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PREFACE

Few agriculhral research workers have the time to master the details of abstract
and sophisticated matlematics, yet they would like to gain a general understand-
ing of the logic and reasoning involved in the designing and conducting of
experiments. In short, they would like to learn enough of the basic principles of
statistics to be able to design experiments properly and to draw valid conclusions
from the results. This book is written to satisfy these needs. Matlematics beyond
simple arithmeUc has been kept to a minimum. Many of the mathematical
relations are presented simply as facts without formal proof. Yet, every effort has

been made to make the discussion mathematically correct and to avoid the
dangers of oversimplification.

Separate chapters are devoted to each of seven experimental desigrn that
probably constitute over 90 percent of the designs used in agricultural research.
Four chapters are devoted to correlation and regression (linear, curvilinear, and
mulUple). Regression is presented in the context of the analysis of variance as well
as a technique used in survey-type research. A special feahre is a chapter on the
use of shortcut methods for handling regression when the experimental treatments
or observations are equally spaced.

For each technique emphasis is on a detailed, step-by-step procedure for
computing the essential statistics. The spiral binding has been chosen so the book
will lay open to enable users to follow a procedure in relation to their own work.
Yet, this is much more than a "cookbook." In each case, the logic and reasoning
behind the analysis is explained. An entire chapter ls devoted to the assumpUons
underlying the analysis of variance and the ways of handling data that do not
satisfy these assumptions.

Special emphasis is given to the subject of mean separation (determining
which of several means are significantly different). It is evident from the current
agricultural research literature that tlere is a great deal of misunderstanding about
this subject. As a result, important conclusions justified by the data are often
overlooked. This is especially true with regard to tlle method known as the
functional analysis of variance or tl're method of orthogonal coefficients. This
extremely simple, yet powerftrl technique is unfamiliar to a large proportion of
agricultural research workers. This and other methods of mean separation are fully
discussed.

The foremnner of this book, Statistical Methods in Agrianltural Research, was
used for several years to teach a methods course to extension agents and other
professional agriculturists. The revisions and additions in the development of the
present book make it more useful for this purpose. Special features are an
improved presentation of mean separation, instructions for the use of prepro-
grammed calculators to simplify calculations in the analysis of variance, a discus-
sion and example of a response surface, and a chapter, "Improving Precision,"
which discusses covariance, and the determination of the number of replications
required in experiments.
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LOCIC,
RESEARCH,

AND
EXPERIMENT

"The purpose of statistical science is to provide an objecUve basis for the
analyses of problems in which the data depart from the laws of exact
causality. A general logical system of inductive reasoning has been
devised is applicable to data of this kind, and is now widely used in
scientific research. Some understanding of its principles is, therefore,
important both for research workers and for those whose interests lie in
the employment of technological advances resulting from research.
Eqpecially is this true of the agricultural and biological sciences."

D. J. Finney,
An Intro&tction to Statistical Scierce in Agriaifire

The above quotation is a concise statement of the importance of statistical science
in agriculhre. To grasp fully what is meant by a "logical system of inductive
reasoning," we must review some elementary concepts of logic. When we cl"tt,fy
problems according to the system of reasoning employed in their solution, we find
that there are just two kinds of problems.

DEDUCTIVE AND IIYDUCTIVE REA,SONING

First, there is the kind of problem in which we iue given some general principle or
set of principles and asked to determine what would happen under a specific set of
conditions. The type of reasoning employed, from the general to the particular, is
called dcdu.tioe reasoning. A few examples will serve to make this concept clear.

Given the general formula for the area of a circle A:Tr2, what is the area of a
circle whose radius is 6 inches?

Given a key and descriptions of the weeds of California, to what species does a
certain weed belong?

Given Boyle's and Charles' laws, how do we expect a certain volume of gas to
change when subjected to certain changes in pressure and temperature?

I DedrcAoe and hdtrctioe Reosoning



Given some general principles of disease control, what yield response do we
expect from the application of a given dose of a fungicide to an acre of a particular
crop?

Given an unbiased coin whose probability of coming up heads when tossed is

one-half, what will happen when this coin is tossed I0 times?

Nearly all the problems encountered during our formal education were of this
type, where the solution required deductive reasoning. It is frequently said that
agriculturalists should be "well grounded in basic fundamentals." This implies that
they should have at their command a large store of general principles and the skills
of deductive reasoning to apply these to qpecific cases.

The second type of problem is the opposite of the fust. We are given some
specific cases and asked to arrive at some general principles that will apply to all
members of the class represented by these cases. The reasoning employed, from
the qpecific to the general, is called inductioe reasoning. The following examples of
problems requiring inductive reasoning are analogous to those given above to
illustrate the deductive type of problems.

Given the areas and radii of several circles, what general formula can we give
expressing t}re relation between the areas and radii of all circles?

Given several qpecimens of an undescribed weed species, how would we describe
the species as a whole and express its relation to other species in a key?

Given a series of observations on the volume of a gas under different conditions of
pressure and temperature, what general laws will account for these observations?

Given the results of a series of disease control trials, what general recommenda-
tions can we make regarding the use of control methods?

Given the results of tossing a coin 10 times, what conclusions can we draw
regarding the bias or lack of bias of the coin?

Notice that all problems of this type have one thing in common-they start with a
group of obsen:a.tions. In some cases, as in the description of a new species, the
observations are simply made of phenomena as they occur in nature. Uzually,
however, the observations are made under controlled conditions. The factors being
studied iue made to vary in some systematic fashion by the application of
treatments. Other factors that might influence the observations are minimized as

much as is practical. We then have an expefunent.

The Researcher's Problem

We have said that nearly all problems encountered in our formal schooling are of
the type requiring deductive reasoning. We can also say that nearly all problems
encountered by an agricultualist are those requiring inductive reasoning.

What is the typical problem that confronts the agriculhual researcher? It
could be stated in these general terms: Will the use of a new or different practice
affect the outcome of some particular segment of agricultual entelprise, and if so,

lngic, Research, and Experiment 2



to what extent? Since this problem can never be answered with 1007o certainty,
we must also consider the risk and cost of making an incorrect decision. This will
become clearer as we go along.

To answer zuch a problem, an experiment is generally required. In the
simplest experiment there may be only two treatments-the new practice and the
old. A more complicated experiment might include several rates or methods of
apply-rng the new practice. Still more complex are those experiments in which the
effects of several practices are studied simultaneously.

Whatever the design of the experiment, its purpose is to provide a means of
making observations (probability sampling) that can be used for making plausible
generalizations about the practice under study. Arriving at such generalizations is

a typical problem in inductive reasoning.
The reader should not gain the impression that inductive reasoning involves

an independent line of thought distinct from deductive reasoning. Inductive
conclusioru must always be checked by precise deductive methods.

The Element of Chance

Another phrase that appears in the quotation at the b"g""i"g of this chapter
requires some clarification. What is meant by "problems in which the data depart
from the laws of exact causality"?

Iooking at the examples of problems given before, we note that there are
some imlrcrtant differences among them. In the problem of finding the area of a
circle there is no uncertainty regarding the answer. For any given radius, there can
be only a single answer.

The coin-tossing problem is quite different. The general assumption is that
the coin is not biased; but even with a single toss we are uncertain as to the result.
One of two remlts may be obtained, both being equally probable. The question of
what will happen when the coin is tossed I0 times has an even more uncertain
answer, for there are lI possible results as to the number of heads that will turn
up, and these results differ in their probability of occrrrrence. Obviously, sampling
vagaries will occur in this case, for tlere is not a simple one-to-one relation
between cause and effect.

Such a situation is almost universal in the field of agriculture. No matter how
much scientists know about nutrition and physiolory, they cannot predict precisely
what will be the gain in weight of a steer or the yield of a plot of potatoes under
given sets of conditions. Chance variatioru resulting from a multitude of causes
always make the results vary, no matter how much effort was put into controlling
all known factors.

The term clwtwe is hard to define, but even without a clear definition, its
meaning is understood well enough to appreciate its importance in affecting
biological results. When the element of chance enters into a problem, real
difficulties are introduced. These are much more serious in the field of inductive
reasoning than in deductive reasoning.

3 Dedurtioe and h&rcthx Reasoning



Consider the deductive problem of tossing an unbiased coin 10 times. By
deductive methods we can enumerate all 11 possible resrlts and calculate the
probability of each fairly easily. For example, suppose we ask, "What is the
probability of getUng the result of five heads and five tails?" This answer can be
found by calculating the value of

101

5!(5!)(2,0)

which turns out to be 0.2t46, or 24.Mo. As the number of tosses is increased, or as

the initial assumptions are modified to include certain degrees of bias in the coin,
the calculaUons become more laborious, but they are still straightforward, and the
remlts are simple and definite. Fortunately, the theory of probability has been
developed by mathematicians, so that short-cut methods and tables are available
to reduce greatly the necessary calculations in complicated cases.

Now consider the inductive problem. If a coin is tossed l0 times and comes
up five heads and five tails, what can we say about the bias or lack of bias of the
coin? AII we c.ur say with certainty is that the coin was neither two-headed nor
two-tailed. If it were not biased, we would expect this result about 257o of the
times t}re trial was repeated. We can say with a high degree of probability of being
correct that the coin is not strongly biased in favor of either heads or tails. We
must remember that we can never make such a statement with complete certainty.
Even with a strongly biased coin (one that comes up heads 907o of the time), the
observed result of five heads and five tafu would have been pssibb but not very
probablc.

The only other statement we can make about the coin is tlat we feel fairly
confident that its degree of bias was somewhere between a stght bias in favor of
tails and a slight bias in favor of heads. Notice there is an infinity of possibilities in
this interval, and that zero bias is one of these. It is very important to realize that
with no other knowledge about the coin than the results of these I0 tosses, we are
not justified in concluding that the coin was unbiased. With more tosses, we can
n€urow the interval of biases that could reasonably be expected to produce our
observed result, but we will never be able to state with certainty that the coin was

unbiased.
We have pqposely avoided defining the terms sttong and slight bias for the

sake of simplicity. However, it is possible by statistical methods to determine what
ranges of bias we will accept or reject depending on the degree of confidence we
wish to have in our conclusions.

We can now see that the answer to our question, "What can we say about the
bias of the coin?" was rather vague. The reader who is accustomed only to the
precise answers of deductive mathemaUcs may be disappointed at the vagueness

of the answer. Yet, ursatisfactory as this may seem, the very nature of inductive
reasoning is such that the answer is the best we can grve. fu Alfred North
Whitehead, the great mathematical philosopher, has said, "The Theory of Induc-
tion is the despair of philosophy-and yet all our activities are based upon it."

Ingb, Research, and Erpedmmt 4



The researcher should not despair in attempts to answer questions th.o"gh
observations and experiments. However, it should [6 l6qlized that answers can
never be absolute, and generalizations must be made with caution and only after
making careful observations and exercising the best systems of reasoning at one's
command.

The Need for Statistical Evaluation

Most agriculturists readily see the need for statistical analysis to provide an
objective basis for evaluation, but some examples may be usefirl. If one harvests
two equal areas of wheat from a field, the gain yield from the two areas, whether
they be rod rows in length or halves of the entire field, will seldom be equal; the
weight of fruit from adjacent trees in an orchard is seldom the same; rates of
weight gain of any two animals of the same species and breed nearly always differ.
Differences of this sort among crop or animal units result from genetic and
environmental differences beyond the control of an experimenter. Although they
are not errors in the sense of being wrong, they represent the variability among
experimental units we call etperinmtal ertot

Once we recognize the existence of this variability, we realize the difficulty in
evaluaUng a new practice by app$ng it to a single experimental unit and then
comparing this unit to one that is similar but nontreated. The effect of t}re new
practice is confounded with unaccounted variability. Thus, an experiment with a
single replication provides a very poor measure of treatment effect; further, since
there are no two experimental units treated alike, it provides no measure of
experimental error. Statistical science overcomes these difficulties by requiring the
collection of experimental data that will allow an unbiased estimate of treatment
effects and the evaluation of treatment differences by tests of significance based
on measuring expaimentnl erot

Treatment effects are estimated by applying treatrnents to at least two
experimental units (usually more) and averaging the results for each treatment.
Tests of significance assess the probability that treatment differences could have
occurred by chance alone.

There are three important principles inherent in all experimental designs that
are essential to the objectives of statistical science:

l. Replication Replication means that a treatment is repeated two or more
times. Its function is to provide an estimate of experimental error and to
provide a more precise measure of treatment effects. The number of
replications that will be required in a particular experiment depends on
the magnitude of the differences you wish to detect and the variability of
the data with which you iue working. Considering these two things at the
beginning of an experiment will save much frustration.

2. Randomizafion. Randomization is the assignment of treatrnents to experi-
mental units so that all units considered have an equal chance of receiving
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a treatment. It functions to assure unbiased estimates of treatment means
and experimental error.

3. Incal control. This principle of experimentd design allows for certain
restrictions on randomization to reduce experimental error. For example,
in the randomized complete block design, treatments are grouped into
blocks that are expected to perform differently, allowing a block effect to
be removed from the total variation in the trial.

RESEARCH, SCIENTIFIC METHOD, AI\D TIM EXPERIMENT

Research can be broadly defined as systematic inquiry into a subject to discover
new facts or principles. The procedure for research is generally known as the
scientific method which, althouglr difficult to define precisely, usually involves the
following steps:

l. Fornulation of an hypothesis-a tentative explanation or solution.

2. Planning an experiment to obiectioely test the hypothesis.

3. Coreful obsenntion ond collection of dnta from the exryiment.

4. lntet?retntion of tlw eryer*msntal results. A consideration of the results in
the context of other lnown facts concerning the problem leads to
confinnation, rejection, or alteration of the hypothesis.

The experiment is an important tool of research. Some important characteris-
tics of a well-planned experiment are given below.

L. Sirnplicity. The selection of treatments and the experimental arrangement
should be as simple as possible, consistent with the oblectves of the
experiment.

2. Degree of precision. The probability should b" high that the experiment
will be able to measure differences with the degree of precision the
eryerimenter desires. This implies an appropriate design and srfficient
replication.

3. Absmce of systematic error. Ttte experiment must be planned to ensure

that experimental units receiving one treatment in no systematic way
differ from those receiving another treatment so that an unbiased estimate

of each treatment effect can be obtained.

4. Range of oalidity of conchsi.orx. Conclusions should have as wide a range
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of validity as possible. An experiment replicated in time and qpace would
increase the range of validity of the conclusions that could be drawn from
it. A factorial set of treatments is another way for increasing the range of
validity of an erperiment. In a factorial experiment the effects of one
factor are evaluated under varying levels of a second factor.

5. Calculation ,f d"gru of utcertainty.ln any experiment there is always
some degree of uncertainty as to the validity of the conclusions. The
erperiment should be designed so that it is possible to calculate the
probability of obtaining the observed resrlts by chance alone.

STEPS IN EXPERIMENTATION

The selection of a procedure for research depends, to a large extent, on the subject
matter in which the research is being conducted and on the objecUves of the
research. The research might be descriptive and involve a sampling suwey, or it
might involve a controlled experiment or series of experiments. When an experi-
ment is involved there are a number of considerations that should be carefully
thought through if it is to be a success. The following are some of the more
important steps to be taken:

l. Definition of the yoblem. The first step in problem solving is to state
the problem clearly and concisely. If the problem cannot be defined,
there is little chance of it ever being solved. Once the problem is
understood, you should be able to formulate questions which, when
answered, will lead to solutions.

2. Statanent of obiectiaes. This may be in the form of questions to be
answered, the hypothesis to be tested, or the effects to be estimated.
Objectives should be written out in precise terms. This allows the
experimenter to plan the experimental procedures more effectively.
When there is more than one objective, they should be listed in order of
importance, as this might have a bearing on the experimental desigr. In
stating objecUves, do not be vagr-re or too ambitious.

3. klzction of treaAnerW. The success of the experiment rests on t}re
carefirl selection of treaknents, whose evaluation will answer the ques-
tions posed.

4. kbction of exryimentd materiaL In selecting experimental material,
the objectives of the experiment and the population about which in-
ferences are to be made must be considered. The material used should
be representative of the population on which the treatrnents will be
tested.

7 Steps in Experimentation



5. klection of eqerimmtnl design. Here again a corsideration of objectives
is important, but a general rule would be to choose the simplest design
that is likely to provide the precision you require.

6. kl.ectior. of the unit fu obsenntion and the rutnber of replications. For
example, in field experiments with plants, this means deciding on the
size and shape of field plots. In experiments with animals, this means
deciding on the number of animals to consider as an experimental unit.
Experience from otler similar experiments is invaluable in making these
decisions. Both plot size and the number of replications should be
chosen to produce the required precision of treatment estimate.

7. Control of the effec* of the adiacmt units on each otlwr.l\is is usually
accomplished througlr the use of border rows and by randomization of
treatments.

8. Consideration of dan to be collzcted. The data collected should properly
evaluate treatment effects in line with the objectives of the experiment.
In addition, consideration should be given to collection of data that will
explain why the treatments perform as they do.

9. Outliningstatistical arulysis and, sannmarimtion of resul*. Write out the
sources of variation and associated degees of freedom in the analysis of
variance. Include the various F tests you may have planned. Consider
how the results might be used, and prepare possible summary tables or
graphs that will show the effects you expect. Compare these expected
results to the o{ectives of your experiment to see if the experiment will
give the answers you are looking for.

At this point it is well to provide for a review of your plans by a

statistician and by one or more of your colleagues. A review by others
may bring out points you have overlooked. Certain alteratioru or adjust-
ments may geatly enrich your experiment and make it possible to learn
considerably more from the work you are about to undertake.

10. Con&rcting the experiment. In conducting the experiment, use proce-
dures that are free from personal biases. Make use of the experimental
design in collecting data so that differences among individuals or dif-
ferences associated with order of collection can be removed from
experimental error. Avoid fatigue in collecting data. Immediately re-
check observations that seem out of line. Organize the collection of your
data to facilitate analysis and to avoid errors in recopying. If it is

necessary to copy data, check the copied figures against the originals
immediately.

Lagic, Research, and Exryiment 8



ll. Arwlyzing ilata and intetpreting results. All data should be analyzed as

planned and the remlts interpreted in the light of the experimental
conditions, hypothesis tested, and the relation of the results to facts
previously established. Remember that statistics do not prove anything
and that there is always a probability that your conclusions may be
wrong. Therefore, consider the consequences of making an incorrect
decision. Do not jump to a conclusion, even tho"gh it is statisticolly
significant if the conclusion appears out of line with previously estatr
Iished facts. In this case, investigate the matter further.

12. Preparation of a cortplete, readable, and. corect rqort of tlw research.
There is no zuch thing as a negatiae resilt.lf the null hypothesis is not
rejected, it is positioe evidence that there may be no real differences
among t}re treatments tested. Again, check with your colleagues and
provide for reyiew of your conclusions.

Although most of the above steps are nonstatistical, statistical analysis is an
important part of experimentation. Statistical science helps the researcher design
the experiment and objectively evaluate the rerulting numerical data. fu experi-
menters, few of us will have the time or the inclination to become competent
biometricians, but we can all learn and practice the three "R's" of experimenta-
tion.

l. Replicatz. This is the only way you will be able to measure the validity of
your conclusions from an experiment.

2. Randomize. Statistical analysis depends upon the assignment of treat-
ments to plots in a purely objecUve, random manner.

3. Request help. Ask for help when in doubt about how to desrgn, execute,
or analyze an experiment. You are not expected to be an expert statisti-
cian, but you should know enouglr to understand the important principles
of scientific experimentation, to be on guard against the common pidalls,
and to ask for help when you need it.

SUMMARY

Reasoning that proceeds from a general principle to a qpecific conclusion is a
de&rctioe process.lnd.uctioe reasoning arrives at a general principle from a qpecific
conclusion. Etperimmts are conducted to provide specific facts from which
general conclusions or principles are established and thus involve in&rctioe
reasoning.
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Variability is a characteristic of biological material and creates the problem of
deciding whether differences between experimental units result from unaccounted
variability or real treatment effects. Stafistical science helps overcome this diffi-
culty by requiring the collection of data to provide unbiased estimates of treat-
ment effects and the evaluation of treatment differences by tests of significance
based on measuring unaccounted variability.

Three important principles of experimental design are replication, randorruiza-
tion, and lncal control.

The scimtific method involves a flow process from known facts to hypothesis
to experimentation which furnishes more facts that will cancel, strengthen, or alter
the hypothesis.

A well-conceived and properly designed experiment should be as simple as

possible, have a high probability of achieving its objective, and avoid systematic
and biased errors. Its conclusions should have a wide range of validity, and data
collected from it must be analyzable by valid statistical procedures.

The procedure for experimentation involves defining a problem, stating
objectives, selecting treatments, selecting experimental material, selecting an
experimental desigr, selecting t}le experimental units and number of replications,
controlling the effects of adjacent units on each other, collection of data, and
analyzing, inteqpreting, and reporting results.

lngb, Research, and. Experi:nmt l0
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SOME
BASIC

CONCEPTS

An experimentnl unit refers to the unit of experimental material to which a
treatment is applied. It can be a single leaf, a whole plant, an area of ground
containing many plants, a pot or a flat in the greenhouse, a single animal, several
animals, or an entire herd. The term plot is synonymous with experimental unit
and is frequently used in referring to plant experimental units. "Plot" is sometimes
incorrectly used in referring to an entire experiment that really consists of several
plots. A measruable characteristic of an experimental unit is called a Duiable. A
variable can be discretp (discontinuous), assuming only specific values, the number
of diseased plants per plot for example, or it can be contirunw and assume any
value between certain limits, for example, the yield of gain from a plot of barley.
Individual measurements of a variable are called rnriatcs.

A treatnent is a dosage of material or a method that is to be tested in the
experiment. A crop variety is a kind of a treatment. When a treatrnent is applied
to more than one experimental unit we have replication of that treatment. Two
experimental units treated alike constitute two replications (or replicates). Experi-
mental units receiving different treatrnents that have been replicated and arranged
in a suitable design constitute xt experimenf (or trial or test).

In a statistical sense, a porylation is a set of measurements or counts of a
single variable taken on all the units specified to be in the population. The
population may be relatively small, zuch as the grain production per acre of all the
barley fields in a qpecified area in a specified year, or it may be large, for example,
the heights of all men over 20 years of age in the United States or the yields that
would result from all possible plots of a given shape that could be arranged on an
experimental area. Even a mwll population unrally involves a measurement on a
very large number 6f infividuqls or experimental units. We may have a population
of a variable from individual experimental trnits, a population of means of samples
of the variable, or a population of differences bbtween pairs of sample means.

A sampb is a set of measurements that constitutes part of a population. We
obtain information and make inferences about a population from a sample. For
this reason it is important that the sample be representative of the population. To
obtain a representative sample we use the principle of randomness. A random
sampb is one in which any individual measurement is as likely to be included as
any other.
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Figure 2.1. Frequency distribution of refractometer readings of 10,000 onion
bulbs with the theoretical curve of normal distribution.

Populations are described by characteristics called Wameters, Parameters are
fixed values. For example, the arithmetic mean of all the variates in a population is
a parameter. It has only one value, althouglr we seldom Isrow what it is. Samples
are described by the same characteristics, but when applied to samples they are
called sfatistics. The mean of a sample is a statistic. We cdculate statistics from
samples to estimate populaUon parameters. Statistics vary from sample to sample.

Different values of a variable have different frequencics of occurrence in the
population. To conveniently describe (characterize) a population, data from a large
sample are commonly organized by the construction of a frequercy tabl.e, a

freqtrcncy hisngram, ala.d a frequenc7 Wlqgon.In a frequency table (Table 2.I),
variates are tallied as to the several class intervals in which they fall. The totals
can then be plotted as frequencies of occurrence for each class interval and a
frequency histogam constructed (see Fig. 2.1). Connecting the midpoints of the
class intervals gives a frequency polygon.

If we were to plot the frequency of yields of grain from many plots of b"tl"y,
the percentage of butterfat in milk from many cows, the gains in weight of many
goup,s of lambs, the number of scab lesions per potato in a thousand potatoes, or
the refractometer readings of many onion bulbs, the resulting gaphs would show
several important features in common. The curves would all be approximately
bell-shaped, with the high point near the middle, representing the most common
class. They would slope off rather symmetrically on either side to rare, exceptional
classes at the two ends.

Most biological data (and, in fact, data in many other fields of application),
when plotted in a frequency curve, closely fit a mathematically defined cunre

bme fusic Concept$, 12
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TABLE 2.I.
A frequency table. Refractometer readings of 10,fiX) onion bulbs

Class Interval Midpoint Tabulation Frequency

6.8- 7.2
7.3- 7.7
7.8- 8.2

10.8-1r.2
rl.3-rr.7

14.3-14.7
14.8-t5.2
r5.3-15.7
r5.8-16.2
r6.3-16.7

7.O

7.5
8.0

11.0
11.5

l0
l9
60

tL)

50
25
20
t2

t4.5
r5.0
r5.5
16.0
r6.5

*Yr *Yr
l.avr )rfi uJr 11lr

u*t lLYt ll.vr D+r D+r
*kr *fi wyr D+r
ll.vr ll'fi rI

1600
1700

called the nomal frequerrcy canve. ln Figure 2.I a normal frequency curve has
been superimlrcsed over the frequency histogam and polygon of onion bulb
refractometer readings. Note how well the cuwe fits the distribution of the
sample.

TIIE NORMAL DISTRIBUflON

The imposing formula for describing a normal frequency curve is

f : N e-tt-ti'/zd(oln )

where f is the frequency of occurrence of any given variate, y is any given variate,
N is the number of variates in the populaUon, ;r is the population mean, and o is
the population standard deviation. Note that the normal curve describing the
frequency of occurrence of variates of different sizes can be plotted by the
calculation of just two parameters, p and o.

Normal distributions only vary from one another with reqpect to their mean
and/or standard deviation. The mean determines the position of a curve on the
horizontal axis. The standard deviation determines the amor.rnt of spread or
dispersion among the variates. Figure 2.2a shows two normal distributions with
identical standard deviations but different means. The two normal distributions in
Figure 2.2bhave identical means but different standard deviations.

l3 The Nonnal. Distribution
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Figure 2.2o. Normal distributions+tandard deviations equal, means different.
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Values for variates in the population (/'s)

Figure 2.2b. Normal distributions-means equal, standard deviations different.

STATISTICAL NOTATION, MEAI\S, AIYD STAIYDARD
DEVIATIONS

To deal mathematically with variates, means, and totals, it is necessary to have a

system of notation to express procedures and relationships. In this book, com-
plicated notation is avoided as much as possible, since it is confusing to most
students. Nevertheless, if you continue to study statistics in other bools, a brief
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introduction to the more or less standard system of notation may be helpful. We
say "more or less standard system of notation" because there is considerable
variability from book to book-to the frustration of all students. First, we discuss

the mean and standard deviation and in so doing learn some simple notation.
The most cornmon and usually the best measure of central tendency is the

aritlmetic meon.'Ilte symbols used to represent the arithmetic meantereafter
shortened to mean) are the Greek p for the mean of a lrcpulation and Y or X for
the lgean of a sample. M" (p) is a parameter, a fixed value, that we seldom know,
and Y is a statistic, a value that varies from sample to sample drawn from the same

population.
The population mean is defined as

Yr+Y2+Y3+... *Y*p:
N

where Yr, Yr, and so forth are the variates of the population, and N is the number
of variates in the population. Thus, Y* is tlle Nth variate of the population.

Many books use X ratler than Y to stand for a variable. However, this leads
to some confusion when you fust study regression. In regression you consider the
values of the variable you {ue studying as Y val3res as they are plotted on the Y
(ordinate) axis of the graph; the X values, plotted on the X (abscissa) axis, are t}re
treatments of your experiment, for example, levels of fertilization. Thus it avoids
some confusion to call variates Y values at the start.

The mean (p) "* be defined by a shorthand notation called a rurwnation
rwtation.

N

)Y,
i: I

,,: N

In this shorthand, the Greek capital ) (sigma) tells you to sum all the values of \.
The summation index, i: I . . . N, says that tlle values of I go from the value of Y,
to that of Y..

$iLee we seldom, if ever, know the value of p, we estimate it from a sample
mean, Y, which is defined as

jr,
i=lY:-

where r represents the number of variates in the sample. When it is clear what Y's
are to be summed, the notation is frequrently shortened to )l or even )Y.

For the sample of Table 2.2, Y:2Yr/r:(3+4+5+2+L)/5:15/5:3
g/plmrL Often, we wish to denote the difference between a variate (Yl and a
mean (Y). Such deviates are often represented by an italicized lowercase'y or x..

Thus y:Y-Y, or r:X-X.

f5 Stutisticol Notation, Meanw, and Standard DeDiations



TABLE 2.2.
Dry weight of five plants, i:3

Grams per plant

Y Y-t s-l',

0
I
4
I
4

t0

0
I
2

-l
-o

0

3
4
5
2
I

l5

There are two important properties of the mean: tJre sum of its deviates is
zero (column 2, Table 2.2), an.d tlle sum of squares of the deviates (column 3,
Table 2.2) is minimal, that is, the zum of squares of deviates from any other value
will be larger.

Other measures of central tendency, which we will not use in this book, are:
the median-the value situated at the center of the variates when tlese are
arranged in order of magnitude; if the number of variates is even, the median is

the average of the two central values; and the mode-the value of most frequent
oocrrrence. In a normal distribution Ere mean, median, and mode are equal.

The most common measure of diqpersion, and the best for most pu4roses, is
the stardord detiafwn and its square, the urionce. The standard deviation of a
population, o, and tlte variance, 02, when estimated from a sample are symbolized
as s and *, reqpectively. o.

The population variance is defined as

" )(Y,-p)' '-

where N is the number of variates in the population. The best estimate of o2 from
a small sample (where r is less than 60), is defined as

. >(",-r)'
'-:l:l-

where r is the number of variates in the sample. Why use r- 1 ratler than r as the
divisor? If we know the value of p, the best estimate of o2 from a sample is

" )(Y,-P)'
r

bme Ba.sic Concepts 16



r being the number of variates in the sample. However, we seldom,_if ever, know
the value of p, so in the numerator, we replace it with its estimator, Y. Now, while
Y is on the average equal to p, it varies from sample to sample and seldom is
exactly equal to p. We saw previously that )(Y,-Y)z is less than the zum of
squiues of deviates from any value other than Y. Therefore, if y is not exactly
equal to p, >(Y,-Y)' is less than >(\- p)2. This means that I(Y,-Y)2/r will give
too small an estimate of o2. It turns out that the proper correction can be made by
using r- I in the denominator instead of r. In other words, on the average,

>(",-Y)'

-:

r- I r

The numerator, )(\-i)2, is a surn of squmes in this case the sum of the squares
of deviations of individual variates from their mean. The denominator, r-1, is
referred to as the degrees of freednn for the sample, usually one less than the
number of observations.

We will use the small sample in Table 2.2 to illustrate the calculation of *
and s.

, >(v,-v)' 1s-s;r*(4-3)r+(5-s)2+(z-s)r+(l-3)2
" r-f 5-t

(o)'z + (t)'z+ (z)' + ( - r)2 + (- z)2 0+l+4+l+4 l0:-:- -..-- 4 -!-^"4

s:{is:1.58 e/pls,,t

For small samples without decimals where the mean happens to be a whole
number, f and s can easily be calculated by the definition formula but for larger
samples there is a shortcut method that is much easier to perform, especially when
a desk cdculator is used. It can be proven that

,(\-v)':"" ' - 
(>I'f

Therefore, a convenient working formula for * is Orr^)^j"l 
o /'"'t

" >Yi-
S-:--ff

The riglrt-hand term of the numerator is called the corection tenn or conection

factor and will be denoted in the book as C. C : ()Y r)' / ,. The denominator (r - t)
is called the degrees of freedom (denoted by d0 on which the variance is
based-in this case, one less than the number of variates in the sample.
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Apply-rng this formula to the data of Table 2.2 $ves

J2 +42+sz +22+lz - 
(g+a+s+z+ r)2

5
152D,)- --=-
b

s2: 5-1 4

- 55 .45 : 19 :2.5. as before44
Many desk and pocket calculators are programmed to compute a standard

deviaUon by depressing a key after entering a sample of variates. A calculator with
this capability greatly facilitates the computations in the analysis of variance
(acronym ANOVA). One caution-lsrow whether your calculator computes *
using r or r-l as a divisor. The divisor r is only used when the sample is large,
t}tat is, when it contains at least 60 variates.

Other measures of dispersion are the range and the mean deviation. However,
they will not be discussed here because of the far greater utility of f and s.

The variability among experimental units of experiments involving different
trnits of measurements and/or plot sizes can be compared by coefficienx of
oariation, which express the standard deviation per experimental unit as a percent
of the general mean of the experiment; thus CV:(s/Y)100. For example,consider
two experiments--one involving sugar beet root yield, where s:1.18 tons per acre
and the mean of all the plots is 30.5 tors per acre, and the other involving lima
beans, where the variable was seedlings per plot and s:5.8 and Y:82.7. The
coefficients of variation are (f.18/30.5)I00:3.97o and (5.8/82.7)l0O:7.Wo. A
comparison of the two indicates that there was 1.8 times (7.0/3.9) more variability
among the plots within a treatment of the lima bean_experiment.

('J' :
Variates in a TwoWay Table )/

Because of the design of the experiment or to facilitate computations, variates
often are arranged in a two'way table and symbolized as in Table 2.3. The symbol
for any variate in such a twG'way table is Y,, or, in some books, \.Th" i zubscript
refers to the rows of the table that go from I to n, and j refers to the columns that
go from I to r. A particular variate is indicated by the intersecUon of a row and
column; for example, Yr. is the variate of row 2 and column 3.

Note the use of the dot subscript to indicate an operation over all the variates
in a row or column. Yr. means the sum of all the variates of row l. To indicate an
operation involving all the row totals, we use the symbol \; for example, )Y,.2
indicates $at you should square each row total and zum the squares. The mean of
row I is Yr. which equals Yr./r which also equals )i-rYr,/r. This last formula
merely says "sum all the j's of row I and divide by r, the number of j's."

The use of such a system of notation (when you fi..lly get usd to it) saves

much space in indicating operations and relationships. We will use it sparingly and
almost always with a numerical example for illustration. To practice it a litde, we
will nse the real numbers of Table 2.4 alongwith the symbols of Table 2.3.
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TABLE 2.3
Symbolic presentation of variates in a two-way table

Rows (i,

Treatments)

Columns (j, Replications)

I 2 3 "'r
Totals, Mears,

Y,.Yi.

I
2

;

Y,, Y,,

Y,,

Yr.

Y,,Y,,

Y", Y"2 Y*

Yr. i,.
Yr.

:

Y..

Y2.

:

Y..

Y

Totals, Y.,

Means, Y.,

Y.l Y.2

.t Y.2 Y.,

TABLE 2.4.
Sugar beet root yields (tons per acre) from an experiment with five treatments in
four replications

Treatments

(Row)

Replications (Columns)

I 2 3 4:r
Totals

\

Means

Yl.

17.0
15.0
2l.5
r6.5
17.0

68
60
94
66
68

t8
16

%t

16

t6

t7
t3
22
t4
15

I5
16

?3
20
20n

18

15

2.5

16

t7

I
2
3
4
b

Totals, Y,

Means, Y.,

90

r8.0

8l
t6.2

94

r8.8

91

18.2

356:Y

r7.8:Y
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To indicate the computaUon of the sum of squares of all the variates in a
two-way table we would write,

ss: i i (v,,-x;'
i:r j:r

The summation indices are often omitted, and sometimes one of the srunmation
signs is also omitted to shorten the expression to

SS:)(Y,,-i )'
The fint formula is more complete, as it identifies the summation limits for both
rows and columns, but when this is undentood the second formula is sufficient.

To compute the SS by this formula for the data of Table 2.4,

55: (15- 17.8)2+ (r8- tz.a)2+ - . . + (I5- 17.8)2+ (to- tz.a;z:qzs.2

The series of dots, ..., means to continue the indicated operation throughout the
table, ending with the last two variates, 15 and 16.

_ To cornpute the sum of squares among column means, we write, SSC:nXi.i
-Y..)2.{his indicates that we take each column mean (Y.,), subtract the general
mean (Y..), square each difference ( )2], sum the squares (!;, and multiply by the
number of variates (n) in each column. The significance of mulUplying by n will be
pointed out shortly. For now, we are only interested in trying to follow this
confr-rsing shorthand.

For Table 2.4,

ssc:51(18.8- 17.8)2+ (18.2- l7.a)2+ (16.2- 17.8)2+(r8.0- r7.8)'?]

:5(3.76)

:18.8

SSC can also be computed from column totals as 556: ()Y;2/n)- (Y..2/nr). For
Table 2.4, this says

942+912+8t2+9d 3562

5 5(4)
:6355.6-6336.8

:18.8

Now we return to the normal distribution and other relaUonships important to
statisUcal procedure.

SAMPLING FROM A NORMAL DISTRIBUTION

We commonly erpose a number of plots or animals to a certain treatment. The
treatment effect is estimated by calculating t}re mean of the sample. We know t}lat
repetitions of the experiment (in effect, drawing other sample, will produce a
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series of different means. One problem then is how well does a single mean
represent tJre true treatment effect? One approach to this problem is to calcrrlate
confiderce Limits, r range of values within which the true mean of the treatrnent
effect will fall unless we have drawn a very unusual sample. Before we calculate
confidence limits for a treatment mean we should look at the relationship between
certain parameters of a population of indiDidwl"s and a population of meons
generated by repeated sampling from the parent population.

The Distribution of Sample Means

If all possible samples of a given size are drawn from a normally distributed
population of individual variates, the means of these samples will form a much
larger population than the parent population; the mean of t}re new population will
be the same as the parent population, but the standard deviation will be smaller.
In this kind of sampling, each variate of the parent population is identified, and
after a sample is drawn and the mean determined the sample is returned and
anotler one drawn. The process is repeated until all possible combinations of
variates appear together in a sample.

The standard deviation of the population of means is called lhe stundard aror
of a meon, or just standard eror, and is symbolized by or. When oy is estimated
from a sample its symbol is s1.

There is an important and very useful mathematical relatiorship between the
variance of the parent population and the variance of a population of means
drawn from it: o-f :o2/r, where r is the sample size on which the population of
means is based. Figure 2.3 illustrates this relationship. With increasing sample size

0.8

f/N 7 t =.t0 = number of plots from' which each I is calculated

+

0.6

0.4

r=4

!i (population of individual
yields)

lt lb of grain/plot

Figure 2.3. Frequency distributions of populatiors of means, varying in sample
size, generated by repeated sampling from the same normally distrib-
uted population of plot grain yj"ld". The distributions (all normal)
become narrower and taller as sample size increases according to the
relationship or': o' / ,.

o.2

0

2l funpllng From o Nornwl Distribution



(r) the distribution of means becomes niurower and taller, that is, the standard
deviation becomes smaller, but the mean remains t}te same. Because of this
relationship, or':o'/r, we can estimate orz kom only a single sampl" by tl:
sz/r.We rrse'this relationship when we cilculate a confidence interval about a
sample mean. The relationship is also used repeatedly in the ANOVA when we
wish to estimate the variance per plot, s2, form a series of means when we assulne

each mean is from a sample drawn from thesmg population. In this case we
compute q2 from the sample means as \2:X(Yi.-Y..)'/("-I) and then estimate
* by solviirg \':t'/, for s2:rstz.We riill discuss this in more detail later.

Consider another repeated drawing of samples of a given size, say r:5 as in
Figure 2.4. For each sample compute Y, s, $, and anotler statistic, t, where
t:(Y-p)/5. Now imagine organizlng the large population of t values in a

frequency distribution. The frequency curve will look like the curve in Figure 2.4.

-+ s,l' I '+ 'r'=2(Y'-:-i'f ' ',r=$", =T
Population r = 5

The t Distribution and Confidenc€ Limits

!t #SPl.2

Variates
normally

distributed

YN ---> Spt. r., +

t values in a frequency
distribution

-3 -2 -t
-2.776

0

t2

tM

c
lo

o
.z
o
6
G 2.5%2.5%

-4 342

2.776

Figure 2.4. Ceneration of the t distribution for sample size of 5. A t value is

computed for each of all the possible samples of five variates. Plotting
the frequencies of the t values gives a distribution that has fewer
values near the center and more toward the tails than is the case with
the normal distribution.
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There is a unique t distribution for each sample size. For a sample size of 5,
2.5Vo of tlre t values will be equal to or greater than 2.776, and 2.5Vo will be equal
to or less therl, -2.776. Table A.2 in the Appendix is a two-tailed t table where
probabilities are shown for obtaining -r t values for the degrees of freedom for
different sample sizes. For example, for df:10, find that the +t value to be
expected with a probability of 0.0I (17o) is 3.f69.

Figure 2.5 shows the t distribution for a sample size of 5 compared to the
normal distribution. Note that the t distribution is more variable than the normal
distribution. The larger the sample size, the closer t approaches a normal distribu-
Uon. When t values are based on samples containing fl) or more variates, they
are approximately normally distributed, as thgy closely estimate a normally distrib-
uted statistic, Z, which is calculated as Z:Y - p./ o,; t and Z only differ in the
denominator. With small samples, E is quite variabld from sample to sample, and
therefore t is more variable than Z, whose denominator, op iS a constant. With
larger samples, however, ry is less variable, and therefore i values more closely
estimate Z values. For the last line of most t tables, where degrees of freedom are
infinite, t:Z (Table A.2). A table of areas under the normal cuwe correqponding
to Z values is not included in this book, as we seldom deal with samples large
enough to justify its use.

CONFIDENCE LIMITS. From any random sample, confidence limits (CL) can
be calculated within which p wil fdl with a specified confidence. This is done
by solving r:_t:(i- tl)/yfor p and calling the rerulting two values confidence
limits: CL:Y+IS. If we wish to be 957o confident that CL will contain p, we

Normal (z) distribution
7- t-n7

,d (r=5)
Y -y

'si

2. 2.50/" 2.5% 2.5%

2 3

t = 2.776

4 zort-1 01
,z=_1.96 z=1.96
y of z and t = 0; o of z and t = 1

-4 -3
t = -2.776

-2

Figure 2.5. Distribution of z compared to the t distribution based on a sample size

of 5. As sample size increases the t distribution approaches the normal
z distribution. (Values of t and z that exclude 1Vo of the area under
each curve are indicated.)
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multiply t by 
" 

tabular t value depending on n- I degrees of freedom and the 57o

level of probability ( Table A2 ). For a sample where r : 5, ss is multiplied by 2.776.
To illustrate, consider the sample of Table 2.2 where i=5,Y:3, and f :2.5.

Then

Thus, with a confidence of 95% we can say that p lies in this range. It is incorrect
to say that the probobility is 957o that p lies within these confidence limits
because, based on the statistics of the particular sample, p uiLor uill rct lie in the
calculated interval. We may have drawn a sample whose Y and/or s2 deviates
snfficiently from pt and/or o2 so t}rat CL.es will not contain p. However the chance
of drawing such a sample is only 57o.

STATISTICAL HTPOTIIESES ATID TESTS OF SIGNIFICANCE

The statistical procedure for comparing two or more treatment means employs the
use of an assumption called the null hypothesis, which assumes that the treatments
have no effect. We then proceed to test the probability that means as divergent as

those of our samples would occur by chance alone if the samples were indeed
random samples from normally distributed populations with equal means and
variances. If our analysis leads to the conclusion that we could expect zuch mean
differences quite frequently by chance, we do not reject the null hypothesis and
conclude that we have no good evidence of a real treatrnent effect. If the analysis
indicates that the observed differences would rarely occur in random samples
drawn from populations with equal means and variances, we reject the null
hypothesis and conclude that at least one treatrnent had a real effect. At least one
of the means is said to be significontly different from the others.

If the probability is 57o or less that the observed variation among means could
occur by chance, we say that the means are significantly differmf. If the
probability is 17o or less that the observed variation among means could be
expected to occur by chance, the differences are said tobe highly significant.

The fact that the null hypothesis is not rejected and that we conclude there
are no significant differences among the means does not prove that some of the
treatments had no effect. There is always a definite probability tllat there was a

real effect but that the experiment was too insensitive to detect the difference at
the desired level of probability.

At this point you should realize that there is nothing magic about the 57o level
of significance. The conlcusions you make concerning an experiment are your own,
not the staUstician's, and should be based on more than statistical evidence. The
logic of the conclusions should be considered in the hght of what is already known
about tlre subject. Do not be too ready to accept a significarfi result if it does not
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make sense in the light of other known 
-facts. There is always a chance that your

significant result occurred by chance and that you have made an error in rejecting
the null hypothesis.

Consider the consequences of being wrong. If the consequences are serious,

such as being wrong in recommending a change that would require a considerable
expense for a relatively small increased profit, you may hesitate to reject the null
hypothesis on the basis of a single test even tho"gh the results arg significant at the
5% level. [n such a situation additional testing is clearly in order.

On the other hand, if the consequences of being wrong are not seriots, you
might reject the null hypothesis even though statistipal analysis says you could
expect such a result by chance as often as I out of 15 or even I out of I0 times.

Consider, for example, the testing of a new inexpensive seed treatment when the
combined analysis of several field experiments falls just short of being significant at
the 57o level. Further, suppose that the results of several greenhouse experiments
have indicated that the new treatment gave significantly better protection against
the major pathogens that attack seedlings of the crop in question. In zuch a
situation you might be justified in rejecting the null hypothesis, even to the point
of recommending the practice to farmers, while you proceed to further test your
conclusions in additional field experiments.

The F Distribution

An F test is a raUo between two variances and is used to determine whetler two
independent estimates of variance can be assumed to be estimates of the same
variance. This raUo was called F by George W. Snedecor in honor of Ronald A.
Fisher, a pioneer in the use of matlematical statistics in agriculture. In the analysis
of variance, the F test is used to test equdity of means; that is, to answer the
question, Can it reasonably be aszumed that the treatment means resulted from
sampling populations with equal means? This can be illustrated by a description of
how a portion of the F table could be determined.

Consider the following: From a normally distributed population (Fig. 2.6),
draw five samples (.:5), each containing a specified number of variates, nine for
example (r:9). Calculate the means of these five samples. Estimate o' by
calculating * for eoch sarnple to give rr'. . .sr'. Sum these estimates of o2 to obtain
an average (pooled) estimate: rz: (sr2 * . . . + 

":) /5.
Now estimate the variance of means (oo2) from the means of the five samples:

S':Xy, -y.)'/(S-l).From 52,again estiinate o2,using the relationship r' j.rl,
where r is the number of variates in each sample. Compute the variance ratio F,
where

u_ _ f, calculated from samples means

*, calculated by pooting sample variances

The degrees of freedom for the numerator €ue n- l:4 (where n is the number of
samples) and for the denominator n(r-t):5(8):40 (where r is the number of
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Poou lation

Yi

YN

p, a2

Draw 5 (z) samples
of 9 (r) variates
each

Spl. 1 -> Y, -> s,2 = 2(yi -Vr)zt{S-ll

Snl. 5 --> 7, --+ su2

To compute F for a single drawing of 5 samples of 9 valates:
(l) Estimate o72 as so2:) (Yr.-Y )z /5- I w[ere y..:2Y, /5
(2) Estimate o2 froni the variability among the sample means

ils: soz: rsl :9tr'
(3) Estimate i2 frorir the variability within the samples as:

s*2:(sr2+ .;.+ss\/5

thenF:E *udf: I-I :1
S*2 5(9- l) 40

Repeating this sampling procedure many times generates a
population of F values which when plotted looks like the
curve below.

F distribution for 4/40 degrees
of freedom.

SYo

2.61

Figure 2.6. Repeated drawing of 5(n) samples of 9(r) variates each from a popula-
tion of normally distributed variates (Y, . . .Y") to generate an F
distribution. Five percent of the F values will be 2.61 or larger (see

text).

variates in each sample). Now imagine that this sampling procedure is repeated
until all possible sets of samples have been drawn and recorded, the frequencies of
obtaining F values of various sizes have been recorded, and the frequency curve
has been plotted. The F value 2.61 is the value beyond which 57o of the calculated
values fall. This is the value for the SYo level found in an F table for 4 and 40
degrees of freedom (Table A.3). Similarly, F values can be determined for other
sample sizes, numbers of samples, and for other levels of probability (2.5Vo, lVo,

etc.).
Since both variances in the F ratio are estimates of the same variance (o2), the

raUo will be close to I unless an unusual set of samples has been drawn. The F
distribution for the sample size we are considering (n:5,r:9) wiil look like the
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graph in Figure 2.6. The area under the curve represents the frequency of
obtaining any given F value. For any given draw of a set of samples of n:5 and
r:9 the chances of the calculated F value being equd to or greater than 2.61 are
57o. Or, the chances are 957o that any given draw of such a set of samples will
produce an F value of less than 2.61. Note that the F test is a one-tailed test. That
is, we are not interested in the probability that F is equal to some value less t}ran
l.

The above hypothetical sampling experiments are intended to show how t
and F distributions can be obtained by sampling from a population of normally
distributed variates. Tables for t and F are not determined by these laborious
sampling procedures but are calculated from precise and rather complicated
mathematical relationships. The use of F ratios in the ANOVA will be discussed in
the next and subsequent chapters.

SUMMARY

Experimental urit (or plot, for an area of ground in the field). The unit of
experimental material to which a treatrnent is applied.
Varioble. A measurable characteristic of an experimental unit.
Variate. A specific measurement of a variable.
Populntion. A set of measurements (or counts) of a variable taken on all the
individuals specified to be in the population.
Sample. A set of measurements (variates) that constitute a part of a population.
Paranwter. A characteristic of a population (e.g., the mean). A parameter is a fixed
value we seldom know. Parameters are estimated from samples. Parameters are
usually symbolized by Greek letters (p, o, etc.).
Stati^stic. A characteristic of a sample-often used to estimate a parameter;
generally symbolized by Roman letter (Y, s, etc.).
Nomal distribution. A mathematically defined, bell-shaped curve resulting from
plotting the frequencies of occurrence of values of a variate against the range of
the variate values. A normal distribution is uniquely described by its mean and
standard deviation.
Thc mean of a ppulation of indioi&nl oarbtes, p,.

)v,
tr: N-, where N is the number of in&viduals in the population.

The estinwte of p" frorn a sample,Y

": ?Yi , where r is the number of individuals in the sample.r
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The oariance of a population of indioi&tal oariates, o2.

o_:____lt_

The standard der:iation of a populntion of indioi&nl oariates, o

o:l/7
The estinwte of o2 from a sanple, *.

s': ' ; '(definitionformula). s2:r- I

sY?- 
()"')'

Lt'r r
(working formula)r- I

Correction term, used in the working formula, C.

r

kthnatz of o frorn a so:rnpl.e, s.

,:VP
Coefficient of wriation, CY.

6y: llroo)
Y

A population of means. The population of all possible means (yt) of a qpecified
sample size (r) drawn from a population of individuals.

The mean of a population of rnearc, p,7.

>x
ry: # :, where M is the number of sample means.

Tlle wriarrce of a populotion of means, o12.

) (?,-r)'
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Tlw standard deoiation of a poptlation of mearc, or standard enort 07

or:lo-i
Tlre relation beauen o2 and or2.

,02
o-y :7'

where r is the number of variates in each sample mean (sample size)

Tlw estimatz of or2 fron r samplcs,52.

^2_5-
) (v, -v ;'

n-I
The estimate of o?, from a single sarnple of size r

s2 ) (v,-T;'
'l r- 1r (+)

F,stimatz of o2 ulvn 5'z X tom:n.

02=rsrz, where r is the number of variates in each sample.

t, a statistic computed from a sample that expresses the difference between the
sample mean and the population medn in standard error units.

t:(?-p)/'v

Confidence lirnits of p, srtaV sarnpb.

CL:itt5
F, the ratio beapem fim estbnatns of o2.

"_ 
. f, calcul,ated from sample means

*, cdculated by pooting sample variances
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3

THE
ANALYSIS OF

VARIANCE
AND

TTESTS

We now have the statisUcal concepts needed to understand the analpis of
variance. But before discussing complicated experiments, it will be informative to
see how we can use these concepts to analyze the simplest case of two treatments
when each has been randomly assigned to 5 oT I0 experimental units. First we
explain what is done in the analysis of variance procedure, and then we show a
routine procedure for carrying out the computations.

AIIOVA WITI{ TWO SAMPLES

We will use the data of Table 3.1 to illustrate the ANOVA procedure.
To determine the variability called eryerinmtnl enor, we compute the

variance of each sample (sr2 and $2), assume they both estimate a common

TABLE 3.I.
Yields (f00 lb/acre) of wheat varieties t and 2 from plots to which
the varieties were randomly assigned

Varieties Replications Y Yi.l.

i,.
Yr.

Y

85

lm
r85

20

l8
I
2

t7
2l

17

20

19

23

t4

I9
15

t9

3l The Arulysis of Variante and t Tesx
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variance (oz), and then estimate this common variance by p*tir,g the sample
variances.

) (v,,-v,.)'

(ts- t7)'g+ ... +(%t-t7)z

Sr2

-l

sr2:

:T:u.,

) (",,-t.)'
r- I

(z*-9r)z+... +(18-20)'z
5-r

: * :n,
Pooling srz and sr2 gives an estimate of o2 based on variability n:ithin the samples,
which we will designate as s*3t

_2,_2q st rs2 6.5+4.0
"*-: --7-: 2 

:D.zO

Assuming the null hypothesis that these two samples are random samples
drawn from the same population and tlat, therefore, Yr. and Y2. both estimate the
same population mean ( p), *" estimate the variance of means (or2) from the
means of samples I and 2.

>(X-i f (r7-18.5)2+(20-18.5)'z (-r.s)'z+(r.s)'z
ry': :4,5n-l 2-l I

We again estimate o2 using the relationship tr':t'/, and solving for s2. Remem-
ber, r is the number of variates on which each sample mean is based. We will
designate this estimate of o2 as s52.

%2:rsr2:5(4.5):22.9

We now have two estimates of o2: s*2 based on the variability roithin each
sample and ss2 based on the variability behoem the samples. Aszuming the null
hypothesis to be true, we would expect s,,2 and so2 to be nearly alike since they
both estimate the same variance (o2). We can determine the probability of
obtaining divergent estimates of o2 by calculating an F ratio and referring to a

table of F values. For this F ratio we always put the variance estimated from the
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sample (treatment) means (ro1 
"r 

numerator and the variance estimated from the
individual variates as denominator. Thus, F:%t/fu'.

If the two treatments (samples) come from populations having different
means, so2 will contain a component reflecting this difference and will be larger
than q,2. For our experiment, F:22.5/5.25:4.29.

The numerator, q2, is based on I degree of freedom, since there are two
sample m@ns. The denominator, s*2, is based on pooling the degrees of freedom
uithin each sample. Each sample has 5 variates and therefore 4 df so the degees
of freedom for s*2 are 4*4:8.

From an F table (Table A.3), we look up the F values we would expect with a
specified probability if the null hypothesis is true and our sample means differ only
by chance. For degrees of freedom I (numerator) and 8 (denominator) we would
expect an F value of 4.29 or larger with a probability of about 77o. To put it
another way, if the true mean difference is zero ( pr- t r: lra: 0), the chance of
obtaining an estimate of p;:3 cwt per acre is abot:t 7To. Usually, we are not
willing to gamble that this event (which has a 7Yo probability of occurrence) did
not occur; therefore it would be unwise to reject the null hypothesis and conclude
that the mean of variety I is really different from the mean of variety 2. On the
other hand, a mean variety difference of 3 cwt per acre, if real, represents a
considerable economic gain. Therefore, we might decide to evaluate the two
varieties in additional experiments.

A Cookbook Procedure

The following is a stepwise procedure for completing the ANOVA for the data of
Table 3.1 using a desk or pocket calculator.

l. Outline the ANOVA tnble (Table 3.2) by listlng tlw sources of oariation
and degrees of fteedom. There are 10 experimental units in the experi-
ment and, therefore, l0 - I or 9 df in total. These total degees of

TABLE 3.2.
ANOVA for the data of Table 3.1

Source

Variation

Degrees of
Freedom,

df

Sum of
Squares,

SS

Mean

Square,

MS

of Observed Required F

F l07o SVo

Total
Varieties
Error

I
I
I

M,5
n.5
42.0

22.5
5.25
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freedom are then partitioned according to the experimental design. There
are two treatments; therefore, 2-l:l df. Degrees of freedom for error
can always be obtained by subtracUon, 9- l:8, but also, in this case, by
pooling degrees of freedom within each sample. There are 5 variates in
each sample, and therefore 5 - I :4 df;4* 4:8 df for error.

2. Compute the sum of sErures for oarieties (SSV) and the meon sEare fu'
oarieties (MSV).

)y,.' Y2ssv:-- '

rnr

852+tOd 185'?

5 2(5)

:3445.0-3422.5:22.5

MSV: ssy :4'5 :22.5(df)v r

Note that we use totals, not means, in compuUng SSV. With a large computer
it is easy to use means in computing sums of squares, but with desk calculators it is
much easier and more accurate to use totals, since you avoid taking differences
and the rounding off of decimals in computing means. The following bit of algebra
illustrates why totals can be used in place of means to calculate sums of squares.

Based on the hypothesis that our two varieties are not different and both are
samples from t}te same population, we learned that a second estimate of o2 is
obtained by ro':.t', where 52 is the variance of variety means and r is the
number of replications in each variety mean. The mean squiue for treatrnents
of ]ablS 3.2 (varieties in this case) is %2, that is MSV: rsr2. Note that sr2:
XY, -Y.)'/(n-l) and thus

) (v, -v ;'
MSV:r n-l

Since IISV:SSV/(n-l),SSV:r[)(Y,.-i..ft. In Chapter II we saw that

)(v,.-Y..;z:>Y,.'-(>Y,.)'/r, * we can now write

() v,)'
) Y,.'SSV: r

n

Now we replace means with totals, noting that Y, :Yr./r and that )Y,:y..7t 
"rrd
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l)Y,.' Y'rrrl
ssv:rf i_7(;)l

Carrying out the indicated multiplication, r[ ], Sr"r 55y:()Y,.2/r)-
(Y..'/^), which is the formula previously given. This f6rmula involves some basic

thus

mles you should learn in order to compute sums of squ€ue from totals.

(a) The first term, 2Yr.2 /r, tells you to sum the squares of the totals (variety
totals in this case) and divide by r, the rurmber of wriates making up
eoth ntnl in the numeralor. Students most often err in deciding on the
divisor and divide by the number of totals being squared rather than by
the number of variates in each total.

(b) Th" second term, Y..2/nr:()Y,,)2/nr, is lsrown x the conection tenn or
correction factor. lt i.s tlw square of tlw nm of oll the oariates in tlw
totak of the first tilrn ilioided by the ruunber of wriatcs in tlw rum (Y..)

being squared.

(c) lf all treatments do rnt lwoe the sonw rurmber of replications, eoch totnl
mast be squared and &tnded by the ruttnber of oariates it contairw
before xnrming. Thus

ssr:)\''- Y"' :(Y'''+...+tr\-/ "' \zJ r, ).,-\r, ,^l\r,*...*r^)

For example, if Yx: 18 of Table 3.1 is missing, the total for variety 2 is
100-18:82 and Y is 85*82:167. Then

t8
ts .Y)- #:3r26-3oee:27.

Now we continue with step 3 of the cookbook procedure.

3. ConLWtc he totol rum of squnes (SS). This step is done just before
computing the sum of sq'ares for error. With SS in the calculator, the
error sum of squares is then obtained by zubtraction.

ss: ) 
"rr- #

:(tY+ 142+... +tB2)- g' 2(s)

:348'7.O-3422.5:64.5

SSV
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4. Cornytte the stm of squarcs and rnean sgure for ertor (SSE and MSE)

ssE : s$ssT : M.5 _ 22.5 : 42.0

M^- ssE 42.O;SE: ffi: t= :5.%

5. Calaiatc F rutio for oarbties.

MST 22.5F':.--:: 
-1 

:4.29^ MSE 5.25

6. ln Tabb A.3,look up the required F oahrcs for the boels of signifrcance
ya,t uish tD cunpare. Degees of freedom pertaining to the numerator of
the F ratios are read across the top of Table A.3 and degrees of freedom
for the denominator are read down the left side.

THE STANDARD DEVIATION KEY. Desk and pocket calculators that are
preprogrammed to compute a standard deviation or variance simpt fy computa-
tions in the ANOVA and eliminate the use of a correction term when treatrnent
replications are equal. First, be sure the calculator computes s or f by dividing
the sum of squares by one less than the number of totds or means you enter,

that is s: Yr-i)'/(r-l) . Use the following set of variates to check:

19, 14, 15, 17, Enter each in turn with the appropriate key-often marked )X.
After the last variate (20) is entered, depress the standard deviation key, usually
marked o. If the calculator divides by o-1, the answer is 2.5495. If the divisor is

n, the answer is 2.2803.
Using a o key, MST and. SST a.re computed os follnos frorn tlw tntals of Table

3.r:
Enter 85, enter 100.

Depress o(ars. = 10.6066+), square o (ans. : 112.5)
Divide by the number of variates in each total you entered, that is 5,

Answer:22.5:MST
Multiply MST by the degees of freedom for treatrnent, that is 1. Answer:

22.5: SST.
The nnl SS is calcalated by entering each variate (19,14,...,21,18), de-

pressing o (ans.:2.677+), squaring o (ans.:7.166*), and by degees
of freedom for total (9), answer:64.5.

With a litde practice you can learn these simple mles and easily and quickly
do an ANOVA on a desk or pocket calculator. Remember, entsr treahnent or otlvr
totals (or individual variates for calculating the total sum of squares), depress the
standard ilpoiation key, sqnre a tn obtain o2, diuide by the rumtber of uriates in
eoch total got"a mtered (divide by I when calculating the total zum of
squares)-rhe onsuer is the mean sgulue for the source of variation you are
computing.
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A POPUI.ATION OF MEAN DIFTERENCES

In addition to an F test we can also use a t test to evaluate the odds that two
means are significantly different. First we need to see how a population of mean
differences is generated from a population of normally distributed variates; in
particular, we need to know how parameters of this new population are related to
parameters of the parent populations and to the populations of means also
generated in obtaining the populaUon of mean differences.

If from two normally distributed lnpulations, X1, &, . . . , Xrv and Y1,

Y2,...,Yp, we draw all possible samples of a given size and cdculate their means,

we will have two additional populations, Xr, X2,...,Xr,1 and Y1, Y2,...,Yy. Now if
y" tft"4 posiUt"_p"irc 9{ means and subtract, thus, Xr-Yr,X, -Yz,...,Xr-
YM,X2-YI,...,&-Y",...,Xp1 -Yy, we will have a fifth population, t}rat of meon
differuwes (see Fig 3.f). The number of mean differences (Q) of this population
will be much larger than the populations of \ and Y,. If the number of means in
tlese two populations both equal M, then Q:Mz. The following relationships
among the means and standard deviations of tJrese populations can be proven
mathematically but will merely be stated here. The mean of the mean differences
equals the difference between the means of the sample means from populations X
and Y, and this difference also equals the difference between the mean of
population X and population Y:

lta: lt*- Fy: lL,- Fr. If the p*: py, then p; : 0.

The variance of the population of mean differences is

o,-: 
Q

and is equal to tlle sum of the variances of the reqpective means. Thus, o;2: or2 +
or2. From two samples, o;2 is estimated by s;2 from the variances of sample means:

#:r;'+$'. Since si2:s*2/r,and q2:5 27r", sf :(s,2/r.) +(s"2/r").
The iquare root of the variance of mean differences is often called the

stmrdard error of a differcrrce. Often in statistical analyses, one variance is
estimated from another.

Important relationships among variances that you will use frequently are

rl: * s;2:sr2+52

and when rx: ry: r and q2: f - f, then

,2eril:;

*:t'.f
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lndividual variates

(1)

Five populations

Sample means

(3) (4)

Spl. #1, r, variates

Spl. M

r- variates

Means
(3) (4)

p; l\
: F;-l\ :

(if p,: Py pa:o)
Variances

Mean differences

(5)

7r-Yt +

r'-Yr+

xv-Yu +

(2t

4

(r) (2)

P, I.LY

P*- Fy

or' or' oiz or' oo?:

(5)

pa

pa

a
>(4-pa)'

oi: oi' + ,;: + . + When o,2: or': o'and r*: rr: r , then oo2: Zt

Figure 3.1. The generation of populations of means and mean differences from
two populations of individual variates and relationships among para-
meters (see text).

t Tests for Signific:urce

The formula for t as applied to a population of mean differerces is t : (d - pa) / sa.

For the experiment of Table 3.I we want to know the probability that samples I
and 2 could have come from populations having identical means (pr: pr). This is

analogous to the discussion above where we referred to populaUons X and Y, only
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now we are calling them Y, and Yr. The mean difference of our sample means is
d: 17 - 20:3(Id) lb/acre.
The standard error of the difference is

,r:$1'*r; ,: sz2 :
\,,ll$:V2.ro 

:r.44e
2

+ 4+-
5brl 12

fusuming the null hypothesis that pr: pz,(pa:O), t is calculated as

From Table A.2 we can find the lowest value of t that has a 57o chance of
occurring. If we assume that or2: orz we look up t based on the pooled degees of
freedom within the samples, in this case 4 t 4 : 8. The expected t value for the 5%
level of probability is 2.306, and thus our treatrnent difference is again judged not
significant. Note that P : F, that is, 2.0? :4.21}5. Allowing for rounding errors this
equals our previously calculated F of 4.29.

A point to be emphasized is that the analpis of variance procedure and the
calculation of an F value leads to the same conclusions as the t test. Researchers
often express the idea that there is something unique and more powerful about the
t test compared to the F test of the analysis of variance. The tests are equivalent,
while the analysis of variance procedure is usually easier to carry out.

One additional point should be made with regard to the use of a t test: a t test
is appropriate when o1* o2.In this case the F test of the analysis of variance is not
valid. When or*on and rr:rr:r, the t value required for significance is for r-l
degrees of freedom. In our example r:5 and the required t value at the 57o level
would be the tabular value for 4 df, or 2.776. When rr*r2, the required t value
must be calculated as it is somewhere between the tabular t for r, - I and r, - I df.
When or*orandrr*r, the required t is approximated by

r:+:fi$:2'07

. trsr,2+trsrrz

'- sil'+#

where t, and t, are tabular t values for r, - I and r, - I df, respectively.

CONFIDENCE LIMITS FOR A MEAN DIFT'ERENCE. For our example, we
have an estimate of the population mean difference, namely 3(100) lb per acre,
and might wish to calculate a confidence interval within which the true population
mean difference will fall unless the samples we have_drawn are very unusual. With
a confidence of 95Vo, we can say that p; lies within d + t.*s;, where t.* is a tabular
value from Table A.2 for the degrees of freedom for error (Table 3.2). The 957o
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confidence limits are therefore

cL* : $ -r 2.306( 1.449) - 3 -r- 3.34 - - 0.34 to 6.34( td) tb / acre

Note that this confidence interval includes zerg, which is another way of showing
that the means of varieties I and 2 are not significantly different.

LEAST SICNIFICANT DIFFERENCE. kast significant difference (LSD) is
discussed at greater length in Chapter 6, "Mean Separation," but it is mentioned
here, since it is a form of the the t test we have been considering. The formula for
calculating the LSD between two means is: LSD:I s;, which is tJre second term
of the CL equation above. For experiments inv-olving two treatments only, there is
no need to calculate LSD, as there is only one mean difference to consider and an
F or a t test tells whether the difference is significant.

A t TEST FOR PAIRED PLOTS. If we assume that the replicates of Table 3.1
are paired, we can determine the difference between each pair and analyze the
differences. Subtracting treatment I from treatment 2, we have the paired plot
differences 4,5, 4, 4, -2. The mean of the differences is 3, that is, d:3; the
variance of the differences is

" (a-s)2+(s-s)'z+'.. +(-2-3)' sz
'- 5-r -7-

The variance of the mean difference is estimated by #:sa2/r:8/5:1.6, and
the standard error of the mean difference is, s;-1.265. The appropriate t test for
significance of the mean difference is

,-+:#:2.s7
After you have completed Chapter V and understand the randomized complete
block design, assurne that the replications of Table 3.1 are also blocks and do the
ANOVA and show that MST:22.5, MSE:4, F for varieties:5.62, and that the
standard error of a mean difference is

t;T lr@
';: V? : Vi+ :1.2&5 as above

Note that P:F, tJrat is,23f :5.62. The point is that a t test for paired plots leads

to the identical staUstical conclusion as the F test for the randomized complete
block design with two treatments. The latter is usually easier to compute.

The Analysis of Variarce and t Tes* 0



ROI.INDING AND REPORTING NUMBERS

The terms precision and, trca"trucy are often used synonymously, but in a statistical
sense, they have different meanings. Precision refers to the magnitude of the
difference between two treatments that an experiment is capable of detecting at a
given level of significance, while accuracy refers to the closeness with which a
particular measurement can be made. In a later chapter we will consider methods
for increasing the precision of an experiment, but here we will briefly discuss
accuracy in data collection and computaUons.

Whenever possible, original records should be collected in a manner to avoid
recopying. If electronic processing equipment is to be used, the collection of data
can be organized so that the original figures are used to punch data cards. This
prevents errors in recopying. If figures must be transferred, they should be
rechecked immediately.

At the Ume data are collected, t}r"y should be examined for out-of line
figures, and all such entries rechecked to prevent possible errors. There is enouglr
variation in biological data without allowing more to creep in through avoidable
mistakes.

In taking weights or other measurements on experimental units it is seldom
worthwhile to record figures to a number place less than one-fourtl the standard
deviation per unit. If s is 6.96Ib per experimental unit, 6.W)/4:1.74. fu the fust
place is in the one's position, data can be recorded to the closest pound. If s were
2.5 lb/unit, 2.5/4:0.825, the fust place is the tenth position, and data could be
recorded to the closest tenth of a pound.

