The analysis of variance is:

Source of Variation df SS MS F
Blocks 3 0.12075 0.04025 13.77**
Treatments 5 28.60738 5.72148 1959.41**

Vitamins 1 0.04860 0.04860 16.62**

Species 2 28.54926 14.27463 4883.00**

SXV 2 0.00952 0.00476 1.63
Error 15 0.04385 0.00292

This is certainly a more satisfying result than the analysis of the original data as far
as positive results are concerned. We still do not get a significant interaction
between species and vitamins, but we are now asking the question in a different
way. Before, we were asking, “Does the amount of change in weight due to the
addition of vitamins vary from species to species?” Now we are asking, “Does the
proportion or percent change in weight due to vitamins vary from species to
species?”’

Did we get more positive results this time because we were simply “playing
with figures” until we got a result we liked? Or was the transformation we used
justified and is the new analysis valid? To be certain, we will check the assump-
tions of the analysis of variance with the new data.

As before, we construct a table of error terms by subtracting the mean, the
treatment effects, and the block effects from each cell of the table (Table 12.7).

These error terms seem to be more randomly distributed and more nearly
normally distributed than those of the original data.
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TABLE 12.7,
Error components of transformed data

Block
Treatment 1 II I v
M-C -0.10 —0.01 0.02 0.09
M-V 0.01 —-0.03 0.05 —0.03
C-C 0.03 0.07 —0.08 —-0.01
C-v 0.04 0.02 —-0.03 —-0.03
S-C 0.00 —0.02 0.02 0.00
S-v 0.02 —0.03 0.02 —-0.02

To test the homogeneity of variance, we again carry out Bartlett’s test from

the data in Table 12.8

x> =2.3026[ (18 X0.9614) — (3% 5.11) | =4.548

C=1.13 as before

2 1 _ 4548 _
X~ adjusted = 113 4.03

TABLE 12.8.
Bartlett’s test applied to transformed data of vitamin experiment

Treatment Mean 52 Coded s? Log coded s}
M-C 0.4575 0.0243 243 1.39
M-V 0.5975 0.0040 4.0 0.60
CC 1.3725 0.0118 118 1.07
Cc-v 1.4600 0.0048 4.8 0.68
S-C 3.1325 0.0062 6.2 0.79
S-v 3.1750 0.0038 3.8 0.58

Totals 54.9 5.11
Mean 9.15
Log of mean 0.9614
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which, according to the x> Table A.6, would be exceeded by chance more than
50% of the time. A glance at Table 12.8 shows that there is no indication of any
relation between the means and the variances.

To carry out the test for additivity we calculate the block and treatment
effects in Table 12.9 for the transformed data, just as we did in Table 12.5 with
the raw data.

As before,

Q= EYij(?i. - §)(?1 =2 Y..)
=0.26(—1.24)(—0.10) + ... +3.25(1.48)(0.09)

= —0.023768

QX total experimental units

SS nonadditivity = SSTr XSSB

_ _—0.0237687 x 24
28.60738 X 0.12075

=0.00392

TABLE 12.9.
Calculation of block and treatment effects for the transformed data

Treatment
Block Mean Effect
Treatment I i I v Y, Y -Y
M-C 026 048 045 064 0.46 -1.24
M-V 0.51 0.60 062 066 0.60 -1.10
cc 1.30 1.48 1.26 1.45 1.37 -0.33
(oY 1.40 1.52 1.40 1.52 1.46 -0.24
8:C 303 315 313 322 3.13 1.43
S-v 3.10 318 317 3925 3.18 1.48
Mean 1.60 1.74 1.67 1.79 1.70
Y,~Y. -010 004 —-003 009

153 The Log Transformation



The sum of squares for error can now be partitioned as follows:

Source of Variation df SS MS F
Error 15 0.04385

Nonadditivity 1 0.00392 0.00392 1.37

Residual 14 0.03993 0.00285

The F value does not even approach the 10% level of significance for 1 and 14
degrees of freedom (required F ,=3.10).

We now feel confident that the new analysis is valid, since the transformed
data satisfied all the assumptions of the analysis of variance. With the original
data, none of the assumptions were true.

THE SQUARE ROOT TRANSFORMATION

Whenever we are dealing with counts of rare events, the data tend to follow a
special distribution called a Poisson distribution. By a rare event, we mean one
that has a very low probability of occurring in any individual. For example,
suppose that in a lot of lettuce seed, 0.1% of the seed was carrying mosaic disease
virus. The probability that any individual seed contains mosaic is then only
1/1000, so as far as a single seed is concerned, this is a rare event. If we take 100
samples of 1000 seeds each from such a lot, we will get approximately these

results:

37 samples will contain 0 infected seeds

37 n 1 " "
I 8 ” ”n " 2 " "
6 n " " 3 " L
2 ” " " 4 " n

It is obvious that this looks very little like a normal distribution. This Poisson
distribution has a very interesting characteristic—the variance is equal to the
mean. In actual practice, the variance is generally somewhat larger than the mean
because other factors, in addition to sampling variation, are affecting the oc-
currence of the events being counted. At any rate, the variance tends to be
proportional to the mean, thus violating the assumption that the variances and
means are not correlated.

Another example of data of this kind is found in insect counts, such as those
made from a standard number of sweeps with a net. Here it is rather hard to
define what we mean by an individual observation. We might consider it an
individual site on which an insect could be found. In sweeping with a net, we are
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TABLE 12.10.
Number of lygus per 50 sweeps

Block
Treatment 1 11 I v Total Mean

A 7 5 4 1 17 425
B 6 1 2 1 10 2.50
¢ 6 2 1 0 9 2.25
D 0 1 2 0 3 0.75
E 1 0 1 2 4 1.00
F 5 14 9 15 43 10.75
G 8 6 3 6 23 5.75
H 3 0 5 9 17 4.25
I 4 10 13 5 32 8.00
J 6 11 5 2 24 6.00
X 8 1 2 6 27 6.75

6.25
5.67
6.92
0.92
0.67
21.58
4.25
14.25
18.00
14.00
14.25

sampling thousands of such sites and finding only a few insects. Thus the
probability of finding an insect at a particular spot selected at random at one

particular time is indeed a rare event.

Data of this kind can be made more nearly normal and at the same time the
variances can be made relatively independent of the means by transforming them

to square roots. Actually, it is better to use \/ Y+ , especially if there are counts

under 10.

The data in Table 12.10 show the number of lygus bugs obtained in 50
sweeps in each plot of an experiment testing 10 insecticides and a check treat-

ment, replicated four times in a randomized complete block design.
The analysis of variance is:

Source of Variation df SS MS F
Blocks 3 12.25 4.08 0.40
Treatments 10 380.00 38.00 3.70%*
Error 30 308.00 10.27

Transforming the data by taking \/ Y+ gives Table 12.11.
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TABLE 12.11.

Transformed lygus data
Blocks
Treatment I I 1 v Total ~ Mean s’

A 2.74 2.35 212 1.22 8.43 2.11 0.41
B 2.55 1.22 1.58 1.22 6.57 1.65 0.39
C 2.55 1.58 1.22 0.71 6.06 1.52 0.60
D 0.71 1.22 1.58 0.71 4.22 1.06 0.18
E 1.22 0.71 1.22 1.58 4.73 1.18 0.13
F 2.35 3.81 3.08 3.9 13.18 3.29 0.54
G 2.92 2.55 1.87 2.55 9.89 2.45 0.19
H 1.87 0.71 2.35 3.08 8.01 2.00 0.99
I 2.12 3.24 3.67 2.35 11.38 2.84 0.53
J 2.55 3.39 2.35 1.58 9.87 2.47 0.55
K 2.92 3.39 1.58 2.55 10.44 2.61 0.59

The analysis of variance is:

Source of Variation df SS MS F
Blocks 3 0.532 0.177 0.36
Treatments 10 19.993 1.999 4.04*%*
Error 30 14.841 0.495

The two analyses are not very different, since they both show a highly significant
treatment effect. The F value is about 10% higher after transformation. Some
important differences will occur in mean separation, as shown in Table 12.12.

You will note that in the transformed data, G and D, G and E, J and D, and ]
and E were declared significantly different, whereas they were not in the raw
data.

The weighted means shown in Table 12.12 are obtained by “detransforming™
the means of the transformed data back to the original units. This is done by
squaring the transformed means and subtracting one-half. The means obtained in
this way are smaller than those obtained directly from the raw data because more
weight is given to the smaller variates. This is as it should be, since in a Poisson
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TABLE 12.12.
Duncans’ multiple-range test on raw and transformed data, (5% level)

Mean Separation Treatments and Means
of: D E Cr'pRKETE TR "R

075 1.00 225 250 4.25 425 5.75 6.00 6.75 8.00 10.75
Raw data

Weighted means 0.62 0.89 1.81 2.22 350 395 550 5.60 631 7.57 10.32

Transformed
data

distribution the smaller variates are measured with less sampling error than the
larger ones.

Actually in reporting the results of such an experiment, it is better to use
these weighted means, making it clear in the report how they were obtained.

The general effect of the square root transformation is to increase the
precision with which we can measure the differences between small means. This is
highly desirable in insect control work, since we are generally not as interested in
differences between two relatively ineffective treatments as we are in comparing
treatments that give good control.

A glance at the variances in the two tables will show that before transforma-
tion there was a strong positive relation between means and variances. The
coefficient of linear correlation between them was .89, significant at the 0.1%
level. After transformation, the correlation was only .37, not even significant at the
10% level. Thus, one of the assumptions of the analysis of variance was violated in
the original data, and this was remedied by the transformation.

As to the other assumptions in the analysis of variance, there do not appear to
be any serious violations. An examination of the error components shows no
striking deviation from a random and normal distribution. Carrying out Bartlett’s
test for homogeneity of variance on the raw data gives an adjusted chi-square
value of 12.56, which has a 25% probability of being exceeded by chance alone.
After transformation, this chi-square value was reduced to 4.81, which has a 90%
probability of being exceeded by chance. Thus, transformation reduced the
amount of heterogeneity over that in the raw data, but in neither case was it

significant.
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In carrying out Tukey’s test for additivity, even with the raw data, the F
value for nonadditivity was less than one.

In general, we can say that data requiring the square root transformation do
not violate the assumptions of the analysis of variance nearly as drastically as data
requiring a log transformation. Consequently, the changes in the analysis brought
about by the transformation are not nearly so spectacular.

TABLE 12.13.
Number of lettuce seeds germinating in samples of 50

Replicates

Treatment 1 2 3 Mean g Log(10 Xs?)
1 0 0 1 0.33 0.33 0.519
2 0 1 0 0.33 0.33 0.519
3 0 0 1 0.33 0.33 0.519
4 0 2 0 0.67 1.33 1.124
5 2 0 0 0.67 1.33 1.124
6 0 2 3 1.67 2.33 1.367
7 T 10 7 8.00 3.00 1.477
8 11 12 15 12.67 4.33 1.637
9 13 18 18 16.33 8.33 1.921
10 22 16 13 17.00 21.00 2.322
I 24 13 18 18.33 30.33 2.482
12 23 21 29 24.33 17.33 2.239
13 24 29 29 27.33 8.33 1.921
14 37 28 27 30.67 30.33 2.482
15 42 41 40 41.00 1.00 1.000
16 39 41 45 41.67 9.33 1.970
17 41 45 40 42.00 7.00 1.845
18 47 41 43 43.67 9.33 1.970
19 45 42 48 45.00 9.00 1.954
20 46 42 48 45,33 9.33 1.970
21 49 46 48 47.67 2.33 1.367
22 48 49 48 48.33 0.33 0.519
23 50 49 48 49.00 1.00 1.000
24 49 49 50 49.33 0.33 0.519
Totals 178.00 35.767

10XMean  74.167
Log(10Xmean) 1.8702
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THE ARCSINE OR ANGULAR TRANSFORMATION

Another kind of data that may require transformation is that based on counts
expressed as percentages or proportions of the total sample. Such data generally
have what is called a binomial distribution rather than a normal distribution. One
of the characteristics of this distribution is that the variances are related to the
means but in quite a different way than the types of data we have been
considering. Up to now the cases we have discussed are those in which large
means tend to have large variances and vice versa. In binomial data, variances
tend to be small at the two ends of the range of values (close to zero and 100%),
but larger in the middle (around 50%). This is actually a rather natural idea even
to nonmathematicians. We are inclined to attach more importance to a difference
between zero and 6%, or between 94% and 100%, than to a difference between
47% and 53%, even though these are all of the same magnitude.

The appropriate transformation for data of this kind is called the angular or
arcsine transformation. It is obtained by finding the angle whose sine is the square
root of the proportion (percentage/100). Written in mathematical shorthand, this
is arcsine VY or sine ' VY. Table A.8 can be used to find the transforms
directly from the percentages.

Data should be transformed if the range of percentages is greater then 40.
Otherwise, it is scarcely necessary. The data in Table 12.13 are from a completely
randomized experiment on lettuce seed with 24 treatments, each replicated three
times. Treatments are arranged in order of magnitude of their means. Note that
there is a strong tendency for the variances at the extremes to be smaller than
those in the middle of the range. This is typical of binomial data. The logs of the
variances (coded by multiplying by 10) are listed so that a Bartlett’s test can be
carried out.

Unadjusted x*=2.3026[ (logmean X = df) — (df per sample X =logcoded s?)]
=2.3026][ (1.8702 X 48) — (2 X 35.767) |

=41.99
C=1+ 1 _(Nmnberoftreahnents_ 1 )
3 (samples—1) df per treatment 2df
- 1_(24 1)
_1+3X23( ) 43) 1.1736

2
Adjusted x*= XE =35.78

This is just significant at the 5% level (required value 35.172), so we have fairly
good evidence that the variances are not homogeneous.
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Analyzing the raw data gives these results:

Source of Variation df SS MS F
Treatments 23 25266.0 1098.52 148.12**
Error 48 356.0 742

The transformed data are shown in Table 12.14. Since the data in Table 12.13
were based on samples of 50, each variate had to be multiplied by 2 to convert it
to a percentage. The pattern of variances observable in the raw data is no longer
apparent in the transformed data.

Carrying out Bartlett’s test:

Unadjusted x2=2.3026(1.411 X 48) — (31.39 X 2)

=11.3933
C=1.1736 as before.

X2
Adjusted x*= T =9.708

Referring to Table A.6, opposite 23 df we see that a value this large would be
exceeded by chance more than 99% of the time.

An analysis of variance of the transformed data does not seem to lead us to a
different conclusion than the analysis of the raw data:

Source of Variation df SS MS F
Treatments 23 59,487.8 2,586.43 100.29**
Error 48 1,237.9 25.79

The important difference is not in the overall analysis, but in mean separation. A
Duncan’s multiple range test shows that:

1. Five differences were declared significant before transformation but not
after: 7—8, 8—11, 10—12, 11—12, and 12— 14.

2. Five differences were declared significant after transformation but not
before: 18 —22, 19—23, 19—24, 20—23, and 20—24.
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TABLE 12.14.
The arcsine transformation of data in Table 12.13

Replicates
Treatment 1 2 3 Mean s? Logs?
1 0.0 0.0 8.1 2.70 21.870 1.34
2 0.0 8.1 0.0 2.70 21.870 1.34
3 0.0 0.0 8.1 2.70 21.870 1.34
1 0.0 11.5 0.0 3.83 44.083 1.64
5 11.5 0.0 0.0 3.83 44.083 1.64
6 0.0 11.5 14.2 8.57 56.863 175
7 22.0 26.6 22.0 23.53 7.053 0.85
8 28.0 29.3 33.2 30.17 7.323 0.86
9 30.7 36.9 36.9 34.83 12.813 L1
10 41.6 34.4 30.7 35.57 30.723 1.49
11 43.9 30.7 36.9 37.17 43.613 1.64
12 42.7 404 49.6 44.23 22,923 1.36
13 43.9 49.6 49.6 47.70 10.830 1.03
14 59.3 484 473 51.67 44.003 1.64
15 66.4 64.9 63.4 64.90 2.250 0.35
16 62.0 64.9 71.6 66.17 24.243 1.38
17 64.9 71.8 63.4 66.63 19.063 1.28
18 75.8 64.9 68.0 69.57 31.543 1.50
19 71.6 66.4 78.5 7217 36.843 1.57
20 73.6 66.4 78.5 72.83 37.043 1.57
21 81.9 73.6 78.5 78.00 17.410 1.24
22 78.5 81.9 78.5 79.63 3.853 0.59
23 90.0 81.9 78.5 83.47 34.903 1.54
24 81.9 81.9 90.0 84.60 21.870 1.34

Totals  618.941 31.39
Mean 25.789
Log mean 1.411

Which set of conclusions should we accept? The answer is simple: we should
accept the conclusions based on the more valid analysis, in this case, the analysis
of the transformed data.
Remember, we do not transform data to give us results more to our liking. We
transform data so that the analysis will be valid and the conclusions correct.
Another point to bear in mind when carrying out a transformation is that all
tests of significance and mean separation should be carried out on the transformed
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data rather than on the raw data. Furthermore, it is better to calculate means of
the transformed data before detransforming back to original units. In this way we
obtain correctly weighted means.

PRETRANSFORMED SCALES

It often happens that we would like to express data in percentages but find it very
difficult and time-consuming to make precise measurements. Consider, for exam-
ple, the problem of evaluating the amount of scab on potato tubers. A convenient
measure would be the percentage of tuber area covered with scab, but it is very
difficult to measure this accurately. Another example would be the percentage of
leaf area covered with disease lesions. Still another would be the percentage of
weed control obtained by the application of various herbicides. In all of these
cases we could, with a great deal of effort, measure these percentages fairly
precisely, but the work involved would be so time-consuming that the number of
plots we could measure would be severely limited. In order to make more
measurements in a given amount of time, it is a common practice to make rough
visual estimates of the percentages rather than precise measurements.

A scale is usually set up, such as the scale of zero to 10 commonly used in
weed control work where zero represents no control and 10 represents 100%
control. If the steps in this scale represent equal increments of percentages the
data should be transformed by the angular transformation just as it should be for
precise percentage measurements.

Why not pretransform our scale? In other words, we could select percentage
steps such that, when they are transformed by the angular transformation, there
will result a series of equally incremented steps that can be reduced to integers.

Suppose, for example, we wished to employ a scale from zero to five. The
equal increments in terms of angles would be 90° divided by five, or 18°. We
therefore need to find the percentages which, when transformed, give angles of 0,
18, 36, 54, 72, and 90°.

Referring to Table A.8, the closest entry in the table to 18 is 18.4, which is
the angular transformation of 10%. The next step in the scale seems to pose a
problem. Looking for 36° in the table, we see that there is an entry of 35.7 for the
transform of 34%, and an entry of 36.3 for the transform of 35%. We might be
tempted to specify this step in the scale as 34.5%, but this would give us a false
sense of precision. After all, we are only planning to make rough visual estimates
of percentages. In view of this, we are not justified in specifying fractional
percentages in our scale except in the range below 5% or above 95%.

Table 12.15 gives the appropriate percentages for all of the commonly used
scales.

These scales take advantage of the fact that it is generally easier to detect
small differences in the vicinity of zero and 100% than around 50%. Actually, some
scales have been used in the past which were deliberately or subconsciously
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TABLE 12.15.
Pretransformed rating scales. Scale from zero to:

Rating 4 5 6 8 10 15 18 20 24
0 0 0 0 0 0 0 0 0
1 15 10 7 4 2.5 1 0.75 0.7 0.5
2 50 35 25 15 10 4 3 2.5 2
3 85 65 50 30 21 10 7 5 4
4 100 90 75 50 35 17 12 10 7
5 100 93 70 50 25 18 15 10
6 100 85 65 35 25 20 15
7 96 79 45 33 27 20
8 100 90 55 42 35 25
9 97.5 65 50 42 31
10 100 75 58 50 37
11 83 67 58 43
12 90 75 65 50
13 96 82 73 57
14 99 88 80 63
15 100 93 85 69
16 97 90 75
17 99.25 95 80
18 100 975 85
19 993 90
20 100 93
21 96
22 98
23 99.5
24 100

designed to conform to these percentage classes. In potatoes, a scale from zero to
10 has been used, which is based on photographic standards that roughly represent
the percentages shown in Table 12.15. In apples, a starch rating has been
employed that corresponds closely to the zero to 8 scale. In weed work, where a
scale of zero to 10 is used, there is a tendency to use the rating of 1, for a small
trace of control rather than 10%, and the rating of 9, for nearly complete control.

To determine which scale to use, we must decide how many steps we can
distinguish with reasonable confidence. A scale with too many steps is unneces-
sarily complicated and implies greater accuracy than is justified. If we use a scale
with too few steps, there is a tendency to record fractional ratings.
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In analyzing data based on pretransformed rating scales, the data should not
be transformed. Furthermore, means should be calculated from the ratings before
transforming back to percentages. To make the back transformation we multiply
the mean rating by the angular increment and find the corresponding percentage
by reference to Table A.8. For example, if a treatment has a mean rating of 1.4 in
a scale of zero to five, the angular increment is 90° /5=18°, and 18° X 1.4=25.2°,
Referring to Table A.8, we see that 25.1° corresponds to 18%, and this would be
the appropriate weighted mean to report. Reporting fractional percentages would
hardly be justified except at extremely high or low values.

A word should be said about the ratings of check plots. It makes a difference
whether these are included in the experiment as a zero level of some factor and
are subject to the same variation as all other treatment levels or whether they are
included as reference plots against which to compare the other plots. In the latter
case, they are often arbitrarily given a rating of zero, and the other plots in a block
are compared to them. If this is the case, data from the check plots should not be
included in an analysis of variance. The check plots, arbitrarily assigned values of
zero, have no variance. Their variance therefore differs from that of other
treatments, so that the assumption of homogeneity of variance is automatically
violated.

SUMMARY

1. The main assumptions basic to an analysis of variance are: random and
normal distribution of error terms, homogeneity of variances, indepen-
dence of variances and means, and additivity of main effects.

2. When these assumptions are seriously in error, an analysis of variance is
not valid.

3. Transformations can often be made that will correct the failure of the
data to meet the assumptions.

4. When standard deviations are linearly related to means, and main effects
appear to be multiplicative, a log transformation will usually correct both

situations.

5. Data based on counts of rare events, where variances are related to
means, should be subjected to the square root transformation.

6. Data based on proportions or percentages should be given the arcsine or
angular transformation.
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7. Rating scales can be pretransformed by basing them on a variable scale of
percentages.

8. When a transformation is used, all tests of significance and separation of
means should be carried out with the transformed data.

9. If we wish to transform back to the original units, this should be done
only after the means have been calculated from the transformed data.

165 Summary






13

LINEAR
CORRELATION
AND
REGRESSION

THE IDEA

The terms correlation and regression may sound a bit formidable, but the basic
ideas encompassed by the terms are so simple that we all use them in our everyday
conversations. Consider, for example, the following familiar sayings:

“The bigger they are, the harder they fall.”
“The more, the merrier.”

“Easy come, easy go.”

“The better the day, the better the deed.”
“As the twig is bent, so is the tree inclined.”

All these sayings have several ideas in common. Each implies two variable
quantities, the magnitude of one depending on the magnitude of the other.
Statisticians refer to these as the independent and dependent variables. Further-
more, in these particular sayings, there is the idea that as one variable increases, so
does the other. In statistics this is called direct or positive correlation.

Consider another group of sayings:

“Much haste, little speed.”
“Small pitchers have big ears.”
“The best gifts come in small packages.”

Here we have the same general idea of two variables, one dependent on the other,
but there is a slight twist in the relationships. An increase in one variable is
accompanied by a decrease in the other. This is called an inverse or negative
correlation.

The idea of correlation is not confined to these simple clichés. Think of the
questions that we encounter, time after time in agricultural work, that deal with
the relations between two variables. How is the amount of applied fertilizer
related to the yield of crop? What relationship is there between amount of feed
consumed and weight gain in livestock? How is the price of a commodity affected
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by the supply? How is dosage of insecticide related to percentage of control, or to
the amount of residue? What is the correlation between size of farm and income?
The list of such questions could be extended indefinitely, but it should be clear by
now that everyone is concerned with the subject of correlation, whether it is called
by that name or not.

Another example of correlation that we encounter nearly every day is the
common graph. Nearly every graph is essentially a picture of the correlation
between two variables. The scale along the bottom, or abscissa, is usually the
range of values of the independent variable. The values on the vertical scale, or
ordinate, are those of the dependent variable. The graphing of data is often a very
useful starting point in conducting a correlation analysis.

Now that we have looked at some common examples of correlation, we
should be able to grasp an abstract definition of the term: The tendency of two
variables to be related in a definite manner. Actually, the idea can be extended to
more than two variables, such as in the law of supply and demand, where there
are three variables involved: price, supply, and demand. To keep the discussion as
simple as possible, we will limit it for the time being to correlations between two
variables.

It is customary to consider one of the variables dependent on the other. The
choice of which variable to call dependent and which one to call independent is
usually obvious. For example, in studying the relation of yield to fertilizer, it would
be logical to consider yield as dependent on fertilizer. With price and supply, we
generally think of price as dependent on supply. On the other hand, there are
situations in which supply is dependent on price. Often there is a time lapse
between the measurement of one variable and the corresponding measurement of
the other. In such cases, the first measured variable is called the independent one.
It is sometimes useful to study the correlation between pairs of measurements on
the same variable. For example, a study of the correlation between the prices of a
commodity in successive years with the corresponding prices in the previous year
may reveal a cyclic trend in the price pattern.

There are situations in which we really do not care which variable is
designated as the dependent variable. We may simply want to describe the joint
distribution of two variables where each one is distributed normally. Such a
distribution is called a bivariate normal distribution. To describe this distribution
we need an estimate of p (rho), which is one of the population parameters. The
coefficient of correlation r, is the best estimate of p. Studying the correlation
between the length of forearm and height would be an example of the situation
where it would make no difference which variable was called dependent.

MEASURING CORRELATION

So far, we have talked about correlation as the general idea of two variables
related in some definite manner. There has not been much mathematics or
statistics involved. A simple observation that two variables seem to be related does
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not tell us much. We need answers to two important questions: how closely are
the two variables related and is the relation real or could it have been an accident
due to chance? To answer the first question we need a definite measure of the
closeness of the relation between two variables. The measure is called the
coefficient of correlation, designated by the symbol r. After defining a few more
terms, we will be ready to show how this value is calculated and interpreted. The
answer to the second question may be obtained by referring to the appropriate
probability tables.

REGRESSION

The term regression has not been used in this discussion since the opening
sentence. What does it mean? The dictionary is not of much help, for this is one of
those unfortunate terms (like the term “error”) that has undergone an evolution, so
that its present meaning bears little resemblance to its original meaning. Briefly,
regression is the amount of change in one variable associated with a unit change in
the other variable. This definition may be open to criticism on the grounds that it
is not sufficiently precise or general enough from a mathematical point of view,
but for our purposes it should serve to point up the main distinction between
correlation and regression. Note that correlation refers to the fact that two
variables are related and to the closeness of this relationship. Regression, on the
other hand, refers to the nature of the relationship.

Let us go back to some familiar sayings and see how the concept of regression
crops up in our everyday thinking:

“A penny saved is a penny earned.”

“A bird in the hand is worth two in the bush.”
“A stitch in time saves nine.”

“One picture is worth a thousand words.”

Notice that all these sayings imply the correlation of two variables, but they go
further and tell us in numerical terms how the two variables are related. Taking
these sayings literally, we can set up a table such as Table 13.1.

We have followed the customary convention of calling the independent
variable X and the dependent variable Y.

Column three of the table is headed regression equation. These are all
equations of straight lines. The general equation for a straight line is Y=a+ bX.
The symbol a is called the intercept, since, when X has the value of zero, Y=a;
hence the line crosses the Y-axis a units from the origin. When a is zero, the line
passes through the origin, for when X equals zero, Y is also equal to zero. The
symbol b is called the slope since it determines the steepness of the line. It is easy
to see that b is the amont of change in Y, associated with a unit change in X. Now
this is exactly the way we defined regression. Therefore, it is logical to call b the
regression coefficient.
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TABLE 13.1.
Sayings in mathematical terms

Regression  Regression
Independent Variable (X) Dependent Variable (Y) Equation  Coefficient

Pennies saved Pennies earned Y=X 1
Hand birds Bush birds Y=2X 2
Stitches in time Stitches saved Y=9X 9
Pictures Words Y =1000X 1000

CORRELATION VERSUS REGRESSION

For any given problem, which type of analysis should we employ? Some statisti-
cians insist on drawing a sharp distinction between the two types of analysis. The
distinction is based on whether the data conform to model I, in which the X values
are fixed, or to model 11, in which the values of X are random or subject to error.

Consider an experiment in which we deliberately apply several levels of some
treatment, replicating each level several times. In this case we are primarily
interested in the amount of change in Y associated with changes in the treatment
level (X). This is regression. On the other hand, the coefficient of correlation (r), as
an estimate of a population parameter (p), has no meaning. We are not dealing
with a population that possesses such a parameter. However, the square of this
coefficient (r*), known as the coefficient of determination, has real meaning in such
a problem. It represents the proportion of the total treatment sum of squares
accounted for by regression.

Consider cases in which we are dealing with a bivariate normal distribution
and neither variable can be designated as dependent on the other. Such cases
definitely conform to model II, and we are primarily interested in the degree of
association between the two variables, measured by the coefficient of correlation.
A regression equation for estimating the value of one variable from the other is of
little interest. Still we can calculate two such equations according to which
variable we call independent. In reality, the coefficient of correlation is the
geometric mean of the two regression coefficients so obtained.

From the above two cases we can see that the type of data will determine
whether it is correlation or regression that is of primary interest, but we cannot
completely separate the two types of analysis.

Between these two rather clear-cut cases there are many in which there is no
question as to which variable to consider dependent, but there is some question as
to whether the independent variable should be considered random or fixed. Even
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in experiments in which the treatments consist of specific amounts of some
material, we cannot claim that each plot receives precisely the amount specified or
that every replicate receives exactly the same amount. Nevertheless, these
measurement errors are very small when compared with the sampling error in a
random sample from a population with widely varying rates. Therefore the X
values in such an experiment are considered fixed.

The situation is less clear when we are dealing, not with a planned experi-
ment, but with pairs of measurements made on a series of individual units selected
from a population. If the selection of individual units is made completely at
random, then there is no question but that we are dealing with a model II
regression problem where the X's are random. If, on the other hand, we select the
individual units deliberately to provide us with a series of X values over a given
range, then it is generally conceded that we can consider the X's as fixed.

We can see that the distinction between model I and model II regression
problems is not a very sharp one. In the problems we shall consider, and in fact in
most agricultural research, we are primarily interested in reasonably good fitting
regression equations to describe the relation between variables. In addition, we are
interested in determining how closely the regression equation fits the observed
data, and for this purpose we calculate the coefficient of determination, or the
square of the coefficient of correlation.

To illustrate the general methods of linear correlation and regression, we first
use an example of a series of individual pairs of observations.

CALCULATING LINEAR CORRELATION

A familiar example of correlation is the relation of supply to price. Table 13.2
shows the supplies and prices of hogs from 1950 to 1959.

Is there a real relation between supply and price during this period? One of
the first things we notice is that the highest price was accompanied by the lowest
production and vice versa. This is encouraging evidence of the negative correlation
we might expect. Next, let us get a better idea of the data by “drawing a picture.”
This we do easily by placing dots on a graph paper, letting the height above the
X-axis represent the price, and the distance to the right of the Y-axis represent the
number of hogs in the corresponding year (Fig. 13.1).

A graph of this type is called a scatter diagram. If we thought that the
correlation between supply and price was very close, the rather haphazard scatter
of these points might prove disappointing. Yet there does seem to be a general
trend for the dots on the left to be higher than those on the right. The points seem
to fall within a fairly long ellipse (Fig. 13.1), which is typical of diagrams
representing a medium high correlation. Other types of scatter diagrams (Fig. 13.2)
are guides to interpreting such graphs. The direction of the axis of the ellipse in
our example indicates a negative correlation. Now we are ready to calculate just
how close the relation is. First, we use a shortcut approximation.
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TABLE 13.2.

Hog supplies and prices
Hogs Marketed Price per cwt
Year (millions) (X) (dollars) (Y)
1950 73 18.0
1951 79 20.0
1952 80 17.8
1953 69 214
1954 66 21.6
1955 75 15.0
1956 78 144
1957 74 17.8
1958 T4 19.6
1959 84 14.1
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Figure 13.1. Scatter diagram showing relation between price of hogs and number
of hogs marketed annually.
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Figure 13.2. Various types of scatter diagrams with their associated coefficients of
correlation.

Quick Shortcut Method

This is also known as the rank difference method and Spearman’s coefficient of
rank correlation. Neither of these names emphasizes the ease with which the
method can be worked, even without the aid of a calculator. Although the method
has serious drawbacks, it is very handy for obtaining a quick approximate estimate
of the coefficient of correlation. Table 13.3 shows how the calculations are carried
out with the hog price data.

First, rank the observations in each column from highest to lowest. In the case
of ties, give each member of the tie the average rank. For example, in both
columns above, ranks 6 and 7 are ties, so both are called 6.5.

Second, subtract the second from the first number in each row and enter the
difference in the column headed d. The total of this column should always be zero,
thus furnishing a check.

Third, square the figures in the d column and enter in the d* column.
Actually, the second step ‘can be omitted, since it is easy to square the numbers in
one’s head and write down the d? column directly.!

'"Most of the d's will be small integers. If they end in a 0.5, squaring can be done mentally

by using the following relation: (X+0.5)*=X(X + 1)+ 0.25. Thus, 4.5°=4X5+0.25=20.25,
7.52=7%8+0.25=56.25, and so on.
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TABLE 13.3.

Hog data by ranks
Rank of Rank of Difference
Supplies Price in Ranks (d) d&
8 5 3 9
3 3 0 0
2 6.5 —4.5 20.25
9 2 7 49
10 1 9 81
5 8 -3 9
4 9 -5 25
6.5 6.5 0 0
6.5 4 2.5 6.25
1 10 —9 81
Totals 0.0 280.5

Fourth, obtain the total of the d* column. This total is written =d?.
Fifth, calculate the coefficient of correlation, r, by means of the formula:

r=1_[ 63d>
n(n—1)(n+1)

where n is the number of pairs of observations.
In our example,

6 < 280.5
10x9X%11

The answer will always be between +1 and — 1. Plus or minus one represents
perfect correlation, while zero indicates no correlation at all. Thus, in our example,

there appears to be a fairly high negative correlation, so we will calculate the
coefficient more accurately using the standard method.

Standard Method

This is known more precisely as the product-moment method for the coefficient of
linear correlation.
In Chapter 2 we indicated that the deviation of an individual Y from the
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mean of Y's (Y—Y) can be represented by an italicized lower case y. Likewise
we can use the symbol x for (X—X). Adopting these shorter symbols greatly
simplifies many of the expressions we will encounter, and they will be used
frequently in this and succeeding chapters.
The formula for the coefficient of correlation can be written in several forms.
It is convenient to write these in terms of r* first, then find r by taking the square
root of the final answer.
S(x-X)(Y-9)[°
o [2x-R0r-9) "
(X -X)*=2(Y-Y)?

Since x=X—X and y=Y—Y’, we can write (1) in abbreviated form:

b 2
P ) @)
=x*Zy®
While these forms are simple, they usually are not easy to calculate directly

because they involve the squaring of cumbersome decimals. To avoid this, we take
advantage of the relation

2
=2=3(X-X)’=3x2- o

By substituting y for x where necessary, we can rewrite (2) in this form:

2/ (m_ (zx)ﬂ)(w_ (EY}E)

n
This is called the “computational form.”

Particular attention should be paid to the expression in brackets in the
numerator of equation (3). This is called the sum of cross-products. Unlike the
familiar sums of squares found in the denominator, which must always be positive,
sums of cross-products can be either positive or negative.

Using formula (3), we can now compute the coefficient of correlation for the
data in our example, using the standard method. We will need =X, ZY, =X? =Y?
and EXY. From the data we find 2X=752, 2Y=179.7, 2X*=56,804.0, ZY*=
3,297.53 and ZXY =13,420.40. Therefore

_ _ 752x179.7 ¢ o T5 1797
2 [13,420.40 R AT ] / [(56.804.0 e )(3,297.53 B )]

r’=| EXY (3)

_ IX3Y
n

= [13,420.40—13,513.44]" /[ (56,804.0 - 56,550.4)(3,297.53 — 3,229.21) |

=(—93.04)*/(253.6 X 68.32)
0.4996

]

r=Vr =V04996 = —0.707
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Note that the sign of r, must be the same as the sign of Zxy,—in this case,
negative. The answer by the shortcut method was —0.70, very close to the answer
by the standard method, —0.707. Do not be too enthusiastic about this coinci-
dence. The answers by the two methods will not usually be this close. I Chapter
14 we illustrate a case in which the shortcut method gives perfect correlation and
is extremely misleading. Other cases could be found in which the shortcut method
would give an answer which was much too low.

One would use the shortcut method for a quick check without the use of a
calculator or when only an approximate answer was deemed sufficient. For a more
efficient estimate of the coefficient of correlation, and a test of significance, one
should use the standard method.

STATISTICAL SIGNIFICANCE

In the last paragraph we mentioned significance. The general idea is the same as it
was in the analysis of variance. We assume the hypothesis that there is no
correlation between the two variables and that any apparent relationship is simply
due to chance. This is, as usual, called the null hypothesis. Then we ask the
question, “If this null hypothesis were true, what is the probability that a value of
r would be obtained as large or larger than we observed?” If this probability is 5%,
we call the correlation significant. If we claim that the correlation is real, we run a
5% risk of being wrong. If the probability is 1% or less, we call the correlation
highly significant and reject the null hypothesis with only a 1% risk of being
wrong.

Fortunately, the difficult computations required to find the required probabil-
ities have been made and summarized (Table A.7). Looking at the table on the line
opposite 8 degrees of freedom, we find that a coefficient of correlation of .7 would
occur by chance somewhere between 1% and 5% of the time. We can say,
therefore, that the correlation is significant. We should be very careful in interpre-
ting data of this type. Even if the correlation is significant, we need to be cautious
about claiming that a fluctuation in supply causes a fluctuation in price. Price and
supply may both be related to time, a third variable that has not been considered
in the calculations. At the end of this chapter we discuss some of the pitfalls
encountered in working with correlation, and an example will be given to show
how risky it is to interpret the correlation between two variables that are both
related to time.

Why 8 degrees of freedom? We have been accustomed to using one less than
the number of items as the degrees of freedom, but, now with 10 pairs of
observations, we use two less, or 8, as the number of degrees of freedom. For the
first time, it becomes obvious why care was used in saying that degrees of freedom
were usually one less than the number of items. Here is the first exception we
have encountered. The reason commonly given for subtracting two is that one
degree is lost in calculating the mean and the other is lost for regression.

To make matters simpler, let us look at it another way. Suppose we have two

Linear Correlation and Regiession 176



irs of observations—any two pairs providing they are not identical. They can be
s;'smented on a graph as two points, and a line can be drawn through them. We
call this line the regression line, and the two points fit it perfectly. Since this
would be true for any two pairs of observations, no matter how unrelated, it would
be ridiculous to attach any meaning to a coefficient of correlation based on only
two pairs. Just as one observation cannot tell us anything about variability, two
pairs of observations tell us nothing about correlation.

To use a simple illustration of these points, suppose that this morning’s paper
reports that the Dodgers made 8 runs last night, and a certain stock closed at 51.
The day before, the Dodgers made 4 runs and the same stock closed at 49. From
these data we can conclude that both Dodger runs and the price of this stock are
subject to variation. We can even estimate the amount of variation in both cases,
but the estimate will be very rough, since in each case it is based on only 1 degree
of freedom (n—1). What about the relation between the two variables? It is easy
to verify that

_ () g
=3y (8) (2)

=1

Hence, r=1

Wouldn't it be absurd to maintain that there was perfect correlation between
the number of Dodger runs and the price of a certain stock on the same day? Yet
that is what the coefficient of correlation apparently says. We get around such
absurdity if we say that this correlation was based on (n—2) or zero degrees of
freedom and is, therefore, meaningless.

How often have you heard people draw sweeping conclusions regarding
correlations based on a very few observations? Imagine a person flying from San
Francisco to Denver for the first time and generalizing, “the farther east one goes,
the colder it gets.” (Or, to sound profound, the person might say, “T have observed
a positive correlation between temperature and longitude.”) This illustration is not
so farfetched, for it is not unusual to find people making broad generalizations
from scanty observations. It is a fault we must try to avoid, and the science of
statistics is designed to help us avoid this pitfall.

THE REGRESSION LINE

So far, in our example dealing with supply and price, we have determined only the
closeness of the relation and the probability that it was due to chance. We have
not learned anything about how the two variables are related.

If we assume the relation is linear, that is, best described by a straight line,
the question is reduced to that of finding the particular straight line that fits the
data the closest. What do we mean by the closest fit? It is obvious from looking at
the graph of the data that no straight line can be constructed passing through all
the points. No matter what line we construct, several points will deviate from that
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line. We measured variation among a single set of observations by taking the sum
of squares of deviations from the mean. It seems logical, then, to measure the
variation from a line by taking the sum of squares of deviations from the line.
Using this measure as the criterion for closeness of fit, we try to find the straight
line that will make the sum of squares of deviations as small as possible. Such a
procedure is called a least-squares method. Those familiar with calculus will
immediately recognize this problem as a typical one involving finding the mini-
mum value of a function.

The solution to the problem turns out to be very simple. In terms of
deviations from the means of X and Y, the equation of the best fitting line is:

b
i=(5):
(4 is read: “the estimated value of y”).