The instrument used for weighing and measuring need be no more accurate
than required by the precision of the experiment. For example, if a series of
weighings are to be made and rounded off to the closest pound, the scale used can
be in whole pound units rather than &visions of a pound.

It is not incorrect to carry more digirts than the variability of the data j*trfy,
and with modern data-processing equipment this can be done easily, but in
reporting final results, superfluous digits should be dropped. Apply the above
rounding rule to treatment means and round them to the place indicated by taking
one-fourth of the standard error of a mean. If the standard deviation per
experimental unit is 6.96 lb and each treatment mean is based on five replications,
st:6.96/VB :3.11 and 3.11/4:0.68, indicating that means should be rounded
off to one decimal place.

In doing an analysis of variance, it is best to carry the full number of figures
obtained from the uncorrected sum of squ:ues; for example, if original data
contain one decimal, the sum of squares will contain two decimal places. Do not
round closer than this until reporting final results.

When rounding numbers the digit to be retained is rounded upward if the
digit to be dropped is greater than 5 or is 5 followed by a digit greater than zero.
If the amount following the 5 is zero, the digt to be rounded is rounded upward if
odd or left as is if it is even. For example, rounding 21.550 to the closest tenth
gives 21.6, but rounding 21.4fi would $ve 21.4.
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FACTORIAL EXPERIMENTS

TABLE 3.3.
Lima bean seed treatments. A factorial combination of three dosage levels of a
fungicide with three dosage levels of an insecticide

Insecticide dose

Fungicide dose Io (none) Ir 12

Fo (none)

Fr
FoIo

F,Io
FoI,
F,I,
F,I,

FoI,
F,I,
F,T,F2 F,L
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In a factorial experiment the effects of two or more factors are investigated
simultaneously. If the behavior of one factor is suspected of changing with changes
in another factor, this behavior can be tested by a factorial set of treatments laid
out in a suitable experimental desigrr.

When two or more factors (each may be at two or more levels) are tested in
all possible combinations, the resulting treatments are said to be factorial. Dif-
ferential effects of one factor on another are called interactions. The discovery of
interactions broadens t}le conclusions of an experiment. The range of validity of
the experiment is increased-a desirable characteristic of a well-planned experi-
ment. Even if interacilons do not occur in factorial experiments, the results are
more widely applicable because the main treatment effects have been shown to
hold over a wider range of conditions.

Examples of combinations of factors in an experiment are: testing varieUes at
varyrng levels of soil fertility and evaluating the effect of a hormone on the gaining
ability of male versus female lambs.

A factorial set of treatments is illustrated in Table 3.3. The nine treatments
are all possible combinations of three dosage levels of an insecticide and three
dosage levels of a fungicide used as seed treatnents for lima beans.

This set of treatments makes it possible to evaluate the relative contribution
of fungicide and insecticide to the emergence of lima bean seedlings. See Table 3.4
for treatment averages and Figure 3.2 for a gaphic presentation of the results
illustrating the meaning of interaction.

In Figure 3.2, note t}te decrease in emergence with increased dose of
insecticide when the insecticide was ued without the fungicide. That decrease did
not occur when a fungicide was added to the seed treatment. The differential
effect of insecticide, depending on whether or not a fungicide was used we call
interaction. If an interaction does not occur, the factorial arrangement multiplies



100

. No fungicide (Fo)

o Fungicide dose 1 (F1 )
AFungicide dose 2 (F2)

40

1

lnsecticide dose

Figure 3.2. Graphic presentation of averages of treatments in Table 3.4.

the number of replications for testing overall average effects of treatment compo-
nents. Note that there is no appreciable differential effect of insecUcide on doses
F, and F, of the fungicide. In other words, there is no interaction of IXF with
reqpect to doses F, and F, of the fungicide. In this case, the best estimate of the
effect of fungicide doses F, and F, are the averages for these doses over all levels
of the insecticide. The resulting averages, Fr:92To and Fz:91% (Table 3.4) are
based on 3 x the number of replications of an individual treatrnent. No zuperiority
of the higher dose of the fungicide is indicated.

Occasionally you may read about factorial designs. This terminolory is not
strictly correct; it is the treatment combination that is factorial-not the design.

TABLE 3.4.
The effect of levels of fungicide and insecticide seed treatment on emergence of
lima bean seedlings (values given are seedlings per 100 seeds).

80

oocoo
o
,E oo
eQ

0 2

Fungicide

(oz per lfi) lb seed)

Insecticide (oz per 100 lb seed)

o (1o) i(r,) i(L)
Average effect

of fungicide

Insecticide X Fungicide Means

o (Fo)

ti(F')
2?(P,)

68

94

89

58

93

92

59

v2

9I

48

90

92
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THE ATIALYSIS OF VARIANCE AND EXPERIMENTAL
DESIGN

The principal difference among experimental designs is the way in which experi-
mental units are grouped or classified. In all designs, experimental units are
classified by treatments, but in some they are further classified into blocks, rows,
main plots, and the like. The analysis of variance uses the means of these
groupings, called sources of variation, to estimate mean squiues. A mean square
estimaUng the dispersion among plot measurements resulting from random causes

is also calculated-it is called experirnental error.ln the absence of real differences
resulting from means of treatrnents, blocks, or other sources of variation, tlese
mean squiues will, on the average, be equal. Only rarely will one mean squ€ue

deviate greatly from another by chance alone. When an F test indicates that the
mean squnre from one of the sources of variation is significantly greater than the
mean square resulting from random effects, we say that there are real differences
among t}te means of that particular source of variation. But remember-there is
always a definite chance that we will be wrong in such a conclusion. It is up to the
experimenter to select the odds at which it is believed there are real effects.

lt is customary to describe results that would be expected by chance 5% or
less as significant and those expected I7o or less x highly significant. When an

experimenter uses the phrase "the treatments are significantly different," what is
really meant is that if the null hypothesis is true, the odds of obtaining zuch mean
treatment differences are only SVuThe experimenter is gambling that there was no
such chance occurrence in the experiment and that, therefore, the significant
result was due to a real treatment effect.

In the following chapters the principal features of each of the experimental
designs commonly used in field research are explained, an example is given for
each, and the procedure to follow in analfzing data is shown. The same set of data
is used for the first two designs, the completely randomized design and the
randomized complete block design. It illustrates the possible advantage of one

design over anotfier, and it keeps the computations simple so that you can
concentrate on what is being done and why.

SUMMARY

The ANOVA in its simplest form of two treatments randomly assigned to an equal
number of experimental units involves the following procedure:

t. Calculating e4perimental error as the pooled variance of the two samples,
for example, Y5g:(sr2f sn\/2.

2. Computing a mean square for treatments (MST) based on the null
hypothesis that both sample means estimate a common lrcpulaUon mean,

that is, MST:rt2, where r is the number of variates in each treatrnent
mean.

The Arnlysis of Variance and t Tes* 4



3. Computing the F ratio: MST/MSE and comparing the calculated F value
to a tabular F value to indicate the probability of obtaining the calculated
F value by chance if the null hypothesis is true and both sample means
represent a common mean.

The statistical significance of a difference between two sample means can be
tested by tlre F ratio in at analysis of oariance or by a t test. Both tests are
statisUcally equivalent, P: F. The analysis of variance and the F test are usually
easier to compute.

The mearc of differmces between all possible pairs of sample means from
two populations, X and Y, is symbolized by pa and is related to the means of
parent populations of means and individual variates as follows:

lra: lr; - P7: lL*- lly

\\e oariatwe of mean differerces, q2 is estimated from two samples by ta'.

s12:q2+52: $ * S *U when s.2=s;:ss and rx:ry:r,
rx ly

,2*rf :;.

Avoid superfluous digits in reporting res.rlts. Round treatment means to the
number place indicated by one-fourth of the standard error of a mean.

A factorial experiment is one in which two or more factors, each at two or
more levels, are compared in all possible combinations.

Eryerimental dzsigru arise from the way in which experimental units are
gouped or classified.
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4
THE

COMPLETELY
RANDOMIZED

DESICN

This design, the simplest type possible, is set up by assigning treatments at random
to a previously determined set of experimental units. The desiga is the most
efficient in situations in which there is little variability among the units associated

with posiUon in the experimental area, age, vigor, or other identifiable sources. It
is flexible with regard to the physical arrangement of the experimental units,
maximizes the degrees of freedom for estimating experimental error, and mini-
mizes the F value required for statistical significance. A disadvantage is that there
are often identifiable sources of variation among the experimental units, so that
other designs, when skillfully employed, uzually are capable of reducing the
variability we call experimental error, which makes it possible to detect smaller,
significantly different treatment effects.

Any number of treatments may be tested in this design. It is desirable, but not
essential, to assign the same number of experimental units to each treatment. The
experiment of Table 3.1 is an example of this design with only two treatments.

RAI\DOMIZATION

A number can be arbitrarily assigned to each of the required number of field plots
or animals to be used in the experiment. The number of experimental units will be
the number of treat^nents X the number of replications. A table of random num-
bers is convenient to decide the experimentd units to receive each treatment. If
each treatment is to be replicated four times, the fust four random numbers
drawn will be assigned to treatment l, the second four random numbers to
treatment 2, and so on. For example, suppose we wish to test three different
hormones, each at a single dose, to determine their effects on the weight-gaining
ability of lambs. Thus, including the control, we have four treatments. Assuming
the experimental unit to be a single lamb and that we will assrgn 4 lambs to each
treatment, we will use 16 lambs. The 16 lambs selected for the trial are each given
an ear tag with a number from I to 16. Using Table A.1, begin at a random two
digit point, for example, columns 5 and 6. Proceed down this column of trvo digit
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TABLE 4.I.
Weight gains of lambs grouped by treatment (pounds per animal per 100 days)
Numbers in parentheses are e:u tag numbers of the 16 lambs assigned
to the trial and randomly selected to receive the indicated treatment

Treatrnent

Treatment Replications Total (\) Mean (l)

}J
57
59
63

e) 51 ( 8) 212
6) 57 (5) n8
r) 57 (r5) ?36

r0) 5e (16) 252

47 (14) 52 (13) 62
s0 (r2) il (1r) 67
57 (2) 53 (7) 6e
il (3) 65 (4) 75

(check)I
2
3
4

928:Y 58:Y

numbers, up columns 6 and 7 and down 7 and 8, assigning the first four numbers
(lambs) between I and 16 to treatment I (14, 13, 9,8), the second four to treatment
2 (12,11,6,5), the third four to treatrnent 3 (2,7;1,15). The remaining four lambs
(3,4, 10, 16) are assigned to treatment 4. After a fee&ng period, the weight gains of
the lambs are organized for analysis as in Table 4.I.

ANALYSIS OF VARIANCE

Sources of Variation and D"g""r of Freedom

An analysis of variance table is started (Table 4.2),and the fust two columns are

completed. There are only two sources of variation in the completely randomized
desigrr; among experimental wits u>ithin a treatrnent, which we call experimentnl
enor, and, that antong treatment means.

Degrees of freedom are one less than the number of observations for each

source of variaUon: there are four treatments, therefore 3 df; there are four
experimental units per treatment, therefore, 3 df for each treatrnent X 4 treatments
gives t2 df for error. R/T means replications within treatments. The degrees of
freedom associated with the total variability in the e4periment is one less than the

total number of experimental units: l6-t:15 df. Note that the degrees of
freedom associated with the sources of variation are additive. This makes it easy to
determine the degrees of freedom for error by subtraction from degrees of
freedom for total: 15-3:12.
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To facilitate calculation of degees of freedom and sum of squares for enor,

we place total variation fust in the analysis of variance table, but calculate its zum

of squares after the treatment zum of squares has been determined.

Correction Term (C)

": 
("') 

:s?B? :s*8.,trn 4(4)

Sums of Squares and Mean fuuares

TREATMENT: SST AND MST. SST:()\'/r)-C, where Y,.:treatment totals
and r:number of replications in each treatrnent.

SST _ ZtZz + ?2Bz + ... + ?SZ2 _ C :54032 _53824 :20g
4

SST is entered in Table 4.2. Mean square for treatment (MST) is obtained by
dividing SST by df for treatment. MST:SST/df(T):208/3:69.3, which is

entered in Table 4.2.
For calculators with standard deviation keys, MST:sr2/r, where sr2 is the

variance of a series of totals (in this casr- 212 . ..252) and r is the number of variates
in each total. Then SST:df(MST). For this example, sr2:l'17.33, MST:
277.333/4:69.3 as before, and SST:3(69.3;:263 as before.

TABLE 4.2.
Analysis of variance

Source of variation

Degrees of
freedom

(d0

Sums of
squiues

(ss)

Mean
squares

(*t)
observed Required F

F 1Vo lVo

Total
Treatments
Error (R/T)

8il
208
M6

15

3
t2

69.3
53.8
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TOTAL: SS. We do not need a MS for total as this contains variances for all the
sources of variation.

SS : )Yij2 - c : +? + # + . . . + 5f - c : 54678 - 53 B?A : 8s4,

ERROR. SSE : SS - SST : 8r1 - 208 : 646. MSE : SSE/ df(E) : M6 / 12 : 53.8.
With a standard deviation key, SS:s,,2(nr-f) where s,,2 is the variance of all

the variates in the experiment (47...59) and is 56.933; nr-l:4(4)-1:15, the
degrees of freedom for "total." Thus, SS:56.933(15):854 as before.

F Value

An F value for treatments is calculated by dividing MST by MSE: F:MST/MSE
:69.3/53.8:1.29. F values required for significance are found in Table A.3 for
degrees of freedom associated with MST across the top and MSE down the
left-hand side. Since the observed F value of 1.29 is considerably less than the
required F for the 5% level of significance, we would be wise to accept the null
hypothesis and conclude that there are no real differences among the treatments.
But remember, this does not prove that there are no differences among the
treatments. It may be that real treatment differences do exist but that the
experiment was not sensitive enough to detect them at the desired level of
probability.

THE WIIA'T AND WHY OF THE ANALYSIS

In testing the null hypothesis, we assume that there are no treatment effects, and
therefore the treatment means only vary as would be expected of samples drawn
from the same population. Thus the variance per experimentd unit we call error
(o2) can be estimated from the variabitity among the sample means using the
relationship tr' : * / , and solving for s2, thus,

s2: rsr2: MST

The variance of means is

*:
>(i,-Y f (rs-58),+... +(6s-58),

:17.33
n- I 4-l

where n:number of treatment means. Then MST:rso2:4117.rr) :69.3, an

estimate of the variability per experimental unlt (o2) based on variability among
treatment means.
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The variance within each treatment gives an independent estimate of o2 and

a weighted average of these variances is our best estimate based on the variability
within treatrnents. Thus,

, (rr - I)sr2 + (rr - 1)q2 + (t - l)t'+ (tr - t)t 's-:

Note that each estimate of o2(sr2, q2 etc.) is weig[rted by its degrees of freedom.

When all treatments have the same number of replications, that is, r, : rr: . .. : 14

: r, then

" sr2 + q2 + r"'+ so'
5 

-- n

where n is the number of treatments. In our erperiment t}te variances within
treatments are:

(57 -5g)2 + ... + (57-59)2
--2:-:4an-r 4-l

(sa-eg)2+... +(59-og)2
_2_\ ' \ ' _4tA

4-l

The average of these variances gives the estimate of o2 we call erperimental enor,

o
s:

(sr2 + sr2 + s.2 + soz) 40.67 + s2.67 + 4g.0 + 74.0 :ry:53.8.
n 4

Now we have estimated the variance per experimental unit (o2) in two ways: by
pooling variances within treatments (MSE) and by the variability among treatment
means, q2, to obtain MST:r$2. If the null hypothesis is true-that is, if all four
samples are random samples from the same population-we would expect MST to
be close to MSE and the raUo MST/MSE (the F value) to be close to I unless we
have drawn a very unusual set of samples. In this case, t}re ratio is 1.29, a value
that has a greater than ?SVo chance of occurring if there are no real treatment
differences. Thus, we choose not to reject the null hypothesis and conclude that
there are no significanf differences. When we do find a significant difference
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among treatment means, the next step is to decide which means are different. This
is called mean separation. A discussion of this problem is given in Chapter 6.

SUMMARY

The completely randomized design is most useful where there are no identifiable
sources of variation among the experimental units other than treatment effects. It
is the most flexible with regard to the physical arrangement of experimental units.
It maximizes the degrees of freedom available for estimating the variance per
experimental unit (experimental error); and minimizes the F value required for
statistical signifi cance.
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5

THE
RANDOMTZED

COMPLETE
BLOCK
DESICN

In this design the treatments are assigred at random to a grouP of experimental
units called the block or replication. Block is the preferable term, as it avoids

confusion with replications of the completely randomized design. The object is to
keep the variability among experimental units within a block as small as possible
and to maximize differences among blocks. If there iue no block differences, this
design will not contribute to precision in detecUng treatment differences.

A block should consist of experimental units that are as uniform as possible.
To achieve uniformity, experimental units may be classified on the basis of age,

weight, general vigor, prior knowledge of gaining or lelding ability, or some other
characteristic that will provide uniformity within the classification. With crops,
adjacent field plots usually yield more alike than those separated by some distance.
Blocks can be kept compact by placing the plots, uzually long and narrow in
shape, close together. The number of treatments should be as few as possible and
still meet the objectives of the experiment. fu the block size increases, so does the
within-block variability. It is not necessary that each block be the same shape, but
in field experiments with crops, this is usually desirable, as differences in block
shapes usually increase within-block variability.

I u IIIIV
D A C C

A D D B

B C B D

C B A A

Iow fertilitY.- Hig[r fer6litY

Figure 5.1. Four treatments replicated four times in a randomized complete block
design.

53 The Randomizcd Compbte Bbck Design



When a productivity gradient is expected within the experimental area,
blocks should be laid across the gradient and plots within a block laid parallel to
the gra&ent as in Figure 5.1. Each treatment is assigned the same number of
Umes, usually once, to experimental units within a block, but all or certain
treatments can be replicated two or more times within a block. It is usually most
efficient to have a single replicate of each treatment per block. To minimize
experimental error, all precautions should be taken to treat the experimental units
within a block as uniformly as possible.

RANDOMIZATION

After experimental units have been gouped into the desired blocks, the treat-
ments are assigned at random to the units within each block, with a separate
randomization being made for each block. For example, the four treatments of
Figure 5.1 could be randomized in the following rnanner. Arbitrarily starting with
row 15 of Table A.l, we proceed across this row until we have selected the digits I
through 4, representing treatments A throug[r D: 4,1,2,3... is the order we will
assign the treatrnents in block L Then continuing across row 15 and back (from
right to left) on row 16 we find L,4,3,2 and assign the treatments in that order in
block II. Similarly, the randomization is completed for blocks III and IV.

ANALYSIS OF VARIANCE

The data we will analyze are the same we used in Chapter 4. The experiment was

to determine the effect of implanting a hormone, stilbestrol, on the weight-gaining
ability of male and female lambs. Thus the treatments were the factorial set of
Table 5.I, the two factors being sex and stilbestrol, each factor having two levels.

In this case, blaclcs were four different ranches. Thus the replicatioru of Table 4.1

become blocles and the treatntents become the factorial set of Table 5.1. The data

are reorganized in Table 5.2.The analysis of variance is given in Table 5.3.

TABLE 5.I.
Treatments to determine the effect of stilbestrol ear implants on tlre gaining ability
of wether and ewe lambs

SUlbestrol

Sex 3 mg/Animal0

Female
Male

FS.
MS.

FSo

MSo
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TABLE 5.2.
Weight gains of lambs grouped by treatment and block (p"*dt per lamb per 100

d"y9

Block Treatment

Treatment I II m IV total (Y,.) mean (Y,)

53
57
59
63

2t2
n8
236
252

51

57
57
59

52
54

53
65

47
50
57
il

A
B

C
D

FSo

MSo

FS.
M53

62
67
69
74

208

52

272

68

224

56

224

56

928:YBlock total (Y.,)

Hock mean (ir) ss:(Y..)

TABLE 5.3.
Analysis of variance

Source'of
variation

Required F

df SS MS Observed F SVo IVo

Total
Blocks
Treatments
Error (BT)"

3.86 6.99

"BT means the block by treatment interaction. It is the random failure of treatments to
show the same effect in all blocls and not a true interaction that would imply that
treatments respond differently in different blocks.

Sources of Variation and Degrees of Freedom

We now have an additional source of variation-that resulting from blocks. Since
each treatment occurs the same number of times in each block, differences among
blocks do not result from treatments but from other differences associated with
the blocks. This component of the total sum of squares can be removed and the
unaccounted error (experimental error) reduced accor&ngly.

8il
576
208

70

I5
3
J

I

192.0
69.3

7.78

24.69
8.91
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Degrees of freedom are one less than the number observatiors associated with
each source of variaUon. There are 16 experimental units (groups of lambs),
therefore 15 df. There are four blocks and four treatments and therefore 3 df for
each of these sources of variation. Error degrees of freedom can be found by
subtraction, 15-3-3=9 or by multiplying degees of freedom for blocls by
degrees of freedom for treatments, 3 x 3 :9. In this desigr, when each treatment is

replicated once in each block, degrees of freedom for error are always df
blocks x df treatments.

Correction Term

Y2
i_

"-;
where r is the number of replications and n is the number of treatments

ooq2C: "1"= =538fo1
4(4)

Sums of Squares and Mean Squares

sv22L.i

BLOCKS. SSB: -Cn

6s - zw'\-! zu'- - s18z4 : wN - sJ8L4 : s7 6

Note that the divisor n, in the term )Y.;2/n is the number of variates mfing up
each total in the numerator; in this case tlw nunber of *eaarwrt*,

MSB: SiB, :516:192.0
df(B) 3

Also, with a calculator programmed to compute a standard deviation: MSB:
s"2/n, where s"2 is the variance of the block totals, 208. . .2?t4,, and n is the number
of variates in each block total.

MSB:618:rgz and ssB:3(192):576
4

>Y,2
TREATMENTS. SST: " -Cr

ss7 - zw\!wz'-- s3824:5403 z-5irl%t:208

MSr:ffi:T:*.,
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Usirg a standard deviation key after entering treatment totals 212...252 gives

16.653 and MST: 16.6532/4:69.3.

TOTAL. SS:)Yii2-C

ss : 4? + 522+ . . . + 5f - c : 54678 - 53824 :854

With a standard deviation key, enter 47...59 to get s:7.545. SS:7.il#(15):
8il.

ERROR. SSE:SS_SST_SSB

SSE:854-208-576:70

If the various surns of squares are calculated in the above order, SSE is readily
obtained by subtraction, as soon as the total sum of squares is calculated.

MSE: ffi: s:t.ta

TIIE WIIAT AND WTIY OF THE ANALYSIS

Before continuing with other aspects of the analysis of variance it will be helpful
to look at what was done and why in calculaUng each mean square.

Mean Square for Blocls

Assuming a lack of real differences among the block means (the null hypothesis
again), an estimate of the variability per experimental unit is calculated from the
variance of blnck means. Thus f :MSB:n#, where n:number of treatments
*d S"' is the variance of block means. Not6"that this uses the relationship of_a
varianie of means to the variance pel experimental unit, s2: nsl. Since sro2: )(Y.,
-y..)' / (, - l), the formula for MSb bec6mes,

MSB:n r-l

where i., represents each block mean, y.. is the general mean, and r is the number
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of block means. Calculating MSB gives:

MSB: 4-l

Mean Square for Treatrnents

Using the null hypothesis again and assuming no real differences among the
treatment means, f :MST:52, where r:number of replications and sr,z is the
variance of treatment means. This is another estimate of the variance pei experi-
mental unit based on the variability among treatnrent means.

Again, the relationship between an estimated variance of means (ry') and the
estimated variance of the individual variates of the parent population (f) is used.
Expanding the formula gives

'>G -i rMST: n-l

4[ (52- 58)'+ (56-58)'z+ ... + (56-s8)'] 4044\:;:192'o

where Y,.:each of the treatment means, and n is the number of treatments. SST is
the numerator, the denominator is degrees of freedom for treatment. The calcula-
tion gives

4[(ss-58)'g+(57-5'a)'z+ ... +(63-58)'z] 4Fz)
-.r:r:q_t:3:or..

Mean Square for Eror

MSE represents the variability among the experimental units that remain after the
other sources of variation have been removed. It is informative to see what is
involved in renwving block and treatment effects.

The model for the randomized complete block design is Y,,:?..+!+B,*e,,.
This says that any_cell of a two-way table like Table 5.2 is made up of the mean of
all the variates, Y., a treatment effect, T,, a block effect, Bi, *d a residual
component, e,,, which is the unaccounted variability we call experimental error.

Each treitment and each block has its own effect defined as the difference
between the treatment or block mean and the general mean. For example, the
effect of treatment FSo is the same for all replications of this treatment and is

53-58: -5. Symbolically the-T, fo1 FSo:Yr.-Y.., and all the treatment effects
are collectively symbolized as Y'-Y.., where Y,. is any one of several treatment
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means. Similarly the block effects are defined as B,:Yr-Y...
_Reglacing the T and B with their defined eff6cts we have Y,,:Y..+(\.-Y..)

+Fj-t )+e,, Now we can rewritedre modelto specify the error term for any

cell of the two-way table as e,, : Y,, - Y.. - (\. - Y..) - (Y; - Y..). To determine e6 for
example,

e13:62 -58 - (53 -58) - (68 -58)

:62-58*5- I0
:-l

The definition of e,, can be 
-simplified 

further for this model by removing
parentheses and cancbling a *Y.. with the -Y.. to give

e,,:Y,,-T.-v.,+Y.

and for ers:62-68-53+58: -I as before. When this is done for all cells of
Table 5.2, we produce a table of error terms, Table 5.4.

The zum of squares of tlese error terms divided by the total degrees of
freedom minus the degrees of freedom for the other identifiable sources of
variation, blocks, and treatments is the MSE, which is f, the unaccounted
variability per experimental unit; thus

s:\{sE: E__#_Z :T:r.r,

TABLE 5.4.
A table of error terms. The variates of Table 5.2 with treatment and block effects
removed

Block

Treatment I u ru IV

0
2
0

-2

I
0
0
I

0

-t
4

-3

1

-1
-4

4

FSo

MSo

FSt
MSt
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F VALUES

F ratios are used to evaluate the probabilities of obtaining treatment and block
means that vary as much as those of our experiment if there €ue no real treatment
or block differences. We have estimated o2, the population variance per experi-
mental unit in three ways: (1) based on variation among treatment means (MST);
(2) based on variation among block means (MSB); (3) based on variability among
the experimental units with block and treatment effects removed (MSE). If there
are no differences resulting from block and treatrnents, all three mean squares
should be about equal.

F (brocks): #H : H:?A.Ge

F (treatmentr: #oll 
: ffi :8.9I

The required F values for statistical significance for degrees of freedom 3 (numera-
tor) and 9 (denominator) are found in Table A.3 and recorded in the analysis of
variance table (Table 5.3). Since our observed F value for blocls as well as for
treatments exceed that required for sigrificance at the 1% level, we can say that if
the null hypotheses are true, t}re chances are less than I in 100 that our particular
sample of blocls or treatments could have occurred by chance alone. We are
willing to gamble that these chances did not occur, reject the null hnrotheses, and
conclude that there are real block and treatrnent differences. The next step is to
determine which of the treatments are significantly different. This discussion is the
subject of Chapter 6. Before leaving the randomized complete block desigr, we
should comment on the improvement in efficiency over the completely rando-
mized design. Because of the existence of sizable block differences and the
removal of these block effects, the precision of our experiment was increased
allowing us to detect treatment differences that could not be detected by the
completely randomized design.

SUMMARY

In the randomized complete block design: Blocls are sets of experimental units
that are arranged or selected prior to the allocation of treatments so that the
existing variability is minimized within blocls and maximized between blocks.
Treatments are randomly assigrred the same number of times (usually once) to the
experimental units within a block. An independent randomization is carried out
for each block. Compared to the completely randomized design, the degees of
freedom for experimental error are reduced by the number of degrees of freedom
for blocks. Block variability is removed from experimental error. Thus the greater
the variability among blocks, the more efficient the design becomes in its ability to
detect possible treatment differences.
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6
MEAN

SEPARAIION

As we have seen, an experiment is conducted to answer certain questions the
investigator poses in advance. These questions are important in determining the
treatments to be included, the design of the experiment, and the appropriate
method for comparison of treatment means.

Usually, treatments can be selected that make it possible to carry out planned
F tests to answer important questions. For example, when two or more factors are
to be studied, a factorial set of treatments makes it possible to answer questions as

to how the factors may interact. And even if interactions are not present,
inferences concerning the average effects of the factors are more widely applicable
because each factor has been examined over a range of conditions. Levels of a
treatment can be planned to determine not only whether there is a response to the
treatment but also how best to characterize the reslrcnse and to quantify the
dose-response relationship. Treatments may be classified into groups with common
characteristics and thus provide for meaningful F tests {rmong the groups. Such
planned F tests allow more precise mean separation than do multiple comparison
tests. The latter should only be used where there are no logical relationships
among the treatments.

A significant F value immediately raises the question: Which of t}le mean
values are significantly different? Three widely used methods for mean separation
are briefly described below.

LEAST SIGNIFICANT DIFTERENCE

This test should not be used unless the F test is significant. Strictly speaking, LSD
should be used only to comp.ue adjacent means in an array (means arranged in
order of magnitude). When it is used indiscriminately to test all possible dif-
ferences among several means, certain differences will be significant but not at the
level of significance chosen. Instead of making comparisons at the 5% level,
comparisons between means farther apart than two in an iuray will be made at
lower levels of significance. LSD can be used for comparing adjacent mears, and
when it is used to make meaningful comparisons that are planned before the data
are examined, it should not lead to many errors. The great advantage of LSD is
that it is easy to calculate and provides a single figue for making comparisons.

As pointed out before, l,SD is a form of the t test. Its formula is derived from
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the formula for the t test to test the statistical significance of the difference
between two means: t:(a- pa)/sa.Let the diffe-rence between two means
(Vr-&:d) be the lower limit of the values we wou]d expect 5% or more of the
time by chance alone in drawing samples of mean differences fig* 

" 
population of

mean differences where the mean is zero (pa:O). We replace d with LSD and pr;
with zero, and the formula becomes t: LSD/sa. Solving for LSD gives LSD: ts;,
where q:(sr2/rr)+(U'/rr), sr2 and q' are the estimated variances of plots
receiving treatrnents I and 2, respectively, and r, and r, are the number of
experimental units receiving treatments t and 2, respectively. In an analysis of
variance sr2 is assumed to estimate the same variance as q2 and r, is usually equal

to rr, tlerefore ISD:t1Ef/r, where * is the mean square for error, r is the
number of replications, and t is the tabular t value for degrees of freedom for
erTor.

When

times: LSD

two treatments that are replicated a different number of

*/rr)+(*/rr), where r, and r, are the number of replications
for each treatment.

To illustrate the use of LSD, we will use it to separate t}re means of our
lamb-stilbestrol experiment, Table 5.2 (Chapter 5). The mean effects are: FSo:
53;MSo:57;FS3:59;MSs:B lb gain per lamb per I00 days.

LSD.*:t.*

:2.262(1.972):4.qA lb per animal per 100 days

If we use LSD only.to compare adjacent means, we conclude that tlere are no
differences; but the F value tells us that there are differences. Using it to compare
all mears, we conclude that stilbestrol improved gaining ability in both female
(59 - 53:6) and male (63 - 57: 6) lambs. Differences in gaining ability associated
with sex are not significant.

Testing differences by LSD is, in effect, making a t test for each difference
and leads to the same statistical inference as F tests of the same differences.
Researchers are often confused on this point and try all three tests to show a

difference to be significant. Do not-do it! They all grve the same result. To
iHustrate, take the difference FSs - MS, : 53 - 57 : - 4.

(f) LSD:4.5. Therefore t}re difference is not significant.

(2) t:(a- p.6)/s6:4/1.972:2.0?-8. The tabular t for the 57o level and 9 df:
2.262. Therefore, again, the difference is not significant.

(3) F:MS(FS,-MS.)/MSE. Since MS(FS.-MS,) is based on 1df, it is also the

SS(MS0 -FSs) and SS(Mso -FSo) :(22f,,2 +2D\/4- (2%+n42/8:?.4232-
24l2OO:32.F:32/7.78:4.11. The tabular F for the SVolevel and I and 9 df is

,,1{:rru\,f'!P
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5.32. Therefore, once again, the difference is not significant. Note that f -F:
2.0282:4.lL There is always this relation between the two tests and they both
lead to the same statistical conclusion.

LSD is a fixed-range test, since it provides one range for testing all differences.

Other, more conservative fixed-range tests, are Tukey's and Scheffe's (see Bancroft
reference at end of book).

MULTIPLE.RANGE TESTS

These tests are so named because they provide multiple ranges to make pairwise
comparisons among several means. With means arrayed from the lowest to the
highest, a multiple-range test gives significant ranges that become larger as the
means to be compared are further apart in the array. A conservaUve multiple-
range test that is corsidered to keep all mean separations at the level of
significance specified is the Student-Newman-Keuls procedrue (see Bancroft refer-
ence). In this book, only Duncan's multiple-range test is discussed, since it and/or
the intelligent use of LSD following a significant F for treatrnents are adequate
procedures for making logical pairwise comparisons.l

Duncan's MultipleRange Test

This test is the most widely used of several multiple-range tests available. It
provides protection against making mistakes inherent in the indiscriminate use of
the LSD test. The test is identical to LSD for adjacent means in an array but
requires progressively larger values for significance between means as they are
more widely separated in the array. This test is ubd most appropriately when
several unrelated treatments are included in an experiment, for example, for
making all possible comparisons among the lelding abitties of several varieties.
To illustrate the procedure, we will use the lamb implant experiment.

The test involves the calculation of shortest significant differences (D) for all
possible relative positions between t}te treatment means when they are arrayed in
order of magnitude. The D's are then used in an orderly procedure to determine
statisucal differences among the means. In most boola the formula for D is given
as D:Qt,where Q is a tabularized value (Table A.7 of Steel and Torrie, 1960)
depending u1rcn the chosen level of significance, the degees of freedom for error,
and the relative separation of means in the array, -d t is the standard error of a
mean and ir VfrfSn/. :{*h. In this book D: R(LSD), where R is a tabular
value from Tables A.4 and A.5, chosen for the level of significance, degrees of
lFor a discussion of various tests for random pairwise comparisors see S. G, Carmer, and
M. R. Swanson, "An Evaluation of ten Pairwise Multiple Comparison Procedures by Monte
Carlo Methods," Joumal of tlu American Stntisticol Assocbtion, 68$6-74, 1973.
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freedom for error, and the position of means in the array; and ISD:trfX J, . t"
Tables A.4 and A.5, the R values are computed from Q values to facilitate the
calculation of D from LSD.

Using our lamb experiment as an example, the procedure is as follows:

(l) Calculate the least significant difference.

LSD * : t\F :r.rur\f'!-9 : 4.46

(2) Calculate D for relative posiUon in the array of means. Since there are four
means they can be 2, 3 or 4 apart. (Note: adjacent means are called 2 apart.)

Relative lrcsition in array (p of Table A.4)
Values of R,5% level, Table A.4.
D:R(LSD)

3
1.04
4.6

MS.
63

2
1.00
4.5

FS.
59

MSo
DI

FSo

53

4
r.07
4.8

(3) Arrange t}re means in order of magnitude and test for significant differences.

Treatment
Mean

Start by comparing the largest mean with the smallest, using the D for their
positions relative to each other in the array (in this case p:4, therefore D:4.8).If
t}te difference between these means equals or is larger than the D, the means are
significantly different. (63-53:10,D:4.8, therefore 63 is significantly larger
than 53). Next compare the largest mean with the next smallest (63-57:6,D:
4.6; 63 is significantly larger than 57). Then the largest with the next smallest
(63-59:4,D:4.5; 63 is not significantly different from 59). Wlwr a nonslgnifi-
cant differmce is found" a line can be drattm connecting these (and. intensming)
tne(uts. Then repeat the process; start by comparing the second largest with the
smallest, and so forth.

There is an exception rub used with Duncan's multiple-range test. It states
that a difference between two means cannot be declared significant if the two
means concerned are contained in a subset of means with a nonsignificant range.
Thus, if among five means in an array, A has been found not significantly different
from D, that is, A B C D E, and B is significantly different from E, it is not
necessary to test B against D and C as they are in a subset with a nonsignificant
range. The next step would be to test C against E, if this difference is not
significant, C and E are connected, A B C D E, and fr:rther testing is unnecessary.
This procedure avoids making tests betw-een means that are already connected by
a line.
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(4) Indicate statistical sigrificance by lines or letters.

MSs FE MSo FSo MS.
OR

63 59 57 53 63a

FS.

59ab

MSo

57bc

FSo

aJc

Means connected by the same line or followed by a common letter are not
significantly different at the 57o level. If letters are used, significant differences can
be shown even if the means are not arrayed.

In our example, note that mean comparisors by Duncan's multiple-range test
or LSD lead to the same conclusions (MSelMSo and FS3>FS,), but both tests
lead us to conclude that there is no significant difference in gains between males
and females (MSrlFS. and MS,>FSo).

PLANNED F TESTS

In planning an experiment, we can often provide for F tests to answer pertinent
questions. This involves partitioning the degees of freedom and sum of squares for
treahnents into component comparisons. The components may be class compari-
sons or response trends. They can be tested by partiUoning the degrees of freedom
and sum of squares for treatment effects into meaningfirl single degrees of freedom
and associated sums of squares. Shllfully selected treatments can answer as many
independent questions as there are degees of freedom. When the comparisons are
independent, they are said to be orthogonal-a desirable characteristic, as the
comparisons lead to clear-cut probability statements.

The power and simplicity of this method of mean separation is not appre-
ciated among research workers as fully as it should be. The method involves the
selection of orthagotutl cofficienb, and perhaps this term creates t}re impression
that it is complicated and difficult. This is far from true. Actually, the method has

three important advantages: (I) it enables one to answer specific, important
questions about treatment effects; (2) the computations are simple; and (3) it
provides a useful check on the treatment sum of squares.

Orthogonal Coefficients

The construction of a table of comparison coefficients is useful in checking for
orthogonality and in the calculation of component sums of squares. Coefficients
for trend comparisons come from tables of orthogonal polynomials such as Table
A.ll. Coefficients for class comparisons are constructed using the following simple
rules.
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l. If two groups of equal size.are to be compared, simply assign coefficients
of + I to the members of one group and - I to those of the other group.
It is immaterial which goup is assigned the positive coefficients.

2. In comparing groups containing different numbers of treatments, assign to
the first group, coefficients equal to the number of treatments in the
second group, and to the second group, coefficients of the opposite sign
equal to the number of treatments in t}le first group. Thus, if among five
treatments, the first two are to be compared to the last three, the
coefficients would be +3, +3, -2, -2, -2.

3. Reduce coefficients to the smallest possible integers. For example, in
comparing a group of two treatments with a group of four, by rule 2, we
have coefficients *4, +4, -2, -2, -2, -2, but these can be reduced
to *2, +2, - I, -1, -I, -1.

4. Interaction coefficients can always be found by multiplying the corre-
sponding coefficients of the main effects.

Two mles are used to test independence of comparisons. Comparisons are
independent and therefore orthogonal when (t) t}re sum of the coefficients for
each comparison is zero and (2) the sum of the products of the corresponding
coefficients of any two comparisons is zero.

An example of the construction of a table of orthogonal coefficients may be
helpful. Suppose we .ue planning an experiment with a crop to test the efficiency
of phosphorus fertilization by three methods: broadcast (B), shallow band place-
ment (S), and deep band placement (D). For each one of these methods of
placement, we urill apply phosphorus at two rates (P, and Pr). A nonfertilized
treatment (NT) is included also to establish a resllonse to the phosphorus fertilizer.
Across the top of the table (Table 6.1), we list the treatments. The comparison
coefficients are written in as we list the comparisons we will make.

l. Is there a response to P? This. can be decided by comparing NT with all
the treatrnents receiving P. Since tlere are six of these, NT gets a

coefficient of 6 and the others get - l, as they are being compared to a
single group. Having made a comparison involving a single treatment with
all the rest, we cannot use NT again if we want the comparisons to be
orthogonal, and therefore NT gets a coefficient of 0 in the comparisons
that follow.

2. Is the average response to P, geater t-han that to Pr? This means
comparing PrB+PrS+PrD with PzB+P2S+P2D. Since there are two
groups, each of equal size, we assign * I to one and - I to the other.
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3. Over both levels of P, is band placement zuperior to broadcast that is,

PrS+PrD+P2S+P2D versus PIB+P28. Now we are comparing a group
with four treatments with a goup having two treatments and thus assign

coefficients of 4 to the treatrnents in the goup of two and - 2 to the
treatments in the group of four. Reducing these to the smallest possible
integer gives coefficients of 2 and - 1, respectively.

4. Considering band placement only, is there a difference between shallow
and deep? That is, PrS+P2S versus PrD+P2D. The coefficients are 2 and

-2 and reduce to I and -I.
5. Is the change in yield from P, to P, different for broadcast compared to

band placement? This is t}re interaction of comparisons 2 and 3, and
coefficients are found by mulUplying the coefficients for these two
comparisons for each treatment, that is, 0(0):0, l(2):2,I(- 1): -
1,1(-r): -r, -l(2): -2,-1(- l):1, -l(-1):1.

6. And fir"lly, is there a change in yield from P, to P, that is different for
shallow compared to deep band placement? This is the interaction of
comparisons 2 and 4, and coefficients are determined by multiplication of
tlre coefficients for comparisons 2 and 4.

TABIT 6.I.
Coefficients for the partitioning of the sum of squares among six treatments into
six independent (orthogonal) comparisons.

Treatrnents

Comparison NT P,B P,S P,D P,B P,S P,D

l. Response to P
2. P, vs. P,
3. B vs. S*D
4. Svs. D
5. (P, vs. Pr)(B vs. S+D)
6. (P, vs. Pr)(S vs. D)

-l
I

-l
I

-1
I

-t
-t
-t
-t

I
I

6
0
0
0
0
0

I
I
2
0
2

0

-1
I

-t
-t
-1
-t

-t_I
2
0

-2
0

-l
-l
-t

I
I

_I

J\.IT: "o 
treatrnent; P1 and P2 : phosphorus fertilizer at rates 1 and 2, respectively; B, S, and

D:broadcast, shallow band placement, and deep band placement, reqpecUvely.
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In Table 6.1, note that coefficients of all rows sum to zero and that the sum of the
products of the coefficients for the same treatments for any two comparisons sum
to zero. For example comparisons I and 5: 6(0)+ (- l)2 + (- t)(- 1)+ (- 1)(- I)+
(-1)(-2)+(-l)1+(-l)1:0. Thus we can be sure that the comparisons are
orthogonal and that the sums of squares of the comparisons will add to the sums of
squares for the six treatments.

For a simple example in the use of class comparison coefficients we will again
use the lamb implant experiment.

Class Comparisons

In the selection of the treatments for this experiment, note that three specific
questions were asked: (1) Considering all lambs, does implanting affect gaining
ability? (2) Are there differences in gaining ability between male and female
lambs? (3) Is the effect of implanting the same for both sexes? The answer to each
of these questions involves a single degree of freedom. The coefficients for the
three comparisons are given in Table 6.2.

In the implant comparison we are comparing lambs of both sexes implanted
with stilbestrol with lambs of both sexes not implanted. This is a valid comparison,
as equal groups of male and female lambs received each level of stilbestrol.

In comparing gains for each sex we are comparing the average rate of gain of
all female lambs with that of all male lambs for both levels of stilbestrol. This also
is a valid comparison, since equal groups of lamb of each sex were implanted.

If implanting caused a significantly greater rate of gain in one sex than in the
other, we would say that there is a significant interaction between sex of lambs
and implant. Coefficients for this comparison (I x S) are determined by multiplying
the coefficients for each treatment of the first two lines of Table 6.2.

TABLE 6.2.
Comparisons, treatments, treatment totals, and coefficients for partitioning for
treatment sum of squares

Treatments and Treatment Totals

Comparison FSo FSt
236

MSo

2282L2

MS,
252

Implant
Sex

IXS

t
I
I

+
+
+

I
I
I

+
-l_I
+1

+l
_I
-1
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To compute sums of squares, mean squares, and to make F tests, we proceed
as shown below and organize the results in Table 6.3.

In calculating tlle sums of squares for treatment components we will first use

the correction term procedure and then illustrate the use of the comparison

coefficients we constructed in Table 6.2. The latter procedure for calculating a

sum of squares only works when the sum of squares involves a single degee of
freedom.

SUM OF SQUARES FOR IMPLANT

In using comparison coefficients, we use the following rule to calculate a zum of

en+228\2 + (236+252\2 (928)'z
SSi:8-16:i*

squares: 
() 

"'v'')'SC: '

.) c?

where c,:comparison coefficients from Table 6.2, Y,.:treatment totals, and
r: number of replicates.

I t1zrz\- l(236)+ l(228) -r(%2)12 (-+a)'
ccr- - ' 

-:_________:_-taa+[{r)'+(-r)'+(+r)'z+(-l)'] 4(4)

suM oF SQUARES FOR SEX.

etz+?36\2 + (228+252\2 (gZa)2
ocS:g- 16:oi

TABLE 6.3.
Orthogonal partitioning of treatrnents of the lamb-implant experiment

Source of
Variation df SS MS

Rquired F

lVo l%
Observed

F

Treatments
Implants
Sex

IXS
Error

.)

I
I
I
I

208
t44
M

0
70

69.33
IM
u
0
7.78

8.91
18.51
8.23
0

3.86
5.r2

6.99
r0.56
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or by the coefficient method,

I rlzrz; + t(236) - r(zz9) - r(zs2))2 e3z),ccc: : --J6-:&

suM oF SQUARES FOR rxS.

ss(I x s): ssT- ssl- sSS:208- L44-M:O

or with coefficients,

ss(rxs)- [1(212)- 1(236)-1(228)+ 1(252)]'z : I :o
4(4) 16

Notice how much simpler the computations for the coefficient method are
than for the correction term procedure. In each case, only one number needs to be
squared instead of adding the squares of two large numbers, and a correction term
is not needed. Note also that the sum of the tlree component zums of squares is
exactly equal to the treatment sum of squares calculated in the usual manner,
furnishing a check on the calculations.

Since each sum of squares has only a single degree of freedom, the mean
square in each case is the same as the sum of squares.

F tests are made by dividing each mean square by MSE. Note tlwt by uing
th.ese morc sensitioe F tests tae hrne Leamed something that neitha the LSD rwr
Duncan's multiple-range tests told ns. We now have good evidence that male
lambs gain faster than female lambs.

For another example of partitioning a treatment sum of squares into subcom-
ponents for planned F tests, see the section on Mean Separation in Chapter 7.

Trend Comparisons

It is often desirable to sfudy a variable at several levels, for example, increments of
a fertilizer, dates of harvest, or doses of pesticide or herbicide. In these cases, the
experimenter is interested in the nature of the response of the experimental units
to the varying levels of a treatment. The statistical analysis should be designed to
evaluate the trend of the response.

Wherever possible, it is desirable to use an arithmetic series for levels of a
factor. Eqr"lly qpaced intervals for a treatment dose or for a time series estimate
responses evenly throughout the range of the levels you choose and provide a

better base for cuwe fitting than do series where the intervals between successive

treatment levels are unequal. In addition, {rs you will see, there are geat
advantages in computing sums of squiues and in fitting regression equations.
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For a simple example we have chosen the lima bean seed treatment experi-
ment illustrated in Figure 3.2. Note that the doses of insecUcide are equally
spaced: 0, L/6,l/3 oz of insecticide/IO0lb seed. One objective was to determine
the nature of the response to doses of insecticide with and without a fungicide
treatment. A portion of the data from this experiment is given in Table 6.4, and
the analysis of variance is in Table 6.5. Before proceeding with the trend
comparisons, note how the factorial treahnents have been partitioned in Table 6.5
into main effects and interaction. The computations for the sum of squares for
treatments and the partitions follow.

o.-_3412+zgP+ ... +4N t 224ffwhere (,: 

-
6(s)

: L7 6222.8 - 167253.33 : 8969.47

(sr+ + zm + tu)z + (ua + +ss + +m)2SSF: ,, -C:&X)3.3S

@4r + a46)2 + (290 + 459)2 + (tU + +m)2SSi: , -C:Sa5.27

SS(FxI):SST-SSF-SSI

: 8969.47 - 8003 .33 - 345.27 :620.87

TABI.E 6.4.
Lima bean seedlings emerged from lfi) seeds planted per plot. Fo and F, are 0 and
2 2/3 oz fungicide/IOO lb seed respectively. h, Ir, and I, are 0, lf 6, and l/3 oz
insecticide/ 100 lb seed, reqpectively

Blocks

\ 1Treatment I ilIIIIVV

ffi.2
58.0
48.8
89.2

9r.8
92.0

74.7:Y

UL
290
244

46
459

m

68
59
il
95
96
92

4M

78
M
48
v2
88
96

ffi

7t
t5
58
92
97
94

467

69
47
37
76

93
94

4t6

55
65
47
91

85
u

427

Io

Ir
12

t
Ir
l2
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Fo

Fo

Fo

F2

F2

F2
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TABLE 6.5.
Analysis of variance of lima bean seedling emergence

Source of
Variation df SS MS

observed Required F

F 5To lVo

Total
Blocks
Treatment

Fungicide
InsecUcide
FXI

Error

10I40.67
401.00

8969.47
80m.33
u5.27
620.87
770.20

29
4
5
I
c)

2
20

r00.25
r793.89
8003.33

172.M
3lo.M
38.5r

207.82
4.48
8.05

4.35
3.49

8.10
s.85

The significant interaction (F x I) indicates that the response to insecticide
depends on whether or not seeds were also treated with the fungicide. The
treatment means can be examined statistically for a significantly different linear
trend in emergence as insecticide dose increases for the two fungicide treatments.
Since there are two degrees of freedom for FxI, we can ask two independent
questions. Two appropriate questions iue: [s t]rere a significant difference in lirwar
response to insecticide for Fo versus F2, and is there a sigrificant difference in
some twnlinear response? To simplify the calculation of sums of squares, the first
step is to set up a table of comparison coefficients (Table 6.6).

TABLE 6.6
Comparison coefficients for determining response functions of lima bean seedling
emergence to dosage levels of insecticide.

Treatments and Treatment Totals

FrIo

M6
F,I,
4ffiComparison

FoIo

ul
FoI,

2m
FJ,
?A

F,I,
459

Fungicide
Insecticide linear
Insecticide nonlinear
FXIL
FXINL

I
-1

I
-l

I

-l
0

-2
0
2

t
0

_o
0

-2

-l
I
I

-t
-t

_I
-t

I
I

-l

I
I
I
I
I
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The comparison "fungicide" is the same as in Table 6.5 and compares the
mean of all plots of Fo with the mean of all plots of Fr. It is a simple class

comparison, and since both groups to be compared are of equal size, a - I is

assigrred to the components of one group and a * I to the components of the
other. The coefficients for "insecticide linear" and "insecticide nonlinear" are
taken from Table A.ll under n:3 for the three dosage levels of insecticide. We
can use the coefficients of Table A.ll whenever treatment levels are equally
spaced. Coefficients for F x IL and F x INL are obtained by multiplying the
coefficients for fungicide with those for insecticide linear or insecticide nonlinear.

Each comparison of Table 6.6 involves a single degree of freedom, and so we
can compute sums of squares from: SS:()c,Y,.)2/(r)c,2); thus,

( - Mr - zgo - 2a + 446 + 4sg + 4ffi)2

r(r)

(ut-2M+446-4ffi)z
ss1IL;: 

5(4)

:8fi)3.33

:344.45

:0.82

:616.05

, lear-2(2e0) +244+M6-2(4se)+460]'z
SSlINLT:

(-341 +244+446-4ffi)2ss(FxIL): 
5(4)

[ - s4r + 2(2e0) - 2M + 446 - 2(45s)+ 460 ]2ss(FxrNL):

:4.82

Mean squares equal sums of squares, as each is based on a single degree of
freedom, and F values are calculated by dividing each by MSE as in Table 6.7.

Note that the sums of squares for the five treatment components of Table 6.7
add to the sum of squares for treatments of Table 6.5. This is a check on our
arithmetic; since tJre components are an orthogonal set, they must equal the sum
of squares partitioned.
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TABLE 6.7.
Mean squares and F values for testing the significance of reslrcrses to dosage levels
of insecticide

Observed Required F

Source of Variation df MS SVo lVoF

Fungicide
Insecticide linear
Insecticide nonlinear
FXIL
FXINL
Error

I
I
I
t
I

20

8003.33
u4.45

0.82
6r6.05

4.82
38.5I

207.8
8.9
0.02

I6.0
0.1

4.35 8.I0

The F values for F X IL and F X INL show a higlrly significant interaction for
t}le linear emergence of seedlings and no interaction to a response that differs from
linear. Thus the experiment can be neatly and appropriately summarized, as in
Figure 6.I, by linear regession lines that estimate the effect of increasing the dose
of insecticide when seeds are or are not also treated with a fungicide. The
calculation of the regression lines is left as practice after you learn regression in
Chapters 13 and 14.

100
Seeds treated with fungicide

y=89.6+8.4,

Seeds not treated with fungicide

.y = 68.0 - 58.2 x

40

1t6

Ounces of insecticide /10O lb seed (r)
113

Figure 6.1. The effect of insecticide seed treatrnent, with and without a fungicide
treatrnent, on trte emergence of lima bean seedlings.

80
x
I
oo
960
E
U
ie

0
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SUMMARY

The problem of deciding which treatment means are significandy different is
called mean separation. There are three general approaches to mean separation:
the use of least significant differences; the use of multiple-range tests; and thro"gh
planned F tests.

Least significant difference is calculated as follows:

LSD:t'

where t is a tabulated value chosen for the degrees of freedom for error and the
level of sigrificance desired, MSE is the mean square for error, and r is the
number of variates on which the means to be separated are based. To separate two
means based on unequal numbers of variates,

LSD:t . MSE

EnrrsE)v-

hrz

Duncan's multiple-range test is tlre most popular of a number of range tests
available; it is calculated as D:R(LSD) where R is a tabular value for degrees of
freedom for error, level of significance, and distance apart of two means in an
array of treatment means. LSD is the least significant difference.

Planned F tests usuall),/ offer the most precise procedure for mean separation.
As many independent questions can be asked and answered by F tests as there are
degrees of freedom for treatments. The questions should be planned before the
experiment is conducted.

The sum of squares for a single degree of freedom can be calculated from a
set of coefficients whose sum is zeroby the equation:

()",Y,.)'
SS- '

rX c,2

where c, is the set of coefficients, Y' is a set of treatment totals, and r is the
number of variates making up each total. Two comparisons are orthogonal
(independent) if their coefficients and the products of correqponding coefficients
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add to zero. lf as many orthogonal comparisons are made as there are degrees of
freedom for treatments, their-sums of s{uares will add to t}re sum of sqr:ires for
treatments.

Coefficients for measuring
ment levels are equally spaced
spaced treatments.

trends can be obtained from Table A.ll if treat-
and from Table A.lla for some sets of unequally
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7
THE

LAIIN
SQUARE
DESICN

ln this design the randomization of treatments is restricted further by grouping
tllem into columns as well as rows. Thus it is possible to remove variability from
experimental error associated with both these effects. Each treatment occurs the
same number of times (usually once) in each row and column. The design will
afford a more precise comparison of treatment effects than the randomized block
design only if there is appreciable variation associated with the columns.

Rows and columns may refer to the spacial distribution of experimental units
or to the order in which treatments are performed. In Figue 7.1, the treatments,
A, B, and C, are three different makes of desk calculators to be tested; colunms
are three different operators and rours are the six different times the three
operators test the machine. Each operator tests each machine two times and all
three machines are tested in each time period. Thus the effects of time period and
operators are. measurable sources of variation that are independent of the
machines and can be removed from the total variability of the experiment,
reducing experimental error. This is an example of a double latin square. When

Column (operators)

I il m
I B A C

u C B A

m A C B

IV B C A

v C A B

VI A B C
t

Figure 7.1. Three treatments in a double latin square. Sources of variation and
degees of freedom are: rows:5; columns:2; treatments:2; error:
8. Treatments (A, B, C), are three different desk calculators.

Row

(time periods)
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t-;t Et t-;t t;ttslocks

BDABACDADBC DCAB

12 3 4 4 321 r 2 3 4 4 3 2l
Figure 7.2, A latin square with four seed treatme.b (A B, C and D) assigned to

seeder units l, 2, 3, and 4. 'I\e arrows indicate direction of planter
travel. Sources of variation 

"rd deg"er of freedom are: bloiks:3;
planter units:3; seed treatment:3; error:6.

the number of treatments is small and there is good reason to believe that there
will be appreciable effects of columns and rows, variation can be removed in two
dtections by using two latin squares (each independently randomized).

There are times when a latin square may be advantageous when plots form a
continuous line. Consider, for example, an experiment designed to test fotu seed
treatments where individual plots are to be single rows througlrout t}re experimen-
tal area. A seeder with four planter units is to be used. Planter units may differ in
seeding rate. To remove the planter effect, each seed treatrnent can be assigned to
a different seeder unit in each of four blocla so that each treatrnent is seeded the
same number of times by each seeding unit as in Figure 7.2.

A latin square requires at least as many replications as there are treatments
and therefore is not practical for experiments with a large number of treat-
ments. Most commonly used latin squares are those having from four to eight
treatments, with a single experimental unit per treatment in each column and row.

RANDOMIZATION

Start with any latin square (systematic or randomized) with the number of
treatments required for your experiment. For example, suppose we wish to
randomize six treatments, A, B, C, D, E, and F. We start with latin square below
(Fig. 7.3); go to a table of random numbers (Table A.1); pick an arbitrary starting
place, for example, row 5; and proceed across and back on row 6 assigning the
numbers l, 3, 5, 4,2, 6 to rows f through 6. Continuing along row 6 of the table of
random numbers and back (riglrt to left) on row 7, assign the numbers 4,2,5, 1,3,
6 to the columns. The new latin square is now completed as in Figure 7.4 by
rearranging the rows and columns of the old square as indicated by the random
numbers.
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Rows

Columns

4 2 5 I 3 6

I B D E F A C

3 C E A D F B

5 A F C B E D

4 D A F C B E
o F B D E C A

6 E C B A D F

Figure7.3. Procedure for rerandomization of a 6X6 latin square. Rows and
columns are to be rerandomized in the order indicated by a table of
random numbers. This results in the latin squ{ue of Figure 7.4.

Fignre 7,4. A 6X6 latin square. Each treatrnent appears once in each row and in
each column. The treatments are five nitrogen source materials, all
appted to give 100 lb of nitrogen per acre, and a nonfertilized control.
The values are sugar beet root yields in tons per acre.

79 Randonization

Row

Column Row totals,

Yr.I II ru ry v VI

I
F
at.2

D
29.1

A
32.1

B
33.1

E
3l.t

C
32.4 186.0

II
E

31.0
B

29.5
C
w.4

F
2z4.8

D
33.0

A
30.6 178.3

III
D

30.6
E

28.8
F

2t.7
C

30.8
A

3r.9
B

30.1 173.9

ry
C
$.r

A
30.4

B
2I}.8

D
31.4

F
2fi.7

E
3r.9 r88.3

v
B

29.9
F

25.8
E

30.3
A

30.3
C

33.5
D
32.3 188.1

VI
A

30.8
C
n.7

D
27.4

E
29.r

B
N.7

F
21.4 l@.1

Column totals
Y.,. 183.6 173.3 t@.7 1?9.5 r86.9 t78.7 1071.7-Y...

Treatrnents

A(1)
(NHJTSO.

B(2)
NH.N03

c(3)
cqNrue

D(4)
c(NoJe

E(5)
Na NO,

F(6)
NoN

Totals,
Y..r

Means,

i...

186.1

31.0

182.1

30.4

188.9

31.5

r&1.8

30.6

L82.2

30.4

148.6

2A.8



ANALYSIS OF VARIANCE

We will analyze the data of Figure 7 ,4 where t}re variates can be classified in three
ways: rows, columns, and treatments. Rows are the i's and go from I to r. The
columns are the j's and go from I to c. Treatments are indicated by the k
subscript, and k goes from I to n. In the usual latin square, r:c:n.

We start by completing the first two columns of Table 7.L

Sources of Variation and flegees of Freedom

Degrees of freedom are, as usual, one less than the number of observations
associated with each source of variation: df total : rc - 1 :6(6) - I :35; df rows : r
- l:6- l:5; df columns:c- 1:6- l:5; df treatments:n- 1:6- l:5. De-
grees of freedom for error can be obtained by subtraction: 35-5-5-5:20, or
by (.- t)(c- t) - (n- r) :515) -5:20.

Corection Term

c: Y...' 
- lo7l.r :3r903.9rrc 6(6)

Sums of Squares and Mean Squares

ROWS

ssR : ) Y,..' 
- r- - 186.d + .. . + 169.12 

- g1903.91 : 32.1g

"- 
-t: 6

where c is the number of plots in each row.

MSR: ffi: ff:0.+ss
COLUMNS

) v,2
SSC: - 'r' -cr

where r is the number of plots in each column.

SSC _ tgg.62+ .:. + 179.g2 _31903.91 :33.67
6

MSC:ffi: B{-:6.7sa
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TABLE 7.T.

Analysis of variance, sugar beet nitrogen source trial

Degees of
Freedom

df

Sums of
Squares

SS

Mean
Squares Observed

MSF 5To lVo

Required
F

Source of Variation

Total
Rows
Columns
Treatments
Error (RC-T)

4.45

35
D

b
5

20

281.88

32.19
33.67

t85.77
30.25

6.438
6.7U

37.ril
1.513

4.26 2.71 4.r0

24.56

ss1: )Y"r2 
-"r

where r is the number of replicates of each treatment.

TREATMENTS

TOTAL

ERROR

sS : ) y,ju, - C : 2g.22 + 92.12 + . . . + 27 .42 + 29.12 - 3lg03.gl

: 32185.79 - 31903.91 : 281.88

SSE: SS- SSR - SSC - SST:281.88 -32.19 -33.67 - 185.77:30.25

SST_ 148.62+.:. +182.22 _31903.91 :tg1.77

MSr:ffi: ry:37.154

MSE: ffi: $f :r.srs

CALCUI,ATORS PROGRAMMED TO COMPUTE STANDARD DEVIATION.
The sums of squares and mean squares can also be computed from a standard
deviation of totals. For example, to compute SSR, enter each row total
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(186.0...169.1) with the appropriate entry key of your calculator and obtain the
standard deviation of the row totals:6.21496. Square the standard deviation and
divide by the number of variates in each total you entered: (6.2149G)2 /6: MSR:
6.4376 - Multiplying by df(R) : SSR : 6.4376(5) : 31. 19, as before.

F Values

F(rows): ##: ff$ :4.26

F(corumns): #H : fff :4.4s

F(treatments): ffi: .ffi :?A.56

All three F ratios are based on 5 and 20 degrees of freedom. The required values
for statistical significance are obtained from Table A.3 and entered in the analysis
of variance table. All three sources of variation are classified higtrly significant.
From this we conclude that there are real &fferences among rows and columns as

well as treatments.

MEAN SEPARATION

In planning the sugar beet experiment to evaluate the effects of different sources
of nitrogen, the investigator posed several questions that were to be answered by
partitioning the sum of squares for treahnents into the orthogonal set of compari-
sons indicated in Table 7.2.

TABLE7.2.
An orthogonal partitioning of the treatments of Figure 7.4.

Source of Variation df SS

Required F

F 1Vo lVo

Observed
MS

Treatments
NoNvs.N
Organic N vs. inorganic N
Ammonium N vs. nitrate N
(NH.[SO. vs. NH.NO.
NaNO, vs. Ca(NO.),

Error

5 185.77
r 180.200
r 3.816
| 0.202
I 1.334

r 0.213
20 30.25

37.rU
180.200

3.816
0.202
1.334

0.213

1.513

2.7L 4.10
4.35 8.10

2/4.ffi
119.10

2.52
0.13
0.88
0.14
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TABLE 7.3.
Treatment coefficients to check for orthogonality of comparisors and to facilitate
the computation of sums of squares

Treatments and Treatment Totals

Comparison

No N (NHo)rSO4 NI{4NO. CO(NH2)2 Ca(NO.), NaNO3

148.6 186.1 182.1 188.9 183.8 182.2

NoNvs.N
0rganic N vs. inorganic N
NH4-N vs. NO.-N
(NH4)2SO4 vs. NH.NO,
Ca(NOr), vs. NaNO.

-l
+4

0
0
0

+5
0
0
0
0

-l
-1
+l
+l

0

-1
-t
+1
-1

0

-l
-l
-l

0
+l

-l
-1
-l

0

-l

Note that all rows sum to zero and that the zum of the
coefficients of any two comparisons is zero, and therefore
orthogonal.

products of the corresponding
the treahnent comparisons are

The coefficients for testing the orthogonality of the comparisons and for
completing Table 7 .2 are shown in Table 7.3.

Sums of squares can be calculated as follows from the treatment totals:

SS(no N vs. N): -P . (186.1+ ... +182.2)2 rc7r.f
30 36

: 3680.327 + 2U03.7 87 - 31903.914 = 180.200

When the comparison involves a single degree of freedom, the shorter method of
calculation using the orthogonal polynomials of Table 7.3 is: SS:()c,Y..1)2/
(r)c,'z), where the c, are the coefficients of Table 7.3, the Y..u are the treatment
totals, and r is the number of replicates in each treatment total. Thus

Is(ras.o;- 186.1- 182.1- 188.9- 18s.8- t8z.z)2
SSino N vs. N;:

: _+H : r8o.2oo

The denominator, 6(30), is found by summing the squares of the coefficients of the
terms in t}le numerator and multipllng this by the number of variates making up
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each term of the numerator; thus

6 [ 
(f) + ( - r)'z + ( - r)' + ( - r)'+ ( - r)' + ( - r)'z]:o(so)

ss (organic N vs. inorganic $: Y * (rgo'r + rsz't + r83'g+ raz'e)2

(188.9+186.1+182.1+183.8+ L82.q2 ra8.9P . 7u.22 g23.r2

3U 6 'IA 3U

Note that the third term is a new correction term.

: 5947 .202 * 22,1ffi .402 - 284m. 787 : 3.8 16

The shorter calculation is

Or

_ [a(ras.g)- rao.r - raz.r - rs3.a- rsz.z]' 
:3.816

6(20)

. (ts6.r+ t82.t)2+(183.8+ 182.2)2
SS(NH4-Nvs.NO.-N):-

(186.r + r82.r + 183.8 + r*z.z)2
,A

368.22+366.d 734.22

(186.r + 182.1- 18s.8- 182.2)2 _ (2.2)', _,: 6(4) - 24 -'

ss[(NH4)rso4 vs NIlNor]: S#4 - 
(186'l+-182'I)2

t2 L4

: 224ffi .ffi3 - ?.?A!ffi .4O2 : 0.201

: 11298.937 - 11297.603: 1.334
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Or

Or

SSICa(NO3), vs NaNOr]:
6

(186.r - 182.1)2 4.O: 
,(6) 

: 
12 

: r"t'"

:ggh,Iry:#:0.213

183.82+ 182.22 (183.8+ tgz.z)z

12

: 11163.213 - 11163.000 :0.213

Mean squares are obtained by dividing the sums of squares by their associated
degrees of freedom; since, in this case, each comparison involves a single degree of
freedom, SS:MS.

F values are calculated by dividing each MS by MS for error. Required F
values are tabular values from Table A.3 for I and 20 df. We now have an F test
to answer each of the questions posed when the experiment was planned. The only
significant F value is ]or the comparison no N is. N; all others are quite low,
leading to the conclusion that tlere was a response to nitrogen buf that beets
responded similarly to all N sources.

SUMMARY

In a latin square:

Experimental units are organized into two categories other than treatments. These
two categories are usually referred to as /o{rs au;td columns with regard to the
organization of data in a two way table.

Each treatment is assigned the same number of times (usually once) within each
category so that differences between categories are not due to treatment effects.

At least as many replications are required as tlere are treatrnents. Latin squares
are usually not practical with more than eight treatments.

Only when both categories (rows and columnt) ""ry appreciably will the latin
square design improve the detection of treatment differences over the randomized
complete block.
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I
THE

SPLIT-PLOT
DESICN

Split-plot designs, and a variaUon, the split-block, are frequently used for factorial
experiments in which the nature of the experimental material or the operations
involved make it difficult to handle all-factor combinations in the same manner or
when the investigator wishes to increase precision in estimating certain effects and
is willing to sacrifice precision in estimating certain others. The basic split-plot
design involves assigning the treatments of one factor to main plots arranged in a
completely random, randomized complete block or a latin square design. The
treatments of the second factor are assigned to subplots within each main plot.
The design usually sacrifices precision in estimating the average effects of the
treatments assigned to main plots. It often improves the precision for comparing
the average effects of treatments assigned to subplots and, when interactions exist,
for comparing the effects of subplot treatments for a given main plot treatment.
This arises from the fact that experimental error for main plots is usually larger
than the experimental error used to compare subplot treatments. Usually, the error
term for subplot treatments is smaller than would be obtained if dl treatment
combinations were arranged in a randomized complete block design.

Note t}te erperiment of Figure 8.1. It involves two factors, nitrogen fertilizer
(N) at two levels (n:2) and green manures (G) of four types G:a). The total
number of treatments for this trial are nxg:8. Note that all eight treatments
occur once in each of the three blocks but that within a block all treatrnents of a
common nitrogen level occur together. Also note that with respect to the nitrogen
levels, we have a randomized complete block with two t{eatrnents in t}uee blocks.
The degrees of freedom for these six main plots are partitioned as for a ran-
domized complete block in the "split-plot" column of Table 8.1 where the two
designs are compared.

The restriction on t]le randomization of the treatments within a block results
in two error terms for the split-plot design. The main plot error is usually larger, as

it involves variability among the larger more widely spaced main plots, and the
subplot error is usually smaller, as it involves variability among closely spaced
subplots within the main plots.