The expression Zxy/Zx* is the regression coefficient, since it tells us the
estimated change in y, with each unit change in x. This fits our definition of
regression, and we have already called the regression coefficient b, so we can now
say: b=Zxy/Zx* More precisely, we should call this “the regression coefficient
of Y on X,” and use the symbol b,,. Generally, if b is used with no subscript, this is
the coefficient understood.

The equation given above can be rewritten in terms of the observations
themselves, instead of in terms of deviations from means. We can write: ¥-Y)=
b(X—X) which can be rewritten: Y=(Y-bX)+bX.

If we let Y—bX=a, the equation can be written Y=a+ bX, which is the
slope-intercept form of a straight-line equation mentioned at the beginning of our
discussion on regression.

Now, let us see how to apply this equation to our data. We already have all of
the sums we need from the calculation of r, the coefficient of correlation. There
we found that

SX ="752; so X= 71502 =752

SY=179.7; so Y=17.97

Sxy=—93.04
2_ o= 3304 _
3x?=253.6;s0 b 953.6 367
Therefore, substituting in the equation
=(Y—bX)+bX
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TABLE 134.
Observed and estimated hog prices

X Y Y=4557— 367X d=Y-Y &
73 18.0 18.8 -08 0.64
79 20.0 16.6 3.4 11.56
80 17.8 16.2 1.6 2.56
69 21.4 20.2 1.2 1.44
66 21.6 21.4 0.2 0.04
75 15.0 18.1 —-31 9.61
78 14.4 16.9 -25 6.25
74 17.8 18.4 —06 0.36
74 19.6 18.4 12 1.44
84 14.1 14.7 —06 0.36

Totals 0.0 34.26

we get

Y=[17.97- (- .367)75.2] + (- .367)X
Y=4557-.367X

This equation can be put into these words: “Starting with a base price of $45.57
per cwt, every unit (million) increase in annual hog marketings is associated with
an average reduction in price of 0.367 dollars per cwt.” A

Table 13.4 compares the observed values of Y with the estimated values (Y’s),
based on the regression equation.

The fact that the sum of deviations is zero serves as a check on the
calculations. This will always be true (except for rounding errors). The sum of
squares of deviations can be calculated in a much simpler way from the following
formula:

Ed*=(1-r)Zy?
In our example
Sd®=(1-.4996)68.32=34.19
which is an answer very close to 34.26 shown in Table 13.4. The small difference is

due to rounding,
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Figure 13.3. Regression line for hog data showing deviations from regression.

This sum of squares, 2d is called the sum of squares due to deviation from
regression and the square root of the quantity =d*/(n—2) is called the standard
error of estimate. This is just another kind of standard error, similar to the ones we
have encountered before. It is a measure of the amount of variation from the
regression line.

It is not usually necessary to go to all the trouble of constructing a table like
Table 13.4 to check the correctness of the regression line. Constructing the line on
the scatter diagram will usually reveal any gross errors. The construction of the
line is very simple, since only two points are necessary to determine any line. One
point can be on the Y-axis, a units (in this case, 45.57) from the origin. Another can
be the point representing X (the mean of X) and Y (the mean of Y). The line
passing through these two points will be the required regression line. Figure 13.3
shows the line in our example drawn through the observed points. The dotted lines
drawn from the observed points to the regression line represent the deviations.
Note that the scales at the bottom and side of the graph do not begin at zero. They
are designed to include just slightly more than the range of the observations.

You will notice that the deviations are represented as vertical lines. It is the
sum of squares of these deviations that we have minimized to come up with the
closest fitting line. Suppose we decide to construct a line such that the sum of
squares of the horizontal deviations from the points to the line is a minimum. Will
this give the same line? The answer is no, unless there is perfect correlation. This
new line will have the equation

" ( E_W) :

2y?
The expression Sxy/Zy* is called the regression coefficient of X on Y and is
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designated by byy. It should now be clear why we were careful to point out that
the symbol b is understood to mean by, the regression of Y on X, unless otherwise
specified.

There is a reason for mentioning that there are two best-fitting lines accord-
ing to which way the deviations are taken. Note that

This brings out the relation between the regression coefficients and the coefficient
of correlation.
We can now answer the questions raised about data in our example.

1. How close was the relation between supply and price?
ANSWER: Fairly close. The coefficient of correlation was —.7, and *1
would be perfect.

2. What is the probability that such a correlation could be due to chance?
ANSWER: A correlation of this size from 10 pairs of observations would
occur between 5 and 1% of the time by chance alone.

3. What equation would best describe the relation between price (Y) and supply
(X) from these data?
ANSWER: Y=45.57—.367X

4. How well does this line fit the data?

ANSWER: The sum of squares of deviations of the observed points from the
line was 34.19 or about one-half the total price variation. Thus,
only half the price variation was in some way associated with
variation in supply. A simple analysis of variance table shows this
(Table 13.5).

TABLE 13.5.
Regression analysis arranged in an analysis of variance form

Source of Variation  Degrees of freedom Sum of squares Mean Square F

Total 9 Zy*=68.32
Regression 1 r’2y®=34.13 3413 7.99*
Deviation from regression 8 (1-r*)Zy>=34.19  4.27

*See page 127 for note.
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Notice from this table that r* is the proportion of the total sum of squares
accounted for by regression, and (1—r°), sometimes called the coefficient of
alienation, is the proportion not accounted for.

The fact that the F value of 7.99 lies between the required F value at the 5%
point (5.32) and the 1% point (11.26) for 1 and 8 degrees of freedom, verifies our
previous finding in answer to question 2.

In fact, it does not matter whether we look up the F value in Table A.3 or the
r value in Table A.7. The two tests are identical, as can be easily shown. From the
analysis of variance in Table 13.5 we can see that, in symbolic terms,

£y’
¥ =P(n-2)/(1-r
=Azy/—g) o /T
Solving this equation for r* gives
__F
R B

We can substitute a required F value in this equation and take the square root to
find the required r value. For example, the requited 1% F value is 11.26 for 1 and
8 degrees of freedom. Substituting this in the equation above, we get

a_ 1126
11.26+10—2

r=.7646
This is the value in Table A.7 for 8 degrees of freedom at the 1% level.

=.5846

CONFIDENCE LIMITS

The deviation mean square (DMS) provides the basic quantity for the calculation
of several confidence limits. The variance of the regression coefficient is

»_ DMS
% = "gsX
and the confidence limits are
b*t(s,)

In our example of hog supplies and prices,

T .
% =536
5, =0.1298
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The tabular t value for 8 degrees of freedom at the 5% level is 2.306, so the 5%
confidence limits are

—0.367 +2.306(0.1298)

= —0.367+0.299= —0.666 and —0.068
The t value at the 1% level is 3.355, so the 1% confidence limits are:

—0.367 %+ 3.355(0.1298)
= —0.367+0.435= —0.802 and +0.068

Notice that the 5% confidence limits do not bracket zero, but the 1% limits do.
This agrees with the previous conclusions that the regression is significant at the
5% level but not at the 1% level. A

The estimates of Y designated as Y are subject to two kinds of error: the
variance of the mean and the variance of the regression coefficient. The variance
of Y is
1 _f_)

2= e
Sy DMS( = + 3SX

Notice that the size of this variance depends on the value of x (the deviation of X
from the mean X). The confidence limits for Y are

Y +t(sp)

In our example,

2 bW
S 4'27( 10+253.6)

=.427+0.0168x*

Confidence limits associated with several values of x are given in Table 13.6.
Plotting these values gives a “confidence belt” around the regression line bounded
by two curves, shown as the inner belt in Figure 13.4.

The confidence limits we have just calculated apply to the means of popula-
tions of Y values associated with specific values of X. It is often of more interest to
set confidence limits on the predictions of single values of Y, given specific values
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Figure 13.4. Confidence belts around regression line of hog data.

of X. Here we must take into account an additional source of error. In addition to
the error of the regression coefficient and the error of the mean, we have the
variation of individuals around the estimated mean.  _

The total variance of Y for a specific value of X—X or x is

s%=DMs(1+ et x—z)
n SSX
and the confidence limits are
Yt(sy)

Limits for selected values of x are given in Table 13.6 and plotted in Figure 13.4 as
the outer confidence belt.
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TABLE 13.6.

Variances, standard errors and 5% confidence limits of Y and Y associated with
selected values of X in hog price and supply example®

Lower Upper Lower Upper
X x Y s s t(sy) Limit Limit s s; t(sy) Limit Limit

652 —10 21.64 2.11 145 3.35 18.29 2499 6.28 2.53 582 1582 27.46
672 —8 2091 150 123 2.83 18.08 23.74 577 240 554 1537 26.45
69.2 —6 20.17 1.03 1.02 2.34 17.83 22.51 5.30 2.30 531 14.86 25.48
712 —4 1944 0.70 0.83 1.92 17.52 21.36 4.97 2.23 5.14 14.30 24.58
732 —2 1871 049 0.70 1.61 17.10 20.32 4.76 2.18 503 13.68 23.74
75.2 0 17.97 043 0.65 1.51 1646 1948 4.70 2.17 500 1297 2297
77.2 2 1723 049 0.70 1.61 1562 18.84 476 2.18 503 1220 2226
79.2 4 1650 0.70 0.83 1.92 14.58 18.42 497 2.23 514 11.36 21.64
81.2 6 15.77 1.03 1.02 2.34 1343 18.11 5.30 2.30 531 1046 21.08
83.2 8 1504 1.50 1.23 2.83 12.21 17.87 577 240 554 9.50 20.58
852 10 14.30 2.11 145 335 1095 17.65 628 2.53 5.82 848 20.12

*Note: The t value used in these calculations was 2.306, the tabular t value at the 5% level
for 8 degrees of freedom.

REGRESSION IN REPLICATED EXPERIMENTS

We have shown in Chapters 6, 9, and 10 how we can use an orthogonal set of
coefficients to find the sum of squares due to linear regression. This method is
applicable only to certain sets of treatment levels, but the general methods of this
chapter can be used for any series of treatment levels.

The data from Chapter 10 will be used to illustrate the general methods, and
later in Chapter 15 the same data will be analyzed with the shortcut method.

In table 13.7, we designate as Y the totals of the five harvest dates. Working
with totals rather than means reduces the amount of rounding errors. We will fit a
straight regression line to these values and test its significance.

2
SaloEXE_ (E;Q —55— l? 10

>Y)?
( 5) =571.372. 24—l‘5’0—°2 =59,372.24

Syt=3Y>—
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TABLE 13.7.

Totals (Y) from time of harvest treatments (X) in the sugar beet experiment in
Chapter 10

-

X Y X xx Y Y Y-Y (Y-Y?

1 1400 1 1400 1960000 1698 —298  888.04

2 2672 4 5344 7139584 2449 223 49729

3 332 9 10056 11235904 3200 152 23104

4 4170 16 16680 173,889.00 3951 219  479.61

5 4406 25 22030 19412836 4702 —296 876.16

Total 15 16000 55 55510 571,372.24 1600.0 00 297214

15(1600
Sry=3xY- 222X =55510- 16%0) _ 7510
Zxy _ 751
a=Y—bX=320—75.1(3) =94.7
P . S, ) P
(Z2%)(Zy?) (10)(59,372.24)
dew - 2y' 5937294
(on a per-plot basis) = o i =3710.765

SS Regression=r> (SSY) = .94994(3710.765) = 3525.004
SS Deviation = (1 —1?)(SSY) =.05006(3710.765) = 185.761

The sum of squares of deviations shown in the last column of Table 13.7 can
be reduced to a per-plot basis by dividing by 16: 2,972.14/16=185.759, which
agrees with the value given above except for rounding errors.

The regression equation was calculated from the treatment totals, and if we
wish to have an equation for estimating the means, we divide a and b by 186, giving
us the equation

Y =5.91875+4.69375X

The sums of squares can be summarized in an analysis of variance table,
Table 13.8.
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TABLE 13.8.
ANOVA table for the regression of sugar beet
yield on harvest date (Table 13.7)

Required
Source of F
Variation df SS MS F 5% 1%
Harvest dates 4 3710.765 927.691 111.92 3.26 5.41
Regression 1 3525.004 3525.004 425.26 4.75 9.33
Deviation 3 185.761 61.920 747 3.49 5.95
Error 12 99,467 8.289

Notice that in the hog data, where we were dealing with individual pairs of
observations, we used the deviation mean square for testing the regression mean
square. In a replicated experiment, however, we have an error term that we can
use for testing both the regression mean square and the deviation mean square.

In our example, the highly significant regression mean square tells us that
there is a highly significant trend for the yield of sugar beets to increase as the
harvest date is advanced (within the range of dates employed in this experiment).
The F value for deviation from regression, while not nearly as large as for
regression, is still highly significant. This tells us that there is some highly
significant source of variation in addition to the positive linear trend that is
affecting the yields. We will examine some of the possible sources in the next
chapter.

PITFALLS

Probably no part of statistics is subject to more abuse and misinterpretation than
correlation and regression. The statement that “one can prove anything with
statistics” is true only if one ignores some of the basic principles involved. The two
principles most often ignored in correlation are:

1. The full name of the coefficient of correlation is the coefficient of linear
correlation, and

2. Nothing in the definition of correlation indicates or implies that the

relation between two variables is one of cause and effect. The following
are examples of how easy it is to get into trouble.
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A LOW CORRELATION DOESN'T ALWAYS MEAN LACK OF RELATION.
Look at the following pairs of figures:

% Y
0 0
1 144
2 256
3 336
4 384
5 400
6 384
7 336
8 256
9 144

10 0

If we calculate the coefficient of correlation between X and Y, we find that it is
zero. (Try it and see.) However, if we conclude that there is no relation between X
and Y, we would be completely wrong. X is the elapsed time in seconds after
shooting an arrow vertically at 160 ft/sec. Y is the elevation of the arrow in feet.
Of course, it is utterly ridiculous to contend that there is no relation between the
height of an arrow and its time in flight. What is wrong with this paradox? The
important word linear, implied when we speak of the coefficient of correlation,
was ignored. It is true that no straight line will come close to fitting these data, but
the equation Y=160X—16X* will give a perfect fit. This is the equation of a
parabola.

The moral of this example is that one should be on the lookout for curvilinear
relations that might fit the data better than a simple linear relation. Ways to
handle data of this kind will be presented later.

A HIGH CORRELATION DOES NOT NECESSARILY MEAN A CAUSE AND
EFFECT RELATIONSHIP. Consider Table 13.9 from which we can calculate
the coefficient of correlation and the regression equation.

The high value of the coefficient of correlation, .937, indicates a close relation
between X and Y. One might be tempted to say that each unit change in X causes
a change of .643 in Y. Now let us see what X and Y represent. The X's are the
number of cigarettes used annually in the United States (in billions) from 1944 to
1958. The Y’s are the index numbers of production per man-hour for hay and
forage crops during the same period. It would require a big stretch of the
imagination to think of any direct cause and effect relation between cigarette
consumption and efficiency in the hay business. It just happened that both of these
variables showed a steady increase with time during the period being considered.

The moral of this example is that the coefficient of correlation will measure
the closeness of relation between two variables, but it tells us nothing about
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TABLE 13.9.
Fifteen pairs of highly correlated data

X Y X = 5669
295 73 X= 3779
339 78 IX2= 2,163,935
343 85 (EX)?/15= 2,142,504
344 91 Sxd 21,431
357 100 SY= 1768
359 109 Y= 117.9
368 119 Y= 218,482
395 125 (ZY)?/15= 208,388
414 129 Syt= 10,094
406 135 XY= 681,962
385 142 (ZXZY)/15= 668,186
394 139 Sxy= 13,776
404 140
420 147
446 156

r=(Zxy)*/ZxZy*
=(13,776)%/(21,431 X 10,094)

=189,778,176 /216,324,514 = .8773
r=V 8773 =.937 (coefficient of correlation)
b=Zxy/Zx*=13,776 /21,431 = 643 (regression coefficient)
a=Y—bX=117.9—-243.0=125.1 (intercept)
Y= —125.1+.643X (regression equation)

whether this relation is one of cause and effect. That decision is up to the
investigator and must be based on a great deal of knowledge of the variables under
study.

WATCH FOR PART-WHOLE CORRELATIONS. Several years ago, a paper
presented at a meteorological meeting dealt with studies on length of growing
seasons between killing frosts. It was reported that there was little or no correla-
tion between the last frost in the spring and the first frost in the fall over a long
period of time. The next conclusion reported was that there was a rather high
correlation between dates of last frost in the spring and length of seasons.
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If we examine this second conclusion, we note that the length of season is
completely determined by two parts, the beginning (last spring frost), and the end
(first fall frost). It can be easily proven that, if a variable is made up of two or
more independent parts, there is automatically a correlation between any one of
the parts and the whole. The relation is simple: r=(standard deviation of
part)/(standard deviation of whole). In the case of the frost data, if spring frost
dates and fall frost dates are about equally variable, then we expect the correlation
between spring frost dates and length of season to be about V.5 or .707. The
conclusion about the correlation between spring frost and length of season, while
correct, was trivial.

EXTRAPOLATION IS TEMPTING BUT DANGEROUS. Often a series of ob-
servations fall within a rather restricted range of values for the two variables under
study. If they show a high coefficient of correlation, there is a great temptation to
extend the regression line beyond the range of observations and try to predict
what would happen to the values of Y if X were to take on values above or below
those actually observed. This is called extrapolation. It is a dangerous practice,
because many variables that are related in a curvilinear fashion will give a high
linear correlation if only a short section of the curve is sampled.

Table 13.10 gives the measurements of 10 onion bulbs with diameters
between 50 and 70 mm. with their corresponding weights in grams.

TABLE 13.10.
Measurements of ten onion bulbs

Diameter (X) Weight (Y)
51.0 63.4
66.2 115.3
69.2 146.6
69.5 132.6
56.9 80.7
67.1 125.6
58.1 80.0
53.9 78.7
63.0 112.8
60.0 96.2
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The calculation of r, the coefficient of correlation and of the regression
equation, is as follows:

=X=614.9 =Y=1031.9
X =61.49 Y=103.19
=X?=38,192.17 Y2 =113,247.79 =XY =65,014.60
(2X)*/n=37,81020 (ZY)’/n=106481.76 =XZY/n=63.451.53
=x*=381.97 =y*=6,766.03 Sxy =1,563.07

r*=(1,563.07)*/(381.97 X 6,766.03) = 9454
r=V.9454 = 97 (coefficient of correlation)
b=1,563.07/381.97=4.092 (regression coefficient)
a=103.19—(4.092)(61.49) = — 148.43 (intercept)
Y =4.092X —418.43 (regression equation)

The correlation of .97 between diameter and weight is very high. (This is not
surprising.) Within the range of 50 to 70 mm, a straight line equation describes the
relation between the two variables very well.

Now let us extrapolate and see what happens. A bulb measuring 92.4 mm was
found to weigh 300.2 g, but our estimate of weight from the regression equation is

300 —

Error due to extrapolation < |
250 —

150 —

Weight of bulbs (g)

100 }— Range of observation

| | | |
0 10 20 30 40 50 60 70 80 90
Diameter of bulbs (mm)

Figure 13.5. Regression line drawn through onion data over a limited range,
showing the danger of extrapolation from limited observations.
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229.7. Extrapolation caused us to err by 70.5 g in our estimate. Going in the other
direction, a bulb measuring 37.8 mm weighed 27.8 g, but extrapolation gave an
estimate of 6.2 g. Extrapolating for still smaller values of X soon gives us
completely absurd estimates of Y. For example, a 36.27 mm bulb would be
estimated to weigh nothing, and all bulbs smaller than this, less than nothing.
Figure 13.5 shows the line fitted to the data and the effects of extrapolating.

It is easy to see why extrapolation leads us so far astray in this case. The linear
regression equation implies that a given amount added to the diameter of a bulb
will add a certain fixed amount to the weight. It should be obvious, however, that
this cannot be so. One centimeter added to a 9 cm bulb will certainly result in a
greater increase in weight than 1 cm added to a 2 cm bulb.

If one wishes to find out how two variables are related outside the range of
his observations, the safest procedure is to make more observations in the region of
interest.

SUMMARY
Correlation is the tendency of two variables to be related in a definite manner.

The two variables are called independent and dependent, according to which
one is viewed as depending on the other. The independent variable is called X and
the dependent variable Y.

The coefficient of correlation measures the closeness of the relationship.

Regression is the amount of change in the dependent variable associated with
a unit change in the independent variable. A linear regression equation is written
Y=a+ bX, where Y is the estimated value of Y, a is the intercept or point where
the line crosses the Y axis, and b is the slope or regression coefficient.

Graphing a set of data made up of pairs of variates produces a scatter
diagram. This is usually a convenient first step in regression analysis. A quick
shortcut method known as the rank difference method gives an easy-to-calculate
approximation to the coefficient of correlation. The formula is

62d®

e n(n—1)(n+1)

where r is the coefficient of correlation, d is the difference in rank in each pair of
observations, and n is the number of pairs.
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The standard method or product-moment method can be expressed by several
formulas:

|2(x ]

r= (dlrect observational form)
(X- x)’z(

(deviation from mean form)

R=[EXY—E—’§12—Y]2/

r*= byxbyy (regression form)

(computational form)

e S

n

(The sign will correspond to the
sign of the number inside the

r==+V2 brackets of the numerators in equa-
tions 1 to 3. It will correspond to
the sign of byy in equation 4.)

The significance of the coefficient of correlation can be determined by
reference to a special r table, using n—2 degrees of freedom; where n is the
number of pairs of observations.

Correlations based on only two pairs of observations will always be plus or
minus one, but they are meaningless.
The regression coefficient is: b=Zxy /=«

The intercept is: a=Y— bX.

When a and b are determined, we can write the regression equation,
Y=a+bX

Lack of agreement between observed and estimated values of Y is measured

by the sum of squanes due to deviation from regression, obtained from the relation:
Sd=(1-r)Zy
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The sum of squares due to deviations divided by its degrees of freedom (n—2)
gives the deviation mean square (DMS). The square root of the deviation mean
square is called the standard error of estimate.

The sum of squares due to regression can be obtained directly:
SSR=r'Zy*

or by subtraction:

SSR=3y?— S

The mean square due to regression is the same as the sum of squares, since it
has only 1 degree of freedom. A test of significance based on F = (regression mean
square) /(deviation mean square) can be checked in an F table under 1 and (n—2)
degrees of freedom. This will give the same test as reference to an r table.

The variance of the regression coefficient is s,=DMS/SSX. The confidence
limits for b are: b*t(s,). The variance of an estimated Y is sg®>=DMS(1/n+
x* /8SX). The couﬁdence limits for Y are: Y +t(sy). The variance of an individual
prediction of Y is: s,®>=DMS(1+1/n+ x*/SSX). The confidence limits for a single
estimated Y are: Y+ t(sy).

In a replicated experiment, the regression mean square and the deviation
mean square can be tested with the same error term used to test the total
treatment mean square.

It should always be remembered that the ordinary coefficient of correlation
assumes a linear relation between the two variables. Also, it cannot help us decide
whether the relation is one of cause and effect.

A low coefficient of correlation doesn’t always mean a lack of relation. There may
be a very close curvilinear relation.

A high coefficient of correlation does not imply a direct cause and effect
relationship. The two variables may simply both be related to a third variable,
such as time.

Avoid correlation of a variable with one of its component parts. The conclusions
reached are trivial.

Avoid extrapolation of a regression line beyond the range of observations.

Linear Correlation and Regression 194



14

CURVILINEAR
RELATIONS

In the previous chapter we warned repeatedly to keep in mind that the usual
coefficients of correlation and regression are based on a linear relationship
between two variables. A linear relation is the simplest type of relation found
between variables. Even if there are pronounced deviations from linearity for
extreme values of X and Y, it often happens that, within the useful or practical
range of values of the variables, a straight line is sufficient to characterize the
relationship. For example, in fertilizer tests we often notice that there is a steady
increase in yield with increased application of some nutrient up to a point. Above
that point the increase in yield may be less pronounced, and finally the yield will
actually decrease as we use excessive amounts of fertilizer. If we are interested
only in low to medium fertilizer applications, a straight line may be satisfactory for
describing the relation between yield and fertilizer. If we wish to describe this
relation through the whole range of applications from zero to extremely high, we
will probably have to use a curve that reaches a maximum and then decreases.

DECIDING WHAT CURVE TO USE

Since there are so many different kinds of curves we might use to express the
relation between two variables, we first have to decide what kind of curve we are
going to try to fit to the data. It would be desirable to find one that expresses some
natural relation between the two variables, but this is not always possible.
Sometimes a thorough knowledge and experience with the variables we are
studying enables us to select one type of curve that is more logical than others. We
will cite some examples of this as we go along. Sometimes the converse is true.
Finding a curve that fits the data closely may give us an important clue as to a
natural relation that exists between two variables. Many of our natural laws were
discovered in this way; for example, Boyle’s law, Charles’ law, and the law of
falling bodies.

With biological data, the relation between two variables may be so complex
that no simple equation can suffice to describe the relationship. We often must be
content to find an equation that fits the data reasonably well without making any
claims that the equation expresses any natural relation. It is always possible to find
a curve that will fit the data perfectly, but such a curve may be strictly artificial
and completely devoid of physical or biological meaning.
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From a multitude of types of curves, we have selected five for consideration.
These were chosen first, because they are the most common ones encountered in
biological and economic data and second, because only elementary mathematical
ideas need be utilized in discussing them.

The Power Curve

This is a curve where Y is a function of some power of X. The general form of the
equation for a curve of this type is

Y=aX’
If we take the logarithm of both sides of this equation, we get

logY=loga+ blogX"

If we let the logs of X and Y be the variables, calling them X’ and Y’, and the
constant loga is called a’, we can rewrite the equation:

Y =a +bX

This is easily recognizable as the general equation for a straight line discussed in
the preceding chapter. Therefore, all we have to do to analyze data of this type is
to transform the observations to logarithms, then proceed exactly as we did with
linear correlation and regression.

The value of b can be positive or negative and a whole number or a fraction.
Figure 14.1 shows some of the wide variety of curve shapes that result from
different values of b. After transformation of X and Y to logarithms, all of these
curves become straight lines with slope b, as shown on the right-hand side of the
figure.

The effect of a on the original curves is to compress or expand the scale on
one of the axes, while its effect on the log transformed line is simply to move it up
or down without changing its slope.

Since only positive numbers have logarithms, the log form of the equations
has no meaning for negative values of X. Thus, we should apply the log transfor-
mation only to data where all the observations of X and Y are positive. This is not
really a very serious restriction, since many physical measurements, such as
weight, length, area, and so forth, take only positive values.

How do we know whether it is plausible to use the log transformation? Here
again, the use of a graph gives a good start. Graphing can be done in two ways.
The observed values of X and Y can be converted to logarithms and plotted on
ordinary graph paper. An even simpler method is to plot the original values on a
graph paper called log paper. With either method, a scatter diagram will result. If

"For those who do not recall the rules of logarithms and exponents, a review will be helpful
in this discussion. Any elementary algebra text can be consulted.
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Direct form: (¥ = aX?) Log form: (log ¥ = loga + b log X)

y=x? / /
/ /
/ /
/ Log ¥ = 2 log X
//
flog ¥ = —1 + 2 log X
S Y=ax2 /
e ¥
(b= 2) o /

Log ¥=log 3 + % log X

- %
Y=3X -~

-~
A ~~ LogY=Y%log X

dy e -

(b=1%)

Log ¥ =—% log X

Y=X%
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Log ¥ = —log X

(6 =-1)

Figure 14.1. Various shaped curves with their log transformations showing how
logs can convert curves to straight lines.

this scatter diagram has the appearance of a long narrow ellipse, typical of linearly
correlated data, we can proceed to analyze the logarithms of X and Y.

From a logical point of view, we would expect data based on measurements
involving two different numbers of dimensions to fit curves of the form Y=aX".
For example, height is one-dimensional, while weight, being related to volume, is
three-dimensional. Therefore, in correlating height with weight, it would be logical
to try the log transformation. The same would be true with measurements of width
and area, length and volume, surface and diameter, and the like.
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In the previous chapter, in discussing the dangers of extrapolation, we
presented some data on the diameters and weights of onion bulbs. We pointed out
that a straight line described the relation fairly well if we considered only a short
range of diameters. If this line was extended in either direction beyond the range
of observations, it failed to give a good representation of the relation between
diameter and weight. If we stop and think about it, this is really what we would
expect. One centimeter added to a large bulb would be expected to add more to
the weight than 1 cm added to the diameter of a small bulb. Furthermore, if the
bulbs were spheres, the relation of diameter to volume would be

ad®
V=T
If the specific gravity of the bulbs remained fairly constant throughout all bulb
sizes, weight would be a direct linear function of volume. Therefore, we would
expect weight (Y) to be a function of the cube of the diameter (X).

The true situation with onions is not quite this simple, since they are rarely
spherical in shape but rather spheroids with an elliptical longitudinal section.
Moreover, as the bulbs grow, they continually change in shape, being prolate
spheroids when they are small, nearly spherical at some medium size, and oblate
spheroids when they are large. This constant change in shape results from the fact
that they grow more rapidly in diameter than they do in length. In spite of these
complexities, it would seem that the type of data we are dealing with might be
greatly simplified by a log transformation.

Table 14.1 shows the diameters and weights observed with 30 bulbs, arranged
in order of their diameters.

First, we calculate the coefficients of correlation and regression equation for
the original data.

(1817.2)*
Sx%=118,958.58 — g =8:88472
(3383.6)°
Sy®=542,675.26 — 30— =161,050.29
1817.2(3383.6)
Sxy=241,712.67— ——-—— =36,816.74
Sxy)? 36,816.74)
pa 2 ___ ) _ our3

T S5y’ 8884.72(161,050.29)

s
oV T3 = G738, b ) e OBICTE 1y

2 888472
—V_px 33836 18172 | _ _
a=Y-pX= 28 [4.144( g )] 138.20
Y= —138.20+4.144X
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TABLE 14.1.
Diameters and weights of onion bulbs

Diameter (X) Weight (Y) Log X(X") LogY(Y')

35.1 24.3 1.54531 1.38561
35.3 24.1 1.54777 1.38202
35.5 24.4 1.55023 1.38739
37.8 27.8 1.57749 1.44404
37.8 28.7 1.57749 1.45788
41.4 420 1.61700 1.62325
41.7 34.5 1.62014 1.53782
448 56.1 1.65128 1.74896
449 49.0 1.65225 1.69020
479 58.4 1.68034 1.76641
51.0 634 1.70757 1.80209
53.9 8.7 1.73159 1.89597
56.9 80.7 1.75511 1.90687
58.1 80.0 1.76418 1.90309
60.0 96.2 1.77815 1.98318
63.0 1128 1.79934 2.05231
66.2 1153 1.82086 2.06183
67.1 125.6 1.82672 2.09899
69.2 146.6 1.84011 2.16613
69.5 132.6 1.84198 2.12254
70.7 1428 1.84942 2.15473
it g 137.1 1.86392 2.13704
73.1 163.2 1.86392 2.21272
774 180.0 1.88874 2.25527
81.7 198.0 1.91222 2.29667
81.7 207.8 1.91222 2.31765
82.3 190.8 1.91540 2.28058
83.1 225.5 1.91960 2.35315
84.6 237.0 1.92737 2.37475
924 300.2 1.96567 2.47741

Totals 1817.2 3383.6 52.90339 58.27655

Sums of

squares 118,958.58 542,675.26 93.80268806 116.4541216

Sums of

cross-products 241,772.67 104.0495715
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At first glance it looks as though a straight line has given us an excellent fit to the
data. The coefficient of correlation, .973, is very high. However, if we look at the
graph of the data with the superimposed regression line (Fig. 14.2), we notice a
disturbing thing. All the deviations from the line at the ends of the range are
positive, while those in the middle of the range are negative. If the deviations were
more or less random, we would be satisfied, but this systematic grouping of
deviations leads us to expect that a curve would describe the observations still
better. There is another even more compelling reason to try to fit a curve. The
straight line we have fitted to the data simply does not make sense for diameters
less than about 34 mm, for it indicates that bulbs smaller than this would have
negative weights.

Now we fit a straight line to the logs of X and Y and see whether these
difficulties are overcome. The calculations are exactly the same, except that we
replace X with X'=logX, and Y with Y'=logY.

e (52.90839)"
EI —93.802688%_ T —-51039894
58.27655)°
Sy?=116.4541216 — (—30—)— =3.2489123
52.90339(58.27655)
Sx'y =104.0495715— 5 =1.2820031
i 12820081 _ 991109
51039894(3.2489123)
r=V.9911 =.996
_ 1.2820031 _
b= 51039894 RALS

. 5&%‘3655 _2_5118( 52.90339

b )=—2.4869

Y = —2.4869+2.5118X’

The coefficient of correlation, .996, indicates an extremely close fit, even higher
than that obtained from the untransformed data. The improvement in the correla-
tion is not, however, the main reason for preferring the use of the transformed
data in this case. It can be seen from Figure 14.3, that the deviations of the points
from the regression line are more or less randomly distributed as to direction.
Moreover, the relation between X and Y expressed in the new equation implies
that as the diameter approaches zero the weight also approaches zero.

The regression equation in the log form can be transformed back to the
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Figure 14.2. Onion data from a wider range of observations than Figure 13.5
showing nonrandom deviations from the regression line.

original measurements by taking the antilog of a” to find a, and substituting:

equation: Y=aX"
log form: Y’'= —2.4869+2.5118X’
original form: Y =.00326(X*>>'1)

26—

24|l  ¥'=25118X — 2.4869 )

22—

20

Log weight

1.6

1.3
1.5 186 1.7 1.8 1.9 20

Log diameter

Figure 14.3. The same onion data as Figure 14.2 converted to logs, showing the
improved fit to a straight line.
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The exponent of approximately 2.5 is interesting for what it reveals about the
growth pattern of onions. If the bulbs grew at the same rate in all dimensions, the
shape would remain constant, and the weight should be a function of the cube of
the diameter or X°. If the depth remained constant and growth involved only
increase in diameter, the weight should be a function of the square of the diameter
or X®. If the bulbs increase in depth, but at a slower rate than their increase in
diameter, the shape should change from prolate to spherical to oblate, and the
weight should be a function of some power of the diameter between 2 and 3. The
last situation is exactly in accord with observations. The equation we have
developed not only fits the data closely but also expresses a natural relation
between diameter and weight that agrees with other facts dealing with the

geometry of growth,

The Exponential Curve (Growth or Decay Curve)

In this curve, X appears as an exponent, and the coefficient b describes the rate of
growth or decay. The general equation for this type of curve is

Y= ab"
If we take the logarithm of both sides of the equation, we get:

log Y =loga + (logh)X
Letting logY=Y',loga=a’, and logh=b", then
Y=da+b'X

Again, transformation has yielded a straight line, but in this type of curve, it is the
log of Y and the original values of X that are used, instead of the logs of both
variables. For this reason, it is called a semilog type. Semilog graph paper is
available with a log scale on the Y-axis and an ordinary scale on the X-axis. Data
can be plotted on semilog paper, or the Y values can be transformed to logs and
plotted on ordinary graph paper. In either case, if the resulting scatter diagram
looks like linear data, it is worth calculating the coefficients of linear correlation
and regression of the log of Y on X.

The values of X can be positive or negative, fractions or whole numbers, but b
can be only a positive number. Figure 14.4 shows two typical exponential curves,
one with b=2, and the other with b=1/2. The figure also shows the straight lines
resulting from transformation of Y to logY.

The type of data that is most likely to fit this type of curve is data related to
interest rates. The formula for change in principal with time, invested at constant
rate of interest compounded annually is

A=P(1+r)'

Curvilinear Relations 202



Exponential form

Y=?x/ \YAX

2 e e |

Growth curve Decay curve

Log form

LogY=XI092\/ \'LDQY"XWQVﬂ

Figure 14.4. Typical exponential curves with their log transformation.

where A is the amount at the end of time t, P is the original principal, r is the
annual rate of interest, and t is the time in years.

Where do we find anything like this in agriculture? Many organisms have a
fairly constant growth, at least during the early stages of growth, and therefore
follow the compound interest law. If we are studying the relation between time
and size of an organism or a population, it is often profitable to see whether the
data fit this type of curve.

Another situation in which this type of curve will be useful is in dealing with
physical laws that are exponential in character. Consider for example, Van Hoff’s
law, which states that the rate of reaction approximately doubles with each 10°C
rise in temperature. Many plant responses are known to follow this law fairly well,
at least through a limited temperature range. Thus, temperature and rate of
spoilage in fruits and vegetables often can be studied easily by assuming that they
are related exponentially.

The rate of cooling of produce placed in a refrigerated room follows this kind
of curve. In this case, we are not dealing with increase or growth but with
decrease or decay. A decay curve has a b value of less than one, while in a growth
curve b is greater than one. Other examples of decay curves are the curve of
degradation of certain insecticides in the soil and the decay of radioactive isotopes.
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TABLE 14.2.
Population of San Diego, California, from 1860 to 1960

Decades
Year of Census from 1860 (X) Population (Y) LogY
1860 0 731 2.864
1870 1 2,300 3.362
1880 2 2,636 3.421
1890 3 16,159 4.208
1900 4 17,700 4248
1910 5 39,578 4.597
1920 6 74,361 4.871
1930 T 147,995 5.170
1940 8 203,341 5.308
1950 9 334,387 5.524
1960 10 573,224 5.758
Totals 35 49.331
Sums of squares 385 230.393503
Sum of X logY 277.981
-9 600
55 o
o
-] — 500
5.0}
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5 o 1§
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Year

Figure 14.5. Populations of San Diego for 11 decades plotted directly and on a
semilog scale.

Cuprvilinear Relations 204



As an example of data that can be analyzed by transforming Y to log Y, we
will take the relation of population (Y) to time (X) for the city of San Diego,
California, through 11 censuses (Table 14.2).

A graph of the populations against time (Fig. 14.5) shows at once that it is
useless to calculate a linear regression equation for these data. This is a striking
example of a case where the shortcut method would give extremely misleading
results. Since the rank of the populations is exactly the same as the rank of the
years, the shortcut method would give us a coefficient of correlation of +1. It
would fail to reveal the fact that the data are decidely curvilinear. However, when
the log of population is plotted against time, we see that a straight line appears
reasonable for representing the relation.

The calculations are straightforward if we replace Y with Y =logY as one of
the variables.

=2 =385— =110=2X2—-

(55)°
1

(49.331)

(=Y
11 n

Sy =230.393503 — =9.161907=3Y"?—

55(49.331) (EXZY')
Sxy'=277.982 ~ —— =31.326=3XY' —

_ () 313962
Sx%y? 110(9.161907)

=0.9737

=V0.9737 =0.987

ow. 49 (=)

Regression equation: Y’ =3.0606+ 0.2848X

Taking the antilog of both sides, gives the exponential equation: Y =1,150(1.927)"
This equation tells us that, on the average, the population increased by 92.7%
every 10 years.

There is no question that the exponential curve fits the data much better than
any straight line that could be used. However, even when we use the logs of the
population against time and fit a straight line, the fit is not ideal, and there is a
slight but definite tendency for the points to form a curve. Deviations in the
middle of the line are positive, while those at the ends are negative. It appears
from the graph that the rate of growth has not been constant but has had a
tendency to slow down.
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If the curve were extrapolated to 1970, the estimated population would be
1,561,000. Later, we will show how a still better equation can be devised to
express the relation of population to time.

Asymptotic Curves

These are special cases of the exponential curve discussed in the last section. If the
coefficient b in the equation Y=ab" is less than one, Y approaches zero as X
increases without limit. A line approached by a curve in this way is called an
asymptote. In the above case, the asymptote is the X-axis. There are cases where
the asymptote is some value of Y other than zero. For example, the temperature of
a crate of produce placed in a refrigerator will approach the temperature of the air
in the refrigerator. The uptake of a cation in plants will show a very marked
increase associated with small increases of the cation in the nutrient medium at
low levels. Once the level in the medium reaches a level adequate for normal plant
growth, the increase of uptake associated with additional increases in the medium
is very small. The uptake approaches an upper limit which can be considered an
asymptote.

If Y decreases as X increases and approaches an asymptote from above, an
equation of the form Y= c+ ab™ may give a good fit. If Y increases as X increases
and approaches an asymptote from below, the equation would be Y= ¢ — ab*. The
asymptote in either of these cases is Y=c. There is no simple, straightforward
method for fitting data to these equations. The difficulty lies in finding the value
of ¢. In some cases this value is fairly obvious, as in the case of a cooling curve
where we expect the value of the asymptote to be the temperature of the cooling
medium. In other cases, all we can do is make a reasonable estimate.

In the case of the descending curve, we can rewrite the equation as (Y—c¢)=
abX. Taking the logs of both sides gives us the linear equation: log(Y —¢)=loga +
Xlogh. For any chosen value of ¢, we can fit a straight line of this form to the
data. We can try various values of ¢ and compare the values of r” to try to
maximize the closeness of fit.

It should be noted that ¢ must be less than the smallest value of Y, since Y—¢
must be positive in order to have a logarithm.

The case of the ascending curve is similar. Here the equation can be written
(c—Y)=ab¥, and the log form is: log(c —Y)=loga+Xlogh. In this case, ¢ must
be greater than the largest observed value of Y. Computer programs can easily be
written to try successive values of ¢ until one is found that gives the smallest sum
of squares of deviations from the calculated line.

This fairly simple approach is open to criticism on the grounds that it is not a
least squares solution in the sense that the sum of (Y—Y)® is a minimum. It is the
sum of squares of the differences between the observed and calculated values of
log(c —Y) or log(Y — ¢) that is being minimized.

It may be that these logs display more homogeneity of variance over the
range of X values than do the Y variates themselves. This can be tested only when
there are several values of Y for each value of X as in a replicated experiment (see
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Chapter 12). If the variances of the logs are more nearly homogeneous than the
original Y variates, then it is valid to fit a straight line to log(c —Y) or log(Y—c)
instead of computing a least squares curve based on the untransformed Y variates.