The split-plot design can be used with more than two treatment factors, as it
is not necessary to have an additional split for each factor. For example, to test
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two varieties at two levels of nitrogen fertilizer applied at two different times,
main plots could be the four combinations of variety and nitrogen levels that could
be split for time of applying the nitrogen. One replication of this trial could be:

BLOCK I

With three factors (A,B,C) each at two or more levels, there are six different
possibilities for main plots: A, B, C, AB, AC, BC.

Each variation of the splifplot design imposes certain restrictiors as to the
error term that may be used to test treatment effects. It is important, therefore, to
assign factors in a manner that gives the greatest precision for comparing the
interactiors aud average treatment effects in which you iue most interested. Some

skill and experience are required in lay-rng out split-plot experiments, and you are
urged to consult someone with experience in the use of this design.

TABI.E 8.I.
ANOVA outline for the two factor experiment of Figure 8.I as a split-plot and a
randomized complete block design. The brackets and arrows indicate appropriate
error terms for testing treatment effects in the two designs.

Source of
Variation

Degrees of Freedom

Split-Plot RCB"

I

I

tNz
I

I

I

I

vI

Tr T2

I

tNz
I

I

I

I

v2

T2 Tr

I

I

vrrNt

T2 Tr

I

vrrN,
I

I

I

I

TI T2

Subplots
Main plots

Blocks
Nitrogen
MP error

Green manures
NXG
SP error

Error (RCB)"

ngb- I
nb- I
b-I
n-l
(b- I)(n- 1)

(g- t) ,'
(n- l)(g- 1)

(b- r)
o- r)

(g- t)+ (,- tXe- t)l
("- 1)+(e- t)+ (.- tXe- t)l

23

;

l't
3J

;l

23
D

2
l*rz)
3<--'l

3---]
D)

" Randomized complete block.
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Figure 8.f. Split-plot design. Main plots (Nr,o, No) are nitrogen fertility levels. Subplots BV, V, F, B, are
green manure treatments. All plots are laid out in strips thro"gh the field in tlree blocks. Plot yields
of the sugar beet crop following the green manure treatments are given in tons of roots per acre.
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RANDOMIZATION

The randomization of the treatments assigned to main plots is carried out as

prescribed for the design selected for the main plot treatments. Subplot treatments
are then randomized within each main plot, a separate randomization being made
for each main plot.

ANALYSIS OF VARIANCE

To illustrate computational procedure, we will use the experiment of Figure 8.1.
The trial was designed to test the effect of tlree green manure crops on the
subsequent production of sugar beets at two levels of nitrogen fertilization. At the

TABLE 8.2.
Sugar beet root yields (tons per acre) organized by treatments, main plots and
blocks.

Treatments Blocks 0
Pounds N/acre (i) Green Manure (k) I II ru Totals Mearu

0 Fallow
Barley
Vetch
Barley-vetch

13.8

15.5
21.0
r8.9

13.5

15.0
22.7
18.3

13.2

t5.2
22.3
19.6

40.5

45.7

66.0
56.8

r3.5
15-2
22.0
18.9

Main plot totals (Yr,.) 69.2 69.5 70.3 209.0=Y,.. 17.4

120 Fallow
Barley
Vetch
Barley-vetch

19.3

22.2
25.3
2,5.9

r8.0
24.2
24.8
26.7

20.5

?5.4
28.4
27.6

57.8
7r.8
78.5
80.2

r9.3
23.9
26.2
26.7

Main plot totals (Yr, ) 92.7 93.7 101.9 288.3:Yz. 24.0

Block totals (Y.;.) 161.9 163.2 172.2 497.3:Y 20.7

Green Manures

FBV BV

Totals (Y..u)

Means (T..u)

98.3 rr7.5

16.4 19.6

tM.S 137.0

?tL.l 22.8

Symbols for treatment factors and levels:
N:nitrogen, n:2' G:green manure, B:4; B:block, b:3.
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TABI,E 8.3.
Analysis of variance. Sugar beet, nitrogen x green manure elperiment.

Observed Required F

Source of Variation df SS MS F 1Vo lVo

Subplots
Main plots

Blocks
Nitrogen
Main plot error, BN

Green manures
NXG
Subplot error, BG * B(N x G)

?3 516.12
5 274.92
2 7.87
I 262.02
2 5.03
3 215.26
3 18.70
t2 7.24

3.935
262.020

2.5r5
7r.753

6.233
0.603

r04.18

r18.99
I0.34

18.51 98.49

3.49 5.95

outset it was assumed that sugar beets would respond differently to the green
manures, depending on the level of nitrogen fertility, and thu the objective was to
compare the effect of the geen manures as precisely as possible at each level of
fertility. Therefore the main plots were to be two levels of nitrogen fertilization
applied to the sugar beets at thinning time and replicated three times in a

randomized complete block design. Subplots were to be green manures, grown
during the fall and winter preceding the planting of sugar beets. The green
manure treatments were barley (B), vetch (V), barley and vetch grown together
(BV), and fallow (F). Nothing was allowed to grow in fallow plots prior to planting
sugar beets. The plots were laid out as in Figure 8.1. Yields of sugar beet following
the green manures are given for each subplot and organized for analysis in Table
8.2.

The fust step is to determine sources of variation and associated degrees of
freedom-the fust two columns of Table 8.3.

Sources of Variation and Degrees of Freedom

Total degrees of freedom in the experiment are one less than the number of
subplots, ngb- l:(2)(4X3) -l:23. Main plots are listed as a source of variation
as their partition leads to df for main plot error; df(Uf;:rr5-f :2(3)-I:5.
Degrees of freedom for main plots are partitioned according to the design in which
they are arranged, in this case the randomized complete block: blocls:b-l:3
-l; nitrogen:n-l:2-l; main plot error, often called error a, :O-t)(n-1)
:(3-1)(2-l). Degrees of freedom for geen mamres are (g-I):4-I; and for
treatment factor interaction, NXG, :1n-l)(g-f):(2-t)(4-1). Degees of
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freedom for subplot error, usually called error b, can be obtained by subtraction,
paying attenUon to the indentation of the sources of variation, that is, 23 - 5 - 3 -
3: 12; or by the addition of degees of freedom for the interaction of blocls with
green mamres and nitrogenXgreen mamres, O-l)(g- 1)+O- I)(n- I)(g- I):
(3- r)(4 - r) +(3 - l)(2- r)(4 - r) : 12.

Correction Term

c: 11 : =nplg', 
:rora4.47ngb 2(4X3)

Sums of Squares and Mean Squares

Blocks:

>Y,2SSB: ''' -C r6l.f + 163.22+t72.22:-- C:7.87.
ng 2(4)

Note that the denominator (8) is the number of variates making up each term in
tJle numerator.

MSB: ffi: '3' :t.*
Nitrogen:

)tl- 
" 
: 2oo.d+288.32 

- c:z6z.a2ssN: ' 3(4)

MSN: +: 26?'02 :262.o2
df(N) r

Main plots:

)t,,.' _.,_ 69.22+ ... + l0l.f _c:274.92

Main plot error:

SS(MPE) : SS(MP) - SSB - SSN :274.92-7.87 -262.02:5.03

SS(MPE) < 
^aMS(MPE): ffi :T:2.515
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Green mamrre treatments:

)Y,2
SSG: j'' -C:ntl

98.32+... +I37.d
-C:215.26

MSG: S!G, :215-.26
df(G) 3

2(3)

:71.753

sv2
SS(NxG): + -C-SSN-SSG: 

40'52+ "' +80'22 -"
-262.U2-2L5.26:18.70

MS(NxG): g-?: 
'Yo :6.233

df(Nxc) 3

Subplots:

SS(SP) : )Y,jr2 - C : 13.82 + 15.52 + . . . + 27 .62 - C: 516. t2

Subplot error:

SS(SPE): ss(SP)-SS(MP)- SSG - ss(N xG)

: 516.12 - 27 4.52 - 215.26 - 18.7 O : 7 .tu4

SS(SPE) -r oA
MS(SPE): *bFE):ff:0.603

THE STANDARD DEVIATION KEY. With a calculator programmed to com-

l)'/{r-I) , sums of squares are obtained by the following

NXGM:

pute s:
mle. each totd with the appropriate key. When all are depress theentered,
standard deviation to obtain f, divide by the
number of variates

key, square the displayed value
making up each total entered, and mulUply by df. For example,

SS(MP): Enter 69.2,69.5,...,101.9; depress standard deviation key:14.330,
square:219.9377; divide by 4:il.9844:MS(MP); multiply by 5:274.92:
ss(MP).

F Values

Nitrogen effects are tested using MS(MPE); green manures and the interaction of
nitrogen and green manures are tested using MS(SPE). F for N is 262.02/2.515:
I04.I8. F for NxG is 6.233/0.603:10.34. The higlrly significant F value for
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N x G indicates a difference in t}re comparative reryonse of the sugar beet crop to
the green m.rnures at the different fertility levels. The cmx of the experiment is to
isolate and understand the interaction-a problem in mean separation and agro
nomic intelpretation.

MEAN SEPARATION

Pertinent F Tests

By partitioning the sum of squares for the N X G interaction, we gain insight into
the nahre of the interaction. There are several ways this can be done, but
partitioning to answer the following three questions appears logical. Did the sugar

beets respond differently at the two nitrogen levels to: vetch versus no vetch;
fallow versus barley; vetch versus barley and vetch? Table 8.4 gives the treatment
totals and a set of orthogonal coefficients for use in calculating t}le interaction
components as well as other single degee of freedom comparisons.

To partition the 3 df for N X G we must fust set down coefficients for
partitioning the main effects into single degree of freedom components.
Coefficients for N are simple, as there are only two groups. The four green nunure
treatments are partitioned to answer the three questions posed for interaction, but
this is done for green manure effects over both levels of N: V * BV vs. F * B, F vs.

TABLE 8.4.
Orthogonal coefficients for the indicated comparisons

Treatments, Treatment Totals and Means

No Nrzo

Comparison

Y,.r

\u

F
40.5

13.5

B
45.7

t5.2

B
71.8

23.9

V
78.5

26.2

BV
80.2

26.7

66.0

22.0

I
-1

I
0

-t
1

0

-1
I
0
I

-l
0

-l

l.N
2.V
3.F
4.V
5.N
6.N
7.N

vs. no V
vs. B
vs. BV
X (V vs. no V)
x(F vs. B)
x(V vs. BVJ

-l
-t
-l

0
I
I
0

-l_I
I
0
I

_I
0

-t
I
0

-1
-l

0
I

I
-l
-t

0
_I
_I

0

I
I
0
I
I
0
I

I
I
0
I
I
0
t
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B, and V vs. BV. The calculation of sums of squares for these three comparisons
would add to the sum of squares for green manures in Table 8.3. These compari-
sons would not mean much, however, .ls we already know that the geen manures
have a differential effect, depending on the N level, and our aim is to look at this
interaction in more detail by calculating F tests for comparisons 5, 6, and 7 of
Table 8.4. The coefficients for these comparisons are obtained by multiplying
coefficients for comparisons I and 2, I and 3, and I and 4.

Sums of squares for t}le three interaction comlrcnents are computed as below
and entered in Table 8.5.

SS I N x (v vs. no v) ] - 
(40'5 + 45'7 - 66'0 - 56'8 - 57'8 - 71'8 + 78'5 + 80'2)2

3(8)

:#:2s44

Again, note the use of the formula for calculating a sum of squares with a single
degree of freedom: SS:()c,\.jz/(r}crz).In these cases all the coefficients (c,'s)

are + l, and it is not necessary to write them in the numerators.

ss[Nx(F vs. B)]: :6.453

sslN x (v vs. Bv)] :

3(4)

(66.0 -56.8 - 78.5 + 80.2)'z
:9.901

3(4)

The three single degree of freedom F tests of Table 8.5 provide answers to the
three questions posed above.

0bserved

F

Required F

1Vo IVoSource of Variation df SS MS

NxG
Nx(V vs. no V)
Nx(F vs. B)
Nx(V vs. BV)

SPE

3
I
I
I

t2

18.70
2.344
6.453
9.901
7.21

6.233
2.3M
6.453
9.90r
0.603

r0.34
3.88

I0.70
16.42

3.49
4.75

5.95
9.33
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N x (v vERsus No v). The differences in the response to vetch at No compared
to Nr- are not significantly different. Referring to the means of Table 8.4, the
change in mean plot yield for plots receiving vetch versus no vetch at Nn is not
significantly &fferent from the change in mean plot leld for plots receiving vetch
versus no vetch at Np6i that is (22.0+18.9-13.5-15.2)/2=6.1 compared to
(26.2+26.7- 19.3-23.9)/2:4.&5 gives a difference of 6.1-4.85:1.25, which is
not significantly different from zero. The divisor 2 is to keep the comparison on a
per plot basis.

A t test can also be used to make this comparison but will lead to the same
statistical conclusion. We show it here to point out the equivalence of the two
tests and to illustrate the greater ease of the F test. We are examining a difference
of differences: 6.1-4.85:1.25. The appropriate t test is t:(ar-ar/s;,_4 where
dr:6.1, il,:4.ffi, and s;,-4 is the standard error of a difference of diffbrences
and is computed as

Sa, -4: '+s*' :
2*

+rl rz

When

Sd, -dr:

sf and
,,14*h :

a common variance and rr: t2, then
ffi)/6 :0.634. The divisor 6 is the number of

variates in the mean differences being compared-in this case each mean dif-
ference is the average of two means each based on three replicates.

Substituting into the above t formula gives t:(6.1-4.85)/0.634:1.?5/0.634
:1.97, a nonsignificant t value, since the required t.qs for 12 df is 2.179. Note
t2:F:(1.s7;2:3.99, the F value of Table g.5.

N x (F VERSUS B). The difference between fallow and barley at No is signifi-
cantly less than at Nr,o. That is, 15.2-13.5:1.7 is significantly less than 23.9-
19.3:4.6. Compared to fallow, the reslrcnse to barley was 4.6-1.7:2.9 tons

f acre more with than without fertilizer N. Confidence limits for this difference of
differences can be calculated from Clss:dr-drtts;,-a, where t is the tabular

value for 12 df and the 57o level; sa,-4:rl4*i :il(0$03)^ :0.897; and
CL*:!.$-r2.179(.894:2.9+2l-0.9 to 4.9 tons/acre. That is, with a confi-
dence of 95Vo we can say that, under these conditions, the beneficial effect of
barley green manure was between 0.9 and 4.9 tons/acre more when the sugar

beets were fertilized with nitrogen than when they were not.

Nx(V VERSUS B!. There is a significant loss in root yield,23.0-18.9:3.I
tons/acre, from the barley-vetch compared to the straight vetch geen mamre
tlrat does not occur when the sugar beets are given N fertilizer, 26.2-26.7: -0,5.
Confidence limits for the difference of differences are: CL*:3.1-(-0.5)t
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TABLE 8.6.
The effect of green manures and nitrogen fertilization on sugar beet root leld.

Pounds of

N per Acre

Green Manure Treatments

Fallow Barley Vetch Barley-Vetch

Roots, Tons/Acre

0 13.5
19.3

15.2
23.9

n.0
26.2

r8.9
26.7120

LSD, 5%: between green manures at the same N level, 1.4; between green manures at
different N levels,2.9.

2.179(0.897) : 3.6 r- 2.0 : 1.6 to 5.6 tons/acre.
This experiment might be summarized as in Tables 8.6 and 8.7. Tabli 8.6

presents the relevant effects of the experiment, and Table 8.7 gives the statistical
information gerrnane to a discussion of the significant interaction. A common
procedure is to use single, double or triple asterisls to denote statistical signifi-
cance at the 5, 1, and 0.17o level, respectively. Means for the average effects of
nitrogen or green manures are not presented, as the strong interaction makes them
rather meaningless. The LSDs of Table 8.6 are not really necessary but do provide
approximate guides for interpreting the results.

TABLE 8.7.
Mean squares for interaction and interacUon components of the effect of nitrogen
and geen mamrre treatments on sugru beet root feld.

Source of
Variation df Mean Square

NXG
Nx(V vs. no V)
Nx(F vs. B)
Nx(V vs. BVJ

Subplot error
Main plot error

3
I
I
I

t2
2

6.233*r
2.34
6.4531*
9.90lrr
0.603
2.5r5
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Standard Errors and LSDs

At times, LSDs or multiple-range tests may be destable. For tlese tests, standard
errors ,ue calculated based on variability among experimental units to which
treatments are applied. With the split-plot design the calculation of standard
errors for certain kinds of treatment comparisons becomes more complicated, as

can be seen in Table 8.8, because we have two sources of experimental error-that
involving main plots and that involving subplots.

Note that the standard error for comparing subplot treatment means within a
main plot involves only the subplot error, but when comparisons are made
between subplot treatment means for different main plots, the standard error
involves both main plot and subplot errors. Skipping much tedious algebra, it turns
out that the latter standard error is a weighted average of Ea and Eb, the
weighting factor for Ea is 1, and that for Eb is b-I. As t+b-l:b, the
denominator turns out to be br, where b is the number of subplot treatments and r
is tlle number of replicaUons.

To illustrate computation, LSDs for all possible comparisons of the means of
the sugar beet green manure X nitrogen fertility trial of Table 8.2 are given below.

TABLE 8.8.
Standard errors for a split-plot design.

Means Compared

Standard Error of a Mean'
(r)

Main plot treatments:

Ar-&
Subplot treatments:

B, -Bz
Subplot treatments for the same main-plot treatrnent:

BrAr-B2Ar

Subplot treatments for different main plot treatments

BrAr-Br& or BrAr-Br,{2

"Note the use of ry in the determination of LSD or D: LSD:IVE ry; D:R(I,SD).
Ea: MS(MPE), Eb : MS(SPE), a : number of main plot treatments,
b:number of subplot treatments, r:number of replications.
A: treatments apflied to main plots, B: treatments applied to zubplots.
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LSD FOR DIFFERENCES BETWEEN MAIN PLOT TREATMENTS. (between
nitrogen means)

_lMt SO.os:t"! 
rU

where ! is the tabular t value for df for Ea.

LSD FOR DIFFERENCES BETWEEN SUBPLOT TREATMENTS. (among

green mamrre means)

LSD.*:
(Eb)

ra

where to:tabular t value for df for Eb.

Easrs\
LSD.* : 4'3s'Vl6t : 4'303(0'647) : 2's tons/acre

E(o^603)
LSD.* : 2. 179V-lO- : 2.r7s(0.448) : l.o ton / acre

LSr.*:.ol@ :r.rrnlEq'*') :2.12e(0.634) : 1.4 tons/acre

LSD FOR DIFFERENCES BETWEEN SUBPLOT TREATMENTS FOR THE
SAME MAIN PLOT TREATMENT. (among green mamre means for the same
nikogen level)

LSD FOR DIFFERENCES BETWEEN SUBPLOT TREATMENTS FOR
DIFFERENT MAIN PLOT TREATMENTS. (to compare different green manure
means at different nitrogen levels or to compare means for the same green manure
treatment at different nitrogen levels)

_I *Ea
LSD.or: t"o

rb

where t"6 is a weighted t value somewhere between the tabular values for t" and to
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and is calculated as follows:

tab -

(b-r)(nb)(to)+Ea(t ) (4- rx0.6osx2.l7e)+2.515(4.303)

(b- t)ru+na (4- 1)(0.603)+2.51s

:ffi:3.4t4

LSD.*:
(4- rx0.603)+2.515

: 3.414(0.849) : 2.9 tons/acre
3(4)

If the eight treatment combinations had been randomized within each block,
the design would have been the randomized complete block. The error mean
square would then be

EMS:
ss(MP)+ ss(sP)

df(MP)+df(sP)

5.O3+7.24
2+12

:0.876

and the LSD for all treatment comparisons would be

LSD:
0.876)

J
: 2.145(0.7 M) : I.6 tons/acre

(Note, t is the tabular value for 14 df at the 5% level.)
A comparison of the LSDs indicate the relative efficiencies of the two designs

in separaUng treatment effects. Note the improved power (smaller LSDs) of the
split-plot in separating the means of the subplot treatments and the comparison of
subplot treatments within a main plot treatment and the loss of precision (larger
LSDs) in comparing main plot treatments and subplot treatrnents across main plot
treatments.

SUMMARY

The split-plot design is often useful for a factorial set of treatments. The design

involves the random assigrment of one treatment factor or combination of factors
to main plots which are t-hen split for the random assignment of another factor or
combination of factors. Compared to the randomized complete block design,

precision is lost in mfing comparisons among main plot treatments and subplot
treatments for different main plot treatments, but precision is often improved for
comparisons among subplot treatments and for subplot treatments within main

plot treatments.
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9
THE

SPLIT-SPLIT
PLOT

The addition of a third factor by splitting subplots of a split-plot design results in a
split-split plot. This technique is often quite useful for a three-factor experiment to
facilitate field operations or when it is desirable to keep treatment combinations
together. However, the additional restriction on randomization makes it necessary
to compute a third error term that is used to test for main effects of the factor
applied to the second split and for all interactions involving this factor. The
arrangement may have certain advantages in physical operations with the experi-
mental units, but the necessity for the third error term can make mean separation
quite complicated. You are urged to consult a biometrician before employing this
scheme.

Randomization procedure is the same as for the split-plot design, with the
subplots being split into sub-subplots, equal in number to the levels of factor three,
to which the third factor is randomly assigned-a new randomization for each set
of zub-subplots. Figure 9.1 illustrates the partial layout of a split-split plot to
evaluate the effects of dates of planting, aphid control, and date of harvest on the
control of aphid-borne sug:u beet viruses. The procedtue for the stepwise handling
of data from zuch an experiment will be illustrated with the effect of tlese
treatments on root fleld.

ORGAI\IZATION OF DATA

Data are organized by treatments and blocks in Table g.l. Table 9.2 is formed to
provide totals for t}te two-way interactions and main effects.

ANALYSIS OF VARIANCE

The completed analysis of variance is given in Table g.3. The stepwise procedure
for completing the table is as follows.

l0l Tlw Vlit-split Pbt
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Block
A main plot

Pr
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P3 P2

A subplot
P2

s2

III

Pr

S I
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H2
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P3

sr
H3

23.8

P3

sr
Hr
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o
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A zubplot
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Figureg.l. Features of a qplit-split plot for a sugar beet virus control experiment.
Main plots are dates of planting (P1, P2, P.) arranged in randomized
complete blocks (I, II, III, IV). -subplots are not sprayed (Sr) and
sprayed (S) for aphid control. Sub-subplots are dates of hanrest at 4
week intervals (Hr, Hz, IIr). Sugarbeet root yields are shown for the
sub-subplots of the P, main plot in block IV. Complete data from this
experiment are organized in Table 9.1.
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TABLE 9.T.
Sugar beet root felds (tons per acre), split-split plot, organized by treatrnent and
block.

Treatments Blocks f)
P(i) S(k) H0) I II ilI IV Totals Means

It 25.7
3r.8
34.6

?5.4
29.5
37.2

23.8
28.7
29.r

22.0
26.4
?3.7

96.9
116.4
ttuL.6

24.2
29.1

31.2

I
2
3

SP Totals
Yr,r. 92.1 92.1 81.6 72.1 3ii}7.9:Yr.r. 28.2

2 t
.)

3

27.7
38.0
42.t

30.3
40.6
4:!.6

30.2
M.6
M.6

33.2
31.0
4.7

12t.4
144.2
173.0

36.0
30.4

43.2

SP Totals
Yr,r. 107.8 114.5 100.4 106.9 438.6:Yr.2. 36.6

MP Totals
Y, 199.9 206.6 tgl.0 179.0 776.5:Yr...

2L I
2
3

28.9
37.5
38.4

2,1.7

3r.5
32.5

27.8
31.0
3r.2

?3.4
27.8
29.8

ru.8
L27.8
13I.9

26.2
32.0
33.0

SP Totals
Yqr' 104.8 88.7 90.0 8I.0 364.5:Y2.y. 30.4

2 I
o

3

38.0
36.9
4.2

3r.0
31.9
4I.6

29.5
3r.5
38.9

30.7
&5.9
37.6

t29.2
r36.2
162.3

32.3
34.0
40.6

SP Totals
Yr,r. ll9.I f04.5 99.9 l04.z A7.7:Yr.r. 35.6

MP Totals
Y. 2?3.9 193.2 189.9 185.2 792.2:Yr...

3I I
2
3

?3.4
?.5.3

29.8

2/4.2

27.7
29.9

21.2
23.7
24.3

20.9
24.3
23.8

89.7
101.0
107.8

22.4
2.5.2

27.0

103 Arulysb of Variance

78.5 81.8 69.2 69.0 298.5:Y3.r. 24.9
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TASLE 9.I
Continued.

Treatments Blocks o
P(0S(k) H0) IIIruryTotalsMeans

2 20.8
29.0
36.6

23.0
32.0
37.8

25.2
26.5
M.8

23.1
31.2
40.2

92.1
I18.7
t49.4

23.0
29.7
37.4

I
c)

J

SP Totals
YsP 86.4 92.8 86.5 94.5 360.2:Y3.2. 30.0

MP Totals
Yq 164.9 174.6 155.7 163.5 658.7:Y3...

B Totals
Y

'i;'
588.7 574.4 536.6 527.7 2227.4:Y

c: (2227.4)2 f72:ffiX)7.@39, 2U,,fi:71'7nr.rO

SymboJs for treatment factors and levels: P:date of plant, p:3 dates; S:sprays for aphid
control, s:2; H:harvest date, h:3; B:blocks, b:4.

TABLE 9.2.
Totals for two-way interacUons and main effects.

Totals for Two-Way Interactions

PxS(\.k) PxH(Yt J sxH(Y..kl)

Sr 52 Hr H, H3 Sr sz

Pr

P2

Ps

337.9"
3&1.5
298.5

438.6
427.7
360.2

218.3b

234.0

181.8

2ffi.6
2M,0
219.7

297.6

294.2

257.2

291.4"
u5.2
3&r.3

u2.7
399.1
4U.7

Hr
H2

Hs

Totals for Main Effects

Plant Date (Y,...) Spray Treatment (Y..1.) Harvest Date (Y .)

Pr

776.5

P2

792.2

P3

658.7

Hr
634.1

H,
7M.3

H3

849.0
s2sr

1000.9 t226.5

'From Table 9.1: total for P1S1 over all harvests and blocls.
bTotal for P1H1 over all sprap and blocla:96.9+121.4:218.3.
" Total for S1H1 over all plant dates and blocla:96.9 + 104.8 + 89.7:29I.4.
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TABLE 9.3.
Analysis of variance, split-split plot.

Observed Required F

Source of Variation df SS MS' F SVo lVo

Sub-subplots 7l
Subplots 23

Main plots 1I
Blocks, B 3
Plant dates, P 2
Main plot error, BP 6

Spray treatment, S I
PXS 2
Subplot error, BS * B(P X S) I

Harvest dates, H 2
PXH 4
SXH 2
PXSXH 4
Sub-subplot error, BH* 36
B(PxH)+B(SxH)+
B(PxSxH)

?.w.ffir
t542.8t28
698.9028
143.456r
443.6886
111.7581
706.8800
0.ffi75
78.3425

962.3353
13.1097

127.8308
M.0192

r68.4983

47.8t87
221.8443<-

18.6264--l
11.91 5J4 10.92

706.8800<-
20.3438J
8.7M7)

48I.16761
3.27744

63.e154€-.1

11.0048e1
4.6805r

5.25
3.89
5.25
3.89

81.21
2.U

5.t2 10.56
4.26 8.02

102.80
0.70

13.66
2.35

3.26
2.63
3.26
2.63

"Brackets indicate formation of F ratios.

Sources of Variation and Degroes of Freedom

Degrees of freedom for the sources of variation listed in Table 9.3 are:
Sub-subplots : pshb - I : 3(2)(3X4) - I : 7l
Subplots:psb- 1:23
Main plots:pb- l:11
Blocls:b- l:3
Plant dates:p-l:2
Main plot error:O-f)h-l):6, or 11-3-2:6
Spray treatment: s - 1: I
pxS:(p_t)(s_l):2
Subplot eror : ft - f )(s - l) + (b - t)(p - t)(s - 1) : g a 6 : 9,

or 23- 1l -2- I :9
Harvest date:h- l:2
pxH:(p_ r)ft_ r;:4

f05 Analysb of Variance



SxH:(s-r)ft-11:2
PxSxH:(p- rXr- r)ft- r;:4
Sub-subplot error : F - l)O - t) + (b - l)(p - lxh - 1) + (t, - l)G - 1)(h - l)

+(b- l)(p- 1)(r- I)O- l):6+ 12+6+ 12:3O
or 7l-23-2-4-2-4:36

If the 18 treatments of 'this experiment had been laid out in randomized
complete blocks, there would be a single error term with df : O - 1)(t - 1) :3(I7)
:51, which is the sum of the degrees of freedom for the tluee error terms of
Table 9.3 (6 + I + 36: 5t). Thus the splitting of plots partitions degees of freedom
and sums of squares for error into components having fewer degrees of freedom
but usually with each successive term having a smaller mean square. Compare the
mean squares for tJre three error terms in Table 9.3.

Correction Term

Y 2 qqgl Lzr - :68907.0939."- pshb - 3(rX3X4)

Sums of Squares and Mean Squares

5ffi.72+ ... +527.f
3(2)(3)

776.52+...+6fi.f
2(3)(4)

>Y,2SSB: ,'" -C:psh

>Y, 2

SSP: sh;- -C:

)Y,,..' l9g.S+...+l$,fSS(MP): 

=f 
-"::=t(E]-jjg -C:698.9028

SS(MPE) : SS(MP) - SSB - SSP : 1 t 1.7581

sss: H -": '*floj(lflu'u -c:706.8800

ss(pxs): &* -"-ssP-sss: E%#@ -c-ssP-sss
:40.ffi75

ss(sp): + -6.:92'12+ ''-' +gt'52 
-c:L9?A.8t%l

SS(SPE):55(SP)- SS(MP)- SSS - SS(P x S): /$.34e5

SSH: ry -c: 634'12+ "' +849'd t\p6b :t6fr: -c:e62'3353

-C:141.4561

- C:443.6886
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ss(p x H) : + - c - ssp - SSH : 278 32 + : : : -+ 257'22 
- c - ssP - ssH

2(4)
:13.1097

ss(s x H) - 
)Y u,' _ c _ sss _ ssH - 2gt.42 + . ;..+ 4u.? _ c - sss - ssHpb 3(4)

:127.8308

svz
SS(P x s x H) : + - C - SSP - SSS - SSH - SS(P x S) - SS(P x H) - SS(s x H)

- xJ.* + . - + 149.42 
- c - ssp - sss - ssH - ss(p x s)

- ss(Px H)- ss(sx u):44.6192

SS(SSP) : 2y,, 
^z 

- C : 2f..72 + . . . + 40.22 - C : 2840.6061

SS(SSPE) : SS(SSP) _ SS(SP) _ SSH _ SS(P X H) _ SS(S X H) _ SS(P X S X H)
:168.4983

Mean squares are formed as usual by dividing SS's by appropriate degrees of
freedom, for example, MS(SSPE) : 168.4983/36 : 4.6805.

The Standard Deviation Key

With a calculator progammed to calculate s: ,-l)n /{r-l) , totals can be

entered to compute mean squiues and sum of
the block totals, 588.7, 574.4,536.6, md 527.7

For example, for SSB, enter
the standard deviation key,

s:29.3383; square s to give f =860.7367; divide by the number of experimental
units in each of the totals squared (I8) to give 47.8187:MSB; multiply by df B(3)
to give 143.456I:SSB.

F Values

The main plot error mean square is used to test the effects of plant date; subplot
error MS to test the effects of spray treatment and the interaction P X S; and
sub-subplot error MS to test the remaining sources of variation-those associated
with the sub-subplot treatments.

MEAN SEPARATION

The actual procedure used for mean separation will depend on the nature of the
treatments, the questions the experimenter set out to answer, and the results of the
initial analysis. For our example, the analysis tells us that the effects of the spray

lO7 Mean Separatian



treatments and harvest dates were similar for all dates of planting (nonsignificant
F values for PXS, PXH, and PXSXH)but that the plants t-hat were sprayed for
aphid control behaved quite differently with respect to harvest date than did
plants that were not sprayed (lrghly significant F value for SXH).

Partitioning Interaction

Table 9.4 is set up to examine the SxH interaction in more detail. The means of
Table 9.4 show increasing root leld as the harvest season progresses, with an
indication of a more rapid rate of yield increase for the S, compared to the St

treatment. Since the harvest dates were at four-week intervals, we can use the
coefficients of Table A.ll under n:3 to make it easy to partition the sum of
squares for harvest date into a component to account for a linear increase with
advancing harvest date and a residual component to show the portion of the sum

of squares not accounted for by a linear trend. With the 2 df for harvest date
partitioned, we can partition the 2 df for S X H into a linear and residual effect.
Using the mean square for SSP error (Table 9.3), we calculate the F values of
Table 9.4 and find a highly significant difference in the linear req)onse of the S,

compared to the 52 treatment with respect to date of harvest. There is also a
significant S X H residual component due to the small increase in root yield from

TABLE 9.4.
Coefficients for partitioning sums of squares due to spray treatment, harvest date,

and the S X H interaction; the resulting mean squares; and F ratios.

S X H Treatments

S,H, S,IL S,H, S,H, S,H, SZHE

Totals 291.4 U5.2 364.3 U2.7 390.1 484.7

Comparison Means 24.3 28.8 30.4 28.6 33.3 40.4

Mean
Squares F'

S

H Linear
H Residual
SXHL
SXHR

-1
-1

I
I

-l

-1
I
1

-1
-1

I
-l

1

-l
t

I
0
o_L

0

-2

-1
0

-2
0
2

I 706.8800
| 962.1252 205.6
t 0.2101 < 1

| g9.4752 2t.?,5
r 28.3556 6.06

"F values are calculated by dividing the mean squares by the mean square for the SSP error

of Table 9.3. The tabular'F requirid for statistical significance is for I and 36 df and for
5Yo=4.11 and for LVo:1.39.
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harvest two to harvest tlree for Sl (28.8 to 30.4 tons/acre) compared to the much
larger increase for S, (33.3 to 4O.4 tons/acre). A biological interpretation that
makes sense is that the sugar beets not sprayed for vinrs zuppression show a
progressively lower rate of growth as the harvest season advances, while the plants
with less virus show a more or less constant rate of growth over the time interval
of the three harvests. This intelpretation can be illustrated as in Figure 9.2 by
showing the increase in root yield over the harvest periods as linear for the S,
treatment and quadratic for the S, treatment. It would not be appropriate to
extrapolate beyond the harvest dates involved, as both trend lines would level off
as winter approached and not continue upward as indicated for S, or decline as

the quadratic equation predicts for 51. Within the limirc of the harvest dates,
however, both equaUons graphically illustrate the effect of the more severe level
of virus infestation on the root yield of sugar beets and provide an objective
procedure for estimating yield for the two treatrnents over the fall harvest period.

The calculation of the regression equations of Figure 9.2 is left as an exercise
after you have learned the shortcut regression methods of Chapter 15. The
procedure for computing the single degee of freedom mean squares of Table 9.4
are given below.

( - 29L,4 - 3/i5.2 - W.3 + 342.7 + 390. t + 484.7)2
SS Sprays: :706.8800

Note the use of the formula for calculating a single degree of freedom sum of
sqnares: SS:()CY,)z /(r2cr2). The c,'s are class comparison coefficients of Table
9.4, and r is the number of variates in each term of the numerator. Here
r:bp:4(3).

( - zgt.+ + sez.g - uz.l + 484.7\2
SS(H Unear) : 

ffi 
:962.1252

I zst.t - z(us.z) + 3et.B + uz.l - z(sw.t) + 4u.7 )2
SSIH Residual):

:0.2I0I

(29r.4 - 364. 3 - U2.7 + 4U.7)2
ss(sxHL): :ff).4752

4(3)4

109 Mean Separation

| - zu.a + z(u5.2) - w.s + u2.7 - 2(3e9. 1) + 4u.7 
12ss(sxHR):

:28.3sso 4(3)12

fu checls on arithmetic, note that SS(H Linear)+SS(H Residual):gSH of
Table 9.3 and that SS(SXHL)+SS(SXHR):SS(SXH) of Table g.S.



A
40

(Sr) Sprayed,
= 28.2 + 1.trv

A

6

(Sr ) Not sprayed

i = 24.3 + 1.5x - o.o9r2

J-,
4

Weeks from 27 August (x)

Figure 9.2. Effect of vector control on t}re fall growth of sugar beets. The
difference in the two lines shows the natrue of the SXH interaction.
The equations can be used to estimate root yields produced by the two
treatments over the fall harvest perid.

Standard Errors and I^SD's

For some experiments involving split-split plots it may be desirable to separate
certain means by LSD or multiple-range tests, and thus it is necessary to know the
appropriate standard errors for use in tlese tests. Standard errors for testing main
effects of the factors applied to main plots and subplots and for their interactions
are the same as given in Table 8.8 except that c(number of factor C treatments) is

a multiplier in each denominator. Standard errors for separating means of the
factor applied to the sub-subplots and for interacUong with the other two factors
are given in Table 9.5 along with t values that must be calculated for certain
comparisons.

For a complete summary of the results of an experiment, it is usually good
practice to give the means of the highest order of treatment factor combinaUons
and the means of the factor combinations that appear particularly relevant to the
conclusions to be made along with some procedure for approximate mean separa-
tion. For our example, Table 9.6 gives the means of plant date x spray treatment X
date of harvest, the plant date means, and the means of the higt ly significant
interaction, S X H. Footnotes to the table give LSD's for approximate mean
separation. The computation of tlese LSD's, all at the S%olevel, using the standard
errors of Tables 8.8 and 9.5, are shown below.

5
o
830
c
o
F

20
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TABLE 9.5.
Standard errors and t computations for the separaUon of means involving C
treatments.

Means Compared Stardard Error (5) t Values'

\H
\tr
\tr

C means

C means for same A

C means for same B

B means for same or
different C

A meens for same or
different C

C means for same A and B

B means for same A and
same or different C

A means for same or
different B and C

- r)Ec+Eb
rac

(c- l)Ect"+Ebto
(c- l)Ec+Eb

(c-l)Ect +Eat"

(c- l)Ec+Ea

(c- l)Ect"+Ebtb
(c- r)Ec+Eb

b(c- l)t + (b- r)Ebtb+Eat

b(c- l)+ (b- l)Eb+Ea

q

a

q

tb":

t*:

q

tb.:

lebc -

"t", h, t" indicate tabular t values from Table A.2 for degrees of freedom for E4 Eb, and
Ec, reqpectively.
K"y' ,t, B, and C are treahnents applied to mainplots, subplots, and sub-subplots at levels a,
b, and c, respectively; r is the number of replications. Ea, Eb, and Ec are main, zubplot, and
sub-subplot error mean squares, respecUvely. To compute LSD and D, note that
HD:IV2 5 and D:R(LSD).

LSD, PLANT DATE MEANS. tso:t"{ze")/.b" . Note that c has been

ipcluded in the denominator of this formula from Table 8.8 to keep the standard
error on a sub-subplot basis.

LSD: 2(18.62€4) I / 4(2)3 : 2.M7 (r2fi) : 3.0 tons/ acre.

LSD, H MEANS FOR SAME P AND S TREATMENTS. FOT example, PrSlHr -
PrSrHz. LSD: t"f2E"/. : 2(4.6s05)l/4 :2.028(I.530) : l.I tons

/acre. Note that t" is based on 36 and is determined by linear intelpolation
between tabular t's from Table A.2 for 35 and 40 df.

lll Mean Wration

[c-l)Ec+Ea

V---E-
\tr\Pffi



TABLE 9.6.
Effect of plant date, spray treahnent and date of harvest on sugar beet root
production.

Spray

Plant Date Treatment

Harvest Date

8/27 e/% r0/22

Plant

Date Mears"

No 24.2

(Roots, tons/acre)
PxSxH meansb

29.13/2

4/2

Not sprayed
Sprayed

Yes 30.4 36.0 43.2

No 26.2 32.0 33.0

Yes 32.3 34.0 40.6

5/2 No 22.4 27.0

31.2

37.4

30.4
40.4

32.3

33.0

27.4
Yes 23.0 29.7

Spray treatrnent Xharvest date means"
24.3 28.8
28.6 33.3

'ISD,5%: 3.0
btSO, 5gA between harvest dates for same plant date and spray treatment: 3.1; between
spray treahnents for the same plant date and same or different harvest date: 3.7; between
plant date means for ttre same or different spray treatment or harvest date: 4.4. The P X S
X H interaction is not significant at the 57o level.
'L,SD, 5% between H dates for the same spray treatrnent: 1.8; between spray treatments
for the same or different H date: 2.1. The SX H interaction is significant at the 0.I7o level.

LSD, SPRAY TREATMENT MEANS FOR THE SAME P AND THE SAME OR
DIFFERENT H. For example, PrSrHr-PrS2Hr or PrS,Hr-PrS2H2.

c-1 +Eb
LSD: * _ (c-I)Ect"+Ebt.

(c- l)Ec+Ebrc

(3 - l ) (4.6805)2.028 + 8.7M7 0.2$2\t*: 
(3- r)4680s+8J047 

:2'i'ii
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-1 +8.7047
LSD:2.141

4(3)
: 2.141(1.735) : 3.7 tons/acre

ISD, PLANT DATE MEANS FOR SAME OR DIFFERENT S AND H. FOT

example, PlSlHl -P2SlHl or PrSrHr-PrSrHr.

LSD: t 6.:
z[b(c- l)Ec+ (b- l)Eb+Ea]

t^1*:2.24
rbc

(see Table 9.5 for formula)

2(3 - 1)4.6805 + (2 - r)7.7047 + 18.6264
LSI-I:2

4(2)3

: 2.242(1.959) : 4.4 tons/acre

LSD, H DATE MEANS FOR SAME S. For example, SrHr-SrI{z.

4(3)
: 2.028(0.883) : 1.8 tons/acre

LSD, S MEANS FOR SAME OR DIfffnnNT H. For example, SrH,-SrH, or
srHr - s2H2.

LSD: 2[("- t)Ec+Eb]

:2.141 2[(s- r)4.680s+8.7M7]
:2.141(1.002)

4(3)3

:2.1 tons/acre

SUMMARY

The split-split plot is an extension of the split-plot principle with subplots being
split into sub-subplots to which a third treatment factor is assigned. The analysis of
variance is more complicated in that tlere are three error terms for testing
treatment effects. Usually, the factor assigned to sub-subplots and the interactions
involving this factor are more precisely evaluated than are the other treatment
components. Mean separation is complicated by the three error terms.

LSD:..IEEe :

rac

ll3 Sumnwry





IO

THE
SPLIT

BLOCK

In this variaUon of the split-plot design, the subunit treatments are applied in
strips across an entire replication of main plot treatments. If the main plots are in
a latin square, the subunit treatments can be in strips across an entire row or
column of main plots. This arrangement often facilitates physical operations
concerning the subunits but sacrifices precision in comparing the main effects of
factor B. It often improves precision in comparing the AB interaction, especially in
comparing B means for a given A treatment. When this is the primary effect in
which you are interested, the desigr is quite useful. Before employing it, however,
it is wise to consult with someone experienced in its use.

Figure 10.1 illustrates a single replicate of split-plots compared to a split-
block. In the latter, note that the subunit treatments are continuous across the
entire block of main plots, and thus each subunit treatment qplits the block.
Another term applicable to this layout is stripplot, as both A and B treatments are
in strips. The A and B treatments are independently randomized in each replica-
tion.

Table l0.I shows the partitioning of degrees of freedom for the two layouts of
Figure 10.1, assuming four replications for each layout. Note that the split-block
arrangement necessitates the division of the split-plot error b into two error terms
and provides fewer degrees of freedom for testing B treatment main effects. But

Rep I Rep I

Split-plot Splirblock

Figure 10.1. A single replicate of split plots compared to a split block. The
experiment involves five treatments of factor A and four treatments
of factor B. In a split-plot layout, B treatments are independently
randomized within each A treatment plot, while in a split block, the
B treatments are in strips across the entire block of A plots.

4
B2 B3 B3 B2 Br B4 Bl B2 83 Bl

B{ Br Br B{ 83 B2 B3 B{ B2 B-

B2 B2 B2 B2 B2

83 B3 B3 83 83

B{ B4 B. B4 B1

Br Bl BI Bl Bl

f 15 The gptit Block



TABLE TO.I.
Degrees of freedom for the split-plot design and the split-block variation of
Figure 10.1.

Source of

Variation

Degrees of Freedom

Split-Plot Split-Block

Subplots
Main plots

Blocks
A
MP error

B
AXB
Strip-plot error
Subplot error

rab- I
ra- I
r-l
a-l
(r- 1)(a- t)
b-r
(a- l)ft- 1)

(r- l)(b- t)
(r- r)(a- 1)(b-

4*t
t2JError a f ,oo, "

79
t9
3

79
l9
3
4

12

3-t
r2J

,;-nrJ Error b*
Error b
Error c

jl
r:4 replications, a:5 factor A treatments, b:4 factor B treatments. Brackets and arrows
indicate the use of appropriate error terms for F tests.

'Combines df for error b and c of the splirblock.

since variability associated with the strips across the main plots is now removed
from the qplit-plot error b to give error c of the split-block layout, the latter is

smaller and often provides a more precise F test for tesUng for interactions.
Figure I0.2 gives the layout of an experiment designed to examine the effect

of nitrogen fertilizer rate on zugar beet root yield for different harvest times. The
main plots are four nitrogen fertilizer rates arranged in a 4x4 latin square.

Subunit treatments are five dates of harvest. The subplots to be harvested at each

date are in strips through an entire column of main plots. The harvest date strips
are rerandomized for each column of main plots. Harvest operations are easier to
conduct when the plots to be harvested on a certain date form a continuous
column. This arrangement, however, necessitates the calculation of a separate

error term to test for the main effect of harvest dates. The root yield for each

subplot is given in Figure 10.2 along wit]'r totals for main plots, rows, columns, and

harvest date strip-plots. These data, along with the treatment totals of Table 10.2,

are required to compute the sums of squares for the ANOVA of Table 10.3. The

procedure for these calculations follows the table.
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Figure 10.2. Layout of a sugar beet experiment, plot yields (tons of roots per acre)
and totals. Main plot treatments are pounds of fertilizer N per acre
arranged in a 4X4latin square. Subplot treatments are five dates of
harvest at three-week intervals. Note that the same harvest date
continues thro"gh all N plots in a column; thus each column of main
plots becomes a "split-block." The number of weeks from planting to
harvest for H, through H, are, respectively, 20, ?3, 26, 29, and 32.
Note tJrat any subplot can be identified as Yi;p, where i:row (r:4),
j:column (c:4), k=nitrogen rate (n:4), and l:harvest (h:5).
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TABLE I0.2.
Treatment totals and means, sugar beet experiment of Figure 10.2.

Harvest Date

N rate I 2 3 4 5 Y..k

0
80

160

320

22.0
39.4
40.7
37.9

47.4
67.5
74.4
77.5

69.8
r05.0
120.1

t22.1

76.L
tI0.l
r29.3
r25.r

276.4
408.0
4ffi.4
459.2

Totals (Y..ur)

61.1
85.6
91.9
96.6

Y...r 140.0 267.2 335.2 4L7.0 MO.6 Y:1600.0

0
80

160

320

lI.8
17.0
r8.6
I9.4

Means
r5.3
2t.4
23.0
2/4.2

17.4
26.2
30.0
30.5

D.D

9.8
r0.2
9.5

ANALYSIS OF VARIANCE

D"gr* of Freedom

The degrees of freedom for the sources of variation of Table I0.3 are as follows.

Note rows, r:4; columns, c:41 nitrogen rate, n:4; harvest dates, h:5.

Subplots rch- l:4(4X5)- 1:79
Main plots rc - 1:4(4)- 1: 15

Rows r-l:4-l:3
Columns c-1:4-1:3
N rates (n-l):4-1:3

Error a (r- 1)(c- I)-("- r):3(3) -3:6
H dates ft-I):(5-l):a
Error b (c- t)ft - l):$({) : 12

NXII (" - lXl, - l) :3(4) : 12

Error c (c - 1)(n - l)O - 1) :3(3)(a) : 36

Corection Term

y2c:E-
where r is the number of replications, n is the number of N levels, and h is the
number of hawest dates.

c: 169f, :32ooo.o0
4(4X5)

The Split Block ll8
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TABLE I0.3.
Analysis of variance. Splirblock design

Source of Variation df SS MS Observed F
Required F
m---M

Subplots
Main plots

Rows
Columns
N levels
Error a, RC-N

H dates
Error b, CH
NXH
Error c, C(NXH)

79 5542.680
15 r5m.720
3 22,4.657

3 58.063
3 I10I.328
6 119.672
4 3710.765
12 w.487
12 t57.t47
36 7r.58r

18.41 4.76 9.78

11r.92 3.26 5.4t

6.59 2.03 2.72

74.ffi
19.3rr

367.r09
19.945

927.69I
8.289

13.096
r.988

:

l
l

Sums of Squares

Y.2
SSR: 'I' -Cnh

4i)9.82+... +353.42
- C : 32224.657 - C : 224.657

4(5)

ssc: 
Y'j=" 

-cnh

>*,
SS(mainplots): n^ -C

lo7.L2+... +92.12

_ 379.#+... +391.22 _ C:32058.063-C:58.063
4(5)

>Y,-2
SSN: f _"

_ n6.42 + . . ..+ 4S9.Zz _ C : 33I0I.32g _ C : I t0t.gzg
4(5)

5
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SS(Ea) : SS(main plots) - SSR - SSC - SSN

: 1503.720 - 221.657 - fi.063 - t 101.328 : 119.672

>Y
SSH: "'' -Crn

_ t4O.G + . . ..+ 440.62 _ C : 357I0.7G5 _ C : 3610.265
4(4)

>Y.,2
ss(Eb): -;. -c-ssc-ssH

_95.?+ ... +6s.f _c_ssc_ssH
4

: 35868.295 - C - SSC - SSH : 99.467

_zz,.G+ ... +1,f..t2
4

_C_SSN-SSH

: 36969.240 - C - SSN - SSH : r57.t47

SS(subplots): )Yru2 - C

:26.42 +29.32 + . . . + 15.92 - C :37542.8-C
:5542.680

ss(Ec) : SS(zubplots) - ss(M plots) - SSH - ss(Eb) - ss(N x H)

: 5542.680 - 1503.720 - 3710.765 - 99 .467 - 157 .147

:71.581

Mean Squares

Mean squares are obtained by dividing sums of squares by the degrees of freedom
associated with each. For example:

>Y,,2
sS(N xH) : -;- -C- SSN-SSH

MS(Ec):ffi:#:r.e88
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The Standard D,eviation Key

The use of a correction term can be avoided with a calculator programmed to

Yr-i)'/(r-l) . To compute eny mean square, enter the apcompute

propriate obtain f, and divide by the number of variates in each total
entered. For example, to compute SSR, enter 439.8, 422.3, 384.5, &53.4; depress
the key to grve s:38.7(X)3; square 38.7003 to give 1497.7133; divide by 20 to give
74.886:MSR; multiply by 3 (i.e., df R) to obtain 224.657:SSR.

F Values and Mean Separation

F values are determined by dividing mean squ€ues by appropriate error terms; Ea
for nitrogen, Eb for harvest date, and Ec for the N X H interaction.

The highly significant F value for N x H indicates a different response to N
depending on harvest date. An understanding of this interaction is crucial to the
intelpretation of the results. By partitioning N rates and H dates into polynomial
trend comparisions, we can also partition the sum of squares for N X H to learn the
nature of the interaction. Polynomial coefficients for partitioning unequally spaced
nitrogen rates are not easy to come by, which is one of the reasons for stressing
equally spaced treatment rates. Some of these coefficients are given in Table
A.lla, in which coefficients for our four N rates are under the series 0, 1,2, 4.

Coefficients for partitioning the five equally spaced harvest dates are in Table
A.ll under n:5. The coefficients for N rates and harvest dates are assigned to the
treatments of our experiment in Table 10.4. Interaction coefficients are obtained
by multiplication. For example, the coefficients for NLXHL are: -7(-2):ll,
-7(-l):7, -7(0):0, and so forth. Note that coefficients for all the comparisons
meet the two rules for orthogonality given in Chapter 6 and thus the sums of
squares for the single degree of freedom comparisons will add to each multiple
degree of freedom sum of squares partitioned, thus providing a test of computa-
tional accuracy.

The single degree of freedom sums of squares are computed using the nrle
SS:XcrYJ2/(r)c,2), where c, are the comparison coefficients, Y, are treatment
totals, and r is the number of variates in each total. For example, the sum of
squares associated with the linear response to nitrogen is

| - t 1zz.o1 - 7 (47.4)+ .. . + e(t25.1) l'SS(NL): :730.7301

The other single df sums of squares are computed similarly and entered in Table
10.4.

F tests are made using the appropriate error mean squ€ues from Table 10.3:
error a for the N comparisons, error b for the H comparisons, and error c for the

l2l Analysis of Variarrce



TABLE I0.4.
Orthogonal coefficients for partitioning the treatment sum of squares into single degree of freedom trend comparisons, the
resulting sums of squares, and their statistical significance.

N Rrtes, HNest Dat6, atrd TBtrrent Totals

No Ne Nrm Nsm

r23451234
D.O 47.4 0l.r @.8 76.1 3e.4 dl.g E5.6 16.0

5

llo.l
t23

n.7 71.4 9t.9
45123

lm.l u9.3 37.9 Tr5 txl,A t,,.t 125.1

Su of
df Sqrc

Ststisticd

Signffi@

ofldf
Comperisonf,

54

Comparisom

B

G
N

E
rc
E

N
E
N

6
N
N
E

N rat6
LiD@
Quadratic
R6idual

H&t6
Linw
Qoadndc
Cubic
R6idu8l

NXH
NLXIIL
NLXHQ
NLXHC
NLXHR

NQXHL
NQXHQ
NQxHC
NQXHR

NRXHL
NRXHQ
NRXHC
NRXHR

7 -t1
7 -14

t4 -7
% -7

3
9l
5l
tl

llol.32a
7{.7n
359.59I

11.06

3710.766
3525.0fi1

r00.9Eo

0.006
LA.n2

t57.t47
$.699

5.194
r.ol5
5.()4(l

38.6q)
2.595
r.350
1.557

1.i36
o.745

0.3E4
o.151

4
2t
2t
1l
ll

I
5
I

I
-l

-4

I
-l
-2
-4

9
5
I

I
5
I

I
5
I

2 -2 -t O

2 2 -t -2
2 -2 -t O

2 2 -t -2
2 -2 -t O

2 2 -t -2
-2 -t o I

2 -t -2 -l
0
6

I -t 2
I I -4

I
-8
-0

I
-8
-6

I
-l
-2
-1

I
-l

-4

o
6

o-
l6
0

-3 I I l
-4 -E -E -E

8 -6 -6 -6

I -l 2
I I -,t

-0 -2 -r 0

-6 2 -t -2
-3 -l 2 0

-3 | -4 6
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-4

8

I
-l

-4
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I -4 6 -4

u
l8 I
tEl
9l
0l

0
IE
o

il

2 -r8 - I
2 r8 -9
I -9 t6
rg-Ii

05lol
l0 -5 lo I
0 -r0 5 I

30-zJ5l

-5
-5

to
-n

2
2
I
I

o

0
0

9

-9
-16
-36

o
a

I -1 2
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NXH comparisons. For example, F for the interaction comparison NLXHL:
98.899/1.98S:49J5, which far exceeds the tabular value from Table A.3 of 7.39
for significance at the l7o level (df:l and 36). Note that NLXHL and NQXHL
are the only two components of the N X H interaction that are statistically
significant.

To proceed further and show an appropriate way to present the results of this
experiment requires some understanding of polynomial and multiple regession,

and so we will delay this until Chapter 16. (If you wish to see how it comes out,
look at page 262.) For now, note that the total of the six significant single degee
of freedom sums of squares account for 999o of the zum of squares due to all 19

treatment comlrcnents, tlat is, (730.730+359.593+3525.006+166.980+98.899+
38.659) / ( I l0 r.328 + 37 I0 .7 65 + r57 .r47) : 0.9s0.

STANDARD ERRORS

Table 10.5 gives standard errors to use for mean separation by LSD and multiple-
range tests.

TABLE I0.5.
Standard Errors for a Split-Block

Means Compared Standard Error (s;) t Values

A means

B means

A means for t}te same
or different B

B means for the same A

- t)nc+Ea (b-l)Ec(t )+Ea(t")
rb 'ac (b- r)Ec+Ea

(a- I)Ec(t")+Eb(tb)a- l)Ec+Eb
ra

Lbc - (a- r)Ec+Eb

\tr t

tb
ra

A:tr-eatments applied to the main plots, B:treaEnents applied to the zubplots; a, b, and r
g" 9-" number of main plot treatmints, zubplot treatrnents, and replicati&rs, respectivd;
Ea, Eb, and Ec are error mean squares; L, tu-, L are tabular t valuej for df for ni fU, 

"ria$, respecUv-ely. To compute_IS-D.and D, note that ISD:IV2 +,arrd to compute
Duncan's multiple range, D-R(ISD).
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To illustrate the use of Table 10.5, we will compute interaction LSD's to
compiue the means of Table 10.2. Neither LSD's nor multiple-range tests would,
however, be appropriate for separating the means of this experimint, as a great
deal more can be learned by the more powerful method of Chapter 16.

LSD (SVo) betuem N mearx for the sutle or different H.

LSD:
(b- r)rc+na

rb

t".
(b- r)Ec(t ) +Ea(t") (5- t)1.e88(2.028) + re.s4:5(2.47)

(5- r)1.e88+ re.%s

(5- r)1.e88+ le.e45 : 2.328(1.670) : 3.a tons/acreLSD:
4(5)

LSD (SVo) betueen H means for the same N.

-1 +Eb
LSD..*:t5"

ra

tu.:
(a- l)Ec(t ) +eb(tb) (4- r)1.e88(2.tr25)+ 8.28e(2.17e)

(a- r)Ec+Eb (4-r)1.e88+8.28e

30.1567=-14.253
:2.116

(4- l)1.e88+8.28e : 2.u6(1.335) = 2.8 tons/acreLSD:2.
4(4)

SUMMARY

In the sptifblock arrangement:

A block of plots receiving the treatments of factor A is split, so that each

treatment of factor B occurs in a continuous strip across the block. An indepen-
dent randomization of the treatments of factor B is made for each block of plots of
factor A.

The advantages of the layout are the facilitation of physical operations and the
possibility of greater precision in estimation of the A X B interaction.

The disadvantages are a loss in precision in determining the effects of factor B,

more complex computations, and complications in mean separaUon.

(b- l)Ec+Ea

:ffi:2's28
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!t
SUBPLOTS

AS
REPEAIED

OBSERVATIONS

The split-plot principle can be applied to experiments where successive observa-

tions are made on the same whole units over a period of time. For example, a
fertilizer trial or variety trial with a perennial crop might be harvested several

times during a year and/or for two or more years. The plots to which the
treatments are assigred can be called main plots, and the several harvests can be

called subplots. A subplot in this case, however, differs from the usual subplot in
that it consists of data taken from the entire main plot rather than from a
designated portion as is the case with the usual split-plot.

There are no unusual problems in analyzing data on a main plot basis for a
single observation date or for the totals over several dates of observation. But F
values arising from testing the effects of successive observations and the interac-
tion of main plot treatments with successive observations may not be distributed
as F, and too many significant effects may result.

A stepwise procedure and suggestions for handling data from such experi-
ments are given in the following example. The data are dry matter forage yields
from an alfalfa variety trial. There are four varieties randomized in five complete
blocks. To simplify matters, we will consider data from only four harvests, two
early and two late, and only for two years.

ANALYSIS FOR EACH SET OF OBSERVATIONS

An ANOVA should be carried out for each harvest.The organization of data as in
Table 11.1 generates the necessary totals to complete an ANOVA for each harvest
as well as for an annual analysis.

The ANOVA for each harvest is given in Table ll.2.The degrees of freedom
and sums of squares for "varieties" are partitioned as shown because varieties I
and 2 are closely related, variety 2 being a selection from variety I. The procedure
for completing an ANOVA for a single harvest date is given below Table 11.2 for
harvest l.
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TABLE IT.I.
First-year data from an alfalfa variety trial laid out as a randomized complete block
with four varieties(v:4), five blocks(b:5), and four harvests (h:4). Data are tons
per acre of dry alfalfa.

Blocks 0
Variety(i) Harvest(k) | 2 3 4 5 Y.r Y,.r.

I
I
I
I

2.69
2.87
3.12
3.23

2.40
3.05
3.27
3.23

3.23
3.09
3.4I
3.16

2.87
2.90
3.48
3.0r

3.27
2.98
3.19
3.05

14.46
14.89
t6.47
r5.68

2.89
2.98
3.29
3.14

Yi, ll.9l f I.95 12.89 L2.26 12.49 6I.50:Y..,

t2
22
32
42

2.74
2.fr
2.92
3.50

l.9I
2.90
2.63
2.89

3.47
3.23
3.67
3.39

2.87
2.98
2.90
2.m

3.43
3.A5
3.25
3.16

14.42
14.66
r5.37
r5.84

2.88
2.93
3.07
3.r7

Y.i, 11.66 10.33 13.76 11.65 12.89 60.29:Y..,

l3
23
33
43

L.67
t.47
r.67
2.ffi

t.22
r.85
LA
I.92

2.29
2.03
2.8I
2.36

2.18
r.82
1.51

1.92

2.30
r.5r
t.76
2.14

9.66
8.68

9.17
10.94

1.93
1.74
r.83
2,t9

Y.p 7.41 6.41 9.49 7.43 7.71 38.45:Y..t

l4
24
34
44

1.92
2.00
2.03
2.07

1.45
2.03
1.96
1.89

r.63
t.7L
r.85
1.92

I.60
1.60
1.82
t.82

1.96
r.96
2.40
1.78

8.56
9.30

10.06
9.48

L,7L
r.86
2.01
1.90

Y.in 8.02 7'33 7.Il 6.84 8.I0 37.40:Y..n

Variety X block totals
(main plots, Y,,.) \ Y1.,

I
2
3
4

9.02
8.&4
9.74

r1.40

6.98
9.83
9.28
9.93

10.62
10.06
Lt.74
10.83

9.52
9.30
9.7r
9.65

r0.96
9.50

r0.60
10.13

47.t0
47.53
5r.07
5r.94

9.4,*
9.5r

10.21

10.39

Yj. 39.00 36.02 43.25 38.18 41.19 197.64:Y

sln tons per acre per harvest. bln tons Per acre per year.
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TABLE II.2.
Analysis of variance for each harvest of the first year

Har I Har 2 Har 3
Sourcp of
Variation

df ss MS ss Ms ss Ms ss Ms

Total 19

Blocla 4
Varieties 3

l*2 vs.3*4 I
I vs.2 I
3vs.4 I

Error L2

r.1801
0.1651
o.4729
0.3920
0.0185
o.6tut
o.vzl

0.u13
0.1576
0.3920r
0.0r85
o.w2A
0.0452

3.1&5
t.7241:9

0.2il7
0.22ffi
0.0058
o.@2t
l.l2,l9

0.,$12
0.0849
0.2268
0.m58
o.t22r
0.0937

3.3016
t.2fi2
0.56fl)
0.1567
0.0960
0.3u8
r.4wL

0.311()

0.1887
0.156r/
0.09q)
0.313i!
0.1233

0.&!76
03r12
0.2295
0.14ll
O.G'E
0.fi}i}6
0.29@

0.mI8
0.ffi65
0.14llt
0.0tt8
0.crB6
o.a2A7

'Ratio of MS to error MS exceeds tabular F required for significance at the 5% level.
Tabular Fo.* (l and 12 df):4.75.

V:varieties,y:4i H: harvests, h =4; B:blocks, b:5.
Y,2

C: *: 61.ry : lg9.Iln5vhb 4(4)5

>Y.,2
SSB: '" -C:v

>Y,2
SSV: =''' -C:b

Ss(vt+2 vs. 3+4) :(L4.46+ 14.89- 16.47 -L5.ffi)2/Se):0.3920.

Note that this single degree of freedom computation and the two that follow
involve the use of the rule: sS: pqy,)z / (r2crz). For these three computations the
c,'s are all + or - l.

IL9l2+ ... +t2.4*
-C:0.16514

M.+Az+... +15.6S
-C:0.4729D

SS(VI vs. V2):
(14.46- 14.89)2

:0.0185

SS(V3 vs. V4):

s(2)

(16.47 - 15.63)2
:O.O6tu4,

s(2)

Ss(totd) :2.6* +... +3.052 - C : 1.1801

SS(error): SS(totd) - SSB - SSV :0.5421

127 Arulysb for fuch Set of Obsenntions

Har 4



Mean squares are obtained by dividing SS's by appropriate degrees of free-
dom, for example, MSV:0.4729/3:O.1576. F values for testing variety effects
are found by dividing MS's for variety components by the mean squ.ue for error
for that particular harvest, for example, for harvest l, F for VI+2 vs. V3*4:
0.392O/0.M52:8.67. VarieUes 3 and 4 average 0.28, O.27,0.18, and 0.I7 tons/
acre more than varieties I and 2 for harvests I through 4, respectively. Since the
difference (vl+2)-(v3+4) is statistically significant for harvests t and 4, it
appears logical to assume real differences for this comparison for harvests 2 and 3
also, even though F values are not significant at the 5% level.

Annual Analysis

An annual analysis is carried out and organized as in Table 11.3. A stepwise
procedure for the computations, identical to those used in a qplit-plot, are given
below.

TABLE TT.3.
Analysis of variance, fust year, alfalfa variety trial

Source of Variation

Tabular F

df SS MS F SVo lTo

Subplots 79
Main plots l9

Blocks, B 4
Varieties, V 3

I *2 vs. 3*4 I
I vs.2 I
3 vs.4 I

MP error, BV 12

Harvests, H 3(l)
vx H e(3)
Subplot error, BH*B(VXH) 48(16)

34.8690
5.0769
1.9386
0.9014
0.8778
0.m46
0.0r89
2.2369

26.4452
o.6217
2.7?52

0.4u6
0.3005*'
0.8778J
0.m46J
0.0r8eJ
0.1864J
8.8151*'l
0.06e0J
0.05681

1.61

4.7t
3.49
4.75

55.2 4AV
t.zt 3.2A:^

5.95
9.33

8.53"
5.2v

"Tabular F values are for degrees of freedom in pa.rentheses.

Y...2 rg7.Mzc: --} :488.2696vqb 4v)s
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Note that putting h in the denominator keeps the observations on a per-harvest
basis.

ssB: 1t'' - c- 3e'od+-i-=-+41'1f -c

If you have a calculator preprogammed to compute s: t,-i)'/(r-l) , ssB

and the other zums of squares can be found by the following procedure: enter the
appropriate totals, get s, square s, and divide s2 by the number of variates in each
total entered. The result is MS which, multiplied by the appropriate degees of
freedom equals SS. For example, s2 of block totals:7.75437. Divide by 16:
0.484&5 : MSB. Multiply by 4 : 1.9386 : SSB.

ssv: 
)=1,.. 

-c- 47.102+ "' +51'942 -chb v- 4(s) v

Note that the comparison coefficients, t}te c,'s, are all t or - I.

ss(vr +2 vs. 3+4)- 
()c'Y'"f
bh)c,2

.. (47.r0+ 47.ss-sr.ol -51.94)2Ss(vI+2vs.3+4) 
f

:420.2082 - C : 1.9386

:489.1710 -C:0.9014

:0.8778

ss(MP error) :551yp) - SSB - SSV:2.9369

ss(Mp) : (# 
) 
-s : e.022+' " + 10.132 

-c:5.076e

SSH:
)Y..u'
-bE- 61.5d+ ... +37.4ff_r,: 

u* 
_t

:26.4452
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ss(vxH):(#) _C_SSV_SSH

_ t+.8 + .:. +g8 _C_Sw_SsH
5

:0.6217

SS(subplots) : 2Yijr.z - C : (2.6f + . . . + f .782) - C
:523.1386-C=M.8690

Note also that

SS(SP): SS(total) for H, * . . . + SS(total)q + SSrt

:1.1801+ . . . +0.8376+%i.4452:34.8690

SS(SP eror) : SS(SP) - SS(MP) - SSH- Ss(v x H)

: 34.8690 - 5 .07 69 - 26.4452 - 0.62L7 : 2.7 2,52

Mean squares are obtained by dividing sums of squares by degrees of freedom, for
example, MSV : 0.9014/3 : 0.3005.

F Values and Mean Separation

The brackets connecting mean squares of Table ll.3 indicate the error terms used
in calculating F ratios. F values for harvests and VxHshould be large before
concluding the existence of real differences. A conservative approach recom-
mended by many statisticians is to require larger F values for significance. It is

suggested that degees of freedom for harvest date be used to divide degees of
freedom for H, VXH, and subplot error (values in parentheses in Table f f.3) and
to select tabular F values on the basis of the resulting degees of freedom (those in
Table 11.3 with the superscript a). Considering the larger F value for harvests,
tlere is [ttle doubt that t]rere are real differences among t]re mean effects of
harvest dates. There is no evidence for a real interaction of VxH.

Note that most of the variability among varieties is due to Vl+2 vs. V3*4
and that the F value for this comparison is nearly significant at the 5% level.