If it is desired to find an equation that makes the sum of (Y —Y)? a minimum,
a detailed method is presented in Statistical Methods, 6th edition, by Snedecor and
Cochran (pp. 467-471). Actually, the results obtained by fitting a straight line to
og(c —Y) or log(Y — ¢) generally give equations very close to those obtained by the
more involved “true” least squares method.

The Polynomial Type

This type of curve has the general equation Y=a+ bX+ cX?*+dX*+ .... The row
of dots means we can have as many terms as we like. If the equation has only the
first two terms on the right-hand side, we can recognize it as the equation of a
straight line. If it ends with the third term (cX?), it is a second-degree or quadratic
equation. The curve represented by a quadratic equation has a special name, a
parabola. An equation ending in dX® is called a third-degree or cubic equation.
The highest power of X appearing in the equation determines the degree, and
special names are given to the more common degrees. Corresponding to the first
five degrees are the terms linear, quadratic, cubic, quartic, and quintic, respec-
tively.

The polynomial is by far the most widely used expression for describing the
relation between two variables. Sometimes it may not be a particularly “natural”
expression, that is, one that expresses a cause and effect relation between the
variables. However, it is so flexible and so easily handled mathematically that it is
very useful.

Figure 14.6 shows a few of the many shapes of curves that can be represented
by a polynomial equation. A striking property of this type of equation is that no
matter how many pairs of observations we have, it is possible to calculate a
polynomial curve that will exactly fit every point, providing there is only one value
of Y for each value of X. The degree of the polynomial required to do this is, at
most, one less than the number of pairs of observations. In actual practice, one
seldom calculates more than a third- or fourth-degree equation. The calculations
beyond this are formidable, and the results are usually a meaningless, meandering
curve.

We noted that a straight line was simply a special case of the general
polynomial equation—a first-degree or linear polynomial. To find an expression for
the curvilinear relation of two variables, we try to do the same as we did in fitting
a straight line. That is, we seek the curve of a given degree that will make the sum
of squares of deviations a minimum.

The problem is to find the coefficients a, b, ¢, d, and so forth that will give a
polynomial meeting the requirement that the sum of squares of deviations be a
minimum. To do this, we make use of what are known as normal equations. We
need as many equations as there are coefficients, or one more than the degree of
the equation we wish to fit.
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First degree Second degree

Y=1+4X Y=16 — 8X + X2

Third degree Fourth degree

Y =13 — 16X + (Bra)X?— (3a) X3+ (Vaz)x*

Y=—4+86X - (%) X2+ ("ne)X®

/

Figure 14.6. Typical shapes of polynomial curves of the first four degrees.

The normal equations are as follows:

an+bEZX+ cEX2+dEX3+ ... =3Y
aZX+bEX?+ cEX3+ dEX*+ ... =3XY
aSX2+bEX3 + cEX + dEXP+ ... =2X?Y
a=X3+ bEX* + cEX°+ dEX+ ... =2X’Y

.........................



The dots mean that we continue with the same pattern until we have as many
terms to the left of the equal sign and as many equations as there are coefficients
to be calculated. Thus, for a straight line we need only the first two terms of the
first two equations. For a quadratic or second-degree curve, we need the first
three terms of the first three equations, and so on.

From the data, we need to calculate the sums of powers of X and sums of
products called for in the equation. For an nth power equation, we need the sums
of all the powers of X up to X*, and the sums of products up to X"Y. The
mathematics is simple, but the arithmetic is overpowering if we try to fit
polynomials of high degree.

As an example, we will use some data on the yield of green lima beans at
different ages of the field at picking time (Table 14.3). The date of the earliest pick
is used as the base date and given an X value of zero. The values of X for
subsequent pickings are the number of days from the base date. Yield in pounds is
the dependent variable, designated by Y. The data are expected to be curvilinear,
since at the first there should be an increase in yield with age of the field, but as
the beans increase in maturity, they turn from green to pale and white. Therefore,
the yield of greens will decrease after reaching a maximum.

We now have all the sums we need for the normal equations up to the third
degree. We will first fit a straight line to the data, using the normal equations:

an+bEX=ZY
aZX +bEX?*=3XY
Filling in the known values in these equations, we have
6a+52b=229.7 (1)
52a+658b=1978.1 2)

TABLE 14.3.
Yield in pounds of green lima beans (Y) on six dates (X)

XYy x® x x X5 b s XY XAy X3y

0 274 0 0 0 0 0 0 0 0
4 393 16 64 256 1,024 4,096 1572 6288 25152
7 462 49 343 2401 16,807 117,649 3234 2,263.8 15846.6
10 47.8 100 1,000 10,000 100,000 1,000,000 478.0 4,780.0 47,800.0
13 44.51692,197 28,561 371,293 4,826,809 578.5 7,520.5 97,766.5
18 24.5324 5,832 104,976 1,889,568 34,012,224 441.0 7,938.0 142,884.0
Totals 52 229.7 658 9,436 146,194 2,378,692 39,960,778 1,978.1 23,131.1 306,812.3
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Multiplying equation (1) by 52 and equation (2) by 6 we get

312a+2,704b= 11,944.4 ®)
312a+3,948b= 11,868.6 (4)  and subtracting (3) from (4),
1,244b= —75.8
b= —758/1244=—.06093

Substituting this value of b in equation (1), we get
6a=229.7+ 52(.0609) = 232.868
a=38.8114
The regression equation is therefore
Y =38.81—.0609X
We could have arrived at the same equation by using the standard formulas:

3w e

bzxz

The purpose of going through the normal equation procedure was to gain some
practice in the process we will follow for curves of higher degree.

We can see by the graph of this line (Fig. 14.7) that it gives a poor fit. For the

50 —

40— . ¥ = 38.81 — .0609X

30—

Yield of green beans (pounds)

20 | | | | | | | | |
0 2 4.6 4 12 1w

Days from first harvest date

Figure 14.7. Graph of lima bean data showing the complete failure of linear
regression to express the relation between yield and age of crop.
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coefficient of correlation, we need XY?, which is 9,295.03. Then,

2= g:ga =[1978.1—(%)r/(&58— (5?2)(929503

=(—12.6)*/(207.33)(501.35) =.00153

r=V.00153 =—.039

|

The coefficient is close to zero and obviously not significant. We have a good
example of one of the pitfalls described in Chapter 13, “A low coefficient of
correlation does not necessarily mean a lack of relation.” Although the coefficient
in the present example is almost zero, it would be ridiculous to conclude that there
was no relation between yield of green limas and the age of the crop at picking.

We will now fit a second-degree or quadratic curve to the data. We need

three normal equations:

an+ bEX+cEX?=3Y
aZX+bIX?+ cZX*=ZXY
aZX?+ bIX’ + cZX*=2X%Y
Filling in the observed values from the table, we get
6a+52b+658¢=229.7
52a+658b +9436¢=1,978.1
658a +9436b + 146,194¢=23,131.1
Multiply (1) by 52 and (2) by 6 and subtract:

312a+2704b+34,216c=11,944.4
312a+23948b +56,616¢ = 11,868.6

1244b +22,400c = —75.8

Now multiply (1) by 658 and (3) by 6 and subtract:

3948a +34,216b +432,964¢ = 151,142.6
3948a +56,616b +877,164¢ = 138,786.6

22,400b + 444,200¢c = —12,356.0
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The two preceding steps eliminated a and gave us two equations in two un-
knowns. Now, multiply (4) by 22,400; (5) by 1244; and subtract:

27,865,600b +501,760,000c = — 1,697,920
27,865,600b + 552,584,800¢c = — 15,370,864

50,824,800c = — 13,672,944

c=—.2690
Substituting ¢ back in (4):  1244b—6025.6= —75.8
1244b =5949.8
b=4.7828
Substituting b and ¢ in (1):  6a+248.7056 — 177.0020 = 229.7
6a=157.9964
a=26.3327

We can now write the second-degree equation:

Y =26.3327 +4.7828X — .2690X>

Let us see how much of an improvement this is over the linear equation. We call
the linear estimate Y, and the quadratic estimate YQ Table 14.4 shows these two
estimates compared with the original values.

The results can be summarized in an analysis of variance table as follows:

Source of variation SS df
Total 501.35 5
Linear 0.83 1
Deviations from linear 500.52 4
Quadratic component 492.76 1
Deviations from quadratic 7.76 3

Thus we see that fitting a straight line accounted for only about 0.2% of the
variability in Y (0.83/501.35), and the quadratic curve accounted for (492.76 +
0.83)/501.35 or 98.5%.

The proportion of the variability of Y accounted for by the linear plus
quadratic components (0.985) is designated as R® and called the “multiple
coefficient of determination.” This will be discussed in more detail in Chapter 16.

When a quadratic equation seems to fit the data very well as in the lima bean
example, it is often useful to find the value of X that will give the maximum (or
minimum) value of Y. This is a simple problem in calculus which leads to the
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TABLE 14.4.
Observed and calculated lima bean yields

X Y Y, d4.=Y-Y, 4> Yo do=Y-Y, 4’

0 274 3881 —11.41 130.19 26.33 1.07 1.14

4 393 3857 0.73 053 41.16 —1.86 3.46

7 462 38.38 7.82 61.15 46.63 —0.43 0.18

10 478 38.20 9.60 92.16 47.26 0.54 0.29

13 445 38.02 6.48 4199 43.05 1.45 2.10

18 245 37.71 —-13.21 17450 25.27 —0.77 0.59

Totals 0.01 500.52 0.00 7.76

solution:

-b
Ko™ T

In our example, X, = —4.7828 /2(—0.2690) =8.9, or approximately 9 days after
the base date. Substituting this value of X in the quadratic equation gives 47.59 as
the estimated maximum value of Y.

Since only 1.5% of the variability in Y remains unaccounted for after fitting
the quadratic equation, in practice we would generally conclude the regression
analysis at this point. However, to illustrate the method, we will fit a third-degree
curve. The normal equations are

an+bEX+cEX*+dEZX3=3Y
aZX+bIX2+ cIX3+ dIX4=3XY
aZX?+ bEX?+ cZX*+ dZX5=ZX2Y
aZX3+ bEX + X5+ d=X0=32X3Y

Substituting the observed values, we have the following equations, which we want
to solve for a, b, ¢, and d:

6a+52b+658¢ +9,436d =229.7 (1)

52a +658b +9,436¢ + 146,194d =1,978.1 (2)

6580 +9,436b + 146,194¢ +2,378,692d = 23,131.1 @)
9,436a + 146,194b + 2,378,692 +39,960,778d = 306,812.3 (4)
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We first eliminate a as follows: Equation (2) times 6 minus equation (1) times 52
gives

1,244b +22,400¢ + 386,492d = —75.8 (5)
Equation (3) times 6 minus equation (1) times 658 gives
22,400b +444,200¢ + 8,063,264d = — 12,356.0 (6)
Equation (4) times 6 minus equation (1) times 9,436 gives
386,492b + 8,063,264 ¢ + 150,726,572d = — 326,575.4 (7)

Now we eliminate b by the following steps: Equation (6) times 1,244 minus
equation (5) times 22,400 gives

50,824,800¢ + 1,373,279,616d = — 13,672,944 (8)
Equation (7) times 1,244 minus equation (5) times 386,492 gives
1,373,279,616¢ + 38,127,789,500d = — 276,963,704 (9)

To eliminate ¢ we take equation (8) times 1,373,279,616 minus equation (9) times
50,824,800 and divide both sides by 10,000,000 and round off to reduce the large
numbers to 10 digit figures. This gives

5,194,037,206d = — 38,232,948
d=—.00736

Substituting d in equation (8) and solving for ¢ gives
c=—.07015

Substituting d and ¢ in equation (5) gives
b=23.48886

Finally, substituting d, ¢, and b in equation (1) gives
a=27.31449

And the third degree or cubic equation is

Y, =27.31449 + 3.48886X — .07015X>— .00736X°

Calculating the estimated values Y., we find a substantial improvement over the fit
of the quadratic curve.
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X Y ¥ d=Y-Y, &

0 274 27.31 09 01

4 39.3 39.68 —-.38 14

7 46.2 45.78 42 .18

10 478 47.83 —.03 .00

13 445 44.64 —.14 02

18 24.5 24.46 04 00
Totals .00 35

The sum of squares for deviation from quadratic can now be partitioned as
follows:

Required F
Source of variation SS df MS F 5% 1%
Deviation from quadratic 7.76 3
Cubic component 7.41 1 7.41 42.3 18.51 98.49

Deviation from cubic 0.35 2 0.175

The improved fitting achieved by calculating a cubic equation, while appreciable,
was significant only at the 5% point. With so few degrees of freedom, this is not
surprising, since an F value of 98.49 is required for significance at the 1% level.

Figure 14.8 shows the quadratic and cubic curves, drawn over a much wider
range than the observations, to bring out their difference in shape. Throughout the
range of observations, the two curves are not very different, but the superior fit of
the cubic is evident.

You probably noticed how increasingly cumbersome the calculations became
as we went from linear to quadratic to cubic curves. Various methods have been
devised for systematizing these calculations; the most common are the Doolittle
and the abbreviated Doolittle methods. A treatment of these is beyond the scope
of this discussion but can be found in some advanced statistics texts. Programs are
also available for calculating coefficients to almost any desired degree on an
electronic computer.

In cases where the values of X are equally spaced, there are extremely simple
shortcut methods that will be presented in the next chapter.
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Figure 14.8. The same lima bean data as Figure 14.7, showing the good fit of a
quadratic curve (dotted line), and the even closer fit of the cubic
curve (solid line).

POLYNOMIALS IN REPLICATED EXPERIMENTS. When our data consists
only of single values of Y for each value of X, the only way to test the significance
of a regression component is to test its mean square against the residual mean
square. In replicated experiments, on the other hand, we have an error mean
square, which can be used for testing not only each regression component but also
the residual mean square.

In the last chapter we fit a straight line to the yields of sugar beets at five
harvest dates from Table 10.1. We found that while the mean square for linear
regression was highly significant, there was also a significant amount of deviation
from linearity.

We will now fit a quadratic equation to these data to see whether a
second-degree curve will account for a large portion of the deviation from a
straight line. Some of the sums we need for the normal equations have already
been calculated in Table 13.7. The others will be found in Table 14.5.

We now have all the sums needed for the normal equations.

5a+ 15b+ 55¢= 1600.0 (1)
15a+ 55b+225¢= 5551.0 2)
55a +225b +979¢ =21912.6 (3)
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TABLE 14.5
Fitting a quadratic equation to sugar beet time of harvest data

- -

X Y X xt > i § Y (Y-Y) (Y-Y)?
1 1400 1 1 1400 1421714  —2.1714 4.7150
2 2672 8 16 10688  258.7142 84858  72.0088
3 3352 27 81 30168  347.6284 —12.4284 1544651
4 4170 64 256 66720  408.9140 8.0860  65.3834
5 4406 125 625 110150 4425710  —1.9710 3.8848

15 16000 225 979 219126  1599.9990 0.0010  300.4571

Equation (1) multiplied by 3 and subtracted from equation (2) and equation (1)
multiplied by 11 and subtracted from equation (3) give us two equations in two
unknowns:

10b+ 60c= 7510 (4)
60b +374c=4312.6 (5)
Equation (4) multiplied by 6 and subtracted from equation (5) gives
l4c=—1934
c= —13.8143
Substituting the value of ¢ in equation (4) gives
b=157.9857
and substitution of b and ¢ in equation (1) gives
a= —2.0000
The quadratic equation is therefore

Y=—2+157.9857X — 13.8143X2

In Table 14.5, we have entered the values of Y, the differences between these
and the observed values, and the squares of the differences. The sum of the
deviations is essentially zero, as it should be, and the sum of squares of deviations
is 300.4571, which must be reduced to a per-plot basis since we were working with
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totals. Since there were 16 plots entered into each harvest date total, 300.4571/16
equals 18.7786 as the sum of squares for deviations from the quadratic curve.
Since the sum of squares for deviation from linear regression was 185.7587, the
sum of squares for quadratic regression is

185.7587 — 18.7786 = 166.9802

All of this can be summarized in an analysis of variance table:

Source of Variation df SS MS F
Harvest dates 4 3710.7650 927.691 111.92

Linear 1 3525.0062 3525.006 425.26

Quadratic 1 166.9802 166.980 20.14

Residual 2 18.7786 9.389 1.13
Error 12 99.4670 8.289

We can see that the quadratic regression accounted for a very large portion of
the significant deviation from linear. The residua! sum of squares is not significant
and, in fact, would not be significant if all of it were associated with a single
degree of freedom, so there is no need to continue further with the regression
analysis.

yWe have used a rather long and laborious process to find the quadratic
equation and the sums of squares due to quadratic regression and deviation from
regression. In the next chapter we will learn a shortcut method for finding the
quadratic equation. We have already had some experience in finding the sum of
squares for regression by use of the coefficients in Table A.11. Under the portion
of the table for n=>5, we see that the quadratic coefficients are: 2, —1, —2, —1,
and 2.

(o1 [(2)140.0-267.2— (2)335.2— 417.0+(2)440.6 lig
5= r(Sc?) 16(14)

(—193.4)*
=y =166.9602

which is the same as we obtained indirectly.

Combining Curve Types

We have discussed four general types of curves and shown how to fit observed
data to them. Sometimes it is worthwhile to use a combination of two types. For
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Figure 14.9. San Diego population data with a straight line fitted to the logs of the
population (solid line) and the improvement obtained by fitting a
quadratic equation (dotted line).

example in the data on the population of San Diego, we found that plotting the
logs of the population against years gave a much closer approximation to a straight
line than when we plotted just population against years. However, a glance at
Figure 14.5 shows that even the transformed data do not quite form a straight line,
but rather have a definite tendency to curve. The rate of increase seems to be
slowing down with time.

We can easily fit a second-degree curve to the data again using Y'=logY as
the dependent variable instead of Y. The calculations are left to the interested
reader as a good exercise in fitting a second-degree curve. The equation obtained
is

Y’ =2.87906 +.40590X — .01211X2

Figure 14.9 shows the comparison between the straight line and the second-
degree curve in relation to the logs of the population. We have already pointed
out that extrapolation of the straight line would give a prediction of 1,561,000 for
1970. Extrapolation of the second-degree curve gives a prediction of 756,800.% In
view of the closer agreement of the second-degree curve with past trends, the
lower prediction is probably more reasonable.

*The 1970 census figures are now available and give the population of San Diego as
697,000, which is 8% below the predicted figure.
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The Periodic Type

This is a curve that relates some variable to time and is repeated at fixed time
intervals. It is known in mathematical texts as a Fourier curve and is useful for any
kind of data that tends to fluctuate up and down at regular intervals. Very few
statistics texts discuss fitting data of this kind, but we have found it so useful for
many kinds of agricultural data, that we will give a brief outline of the general
method. In the next chapter we will take up a shortcut method for handling
special cases.
The general equation for a periodic curve is

Y=ay+ a,cos CX+ b, sin CX + a,cos2CX + b, sin 2CX + a,cos 3CX + b,sin 3CX.....

where X is an observed time expressed as units from some arbitrary starting time,
and C is a constant equal to 360° divided by the number of units in a cycle.

Suppose, for example, we are studying hourly fluctuations of some variable in
24-hour cycles, and we take midnight as the starting point. An observation made
at 9 a.m. would have an X value of 9, and C would be 360° /24, or 15°. The value
of CX would therefore be 9x15° or, 135°.

The row of dots at the right of the general equation means that we can
continue adding pairs of terms as long as the total number of terms does not
exceed the number of time periods for which we have observations.

This curve has many features similar to the polynomial curve. It has the same
remarkable property that if there is a single value of Y for each value of X, an
equation can be found that will exactly pass through every point.

You will recall that a first-degree polynomial is a straight line with the
equation Y=a+ bX. This line is completely described with two numbers, the
intercept a, and the slope b. A first-degree Fourier curve is a simple wave curve
with the equation Y= ay+ a,cos CX+ b,sinCX. To describe this curve we need
three numbers. The term a, gives the central value around which the wave
fluctuates. It can be looked on as a weighted mean. A second value A

=\/a12+ b,? , is called the semiamplitude and tells us how far the curve fluctuates
above and below the central point. The total range from the highest to the lowest
point on the wave is 2A and is called the amplitude. The third value needed to
describe the wave is the phase angle. This tells us the point in the cycle where the
wave reaches its maximum value. To find this we first find @’(theta)=arctan
(b,/ a,), read “the angle whose tangent is b, /a,.” We then find the phase angle by
applying the following rules:

If b, is positive and a, is positive 6=6"

If b, is positive and a, is negative 6=180°—8’

If b, is negative and a, is negative §=180°+0’

If b, is negative and a, is positive §=360°—8’

In the polynomial we obtained more complicated curves by adding terms
with successive powers of X, such as ¢X? dX3, and so forth. With the Fourier
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curve we obtain more complicated wave forms by adding pairs of terms such as
a,c082CX + b, sin2CX, a;cos3CX+ b;sin3CX, and so forth. The effect of the
second-degree pair is to superimpose on the first wave a second wave with two
complete oscillations per cycle. The third-degree pair superimposes another curve
with three complete oscillations per cycle, and so on.

The method of fitting a Fourier curve is also very similar to the method for
fitting a polynomial. We use a set of normal equations in which we substitute sums
calculated from the observed data and solve these for the required coefficients.

To simplify the normal equations, it is convenient to adopt two symbols, U
and V:

U, =cosi(CX)
V,=sini(CX)  Thus ZU,V, means Zcos2(CX)sin(CX).
The normal equations are as follows:
agn+a,2U,+ b 3V, + @, 2Uy+ b2V, + ... =2Y

3,2, + @, 20,2+ b,SU,V, + 4,5U, U, + b,SU,V,y + ... =SU,Y
ay=V,+a,2U,V,+ b, ZV 2+ a,ZU,V, + b2V, V, + ... =2V, Y
05Uy + a,ZU, Uy + b,SU,V, + a;ZU,2 + bySU,V, + ... = SU,Y
ag=Vy+ @, 22U, Vo + b 2V, Vy + a,2U,V, + b2V, + ... =2V, Y

As with the polynomial, we need as many terms on the left-hand side of these
equations and as many equations as we have coefficients to calculate. For a
polynomial of the nth degree we needed n+ 1 equations each with n+1 terms on
the left-hand side. For the Fourier curves, we need 2n+1 equations, each with
2n+1 terms.

To illustrate the procedure, we will fit a first-degree Fourier curve to the
mean temperatures observed in nine months at Stockton, California. Table 14.6
shows the observed data and the necessary columns for filling in the terms of the
normal equations.

We can now write the three normal equations required to find ay, a,, and b,.

9a,+2.366a, — 1.366b, =518.9 (1)
2.366a,+4a, +0.866b, = 77.894 2)
—1.366a,+0.866a, +5b, = —103.202 (3)

Multiplying equation (1) by .866 and equation (2) by 1.366 and adding gives

11.026a,+7.513a, =555.771 (4)
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TABLE 14.6.

Mean monthly temperatures for nine months at Stockton, California

(Cycle =12 months, C=2360°/12=230°)

4 U;=cos V,=sin

(Temp) Month X CX (CX) (CX) U2 V2?2 UV, YU, YV,
44.7 Jan. 0 0 1.000  0.000 1.00 0.00 0.000 44.700 0.000
49.0 Feb. 1 30° 0866 0500075025 0433 42434 24.500
53.7 Mar. 2 60° 0500 0866 0250.75 0433 26.850  46.504
59.7 Apr. 3 90° 0.000 1000000 1.00 0.000 0.000 59.700
76.2 Aug. 7 210° —0.866 —0.500 0.75 025 0.433 —65.989 —38.100
72.7 Sep. 8 240° —0.500 —0.866 0.25 0.75 0.433 —36.350 —62.958
64.0 Oct. 9 270°  0.000 —1.000 0.00 1.00 0.000 0.000 —64.000
53.0 Nov. 10300° 0500 —0.866 0.25 0.75 —0.433 26.500 —45.898
459 Dec. 11330° 0.866 —0.500 0.75 0.25 —0.433 39.749 —22.950

Totals

518.9 2.366 —1.366 4.00 5.00 0.866 77.894 —103.202

Multiplying equation (1) by 5 and equation (3) by 1.366 and adding gives

43.134a,+ 13.013a, = 2453.526

(5)

Multiplying equation (4) by 13.013 and equation (5) by 7.513 and subtracting gives

— 180.584a,= — 11,201.093 and a,= 62.027

Substituting this value of a, in equation (4) gives

(11.026 X 62.027) +7.513a, = 555.771

7,513a,= —128.139
a,=—17.056

Substituting a, and «, in equation (3) gives

(—1.366 X 62.027) + (0.866 X — 17.057) + 5b, = — 103.202

—84.729 — 14.770+ 5b, = — 103.202

5b, =84.729+ 14.770—103.202 = — 3.703

b, = —0.741
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We can now write our equation:
Y =62.027 - 17.056 cos(CX) —0.741 sin(CX)

Substituting the values of cos(CX) and sin(CX) for each month gives us predicted
values which we can compare with the observed values.

The figures in parentheses in Table 14.7 represent the data for months which
we assumed were not available when we computed the curve and therefore did
not enter into the calculations. It will be noted that the curve we calculated from
the available data overestimated the actual means for the missing months.

The fit of the curve to the observed data is very close. The total sum of
squares of the observed temperatures is 1032.942, and we can partition this in an

analysis of variance as follows:

Source of variation df SS MS F
Total 8 1032.942
Due to regression 2 1016.187 508.094 181.85***
Deviation from regression 6 16.755 2.794
TABLE 14.7.

Observed and predicted temperatures at Stockton, California in nine months

Y Y

Month (Observed) (Predicted) Y-Y) (Y-
January 44.7 44.97 -0.27 0.0729
February 49.0 46.89 2.11 4.4521
March 53.7 52.86 0.84 0.7056
April 59.7 61.29 -1.59 2.5281
(May) (66.2) (69.91) (—3.71)
(June) (72.8) (76.43) (—3.63)
(July) (78.2) (79.08) (—0.88)
August 76.2 77.17 —0.97 0.9409
September 72.7 71.20 1.50 2.2500
October 64.0 62.77 1.23 1.5129
November 53.0 54.14 =114 1.2996
December 45.9 47.63 - 1.73 2.9929
Totals 518.9 518.92 —0.02 16.7550
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Regression has 2 degrees of freedom, since we calculated two parameters, a,
and b, in addition to the mean. The sum of squares for regression is obtained by
subtracting the sum of squares of deviations from the total. The proportion of the
total sum of squares associated with regression is 1016.187/1032.942 =0.9838 and
is designated as R

The value of 62.027 for a, is interesting. We referred to this earlier as a
weighted mean. It is an estimate of what the mean would be if we had data for the
whole year. It is indeed very close to the true annual mean of 61.34 based on
complete records. Obviously the mean of the observed data, 518.9/9=>57.656
would be a very poor estimate of the annual mean, since the missing data were all
from warm months. However, the value of a, obtained by fitting a Fourier curve,
enables us to arrive at a close estimate in spite of the missing data.

The values of a, and b, can be used to find the semiamplitude and phase
angle.

Semiamplitude =A=Yla,*+b;? =Y/(—17.056)*+(—0.741)" =17.1
8’=tan"'b,/ a, =angle whose tangent is —0.741/ —17.056=2.5°
by the rules of signs #=180° +8'=182.5°.

Since 1 month=30°, 182.5° is equivalent to 6.1 months. This says that the
maximum point in the curve occurs about 6.1 months after the starting date. We
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Figure 14.10. Planting date and days to harvest of celery in Ventura, California.
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used the mean for January as our starting date, so we call this date January 15.
Therefore our calculated maximum is 6.1 months after January 15, or about July
18.

We have gone through the steps in fitting data to a simple one degree Fourier
curve. If it becomes necessary to fit data in this way to a curve of 2 or more
degrees, the calculations become quite formidable, since two additional equations
must be added for each degree. Such problems can be handled very easily on a
computer. Figure 14.10 shows a curve, relating planting date to length of time to
harvest in celery, which was calculated and plotted on a computer. Ten years of
data were used in calculating this curve.

Fortunately, if we have data taken at equal intervals throughout a complete
cycle, the calculations become greatly simplified, and in the next chapter we
describe the shortcut methods for handling data of this kind.

SUMMARY

If the scatter diagram of two variables shows a tendency for the points to be
scattered around a curve rather than around a straight line, it is advisable to
analyze the curvilinear relation between the variables. Failure to do so can be very
misleading.

If the logs of the two variables form a scatter diagram that appears to fit a
straight line, the curve describing the relation is of the form: Y=aX" and is called
a power curve. Variables involving different numbers of dimensions are most likely
to fit this type of curve.

To analyze such data, transform the original variables X and Y to new
variables X'=log X and Y'=logY. Then proceed exactly as with linear correlation
and regression, finding the regression equation for the straight line: Y'=a’+ bX'.

If the log of Y plotted against X forms a straight line scatter diagram, the
appropriate curve is of the form: Y=ab* called an exponential curve. Data in
which the variable Y tends to have a fairly constant rate of increase or decrease
can be expected to fit this type of curve.

To analyze, transform Y only to Y'=logY and proceed as with linear
regression, ﬁtting to the equation:

Y =a'+bX

A special type of exponential curve in which Y approaches some value other
than zero is called an asymptotic curve. It has the equation: Y=c+ ab*, where ¢
is the asymptote. This equation can be transformed to a straight line by transform-

ing Y to Y'=log(Y—c) or Y'=log(c—Y), but the best value of ¢ must be found by
trial and error.
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Curvilinear data that do not approach linear data under either a log or
semilog transformation can be fitted to a polynomial of the form:

Y=a+bX+cX®+dX3+...

using as many terms as necessary to obtain a satisfactory fit.
To find the unknown coefficients a, b, ¢, d, etc., solve the set of simultaneous
equations, known as normal equations.

an+bEX + cEX2+dEX3+ ... =3Y
aZX +bEX + cEX3+dEX + ... =3XY
aZX*+ bEX3+ X+ dZX5+ ... ==X%Y
aZX?+ bEX + cEXP+ dIX8+ ... =3X3Y

The number of equations and the number of terms to the left of the equal sign
must each be equal to the number of coefficients needed, or one more than the
degree of the regression equation.

Equations of the first few degrees have special names, as do some of the
curves:

Degree Name of Equation Name of Curve
First Linear Straight line
Second Quadratic Parabola

Third Cubic Cubic parabola
Fourth Quartic Quartic parabola
Fifth Quintic Quintic parabola

If the deviations of the observations from a computed curve appear to be
more or less random, fitting a higher degree curve usually is not worthwhile. If the
deviations are systematic or in definite groups as to sign, it is generally advanta-
geous to calculate the equation of next higher degree.

In replicated experiments, the mean square for deviations from regression can
be tested by the error mean square.

Calculations of coefficients for equations higher than cubic should be
attempted only by mastering special methods (such as the Doolittle method) or
with an electronic computer. When values of X are equally spaced, much time will
be saved by using the shortcut methods described in Chapter 15. Combining log
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and polynomial methods will sometimes result in a much better fit to the data than
either method alone.

Data that fluctuate up and down with time in a rather regular pattern can be
fitted to a periodic (Fourier) curve of the form:

Y=a,+ a,cos CX+ b, sin CX+ a,cos2CX + b,sin2CX + ...
The normal equations for finding the unknown coefficients are
agn+a,2U, + b, 2V, + a,2Uy + b2V, + ... =ZY

42U+ a,2U 2+ b,ZU,V, + a,2U, U, + b,2U, V, + ... =ZU,Y

o2V, +a,ZU,V, + b2V 2+ a,3U,V, + b2V, V, + ... =3V Y

ao2U, + @, 20, Uy + b, ZU,V, + a;ZU,2 + byZU,Vy + ... = ZU,Y

ayZVy+a,2U V4 b, ZV V, + a,ZU,V, + b2V, 2 + ... =2V, Y
where U, =cosi(CX) and V,=sini(CX).

When data are obtained from equally spaced time intervals throughout a
complete cycle, shortcut methods, described in Chapter 15, can be used.
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15

SHORTCUT
REGRESSION
METHODS

It frequently happens that we make observations on a dependent variable Y
associated with equally spaced values of an independent variable, X. For example,
if the independent variable is time, and we make readings of Y at daily, weekly,
monthly, or yearly intervals, the X’s or times are equally spaced. Another case in
which we frequently have equally spaced intervals of X is in experiments involving
rates of fungicides, insecticides, fertilizers, and the like. An experiment in which
the treatment rates are equally spaced has real advantages from the standpoint of
ease of analysis.

There are other advantages besides ease of computation in the use of equally
spaced rates. If we wish to learn something about the trend of response to
treatment levels, it is best to have the information provided by the experiment
evenly distributed through the range of treatment levels. There is very little
justification, for example, in a 0,1,2,4 series of treatment levels, although this
series is very commonly used in experimental work. The series is neither arithmetic
nor geometric. The information obtained in the lower portion of the range is more
complete than in the upper part. Suppose we find an increase in yield with
increasing levels of X from 0 to 2 but a marked reduction in yield with treatment
level 4. It would be useful to know where, in the range between 2 and 4, this
reversal in trend occurs. A treatment level of 3 would be most helpful.

The shortcut method we are about to describe was discussed in the section on
trend comparisons in Chapter 6. The method is so useful that it seems worthwhile
to extend that discussion and to relate it to the previous chapter of this section
dealing with curvilinear regression. Statisticians usually refer to this as the method
of orthogonal polynomials. Those of you who suffer a mental block when con-
fronted by such an imposing title can think of it as the “shortcut method for
measuring trends.” You will find it easy to use and a tremendous timesaver.

POLYNOMIAL CURVE FITTING

The heart of the method for fitting polynomials is Table A.11,' the use of which
eliminates many of the laborious computations ordinarily required in curvilinear
'This table, calculated by the authors, is used rather than one of the many similar tables
found in other publications. To the best of our knowledge the K values do not appear in any
other published tables.
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regression. The table can be used to (1) find the linear, quadratic, cubic, and
quartic regression equations for any number of equally spaced observations up to
25, and (2) partition the treatment sum of squares in an analysis of variance into
linear, quadratic, cubic, quartic and residual components for up to 25 equally
spaced treatments or observations.

At the top of the table are values of n, the number of observations or
treatments. For any given problem we need use only the portion of the table
under the appropriate value of n. The first column of coefficients, headed c,, in
addition to being used for various computations, consists of coded values of X. The
coding is done in such a manner as to result in the smallest possible whole
numbers. Regardless of the values of equally spaced X’s, if n is odd, we can take:
X'=(X—X)/L, where L _is the interval between successive values of X. If n is
even, we take: X'=(X—X)2/L. These transformations will give the values in the
¢, column.

It is not necessary to know how the other coefficients in the table are
obtained in order to use them. However, the curious student will find the
following relations of interest:

The coefficients in the ¢, column can be found from the following relation:
¢y = (¢y;’n— Zc,;2) /GCD. After the numerators are calculated for all values of
i from 1 to n, the greatest common denominator (GCD) must be determined
so that the coefficients can be reduced to the lowest possible set of integers.
The coefficients of the ¢, column are found from the following: ¢y, = (c, Zc,
—¢;,2¢,")/GCD, and those of the ¢, column from:

Cy= (C 1i4nzcli2‘32i —¢)’nZcfey — Ec““Ecuzcm
+ Ec,fﬁc““cﬂ) /GCD

It can be seen that the calculations become very cumbersome, especially for larger
values of n, so being provided with a table is a great timesaver.
The calculation of the K values is most easily handled by utilizing some of the
concepts in theory of numbers which are beyond the scope of this book.
The steps in finding the linear, quadratic, cubic and quartic regression
equations are as follows:
1. Arrange the values of Y in a column according to the ascending values of
the associated X's, starting with the Y corresponding to the lowest value
of X.

2. Multiply the values of Y by the coefficients for ¢;, ¢;, ¢3 and ¢, shown in
the table, giving four columns.

3. Find the sum of each column, observing the plus and minus signs. These
sums are called ZY, P,, P,, P;, and P,.
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4. Using the values of P obtained and the values of K from the table the
linear, quadratic, cubic, and quartic equations can be written from these
relations:

Linear equation: Y, =Y + (K,P,)X’
Quadratic: Y= (Y —K,P,) + (K;P,)X' + (K Py)X"2
Cubic: Yo =(Y—K,P,) + (K,P, — K Py)X' + (K P,)XZ + (K;P,)X"
Quartic: Y, =(Y —K,P, + K;P,) + (K;P, — K;P)X’ + (K,P, — K,P,)X"
+ (KsP3)X"+ (KgP )X
Note that these equations are in terms of coded values of X.
5. If the values of Y in step 1 were totals of several observations or replicates
at each level of X, and we want the equations to be in terms of means, we

must divide each term in the equations by the number of replicates. (This
must be the same for all levels of X.)

Table 15.1 shows the daily total milk production of 37 cows, in pounds,
recorded once a month for the 10 months from freshening to the end of lactation.
We will apply the five preceding steps to these data.

The coefficients c,, ¢;, c; and ¢, were taken from Table A.11 and multiplied
by the corresponding values of Y (milk production). The totals of these columns
gave the values fo ZY, P, Py, P;, and P,. We are now ready to apply step 4 and
write the equations.

Y. =1,959.48 + (1,/330)( — 22,266.6)X’ = 1.959.48 — 67.475X’

Yo =[1,959.48 — (1/32)(— 1,048.8) ] —67.475X’ +(1/1,056)( — 1,048.8)X"®

=1,992.26 — 67.475X’ —0.9932X "

Yo =1,992.26+ [ —67.475— (293/205,920)(4,798.2) | X’

—0.9932X"%+ (1/46,184)(4,798.2) X"
=1,992.26 — 74.302X’ —0.9932X"? +0.11651X"

¥, =[1,992.26+ (9/1,280)( — 5,384.6) | - 74.302X’
+[ —0.9932-(41/54912)( - 5384.6) | X2
+0.11651X" + (1/109,824)( — 5,384.6)X"*

=1,954.40 — 74.302X’ 4+ 3.0272X"2 4+ 0.11651 X3 — 0.049029X"*
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TABLE 15.1.
Milk production records of 37 cows for 10 months

Milk
Production Month X
) ® @ oY ¢ o o oY oo ¥
2.442.3 1 -9 —21,980.7 6 146538 —42 —102,576.6 18 43,961.4
2,517.6 2 -7 -17,6232 2 5,035.2 14 352464 —22 —55387.2
23344 3 -5 -11,672.0 -1 —-23344 35 81,7040 —17 -—39,684.5
2,166.1 4 -3 —6,498.3 -3 —6,498.3 31 67,149.1 3 6,498.3
2,030.0 5 -1 -2,030.0 —4 —8,120.0 12 24.360.0 18 36,540.0
1,903.9 6 1 1,903.9 -4 -76156 —12 —22,846.8 18 34,270.2
1,779.5 7 3 5,338.5 -3 -=53385 =31 —55,164.5 3 5,338.5
1,630.6 8 5 8,153.0 -1 -16306 -=35 =-570710 -17 -27,7202
1,485.7 9 T 10,399.9 2 29714 -14 -—20,7998 -—-22 -32,685.4
1,304.7 10 9 11,742.3 6 7,828.2 42 54,797 4 18  23,484.6
Totals 19,594.8 P, = —22,266.6 P,= —1,048.8 P,=4,7982 P,= —5,384.6




These equations are based on the total milk production of 37 cows. If we want
them on a per-cow basis, we simply divide each term by 37 and obtain:

¥, =52.959 — 1.8236X’

Y, =53,845— 1.8236X’ —0.02684X"*

Y. =53.845— 2.0082X’ — 0.02684X"% +0.003149X "

Y, =52.822 —2.0082X’ +0.08182X"% +0.003149X"3 — 0.0013251 X"

In actual practice it is not necessary to construct a table like Table 15.1, since
the required P values can be found by accumulating the products on a calculating
machine without writing down each individual product. Close attention must be
paid to the signs of the coefficients. Where a coefficient is negative, its product
with the corresponding Y value must be subtracted from the accumulated sum.

It is very important to keep in mind that the equations we have calculated are
in terms of X', the coded values of X. These are identical to the ¢, coefficients.
Suppose in our example we wish to calculate the predicted milk production per
cow from the quadratic equation for the third month. Referring to Table 15.1, we
see that X’ for the third month is —5, so we substitute —5 for X’ in the quadratic

equation:

Y, =53.845— 1.8236( —5) —0.02684( —5)*
=53.845+9.118 —0.671 =62.292

A common mistake made by students is to substitute the c, coefficients in the
linear equation, the ¢, coefficients in the quadratic equation, and so on. It is the ¢,
coefficients that are the coded values of X in every equation, regardless of the
degree.