STANDARD ERRORS. Standard errors used in LSD and multiple-range tests are

the same as for the normal split-plot design with reqpect to the mean effects of the
factor applied to the main plots (in this case varieties), but they differ from the
qplit-plot for means of the repeated observation (harvest dates) and t}re interaction
of main plot treatment X repeated observation (VxFI;. In the following discus-
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sion, we more or less follow the procedure given by Steel and Torrie (1960).
For a review of the use of a standard error in the calculation of I,SD and

Duncan's multiple-range test, see Chapter 6. Briefly, LSD:tsa and D:R(ISD).

l. Comparing two A means, V, -Vz

a. On a per-harvest basis: s;:
error)

r864) :0.1363 ISDo.*:2.179(0.1363):0.30 tons/acresa:

bh

(s)4

b. On an annual basis: s;:
error)

b

4x0.1864)
sa:

D
:0.5461 LSD:2.179(0.5461):I.lgtons/acre

2. Comparing two B means, H, -H,

E(oJs68)

'a:V,6-: :0.o754 LSD : 2. 120(0.0754) : 0.16 tons/acre

where t.* is for 16 df.

3. Comparing two A means at the same level of B, VrHl-VrH,

,r:e
where $ is the error for the analysis of the harvest under consideration.
For H,

(0.0452)
sa:

F,

D
sa:0.1M5,

ISD : 2.179(0.1345) : 0.29 tons/acre

4. Comparing two B means for the same or different A,VlHl-VrH, or

l3f Analysis for Fa.ch Set of Obsmntiorx
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vrHr -v2H2

where E, and F+ ue error MS's for the two harvests and are averaged.

o.M52+0.0937)
:0.1667sa:

2(s)

LSD : 2. 179(0.1667) : 0.36 tons/acre

COMBINING TWO OR MORE IEARS

In addition to analyzing the performance of varieties for each year, the researcher
usually is interested in variety performance over a series of years and the possible
interaction of varieties with years. Several years'results, involving several harvests
each year, may be combined as a split-split-plot analysis with varieties as main
plots, years as qplit-plots, and harvests as split-split plots. However, the interaction
of varieties X years X harvests usually is not of primary importance. Annual
analyses plts an analysis of yearly whole plot totals over a s€ries of years is usually
all that is required in making decisions as to varietal suitability.

To ilhrstrate the procedure for combiningyearly total variety plot yields over
a period of years, we will use data from two years only. The procedure is the same
as for the analysis of harvests within a year. Table ll.4 provides the necessary
data. Note that the variety X block totals of year I, Table 11.1, are the data for
year I in Table 11.4.

The Analysis for Each Year

The annual analysis needed is the main plot analysis of Table Il.3 for each year.
Since we now want the data on a per-plot per-year basis rather than on a per-plot
per-harvest basis as for Table 11.3, we multiply the sums of squares of Table 11.3

by the number of harvests to complete Table I1.5. Thus, for year I the ANOVA of
Table ll.5 is completed by

553: (SSB for year l)4: (1.9386)l:l.lUl

55y= (0.9014)4:3.6056

SS error : (2.2369)4 : 8.%76
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TABLE II.4.
Tons of dry forage per main plot per year for years I and 2, alfalfa variety trial.
(Note that data for year I are the same as for the bottom portion of Table lt.l).

Blocks 0
Variety(i) Yearft) | 2 3 4 5 Yi* Y;r

I
I
I
1

I
2
.)

4

I
2
3
4

Y.j, 39.00 36.02 43.24 38.18 4I.19 197.64:Y..,

9.02
8.84
9.74

11.40

6.98
9.83
9.28
9.93

I0.62
10.06
11.74
10.83

9.52
9.30
9.71
9.65

10.96
9.50

10.60
10.13

47.t0
47.53
5r.07
5r.94

9.42
9.5r

10.21

10.39

rr.58
1r.83
12.40

1r.73

Y,..

10.50
10.67
ll.3l
1r.06

t2
22
32
42

11.88
12.r5
12.92
rt.74

I1.33
10.98
r1.95
11.62

tl.8I
12.20
12.05
rr.54

12.22
11.30
11.88
12.00

10.65
t2.54
13.19
tt.74

57.89
59.15
6r.99
58.64

Y.i, 48.69 45.86 47.6fi 47.4O 48.12 237.67:Y..,

Varietyxblock totals

(main plots, Y,,.)

20.90
20.99
22.ffi
23.14

I8.3I
20.79
2t.23
2r.55

22.43
22.26
23.79
22.37

21.74
20.60
2r.59
2r.65

2r.u
22.M
23.79
2r.87

Y..

I04.99
106.68
1r3.06
r10.58

Y.i. 86.69 8r.88 90.85 85.58 89.31 435.31:Y

TABLE II.5.
Analyses of variance of totd yield per plot for each year

Source of
Variation

Year I Yeat 2

df SS MS SS MS

Blocls
Varieties

If 2 vs.3*4
lvs.2
3vs.4

Error

4
3
I
I
I

12

7.7544
3.60t1
3.5r12
0.0184
0.0756
8.9{:76

r.9386
2.2018
3.5u2
0.0184
0.0756
0.7456

r.l26t
r.92il
0.6444
0.1588
o.tt22
3.7462

0.28r5
0.6418
O.MM
0.1588
0.tt22
0.3r20
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The same procedure is used to complete Table ll.5 for year 2. Note that in the
second year there were no statistically significant variety effects but that the major
portion of the variability among "varieties" was due to the comparison, variety
l*2 vs.3*4.

Putting the Years Together

The ANOVA of Table lI.6 is completed from the data of Table lI.4 and combines
the yearly totals over the two years in a manner analogous to combining harvests
within a year (Table ll.3). The zums of squares are obtained as shown below.
Mean squares are sums of squares divided by their own degrees of freedom.

TABLE II.6.
ANOVA of annual lelds over two years

Tabular F

Source of Variation df SS MS F 1Vo lTo

Subplots
Main plots

Blocks, B
Varieties, V

I *2 vs 3t4
lvs2
3vs4

MP error, VB
Years
VXY

gf +2 vs.3+4)xY
(Vt vs.2)xY
(V3 vs.4)xY

Subplot error, BY +B (VxY)

39
t9
4
3
I
I
I

t2
I
3
I
I
I

t6

67.1654
14.0r38
6.1058
4.0323
3.5820
0.1428
0.3075
3.8757

40.0600
r.4985
0.5736
0.m44
0.8904

rr.593l

r.5264
1.3441*r
3.s820J
0.1428--l
0.3075J
0.3801

40.0600*r
0.4eesJ
0.5736J
0.844J
o.8eo4--.1
0.72,4!6-)

4.16
11.00

3.49
4.75

5.95
9.33

55.29 4.49 8.53

V - varieties, y : 4; B : blocLs, b : 5; Y : years, y : 2.

": 
)f*' : lg9'?t' :4737.3689vby 4(S)z

ssB: 
)Y,'' 

-c: !6'6Y+ "' +89'31' n-vY ff- -C:6'1058
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SSV: _Q: 104.9d+... + I10.582
-C=4.0323

)Y,..'
Ty

where c, are class comparison coefficients, in this case + and - l.

5(2)

()c,Y'.)2
SS(VI+2 vs.3+4): ffi

(104.99+ 106.68 - 113.06- 110.58)2
SS(V1+2 vs.3+4) :3.5820

(ru.gg- 106.68)2
SS(VI vs. V2): r-----=r:=-----= :0.1428

5(2)2

ss(v3 vs. ,nl: f,%#E :0.3075

>Y.2
ss(Mp): + -"- zo'gd+-'-Jzt'sr 

-c:14.0138

SS(MP error) : 55114P) - SSB - SSV:3.8757

ssy: ?' _c- ts7.u?_l?J7.6r _c:4o.o6oo

>Y.,2
Ss(vxY): -f, -C-SSV-SSY

47.LG+... +58.642:-
5 -C-SSV-SSY:1.49&5

This interaction sum of squares is partitioned by attention to the class comparison
coefficients given in Table 1I.7.
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TABLE II.7.
Orthogonal coefficients for partitioning year and variety comparisons.

Annual Variety Totals

Comparison

V,Y, V,Y, V.Y, VNY' V'Y'
47.t0 47.53 5I.07 51.% 57.89

Y,Y, V,Y,
59.15 6r.99

YnY,
58.64

Y+
Vl+2 vs.3*4 +
Vl vs.2 +
V vs.4 0

ryf +2 vs.3+4)xY +
(VI vs. 2)xY +
(V3 vs. 4)xY 0

SS(vl+2 vs.3+4)xY

(47 .ro + 47 .ss- 5r.07 - 51.94 - 57.89 - 59. t5 + 61.99 + 58.64) 
2

+
+

0
+

0

;

0

+
0

+
+
0

;

+

0

0

+

0
+

0
+

;
+
+

:

;

+
0
+

:0.5736

SS(VI vs. 2)xY:

5(8)

(47.r0- 47.53- 57.89 +59.rs)'z

5(4)

(51.07 - 5r.% - 6r.99 + 58.64)2
SS(V3 vs. 4)xY:

:0.0344

:0.8904
5(4)

9.022+ . + 11.742>Y2,.,-
SS(Subplots): *i -":

:67.1654

SS(SP error) : SS(SP) - SS(MP) - SSY - SS(V x Y) : 11.5e31

F values are determined by dividing MS's by the error term indicated by the
brackets and arrows of Table 11.6. There are no indications for interactions of
varieties with years, but the large F value for years indicates a real year effect
despite the doubtful wisdom of using the subplot error MS to make the F test. The

_C
4(s)2
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fact that MS subplot error is larger than the MS MP error lends justification to this
conclusion.

Note that there is little doubt that varieties 3 and 4 are superior to I and 2,

since the F value exceeds the tabular l7o value. There is no evidence that variety 2
is really better than I or that variety 3 is better than 4.

STANDARD ERRORS. The calculation of standard errors is analogous to that for
the annual analysis. Standard errors and LSDs pertinent to the significant effects
of this analysis are given below.

l. Comparing two variety means: sa:

I,SD : 2. 179 (0.2il2) : 0.55

error)
2. Comparing variety I and 2 vs 3 and 4: s;:

lz,rrs%o\.a:V-q--jzl :0.2.542

by2

lrrrs%o\ta:V-s(.4i :0.1797 LSD:2.179(0.17e7):0.3e

In calculating standard errors, a rule to follow is that the denominator should
equal the number of variates going into the means to be compared. Thus, 2 is
placed in the denominator because we are comparing the mean of variates I and2
with the mean of variates 3 and 4.

SUMMARY

Periodic sampling of main plots for feld, as repeated harvests of perennial variety
plots, repeated picking of fruit from the same trees, or repeated sampling of soil
plots over time for nutrient content are most properly analyzed as the split-plot
design. Data are analyzed as for qpht-plots, but caution should be used in
concluding that there are real effects for the repeated observation and its interac-
tions with main plot treatments unless F values are large.
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TRANSFORMAIIONS

(wnarro Do
WHEN DAIA

BREAKTHE RUrBs)

Research workers who are content to learn the "recipes" for carrying out an
analysis of variance, without attempting to learn and understand the underlying
principles, may be headed for serious trouble. Whether they realize it or not, they
are making certain aszumptions about the data when they perform an analysis of
variance. If the data do not conform to these aszumptions, such an analysis may
cause workers to reach conclusions that are not justified. They may also overlook
important conclusions that would be reached if the data were properly analyzed.

ASSUMPTIONS OF THE AIYALYSIS OF VAruANCE

The assumpUons on which an analpis of variance is based are briefly as follows:

I. The error terms are randomln independently, and normally distributed.

2. ^Ilte variances of different samples are homogeneous.

3. Variances and means of different samples are not correlated.

4. The main effects are addidve.

We now discuss these four assumptions in more detail.

Normality

Fortunately, deviations from the assumption of normality do not affect the validity
of the analysis of variance too seriously. There are tests for normality, but it is
rather pointless to apply them unless the number of samples we are dealing with is
fairly large. Independence implies that there is no relation between the size of the
error terms and the experimental grouping to which they belong. Since adjacent
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plots in a field tend to be more closely related to each other than randomly
scattered plots, it is important to avoid having all plots receiving a given treatment
occupying adjacent lrcsitions in the field. This is one of the main reasons for the
insistence on not dividing a plot receiving a certain treatment into subplots and
referring to these as replicates. The best insurance against seriotsly violating the
first assumption of the analysis of variance is to carry out the randomization
appropriate to the particular experimental design you are using.

Homogeneity of Variances

The first reference in this book to analysis of variance (Chapter 3), dealt with a
simple example with two treatments each replicated five times. You will note that
we assumed that the variances within each treatment both estimated a common
variance. We therefore felt lusUfied in using the average of these two variances as

a better estimate of o2 than either one alone. Similarly, in Chapter 4 we used a
"pooled error mean square," or an average of four variances to give us the best
estimate of the common variance.

If the variances within different treatments were, in fact, different, we would
not be justified in pooling them. Suppose, for example, that the replicates in two of
t}re treatrnents were actually samples from populations with laqge variances, while
those of t}te other two treatments were from populations with much smaller
variances. It should be obvious that the difference required for significance would
be greater for the two highly variable treatments than for the two less variable
ones. Averaging the large and small variances could grve very misleading results.
The difference between the two treatments with large variances might be declared
significant when, in reality, it could easily have occurred by chance. On the other
hand, the difference between the two treatments with small variances might be
declared nonsignificant when, in fact, it was real. The following data from a

hypothetical experiment with four treatments, each replicated five times, will
illustrate this situaUon:

Replicate

Treatmentl2S45TotalMeans'z

3
6

T2

20

A
B
C
D

5
7
I
II

I
8
6

t4

4
4
3

t7

2
5

15

8

2.5
2.5

22.5
22.5

3
6
I

t4

t5
30
45
70
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Carrying out t}le analysis of variance in the usual way, we get:

Source of variaUon df SS MS F

Treatments
Error

330
200

3
t6

110
t2.5

8.8**

Note that the error mean
variances within the treatments.
calculate an LSD:

square is the average of the four individual
The F value is highly significant. kt us now

LSD.*:t 2EMS/r :2.l2./B :4.74

Since the mean difference between treatments A and B is only 3, we would
conclude that this was not significant. The mean difference between C and D is 5,
and this would be called significant at the 57o level. We note, however, that the
variances of C and D are nine times as large as those of A and B. The assumption
that the variances are homogeneous is open to considerable doubt. It would,
therefore, be more reasonable to analyze A and B separately from C and D.

The analysis for A and B is:

Source of variation df SS MS F

Treatrnents
Error 2.5

I
8

22.5
20.0

22.5 9*

For C and D:

Source of variation df SS MS F

Treatments
Error

I
8

62.5
180

62.5 2.78ns
22.5

l4l Assutnptions of the Arulysis of Variarce

We are now led to just the opposite conclusions regarding the ffierences between
A and B and between C and D. Later we will show how to test data for



homogeneity of variances. As to what we can do when we encounter data in which
the variances are not homogeneous, tlere are several courses we can follow. First,
we can separate the data into groups zuch that the variances within each group are
homogeneous. Then each group can be analyzed separately as we did in the
example above. Second, we c€ur use a method described in more advanced
statisUcs texts, which involves a rather complicated procedure of weighting means
according to their variances. Third, we miglrt be able to transform the data in zuch
a way that they will be homogeneous. We discuss this method further on in this
chapter.

Independence of Means and Variances

In some data, there is a definite relaUon between t}re means of samples and their
variances. This is a special case and the most common cause of heterogeneity of
variance. A positive correlation between means and variances is often encountered
when there is a wide range of sample means.

Sup1rcse, for example, that an experimenter was testing the effects of several
insecticides on aphids and measuring the effectiveness by counting the number of
aphids per leaf after application. If the means of two rather ineffective treatments
were 305 and 315, he would naturally hesitate to attach much importance to this
difference. On the otler hand, if the means of two other treabnents were 5 and
15, he might be inclined to feel that this difference was appreciable, impressed
with the fact that one of these was three times as large as the otler. Under the
assumption that the variances are homogeneous and unrelated to the means, he
would have to attach as much imlnrtance to the difference between 305 and 315
as that between 5 and 15, for the achral differences are t}re same in both cases. He
probably would have an uneasy feeling that something was wrong. An examination
of the various samples would almost certainly reveal that, in general, the samples
with high means would also have large variances and those with low means would
have small variances. Thus the assumption that the means and variances are not
correlated would be false, and an ordinary analysis of variance of the raw data
would not be valid.

Irt us take a more extreme example. Some experimenters want to test the
effect of a new vitamin on the weights of animals. Tlrey wish to include a wide
range of animals in their tests, so they choose mice, chickers, and sheep. Common
sense would tell us that a difference of a half pound in the mean weights of two
lots of sheep would be considered negligible and easily attributed to chance. A
difference of a half pound in the mean weights of two lots of chickens would be
considered very large, but not beyond the realm of possibility. A difference of a
half pound in the mean weights of two lots of mice would be looked upon as

utterly fantastic. Admittedly this is an extreme and almost absurd example, but it
serves to emphasize the point that the assumption of the independence of
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variances and means should not be accepted blindly. We should examine the data

and, if necessary, test the vdidity of the assumption before we proceed with an

analysis of variance.
Other types of data that often show a relation between variances and means

are data based on counts and data consisting of proportions or percentages. Now,
suppose that we find that there is a relation between variances and means. Does

this mean we are forced to abandon the analysis of variance as a method for
analyzing the data? Fortunately, it is often not the case. We can frequently
transform the data in zuch a way that the assumption of independence between
variances and means will be valid. Then we can proceed with an analysis of
variance on the transformed data.

Additivity

For each experimental design there is a mathematical model calld a lineu
odditirse moitel. For a completely randomized design, this model is Y,:Y+q+e,,
which says that the value of any e4perimental unit is made up of the general'mean
plus the treatment effect plus an error term. The correqponding model for a
randomized complete block design is Y,-:y"uq*\*e,,, which sap that any
experimental unit is made up of the general mean plus a treatment effect pltrs a
block effect plus an error term. The important thing to note in these models is that
tlle terms arc added, hence the term additivity.

The model for a randomized complete block, for example, implies that a
treatment effect is the same for all blocks and that the block effect is the same for
all treatments. In other words, if a treatment is found to increase the yield a
certain average amount above the general mean, it is assumed that it has this same
effect in the high-yielding blocls as in the low-yiel&ng blocls.

One can conceive of many situations where this assumption would rct be
correct. For example, in an experiment to test the effect of N on yield, some
blocks might yield less than otlers because of a low natural nitrogen level in the
soil. We might expect the plots in zuch blocks to benefit more from the addition of
nitrogen than plots in blocks where the natural supply of nitrogen was already
adequate. On the other hand, suppose that the low yield was due to an inadequate
moisture supply. We might then expect the addition of nitrogen to do very little
good in these low-felding blocks but produce an appreciable increase in leld in
blocks in which there was sufficient water. Another situaUon might be one in
which the effect of a treatment is to increase the leld by a certain percentage or
proportion. This is referred to as a ruiltiplicatioe treatrmt effecf.

ln any of the above cases, the assumption of additivity would be incorrect;
this fact must be recognized in analyzing the data. In the case of multiplicative
treatment effects, there are again transformations that will change the data to fit
the additive model.
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TABLE I2.I.
Weights, in pounds, of vitamin-treated and control animals, in a randomized
complete block experiment

Block

Treatrnent I II III Iv Total Mean

Mice-control
Mice-vitamin

Subtotals
Chickens-control
Chickens-vitamin

Subtotals
Sheep-control
Sheep-vitamin

Subtot l"
Grand totals

0.18
0.32
0.50
2.O

2.5
4.5

108.0
t27.O
235.0
2,1/J..0

0.30
0.40
0.70
3.0
3.3
6.3

r40.0
153.0
2s!.0
3{n.0

0.28
o.a
0.70
1.8

2.5
4.3

r35.0
148.0
283.0
288.0

o.u
0.46
0.90
2.8
3.3
6.I

r65.0
r76.0
341.0
348.0

0.3
0.4
0.35
2.0
2.90
2.65

137.0
151.0
r4.o
49.0

r.2
1.6
2.8
9.6

11.6
21.2

548.0
604.0

1152.0
1r76.0

Analyzing the data by the methods used in Chapters 5 and 6 results in the
following analysis of variance:

Source of variation df SS MS F

Blocks
Treatments

Species

Vitamins
Species X Vitamins

Error

3
5
2
I
2

t5

984.00
r08,713.68
108,32r.16

t42.ll
?ffi.41

I,869.72

328.00
21,742.74
54,r60.58

t42.tl
t25.?.0
12,L.65

2.63
174.43**
4yl.5l**

l.14
r.00
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TESTS FOR VIOI.ATIONS OF THE ASSUMPTIONS

we are now ready to give some specific examples of data that fail to meet one or
more of the assumptions of the analysis of variance. We show how to test these
assumptions and tJre ways in which the data may be transformed so that they will
conform. Table 12.1 gives some hypothetical data that might be obtained from an
experiment such as that discussed earlier, dealing with the effects of a new vitamin
on mice, chickens, and sheep.



The higNy significant difference among qpecies does not srrprise us at dl. It
does seem very strange that we did not find a significant difference due to
vitamins, eqpecially since every animal in every replicate receiving the vitamin
showed a greater weight than the corresponding control animal. It also seems

strange that we find no evidence of interaction between vitamin effects and
species, since the apparent reryonse to vitamins is so different in the different
species. If we accept this analysis at its face value, we would have to conclude that
the experiment was virtually a total failure. All we seemed to learn was that mice,
chickens, and sheep differ in weight. Even here, if we partition the species effect
into two comparisons, one comparing sheep with chickens and mice; the other
comparing chickens with mice, we find we cannot even show a significant
difference between chickens and mice.

Irt us look at the data with the assumptions of the analysis of variance in
mind and see what can be done if some of the assumptions prove false. First, we
can look at the error terms to see whether they are randomly, independently, and
normally distributed. To do this we remove the general mean, the treatment
effects, and the block effects from each cell of the table as we did in Chapter 5.

This gives a table of error terms, Table 12.2.

TABLE I2.2.
Error components in vitamin experiment

Block

Treatment I II III N Total

Mice-control
Mice--vitamin
Chickens----control
Chickens-vitamin
Sheep-control
Sheep-vitamin

Totals

8.88
8.92
8.60
8.60

-20.00
- 15.00

0

- 1.00

- 1.00

-0.40
-0.60

2.(n
1.00
0

0.98
r.02
0.40
0.60

- 1.00

-2.00
0

- 8.86

-8.94
- 8.60

-8.60
19.00
r6.00

0

0
0
0
0
0
0

These error terms certainly do not appear to be randomly distributed. They
are apparently not independent, because in each block the error terms for the two
members of each species are closely related. Finally, their distribution looks as
tho"gh it deviates from normal considerably, since there are two modal classes,
one between 8.5 and 9.0 and the other between -8.5 and -9.0. The first
assumption of an analysis of variance did not stand up very well under close
scrutiny.
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TABLE I2.3.
Variances and their logs for groups in vitamin experiment

Treatment df q2 Coded q2 Logcoded q2

Mice-control
Mice-vitamin
Chickers-control
Chickens-vitamin
Sheep-control
Sheep-vitamin

Totals
Mean
Log of mean

11.5
3.5

w.7
2r3.3

546,0U).
495,m.
971,875.
161,979.

5.200

3
3
3
3
3
3

t8

0.0115
0.0035
0.3467
0.2I33

546.0
4%.3

1.06
0.54
2.il
2.33
5.74
5.63

17.u

Next, we examine the assumption of the homogeneity of variances. To do this,
we need to learn a test known as Bartbtt's Test for Honwgeneity of Variances.

First, we need to calculate the variance among the four replicates of each
treatment combination. For the mouse controls this will be

o.tgz +o.#-+o.tsz +-o.uz - (t.22 /q) :0.0r15
number of replicates - I

After each zuch variance is computed, they are entered in a table as shown in
Table 12.3.

The purpose of coding the variances is to avoid negative logarithms. We can
multiply t}re variances by any corstant we choose without dtering the test. It is

desirable to have all the coded values be I or greater, so we have coded by
multiplying each s,2 by 1000. It is easiest to use common logarithms; two digits in
the mantissa are usually sufficient. The mean of the coded variances is found by
dividing their total by the number of samples, and the log of this mean is entered.
We are now ready to calculate what is called the unadjusted chi-square.

The general formula for samples of unequal size is

x2 : 2.3026(l%s2 x xdf) - >(atx ugsi)

When the samples are all of the same size, as in our example, this reduces to

x2 : 2lfl2.6 dt(n log 52 - r bg sf )

: 2.3026(3) [ 6(5.209) - 17.84 ]

:92.66
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The factor 2.3U26 in these formulas is the factor for converting corlmon logs to
natural logs, n is the number of samples, and df is the degees of freedom per

sample.
The unadjusted chi-square must be adjusted by dividing by a correction

factor, C. When the sample sizes are unequal, the required formula is

c:l*,1,(>I--l-\v-rrs1n-t;\-ar >df/

With equal sample sizes, this formula reduces to

C:l*g+- 3n(df)

In our example,

C:l+ -J -:I.133(6)(3)

Then X2 adjusted : 262 unadjusted/ C : 92.ffi / 1.13 : 82.00.
We now refer to chi-square Table A.6 at 5 degrees of freedom (one less than

the number of samples) and find that 82 far exceeds the tabular value at the 0.17o

level of significance (20.51n. The evidence that the variances are heterogeneous is
therefore very convincing.

The next assumption to examine is that of independence between the means
and variances. A quick glance at the data is sufficient to convince us that this
assumption is certainly incorrect because the high means have very large variances
and the low means have very small variances.

An important question to answer, in order to decide which transformation to
use, is whether it is the variances or the standard deviations that are more nearly
proportional to the means. We construct a table of ratios as shown in Table I2.4.

TABLE I2.4.
Ratios of variances and standard deviations to means in vitamin experiment

Treatment Y s,- si \,/Y S,/1

M.C
M-V
C-C
C-V
S-C

S-V

0.3
0.4
2.4
2.9

137.0
15r.0

0.107
0.059
0.589
0.462

?3.367
20.624

0.04
0.01
0.14
0.07
3.98
2.82

0.36
0.15
o.%4

0.16
0.17
0.14

0.01147
0.00347
0.3467
0.2r33

il6.0
425.3
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We see that the ratio of variances to means increases markedly with the
means, while the ratio of standard deviaUons to means remains fairly constant. (In
otler words, the standard deviations are roughly proportional to the means.)
Incidentally, if the variances and means were unrelated, both of these ratios would
be expected to decrease as the means increase.

The final assumpUon to examine is that of additivity. Under this assumption
we would expect the block effects to be approximately the same for all treatments.
From Table I2.l we see that the average difference between block I and block 4
was 18 lb. However, the average differences between these two blocks in the case
of mice, chickens, and sheep were 0.2, 0.8, and 53.0 lb, respectively.

The formal test for additivity is called Tukey's tesf. This test is applicable to
any two-way classification such as a randomized complete block experiment in
which the data are classified by blocks and treatments.

We need a table such as Table 12.5, that contains the raw data from Table
12.1 with the block and treatment effects calculated in the margins.

Note that the sums of both block effects and treatrnent effects add to zero. To
carry out the additivity test we need to calculate

Q=>v,iG, -Y XYI-Y )
which says that we multiply each cell in the table by the correqponding treatment
and block effects and sum all the products.

In our example

Q : 0. 18( - 48.7) (- e.0) + . . . + 176.0( 102.0) (9.0) : e0,140.56

TABLE I2.5.
CalculaUon of block and treatment effects

Treatment I II ilI ry

Block Mean
Treatment

Effect

Y,.-Y..(?,.)

M-C
M-V
C-C
C-V
S-C
S-V

0.r8
0.32
2.00
2.fi

r08.0
t27.O

0.30
0.40
3.00
3.30

r40.0
I53.0

0.28
0.42
1.80
2.50

I35.0
r48.0

o.u
0.46
2.80
3.30

r65.0
I76.0

0.3
0.4
2.4
2.9

137.0
15L0

-48.7
-48.6
-46.6
-46.1

88.0
102.0

Mean 40.0

-9.0

50.0

1.0

48.0

- t.0
58.0

9.0

49.0

Y.r-Y
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The zum of squares for nonadditivity is then found as follows:

(f x total experimental units)
SSnonaddiU"ity:@

Applyrng this equation to our example gives

(w,t+o.fizxtu1)
SSnonadditirv: (fffii

:1822.94

This is a portion of the blockXtreatment or error sum of squares, which can be

partitioned as follows:

Source of Variation df SS MS F

Error (B x Tr)
Nonadditivity
Residual

I5 I869.72
t822.94

46.78
1822.9t

3.34
I il,.79

14

The F value observed far exceeds the required F value of 8.86 at the l7o level for I
and 14 degrees of freedom (from Table A.3), so tlere is strong evidence that the
assumption of additivity is incorrect.

We have now checked all the assumptions of the analysis of variance and
found that our data does not satisfy any of them. It is no wonder that the analysis
of variance gave disappointing results.

Perhaps t}re most sensible way of analyzing these data is to handle each
species separately. The analyses are as follows:

Species Source ofvariation df SS MS F

Mice

Chickens

Sheep

Blocks
Vitamins
Error
Blocks
Vitamins
Error
Blocks
Vitamins
Error

0.0400
0.0200
0.0048
t.&t
0.50
0.04

2834.0
392.0

I8.0

0.0r33
0.0200
0.00r6
0.il7
0.500
0.013

-w.7
392.0

6.0

8.3r
I2.50*

4I.00**
37.5r*

3
I
3
3
t
3
3
I
3

157.4**
66.3**
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These results are certainly much more saUsfactory than the original overall analysis
of variance. These analyses are valid, because within any one species the data
conform to the basic assumpuons quite well. The only shortcoming of these
analyses is that they tell us little about whether the different species react similarly
to the vitamins. This is perhaps not a very important quesuon, and in practice t}te
research worker would no doubt be content to stop at this point. However, we will
follow the other procedure of transforming the data to show the remarkable results
that can be achieved.

TIIE LOG TRANSFORMATION

We must now answer the question of how to transform the data. Whenever we
have data where the standard deviations (not the variances) of samples are roughly
proportional to the means, t}te most effective transformation is a log transforma-
tion. Another criterion for deciding on this transformation is the evidence of
multiplicative ratler than additive main effects. Both of these criteria are met in
the data we are dealing with, so we will try transforming the data to logs and see

what happens.

TABLE 12.6.
Data of vitamin experiment transformed to log 10X

Block

Species-Treatrnent I II m IV Total Mean

Mice<ontrol
Mice-vitamin

Subtotals

0.26
0.51

0.4t1

0.60
0.45 0.64

0.66
o.4575
0.5975

1.83

0.62 2.39

017 1.08 r.07 1.30 4.?2 0.5275

Chickens--control
Chickens-vitamin

Subtotals

1.30
1.40

r.%)
1.40

2.70 3.00 z.ffi 2.97 11.33 1.41625

5.49
5.U

t.45
t.52

1.4ti
t.52

t.3725
1.4600

Sheep----control
Shee5vitamin

Subtotals

3.03
3.r0

3.13
3.r7

3.22
3.25

12.53
12.70

3.1325
3.1750

r5
18

3.
3.

6.13 6.33 6.30 6.47 25.23 3.15375

Totals
Means

9.60
1.60

10.4I
1.735

r0.03
t.672

LO.74 n.78
1.7m r.69917
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Before we start, a few general remarks about applying this transformation.
Data with negative values cannot be transformed in this way. If there are zeros in
the data, we are faced with the problem that the log of zero is minus infinity. To
get around this, it is recommended that a 1 be added to each data point before
transforming. Data containing a large number of zeros would probably be handled
better by some other method. Logarithms to any base can be used, but common
logarithms (to the base 10) are generally the easiest. Before transforming, it is

legitimate to multiply all data pornts by a constant, since this has no effect on the
subsequent analyses. This is a good idea if any of the data points are less than l,
for in this way we can avoid negative logarithms.

In the data we are working with, there are no zeros, but the lowest value is
0.18, so we will multiply all the data by 10 before taking the logs. This gives us a
table of transformed values (Table 12.6).

The analysis of variance is:

Source of Variation df SS MS F

Blocks
Treatments

Vitamins
Species
SXV

Error

3
D

I
2
2

15

0.12075
28.60738
0.04860

28.il926
0.m052
0.04385

0.04025
5.72t48
0.04860

t4.27463
0.00476
0.00292

13.77*l
1959.41*r

16.62r*
4883.00**

1.63

This is certainly a more satisfying result tlan the analysis of the original data as far
as positive renrlts are concerned. We still do not get a significant interacUon
between species and vitamins, but we are now asking the question in a different
way. Before, we were asking, "Does the amount of change in weight due to the
addition of vitamins vary from species to qpecies?" Now we are asking, "Does the
proportion or pucent change in weight due to vitamins vary from species to
species?"

Did we get more positive results this time because we were simply "play,ng
with figures" until we got a result we liked? Or was the transformation we used
justified and is the new analysis valid? To be certain, we will check the assump
Uons of the analysis of variance with the new data.

As before, we construct a table of error terms by subtracting the mean, tlte
treatment effects, and the block effects from each cell of the table (Table 12.7).

These error terms seem to be more randomly distributed and more nearly
normally distributed than those of the original data.
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TABLE I2.7.
Error components of transformed data

Block

Treatment I l III IV

M-C
M-V
C-C
c-v
S-C
$.v

- 0.I0
0.01
0.03
0.u
0.00
0.02

- 0.0r

-0.03
0.07
0.02

-0.02
-0.03

0.02
0.05

-0.08
-0.03

0.02
0.02

0.00

-0.03
-0.0I
-0.03

0.00

-0.02

To test the homogeneity of variance, we again carry out Bartlett's test from
the data in Table 12.8

x2 : 2.3o26U 18 x 0.9614) - (3 x 5. ll) f : q.*s

C: I.l3 as before

X2 adjusted: ffi:n.*

TABLE I2.8.
Bartlett's test applied to transformed data of vitamin experiment

Treatment Mean s,2 Coded q2 I-og coded sf

M-C
M.V
C-C
C-V
S-C
S-V

0.4575
0.5975
r.3725
1.4600
3.1325
3.1750

0.0243
0.0u0
0.0118
0.0048
0.0062
0.0038

1.39
0.60
I.07
0.68
0.79
0.58

24.3
4.0

11.8
4.8
6.2
3.8

fstnls
Mean
[.og of mean

il.9
9.15
0.9614

5.r1
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which, according to the 2g2 Table A.6, would be exceeded by chance more than

1Wo of the timelA ghnce at Table 12.8 shows that there is no indication of any

relation between the means and the variances.

To carry out the test for additivity we calculate the block and treatrnent

effects in table 12.9 for the transformed data, jrst as we did in Table I2.5 with
the raw data.

As before,

Q:>Yr(Y,.-v XY,-Y )

: 0.26( - r.%)(- 0.10) + . .. +3.25(1.48x0.0e)

: -0.023768

qP x total experimental units
SSnonadditi"ity:ffi

-o.rt237*x24:-
28.60738 x 0.12075

=0.00392

TABLE I2.9.
Calculation of block and treatment effects for the transformed data

Block
Treatment

Effect

Treatment I II ru

Mean

tv,.l Yr.-Y..IV

M-C
M-V
C-C
C-V
S-C
S-V

0.48
0.60
r.48
t.52
3.15
3.18

0.45
0.62
1.26
1.40
3.13
3.17

0.64
0.66
1.45
r.52
3.22
3.25

0.46
0.60
1.37
t.46
3.13
3.18

- l.?/4

- r.r0
-0.33
-0.tu4

1.43

1.4ti

0.26
0.5r
1.30
1.40
3.03
3.r0

f$ The l,ogTransfonnation

1.70Mean
_Y

1.60

-0.10

t.67

-0.03

1.79

0.09Y.j

r.74

0.04



The sum of squares for error can now be partitioned as follows:

Source of Variation df SS MS F

Error
Nonadditivity
Residual

t5 0.M385
0.00392
0.03993

0.00392
0.00285

1.37I
t4

The F value does not even approach the l07o level of sigrrificance for I and 14

degrees of freedom (required F.rs:3.10).
We now feel confident that the new analysis is valid, since the transformed

data satisfied al.l the assumptions of the analysis of variance. With the original
data, none of the assumptions were true.

THE SQUARE ROOT TRANSFORMATION

Whenever we are dealing wit}t counts of rare events, the data tend to follow a
special distribution called a Poisson distribution, By a rare event, we mean one
that has a very low probability of occurring in any in&vidual. For example,
suppose that in a lot of lettuce seed, 0.I% of the seed was carrying mosaic disease

virus. The probability that any individual seed contains mosaic is then only
t/1000, so as far as a single seed is concerned, this is a rare event. If we take I00
samples of 1000 seeds each from such a lo! we will get approximately these

results:

37 samples will contain 0 infected seeds

37
I8
6
2

It is obvious that this looks very little like a normal distribution. This Poisson

distribution has a very interesting characteristic-t}e variance is equal to the

mean. In actual practice, the variance is generally somewhat larger than tfie mean

because other fictors, in addition to sampling variation, are affecting t}le oc-

currence of the events being counted. At any rate, tlte variance tends to be

proportional to the mean, thus violating the assumption that the variances and

means are not correlated.
Another example of data of this kind is found in insect cor,rnts, such as those

made from a staniard number of sweeps with a net. Here it is rather hard to

define what we mean by an individual observation. We might consider it an

individual site on which an insect could be found. In sweeping with a net, we are
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TABLE P.TO.
Number of lygus per 50 sweeps

Block

Treatment I II III IV Total Mean
q

si'

A
B
C
D
E
F
G
H
I
J
K

nI
6
6
0
I
5
8
.)

4
6
8

t7
10

I
3
4

43
23
17

32
L4
27

I
1

0
0
2

15

6
I
D

2
6

4
2
I
2
t
I
3
D

l3
5
2

5
I
2
I
0

l4
6
0

t0
1l
II

4.?5
2.fi
2.?.5

0.75
1.00

10.75
5.75
4.25
8.00
6.00
6.75

6.25
5.67
6.92
0.92
0.67

21.58
4.2.5

t4.?,5
18.00
I4.00
t4.25

sampling thousands of such sites and finding only a few insects. Thus the
probability of finding an insect at a particular spot selected at random at one
particular time is indeed a rare event.

Data of this kind can be made more nearly normal and at the same time the
variances can be made relaUvely of the means by transforming them

to square roots. Actually, it is better to use Y+; , especially if there are counts
under 10.

The data in Table 12.10 show the number of lygus bugs obtained in 50
sweeps in each plot of an experiment testing 10 insecticides and a check treat-
ment, replicated four times in a randomized complete block design.

The analysis of variance is:

Source of Variation df SS MS F

Blocks
Treatments
Error

3
10

30

12.25
380.00
308.00

4.08
38.00
t0.27

0.40
3.70**
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TABI.E 12.II.
Transformed lygus data

Blocks

Treatment I II m IV Total Mean q2

A
B
C
D
E
F
G
H
I
J
K

2.74
z.b5
Z.*)
0.71
t.22
2.35
2.92
r.87
2.t2
2.55
2.92

2.35
1.22
r.58
r.22
0.71
3.81
2.55
0.7I
3,2A
3.39
3.39

2.t2
1.58
L.22
r.58
r.22
3.08
1.87
2.35
3.67
2.35
1.58

1,22
L.22

0.7r
0.71
r.58
3.%
2.il)
3.08
2.35
1.58
2.55

8.43
6.57
6.06
4.22
4.73

13.18
9.89
8.0r

r1.38
9.87

t0.M

2.Lt
1.65
1.52
r.06
1.18
3.29
2.45
2.00
2.U
2.47
2.61

0.41
0.39
0.60
0.18
0.13
0.il
0.19
0.99
0.53
0.55
0.59

The analysis of variance is:

Source of Variation df SS MS F

Blocks
Treatments
Error

3
10

30

0.532
19.993
14.841

0.L77
1.999
0.495

0.36
4.M**

The two analyses are not very different, since they both show a highly significant
treatment effect. The F value is about l07o higher after transformation. Some
important differences will occur in mean separation, as shown in Table 12.12.

You will note that in the transformed data, G and D, G and E, ] and D, and J
and E were declared significantly different, whereas they were not in the raw
data.

The weighted meons shown in Table 12.12 are obtained by "detransforming"
the means of the transformed data back to the original units. This is done by
squaring the transformed means and subtracting one-half. The means obtained in
this way are smaller than those obtained directly from tJre raw data because more
weight is given to the smaller variates. This is as it should be, since in a Poisson
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TABLE I2.T2.
Duncans' multiple-range test on raw and transformed data, (5% level)

Mean Separation

of:

Treatments and Means

DECBHAGJKIF

0.7s 1.00 2.25 z.fr 4.25 4.25 5.75 6.m 6.75 8.00 10'75

Raw data

weiglrted means 0.62 0.89 l.8l 2.22 3.50 3.95 5.50 5.60 6.31 7.57 10.32

Transformed
data

distribution the smaller variates are measured with less sampling error than the
larger ones.

Actually in reporting the remlts of such an experiment, it is better to use

these weiglrted means, making it clear in the report how they were obtained.
The gene:al effect of the square root transformation is to increase the

precision with which we can measure the differences between small means. This is
highly desirable in insect control work, since we are generally not as interested in
differences between two relatively ineffective treatrnents as we are in comparing
treatments that give good control.

A glance at tle variances in the two tables wiii show that before transforma-
Uon there was a strong positive relation between means and variances. The
coefficient of linear correlation between them was .89, significant at the 0.17o

level. After transformation, the correlation was only .37, not even significant at the
l07o level. Thus, one of the assumptions of the analysis of variance was violated in
the original data, and this was remedied by the transformation.

As to the other assumptions in the analysis of variance, there do not appear to
b" *y serious violations. An examination of the error components shows no
striking deviation from a random and normal distribution. Carrying out Bartlett's
test for homogeneity of variance on t}re raw data gives an adjusted chi-square
value of 12.56, which hx a ?5To probability of being exceeded by chance alone.
After transformation, this chi-square value was reduced to 4.81, which has a 907o

probability of being exceeded by chance. Thus, transformation reduced the
amount of heterogeneity over that in the raw data, but in neither case was it
significant.
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In carrying out Tukey's test for additivity, even with tlle raw data, the F
value for nonadditivity was less than one.

In general, we can say that data requiring the sqtrare root transformation do
not violate the assumptions of the analysis of variance nearly as drastically as data
requiring a log transformauon. consequently, the changes in the analysis brought
about by the transformation are not nearly so spectacular.

TABLE I2.I3.
Number of lettuce seeds germinating in samples of 50

Replicates

Treatment I 2 3 Mean s,2 Log(lOxsi2)

I
0
I
0
0
3
I

l5
l8
13

r8
29
29
27
40
45
40
43
4t]
48
48
48
I
50

0
I
0
2
0
2

10
L2

18

16

r3
2l
29
28
4l
4t
45
4l
42
42
46
49
49
49

0
0
0
0
2
0
I

II
r3
22
24
23
24
37
a
39
4T

47
45
46
49
48
50
49

I
2
3
4
5
6
7
8
I

l0
u
t2
l3
14

l5
I6
t7
t8
l9
20
2l
22
23
24

0.33
0.33
0.33
I.33
I.33
2.33
3.00
4.33
8.33

2r.m
30.33
17.33
8.33

30.33
r.00
9.33
7.00
9.33
9.00
9.33
2.33
0.33
1.00
0.33

0.519
0.519
0.519
1.t24
t.L24
r.367
t.477
1.637
1.921
2.322
2.482
2.239
1.921

2.482
1.000
r.970
r.845
1.970
1.gil
I.970
1.367
0.519
r.000
0.5r9

Totals 178.00

10x Mean 74.L67
Log(lOxmean) L.870P,

35.767
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0.33
0.33
0.33
0.67
0.67
r.67
8.00

t2.67
16.33
17.00
r8.33
24.33
27.33
30.67
4L00
4t.87
a.m
43.67
45.00
45.33
47.67
48.33
49.m
49.33



THE ARCSINE OR ANGUI-AR TRANSFORMATION

Another kind of data that may require transformation is that based on counts
expressed as percentages or proportions of the total sample. Such data generally

have what is called a binomial distribution rather than a normal distribution. One
of the characteristics of this distribution is that the variances are related to the
means but in quite a different way than the tnles of data we have been

considering. Up to now the cases we have discussed are those in which large

means tend to have large variances and vice versa. In binomial data, variances
tend to be small at the two ends of the range of values (close to zero and 100%),

but larger in the middle (around 507o). This is actually a rather natural idea even
to nonmathematicians. We are inclined to attach more importance to a difference
between zero and 6To, or between 94Vo ard 1(X)7o, than to a difference between
47Vo and 537o, even though these are all of the same magnitude.

The appropriate transformation for data of this kind is called the angular or
arcsine transformation. It is obtained by finding the angle whose sine is the square
root of the proportion (percentage/I00). Written in mathematical shorthand, this
is arcsine VY o. sine - r VY . Table A.8 can be used to find the transforms
directly from the percentages.

Data should be transformed if the range of percentages is greater then 40.
Otherwise, it is scarcely necessaq/. The data in Table 12.13 are from a completely
randomized experiment on lettuce seed with 24 treatments, each replicated three
times. Treatrnents are arranged in order of magnitude of their means. Note that
there is a strong tendency for the variances at the extremes to be smaller than
those in the middle of the range. This is typical of binomial data. The logs of the
variances (coded by multiplying by 10) are listed so that a Bardett's test can be
carried out.

Unadjnsted X2 :2.3fl26[ bg mean x ) df) - (df per sample X > log coded sf) ]
: 2.3026[ (r.8702 x 48) - (2 x 3s.767) ]
:41.99

n_r, I lNumberoftreatments I \v-lr 
3 (."*pl"r-t) -\--Epettr*hrr""t ->df-/

:,*#r, (+-*):r.1736

This is just significant at the 57o level (required value 35.172), so we have fairly
good evidence that the variances are not homogeneous.

Adjusted ,':*:35.78
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Analyzing the raw data gives these resrlts:

Source of Variation df SS MS F

Treatments
Error

L48.12**

The transformed data are shown in Table 12.14. Since the data in Table 12.13
were based on samples of 50, each variate had to be multiptied by 2 to convert it
to a percentage. The pattern of variances observable in the raw data is no longer
apparent in the transformed data.

Carrying out Bardett's test:

Unadjusted X2 : 2.30%i(l.4f f x 48) - (31.39 x 2)

23
48

2,52ffi.0
356.0

r098.52
7.42

:11.3933

C:1.1736 as before.

vo
Adjusted X': t:9.708

Referring to Table A.6, opposite 23 df we see that a value this large would be
exceeded by chance more than 9970 of the time.

An analysis of variance of the transformed data does not seem to lead us to a
different conclusion than the analysis of the raw data:

Source of Variation df SS MS F

Treatments
Error

100.29**

The important difference is not in the overall analysis, but in mean separation. A
Duncan's multiple range test shows that:

l. Five differences were declared significant before transformation but not
after: 7-8,8-ll, t0-12, 11-12, and 12-14.

2. Five differences were declared sigrrificant after transformation but not
before: 18 - 22, 19 - 23, 19 - ?tl, 20 - ?3, md 2O - 2t.
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I

59,487.8
L,237.9

2,586.{}
25.79



TABLE I2.I4.
The arcsine transformation of data in Table 12.13

Replicates

Treatment 1 2 3 Mean q2 Lgt,u

I
2
3
4
5
6
7
8
I

10

II
t2
13

t4
r5
t6
17

18

t9
20
2l
22
?3
24

0.0
0.0
0.0
0.0

11.5
0.0

22.0
28.0
30.7
4t.6
43.9
42.7
43.9
59.3
ffi.4
62.0
64.9
75.8
71.6
73.6
81.9
78.5
90.0
81.9

0.0
8.1
0.0

11.5
0.0

r1.5
26.6
29.3
36.9
u.4
30.7
40.4
49.6
8.4
64.9
64.9
71.6
M,9
ffi.4
ffi.4
73.6
81.9
8I.9
8r.9

8.1
0.0
8.r
0.0
0.0

L4.2
22.0
33.2
36.9
30.7
36.9
49.6
49.6
47.3
63.4
7r.6
63.4
68.0
78.5
78.5
78.5
78.5
78.5
m.0

2.70
2.70
2.70
3.83
3.83
8.57

23.53
30.17
34.83
35.57
37.L7
44.23
47.70
5r.67
&.m
ffi.17
66.63
69.57
72.r7
72.83
78.00
79.63
83.47
84.60

2t.870
2r.870
21.870
44.083
44.083

56.863
7.053

7.323
r2.813
30.7?3
43.613
22.923
10.830
44.(m
2.?,il

24.tut:3

r9.063
31.543
36.843
37.M3
17.410
3.853

34.9m
2r.870

1.34
t.u
L.U
t.u
1.64
t.75
0.85
0.86
l.l I
1.49
1.64
1.36
r.03
t.M
0.35
1.38
t.28
1.50
r.57
r.57
t.L4
0.59
t.il
t.u

Totals
Mean

Iog mean

6r8.94r
25.789
l.4u

31.39

which set of conclusions should we accept? The answer is simple: we should
a9c9pt the conclusions based on the more valid analysis, in this case, the analysis
of the transformed data.

Remember, we do not transform data to give us results more to our liking. we
transform data so that the analysis will be oalid and the conclusions coffect.

Another point to bear in mind when carrying out a transformaUon is that all
tests of significance and mean separation should be carried out on the transformed
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data rather than on the raw data. Furtherrnore, it is better to calculate means of
the transformed data before detransforming back to original units. In this way we
obtain correctly weighted means.

PRETRANSFOBMED SCALES

It often happens that we would like to express data in percentages but find it very
difficult and time-consuming to make precise measurements. Consider, for exam-
ple, the problem of evaluaung the amount of scab on potato tubers. A convenient
measure would be the percentage of tuber area covered with scab, but it is very
difficult to measure this accurately. Another example would be the percentage of
leaf area covered with disease lesions. Still another would be the percentage of
weed control obtained by the application of various herbicides. In all of these
cases we could, with a geat deal of effort, measure these percentages fairly
precisely, but the work involved would be so time-consuming that the number of
plots we could measure would be severely limited. In order to make more
meaflrements in a given amotrnt of time, it is a common practice to make rough
visual estimates of the percentages rather than-precise measurements.

A scale is usually set up, such as the scale of zero to 10 commonly used in
weed control work where zero represents no control and 10 represents 100%
control. If the steps in this scale represent equal increments of percentages the
data should be transformed by the angular transformation just as it should be for
precise percentage measurements.

Why not pretransform our scale? In other words, we could select percentage
steps such that, when they are transformed by the angular transformation, there
will result a series of equally incremented steps that can be reduced to integers.

Suppose, for example, we wished to employ a scale from zero to five. The
equal increments in terms of angles would be 90" divided by five, or l8'. We
therefore need to find the percentages which, when transformed, give angles of 0,
18,36, il,72, and 90o.

Referring to Table A.8, the closest entry in the table to 18 is 18.4, which is

the angular transformation of 107o. The next step in the scale seems to pose a
problem. Iooking for 36o in the table, we see that there is an entry of 35.7 for the
transform of MYo, and an entry of 36.3 for the transform of 35Vo. We might be
tempted to specify this step in the scale as M.SVo, but this would give us a false

sense of precision. After all, we are only planning to make rough visual estimates
of percentages. In view of this, we €ue not justified in specrfying fractional
percentages in our scale except in the range below 5% or above 957o.

Table 12.15 gives the appropriate percentages for all of the commonly used

scales.

These scales take advantage of the fact that it is generally easier to detect
small differences in the vicinity of zero and lfiVo than around 507o. Actually, some

scales have been used in the past which were deliberately or subconsciously
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TABLE T2.I5.
Pretransformed rating scales. Scale from zero to:

Rating 4 5 6 8 I0 15 18 20 tul

0
0.75
3
7

t2
l8
25
33
a
50
58
67
75
82
88
93
97
99.25

100

0
I
4

10

t7
25
.,D

45
nl
65
75
83
90
96
99

I00

0
2.5

r0
2t
35
50
65
79
90
97.5

I00

0
4

r5
30
50
70
85
96

r00

000
15107
50 35 25
85 65 50
100 90 75

100 93
100

0
I
2
3
4
5
6
I

8
I

l0
1l
t2
l3
14

I5
t6
r7
18

t9
20
2l
22
?3
24

0
0.7
2.5
D

IO
15

20
27
35
a
50
58
65
73
80
85
90
95
97.5
99.3

100

0
0.5
2
4
7

r0
l5
?.0

25
3t
37
43

50
57
63
69
75
80
85
90
93
96
98
99.5

1m

designed to conform to these percentage classes. In potatoes, a scale from zero to
10 has been used, which is based on photographic standards that roughly represent
the percentages shown in Table 12.15. In apples, a starch raUng has been
employed that corresponds closely to the zero to 8 scale. In weed work, where a
scale of zero to 10 is used, there is a tendency to use the rating of 1, for a small
trace of control rather tlan 1070, and the rating of 9, for nearly complete control.

To determine which scale to use, we must decide how many steps we can
distinguish with reasonable confidence. A scale with too many steps is unneces-
sarily complicated and implies greater accuracy than is justified. If we use a scale
with too few steps, there is a tendency to record fracUonal ratings.
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In analyzing data based on pretransformed rating scales, the data should not
be transformed. Furthermore, means should be calculated from the ratings before
transforming bact to percentages. To make the back transformauon we-multiply

$e mgan rating by the angular increment and find the correqponding percentage
by reference to Table A.8. For example, if a treatment has a mear, raEng of 1.4 in
a scale of zero to five, the angular increment is 90"/5:18", and 18" x 1.4:25.2o.
Referring to Table A.8, we see that 25.I" corresponds to 187o, and this would be
the appropriate weighted mean to report. Reporting fractional percentages would
hardly be justified except at extremely higlr or low values.

A word should be said about the ratings of check plots. It makes a difference
whether these are included in the experiment as a zero level of some factor and
are subject to the same variation as all other treatment levels or whether they are
included as reference plots against which to compare the other plots. In the latter
case, they are often arbitrarily given a rating of zero, and the other plots in a block
are compiued to them. If this is the case, data from the check plots should rwt be
included in an analysis of variance. The check plots, arbitrarily assigled values of
zero, have no variance. Their variance tlerefore differs from that of other
treatments, so that tJre assumption of homogeneity of variance is automatically
violated.

SUMMARY

I. The main assumptions basic to an analysis of variance are: random and
normal dishibution of error terms, homogeneity of variances, indepen-
dence of variances arld means, and additivity of main effects.

2. When tlese assumpUons are seriously in error, an analysis of variance is

not valid.

3. Transformations can often be made that will correct the failure of the
data to meet the assumptions.

4. When standard dersiations are linearly related to means, and main effects
appear to be multiptcative, a log transformation will usually correct both
situations.

5. Data based on counts of rare events, where oadarrces are related to
means, should be subjected to the square root transformation.

6. Data based on proportions or percentages should be given the arcsine or
angular transformation.
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7. Rating scales can be pretransformed by basing them on a variable scale of
percentages.

8. When a transformation is used, all tests of significance and separation of
means should be carried out with the transformed data.

9. If we wish to transform back to the original units, this should be done
only after the means have been calculated from the transformed data.
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t3
LINEAR

CORREI-ATION
AND

RECRESSION

THE IDEA

The terms correlntion and regressi.on may sound a bit formidable, but the basic
ideas encompassed by the terms are so simple that we all use them in our everyday
conversations. Consider, for example, the following familiar sayings:

"The bigger they are, the harder they fall."
"The more, the merrier."
"Easy come, easy go."

"The better the day, the better the deed."
"As the twig is bent, so is the tree inclined."

All these sayrngs have several ideas in common. Each implies two variable
quantities, the magnitude of one depending on the magnitude of the other.
Statisticians refer to these as the indepmdent and dependent oariabbs. Further-
more, in these particular say-rngs, there is the idea that as one variable increases, so

does the other. In statistics this is called direct or positioe conelntion.
Consider another group of sayings:

"Much haste, little sped."
"Small pitchers have big ears."

"The best gifts come in small packages."

Here we have the same general idea of two variables, one dependent on the other,
but tlrere is a slight twist in the relationships. An increase in one variable is

accompanied by a decreose in the other. This is called an iruvrse or negathse
correlation.

The idea of correlation is not confined to these simple clich6s. Think of the
questions that we encounter, time after time in agricultural work, that deal with
the relations between two variables. How is the amount of applied fertilizer
related to the yield of crop? What relationship is there between amount of feed
conzumed and weig[rt gain in livestock? How is the price of a commodity affected
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by the supply? How is dosage of insecticide related to percentage of control, or to
t}re amount of residue? What is the correlation between size of farm and income?
The list of such questions could be extended indefinitely, but it should be clear by
now that everyone is concerned with the subject of correlation, whether it is called
by that name or not.

Another example of corelation that we encounter nearly every day is the
common graph. Nearly every gaph is essenUally a pictue of the correlation
between two variables. The scale dong the bottom, or abscissq is usually the
range of values of the independent variable. The values on the vertical scale, or
ordinate, are those of the dependent variable. The graphing of data is often a very
useful starting point in conducting a correlation analysis.

Now that we have looked at some common examples of correlation, we
should be able to graqp an abstract definition of the term: The tendency of two
variables to be related in a definite manner. Achrally, the idea can be extended to
more than two variables, such as in the law of supply and demand, where there
are three variables involved: price, supply, and demand. To keep the discussion as

simple as possible, we will limit it for the time being to correlations between two
variables.

It is customary to consider one of the variables dependent on the other. The
choice of which variable to call dependent and which one to call independdnt is
usually obvious. For example, in studying the relation of yield to fertilizer, it would
be logical to consider yield as dependent on fertilizer. With price and supply, we
generally think of price as dependent on supply. On the other hand, there are
situations in which supply is dependent on price. Often there is a time lapse
between the measurement of one variable and the corresponding measurement of
the ot}er. In such cases, the first measured variable is called the independent one.
It is sometimes useful to study t}te correlation between pairs of measurements on
the same variable. For example, a study of the correlation between the prices of a
commodity in successive years with t}re correqponding prices in the previous year
may reveal a cyclic trend in the price pattern.

There are situations in which we really do not care which variable is

designated as the dependent variable. We may simply want to describe the joint
distribution of two variables where each one is distributed normally. Such a

distribution is called a bioariate nomwl distribution. To describe this distribution
we need an estimate of p (rho), which is one of the population pararneters. The
coefficient of correlation r, is the best estimate of p. Studying the correlation
between the length of forearm and height would be an example of the situation
where it would make no difference which variable was called dependent.

MEASURING CORREI.ATION

So far, we have talked about correlation as the general idea of two variables

related in some definite manner. There has not been much mathematics or
statistics involved. A simple observation that two variables seem to be related does
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not tell us much. We need answers to two important questions: how closely are

the two variables related and is the relation real or could it have been an accident
due to chance? To answer the first quesUon we need a definite measure of the
closeness of the relation between two variables. The measure is called the
coefficimt of corelation, designated by the symbol r. After defining a few more

terms, we will be ready to show how this value is calculated and interpreted. The
answer to the second question may be obtained by referring to the appropriate
probability tables.

REGRESSION

The term regression has not been used in this discussion since t}te opening
sentence. What does it mean? The dictionary is not of much help, for this is one of
those unfortunate terms (Iike the term "error") that has undergone an evolution, so

that its present meaning bears little resemblance to its original meaning. Briefly,
regression is rhe onwtmt of bhange in one variable associated with a unit clwnge in
the other variable. This definition may be open to criticism on the gounds that it
is not sufficiently precise or general enough from a mathematical 1rcint of view,
but for our purposes it should serve to point up the main distinction between
correlation and regression. Note that correlation refers to the fact that two
variables are related and to the cbseness of this relationship. Regression, on the
other hand, refers to the nahtre of the relatiorship.

Let us go back to some familiar sayings and see how the concept of regression
crops up in our everyday thinking:

"A penny saved is a penny earned."
"A btud in the hand is worth two in the bush."
"A stitch in time saves nine."
"One picture is worth a thousand words."

Notice that all these sayings imply the correlation of two variables, but they go
frrrther and tell us in numerical terms lwt: the two variables are related. Taking
these safngs literally, we can set up a table such as Table I3.1.

We have followed the customary convention of calling the independent
variable X and the dependent variable Y.

Column three of the table is headed regression eqtntion. These are all
equations of straight lines. The general equation for a straight line is Y:atbX.
The symbol o is called the intercept, since, when X has the value of zero,Y:a;
hence the line crosses the Y-axis a units from the origin. when a is zero, the line
passes through the origin, for when X equals zero, Y is also equal to zero. The
symbol b is called the slope since it determines the steepness of the line. It is easy
to see that b is the amont of change in Y, associated with a unit change in X. Now
this is exactly the way we defined regression. Therefore, it is logical to call b the
re gr e s sion co eff icient.
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TABLE I3.I.
Sayings in mathematical terms

Regression

Independent Variable (X) Dependent Variable (Y) Equation

Regession

Coefficient

Pennies saved
Hand birds
Stitches in time
Pictures

Pennies earned
Bush btds
Stitches saved
Words

Y:X
Y:2X
Y:9X
Y:1000X

I
0

I
1000

CORREI.ATION VERSUS REGRESSION

For any given problem, which type of analysis should we employ? Some statisti
cians insist on drawing a sharp distinction between the two types of analysis. The
distinction is based on whether the data conform to model l, in which the X values
are fixed, or to nndel 11, in which the values of X are random or subject to error.

Consider an experiment in which we deliberately apply several levels of some
treatment, replicating each level several times. In this case we are primarily
interested in t}re amount of change in Y associated with changes in the treatment
level (X). This is regression. On the other hand, the coefficient of correlation (r), as

an estimate of a population parameter (p), has no meaning. We are not dealing
with a population that possesSes such a parameter. However, t}te square of this
coefficient (f), lcrown as the coefficient of determination, has real meaning in such

a problem. It represents the proportion-of the total treatment sum of squares

accounted for by regression.

Consider cases in which we are dealing with a biaariate rwmwl distribution
and neither variable can be designated as dependent on the other. Such cases

definitely conform to model II, and we €ue primarily interested in the degree of
association between the two variables, measured by the coefficient of correlation.
A regression equation for estimating the value of one variable from the other is of
little interest. Still we can calculate two such equations according to which
variable we call independent. In reality, the coefficient of correlation is the
geometric mean of the two regression coefficients so obtained.

From the above two cases we can see that the type of data will determine
whether it is correlation or regression that is of primary interest, but we cannot

completely separate the two types of analysis.

Between these two ratler clear-cut cases there are many in which there is no

question as to which variable to corsider dependent, but there is some question as

to whether the independent variable should be considered randnn or fixed. Even
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in experiments in which the treatments consist of specific amounts of some

material, we cannot claim that each plot receives precisely the amount specified or

that every replicate receives exactly the same amount. Nevertheless, these

measurement errors are very small when compared with the sampling error in a
random sample from a population with widely varying rates. Therefore the X
values in such an experiment are considered fixed.

The situation is less clear when we are dealing, not with a planned experi-

ment, but with pairs of measurements made on a series of individual units selected

from a population. If the selection of individual units is made completely at
random, then there is no question but that we are dealing with a model II
regression problem where the X's are random. If, on the other hand, we select the
individual units deliberately to provide us with a series of X values over a given

range, then it is generally conceded that we can consider the X's as fixed.
We can see that the distinction between model I and model II regression

problems is not a very shalp one. In the problems we shall consider, and in fact in
most agriculhral research, we are primarily interested in reasonably gd fitting
regression equations to describe tlle relation between variables. In addition, we are
interested in determining how closely the regession equation fits the observed
data, and for this purpose we calculate the coefficient of determination, or the
square of the coefficient of correlation.

To illustrate the general methods of linear correlation and regression, we first
use an example of a series of individual pairs of observaUons.

CALCULATING LINEAR CORREI.ATION

A familiar example of correlation is the relation of supply to price. Table 13.2
shows the supplies and prices of hogs from 1950 to 1959.

Is there a real relation between supply and price during this period? One of
the fust things we notice is that the highest price was accompanied by the lowest
production and vice versa. This is encouraging evidence of the negative correlation
we might expect. Next, let us get a better idea of the data by "drawing a picture."
This we do easily by placing dots on a Saph paper, letting the height above t}re
X-axis represent the price, and t}re distance to the right of the Y-axis represent the
number of hogs in the corresponding year (Fig. 13.l).

A gr"ph of this ty'pe is called a scattq diagram. If we thought that the
correlation between supply and price was very close, the rather haphazard scatter
of these points might prove disappointing. Yet there does seem to be a general
trend for the dots on the left to be higher than those on the right. The points seem
to fall within a fairly long ellipse (Fig. 13.1), which is typical of diagrams
representing a medium high correLtio.r. dh", types of scatter di"g"*, (Fig."13.2)
are guides to intelpreung such gaphs. The direction of the axis of the ellipse in
our example indicates a negauve correlation. Now we are ready to calculate just
how close the relation is. First, we use a shortcut approximation.
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TABI.E I3.2.
Hog supplies and prices

Year

Hogs Marketed
(millions)(X)

Price per cwt
(dollars)(Y)

1950
r951
r952
r953
1954
r955
r956
r957
r958
1959

73
7g
80
60
66
/D

78
74
74
u

18.0
20.0
r7.8
21.4
2r.6
15.0
L4.4
17.8
19.6
14.1

24

22

20

a
a

@

3o

o
.9
c

L
I
\

a

\
\
\
\

a

a \
\
\

14

\

7

12

65 70 75 80

Hogs marketed (millions)
85

Figure 13.1. Scatter diagam showing relation between price of hogs and number
of hogs marketed annuallY.
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Figure 13.2. Various types of scatter diagams with their associated coefficients of
correlation.

Quick Shortcut Method

This is also known as the rank difference method and Speonrwn's coefficient of
rank conelnfion. Neither of these names emphasizes the ease with which the
method can be worked, even without the aid of a calculator. Although the method
has serious drawbacks, it is very handy for obtaining a quick approximate estimate
of the coefficient of correlation. Table 13.3 shows how the calculations are carried
out with the hog price data.

First, rank the observations in each column from higlrest to lowest. In the case

of ties, give each member of the tie the average rank. For example, in both
columns above, ranlcs 6 and 7 are ties, so both are called 6.5.

Second, subtract the second from the first number in each row and enter the
difference in the column headed d. The total of this column should always be zero,
thus furnishing a check.

Thtud, square the figures in the d column and enter in the d2 column.
Actually, the second step "can be omitted, since it is easy to square the numbers in
one's head and write down the d2 column directly.r

tMost of the d's will be small integers. If th"y end in a 0.5, squaringcan be done mentally
by^using the following relation: (X+0.sF:X(X+l)+0.25. Thus,4.52 :4x5+0.25:%).25,
7.52:7x8+0.25=56.25, and so on.
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TABLE T3.3.
Hog data by ranks

Rank of
Supplies

Rank of
Price

Difference
in Ranls (d) dt2

I
0

20.25
49
8r
I

25
0

3
0

-4.5
7
I

-3
-b

0
2.5

-9

8
3
2
I

IO
5
4
6.5
6.5
I

5
3
6.5
2
t
8
I
6.5
4

l0
Totals 0.0

6.25
8r

280.5

Fourt}, obtain the total of the d2 column. This totd is written )d2.
Fifth, calculate the coefficient of correlation, r, by means of the formula:

.I-6>d2lr:r-1.1":m+il1

where n is the number of pairs of observations.
In our example,

. 6x280.5
t0x9x il

-1- 1.70

: -.70
The answer will always be between * 1 and - l. Plus or minus one represents
perfect correlation, while zero indicates no correlation at all. Thus, in our example,
there appears to be a fairly high negative correlation, so we will calculate the
coefficient more accurately using the standard method.

Standard Method

This is known more precisely x the pro&tct-mommt metlwd for tlw coefficient of
lincar corehtion.

In Chapter 2 we indicated that the deviaUon of an individual Y from the

Lhwar Corelntion ond Regression 174



mean of Y's (Y-Y) can be represented by an italicized lower case y. Likewise
we can use the symbol r for (X-X). Adopting these shorter symbols gready
simplifies many of the e4pressions we will encounter, and they will be used
frequendy in this and succeeding chapters.

The formula for the coefficient of correlation can be written in several forms.
It is convenient to write these in terms of f first, then find r by taking the square
root of the final answer.

?: [>(x-xXv-v)]' (1)

>(x-x)'>(Y*Y)'

Since r:X-X and y:Y-Y, we can write (I) in abbreviated form:

, (Zry)'

2*2v'
(2)

While these forms are simple, they usually are not easy to calculate directly
because they involve the squaring of cumbersome decimals. To avoid this, we take
advantage of the relation

2r2:)(X-x)':>x'- (*f
n

By substituting y for r where necessary, we can rewrite (2) in this form:

*:[,o-y 
J,', ll1"-ryX,"-+)] *,

This is called the "computaUonal form."
Particular attention should b. p"id to the expression in brackets in the

numerator of equation (3). This is called t}re sazn of uosspro&rcts. Unlike the
familiar sums of squares found in the denominator, which mrrst always be positive,
sums of cross-products can be either positive or negative.

Using formula (3), we can now compute the coefficient of correlation for the
data in our example, using the standard method. We will need )X, >Y, >X2, >P
and 2XY. From the data we find )X:752, )Y:179.7, )X2:56,804.0, )f|:
3,297.53 and )XY : L3,AO.N. Therefore

r: 
[rs,rzo. 

n-752\]7s'7 )'f l1*,*r.- #)(, ,zsl.ss-#)]

: 
113,420.40- 13,5 13.44 ]' / | (SA,1U.O- 56,550.4) (3,2s7 .53 - 3,229.2 I ) ]

: ( - 93.04)2 / Q5s.6 x ffi .32)

:0.4996

, : t/? : rTo.+gg6 : - 0.707
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Note that the sign of r, must be the same as the sign of )ry,-in this case,

negative. The answer by the shortcut method was -0.70, very close to the answer
by the standard method, -0.707. Do not be too enthusiastic about this coinci-
dence. The answers by the two methods will not usually be this close. In Chapter
14 we illustrate a case in which the shortcut method gives perfect correlation and
is extremely misleading. Other cases could be found in which the shortcut method
would give an answer which was much too low.