It is generally easiest to work with the equations in this form, but if the results
are to be published in a scientific paper, they should appear in terms of the
original values of X. To do this, it is necessary to substitute (X—X)/L or
(X—=X)2/L for X' in the equations, depending on whether n is odd or even. To
show how this is done, we will write our quadratic equation ?Q=53.845~—
1.8236X' —0.02684X" in terms of X. n

In this case n=10 was even, so we substitute (X—X)2/L for X'. The interval
between successive values of X was 1, so L=1. The value of X was 5.5, so we have
X'=(X—5.5)2/1 or 2X— 11. Substituting this in our equation gives

Yo =53.845—1.8236(2X — 11) —0.02684(2X — 1)
=53.845 — 1.8236(2X — 11) —0.02684(4X? — 44X + 121)
=53.845 — 3.6472X + 20.0596 — 0.10736X2 + 1.18096X — 3.23764
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TABLE 15.2.
Observed and calculated monthly milk production of 37 cows

ObservedY Y, Y-V, ¥, Y-Y¥, Y. Y-Y. ¥ Y-Y,

2,442.3 2,566.8 —124.5 2,519.1 —76.8 24956 —533 2461.7 —194
2,517.6 2,431.8 85.8 24159 101.7 2,423.7 93.9 24652 524
2,334.4 2,296.9 375 23048 296 23244 10.0 2,356.4 —22.0
2,166.1 2,161.9 42 21857 —196 22031 -—37.0 21974 —313
2,030.0 2.027.0 3.0 2.0587 —28.7 20655 —355 2,031.6 —1.6
1,903.9 1.892.0 119 19238 -—-199 19171 -132 18832 207
1,779.5 1,757.1 224 17809 -—14 1,763.6 159 17579 216
1,630.6 1,622.1 8.5 1,630.1 0.5 1,6105 201 16425 —11.9
1,485.7 14872 —15 14713 144 1,463.4 223 1,5049 —19.2
1,304.7 1,352.2 —47.5 1,345 02 13280 -—233 12941 106

S dev ~02 0.0 -0.1 -0.1
3(dev)? 27,268.90 18,930.76 16,258.59 6,105.23
S(dev)?/37 737.00 511.64 439.42 165.01

Collecting terms gives
?Q =70.65696 — 2.46624X — 0.10736X>

Let us use this equation to again calculate Y, for the third month. Substitut-
ing 3 for X in this new equation gives

Y, =70.65696 — 2.46624(3) — 0.10736(3)" = 62.292, the same as before

Let us see how much work we have saved. Using the methods of Chapter 14
(which we must use if the X's are not equally spaced), to find the four regression
equations we would need to find =X, =X?, =X°, ZX*, =X°, ZX°, =X, =X°, 3Y,
TXY, =X%Y, TX%Y and =X*Y. These values would have to be substituted in the
normal equations and we would have to solve sets of simultaneous equations, two
for the linear coefficients on up to five for the quartic. If you worked through the
examples in Chapter 14, you can appreciate what a laborious task this would be.
Contrast all of these calculations with the shortcut method. Using this, we need
only =Y, P,, P,, P;, and P,. Substituting these values in the standard equations of
step 4 gives us directly the four required regression equations. We have only five
sums to calculate instead of 13, and there are no simultaneous equations to solve.

Now that we have the four equations, we can see how the values calculated
from them compare with the observed milk production for each month. It is better
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to work with the totals rather than the means, since fewer rounding errors are
introduced. Table 15.2 shows the values calculated from each equation and the
deviations of these from the observed values.

There are several things to notice about this table. The sum of the deviations
for all of the curves should add up to zero except for small rounding errors. This
furnishes a check on the calculations. The sum of squares of deviations from a
curve furnishes a measure of the closeness of fit; the smaller this sum of squares,
the closer the fit of the curve to the data. Each added degree results in a reduction
in this sum of squares. This must always be true; if it is not, look for an error in the
computations. (The question is whether the improvement of fit is significant; we
will show how to test this shortly.) For riow, simply note that there is a moderate
reduction in sum of squares as we go from the linear to the quadratic curve, a very
small reduction as we go from quadratic to cubic, and a large reduction as we go
from cubic to quartic. Finally, note that the signs of the deviations seem to fall in
rather definite patterns in the first three degrees, while those from the quartic are
more or less at random. Also, we can see that the quartic curve is the only one that
shows an increase in milk production from the first to the second month. This is
known to be characteristic of most milk production curves in cattle.

Partitioning the Sum of Squares

Finding all the calculated values and their deviations from the observed values and
then finding the sums of squares of these deviations was a laborious procedure.
The second feature of the shortcut method of analyzing equally spaced data is the
ease with which these sums of squares can be calculated. Looking at Table A.11
under any value of n, you might recognize that the ¢ values are really orthogonal
sets of coefficients. Each column of coefficients adds up to zero, and the products
of the corresponding coefficients of any two columns also add to zero. We learned
in Chapter 6 that the sum of squares associated with a single degree of freedom
can be found from a set of coefficients by applying the general formula

(Ze,T,)?

SS=
r=c?

As calculated previously, P, is the same as Zc,T, when the ¢’s are the linear
coefficients. Likewise P,=Zc,T, when we use the quadratic coefficients, and so
on. The divisors shown in Table A.11 are the sums of squares of the coefficients.
Therefore, the sum of squares due to linear regression is simply P,?/(divisor times
number of replicates). Likewise the sum of squares for quadratic regression is
P,?/(divisor times number of replicates), and so on up to the quartic component.
After calculating the sums of squares for each component, we can find the residual
sum of squares by subtracting the component sums of squares from the total sum
of squares. This residual sum of squares is the same as the sum of squares of
deviations of the observed data from the curve.
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Let us apply this method of partitioning to the milk production data. The
value of P, that we found was —22,266.6, so the linear SS is

— 22 966.6%

330 X 37 =40,606.18

The total sum of squares of Y was 41,343.01 so the residual sum of squares in
41,343.01 —40,606.18 =736.83. This is the same (except for a small difference due
to rounding) as the sum of squares of deviations from linear found by a much more
difficult method in Table 15.2.

Since P, was found to be —1,048.8, the sum of squares for quadratic is

—1,048.8%
132 %37

=225.22

Subtracting this from 736.83 leaves a residual of 511.62. The value calculated in
Table 15.2 was 511.64.

P, was 4,798.2 so the sum of squares for cubic is

4,798.22

8580X37 1202

leaving a residual of 439.09 (compared to 439.42 in Table 15.2).
Finally P, was —5,384.6 so the sum of squares for quartic is

—5,384.6°

286037 21399

leaving a residual of 165.10.

All these results can be summarized in an analysis of variance table (Table
15.3) in which the sums of squares for cows, and error, were obtained from the
individual cow records.

There was a highly significant difference among cows and among months.
Neither of these results is surprising, but we want to know more about the pattern
of change in milk production from month to month. The very high F value for the
linear component tells us there is a highly significant downward trend. The
significant deviation from linear indicates that a straight line does not fully
account for the month-to-month variation. The significant quadratic component
shows that a simple curve is an improvement over a straight line, but there is still a
significant amount of residual variation. Fitting a cubic curve did not result in a
significant improvement, and the residual left is not significant. At this point,
many workers are inclined to stop. Often, as in this case, this is a mistake. The
quartic component accounted for such a high proportion of the remaining sum of
squares that it was highly significant. The deviation from quartic is not significant.
The likelihood of finding another significant component is very small, for even if a
single component accounted for 80% of the remaining variability, it would not be
significant. We are therefore justified in terminating the analysis at this point.
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TABLE 15.3.
Analysis of variance of milk production records

Source of variation df SS MS F
Total 369 76,167.74

Cows 36  23,464.56 651.79 18.59**

Months 9  41,343.01 4,593.67 131.02**
Linear 1 40,606.18 40,606.18 1,158.19**
Deviation from Linear 8 736.83 92.10 2.63*
Quadratic 1 225.22 225.22 6.42*
Deviation from Quadratic 7 511.61 73.09 2.08*
Cubic 1 72.52 72.52 2.07ns
Deviation from Cubic 6 439.09 73.18 2.09ns
Quartic 1 273.99 273.99 T.81%¢
Deviation from Quartic 5 165.10 33.02 Hns

Error 324 11,360.17 35.06

Comparison of Shortcut and Regular Methods

In Chapter 14, we fitted a quadratic equation to the yield of sugar beets at five
harvest dates. To do this, we first had to find seven sums of powers and products.
Then from these sums we obtained three simultaneous equations which we had to
solve for three unknowns. We now contrast this with the shortcut method.

We first find, using the coefficients from Table A.11 under n=5,

P, =(—2)140.0+ (—1)267.2+ (1)417.0+ (2)440.6 = 751
P, =(2)140.0+ (—1)267.2 + (—2)335.2+ (— 1)417.0+ (2)440.6= — 193.4

Using these values and the K values from Table A.11, we can immediately write
the quadratic equation

Y, =320—(1/7)(—193.4) + (1/10)751X’ + (1/14)( — 193.4)X"2

=2347.6286+ 75.1X’ — 13.8143X"?

To convert to original X units, we substitute (X —3) for X’ and (X—3)*=X2—-6X+
9 for X', This gives

Y= —20+157.9857X - 13.8143X>
exactly the same as obtained by the longer method.
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Unequally Spaced Treatments

We have pointed out the advantages of equally spaced treatments, but if we have
an experiment with unequally spaced treatments, it is still possible to find a set of
orthogonal coefficients for calculating regression sums of squares. The formulas for
finding these coefficients are much more complicated than in the case of equally
spaced treatments. Also there is no simple way of writing the equations directly by
the use of K values.

In Table A.11a we have given sets of orthogonal coefficients and divisors for
some of the more commonly encountered treatment levels. These will at least
make the determination of the regression sums of squares easier in such cases.

PERIODIC CURVE FITTING

Table A.12 gives sets of orthogonal coefficients for fitting periodic data when the
observations are equally spaced throughout a complete cycle. The table is con-
structed for selected values of n most commonly encountered in dealing with
daily, weekly, or yearly cycles.

Unlike the sets of coefficients we have been dealing with, these cannot be
reduced to small integers. For this reason the calculation of P values is somewhat
more difficult, but in other respects the calculation of equations, and partitioning
of sums of squares are even easier than with polynomials, since no special divisors
or K values are needed.

The reason that dealing with equally spaced intervals is so much simpler than
dealing with irregular data is that most of the terms in the normal equations given
in Chapter 14 drop out. Thus ZU;=2V,=0 where i is any subscript. Also
2U2=2V?2=n/2. Therefore the first normal equation, which is

nay+ a,ZU; + b, 2V, + a,2U, + b2V, + ... =ZY

reduces to na,=ZY, or 00=EY/n=§. Likewise the other normal equations
reduce to

22U,Y
 n

01(%)=2U1Y or a
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TABLE 154.

Monthly mean temperatures at Stockton, California with the calculations for fitting a second degree periodic curve
(C=1/12x360°=30°)

cos
Month Temp cosCX sinCX 2CX sin2CX
(X) (Y) (Uy) Uy V1) VY (Ug) UgY (Vo) VoY
0 4.7 1.0 44.7000 0.0 0.0000 1.0 44.7000 0.0 0.0000
1 49.0 0.566 42,4340 0.5 24,5000 0.5 24.5000 0.866 42,4340
2 53.7 0.5 26.8500 0.866 46.5042 =05 —26.8500 0.866 46.5042
3 59.7 0.0 0.0000 1.0 59.7000 -1.0 —59.7000 0.0 0.0000
4 66.2 -0.5 —33.1000 0.866 57.3202 -0.5 —33.1000 —0.866 —57.3292
5 72.8 —0.866 —63.0448 0.5 36.4000 0.5 36.4000 —(0.866 —63.0448
6 78.2 —1.000 —78.2000 0.0 0.0000 1.0 78.2000 0.0 0.0000
7 76.2 —0.866 —65.9892 -05 —38.1000 0.5 38.1000 0.866 65.9892
8 72.7 -05 —36.3500 —0.866 —62.9582 -0.5 —36.3500 0.866 62.9582
9 64.0 0.0 0.0000 -1.0 —64.0000 -1.0 —64.0000 0.0 0.0000
10 53.0 0.5 26.5000 —0.866 —45.8980 —=0.5 —26.5000 —0.866 —45.8980
11 459 0.866 39.7494 -05 — 22,9500 0.5 22.9500 —0.866 —39.7494
Totals  736.1 PU, = —96.4506 ' PV, = —9.4728 PU,= —1.6500 PV, = 11.8642
ap= 6134 a,= —16.0751 b= —157188 ag= —02750 by= 19774

Y=61.34 - 16.0751 cos CX — 1.57885in CX — 0.275cos 2CX + 1.97745in 2CX




TABLE 15.5.
Observed and calculated mean monthly temperatures at Stockton, California

Y Y
Month  Observed  Ist Degree  (Y—Y,) 2nd Degree (Y—Y,)

January 4.7 45.26 —0.56 44,99 —0.29
February 49.0 46.63 2.37 48.20 0.80
March 53.7 51.94 1.76 53.79 —0.09
April 59.7 59.76 0.06 60.04 —0.34
May 66.2 68.01 —1.81 66.44 —0.24
June 72.8 74.47 — L67 72.62 0.18
July 78.2 77.42 0.78 77.14 1.06
August 76.2 76.05 0.15 77.63 —1.43
September 72.7 70.74 1.96 72.59 0.11
October 64.0 62.92 1.08 63.19 0.81
November 53.0 54.67 —1.67 53.09 —0.09
December 45.9 48.21 —-2.31 46.36 —0.46
Totals 0.02 0.02
= 28.86 4.99

and so on, following the same pattern except in the case where n is even, in which
case the last coefficient that can be calculated is

n

Gn/2)=

(We would seldom carry an analysis this far, since there would then be no residual
sum of squares. In other words, an equation carried this far would exactly fit all of
the data points, which is analogous to fitting a straight line to two points.)

We will adopt a symbol similar to one used in fitting polynomials, designating
2ZUY as PU,, and ZV,Y as PV,. Notice that in the case of the polynomial we had a
smgle P value for each degree, but in ﬁttmg a periodic curve we need two P
values called PU and PV for each degree? of fit.

The general terms in the equation are

2We have designated each pair of terms added to the general periodic regression equation
as a degree to maintain the analogy With the general polynomial. Technically, these are
referred to as harmonics.
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Let us apply this method for fitting a periodic curve to the complete data on
monthly mean temperatures at Stockton, California, shown in Table 15.4.

The equation we have calculated is a general one in which we can substitute
any value of X and look up the appropriate sines and cosines in a trigonometric
table. However, if we are interested only in calculating values corresponding to
the observed data points, we can simply substitute U, for cosCX, V, for sinCX, U,
for cos2CX, and V, for sin2CX in the equation. For example, to find Y for March
(month number 2, since January was called month 0), we calculate

Y,=61.34 - 16.0751(0.5) — 1.5788(0.866) — .275( — 0.5) + 1.9774(0.866) = 53.79

If we want the calculated value for only the first-degree curve, we simply use the
first three terms of the above equation:

=61.34—16.0751(0.5) — 1.5788(0.866) = 51.94

The calculated values for the first- and second-degree equations are shown in
Table 15.5 along with the deviation of the observed values from these two curves.

Partitioning the Sum of Squares

As with the polynomial, there is a very easy way to partition the total sum of
squares without constructing a table like Table 15.5. The sum of squares for
first-degree regression is 2(PU,%>+PV,?) /n, and for second-degree, it is 2(PU,%+
PV,?)/n, and so on. Unlike the polynomial, we do not need a different divisor for
each degree. Sums of squares for deviations from observed data can be obtained
by subtraction. From Table 15.4, we found that PU, was —96.4506 and PV, was
—9.4728. Therefore the first-degree sum of squares is

2[ (—96.4506)" + ( —9.4728)* |

2 =1565.41

The total sum of squares for Y was 1594.33, so that the sum of squares for
deviation is

1,594.33 — 1,565.41 =28.92

a result that differs from the value 28.86 found in Table 15.5 because of rounding.
Likewise, the sum of squares due to second-degree regression is

2[(—1.65)"+(11.8642)° |
12

=23.91

The residual or deviation from second-degree sum of squares is 28.92—23.91=
5.01 (compared to 4.99 in Table 15.5). These results are summarized in Table 15.6.
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TABLE 15.6.
Analysis of variance of temperature data

Source of Variation df SS MS F value
Months 11 1594.33

Ist degree 2 1565.41 782.705 243.61**
Deviation 9 28.92 3.213

2nd degree 2 23.91 11.955 16.70**
Deviation 7 5.01 0.716

Notice that each degree has 2 degrees of freedom. This is because two
coefficients, a and b, had to be calculated for each degree. The mean square for
each degree is tested against its residual component to make an F test. In this case,
both the first and second degrees were highly significant.

We have fitted a curve to the mean monthly temperatures and partitioned
the sum of squares for months into several components. If we wish to take into
consideration the individual yearly records from which these means were com-
puted, the analysis of variance is considerably more complicated. The student is
referred to Bulletin 615 of the Connecticut Agricultural Experiment Station, 1958
entitled Periodic Regression in Biology and Climatology, by C. 1. Bliss, for a
detailed discussion of this subject.

The second-degree curve we have calculated is really made up ot two simple
sine curves, one added to the other. The first has a semiamplitude

A=ya2+b?,  so  A=[(-1607517+(~15788)" =16.13

The phase angle is tan~'(b, /a,) +180° =angle whose tangent is 0.0982 + 180° =
185°36" which converted to time is about six months and five days after the
beginning of the cycle. Since our cycle begins with the January mean, we can call
it January 15, so the maximum of our curve will fall on July 20, and the minimum
6 months earlier on January 20.

Referring to Figure 15.1, looking at the solid curve in the bottom half of the
figure, we see that the observed temperatures tend to lie above the curve in the
first and third quarters and below the curve in the second and fourth quarters.
The second-degree curve largely adjusts for these discrepancies. It has a semiam-
plitude

A=V +b;? =\/(— 275+ (19774)* =2.00
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Figure 15.1. Mean monthly temperatures at Stockton, California. Second-degree

Fourier curve and its components.

and a phase angle of
180° Htan'l(%) =180° —tan~'7.1905=180° —82°5' =97°5’

This must be divided by 2, since we are now dealing with a two-cycle curve, so we
have a maximum at 48°32.5" or about 1 month and 18 days after January 15. There
is another maximum 6 months later, and a minimum at 3 months after each
maximum. This is plotted as the dotted curve at the bottom of Figure 15.1.

Adding these two curves to the mean of 61.34 gives the resultant curve in the
upper half of Figure 15.1.

SUMMARY

For equally spaced observations or treatments, a table (Table A.11) is furnished
which greatly simplifies the calculations for deriving linear, quadratic, cubic, and
quartic regression equations, or partitioning treatment sums of squares into trend
components. The table contains three parts under each number of observations
from 3 to 25: the ¢ coefficients, the divisors, and the K values.
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P values are obtained from the equation P =ZcT,. After the P values are
obtained from the observations, linear, quadratic, cubic, and quartic regression
equations can be obtained from the following equations:

Yo=Y+ (KP,)X'
Yo=(Y—K,P;) + (K,P))X' + (K,P;)X"2
Yo =(Y—K,P,) + (KyP, — K5Py) X' + (K, Py) X2+ (KPy) X'
Y,=(Y—K,Py+KgP, )+ (KoP, — K3P; )X’
+ (K Py— K;P, ) X2+ (KgPy ) X3+ (KgP, ) X4
The values of X' in the regression equations are coded values of X, equal to the c,
.coefficients. Equations in terms_of X can be obtained by replacing X' with
(X—X)/L when n is odd or (X—X)2/L when n is even. L is the interval between
successive values of X.
Sums of squares for treatments can be partitioned into:
Linear S$=P,?/(divisor times number of replicates)
Quadratic SS=P,*/(divisor times number of replicates)
Cubic S$="P,?/(divisor times number of replicates)
Quartic SS=P,*/(divisor times number of replicates)

Residual SS=treatment SS —linear SS — quadratic S — cubic SS —quartic SS

Table A.12 gives sets of coefficients for calculating periodic curves for data
equally spaced throughout a time cycle. The table contains two sets of coefficients
called U and V for each of the first four degrees (harmonics) for selected values of

n.
Two P values are calculated for each degree of fit, from the equations
PU=3UY and PV,=3VY

After the P values are determined, an equation of any desired degree up to the
fourth can be written directly from the following equation:

_ (2PY, 2PV,
Y==Y+( = )cosCX+(

2PV, 2PV,
)sinCX+... ( = )cos1CX+( = )sm:CX
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where X is the number of units of time from the beginning of a cycle, and C is the
length of each unit in degrees.

The sum of squares for any degree has 2 degrees of freedom and is found
from the relation

2(PUZ+PV}?)

n

SS for ith degree =

and the sum of squares for deviations from the curve can be obtained by
subtraction of those regression components from the total SS.

The methods of this chapter are applicable only when the values of X are
equally spaced, except for several commonly encountered sets of unequally spaced
treatments for which orthogonal coefficients are given in Table A.1la, which can
be used for calculating regression sums of squares but not regression equations.
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16

MULTTPLE
CORRELATION
AND
REGRESSION

So far, we have discussed only relations between two variables. We are often
interested in the relation between a dependent variable and more than one
independent variable. The law of supply and demand, for example, implies a
relation between price (the dependent variable) and two variables—supply and
demand. In livestock, we may be interested in weight gain in relation to various
components of feed. In crops, we may want to study the effect on yield as N, P,
and K all vary.

CORRELATION COEFFICIENTS

The correlation between two variables, disregarding any other variables that may
be varying simultaneously, is called simple or total correlation. The correlation
between two variables, when one or more other variables are held at a constant
level, is called partial correlation. The combined relation between a variable and
two or more other variables varying simultaneously is called multiple correlation.

Suppose we have a dependent variable, Y, and for each value of Y there are
corresponding values of two other variables, X, and X,. The simple or total
correlation between Y and X, is the linear correlation coefficient we discussed in
Chapter 13. You will recall the formula was:'

_ (Zay)®
; Exzzys

To show clearly that this is the simple correlation of Y with X,, it is customary to
include explanatory subscripts, so we write the formula as

(Zx, 9)2

T Sx 25y

'As before, the formulas are expressed in terms of r* rather than r. It should be remembered
that r, the coefficient of correlation, is the square root of r*.
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Likewise, the simple correlation between Y and X, is written

_ Gxy)’
X E:tgzzyg

Finally, in order to calculate partial and multiple correlation, we need a third
simple correlation, that between X, and X,:

) (21112)2
XXy 21122122

The partial correlation between Y and X, with a fixed X, is designated as ryy x
and is calculated from the simple correlations in the following manner:

(rt'x, i \'x{“'x.x,;)2

rgfx. -
(=P )(1- )

Likewise,

(r\'xg T rfxlrxlx,)

T
T (1P )(1-rx)

The multiple correlation coefficient, designated as Ry x x , measures the combined
relation of X, and X, with Y. It is found by taking the square root of:

]jYxl + rzm = %nlrmrxlxi
1-r x,

2 —
Ryxx.=

Just as r* was called the coefficient of determination, R® is called the multiple
coefficient of determination. It is the proportion of the variation in Y accounted
for by the variation in the two or more independent variables.

Notice how the addition of just one more variable has added to the complex-
ity of correlation. With two variables, X and Y, we had only one coefficient of
correlation. With three variables, X, X, and Y, we have three simple coefficients,
three partial coefficients, and the multiple coefficient.

The problem of visualizing a three-variable relation is also much more
difficult than with two variables. In the two-variable case, we can depict the
observations on a two-dimensional graph. The relation is described by a regression
line, and with many observations, the scatter diagram of points will appear as an
ellipse. The narrower the ellipse, the higher the correlation. With three variables,
the relation must be described as a plane in three-dimensional space. The scatter
of points around this plane will be in the shape of an ellipsoid. The projection of
the ellipsoid on the X,Y plane shows the simple correlation of X, and Y. A section
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High positive partial Low positive partial Medium negative partial
X, Low positive total x5 High positive total X5 Medium positive total

Figure 16.1. Diagram of various combinations of partial and total correlations
involving three variables.

through the ellipsoid paralled to the X,Y plane and projected on the X,Y plane
will show the partial correlation of X, and Y with X, fixed, written Tyx, X,

In Figure 16.1, various situations are shown diagrammatically. Note that the
simple correlation can be low, but the partial correlation high, or vice versa. They
can even be different in sign.

The multiple coefficient of correlation, R, shows how closely the points in the
ellipsoid are clustered around the regression plane. The value of R is always
positive, ranging from zero to one. Furthermore, it is always at least as large as the
largest simple and partial coefficients. This fact serves as a good check on the
calculations,

REGRESSION COEFFICIENTS

So far, we have talked only about correlations—the closeness of the relations
among the variables. We also want to know the nature of the relations. What
change in Y is associated with unit changes in the independent variables? To
answer this, we need an equation of the form

Y=a+bX,+ bX..

The terms b, and b, are called partial regression coefficients. The best-fitting
equation of thjs form will be the one that makes the sum of squares of deviations
of the observed Y's from the estimated Y’s a minimum. To find the values of a, b,,
and b, that will meet this requirement, we solve normal equations very similar to
the ones we solved for curvilinear regression:

an+b,ZX, +b,ZX, + ... =ZY
aZX;+ b, X2+ b,2X, X, + ... = XY

aZXo+ b ZX,X, + h2X2 + ... =ZX,Y

.......................



The dots indicate how these equations can be extended to include more than three
variables.

The calculations can be reduced by rewriting the equation in terms of
deviations from the means instead of the original values. Since the sum of
deviations of any variable from its mean is zero, Zx, = Zx, =2y =0. Therefore, the
first normal equation drops out, as do all the first terms in the remaining
equations, leaving

b Ex?+bZxx,+ ... =321,y

b Zxyx, + bySx2 + ... =32,y

Solving these equations for the b’s gives a regression equation of the form
§="b,x,+ byx,+ ... . If we wish an equation in terms of the original observations,
we can calculate: a=Y— b, X, —b,X,.... Then, Y=a+b X, +b,X,+....

AN EXAMPLE WITH THREE VARIABLES

To illustrate partial and multiple correlation and regression, we will analyze some
data on the specific gravity of potatoes (Y), the nitrogen content (X;) and the
phosphorous content (X,). The observations will be coded to simplify the calcula-
tions (see Table 16.1).

First, we calculate the various coefficients of correlation. The simple or total
correlations are as follows:

—29,218.35°

BLI72.95)(2124055) 784

r%x, 2 (29"1)2/2922112=

Iyx, =\/r%x1 = —0.8862 (Note that it is negative because Zyx, was negative)

2
_ 2 52y 2= — —OB1LE"  _(siqg
v, = (2yx,) /2y Zx, (51,172.95)(1,663.2)

rm=]/r%x, = —0.7167

"?c,x, = (2"1"2)2/25"]22 2" =

2,584.4*

=0.1891
(21,240.55)(1,663.2)

Multiple Correlation and Regression 250



TABLE 16.1
Specific gravity, nitrogen and phosphorous content of twenty samples of potatoes

Y 5 & X,
(Sp. Gr.— 1.07)10* (Nitrogen — 1)100 (Phosphorous)100

2 96 40

14 82 36

15 121 30

15 88 42

16 100 28

27 114 26

48 71 33

54 94 26

58 74 15

68 36 35

82 36 25

83 73 15

91 58 26

97 31 25

98 38 24

101 56 11

128 24 22

140 37 11

163 10 24

179 14 10

Totals 1,479 1,253 504
Y2 =160,545 =X,*=99,741 IX,2=14,364

(2Y)?/20=109,372.05 (EX,)?/20=178,500.45 (2X,)?/20=12,700.8
2y*=51,172.95 3x,%=21,240.55 Sx,t=1,663.2
YX, =63,441 SYX, =30,659 =X, X,=34,160
SYEX, /20=92,659.35 SYSX,/20=372708  =X,2X,/20=31575.6

Syx, = —29,218.35 Syx,= —6,611.8 Sx,x,=2,584.4
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The partial correlation coefficients are as follows:

- ("1:')(1_1'Yx,11'xlx,,)2 = [—0-8862—(—0.7161’)(0.4338)]2
T (- )(1-2y)  (1-05136)(1-0.1891)

—0.5746°
=——2"2050___ _(837]
(0.4864)(0.8109)

ryxl‘xg=\/f%x1.xl =—09149

~ (rex,~TexTxx) - [ —0.7167— (—0.8862)(0.4348) |
T - 1) (1—0.7854)(1—0.1891)

—0.33142

=002 (6310
(0.2146)(0.8109)

Tyx, = "?rx,-x, =—0.794
Finally, we calculate R, the multiple coefficient:

BE _ r%-xa + r?rx' == zr\rxlrmrxlxﬂ
Y X, Xp =
1-rix,

_ 05136+0.7854 —2( —0.8862)( —0.7167)(0.434)
N 1—0.1891

_ 0.7467
0.8109

=0.9208

Ryx,x,= V0.9208 =0.9596

The simple correlations of either nitrogen or phosphorus content alone with
specific gravity are not very large, but when the two variables are considered
simultaneously, the relation with specific gravity is very close. Stated in per-
centage figures, nitrogen alone accounts for 78.54% of the variability in specific
gravity, (100 Xryy ). Phosphorus accounts for 51.36%. Nitrogen and phosphorus
jointly account for 92.08%.

We now need to describe the relation by calculating the regression equation.

Multiple Correlation and Regression 252



Using the normal equations based on deviations from means, we have
b, 2x%+ b,Ex,x,=2x, y
b Zx,x,+ by2x,>=Zx, y
Substituting the observed values from the data:
21,240.55b, +2,584.4b, = —29,218.35
2,584.40b, + 1,663.2b, = —6,661.8

Multiplying the first equation by 2,584.4, and the second equation by 21,240.55
and subtracting, we get

28,648,159.4b, = —64,926,364.75
b2 - =" 2-2%

Substituting this value of b, in either of the original equations, and solving for b,,
we find

b,=—-1.100
To have a regression equation in terms of the original values, we need to find a:

( 1100-—) ( 2.266 50 ) =199.968

_ 1479
20

We can now write the regression equation: Y=199. 968 — 1.100X, —2.266X,,.

From this equation we can calculate values of Y and compare them with the
observed values (Table 16.2).

The sum of the deviations is zero, as it should be. This furnishes a good check
on the computations. The sum of squares of deviations is 4,051.16. This represents
the variation in specific gravity (Y) not associated with the variation in nitrogen
content (X,) or phosphorus content (X,). It can be calculated, without computing
each Y, by taking (1—R*Zy? which is

(1-0.9208)51,172.95 =4,052.90
The two answers are in close agreement, the small difference resulting from
rounding.

The results we have obtained can be summarized in an analysis of variance
table as follows:
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Source of variation = Method of computing SS SS df MS F

Total Zy? 51,17295 19
Regression due to X, v, (27 40,191.23 1 40,191.23 65.9**
Deviation from simple

regression (1-rdx )Zy? 1098172 18  610.10
Additional regression due

to X, Brox(l-fx)Sy? 692947 1 692047 29.07**
Deviation from multiple

regression (1-Rixx,)Zy® 4,052.90 17 238.41

The last sum of squares can be obtained by subtraction: 10,981.72 —6,929.47
=4,052.25. The discrepancy between this value and the one in the table is the
result of rounding and will have no important bearing on the F value. The square
root of 238.41 or 15.44 is called standard error of estimate, and is designated by the
symbol sy.x x -

There is another way in which the analysis of variance table can be set up,
giving quite different F values:

Source of variation ~ Method of computing SS SS df MS F

Total =y 51,172.95 19
Regression due to X, x,(Zy®) 2628243 1 2628243 19.01**
Deviation from simple

regression (1—rgx, ) 2y* 24,890.52 18  1,382.81
Additional regression due

to X; xx(l—Hx)Zy® 2083585 1 2083585 87.40**
Deviation from multiple

regression (1-Rixx,)Zy® 4,052.90 17 238.41

In the first of these two tables, we considered the total effect of nitrogen and
then the additional effect of phosphorus. In the second table, we considered the
total effect of phosphorus and then the additional effect of nitrogen. The fact that
the order in which variables are considered makes a marked difference in the
outcome of the analysis can be confusing to anyone during first exposure to
multiple regression.

A simple example might help clarify some of the confusion. It is well known
that the yield of many crops is influenced by both temperature and day length.
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TABLE 16.2.
Observed and calculated specific gravity of 20 samples of potatoes

Y Y d=Y-Y
2 3.7 — 1.7
14 28.2 —14.2
15 =1.1 16.1
15 8.0 7.0
16 26.5 —10.5
27 15.7 11.3
48 47.1 0.9
54 37.7 16.3
58 84.6 —26.6
68 81.1 —13.1
82 103.7 —21.7
83 85.7 =27
91 772 13.8
97 109.2 —12.2
98 103.8 —5.8
101 113.4 —12.4
128 123.7 43
140 134.3 5.7
163 134.6 28.4
179 161.9 17.1

Suppose we have numerous crop yield records of a crop grown in different seasons
of the year. For each yield record, we have a record of the mean day length and of
the mean temeprature during the growing season. We expect day length and
temperature to be closely correlated with each other. Since this is true, we should
not be surprised if we found that yield was closely correlated with temperature
but that the additional consideration of day length would explain little of the
variation in yield not already accounted for. At the same time, day length alone
might be closely correlated with yield, while temperature might have little added
effect. The conclusion would be that long, warm days are associated with higher
yields than are short, cold days. We could tell little about which factor was the
more important, temperature or day length. To answer this question, we would
need an experiment in which the day length and/or temperature were controlled
so that they would be less closely correlated than they are in nature.

In Chapter 13, we gave an example of a spurious correlation between
cigarette consumption and hay production. This high correlation was apparently
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TABLE 16.3.
Multiple regression analysis of hay production (Y), cigarette consumption (X),
and time (X,)

Source of variation df SS MS F
X, considered first
Total 14 10,094.00
Regression due to X, 1 885531 885531  92.94**
Deviation from simple regression 13 1,238.69 95.28
Additional regression due to X, 1 918.01  918.01  34.35**

Deviation from multiple regression 12 320.67 26.72
X, considered first

Total 14 10,094.00
Regression due to X, 1 9,723.21 9,723.21 340.90**
Deviation from simple regression 13 370.79 28.52
Additional regression due to X, 1 50.11 50.11 1.88ns

Deviation from multiple regression 12 320.67 26.72

caused by the fact that both variables were closely related to a third variable,
time. A multiple regression analysis will show a striking difference between two
analyses, depending on which independent variable is considered first (Table 16.3).

In the second analysis, where we removed the regression with time first, we
see there is no significant additional regression related to cigarette consumption.

MORE THAN THREE VARIABLES

For the sake of simplicity, most of our discussion and the illustrative examples
have been based on three variables, one dependent and two independent. Actu-
ally, multiple and partial correlation coefficients and regression equations can be
calculated for any number of variables. A recent study at the University of
California included 35 variables. We can do no more here than indicate, in a
general way, how the methods described can be extended to more than three
variables and point out some of the difficulties involved.

We have already shown how the normal equations for calculating the
regression coefficients, b,, b,, and so on can be extended to include as many
variables as we wish. Each new variable requires only the addition of another term
on the left-hand side of each equation and the addition of one new equation
following the same pattern as the previous ones. For m variables the last normal
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equation will be
by Zx,x, + beZxpx, + by Zxpx, + - + b Zal=2x, y

The algebra does not change, but the arithmetic involved in solving the equations
becomes increasingly difficult as we add new variables. For this reason, it is
suggested that one of the systematic procedures mentioned in the previous chapter
be used, or if possible, use an electronic computer.

We have seen how, with only two variables, there was just 1 coefficient of
correlation, but with three variables there were 7, including 1 multiple, 3 simple,
and 3 partial coefficients. With four variables, the total increases to 25, and with
five to 81. One of the reasons for the big increases is the fact that we have the
addition of high order partial coefficients. The order of a partial correlation
coefficient is the number of variables that are fixed. With three variables, we had
only first-order partials, such as ryx x . With four variables, we have simple and
first-order partials and second-order partials, such as ryx x x, which is read “the
correlation of Y and X, for fixed values of X, and X,.”

There is a general equation that enables us to compute a partial correlation
coefficient of any order if we know three partials of one order lower:

2
(rvx,.x{,mxm IR X KT KX X .xm)

(1-Fxx..x) (1 xx,..x.)

r“\’fx.‘xgx3...x,,,=

The equations given for finding the first order partials involving three variables
from the three simple correlations were simply special cases of this general
equation.

A general equation for finding the multiple coefficient of correlation involving
m independent variables is

L Rff.x,...xm=(1 _r'zrx,)(l _r%x,,x,)(l = ’%xg‘x.xg)' o (l _'%’X...-Xz-ux.n. l)

In the case of two independent variables, this reduces to the fairly simple form
already given for R.x x .

We have seen that the arithmetic becomes increasingly difficult as we
consider more variables, but perhaps the greatest difficulty encountered when one
considers more than three variables is in visualizing the relations. The relation
between two variables can be pictured on a two-dimensional graph. The relations
among three variables can be depicted in a three-dimensional diagram. But how
do we draw a picture of the relations among four or more variables? The answer is
that we just do not try. We have to learn not to be bothered by our inability to
visualize relations involving four or more dimensions. Instead, we need to think in
terms of equations rather than diagrams. After all, we have no trouble grasping the
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idea that the yield of a crop is related to the N, P, and K levels in the soil, the
amount of water applied, the weed competition, the amount of disease, the
number of injurious insects, the temperature, and the day length. With enough
data, we can even write an easily understood equation that describes these
relations. Should we worry if we cannot draw a picture descriptive of this complex
interplay of factors? One equation may be worth a thousand pictures.

One more thing needs to be said about correlation and regression involving a
large number of variables. We showed that, with three variables, two different
analyses could be made, depending on which of the independent variables we
considered first. With three independent variables, the number of possible
analyses increases to six, and with m independent variables there are m! possible
ways of ordering the variables. (The symbol “m!” is read factorial m and means
the product of all the numbers from one to m. Thus 10! =1X2X3X4X5X6X7X
8 X 9% 10=23,628,800.) What is the best order in which to consider the variables?
A related question is, “Out of a large number of independent variables, how can
we find the best set of a given size?” Finding a direct simple method for obtaining
the best set is one of the great unsolved problems of statistics. Programs are
available on electronic computers for arriving at the solution, but time is the
limiting factor.

RESPONSE SURFACES

The independent variables in multiple regression problems need not be distinct
variables. They may be different powers of the same variable such as X, X? and
X3, or the products of two or more variables, such as X,X,, X,%X,, and so forth.
Thus, polynomial curve fitting is a special case of multiple regression. We pointed
out in Chapter 14 that the proportion of the variability in Y accounted for by the
linear plus the quadratic sum of squares is designated R?, or the coefficient of
multiple determination.

If we have two variables, each having a significant curvilinear relation with Y,
we can find an equation describing this entire relationship. Not only can we find
such an equation but we can also show it graphically by one of several kinds of
three-dimensional presentations. Such a graph is called a response surface.

The sugar beet nitrogen and time of harvest experiment described in Chapter
10 is a good example. We showed in that chapter that the significant components
were: nitrogen linear, nitrogen quadratic, harvest dates linear, harvest dates
quadratic, nitrogen linear X harvest dates linear, and nitrogen quadratic X
harvest dates linear. To include the effects of all these components on yield in a
single equation would require an equation of the form:

Y=a+bH+ cN+dH?+ eN*+ fNH + gN°H

To find this equation requires the solving of seven simultaneous equations in seven
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unknowns. The normal equations are

an+bZH+ cEN+ dZH?+ ¢ZN*+ fENH + gEN*H=ZY
aSH+ bZH?+ cENH + d ZH® + eZN’H + fENH? + gEN’H® = ZHY
aZN+ bENH + cEN?+ dENH? + ¢EN* + fEN’H + gEN°H = ENY
aZH?+ bZH®+ cINH? + dSH' + eIN’H? + fENH® + gEN*H® = SH?Y
aZN?+ bENH + cEN*+ dEN?H? + eEN* + fEN*H + gEN*H = INY

aS=NH + bENH? + cEN?H + d SNH + e ZN°H + fENZH? + gEN°H? = ENHY

aZN’H + bEN?H? + cEN°H + d EN?H? + e EN*H + fEN’H? + gEN*H? = EN?HY

Solving these seven simultaneous equations appears at first to be a formidable
task, but if we code the values of N and H properly, many of the sums will be
zero, and the equations will be greatly simplified. H, since it consists of five
equally spaced dates, can be coded by using the ¢, coefficients under n=>5 in
Table Al1l. These are —2, —1, 0, 1 and 2. To code the nitrogen levels, we observe
that dividing by 80 gives the series: 0, 1, 2, 4, and the linear coefficients for this
series in Table A.11a are —7, —3, —1, and 9.

Using these coded values, the following terms in the normal equations are
equal to zero: =H, EN, ENH, ENH, =H® INH? EN°H, SNH’ IN°H° EN‘H.
This leaves the following sums that are needed for the normal equations:

SH?>=40 n=20
EN2=T700 Y =1600
SNZH? = 1400 SHY =751
=N*=1800 ENY =1430.4
SH*=136 SH2Y =3006.6
SN*=45220 SN?Y =54,867.2
SNH? =3600 SNHY =T744.2

EIN*H2=90,440 EN’HY =25,967.8
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The normal equations are now:

20a + 40d+ T00e = 1,600.0
40b 1400g= 751.0

700c + 1800e = 1,430.4

40a + 136d+ 1400e = 3,006.6
700a + 1800¢ + 1400d + 45220¢ =54,867.2

1400f+ 3600g= 7442

1400b +3600f + 90440g =25,967.8
Multiplying equation (2) by 35 and subtracting from equation (7) gives
3600f +41440g = —317.2
Multiplying equation (8) by 7 and subtracting equation (6) times 18 gives:
225,280g = —15.616
g=—0.069318
Substituting g in equation (6) gives f=0.709818.
Substituting g in equation (2) gives b=21.201136.
Multiplying equation (1) by 2 and subtracting from equation (4) gives
56d= —193.4
d=—3.453571
Multiplying equation (1) by 35 and subtracting from equation (5) gives

1800¢ +20720e = —1132.8

Multiplying equation (9) by 7 and subtracting equation (3) times 18 leaves:

112,640e = —33,676.8
e=—0.298977

Substituting d and e in equation (1) gives

20a = 1947.4269
a=97.371345

(1)
2)
3)
4)
(5)
6)
™
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Substituting e in equation (3) gives
700¢ = 1968.559
c=2.812227

We now have all the terms for the equation in terms of coded values of N and H:

Y =97.371345+21.201136H’ + 2.812227N’ — 3.453571H"2
—0.298977N"2 +0.709818N'H’ — 0.069318N"2H’
The original harvest date levels were 0, 3, 6, 9, and 12 weeks, and the N rates were

TABLE 16.4.
Observed and predicted sugar beet yields
for each treatment combination, based on totals of four replicates

N H Y Y (Y-Y) (Y-Y)?
0.0 0 22.0 23.55 -155 2.4025
0.0 3 474 46.75 0.65 0.4225
0.0 6 61.1 63.04 -1.94 3.7636
0.0 9 69.8 72.42 —2.62 6.8644
0.0 12 76.1 74.89 1.21 1.4641
0.8 0 39.4 35.53 3.87 14.9769
0.8 3 67.9 64.34 3.56 12.6736
0.8 6 85.6 86.24 —0.64 0.4096
0.8 9 105.0 101.24 3.76 14.1376
0.8 12 110.1 109.33 0.77 0.5929
1.6 0 40.7 42.39 —1.69 2.8561
1.6 3 74.4 74.59 —-0.19 0.0361
1.6 6 91.9 99.88 —-798 63.6804
1.6 9 120.1 118.27 1.83 3.3489
1.6 12 129.3 129.75 —0.45 0.2025
3.2 0 37.9 40.70 2.80 7.8400
3.2 3 715 73.04 4.46 19.8916
3.2 6 96.6 98.46 —1.86 3.4596
3.2 9 122.1 116.98 5.12 26.2144
3.2 12 125.1 128.60 —-3.50 12.2500
Total 1600.0 1599.99 0.01 197.4873
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Root yield, tons/acre

Figure 16.2. The three-dimensional response curve fitted to the observed response
(solid points) of sugar beet to rates of nitrogen fertilizer and week of

harvest.

0, 0.8, 1.6, and 3.2 cwt. To convert the above equation to these units we must
substitute (H/3)—2 for H' and 5N —7 for N'. (See the summary of Chapter 15 for
the equation for changing H' and N’ to the original values of H and N.) The

resultant equation is

Y =23.55+8.8834H + 18.1868N — 0.38373H2
—4.00853N2 + 2.80045NH — 0.577652N*H

Substituting the values of N and H in this equation gives the calculated values
shown in Table 16.4.

The sum of squares of deviations of observed from predicted has to be
divided by 4 to put it on a per-plot basis, since there were four replicates. This
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Figure 16.3. “Slices” through the response surface of Figure 16.2. The effect of
date of harvest for each N level (a, equations for N, ; and N,, have
been averaged) and the effect of nitrogen rate at each harvest date
().
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gives 49.372, which is exactly the total residual sum of squares in the analysis of
variance in Chapter 10.

The residual sum of squares divided by the total sum of squares for treat-
ments is equal to (1—R?), so

49.372
4969.24

(1-R¥)= =0.0099

and

R*=1-0.0099=0.9901

Thus 99% of the variability in Y is accounted for by the equation we have
calculated.

Dividing each term of the regression equation by 4 (the number of replica-
tions of each treatment) gives Y in tons of roots per acre, the units most
appropriate for publication. In this form the equation is

Y =5.888+2.221H + 4.547N — 0.096H2 — 1.002N2+ 0.700NH — 0.144N2H

where N=hundred-weights of N/acre, and H=weeks from the first date of
harvest (H date 1=0). The results can be presented in several ways depending on
the researcher’s objectives and the points to be stressed.

Figure 16.2 shows the three-dimensional response surface. Figure 16.3 shows
“slices” through the response surface; Figure 16.3a gives equations and response
curves for the effect of time of harvest for each N level, while Figure 16.3b does
the same for the effect of N levels for each date of harvest. The two-dimensional
equations of Figure 16.3a are obtained by first setting N equal to zero in the
multiple regression equation and collecting like terms to give Y=5.888 +2.221H —
0.096H2. The other equations of Figure 16.3a are similarly obtained by, in turn,
setting N equal to 0.8, 1.6, and 3.2. The equations for N=1.6 and 3.2 have been
averaged, as they are nearly identical, The equations of 16.3b are computed by, in
turn, setting H equal to 0, 3, 6, and 12.

Figure 16.3 illustrates the nature of the interaction terms N linear X H linear
and N quadratic X H linear. The NH term of the multiple regression equation
results in a different N linear for each date of harvest and a different H linear for
each N level. The N®H term results in a different N quadratic effect for each
harvest date (Fig. 16.3b). In contrast, note that there is no NH? term, and as a
consequence the same H quadratic effect is present at each N level (Fig. 16.3a).

SUMMARY

When we are considering more than two variables, there are three types of
correlation coefficients.

Simple or total correlation is the linear correlation between any pair of
variables, disregarding the values of the remaining variables.
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Partial correlation is the relation between two variables when one or more of
the remaining variables are held constant.

Multiple correlation is the joint relation between the dependent variable and
all of the independent variables.

The equation for the simple correlation coefficient squared is

1‘2 - (Exi y)z
XSy

The general equation for a first-order partial coefficient of correlation squared
is
2 (ryx,— r&rx,."x,x,)2
YXoX, =
(1-rx)(1-r%x)

The order of a partial correlation coefficient is the number of variables held
constant, shown symbolically by the number of subscripts following the dot. With
three variables, we can have only first order partial coefficients.

The multiple correlation coefficient among three variables is found from

ryx, +Tvx, ~ 20yx Ty Tx x,
1-rx,

2 -
RY-xixg =

The multiple coefficient is always positive and at least as large as the largest
simple and partial coefficients.

A regression equation describes the relation between the dependent variable
and all of the independent variables. It is of the form:

Y=a+bX,+bX,+ ...
The symbols b,, by, and so on are called partial regression coefficients. To find the
regression equation that best fits the observed data, we solve the following normal
equations for the partial regression coefficients:
b Zx’+bZx x5+ ... +b, I x, =21,y

b Zxgx, + by2x + ... + b Zax, =Zx, y
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where m is the number of independent variables. To solve, we need m equations
with m terms on the left-hand side of the each equation.

The equation for finding a in the regression equation is

a=Y—-bX,~bX;—... = b, X,

(The symbol Y denotes the mean of Y and is £Y/n, where n is the number of
observations. Similarly X;=2X,/n and is the mean of X,)

The symbol Y is the estimated value of Y from the regression equation. The
difference Y —Y represents the deviation of an observed value from its estimate,
and 2(Y—Y)=0. If this sum fails to equal zero (except for small errors due to
rounding), an error has been made in the calculations.

>(Y-Y)

=1—R?
total sum of squares of Y =4

As we consider more variables, three difficulties arise:
The arithmetic increases at an exponential rate.
Visualization of relations becomes difficult.
Determining the best order for adding or eliminating variables is a difficult

problem, and no practical method is known for finding the best set of a given
size out of a large number of variables.

Powers and products of variables can be considered as additional variables.
When the powers and products of two independent variables are used in calculat-
ing a multiple regression equation, the results can be graphically plotted as a
three-dimensional response surface.
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17

ANALYSIS
OF
COUNTS

Most of the discussion in this book has dealt with the analysis of measurements
such as weight, yield, or height. However, we do not always measure some
characteristic of an individual. At times we may simply classify individuals into
two or more groups, such as dead or alive; healthy or diseased; male or female;
red, pink, or white; freshman, sophomore, junior, or senior. Even with characteris-
tics that can be measured, it is sometimes more convenient to classify individuals
into broad groups. For example, we might wish to conduct a study that included a
measure of people’s incomes. Many people in our sample might resent being asked
the exact amount of their income but would not hesitate if asked in which one of
three or four categories of income they belonged, and such a classification might
suffice for the purposes of our study.

Data based on counts of individuals belonging to each of several classes
generally require a different kind of statistical analysis than that commonly used
for measurements. Consider, for example, a study to determine something about
the characteristics of eggs laid by a flock of hens. We could weigh each egg in a
sample and determine that the mean or average weight per egg was, say, 21 gm.
We could also classify each egg as cracked or sound and find that 5% of the eggs
were cracked. It would not make sense to say that the average egg was 5%
cracked. Our average applies to the proportion of units in the sample possessing
this characteristic.

In the chapter on transformations, we showed how data based on counts can
sometimes be transformed and analyzed validly as though they were measurement
data. In this chapter, we describe a method called chi-square (represented by the
symbol x?) for analyzing enumeration data.

Before discussing this method, we should first consider what we would like to
learn by classifying and counting individuals. The purposes of collecting such data
generally fall into one or more of three objectives: (1) to test one or more
hypotheses not suggested by the data, (2) to determine whether different char-
acteristics are interrelated, and (3) to test whether samples are drawn from
different populations.
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CHI-SQUARE
The general formula for chi-square used in solving all these problems is

s < (Ob—Ex)’
=2

where Ob is the observed value for each of two or more classes, and Ex is the
corresponding expected value.

To evaluate this expression, we must first determine the expected value for
each class of individuals, according to our hypothesis. The expected value is then
subtracted from the observed value and the resulting difference is squared and
divided by the expected value. These quotients are summed over all classes. The
sum is then compared with values in a x* table at the appropriate degrees of
freedom. This tells us the approximate probability of obtaining deviations from
expectancies, as large or larger than those observed, by chance alone.

The arithmetic is fairly simple and for certain special cases there are com-
putational shortcuts available. However, there are several things we need to
consider in order to use chi-square tests properly.

1. We must exercise care in selecting the hypothesis to be tested. This
hypothesis should be a reasonable one based on previously known facts or
principles.

2. We need to be aware of the fact that a chi-square distribution is a
continuous distribution and is in fact related to the normal distribution.
On the other hand, the distribution of samples based on counts is a
discrete or discontinuous distribution. If the individuals are classified into
one of two classes, we are dealing with what is called binomial distribu-
tion. Normal and binomial distributions are similar but not identical. That
is why it was stated above that reference to a chi-square table gives an
approximate probability. We need to know what situations result in poor
approximations so that we can either avoid these situations or perhaps
make adjustments to get closer approximations to the true probability.

3. Given an hypothesis, we need to know how to calculate the expected
values for each class correctly.

4. The number of degrees of freedom for entering the chi-square table is not
always obvious. We need to learn certain rules for determining this.

5. Interpreting the results of a chi-square test requires caution and good
judgment. Even though our observations do not differ significantly from
our hypothesis, we may not be justified in accepting the hypothesis if the
data also fit other equally logical hypotheses.
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Let us illustrate these various points with an example. Suppose we are
working with some plant that has red and white flowered forms. We have crossed
plants from true-breeding lines of the two forms and the F, generation was all red.
We grow an F, generation of eight plants and find that four are red and four are
white flowered. On the basis of what we have already learned, we feel quite
certain that red is dominant over white, and we further suspect that it is
determined by a single gene. Our knowledge of genetics leads us to adopt the
hypothesis that the F, will segregate in a 3: 1 ratio of reds to whites.

On the basis of this hypothesis, we expect out of eight plants to obtain six reds
and two whites, so our observed numbers deviated by two from expected. We ask,
“What is the probability that we could have obtained a deviation from expected as
large or larger than we observed, by chance alone?” If this probability is very
small, we will reject our hypothesis.

Recognizing that chi-square will give us only an approximation of the desired
probability, we will calculate the exact probability based on the binomial distribu-
tion. To do this, we must find the probability of each possible outcome and pool
all of the cases which equal or exceed the observed deviation from expected.

First we must define some symbols. We call the hypothetical ratio r,:ry. The
probability of an individual belonging to the first class is called p and is equal to
r,/(r; +1,). The probability of being in the second class is called q and is equal to
ry/(r; +1y) or 1—p. The numbers observed in each class are called n, and n,, and
n; +ny=n, the total number in our sample. The symbol n! is called factorial n and
is obtained by taking the product of all the integers from 1 to n. Factorial zero is
defined as 1.

In a binomial distribution, the probability of obtaining a sample with n, in the
first class and n, in the second is

p"q™n!
n,!n,!

In our example, r,=3,r,=1,p=r,/(r, +1;)=3/4,q=r,/(r, +15)=1/4.The proba-
bility of obtaining a sample in which n;=4 and ny=4 is

P1ghe 4 4
p"q™n! _(g) (l] 12345678 _ 81 . 1 -0 (ges

nn! \4)°'\4) 12341234 256 256

Likewise, we can calculate the probability of every other outcome and construct
the first three columns of Table 17.1.

The last probability is not actually zero, but is less than .00005.

Notice that the sum of all the probabilities is 1, which furnishes us with a
check on the calculations.

The expected value of n, is np=8X3/4=6, so we make a third column in
the table showing the differences between the observed values of n, and this
expected value.
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TABLE 17.1

Deviation of n; Probability Based
from on
Outcome Probability Expected (n,—6)  Class Interval Normal Curve

8:0 1001 2 >15 1104
7:1 2670 1 0.5to 1.5 2312
6:2 3115 0 —-0.5t0 0.5 3168
5:3 2076 -1 —-05to —1.5 2312
4:4 0865 -2 -15to —2.5 0897
3:5 0231 -3 —25to —3.5 .0186
2:6 .0038 —4 —35to —4.5 0020
1:7 0004 -3 —45to —5.5 .0001
0:8 .0000 -6 < —55 .0000
Total 1.0000

We can now answer our original question. The probability of obtaining a
deviation of two or more from expected is the sum of the probabilities in the first
and last five of the nine cases in the table. This is .1001+.0865+ ... +.0000
=.2139.

Let us see how this result compares with the chi-square test. Our formula is

i (Ob—Ex)* (4—6)° (4-2)°

- =343 -
xi= ek e o S 0BT 2 28T

Looking this value up in a chi-square Table A.6, at 1 degree of freedom, we see
that our observed chi-square is very close to the value 2.706 found at the 10%
point, indicating that the probability is .10 of getting a deviation at least as large as
we observed by chance. (A more precise value from more extensive tables is
.1025). This is considerably lower than the exact probability of .2139 that we
found.

Yates Correction for Continuity

There is a correction called Yates correction for continuity that will greatly reduce
the discrepancy between the two methods. Suppose we used the normal distribu-
tion to obtain an estimate of the probability of each outcome. To do this, we first
must find the variance and standard deviation of the distribution. This can be
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found by squaring the deviation from the mean (expected value) for each outcome
and multiplying by the corresponding probability. These products are summed
over all outcomes.

Variance =22 X .1001 + 12 X 2670+ -+ +(5)* X.0004 =1.4997. Since we are
dealing with the binomial distribution, there is a much simpler formula for
obtaining the variance: o*=npq. Thus, in this example,

0*=8%3/4X1/4=15
Standard deviation,o = Vo? =V15 =1.225

The class intervals can now be expressed in terms of z values by dividing the limits
of each interval by the standard deviation. The area under a normal curve for each
interval can then be found by reference to a table of probability functions found in
most books of mathematical tables.

These estimates are shown in Table 17.1 to point out how the normal and
binomial distributions differ. Since the normal is a continuous distribution, we
have to lump together all of the portion of the normal curve from n, —Ex= —1.5
to n; — Ex= —2.5 and determine the area of this portion to find the probability of
n, —Ex being —2. Likewise, the probability of n, —Ex being 2 is the area under
the normal curve from n, —Ex=1.5 to infinity. Thus our question regarding the
probability of obtaining a deviation of 2 or greater from expected, when using a
normal curve, must be reworded to ask, “What is the probability that the
deviation from expected will exceed 1.5 Yates correction takes this into account
and consists simply of subtracting 0.5 from the absolute value (disregarding sign)
of the differences between observed and expected.

Using this correction, we calculate an adjusted chi-square as follows:

(Job—Ex|—05)* (2—-05)* (2—05)°

2_ —
=X Ex g Ty
15°  (15)°
= S =035+ 1125=1.50

(Note: The symbol |x| means the absolute value of x.)

Looking this value up in a chi-square (Table A.6) shows that the probability is
between .10 and .50 but much higher than it was before. More extensive tables
give a P value of .2207, very close to the calculated exact probability of .2139. The
probability based on a normal distribution can also be obtained in the same way as
the binomial, by adding the probabilities of the first line and last five lines of Table
17.1. This gives .2208 which is, as it should be, equal (within rounding errors) to
the result obtained by the chi-square test.
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GUIDES FOR USING CHI-SQUARE

We have seen that even with a sample as small as eight the difference between the
normal distribution on which chi-square is based and the exact binomial distribu-
tion is not very great. The following rules will help in deciding whether chi-square
will give a sufficiently close approximation of the correct answer:

1. The larger the sample size, the closer the agreement between the two
distributions.

2. The larger the ratio between r, and r, in our hypothesis, the greater the
discrepancy between the two distributions for a given sample size. Thus,
if we hypothesize a 1:1 ratio, the agreement will be close even for small
samples, but if we hypothesize a 15:1 ratio, a much larger sample size is

necessary.

3. A good rule of thumb is to avoid using chi-square if the smallest expected
class is less than five. If we have more than two classes, we can pool
classes whose expected values are less than five. Increasing sample size
can also be used to increase the size of the smallest expected value.

4. Always use Yates correction for determining chi-square with only 1
degree of freedom. Never use it for problems in which more than 1 degree
of freedom is involved.

Degrees of freedom can be defined in general as the number of classes that
can be assigned an arbitrary value. Thus, if we have two classes, as in the example
we have been using, we can assign any value to n;, but n, is then fixed because it
must include the remaining members of the sample, since ny=n—n,. Chi-square
therefore has one degree of freedom. In testing any hypothesis exterior to the data,
degrees of freedom is always one less than the number of classes. Other situations
will be discussed later.

INTERPRETING RESULTS

Interpretation is the last and most important step in our analysis of the data. We
have seen that the discrepancy between what was observed and what was
expected could easily have been due to chance alone. We therefore have no
evidence for rejecting our hypothesis. Does this mean that we have strong
evidence to support our hypothesis? Not necessarily, and this is a point often
misunderstood. Look at it this way. There are many other hypotheses we could set
up from which this sample would not represent a significant deviation. If we have
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strong evidence that red and white are determined by a single pair of genes, then a
3:1 ratio is the most reasonable hypothesis, and our sample could be considered as
furnishing good supporting evidence. On the other hand, the evidence we have for
postulating a single pair of genes may be very weak. We then must consider such
possibilities as two pairs of genes giving rise to a 9:7 or 13:3 ratio. Our observed
sample of 4 red:4 white would give a “good fit” to either of these ratios. Further
tests or much larger F, samples will have to be used to distinguish among the
various plausible hypotheses.

Table 17.2 shows the sample sizes needed to distinguish between various
common ratios. For example, the table shows that a sample of 105 is necessary to
ensure that either a 3:1 or a 9:7 ratio will be rejected at the 5% level. The
rejection value in the chi-square table is 3.84. If we observed a 70:35 ratio, the
chi-square value in testing the 3: 1 hypothesis would be 3.46, not large enough to
reject at the 5% level. Tested against the 9: 7 hypothesis we get a chi-square value
of 4.22, large enough to reject the hypothesis at the 5% level. On the other hand,
an observed ratio of 69:36 would give chi-square values of 4.34 and 3.45 for the
3:1 and 9: 7 hypotheses respectively. We would therefore reject the 3: 1 hypothe-

sis. Verifying these chi-square values is left as an exercise. Be sure to use the
correction for continuity.

TABLE 17.2.

Sample size to ensure that at least one of two alternative hypotheses will be rejected
(Top number at 5% level, bottom at 1%)

15:1 7 | 13:3 3:1 11:6 5:3 9%
1:1 16 24 38 62 112 254 1008
24 38 61 101 186 428 1718
9:7 20 33 56 105 243 977
31 53 92 174 407 1664
5:3 27 49 94 223 915
42 79 155 374 1558
11:5 39 80 195 823
61 130 326 1398
3:1 60 159 699
97 264 1184
13:3 114 543
186 915
T:1 354
589
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TESTING FOR INDEPENDENCE

One of the things we often want to learn about counted data is whether two
variables are related. For example, one variable used to classify individuals might
be level of education and another level of income. We could test to see if
education and income are related.

We might deliberately impose two levels of a variable such as inoculation on
two groups, treating one group and leaving the other untreated. We could then
classify each group into healthy and diseased after a certain period of time, and
test for any relation between treatment and disease incidence. In genetic research,
it is often desired to find if two traits are inherited independently or show
evidence of linkage. All these problems are analogous to correlation analysis with
measurement data.

In analyzing for a relation between two variables, it is most convenient to set
up a null hypothesis that they are independent. If the deviation from indepen-
dence is much greater than we would expect by chance, we reject the hypothesis
that the two variables are independent and accept the alternate hypothesis that
they are related.

To find the expected values for applying the chi-square formula, we use a
principle in the theory of probability that states: If two events are independent, the
probability of simultaneous occurrence of the two events is the product of the
probabilities of their individual occurrence. Let us illustrate this principle with an
example and show how the chi-square test is performed.

One hundred animals were treated with an antibiotic and after a period of
time examined for symptoms of disease. There were 88 animals that were healthy
and 12 that showed disease symptoms. Another group of 200 animals was given no
antibiotic, and when examined later, 143 were found to be healthy and 57
diseased. These results can be summarized in what is called a 2X2 contingency
table, Table 17.3.

TABLE 17.3.
Disease incidence in treated and untreated cattle

Disease Categories
Treatment Healthy Diseased Total
Treated 88 12 100
Expected (77) (23)
Untreated 143 b7 200
Expected (154) (46)
Totals 231 69 300
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We will test the hypothesis that there is no relation between treatment with
antibiotic and the incidence of disease. If these two variables are independent, the
expected proportion of healthy treated animals will be the proportion of healthy
times the proportion of treated. This is 231 /300 X 100/300="77 /300. Since there
are 300 animals altogether, 77/300X300="77 is the number of animals that we
expect to be treated and healthy. The computation can be considerably shortened
by noting that the grand total appears as the denominator of both fractions which
are multiplied to give the joint probability. The resulting proportion was then
multiplied by the grand total to get the expected number. We can cancel one of
the grand totals in our calculation and find the expected number from (100X
231)/300=77. In words, this can be stated: The expected number of treated
healthy animals is the total number of treated times the total number of healthy
divided by the grand total. Similarly, every other expected class can be calculated.
Actually, in a 2 X2 table, only one expected value needs to be calculated. Since we
expect 77 of the treated animals to be healthy, we expect the remaining 23 to be
diseased. Likewise, we expect 77 of the healthy animals to be in the treated class;
we expect the remainder of the 231 healthy animals or 154, to be in the untreated
class. Then, of the 200 untreated animals, since we expect 154 to be healthy, we
expect the remaining 46 to be diseased. Notice that once a number is assigned to
one of the classes, the remaining three classes are fixed. Thus, we have only one
degree of freedom in a 2X2 table. The general rule for an rXc (r rows and ¢
columns) contingency table is that the degrees of freedom equals (r—1) X(c—1).

One feature of a 2X2 table to notice is that the difference between observed
and expected is the same for évery cell of the table except that two of the
differences are positive and the other two are negative. This common difference in
our example is 11 (e.g., 88 —77=11, etc.), and since we are dealing with 1 degree
of freedom, we should apply Yates correction and consider the differences as 10.5.

Applying our chi-square formula, we get

D | 2 2 2 2
=S (Iob—Ex|-05)" _ (10.5) +(10.5) . (10.5) b (10.5)
Ex i 23 154 46

Referring to the chi-square Table A.6 under 1 degree of freedom, we see that we
would expect a chi-square value of 6.635 1% of the time by chance alone, and
10.827 only 0.1% of the time. Therefore, we can say that the probability of
obtaining a chi-square value as large as 9.34 is only slightly more than 1 in a 1000,
so we reject the hypothesis of independence and say that there is a relation
between antibiotic and the incidence of disease.

To show how chi-square is used to test independence between two pairs of
genes, we will analyze some data from a large progeny of marigolds, segregating
for two factors, earliness and virescence (a mild chlorophyll deficiency). It was
known that earliness is recessive to late development and determined in this
genetic material by a single pair of genes. Virescence is recessive to normal and
also controlled by a single gene pair. Three questions need to be answered. Does
the ratio of late:early fit a 3:1 ratio? Does the ratio of normal:virescent fit 2 3: 1
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ratio? Are the two pairs of traits inherited independently, or is there evidence of
linkage?The data arranged in a contingency Table 17.4 were as follows:

TABLE 174.
Segregation of two traits in a progeny of marigolds

Normal Virescent Total Ex3:1
Late 3470 910 4380 4275
Expected (3457.9) (922.1)
Early 1030 290 1320 1425
Expected (1042.1) (277.9)
Totals 4500 1200 5700
Ex(3:1) 4275 1425

To answer the first question regarding the ratio of late:early, we calculate
chi-square:
(14380 —4275|— 0.5  (]1320—1425|—0.5)*

2 —1
X 1275 4 1425

(10457 (104.5)°
275 1435
=10.22

This is almost equal to the required chi-square value of 10.827 at the 0.1% level.
This means that if 3: 1 were the true ratio, the probability of finding a deviation as
great as we observed was only about 1 in a 1000. We therefore reject the
hypothesis that 3:1 is the true ratio. Actually, the hypothesis that late flowering
was a simple dominant over early flowering was not rejected, because it was
observed that (as with many recessive traits) the early plants were somewhat
weaker than the late ones. The small but significant deviation from a 3: 1 ratio was
therefore attributed to differential survival rates. It is worth noting that this was
an unusually large progeny. If it had been one-tenth as large (570 plants) and the
ratio of late: early had been the same, the chi-square value would have been only
0.94, not approaching significance.

The question about the ratio of normal: virescent is answered in the same
way, and the chi-square value turns out to be 47.16, again very highly significant.
Virescent plants, being partially lacking in chlorophyll, show an even greater loss
in vigor compared to normal than do early plants compared to late.

In testing for independence, we accept the observed ratios rather than
assuming a 3:1 ratio, and calculate the expected values on the assumption of
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independence. Thus the expected number of late normal plants is

total normal X total late _ 45004380
grand total 5700

The expected values for the remaining three cells in Table 17.4 can be calculated
in a similar fashion or obtained by subtraction from the marginal totals. Using both
methods furnishes a check on the accuracy of the computations. Note that
(Ob—Ex) is 12.1 in the upper left and lower right cells of the table and —12.1 in
the other two cells. The numerators of the terms for determining chi-square will
be the same for each class. Applying Yates correction for each cell of the table
gives (12.1 —.5)>=(11.6)>. Chi-square is therefore

=3457.9.

116>  116* 116 116
34569 * 9921 * Toaz1 * 2779~
The probability of obtaining a value of this magnitude by chance alone is between
10% and 50%, so we do not have any evidence to justify rejecting the hypothesis of
independence.

Another example will show how to calculate chi-square when more than 1
degree of freedom is involved, and how a contingency table may be “collapsed.”
Three groups of 39 cattle were each fed a different ration. The condition of health
of each animal was measured by recording the number of times it had to be
treated for sickness. The results shown in Table 17.5 were obtained.

TABLE 17.5.
Health condition of cattle fed with three rations. Expected values in parentheses

Ration
Number of Times Treated 1 2 3 Total

0 19(17.3) 16(17.3)  17(17.3) 52
1 1(03) 003 0 (0.3) 1
2 0(3 3 (13) 1 (L3) 4
3 767 967 1 (5.7) 17
4 347 547 6 (4.7) 14
5 4 (3. ) 1(3.3) 5 (3.3) 10
6 2 (2.0) 1(20) 3 (2.0) 6
7 0(13 2 (13) 2 (1.3) 4
8 123 223 4 (2.3) 7
10 207 007 0 (0.7) 2
Totals 39 39 39 117
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In this case, the expected values are very easy to calculate, since exactly
one-third of all the cattle were in each ration class. This means that we would
expect one-third of the animals in each treatment frequency class to fall in each
ration class if ration and treatment frequency are independent. We note that many
of the expected values are less than five, so we are not really justified in applying
the chi-square formula to the data as it stands. However, we will go through the
calculations and see how the results compare with those obtained from a collapsed
table.

(Ob—Ex)* (19-17.3)* (16—17.3)% (0-.7)

2 a -
L - AT | 7 T T e

Degrees of freedom=(r—1)(c—1)=(10—1)(3—1)=18

Looking up our calculated chi-square value of 24.5, Table A.6, opposite 18 degrees
of freedom shows that the probability of obtaining the results observed by chance
alone is slightly over 10%. We therefore have insufficient evidence to reject the
hypothesis that animal health was not related to ration.

In order to satisfy the rule that no expected class should be less than 5, we
can collapse the table by combining frequency classes 1, 2 and 3; 4 and 5; and 6,
7, 8 and 10. This gives a new table (Table 17.6).

Calculating chi-square gives us a value of 10.61, which we look up in the
table opposite 6 degrees of freedom. We find it is almost exactly equal to the
tabular value at 10% probability. Our conclusions will therefore be the same as
those we reached with the original table, though this will not always be the case. It
is always safer to collapse a table to avoid too small expected classes. Furthermore,
it reduces the number of calculations needed to compute chi-square. Note that the
correction for continuity was not used in this example, because we were dealing
with more than a single degree of freedom.

TABLE 17.6.
Collapsed version of Table 17.5

Ration
Number of Times Treated 1 2 3 Total
0 19(173) 16(17.3)  17(173) 52
1-3 8 (73) 12 (13) 2 (7.3) 29
4-5 7 (80) 6 (80) 11 (8.0) 24
6—10 563 5 (63 9 (63) 19
Totals 39 39 39 117
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HETEROGENEITY

The third and final use we will consider in connection with chi-square is that of
testing whether a group of samples could have heen drawn from the same
population. Consider eight progenies of marigolds each segregating for normal and

virescence as shown in Table 17.7.

TABLE 17.7.
Normal and virescent marigolds in eight progenies

Progeny Normal Virescent x%(3:1) x*(3106:854)
1 315 85 3.00 0.023
2 602 170 3.65 0.094
3 868 252 3.73 0.578
+ 174 42 3.56 0.575
5 192 48 3.20 0.348
6 165 39 3.76 0.723
7 161 43 1.67 0.028
8 629 175 4.48 0.019
Totals 27.05 2.388
Pooled 3106 854 24.91 0.000
Heterogeneity 2.14 2.388

We will carry out two kinds of analyses. First we will test each progeny and
the pooled data from all progenies for deviation from a hypothetical 3:1 ratio.

The chi-square calculated for each progeny is shown in column four. These
were calculated without the correction for continuity, because we will want to add
them, and only unadjusted chi-squares are additive. Note that only one of these
exceeds the required value of 3.84 for significance at the 5% level. We therefore
have very little evidence from the individual progenies for rejection of our
hypothesis. Still we are not justified in concluding that, since seven out of eight
progenies gave a “good fit” (i.e., did not deviate significantly from 3:1), there is
overwhelming evidence to support our hypothesis. We must carry the analysis
further. Adding the eight individual chi-squares, each with 1 degree of freedom,
gives a total chi-square of 27.05 with 8 degrees of freedom. This exceeds the
tabular chi-square value of 26.125 at the 0.001 level. In other words, the probabil-
ity is less than 1 in 1000 that such a large value could simply be the result of
chance. Another test can be applied to the total of 3106 normal and 854 virescent.
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The expected numbers are: 3960 X 3/4=2970 and 3960 X 1 /4 =990,

,  (3106—2970)°  (854—990)* —r

MR RLTRARE R
This far exceeds the tabular chi-square value for 1 degree of freedom at the 0.001
level, so we now definitely reject the hypothesis that all of the progeny are
samples from a population with 3: 1 ratio. We still would like to know whether all
of these progenies might represent samples from a single population. To test this

hypothesis, we calculate what is called heterogeneity chi-square.

heterogeneity chi-square = total chi-square — pooled chi-square.

Since total chi-square was 27.05 and pooled chi-square was 24.91, heterogeneity
chi-square is 2.14 with 7 degrees of freedom. Reference to the table shows this to
be even less than the 2.167 required at the 0.95 level. The probability is about 95%
that a chi-square of this size or larger could come from a homogeneous set of
samples just by chance. All of these tests can be summarized in a table similar to
an analysis of variance table.(Table 17.8).

TABLE 17.8.
Summary of data from eight marigold progenies based on 3: 1 ratio

Source df Chi-square
Total 8 27.05***
Pooled 1 24.91***
Heterogeneity 7 2.14 ns

Instead of testing each progeny against a hypothetical ratio, we might test the
observed ratio of the totals. This is done in the last column of Table 17.7. The
pooled chi-square of course has a value of zero, since the observed ratio is the one
which we are testing. A table analogous to the one above is given as Table 17.9.

We still have no evidence of heterogeneity, conclude that we are dealing with
a homogeneous set of progenies, and that our best estimate of the true ratio is
3106:854.

Notice that in this last test, the calculations were exactly the same as for
testing independence. In other words, when testing each sample against the
observed total ratio, heterogeneity chi-square = independence chi-square. It is only
when the samples and totals are being tested against a hypothetical ratio that we
need to partition the total chi-square into two components.
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TABLE 17.9.
Summary of marigold data, based on observed totals

Source df Chi-square
Total 8 2.388
Pooled 1 0.000
Heterogeneity 7 2.388

Table 17.10 indicates what the analysis would have looked like if the first four
progenies had shown the same deviation from a 3:1 ratio, but in the opposite
direction.

TABLE 17.10.
Hypothetical set of marigold data showing heterogeneity

Progeny Normal Virescent xX3:1)  x%2950:1010)
1 285 115 3.00 2.05
2 556 216 3.65 2.49
3 812 308 3.73 2.35
4 150 66 3.56 2.90
5 192 48 3.20 3.82
6 165 39 3.76 4.38
7 161 43 1.67 2.10
8 629 175 4.48 5.92
Totals 27.05 26.01
Pooled 2950 1010 54 .00
Heterogeneity 26.51 26.01

Note that the pooled data now came very close to fitting a 3: 1 ratio, but the
heterogeneity chi-square is highly significant. Again we reject the hypothesis that
all of the progenies are samples from a population in which the ratio is 3 normal to
1 virescent. The rejection in this case is because there is strong evidence that the
samples are not a homogeneous set, so that pooling of the data is not justified.
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Throughout this discussion we have used a single formula:

=S (Ob;xEx)

With only one slight modification for cases where the correction for continuity is
required. There are many modifications of this formula that provide computational
shortcuts for special cases. A person who has a great many chi-squares to calculate
would be well advised to refer to a more advanced text for the appropriate
shortcut formula. For the reader who only occasionally encounters problems
requiring chi-square analysis, we feel it is preferable to learn this single basic
formula.

SUMMARY
The general formula for calculating chi-square is

(Ob— Ex)

xX*= E

Individuals classified in one way into two or more classes may be compared to
a hypothetical ratio. Degrees of freedom are one less than the number of classes.

By comparing the calculated chi-square with a table, we can find the
probability of the occurrence of a deviation at least as great as that observed by
chance alone.

Individuals classified in two ways, into r and c classes, can be tested for
independence between the two criteria of classification. Degrees of freedom are
(r=1)X(c—1).

If two or more samples are each tested against a common hypothetical ratio,

the sum of the resulting chi-squares can be partitioned into two components as
follows:

Source df
Total ric—1)
Pooled (c—1)
Heterogeneity (r—=1)(c—1)

The number of classes into which each sample is classified is ¢, and r is the

number of samples.
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IMPROVING
PRECISION

The precision of an experiment refers to its ability to detect true treatment effects.
In general, the more precise the experiment, the smaller the treatment difference
that the experiment is capable of detecting. The greater the variability among
experimental units treated alike, the greater will be the error associated with the
difference between two means and the less precise the experiment will be in
detecting differences resulting from treatments. The standard error of the dif-
ference between two means decreases as s decreases and n increases, s3

=\}532/ n (where n is the number of replications). Thus, methods to increase the
precision of an experiment are designed to lower the unaccounted variability per
plot or to increase the effective number of replications.

Precision may be improved by (1) increased replication, (2) careful selection
of treatments, (3) refinement of technique, (4) selection of experimental material,
(5) selection of the experimental unit, (6) taking additional measurements, and (7)
planned grouping of experimental units.

INCREASED REPLICATION

The precision of an experiment can always be increased by additional replications,
but the degree of improvement falls off rapidly as the number of replications
increases. For example, compared to an experiment with four replications, to
double the degree of precision with which two means tan be separated requres 16
replications. This follows from the effect of the number of replications (n) on the
difference required to separate two means at a given level of significance,
LSD=t)/2s®/n . This is not exactly so because, as n increases, t becomes slightly
smaller, but it is close enough to use as a rule of thumb.

In general, in field and vegetable crop research, from four to eight replica-
tions are required for reasonable precision. In planning an experiment, you should
be reasonably sure that you will be able to detect a true difference of the
magnitude in which you are interested. If the probability is poor that you can
accomplish your objective with the number of replications you are willing to
employ, and there are no other reasonable means for improving precision, you
would be well advised not to do the experiment—or at least to postpone it until
you have sufficient resources to conduct it in a way that does have a good chance
of accomplishing your objective.
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Table 2.1 of Cochran and Cox (1964) is convenient for estimating the number
of replications required to detect a specified difference. Their table is based on the
formula r > 2[(CV)®/D?|(t, +1t,)°, where CV is the coefficient of variation [CV=

s(100)/Y ]; D is the difference you desire to detect expressed as a percent of the
mean of the experiment; t, is a tabular t value for a specified level of significance
(say 5%) and the degrees of freedom for experimental error; and t, is a tabular t
value for degrees of freedom for error and a probability of (1—P)2, where P is the
probability of detecting a significant result in a given run of the experiment. If
P=0.80, then (1—-P)2=0.40, a two-tailed area for a t distribution based on
degrees of freedom for experimental error.

To use the equation, start by specifying the number of replications you think
may be needed and then work it to approximate r. Based on this r, solve the
equation again and then take the next larger value of r as the number of
replications required.

For example, suppose we wish to conduct an experiment involving six
treatments in a randomized complete block design. We want an 80% chance of
detecting a mean difference as small as 10% of the experimental mean at the 5%
level of significance. Other experiments with the experimental units we will use
indicate that a well-conducted experiment should have a coefficient of variation of
about 5%. We think six replications may be enough. Thus, for the first run of the
equation, r==6, treatments=6(n=6), df error=(r—1)(n—1)=25, t,=2.060, t,=
0.856 (see Table A.2), and r> 2(5/10)%(2.060 +0.856)> =4.25.

Now let r=>5, then df error=(4-1)(5—1)=20, t,=2.086, and t,=0.860.
Solving again for r gives r > 2(5/10)*(2.086 +0.860)* =4.34; therefore we take 5 as
our estimate of the number of replications required. When we conduct the
experiment, we will have an 80% chance of detecting a 10% difference at the 5%
level with five replications unless the coefficient of variation turns out to be larger
than expected.

SELECTION OF TREATMENTS

Careful selection of treatments is not only important in achieving the experi-
menter’s objectives but it also can increase the precision of the experiment. For
example, in studying the effect of an herbicide, fungicide, fertilizer, or insecticide,
it is more useful to determine how the experimental units respond to increasing
doses of your treatment material, than to decide whether or not two succeeding
doses are significantly different. Thus, a proper series of doses will make it possible
to plan tests of significance that are more sensitive than merely comparing
adjacent means in an array. As mentioned before, doses in equal increments
covering the range of the response expected are most efficient in establishing a.
dose-response curve and facilitate the computation of sums of squares and
equations for responses. Also, as pointed out in Chapter 3, factorial experiments,
where two or more types of treatments are tested simultaneously, can result in
considerable improvement in the precision of main factor comparisons.
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REFINEMENT OF TECHNIQUE

Faulty technique may increase experimental error and bias treatment effects. A
good technique should (1) uniformly apply treatments, (2) devise suitable and
unbiased measure of treatment effects, (3) prevent gross errors, and (4) control
external influences so that all treatments are comparably affected.

SELECTION OF EXPERIMENTAL MATERIAL

For certain kinds of studies, carefully selected, uniform material is desirable. In
selecting experimental material, however, you must keep in mind the population
about which you wish to make inferences. Thus, for most applied research in
agriculture, it is important to use the kinds of experimental materials that will be
used in actual production.

SELECTION OF THE EXPERIMENTAL UNIT

The size and shape of the field plot affects precision. In general, variability
decreases with an increase in plot size, but once a certain size has been reached,
the increase in precision falls off rapidly with larger sizes. For determining yield,
there is usually little gain in precision by using plots larger than 0.1 acre. For most
crops, harvested areas of 0.01 to 0.02 acres result in good precision. LeClerg et al.
(1962) discuss size and shape of field plots for various crops and cite many useful
references. Rectangular plots are most efficient in overcoming soil heterogeneity
when their long axes are in the direction of greatest soil variation.

Increasing the number of animals or the number of trees per experimental
unit also increases precision. However if animals or trees can be handled individu-
ally, precision will be increased more by using individuals as experimental units
and having more replications rather than using the same number of animals or
trees with more than one per experimental unit.

TAKING ADDITIONAL MEASUREMENTS—COVARIANCE

One of the techniques for reducing error in an experiment is to remove the
variability in Y associated with some independent variable X. This techniques is
called covariance.

Suppose that in a crop experiment there was a considerable amount of
variation in stand from plot to plot. If we can make a reasonable estimate of what
the plot yields would have been if all plots had the same stand, the precision with
which we measure treatment effects can be improved. An estimate based on the
assumption that yield is directly proportional to stand is not reasonable for
example, for it nearly always introduces a bias favoring the plots with the thinner
stands.
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Another example of the usefulness of covariance analysis is in animal feeding
experiments in which there is variation in the initial weights of the animals. If
weight gain is found to be related to initial weights, adjustments can be made to
increase the precision of measuring treatment effects.

The whole subject of covariance is a fairly complicated one, both from the
point of view of the calculations involved and in the interpretation of results.
Many of the texts in our list of references deal with covariance in great detail. In
our experience, few agricultural research workers become involved in covariance
analysis except in a minor way, so that a discussion of all the intricacies of the
technique may not be very fruitful. We will therefore describe only the general
method of the analysis and some of the simpler aspects of interpretation.