One would use the shortcut method for a quick check without the use of a
cdculator or when only an approximate answer was deemed sufficient. For a more
efficient estimate of the coefficient of correlation, and a test of significance, one
should use the standard method.

STATISTICAL SIGNIFICANCE

In the last paragaph we mentioned significante. The general idea is the same as it
was in the analysis of variance. We assume the hypothesis that there is no
correlation between the two variables and that any apparent relationship is simply
due to chance. This is, as usual, called the null hypotlwsis. Then we ask the
question, "If this null hypothesis were true, what is the probability that a value of
r would be obtained as large or larger t}ran we observed?" If this probability is 5%,

we call the correlation significant. If we claim that the correlation is real, we run a
57o risk of being wrong. If the probability is l7o or less, we call the correlation
highly significant and reject the null hypothesis with only a I% risk of being
wrong.

Fortunately, the difficult computations required to find the required probabil-
ities have been made and zummarized (Table A.7). Looking at the table on the line
opposite 8 degees of freedom, we find that a coefficient of correlation of .7 would
occur by chance somewhere between l7o and lVo of the time. We can say,

therefore, that the correlaUon is significant. We should be very careful in interpre-
ting data of this type. Even if t}e correlation is significant, we need to be cautious
about claiming that a fluchration in zupply aauses a fluctuation in price. Price and
supply may both be related to time, a third variable that has not been considered
in the calculations. At the end of this chapter we discrss some of the pitfalls
encountered in working with correlation, and an example will be given to show
how risky it is to interpret the correlation between two variables that are both
related to time.

!V1ry 8 degrees of freedom? We have been accustomed to using onc less than
the number of items as the degrees of freedom, but, now with I0 pairs of
observations, we use furo less, or 8, as the number of degrees of freedom. For the
first time, it becomes obvious why care was used in saying that degees of freedom
were ustnlly one less than the number of items. Here is the first exception we
have encountered. The reason commonly given for subtracting two is that one

degree is lost in calculating the mean and the other is lost for regression.

To make matters simpler, let us look at it another way. Suppose we have two
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pairs of observations-any two pairs providing they are not identicd. Th"y can be

iepresented on a graph as two points, and a line can be drawn thto"gh them. {e
""it 

tt it line the regression line, and the two points fit it perfectly. Since t!i1
would be tme for any two pairs of observations, no matter how unrelate4 it would
be ridiculous to attach any meaning to a coefficient of correlation based on only

two pairs. Just as one observation cannot tell us anything about variability, two

pairs of observations tell us nothing about correlation.
To use a simple illustration of these points, suppose that this morni:rg's paper

reports that the oodgets made 8 runs last night' and a certain stock closed at 5I'
The day before, the Dodgers made 4 runs and the same stock closed at 49. From

these data we can conclude that both Dodger mns and the price of this stock are

subject to variation. We can even estimate the amount of variation in both cases,

buithe estimate will be very rough, since in each case it is based on only I degee
of freedom (" - 1). What about the relation between the two variables? It is easy

to verify that

" (Zrv)' 42, _ >rw _ 
(8) (.2) -,

Hence, r: I
Wouldn't it be absurd to maintain that there was perfect correlation between

the number of Dodger runs and the price of a certain stock on tlte same day? Yet
that is what the coefficient of correlation apparently says. We get around such

absurdity if we say that this correlation was based on (n-2) or zero degrees of
freedom and is, therefore, meaningless.

How often have you heard people draw sweeping conclusions regarding
correlations based on a very few observatiors? Imagine a person flying from San

Francisco to Denver for the fust time and generalizing, "the farther east one goes,

the colder it gets." (Or, to sound profound, the person might say, "I have observed
a positive correlation between temperature and longitude.") This illustration is not
so farfetched, for it is not unusual to find people making broad generalizations
from scanty observations. It is a fault we must try to avoid, and the science of
staUstics is desigaed to help us avoid this pitfall.

TTIE REGRESSION LII\E

So far, in our example dealing with supply and price, we have determined only the
closeness of the relation and the probability that it was due to chance. We have
not learned anything about hout the two variables are related.

If we assume the relation is linear, that is, best described by a straight [ine,
the question is reduced to that of finding the particular straight line that fits the
data the closest. What do we mean by the cbsest fit? It is obvious from looking at
the graph of the data that no straight line can be constructed passing through all
the points. No matter what line we construct, several points will deviate from that
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line. We measured variation among a single set of observations by taking the sum
of squares of deviations from the mean. It seems log""l, then, to measure the
variation from a line by taking the sum of squares of deviations from the line.
Using this measure as the criterion for closeness of fit, we try to find the straight
line that will make the sum of squares of deviations as small as possible. Such a
procedure is called a bast-squares metlnd. Those familiar with calculus will
immediately recognize this problem as a typical one involving finding the mini-
mum value of a function.

The solution to the problem turns out to be very simple. In terms of
deviations from the means of X and Y, the equation of the best fitting line is:

^ />ry\v:\>r, )*

(f is read: "the estimated value of y").
The expression Zxg /2x2 is the regression coefficient, since it tells us the

estimated change in y, with each unit change in r. This fits our definition of
regression, and we have already called the regession coefficient b, so we can now
say: b:2xy/2x2, More precisely, we should call this "the regession coefficient
of Y on X," and use the symbol b,,. Generally, if b is used with no subscript, this is
the coefficient understood.

The equation given above ban be rewritten in terms of the observations
themselves,'instead 6f i.t t"r*, of deviqlions from means. We can write: (i-?) :
b(X - X) which_can be rewritten, Y: (Y - bX) + bX.

If we let Y-bx:o, the equation can be written Y:a*bX, which is the
slope-intercept form of a straight-line equation mentioned at the beginning of our
discussion on regession.

Now, let us see how to apply this equation to our data. We already have all of
the sums we need from the calculation of r, the coefficient of correlation. There
we found that

nlo
2X:752;soX: ff:lS.Z

)Y:179.7; so i:17.97

2*A: -93'1y

2xz:2s3.6;so b: _ ffi: _.367

Therefore, substituting in the equation

i: (Y- bx)+ bx

Linear Corehtion and Regression l78



TABLE 13.4.
Observed and estimated hog prices

x Y t:45.57-.367X d:Y-t d2

73
79
80
69
66
IJ
78
74
74
84

18.0
20.0
r7.8
2t.4
21.6
15.0
t4.4
17.8
19.6
14.l

18.8
16.6
L6.2
20.2
21.4
18.1

r6.9
t8.4
18.4
14.7

0.64
1I.56
2.ffi
t.4
0.u
9.61
6.?5
0.36
t.u
0.36

0.8
3.4
r.6
t.2
0.2
3.1
2.5
0.6
r.2
0.6

Totals 0.0 u.26

we get

i : I rz.sz- ( -.s62)7s.2] + ( -.soz)x

t:45.57-.307X

This equation can be put into trese words: "starting with a base price of g45.57
per cwt, every unit (million) increase in annual hog marketings is associated with
an average reduction in price of 0.367 dollars per cwt."

- Table I3.4 compares the observed values of y with the estimated values (i"s),
based on the regression equation.

The fact that the sum of deviauons is zero seryes as a check on the
calculations. This will always be true (except for rounding errors). The zum of
lguares of deviations can be calculated in a much simpler way from the following
formula:

>dr:(l _?)>V,

In our example

>d, = (l -.4996)6s.Sz -34.1g

which is an answer very close to 34.26 shown in Table 13.4. The small difference is
due to rounding.
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Y -- 45.57 - .367X

14

12
70 75 80

Hogs marketed (millions)

Figure 13.3. Regression line for hog data showing deviations from regression.

This sum of squares, )d2, is called the xtm of sqtnres ilrc to dnoiation frorn
regression and the square root of the quantity >a2/6-Z1is called the standard
enor of estimate.Thts is just another kind of standard error, similar to the ones we
have encountered before. It is a measure of the amount of variation from the
regression line.

It is not usually necessary to go to all the trouble of constructing a table like
Table 13.4 to check &e correctness of the regression line. Constructing the line on
the scatter diagam will usually reveal any gross errors. The construction of the
line is very simple, since only two points are necessaq/ to determine any line. One
point can be on the Y-axis, a units (in this case, 45.57)_from the origin. Another can
be the point representing X (the mean of X) and Y (the mean of Y). The line
passing through these two points will be the required regression line. Figure 13.3
shows the line in our example drawn th.o"gh the observed points. The dotted lines
drawn from the observed points to the regession line represent the deviations.
Note that the scales at the bottom and side of the graph do not begin at zero."[\ey
are designed to include just slightly more than the range of the observations.

You will notice that the deviations :ue represented as oertical lines. It is the
sum of squares of these deviations that we have minimized to come up with the
clnsest fitting line. Suppose we decide to construct a line such that the sum of
squares of the horirunttal deviations from the points to the line is a minimum. Will
this give the same line? The answer is no, unless there is perfect correlation. This
new line will have the equation
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The expression \xy f 2y2 is called the regession cofficient of X on Y and is

2rA
2y'
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designated by b*". It should now be clear why we were careful to point 9ut that
ttre symUot b is understood to mean byr1, the regession of Y on X, unless otherwise

specified.
There is a reason for mentioning that there are two best-fittinglines accord-

ing to which way the deviations are taken. Note that

b,{b*t:lY' 3'1 :,'>f 2v'
This brings out the relation between the regression coefficients and the coefficient
of correlation.

We can now answer the questions raised about data in our example.

1. How close was the relation between supply and price?
ANSWER: Fairly close. The coefficient of correlation was -.7, and -r I

would be perfect.

2. What is the probability that such a correlation could be due to chance?

ANSWER: A correlation of this size from l0 pairs of observations would
occur between 5 and I7o of the time by chance alone.

3. What equation would best describe the relation between price (Y) and zupply
(X) from these data?

ANSWER: Y:45.57-.367X

4. How well does this line fit the data?
ANSWER: The sum of squares of deviations of the observed points from the

line was M.t9 or about one-half the total price variation. Thus,
only half the price variation was in some way associated with
variaUon in supply. A simple analysis of variance table shows this
(Table I3.5).

TABLE T3.5.
Regression analysis arranged in an analysis of variance form

Source of Variation Degrees of freedom Sum of squares Mean Square F

2Y2:ffi'32
r22y2:M.13

(l - r2)Iy2:34.19

I
I
8

34.13

4.27

l8l The Regression Line

7.99*

'See page 127 for note.

Total
Regression

Deviation from regression



NoUce ftom this table that P is the proportion of the total sum of squares
accounted for by regression, and (1-f), pometimes called the coefficient of
al:ienation, is the proportion not accounted for.

The fact that the F value of 7.99 lies between the required F value at the 5%
point (5.32) and the l% point (11.26) for I and 8 degrees of freedom, verifies our
previous finding in answer to question 2.

In fact, it does not matter whetler we look up the F value in Table A.3 or the
r value in Table A.7. The two tests are identical, as can be easily shown. From the
analysis of variance in Table 13.5 we can see that, in symbolic terms,

F: -P2!' :f(n-z)/(r-?)
$-fl>v'/("-2)

Solving this equation for f gives

i:#
We can substitute a required F value in this equation and take the square root to
find the required r value. For example, the requted lgo F value is 11.26 for I and
8 degees of freedom. Substituting this in the equation above, we get

" 1L.26r= lt2ffi=:.5&16
r:.7646

This is the value in Table A.7 for 8 degrees of freedom at the l7o level'

CONFIDENCE LMITS

llte iteoiation fiwon squfie (DMS) provides the basic quantity for the cdculation
of several confidence limits. The variance of the regression coefficient is

o DMS+-: ssx

and the confidence limits are

btt(sb)

In our example of hog zupplies and prices,

" 4.27#: ffi;:o'0168
sb:0.1298
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The tabular t value for 8 degees of freedom at the 57o level is 2.306, so the 57o

confidence limits are

-0.367 t 2.306(0.1298)

: -0.367-r0.299: -0.666 and -0.068

The t value at the l7o level is 3.355, so the 1% confidence limits are:

- 0.367 -f 3.355(0. 1298)

: -0.367+0.435: -0.802 and *0.068

Notice that the 57o confidence limits do not bracket zero, but the l% limits do.

This agrees with the previous conclusions that the regression is significant at the
5% level but not at the l7o level.

The estimates of Y designated 
"r 

i .." subject to two kinds of error: t}e
variance of the mean and the variance of the regession coefficient. The variance
oftis

,i,:DMS(*. *)

Notice that the size of this variance depends gn the value of r (the deviation of X
from the -"rn X;. The confidence limis for t are

t*t('t)
In our example,

)
4.27( I

10 253.6
x'+t?':

:.427 *0.01ffix2

Confidence limits associated with several values of r are given in Table 13.6.
Plotting tlese values gives a "confidence belt" around the regression line bounded
by two curyes, shown as t}re inner belt in Figure I3.4.

The confidence limits we have just calculated apply to the means of popula-
tions of Y values associated with specific values of X. It is often of more interest to
set confidence limits on the predictions of single values of Y, given qpecific values
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Figure 13.4. Confidence hlts around regression line of hog data.

of X. Here we must take into account an additional source of error. In addition to
the error of the regression coefficient and the eror of the mean, we have the
variation of individuals around the estimated mean.

The total variance of Y for a specific value of X-X or r is

*:orus(t+ I 12 \
' \ n*ssx/

and the confidence limits are

t*(s')
Limits for selected values of r are grven in Table 13.6 and plotted in Figure 13.4 as

the outer confidence belt.
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TABI.E 13.6.

Variances, standard errors and 57o confidence limits of f and Y associated with
selected values of X in hog price and supply example"

I-ower Upp"t
X r i si2 s? t(st) Limit Limit #

I-ower Upp"t

\ (*r) Limit Limit

65.2
67.2
69.2
7r.2
73.2
75.2
77.2
79.2
8r.2
83.2
85.2

-10
-8
-6
-4_o

0
2
4
6
8

t0

2r.M
20.91
20.17
t9.M
18.71

t7.97
17.?3
r6.50
t5.77
l5.u
14.30

2.tl
1.50
r.03
0.70
0.49
0.43
0.49
0.70
1.03
1.50
2.tl

1.45
r.23
1.02
0.83
0.70
0.65
0.70
0.83
t.o2
r23
r.45

3.35
2.83
2.U
t.92
r.6l
1.5I
r.6t
r.92
2.U
2.83
3.35

18.29
18.08
17.83
t7.52
17.10
I6.46
r5.62
r4.58
13.43
12.21

10.95

2,1.W
23.74
22.5r
21.36
20.32
19.48
18.84
t8.a
18.1r
17.87
L7.65

6.28
5.77
5.30
4.97
4.76
4.70
4.76
4.97
5.30
D, ll
6.28

2.53
2.0
2.30
223
2.18
2.t7
2.18
2.23
2.30
2,N
2.53

5.82
5.il
5.31
5.r4
5.03
5.00
5.03
5.t4
5.3r
5.il
5.82

15.82
t5.37
14.86
14.30
13.68
t2.97
12.20

11.36
10.46
9.50
8.48

27.46
26.45
25.48
,4.fi
?3.74
22.97
?2.26
2t.u
2r.08
20.58
20.t2

"Note: The t value used in these calculations was 2.306, the tabular t value at the 5% level
for 8 degrees of freedom.

REGRESSION IN REPLICATED EXPERIMENTS

We have shown in Chapters 6, 9, and l0 how we can use an orthogonal set of
coefficients to find the sum of squares due to linear regression. This method is
applicable only to certain sets of treatment levels, but the general methods of this
chapter can be trsed for any series of treatrnent levels.

The data from Chapter 10 will be used to illustrate the general methods, and
later in Chapter 15 the same data will be analyzed with the shortcut method.

In table 13.7, we designate as Y the totals of the five harvest dates. Working
with totals rather than means reduces the amount of rounding errors. We will fit a
straight regression line to these values and test its significance.

)r2:)X2- ry:ss- Y:ro

2a':>f - t"J'' :Ur' ,372.24- Y :Ss,StZ.U
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TABLE I3.7.
Totals (Y) from time of harvest treatments (X) in the sugar beet experiment in
Chaper 10

x Y ;12 XY f t Y-t g-Y)'

I
2
3
4
b

140.0 I
267.2 4
335.2 I
4t7.O 16

440.6 25

140.0
5U.4

I,005.6
1,668.0
2,203.0

19,600.00
71,395.84

112,359.04
173,889.00
194,128.36

169.8
24.9
320.0
395.1
470.2

-29.8
22.3
L5.2
21.9

-29.6

888.04
497.29
23L.M
479.6t
876.16

Total 15 1,600.0 55 5,551.0 571,372.2A 1600.0 0.0 2,972.14

)ry : >xy- Y :5,851.0- g#q :75I.0

b:?#: # :75.1

o :-Y - bx: 3%) - 75. r (3) : 9a.7

, (2ry)' ns:")z : :____:_ : ____________!!!_ : q4m4
(>dX>y') (10X5e,372.%)

ssY (on a per-plot basis)I +:ry:3710.765
SS Regession : I (SSY) : .94904(3710.765) : gSqS.OOq

SS Deviation: (1- fXSSY):.05006(3710.765) : 185.761

The sum of squares of deviations shown in the last column of Table I3.7 can
be reduced to a per-plot basis by dividing by t6: 2,972.14/L6:185.759, which
agrees with the value given above except for rounding errors.

The regression equation was calculated from the treatment totals, and if we
wish to have an equation for estimating the means, we divide a and b by 16, giving
us the equation 

t:5.91g75+4.69g7bx

The sums of squares can be summarized in an analysis of variance table,
Table 13.8.
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TABLE I3.8.
ANOVA table for the regression of sugar beet
yield on harvest date (Table 13.0

df SS MS

Required

F 5% LVo

F

Harvest dates
Regression
Deviation

Error

3710.765
3525.004

I85.761
w.67

927.mI
3525.m4

61.920
8.289

rII.92
425.26

7.47

4
I
3

t2

3.26
4.75
3.49

5.41
9.33
5.95

Notice that in the hog data, where we were dealing with individual pairs of
observations, we used the deoiation ntzon squfie for testing the regression meon
squne. In a replicated experiment, however, we have an error term that we can
use for testing both the regression mean square and the deviation mean square.

In our example, the highly significant regession mean square tells us that
there is a highly significant trend for the yield of sugar beets to increase as the
harvest date is advanced (within the range of dates employed in this experiment).
The F value for deviaUon from regression, while not nearly as large as for
regession, is still highly significant. This tells us that tlere is some highly
significant source of variation in addition to the positive linear trend that is
affecting the yields. We will examine some of the possible sources in tlte next
chapter.

PITFALLS

Probably no part of staUstics is subject to more abuse and misinterpretation than
correlation and regression. The statement that "one can prove anything with
statistics" is true only if one ignores some of the basic principles involved. The two
principles most often ignored in correlation are:

I. The full name of the coefficient of correlation is the coefficient of lhear
correlation, and

2. Nothing in the definition of correlation indicates or implies that the
relation between two variables is one of cause and effect. The following
are examples of how easy it is to get into trouble.
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A LOW CORREI.ATION DOESN'T ALWAYS MEAN LACK OF RELATION.
Look at the following pairs of figures:

If we calculate the coefficient of correlation between X and Y, we find that it is
zero. (Try it and see.) However, if we conclude that there is no relation between X
and Y, we would be completely wrong. X is the elapsed time in seconds after
shooting an arrow vertically at 160 ft/n".Y is the elevation of the arrow in feet.
Of course, it is utterly ridiculous to contend that there is no relation between the
height of an arrow and its time in flight. What is wrong with this paradox? The
important word lbwar, implied when we qpeak of the coefficient of correlation,
was igrored. It is true tlat no straiglrt line will come close to fitting these data, but
the equation Y:160X-16X1 will grve a perfect fit. This is the equation of a
parabola.

The moral of this example is that one should be on the lookout for caruilircar
relations that miglrt fit the data better than a simple linear relation. Ways to
handle data of this kind will be presented later.

A HIGH CORRELATION DOES NOT NECESSARILY MEAN A CAUSE AND
EFFECT REI-4,TIONSHIP. Consider Table 13.9 from which we can calculate
the coefficient of correlation and the regession equation.

The higlr value of the coefficient of correlation, .937, indicates a close relation
between X and Y. One 

"right 
b" tempted to say that each unit change inX causes

a change of .64ii| in Y. Now let us see what X and Y represent. The X's are the
number of cigarettes used annually in the United States (in billiors) from 1944 to
1958. The Y's are the index numbers of production per man-hour for hay and
forage crops during tJre same period. It would require a big stretch of the
imagination to think of any direct cause and effect relaton between cigarette
consumption and efficiency in the hay business. It just happened that both of these

variables showed a steady increase with time during the period being considered.
The moral of this example is that the coefficient of correlation will meastue

the closeness of dation between two variables, but it tells us nothing about

Y

0
tu
zfi
336
384
400
384
336
zfi
L&

0

x
0
I
2
3
4
D

6
7
8
I

10
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x
295

339

341

3M
357

359

368

395

4t4
406
385

394
4M
ao
M6

Y

73

78

85

100

r09

t?5

129
135

t42
139
140
r47
I56

TABLE I3.9.

Fifteen pairs of higlrly correlated data

)X:
I:

)f:
(>x)2/15:

2f:
)Y:
Y:

)f:
(2Y)'/tS:

2y':
)XY:

(>x>Y)/15:
2ry:

5669

377.9

2,163,9&5

2,142,W
21,43r

r768

117.9

2r8,82
2jqrqq_

10,(x)4

681,962
668,186

13,776

91

119

f :(2xy)2/2*2f
:(13,776)2 / (21,431x 10,091)
: 189,778, I 7 6 / 216,32,1,514 : .8773

r:{ .8773 :.937 (coefficient of correlation)
b : 2 xy / 2 * : 13,77 6 / 2L43 I : .643 (regession coefficient)

o:1- bX:117.9- %[B.o: l2s.r (intercept)

t: - 125.1 +.643X (regession equation)

whether this relation is one of. cause ard effect. That decision is up to the
investigator and must be based on a geat deal of knowledge of the variables under
study.

WATCH FOR PART-WHOLE CORRELATIONS. Several years ago, a paper
presented at a meteorological meeting dealt with studies on length of growing
seasons between killing frosts. It was reported that there was little or ne correla-
tion between the last frost in the spring and the fust frost in the fall over a long
perid of time. The next conclusion reported was that there was a rather high
correlation between dates of last frost in the qpring and length of seasons.
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If we examine this second conclusion, we note that the length of season is

completely determined by two parts, the beginning (last spring frost), and the end
(first fall frost). It can be easily proven that, if a variable is made up of two or
more independent parts, there is automaUcally a correlation between any one of
the parts and the whole. The relation is simple: r:(standard deviaUon of
part)/(standard deviation of whole). In the case of the frost data, if spring frost
dates and fall frost dates are about equally variable, thbn we expect the correlation
between spring frost dates and length of season to be about VE or .707. The
conclusion about the correlation between spring frost and length of season, while
correct, was trivial.

EXTRAPOLATION IS TEMPTING BUT DANGEROUS. Often a series of ob-
servations fall within a rather restricted range of values for the two variables under
study. If they show a high coefficient of correlation, there is a great temptation to
extend t}re regression line beyond the range of observatiors and try to predict
what would happen to the values of Y if X were to take on values above or below
those actually observed. This is called ertrapolntion. It is a dangerous practice,
because many variables that are related in a curvilinear fashion will give a high
Iinear correlation if only a short section of the cunre is sampled.

Table 13.10 gives the measurements of l0 onion bulbs with diameters
between 50 and 70 mm. with their corresponding weights in grams.

TABLE I3.TO.
Measurements of ten onion bulbs

Diameter (X) weight (Y)

51.0
ffi.2
69.2
69.5
56.9
67.t
58.1
53.9
63.0
60.0

63.4
u5.3
r46.6
132.6
80.7

125.6
80.0
78.7

I12.8
96.2
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The calculation of r, the coefficient of correlation and of the regression
equation, is as follows:

)X:614.9
X:61.49

2X2:38,192.17
()X)2/n :37,810.20

)r2:381.97

)Y:1031.9
i: I03.19

2f :113,%17.79

(2Y)2 /n:106,481.76
)Y2:6,766'03

)XY:65,014.60
)XXY/n:63.45r.53

Xry: 1,563.07

f : (r,563.07)'7(Sar.SZ x 6,766.03) - .9454

,- ll .9154 :.97 (coefficient of correlation)

b : 1,563.07 / 38 I.97 : 4.(D2 (regression coefficient)

a : 10iI. 19 - (4.092) (61.49) : - 148.+3 (intercept)

t : 4.092X - 418.43 (regression equation)

The correlation of .97 between diameter and weight is very high. (This is not
surprising.) Within the range of 50 to 70 mm, a straight line equation describes the
relation between the two variables very well.

Now let us extrapolate and see what happens. A bulb measuring 92.4 mm was
found to weigh 300.2 g, but our estimate of weight from the regression equation is

Error due to extrapolation

3(x)

2fi

2@

r50

100

50

o

!
J
l)

o
E
o'6

=

,/t{

Range of obsewation

o 10 n too,.,l"o,., 
ouro*,olo,r,n,'o 

80 90

Figure 13.5. Regression line drawn thro"gh onion data over a limited range,
showing the danger of extrapolation from limited observatiors.

0
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229.7. ExtrapolaUon caused us to err by 70.5 g in our estimate. Going in the other
direction, a bulb measuring 37.8 mm weiglred 27.8 g, but extrapolation gave an
estimate of 6.2 g. Extrapolating for still smaller values of X soon gives us
completely absurd estimates of Y. For example, a 36.27 mm bulb would be
esUmated to weigh notling, and all bulbs smaller than this, less than nothing.
Figure 13.5 shows the line fitted to the data and the effects of extrapolating.

It is easy to see why extrapolation leads us so far astray in this case. The linear
regression equation implies that a given amount added to the diameter of a bulb
will add a certain fixed amount to the weight. It should be obvious, however, that
this cannot be so. One centimeter added to a 9 cm bulb will certainly result in a
geater increase in weight than I cm added to a 2 cm bulb.

If one wishes to find out how two variables are related outside the range of
his observations, the safest procedure is to make more observations in the region of
interest.

SUMMARY

Corelation is the tendency of two variables to be related in a definite manner.

The two variables are called independmt afi dependenll, according to which
one is yiewed as depending on the other. The independent variable is called X and
the dependent variable Y.

The coefficimt of corebtion measures the cbseness of the relationship.

Regression, is the amount of change in the dependent variable associated with
a unit change in thg independent variable. A linear regression equation is written
Y: a* bX, where ii is the estimated wlue of Y, a is the intercept or point where

the line crosses the Y axis, and b is the slope or regression coefftcient.

Graphing a set of data made up of pairs of variates produces a scalter

diagram. This is usually a convenient first steP in regession analysis. L quick
shortcat method known as the rank difference metlwd gives an easy-to-calculate

approximation to the coefficient of correlation; The formula is

- 6>d2r:l-;6S;'

where r is the coefficient of correlation, d is the difference in rank in each pair of
observations, and n is the number of pairs.
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The standnrd metlwd or productnwmmt metlwd can be expressed by several
formulas:

l>(x-xXv-v)l'
f-' '(directobservationalform)

>(x-x)'>(Y-Y)'

*: 1t::), (deviation from mean form)
2x22gz '

*: [,o- y r I lF" -YX* +)],***"*,a, form)

f : br*b*, (regession form)

(The sign will correspond to the

_ sign of the number inside the
r : -r V f brackets of t}te numerators in equa-

tions I to 3. It will correspond to
the sign of b*, in equation 4.)

The significance of the coefficient of correlation can be determined by
reference to a special r table, using n-2 degrees of freedom; where n is the
number of pairs of observaUons.

Correlatiors based on only two pain of observations will always be plus or
minus one, but they are meaningless.

^I"be regression coefficient isr b:2xy/2x2.

The intercept is, a:?- bX.

When o and b are determined, we can write the regression equation,
i:a*bX.

Lack of agreement between observed and estimated values of Y is measured
by !h" sann of squares dae to deoiation frotn regression, obtained from the relation:
>d2:(1-f)2Vr.
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The sum of squares due to deviatiors divided by its degrees of freedom ("-2)
gives the deobtion nwon squfie (DMS). The square root of the deviaUon mean
square is called the stardail eror of esthnatz.

The sum of squares due to regression can be obtained directly:

SSR:f)y2

or by zubtraction:

SSR:)y2-)d2

Tbe mean squ)re due to regression is the same as the sum of squares, since it
has only 1 degree of freedom. A test of significance based on F:(regression mean
square)/(deviation mearr square) can be checked in an F table under I and (n-2)
degrees of freedom. This will give the same test as reference to an r table.

The variance of the regression coefficient is so2:p14S1SSX. The confidence
limits for b are f +t(t). The variance o{ an estimated Y is si2:pMS(l/n+
//SSX). The confidence limits for Y are: Y*t(ry). The variance of an individual
prediction of Y is: sr2: DMS(I + I /n+ 12 /SSX). The confidence limits for a single
estimated Y are: Y+t(sr).

In a replicated e4periment, the regression mean square and the deviation
mean square can be tested with the same error term used to test the total
treatment mean square.

It should always be remembered that the ordinary coefficient of correlaUon
{Nsumes a lhlear relation between the two variables. Also, it cannot help us decide
whether the relation is one of catrse ard, ffict.

A low coefficient of correlation doesn't always mean a lack of relation. There may
be a very close curuil;hwor relntion.

A high coefficient of correlation does not imply a direct cause and effect
relationship. The two variables may simply both be related to a third variable,
such as time.

Avoid correlation of a variable with one of its component parts. The conclusions
reached are trivial.

Avoid extrapolation of a regression line beyond the range of observations.

Linear Conelatiott and Regression 194



t4
CURVILINEAR

RELATIONS

In the previous chapter we warned repeatedly to keep in mind that the usual

coefficients of correlation and regression are based on a linear relationship
between two variables. A linear relation is the simplest type of relation found
between variables. Even if there are pronounced deviations from linearity for
extreme values of X and Y, it often happens that, within the useful or practical
range of values of the variables, a straiglrt line is sufficient to characterize the
relationship. For example, in fertilizer tests we often notice that there is a steady
increase in leld with increased application of some nutrient up to a point. Above
that point the increase in leld may be less pronounced, and fi""lly the yield will
actually decrease as we use excessive amounts of fertilizer. If we are interested
only in low to medium fertilizer applications, a straight line may be satisfactory for
describing the relailon between leld and fertilizer. If we wish to describe this
relation thro"gh the whole range of applications from zero to extremely high, we
will probably have to use a curve that reaches a ma:rimum and then decreases.

DECIDING WHAT CIIRVE TO USE

Since tlere are so many different kinds of curves we might use to express the
relation between two variables, we fust have to decide what kind of curve we are
going to try to fit to the data. It would be desirable to find one that expresses some
natural relation between the two variables, but this is not always possible.
Sometimes a thorough Imowledge and experience with the variables we are
studyrng enables us to select one type of curve that is more logical than others. We
will cite some examples of this as we go along. Sometimes the converse is true.
Finding a curye that fits the data closely may glve us an important clue as to a
natural relation that exists between two variables. Many of our natural laws were
discovered in this way; for example, Boyle's law, Charles' law, and the law of
falling bodies.

With biological data, the relation between two variables may be so complex
tlat no simple equation can suffice to describe the relationship. We often must be
content to find an equation that fits the data reasonably well without making any
claims that the equation expresses any natural relation. It is always possible to find
a curve that will fit the data perfectly, but such a curve may be strictly artificial
and completely devoid of physical or biological meaning.
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From a multitude of types of cuwes, we have selected five for consideration.
These were chosen first, because they are the most corrunon ones encountered in
biological and economic data and second, because only elementary mathematical
ideas need be utilized in discussing them.

The Power Curve

This is a curye where Y is a function of some power of X. The general form of the
equation for a curve of this type is

Y:aXb

If we take the logarithm of both sides of this equation, we get

logY:loga * blogXr

If we let the logs of X and Y be the variables, calling t}rem X' and Y', and the
constant loga is called a', we can rewrite the equation:

Y':a'+bX'

This is easily recognizable as the general equation for a straight line discussed in
the preceding chapter. Therefore, all we have to do to andyze data of this type is
to transform the observatiors to logarithms, then proceed exactly as we did with
linear correlation and regression.

The value of b can be positive or negative and a whole number or a fraction.
Figure 14.1 shows some of the wide variety of curve shapes that result from
different values of b. After transformation of X and Y to logarithms, all of these
curves become straight lines with slope b, as shown on the righrhand side of the
figure.

The effect of a on the original curves is to compress or expand the scale on
one of the axes, while its effect on the log transformed line is simply to move it up
or down without changing its slope.

Since only positive numbers have logarithms, the log form of the eqtrations
has no meaning for negative values of X. Thus, we should apply the log transfor-
mation only to data where all the observations of X and Y are positive. This is not
really a very serious restriction, since many physical measurements, such as

weight, length, area, and so forth, take only positive values.
How do we know whether it is plausible to use the log transformation? Here

again, the use of a graph gives a good start. Graphing can be done in two ways.
The observed values of X and Y can be converted to logarithms and plotted on
ordinary graph paper. An even simpler method is to plot the original values on a
graph paper called log paper. With either method, a scatter diagram will result. If

rFor those who do not recall the nrles of logarithms and exponents, a review will be helpful
in this discussion. Any elementary algebra text can be consulted.
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Direct form: (Y = afit) Log form: (log f = log a + D log Xl

Y=X2 /

LogY=2lo9X

/v=.t x2

I
Log Y= log 3 + % log X,

Y=3Xk

LogY=lAlogX

Y=-1 +2logX

b=2)

-??-/-- Y=X*

b ='A)

LqY=-%lo9X

Y=X-h

(b = -h)

LogY=-logX

Y=X-l

(D = -t)

Figure 14.1. Various shaped curyes with their log trarsformatircns showing how
logs can convert curves to straight lines.

this scatter diagam has the appearance of a long narrow ellipse, typical of linearly
correlated data, we can proceed to analyze the logarithms of X and Y.

From a logical point of view, we would expect data based on measurements
involving two different numbers of dimensions to fit curyes of the form Y: aXb.
For example, heiglrt is one-dimensional, whfle weight, being related to volume, is
tlree-dimensional. Therefore, in correlating height with weight, it would be logical
to try the log transformation. The same would be true with measurements of width
and area, length and volume, surface and diameter, and the like.
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ln the previous chapter, in discussing the dangers of extrapolation, we
presented some data on the diameters and weights of onion bulbs. We pointed out
that a straight line described the relation fairly well if we considered only a short
range of diameters. If this line was extended in either direction beyond the range
of observations, it failed to give a good representation of the relaUon between
diameter and weight. If we stop and think about it, this is really what we would
expect. One centimeter added to a large bulb would be expected to add more to
the weight than I cm added to the diameter of a small bulb. Furthermore, if the
bulbs were spheres, the relation of diameter to volume would be

V: zd3'6
If the specific gravity of the bulbs remained fairly constant throughout all bulb
sizes, weight would be a direct linear function of volume. Therefore, we would
expect weight (Y) to be a function of the cube of the diameter (X).

The true situation with onions is not quite this simple, since they are rarely
spherical in shape but rather spheroids with an elliptical longitudinal section.

Moreover, as the bulbs gow, t}rey continually change in shape, being prolate
spheroids when they are small, nearly spherical at some medium size, and oblate
spheroids when they are large. This constant change in shape results from the fact
that they grow more raprdly in diameter than they do in length. In spite of these

complexities, it would seem that the type of data we are dealing with might be
greatly simplified by a log transformation.

Table 14.1 shows the diameters and weights observed with 30 bulbs, arranged
in order of their diameters.

First, we calculate the coefficients of correlation and regression equaUon for
the original data.

(tsfi.z\2
)l:I18,g58.S-' d0' :8,884.72

2 y2 : s4z,o7 s.zo -gH{ : t6t,o5o.29

r8r7.2(3s83.6)
2xy : 241,772.67 - ---0------: : 36,816.74

( (>ril' (so,ato.zn)z
:.94173

>r'>y' 8,884.72(161,050.29)

r:{ .w5 :.973 U:24.: 3=699J=4 :4.t442* 8,W.72

o:t-u*: W - [4.u4(I#a)]: -88.20

t: - 138.20 +4.LUX
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TABLE I4.I.
Diameters and weights of onion bulbs

Diameter (X) Weiglrt (f) IogX(X) LogY(Y)

35.r
35.3
35.5
37.8
37.8
4L.4
4t.7
44.8
u.9
47.9
51.0
53.9
56.9
58.1
60.0
63.0
ffi.2
67.1
69.2
69.5
70.7
73.1
73.r
77.4
81.7
8r.7
82.3
83.1
84.6
92.4

tu4.3

2/4.1

24,4
27.8
28.7
42.0
v.5
56.1
49.0
fi.4
63.4
78.7
80.7
80.0
xi.2

I12.8
115.3
125.6
146.6
r32.6
IA.8
137.r
163.2
I80.0
198.0
207.8
190.8
225.5
237,O

300.2

1.5453r
r.il777
r.55023
L.57749
L.57749
1.6r700
L.62014
r.65r28
t.65225
1.68034
r.70757
r.73159
r.755r1
t.764t8
1.778t5
1.79934
1.82086
L.82672
r.8401r
1.84r98
t.u942
1.86392
1.8&392
1.88874
L.9L222
t.9L222
1.91540
1.9r960
t.92737
r.96567

1.38561
r.382CI2

1.38739
t.44404
1.45788
t.62325
t.53782
L74896
1.69020
r.7wr
1.80209
1.89597
1.90687
1.m309
1.98318
2.O523r
2.06r83
2.09899
2.16613
2.L22il
2.Lil13
2.t37U
2.2t272
2.25527
2.29ffi7
2.3L765
2.amfi
2.3$15
2.37475
2.4774t

Totals 1817.2
Sums of
squares 118,958.58
Sums of
cross-products

3383.6

il2,675.26

?At,772.67

52.90839 ffi.27655

93.80268806 Lt6.4ilt2l6

r04.u95715
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At first glance it looks as though a straight line has given us an excellent fit to the
data. The coefficient of correlation, .973, is very higlr. However, if we look at the
g"ph of the data with the superimposed regression line (Fig. 14.2), we notice a
disturbing thing. All the deviations from the line at the en& of the range are
positive, while those in the middle of the range are negative. If the deviations were
more or less random, we would be satisfied, but this systemaUc gouping of
deviations leads us to eryect that a curve would describe the observations still
better. There is another even more compelling reason to try to fit a curve. The
straight line we have fitted to the data simply does not make sense for diameters
less than about 34 mm, for it indicates that bulbs smaller than this would have
negative weights.

Now we fit a straight line to the logs of X and Y and see whether these

difficulties are overcome. The calculaUons are exactly the same, except that we
replace X with X':logX, and Y with Y':logY.

)r,2: s3.80268806 - 
gP : .51039894

(fi.276ss\2
2y'':116.4ilL216 :3.2489123

52.e0tr}9(58.2765s)2x'y':I04.04957I5- ,i0 :1.282003I

2_,* I.2g200312 .:.ggII29
5ro3e8e4(3.%8e123)

r: \49911 :.996

,:*ffi:2.5118

o' : n'ff 
- z.srra( !@9 

) 
: -2.+soo

i': -2.4ffi9+2.5118x'

The coefficient of correlation, .996, indicates an extremely close fit, even higher

than that obtained from the untransformed data. The improvement in the correla-

tion is not, however, the main reason for preferring the use of the transformed

data in this case. It can be seen from Figure 14.3, that the deviations of the points
from the regression line are more or less randomly distributed as to direction.
More,over, the relation between X and Y expressed in the new equation implies

that as the diameter approaches zero the weight also approaches zero.

The regression equation in the log form can be transformed back to the
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Y=-138.20+4.144X
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Figure 14.2. Onion data from a wider range of observations than Figue I3.5
showing noruandom deviations from the regression line.

original measurements by taking the antilog of c' to find a, and substituting:

equation: Y: aXb

log form: Y': -2.4869+2.5118X

original forrn: Y : .00326(X2'5uB)

?'= z.st1,8x'- 2.4869
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g
o
o
J

a

a

1.6 1.7 t.8
Log diameter

1.9 2.O

Figure 14.3. The same onion data as Figure 14.2 converted to logs, showing the
improved fit to a straight line.
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The exponent of approximately 2.5 is interesting for what it reveals about the
growth pattern of onions. If the bulbs grew at the same rate in all dimensions, the
shape would remain constant, and the weight should be a function of the cube of
the diameter or X3. If the depth remained constant and growth involved only
increase in diameter, the weight should be a function of the square of the diameter
or X2. If the bulbs increase in depth, but at a slower rate than their increase in
diameter, the shape should change from prolate to qpherical to oblate, and the
weight should be a function of some power of the diameter between 2 and 3. The
last situation is exactly in accord with observations. The equation we have
developed not only fits the data closely but also expresses a nahrral relation
between diameter and weight that agrees with other facts dealing with the
geometry of growth.

The Exponential Curve (Groudh or D€cay Curve)

In this curve, X appears as {rn exponent, and the coefficient b describes the rate of
growth or decay. The general equation for this tlpe of curve is

Y:ah*

If we take the logarithm of both sides of the equation, we get:

logY:loga+ (togb)X

Letting logY:Y',loga=a', and logb:b', then

Y':a'+b'X
Again, transformation has lelded a straight line, but in this type of cuwe, it is the
log of Y and the original values of X that are used, instead of the logs of both
variables. For this reason, it is called a semibg type. Semilog gaph paper is

available with a log scale on the Y-axis and an ordinary scale on the X-axis' Data
can be plotted on semilog paper, or the Y values can be transformed to logs and

plotted on ordinary graph paper. In either case, if the resulting scatter diagram
looks like linear data, it is worth calculating the coefficients of linear correlation
and regression of the log of Y on X.

The values of X can be positive or negative, fractions or whole numbers, but b
can be only a positive number. Figure 14.4 shows two typical exponential curves,

one with b :2, and the other with b : | / 2. The figrue also shows the straight lines

resulting from transformation of Y to logY.
The type of data that is most likely to fit this type of curve is data related to

intprest ratps. "Ilte formula for change in principal with time, invested at constant
rate of interest compounded annually is

A:p(l +r)t
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Exponential form

Y=2x v = lY.lx

Growth curve Decay curve

Log form

Log Y=Xlog2 LogY=Xlogh

Figure 14.4. Typical exponential curyes with their log transformation.

where A is the amount at the end of time t, P is the original principal, r is the
annual rate of interest, and t is the time in years.

Where do we find anything like this in agriculture? Many organisms have a
fairly constant growth, at least during the early stages of gowth, and therefore
follow the comlrcund interest law. If we are studpng the relation between time
and size of an organism or a population, it is often profitable to see whether the
data fit this type of curve.

Another situation in which this type of curve will be useful is in dealing with
physical laws that are exponentia.l in character. Consider for example, Van Hoffs
law, which states that the rate of reaction approximately doubles with each 10'C
rise in temperature. Many plant responses are lnown to follow this law fairly well,
at least throug[r a limited temperature range. Thus, temperature and rate of
spoilags in fruits and vegetables often can be studied easily by assuming that they
are related exponentially.

The rate of cooling of produce placed in a refrigerated room follows this kind
of cuwe. In this case, we are not dealing with increase or gowth but with
decrease or decay. A decay cuwe has a b value of less than one, while in a gowth
curve b is greater than one. Other examples of decay curves are the curve of
degradation of certain insecticides in the soil and the decay of radioactive isotopes.
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TABLE I4.2.
Population of San Diego, California, from 1860 to 1960

Year of Cenzus

Decades

from 1860 (X) Population (Y) LgY

I860
r870
r880
1890
r900
l9l0
1920
1930
1940
r950
1960

731

2,300
2,636

16,159
17,7N
39,578
74,361

I47,995
203,M1
334,387
573,224

2.8M
3.362
3.Al
4.2M
4.248
4.597
4.87L
5.r70
5.308
5.5?/1

5.758

0
I
2
3
4
5
6
7
8
I

t0

Totals

Sums of squares

Sum of X logY

55

385

49.33r

230.393503

277.98r
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Figure 14.5. Populations of San Diego for 11 decades plotted directly and on a
semilog scale.
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As an example of data that can be analyzed by transforming Y to log Y, we
will take the relation of population (! to time (X) for the city of San Diego,
California, through 1l cersuses (Table 14.2).

A g"ph of the populations against time (Fig. 14.5) shows at once that it is

useless to calculate a linear regession equation for these data. This is a striking
example of a case where the shortcut method would give extremely misleading
results. Since the rank of the populations is exactly the same as the rank of the
years, t}re shortcut method would give us a coefficient of correlation of +1. It
would fail to reveal the fact that the data are decidely curvilinear. However, when
the log of population is plotted agains! time, we see that a straight line appears
reasonable for representing the relation.

The calculations are straightforward if we replace Y with Y':logY as one of
the variables.

)r2:3&5- S:llo:)X2- ry
/+g.ggt)2 

iy,2_ ry2y'':2.3O.393503-#:9.161907:) 
r,

55(49.331) (>X>Y',)
ZrV' :277.W2- --:-,J :3I.326 : )XY' - :;-

,r: (2:Y')'=: 
,,,,91.??6' , :0.9732

2*2y' 110(9.161907) - -

0.9737 :0.987

u,:?4: +#:0.2&48

a,:i,-a,*: n 
iTt -or*r(#):s.moo

Regression equation: t' : 3.0606 + 0.2848X
Taking the antilog of both sides, gives the exlrcnential equation: t:1,150(1.924'
This equation tells us that, on the average, the population increased by 92.7Vo

every l0 years.
There is no question that the elponential curve fits the data much better than

any straight line that could be used. However, even when we use the logs of the
population against time and fit a straight line, t}re fit is not ideal, and there is a
slight but definite tendency for the points to form a curve. Deviations in the
middle of the line are positive, while those at the ends are negative. It appears
from the graph that the rate of grou,th has not been constant but has had a
tendency to slow down.
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If the curve were extrapolated to 1970, the estimated population would be
I,561,0(n. Later, we will show how a still better equation can be devised to
express the relation of population to time.

Curves

These are special cases of the exponential curve discussed in the last section. If the
coefficient b in the equation Y:ab* is les than one, Y approaches zero as X
increases without limit. A line approached by a curve in this way is called an
asynptnte. In the above case, the aqrmptote is the X-axis. There are cases where
the asymptote is some value of Y other than zero. For example, the temperature of
a crate of produce placed in a refrigerator will approach the temperature of the air
in the refrigerator. The uptake of a cation in plants will show a very marked
increase associated with small increases of the cation in the nutrient medium at
low levels. Once the level in the medium reaches a level adequate for normal plant
growth, the increase of uptake associated with additional increases in the medium
is very small. The uptake approaches an upper limit which can be considered an
asymptote.

If Y decreases as X increases and approaches an asymptote from above, an
equaUon of the form Y: c * abx may give a $ood fit. If Y increases as X increases
and approaches an asymptote from below, the equation would be Y= c- abx.llne
asymptote in eitler of these cases is Y:c. There is no simple, straightforward
method for fitting data to these equations. The difficulty lies in finding the value
of c. In some cases this value is fairly obvious, as in the case of a cooling cuwe
where we expect the value of the asymptote to be the temperature of the cooling
medium. In other cases, all we can do is make a reasonable estimate.

In the case of the descending cuwe, we can rewrite the equation as (Y- c) :
alx. Taking the logs of both sides gives us the linear equation: log(Y- c):loga*
Xlogb. For any chosen value of c, we can fit a straight line of this form to the
data. We can try various values of c aiid compare the values of r2 to try to
maximize the closeness of fit.

It should be noted that c must be less than the smallest value of Y, since Y - c
must be positive in order to have a logarithm.

The case of t}te ascending cuwe is similar. Here the equation can be written
("-Y):abx, and the log form is: log(c-Y):loga*Xlogb. In this case, c must
be greater than the largest observed value of Y. Computer programs can easily be
written to try successive values of c until one is found that gives the smallest sum

of squares of deviations from the calculated line.
This fairly simple approach is open to criticism on Ih9 gounds that it is not a

least squares solution in the sense that the sum of (Y-Y)z'is a minimum. It is the
sum of squares of the differences between the observed and calculated values of
log(c-Y) or log(Y- c) that is being minimized.

It may be that these logs display more homogeneity of variance over the
range of X values than do the Y variates themselves. This can be tested only when
there are several values of Y for each value of X as in a replicated experiment (see

Curuikrcu Relatiotts 2ffi



Chaper 12). If the variances of the logs are more nearly homogeneous than the
original Y variates, then it is valid to fit a straight line to log(c-Y) or log(Y-c)
instead of computing a least squ€ues cuwe based on the untransformed Y variates.

If it is dested 6 find an equation that makes the sum of [-tf a minimum,
a detailed method is presented n Statistical Metlnd"s,6th edition, by Snedecor and
Cochran (pp. a67-a71). Actually, the results obtained by fitting a straight line to
log(c - Y) or logfY - c) generally give equations very close to those obtained by the
more involved "true" least squares method.

The Polynomial Tlpe

This type of curve has the general equation Y: a * bX+ c* +dX3+ ... . The row
of dots means we can have as many terms as we like. If the equation has only the
first two terms on the right-hand side, we can recognize it as the equation of a
straight line. If it ends with the third term (cxz), it is a second,-degree or quadratit
equation. The curve represented by a quadratic equation has a special name, a
parabola. An equation ending in dX3 is called a third-degree or cubb equation.
The highest power of X appearing in the equation determines the degree, and
special names are given to the more common degrees. Correslrcnding to the fust
five degrees are the terms linear, euadratic, cubic, quartic, and quintic, respec-
Uvely.

The polynomial is by far the most widely used expression for describing the
relation between two variables. Sometimes it may not be a particularly "natural"
expression, that is, one that expresses a cause and effect relation between the
variables. However, it is so flexible and so easily handled mathematically that it is
very usefr.rl.

Figure 14.6 shows a few of the many shapes of cuwes that can be represented
by a polynomial equation. A striking property of this type of equation is that no
matter how many pairs of observatiors we have, it is possible to calculate a
polynomial cuwe that will exactly fit every point, providing there is only one value
of Y for each value of X. The degree of the polynomial required to do this is, at
most, one less than the number of pairs of observations. In achral practice, one
seldom calculates more than a third- or fourthdegree equaUon. The calculations
beyond this are formidable, and the results are usu4.lly a meaningless, meandering
curve.

We noted that a straight line was simply a special case of the general
polynomial equation-a first-degee or linear polynomial. To find an expression for
the curvilinear relation of two variables, we try to do the same as we did in fitting
a straight line. That is, we seek t}le curve of a given degee that will make the sum
of squares of deviations a minimum.

The problem is to find the coefficients d, b, c, d, and. so forth that will give a
polynomial meeting the requirement that the zum of squares of deviations be a
minimum. To do this, we make use of what are known as rwrrnal eqtntiotts. We
need as many equations as there are coefficients, or one more than the degee of
the equation we wish to fit.
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First degree Second degree

Y=16-Bx+x2

Fourth degree

Y = 13 - 15X + larqlX2- l3ralX3+ 1lre1ye

Y= 1+ X

Thard degree

Y = - 4 + 6x - (sa)X2+ (rrre)x3

Figure 14.6. Typical shapes of polynomial curves of the fust four degrees.

The normal equadons are as follows:

dn+ b>x+ c>xz+ dlX3+ ... :)Y
a)X* blx2+ c)x3+ d>x4+ ... -XXY

o)X2 + b)X3 + c2X4+ d2X5+ ... : )FY
a)X3* b2x4 + c2xs+ d)F+ ... = )X3Y
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The dots mean that we continue with the same pattern until we have as many
terms to the left of the equal sign and as many equations as there are coefficients
to be calculated. Thus, for a straight line we need only the first two terms of the
first two equations. For a quadratic or second-degree curve, we need the first
three terms of the first three equations, and so on.

From the data, we need to calculate the sums of powers of X and sums of
products called for in the equation. For an nth power equation, we need the zums

of all the powers of X up to X2", and the zums of products up to X"Y. The
mathematics is simple, but the arithmetic is overpowering if we try to fit
polynomials of high degree.

As an example, we will use some data on the yield of green lima beans at
different ages of the field at picking time (Table 14.3). The date of the earliest pick
is used as the base date and given an X value of zero. The values of X for
zubsequent pickings are the number of days from the base date. Yield in pounds is
the dependent variable, designated by Y. The data are expected to be curvilinear,
since at the first there should be an increase in yield with age of the field, but as
the beans increase in maturity, they turn from geen to pale and white. Therefore,
the yield of greens will decrease after reaching a maximum.

We now have all the sums we need for the normal equations up to the third
degree. We will fust fit a straight line to the data, using the normal equations:

an* b)X:)Y
a)X+ b)X2:)XY

Filling in the lrrown values in these equations, we have

6a+52b:229.7 (1)

52ai6fib: I,978.1 (2)

TABLE I4.3.
Yield in pounds of green lima beans (Y) on six dates (X)

xY * 1e Xa ;qs )p XY *y x3Y

027.4 0 0 0 0 0 0 0 0
4 39.3 16 M 256 t,Or4 4,096 157.2 628.8 2,5t5.2
7 46.2 49 343 2,401 16,807 117,649 323.4 2,263.8 15,846.6

L0 47.81001,m0 10,000 l00,0fi) I,(m,(m 478.0 4,7N.0 47,800.0
t3 44.51692,197 28,561 37I,293 4,826,809 578.5 7,520.5 97,7ffi.5
t8 24.5 324 5,832 104,976 1,889,568 U,0t2,224 441.0 7,938 .O 142,88/.0

Totals 52 229.7 6fi 9,436 146,194 2,378,692 39,960,7781,978.123,131.1306,812.3
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Multiplying equation (1) by 52 and equation (2) by 6 we get

3l2a*2,7Mb: 1L,944.4
3I2a * 3,94!8b : I I,868.6

t,%Mb:
b-

(3)

(4) and subtracting (3) from (4),

-75.8
-75.8 /1,244: -.06m3

Substituting this value of b in equation (1), we get

6 a : 229.7 * 52(.0609) : 232.868

a : 38.8114

The regression equation is therefore

t:38.81-.0609X

We could have arrived at the same equation by using the standard formulas:

2xub: --+ and a:Y - bX
2xz

The purpose of going through the normal equation procedure was to gain some

practice in the process we will follow for curves of higher degree.
We can see by the graph of this Une (Fig. f4.7) that it gives a poor fit. For the
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Figure 14.7. Graph of lima bean data showing the complete failure of linear
regression to express the relation between yield and age of crop.

2

Curuilhwar Rebtions 210

0



(r)

(2)

(3)

coefficient of correlation, we need )f, which is 9,295.03. Then,

r: W: f,rrr, 
-ffa\,' I @-9X* -- ry)

: 
1 - n.a)' / (207.33Xs01.35) : .s01s3

r: \ft)015.3 : -.03g

The coefficient is close to zero and obviously not significant. We have a good
example of one of the pitfalls described in Chapter 13, "A low coefficient of
correlation does not necessarily mean a lack of relation." Although the coefficient
in t}re present example is almost zero, it would be ridiculous to conclude that there
was no relation between yield of geen limas and the age of the crop at picking.

We will now fit a second-degee or quadratic cuwe to the data. We need
three normal equaUons:

an*b)X*c)Xz:XY
oXX+ b)x2+ c)X3:)XY

alX2+ b2X3+ c)Xa:XX2Y

Filling in the observed values from the table, we get

6a+52b +658c:229.7

52a I 658b +9436c : 1,978. I

658a * 9436 b + l46,lg4c : 23, 131. I

Multiply (1) by 52 and (2) by 6 and subtract:

3I2 a + 27 Mb + M,216 c : ll,W.4
3l2a + 3948 b + 56,616c : I 1,868.6

1244b+22,400c: -75.8

Now multiply (1) by 658 and (3) by 6 and subtract:

3948 a * 34,2L6b + 432,W c : 151,142.6

3948a * 56,6 l6b + 877,l64c : 138,786.6

22,4Nb jQl!,2;fis- - 12,356.0

(4)
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The two preceding steps eliminated a and gave us two equations in two un-
knowns. Now, multiply (a) by 22,4O0; (5) by lztA; and subtract:

27,865,ffib* 501,760,000c : - 1,697,920

27,865,ffib + 552,584,800c : - 15,370,8&1

50,824,800c : - L3,67 2,W
c: -.26UJ

Substituting c back in (4): 1244b-ffi25.6: -75.8
L244b:5949.8

b:4.7828
Substituting b and c in (I): 6a+2.48.7056-l77.OO2O:229.7

6a:157.*M
a:26.3327

We can now write the second-degree equation:

t : 26.3327 + 4.7828X - .2690X3

Iret us see how much of an improvement this is over the linear equation. We call
the linear estimate t, and the 

-quadraUc 
estimate i'O. t"bl" 14.4 shows these two

estimates compared with the original values.

The results can be summarized in an analysis of variance table as follows:

Source of variation SS df

Total
Linear
Deviations from linear

Quadratic component
Deviations from quadratic

50r.35
0.83

500.52
492.76

t.lo

b
I
4
I
J

Thus we see that fitting a straight line accounted for only about 0.27o of the
variability in Y (0.83/501.35), and the quadratic curve accounted for (492.76+
0.83)/501.35 or 98.57o.

The proportion of the variability of Y accounted for by the linear plus
quadratic components (0.985) is designated as R2 and called the "multiple
coefficient of determination." This will be discussed in more detail in Chapter 16.

When a quadratic equation seems to fit the data very well as in the lima bean
example, it is often useful to find the value of X that will give the maximum (or
minimum) value of Y. This is a simple problem in calculus which leads to the
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TABLE I4.4.
Observed and calculated lima bean yields

x Y t" dr:Y-ir d"' ta dq:Y-tq q'

o 27.4
4 39.3
7 46.2

l0 47.8
13 44.5
l8 24.5

38.8r
38.57
38.38
38.20
38.02
37.7t

- It.4l
0.73
7.82
9.60
6.48

- t3.2I
0.01

130.19
0.53

6r.15
92.16
41.99

t74.fi
500.52

26.33
4I.16
46.63
47.26
43.05
2.5.27

1.07

- 1.86

-0.4!
0.il
t.45

-0.77
0.m

L14
3.46
0.18
0.29
2.10
0.59
7.76Totals

solution

v _-b
^*- %

In otrr example, X^*: -4.7828/2(-0.2690):3.9, or approximately I days after
the base date. Substituting this value of X in the quadratic equation gives 47.59 as
the estimated maximum value of Y.

Since only l.SVo of the variability in Y remains unaccounted for after fitting
the quadratic equation, in practice we would generally conclude the regession
analysis at this point. However, to illustrate the method, we will fit a third-degree
curve. The normal equations are

an* b)X+ c)F+dXX3:)Y
aXX + b2-X3 + c)XS + d)Xa : )XY

a2X2 + bZXz + c)Xa + d)Xs : )XsY

a)X3 + b>X4 + c)X5 + d))f : )X3Y

SubstituUng the observed values, we have the following equations, which we want
to solve for a, b, c, and d:

6a + 52b * 658c * 9,436d : 229.7

52a+658b + 9,436c + 146J91d:1,978.I

6584 + 9,436 b + 146,194 c + 2,378,ffi2 d : 23, 131. I

9,436o * 146,194b + 2,378,692c * 39,9ffi,778d:306,812.3

(1)

(2)

(3)

(4)
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We first eliminate a as follows: Equation (2) times 6 minus equaUon (l) times 52
glves

l,?,4b+22,400c*386,492d: -75.8 (5)

Equation (3) times 6 minus equation (I) times 658 gives

22,4OAb + 444,200c * 8,063 ,ZMd.: - 12,356.0 (6)

EquaUon (4) times 6 minus equation (I) times 9,436 gives

386,492b+8,063,264c*1fi,726,572d:-326,575.4 (7)

Now we eliminate b by the following steps: Equation (6) times I,244 minus
equation (5) times 22,400 gives

50,824,800c* I,373,279,6I6d: -13,672,W (8)

Equation (7) times I,214 minus equation (5) times 386,492 gives

1,373,279,616c*38,127,789,500d: -276,Xj3,7U (9)

To eliminate c we take equation (8) times 1,373,279,616 mints equaUon (9) times
50,824,8(X) and divide both sides by 10,000,000 and round off to reduce the large
numbers to l0 digit figures. This gives

5, l(X,037,206 d : - 38,?32,948

d: -.00736

Substituting d in equation (8) and solving for c gives

c: -.07015

Substituting d and c in equation (5) gives

b:3.48886

Finally, substituting d, c, and b in equation (I)gives

a-27.31449

And the third degree or cubic equation is

i.:27 .3L49 + 3.48886X - .07015X2 - .00736X3

Calculating the estimated values t",we find a substantial improvement over the fit
of the quadratic curve.
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x YY d:Y-i dlz

.0I

.t4

.18

.00

.02

.00

.35

0
4
7

10

l3
t8

Totals

27.4
39.3
46.2
47.8
u.5
2!4.5

27.31
39.68
45.78
47.83
4.M
L4,.46

.09

-.38
.a

-.03
-.14

,M
.00

The sum of squares for deviation from quadratic can now be partitioned as

follows:

Required F

Source of variation SS df MS F 1Vo IVo

Deviation from quadratic
Cubic component
Deviation from cubic

7.41
0.r75

a3 r8.5r 98.49
7.76
7.41
0.35

.i
I
2

The improved fitUng achieved by calculating a cubic equation, while appreciable,
was significant only at the 57o point. With so few degrees of freedom, this is not
surprising, since an F value of 98.49 is required for significance at the 17o level.

Figure 14.8 shows the quadratic and cubic curves, drawn over a much wider
range than the observations, to bring out their difference in shape. Throughout the
range of observaUons, the two curves are not very different, but the superior fit of
the cubic is evident.

You probably noticed how increasingly cumbersome the calculations became
as we went from linear to quadratic to cubic curves. Various methods have been
devised for systematizing these calculations; the most corrmon are t}re Doolittle
and the abbreviated Doolittle methods. A treatment of these is beyond the scope

of this discussion but can be found in some advanced statistics texts. Progams are

also available for calculating coefficients to almost any desired degee on an
electronic computer.

In cases where the values of X are equally spaced, there are extremely simple
shortcut methods that will be presented in the next chapter.
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Figure 14.8. The same lima bean data as Figure I4.7, showing the good fit of a
quadratic curve (dotted line), and the even closer fit of the cubic
curve (solid line).

POLYNOMIAIS IN REPLICATED EXPERIMENTS. When our data consists
only of single values of Y for each value of X, the only way to test the significance
of a regression component is to test its mean square against the residual mean
squiue. In replicated experiments, on the other hand, we have an error mean
square, which can be used for testing not only each regression component but also

the residual mean squiue.
In the last chapter we fit a straight line to the yields of sugar beets at five

harvest dates from Table 10.1. We found that while t}re mean square for linear
regression was higlrly significant, there was also a significant arnount of deviation
from linearity.

We will now fit a quadratic equation to these data to see whether a
second-degree curye will account for a large portion of the deviation from a

straight line. Some of the sums we need for the normal equations have already
been calculated in Table 13.7. The others will be found in Table I4.5.
We now have all the sums needed for the normal equations.

5a+ 15b+ 55c: 1600.0

l5a+ 55b*2?5c: 555f.0

55 a + 2?5b + 979 c : 21912.6

(r)

(2)

(3)
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TABLE I4.5
Fitting a quadratic equation to sugar beet time of harvest data

xY;s1afy t G-Y) (Y-Y)'

140.0
267.2
335.2
4r7.0
440.6

r40.0
1m8.8
3016.8
ffi72.0

110r5.0

I
2
3
4
b

11
816

27 8l
Mzfi
t25 62.5

ta.fiM
2, .7142
u7.628l
408.9I40
42.57t0

-2.r714
8.4858

-D.AU
8.0860

- r.9710

4.7t50
72.0088

154.4651
65.3834

3.8848

15 1600.0 22.5 979 21912.6 1599.9990 0.0010 3m.457r

Equation (l) multiplied by 3 and zubtracted from equation (2) and equation (1)
multiplied by II and subtracted from equation (3) grve us two equations in two
unknowns:

10b+ 60c: 751.0 (4)

ffib1374c:4312.6 (5)

Equation (4) multiplied by 6 and zubtracted from equation (5) grves

14c: - 193.4

c: - 13.8143

Substituting the value of c in equation (4) grves

b:L57.%57

and substitution of b and c in equation (f) gives

a: -2.0000

The quadratic equation is therefore

t: -2* r57.9857X- 13.81{}X2

In Table 14.5, we have entered the values of i', the differences between these
and the observed values, and the squares of the differences. The sum of the
deviations is essentially zero, as it should be, and the sum of squares of deviaUons
is 300.4571, which must be reduced to a per-plot basis since we were working with
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totals. Since there were 16 plots entered into each harvest date total, 3W.4577/Lo
equals 18.7786 as the sum of squares for deviations from the quadratic curve.
Since the sum of squares for deviation from linear regression was 185.7587, the
sum of squares for quadratic regression is

185.7587 - 18.7786 : 166.9802

All of this can be summarized in an analysis of variance table:

Source of Variation df SS MS F

Harvest dates
Linear

Quadratic
Residual

Error

4
I
I
2

t2

37r0.7650
3525.0062

r66.9802
18.7786
99.4670

927.69I
3525.006

r66.980
9.389
8.289

11r.92
425.26
20.t4

1.13

We can see that the quadratic regression accounted for a very large portion of
the significant deviation from linear. The residua! sum of squares is not significant
and, in fact, would not be significant if all of it were associated with a single
degree of freedom, so there is no need to continue further with the regression
analysis.

We have used a rather long and laborious process to find the quadratic
equaUon and the sums of squares due to quadratic regression and deviation from
regression. In the next chapter we will learn a shortcut method for finding the
quadratic equation. We have 

"lr""dy 
had some experience in finding the zum of

squares for regression by use of the coefficients in Table A.Il. Under the portion
of the table for n:5, we see that the quadratic coefficients aret 2, -1, -2, -1,
and2.

()c,rJ2 l(z)rn.o - 267 .2 - (2)335.2 - 4t7 .o + (2)440.6)2
ss: 

4r"9

(- 1e3.4)'z:t:166.e802

which is the same as we obtained indirectly.

Combining Curve Types

We have discussed four general types of curves and shown how to fit observed
data to them. Sometimes it is worthwhile to use a combination of two fircs. For
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---ouadratic: 7 =2.879 +.4059X -.O1211X2

- 
Linear: 7 = g.0606 + .2848x

5.5

3.0

1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960

Year

Figure 14.9. San Diego population data with a straight line fitted to the logs of the
populaton (solid line) and the improvement obtained by fitting a
quadratic equation (dotted line).

example in the data on the population of San D"go, we found that plotting the
logs of the population against years gave a much closer approximation to a straight
line than when we plotted just population against years. However, a glance at
Figure 14.5 shows tlat even the trarsformed data do not quite form a straight line,
but rather have a definite tendency to curve. The rate of increase seems to be
slowing down with time.

We can easily fit a second-degree curve to the data again using Y': logY as

the dependent variable instead of Y. The calculations are left to the interested
reader as a good exercise in fitting a second-degree curve. The equation obtained
is

Y' : 2.87906 + .40590X - .01211X2

Figure 14.9 shows the comparison between the straight line and the second-
degree curve in relation to the logs of the population. We have already pointed
out that extrapolation of the straight line would give a prediction of I,561,000 for
1970. Extrapolation of the second-degree curve gives a prediction of 756,800.2 In
view of the closer agreement of the second-degee curve with past trends, the
lower prediction is probably more reasonable.

the 1970 census figures are now available and give the population of San Diego as
697,000, which is 87o below the predicted figure.

219 DecidinglVlnt Cunse to l|se

5.0
c
o
s
3. a.s
oo
oot 

4.o

3.5



The Periodic Type

This is a curye that relates some variable to time and is repeated at fixed time
intervals. It is lsrown in mathematical texts as a Funier ca nse and is useftrl for any
kind of data that tends to fluctuate up and down at regular intervals. Very few
statistics texts discuss fitting data of this kind, but we have found it so useful for
many kinds of agricultural data, that we will give a brief outline of the general
method. In the next chapter we will take up a shortcut method for handling
special cases.

The general equaUon for a periodic curve is

Y : ao* a, cos CX f b, sin CX * a2 cos2CX * b, sin 2CX f arcos 3CX * br sin3CX. . .

where X is an observed time expressed as units from some arbitrary starting time,
and C is a constant equal to 360' divided by the number of units in a cycle.

Suppose, for example, we €ue studying hourly fluctuations of some variable in
2l-hour cycles, and we take midnight as the starting point. An observation made
at 9 e.u. would have an X value of 9, and C would b }ffi" /2Jt, or 15". The value
of CX would therefore be 9x 15o or, 135o.

The row of dots at the right of the general equaUon means that we can
continue adding pairs of terms as long as the total number of terms does not
exceed the number of time periods for which we have observations.

This curve has many features similar to the polynomial curve. It has the same

remarkable property that if there is a single value of Y for each value of X, an
equation can be found that will exactly pass through every point.

You will recall that a firstdegee polynomial is a straiglrt line with the
equaUon Y:aibx. This line is completely described with two numbers, the
intercept c, and the slope b. A firstdegree Fourier curve is a simple wave curve
with the equation Y:oo*arcosCX*DrsinCX. To describe this curve we need

three nwrtbers. The term oo gives the central value around which the wave
fluctuates. It can be looked on as a weig[rted mean. A second value A
:lfj+ b: , is called the serniarnplitude atdtells us how far the cuwe fluctuates
above and below the central point. The totd range from the highest to the lowest
point on the wave is 2A and is called the ampkatde. The third value needed to
describe tJre wave is the plwse angle.l\is tells ts the point in the cycle where the
wave reaches its maximum value. To find this we first find 0'(theta) :arctan
(br/ or), read "the angle whose tangent isbr/ ar." We then find the phase angle by
applyrng the following rules:

If br is positive and a1 is positive 0:0'
If b, is posiUve and a1 is negative O=l8fJ" -0'
If b, is negative and a, is negative 0:l8{J." + 0'
If b, is negative and a, is positive 0:3ffi" - 0'

In the polynomial we obtained more complicated curves by adding terms
with successive powers of X, such as cX2 dX3, and so forth. With the Fourier
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(r)

(2)

(3)

cnrye we obtain more complicated wave forms by adding pairs of terms zuch as

arcos2CX*b2sin2CX, a.cos3CX*b.sin3CX, and so forth. The effect of the
second-degree pair is to superimpose on the first wave a second wave with two
complete oscillations per cycle. The third-degee pair superimposes another cunre
with three complete oscillaUons per cycle, and so on.

The method of fitting a Fourier cuwe is also very similar to the method for
fitting a polynomial. We use a set of normal equatiors in which we substitute sums

calculated from the observed data and solve tlese for the required coefficients.
To simplify the normal equations, it is convenient to adopt two symbols, U

and V:

Q:cosi(CX)

Vi:sini(Cx) ftr* )UrV, means )cos2(Cx)sin(Cx).

The normal equations are as follows:

oonf or)U, *br2Yr* ar)Uzt b.>Vz+... :)Y

ft)Ur + ar)Ur2 + br>Urvr + ar)UrU, * b2>UrV2 + . .. : )UrY

ao)V, + ar)Urvr + b r2V 12 + ar2u2vr + bz>v rV 2+ . . . : 2VrY

ao)U, + ar)Uru2 + Dr>U2Vr + ao}lJ 12 + bz>V zV z+ . . . : )UzY

ao)V, + or)Urv2 + Dr>VrVz + ar2lJrYrl br2vnz + ... : )VzY

As with the polynomial, we need as many terms on the left-hand side of these
equations and as many equations as we have coefficients to calculate. For a
polynomial of the nth degree we needed n* I equations each with n* I terms on
the left-hand side. For the Fourier curyes, we need 2n*1 equations, each with
2n * I terms.

To illustrate the procedure, we will fit a ftst-degree Fourier curve to the
mean temperatures observed in nine months at Stockton, California. Table 14.6
shows the observed data and t}re necessary columru for filling in the terms of the
normal equations.

We can now write the three normal equations required to find as, a1, fid b1.

9ao+23ffiar - l.366Dr :518.9

2.3ffi ao + 4ar + 0.866br : Tl .891

- l.366ao+0.866o, +\br: - f8.202

Multiplying equation (l) by .866 and equaUon (2) by 1.366 and adding gives

1L.026 ao + 7.5 l3a, : 555. 71
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TABLE 14.6.
Mean monthly temperatures for nine months at Stockton, California

(Cycle:12 months, C:3ffi" /12:30")
Y

(Temp) Month X CX
Ur:cos Vr:sin
(cx) (cx) U,, v,, urvr w, Wt

44.7
49.0
D.J, /
59.7
76.2
72.7
64.0
53.0
45.9

Totals
5r8.9

I"r.
Feb.
Mar.
Ap..
A,rg.
sep.
Oct.
Nov.
Dec.

0.000
24.5N
46.5M
59.700

-38.100
- 62.958

-64.m0
-45.898
-22.9il

0 0 r.000
I 30' 0.866
2 ffi" 0.500
3 mo 0.000
7 zt0" -0.866
8 240" -0.500I270" 0.000

t0 300' 0.500
11 330" 0.866

0.000 1.00 0.00 0.000 44.7N
0.500 0.75 0.25 0.433 42.434
0.866 0.25 0.75 0.433 26.850
r.000 0.00 r.00 0.(m 0.000

-0.500 0.75 0.25 0.433 -65.989
-0.866 0.25 0.75 0.43it) -36.350
- 1.000 0.00 1.00 0.000 0.000

-0.866 0.25 0.75 -0.433 26.500
*0.500 0.75 0.25 -0.433 39.749

2.366 -r.366 4.00 5.00 0.866 77.894 -103.202

MulUplying equation (I) by 5 and equation (3) by 1.366 and adding gives

43.l34aot 13.0l3or:!ffi.526 (5)

Multiplying equation ( ) by 13.013 and equation (5) by 7.513 and subtracUng gives

- 180.58440: - 11,201.093 and ao:62.927

Substituting this value of os in equation (4) gives

(u.026 x 62.027) + 7.513 at:ffi.771

7,5l3ar: - 128'139

ar: - f7'056

Substituting oo and a, in equaUon (3) grves

( - 1.366 x 62.027) + (0.866 x - 17.057) + 5b t: - 103.202

- U.729 - 14.770 + 5b r= - 103.202

5b r: 94.72n + 14.770 - 103.202 : - 3.703

bt: -O'741
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We can now write our equation:

Y : 82.027 - 17.056 cos(Cx) - 0.7aI sin(Cx)

Substituting the values of cos(CX) and sin(CX) for each month gives us predicted
values which we can compare with the observed values.

The figures in parentheses in Table 14.7 represent the data for months which
we assumed were not available when we computed the curve and therefore did
not enter into the calculations. It will be noted that the curye we calculated from
the available data overestimated the actual means for the missing months.

The fit of the curve to the observed data is very close. The total zum of
squares of the observed temperatures is 1032.942, and we can partiUon this in an
analysis of variance as follows:

Source of variation df SS MS F

Total
Due to regression
Deviation from regression

8
2
6

1032.942
1016.187

r6.755
508.094

2.794
181.85*r'*

TABLE I4.7.
Observed and predicted temperatures at Stockton, California in nine months

Month (Observed) (Predicted) (Y-i) (Y-Y)'
tY

January
February
March
April
(M"y)

fiune)
0rtv)
August
September
October
November
December
Totals

44.7
49.0
aJ. /
59.7

(66.2)
(72.8)
(78.2)
76.2
72.7
&r.0
53.0
45.9

5r8.9

-0.27
2.tl
0.84

- 1.59
(-3.71)
(-3.ffi)
(-0.88)

1.50
L23

- 1.14

- 1.73

-0.02

0.0729
4.4521
0.7056
2.5281

0.9409
2.2ffi
r.5129
1.2996
2.9929

r6.7550

-0.97
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M.97
46.89
52.86
6r.29

(6e.er)
(76.(})
(7e.08)
77.L7
71.20
62.77
il.t4
47.63
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Regression has 2 degrees of freedom, since we calculated two parameters, or
and b, in addition to t}re mean. The zum of squares for regression is obtained by
zubtracting the zum of squares of deviations from the total. The proportion of the
total sum of squares associated with regression is 1016.187 /1032.942:0.9838 and
is designated as R2.

The value of 62.027 for aa is interesting. We referred to this earlier as a
weighted mean. It is an estimate of what t}re mean would be if we had data for the
whole year. It is indeed very close to the true annual mean of 6l.M based on
complete records. Obviously the mean of the observed dat4 518.9/9:57.656
would be a very poor estimate of the annual mean, since the missing data were all
from warm months. However, the value of ao obtained by fitting a Fourier curve,
enables us to arrive at a close estimate in spite of the missing data.

The values of a, and b, can be used to find the semiamplitude and phase
angle.

Semiamplitude : A:1for\ br' : - 17.05,6)2+ (-0.74I)2 :17.1

0' :tar-rbt/ or:*4" whose tangent is -0.741/ - 17'056:2.5"

by the nrles of signs 0:180"+0':182.5".
Since I month:3Oo, 182.5" is equivalent to 6.1 months. This says that the

maximum point in the curve occurs about 6.1 months after the starting date. We
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Figure 14.10. Planting date and days to haryest of celery in Venturq California.
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used the mean flor January as our starting date, so we call this date January 15.

Therefore our calculated maximum is 6.1 months after ]anuary 15, or about ]uly
18.

We have gone through the steps in fitting data to a simple one degee Fourier
curve. If it becomes necessary to fit data in this way to a curve of 2 or more
degrees, the calculations become quite formidable, since two additional equations
must be added for each degree. Such problems can be handled very easily on a
computer. Figure 14.10 shows a curve, relating planting date to length of time to
harvest in celery, which was calculated and plotted on a computer. Ten years of
data were used in calculating this curve.

Fortunately, if we have data taken at equal intervals throughout a complete
cycle, the calculations become greatly simplified, and in the next chapter we
describe the shortcut methods for handling data of this kind.

SUMMARY

If t}te scatter diagram of two variables shows a tendency for the points to be
scattered around a curve rather than around a straight line, it is advisable to
analyze the curvilinear relation between the variables. Failure to do so can be very
misleading.

If the logs of the two variables form a scatter diagam that appears to fit a

straight line, the curve describing the relation is of the form: Y: aXb and is called
a power curve. Variables involving different numbers of dimensions are most likely
to fit this type of cuwe.

To analyze such data, transform the original variables X and Y to new
variables X':logX and Y':logY. Then proceed exactly as with linear correlation
and regression, finding the regession equation for the straight line: Y': a'+bX'.

If the log of Y plotted against X forms a straight line scatter diagam, the
appropriate curve is of the form: Y:ab', cilled, an exponential cuwe. Data in
which the variable Y tends to have a fairly constant rate of increase or decrease
can be expected to fit this type of cuwe.

To analyze, transform Y only to Y':logY and proceed as with linear
regression, fitting to the equation:

Y':a'*b'X
A special type of exponential curve in which Y approaches some value ot_her

tlran zero is called an asymptotic curve. It has the equation: Y: c-r abx, where c
is the asymptote. This equation can be transformed to a straight line by transform-
ing Y to Y' : log(Y - c) or Y' : log(c - Y), but the best value of c must be found by
trial and error.
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Curvilinear data that do not approach linear data under either a log or
semilog transformation can be fitted to a polynomial of the form:

Y:a*bX+cXz+dX3+...

using as many terms as necessary to obtain a satisfactory fit.
To find the unlmown coefficients a, b, c, d, etc., solve the set of simultaneous

equations, known x nomtal equaUons.

anf b)X+ c)X2* d)X3+ ... :)Y
a)X + b2x2 +clX3+ d2x4 +... :)XY

a)X2+ b2x3+ cIXa* d>xs+ ... : )X2y

a!X3* b)x4+ c)X5+ dX;f + ... : 2X3Y

The number of equations and the number of terms to the left of the equal sign
must each b. 

"q".1 
to the number of coefficients needed, or one more than the

degree of the regression equaUon.

Equations of the first few degrees have qpecial names, as do some of the
curves:

Degree Name of Equation Name of Curve

First
Second
Third
Fourth
Fifth

Linear

Quadratic
Cubic

Qru.ti"
Quintic

Straig[rt line
Parabola
Cubic parabola

Quartic parabola

Quintic parabola

lf the deviations of t}te observations from a computed curve appear to be
more or less random, fitting a higher degree curve usually is not worthwhile. If the
deviations are systematic or in definite groups as to sigrr, it is generally advanta-
geous to calculate the equation of next higher degee.

In replicated experiments, the mean square for deviations from regression can
be tested by the error mean square.

Calculations of coefficients for equations higher than cubic should be

attempted only by mastering qpecial methods (such as the Doolittle method) or

with an electronic computer. When values of X are equally spaced, much time will
be saved by using the shortcut methods described in Chapter 15. Combining log

Cunsilinear Relntions 2%i



and polynomial methods will sometimes result in a much better fit to the data than
either method alone.

Data that fluctuate up and down with time in a rather regular pattern can be
fitted to a periodic (Fourier) curve of the form:

Y : ft f a, cos CX + b, sin CX * a, cos2CX t br sin 2CX * . . .

\\e norrtal equations for finding the unknown coefficients are

aon * ar)U, * br>Vr + ar2Ur+ bz>V z+ ... : )Y

co)Ur + ar)Ur2+ br>Urvr+ or)UrUr* b2>UrV2+ ... :)UrY

ao)V, * ar)Urvr + br)Vr2 + ar2lJ rY r+ b2>VrV2 + . . . : 2VrY

ao)U, + ar)UrU, f br>Uzvr + ar2lJrz + bz>V2Vz+... : )UzY

ao)V, + ar)UrV, + br}Y rY,* a2>U2V2 + br2vrz +. . . : )Vzy

where U, : sosi(CX) and V, :51rri1g1;.

When data are obtained from equally spaced time intervals throughout a
complete cycle, shortcut methods, described in Chapter 15, can be used.
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l5
SHORTCUT

RECRESSION
METHODS

It frequently happens that we make observations on a dependent variable Y
associated with equally spaced values of an independent variable, X. For example,
if the independent variable is time, and we make readings of Y at daily, weekly,
monthly, or yearly intervals, the X's or times are equally spaced. Another case in
which we frequently have equally spaced intervals of X is in experiments involving
rates of fungicides, insecUcides, fertilizers, and the like. An experiment in which
the treatment rates are equally spaced has real advantages from the standpoint of
ease of analysis.

There are other advantages besides ease of computation in the use of equally
spaced rates. If we wish to learn something about the trend of response to
treatment levels, it is best to have the information provided by the experiment
evenly distributed through the range of treatment levels. There is very little
justification, for example, in a 0, 1,2,4 series of treatment levels, although this
series is very commonly used in experimental work. The series is neither arithmetic
nor geometric. The information obtained in the lower portion of the range is more
complete than in the upper part. Suppose we find an increase in yield with
increasing levels of X from 0 to 2 but a marked reduction in yield with treatrnent
level 4. It would be usefr:l to know where, in the range between 2 and 4, this
reversal in trend occurs. A treatment level of 3 would be most h"lpflrl.

The shortcut method we are about to describe was discrssed in the section on
trend comparisons in Chapter 6. The method is so usefr:l that it seems worthwhile
to extend that discussion and to relate it to the previous chapter of this section
dealing with curvilinear regression. Statisticians usually refer to this as the nwtlnd
of orthogonal polynnniah. Those of you who suffer a mental block when con-
fronted by such an imposing title can think of it as the "shortcut method for
measuring trends." You will find it easy to use and a tremendous timesaver.

POLYNOMIAL CURVE FITTING

The heart of the method for fitting polynomials is Table A.ll,r the use of which
eliminates many of the laborious computations ordinarily required in curvilinear

lThis table, calculated by the authors, is used rather than one of the many similar tables
found in other publicaUons. To the best of our }nowledge the K values do not appear in any
other published tables.
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regression. The table can be used to (I) find t}re linear, quadratic, cubic, and
quartic regression equations for any number of equally spaced observations up to
25, and (2) partition t}re treatment sum of squares in an analysis of variance into
linear, quadratic, cubic, quartic and residrral components for up to 25 equally
spaced treatments or observations.

At the top of the table are values of n, the number of observations or
treatments. For any given problem we need use only the portion of the table
under the appropriate value of n. The fust column of coefficients, headed cr, in
addition to being used for various computations, consists of coded rnhrcs o/X. The
coding is done in zuch a manner as to result in the smallest possible whole
numbers.Xegardless of the values of equally spaced X's, if n is odd, we can take:
1':(X-X)/L, where I,js the interval between successive values of X. If n is
even, we take: X': (X-X)2/L. These transformatiors will give the values in the
c, column.

It is not necessary to know how the other coefficients in the table are

obtained in order to use tlem. However, the curious student will find the
following relations of interest:

The coefficients in the q column can be found from the following relation:
q,: (cr,zn-)crr21f GCD. After the numerators are calculated for all values of
i from I to n, the greatest common denominator (GCD) must be determined
so that the coefficients can be reduced to the lowest possible set of integers.

The coefficients of the g column are found from the following: c.,:(crf)cr,2
- cr,)cr,4)/GCD, and those of t}re cn column from:

c": (c'tr)c12c, - cr,2n)c,aco - )c,a)c,,2c2,

+)cr,2)cr,aq,)/CCO

It can be seen that the calculations become very cumbersome, eq>ecially for larger
values of n, so being provided with a table is a great timesaver.

The calculaUon of the K values is most easily handled by utilizing some of the
concepts in theory of numbers which are beyond the scope of this book.

The steps in finding the linear, quadratic, cubic and quartic regression

equations are as follows:

l. Arrange the values of Y in a column according to the ascending values of
the associated X's, starting with the Y corresponding to the lowest value
of X.

2. Multiply the values of Y by the coefficients for c1, c2, c3 and cn shown in
the table, grving four columns.

3. Find the sum of each column, observing the plus and minus signs. These

sums €ue called )Y, P,, P2, P3, and P..
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4. Using the values of P obtained and the values of K from the table the
linear, quadratic, cubic, and quartic equations can be written from these
relaUons:

Linear equation: tr:Y + (&Pr)X'

Quadratic: io: {i - xrrr)+ (IGpr)x,+ (K4p2)x,2

Cubic: t": g - KrPr)+ (&Pr - K3P,)X'+ (K4P)X'2+ (KsP.)X't

Quartic: yo:F-KrP, +K3P4)+ (&p, -K3PJX'+(K4p2 -KzpJx'2
+ (K'P3)X3+ (&Pr)X'n

Note that these equations are in terms of coiled wlues of X.

5. If the values of Y in step I were totals of several obseryations or replicates
at each level of X, and we want the equations to be in terms of means, we
must divide each term in the equations by the number of replicates. (This
must be the same for all levels of X.)

Table l5.l shows the daily total milk production of 37 cows, in pounds,
recorded once a month for the l0 montlx from freshening to the end of lactation.
We will apply the five preceding steps to these data.

The coefficients c1, c2, ca and c4 were taken from Table A.ll and multiplied
by the correqponding values of Y (milk production). The totals of these coluinns
gave the values fo 2Y, P1, P2, P3, and Pr. We are now ready to apply step 4 and
write the equations.

tr-: 1,959.48 + (l/330X - 22,2ffi.6)x' : r.959.4ti - 67 .475x'

to : I r,sss. 48 - (r / 32) (- r,04s.8) ] - 67 .47sx, + ( I / 1,056) ( - 1,048.8)x,2

: 1,992.26 - 67.475X' - 0.9932X'2

tc : 1,992.2 6 + 
L - 67 .475 - (2s3 / 205,920) (4,798.2) 

] X'

- 0.9932X',2 + (t / 46,t8l) (4,798.2) X'3

: t,sp2.26 - 7  .s0Er', - O.gg32X'2 + 0. I l65lx'3

tn : I r,ssz.eo + (9/ 1,280) ( - 5,384.6) ] - 7 4.Wzx,

+ [ - 0.e932 -(4r / ile12)( - 5384.6) ]x',

+ 0. I l65lx'3 + O / t@,824X - 5,384.6)X'4

: 1,954.40 - 74.gr2x' +s.o27zx'2 +o.ll65lx'3 - 0.049029x,4
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TABI-E I5.I.
Milk production records of 37 cows for 10 months

Milk
Production

(Y)

x'
("r)

Month
(x) crY cz c2Y % caY c4 crY

-a
t4
35
3l
L2

-12
-31
-.n
-t4

42

6
2

-l
-3
-4
-4
-3
-1

2
6

I
2
3
4
b
6
7
8
I

l0

?tr

Y
s

E
A
i-t
b
U)

(\

o
tr

19

t9

2.U2.3
2,517.6
2,33l.4
2,166.I
2,030.0
l,g03.g
1,779.5
1,630.6
1,495.7
1,304.7

Totds 19,594.8

-9 -21,980.7
-7 -t7,623.2
-5 -tt,672.0
-3 -6,498.3
- 1 -2,030.01 1,903.9
3 5,338.5
5 8,153.0
7 10,399.9
I Lt,7A.3

Pr: -22,2ffi'6

14,653.8
5,035.2

-2,334.4
-6,498.3
-8,120.0
- 7,615.6

-5,338.5
- 1,630.6

2,971.4
7,828.2

- 102,576.6
35,2,46.4

81,704.0
67,L49.r
*1,3ffi.o

-22,W.8
-55,164.5
-57,071.0
-20,799.8

il,797.4
Ps,:4,79{3'2

18 41,96L4

-22 -55,387.2
-t7 -39,684.53 6,498.3
18 36,il0.0
t8 u,270.2
3 5,338.5

-L7 -27,72fi.2
-n -32,ffi5.418 23,&.6

Pa= -5,384'6Pz: - 1,048.8
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These equations are based on the total milk production of 37 cows. If we want

them on a per{ow basis, we simply divide each term by 37 and obtain:

ir:52'959- 1.8236X'

tq : S,845 - 1.8236X' - 0.026&lX'2

t : ss.aas - 2.0082x' - 0.02684x'2 + 0.003149x'3

i f 52.822 - 2.0082x', + 0.08182x',2 + 0.003149x',3 - 0.001325IX',4

In actual practice it is not necessary to construct a table like Table 15.1, since

the required Pvalues can be found by accumulating the products on a calculating
machine without o".iti"g down each individual product. Close attention must be

paid to the signs of the coefficients. Where a coefficient is negative, its product
with the correqponding Y value must be subtracted from the accumulated sum.

It is very important to keep in mind that the equations we have calculated are
in terms of X', the coded oalues of X. These are identical to the c, coefficients.
Suppose in our example we wish to calculate the predicted milk production per
cow from the quadratic equation for the third month. Referring to Table 15.1, we
see that X' for the third month is -5, so we substitute -5 for X' in the quadratic
equation:

to : ss.aas - 1.8236( - 5) - 0.02684( - s)'z

: 53.845 * 9.118 - 0.671 : 62.292

A common mistake made by students is to zubstitute the c, coefficients in the
linear equation, the q coefficients in the quadratic equation, and so on. It is the c,
coefficients that are the coded values of X in every equation, regardless of the
degree.

It is generally easiest to work with the equations in this form, but if the results
are to be published in a scientific paper, they should appear in terms of the
origryrl values of X. To do this, it is necessary to substitute (X-X)/L or
(X-X)Z/L for X'in the equations, depending on whether n is odd or even. To
show how this is done, wi will write our quadratic equaUon tq:S.845-
1.8236X'-0.02684X'2 in terms of X.

In this case n: l0 was even, so we substitute 1X-gZ/t- for X'. The interval
between successive values of X was l, so L: l. The value of X was 5.5, so we have
1':(X-5.5)2/l or 2X- 11. Substituting this in our equation gives

tq : s.845 - r.8236(2X - r1) - 0.02684(2X - Ir)'z
:53.845 - r.8236(2X - I r) - 0.02684 (4X2 - 44X+ r2r)

: 53.845 - 3. U7 2X + 20.059$ - 0. 10736X2 + 1. 18096X - 3.237 M
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TABLE I5.2.
Observed and calculated monthly milk production of 37 cows

observed Y i" Y-i, ta y-to i. y-i" i, y-i4

2,42.3
2,517.6
2,334.4
2,166.I
2,030.0
1,9(8.9
1,779.5
1,630.6
1,485.7
1,304.7

2,566.8
2,431.8
2,2W).9
2,161.9
2.027.0
1.892.0
1,757.1
1,622.1
1,487.2
1,352.2

-12/1.5
85.8
37.5

4.2
3.0

11.9
22.4

8.5

- 1.5
*47.5

2,519.1
2,415.9
2.304.8
2,185.7
2.O#.7
1.923.8
1,780.9
1,630.1
1,471.3
1,304.5

-76.8
101.7
29.6

- 19.6

-28.7
- r9.9

-1.4
0.5

14.4
0.2

2,495.6
2,423.7
2.32,4.4

2,?fr3.1
2,065.5
1,917.I
1,763.6
1,610.5
l,&3.4
1,328.0

-53.3
93.9
10.0

-37.0
-35.5
- 13.2

15.9
20.1
22,.3

-23.3

2,461.7
2,465.2
2,sffi.4
2,197.4
2,031.6
1,883.2
1,757.9
1,M2.5
I,504.9
1,294.1

- 19.4
52.4

-22.0
-31.3
- 1.6

20.7
2t.6

- tr.9
- 19.2

10.6

)dev
)(dev)2
2(dev)2 /37

-o.2
27,2ffi.90

737.00

0.0

18,930.76

5It.&1

-0.I
16,258.59

+tg.a

- 0.1

6,105.23

165.01

Collecting terms gives

tq : 70.65'6m - 2.4ffi24x -0. 10736X2

Let us use this equation to again cdculate Yq for the third month. Substitut-
ing 3 for X in this new equation gives

tq : 70. 65696 - 2.4ffi%(3) - 0' 10736 (3 
) 

2 : 62.292, the same as before

lret us see how much work we have saved. Using the methods of Chapter 14

(which we must use if the X's are not equally qpaced), to find th9 foul reg^ession

equations we would need to find >x, >F, ix', >x4, >x5, >f, >x7, >x8, >Y,

>XY, >X2Y, )X3Y and )XaY. These values would have to be substituted in the

normal equations and we would have to solve sets of simultaneous equations, two
for the tintar coefficients on up to five for the quartic. If you worked througlr the

examples in Chapter 14, you can appreciate what a laborious task this would be.

Contrast all of these calculations with the shortcut method. Using this, we need

only )Y, P1,P2, Pr, and Pn. Substituting these values in the standard equations of
step 4 gives us directly the four required regression equatiors. We have only lve
sums tJ calculate instead of 13, and there are no simultaneous equations to solve.

Now that we have the four equations, we can see how the values calculated

from them compiue with the observed milk production for each month. It is better
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to work with the totals rather than the means, since fewer rounding errors are
introduced. Table 15.2 shows the values calculated from each equation and the
deviations of these from the observed values.

There are several things to notice about this table. The sum of the deviations
for all of the curyes should add up to zero except for small rounding errors. This
furnishes a check on the calculations. The sum of squares of deviations from a
cuwe furnishes a measure of the closeness of fit; the smaller this zum of squares,
the closer the fit of the curve to the data. Each added degee results in a reduction
in this zum of squares. This must always be true; if it is not, look for an error in the
computations. (The question is whether the improvement of fit is significant; we
will show how to test this shordy.) For riow, simply note that there is a moderate
reduction in sum of squares as we go from the linear to the quadratic curve, avery
small reduction as we go from quadratic to cubic, and a large reduction as we go
from cubic to quartic. Finally, note that the signs of the deviations seem to fall in
rather definite patterns in the fimt three degees, while those from the quartic are
more or less at random. Also, we can see that the quartic curve is the only one that
shows an increase in milk production from the first to the second mont}. This is
known to be characteristic of most milk production curves in cattle.

Partitioning the Sum of Squares

Finding all the calculated values and thet deviations from the observed values and
then finding the sums of squares of these deviations was a laborious procedure.
The second feature of the shortcut method of analyzing equally spaced data is the
ease with which these sums of squares can be calculated. Looking at Table A.ll
under any value of R, you might recognize that tlle c values are really orthogonal
sets of coefficients. Each column of coefficients adds up to zero, and the products
of the corresponding coefficients of any two columns also add to zero. We learned
in Chapter 6 that tlle sum of squares associated with a single degree of freedom
can be found from a set of coefficients by applyrng the general formula

""- 
()c,T,)'

r)c,2

As calculated previously, P, is the sarne as )c,T, when the c's are the linear
coefficients. Likewise P2: )c,T, when we use t}le quadratic coefficients, and so

on. The divisors shown in Table A.lI are the sums of squares of the coefficients.
Therefore, the sum of squares due to linear regession is simply Pr2/(divisor times
number of replicates). Likewise the sum of squares for quadratic regression is
Pr2/(divisor times number of replicates), and so on up to the quartic component.
After calculating the sums of squares for each component, we can find the residual
sum of squares by subtracting the component sums of squares from the total sum
of squares. This residual sum of squares is the same as the sum of squares of
deviations of the observed data from the curve.
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Ipt us apply this method of partitioning to the milk production data. The
value of P, that we found was -22,2.ffi.6, so the linear SS is

--P:z=g:40,606.18
330x37

The total sum of squares of Y was 41,34!.01 so the residual zum of squares in
4I,34I.01-40,606.18:736.83. This is the same (except for a small difference due
to rounding) as the zum of squares of deviations from linear found by a much more
difficult method in Table 15.2.

Since P, was found to be - 1,048.8, the sum of squares for quadratic is

- l,(x8.82
132 x 37

SubtracUng this from 736.83 leaves a residual of 511.62. The value calculated in
Table 15.2 was 511.&{.

P, was 4,798.2 so the sum of squares for cubic is

798.22 :72.52
8,580x37

leaving a residual of 439.00 (compared to 439.A in Table 15.2).

Finally Pn was -5,384.6 so the sum of squares for quartic is

:22,5..22

-5,384.62
2,860 x37

:273.99

leaving a residual of I&5.10.
All these results can be summarized in an analysis of variance table (Table

15.3) in which the sums of squares for cows, and error, were obtained from the
individual cow records.

There was a highly significant difference among cows and among months.
Neither of these results is surprising, but we want to know more about the pattern
of change in milk production from month to month. The very high F value for the
linear component tells us tfiere is a highly significant downward trend. The
significant deviation from linear indicates that a straight line does not fully
account for the month-to-month variation. The significant quadratic component
shows that a simple curve is an improvement over a straight line, but there is still a
significant amount of residual variation. Fitting a cubic curve did not result in a
significant improvement, and the residual left is not significant. At this point,
many workers are inclined to stop. Often, as in this case, this is a mistake. The
quartic component accounted for such a high proportion of the remaining sum of
squzues that it was highly significant. The deviation from quartic is not significant.
The likelihood of finding another significant component is very small, for even if a
single component accounted for \Wo of tlle remaining variability, it would not be
sigrificant. We are therefore justified in terminating the analysis at this point.
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TABLE I5.3.
Analysis of variance of milk production records

Source of variation SS MSdf F

Total
Cows
Months

Linear
Deviation from Linear

Quadratic
Deviation from Quadratic
Cubic
Deviation from Cubic

Q""rtic
Deviation from Qrartic

Error

76,t67.74
?3,4U.56
41,343.01
40,606.I8

736.83
225..22

511.61
72.52

€9.09
273.90
165.r0

11,360.17

18.59f *

131.02**
1,158.19rr

2.63*
6.42*
2.09r
2.07ns
2.09ns
7.911*

.(Xns

Comparison of Shortcut and Regular Methods

In chaper 14, we fitted a quadratic equation to the yield of sugar beets at five
harvest dates. To do this, we first had to find seven sums of powers and products.
Then from these zums we obtained three simultaneous equations which we had to
solve for three unknowns. we now contrast this with the shortcut method.

We first find" using the coefficients from Table A.tl under n:5,
p, : ( - 2) 140.0 + ( - L)267 .2 + ( 1)4 r7.0 + (Z)+4q.6 : 751

r, : (2) r4o.0 + ( - r)267 .2+ ( - 2)33s.2 + ( - I )417.0 + (2)144.6 : - 1e3.4

using these values and the K values from Table A.lI, we can immediately write
the quadratic equaUon

fq : 320 - (r / 7) (- 1e3.4) + ( I / 10)751 x, + (r / 14) (- 1e3.4)x'2

: M7 .6286 * 7 S.IX' - 13.8143X'2

To conv-ert to original X units, we subsUtute (X - 3) for X' and (X - 3;2 : 1z - 6X +
9 for X'2. This gives

t : - 2.0 + 157.9857X - 13.814!X2

exactly t}re same as obtained by the longer method.
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36
I
I
8
1

7
I
6
I
5

32/1

65r.79
4,593.67

40,606.18
92.10

225.22
73.09
72.52
73.r8

273.W
33.02
35.06



Unequally Spaced Treatrnents

We have pointed out the advantages of equally spaced treatrnents, but if we have
an experiment with unequally qpaced treatrnents, it is still possible to find a set of
orthogonal coefficients for calculaUng regression zums of squares. The formulas for
finding these coefficients are much more complicated than in the case of equally
spaced treatments. Also there is no simple way of o*itirrg the equations directly by
the use of K values.

In Table A.lla we have given sets of orthogonal coefficients and divisors for
some of the more commonly encountered treatment levels. These will at least
make the determination of the regression zums of squares easier in zuch cases.

PERIODIC CURVE FTTTING

Table A.l2 gives sets of orthogonal coefficients for fitting periodic data when the
observations are equally spaced throughout a complete cycle. The table is con-
structed for selected values of n most commonly encountered in dealing with
daily, weekly, or yearly cycles.

Unlike the sets of coefficients we have been dealing with, these cannot be
reduced to small integers. For this reason the calculation of P values is somewhat
more difficult, but in other respects the calculation of equations, and partitioning
of sums of squares are even easier than with polynomials, since no qpecial divisors
or K values are needed.

The reason that dealing with equally spaced intervals is so much simpler than
dealing with irregular data is that most of the terms in the normal equations given
in Chapter 14 drop out. Thus )U,:)\2.:g where i is any subscript. Also
)U,2: )V,': n/2. ^Ilrerefore the first normal equation, which is

nao* ar)U, + br>Vr + ar}U r+ bz>V z+... : 2Y

reduces to nao:)y, or oo:)Y /n:7. Likewise the other normal equations
reduce to

,,(;):)UrY or ,,: ?5

2>V,Yb.- ',n

2>U2Y
Ao: 

-

'n
2)V"Y

b,:J-n
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TABLE I5.4.
Monthly mean temperatures at Stockton, California with the calculations for fitting a second degree periodic curve
(c:t/t2x360o:30")

Month T*p

tII

m(x)

h9

@

o'
o
o
o
:
.ll

0a

cosCX

(u,)
sinCX

(VJ

2CX

cos

(v,(u,
sin2CX

UrY V,Y uzY vzY

0
I
o

3
4

5
6
7
8
I

IO
II

4.7
49.0

53.7
59.7
ffi.2
72.8
78.2
76.2
72.7
64.0
53.0
.15.9

1.0

0.866

0.5
0.0

-0.5
-0.866
-1.(m
-0.866
-0.5

0.0
0.5
0.866

0.0
0.5
0.866
1.0
0.866
0.5
0.0

-0.5
-0.866
- 1.0

-0.868
-0.5

0.0
0.866
0.866
0.0

-0.866
-0.866

0.0
0.866
0.866
0.0

-0.806
-0.866

4.7m
a.4w
26.8500
0.(nn

-33.1000
-fi].(N48
-78.2(m
-65.9892
-36.3500

0.00m
26.5m0
39.7494

0.00m
24.
6.ruz
59.7000
57.39.gl
36.,(n0
0.um

-38.1000
-62.9582
-64.0000
-45.89{n
-22.9500

u.7w
24,.ffi

-26.85m
-59.70m
-fr1.10m

36.40m
78.2(m
38.10m

-36.35m
-64.00m
-26.5m)

22.95m

0.0000
a.4w
46.W2
0.m00

-57.32s2
-d1.0448

0.ffmo
65.9892
62.9582

0.0000

-45.8980
-39.7494

1.0

0.5
0.5
r.0
0.5
0.5
1.0

0.5
0.5
1.0

0.5
0.5

Totals 736.I

61.34

PU1 : - 96.4506 , py r: -9.47213 pU2 : - 1.650

ar: -16.0751 D1= -1.5788 a2: -0.27il
i : 61 3a - f 6.0751 cos CX - 1.5788 sin CX - 0.275 cos 2CX + 1.974 sin 2CX

PVz: 11.8812

bz= Lgn4
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TABLE T5.5.
Observed and calculated mean monthly temperatures at Stockton, California

Month Observed

+

tst Degee (Y-tr)
i',

2nd Degee (Y-Yr)
Y

January
Febmary
March
April
M"y
June
IrIv
August
September
October
November
December

45.26
46.63
5r.94
59.76
68.01
74.47
77.42
76.05
70.74
62.92
il.67
48.2t

-0.56
2.37
r.76
0.06

- 1.8I

-t.67
0.78
0.15
1.96
1.08

-t.67
-2.3r

44.W
48.20
53.79
60.04
ffi.M
72.62
77.t4
77.63
72.59
63.r9
53.09
46.36

-0.29
0.80

-0.00
-0.34
-o.2,4

0.18
I.06

- r.{}
0.1r
0.8I

-0.09
-0.46

44.7
49.0
53.7
59.7
ffi.2
72.8
78.2
76.2
72.7
&.0
53.0
45.9

Totals 0.02

28.86

0.02

4.99>d2

and so on, following the same pattern except in the case where n is even, in which
case the last coefficient that can be calculated is

!U1"721Y
a6/21: 

rt

(We would seldom carry an analysis this far, since there would then be no residual
sum of squares. In other words, an equation carried this far would exactly fit dl of
the data lnints, which is analogous to fitting a straight line to two points.)

We will adopt a symbol similar to one used in fitting polynomials, designating
)U,Y as PU,, and )V,Y as PV,. Notice that in the case of the polynomial we had a

single P value for each degee, but in fitting a'periodic curve we need two P
values called PU and PV for each degreez of fit.

The general terms in the equation are

2PU. 2PV,oo:Y, ar: -i, br: -T

2We have designated each pair of terms added to the general periodic regession equation
as a ilcgree to maintain the analogr kith the general polynomial. Technically, these are
referred to as lwmtonics,
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Iret us apply this method for fitting a periodic cuwe to the complete data on
monthly mean temperatures at Stockton, California, shown in Table 15.4.

The equation we have calculated is a general one in which we can substitute
any value of X and look up the appropriate sines and cosines in a trigonometric
table. However, if we are interested only in calculating values correqponding to
the observed data points, we can simply substitute U, for cosCX, V, fo1 sinCX, U,
for cos2CX, and V, for sin2CX in the equation. For example, to find Y for March
(month number 2, since lar,rary was called month 0), we calculate

& : 6r.g+ - 16.075r(0.5) - 1.5788(0.8 ffi) - .275(- 0.5) + 1.e774(0.866) : 53.2g

If we want the calculated value for only the fust-degree curye, we simply trse the
first three terms of the above equation:

tr : 6r.34 - 16.0751 (0.5) - 1.578S(0.866) : 5r.g+

The calculated values for the first- and second-degree equations are shown in
Table 15.5 along with the deviation of the observed values from these two curves.

Partitioning the Sum of fuuares

fu with the polynomial, there is a very easy way to partition the total sum of
squares without constructing a table like Table I5.5. The sum of squares for
first-degee regression is 2(PUr2+PVr2)/n, and for seconddegree, it is 2(PVz2+
PV22)/n, and so on. Unlike the polynomial, we do not need a different divisor for
each degree. Sums of squares for deviations from observed data can be obtained
by subtraction. From Table 15.4, we found that PU, was -96.4506 and PV, was

-9.4728. Therefore the first-degree sum of squares is

z[ ( -m.+soo)'+ ( - g.azza)'] 
: t56b.4t

t2

The total zum of squares for Y was 1594.33, so that the zum of squares for
deviation is

1,5%.33 - 1,565.41 : ?.8.92

a result that differs from the value 28.86 found in Table 15.5 because of rounding.
Likewise, the sum of squares due to second-degree regression is

z[ { - r.os)' + (1r.8642)'? ]
n :-'''i

The residual or deviaUon from second-degree sum of squares is 28.92-23.91 :
5.0I (compared to 4.99 in Table 15.5). These results are summarized in Table 15.6.
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TABLE 15.6.
Analysis of variance of temperature data

Source of Variation df SS MS F value

Months
lst degree

Deviation
2nd degee

Deviation

lt
().

I
2

a

r594.33
1565.4r

28.92
23.91

5.01

782.705
3.213

11.955
0.716

2A3.61**

16.70**

Notice that each degree has 2 degrees of freedom. This is because two
coefficients, a andb, had to be calculated for each degee. The mean square for
each degree is tested against its residual component to make an F test. In this case,

both the fust and second degrees were highly significant.
We have fitted a curve to the mean monthly temperatures and partitioned

the sum of squares for months into several components. If we wish to take into
consideration the individual yearly records from which these means were com-
puted, the analysis of variance is considerably more complicated. The student is

referred to Bulletin 615 of the Connecticut Agicultural Experiment Station, 1958

entitled Periodic Regression in Biobgy and. Clhnatobgy, by C. [. Bliss, for a

detailed discussion of this subject.
The second-degree curve we have calculated is really made up ot two simple

sine curves, one added to the other. The fust has a semiamplitude

e:16;*rf , so [: - 16.0751)2+ (- 1.5788)'g : 16.13

The phase angle is tan-r(br/ar)+I80":angle whose tangent is 0.0982+I80o:
185'36' which converted to time is about six montls and five days after the
beginning of the cycle. Since our cycle begins with the January mean, we can call
it fanuary 15, so tJre maximum of our curve will fall on july 20, and the minimum
6 months earlier on January 20.

Referring to Figure 15.1, looking at the solid curve in the bottom half of the

figure, we see that the observed temperatures tend to lie above the cuwe in the

first and third quarters and below the curve in the second and fourth quarters.

The second-degee curve largely adjusts for these discrepancies. It has a semiam-

plitude

- .275)2 + (r.977 4)z : 2.ooe,:1for, +b; :
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Figure 15.1. Mean monthly temperatures at Stochon, California. Seconddegee
Fourier curve and its components.

and a phase angle of

l80o - tan- rl| E \ : 180' - tan - I 
7. l90s : I80" - 82'5' : 97 " s'

\arl
This must be divided by 2, since we:ue now dealing with a two-cycle curye, so we
have a maximum at 48"32.5'or about I month and 18 days after larr"ry 15. There
is another maximum 6 months later, and a minimum at 3 months after each
ma,ximum. This is plotted as the dotted curve at the bottom of Figure 15.1.

Adding these two curves to the mean of 6I.34 gives the resultant curve in the
upper half of Figure 15.1.

SUMMARY

For equally spaced observations or treatments, a table (Table A.11) is furnished
which greatly simplifies the calculations for deriving linear, quadratic, cubic, and
quartic regression equations, or partitioning treatment sums of squares into trend
components. The table contains three parts under each number of observations
from 3 to 25: the c coefficients, the divisors, and the K values.
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P values are obtained from the equation P -)ciTi. After the P values are
obtained from the observations, linear, qua&atic, cubic, and quartic regression
equations can be obtained from the following equations:

tr:i+ (&Pr)x

to : (v - x,r) + (xrrr)x + (K4P2)x'2

t" : (i - x,r) + (qr, - K3P3)x' + (K4 P z)x'z + (&P3)x'3

i : ( f- KtP2+ KBP4) * (xr& - KsPs )x'

+ (Kopr- K7p4)x'2 + (Kup" )x'3+ (xup)x'n

The values of X' in the regression equations are coded rnhrcs o/ X, equal to the c,
coefficients. Equations in terms_of X can be obtained by replacing X' with
(X-X)/L when n is odd or (X-X)2/L when n is- even. L is the interval between
zuccessive values of X.

Sums of squares for treatrnents can be partitioned into:

Linear SS:Prz/(divisor times number of replicates)

Quadratic SS:Pz2/(divisor times number of replicates)

Cubic SS:Ps2/(divisor times number of replicates)

Qrartic SS:P42/(divisor times number of replicates)

Residual SS : treatment SS - linear SS - quadratic SS - cubic SS - quartic SS

Table A.t2 gives sets of coefficients for calculating periodic cuves for data
equally spaced tluoughout a time cycle. The table contains two sets of coefficients
called U and V for each of the first four degrees (harmonics) for selected values of
n.

Two P values are calculated for each degree of fit, from the equations

PUi:)U,Y and PVi:2VJ

After the P values are determined, an equation of any desired degree up to the
fourth can be written direcdy from the following equation:

t:Y+(+)"",cx*(+)sincx+ .(+)cosicX*(T)'","*

Shotcut Regression Methods 24



where X is the number of units of time from the besnning of a cycle, and C is the
length of each unit in degrees.

The sum of squares for any degree has 2 degrees of freedom and is found
from the relaUon

SS for ith degee:
z(ru,'z+rv,')

n

and the sum of squares for deviatiors from t}re curye can be obtained by
zubtraction of those regression components from the total SS.

The methods of this chapter are applicable only when the values of X are
qlually qpaced, except for several commonly encountered sets of unequally qpaced
treatments for which orthogonal coefficients are given in Table A.lla, which can
be used for calculating regession sums of squares but not regression equations.
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t6
MU[TIPLE

CORRELATION
AND

RECRESSION

So far, we have discussed only relatiors between two variables. We are often
interested in the relation between a dependent variable and more than one
independent variable. The law of supply and demand, fior example, implies a
relation between price (the dependent variable) and two variables-supply and
demand. In livestock, we may be interested in weight gain in relation to various
components of feed. In crops, we may want to study the effect on yield as N, P,

and K 
"ll 

rury.

CORREI.ATION COEFT'ICIENTS

The correlation between two variables, disregarding any other variabies that may
be varying simultaneously, is called stmplo or total correlation. The correlaUon
between two variables, when one or more otler variables are held at a constant
level, is called Wtial conelation. The combined relation between a variable and
two or more other variables varying simultaneously is called nrultipb corelation.

Suppose we have a dependent variable, Y, and for each value of Y there are
corresponding values of two other variables, X, and &. The simple or total
correlation between Y and X, is the linear correlation coefficient we discussed in
Chapter 13. You will recall the formula was:r

, (2*y)'
',- >f>u,

To show clearly that this is the sirhple correlation of Y with Xr, it is customary to
include explanatory subscripts, so we write the formula as

, (2*r!)'
f_yx,: >_W

lAs before, the formulas are expressed in terms of P rather than r. It should be remembered
that r, the coefficient of corelation, is the square rrot of f.
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Ukewise, the simple correlation between Y and X2 is written

, (2rry)'
r-r&: >hW

Finally, in order to calculate Wttal ad nrl@e correlation, we need a third
simple corelation, that between X1 and )le:

, (2xrx2)2

'x,& >-rr>rr,

The partial correlation between Y and Xr with a fixed X, is designated as rr*,.*
and is calculated from the simple corelations in the following manner:

Likewise,

o (tr*r-,"*,,*r*r)'
F"&'*': 

G-f*n-?*p.,)
The multiple correlation coefficient, designated as Ry.x,&, measures the combined
relation of X, and X, *ith Y. It is found by taking the square root of:

R2".*,* : 
f'*' + f* --2ro'r*r*'t

r.^r/rc 
I _fx,n

]ust as f was called the coefficient of determination, R2 is called the multiple
coefficient of determination. It is the proportion of the variation in Y accounted
for by the variation in the two or more independent variables.

Notice how the addition of just one more variable has added to the complex-
ity of correlation. With two variables, X and Y, we had only one coefficient of
correlation. With three variables, Xr, & and Y, we have three simple coefficients,
three partial coefficients, and the multiple coefficient.

The problem of visualizing a three-variable relation is also much more
difficult than with two variables. In the two.variable case, we can depict the
observations on a twodimensional graph.The relation is described by a regession
line, and with many observations, the scatter di"gr* of points will appear as an

ellipse. The narrower the ellipse, the higlrer the correlation. With tluee variables,

the relation mtst be described as a plane in threedimensional space. The scatter
of points around this plane will be in the shape of an ellipsoid. The projection of
the ellipsoid on t}re XrY plane shows the simple correlation of X, and Y. A section
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Figure 16.1. Diagram of various combinations of partial and total correlations
involving three variables.

thro"gh the ellipsoid paralled to the XrY plane and projected on the XrY plane
will show the partial correlation of X, and Y with & ftred, written ro,.*

In Figure 16.1, various situations are shown diagammatically. Note that the
simple correlation can be low, but the partial correlation hig[r, or vice versa. They
can even be different in sign.

The multiple coefficient of correlation, R, shows how closely the points in the
ellipsoid are clustered around the regression plane. The value of R is always

lnsiUve, ranging from zero to one. Furthermore, it is always at least as large as the
largest simple and partial coefficients. This fact serves as a good check on the
calculations.

REGRESSION COEFTICIENTS

So far, we have talked only about correlations-the closeness of the relations
among the variables. We also want to know tlle nature of the relations. What
change in Y is associated with unit changes in the independent variables? To
answer this, we need an equation of the form

i:a+brKr+bzxz.
The terms b, and b, are called ryrtial regressioi coffiients. The best-fitting
equation of this form will be the one that makes the sum of squares of deviadons
ofthe observed Y's from the estimated i's a minimum. To find the values of a, b1,

arrd b, that will meet this requirement, we solve rwmtal eqrutions very similar to
the ones we solved for curviline:u regression:

an+ b,)X, + brZX'-,+... :>Y

a)X, + brxrz + bzZXrXz+...: )XrY

a;Xo+ br)&X, + b221Y"2 + . . . : >&Y

fu19 Regression Coefficienx
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The dots indicate how these equations can be extended to include more than three
variables.

The calculations can be reduced by rewriting the equation in terms of
deviations from the means instead of the original values. Since the sum of
deviations of any variable from its mean is zero,2xr-2xr-2y-0. Therefore, the
first normal equation drops out, as do all the fust terrns in the remaining
equations, leaving

br2xrz + brlrrxr* ... :Zxr 
U

br2xrxr+ br}xrz +,,, :>xz y

Solving tlese equations for the b's gives a regression equation of the form

fi:brrr+brxr*... . Il *" yrsh an_equation in terms of the original observations,
we can calculate: a:Y - brX, - br&,... . Then, Y: a* blxl + bz\,+ ... .

AN EXAMPLE WITH THREE VARIABLES

To illustrate partial and multiple correlation and regression, we will analyze sorne

data on the specific gavity of potatoes (!, the nitrogen cpntent (Xr) and the
phoqphorous content (&). fhe observations will be coded to simplrfy the calcula-
tions (see Table 16.l).

First, we calculate the various coefficients of correlation. The simple or total
correlations are as follows:

fo, : () yrr) z 

/ >yz>xrz :6,,ffi : 0.7&1r

,o,:\iE, : -0.8862 (ttlote that it is negative because )yr, was negative)

4a: (2 vxz)z / 2yz>rrz :trffi : 0.5136

,rrr:@ : -o.1ldl

P* - :(>r,x^\z />x,2> " 2'ffi'42-^rrz \--t-zt , --, -h': Elprffi$u,D:0.I89I

,*,o:1fr-:0.4M8
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TABIT 16.T

Specific gravity, nitrogen and phoqphorous content of twenty samples of potatoes

(Sp. Gr.-1.07)ld
xr

(Nitrogen- l)100 (Phosphorous)I00

Y x,

40
36
30
42
28
26
33
26
I5
35
25
I5
26
25
2,4.

1I
22
lt
%4

10

2
14

r5
15

t6
o.l

48
il
58
68
82
83
9l
97
98

101

l?.8
IQ
r63
r79

96
82

Lzl
88

100
114
7l
94
74
36
36
73
58
3I
38
56
2,1

37
t0
74

Totals 1,479 1,253 ru
)f :160,545

(2t)2 /zo:109,372.05
2Y2:5t,172'95

)YXr:63,441
>Y>Xr/20:92,&59.35

2Yrr: -29,218.35

)Xr2:99,741

(>xr)z /2a:78,500.45
2xr2:11,940.55

)YXr:39,659
>Y>Y\/ZA:37,270.8

2!h: -6'6rr'8

2\':14,w
(24)2 /ZO:12,700.8

2*r': l'663'2

)XrXr:M,160
2Kr2X'./N:31,575.6

2rrxr:2,5M.4
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The partial correlation coefficients are as follows

(rr,*, - r"rr*,*)2 [ - o.aaoz - (- 0.7167)(0.+sss)]'
.x2 (r-fo,)(r-(,*) (1-0.5136x1-o.l8er)

l"*,

-o.57462: "'i,''" , :0.8371
(0.488rX0.8r0e)

,"*,.*:\fr* : -o.gl4g

2
r Yxz.Xr -

(r"r-ro,r*,r)2 [ -o.ztoz-(-0.8s62X0.4348)]'z

(r-fo,)(r-4,*) (t -0.78ilxr -0.18er)

- 0.33142: -'*^^ ::0.6310
(0.2146X0.8rOe)

,*.*,:\E; : -o.7sa4

Finally, we calculate R, the multiple coefficient:

R?.x,&:
fr* + f ,, - 2rrx,rr:<rrx, x,

t-2
^ tX,&

0.5136 + 0.78il - 2( - 0.8S62x - 0.7r67x0.434)

r -0.I89r

:3*1#:oe2o8

Ry.*,&: V0.9rm :0.9596

The simple correlations of either nitrogen or phoqphorus content alone with
specific gravity are not very large, but when the two variables are considered
simultaneously, the relation with specific Savity is very close. Stated in per-
centage figures, nitrogen alone accounts for 78,54Vo of the variability in specific
gavity, (100xfyx,). Phosphonrs accounts for 51.367o. Nitrogen and phosphorus
joindy account for 92.087o.

We now need to describe t}re relation by calculating the regression equation.
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Using the normal equaUons based on deviations from means, we have

br2xrz + br2rrxr:Zxry

br}xrxr* br}xrz:2rry

Substituting the observed values from the data:

21,?AO.55b I t 2,584.4b z 
: - 29,2 18.35

2,5U.40b t * 1,683.2b, : - 6,661.8

Multiplying the fust equation by 2,5U.4, and the second equation by 2L,%l!0.55

and subtracting, we get

28,648, 159.4 b z 
: - M,926,3M.7 5

bz: -2'2ffi

Substituting this value of bn in either of the origind equations, and solving for b1,

we find

br: - 1'100

To have a regression equation in terms of the origind values, we need to find a:

a-i-urxr-ur4

- W- ( - lrmff 
) - ( -"*# ) 

= ree.e68

We can now write the regession equation: t:199.9ffi-1.100Xr -2.2ffiX2.
From this equation we can calculate values of Y and compare them with the

observed values (Table 16.2).
The sum of the deviations is zero, as it should be. This furnishes a good check

on the computations. The zum of squares of deviations is 4,05I.16. This represents
the variation in specific gravity (Y) not associated with the variation in nitrogen
content (Xr) or phoqphorus content (&). It can be calculated, without computing
each Y, by taking (l -R')>y', which is

( 1 - 0.9208)5I,172.95: 4,052.90

The'two answers are in close ageement, t}te small difference resulUng from
rounding.

The results we have obtained can be zummarized in an analysis of variance
table as follows:
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Source of variation Method of computing SS SS df MS F

Total
Regression due to X1

Deviation from simple
regression

Additional regression due
to&

Deviation from multiple
regression

2y'
Po,(2y')

(l-fo,)zy,

r!*.*,1t -fo,)>yz

(r -R?.*,r."))y'

51,172.95 19

40,191.23 I 40,191.23 65.9*.

10,981.72 l8 610.10

6,929.47 | 6,9m.47 29.07.*

4,052.90 t7 2,8.4L

The last sum of squares can be obtained by subtraction: 10,981.72 -6,Y29.47:4,052.25. The discrepancy between this value and the one in the table is the
result of rounding and will have no important bearing on the F value. The square
root of ?38.4L or 15.44 is called standard enor of estirnate, andis designated by the
symbol sy.x,>r,.

There is another way in which the analysis of variance table can be set up,

Sving quite different F values:

Source of variaUon Method of computing SS SS df MS F

Total
Regression due to X2

Deviation from simple
regression

Additional regression due

to X,
Deviation from multiple

regession

2y'
fra(>v')

(1-r?&)>y'

&,.r,,(r-Pt,")>Y'

(1-R?.*,r.r))y'

5r,r72.95 l9
%J,2I12.43 I

24,8W.52 18

20,835.85 I

4,052.90 17

%J,A32.43

r,382.8r

20,835.85

238..41

19.01.*

87.N.'

In the first of these two tables, we considered the total effect of nitrogen and
then the additional effect of phosphorus. In the second table, we considered the
total effect of phosphorus and then the additional effect of nitrogen. The fact that
the order in which variables are considered makes a marked difference in the
outcome of the analysis can be confusing to anyone during first e4posure to
multiple regression.

A simple example might help clarify some of the confusion. It is well known
that the yield of many crops is influenced by both temperature and day length.
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TABTE 16.2.

Observed and calculated specific gavity of 20 samples of potatoes

tY d:Y-t

3.7
28.2

- 1.I
8.0

26.5
t5.7
47.1
37.7
u.6
81.1

r03.7
85.7
77.2

109.2
103.8
113.4
L?3.7
134.3
r34.6
16r.9

-1.7
-t4.2

16.1

7,0

- 10.5
11.3
0.9

16.3

-26.6
- 13.1

-2L.7
-2.7
I3.8

-r2.2
-5.8

-t2.4
4.3
5.7

2.8.4

17.1

2
l4
r5
l5
l6
27
48
il
58
68
82
83
9I
97
98

t0I
r28
140
163
r79

Suppose we have mrmerous crop yield records of a crop grown in different seasons
of the year. For each yield record, we have a record of the mean day length and of
the mean temeprature during the growing season. We expect day length and
temperature to be closely correlated with each other. Since this is true, we should
not be surprised if we found that leld was closely correlated with temperature
but that the additional consideration of day length would explain little of the
variation in leld not already accounted for. At the same time, day length alone
might be closely correlated with fleld, while temperature might have little added
effect. The conclusion would be that long warm days are associated with higlrer
yields than are short, cold days. We could tell litde about which factor was the
more important, temperature or day length. To answer this question, we would
need an experiment in which the day length and/or temperature were controlled
so that they would be less closely correlated than they are in nature.

In Chapter 13, we gave an example of a qpurious correlation between
cigarette consumption and hay production. This higlr correlation was apparently
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TABLE 16.3.
Multiple regression analysis of hay production (Y), cigarette consumption (X1),
and time (Xr)

Source of variation df ss MS F

X, considered first
Total

Regression due to X1

Deviation from simple regession
Additional regression due to X,
Deviation from multiple regession

X, considered first
Total

Regression due to X2

Deviation from simple regression
Additional regession due to X,
Deviation from multiple regesion

t4 10,094.00
1 8,855.3I

13 1,238.69
r 918.01

t2 3?fr.67

14 to,Ogl.m
| 9,72l..21

13 370.79
r 50.1r

t2 320.67

8,955.31

95.28
918.01

26.72

9,7?3.21
28.52
50.1I
26.72

92.94**

34.35{'{'

340.90**

l.88ns

caused by the fact that both variables were closely related to a third variable,
Ume. A multiple regession analysis will show a striking difference between two
analyses, depending on which independent variable is corsidered fint (Table 16.3).

In the second analysis, where we removed the regression with time first, we
see there is no significant additional regession related to cigarette consumption.

MORE THAIY THREE VARIABLES

For the sake of simplicity, most of our discussion and the illustrative examples
have been based on three variables, one dependent and two independent. Actu-
dly, multiple and partial correlation coefficients and regression equations can be
calculated for any number of variables. A recent study at the University of
California included 35 variables. We can do no more here than indicate, in a
general way, how the methods described can be extended to more than three
variables and point out some of the difficulties involved.

We have already shown how the normal equations for calculating the
regression coefficients, b1, b2, and so on can be extended to include {rs many
variables as we wish. Each new variable requires only the addition of another term
on the left-hand side of each equation and the addition of one new equation
following the same pattern as the previous ones. For m variables the last normal
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equation will be

b r2xrx^* b22xrx^t br)rrr- *' " + b 
^2r2^:2x^ A

The algebra does not change, but the arithmetic involved in solving the equations
becomes increasingly difficult as we add new variables. For this reason, it is

suggested t}rat one of the systematic procedures mentioned in the previous chapter
be used, or if possible, use an electronic computer.

We have seen how, with only two variables, there was just I coefficient of
correlation, but with three variables there were 7, including I multiple, 3 simple,
and 3 partial coefficients. With four variables, the total increases to 25, and with
five to 8I. One of the reasons for the big increases is the fact that we have the
addition of high odor panial coefficients. 'Ilrre order of a partial correlation
coefficient is the number of variables that are fixed. With three variables, we had
only first-order partials, zuch as ryx,.&. With four variables, we have simple and
fust-order partials and second-order partials, such as ryx,.xrx., which is read "the
correlation of Y and X, for fixed values of X, and Xr."

There is a general equation that enables us to compute a partial correlation
coefficient of any order if we know three partials of one order lower:

The equations given for finding the first order partials involving three variables
from the three simple correlations were simply special cases of this general
equation.

A general equation for finding the multiple coefficient of correlation involving
m independent variables is

I - R?.x, ... x- : ( I - fo,Xr - fr*.*,)( r - fo. *,r) . . . ( t - fr*_.*,... *- _,)

In the case of two independent variables, this reduces to the fairly simple form

"lr""dy 
given for R?.*,*,.

We have seen t}rat the arithmetic becomes increasingly difficult as we
consider more variables, but perhaps the greatest difficulty encor-rntered when one
considers more than three variables is in visualizing the relations. The relation
between two variables can be pictured on a two-dimensional graph. The relations
among three variables can be depicted in a threedimensional diagam. But how
do we draw a picture of tlle relations among four or more variables? The answer is
that we just do not try. We have to learn not to be bothered by our inability to
visualize relations involving four or more dimensions. Instead, we need to think in
terms of equations rather than diagrams. After all, we have no trouble gasping the
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idea that the yield of a crop is related to the N, P, and K levels in the soil, the
amount of water applied, the weed competition, the amount of disease, the
number of injurious insects, the temperature, and t}re day length. With enough
data, we can even write an easily understood equation that describes these
relations. Should we worry if we cannot draw a picture descriptive of this complex
interylay of factors? One equation may be worth a thousand pictures.

One more thing needs to be said about correlation and regression involving a
large number of variables. We showed that, with three variables, two different
analyses could be made, depending on which of the independent variables we
considered first. With three independent variables, the number of possible
analyses increases to six, and with m independent variables there are ml possible
ways of ordering the variables. (The symbol "m!" is read facwial m and means
the product of all the numbers from one to m. Thus 101:lX2x3X4x5x6X7X
8 x I X 10:3,628,800.) What is the best order in which to consider the variables?
A related question is, "Out of a large number of independent variables, how can
we find the best set of a given size?" Finding a direct simple method for obtaining
the best set is one of the great unsolved problems of statistics. Progams are
available on electronic computers for arriving at the solution, but time is the
limiting factor.

RESPONSE SURFACES

The independent variables in multiple regression problems need not be distinct
variables. They may be different powers oJthe sa*e variable such as X, f, and

X3, or the producti of two or .-e variables, zuch as Xr&, Xr'&, and so forth.
Thus, polynomial curve fitting is a special case of multiple regession' We pointed
out in Chapter 14 that the proportion of the variability in Y accounted for by the
linear plus the quadratic sum of squares is designated R2, or the coefficient of
multiple determination.

If we have two variables, each having a significant curvilinear relation with Y,

we can find an equation describing this entire relationship. Not only can we find
such an equation but we can also show it graphically by one of several kin& of
tlrreedimensional presentations. Such a graph is called a response sarfrce.

The sugar beet nitrogen and time of harvest experiment described in Chapter
10 is a good example. We showed in that chapter that the significant components
were: nitrogen linear, nitrogen quadratic, harvest dates linear, harvest dates

quadratic, nitrogen linear X harvest dates linear, and nitrogen quadratic X
harvest dates linear. To include the effects of all these components on yield in a
single equation would require an equation of the form:

i : a +bH + cN + dt* +etf +1mr + grfft

To find this equation requires the solving of seven simultaneotrs equations in seven
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unknowns. The normal equations are

on * b)H * c)N + d}r* +e)l$ +f)NH + gltfu : Iv

o)H + b2l]2 + clNH + d )H3 + e)rfH + /)ruf + glN2tf : xlrY

a)N + b>NH + cIN2 + d>r',uf + e)N3 +.f)MH + g)N3H: )NrY

aDl* + b)H3 + c)NH2 * d )n4 + e>rfIf + /)NIt3 + g)t$H3 : 2rfY

c)N2 + b>N2H + c2N3 + dXtfrf + e)M + fINsH + gIN4H : 2tSY

a)NH + b)NHz + c)tfu + d)xn3 + e)N3n + flrfif + gxNstf : xNrrY

aIN2H + b)N2H2 + c)N3H + d >N2H3 + e)N4u + f)N3rf + g>NaH2 : )Nzlry

Solving these seven simultaneous equations appears at first to be a formidable
task, but if we code t}re values of N and H properly, many of the sums will be
zero, and the equations will be gireatly simplified. H, since it consists of five
equally spaced dates, can be coded by using the c, coefficients under n:5 in
Table All. These are -2, - 1,0, I and 2. To code the nitrogen levels, we observe
that dividing by 80 gives the series: O, l, 2,4, and the linear coefficients for this
series in Table A.lIa are -7, -3, -1, and g.

Using these coded values, the following terms in the normal equations are
equd to zero: )H, >N, >NH, >NzH, >H3, >NIf, >NsH, >NH3, >N2Ir3, >N4H.
This leaves the following sums that are needed for the normal equations:

)H2:40

)M:700

)lSIf :1400

)N3:18(X)

)Ha:136

)M:45,220

)N3If :3600

)Natf :90,440

n:20

)Y:1600

)ttY:751

2NY:1430.4

)H2Y:3006.6

>N2Y:il,867.2

)NIIY:744.2

>MtrY:25,967.8
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The normal equations are now:

20a + 4Od+ 7O0e : 1,600.0

14009: 751'04ob 
Tooc + ISooe : r,4so.4

4Oa + L36d+ 7400e : 3,006.6

lWa + 18fi)c* l40od+45220e :il,867.2

1400/+ 36009: 744.2

1400b +3600/+ 904409:25,967.8

MulUplying equation (2) by 35 and subtracting from equaUon (7) gives

sffif +414409: -3I7.2

Multiplying equation (8) by 7 and subtracting equation (6) times 18 gives:

225,2Ng: - 15.616

g: -0.069318

Substituting g in equation (6) gives /:0.7098t8.
Substituting g in equation (2) gives b:21.201f36.
Multiplying equaton (1) by 2 and subtracting from equation (4) gives

56d: -193.4
d: -3.453571

Multiplying equation (l) by 35 and subtracting from equation (5) gives

lSOOc+2O72Oe: - 1132.8

Multiplying equation (9) by 7 and subtracting equation (3) times 18 leaves:

LlZ,M0e: -33,676.8
e: -0.298977

Substituting d and e in equation (t) gives

20a:1947.4269

a:97.3713/'5

(8)

(r)

(2)

(3)

(4)

(5)

(6)

o

(e)
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Substituting e in equation (3) gives

700c:1968.559

c:2.812227

We now have all the terms for the equation in terms of coded values of N and H:

i : 97 .37 l3/rs + 2 1.20 I 136H' + 2.812227 N' - 3.45357 lH'z

- 0.298977N',2 + 0.709818N',H', - 0.069318N',2H',

The original harvest date levels were 0, 3, 6, 9, and 12 weeks, and the N rates were

TABLE 16.4.
Observed and predicted sugar beet yields
for each treatment combination, based on totals of foru replicates

N H Y t g-i (v-Y)'

0
3
6
I

12

0
3
6
I

12

0
3
6
I

12

0
.J

6
I

t2

0.0
0.0
0.0
0.0
0.0
0.8
0.8
0.8
0.8
0.8
1.6

r.6
1.6
1.6

L6
3.2
3.2
3.2
3.2
3.2

Total

22.0
47.4
6l.l
69.8
76.1
39.4
67.9
85.6

r05.0
lt0.I

40.7
74.4
91.9

120.I
129.3
37.9
I l.J
96.6

r22.L
L?.5.1

1600.0

- 1.55
0.65

- 1.94

-2.62
t.2t
3.87
3.56

-0.64
3.76
0.77

- 1.69

- 0.19

- 7.98
1.83

-0.45
2.80
4,46

- 1.86
5.r2

-3.50
0.0r

23.55
46.75
63.04
72.42
74.89
35.53
u.u
ffi.24

tot,A
r09.33

42.39
74.59
99.88

tt8.27
tzs.75

40.70
73.M
98.46

116.98
128.60

r599.99

2.4U25
0.4225
3.7636
6.8W
7.4Mt

14.9769
12.6736
0.4096

t4.1376
0.5929
2.8561
0.036r

63.68M
3.3489
o.2u?5
7.84m

19.89r6
3.4596

28.2t4
t2.zffi

t97.4873
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Figure 16.2. The tluee-dimensional response curve fitted to the observed reslrcnse
(solid points) of sugar beet to rates of nitrogen fertilizer and week of
harvest.

0, 0.8, 1.6, and 3.2 cwt. To convert the above equation to these units we must
substitute (H/3)-2 for H'and 5N-7 for N'. (See the summary of Chapter 15 for
the equation for changing H' and N' to the original values of H and N.) The
resultant equation is

t : 8.55 + 8.8834H + 18. 1868N - 0.38373H2

- 4.00853N2 + 2.80045NH - 0.577652rfH

Substituting the values of N and H in this equation gives the calculated values

shown in Table 16.4.

The sum of squares of deviations of observed from predicted has to be
divided by 4 to put it on a per-plot basis, since there were four replicates. This
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N = 1.6 o( g.2 ? = 10.388 + 2.g7gH - 0.096fl2

N = 0.8, t = 8.884 + 2.689fl - 0.096112

N =0, ? = S.AA8 + 2.221H - 0.096112
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0
6

WeDk of haruest

(a)

12

H = 12, ? = 18.716 + 12.947N - 2.73ON2

30
H=9, Y = 18.101 + 10.847N - 2.298N2

H=6,7 = 15.758 +8.747N - 1.866N2

H = 3 ? = 11.679 + 6.647N - 1.434N2

= O, 7 = 5.888 + 4.547N - 1.Cx|l2N2

0
0.8 r.6

Nitrogen rate, cwt/acre

o)

2.4 3.2

Figure 16.3. "Slices" thro"gh the reqrcnse srrface of Figure 16.2. The effect of
date of harvest for each N level (a, equations for Nr.u and Nr., have
been averaged) and the effect of nitrogen rate at each harvest date
(b).
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gives 49.372, which is exactly the total residual sum of squares in the analysis of
variance in Chapter 10.

The residual sum of squares divided by the total sum of squares for treat-
ments is equal to (l-Rz), so

(r-R') :m:o'ooee
and

R2: I -0.0099:0.9901

Thus 90% of the variability in Y is accnunted for by the equation we have
cdculated.

Dividing each term of the regession equation by 4 (the number of replica-
tions of each treatment) gives t in to* of roots per acre, the units most
appropriate for publicaUon. In this form the equation is

i' : 5.888 + 2 .221]H + 4.il7N - 0.0g6lf - l.002rs + 0.700NH - 0. t44N2H

where N:hundred-weights of N/acre, and H:weeks from the first date of
harvest (H date I:0). The results can be presented in several ways depending on
the researcher's objectives and the points to be stressed.