Table 18.1 consists of some hypothetical data contrived for easy calculation to
illustrate the procedures in covariance analysis. You can think of X and Y as
representing stand and yield, initial weight and weight gain, or any other pair of
variables that you might encounter.

TABLE 18.1.
Hypothetical data representing the values of two variables, X and Y, in a
randomized complete block experiment with four replicates and five treatments

X ¢

Block: 1 2 3 4 Total 1 2 3 4 Total
Treatment

1 8 6 7 7 28 T 5 6 6 24
2 8 4 12 .12 36 9 5 9 9 32
3 4 10 10 8 32 6. 12 10 12 40
4 1 7 4 12 24 9 11 10 18 48
5 9 8 12 11 40 14 7 15 20 56
Totals 30 35 45 50 160 45 40 50 65 200

The regular analysis for both X and Y can be carried out in the usual way,
with the results shown in Table 18.2.

We note that the treatments had no significant effect on the X variable, but
their effect on Y was significant at the 5% level.

To carry out the analysis of covariance, we need, in addition to the sums of
squares of X and Y, the sums of cross-products, which we will designate as SXY.
First, we need a correction term:

oA (EXlEEY) - (1602){()200) e
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TABLE 18.2.
Separate analyses of variance for X and Y from Table 18.1

Source of Variation df S§§X  MSX F SSY MSY F
Total 19 186 334
Blocks 3 50 16.67 70 23.33
Treatments 4 40 10.00 1.25 160 40.00 4.62*
Error 12 96 8.00 104 8.67

The sum of cross-products for blocks is

e e, OO0 g,
=50
For treatments, it is
sorre 20T __ GO0+ A0,
=24

The total sum of cross-products is
SXY= > XY—C=(8)(7)+ ... +(11)(20) — 1600
=142
The sum of cross-products for error can be obtained by subtraction:

SXYE =SXY — SXYB — SXYT =142 — 50 — 24 =68

To show where the error sums of squares and cross-products come from and
ultimately how we arrive at the regression equation, we remove the block and
treatment effects and the general mean from each variate, leaving only the

residual error components, as we did in Chapter 5 (Table 18.3).

It is easy to verify that the sums of squares of these components are the same
as the error sums of squares in the analyses of variance in Table 18.2. Also the sum
of products of corresponding components of X and Y is the same as the value of
SXYE obtained indirectly by subtraction above. It is these 20 pairs of error
components that are used to calculate the regression of Y and X free from

treatment and block effects.
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TABLE 18.3.

Error components of X and Y after removal of block and treatment effects and
general mean

X Y

Block: 1 2 3 4 Total 1 2 3 4 Total
Treatment

1 3 0o -1 -2 0 2 1 0 -3 0

2 1 -4 2 1 0 2 -1 i -2 0

3 -2 3 1 -2 0 -3 4 0o -1 0

4 -3 2 -3 4 0 -2 1 -2 3 0

5 1 -1 1 -1 0 1 =5 1 3 0
Totals 0 0 0 0 0 0 0 0 0 0

We learned in the chapter on linear regression and correlation that a sum of
squares for deviation from regression could be found by taking (1—r%) SSY. This
can be rewritten as

(SXY)*
~ (SSX)(SSY)

ssy=ssy— XY

(1-r*)SSY = X

1

This sum of squares for deviation from regression can be considered as a sum of
squares of Y after removing the effect of X on Y. It is therefore called “Y adjusted
for X.”

We now have all the information we need to make a complete analysis of
covariance table (Table 18.4).

The error sum of squares of Y adjusted for X is

_SXY? 04 68 _
SSY - o =104~ =55.833

This has 11 degrees of freedom, 1 less than the 12 for unadjusted error.

The degrees of freedom and sums of squares and products in the row called
“treatments + error” are simply obtained by adding the numbers in the “treat-
ments row to those in the “error”row. We then obtain a sum of squares of Y
adjusted for X in the same way on this row as we did for error:

2
treatment + error)adjusted SS=264 — ® - 201.765
( Jadj 136
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TABLE 18.4.
Analysis of covariance of data from Table 18.2

Sums of Squares

and Products Y Adjusted for X
Source of
Variation  df S§SX SXY SSY df SS MS F
Total 19 186 142 334
Blocks 3 50 50 70
Treatments 4 40 24 160
Error 12 96 68 104 11 55.833 5.076
Treatments
+ error 16 136 92 264 15 201.765
Treatments
adjusted 4 145932 36483 7.19**

The treatment sum of squares of Y adjusted for X is now obtained by subtraction:
201.765—55.833=145.932. It is important to note that the adjusted sum of
squares for treatment cannot be obtained directly by applying the formula
SSY —SXY?/SSX to the treatment line. In this case, we would get 160 —24%/40=
145.6. The fact that this is fairly close to the correct value is merely coincidence.
The two values will not generally be this close.

The regression coefficient is found from the error line by the usual relation:
b=S8XY/SSX=68/96=0.70833. It is informative to see what happens when we
adjust the error terms of Y in Table 18.3 for the corresponding error terms of X.
This can be done by applying the equation: Yadjusted =Y, —bX;; to each value of
Y in the table, as shown in Table 18.5.

TABLE 18.5.
Error terms of Y Adjusted for X

Block 1 2 3 4
Treatment
1 —0.12500 1.00000 0.70833 —1.58333
2 1.29167 1.83333 —0.41667 —2.70833
3 —1.58333 1.87500 —0.70833 0.41667
4 0.12500 —0.41667 0.12500 0.16667
) 0.29167 —4.29167 0.29167 3.70833
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Not only are the sums for blocks and treatments still zero as they should be
but also the sum of squares of these adjusted error terms is 55.833, exactly the
same as in the analysis of covariance.

Adjusting More than One Source of Variation

Regardless of the design of the experiment or the number of factors being studied,
the general pattern of the analysis of covariance table (Table 18.4) can be
followed. The important point to remember is that for each source of variation to
be adjusted, the sums of squares and cross-products for that source must be added
to the corresponding error sums of squares and cross-products. The resulting
“source +error” line is used to calculate a sum of squares of Y adjusted for X, and
from this we subtract the adjusted error sum of squares to find the adjusted sum of
squares for the source of variation being studied. We illustrate this procedure by
partitioning the treatment sum of squares in our example into four sources of
variation or components, each with a single degree of freedom:

Component Coefficients PeTh — BUeT)y ~ Zef
1 Gl V=gl =k —20 —80 20

11 0 Blvelns el el 12 —48 12

111 0 0 e E | 0 —24 6

v 0 0 0 Lagi=d —16 -8 2

The sums of squares for each component 1s obtained by the usual formula:
[Z(¢,T)P/r(Zc?). The sum of cross-products requires a slight modification of this
formula: SXY=3(c,T)x2(c;T)y/r(Zc?). The analysis of covariance of the parti-
tioned treatment effects is given in Table 18.6.

There is a very important feature of this table to notice. The unadjusted sums
of squares and cross-products are additive. That is, the sums of the four compo-
nents equal the total treatment sums of squares and cross-products. On the other
hand, the adjusted sums of squares are not additive. The sum for the four
components is 141.026 compared to the value of 145.932 for the total adjusted
treatment sum of squares. This means that we cannot find an adjusted component
sum of squares by subtracting all the remaining components from the total
adjusted treatment sum of squares.

Adjusting the Treatment Means

It is often desirable to estimate what the treatment means of the dependent
variable would be if the means of the independent variable were the same for all
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TABLE 18.6.
Analysis of covariance of partitioned treatment effects

Sums of Squares

Source of and Products Y Adjusted for X
Variation df SSX SXY SSY df SS MS F
Total 19 186 142 334
Blocks 3 50 50 70
Treatments 4 40 24 160
Comp. I 1 5 20 80
Comp. I 1 3 -12 48
Comp. III 1 0 0 24
Comp. IV 1 32 16 8
Error 12 96 68 104 11 55833 5.076
CI + Error 13 101 88 184 12 107.327
CI Adj. 1 51494 51494 10.14**
Cll+Error 13 99 56 152 12 120.323
CII Adj. 1 64490 64490 12.70**
CllI+Error 13 96 68 128 12 79.83
CIII Adj. 1 24000 24000 4.73NS
CIV+Error 13 128 84 112 12 56875
CIV Adj. 1 1.042 1.042 0.2INS
Total for 4 components 141.026

treatments. These adjusted means are found from the equation:
§,=7,-b(X,~X)

where b=error SXY /error SSX. In our example, b=68/96=0.7083, and the
adjusted means are:

=

Y (X,—X) b(X;—X)
6 -1 —0.7083 6.7083
8 1 0.7083 7.2917
10 0 0.0000 10.0000
12 -2 —1.4166 13.4166
14 2 1.4166 12.5834
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One might expect that the adjusted treatment sum of squares could be found
directly from the adjusted treatment means. In fact, this is sometimes suggested as
an approximate method of covariance analysis when there is no significant
treatment effect on X, the independent variable. However, there is a fact seldom
explicitly stated in statistics texts: The sum of squares of adjusted treatment means
is always greater than the adjusted treatment sum of squares. The difference is

[ SSXE(SXYT) — SXYE(SXXT) |*
(SSXE)*(SXXT + SXXE)

In our example, this is

[96(24) —68(40) |*

- =(.1381
(96)"(40+96)
The sum of squares of adjusted treatments is
4(6.70832+ ... +12.5834%) — % =146.0694

(Note that since we are working with means, we multiply rather than divide by the
number of replicates before subtracting the correction term.) The adjusted treat-
ment sum of squares from the analysis of covariance was 145932, and the
difference between these two sums of squares is 0.1374, the same as calculated
from the formula except for rounding.

Since the treatment sum of squares obtained from adjusted treatment means
always overstimates the correct sum of squares, the resulting F values are likewise
too high. Therefore, if one uses the approximate method and finds F values that
are only slightly above the significance level, the exact procedure should be used.
On the other hand, if the F values found by the approximate method are not
significant, we can be sure that they will not be significant by the exact method.

Comparing Two Adjusted Treatment Means

Since the variance of adjusted treatment means is larger than the correct adjusted
treatment mean square, the usual LSD is not appropriate for comparing adjusted
treatment means. Technically a different standard error of difference must be
calculated for each pair of means. The formula is
o g
i R, & g (xp*—xq)
s3 =Adj. EMS -t SsxE

If the degrees of freedom for error are 20 or more, and if there is no significant
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treatment effect on X, an approximation that can be used for all pairs of means is:

2 . 28SXT
SmAd EMS | 2 4 52T __
e r " r(t—1)SSXE

Interpretation of Covariance Analysis

The error mean square is nearly always reduced considerably by covariance
analysis, and the adjusted treatment mean square is usually reduced also. For this
reason, the F value for treatments after adjustment may be greater or less than
before adjustment. The interpretation of the results depends on whether there was
a significant effect on X, the independent variable.

If there was no significant treatment effect on X, and the treatment effects on
Y were significant before but not after adjustment, this would indicate that the
apparent treatment effects on Y were exaggerated by chance variation in X and
should be interpreted with considerable caution.

If X was not significant, and the treatment effects on Y were significant after
but not before adjustment, it is likely that the true treatment effects were
obscured by variation in X.

If the treatment did have a significant effect on X, then the F value after
adjustment is usually less than before adjustment. If it is still significant, then we
can conclude that the treatments had a significant effect on Y over and above that
associated with the variation in X.

We have seen that the techniques of covariance analysis are considerably
more cumbersome than ordinary analysis of variance, and interpretation of results
is often difficult. Our best advice is to avoid random distribution of a known
independent variable if possible. This can be done by careful grouping of experi-
mental units into blocks, thereby making it possible to remove most of the
variability in X along with the block effects.

PLANNED GROUPING OF EXPERIMENTAL UNITS—DESIGN

We have devoted a considerable portion of this book to a discussion of experimen-
tal designs and their role in improving precision. There are many other designs we
have not discussed. In our experience, however, the designs presented here are
used in the great majority of agricultural experiments. The reader interested in
other designs should consult more advanced texts, such as that by Cochran and
Cox (1964).

SUMMARY

Precision is the ability of an experiment to detect a true treatment effect. It can be
improved by increased replication, treatment selection, improved technique to
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reduce the variability among units treated alike, increasing the size of experimen-
tal units (within limits), the use of covariance, and the employment of a more
efficient experimental design.
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pear, disregarding those that are higher than the

number being randomized and those that have appeared before in the series. If
you wish to randomize more than 10 numbers, pairs of columns or rows can be
combined to form two digit numbers and the same process followed as that

To randomize any set of 10 items or less, begin at a random point on the table and
described above.

follow either rows, columns or diagonals in either direction. Write down the

numbers in the order they ap

Random Numbers

TABLE A.1.
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TABLE A.2.

Distribution of t*
Probability of Obtaining a Value as
Degrees of Large or Larger

Freedom 0.400 0200  0.100 0.050 0.010 0.001

1 1376 3.078  6.314 12706  63.657
2 1.061 1.886  2.920 4.303 9925  31.598
3 0.978 1638 2353 3.182 5.841 12.941
4 0.941 1533  2.132 2.776 4.604 8.610
5 0.920 1476 2015 2.571 4.032 6.859
6 0.906 1.440 1.943 2.447 3.707 5.959
7 0.895 1.415 1.895 2.365 3.499 5.405
8 0.889 1.397 1.860 2.306 3.355 5.041
9 0.883 1.383 1.833 2.262 3.250 4.781
10 0.879 1.372 1.812 2.228 3.169 4.587
11 0.876 1.363 1.796 2.201 3.106 4.437
12 0.873 1.356 1.782 2.179 3.055 4.318
13 0.870 1.350 1771 2.160 3.012 4.221
14 0.868 1.345 1.761 2.145 2.977 4.140
15 0.866 1.341 1.753 2.131 2.947 4.073
16 0.865 1.337 1.746 2.120 2.921 4.015
17 0.863 1.333 1.740 2.110 2.898 3.965
18 0.862 1.330 1.734 2.101 2.878 3.922
19 0.861 1.328 1.729 2.093 2.861 3.883
20 0.860 1.325 1.725 2.086 2.845 3.850
21 0.859 1.323 1.721 2.080 2.831 3.819
22 0.858 1.321 1.717 2.074 2.819 3.792
23 0.858 1.319 1.714 2.069 2.807 3.767
24 0.857 1.318 1.711 2.064 2.797 3.745
25 0.856 1.316 1.708 2.060 2.787 3.725
26 0.856 1.315 1.706 2.056 2.779 3.707
27 0.855 1.314 1.703 2.052 2,771 3.690
28 0.855 1.313 1.701 2.048 2.763 3.674
29 0.854 1.311 1.699 2.045 2.756 3.659
30 0.854 1.310 1.697 2.042 2.750 3.646

3)
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TABLE A.2,

Continued.
Probability of Obtaining a Value as
Degrees of Large or Larger
Freedom 0.400 0.200 0.100 0.050 0.010 0.001
35 0.852 1.306 1.690 2.030 2.724 3.591
40 0.851 1.303 1.684 2.021 2.704 3.551
45 0.850 1.301 1.680 2,014 2.690 3.520
50 0.849 1.299 1.676 2.008 2.678 3.496
55 0.849 1.297 1.673 2.004 2.669 3.476
60 0.848 1.296 1.671 2.000 2.660 3.460
70 0.847 1.294 1.667 1.994 2.648 3.435
80 0.847 1.293 1.665 1.989 2.638 3.416
90 0.846 1.291 1.662 1.986 2.631 3.402
100 0.846 1.290 1.661 1.982 2.625 3.390
120 0.845 1.289 1.658 1.980 2.617 3.373
0 0.8416 1.2816 1.6448 1.9600 2.5758 3.2905
1 08 /, 9155

“Parts of this table are taken from Table III of Fisher and Yates: Statistical Tables for
Biological, Agricultural, and Medical Research, published by Longman Group Ltd., London
(previously published by Oliver & Boyd, Edinburgh), by permission of the authors and
publishers. Other parts were calculited following Chen and Makowsky (see footnote to

Table A.3).

-

;"' {'1
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TABLE A.3.
10%, 5% and 1% points for the F distribution.*

DF Degrees of Freedom for Numerator (Greater Mean Square)
For P
Denom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 .10 [39.86 49.50 53.59 55.83 57.24 5820 5891 5944 5986 60.19 6047 60.71 6090 61.07 6122 6135 6146 6157 61.66 6174
05| 161 200 216 225 230 234 237 239 241 242 243 244 245 245 246 246 247 247 248 248
014052 4999 5403 5625 5764 5859 5928 5981 6,022 6,056 6,083 6,106 6126 6,143 6,157 6,170 6,181 6,191 6,201 6,209

2 10| 853 900 916 924 929 933 935 937 938 939 940 941 941 942 942 943 943 944 94 944
05| 1851 19.00 19.16 1925 1930 1933 1935 19.37 19.38 1940 1940 1941 1942 1942 1943 1943 1944 1944 1944 1945
019850 99.00 99.17 99.25 9930 99.33 9936 99.37 99.39 99.40 9941 9942 9942 9943 9943 9944 9944 9944 9945 9945

3 10| 554 546 539 534 531 528 527 525 524 523 522 522 521 520 520 52 519 519 519 518
05(1013 955 928 912 901 894 889 885 881 879 876 874 873 871 870 869 868 B67 867 866
01 3412 3082 2946 28.71 2824 2791 27.67 2749 2735 2723 27.13 27.05 2698 2692 26.87 2683 2679 26.75 2672 26.69

4 10| 454 432 419 411 405 401 398 395 394 392 391 39 389 38 387 38 38 38 38 384
05| 771 694 659 639 626 616 609 604 600 59 594 591 589 587 58 584 58 58 581 580
012120 18.00 1669 1598 1552 1521 1498 1480 1466 1455 1445 1437 1431 1425 1420 1415 1411 1408 1405 14.02

5 10| 406 378 362 352 345 340 337 334 332 330 328 327 326 325 324 323 322 322 321 321
05| 661 579 541 519 505 495 488 482 477 474 470 468 466 464 462 460 459 458 457 456
011626 1327 1206 1139 1097 1067 1046 1029 10.16 1005 996 989 982 977 972 968 964 961 958 955

6 .10| 378 346 329 3.18 311 305 301 298 296 294 292 290 289 28 287 28 28 28 284 284
05 599 514 476 453 439 428 421 415 410 406 403 400 398 396 394 392 391 390 38 387
011375 1092 978 915 875 847 826 810 798 787 779 772 766 760 756 752 748 745 742 740

“The points of this table were calculated from Hubert J. Chen and A. B. Makowsky, “On Approximations to the F-Distribution and Its Inverse,” Report
76-3, Memphis State University, Department of Mathematical Sciences (1976).



TABLE A.3.

Continued.
DF Degrees of Freedom for Numerator (Greater Mean Square)
For P
Denom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7 10| 359 326 307 29 288 283 278 275 272 270 268 267 265 264 263 262 261 261 260 259
05| 559 474 435 412 397 387 379 373 368 364 360 357 355 353 351 349 348 347 346 344
01 1225 955 845 78 746 719 699 684 672 662 654 647 641 636 631 628 624 921 618 6.16

8 .10 | 346 3.1 292 281 273 267 262 259 256 254 252 250 249 248 246 245 245 244 243 242
05| 532 446 407 384 369 358 350 344 339 335 331 328 326 324 322 32 319 317 316 315
01 1126 865 759 701 663 637 618 603 591 581 573 567 561 55 552 548 544 541 538 536

9 .10 336 301 281 269 261 255 251 247 244 242 240 238 236 235 234 233 232 231 230 230
05| 512 426 38 363 348 337 329 323 318 314 310 307 305 303 301 299 297 296 295 2.9
01 (1056 802 699 642 606 580 561 547 535 526 518 511 505 501 496 492 489 486 483 481

10 10| 329 292 273 261 252 246 241 238 235 232 230 228 227 220 224 223 22 22 221 220
05| 496 410 371 348 333 322 314 307 302 298 294 291 289 28 28 283 281 28 279 277
01 (1004 756 655 599 564 539 520 508 494 485 477 471 465 460 456 452 449 446 443 441

11 10| 323 28 266 254 245 239 234 230 227 225 223 221 219 218 217 216 215 214 213 212
05 484 398 359 336 320 309 301 295 290 28 28 279 276 274 272 270 269 267 266 265
01 965 721 622 567 532 507 489 474 463 454 446 440 434 429 425 421 418 415 412 410

12 10| 318 281 261 248 239 233 228 224 221 219 217 215 213 212 210 209 208 208 207 206
05| 475 389 349 326 311 300 291 28 28 275 272 269 266 264 262 260 258 257 256 254
01| 933 693 595 541 508 482 464 450 439 430 422 416 410 405 401 397 394 391 388 386




13

14

15

16

17

18

19

10

01

.10

01

.10

01

J0

.01

10

01

10

01

10

01

10

10

3.14
4.67
9.07

3.10
4.60
8.86

3.07
4.54
8.68

3.05
4.49

3.03
4.45

3.01
441

299
438
8.18

297
435
8.10

2.76
3.81
6.70

2.73
3.74
6.51

2.70

6.36

2.67
3.63

2.64

6.11

2.62
3.55
6.01

2.61
3.52
5.93

2.59
3.49
5.85

2.56
341
5.74

2.52
3.34
5.56

2.49
3.29
5.42

2.46

529

2.4
320
5.18

2.42
3.16
5.09

2.40
3.13
5.01

238
3.10
494

2.43
3.18
5.21

239
3.11
5.04

2.36
3.08
4.89

2.33
3.01
4.7

231
2.96
4.67

2.29
2.93
4.58

2.27
2.90
4.50

225
2.87
4.43

2.35
3.03
4.86

231
2.96
4.69

290
4.56

2.24

444

222
281
4.34

2.1
4.25

2.18
2.74
4.17

2.16
271
4.10

2.28
2.92
4.62

224
2.85
446

221
279
4.32

2.18
274
4.20

2.15
2.70
4.10

2.13
2.66
4.01

2.11
2.63
394

2.09
2.60
3.87

223
2.83
4.44

219
2.76
4.28

2.16
2.71
4.14

2.13
2.66
4.03

2.10
2.61
3.93

2.08
2.58
3.84

2.06
2.54
3.77

2.04
2,51
3.70

2.20
2.1
4.30

2.15
2.70
4.14

2.12

4.00

209
259
3.89

2.06
2.55
3.7

2.4
2.51
a7

2.02
2.48
3.63

2.00

3.56

3.37

2.12
4.02

2.07
2.57

2.04
2.51

2.01
2.46
3.62

1.98
2.41
3.52

1.95
237
343

1.93
3.36
191

2.31
3.29

3.37

1.91
2.31
3.30

1.89
2.28

2.08

3.91

2.04
2.51

2.00
245
3.61

1.97
2.40
3.50
1.94

235
3.40

1.92
2.31
3.32
1.89
3.24
1.87

3.18

3.19

1.86

3.13

3.15
1.84

3.09

2.04
2,51
3.78

2.00
2.44

1.96
238

1.93
2.33
3.37
1.90

3.27

1.87

3.19

1.85
2.21
3.12

1.83
2.18
3.05

1.92

3.34

1.89
2.27
3.24

1.86
2.23
3.16

1.84
3.08
1.82

2.17
3.02

1.91
2.30
3.31

1.88
2.26
3.21

1.85
2.22
3.13

1.83

2.18
3.05

1.81

2.99

201
247
3.69

1.97
240
3.53

1.93
2.34
340

1.90
229
3.28

1.87
2.24
3.19

1.84
2.20
3.10

1.82
217
3.08

1.80
2.14
2.96

2.01
2.46
3.66

1.96
3.51
1.92

3.37

1.89

3.26

1.86
3.16

1.84
2.19
3.08

1.81
2.16
3.00

179
2.12
2.94




TABLE A.3.

Continued.
DF Degrees of Freedom for Numerator (Greater Mean Square)
For P
Denom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 .10 296 257 236 223 214 208 202 198 195 192 19 187 18 184 1.8 181 18 179 178 178
05| 432 347 3.07 284 268 257 249 242 237 232 228 225 222 220 218 216 214 212 211 210
.01 | 802 578 487 437 404 381 364 351 340 331 324 317 312 3.07 308 29 296 293 290 288

22 .10 [ 295 256 235 222 213 206 201 197 193 19 188 186 184 18 181 18 179 178 177 176
05| 430 344 305 282 266 255 246 240 234 230 226 223 220 217 215 213 211 210 208 207
01| 795 592 482 431 399 376 359 345 335 326 318 312 307 302 298 294 291 28 28 283

23 .10 | 294 255 234 221 211 205 199 195 192 189 187 184 183 181 180 178 177 176 175 174
05| 428 342 3.03 280 264 253 244 237 232 227 224 220 218 215 213 211 209 208 206 205
01| 788 566 476 426 394 371 354 341 330 321 314 307 302 297 293 289 28 28 28 278

24 10| 293 254 233 219 210 204 198 194 191 188 18 183 181 18 178 177 176 175 174 173
05| 426 340 301 278 262 251 242 236 230 225 22 218 215 213 211 209 207 205 204 203
01| 782 561 472 422 39 367 350 336 32 317 309 3.03 298 293 289 28 282 27T 276 274

25 10| 292 253 232 218 209 202 197 193 189 187 184 18 18 179 177 17 17 174 173 172
05]| 424 339 299 276 260 249 240 234 228 224 220 216 214 211 209 207 205 204 202 201
01| 777 557 468 418 385 363 346 332 322 313 306 299 294 289 28 281 278 275 272 270

26 10| 291 252 231 217 208 201 19 192 188 18 18 181 17 L1L77 17 17 173 172 L71 171
05| 423 337 298 274 259 247 239 232 227 222 218 215 212 209 207 205 203 202 200 199
01] 772 553 464 414 382 359 342 329 318 3090 302 29 29 28 281 27 27 272 269 266




27

.10

01

10

0

10

01

J0

01

10

01

10

01

10

.01

.10

.01

2.90
4.21
7.68

2.89
4.20
7.64

2.89
4.18
7.60

2.88
4.17
7.56

287
4.15
7.50

2.86
4.13
T.44

2.85
411
7.40

2.84
4.10
7.35

2.51
3.35
5.49

2.30
2.96
4.60

295
4.57

2.28
2.93
4.54

228
2.92
4.51

2.26
2.90
4.46

225

4.42

2.24
2.87
4.38

2.23
2.85
4.34

217
2.73
4.11

2.16
2.71
4.07

2.15

2.11

2.10
2.62
3.86

2.07
2.57
3.78

2.06
2.56
3.75

2.06

3.73

2.05

3.70

2.04
2.51

2.02
249
3.61

2.01
2.48
3.57

2.01
246
3.54

2.00
2.46
3.56

2.00

3.53

199

3.50

1.98
242
3.47

197
2.40

1.96
2.38
3.39

1.94
2.36
3.35

1.94
2.35
3.32

1.95
2.37
3.39

1.94
2.36
3.36

1.93
2.35
333

1.93

3.30

191
2.31
3.26

1.90
2.29
3.22

1.89
228
3.18

188
2.26
3.15

1.91
2.31
3.26

1.90

3.23

1.89
2.28

1.88

3.17

1.87

3.13

1.86
2.23
3.09

1.85
221
3.05

1.84
2.19
3.02

1.87

3.15

1.87
2.24
3.12

1.86
2.22
3.09

1.85
2.21

183
2.19
3.02

1.82
2.17
2.98

181
2.15
2.95

1.80
2.14
2.92

1.85

3.06

1.84
2.19
3.03

1.83
218
3.00

1.82
2.16

1.81
2.14
2.93

179
2.12
2.89

1.78
2.11
2.86

1.77

2.83

1.82
2.17
2.99

1.81
2.15
2.96

1.80
2.14
2.93

179

291

178
2.10
2.86

177
2.08
2.82

1.76
207
2.719

1.75
2.05
2.75

1.80
2,13
2.93

1.79
212
2.90

1.78
2,10
2.87

177
2.09

1.76
2.07
2.80

175
2.05
2.76

173
2.03
2.72

1.72

2.69

L78
2.10
2.87

LT

2.84

1.76
2.08
2.81

175
2.06

1.74
2.04
2.74

173
2.02
2.70

171

2.67

1.70

2.64

1.76
2.08
2.82

L.75

2.7

L.75
2.05
2.7

1.74
2.04
2.74

172
2.01
2.70

171
1.99
2.66
1.70
2.62
1.69

2.59

L75
2.06
2.78

1.74
2.04
2.75

1.73
2.03
2.73

1.72
2.01
2.70

1.71
1.99
2.65

L.69
1.97
2.61

1.68
1.95
2.58

1.67

255

1.74
204
2.75

173

2.72

1.72
2.01
2.69

1.71
1.99
2.66

1.69
1.97
2.62

1.68
1.95
2.58

1.67
193
254

1.66
1.92
251

1.72
2.71

171
2.00
2.68

L.71
1.99
2.66

1.70
1.98
2.63

1.68
1.95
2.58

1.67
1.93
2.54

1.66
1.92
2.51

1.65
1.90
2.48

171

2.68

1.70
1.99
2.65

1.69

2.63

1.69

2.60

L.67
194

1.66
1.92
2.51

1.65
1.90
2.48

1.63
1.88
2.45

1L.70

2.66

1.69

263

1.68

2.60

1.68
1.95
2.57

1.66
1.92

1.65
1.90
2.49

1.64
1.88
2.45

1.62
1.87
242

L70

2.63

1.69

2.60

1.68

2.57

1.67
183
2.55

1.65
191

1.64
1.89
2.46

1.63
1.87
243

1.61
185
240




TABLE A.3.

Continued.
DF Degrees of Freedom for Numerator (Greater Mean Square)
For P
Denom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40 10| 284 244 223 209 200 193 187 18 17T 1.7 174 171 170 168 166 16 164 162 161 1861
05| 408 323 284 261 245 234 225 218 212 208 204 200 197 195 192 19 189 187 18 184
01 731 518 431 383 351 329 312 299 289 280 273 266 261 256 252 248 245 242 239 237

01| 728 515 429 380 349 327 310 297 28 278 270 264 259 254 250 246 243 240 237 234

4 10| 282 243 221 208 198 191 18 181 178 17 172 170 168 166 165 163 162 161 160 159
05| 406 321 282 258 243 231 223 216 210 205 201 198 195 192 190 18 18 184 18 181
01 725 512 426 3.78 347 324 308 295 284 275 268 262 256 252 247 244 240 237 235 232

46 .10 | 282 242 221 207 198 191 18 181 L77 174 171 169 167 165 164 163 161 160 159 158
05| 405 320 281 257 242 230 222 215 209 204 200 197 194 191 189 187 18 183 182 180
01] 722 510 424 376 344 322 306 293 282 273 266 260 254 250 245 242 238 235 233 230

48 10| 281 242 220 207 197 19 18 18 L77 173 171 169 167 165 163 162 161 159 158 157
05| 404 319 280 257 241 229 221 214 208 203 199 19 19 19 188 18 184 18 181 179
01| 719 508 422 374 343 320 304 291 280 271 264 258 253 248 244 240 237 233 231 228

50 .10| 281 241 220 206 197 19 184 18 176 173 170 168 166 164 163 161 160 159 158 157
05| 403 318 279 256 240 229 220 213 207 203 199 195 192 189 187 185 18 181 180 178
01| 717 508 420 372 341 319 302 289 278 270 263 256 251 246 242 238 235 232 229 227




70

100

120

150

10

01

10

01

10

01

01

J0

01

10

01

J0

01

10

.01

2.80
4.02
712

2.79
4.00
7.08

2.78
3.99
7.04

2.78
3.98
7.01

2.7
3.96
6.96

2.76
3.94
6.90

2.75
3.92
6.85

2.74
3.90
6.81

240
3.16
5.01

2.39
3.15
4.98

2.39
3.14
4.95

2.38
3.13
492

2.37
3.11
4.88

2.36
3.09
4.82

235
3.07
4.7

2.34

4.75

2.19
277
4.16

2.18
2.76
413

217

4.10

2.16
2.74
4.07

2.15
2.72
4.04

2.14
2.70
3.98

2.13
2.68
3.95

212

3.91

2.05
2.54
3.68

2.04
2.53

2.03
2.51

2.03
250
3.60

2.02
2.49
3.56

2.00
2.46
3.51

1.95

3.37

195
237
3.34

1.94
236
3.31

1.93

235

1.92

3.26

1.91
231
3.21

1.90
3.17
1.89

2.27
3.14

1.88

3.15

1.87
2.25
3.12

1.87
2.24
3.09

1.86
3.07
1.85
221
3.04
1.83
2.19

1.82
2.18

1.81
2.16

1.83
2.18

1.82
217
295

1.81
2.15
293

1.80
2.14
291

L.79
213
2.87

1.78
2.10

177
2.09

176
2.07
2.76

L78
211
2.85

177
2,10
2.82

177
2.08
2.80

176
2.07
2.78

L7
2.06
2.74

17
2.00
263

175
2.06
2.75

1.74
2.04
2.72

1.73
2.03
2.69

1.72
2.02
2.67

1.71
2.00
2.64

1.69
1.97

1.68
1.96
2.56

1.67
1.94
253

172
2.01
2.66

171
1.99
2.63

1.70
1.98
2,61

169
197
2.59

1.68

2.55

166
1.93

1.65
191
247

1.64
1.89
244

1.69
197
2.59

1.68
1.95
2.56

1.67
1.94
253

1.66
1.93
2.51

1.65
1.91
248

1.64
1.89
2.43

1.63
1.87
240

1.61
1.85
237

1.67
1.93
253

1.66
1.92
2.50

1.65
1.90
247

1.64
1.89
2.45

1.63

242

161
185
2.37

1.60
1.83
234

1.59
1.82
231

1.65
1.90
247

1.57
179
2.25

1.63
1.88
2.42

1.62
1.86
2.39

1.61
1.85
237

1.60
1.84
2.35

1.59

231

1.57
179
2.27

1.56
1.78
223

1.55
176
2.20

1.61
1.85
2.38

1.60
1.84
235

1.59
1.82
233

1.59
181
2.31

1.57
L.79
227

156
L77

1.55
L75
2.19

1.53
173
2.16

1.60
1.83
234

1.59
1.82
231

1.58
1.80
2.29

1.57
179
2.27

1.56
L77
223

1.54
175
2.19

153
173
2.15

1.52
1.71

1.59
1.81
2.31

1.58
1.80
228

1.57
178

1.56
L7
223

1.55
L75
2.20

1.53
1.73
2.15

1.52
171

1.50
1.69

1.58
.79

1.56
1.78

1.55
1.76

1.55
175
2.20

1.53
173
2.17

1.52
L.71
212
1.50
1.69

1.49

2.06

1.56
1.78
225

1.55
1.76
2.22

1.54
L.75
2.20

1.54
1.74
2.18

1.52
2.14

150
7.69
2.09

1.49
167
2.06

1.48
1.66
2.03

1.55
1.76
223

1.54
1.75
220

1.53
1.73
217

1.53
L.72
2.15

1.51
1.70
212

1.49
1.68
2.07

1.48
1.66
2.03

1.47
1.64
2.00




TABLE A.3.

Continued.
DF Degrees of Freedom for Numerator (Greater Mean Square)
For P
Denom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
200 10| 273 233 211 197 188 18 175 170 166 163 160 158 156 154 152 151 149 148 147 146
05| 389 301 265 242 226 214 206 198 193 188 184 180 177 174 172 169 167 166 164 162
01| 676 471 388 341 311 289 273 260 250 241 234 227 222 217 213 209 206 203 200 197
400 10| 272 232 210 19 18 179 173 169 165 161 159 156 154 152 150 149 147 146 145 144
05| 386 302 263 239 224 212 203 19 19 18 181 178 174 172 169 167 165 163 161 160
01| 670 466 383 337 306 28 268 256 245 237 229 223 217 213 208 205 201 198 19 192
1000 10| 271 231 209 195 18 178 172 168 164 161 158 15 15 151 149 148 146 145 144 143
05| 38 300 261 238 222 211 202 19 189 184 18 176 173 170 168 165 163 161 160 158
0l| 666 463 380 334 304 282 266 253 243 234 227 220 215 210 206 202 198 19 192 19
cc 10| 271 230 208 194 18 177 172 167 163 160 157 155 152 150 149 147 145 144 143 142
05, 384 300 260 237 221 210 201 19 188 18 17 175 172 169 167 164 162 160 158 157
01| 663 461 378 332 302 280 264 251 241 232 225 218 213 208 204 199 19 193 190 188




TABLE A4.

Significant studentized factors (R) to multiply by LSD for testing means at various ranges (p), 5% level; n=degrees of freedom for

€« 3
€error.

n 2 3 4 5 6 7 8 9 10 12 14 16 18 2 50 100
4 100 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
5 100 103 104 105 105 105 105 105 105 105 105 105 105 105 105 105
6 100 103 105 106 106 106 106 106 106 106 106 106 106 106 106 106
7 100 104 106 107 107 108 108 108 108 108 108 108 108 108 108 108
8 100 104 106 108 109 109 109 109 109 109 109 109 109 109 109 109
9 100 104 107 108 109 110 110 L0 L0 110 110 110 110 L0 L0 LIO
10 100 105 107 109 L0 110 110 110 1LI0 110 110 110 110 L0 110 110
11 1.00 1.05 1.08 1.09 110 111 111 1.11 1.11 111 1.11 1.11 112 1.12 1.12 112
12 100 105 108 109 110 L1 1l2 112 1J2 112 1Li2 L2 L3 113 113 113
13 100 105 108 109 110 L1 1l2 112 113 113 113 113 1LI3 113 113 113
14 100 105 108 110 111 112 113 113 L4 1Ll4 1Ll4 114 115 115 115 LIS
15 1.00 1.05 1.08 1.10 1.12 1.12 1.13 1.14 1.14 1.14 1.15 1.15 L15 115 1.15 115
16 100 105 108 110 112 112 113 114 1Ll4 115 115 116 116 116 116 116
17 100 105 108 110 112 1L13 113 114 115 115 116 116 116 116 116 116
18 100 105 108 110 112 113 113 L4 1LI5 115 L6 116 117 LI7 11T 117
19 1.00 1.05 1.08 1.10 1.12 1.13 1.14 1.15 1.15 1.16 1.16 1.17 117 117 117 117
20 100 105 108 110 112 1L13 L4 115 115 116 117 117 117 L8 LI18 118
22 1.00 1.05 1.08 1.10 1.12 1.13 1.14 1L.15 1.16 1.17 1.18 1.18 1.18 1.18 1.18 1.18
24 100 105 108 110 112 113 1Ll4 115 L6 117 118 118 118 L9 119 LI9
26 100 105 108 110 L2 L3 115 115 116 117 118 119 119 119 119 119
28 1.00 1.05 1.08 1.10 112 1.14 115 1.16 1.16 1.17 1L.18 1.19 1.19 1.20 1.20 1.20
30 100 105 108 111 L2 L4 115 116 117 118 119 119 120 120 120 120
40 100 105 108 111 113 L4 115 116 117 119 120 120 121 121 121 121
60 1.00 1.05 1.09 1.11 1.13 1.14 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.23 1.23
100 100 105 109 111 114 1L15 116 118 119 12 121 122 123 124 126 126
0o 100 105 109 112 114 115 LI7 118 119 121 122 123 124 125 130 132




TABLE A.5.

Significant studentized factors (R) to multiply by LSD for testing means at various ranges (p), 1% level; n=degrees of freedom for

error.

n 2 3 4 5 6 7 8 9 10 12 14 16 18 20 50 100
3 1.00 1.03 1.04 L05 L07 1.08 1.08 109 1.09 L09 1.10 1.11 1.13 1.13 L13 L13
4 1.00 1.04 1.06 1.08 L09 L09 1.11 111 1.12 L12 1.14 1.14 L.15 115 L15 L15
5 100 105 1.07 1.08 L10 111 1.12 L13 L14 116 1.16 118 118 L19 L19 L19
6 100 L05 L08 1.09 L1l 1.12 1.14 115 L15 1.16 1.18 118 1.20 1.20 1.20 1.20
7 1.00 105 108 1.10 LI12 L13 115 116 117 1.17 1.19 1.19 1.21 1.21 1.21 1.21
8 1.00 1.05 108 L.10 L12 1.14 L.15 L16 L17 118 1.20 1.20 122 1.22 1.22 1.23
9 1.00 1.06 1.08 1.10 L12 114 116 117 117 1.20 1.20 122 1.24 1.24 1.24 1.24
10 1.00 108 109 111 L13 115 1.16 117 118 1.20 121 122 124 1.24 1.24 1.24
11 1.00 1.05 109 111 L13 1.14 1.15 117 117 L19 1.20 122 123 123 1.23 1.23
12 1.00 1.05 108 1.10 Li2 L14 L15 L16 L17 1.19 1.20 121 121 1.22 1.22 1.22
13 L.00 105 108 L10 L12 114 115 118 117 1.18 119 1.20 121 1.21 1.21 1.21
14 1.00 L05 108 L10 L12 L14 1.15 L16 117 118 L19 1.20 1.20 1.20 1.20 1.20
15 L00 LO5 1.08 1.10 L11 L13 114 115 L16 1.18 118 119 1.20 1.20 1.20 1.20
16 1.00 105 108 L10 L11 113 114 L15 116 1.17 118 119 L19 1.20 1.20 1.20
17 1.00 105 1.08 1.10 L11 L13 114 L15 116 1.17 1.18 L19 L19 L19 L.19 1.19
18 L00 1.05 108 L.10 1.11 1.13 L14 L15 L16 1.17 118 118 119 119 119 119
19 1.00 1.05 L07 108 L11 113 1.14 115 118 117 1.18 1.18 L19 119 1.19 1.19
20 100 1.05 107 1.09 L11 113 1.14 115 1.15 L17 1.18 1.18 119 1.19 119 1.19
22 L00 105 107 L09 111 L2 114 L15 L15 L17 1.17 118 1.19 119 L19 119
24 1.00 105 107 L09 1.11 112 113 L15 1.15 117 1.17 118 L19 119 1.20 1.20
26 1.00 105 L07 109 L11 L12 1.13 1.15 1.15 117 1.18 1.18 1.19 119 1.20 1.20
28 LO0 104 1.07 109 111 L12 1.13 1.14 L15 117 1.18 1.18 1.19 1.19 1.21 121
30 1.00 1.04 107 L09 111 LI2 L.13 114 1.15 1.17 1.18 119 L19 1.20 1.21 1.21
40 1.00 1.04 1.07 109 i | L12 1.14 1.14 1.15 117 1.18 1.19 120 1.20 1.23 1.23
60 100 1.04 Lo7 L09 1.11 112 1.14 115 1.15 117 118 119 1.20 1.20 1.24 1.24
100 1.00 104 107 L0S 111 112 1.14 115 L.15 117 1.18 1.19 1.20 121 1.25 1.25
0 100 1.04 107 109 111 LI12 1.14 L15 115 117 1.18 1.19 120 121 1.26 1.29




TABLE A.6.