Figure 16.2 shows the three-dimensional response surface. Figure 16.3 shows
"slices" through the response mrface; Figure 16.34 gives equations and response

cruves for the effect of time of harvest for each N level, while Figure 16.3b does
the same for the effect of N levels for each date of harvest. The two-dimensional
equations of Figure 16.3o are obtained by first setting N eq"al to zero in the
multiple regression equation and collecting like terms to give Y:5.888*2.221H-
0.096H2. The other equations of Figure 16.3a are similarly obtained by, in turn,
setting N equal to 0.8, 1.6, and 3.2. The equations for N:1.6 and 3.2 have been
averaged, as they are nearly identical. The equations of 16.3b are computed by, in
turn, setting H equal to 0, 3, 6, and 12.

Figure 16.3 illustrates the nature of tlle interaction terms N linear X H linear
and N quadratic X H linear. The NH term of the mulUple regression equation
results in a different N linear for each date of hanrest and a different H linear for
each N level. The MH term results in a different N quadraUc effect for each
harvest date (Fig. I6.3b). In contrast, note that there is no NHz term, and as a

consequence the same H quadratic effect is present at each N level (Fig. f6.3c).

SUMMARY

When we are considering more than two variables, there are three types of
correlation coefficients.

Simple or total cprrelation is the linear correlation between any pair of
variables, disregarding the values of the remaining variables.
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Pardal correlation is the relation between two variables when one or more of
t}te remaining variables are held constant.

Multiple correlation is the joint relation between the dependent variable and
all of the independent variables.

The equation for the simple correlation coefficient squared is

, (2*,v)'t^: >irw

rs

The general equation for a first-order partial coefficient of correlation squared

The order of a partial correlation coefficient is the number of variables held
constant, shown symbolically by the number of subscripts following the dot. With
three variables, we can have only first order partial coefficients.

"I\e mrltiplc corelation coeffrcient among three variables is found from

-o frr,+?*-2rrx,rrr<rrx,x,Ri.x,&:ff
The mulUple coefficient is always positive and at least as large as the largest
simple and parfral coefficients.

A regression eqution describes the relation between the dependent variable
and all of the independent variables. It is of the form:

i:a+brxr+ br\+ ...

The symbols br, b2, and so on are dled prtiol regession coeffoients. To find the
regression equation that best fits the observed data, we solve the following nomwl
eqtntiotu for the partial regression coefficients:

br2rrz + b22xrr2*. . . * b-)r1 x^:2x, y

br}r2rr* br2xn2 + . . . * b^2rrr^:Zx, y

, (t o-r"4t44)2rv-'\= 
Ct,iJ(,_p*)
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where m is the number of independent variables. To solve, we need m eqtrations
with m terms on the left-hand side of the each equation.

The equation for finding c in the regession equation is

br\ -b-x-
(The symbol ? denotes the mean of Y and is )Y/n, where n is the number of
observations. Similarly \:)4/. and is the mean of \.)

the symbo^l t is the estimated value of Y from the regression equation. The
difference Y-Y represents the deviation of an observed value from its estimate,
and )(Y-Y):O. If this sum fails to equal zero (except for small errors due to
rounding), an error has been made in the calculations.

>(Y-i)'
@:i-i-':

As we corsider more variables, three difficulties arise:

The arithmetic increases at an exponential rate.

Visualization of relations becomes difficult.

Determining the best order for adding or eliminating variables is a difficult
problem, and no practical method is Imown for finding lhe best set of a given
size out of a large number of variables.

Powers and products of variables can be considered as additional variables.
When the powers and products of two independent variables are used in calculat-
ing a multiple regression equation, the results can be graphically plotted as a
threedimensional response srrface.

o:1- brlr-
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l7
ANALYSIS

OF
COUNTS

Most of the discussion in this book has dealt with the analysis of measurements
such as weight, feld, or height. However, we do not always measure some
characterisUc of an individual. At times we may simply classify individuals into
two or more groups, such as dead or alive; healthy or diseased; male or female;
red, pink, or white; freshman, sophomore, junior, or senior. Even with characteris-
tics that can be measured, it is sometimes more convenient to classify individuals
into broad groups. For example, we might wish to conduct a study that included a
measure of people's incomes. Many people in our sample might resent being asked
the exact amount of their income but would not hesitate if asked in which one of
three or four categories of income they belonged, and zuch a classification might
suffice for the puposes of our study.

Data based on counts of individuals belonging to each of several classes
generally require a different kind of statistical analpis than that commonly used
for measurements. Consider, for example, a sfudy to determine something about
t}re characteristics of eggs laid by a flock of hers. We could weiglr each egg in a
sample and determine that the mean or average weiglrt per egg w:ts, say, 2l grn.
We could also classify each egg as cracked or sound and find that 57o of the eggs
were cracked. It would not make sense to say that the average egg was 5%
cracked. Our average applies to the proportion of units in the sample possessing
this characteristic.

In the chaper on transformations, we showed how data based on counts can
sometimes be transformed and analyzed validly as though they were measurement
data. In this chapter, we describe a method called chi-sguare (represented by the
symbol X2) for analyzing enumeration data.

Before discussing this method, we should fust consider what we would like to
learn by classifying and counting individuals. The purposes of collecting such data
generally fall into one or more of three objectives: (l) to test one or more
hypotheses not zuggested by the d"t4 (2) to determine whether different char-
acteristics are interrelated, and (3) to test whether samples are drawn from
different populations.
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cHr-SQUARE

The general formula for chi-square used in solving all these problems is

" -., (ob-Ex)2
/\ Lt EX

where Ob is the observed value for each of two or more classes, and Ex is the
corresponding expected value.

To evaluate this expression, we must fust determine the expected value for
each class of individuals, according to our hypothesis. The expected value is then
subtracted from the observed value and the resulting difference is squared and
divided by the expected value. These quotients are summed over all classes. The
sum is then compared with values o, 

^ X'table at the appropriate degees of
freedom. This tells us the approximate probability of obtaining deviations from
expectancies, as large or larger than those observed, by chance alone.

The arithmetic is fairly simple and for certain special cases there are com-
putational shortcuts available. However, tlere are several things we need to
consider in order to use chi-square tests properly.

L We must exercise care in selecting the hypothesis to be tested. This
hypothesis should be a reasonable one based on previously known facts or
principles.

2. We need to be aware of the fact that a chi-square distribution is a
continuous distribution and is in fact related to the twmtal distribution.
On the other hand, the distribution of samples based on counts is a
discrete or &scontinuous distribuUon. If the individuals are classified into
one of two classes, we are dealing with what is called binomial distribu-
tion. Normal and binomial distributiors are similar but not identical. That
is why it was stated above tlat reference to a chi-square table gives an

opproxinwtc probability. We need to know what situations result in poor
approximations so that we can either avoid these situations or perhaps
make adjustments to get closer approximations to the true probability.

3. Given an hypothesis, we need to know how to calculate the expected
values for each class correctly.

4. \\e number of degrees of freedom for entering the chi-square table is not
always obvious. We need to learn certain mles for determining this.

5. Interpreting the results of a chi-square test requires caution and good
judgment. Even though our observations do not differ significantly from
our hypothesis, we may not be justified in accepting the hypothesis if the
data also fit other equally logical hypotheses.
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Ipt us illustrate these various points with an example. Suppose we are
working with some plant that has red and white flowered forms. We have crossed
plants from true-breeding lines of the two forms and the F, generation was all red.
We grow an F2 generation of eight plants and find that four are red and four are
white flowered. On the basis of what we have already learned, we feel quite
certain that red is dominant over white, and we further suspect that it is

determined by a single gene. Our knowledge of genetics leads us to adopt the
hypothesis that the F2 will segregate in a 3: I ratio of reds to whites.

On the basis of this hypothesis, we expect out of eight plants to obtain six reds
and two whites, so our observed numbers deviated by two from expected. We ask,
"What is the probability that we could have obtained a deviation from expected as

large or larger than we observed, by chance alone?" If this probability is very
small, we will reject our hypothesis.

Recognizing that chi-square will give us only an approximation of the desired
probability, we will calculate the exact probability based on the binomial distribu-
tion. To do this, we must find the probability of each possible outcome and pool
all of the cases which equal or exceed the observed deviaUon from expected.

First we must define some symbols. We call the hypothetical ratio r, : 12. The
probability of an individual belonging to the first class is 

""ll"d 
p and is equal to

rr/ (rr* rr). The probability of being in t}re second class is called q and is equal to
rr/(rrir2) or I -p. The numbers observed in each class are called n, and n , and
n, * nr: n, the total number in our sample. The symbol nt is called fartoial n and
is obtained by taking the product of all the integers from I to n. Factorial zero is
defined as l.

In a binomial distribution, the probability of obtaining a sample with n, in the
fust class and & in the second is

p"'q"'n!
nr!rq!

In our example, r, : 3, r, : I, p : r, /(r, * r r) : 3 / 4, q: r r/ (r, -f r r) : | / 4.The proba-
bility of obtaining a sample in which nr:4 and ne:4 is

t# : (i)' G)^ ffi: r*q " # X7o:.0865

Likewise, we can calculate the probability of every other outcome and construct
the first three columns of Table 17.I.

The last probability is not actually zero, but is less than .00005.
Notice that the sum of all the probabiliUes is I, which furnishes us with a

check on the calculations.
The expected value of n, is np:8x3/4:8, so we make a third column in

the table showing the differences between the observed values of n, and this
expected value.
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TABLE I7.I

Deviation of n,
from

Outcome Probability Expected (.r, -G) Class Interval

Probability Based

on

Normal Cunre

2
I
0_I

_o

-3
-4
-5
-6

6:2
5:3
4:4
3:5
2t6
l:7
0:8

8:0
7:l

.1001

.2670

.3I15

.2076

.0865

.023r

.0038

.0004

.0000
1.0000

.1104

.23L2

.3168

.23L2

.0897

.0186

.0020

.0001

.0000

> 1.5
0.5 to 1.5

-0.5 to 0.5

-0.5 to - 1.5
* 1.5 to -2.5
-2.5 to -3.5
-3.5 to -4.5
-4.5 to -5.5

< -5.5
Total

We can now answer our original question. The probability of obtaining a
deviation of two or more from eqrccted is the zum of the probabilities in the first
and last five of the nine cases in the table. This is .1001+.0865+...+.0000
:.2139.

Let us see how this result compares with the chi-square test. Our formula is

-2:S 
(ob-Ex)' _ (4-6)', (+-2\2 A A

.\ L, E*-:-* Z :;*i:0'67+2:Z'A;

Looking this value up in a chi-square Table A.6, at I degee of freedom, we see

that our observed chisquare is very close to the value 2.706 found at the I07o
point, indicating that the probability is .10 of getting a deviation at least as large as

we observed by chance. (A more precise value from more extensive tables is
.1025). This is considerably lower than the exact probability of .2139 that we
found.

Yates Conection for Continuity

There is a correction called Yates corection for contirutity that will geatly reduce
the discrepancy between the two methods. Suppose we used the normal distribu-
tion to obtain ear estimate of the probability of each outcome. To do this, we first
must find t}re variance and standard deviation of the distribution. This can be
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found by squaring the deviation from the mean (expected value) for each outcome

and multiplying by the correqponding probability. These products are summed

over all outcomes.
Variance:2zx.1001+ 12 x.2670+... +(5)2x.0004: 1.4997. Since we are

dealing with the binomial distribution, there is a much simpler formula for
obtainin! the variance: o2:Dpg. Thus, in this example,

o2:8x3/4xl/4:L.5

Standard devistion, o : \/ d : { LS : l.?.95

The class intervals can now be expressed in terms of z values by dividing the limits
of each interval by the standard devia$on. The area under a normal curve for each
interval can then be found by reference to a table of probability functions found in
most books of matlematical tables.

These estimates are shown in Table I7.I to point out how the normal and
binomial distributions differ. Since the normal is a continuous distribution, we
have to lump together all of the portion of the normal curve from n, -Ex: - I.5
to n, - Ex: - 2.5 and determine t}le area of this lrcrtion to find the probability of
n, - Ex being - 2. Likewise, the probability of n, - Ex being 2 is the area under
the normal curve from n1 -Ex:1.5 to infinity. Thus our question regarding the
probability of obtaining a deviation of 2 or greater from eqlected, when using a
normal curve, must be reworded to ask, "What is the probability that the
deviation from expected will exceed 1.5?" Yates correction takes this into account
and consists simply of subtracting 0.5 from the absolute value (&sregarding sign)
of the differences between observed and expected.
Using this correction, we calc 'late an adjusted chi-square as follows:

" - flob-Exl-0.5)2 (2-0.5)'z . p-0.q2
 2Ex62

(t.s)z (r.s)2: f * ; :0.375* 1.125: 1.50

(Note: The symbol lxl means the absolute value of x.)
Looking this value up in a chi-square (Table A.6)shows that the probability is

between .10 and .50 but much higlrer than it was before. More extensive tables
give a P value of .2207,very close to the calculated exact probability of .2139. The
probability based on a normal distribution can also be obtained in the same way as

the binomial, by adding the probabilities of the first line and last five lines of Table
17.1. This gives .2208 which is, as it should be, equal (within rounding errors) to
the result obtained by the chi-square test.
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GUIDES FOR USING CHI.SQUARE

We have seen that even with a sample as small as eight the difference between t}le
normal distribution on which chi-square is based and the exact binomial distribu-
tion is not very great. The following nrles will help in deciding whether chi-square
will give a sufficiently close approximation of t}re correct answer:

l. The larger the sample size, the closer the agreement between the two
distributions.

2. The larger the raUo between r, and r, in our hypothesis, the greater the
discrepancy betu,een the two distributions for a given sample size. Thus,
if we hypothesize a I: I ratio, the agreement will be close even for small
samples, but if we hypothesize a 15: I ratio, a much larger sample size is
necess:rry.

3. A good n:le of thumb is to avoid using chi-square if the smallest expected
class is less than five. If we have more t}tan two classes, we can pool
classes whose expected values are less than five. Increasing sample size

can also be used to increase tle size of the smallest expected value.

4. Always use Yates correction for determining chi-square with only I
degree of freedom. Neoer use it for problems in which more than I degree
of freedom is involved.

Degrees of freedom can be defined in general as the number of classes that
can be assigned an arbitrary value. Thus, if we have two classes, as in the example
we have been using, we can assign any value to n1, but n, is then fixed because it
must include t}te remaining members of the sample, since nr:n-nr. Chi-square
therefore has one degree of freedom. In testing any hypothesis erterior to the data,
ilegrees of freedom is ahaays onc bss thut the rurnber of clnsses. Other situations
will be discussed later.

INTERPRETING RESULTS

Intelpretation is the last and most important step in our analysis of the data. We
have seen that the discrepancy between what was observed and what was

expected could easily have been due to chance alone. We therefore have no
evidence for rejecting our hypothesis. Does this mean that we have strong
evidence to strryort our hypothesis? Not necessarily, and this is a point often
misunderstood. Look at it this way. There iue many other hypotheses we could set
up from which this sample would not represent a significant deviation. If we have
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strong evidence that red and white are determined by a single pair of genes, then a
3: I ratio is the most reasonable hypothesis, and oru sample could be considered as

furnishing good supporting evidence. On the other hand, the evidence we have for
postulating a single pair of genes may be very weak. We then must consider such

possibilities as two pairs of genes giving rise to a9:7 or l3:3 ratio. Our observed
sample of 4 red:4 white would give a "good fit" to either of these ratios. Further
tests or much larger F, samples will have to be used to distinguish among the
various plausible hypotheses.

Table 17.2 shows the sample sizes needed to distinguish between various
common ratios. For example, the table shows that a sample of 105 is necessary to
ensure that either a 3: I or a 9:7 ratio will be rejected at the 5% level. The
rejecUon value in the chi-square table is 3.84. If we observed a 70:35 ratio, the
chi-square value in testing the 3: I hypothesis would be 3.46, not large enough to
reject at the 57o level. Tested against the 9: 7 hypothesis we get a chi-square value
of 4.22,large enough to reject the hypothesis at the 57o level. On the other hand,
an observed ratio of 69:36 would give chi-square values of 4.M and 3.45 for the
3: I and 9: 7 hypotheses respectively. We would therefore reject the 3: I hypothe-
sis. verifying these chi-square values is left as an exercise. Be sure to use the
correction for continuity.

TABLE I7.2.
Sample size to ensure that at least one of two altemative hypotheses will be rejected
(Top number atSVo level, bottom at LVo)

l5:1 7:l 13:3 3:1 11:5 5:3 9:7

1:1

9:7

5:3

ll :5

3:I

13:3

7:l

38
61

56
92
94

r55
195
326
699

1184

62
IOI
r05
174
223
374
823

1398

1008
1718

zil
428
977
tw

ttz
186
243
N7

915
1558

214

38
33
a,
49
79
80

130

r59
2M
ils
9r5

16

24,

20
3r
27
42
39
61
60
97

Lt4
r86
354r

589
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TESTING FOR INDEPENDENCE

One of the things we often want to learn about counted data is whether two
variables are related. For example, one variable used to clas$fy individuals might
be level of education and another level of income. We could test to see if
education and income are related.

We might deliberately impose two levels of a variable such as inoculation on
two goups, treating one group and leaving the other untreated. We could then
classrfy each group into healthy and diseased after a certain perid of time, and
test for any relation between treatment and disease incidence. In genetic research,
it is often desired to find if two traits are inherited independently or show
evidence of linkage. All these problems are analogous to correlation analysis with
measurement data.

In analyzing for a relation between two variables, it is most convenient to set
up a null hypothesis that they are independent. If the deviation from indepen-
dence is much geater than we would expect by chance, we reject the hypothesis
that the two variables are independent and accept the alternate hypothesis that
they are related.

To find the expected values for applying the chi-square formula, we use a
principle in the theory of probability that states: lf tun eoents are indeperdent, the
probability of simultaneous occrurence of the two events is the product of the
probabilities of their individual occrurence. Let us illustrate this principle with an
example and show how the chi-square test is performed.

One hundred animals were treated with an antibiotic and after a period of
time examined for symptoms of disease. There were 88 animals that were healthy
and t2 that showed disease symptoms. Another goup of 200 animals was given no
antibiotic, and when examined later, l4iil were found to be healthy and 57
diseased. These results can be summarized in what is called a 2x2 contingency
table, Table 17.3.

TABLE I7.3.
Disease incidence in treated and untreated cattle

Disease Categories

Treatment Healthy Diseased Total

100

200

300

T2

(23)
DI

(46)
69

88

$n
I43
(Iil)
?3t

Treated
Expected

Untreated
Expected

Totals
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We will test the hypothesis that there is no relation between treatrnent with
antibiotic and the incidence of disease. If these two variables are independent, the
expected proportion of healthy treated animals will be the proportion of hedthy
times tlre proportion of treated. This is Bf/300x L(i/0:/3/d/0_:TU300. Since there
are 300 animals altogether, 77/3mX300:77 is the number of animals that we
expect to be treated and healthy. The computation can be considerably shortened
by noting that the grand total appears as t}re denominator of both fractions which
are multiplied to give the joint probability. The resulting proportion was tlen
multiplied by the grand total to get the expected rumtber. We can cancel one of
the grand totals in our calculation and find the expected number from (100x
231)/3N:77. In words, this can be stated: The expected number of treated
healthy animals is the total number of treated times the total number of healthy
divided by the grand total. Similarly, every otler expected class can be calculated.
Actually, in a2x2 table, only one expected value needs to be calculated. Since we
expect 77 of the treated animals to be healthy, we expect the remaining 23 to be
diseased. Likewise, we expect 77 of the healthy animals to be in the treated class;

we expect the remainder of the 231 healthy animals or 154, to be in the untreated
class. Then, of the 200 untreated animals, since we expect 154 to be healthy, we
expect the remaining 46 to be diseased. Notice that once a number is assigned to
one of the classes, the remaining three classes are fixed. Thus, we have only one
degree of freedom in a2x2 table. The general rule for an rXc (r rows and,c
columns) contingency table is that the degees of freedom equals (r-I)x(c-l).

One feature of a 2X2 table to notice is that the difference between observed
and expected is the same for every cell of the table except that two of the
differences are positive and the other two are negative. This common difference in
our example is Il (e.g., 88-77:11, etc.), and since we are dealing with I degree
of freedom, we should apply Yates correction and consider the differences as I0.5.

Applpng our chi-square formula, we get

" *- (ob-Exl-0.5)'z (10.5)'z (10.5)'? (10.5)'z (10.5)'9

Referring to the chi-square Table A.6 under I degee of freedom, we see that we
would expect a chi-square value of 6.635 I7o of the time by chance alone, and
10.827 only 0.17o of the time. Therefore, we can say that the probability of
obtaining a chi-square value as large as 9.34 is only slightly more than I in a 10(X),

so we reject the hypothesis of independence and say that there is a rel.rtion
between antibiotic and t}le incidence of disease.

To show how chi-square is used to test independence between two pairs of
genes, we will analyze some data from a large progeny of marigolds, segregating
for two factors, earliness and yirescence (a mild chlorophyll deficiency). It was
known that earliness is recessive to late development and determined in this
genetic material by a single pair of genes. Virescence is recessive to normal and
also controlled by a single gene pair. Three questions need to be answered. Does
the ratio of late:early fit a 3: I ratio? Does the ratio of normal:yirescent fit a. 3: I
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raUo? Are the two pairs of traits inherited independently, or is tlere evidence of
linkage?The data arranged in a contingency Table 17.4were as follows:

TABLE I7.4.
Segregation of two traits in a progeny of marigolds

Normal Virescent Total Ex 3:1

Late
Expected

Early
Expected

Totals
Ex(3: 1)

3l70
(3457.e)
1030

(lo42.r)
4500
4275

9r0
pn.L)
290

(277.e)
1200
142,5

4380

r320

57m

4275

t42,5

To answer the fust question regarding the ratio of late:early, we calculate
chi-square:

, (43ffi - 42751 -0.5)'z (1320- L4%l- 0.q2
f_'r 4275 142,5

_ (lo4.s)s 
+ 

(104.5)2

4275 1495

:10.22

This is almost equal to the required chi-square value of 10.827 at the 0.17o level.
This means that if 3: I were the true ratio, the probability of finding a deviation as

great as we observed was only about I in a 1000. We therefore reject the
hypothesis that 3: I is the true ratio. Actually, the hypothesis that late flowering
was a simple dominant over early flowering was not rejected, because it was
observed that (as with many recessive traits) the early plants were somewhat
weaker than the late ones. The small but significant deviation from a 3: I ratio was
therefore attributed to differential suwival rates. It is worth noting that this was
an unusually large progeny. If it had been one-tenth as large (570 plant$ and the
ratio of late: early had been the same, the chi-square value would have been only
0.94, not approaching significance.

The question about the ratio of normal: virescent is answered in the same
way, and the chi-square value turns out to be 47.16, again very highly significant.
Virescent plants, being partially lacking in chlorophyll, show an even geater loss

in vigor compared to normal than do early plants compared to late.
In testing for independence, we accept the observed ratios ratler than

assuming a 3: I ratio, and calculate the expected values on the assumption of
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independence. Thus the expected number of late normal plants is

total normal x totd late _ 4500 x 4380 : 1/.(7 ogr"natotai- - 57oo -rltL"'v'

The expected values for the remaining three cells in Table 17.4 can be calculated
in a similar fashion or obtained by zubtraction from the marginal totals. Using both
methods furnishes a check on the accuracy of the computations. Note that
(Ob-Ex) is l2.I in the upper left and lower riglrt cells of the table and - 12.1 in
the other two cells. The numerators of the terms for determining chi-square will
be the same for each class. Applyrng Yates correction for each cell of the table
gives (12. I - .5)2 : (11.6)2. Chi-square is therefore

#.#?#+ffi:so
The probability of obtaining a value of this magnitude by chance alone is between
109o and 507o, so we do not have any evidence to jusUfy rejecting the hypothesis of
independence.

Another example will show how to calculate chi-square when more than I
degree of freedom is involved, and how a contingency table may be "collapsed."
Three goups of 39 cattle were each feci a different ration. The condition of health
of each animal was measured by recording the number of times it had to be
treated for sickness. The results shown in Table 17.5 were obtained.

TABLE I7.5.
Health condition of cattle fed with three rations. Expectd values in parentheses

Ration

Number of Times Treated I 2 3 Total

52
I
4

t7
t4
t0
6
4
7
2

L7

r7(17.3)
0 (0.3)
r (1.3)
r (5.7)

6 e.n
5 (3.3)

3 (2.0)

2 (r.3)
4 (2.3)

o (0.7)

39

7.3)
(0.3)
(r.3)
(5.7)

$.n
(3.3)
(2.0)
(1.3)
(2.3)
(0.?

16(1

0
3
I
5
t
I
2
2
0

39

7.3)
(0.3)
(1.3)

F.n
$.n
(3.3)
(2.0)
(1.3)
(2.3)
(0.7)

re(10
I
c,

3
4
5
6
7
8

10

I
0
7
3
4
2
0
I
2

ITotals
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In this case, the expected values are very easy to cdculate, since exactly
one-third of all the cattle were in each ration class. This means that we would
exPect one-third of the animals in each treatment frequency class to fall in each
ration class if ration and treatment frequency are independent. we note that many
of the expected values are less than five, so we are not really jusdfied in applying
the chi-square formula to the data as it stands. However, we will go through the
calculations and see how the results compare with those obtained from a collapsed
table.

x2: ) (ob-Ex), _ (19__17.3), * (ro__rz.s), 
+... + yj,:L4.5

^ 2 Ex l7.g ' l7J T"'T--T

Degrees of freedom: (r- t)(c- t): (10- t)(3- l): 18

Looking up our calculated chi-square value of ?A.S,Table A.6, opposite 18 degrees
of freedom shows that the probability of obtaining the remlts observed by chance
alone is slightly over 107o. We therefore have insufficient evidence to reject the
hypothesis that animal health was twt related to ration.

In order to satisfy the rule that no expected class should be less than 5, we
can collapse the table by combining frequency classes l, 2 and 3; 4 and 5; and 6,

7, 8 and 10. This gives a new table (Table 17.6).

Calculating chi-square gives us a value of 10.61, which we look up in the
table opposite 6 degrees of freedom. We find it is almost exactly equal to the
tabular value at 1070 probability. Our conclusions will therefore be the same as

those we reached with the original table, though this will not always be the case. It
is always safer to collapse a table to avoid too small expected classes. Furthermore,
it reduces the number of calculations needed to compute chi-square. Note that the
correction for continuity was not used in this example, because we were dealing
with more than a single degee of freedom.

TABLE 17.6.
Collapsed version of Table 17.5

Ration

Number of Times Treated 1 2 3 Total

0
I
4
6

(7.3)
(8.0)
(6.3)

2
II
I

39

-3
_D

-10

re (17.3)

8 (7.3)

7 (8.0)
5 (6.3)

39

t6 (17.3)
12 (7.3)

6 (8.0)

5 (6.3)

39

17 (17.3) 52
22
?,,4

19

117Totals
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HETEROGENEITY

The third and final use we will consider in connecUon with chi-square is that of
testing whether a group of samples could have heen drawn from the same

population. Consider eight progenies of marigolds each segregating for normal and
virescence as shown in Table I7.7.

TABLE T7.7.
Normal and virescent marigolds in eight progenies

Progeny Normal Virescent 121S, t; x21StO0, ase;

I
2
3
4
b
6
I
8

Totals

Pooled

Heterogeneity

315
ffiz
868
174
r92
165

t6r
629

3106

85
r70
252
42
48
39
43

t75

8il

3.00
3.65
3.73
3.56
3.20
3.76
r.67
4.48

27.05
,4.91
2.t4

0.023
0.004
0.578
0.575
0.348
0.723
0.028
0.019
2.388

0.000
2.388

We will carry out two kinds of analyses. First we will test each progeny and
the pooled data from all progenies for deviation from a hypothetical 3: I ratio.

The chi-square calculated for each progeny is shown in column four. These
were calculated without the correction for continuity, because we nrill want to add
them, and only unadjusted chi-squares are additive. Note that only one of these
exceeds the required value of 3.84 for significance at the 57o level. We therefore
have very little evidence from the individual progenies for rejection of our
hypothesis. Still we are rwt jusdfied in concluding that, since seven out of eiglrt
progenies gave a "good fit" (i.e., did not deviate significantly from 3: 1), there is

overwhelming evidence to support our hnlothesis. We must carry the analysis
further. Adding the eight individual chi-squares, each with I degree of freedom,
gives a total chi-square of 27.05 with 8 degrees of freedom. This exceeds the
tabular chi-square value of 26.L25 at the 0.001 level. In other words, the probabil-
ity is less than I in 1000 that such a large value could simply be the result of
chance. Another test can be applied to the total of 3106 normal and 8*l virescent.
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The expected numbers are: 3960X3 /4:2970 and 3960X \/ :WO,

So x2: 
(3lq-if7o)'? 

..,. 
(8il;l$ :?A.et.

This far exceeds the tabular chi-square value for I degree of freedom at the 0.00I
level, so we now definitely reject the hypothesis that all of the progeny are
samples from a population with 3: I ratio. We still would like to }rrow whether all
of these progenies mig[rt represent samples from a single population. To test this
hypothesis, we calculate what is called heterogeneity chi-squnre.

heterogeneity chi-square : total chi-square - pooled chi-square.

Since total chi-square was 27.05 and pooled chi-square was 21.91, heterogeneity
chi-square is 2.14 with 7 degees of freedom. Reference to the table shows this to
be even less than the 2.167 required at the 0.95level. The probability is about 957o

that a chi-square of this size or larger could come from a homogeneotrs set of
samples just by chance. All of these tests can be summarized in a table similar to
an analysis of variance table.(Table I7.8).

TABLE I7.8.
Summary of data from eight marigold progenies based on 3: 1 ratio

Source df Chi-square

Total
Pooled
Heterogeneity

8
t
7

27.O5***
24.gl***

2.14 ns

Instead of testing each progeny against a hypothetical ratio, we might test the
observed ratio of the totals. This is done in the last column of Table 17.7.T\e
pooled chi-square of course has a value of zero, since the observed ratio is the one
which we are testing. A table analogous to the one above is given as Table 17.9.

We still have no evidence of heterogeneity, conclude that we are dealing with
a homogeneous set of progenies, and that our best estimate of the true raUo is
3106:8*t.

Notice that in this last test, the calculations were exactly the same as for
testing independence. In other words, when testing each sample against the
observed total ratio, heterogeneity chi-square:hdopmderce chi-square.It is only
when the samples and totds are being tested against a hypothetical ratio that we
need to partition the total chi-square into two comlrcnents.
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TABLE I7.9.
Summary of marigold data" based on observed totds

Source df Chi-square

Total
Pooled
Heterogeneity

8
1

7

2.388
0.000
2.388

Table 17.10 indicates what the analysis would have looked like if the first four
progenies had shown the same deviation from a 3: I ratio, but in the opposite
direction.

TABLE I7.TO.
Hypothetical set of marigold data showing heterogeneity

Progeny Normal Virescent x21S, t; 1212S50, tOtO;

I
2
3
4
5
6
7
8

Totals

Pooled .

Heterogeneity

r15
216
308

66
48
39
43

175

r0r0

285
556
812
r50
192

r65
l6r
629

29fi

3.00
J.G)
3.73
3.56
3.20
3.76
L.67
4.48

27.O5

.il
%.51

2.05
2.49
2.35
2.90
3.82
4.38
2.10
5.92

26.01

.00

26.01

Note that the pooled data now came very close to fitting a 3: I raUo, but the
heterogeneity chi-square is highly significant. Again we reject the hypothesis that
all of the progenies are samples from a population in which the ratio is 3 normal to
I virescent. The rejection in this case is because there is strong evidence that the
samples are not a homogeneous set, so that pooling of the data is not justified.
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With only one slight modification for cases where the correction for conUnuity is

required. There are many modifications of this formula that provide computational
shortcuts for special cases. A person who has a great many chi-squares to calculate
would be well advised to refer to a more advanced text for the appropriate
shortcut formula. For the reader who only occasionally encounters problems
requiring chisquare analysis, we feel it is preferable to learn this single basic
formula.

Throug[rout this discussion we have used a single formula:

" : (Ob-Ex)2..-- \LZTEX

SUMMARY

The general formula for calculating chi-square is

" -., (ob-Ex)2

^.tEx

Individuals classified in one way into two or more classes may be compared to
a hypothetical ratio. Degees of freedom are one less than the number of classes.

By comparing the calculated chi-square with a table, we can find the
probability of the occrurence of a deviaUon at least as geat as that observed by
chance alone.

Individuals classified in two ways, into r and c classes, can be tested for
independence between the two criteria of classification. Degrees of freedom are

(r- l) x (c- t).

If two or more samples are each tested against a common hypothetical ratio,
the sum of the resulting chi-squares can be partitioned into two components as
follows:

Source df
r(c - 1)

(c- r)
(r- l)(c - l)

Total
Pooled
Heterogeneity

Analysis of C,otnx ?82

The number of classes into which each sample is classified is c, and r is the
number of samples.



!8
IMPROVINC
PRECISION

The precision of an experiment refers to its ability to detect true treatment effects.
In general, the more precise the e4periment, the smaller the treatrnent difference
that the experiment is capable of detecting. The greater the variability among
experimental units treated alike, the greater will be the error associated with the
difference between two means and the less precise the experiment will be in
detecting differences resulting hom treatrnents. The standard error of the dif-
ference between two means decreases as s decreases and n increases, s;
:lrt1" (where n is the number of replicatiom). Thus, methods to increase the
precision of an experiment are designed to lower the unaccounted variability per
plot or to increase the effective number of replicaUons.

Precision may be improved by (1) increased replicaUon, (2) careful selection
of treatments, (3) refinement of technique, (4) selection of erperimental material,
(5) selection of the experimental unit, (6) taking additional measurements, and (7)

planned grouping of experimental units.

INCREASED REPLICATION

The precision of an experiment can always be increased by additional replications,
but the degree of improvement falls off rapidly as the number of replications
increases. For example, compared to an experiment with foru replications, to
double the degee of precision with which two means can be separated requres 16

replications. This follows from t}te effect of the number of replications (n) on the
difference_jequired to separate two means at a given level of significance,

LSD: tv2sz / n . It:js is not exactly so because, as n increases, t becomes slightly
smaller, but it is close enough to use as a rule of thumb.

In general, in field and vegetable crop research, from four to eight replica-
tions are required for reasonable precision. In planning an experiment, you should
be reasonably srre that you will be able to detect a true difference of the
magnitude in which you are interested. If the probability is poor that you can
accomplish yoru objective with the number of replications you are willing to
employ, and there are no other reasonable means for improving precision, you
would be well advised not to do the experiment--or at least to postpone it until
you have srfficient resouroes to conduct it in a way that does have a good chance
of accomplishing your objective.
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Table 2.1 of Cochran and Cox (1964) is convenient for estimating the number
of replications required to detect a specified difference. Their table is based on t}re
formula_r) ztQYz/tr)(tr+t )', where CV is the coefficient of variation [CV:
(100)/Y.]; D is the difference you desire to detect expressed as a percent of the
mean of the experiment; t1 is a tabular t value for a specified level of significance
(say 5%) and the degrees of freedom for experimental error; and t2 is a tabular t
value for degrees of freedom for error and a probability of (f - P)2, where P is the
probability of detecting a significant result in a given run of the experiment. If
P:0.80, then (t-P)2:0.40, a two-tailed area for a t distribuUon based on
degrees of freedom for experimental error.

To use the equation, start by specifying the number of replications you think
may be needed and then work it to approximate r. Based on this r, solve the
equaUon again and then take the next larger value of r as the number of
replications required.

For example, suppos€ we wish to conduct an experiment involving six
treatments in a randomized complete block desigrr. We want an 807o chance of
detecting a mean difference as small as l07o of the experimental mean at the 5%
level of sigrificance. Other experiments wit} the experimental units we will use

indicate that a well-conducted experiment should have a coefficient of variation of
about 57o. We think six replications may be enough. Thus, for the fust run of the
equation, r: 6, treatments : 6(n :6), df error: (r - 1)(n - L):%, t, :2.060, t, :
0.856 (see Table A.2), and r) 2(5/L0)2@.W+0.856)2:{.!$.

Now let r:5, then df error:(4-1x5-1):20, tr:2.086, and tr:9.860.
Solving again for r gives r>2(5/10)2(2.086+0.860)':4.M; therefore we take 5 as

our estimate of the number of replications required. When we conduct the
experiment, we will have an 807o chance of detecting a lWo difference at the 570

level with five replicaUons unless the coefficient of variation turns out to be larger
than expected.

SEI,ECTION OF TREATMENTS

Careful selection of treatments is not only important in achieving the experi-
menter's objectives but it also can increase the precision of the experiment. For
example, in studying the effect of an herbicide, fungicide, fertilizer, or insecticide,
it is more useful to determine how the experimental units reqpond to increasing
doses of your treatment material, than to decide whether or not two succeeding
doses are significantly different. Thus, a proper series of doses will ma^ke it possible
to plan tests of significance tllat are more sensitive than merely comparing
adjacent means in an array. fu mentioned before, doses in equal increments
covering the range of the req)onse expected are most efficient in establishing a
dose-response curve and facilitate the computation of sums of squares and
equatiors for reqponses. Also, as pointed out in Chapter 3, factorial experiments,
where two or more tnles of treatments are tested simultaneously, can result in
considerable improvement in the precision of main factor comparisons.
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REFINEMENT OF TECHNIQT'E

Faulty technique may increase experimental error and bias treatrnent effects. A
good techniqui should (l) uniformly apply treatments, (2) devise suitable and

unbiased measure of treatment effects, (3) prevent gross elrors, and (a) control

external influences so that all treatrnents are comparably affected.

SELECTION OF EXPERIMENTAL MATERIAL

For certain kinds of studies, carefully selected, uniform material is desirable. In
selecting experimental material, however, you must keep in mind the population
about which you wish to make inferences. Thus, for most applied research in
agriculture, it is important to use the kinds of experimental materials that will be

used in actual production.

SELECTION OF THE EXPERIMENTAL I.INIT

The size and shape of the field plot affects precision. In general, variability
decreases with an increase in plot size, but once a certain size has been reached,
t}te increase in precision falls off rapidly with larger sizes. For determining yield,
there is usually little gain in precision by using plots larger than 0.1 acre. For most
crops, hawested areas of 0.01 to 0.02 acres result in good precision. LeClerg et al.
(1962) discuss size and shape of field plots for various crops and cite many usefr:l
references. Rectangular plots are most efficient in overcoming soil heterogeneity
when their long axes are in the direction of greatest soil variation.

Increasing the number of animals or t}te number of trees per experimental
unit also increases precision. However if animals or trees can be handled individu-
ally, precision will be increased more by using individuals as experimental units
and having more replications rather than using the same number of animals or
trees with more than one per experimental unit.

TAKING ADDITIONAL MEASUREMENTS{OVARIANCE

One of the techniques for reducing error in an experiment is to remove the
variability in Y associated with some independent variable X. This techniques is
called corsariance.

Suppose that in a crop experiment there was a considerable amount of
variation in stand from plot to plot. If we can make a reasonable estimate of what
the plot yields would have been if all plots had the same stand, the precision with
which we measure treatment effects can be improved. An estimate based on the
assumption that leld is directly proportional to stand is not reasonable for
example, for it nearly always introduces a bias favoring the plots with the thinner
stands.
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Another example of the usefulness of covariance analysis is in animal feeding
experiments in which there is variation in the initial weights of the animals. If
weight gain is found to be related to initial weig[rts, adjustments can be made to
increase the precision of measuring treatment effects.

The whole subject of covariance is a fairly complicated one, both from the
point of view of the calculations involved and in the inteqpretation of results.
Many of t}le texts in ou list of references deal with covariance in great detail. In
our experience, few agricultural research workers become involved in covariance
analysis except in a minor way, so that a discussion of all the intricacies of the
technique may not be very fruitful. We will therefore describe only the general
method of the analysis and some of the simpler aspects of inteqpretation.

Table l8.I consists of some hypothetical data contrived for easy calculation to
illustrate the procedures in covariance analysis. You can think of X and Y as

representing stand and yield, initial weight and weight gain, or any other pair of
variables that you might encounter.

TABLE T8.I.
Hypothetical data representing the values of two variables, X and Y, in a
randomized complete block experiment with four replicates and five treatments

x Y

Block: L234Totall234Total

Treatment
I
2
3
4
D

7
I
6
I

t4
45

28
36
32
%4

40
160

8677
84L212
410108
17412
981211

30 35 45 50Totals

b
D

t2
II

I

40

The regular analysis for both X and Y can be carried out in the usual way,
with the rezults shown in Table 18.2.

We note that the'treatments had no significant effect on the X variable, but
their effect on Y was significant at the 57o level.

To carry out the analysis of covariance, we ned, in addition to the sums of
squares of X and Y, the zums of cross-products, which we will designate as SXY.

First, we need a correction term:

662,1
9932
101240
t0 18 4tI
15 20 56
50 65 200

(>*X>") (160)(2m): --;;---: 1600C:
rn
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TABLE I8.2.
Separate analyses ofvariance for X and Y from Table l8.l

Source of Variation df SSX MSX F SSY MSY F

Total
Blocks
Treatments
Error

334
70

160
104

r86
50
40
96

t9
3
4

t2

16.67
10.00
8.00

t.?5
23.33
40.00

8.67
4.62*

The sum of cross-products for blocks is

sXyB: a+& -c- 
(30x4s)+ ':' +(50)(6s) 

-1600

:50

For treatments, it is

)T*T* (28)(%)+... +(40)(56)sxlT:--c: 4 -1600

:24

The total sum of cross-products is

sXy: x xv-c: (8)(7)+ ... + (tr)(20) - 16m

:lA
The sum of cross-products for error can be obtained by subtraction:

SXYE : SXY - SXYB - SXYT : lA - 5O - %4 : B
To show where the error zums of squares and cross-products come from and
ultimately how we arrive at the regession equation, we remove the block and
treatment effects and the general mean from each variate, leaving only the
residual error components, as we did in Chapter 5 (Table f8.3).

It is easy to venfy that the sums of squares of these components are the same
as the error sums of squares in the analyses of variance in Table 18.2. Also the sum
of products of corresponding components of X and Y is the same as the value of
SXYE obtained indirectly by zubtraction above. It is these 20 pairs of error
components that are used to calculate the regression of Y and- X free from
treatment and block effects.
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TABLE T83.
Error comlrcnents of X and Y after removal of block and treatment effects and
general mean

x Y

Block: l234Totall234Total

t
2
3
4
5

Treatment

Totals

30
t-4

-23
-32I -100

-t -22t
t-2

-34I -l00

0
0
0
0
0
0

2
2

-3
-2

I
0

t
_I

4
I

-b
0

0-3
L-2
0 -123
l3
00

0
0
0
0
0
0

We learned in the chapter on linear regession and correlation that a sum of
squares for deviation from regession could be found by taking (l-f) SSY. This
can be rewritten as

(t -r)ssv: 
l, 

- ffi ]tt":tt"- ff
This zum of squares for deviation from regession can be considered as a zum of
squares of Y after removing the effect of X on Y. It is therefore called "Y adjusted
for X."

We now have all the information we need to make a complete analysis of
covariance table (Table I8.4).

The error sum of squares of Y adjusted for X is

ssY- H:ro4- #:*.*
This has ll degees of freedom, I less than the 12 for unadjusted error.

The degrees of freedom and sums of squares and products in the row called
"treatments*error" are simply obtained by adding the numbers.in the "treat-
ments"row to those in the "error"row. We then obtain a sum of squares of Y
adjusted for X in the same way on this row as we did for error:

(treatment * error)adjusted SS : 264 - ffi : ZOt.ZAl
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TABLE T8.4.
Analysis of covariance of data from Table 18.2

Source of
Variation

Sums of Squares

and Products Y Adjusted for X

df SSX SXY SSY df SS MS F

Total
Blocks
Treatments
Error
Treatments

* error
Treatments

adjusted

l9
3
4

t2

16

t42
50
24
68

92

186

50
40
96

136

334
70

160
r04

2M

The treatment sum of squares of Y adjusted for X is now obtained by subtracUon:
20I.765-55.833:145.932. It is important to note that the adjusted sum of
squares for treatment canrwt be obtained directly by applying the formula
SSY-SXY'z/SSX to the treatment line. In this case, we would get tffi-fu|z/40:
145.6. The fact that this is fairly close to the correct value is merely coincidence.
The two values will not generally be this close.

The regression coefficient is found from the error line by the usual relation:
b:SXY/SSX:68/96:0.70833. It is informative to see what happens when we
adjust the error terms of Y in Table 18.3 for the corresponding error terms of X.
This can be done by applying the equation: Y,,adjusted:Y, -b\ to each value of
Y in the table, as shown in Table 18.5.

TABLE I8.5.
Error terms of Y Adjusted for X

ll 55.833 5.076

15 201.765

4 t45.932 36.483 7.19',3*

Block I 432

Treatment
I
2
o
4
5

-0.r25m
r.29167

- r.58333
0.12500
0.29r67

1.00000
1.83333
1.87500

-0.4tffi7
-4.29t67

0.70833

-0.4rffi7
-0.70833

0.12500
0.29167

- r.58333

-2.70833
0.41667
0.16667
3.70833
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Not only are tle sums for blocks and treatrnents still zero as they should be
but also the sum of squares of these adjusted error terms is 55.833, exactly the
same as in the analysis of covariance.

Adjusting More than One Source of Variation

Regardless of the design of the experiment or t}le number of factors being studied,
the general pattern of the analysis of covariance table (Table 18.4) can be
followed. The important point to remember is that for each source of variation to
be adjusted, the sums of squares and cross-products for that source must be added
to the corresponding error sums of squ€ues and cross-products. The resulting
"source*error" line is used to calculate a sum of squiues of Y adjusted for X, and
from this we subtract the adjusted error sum of squares to find the adjusted sum of
squares for the source of variation being studied. We illustrate this procedure by
partitioning the treatment sum of squares in our example into four sources of
variation or components, each with a single degree of freedom:

Component Coefficients )(c,T)* )(c,T,)" )",'

4
0
0
0

I
II

m
IV

I
3
0
0

-1
-l

2
0

-t
-1
-t

I

-l
-l
-l
-l

-80
-48
-?tl
-8

20
12

6
2

-2fi
t2
0

-16

The sums of squares for each component rs obtained by the usual formula:

[Xc,T,)]'z/r()c,2). The sum of cross-products requires a slight modification of this
formula: SXY:XciT)1)(c,l)"/r()c,2). the analysis of covariance of the parti-
tioned treatment effects is given in Table 18.6.

There is a very important feahre of this table to notice. The unadjusted sums

of squares and cross-products are additive. That is, the sums of the four compo-
nents equal the total treatment sums of squares and cross-products. On the other
hand, the adjtsted sums of squares are rwt additive. The sum for the four
components is 141.026 compared to the value of 145.932 for the total adjusted
treatment sum of squares. This means that we cannot find an adjusted component
sum of squares by subtracting all the remaining components from the total
adjusted treatment sum of squares.

Adjtrsting the Treatment Means

It is often desirable to estimate what the treatment means of the dependent

variable would be il the means of the independent variable were the same for all
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TABLE 18.6.
Analysis of covariance of partitioned treatment effects

Sums of Squares

and Products Y Adjusted for X

df SSX SXY SSY df SS MS F

Source of

Variation

Total 19
Blocks 3
Treatments 4

Comp.I I
Comp.II I
Comp.III I
Comp.IV I
Error 12

CI * Error 13

cr Adj.
CII * Error 13

crr Adj.
CIII * Error t3
crrr Adi.
CIV* Error 13

cIV Adj.

186 la 334
50 50 70
40 2A 160
52080
3-r248
009/4
32168
96 68 104
I01 88 184

99 56 t52

96 68 r23

u ttz

u 55.833
t2 t07.327
I 51.494

t2 120.323
r 64.490

12 79.83
| 24.W

t2 56.875
I t.Mz

5.076

5t.494

64.490

tut.w

t.M2
t41.ff26

l0.l4ir

t2.70rt

4.73 NS

0.2r NS
r28

Total for 4 components

treatments. These adjusted means are found from the equation:

i:y,-r(4-x)
where b:error SXY/error SSX. In our exarnple, b:68/96:0.7083, and the
adjusted means:ue:

Yi t&-xl b(E-x)
2
Y

6
8

t0
t2
t4

-l
I
0

-2
2

-0.7083
0.7083
0.fim

- 1.4166
1.4166

6.7083
7.2917

r0.fino
13.4166
I2.5834
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One miglrt expect that the adjusted treatment sum of squares could be found
directly from the adjusted treatrnent means. In fact, this is sometimes zuggested as
an approximate method of covariance analysis when there is no significant
treatment effect on X, the independent variable. However, tlere is a fact seldom
explicitly stated in statistics texts: The sum of sqtnres of adiusted treatrnent rneans
is alunys grcater than the o.diuted treahtlent su,m of squares. The difference is

I ssxrlsxrr) - sxyE(sxxr) l'?

(ssxE)'9(sxxr+sxxE)

In our example, this is

Im(z)-68(40)]' :0.138r
(e6)'z(40+e6)

The sum of squares of adjusted treatments is

4(6.70$2 +'.' + 12.5834\ - X: I46.06e4

(Note that since we are working with means, we multiply rather than divide by the
number of replicates before subtracting the correction term.) The adjusted treat-
ment zum of squares from the analysis of covariance was 145.932, and the
difference between these two sums of squares is 0.1374, the same as calculated
from the formula except for rounding.

Since the treatment sum of squares obtained from adjrsted treatment means
always overstimates t}te correct sum of squares, the resulting F values are likewise
too high. Therefore, if one uses the approximate method and finds F values that
are only stightly above the significance level, t}re exact procedure should be used.
On the other hand, if the F values found by the approximate method are not
significant, we can be sure that they will not be significant by the exact method.

Comparing Two Adjusted Treatment Means

Since the variance of adjusted treatment means is larger than the correct adjusted
treatment mean square, the usual I.SD is not appropriate for comparing adjusted
treatment means. Technically a different standard error of difference must be
calculated for each pair of means. The formula is

l " . 
(-r-iJ'l

sa2:Adj.EMS 
L;.T#_l

If the degrees of freedom for error are 2O or more, and if there is no significant
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treatment effect on X, an approximation that can be used for all pairs of means is:

s*:Adi. EMS l2 * zssxr 
1u r lr r(t-t)SS)iEl

Inteqpretation of Covarianc€ Analysis

The error mean square is nearly always reduced corsiderably by covariance
analysis, and the adjusted treatment mean square is usually reduced also. For this
reason, the F value for treatments after adjustment may be greater or less than
before adjustment. The intelpretation of the results depends on whether there was
a significant effect on X, the independent variable.

If there was no significant treatment effect on X, and the treatment effects on
Y were significant before but not after adjustment, this would indicate that the
apparent treatment effects on Y were exaggerated by chance variation in X and
should be intelpreted with considerable caution.

If X was not significant, and tle treatment effects on Y were significant after
but not before adjustment, it is likely that the true treatment effects were
obscured by variation in X.

If the treatment did have a significant effect on X, then the F value after
adjustrnent is usually less than before adjustment. If it is still significant, then we
can conclude that the treatments had a significant effect on Y over and above that
associated with the variation in X.

We have seen that the techniques of covariance analysis are considerably
more cumbersome than ordinary analysis of variance, and intelpretation of resrlts
is often difficult. Our best advice is to avoid random distribution of a known
independent variable if possible. This can be done by careful gouping of experi-
mental units into blocks, thereby making it possible to remove most of the
variabitty in X along with the block effects.

PI.ANNED GROUPING OF EXPERIMENTAL UNMS-DESIGN

We have devoted a considerable portion of this book to a discussion of experimen-
tal designs and their role in improving precision. There are many other desigrs we
have not discussed. In our experience, however, the designs presented here are
used in the great majority of agricultual experiments. The reader interested in
other designs should consult more advanced texts, such as that by Cochran and
Cox (r9&).

SUMMARY

Precision is the ability of an experiment to detect a true treatrnent effect. It can be
improved by increased replication, treatment selection, improved technique to
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reduce the variability among units treated alike, increasing the size of
tal units (within limits), the use of covariance, and the employment
efficient experimental design.

experimen-
of a more
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TABLE A.I.
Random Numbers
To randomize any set of l0 items or less, begin at a random 1rcint on the table and
follow eit-her rows, columns or diagonals h either direction. write down the
numbers in the order they appear, disregarding those that are higlrer than the
number being randomized and those that have appeared before in the series. If
you wish to randomize more than I0 numbers, pairs of columns or rows can be
combined to form two digit numbers and the same process followed as that
described above.

8203 l 4 582 t7 2738 5529063 r 64
08 7 3 3 l I 7 52 57 69E 0 3 625 L27 52
23386 I 42 4026 r 89 52898340 I 0
47 5563077 I I I 6 r7 4t 7 137933 7

609488553790000 I 9206 I 5842
359 07 7 0 1 8 l 293469289898655
448 I r 7 4 47 4 4 4 I 65936598 32 43
639 7 082533 2605 r 2 437 I 0 7 82 r

193953495 527 58034E8 I 2 7 53 4
287 8 r 4 I 49 42 4 t5294 6 2L528 I I
84 85 r 3 966 07 2 r 90 20A7060 r 3 0
03 8 8 47 5 I 5 r 73 45207 4796 67 7 4
353 r 93 7 495020 t 4 A25 458509 2
3 45952798905 5 85 t7 7 355 47 7 2
4 | 5309 | 37 2 587 7 r3 63 I 7 I 79 L 7
7 29 5 87 I 5 45 3 4 5 4 I I 8 67 57 93 I 8
592 898 6 44 r 53 7 7 08025606 I 20
r 3 33 90 5287 40903 73 r 79 45528
460 r 08 62 I 00503 t5 4903 7 47 0 |
7 7 0663 2 E85 89 58 4059 r 80 5 49 4
33 8 57 57 43 457 I 69 507 7 6888 59
9 1 7 136929 l 9423308 I 877 847 2
622809 4537 254 66566504 65 6 8
t7 5900 20565 8 5 I 9533 7 40582 4
03 9694 735 7 0 65 47 r r I 532809 8
30828 | 44 t67 66999758964590
94 9 1220 l 3 2 4679 I 882983 2629
7 25 t 4 49 65 28 55 I 0 8 2 6 2 06 I 2 23
992 57 43 t 23 84 r 5 2 40 4228 7 r 82
209 r 89 4 46 r 4 8 67 925069330 | 2
6524 r2 r7 7 t 47 8 I 4 27 37 400 I 2 I
1 29964 25s27 43233 85336 5532
32837960486054 I I 49050944 l
0934 r r 9583 2 467 3 4 49 23 7 257 8
B7 53 42 r 550 l 2 47 55288 7828 03
9 6 0 r 3 0 5 3 6 6 2I6 0 3 47 6I I I I6 5 3
4e99 6 7 8 5 8 I 2 I 2 62 4 490 5 5 45 2 0
s7 7 I 92 656336 3 68399 87 7 27 I 7
7 53333 7 37 6 7s I 1 I 239095965 7
281 3 13 42 I 03 I 232023 97 7 5069

Appendir, Tobles 296



TABLE A.2.
Distribution of tl

t2
l3
t4
t5

I
2
3
4
5

6
7
8
I

l0

1.376
1.061
0.978
0.941
0.920

3.078
1.886
1.638
r.533
r.476

r.440
t.415
1.397
r.383
t.372

1.363
1.356
r.350
1.345
1.34I

r.337
r.333
r.330
1.328
1.325

r.323
I.32I
1.319
I.318
1.316

6.314
2.92.0

2.353
2.r32
2.0I5

1.943
r.895
r.860
r.833
1.812

1.796
t.782
t.771
1.761

1.753

t.746
1.740
t.7u
r.729
r.725

1.72t
1.717
1.7t4
l.7lt
1.708

1.706
1.703
1.70r
1.699
1.697

12.706
4.303
3.182
2.776
2.571

63.657
9.925
5.841
4.W
4.032

3.707
3.499
3.355
3.250
3.169

3.106
3.055
3.012
2.977
2.94t7

2.92r
2.898
2.878
2.86r
2.U5

2.83I
2.8r9
2.807
2.797
2.787

2,779
2.771
2.763
2.7fi
2.1fi

31.598
t2.941
8.6r0
6.859

5.959
5.405
5.041
4.78r
4.587

4.437
4.318
4.221
4.L40
4.073

4.015
3.965
3.922
3.883
3.850

3.8r9
3.792
3.767
3.745
3.725

3.707
3.690
3.674
3.659
3.e16

11

0.906
0.895
0.889
0.883
0.879

0.876
0.873
0.870
0.868
0.866

2.447
2.365
2.306
2.262
2.228

2.20r
2.r79
2.160
2.r45
2.131

2.t20
2.110
2.101
2.093
2.086

2.080
2.074
2.069
2,W
2.060

2.056
2.052
2.M8
2.M5
2.M2

0.865
0.863
0.862
0.861
0.860

0.859
0.858
0.858
0.857
0.856

0.856
0.855
0.855
0.8il
0.8il

3t
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l6
t7
18

19

20

2l
22
23
24
25

26
27
28
29
30

r.3r5
1.314
1.313
I.311
1.310

Probability of Obtaining a Value as

Large or LargerDegrees of

Freedom 0.400 0.200 0.100 0.050 0.010 0.001

e.0 3fc



TABI.^E A.2.
ConUnued.

35
40
45
50
55

60
70
80
90

100

r20
co

lbt

"Parts of this table are taken from Table III of Fisher and Yates: Stotistical Tablcs for
Biobgitnl, Agricultural, ond Meilical Research, published by Longman Group Ltd., london
(previously published by Oliver & Boyd Edinburglr), by permission of the authors and
publishers. Other parts were calctrldted following Chen and Makowsky (see footnote to
Table A.3). /'

/r--a I ''77G''

Degrees of

Freedom

Probability of Obtaining a Value as

l,arge or Larger

0.400 0.200 0.100 0.050 0.010 0.001

0.852
0.85r
0.850
0.849
0.849

1.306
1.303
1.301

1.299
1.297

t.6m
r.684
r.680
r.676
r.673

2.7%t
2.7M
2.6m
2.678
2.669

3.591
3.551
3.520
3.496
3.476

0.848
0.u7
0.847
0.846
0.846

1.296
t.294
1.293
1.29r
1.290

1.671
1.667
r.665
1.ffiz
1.661

2.m0
1.991
1.989
1.986
1.982

2.ffi
2.M8
2.638
2.631
2.625

3.460
3.435
3.416
3.402
3.3m

0.845
0.8416

1.289

1.2816

1.658

1.M48
1.980

1.9600

l, ltst

2.617
2.5758

3.373

3.2905
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2.030
2.02t
2.014
2.008
2.N4
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TABI.E A.3.
107o, S%and l7o points for the F distribution."

t .r0
.05
.01

39.86
161

4,62

8.53
18.51

98.50

55.83
2.95

5,6?5

57.2a1

230
5,7U

49.50 53.59
200 216

4,999 5,,!03

58.20 58.91 5S.44 59.86 60.19 60.47 60.71
2v 237 239 *tL 242 2/*3 2U

5,859 5,928 5,981 6(}22 6,066 6,083 6,106

fl).90 6r.07 6r.22
245 245 26

6,126 6,143 6,157

61.35 6r.46
28 2t:7

6,170 6,181

61.57 61.66 61.74
247 28 28

6,191 6,201 6,209

2 .10
.05
.01

3 .10
.06
.01

9.m
19.00
99.m

9.16
19.16
99.17

9.rl
r9.25
99.25

9.29

19.30
90.30

9.33
19.33
99.fr}

9.35
19.35
99.36

9.37 9.38 9.39 9.4() 9.41
1937 19.38 19.40 19.40 19.4r
90.37 99.39 99.40 99.41 90.42

9.41 9.42 9.42
tg.a t9.42 19.,A
99.,0 90.(} 99.$

9.4I 9..$
19.43 19.4
w.u w.&

9.U 9.4
tg.u 19.45
99.45 99.45

9.4
t9.4
w.4

s.il 5.8 5.39
10.13 9.55 9.2i
u.rz N.82 m.6

5.34
9.12

2l..7r

5.3r
9.01

?3.2/4,

5.24
8.94

27.9L

5.27
8.89

27.67

5.25 5.2t 5.23 5.22 5.22
8.85 8.8r 8.79 8.76 8.74

27.49 27.35 27.23 27.13 27.6

5.2r 5.20 5.m
8.73 8.7r 8.70

%i.*t %J.92 26.87

5.20 5.19
8.6) 8.68

%J.83 213.79

5.19 5.r8
8.6-/ 8.66

%i.72 %i.@

5.r9
8.6i'/

%i.75

4

5

6

.10

.05

.01

.10

.05

.01

.I0

.05

.01

4.il 4.32 4.19
7.7r 6.94 6.59

zt.?u 18.00 16.69

4.ll
6.39

15.98

4.05
6.26

t5.52

3.45
5.05

r0.97

4.0I
6.16

I5.2I

3.98
6.09

I4.98

3.95
6.(X

14.80

3.94
6.00

t4.ffi

3.92
5.96

14.55

3.91
5.94

14.45

3.28
4.70
9.96

3.90
5.91

14.37

3.27
4.68
9.89

3.89
5.89

14.31

3.88
5.87

t4.25

3.87
5.86

t4.2.O

3.86
5.U

14.15

3.86
5.83

14.11

3.85
5.82

t4.08

3.85
5.8r

14.05

3.84
5.80

L4.U2

4.06
6.61

LB.2t)

3.78
5.79

t3.27

3.62
5.4r

12.06

3.52
5.19

1r.39

3..()
4.95

10.67

3.37
4.88

10.46

3.34
4.82

10.29

3.32
4.n

10.16

3.30
4.74

10.05

3.23
4.60
9.68

3.22
4.59
9.64

3.%J 3.25 3.2/l
4.ffi 4.U 4.62

9.82 9.n 9.72

3.D, 3.21 3.21
4.58 4.57 4.fi
9.61 9.58 9.55

3.78 3.i16 3.29
5.90 5.t4 4.76

13.75 10.92 9.78

3.18
4.53
9.15

3.11
4.39
8.75

3.05
4.23

8.47

3.0I
4.21
8.26

2.98
4.t5
8.10

2.XJ
4.10
7.98

2.91
4.ffi
7.87

2.92
4.(B
7.79

2.90
4.00
7.72

2.86
3.92
7.52

2.ffi
3.91
7.8

2.85
3.90
7.45

2.U
3.88
7.4

2.U
3.87
7.&

2.89 2.88 2.87

3.98 3.96 3.94
7.6 1.ffi l.fi

Degrees of Freedom for Numerator (Greater Mean Square)

789r011121314

DF
For P

Denom 15 16 17 r8 19 %)123456

'The points 9f tlis tabtg were calculatd from Hubert J. Chen-and A. B. Makowsky, "On Approximations to the F-DistribuUon and Its Inverse," Report
763, Memphis State University, Departrnent of Mathematical Sciences (1976).
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TABLEA.3.
Continued.

7 .10
.05
.01

8 .10
.6
.01

I .10
.05
.01

l0 .10
.0t
.01

3.59
5.59

t2,5

3.%i
4.74
9.55

3.Ul
4.35
8.45

o (x,

4.A7

7.59

2.96
4.t2
7.&5

2.Er
3.84
7.01

2.@
3.ffI
8.4

2.88
3.97
7.6

2.&]
3.87
7.19

2.78
3.79
6.9t)

2.75

3.73
6.84

2.72

3.68
6.72

2.70

3.64
2.68
3.60

2.gt
3.57

2.62
3.49
6.%l

2.61
3.48
6.24,6.@ 6.il 6.47 6.41

2.59 z.fi z.il 2.52 2.fi 2.49 2.8

2.6
3.55

2.63
3.5r
63r

2.U
3.53
6.36

2.61

3.47
9.21

2.fi
3.46
6.18

2.59

3.M
6.16

2.43
3.16

2:44
3.17

2.42
3.15

3..16

5.32
il.2I)

3.36
5.r2

10.56

3.ll
4.6
8.65

2.73
3.69
6.fi]

2.6L

3.48
6.06

2.52
3.33
5.U

2.67
3.58
6.37

2.62
3.50
6.18

3.U
6.Cr3

3.39
5.9r

3.35
5.8r

33r
5.73

3.2{]
5.67

3.%i
5.61

3.24,

5.56

2.6
3.22
5.52

2.45
3.20
5..A

2.6
3.19
5.4 5.41 5.38 5.36

3.0r
4.2u

8.02

2.81

3.86
6.99

2.35
3.(B
5.0r

2.U
3.01
4.96

2.iJil

2.W
4.92

2.32
2.W
4.89

2.31

2.96
4.8

2.30
2.95
4.&]

2.n
2.!A
4.81

2.55
3.37
5.80

2.5L 2.47 2.4 2.A 2.& 2.3tt z.fi
3.29 3.23 3.18 3.r4 3.r0 3.07 3.05
5.61 5.47 5.35 5.21t 5.18 5.11 5.05

3.29
4.96

r0.u

o oa,

4.IO
/.DO

2.73
3.7r
6.55

2.61
3.4{i
5.99

2.46
aoo

5.39

2.41

3.14
5.2n

2.38
3.fi
5.06

2.35
3.U2

4.9t

2.32
2.98
4.85

2.n
2.91
4.Tt

2.23
2.91
4.7r

ll .10
.6
.01

2.10 2.(x) 2.(E 2.6 2,W 2.06
2.62 z.ffi 2.8 2.57 z,fi 2.54
4.01 3.97 3.94 3.91 3.88 3.86

12 .10
.05
.01

3.23
4.U
9.65

2.86
3.98
7.21

2.ffi
3.59
6.22

2.U
3.36
5.87

2.8
3.Zt
5.41

2.45
3.%)
5.32

2.39
3.09
5.A7

2.U
3.01
4.&)

2.30
2.95
4.74

2.27
2.90
4.61

2.25
2.85
4.il

2.?3
2.82
4.6

2.21
2.79
4.&

2.19
2.76
4.y

2.13
2.ffi
4.10

2.18
2.74
4.W

2.t7
2.72
4.25

2.16
2.70
4.2L

2.t5
2.@
4.18

2.14
2.st
4.15

2.13
2.ffi
4.L2

2.r2
2.65
4.10

3.18
4.75
9.&!

2.81
3.80
6.93

2.6r
3.49
5.95

2.39

3.tt
5.06

2.33

3.00
4.82

2.2t3

2.9I
4.il

2.24,

2.ffi
4.50

2.2r
2.80
4.39

2.19
2.75
4.30

2.r7
2.72
4.22

2.r5
2.@
4.t6

2.t2
2.U
4.05

Degrees of Fleodom for Numerator (Greater lvlean Squarc)

789l0rlu213L4

DF
For P

Denom 123456 15 16 t7 18 19 %)

2.27 2.%J 2.21 2.23 222 2.22 2.21 2.20
2.89 2.86 2.&5 2.&l 2.81 2.n 2.79 2.n
4.65 4.60 4.fi 4.52 4.49 4.6 4.43 4.4L
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13 .10
.(B
.01

14 .10
.(E
.01

15 .r0
.0t
.01

18 .10
.05

.01

l9 .10

.(}5

.01

m .10
.05
.10

16 .10
.6
.01

t7 .10
.6
.01

II ItI IIII

3.14
4.61

9.07

2.76

3.8r
6.70

2.fi
3.41
5.74

2.43
3.r8
5.21

2.35
3.03
4.ffi

2.Al
2.92
4.62

2.23
2.83
4.M

2.%)

2.Tt
4.30

2.L6
2.7r
4.r9

2.t4
2.trl
4.t0

2.r2
2.63
4.U2

2.r0
2.ffi
3.96

2.08
2.fi
3.91

2.07
2.55
3.86

2.05
2.53

3.82

2.M
2.5r
3.78

2.fr}
2.fi
3.75

2.U2

2.8
3.72

2.01

2.47

3.@

2.01
2.8
3.66

3.10
4.ffi
8.86

2.73
3.74
6.51

2.52

3.34
5.56

2.49
3.2S

5.42

2.39
3.11
5.(N

2.3r
2.XJ
4.@

2.rt
2.85
4.8

2.19
2.76
424

2.t5
2.70
4.t4

2.t2
2.65
4.Gl

2.10
2.ffi
3.94

2.U7

2.57
3.86

2.53
3.80

2.51

J. /D

2.4
3.70

2.01
2.fi
3.66

2.U
3.62

2.43
3.59

2.41
3.56

r.g7
2.&
3.53

1.96

2.39
3.51

2.00 1.99 I.9B2.6 2.U 2.U2

3.07
4.il
8.68

2.70
3.68
6.36

2.36
3.06
4.89

2.ili}
3.0r
4.Tt

o q'7

2.90
4.fi

2.2t
2.79
4.32

2.L6
2.71
4.14

2.L2
2.U
4.00

2.09
2.59
3.&)

2.06
2.il
3.80

2,M
2.5r
3.73

2.U2

2.8
3.67

2.m
2.45
3.6r

1.90

2.42
3.56

r.97
2.N
.J.DJ

1.96

2.38
3.49

r.95 1.94 l.S
2.37 2.35 2.U
3.45 3.42 3.,()

t.g2
2.ili}
3.37

3.05
4.49
8.53

2.6t
3.63
6.2-3

2.8
3.2,t
5.29

2.tut
2.85
4.U

ooo

2.8I
4.U

2.18
2.74
4.m

2.t5
2.70
4.r0

2.13
2.ffi
4.Cril

2.10
2.61
3.9]

2.09
2.59
3.89

2.6
2.il
3.78

2.00
2.49
3.69

2.01
2.6
3.62

I.99
2.A

t.w
2.{

r.96
2.37

1.!N
2.35
3.41

l.g]
2.38
3.37

l.s
2.N
3.27

L.g2

2.32
3.34

2.n
3.3r

2.n
3.2{)

2.28
3.%J

1.86

2.23
3.16

1.91 1.90 l.8g

3.55 3.50 3.45

3.CB

4.45
8.40

3.0r
4.4L
8.29

2.U
3.s9
6.ll

2.U
3.20
5.18

23r
2.96
4.t7

2.06
2.55
3.79

2.(B
2.49
3.68

2.m
2.45
3.50

1.98

2.41

3.52

2.37
3.43

r.96
2.3ti
3.,t6

1.94

2.35
3.40

r.93
2.33
3.35

r.9r
2.3t
3.31

r.89
2.27
3.23

r.89
2.27
3.9t

1.88

2.28
3.21

1.87

2.24
3.19

r.85 1.84 1.84

2.D, 2.2u 2.19

3.13 3.10 3.ffi

1.95 1.93 1.92 r.902.00
2.6

2.62
3.55
6.01

2.42
3.16
5.09

2.2.9

2.9]
4.58

2.%)

2.Tt
4.?5

2.13
2.6
4.01

2.08
2.58
3.84

2.U
2.5t
3.7r 3.60

1.98

2.4t
3.51

2.U
3.37

2.31
3.32

2.*
3.27

1.87

2.2:t
3.r9

r.85
2.2t
3.12

1.86

2.23
3.16

1.91 r.89 1.8tt

1.89 r.87 r.86 L.U r.8i!