Distribution of x* (Chi-Square)?
Degrees Probability of Obtaining a Value as Large or Larger
of
Freedom | .99 95 90 50 10 05 01 001

1 0002 .00393 .0158 455 2706 3.841 6.635 10.827
2 0201 .103 211 1386 4605 5991 9210 13815
3 15 352 584 2.366 6251 7.815 11.345 16.268
4 297 11 1.064 3357 7.779 9488 13.277 18.465
5 554 1145 1.610 4351 9.236 11070 15.086 20.517

6 872  1.635 2.204 5348 10645 12592 16812 22457
7 1239 2167 2.833 6.346 12017 14.067 18475 24322
8 1.646 2.733 3.490 7.344 13362 15507 20.090 26.125
9 2.088 3325  4.168 8343 14684 16919 21.666 27.877
0 2.558 3.940  4.865 9.342 15.987 18.307 23.209 29.588

11 3.053 4575 5578 10341 17275 19.675 24.725 31.264
12 3.571 5.226 6.304 11340 18549 21.026 26.217 32.909
13 4.107 5.892 7.042 12340 19.812 22362 27.688 34.528
14 4660 6.571 7790 13339 21.064 23.685 29.141 36.123
15 5229 7.261 8.547 14339 22307 24996 30.578 37.697

16 5812  7.962 9312 15338 23.542 26.296 32.000 29.252
17 6.408 8.672 10.085 16.338 24.769 27.587 33.409 40.790
18 7015 9390 10.865 17.338 25.989 28.869 34.805 42.312
19 7.633 10.117 11.651 18.338 27.204 30.144 36.191 43.820
20 8.260 10.851 12.443 19.337 28412 31410 37.566 45.315

21 8.897 11.591 13.240 20.337 29.615 32671 38.932 46.797
22 9542 12338 14.041 21.337 30.813 33.924 40.289 48.268
23 10,196 13.091 14.848 22.337 32.007 35.172 41.638 49.728
24 10.856 13.848 15.659 23.337 33.196 36415 42980 51.179
25 11.524 14.611 16473 24337 34.382 37652 44.314 52.620

26 12.198 15379 17.292 25.336 35.563 38.885 45.642 54.052
27 12.879 16.151 18.114 26.336 36.741 40.113 46.963 55.476
28 13.565 16928 18.939 27.336 37.916 41.337 48278 56.893
29 14.256 17.708 19.768 28336 39.087 42.557 49.588 58.302
30 14.953 18.493 20.599 29.336 40.256 43.773 50.892 59.703

*Table A.6 is abridged from Table IV of Fisher and Yates: Statistical Tables for Biologi
Agricultural and Medical Research, Euhllshed Longman Group Ltd., London (previously
published by Oliver and Boyd, Edinburgh), by permission of the authors and publishers.



TABLE A.7.
Values of the correlation coefficient, r, for certain levels of significance.*

Degrees Probability of Obtaining a Value
of as Large or Larger
Freedom | 05 01 001

1 9879 9969 9999 1.0000

2 9000 9500 9900 9990

3 8054 8783 9587 9912

4 7293 8114 9172 9741
5 6694 7545 8745 9507
6 6215 7067 8343 9249

7 5822 .6664 1977 .8982

8 5494 6319 7646 8721
9 5214 .6021 7348 8471
10 4973 .5760 7079 .8233
11 4762 5529 .6835 8010
12 4575 D324 6614 7800
13 4409 5139 6411 7603
14 4259 4973 .6226 7420
15 4124 4821 .6055 7246
16 4000 .4683 .5897 .7084
17 3887 4555 5751 .6932
18 3783 4438 .5614 6787
19 3687 4329 5487 .6652
20 3598 4227 5368 6524
25 3233 .3809 4869 5974
30 2960 3494 4487 5541
35 2746 3246 4182 5189
40 2573 3044 3932 4896
45 2428 2875 3721 4648
50 2306 2732 3541 4433
60 2108 2500 3248 4078
70 1954 2319 3017 3799
80 1829 2172 2830 3568
90 1726 .2050 2673 3375
100 1638 1946 2540 3211

“Table A.7 is abridged from Table VI of Fisher and Yates: Statistical Tables for Biological,
Agricultural, and Medical Research, published by Longman Group Ltd., London (previously
published by Oliver and Boyd, Edinburgh), by permission of the authors and publishers.



TABLE A 8.
The angular transformation of percentages to degrees®

% 0 1 2 3 4 5 6 T 8 9

0 57 81 100 115 129 142 153 164 175
184 194 203 21.1 220 228 236 244 251 258
266 273 280 287 293 300 30.7 313 319 326
332 338 344 351 357 363 369 375 381 386
392 398 404 410 416 421 427 433 439 444

450 456 461 46.7 473 479 484 490 496 50.2
508 514 519 525 531 53.7 543 549 556 56.2
568 574 581 587 593 600 607 613 620 627
634 642 649 656 664 672 680 689 69.7 706
716 725 736 747 758 711 785 80.0 819 843
90.0 — — — — - - — - -

888388 58850

o]

“Table A.8 is abridged from Table X of Fisher and Yates: Statistical Tables for Biological,
Agricultural, and Medical Research, published by Longman Group Ltd., London (previously
published by Oliver and Boyd, Edinburgh), by permission of the authors and publishers.
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TABLE A.9.

Logarithms,
Proportional Parts
Natural
Numbers | 0 1 2 3 4 5 6 7 8 9 |[1|2(3|4(5|6|7|8|9
10 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 (0374 | 4 | 8 (12 |17 (21 (25|29 |33 |37
11 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 0755 | 4| 8 |11 | 15|19 |23 | 26 | 30 | 34
12 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 | 3| 7 (10|14 (17 |21 | 24 | 28 | 31
13 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 | 3| 6 |10 |13 (16 |19 |23 | 26 [ 29
14 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 | 3| 6 | 9|12 (15|18 |21 | 24 | 27
15 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 {2014 | 3| 6 | 8 |11 |14 |17 |20 |22 (25
16 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 (2253 | 2279 ( 3| 5| 8|11 (13|16 (18 |21 (24
17 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 (2504 | 2529 [ 2| 5| 7 (10|12 |15 |17 [20 |22
18 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 (2765 | 2 ( 5| 7| 9|12 (14 (16| 19|21
19 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2023 | 2945 (2967 | 2989 ( 2| 4| 7| 9|11 |13 |16 |18 (20
20 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 (3181 {3201 [ 2| 4| 6| 8 (11|13 |15 |17 (19
21 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 (3385|3404 ( 2| 4| 6| 8 (10|12 |14 |16 (18
22 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 (3579 3598 [ 2| 4| 6| 8 (10|12 |14 |15 (17
23 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 (3766 3784 [ 2| 4| 6| 7| 9|11 |13 |15 (17
24 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945|3962 | 2| 4| 5| 7| 9(11|12 14|16
25 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 | 2| 3| 5| 7| 9(10|12| 14|15
26 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 (4281 | 4298 [ 2| 3| 5| 7| 8|10|11 |13 |15
27 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4400 | 4425 (4440 | 4456 [ 2| 3| 5| 6| 8| 9|11 |13 |14
28 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 (4594 (4609 | 2| 3| 5| 6| 8| 9|11 |12 |14
29 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 (4742 | 4757 | 1| 3| 4| 6| 7| 9|10|12|13
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TABLE A.9.

Continued.
Proportional Parts
Natural
Numbers | 0 1 2 3 4 5 6 7 8 9 112|2|4|5|6{7|8]|9
55 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 | 1| 2| 2| 3| 4|5|5(6 |7
56 7482 | 7490 | 7497 | 7505 | 7513 | 7520 | 7528 | 7536 | 7543 [7551 | 1| 2| 2| 3| 4|5|5(6 |7
57 7559 | 7566 | 7574 | 7582 | 7589 | 7597 7604 | 7612 | 7619 | 7627 | 1| 2| 2| 3| 4|5(5(6|7
58 7634 | 7642 | 7649 | 7657 | 7664 | 7672 [ 7979 | 7686 | 7694 | 7701 | 1| 1| 2| 3| 4|4 |5(6|7
59 T709 | 7716 | 7723 | 7731 | 7738 | 7745 [ 7752 | 7760 | 7767 |7774 | 1| 1| 2| 3| 4|4 (5|6 |7
60 7782 | 7789 | 7796 | 7803 | 7810 | 7818 [ 7825 | 7832 | 7839 |7846 | 1| 1| 2| 3| 4/4|5|6 |6
61 7853 | 7860 | 7868 | 7875 | 7882 | 7889 | 7896 | 7903 | 7910 (7917 | 1| 1| 2| 3| 4|4 (5|66
63 7924 | 7931 | 7938 | 7945 | 7952 | 7959 | 7966 | 7973 | 7980 | 7987 | 1| 1| 2| 3| 3 |4|5|6|6
63 7993 | 8000 | 8007 | 8014 | 8021 | 8028 [ 8035 (8041 |8048 (8055 | 1| 1| 2| 3| 3|4|5|5|6
64 8062 | 8069 | 8075 | 8082 | 8089 | 8096 | 8102 (8109 |8116 (8122 | 1| 1| 2| 3| 3|4|5|5|6
65 8129 | 8136 | 8142 | 8149 | 8156 | 8162 [ 8169 | 8176 | 8182 (8189 | 1| 1| 2| 3| 3|4|5|5|6
66 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 8254 | 1| 1| 2| 3| 3 |4(5(5|6
67 8261 | 8267 | 8274 | 8280 | 8287 | 8293 [ 8299 (8306 8312 (8319 1| 1| 2| 3| 3|4|5|5|6
68 8325 | 8331 | 8338 | 8344 | 8351 | 8357 | 8363 | 8370 (8376 (8382 | 1| 1| 2| 3| 3(4|4|5|6
69 8388 | 8395 | 8401 | 8407 | 8414 | 8420 | 8426 | 8432 | 8439 8445 | 1| 1| 2| 2| 3|4|4 (5|6
70 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 (8494 (8500 |8506 | 1| 1| 2| 2| 3|4(4(5|6
71 8513 | 8519 | 8525 | 8531 | 8537 | 8543 | 8549 (8555 (8561 |8567 | 1| 1| 2| 2| 3|4(4(5]|5
72 8573 | 8579 | 8585 | 8591 | 8597 | 8603 | 8609 | 8615 (8621 18627 | 1| 1| 2| 2| 3|4(4(5]5
73 8633 | 8639 | 8645 | 8651 | 8657 | 8663 | 8669 | 8675 | 8681 8686 | 1| 1| 2| 2| 3|4 |4|5|5
74 8692 | 8698 | 8704 | 8710 | 8716 | 8722 | 8727 |8733 (8739 |8745 | 1| 1| 2| 2| 3|4(4(5|5
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TABLE A.10.
Squares and square roots.

N N2 VN V10N N N2 VN VION

100  1.0000 1.00000 3.16228 | 1.30 16900 1.14018 3.60555
1.01  1.0201 1.00499 3.17805 | 1.31 1.7161 1.14455 3.61939
1.02  1.0404 1.00995 3.19374 | 1.32 1.7424 1.14891 3.63318
1.03 10609 1.01489 3.20936 | 133 1.7689 1.15326 3.64692
1.4 10816 1.01980 3.22490 | 134 1.7956 1.15758  3.66060

1.05 11025 1.02470 3.24037 | 1.35 1.8225 1.16190 3.67423
1.06 11236 1.02956 3.25576 | 136 1.8496 1.16619 3.68782
1.07 11449 1.03441 3.27109 | 1.37 1.8769 1.17047 3.70135
1.08 1.1664 1.03923 3.28634 | 1.38 19044 1.17473 3.71484
1.09 11881 1.04403 3.30151 | 1.39 19321 1.17898  3.72827

110  1.2100 1.04881 3.31662 | 140 19600 1.18322 3.74166
111 12321 105357 3.33167 | 141 19881 1.18743 3.75500
112 12544 105830 3.34664 | 142 20164 1.19164 3.76829
113 12769 106301 3.36155 | 143 2.0449 1.19583 3.78153
1.14 12996 1.06771 3.37639 | 144 2.0736 1.20000 3.79473

115 13225 107238 3.39116 | 145 21025 1.20416 3.80789
1.16 13456 1.07703 3.40588 | 146 2.1316 1.2083¢ 3.82099
117 13689 1.08167 3.42053 | 147 21609 121244 3.83406
1.18  1.3924 1.08628 3.43511 | 148 21904 121655 3.84708
1.19 14161 1.09087 3.44964 | 149 22201 1.22066 3.86005

1.20 14400 1.09545 3.46410 | 150 22500 1.22474 3.87298
121 14641 1.10000 3.47851 | 151 22801 122882 3.88587
1.22 14884 1.10454 3.49285 | 152 23104 1.23288 3.89872
123 15129 1.10905 3.50714 | 1.53 23409 1.23693 3.91152
124 15376 1.11355 3.52136 | 1.54 23716 124097 3.92428

1.25 15625 1.11803 3.53553 | 1.55 24025 1.24499 3.93700
126 15876 1.12250 3.54965 | 1.56 24336 1.24900 3.94968
127 16129 112694 3.56371 | 1.57 24649 125300 3.96232
128 1.6384 1.13137 3.57771 | 158 24964 1.25698 3.97492
129 16641 113578 3.59166 | 1.59 25281 1.26095 3.98748
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TABLE A.10.

Continued.

N N2 VN VION N N2 VN V10N
1.60 25600 1.26491 4.00000 | 1.90 3.6100 1.37840 4.35890
161 25921 126886 4.01248 | 191 36481 1.38203 4.37035
162 26244 127279 4.02492 | 192 36864 138564 4.38178
163 26569 127671 4.03733 | 1.93 3.7249 1.38924 4.39318
164 26896 1.28062 4.04969 | 1.94 3.7636 1.39284 4.40454
165 27225 1.28452 4.06202 | 1.95 3.8025 1.39642 4.41588
166 27556 1.28841 4.07431 | 196 3.8416 140000 4.42719
167 27889 1.29228 4.08656 | 1.97 3.8809 140357 4.43847
168 28224 129615 4.00878 | 198 39204 140712 4.44972
1.69 28561 130000 4.11096 | 1.99 39601 141067 4.46094
1.70  2.8900 130384 4.12311 | 2.00 4.0000 141421 4.47214
171 29241 130767 4.13521 | 2,01 4.0401 141774 4.48330
1.72 29584 1.31149 4.14729 | 2.02 4.0804 142127 4.49444
1.73 29929 131529 4.15933 | 2.03 41209 142478  4.50555
1.74 3.0276 131909 4.17133 | 2.04 4.1616 142829 4.51664
175 3.0625 1.32288 4.18330 | 2.05 42025 143178 4.52769
1.76  3.0976 1.32665 4.19524 | 2.06 42436 143527 4.53872
177 31329 133041 420714 | 207 42849 143875 4.54973
1.78 3.1684 1.33417 4.21900 | 2.08 4.3264 144222  4.56070
1.79 32041 133791 4.23084 | 2.09 43681 144568 4.57165
1.80 3.2400 1.34164 424264 | 210 44100 144914 4.58258
1.81 32761 134536 4.25441 | 211 44521 145258 4.59347
1.82 33124 1.34907 4.26615 | 2.12 44944 145602 4.60435
1.83 3.3489 135277 427785 | 2.13 45369 145945 4.61519
1.84 3.3856 1.35647 4.28952 | 214 45796 146287 4.62601
1.85 34225 136015 4.30116 | 2.15 4.6225 1.46629 4.63681
1.86 34596 1.36382 4.31277 | 2.16 4.6656 146969 4.64758
1.87 34969 136748 432435 | 217 47089 147309 4.65833
188 35344 1.37113 4.33590 | 2.18 47524 147648 4.66905
1.89 35721 137477 4.34741 | 219 47961 1.47986 4.67974
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TABLE A.10.
Continued.

N N2 VN V10N N N2 VN V10N

220 48400 148324 469042 | 250 62500 1.58114  5.00000
221 4.8841 148661 470106 | 251 63001 1.58430 5.00999
222 49284 148997 471169 | 252 63504 158745 5.01996
223 49729 149332 472229 | 253 64009 1.59060 5.02991
224 50176 149666 4.73286 | 254 64516 159374 5.03984

225 50625 150000 4.74342 | 255 6.5025 1.59687  5.04975
226 51076 150333 4.75395 | 2.56 6.5536 1.60000 5.05964
227 51529 150665 4.76445 | 257 6.6049 1.60312 5.06952
228 51984 150997 4.77493 | 258 6.6564 1.60624 5.07937
229 52441 151327 478539 | 259 6.7081 1.60935 5.08920

230 52900 151658 4.79583 | 260 6.7600 1.61245  5.09902
231 53361 1.51987 4.80625 | 261 68121 1.61555 5.10882
232 53824 152315 4.81664 | 262 68644 1.61864 5.11859
233 54289 1.52643 4.82701 | 263 69169 1.62173 5.12835
234 54756 1.52971 483735 | 264 69696 1.62481 5.13809

235 55225 1.53297 4.84768 | 265 7.0225 1.62788 5.14782
2.36 55696 1.53623 4.85798 | 266 7.0756 1.63095 5.15752
237 56169 153948 4.86826 | 2.67 7.1289 1.63401 5.16720
2.38 5.6644 154272 4.87852 | 268 7.1824 1.63707 5.17687
239 5.7121 154596 4.88876 | 269 7.2361 1.64012 5.18652

240 57600 154919 4.89898 | 2.70 7.2900 1.64317 5.19615
241 58081 1.55242 4.90918 | 271 73441 1.64621 5.20577
242 58564 155563 4.91935 | 272 73984 164924 5.21536
243 59049 1.55885 4.92950 | 2.73 74529 1.65227 5.22494
244 59536 1.56205 493964 | 2.74 7.5076 1.65529  5.23450

245 6.0025 1.56525 494975 | 2.75 71.5625 1.65831  5.24404
246 6.0516 1.56844 495984 | 2,76 7.6176 1.66132 5.25357
247 61009 157162 496991 | 2.77 76729 1.66433 5.26308
248 61504 157480 497996 | 278 7.7284 1.66733 527257
249 62001 157797 498999 | 279 7.7841 167033 5.28205
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TABLE A.10.

Continued.

N N2 VN VION N N2 VN V10N
280 7.8400 167332 5.29150 | 3.10 9.6100 1.76068 5.56776
281 7.8961 167631 530094 | 3.11 96721 176352 5.57674
282 79524 167929 531037 | 3.12 97344 176635 5.58570
283 80089 168226 5.31977 | 3.13  9.7969 176918 5.59464
284 80656 1.68523 532917 | 3.14 98596 1.77200 5.60357
285 81225 1.68819 533854 | 3.15 99225 1.77482 5.61249
286 81796 1.69115 534790 | 3.16 99856 177764 5.62139
287 82369 1.69411 535724 | 3.17 10.0489 1.78045 5.63028
288 82944 1.69706 536656 | 3.18 10.1124 1.78326 5.63915
289 83521 1.70000 537587 | 3.19 10.1761 1.78606 5.64801
290 84100 1.70294 538516 | 3.20 102400 1.78885 5.65685
291 84681 1.70587 539444 | 321 103041 1.79165 5.66569
292 85264 1.70880 5.40370 | 322 10.3684 1.79444 5.67450
293 85849 1.71172 541295 | 3.23 104329 1.79722 5.68331
294 86436 1.71464 542218 | 3.24 104976 1.80000 5.69210
295 87025 171756 543139 | 325 105625 1.80278 5.70088
296 87616 1.72047 5.44059 | 3.26 10.6276 1.80555 5.70964
297 88209 1.72337 5.44977 | 327 106929 1.80831 5.71839
298 88804 1.72627 5.45894 | 328 10.7584 181108 5.72713
299 89401 1.72916 5.46809 | 3.29 10.8241 181384 5.73585
3.00 9.0000 1.73205 547723 | 3.30 10.8900 1.81659 5.74456
301 90601 173494 548635 | 3.31 109561 181934 5.75326
302 91204 1.73781 549545 | 3.32 11.0224 1.82209 5.76194
303 91809 1.74069 550454 | 3.33 11.0889 1.82483 5.77062
3.04 92416 1.74356 551362 | 3.34 11.1556 1.82757 5.77927
305 93025 1.74642 5.52268 | 3.35 11.2225 1.83030 5.78792
306 93636 1.74929 553173 | 3.36 11.2896 1.83303 5.79655
307 94249 1.75214 554076 | 3.37 11.3569 1.83576 5.80517
308 94864 1.75499 554977 | 3.38 114244 1.83848 5.81378
309 95481 1.75784 5.55878 | 3.39 11.4921 1.84120 5.82237
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TABLE A.10.
Continued.

N N2 VN V10N N N2 VN VION

340 11.5600 1.84391 5.83095 | 3.70 13.6900 1.92354 6.08276
341 116281 184662 583952 | 3.71 13.7641 1.92614 6.09098
342 11.6964 1.84932 584808 | 3.72 13.8384 1.92873 6.09918
343 11.7649 1.85203 5.85662 | 3.73 13.9129 193132 6.10737
344 118336 1.85472 586515 | 3.74 13.9876 1.93391 6.11555

3.45 119025 1.85742 587367 | 3.75 14.0625 193649 6.12372
346 119716 1.86011 588218 | 3.76 14.1376 1.93907 6.13188
347 12.0409 1.86279 5.89067 | 3.77 142129 1.94165 6.14003
348 121104 1.86548 5.89915 | 3.78 14.2884 1.94422 6.14817
349 12,1801 1.86815 590762 | 3.79 14.3641 194679 6.15630

3.50 122500 1.87083 5.91608 | 3.80 14.4400 1.94936 6.16441
351 123201 187350 592453 | 3.81 145161 195192 6.17252
3.52 123904 187617 593296 | 3.82 145924 1.95448 6.18061
3.53 124609 1.87883 594138 | 3.83 14.6689 195704 6.18870
3.54 125316 188149 594979 | 3.84 147456 1.95959 6.19677

3.55 126025 1.884]14 595819 | 3.85 14.8225 1.96214 6.20484
356 12.6736 188680 5.96657 | 3.86 14.8996 1.96469 6.21289
3.57 12.7449 1.88944 597495 | 3.87 149769 1.96723 6.22093
3.58 12.8164 1.89209 5.98331 | 3.88 15.0544 1.96977 6.22896
3.59 12.8881 1.89473 599166 | 3.89 15.1321 197231 6.23699

3.60 129600 1.89737 6.00000 | 3.90 152100 1.97484 6.24500
3.61 13.0321 1.90000 6.00833 | 391 152881 197737 6.25300
362 131044 190263 6.01664 | 3.92 153664 1.97990 6.26099
363 131769 190526 6.02495 | 3.93 154449 1.98242 6.26897
364 132496 190788 6.03324 | 3.94 155236 1.98494 6.27694

3.65 13.3225 191050 6.04152 | 3.95 156025 198746 6.28490
366 13.3956 191311 6.04979 | 3.96 15.6816 1.98997 6.29285
3.67 134689 191572 6.05805 | 3.97 157609 1.99249 6.30079
3.68 135424 191833 6.06630 | 3.98 158404 199499 6.30872
3.69 136161 192094 6.07454 | 3.99 159201 199750 6.31664
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TABLE A.10.

Continued.

N N2 VN VION N N2 VN VION
400 160000 200000 6.32456 | 430 184900 207364 6.55744
401 160801 200250 6.33246 | 431 185761 2.07605 6.56506
402 161604 200499 6.34035 | 432 186624 207846 6.57267
403 162409 200749 6.34823 | 433 18.7489 2.08087 6.58027
404 163216 200998 6.35610 | 4.34 188356 2.08327 6.58787
405 164025 201246 6.36396 | 4.35 189225 208567 6.59545
406 164836 201494 637181 | 436 19.0096 2.08806 6.60303
407 165649 201742 6.37966 | 437 19.0969 2.09045 6.61060
408 166464 201990 638749 | 438 19.1844 209284 6.61816
4.09 167281 202237 6.39531 | 439 192721 209523 6.62571
410 168100 202485 6.40312 | 440 193600 2.09762 6.63325
411 16.8921 202731 6.41093 | 441 194481 2.10000 6.64078
4.12 169744 202978 6.41872 | 442 195364 2.10238 6.64831
413 17.0569 203224 642651 | 443 19.6249 2.10476 6.65582
414 171396 203470 6.43428 | 444 19.7136 2.10713 6.68333
415 172225 203715 6.44205 | 445 19.8025 2.10950 6.67083
416 17.3056 2.03961 6.44981 | 446 19.8916 2.11187 6.67832
417 17.3889 2.04206 645755 | 447 199809 211424 6.68581
4,18 174724 2.04450 6.46529 | 448 200704 2.11660 6.69328
4,19 175561 2.04695 6.47302 | 449 20.1601 2.11896 6.70075
420 17.6400 2.04939 6.48074 | 450 202500 2.12132 6.70820
421 17.7241 205183 6.48845 | 451 20.3401 2.12368 6.71565
422 17.8084 205426 6.49615 | 452 204304 2.12603 6.72309
423 178929 205670 6.50385 | 453 20.5209 2.12838  6.73053
424 179776 205913 651153 | 454 206116 2.13073 6.73795
425 180625 206155 651920 | 455 20.7025 2.13307 6.74537
426 18.1476 206398 6.52687 | 456 20.7936 2.13542 6.75278
427 182329 206640 653452 | 457 20.8849 2.13776 6.76018
428 183184 206882 6.54217 | 458 209764 214009 6.76757
429 184041 207123 654981 | 459 21.0681 2.14243 6.77495
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TABLE A.10.
Continued.

N N2 VN V10N N N2 VN V10N

460 21.1600 2.14476 6.78233 | 490 24.0100 221359  7.00000
461 212521 214709 6.78970 | 491 24.1081 221585 7.00714
462 213444 214942 6.79706 | 492 242064 2.21811 7.01427
463 214369 215174 6.80441 | 493 243049 2.22036 7.02140
464 21.5296 2.15407 6.81175 | 494 244036 2.22261 7.02851

465 21.6225 2.15639 6.81909 | 495 245025 2.22486 7.03562
466 21.7156 2.15870 6.82642 | 496 24.6016 2.22711 7.04273
4.67 21.8089 216102 6.83374 | 497 24.7009 2.22935 7.04982
468 219024 2.16333 6.84105 | 498 24.8004 2.23159 7.05691
469 21.9961 2.16564 6.84836 | 499 249001 2.23383 7.06399

4.70  22.0900 216795 6.85565 | 5.00 25.0000 2.23607 7.07107
4.71 221841 217025 6.86294 | 501 25.1001 2.23830 7.07814
472 222784 217256 6.87023 | 5.02 25.2004 2.24054 7.08520
473 223729 2.17486 6.87750 | 5.03 253009 224277 7.09225
474 224676 217715 6.88477 | 5.04 254016 2.24499 7.09930

475 225625 217945 6.89202 | 505 255025 2.24722 7.10634
476 22.6576 2.18174 6.89928 | 5.06 25.6036 2.24944 7.11337
477 227529 2.18403 6.90652 | 507 25.7049 2.25167 7.12039
478 22.8484 218632 691375 | 508 25.8064 2.25389 7.12741
479 229441 218861 6.92098 | 509 259081 225610 7.13442

4.80 23.0400 219089 6.92820 | 5.10 26,0100 2.25832 7.14143
481 23.1361 2.19317 6.93542 | 5.11 26.1121 2.26053 7.14843
482 232324 219545 6.94262 | 5.12 262144 2.26274 7.15542
483 233280 219773 6.94982 | 5.13 263169 2.26495 7.16240
484 234256 220000 695701 | 5.14 264196 226716 7.16938

485 235225 220227 6.96419 | 515 26,5225 2.26936 7.17635
486 23.6196 220454 6.97137 | 5.16 26.6256 2.27156 7.18331
487 23.7169 220681 697854 | 5.17 26.72890 227376 7.19027
488 238144 220907 6.98570 | 5.18 26.8324 227596 7.19722
489 239121 221133 6.99285 | 5.19 269361 227816 7.20417
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N N2 VN VION N N2 VN V10N
520 27.0400 228035 721110 | 550 30.2500 2.34521 7.41620
521 27.1441 228254 721803 | 551 30.3601 234734 7.42294
522 272484 228473 7.22496 | 552 304704 2.34947 7.42967
523 273529 228692 7.23187 | 553 30.5809 235160 7.43640
524 274576 228910 7.23878 | 554 30.6916 235372 7.44312
525 27.5625 229129 7.24569 | 555 30.8025 235584 7.44983
526 27.6676 229347 7.25259 | 556 309136 235797 7.45654
527 277729 229565 7.25948 | 557 31.0249 2.36008 7.46324
528 27.8784 229783 7.26636 | 558 31.1364 2.36220 7.46994
529 279841 230000 7.27324 | 559 312481 236432 7.47663
530 28.0900 230217 7.28011 | 560 31.3600 236643 7.48331
531 28.1961 230434 7.28697 | 561 314721 236854 7.48999
532 283024 230651 7.29383 | 562 31.5844 237065 7.49667
5.33 28.4089 230868 7.30068 | 563 31.6969 2.37276 7.50333
534 285156 231084 730753 | 564 31.8096 237487 7.50999
535 28.6225 231301 7.31437 | 565 31.9225 237697 7.51665
536 28.7296 231517 7.32120 | 566 32.0356 2.37908 7.52330
5.37 28.8369 231733 7.32803 | 567 32.1489 238118 7.52994
538 289444 231948 7.33485 | 568 32.2624 2.38328 7.53658
539 29.0521 232164 7.34166 | 569 32.3761 2.38537 7.54321
540 29.1600 232379 7.34847 | 570 324900 238747 7.54983
541 292681 232594 7.35527 | 571 32.6041 2.38956 7.55645
542 293764 232809 7.36206 | 572 32.7184 239165 7.58307
543 294849 233024 7.36885 | 573 32.8329 239374 7.56968
544 295936 233238 7.37564 | 574 32.9476 2.39583 7.57628
545 29.7025 233452 7.38241 | 575 33.0625 2.39792 7.58288
546 298116 233666 7.38918 | 576 33.1776 2.40000 7.58947
547 299209 233880 7.39594 | 577 332929 240208 7.59605
548 30.0304 234094 7.40270 | 578 33.4084 2.40416 7.60263
549 30.1401 234307 7.40945 | 579 335241 240624 7.60920

323 Appendix, Tables




TABLE A.10.
Continued.

N N2 VN V10N N N2 VN 10N

580 33.6400 240832 761577 | 6.10 372100 246982 7.81025
581 33.7561 241039 7.62234 | 6.11 37.3321 247184 7.81665
5.82 33.8724 241247 7.62889 | 6.12 37.4544 247386 7.82304
5.83 339889 241454 7.63544 | 6.13 37.5769 247588 7.82943
5.84 341056 2.41661 7.64199 | 6.14 37.6996 247790 7.83582

5.85 342225 241868 7.64853 | 6.15 37.8225 247992 7.84219
5.86 34.3396 242074 7.65506 | 6.16 37.9456 248193 7.84857
587 344569 242281 7.66159 | 6.17 38.0689 2.48395 7.85493
588 345744 242487 7.66812 | 6.18 38.1924 248596 7.86130
589 346921 242693 7.67463 | 6.19 38.3161 248797 7.86766

590 34.8100 242899 7.68115 | 620 38.4400 248998 7.87401
591 349281 243105 7.68765 | 6.21 385641 249199 7.88036
592 350464 243311 7.69415 | 622 38.6884 249399 7.88670
593 35.1649 243516 7.70065 | 623 38.8129 249600 7.89303
594 352836 243721 7.70714 | 6.24 38.9376 2.49800 7.89937

595 354025 243926 7.71362 | 625 39.0625 2.50000 7.90569
596 355216 244131 7.72010 | 626 39.1876 2.50200 7.91202
5.97 35.6409 244336 7.72658 | 627 393129 250400 7.91833
598 35.7604 244540 7.73305 | 6.28 39.4384 250599 7.92465
599 358801 244745 7.73951 | 629 39.5641 2.50799 7.93095

6.00 36.0000 2.44949 7.74597 | 6.30 39.6900 2.50998 7.93725
601 36.1201 245153 7.75242 | 6.31 39.8161 2.51197 7.94355
6.02 36.2404 245357 7.75887 | 6.32 399424 251396 7.94984
6.03 36.3609 245561 7.76531 | 6.33 40,0689 251595 7.95613
6.04 364816 245764 7.77174 | 6.34 40.1956 251794 7.96241

6.05 36.6025 245967 7.77817 | 6.35 403225 251992 7.96869
6.06 36.7236 246171 7.78460 | 6.36 40.4496 2.52190 7.97496
6.07 36.8449 246374 7.79102 | 6.37 40.5769 252389 7.98123
6.08 36.9664 246577 7.79744 | 638 40.7044 252587 7.98749
6.09 37.0881 246779 7.80385 | 6.39 40.8321 252784 7.99375
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N N2 VN V10N N N2 VN VION
6.40 40.9600 252982 8.00000 | 6.70 44.8900 258844 8.18535
6.41 41.0881 253180 800625 | 6.71 45.0241 259037 8.19146
6.42 412164 253377 8.01249 | 6.72 45.1584 259230 8.19756
6.43 41.3449 253574 8.01873 | 6.73 452929 259422 8.20366
6.44 414736 253772 8.02496 | 6.74 454276 259615 8.20975
645 41.6025 253969 8.03119 | 6.75 455625 259808 8.21584
646 417316 254165 8.03741 | 6.76 456976 2.60000 8.22192
6.47 41.8609 254362 8.04363 | 6.77 458329 260192 8.22800
6.48 41.9904 254558 8.04984 | 6.78 459684 260384 8.23408
6.49 42,1201 254755 8.05605 | 6.79 46.1041 260576 8.24015
650 422500 254951 8.06226 | 6.80 462400 260768 8.24621
6.51 423801 255147 8.06846 | 681 463761 2.60960 8.25227
652 425104 255343 8.07465 | 682 465124 261151 8.25833
653 426409 255539 8.08084 | 6.83 46.6489 261343 8.26438
654 427716 255734 8.08703 | 6.84 46.7856 261534 8.27043
655 429025 255930 8.09321 | 6.85 469225 261725 8.27647
656 43.0336 256125 8.09938 | 6.86 47.0596 261916 8.28251
6.57 43.1649 256320 8.10555 | 6.87 47.1969 262107 8.28855
6.58 432964 256515 8.11172 | 6.88 47.3344 262298 8.29458
6.59 434281 256710 8.11788 | 6.89 474721 262488 8.30060
6.60 435600 256905 8.12404 | 6.90 47.6100 262679 8.30662
6.61 436921 257099 8.13019 | 691 47.7481 262869 8.31264
6.62 438244 257294 8.13634 | 6.92 47.8864 263059 8.31865
6.63 439569 257488 8.14248 | 6.93 48.0249 263249 8.32466
6.64 440896 257682 8.14862 | 6.94 48.1636 263439 8.33067
6.65 442225 257876 8.15475 | 6.95 483025 263629 8.33667
6.66 443556 2.58070 8.16088 | 6.96 484416 263818 8.34266
6.67 44.4889 258263 8.16701 | 6.97 485809 264008 8.34865
6.68 44.6224 258457 8.17313 | 6.98 487204 264197 8.35464
6.69 44.7561 258650 8.17924 | 6.99 48.8601 264386 8.36062

325 Appendix, Tables




TABLE A.10.
Continued.

N N? VN V10N N N? VN V10N

7.00 49.0000 264575 8.36660 | 7.30 532900 2.70185 8.54400
701 49.1401 264764 8.37257 | 7.31 534361 2.70370 8.54985
702 49.2804 264953 837854 | 7.32 53.5824 2.70555 8.55570
703 494209 265141 838451 | 7.33 53.7289 2.70740 8.56154
704 495616 2.65330 8.39047 | 7.34 53.8756 2.70924 8.56738

705 49.7025 265518 8.39643 | 7.35 54.0225 2.71109 8.57321
7.06 49.8436 265707 8.40238 | 7.36 54.1696 2.71293 8.57904
7.07 499849 2.65895 8.40833 | 7.37 54.3169 2.71477 8.58487
708 50.1264 266083 8.41427 | 7.38 544644 2.71662 8.59069
7.09 50.2681 2.66271 8.42021 | 7.39 54.6121 2.71846 8.59651

7.10 504100 266458 8.42615 | 740 547600 2.72029 8.60233
7.11 505521 2.66646 8.43208 | 741 549081 2.72213 8.60814
712 50.6944 2.66833 8.43801 | 742 55.0564 2.72397 8.61394
713 50.8369 2.67021 8.44393 | 743 552049 2.72580 8.61974
7.14 509796 2.67208 8.44985 | 744 553536 2.72764 8.62554

715 51.1225 2.67395 845577 | 745 55.5025 2.72947 8.63134
7.16 51.2656 267582 8.46168 | 746 55.6516 2.73130 8.63713
7.17 51.4089 2.67769 846759 | 747 55.8009 2.73313 8.64292
718 51.5524 2.67955 847349 | 748 55.9504 2.73496 8.64870
719 516961 268142 8.47939 | 749 56.1001 2.73679 8.65448

720 51.8400 2.68328 8.48528 | 7.50 56.2500 2.73861  8.66025
721 519841 268514 8.49117 | 7.51 56.4001 2.74044 8.66603
7.22 52.1284 2.68701 849706 | 7.52 56.5504 2.74226 8.67179
723 522729 2.68887 850294 | 7.53 56.7009 2.74408 8.67756
724 524176 2.69072 8.50882 | 7.54 56.8516 2.74591 8.68332

725 525625 2.69258 8.51469 | 7.55 57.0025 2.74773 8.68907
726 527076 269444 8.52056 | 7.56 57.1536 2.74955 8.69483
7.27 528529 2.69629 8.52643 | 7.57 57.3049 2.75136 8.70057
728 529984 2.69815 853229 | 7.58 57.4564 2.75318 8.70632
729 53.1441 2770000 8.53815 | 7.59 57.6081 2.75500 8.71206
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Nﬂ

VN

V10N

N2

VN

V10N

7.60
7.61
7.62
7.63
7.64

7.65
7.66
7.67
7.68
7.69

7.70
7.71
7.72
7.73
7.74

7.75
1.76
7.77
7.78
7.79

7.80
7.81
7.82
7.83
7.84

7.85
7.86
7.87
7.88
7.89

57.7600
57.9121
58.0644
58.2169
58.3696

58.5225
58.6756
58.8289
58.9824
59.1361

59.2900
59.4441
59.5984
59.7529
59.9076

60.0625
60.2176
60.3729
60.5284
60.6841

60.8400
60.9961
61.1524
61.3089
61.4656

61.6225
61.7796
61.9369
62.0944
62.2521

2.75681
2.75862
2.76043
2.76225
2.76405

2.76586
2.76767
2.76948
2.77128
2.77308

2.77489
2.77669
2.77849
2.78029
2.78209

2.78388
2.78568
2.78747
2.78927
2.79106

2.79285
2.79464
2.79643
2.79821
2.80000

2.80179
2.80357
2.80535
2.80713
2.80891
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8.71780
8.72353
8.72926
8.73499
8.74071

8.74643
8.75214
8.75785
8.76356
8.76926

8.77496
8.78066
8.78635
8.79204
8.79773

8.80341
8.80909
8.81476
8.82043
8.82610

8.83176
8.83742
8.84308
8.84873
8.85438

8.86002
8.86566
8.87130
8.87694
8.88257

7.90
791
7.92
7.93
7.94

7.95
7.96
797
7.98
7.99

8.00
8.01
8.02
8.03
8.04

8.05
8.06
8.07
8.08
8.09

8.10
8.11
8.12
8.13
8.14

8.15
8.16
8.17
8.18
8.19

62,4100
62.5681
62.7264
62.8849
63.0436

63.2025
63.3616
63,5209
63.6804
63.8401

64,0000
64.1601
64.3204
64.4809
64.6416

64,8025
64.9636
65.1249
65.2864
65.4481

65.6100
65.7721
65.9344
66.0969
66.2596

66.4225
66.5856
66.7489
66.9124
67.0761

2.81069
2.81247
2.81425
2.81603
2.81780

2.81957
2.82135
2.82312
2.82489
2.82666

2.82843
2.83019
2.83196
2.83373
2.83549

2.83725
2.83901
2.84077
2.84253
2.84429

2.84605
2.84781
2.84956
2.85132
2.85307

2.85482
2.85657
2.85832
2.86007
2.86182

8.88819
8.89382
8.89944
8.90505
8.91067

8.91628
8.92188
8.92749
8.93308
8.93868

8.94427
8.94986
8.95545
8.96103
8.96660

8.97218
8.97775
8.98332
8.98888
8.99444

9.00000
9.00555
9.01110
9.01665
9.02219

9.02774
9.03327
9.03881
9.04434
9.04986



TABLE A.10.

Continued.

N N? VN  VION | N N2 VN  VION
820 67.2400 2386356 9.05539 | 850 722500 291548 9.21954
821 674041 2386531 9.06091 | 851 724201 291719 9.22497
822 67.5684 286705 9.06642 | 852 725004 291890 9.23038
823 67.7329 286880 9.07193 | 853 727609 292062 9.23580
824 678976 287054 9.07744 | 854 729316 292233 9.24121
825 680625 287228 9.08295 | 855 731025 292404 9.24662
826 682276 287402 90.08845 | 856 732736 2.92575 9.25203
827 683929 287576 9.09395 | 857 73.4449 292746 9.25743
828 685584 287750 9.09945 | 858 73.6164 292916 9.26283
829 687241 287924 9.10494 | 859 737881 2.93087 9.26823
830 68.8900 2388097 9.11043 | 860 73.9600 2.93258 9.27362
831 69.0561 288271 9.11592 | 861 741321 293428 9.27901
832 69.2224 288444 0.12140 | 862 743044 293598 9.28440
833 69.3880 288617 9.12688 | 863 744769 293769 9.28978
834 69.5556 288791 9.13236 | 8.64 74.6496 2.93939 9.29516
835 69.7225 288964 9.13783 | 865 748225 294109 9.30054
8.36 69.8896 289137 9.14330 | 866 749956 2.94279 9.30591
8.37 700569 2.89310 9.14877 | 867 751689 294449 9.31128
838 702244 280482 9.15423 | 868 753424 294618 9.31665
839 703921 289655 9.15969 | 869 755161 294788  9.32202
840 70.5600 289828 9.16515 | 8.70 75.6900 2.94958 9.32738
841 707281 290000 9.17061 | 8.71 758641 295127 9.33274
842 70.8964 290172 9.17606 | 8.72 76.0384 295296 9.33809
843 710649 290345 9.18150 | 873 762129 295466 9.34345
844 712336 290517 9.18695 | 8.74 76.3876 295635 9.34880
845 714025 290689 9.19239 | 875 765625 295804 9.35414
846 715716 290861 9.19783 | 876 76.7376 295973 9.35949
847 717409 291033 9.20326 | 877 769129 296142 9.36483
848 719104 291204 9.20869 | 8.78 77.0884 296311 9.37017
849 720801 291376 921412 | 879 77.2641 296479 9.37550
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N N2 VN VION N N2 VN VION
8.80 774400 296648 9.38083 | 9.10 82.8100 3.01662 9.53939
881 776161 296816 9.38616 | 9.11 829921 3.01828 9.54463
882 777924 296985 9.39149 | 9.12 83.1744 3.01993 9.54987
883 779689 297153 9.39681 | 9.13 83.3569 3.02159 9.55510
884 78.1456 297321 9.40213 | 9.14 835396 3.02324 9.56033
885 783225 297489 9.40744 | 9.15 83.7225 3.02490 9.56556
8.86 784996 297658 9.41276 | 9.16 83.9056 3.02655 9.57079
8.87 786769 297825 9.41807 | 9.17 84.0889 3.02820 9.57601
888 788544 297993 9.42338 | 9.18 842724 3.02985 9.58123
8.89 79.0321 298161 9.42868 | 9.19 844561 3.03150 9.58645
890 792100 298329 943398 | 920 84.6400 3.03315 9.59166
891 79.3881 298496 9.43928 | 921 84.8241 3.03480 9.59687
892 795664 298664 9.44458 | 922 850084 3.03645 9.60208
893 79.7449 298831 9.44987 | 923 851929 3.03809 9.60729
894 799236 298998 9.45516 | 924 853776 3.03974 9.61249
895 80.1025 299166 9.46044 | 925 855625 3.04138 9.61769
8.96 802816 299333 946573 | 926 857476 3.04302 9.62289
897 80.4609 299500 9.47101 | 927 859329 3.04467 9.62808
898 806404 299666 9.47629 | 928 86.1184 3.04631 9.63328
899 80.8201 299833 9.48156 | 929 863041 3.04795 9.63846
9.00 81.0000 3.00000 9.48683 | 9.30 86.4900 3.04959 9.64365
9.01 811801 3.00167 9.49210 | 931 86.6761 3.05123 9.64883
9.02 813604 3.00333 9.49737 | 932 868624 3.05287 9.65401
9.03 815409 3.00500 9.50263 | 9.33 87.0489 3.05450 9.65919
9.04 817216 3.00666 9.50789 | 9.34 87.2356 3.05614 9.66437
9.05 81.9025 3.00832 951315 | 935 87.4225 3.05778 9.66954
9.06 82.0836 3.00998 951840 | 936 87.6096 3.05941 9.67471
9.07 822649 301164 9.52365 | 937 87.7969 3.06105 9.67988
9.08 824464 3.01330 9.52890 | 9.38 87.9844 3.06268 9.68504
9.09 826281 3.01496 9.53415 | 939 88.1721 3.06431 9.69020
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N N2 VN V10N N N2 VN 10N

940 88.3600 3.06594 9.69536 | 9.70 94.0900 3.11448 9.84886
941 885481 3.06757 9.70052 | 9.71 942841 3.11609 9.85393
942 88.7364 3.06920 9.70567 | 972 94.4784 3.11769 9.85901
943 889249 3.07083 9.71082 | 973 94.6729 3.11929 9.86408
944 89.1136 3.07246 9.71597 | 974 94.8676 3.12090 9.86914

945 893025 3.07409 9.72111 | 9.75 95.0625 3.12250 9.87421
946 894916 3.07571 9.72625 | 9.76 952576 3.12410 9.87927
947 89.6809 3.07734 9.73139 | 977 954529 3.12570 9.88433
948 89.8704 3.07896 9.73653 | 9.78 95.6484 3.12730 9.88939
949 90.0601 3.08058 9.74166 | 9.79 95.8441 3.12890 9.89444

950 90.2500 3.08221 9.74679 | 9.80 96.0400 3.13050 9.89949
951 904401 3.08383 9.75192 | 9.81 962361 3.13209 9.90454
952 90.6304 3.08545 9.75705 | 9.82 96.4324 3.13369 9.90959
953 90.8209 3.08707 9.76217 | 9.83 96.6289 3.13528 9.91464
954 910116 3.08869 9.76729 | 984 96.8256 3.13688 9.91968

955 91.2025 3.09031 9.77241 | 985 97.0225 3.13847 9.92472
956 913936 3.09192 9.77753 | 9.86 97.2196 3.14006 9.92975
957 91.5849 3.09354 9.78264 | 987 974169 3.14166 9.93479
958 9L7764 3.09516 9.78775 | 9.88 97.6144 3.14325 9.93982
959 91.9681 3.09677 9.79285 | 9.89 97.8121 3.14484 994485

9.60 92.1600 3.09839 9.79796 | 9.90 98.0100 3.14643 9.94987
9.61 923521 3.10000 9.80306 | 991 982081 3.14802 9.95490
9.62 925444 3.10161 9.80816 | 9.92 98.4064 3.14960 9.95992
9.63 92.7369 3.10322 9.81326 | 993 98.6049 3.15119 9.96494
9.64 929296 3.10483 9.81835 | 994 988036 3.15278  9.96995

9.65 93.1225 3.10644 9.82344 | 995 99.0025 3.15436 9.97497
9.66 93.3156 3.10805 9.82853 | 996 99.2016 3.15595 9.97998
9.67 93.5089 3.10966 9.83362 | 997 994009 3.15753 9.98499
9.68 93.7024 3.11127 9.83870 | 998 99.6004 3.15911 9.98999
9.69 93.8961 3.11288 9.84378 | 999 99.8001 3.16070  9.99500
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TABLE A.11.

Coefficients, divisors, and K values for fitting up to quartic curves to equally
spaced data, and partitioning the sum of squares.

n: 3 4 5

C Q|la & C3 G G C3 C4 ¢ & Cs Cy4
=1 Jj—=3" 1 =I=2 92 —1 1[-5 5 -5 1
0 -2|]-1 -1 3|—-1 -1 2 —-4|-3 -1 7 -3
1 0 [ R | -3| 0 -2 0 6|—-1 —4 4 2
< Ll | 1] 1 -1 -2 -4 1 -4 -4 2
2 2 1 1 '3 =1 —=T —3
5 5 5 1

Divisors

2 6(20 4 20| 10 14 10 70| 70 84 180 28
K, 1/3 5/16 1/7 5/96
K 1/2 1/20 1/10 1/70
K, 41/240 17/60 101/4320
K, 1/2 1/16 1/14 1/224
Ks 1/48 1/12 1/864
Kq 1/24 1/768
o4 31/168 95,2688
Ks 3/35 27/256
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TABLE A.1L

Continued.
n: 1 8 9

(] Ca C ¢ € C G Cq 1 Cg €3 Cq
-3 5 -1 3|-7 7 -7 7] -4 28 -—-14 14
-2 0 1 -7|-5 1 5 -13| -3 7 7 -21
-1 -3 1 11-3 -3 7 -3|-2 -8 13 -11
0 -4 0 6| -1 =5 3 9(-1 -17 9 9
1 -3 -1 1 1 -5 -3 9 0 —-20 0 18
2 0 -1 -7 3 -3 -7 -3 1 =17 -9 9
3 5 1 3 5 1 -5 -13 2 -8 -13 —11
7 7 7 7 3 7 =7 -21
4 28 14 14

Divisors

28 84 6 154|168 168 264 616 | 60 2772 990 2002
K, 1/21 1/32 5/693
K, 1/28 1/68 1.60
K; 7/36 37/3168 59/5940
K, 1/84 1/672 1/924
Ks 1/36 1/3168 1/1188
K 1/264 1/16896 1/3432
K; 67/1848 179/59136 115 /24024
Ky 3/71 9/512 9/1001
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TABLE A.11.

Continued.
n: 10 11

< Co C3 Cq < Cg Cs Cq4

-9 6 —42 18 -5 15 -30 6

-7 ¥ 14 —-29 —4 6 6 -6

-5 -1 35 -17 -3 -1 22 -6

-3 -3 31 3 -2 -6 23 -1

-1 —4 12 18 -1 -9 14 4

1 —4 —-12 18 0 =10 0 6

3 -3 =31 3 1 -9 -14 4

B -1 -35 -17 2 -6 —-23 -1

7 2 -14 —-22 3 -1 —-29 -6

9 6 42 18 4 6 -6 -6

5 15 30 6

Divisors

330 132 8580 2860 110 858 4290 286
K, 1/32 5/429
K, 1/330 1/110
Ks 293,/205920 89,/25740
K, 1/1056 1/858
Ks 1/41184 1/5148
Ko 1/109824 1/3432
K; 41/54912 25/3432
Ke 9/1280 3/143
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TABLE A.11.

Continued.
n: 12 13

€y Cg C3 Cy Cy Co Cs Cy
~11 55 -33 33 —6 22 -11 9
-9 25 3 —27 -5 11 g - —88
=7 1 21 -33 —4 2 6 -—-96
-5 =17 25 -13 -3 =5 8 -54
-3 =29 19 12 -2 -10 7 11
-1 -35 T 28 -1 -13 4 64
1 =35 -7 28 0 -14 0 84
3 -29 -19 12 1 -13 —4 64
5 -17 —-25 ~13 2 -10 -7 11
I} 1 -21 -33 3 =5 -8 -5
9 25 -3 —-27 4 2 -6 -96
11 55 33 33 b 11 Dzvon=08
6 22 11 9

Divisors

572 12012 5148 8008 182 2002 572 68068
K, 1/336 1/143
K, 1/572 1/182
K, 85/61776 25/3432
X, 1/16016 1,/2002
Ks 1/61776 1/3432
Kq 1/439296 1/116688
K, 419/1537536 19/62832
Ky 27/7168 3/2431
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TABLE A.1l

Continued.
n: 14 15

Cy Cg C3 Cy4 < Cg C3 Cq
-13 13 -—143 143 | =7 91 -91 1001
-11 v -11 -T77 | —6 52 =13 —429
-9 2 66 -132 | =5 19 35 —869
-7 =2 98 -92 | —4 -8 58 —T704
-5 =5 95 —-13 | —3 —29 61 —249
-3 -7 63 63 | —2 —44 49 251
-1 =8 24 108 | —1 —-53 27 621
1 -8 —-24 108 0 —56 0 756
3 =7 —67 63 1 -53 —27 621
5 -5 —95 -13 2 —44 —49 251
7 -2 —98 —-92 3 —29 —-61 —249
9 2 —66 -132 4 -8 —58 =704
11 7 11 -T7 5 19 —-35 —869
13 13 143 143 6 52 13 —429
s 91 91 1001

Divisors

910 728 97240 136136 | 280 37128 39780 6466460
K, 5/448 1/663
K, 1/910 1/280
K; 581/2333760 167 /238680
K, 1/5824 1/12376
Ks 1/466752 1/47736
Ke 1/3734016 1/2217072
K, 57513069056 331/15519504
Ky 3/3584 27/230945
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TABLE A.11.

Continued.
n: 16 17

€ Cy Ca Cyq < C C3 Cq
-15 35 —455 273 -8 40 —28 52
-13 21 —-91 -91 -7 25 -7 -13
-11 9 143 —221 -6 12 7 -39
-9 -1 267 —201 -5 1 15 -39
-7 -9 301 —-101 —4 -8 18 —24
-5 —15 265 23 -3 -15 17 -3
-3 -19 179 129 -2 -20 13 17
-1 -21 63 189 -1 -23 7 31
1 —21 —-63 189 0 —24 0 36
3 -19 —-179 129 1 -23 -7 31
5 =15 —265 23 2 —-20 -13 17
7 -9 —301 —101 3 -15 -17 -3
9 -1 —267 —-201 4 —8 —-18 —24
11 9 —143 —221 5 1 -15 -39
13 21 91 —-91 6 12 -7 -39
15 35 455 273 7 25 7 —13
8 40 28 52

Divisors

1360 5712 1007760 470288 408 T752 3876 16796
K, 5/1344 1/323
K, 1/1360 1/408
K; 761 /12093120 43 /23256
K, 1/22848 1/7752
Ks 1/2418624 1/23256
Kg 1/12899328 1/201552
K, 755/45147648 61/201552
Kg 3/7168 9/4199
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TABLE A.11.

Continued.
n 18 19

(] Cy Cy Cy ¢ Cg Cy Cq
—-17 68 —68 68 -9 51 —204 612
-15 44 —-20 -12 -8 34 —68 —68
-13 23 13 —47 -7 19 28 —388
-11 5 33 =51 -6 6 89 —453
-9 —10 42 —36 -5 -5 120 —354
-7 -22 42 —12 -4 —14 126 —168
-5 -31 35 13 -3 =21 112 42
-3 -37 23 33 -2 —26 83 227
-1 —40 8 44 =1 —-29 44 352
1 -40 -8 44 0 -30 0 396
3 -37 -23 33 1 —-29 —44 352
5 -31 =35 13 2 —26 -83 227
7 —22 —42 -12 3 -21 -112 42
9 -10 —42 —36 4 —-14 —126 —168
11 5 -33 —51 5 -5 - 120 —354
13 23 -13 —47 6 6 —89 —453
15 44 20 -12 7 19 —28 —388
17 68 68 68 8 34 68 —68
9 51 204 612

Divisors

1938 23256 23256 28424 570 13466 213180 2288132
K, 1/576 5/2261
K, 1/1938 1/570
K, 193 /558144 269 /1279080
K, 1/62016 1/13566
K 1/558144 1/255816
Kg 1/5457408 1/3922512
K, 137/2728704 535/27457584
K 9/5632 9/52003
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TABLE A.11.

Continued.
20 21

C Co Cy Cy < Co Ca Cy
-19 57 —969 1938 —-10 190 —285 969
-17 39 —357 - 102 -9 133 —-114 0
-15 23 85 —1122 =8 82 12 —-510
-13 9 377 — 1402 -7 37 98 —680
-11 -3 539 — 1187 -6 -2 149 —615
-9 -13 591 —687 -5 —=35 170 —406
e -21 553 =T —4 —62 166 -130
-5 -27 445 503 -3 —-83 142 150
=3 -31 287 948 -2 —98 103 385
-1 -33 9 1188 e | —-107 54 540
1 -33 -99 1188 0 —110 0 594
3 —31 —287 948 1 —107 —54 540
5 —-27 —445 503 2 —98 —103 385
7 -21 —553 -T7 3 —-83 —142 150
9 -13 —591 —687 4 —-62 —166 —130
11 -3 —539 —1187 5 -35 —170 —406
13 9 —-377 —1402 6 -2 —149 —615
15 23 -85 —-1122 7 37 —98 —680
17 39 357 —-102 8 82 —-12 —510
19 57 969 1938 9 133 114 0
10 190 285 969

Divisors

2660 17556 4903140 22881320 770 201894 432630 5720330
K, 1/528 5/9177
Ky 1/2660 1/770
K, 1193 /58837680 329/2595780
K, 1/70224 1/67298
Ks 1/11767536 1/519156
| 8 1/251040768 1/9806280
K 1187 /878642688 131/13728792
Ky 3/56320 27/260015
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TABLE A.1L

Continued.
n: 22 23

c Cg Ca C4 < Cg Cs Cy4
=21 35 —133 1197 —11 77 =77 1463
-19 25 —57 57 —-10 56 -35 133
o X 16 0 —-570 -9 37 -3 —627
-15 8 40 —-810 -8 20 20 —-950
-13 1 65 —T775 -7 5 35 —955
-=11 -5 77 —563 —6 -8 43 — 747
-9 =10 78 —258 -5 -19 45 —417
=7 -14 70 70 —4 —28 42 —42
-5 -17 —55 365 -3 -35 35 315
-3 -19 35 585 -2 —40 25 605
-1 —20 12 702 -1 —43 13 793
1 —20 -12 702 0 —44 0 858
3 -19 —-35 585 1 —43 =13 793
5 -17 —-55 365 2 —-40 -25 605
7 —14 —-70 70 3 -35 -35 315
9 —-10 -78 —258 4 —28 —42 —42
11 =5 -7 —563 5 —-19 —45 —417
13 1 —65 =T75 6 -8 —43 —T747
15 8 —40 —810 7 5 -35 —955
3 b d 16 0 -570 8 20 —20 —950
19 25 57 57 9 37 3 —627
21 35 133 1197 10 56 35 133
11 T7 77 1463

Divi

3542 7084 96140 8748740 1012 35420 32890 131231100
K, 1/352 1/805
K, 1/3542 1/1012
K; 289/2307360 79/197340
K, 1/56672 1/35520
K5 1/2307360 1/197340
- 1/239965440 1/22496760
K, 1439,/839879040 787/ 157477320
Kq 3/36608 1/15295
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TABLE A.11.

Continued.
n: 24 25

€1 Cg C3 Cq cy Cy Ca Cy
—23 252 1771 253 -12 92 —506 1518
-21 187 —847 33 =11 69 —253 253
—-19 127 —133 —-97 —10 48 —55 —517
=17 73 391 —-157 -9 29 93 —897
—15 25 745 —165 -8 12 196 —982
-13 -17 49 - 137 -7 -3 259 —857
-11 —-53 1023 —87 -6 —16 287 —-597
-9 —83 987 -27 -5 -27 285 — 267
=T —107 861 33 —4 —36 258 78
—5 -125 665 85 -3 —43 211 393
-3 —137 419 123 -2 —48 149 643
-1 —143 143 143 -1 -51 77 803
2 —143 —143 143 0 —52 0 858
3 —137 —419 123 1 —51 -T7 803
5 —125 — 665 85 2 —48 —149 643
7 —107 —861 33 3 —43 —211 393
9 —83 — 987 -27 4 —36 —258 78
11 —53 —1023 —87 5 —27 —285 —267
13 =~} —949 -137 6 —16 —287 —-597
15 25 — 745 - 165 i -3 —259 —857
17 73 —-391 —157 8 12 —196 —982
19 127 133 —-97 9 29 —-93 —897
21 187 847 33 10 48 55 —517
23 253 1771 253 11 69 253 253
12 92 506 1518

Divisors

4600 394680 17760600 394680 1300 53820 1480050 14307150
K, 5/13728 1/1035
K, 1,/4600 1/1300
K, 1721,/213127200 467/8880300
X, 1/526240 1/53820
Ks 1/42625440 1/1776060
K, 1/75778560 1/34337160
K, 49/7577856 133 /34337160
K, 27/73216 1/16675
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TABLE A.11A.
Coefficients and divisors for some selected sets of unequally spaced treatments

X o cy X ¢ ) X cl Cs
1 -13 5 0 -7 3 1 -8 3
5 -1 -9 2 -1 -5 2 -2 —4
10 14 4 5 8 2 5 7 1
366 122 114 38 78 26
X < Cy X c Cy X c Cg
2 -11 5 0 -2 4 1 —4 2
5 -2 -8 1 =1 -5 2 -1 -3
10 13 3 5 3 1 4 5 1
204 98 14 42 42 14
X Y cz g | X € c G | X ¢ C Ca
1 -11 20 -8 0 -7 7 -3 1 -2 1 -1
2 -7 —4 14 1 -3 —4 8 2 =1 et | 2
4 1 -29 -7 2 1 -8 —6 4 1 -1 -2
B 17 13 1 4 9 5 1 5 2 1 1
460 1426 310 140 154 110 10 4 10
X ¢ Ca g | X ¢ cy G | X ¢ ) G
0 -2 43 -6 0 -5 9 -5 1 -3 3 -9
1 -1 -7 15|1 -3 -3 9|2 -2 -1 14
2 0 —-49 -10 3 3 —-13 -5 B 1 -5 -7
5 3 23 1 6 7 7 1 8 4 3 2
14 5068 362 84 308 132 30 44 330
X < Cg C3 X ¢ C C3
0 -4 107 -18 |1 -7 6 -—10
1 -3 -5 25 2 -5 -4 15
5 1 -205 -9 5 1 —107 -6
10 6 103 2 10 11 48 1
62 64108 1034 196 17738 362
X ¢ Cg C3 C4 X < Cg C3 C4
0 -3 31 —837 21 1 -2 30 -176 —31454
1 -2 2 752 —64 2 -21 11 76 63213
2 -1 -19 916 56 4 -11 -19 252 — 37667
4 1 -37 —1016 -14 8 9 —47 —181 4854
8 5 3 185 1 16 49 25 29 1054
40 3224 3171610 4870 3720 4216 133858 6428823890
X ) [ 3
0 -31 3 —35433
1 -25 40 4600
2 —19 -6 28078
4 -7 -T7 35289
8 17 -135 —39829
16 65 85 7295
6510 41664 4949911360
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TABLE A.12.
Coefficients for fitting periodic curves and partitioning sums of squares for data
taken at equal time intervals throughout a complete cycle.

X values for n*

4 6 8 12 u| Uy v, U, Vv, U, Vs U, v,
0O 00 0 .0 1.000 000 1.000 000 1.000 000 1.000 000
1 966 259 .866 .500 707 707 .500 .866
1 2 866 500 500 866 000 1.000 —.500 866
1 3 707 707 000 1.000 =.707 707 —1.000 000
1 2 4 500 .866 -.500 866 —1.000 000 -.500 -—.866
5 259 966 —.566 500 =707 =707 500 —.866
1 2 3 6 000 1000 -—1.000 000 000 -=1.000 1.000 000
7| —259 966 -—.866 —.500 707 =707 .500 .866
2 4 8 —.500 866 —.500 —.866 1.000 000 - .500 866
3 9 -0 707 000 -—=1.000 707 707 —1.000 000
5 10| —-.866 .500 500 —.866 .000 1.000 —500 -—.866
11 —.966 259 866 -=.500 =707 707 500 —.866
2 3 4 6 12| -1000 .000 1.000 000 -—1.000 000 1.000 000
13| —-966 —.259 866 500 —-707  -.707 .500 866
7 14| -—.866 —.500 500 .866 000 -—1.000 -.500 866
5 15 =707 =707 000 1.000 707 =707 -1.000 000
4 8 16 —.500 -—.866 - .500 866 1.000 000 —-.500 —.866
17 —.259 —.966 —.866 500 707 707 500 —.866
3 6 9 18 .000 —1.000 —1.000 .000 .000 1.000 1.000 .000
19 259 —966 —u66 —-.500 —.707 707 .500 .866
5 10 20 500 —.866 —.500 -.866 —1.000 000 —=.500 866
T 21 07T —.707 000 —1.000 =707 =707 -1.000 000
11 22 866 —.500 500 —.866 000 —1.000 —-.500 —.866
23 966 —.259 866 —.500 707 =707 500 —.866

*For a given value of n, use only the lines of the table for which X values are given. When
n=4, use only columns to U;. When n=6, use only columns to U;. When n=8, use only
columns to U,.

X values forn="7
U, Vi U, Vs U, Vs
0 1.000 000 1.000 000 1.000 000
1 623 782 - 223 975 —.901 434
2 —.223 975 —.901 —.434 623 —.782
3 —.901 434 623 —.782 —-.223 975
4 —-.901 —.434 623 782 —.223 —.975
S5 —.223 —-.97 —-.901 434 623 782
6 623 —.782 —.223 - 975 —.901 —.434
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TABLE A.12.
Continued.

X values for n=>52

U, Vi U, \D U, \£ Uy \2

0| 1000 .000 1.000 000  1.000 000  1.000 .000

1 993 121 971 239 935 355 .885 465

2 971 239 885 465 749 .663 568 823

3 935 .355 749 .663 465 885 121 993

4 885  .465 .568 823 J21 993 -—-.355 935

5 823  .568 355 935 -—.239 971  —.749 663

6 749 663 JA21 993 -—.598 823  —97 239

£ 663 749 -—-.121 993 —.823 568 —971 -—.239

8 568 823 —.355 935 -971 239 —-.749 -—.663

9 465 885  —.568 823 -9983 -—-.121 -355 -—935
10 335 936 —.749 885 —.885 —.465 J21 —.993
11 239 971 —.88 465 —.663 —.749 568 —.823
12 J21 993 —97 239 -—-356 —.93 885 —.465
13 000 1.000 -—1.000 .000 000 —1.000 1.000 .000
14 | —.121 993 —971 —.239 355  —.935 885 465
15 [ —.239 971 —.885 —.465 663 —.749 568 823
16 [ —35 935 —.749 —.663 885  —.465 121 993
17 | —465 885 —.568 —.823 .993 -.121 -.355 935
18 | —.568 823 —.355 —.935 971 239 —.749 .663
19| —663 749 —.121 -—.993 823 568 —.971 239
20| —.749 663 J21  —.993 .568 823 —-971 -.239
21 [ —.823 .568 355 —.935 239 971 —-.749 —.663
22 | —.885 465 568 —.823 -—.121 993 -—-.355 —.935
23 | —935 .35 749 —.663 —.465 885 J21  —.993
24| —971 239 885 —465 —.749 663 568 —.823
25 | —.993 121 971 -—-.239 -—.935 355 885 —.465
26 |—1.000 .000 1.000 000 —1.000 000  1.000 .000
27 | —.993 -.121 971 239 -93 —.355 885 465
28 | —971 —.239 .885 465 —.749 —.663 568 823
29 | —.935 -.355 749 663 —.465 —.885 J21 993
30 | —.885 —.465 068 823 -.121 -.121 -355 935
31 | —.823 -—.568 355 935 239 —971 —-.749 .663
32 | —.749 —.663 J21 993 568 —.823 —971 239
33 | —.663 —.749 —.121 993 823 —568 -—-971 -—.239
34 | —.568 —.823 —.355 935 971 —-.239 -—.749 -—.663
35 | —.465 —.885 —.568 823 993 J21 -—-.355 -—.935
36 | —.355 —.935 —.749 .663 .885 465 J21  —.993
37 | —.239 —.971 —.885 465 .663 .749 568 —.823



TABLE A.12.
Continued.

X values for n=52

U, \2 U,y \D U, \£ U, \2
38 | —.121 —.993 —.971 239 355 935 885 —.465
39 .000 —1.000 —1.000 .000 000 1.000  1.000 .000
40 J21 -993 -—-971 -.238% -.355 935 885 .465
41 239 —.971 —885 —.465 -—.663 749 .568 823
42 355 —93% —.749 -—-663 -—.885 465 21 993
43 465 —.885 —.568 —.823 —.993 121 -.355 935
44 568 —823 —-35 -—-.935 -—971 —-.239 -—.749 .663
45 663 —.749 —.121 -—.993 —.823 -.568 —971 239
46 749 —.663 121 -—-993 -568 —823 -—-971 -—.239
47 823 —.568 355 =935 —239- —97  — 49 —.663
48 885 —.465 568 —.823 J21 -993 -35 -—.935
49 935 —.355 749 —.663 465  —.885 J21 -—.993
50 971 —-.239 885 —.465 .49 —.663 568 —.823
51 993 —.121 g —239 935 —.355 885 —.465
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INDEX

Abscissa, 168
Accuracy and precision, 41
Additivity, 143, 148-149, 153-154,
158
Adjusted treatment means, 290
Amplitude, 220
Analysis of Covariance, see Covari-
ance analysis
Analysis of variance, 18, 31-45
assumptions, 139
basic principles, 31-33
completely randomized design,
48-52
curvilinear regression, 212, 215, 218
and experimental designs, 44
latin squares, 80-85
linear regression, 181-187
multiple regression, 254, 256
periodic regression, 223
randomized complete blocks, 5460
repeated observations, 128-130,
133-135
split-blocks, 118-121
split-plots, 90-94
split-split plots, 101-110
transformed data, 151, 156, 160
ANOVA, 18, 22
Arithmetic mean, 15
Asymptote, 206
Asymptotic curve, 206—207

Bartlett’s test for homogeneity of vari-
ance, 146-147, 152-153, 157,
159, 160

Binomial distribution, 159, 268

Bliss, C. L., 242

Block, 53-54, 87-89, 115

Block effects, 58—-60, 148, 287-288

Calculating machines, 18, 36, 81, 93,
107
Cause and effect, 176, 188

345

Chance, 3
Chi-square, 146, 267, 268
adjusted, 147
definition, 268
degrees of freedom, 268, 275
genetic ratios, 269-273, 275-277
heterogeneity, 279-281
independence, 274-278
table of, 309
unadjusted, 146
Class comparisons, 6870
Coded values of X, 230-231, 233
Coding, 146, 230, 259
Coefficient, of alienation, 182
of correlation, 169
of determination, 170
of multiple correlation, 248, 257
of multiple determination, 212, 248,
257
of partial correlation, 248, 257
of partial regression, 249
regression, 169, 178, 180-182, 249
of variation, 18
Coefficients, high order partial, 257
orthogonal, 65-76, 83, 94, 109,
121-122, 236, 235
periodic, 238, 342-344
polynomial, 121, 229-237, 331-341
Combining curve types, 218
Combining data for two or more
years, 132-137
Computers, electronic, 215, 225, 226,
258
Confidence belts, 183-184
Confidence limits, of estimated Y, 183
for mean, 21, 23-24
for mean difference, 39-40
of regression coefficient, 183
Contingency table, 274, 276-277
collapsing, 278
Continuity, correction for, 270



Cook book procedure, 33
Correction term, 17, 35, 49, 56
Correlation, 167-266

adjusted means, 292
sum of squares of adjusted treat-
ment means, 292

definition, 168 tests of significance, 292
fhrect, o Cubic response, 214-216
inverse, 167 Curves. 195

linear, 167-194 '

between means and variances, 157

more than three variables, 256-264

multiple, 247-266

negative, 167

partial, 247

part-whole, 189-190

pitfalls, 187-192

positive, 167

product-moment method, 174-176

rank difference method, 173

versus regression, 170-171

scatter diagrams, 171-172

shortcut method, 173-174

simple, 247

spurious, 190, 255—256

standard method, 174-176

total, 247

Correlation coefficient, 169

calculation, 171-176

range and interpretation, 174

Spearman’s, 173

test of significance, 176

Counts, analysis of, 267-282

transformations, 154-159

Covariance analysis, 285-293

adjusted treatment sum of squares,
289, 292

adjusting more than one source of
variation, 290292

adjustment of treatment means, 290

application to reduction of error,
285

approximate method, 292

calculation of sums of cross-prod-
ucts, 286-287

example, 286

interpretation, 293

partitioning treatment effects, 290

standard errors for comparing

asymptotic, 206207
combination, 218-219
cubic, 207

decay, 202

exponential, 202-206
Fourier, 220

growth, 202

normal frequency, 13
periodic, 220-225, 238-243
polynomial, 207-218, 229-238
power, 196-202

quadratic, 207-208, 211-213

Curvilinear relations, 195-227
Degrees of freedom, 17, 176, 268

in chi-square analysis, 268, 275

for coefficient of correlation,
176-177

partitioning of, 65

single, 70, 73, 83

Design, completely randomized,

47-52

latin square, 77-85

randomized complete block, 53-60

split-block, 115-124

split-plot, 87-100

split-split plot, 101-113

subplots as repeated observations,
125-137

Deviation mean square, 182, 236-237
Difference, highly significant, 24

significant, 24
standard error of, 37

Distribution, binomial, 159, 268

bivariate normal, 168, 170
continuous, 268

discrete, 268

F, 25

normal, 13, 268

Poisson, 154
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of sample means, 21
t, 22-23
Z, 23
Doolittle method, 215
Duncan’s multiple range test, 6365,
157, 160

Enumeration data, 267-282
Equally spaced treatments, 229-245
Equation, cubic, 207
linear, 169, 178-179, 186, 191, 207
logarithmic, 196-207
normal, 207, 221, 249, 259
simultaneous, 234
periodic, 220-225, 238-243
polynomial, 207-218, 229-237
quadratic, 207
Error, experimental, 5, 31
Error terms, 59, 288
distribution of, 145, 152
Exact probability, 269
Experiment, 2, 3, 11
characteristics of, 6-7
steps, 7
Experimental designs, 8, 44, 293
Experimental error, 5, 31
Experimental material, selection of, 7,
285
Experimental unit, 8, 11
Extrapolation, 190-192

F, ratio, 25, 36, 50, 60, 82
table, 299-306
test, 50, 60, 61
planned, 61, 65-76
Factorial, 258, 269
Factorial experiments, 42
Fisher, R. A., 25
Frequency, histogram, 12
polygon, 12
table, 12

Genetic ratios, 269-273, 275-277
table of, 273

Graph, 168, 171, 196

Graph paper, log, 196
semilog, 202
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Harmonics, 240
Heterogeneity, test for, 279-281
Homogeneity of variance, 140-142
Bartlett’s test for, 146-147,
152-153, 160
Hypothesis testing, 6, 267

Improving precision, 283-294
Independence, chi-square tests,
274-278
of means and variances, 142-143
Individual degrees of freedom, 70,
73, 83, 272
Interaction, 42, 72
partitioning of, 72-74, 95, 108-110
Intercept, 169, 178

K values for fitting polynomials,
229-231, 331-340

Latin square designs, 77-85, 117
analysis, 80-85
example, 79
randomization, 78-79
Least significant difference, 40,
61-63, 98-100, 110-113,
123-124, 141
Least squares method, 178, 206-207
Line, best fitting, 177-178, 180-181
Linear regression, analysis, 167-194
coefficient, 169, 178, 180, 181, 182,
249
graphs, 168, 171-172
interpretation, 176, 179, 188-189
tests for deviation from, 187
Linear response, 72
Local control, 6

Main plots, 87, 102, 115
Mean, arithmetic, 15
detransformed, 156
weighted, 156157, 162, 220, 224
of differences, 37
geometric, 170
population, 13, 15
sample, 15
weighted, 162, 220, 224



Mean deviation, 18
Mean separation, 61-76, 82-85,
94-100, 107-110, 121-123
Median, 16
Mode, 16
Model, randomized complete block,
58
regression, 170
Multiple correlation, 247-266
calculation, 248, 257
interpretation, 254-256
Multiple range tests, 63
Multiple regression, 247-266
equation, 249, 258
more than three variables, 256-264
response surfaces, 258-264
visualization, 257-258

Non-additivity, 149, 154, 158

Non-linear response, 72

Normal distribution, 13
frequency curve, 13

Normal equations, multiple correla-

tion, 249

periodic curve fitting, 221, 238
polynomial curve fitting, 207
response surface, 259

Normality, 139, 140, 154

Null hypothesis, 24, 176

Objectives of experiment, 7

Ordinate, 168

Original values, 233, 261-262

Orthogonal coefficients, 65-76, 83,
94, 109, 121, 122, 136, 229, 235,
259

P, values, 230, 235

Paired values, t test, 40

Parabola, 207

Parameters, 12, 15

Partial correlation, 247

Partial regression coefficient, 249

Partitioning of sums of squares,
235-237, 241-242

Periodic curve fitting, 220-225,
238-243

Phase angle, 220, 224, 242-243
Pitfalls, 187
Planned F tests, 65
Plot, definition, 11
Poisson distribution, 154
Polynomial, curve fitting, 207-219,
229-235
equations, 207
in replicated experiments, 216-218
Population, concept of, 11
of individuals, 21
of mean differences, 37-38
of means, 21
Precision, 6, 41, 283-294
Problem definition, 7
PU and PV, values in periodic regres-
sion, 240-241

Quadratic equation, 207
Quadratic response, 212, 218

Randomization, 5, 9, 47
in completely randomized design,
47-48
in latin square, 78-79
in randomized complete blocks,
54
in split-blocks, 115
in split-plots, 90
in split-split plots, 101
Randomized complete block design,
53-60
analysis, 54-60
arrangement of blocks, 53-54
example, 54
randomization, 54
Random numbers, table, 296
Range, 18
Reasoning, deductive and inductive, 1
Recording data, 41
References, selected, 294
Refinement of technique, 285
Regression, 169
coefficient, 169, 178, 249
variance of, 182
curvilinear, 188, 216-218
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equations, 169

linear, 167-194

model 1, 170

model II, 170

more than three variables, 256

multiple, 247-266

partial, 247

in replicated experiments, 185,

216-218

Relation between r and F tests, 182
Replication, 5, 9, 11

required number, 283-284
Research, 2, 6
Response surfaces, 258
Rounding and reporting numbers, 41
Rule of signs, 220, 224

Sample, 11
random, 11
size, 272-273
Scales, pretransformed, 162-164
Scatter diagrams, 171-172
Scientific method, 6
Selected references, 294
Selection of, experimental material, 7,
285
experimental unit, 285
treatments, 284
Semi-amplitude, 220, 224, 242
Shortcut methods, 173, 229-245
Significance, statistical, 24, 44, 176
Significant digits, 41
Simultaneous equations, 234
Single degrees of freedom, 70, 73, 83,
272
Slope, 169
Snedecor, G. W., 25, 207
Split-block design, 115-124
analysis, 118-124
example, 116-117
randomization, 115
- standard errors, 123
sums of squares, 119-120
Split-plot design, 87-100, 115, 116
analysis, 90-94
example, 89

349 Index

randomization, 90
standard errors, 98
sums of squares, 92-93
Split-split plot design, analysis,
101-113
example, 103
randomization, 101
standard errors, 110-111
sums of squares, 106
Standard deviation, 16
population, 13, 16
sample, 16
Standard error, of difference, 37
of estimate, 180, 254
of mean, 21
of mean differences, 37
for repeated observations, 130-132,
137
for split-blocks, 123
for split-plots, 98
for split-split plots, 110-113
Statistic, definition, 12, 15
Statistical evaluation, 5
Statistics, basic concepts, 11-29
Subplots, 87, 101
as repeated observations, 125-137
standard errors, 130-132, 137
Subscript notation, 18-19
Sub-subplots, 101
Summation notation, 15, 20
Sum of products, in covariance analy-
sis, 286-287
of orthogonal coefficients, 66, 83
in regression analysis, 175
Sum of squares, 17
Sum of squares and mean squares, in
completely randomized experi-
ments, 49-50
of individual degrees of freedom,
70, 73, 83
in latin squares, 8081
in randomized complete blocks,
56-59
in split-blocks, 119-120
in split-plots, 92-93
in split-split plots, 106-107



t, distribution, 22-23
table of, 297-298
test, 31-45, 38-39
comparison with F test, 39, 96
for paired plots, 40
variances different, 39
Table, angular (arcsine) transforma-
tions, 311
chi-square, 309
coefficients, for equally spaced
treatments, 331-340
for fitting periodic curves,
342-344

for unequally spaced treatments,
341

contingency, 274, 276-277
F, 299-306
genetic ratios, 273
logarithms, 312-315
pretransformed scales, 163
random numbers, 296
squares and square roots, 316-330
studentized factors, 307-308
t, 297-298
two way, 18-19
values, of coefficient of correlation,
310
Tests, of independence, 274-278
of comparisons, 66
degrees of freedom, 275
of significance, analysis of covari-
ance, 292
correlation coefficient, 176, 182
distribution of t, 38
F ratio, 36
mean difference, 38-39
in regression, 176, 182, 187

Transformations, 139-165
angular or arcsine, 158-162
log, 150154, 196
square root, 154-158
Treatment, 11
effects, 5, 148, 287-288
equally spaced, 229, 238
means, adjusted, 290-292
selection of, 7, 284
unequally spaced, 238
Trend comparisons, 70-74, 121, 229
Tukey's test for additivity, 148-149,
153-154, 158

Variable, 11
continuous, 11
dependent, 167
discrete, 11
fixed, 170
independent, 167
random, 170
Variance, analysis of, 18. See also
Analysis of variance
definition, 16
of estimated Y, 183
of mean difference, 37
of means, 21
of regression coefficient, 182
Variate, definition, 11
Variation, assignable causes, 3, 44
coefficient of, 18
unassignable causes, 3, 5, 44

Weighted means, 156-157, 162, 220,
224

Yates correction for continuity, 270
Z values, 23
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ciples of designing and conducting agricultural experiments, but do
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