2.99
4.38
8.18

2.6I
3.52
5.93

2.Q
3.13
5.0r

2.27
2.90
4.fi

2.r8
2.74
4.r7

2.r1
2.63
3.94

2.6
2.il
J.l I

2.M
2.5r
3.70

2.U2

2.8
3.$

I.9I}
2.4
3.52

1.96
2.38
3.,$

l.g]
2.U
3.36

2.3r
3.30

2.21t

3.?t
2.2u

3.19

2.22
3.13

1.86
2.?-3

3.15

1.84
2.2n

3.(B

r.tB
2.18
3.6

r.8r
2.t5
2.90

1.82

2.t7
3.03

1.81

2.16
3.m

2.97
4.35
8.10

2.59

3.49
5.85

2.38
3.10
4.U

oo<

2.87
4.43

2.t6
2.71
4.t0

2,G
2.fi
3.87

2.m
2.45
3.56

r.96
2.39
3.48

1.94

2.35
3.37

l.9l
2.3I
3.29

2.%l
3.23

2.25
3.18

2.20
3.09

2.18
3.(5

1.82

2.t7
3.O2

1.80

2.t4
2.X)

1.79
2.r2
2.SA
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TABLE A.3.
Continued.

2t .10

.05

.01

z.fi 2.35 2.22
3.M 3.05 2.82
5.72 4.82 4.31

n .10

.05

.01

2.96
4.32
8.02

2.57

3.47
5.78

2.fi
3.07
4.87

ooe

2.U
4.37

2.t4
2.68
4.M

2.13
2.66
3.99

2.08
2.57
3.81

2.6
2.55
3.76

2.U2

2.49
3.64

1.98

2.4
3.51

I.95
2.37
3..()

1.92
oeo

3.31

1.90

2.43
3.2,1

r.87
225
3.17

r.86
2.22
3.12

1.84

2.n
3.07

1.83

2.18
3.CrS

l.8l
2.16
2.90

r.80
2.t4
2.93

1.79

2.r2
2.93

1.78

2.ll
2.90

1.78

2.10
2.88

2.95
4.30
7.95

2.01 1.97
2.6 2.& 2.U 2.n

t.gl 1.90 l.8tl

3.59 3.45 3.35 3.26

2.?i
3.18

1.86
2.2.3

3.12

1.84

2.n
3.07

l.&]
2.t7
3.02

l.8l
2.15
2.98

1.80

2.13
2.94,

t.79
2.lr
2.91

r.78
2.10
2.88

r.Tt
2.08
2.&5

r.76
2.07
2.83

r.95 1.92 1.89 r.87 1,84 1.83 l.8r23 .10
.(E
.01

1.88 1.85 1.&] l.8l,t .10
.(5
.01

1.93 r.89 r.87 1.84 1.82 1.80

2.U 2.%l 2.21 2.% 2.t6 2.14
3.32 3.22 3.13 3.06 2.99 2.94

25 .10

.(5

.01

1.88 r.86 1.83 r.8l
2.27 2.22 2.r8 2.r5
3.r8 3.09 3.tr2 2.96

26 .10
.05

.01

I

2.9L
4.?A

7.88

2.55
3.4
5.66

2.U
3.Cr1l

4.76

2.21
2.80
4.26

2.tt
2.U
3.94

2.05
2.53
3.71

1.99

2.4
3.54

2.24
3.14

2.20
3.07

2.18
3.@

2.t5
2.97

1.80
2.13
2.93

r.78
2.ll
2.E9

r.Tt
2.@
2.8

1.76

2.08
2.&]

L.75

2.6
2.U

1.74

2.G5

2.78
2.s7
3.41

2.27
3.2r

2.32
3.30

2.93
4.%i
7.82

o (x,

4.2A

7.n

2.il
3.l()
5.61

2.iB
3.0r
4.72

2.r9
2.78
4.22

2.18
2.76
4.18

2.10
2.62
3.90

2.09
2.ffi
3.85

2.M
2.5r
3,67

2.U2

2.49
3.63

1.98

2.42
3.50

1.94

2.fi
3.36

1.91

2.30
3.26

2.r5
3.17

2.22
3.09

2.r8
3.03

2.15
2.98

r.80
2.13

r.78
2.ll

LN
2.09

r.76
2.07

r.75
2.6
2.N

1.74

2.M
2.76

r.73
2.03
2.742.93 2.89 2.85 2.82

2.53
3.39
5.57

2.32
2.99
4.68

1.79

2.tl
2.89

L.n
2.09
2.85

r.76
2.07
2.8r

r.75
2.05
2.78

1.74

2.U
2.75

r.73
2.U2

2.72

r.72
2.01

2.70

l.7l
1.99

2.66

1.97

2.fi
3.416

2.91
4.23
7.72

2.52
3.37
5.53

2.3r
2.98
4.M

2.17
2.74
4.14

2.08
2.59

3.82

2.01
2.47

3.59

1.96

2.39
3.42

1.92

2.s2
3.29

1.79

2.12
2.90

LN
2.@
2.86

L.76
2.O7

2.8r

t.75
2.05
2.78

1.73

2.Cri]

2.7s

t.72
2.U2

2.72

l.7r
2.00
2.69

DF
For P

Denom

IIII III

Degrees of Freedom for Numerator (Greater Mean Square)

L2345678910I11213t4 1516t71E19m
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27 .10
.(5
.01

at .10
.(I5

.01

29 .10
.05
.01

30 .10
.(5
.01

32 .10
.05

.01

u .10
.05
.01

36 .10

.(E

.01

38 .10
.(E
.01

IIIII IIII

1.99 l.sri} l.& r.86 1.&l 1.80
2.43 2.35 2.28 2.22 2.18 2.r4
3.50 3.3.l s.m 3.09 3.00 2.S]

t.7t r.69 r.68 r.67 r.66
1.99 r.97 1.95 1.94 r.U
2.65 2.@, 2.8 2.55 2.533.r3 s.a2 2.gl 2.86 z,ffi

1.68 L.67 r.66 r.65
1.95 l.gt t.g2 1.90

2.8 z.il 2.51 2.49

1.96 l.s 1.86

I

t.@ 1.@
1.97 1.96

2.63 z.ffi

I

2.90
4.2t
7.68

2.5r
3.35
5.49

2.n
2.93
4.ffi

2.m
2.95
4.57

2.17
2.7s
4.ll

2.07
2.57
3.78

2.00
2.46
3.56

1.95

2.37
3.39

l.9l
2.31

3.26

1.87

225
3.15

r.85
2.%)

3.06

1,82

2.17
2.99

1.80
2.L3
2.gril

r.78
2.10
2.87

t.76
2.08
2.82

1.75

2.ffi
2.78

t.74
2,M
2.75

t.72
2.42
2.71

l.7l
2.m
2.6

r.70
1.99

2.ffi

1.68

1.96

2.ffi

1.70
r.97
2.63

1.68
1.94

2.57

t.gI
l.gI
2.55

2.89
4.2t)
7.U

2.fi
3.U
5.,15

2.16
2.71
4.M

2.6
2.fi
3.75

2.00
2.45
3.53

1.94

2.fi
3.36

1.90

2.X)
3.23

1.87
2.2t
3.12

1.84

2.19
3.8

l.8l
2.r5
2.96

1.79

2.t2
2.90

LN
2.09
2.U

r.75
2.ffi
2.79

t.74
2.M
2.75

r.73
2.fr}
2.73

r.72
2.01
2.70

I.73
2.G2

2.72

1.7r
2.m
2.68

1.70

1.99

2.65

2.89
4.18
7.ffi

2.fi
3.33

5.4

2.28
2.93
4.il

2.t5
2.70
4.M

2.6
2.55

3.73

1.78

2.r0
2.87

L.TI
2.09
2.U

r.76
2.08
2.8r

r.75
2.06
2.79

L.75

2.6
2.Tt

1.74

2.M
2.74

r.72
2.01

2.6)

L,7L

1.99

2.ffi

l.g)
l.vI
2.63

2.88
4.17
7.fi

2.87
4.t5
7.fi

2.86
4.13

7.U

2.49

3.32
5.39

2.8
3.29
5.34

2.47
3.24
5.29

2.28
2.92
4.51

2.14

2.@
4.U2

2.6
2.53
3.70

1.98

2.42
3.47

1.97

2.0
3.43

2.38

3.39

1.93

2.33
3.30

1.88

2.27
3.r7

1.&5

2.2r
3.07

r.82
2.16
2.98

1.79

2.13
2.91

r.7r
1.99

2.ffi

1.70

1.98
2.61

1.@
l.s
2.m

1.di
1.95

2.57

2.4
3.26
5.25

2.2t1

2.87
4.3t1

2.Lt
2.63
3.89

2.0r
2.8
3.57

r.78
2.Il
2.ffi

1.76

2.O7

2.79

t.73
2.(B
2.72

L.7t
2.00
2.91

1.70
r.98
2.62

1.68
1.95
2.fi

1.tr/
1.€B

2.il

1.66
1.92

2.5r

1.65

L9l
2.fi

1.&1

1.89

2.8

1.63

1.87

2.43

2.2TJ

2.90
4.46

2.13
2.61
3.97

2.U
2.51

3.65

l.9l
23r
3.2t3

1.76
2.07

1.74

2.U
2.74

t.72
2.01

2.70

1.87 l.fB
2.2t 2.I9

1.81 1.78

2.t4 2.10

2.25
2.8{t

4.42

o ro

2.65
3.$l

2.U2

2.49

3.61
2.n
3.22

2.?.3

3.00

1.82
2.t7
2.98

1.79

2.L2

2.89

I,TI
2.08

2.82

t.75
2.05
2.76

1.73

2.U2

2.70

t.7r
1.99

2.ffi

r.@
1.97
2.61

2.85
4.ll
7.&

2.U
4.10
7.35

2.45
3.2A

5.21

o o.r

2.85
4.U

2.10
2.62
3.86

2.0r
2.8
3.il

2.35
3.32

2.%J

3.15
2.19

1.80
2.t4

LN
2.G

1.75

2.(5
2.75

r.72
2.U2

2.@

1.70

1.99

2.U

1.65 1.64

l.$ 1.88

2.$ 2.45

1.94 r.89 r.85 r.8l
2.# 2.% 2.2t 2.15
3.35 3.r8 3.(5 2.95

1.62 r.6l
1.87 I.85
2.42 2.N

1.60 r.67 r.66 1.65

1.96 1.94 l.g2 l.g)
z.fi 2.55 2.51 2.8

r.94 1.88 1.84

3.02 2.92 2.83

I.63
r.88
2.45

III



TABLEA.3.
Continued.

I.@ l.6t l.6t
1.87 r.85 1.84

2.4 2.39 2.37

fi .10
.05
.ol

1.65 1.64 1.63 1.@ 1.61 1.60
1.91 1.89 r.87 r.86 1.84 1.83

2.fr 2.fi 2.43 z.fi 2.37 2.U

a .r0
.05
.01

1.72 1.70 1.68 1.66 1.65 l.fil 1.@ l.6t 1.60

2.0r 1.98 r.95 1.92 1.90 1.88 1.86 1.84 1.&]
2.68 2.tr2 z.fi 2.52 2.47 2.4 2.& 2.37 2.35

u .10
.05'

.01

r.@ r.67 r.65 LA l.ff! r.61 l.m r.5S r.58
r.97 1.94 r.9l 1.89 r.E7 1.&5 l.tB 1.62 1.80
2.ffi z.il z.fi 2.45 2.4 2.38 2.35 2.Sl zfi

I .10
.(E
.0r

1.@ l.6rl L65 l.fi! l.@ 1.61

1.96 l.s l.m 1.88 r.86 1.84
2.* 2.53 2.8 2.U z.fi 2.37

4{t .r0
.06
.01

2.U
4.08

7.31

2.83
4.W
7.28

2.U
3.23
5.18

2.43

3.22
5.15

2.?i
2.U
4.31

2.@
2.61
3.tB

2.00
2.45
3.51

l.9B
2.U
3.29

r.87
2.25
3.12

l.&)
2.18
2.99

r.79
2.r2
2.89

r.76
2.$
2.fi

1.75

2.6
2.78

t.74
2,M
2.7s

l.7t
2.m
2.ffi

1.70

L.97

2.6r

r.68
r.95
2.ffi

r.66
1.92

2.52

1.65

1.90

2.8

I.64
l.8s
2.45

2.82
4.06
7.25

2.43
3.21
5.L2

2.2L
2.82
4.213

r.86
223
3.(B

t.8l
2.rc
2.95

r.78
2.10
2.U

t.75
2.05
2.75

ooo

2.&I
4.n

2.08
2.59
3.80

2.08
2.58
3.78

1.99
2.U
3.49

r.98
2.43
3.47

1.98
2.42
3.4

1.92

2.32
3.27

r.9r
2.31
3.2A

1.86
2.21

3.10

1.82

2.t7
2.97

1.78

2.Il
2.86

1.73

2.03
2.70

1.71

1.99

2.U

r.@
1.96

2.59

t.6t
1.94

2.il

1.59
r.8l
2.32

2.82
4.05
7.22

2.8r
4.M
7.19

2.81
4.8
7.17

2.42
3.20
5.10

2.42
3.19
5.08

2.4I
3.18
5.06

2.21
2.81
4.r4

2.?.O

2.U
4.22

2.A7

2.57
3.78

l.9l
2.n
3.22

1.85
ooo

3.06

r.8r
2.15
2.9]

LN
2.09
2.E2

1.74

2.M
2.73

r.7l
2.m
2.ffi

2.?fr
2.79
4.m

2.6
2.fi
3.72

1.97
2.&
3.41

r.76
2.O7

2.78

L.73

2.03
2.70

1.70

r.99
2.ff]

r.68
1.95

2.fi

1.66

r.92
2.5r

1.64

1.89

2.8

1.63
r.87
2.42

l.6I
r.85
2.38

1.60
l.&l
2.35

l.5g
1.81

2.32

2.O7

2.57
3.74

1.97
2.4L
3.4]

1.90
229
3.2i

r.85
2.2I
3.(N

1.80

2.t4
2.91

LN
2.G
2.n

r.73
2.CB

2.71

l.7l
1.99

2.A

r.59
1.82

2.ir{}

1.58

l.8r
2.3r

1.58

1.80

2.m

r.57
1.79

2.2t3

L.57

1.78

2.27

2.29

3.19
2.13
2.89

2.n
3.U2

1.90 1.84 1.8050 .10
.05
.01

l) I

Degrees of Freedom for Numerator (Greater lvlean Square)

789r011121314

DF
For P

Denom l5r0L7l8t9zJt23456

IIIII III II



55 .10
.05

.01

60 .10
.05
.01

65 .10
.05
.01

70 .10
.(E
.01

80 .10
.05

.01

100 .10
.(}'
.01

Ln .10
.06
.01

r50 .10
.(E
.01

2.ffi
4.U2

7.t2

2.fi
3.16
5.01

2.19
2.Tt
4.16

2.6
2.il
3.68

1.95
2.38
3.37

r.88
2.27

3.15

1.83

2.r8
2.98

1.82

2.17
2.95

t

r.78
2.tt
2.85

r.75
2.06
2.75

t.72
2.0r
2.ffi

l.G)
l.y/
2.5S

r.67
r.93
2.53

1.45

1.90

2.47

r.63
r.88
2.42

1.61

r.85
2.8

1.58

1.79

2.At

1.56

1.78

2.25

I.DD

1.76

2.23

r.il
t.75
2.n

1.00
l.tB
2.U

r.59
1.82

2.31

1.58

r.80
2.29

1.59
t.8l
2.3r

1.58
1.80

2.Al

L,57

1.78

2.%i

IIIII III

2.79
4.00
7.0E

2.39
3.15
4.98

2.18
2.76
4.13

2.M
2.53

3.65

r.95
2.37
3.34

r.87
2.25
3.12

LN
2.JO

2.82

t.74
2.M
2.72

t.7L
1.99

2.fi!

r.60
1.84

2.&5

1.56

1.78

2.?5

r.55
r.76
2.23

r.55
t.76
2.22

1.68 1.66 l.il L.62

1.95 1.9e 1.89 1.86

z.fi 2.fi 2.U 2.39

2.78
3.99
7.U

2.39
3.t4
4.95

2.r7
2.75
4.10

2.0s
2.5r
3.62

2.3t3

3.3r
2.Zt
3.G)

2.15
2.93

L.n
2.08
2.80

1.73

2.03
2.69

r.70
r.98
2.8r

L.67

1.94

2.53

1.65

1.90

2.47

1.fi]
1.87

2.42

1.61

1.85

2.37

1.59

r.82
2.38

Lil
r.75
2.n

r.53
1.73

2.17

1.94 1.87 1.81

2.78
3.98
7.01

2.38
3.13
4.9

2.t6
2.74
4.O7

2.03

2.il
3.60

1.76

2.O7

2.78

t.72
2.A2

2.67

1.69

1.97
2.59

1.66

1.93

2.5r

l.&1
1.89

2.45

1.62

1.86

2.&

1.60

1.84

2.35

1.59
l.8l
2.31

r.57
1.79
2.27

1.56

I.TI
ooe

1.55

r.75
2.%)

1.il
1.74

2.18

r.52
1.72

2.L4

1.53

r.72
2.r5

r.5l
r.70
2.t2

1.49

1.68

2.07

1.48

1.66

2.CB

l.Sri! 1.86 1.80
2.35 2.23 2.14
3.29 3.ffi 2.9r

2.Tt
3.96
6.96

2.76

3.94
6.90

2.37
3.11
4.88

2.t5
2.72
4.M

2.U
2.49
3.56

r.92
2.33
3.%3

1.85

2.21

3.04

r.79
2.13
2.87

r.78
2.r0
2.82

t.75
2.06
2.74

t.7t
2.00
2.U

1.61

1.84

2.fi

1.59

1.82

2.3t

1.57
r.79
2.27

r.56
LN
2.2,3

r.55
r.75
2.%)

1.53

t.73
2.t7

1.6ti r.65 r.63
r.95 l.9l r.88
z.fi 2.8 2.42

l.@ 1.66 L.U 1.61

r.97 1.93 r.89 r.85
2.59 z.il 2.43 2.37

2.36
3.09
4.82

2.t4
2.70
3.98

2.m
2.6
3.5r

1.91

2.3L
3.21

1.83

2.19
2.99

t.73
2.03
2.@

1.59

r.82
2.31

r.57
r.79
2.27

1.56

LN
2.22

1.54

t.75
2.19

r.53
1.73

2.r5

t.52
t.7l
2.L2

1.50

1.6)
2.G

1.50

7.@
2.09

1.49

r.6t
2.06

2.75
3.92
6.85

2.35

3.07
4.79

2.L3
2.68
3.95

1.99
2.45
3.48

1.90
2.29
3.17

1.82

2.t8
2.96

LN
2.09
2.79

t.72
2.U2

2.ffi

r.68
1.96

2.fi

t.67
1.94

2.53

1.65

t.9l
2.47

r.ff]
1.87

2.N

1.60

r.83
2.U

1.59

1.82

2.31

r.58
1.80

2.28

r.56
1.76

2.23

r.55
1.75
2.19

r.53
1.73

2.L5

t.52
t.7r
2.r2

1.52

r.7t
2.L2

2.74

3.90
6.El

2.U
3.06
4.75

2.r2
2.ffi
3.9r

1.98
2.43
3.45

1.89
o01

3.14

r.8r
2.16
2.9

r.7B
2.M
2.76

t.7t
2.00
2.63

r.57
1.79

2.25

r.55
1.76

2.%)

1.53
1.73
2.16

1.50 1.49 t.,A L.47

r.@ t.67 1.66 r.&
2.08 2,6 2.03 2.m

1.64 l.6l
1.89 r.85
2.U 2.37

III III



TABLE 4.3.
Continued.

DF
For P

Degrees of Fleedom fior Numerator (Greater lv{ean Squale)

789l0ltI,13MDenom t23456 1516171819zJ

200 .10

.05

.01

400 .10
.(E
.01

lom .10
.(E
.01

6 .10
.(E
.01

2.73
3.89
6.76

2.:|i)
3.01
4.7t

2.ll
2.6
3.88

1.97 1.88 1.80 t.75
2.06
2.73

r.70
1.98

2.ffi

1.66
1.93

2.fi

1.63

1.88

2.41

1.60

1.84

2.y

1.58
1.80
2.27

1.56

LN
ooo

1.il
1.74

2.17

t.52
r.72
2.13

l.5l
1.69

2.@

1.49

1.67

2.ffi

1.48

1.66

2.(B

t.47
t.M
2.00

r.6
1.62

1.97

2.4
3.41

2.%i 2.14
3.u 2.89

2.72
3.86
6.70

2.32
3.(E
4.ffi

2.10
2.63
3.&]

r.96
2.39
3.37

r.86
2.24.

3.06

1.79

2.12
2.85

1.73

2.03
2.68

1.69

1.96

2.ffi

1.65 1.61 r.59
1.90 r.85 l.8r
2.6 2.37 2.2t)

r.56
r.78
2.?3

1.il
1.74

2.t7

t.52
t.72
2.13

1.50
1.69

2.08

1.49 1.47 1.46 1.45
r.67 r.65 l.fiI I.6r
2.05 2.Ol 1.98 r.95

t.4
1.60

r.g2

2.7r
3.85
6.66

2.3r
3.00
4.63

2.@
2.61
3.80

I.95
2.38
3.34

r.85
ooo

3.04

r.78
2.ll
2.82

1.72

2.A2

2.ffi

l.6ti
1.95

2.53

1.64

1.89

2.43

1.61

1.84

2.U

1.58

1.80

2.27

r.55
r.76
2.20

r.53
r.73
2.t5

r.5r
r.70
2.10

r.49
1.68

2.06

l.,a L4 1.45 L4
r.65 1.63 l.6l r.60
2.U2 1.9ti 1.95 1.92

1..$
r.58
1.90

2.71
3.84
6.63

2.n
3.00
4.61

2.08
2.ffi
3.78

1.94

2.37
3.32

r.85
2.21

3.02

t.Tt
2.10
2.80

t.72
2.Ot
2.U

t.67
1.94

2.5r

1.63

r.88
2.41

1.60

1.83

2.32

r.57
1.79

2.25

1.55
1.75

2.18

1.52

r.72
2.13

1.50

r.69
2.08

1.49

r.67
2.M

1.47 1.45 t.U
r.64 t.@, r.60
1.99 r.96 r.93

1.{}
1.58

1.90

t.42
r.57
1.88
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TABLEA.4.
Significant studentized factors (R) to multiply by ISD for testing means at various ranges (p), Sy" level; n:degees of freedom for
"errorl'

p:

n

4
D

6

8
I

lo
ll
t2
l3
t4
l5
l6
t7
l8
l9
20
22
2,4

%t
2t3

30
40
60

100

@

1.00
1.00
1.00

1.00
1.00

1.00

r.00
l.m
1.00
1.00
1.00
1.00
1.00

1.00

1.00
1.00
1.00

1.00

1.00
1.00

1.00

1.00

1.00

1.00

1.03

l.o4
t.04
l.04
1.05
r.o5
r.o.5

r.05
1.05
1.05
r.o5
1.O5

L05
I.05
1.05
r.05
1.05

L05
1.05

1.05

1.05
1.05

1.05

r.05

4

1.05
1.06

r.06
r.07
l07
r.o8
l.o8
l.o8
l.o8
1.08
r.o8
l.o8
r.o8
r.08
r.08
r.08
1.08

r.08
l.o8
r.08
1.08
1.00

t.0s
1.00

1.06
l.o7
r.08
l.o8
l.(x)
r.09
l.()9
1.09
l.ro
l.l0
l.lo
l.lo
l.lo
l.I0
l.ro
l. l0
l lo
l. lo
l l0
l.1l
l.tI
l ll
l ll
t.t2

t.02
l.o5
1.06

l.o7
r.09
l.(x)
r.to
t.l0
l.lo
l.lo
r. lr
t.t2
t.t2
1.t2
t.L2
l.12
r.12
r.t2
t.t2
l. 12

r.t2
t.t2
l.t3
l.13
l.14
1.14

t.u2
l.()5
1.06

l.0E
1.09

l.lo
l.l0
l.l t
l.l I
l.ll
t.12
t.t2
l.l2
l.13
l.13
l.13
I.13
l.13
l.13
l.13
l.14
L14
l.14
L14
L15
l.l5

8

t.u2
l.o5
r.06
1.08

1.lo
1.10
t.l I
t.t2
t.t2
l.13
1.13

Ll3
Ll3
L13
l.14
L14
l.14
l.14
l.15
r.15
l.l5
l.15
r.16
r.16
l. 17

I.02
1.05

I.06
l.o8

t.@
l.o5
1.06

l.08

t.a2
1.05

1.06
1.08

r.09
l.lo
1.10

I. II
t.t2
l.13
r.14
t.t4
l.15
l.15
r.l5
l.16
l.16
t.t7
t.t7
l.17
r.l7
L18
l.l9
l.l9
1.20

r.2l

1.06

l.o8
l.o9
l.l0
l.t0
l.l I
t.t2
I.13
r. l4
r.15
r.15
l.l6
I. 16

1.16

1..).7

I. I8
I. 18

l.l8
l.l9
r.20
1.20

t.2l
1.22

l.06
l.o8
1.00
l.lo
1.lo
].ll
t.l2
t.13
l.l4
r.15
l.l6
r.16
r.16
t.t7
t. l7
t.l8
r.18

1.19
l.19
r.20
t.2t
too

1.23

1.06
r.o8
1.09

l.l0
t.l0
t.t2
l l3
l l3
r.15
r.r5
r.16
l.16
l. 17

r.17
t.t7
l. l8
l l8

Ll9
r.20
r.21
r.22
t.23
t24

t.u2
1.05

r.06
1.08

r.09
l.l0
l lo
l.12
l.13
l.l3
r.l5
L15
l.16
L16
l.l7
t.t7
l.l8
l. l8
l.l9

1.20

r.20
1.21
t23
t.24
t.25

1.02

1.05

1.06

l.o8
l.o9
1.10

I.t0
t.t2
l.13
l.13
l.l5
l.r5
r.r6
l.l6
l.l7
t.t7
r.18
l.r8
r.r9
l l9
1.20

I.20
r.2l
1.23

1.26

1.30

1.02

r.05
1.06
l.o8
1.09

l.l0
l.l0
r.l2
L13
l.13
1 r5
Lt5
l 16

r.16
t.t7
r. l7
1.18
l. l8
l 19

r.19
1.20

r.20
t.2t
1.23

r.26
r.32

J 87 9 lo 12 14 16 l8 20 50 100

1.02 t.u2 t.uz
1.05 r.o5 I.05

1.00 1.02 t.02 t.t2
1.00 l.(B l.o4 l.o5

r.o9 1.00 1.09
l.lo
l.l0
I.lI
t.t2
t.t2
l.l3
l.14
l.14
l.14
l.14
l.15
L15
1.15

l.t5
r.r5
r.16
l.16
L16
l.l7
l.l8
r.l8

l.ro
l.lo
l.tI
t.t2
l.13
1.14

l. 14

t.t4
l.15
r.r5
l.15
r.15
l.16
r.16
l.16
l.16
1.17

l.t7
l. 18

l.19
1.19

l.l8 l.r9 l.l9 r.l9



TABLEA.5.
Significant studentized factors (R) to muldply by ISD for testing means at various ranges (p), I7o level; n:degrees of freedom for
"errorl'

n
q 3 4587E9r0L2141616?fr50100

3
4
D

6
7
8
I

lo
ll
t2
l3
L4

l5
t6
t7
r8
19
m
22
24
26
28
30
40
60

100
6

1.00

1.00

1.00

1.00

1.00

r.00
l.m
1.00

1.00
r.00
1.00

1.00

l.o3
l.(N
1.05

1.04

r.06
t.o7

1.05
r.o8
1.08

l.o7
r.09
l.lo

1.08
l.o9
1.ll

1.08
l.1l
l.12
l.14
l.l5
l.l5
r.16
l.16
l.l5
l.l5
l.l5
l.l5
l.14
l.14
l.14
l.14
T.L4
t.t4
1.14

r.09
1.1 I
l.13
l.r5
l 16

l.16
t.t7
l.17
1.17

1.16
Ll6
r.l6
1.15
l.l5
1.15

1.15

1.15
1.15

1.15

1.09

t.t2
t.l4
l.l5
l.l7
l.17
l.l7
l l8
r.t7
t.t7
1.17
l.l7
1.16
I.16
r.16
l.16
1.16
l.15
l.l5

1.09

t.t2
l.t6
l. 16

l.17
1.18
1.20

1.20

1.19

1.19
l.l8
l.l8
1.18

L17
r.t7
t.t7
t.t7
1.17

r.l7
t.t7
t.t7
l.17
t.r7
r.17
t.L7
r.17
l.17

l.to
l. 14

t.16
l.18
l.l9
1.20
1.20
1.21

LM
1.20
l. 19

l.l9
I.18
l.l8
l.l8
l.18
r.l8
1.I8
t.17
l.17
1.18

t.t8
r.r8
r.18
l.l8
l.l8
l.l8

l.ll l.l3 1.13 l.l3 l.l3
l.r4 l.l5 1.15 l.l5 r.r5
l.l8 l.l8 l.l9 r.r9 l.r9
l.l8 t.2n L20 1.9fi t.%)
l.l9 t.zt t.zt t.zl 1.21

L?.A L22 1.22 1.22 r.23
t.?2 t.%t t9A 1.24 1.24,

1.22 l.9r{ l.rl l.2{ L.24

r.?2 1.23 1.2s 1.23 r.23
t.zt t.zt t.u 1.22 t.22
t.%) t.2l 1.21 l.2l l.2l
t.%) t2u r.%) Lm L20
l.tg L?n r.20 Lm 1.20

1.19 l.l9 1.20 1.20 1.20

l.l9 l.l9 l.l9 1.19 l.l9
l.l8 l.l9 t.lg 1.r9 l.r9
l.l8 l.l9 t.tg 1.19 l.l9
r.l8 l.l9 1.19 1.19 l.l9
l.l8 l.l9 t.lg r.l9 l.l9
l.l8 l.lg t.lg Lm Lm
1.18 l.l9 1.19 1.20 r.9fr
1.18 l.l9 1.19 L.zt r.21
l.l9 1.19 Lm l.2l l.2l
l.l9 Lm L20 1.23 1.23

r.l9 1.20 t.?fr t.rt r.?]t
l.l9 t.2u t.zt t.25 1.25

Llg L.m Lzt t.26 1.29

r.o5 1.08 1.09 r.rr r.l2
1.05

1.05

1.06

1.06

1.05

1.05

r.05
l.o5

r.08
1.08
1.08
l.(x)
1.00
1.08
r.o8
l.o8

r.l0
l.lo
1.lo
l.l I
1.1 I
l.lo
1.10
l.lo
l.lo
l.to
1.lo
l.lo
l.m
r.00
1.09

L09
1.09
1.00

l.(x)
r.09
1.09
r.09
1.09

l.12
t.t2
r.12
l.13
1.13

t.L2
I.12
l.12
l.tl
l.rl
l. tl
l. ll
l.l1
r. ll
l.l I
l. Il
t.rl
l.l I
l.1l
l.rl
l.1l
l.1l
l.ll

l.13
l.14
l.14
l.15
1.14

l.14
l.14
l.14
l.13
t.l3
1.13

r.13
l.13
1.13
l.t2
t.t2
t.12
t.t2
t.t2
t.L2
1.12

l.12
l.12

r.m 1.05 1.08
1.00

1.00
1.00

1.00
1.00

l.m
1.00

1.00

1.00

lm
1.00

l.O0
l.oo
l.m

r.05
l.05
r.o5
l05
t.05
l.o5
l.o5
r.o5
r.04
l.o4
l.o4
1.04

t.(x
l.o4

l.o8
1.08
r.otl
t.07
r.07
l.o7
l.o7
r.07
r.o7
l.07
l.o7
l.07
r.o7
l.o7

r.l3 l.ts l.l5
r. 13
l. l3
l.13
l.14
l.14
l.14
l.14

l.l5
l l4
l.14
l.14
1.15
l.r5
l.l5

r.15
].t5
L15
l. 15

r.15
l.t5
l.t5

I l

P:

IIIII IItII



TABLE A.6.

Distribution of 12 (Chi-Square)i

Degrees

Freedom

Probability of Obtaining a Value as Large or Larger

90 .95 .90 .50 .r0 .05 .01 .00r

I
2
3
4
5

6
7
8
I

10

1l
t2
t3
t4
15

16

t7
l8
19

20

2t
22
?3
24
25

26
27
28
29
30

.0002

.0201

.I15

.257

.Sil

.00393

.r03

.352

.7rr
LI45

r.635
2.167
2.733
3.325
3.940

.0158

.ztl

.584
1.0&1

1.610

.455
r.386
2.366
3.357
4.351

5.M8
6.346
7.U4
8.343
9.342

2.706
4.ffis
6.251
7.779
9.236

10.645
L2.Ot7
13.362
t4.w
r5.987

3.841
5.991
7.815
9.488

r1.070

t2.592
t4.M7
r5.507
I6.919
r8.307

19.675
2t.026
22.362
23.685
?/4,.WG

6.635
9.210

1r.345
L3.277
15.086

16.812
t8.475
20.090
2r.666
?3.2W

r0.827
13.815
r6.268
r8.465
20.5r7

22.457
2t4.322
26.L2.5

27.877
29.588

.872
I.239
I.646
2.088
2.558

3.053
3.571
4.107
4.660
5.229

5.812
6.408
7.0r5
7.633
8.260

8.897
f .ilz

r0.196
r.0.856

rt.524

t2.198
t2.879
13.565

t4.zffi
r.4.953

4.575
5.226
5.892
6.57r
7.261

7.962
8.672
9.390

10.117
r0.85I

rr.591
r2.338
13.091
r3.848
t4.6rr

r5.379
16.15r
16.928
17.708
r8.493

2.2M
2.833
3.490
4.168
4.865

5.578
6.304
7.M2
7.7n
f.il7

9.312
10.085
r0.865
1r.651
t2.443

13.2&
L4,ML
14.848
15.659
16.473

t7.292
18.u4
18.939
19.768
20.599

10.341
I1.340
t2.u0
13.339
14.339

17.275
18.549
19.812
2r.w
22.307

2,4,.725

26.2L7
27.ffi
29.t4t
30.578

3t.2U
32.909
u.528
36.r23
37.697

20.337
2r.337
22.337
23.337
2,L.337

23.ilz
24.7N
25.989
27.2M
28.4t2

26.296
27.fiI
28.869
30.I44
31.410

32.0m
33.409
34.805
36.191
37.566

29.252
40.790
a3L2
43.820
45.315

29.615
30.813
32.N7
33.196
u.382

32.67t
33.924
35.t72
36.415
37.652

38.932
N.289
41.638
42.gffi
M.3t4

46.797
48.268
49.728
5r.179
52.620

25.336
26.336
27.336
28.336
29.336

35.563
36.74r
37.9r6
39.087
40,ffi

38.885
40.113
41.337
4.557
43.773

45.M2
46.963
48.278
49.588
m.892

il.052
55.476
56.893
58.302
59.703

"Table A.6 is abridged from Table IV of Fisher and Yates: Stotistbal Tabbs fu &ologbol
Agrkrulturol atd Medical Research, published by longman Group Ltd., London (previously
published by Oliver and Boyd, Edinburglr), by permission of the authors and publiihen.

of

15.338
16.338
17.338
18.338
19.337



TABLE A.7.
Values of the correlation coefficient, r, for certain levels of significance."

Degrees

of
Freedom

Probability of Obtaining a Value

as Large or Larger
.05 .0rI .m1

I
.)

3
4
5

6
7
8
I

t0

11

t2
13

t4
15

l6
L7
18

t9
20

25
30
35
40
45

50
60
70
80
90

100

.9879

.9000

.8054

.7293

.6694

.9969

.9500

.8783

.8I14

.7ilS

.9999

.99m

.9587

.9r72

.8745

L0000
.9990
.9912
.9741
.9507

.62r5

.5822

.ilg4

.52t4

.4973

.7067

.ffi

.6319

.6021

.5760

.834!

.7977

.7646

.73/.8

.7079

.9249

.8982

.8721

.u7r

.8233

.4762

.4575

.MN

.4a59

.4124

.5529

.53L4

.5r39

.4973

.4821

.6835

.66r4

.64I1

.6226

.6055

.80I0

.7800

.7603

.74,;0

.7246

.40m

.3887

.3783

.3687

.3598

.4683

.4555

.4438

.4329

.4227

.7084

.6932

.6787

.ffi52

.6524

.3233

.2960

.2746

.?573

.2,1:28

.3809

.uu

.3246
3W
.2875

.4869

.M87

.4182

.3932

.372r

.2306

.2r08

.rgil

.1829

.1726

.1638

.2732

.2500

.23r9

.2172

.2050

.1946

.3541

.3248

.3017

.2830

.2873

.2il0

.u33

.4078

.3799

.3568

.3375

.3211

"Table A.7 is abridged from Table YI of Fisher and Yates: Stntistical Tabbs for Biological,
Agriculatral and Uedicat Research, published by Iongman Group Ltd., London (previously
published by Oliver and Boyd, Edinburgh), by permission of the authors and publishers.

.5897

.575t

.ffi14

.il87

.5s68

.5974

.1ilt

.5r89

.4ti96

.4648



'Table A.8 is abridged from Table X of Fisher and Yates: Statistical Tables for Bialogical"
Agricultural and Medical Research, published by Longman Group Ltd., London (previously
published by Oliver and Boyd, Edinburgh), by permission of the authors and publishers.

TABLE A.8:
The angular transformation of percentages to degreesl

Vo 0I23456789

0
l0
20
30
40

50
60
70
80
90

100

0
18.4
26.6
33.2
39.2

D./
19.4
27.3
33.8
39.8

8.1
20.3
28.0
u.4
40.4

10.0
2t.l
28.7
35.r
4r.0

r1.5
22.0
29.3
35.7
41.6

12.9
22.8
30.0
36.3
42.1

14.2
23.6
30.7
36.9
42.7

15.3
24.4
31.3
37.5
4i1.3

I6.4
25.r
3r.9
38.1
43.9

t7.5
25.8
32.6
38.6
u.4

45.0
50.8
56.8
63.4
7t.6
90.0

45.6
5r.4
57.4
M,2
72.5

46.1
51.9
58.1
&1.9
73.6

46.7
52.5
fi.7
65.6
74.7

47.3
s.1
59.3
66.4
75.8

47.9
53.7
60.0
67.2
77.t

48.4
il.3
ffi.7
68.0
78.5

49.0
il.s
6I.3
68.9
80.0

49.6
55.6
62.0
69.7
8r.9

50.2
fi.2
62.7
70.6
84.3

3lf Appandix, Tobbs



TABI.E A.9.
Logarithms.

Natural
Numbers

Proportional Parts

t 9

.ri
u
31

m
27

25
2,1

22
2l
20

l9

l5
l5
t4
t4
l3

33
30
28
26
2,4

oo

2l
20
l9
l8

t7
l6
r5
t5
L4

L4
13

l3
12
t2

N
2$
2A

23

2l

n
l8
t7
l6
l6

l5
t4
t4
t3
12

t2
11

ll
u
l0

25
23
2l
19

18

L7

I6
15

L4

l3

l3
12
t2
1l
It

l0
II
t2
l3
t4

0000
0414
0792
ll39
1,161

m4[]
04tr)
0828
r173
L4U2

0086
04U2
0864
1206
1523

0128
0531
0899
1239
r5.53

0170
056S

0934
t27t
1584

u2t2
0607
0969
r303
1614

0253

0645
1004
r335
LW

u2s4
0682
1038

r367
1673

834
0719
LO72

1399
r703

0374
0755
l106
t,$O
1732

8
8
l

t

7

6
6
6
6
5

5
5
5
5
4

4
4
3
3
3

3
3
2
2
2

2
2

2
2
2

o

2
2
2
I

8
8
7
6
6

6
5
D

5
4

4
4
4
4
4

3
3
3
3
3

2l
l9
t7
l6
l5

t4
l3
t2
t2
1I

tl
l0
10

I
I

I
8
8
8
7

t7
r5
t4
13

t2

ll
ll
10

I
I

8
8
8
7
7

7
7
6
6
6

t2
l1
l0
l0
I

r5
l6
t7
18

l9

r76r
z04l
2304
2553
2788

1790
2068
2330
?.577

2810

18l8
2095
2355
2601
21133

ru1
2L22
2380
2u25
2856

r875
2148
2M
26/.8
2878

1903
2175
2430
2t372

2900

t93r
22ot
2455
2685
2.923

1959
n27
2480
2718
29'tt5

r987
2253
2W
27A
ffi1

%)L4

2279
2529
2765
2989

20
2L

22

23
?A

25
28
27
28
29

t
Y
5-
R

s'

4

c.,
-19

3010
39.d9

uzL
36r7
38@

3032
3243w
3636
3820

30tl
3263w
3655
3838

3075
32f,4
3483
fi74
3856

3096
3304
3502
3692
3a74

3118
3324
3522
37ll
3892

3139
3345
3541

s7m
3909

3160
3365
3560
3747
3927

318r
3385
3579
3766
3945

3201w
3598
378l
3962

18

t7
L7

l6

3979
4r50
4314
u72
46/2/t

4pL4
4183
4W
45{/}
#il

4031

42,N
4ffi2
4518
4669

4048
42t6
4378
.1533

4683

4065
4232
4193
4W
4698

408,2

4219
4ffi
4
4713

rt099
4265
4125
4579
47?A

4116
42t31

M
459t
474

4I33
42ffi
44fi
ffi
4757

10
IO

I
I
I

I

0 I 2 J 4 D 6 I 2I 3 4 D 6 8

3997
4166
4330
4487

4639

II II lltrlt

8

I I I



I{

30
3r
32
33
u

35
36
37
38
39

40
4l
42
4$
4

45
46
47
I
49

50
5r
52

53
il

H
'r3

it
EI
a'

477r
4914
5051
5r85
5315

wl
5563
5682
5798
59r1

6021
6128
62,32

6335
6435

6532
ffi28
672I
6812
6p02

6890
7076
7160
7?A3

73?t

47ffi
4928
5065
5r98
5328

il53
5575
5694
5809
5V22

6031

6r38
6?43
6345w
6il2
6637
6730
682r
691l

6!08
7W
7168
7251
7332

I

!tti00
492/L

5079
52tr
5340

5465
5587
5705
5821

5933

w2
6149
6253
6355
u
655r
ffi
6739
6830
6p20

7W7
7093
7rn
7?59
7W

I

il78
5599
57t7
5832
5W

6053
6160
6263
6365w
656r
6656
6749
6839
6928

7016
7I01
7185
7267
7348

48,29

4969
5105
5237
5366

990
5611

5729
5843
5955

6064
6170
6274
6375
6474

6571
6665
6758
6848
6837

7AU
7lt0
7193
7275
/JTX)

I

4843
4983
5U9
52fi
5378

5502

fi23
5740
5855
5966

ffi75
6180
628l
6385w
6580
ffi75
6767
6857
6946

7033

7118

7?.U2

7284
7364

I

4857

4W7
5132
5263
539r

5514
56&5

5752
5866
5977

6085
6191

629t
fi|95
6493

6590
6684
6776
6866
6945

7042
7126
72r0
72V2
7372

4a7L
501r
5145
5276
54m

5527

w7
5763
fiT|
5988

6096
6201
6304
6405
6503

6599
6693
6785
6875
6864

7050
7135

72r8
7300
7380

4886
*2A
5159
5289
5416

5539
5658
Di /D
5888
5999

6107
62t2
6314

6415
65r3

6609
67U2
6-794

6884
@72

7059

7143
722u

7308

7388

I

4900
5038
5r72
5302
u28

555r
5670
5786
5899
60r0

6u7
6?.22

6325
u25
6522,

6618
67t2
6803
6893
6p81

7ffi7
7r52
7235
7316
7396

{II

13

12

t2
t2
11

l0
I
I
9
I

I
8

8
8
8

8
8
7
7
7

ll
II
u
10
l0

l0
l0
I
I
I

I
8
8
8
8

8
7
7
7
7

7
7
7
6
6

l0
10

I
9
I

7
7
I

6
6

6
6
6
6
b

D

D

D

D

b

b
8
D

4
4

4
4
4
4
4

I
8
8

8
8

I

I

I

7
7

6
6
6
6
6

6
6
D

D

5

D

D

D

D

5

6
6
D

D

5

D

5
D

5
4

4
4
4
4
4

4
4
4
4
4

3
3
3
3
3

4
4
4
4
4

4
4
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
2
2
2

I
8
8
8
8

8
n
I

n

I

I

n
I

7
6
6
6

6
6
6
6
6

3
3
3
3
3

2
2
2
2
2

2
2
2
2
.)

2
2
2
2
2

2
2
2
2
2

I
I
I
I
I

I
1

I
I
t

1l
1t
10

10

l0

1

I
I
I
I

t
I
I
1

I

I
I
I
I
I

II

4814
4945
ffi2
5224
5353

I I



TABLE A.9.
Continued.

DD

DO

DI
58
59

60
6l
63
63
u

65
66
67
68
69

70
7t
72

73
74

t
G

F
s'

15

740/
7482
7559
7634
770p

74t2
74W
75ffi
7U2
77t6

74L9
7497
7574
7649
772.3

7427

7il'
7fiz
/tn /

773t

7435
7513
7589
7W
7738

7443

7520
7597
7672
7745

745L
75?.8

7W
7979
7752

7459
7536
76L2
7686
77ffi

74ffi
7il3
7619
7694
n67

7474
7551

7627
770L
7774

8189
8?,il
8319
8382
w5

8129
8195
8261

8325
8388

8136
8?,U2

8267

8331
8395

gta
8209
8274
8338
8401

8r49
8215
8280

8344
u07

8156
8222
8287
8e5r
ur4

8t62
8228
8293
8357
8120

8169
8235
8299
8363
u26

8176
824L
8306
8370
8/.32

7782

7853

792A

7993
8062

7789
7860
7931

8m0
8069

7798
7868
7938
8007
8075

7803

7875
794:5

8014

8082

7810
78f,2
7952
8021

8089

7818
7889
7959
8028
8096

7825
7896
7966

8035
8102

7832
7m3
7973
8041

8r09

7839
7910
7980
8048
8116

8182
82,1:8

8312
8376
8439

85m
8561
8621

8681

8739

7W
7917
7W7
8055
8t22

2

2
2
I
I

I
1

1

I
I

I
t
I
I
I

I
I
I
I
I

I
I
t
I
I

I
I
I
I
I

I
I
I
I
I

t
1

I
I
I

2
o

2

2
2

o

2

2
2
2

2
2
2
2
2

2
2
2

2

2

I

I

n
t

I

I

6
6
6
6
6

6
6
6
6
6

6
b
D

5
5

6
6
6
6
6

6
6
6
5
5

b
5
D

D

D

D

D

5
D

D

D

D

D

5
D

b
D

5
b
D

D

D

5
4
4

4

4
4
4
4

D

D

D

4
4

4
4
4
4

4

4
4

4
4

4

4
4
4

4

4

4
4
4
4
4

4
4
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
3
t)

3
3
3
3
3

J

3
3
3
2

2
o

2

2
2

8451

8513
8573

8633
8692

8/.57

8519
8579
8639
8698

8463
8525
8585
8645
8704

8l70
8531

8591

8651
87r0

8476
8537
8597
8657
87r6

8482
8#!
8603
8663
8722

8488

899
8600
8669
8727

uvt
8555
8615
8675
8733

8506
8567
8627

8686
8745

Proportional Parts
Natural

Numbers 0 I 2 3 4 D 6 7 8 I I 2 2 4 D 6 7 8 9

ttttttttlttlllt



{ (IIIII III

l5
76

ll

78
79

80
8t
82

83

u

85
86
87
88

89

90
91

92
93
94

95
96
97
98
99

(r(

'ts
'!3
G

g

ir

G

8751
8808
8865
892r
8976

8756

8814

8871
8yl7
8982

8762
8820
8876
8932
8987

8768
88%
8882

8938
8993

8774
8831
8887
8943
8998

8779
8837
8893
8949
90u

8785
w2
8899
8954
gffX)

8791

884t1

8904
8960
9015

8797

8&tr
8910
8965
9020

8802
8859
8915
8971

9025

2
2
2
2
2

2
2
2
2
2

2
2
I
I
I

I
I
I
I
I

I
I
I
I
I

I
I
I
I
1

I
t
I
I
I

I
I
I
I
1

I
I
I
I
I

I
I
I
I
1

t
I
t
I
I

I
I
I
I
I

I
I
0
0
0

0
0
0
0
0

0
0
0
0
0

2
.)

2
2
2

2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

2
2
2
2

2

5
5
5
5
5

D

5
5
b
b

b
D

4
4
4

4

4

4
4

4

4
4
4
4
4

5
5
4
4
4

4
4
4
4
4

4
4
4
4
4

4
4

4

4
4

4
4
4
4
3

4
4
4
4
4

4
4
4
4
4

4
4
3
3
3

3
3
3
3
3

3
3
J

3
3

3
3
.J

3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
3
3

3
3
3
.,
3

3
3
3
3
3

3
3
3
3
3

3
3
2
I
o

2
2
2
2
2

2
2
2
2
2

9031

9085
9138
9I9r
9?A3

929L
9345
9395
945
9494

9036
9090
91,$
9196
92fi

xA2
9096
9149
9201

9253

9047
9t0I
9154
9206
9258

m53
9106
9159
u2t2
9263

9058
9112
9165
92L7
9269

9063
9t 17
9170
9222
9274

906p
9L22
9175
9227
9279

w74
9128
9180
gz32

928l

9079
9r33
9186
9238
9289

9il2
9590
9638
9685
973r

9552
9600
9647
9694
9741

9557
9605
9652

9689
9745

9ffi2
9609
9657
9703
9750

9566
9614
9661

9708
97il

9571
9619
9666
9713
9759

9576
9624
9671
9717
9763

9581
9628
9675
9722
9768

9586
9633
9680
9727
9n3

9299
9350
9400
9450
9499

9il7
9595
96$
9689
9736

9304
9355
9405
%55
9504

9309
9360
9410
9460
9509

9315
9365
9415
9465
9513

9320
9370
9420
9469
9518

9325
9375
C1:25

9474
9523

9330
9380
94i!0
9179
9528

9335
9385
9435
94:U
9533

9340
9390
9q
94ti9
9538

9777
9823
9868
99r2
9956

9782
9827

9872
99r7
996r

9786
9832
%77
9921

9965

9791
9836
9881

9926
9969

9795
9841
9886
9930
w74

9800
9845
9890
9934
9978

9805
9850
9894
9939
9983

9809
98tr
9899
9943
9987

9814
9859
9903
9948
9991

9818
9863
9908
9952
9996

I II



TABLE A.IO.
Squares and square roots.

N 112 VN VION N I\I' VN VtoN

r.05
1.06
t.o7
1.08
1.09

1.00
I.0r
1.02
1.03
1.04

1.0000
1.020r
1.0404
1.0609
r.0816

1.00000
1.00499
r.0m95
r.01489
1.01980

3.16228
3.r7805
3.19374
3.20936
3.22,41W

3.24037
3.25576
3.27r09
3.28634
3.30151

3.3r662
3.33I67
3.UW
3.36I55
3.37639

3.39rI6
3.40588
3.42053
3.43511
3.44964

3.46410
3.47851
3.49285
3.507L4
3.52136

3.53553
3.54965
3.56371
3.5777r
3.59166

r.30
1.31

r.32
1.33

1.34

1.35
r.36
1.37
1.38
1.39

1.40
I.4t
t.42
L43
t.4

r.45
t.46
t.47
1.48
1.49

1.50
t.5r
r.52
1.53
r.il

r.55
1.56
t.57
1.58
1.59

I.6900
1.716I
r.742,1

r.7689
r.7956

1.82?5
r.8496
r.8769
1.9044
r.9321

I.9600
r.988r
2.0164
2.0419
2.0736

l 14018
L.14455
t.1489l
r.15326
r.15758

1.16190
L16619
t.t7M7
t.t7473
1.17898

r.r$22
1.18743
1.191&{
r.19583
1.20000

3.60555
3.61939
3.63318
3.64692
3.66060

3.674?3
3.68782
3.70135
3.71484
3.72827

3.74tffi
3.75500
3.76829
3.78r53
3.7s473

3.80789
3.82099
3.8&106
3.84708
3.86005

3.87298
3.88587
3.89872
3.91I52
3.9?/r:28

3.93700
3.%968
3.96232
3.97492
3.98748

t.o"t:70
1.02956
1.0344r
r.03923
I.(X4m

l.l0
l.r1
t.t2
l.13
t.t4

r.15
l.16
r.r7
r.r8
r.19

I.2100
1.2321
t.2w
1.27ffi
1.2996

1.322,5

1.3456
r.3689
t.3924,
1.4r6r

1.4400
t.464t
1.4884
r.5129
r.5376

r.5625
r.5876
1.6129
1.6384
r.664I

r.u88r
1.05357
1.05830
1.06301
r.ffi77r

r.07238
r.07703
r.08r67
1.08628
r.09087

2.ro2,5
2.1316
2.1600
2.1m4
2.2201

t.2r

r.23

1.20

r.22

1.2,L

r.25
t.26
t.27
r.28
1.29

r.09545
l.r0m0
I.10454
r.10905
r.u355

I.r1803
t.122.fr
1.12694
1.13137
I'13578

2.2ffi
2,z8pl
2.3r04
2.y@
2.37t6

2.40?5
2.4336
2.4649
2.4W
2.5281

t.22,174
t.228f,2
L23288
I.23693
t.%+!@7

r.zuw
1.24900
1.25300
1.25698
1.26095

Appendix, Tables 3fo

r.1025
1.1236
1.1449
r.1664
1.I88I

r.20416
r.20830
1.212,14

1.21655
t.22066



TABLE A.IO.
Continued.

1.60
I.6t
L.62
r.63
t.M

r.65
1.66
t.67
1.68
1.69

1.70
t.7L
1.72
1.73
t.74

L.75
1.76
1.77
1.78
r.79

1.80
1.8I
r.82
1.83
1.84

2.56m
2.592r
2.624
2.6569
2.6896

2.722,5

2.71ffi
2.7889
2.82tuL
2.856r

2.8900
2.924r
2.958/
2.W29
3.0276

3.2,4N
3.276r
3.3L?t4

3.3489
3.3856

t.2u9t
r.26886
r.27279
r.2767r
t.2ffi2

r.2u52
r.2884I
t.29228
1.296r5
r.30000

4.00000
4.0t2,4:8

4.U2492
4.03733
4.04969

4.ffizo, ,

4.0743t
4.08656
4.09878
4.11006

1.90
I.91
r.92
r.93
1.94

r.95
1.96
r.97
1.98
1.99

2.00
2.01
2.O2

2.03
2.M

2.05
2.06
2.O7

2.08
2.09

2.r0
2.11
2.12
2.13
2.t4

2.15
2.16
2.17
2.t8
2.19

3.6100
3.6481
3.6864
3.7%{19

3.7636

3.8025
3.8416
3.8800
3.9204
3.960I

4.0000
4.M0t
4.0804
4.t200
4.1616

4.202,5
4.24rc
4.2849
4.3264
4.368r

4.4T00
4.452t
4.4W
4.5369
4.579,i

4.622,5

4.6656
4.708,9
4.752,1

4.7981

r.37840
r.38203
r.385&r
r.38924
r.39284

4.35890
4.37035
4.38r78
4.39318
4.4Mil

4.41588
4.427t9
4.43U7
4.44972
4.4ffi4

4.472L4
4.48330
4.49444
4.50555
4.'r6ffi4

4.527ffi
4.53872
4.il973
4.5ffi70
4.57t65

4.58258
4.59347
4.€[435
4.61519
4.62ffi1

4.63681
4.64758
4.&5833
4.66905
4.67974

N I\P VN VI0N N rf VN VMN

1.85
1.86
I.87
1.88
I.89

3.42?5
3.4596
3.4969
3.534
3.5721

4.18330
4.L952/4

4.2,07t4
4.21900
4.230f4

4.242M
4.2,zu1
4.2ffit5
4.27785
4.?,8952

4.30116
4.3t277
4.32435
4.33590
4.U74L

3.0625
3.0076
3.1329
3.1684
3.2041

r.30384
r.30767
1.31I49
1.31529
1.31909

r.32288
1.32665
L3304r
1.33417
I.3379r

1.34I&t
1.34536
r.34907
r.35277
1.35&17

1.36015
1.36382
1.36748
t37r13
t.37477

4,T?3IL
4.t3521
4.t4729
4.15933
4.r7r33

1.39642
r.40000
r.40357
r.40712
I,41067

L4r4,t
r.4t774
t.42t27
t.4rt:78
r.42829

r.4i!178
1.43527
r.43875
t.M222
I.Mffi

t.u9t4
r.45258
t.4 ,

1.45945
t.46287

1.4ffi29
r.46969
1.47309
t.47M8
r.47986

317 Appmdia Tabt"es



TABI.E A.IO.
Continued.

N pz VN VloN N N2 VN VION

2.20
2.2r
2.22
223
2.%4

2.2.5

2.26
2.27
2.28
2.29

2.30
2.31
2.32
2.33
2.U

2.35
2.36
2.37
2.38
2.39

2.40
2.4L
2.42
2.43
2.44

2.45
2.46
2.47
2.48
2.49

4.Um
4.8841
4.9284
4.9729
5.0r76

5.0625
5.1076
5.1529
5.1984
5.zMr

5.2900
5.3361
5.38%4

5.4289
5.47fi

5.5225
5.5696
5.6169
5.ru
5.7r2r

5.7600
5.808r
5.&5@l

5.9049
5.9536

6.0025
6.0516
6.1009
6.1504
6.2001

1.48324
r.4866r
r.48997
r.49332
1.49666

4.69042
4.70106
4.7ttffi
4.72229
4.73286

4.74342
4.75395
4.7M45
4.77493
4.78539

4.79583
4.80625
4.gtru
4.82701
4.83735

4.U7ffi
4.85798
4.86826
4.87852
4.88876

4.89898
4.90918
4.91935
4.92950
4.939&r

4.W!975
4.95984
4.9699r
4.97996
4.98999

2.50
2.51
2.52
2.53
2.il

2.55
2.56
2.57
2.58
2.59

2.N
2.6r
2.62
2.63
2,M

2.65
2.ffi
2.67
2.68
2.69

2.70
2.7r
2.72
2.73
2.74

2.75
2.76
2.77
2.78
2.79

6.25m
6.300r
6.35Gr
6.4009
6.4516

6.-c{}25

6.5536
6.6049
6.656l
6.708r

6.7600
6.8r2r
6.ffiM
6.9169
6.9696

7.0225
7.O1ffi
7.1289
7.t824
7.?36r

7.2900
7.3441
7.3984
7.4525
7.fi76

7.ffi25
7.6176
7.6729
7.7284
7.7Ut

r.59687
1.60000
r.60312
1.ffi24
r.60035

l.6l?/15
r.61555
1.6r864
t.62t73
1.6248r

1.62788
1.63095
1.6340r
r.63707
1.640r2

r.643r7
t.6462t
1.M924
r.65227
r.65529

1.65$r
1.ffir32
I.66433
1.66733
1.67033

5.00000
5.00999
5.01996
5.0299r
5.03984

5.M975
5.059er
5.ffi952
5.07937
5.08920

5.09902
5.10882
5.r1859
5.12835
5.13800

5.t4782
5.15752
5.t8720
5.17ffi7
5.18652

5.19615
5.20577
5.21536
5.22494
5.234fi

52r'g:04
5.25357
5.26308
5.27257
5.28205

r.50(m
1.50333
r.5ffi65
r.50997
r.51327

1.51658
r.51987
1.52315
r.52643
1.5297r

r53297
1.53623
1.53948
r.il272
r.54596

1.54919
1.5524:2

r.55563
r.55885
r.56205

r.56525r.w
r.57162
r.574ffi
r.57797

Appmdix, Tabbs 3f8

1.58114
r.584!0
r.fi745
1.59060
r.59374



3.r0
3.ll
3.t2
3.13
3.14

3.15
3.16
3.17
3.18
3.r9

2.&5

2.86
2.87
2.88
2.89

2.90
2.9r
2.92
2.93
2.94

2.95
2.96
2.97
2.98
2.99

3.00
3.0r
3.02
3.03
3.04

3.05
3.06
3.07
3.08
3.09

TABI.E A.IO.
Continued.

2.80
2.81
2.82
2.83
2.U

r.67332
r.67631
r.67929
r.ffi226
r.68523

5.29150
5.30094
5.31037
5.31977
5.32917

9.6rm
9.672r
9.734
9.7968
9.8596

9.s225
9.9856

10.0489
t0.tt24
I0.176r

1.76068
1.76352
r.76635
1.76918
r.77200

5.ffi776
5.57674
5.5&570
5.594M
5.60357

N yE VN VION N T\I, VN VMN

7.UN
7.896r
7.95L4
8.0089
8.0656

8.t225
8.1796
8.2369
8.294l
8.3521

r.68819
r.69lt5
l.694Il
r.69706
1.7fin0

5.338,4
5.34790
5.3572,4

5.36656
5.37587

r.77482
t.777M
r.78045
r.78326
r.78606

5.61249
5.62139
5.63028
5.m9r5
5.&80r

8.41(n
8.4681
8.5264
8.5849
8.ea6

8.7025
8.76r6
8.8209
8.8804
8.9401

9.m00
9.0601
9.tz04
9.1809
9.2416

9.3025
9.3636
s.42,4,9

9.4864
9.5481

r.70294
r.70587
r.70880
r.7tt72
r.7r4M

5.38516
5.39444
5.0370
5.41295
5.422t8

3.20
3.2L
3.22
3.23
3.rl

r0.24m
10.3041
r0.3684
r0.4329
r0.4976

r.78885
1.79r65
t.79444
1.79722
r.80000

5.65685
5.66569
5.674fr
5.6$3r
5.692r0

r.7r7ffi
r.72M7
t.72337
r.72627
r.72916

5.4i1t39
5.44059
5.44977
5.45894
5.46800

3.2.5

s.26
3.27
3.28
3.29

10.5625
t0.6276
r0.6929
LO.7W
10.82,41

r.80278
r.80555
1.80$r
1.8u08
1.8r3&l

5.7m88
5.7W
5.7r839
5.72713
5.73585

r.73?ffi
r.73494
t.73781
r.74069
1.743ffi

5.47723
5.48635
5.49545
5.ruil
5.5r362

3.30
3.3r
3.32
3.33
3.34

10.8900
10.9561
IL,M?/4
1I.0889
11.1556

1.8r659
1.81934
1.822N
r.82483
L.82757

5.744ffi
5.75326
5.76194
5.77062
5.77927

r.74642
t.74929
r.752t4
r.754W
r.757U

5.522ffi
5.53173
5.il076
5.il977
5.55878

3.35
3.36
3.37
3.38
3.39

tL.2225
rr.2896
rr.3569
t.444
tt.492r

1.83030
1.83303
1.83576
1.83848
1.84I20

5.78792
5.79655
5.8&5r7
5.81378
5.82237
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N 112 VN VMN N 112 VN VMN

3.40
3.41
3.42
3.43
3.M

3.45
3.46
3.47
3.48
3.49

rr.5600
u.6281
r1.69e1
11.7649
u.8336

1.84}9r
t.uffiz
1.84932
1.85203
r.8il72

r.8574,
1.86011

1.86279
r.86548
1.86815

5.83095
5.83952
5.84808
5.85662
5.865r5

3.70
3.71
3.72
3.73
3.74

13.6900
13.7Ml
13.8384
13.9129
13.9876

1.9?3il
t.92614
r.92873
r.93r32
1.9339I

6.08,276
6.09098
6.099r8
6.10737
6.r1555

11.9025
II.9716
12.0409
12.lt04
12.r80I

5.87367
5.882r8
5.89067
5.89915
5.W762

3.75
3.76
J. lt
3.78
3.79

14.ffi?s
14.t376
t4.2t2g
14.2W
14.3&r

14.44W
14.5161
14.592,1

14.6689
14.74ffi

r.93&19
r.$m7
1.94165
t.9422
1.94679

1.94936
r.95r92
r.95448
t.g57M
r.95959

6.t2372
6.13188
6.14003
6.14817
6.15630

6.t%4t
6.17252
6.1806I
6.18870
6.19677

3.50
3.51
3.52
3.53
3.il

3.55
3.56
J.D/
3.58
3.59

3.60
3.61
3.62
3.63
3.M

3.65
3.66
3.67
3.68
3.69

t2.zffi
12.320I
12.3904
12.4609
12.5316

12.ffi2.5
12.8736
r2.74l9
r2.8164
12.8881

12.9600
13.0321
13.1044
13.1769
L3.tu+t96

13.3225
r3.3956
r3.4689
13.il2A
13.6161

1.87083
1.87350
1.87617
1.87883
1.88149

5.9r608
5.9%{:53

5.93296
5.%138
5.94979

3.80
3.81
3.82
3.83
3.84

r.88414
r.88680
r.88944
r.89209
1.89473

5.95819
5.96657
5.97495
5.9833r
5.99166

s.85
3.86
3.87
3.88
3.89

14.8225
14.8996
14.9768
15.ow
15.132r

15.2100
15.288r
15.3664
t5.4449
15.5236

15.6025
15.68t6
15.7609
15.8404
r5.920r

I.96214
1.96469
t.967?3
r.96977
r.9723r

t.9748l
1.97737
r.97990
1.98?.,t:2

1.98494

r.98746
1.98997
1.99249
r.99499
r.99750

6.zMU
6.2t289
6.22093
6.22896
6.23699

62At5W
6.25300
6.26099
6.26897
6.27694

6.28490
6.29285
6.30079
6.30872
6.31664

1.89737
1.90000
1.90263
r.90526
r.m788

6.00000
6.00833
6.01664
6.02495
6.03324

3.90
3.91
3,92
3.93
3.94

6.(Nr52
6.(X979
6.05805
6.06630
6.074

3.95
3.96
3.97
3.98
3.99
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TABLE A.IO.
Continued.

4.05
4.06
4.07
4.08
4.09

r6.0000
16.0801
16.1604
16.240s
16.3216

4.30
4.31
4.32
4.33
4.34

18.4900
18.5761
t8.ffir4,
18.7489
r8.8356

2.073M
2.07ffiS
2.07U6
2.08087
2.08327

N N2 VN VMN N I\P VN VioN

2.00000
2.op/zil
2.00499
2.00749
2.m998

6.324ffi
6.33246
6.34(85
6.34823
6.35610

6.55744
6.56506
6.57267
6.ffi27
6.58787

t6.40?5
r6.4836
r6.5&19
16.&(&1
16.728r

2.01246
2.0t494
2.01742
2.01990
2.02?37

6.36396
6.37r8r
6.37966
6.38749
6.39531

4.35
4.36
4.37
4.38
4.39

18.9225
19.0096
19.0969
19.1844
19.272r

2.08567
2.08806
2.W5
2.Wz84
2.09523

2.0p762
2.10m0
2.10238
2.tM76
2.r0713

6.59545
6.60303
6.6r060
6.6r816
6.62571

6.63325
6.64078
6.64831
6.65582
6.66333

6.67083
6.67832
6.6858r
6.69328
6.70075

6.70820
6.71565
6,7?309
6.73053
6.73795

4.10
4.u
4.t2
4.13
4.14

r6.8r00
r6.8921
16.9744
r7.0569
r7.1396

2.02485
2.0273r
2.02978
2.03224
2.03470

6.40312
6.41093
6.41872
6.42651
6.43428

4.40
4.41
4.42
4.43
4,M

4.50
4.51
4.52
4.53
4.54

r9.3600
19.448I
19.5364
19.6249
r9.7136

4.t5
4.16
4.17
4.18
4.19

4.45
4.46
4.47
4.48
4.49

17.2225
r7.3056
17.3889
t7.4724
r7.556r

2.037L5
2.0396r
2.04206
2.044fi
2.M695

6.4205
6.4498r
6.45755
6.46529
6.47302

19.8025
19.8916
19.9809
20.o7M
20.1601

20.zffi
20.w\
20.4304
20.520,9
20.6116

20.7025
20.7936
20.8849
20.976l
21.0681

2.10950
2.u187
2,1142/4,

2.I1660
2.11896

4.20
4.2r
4.22
4.?3
4.24

17.6400
17.724r
17.8084
r7.8929
t7.9776

2.&939
2.05r83
2.0il26
2.0ffi70
2.059r3

6.48074
6.48U5
6.496r5
6.50385
6.51r53

2.t2L32
2.1?3ffi
2.r2ffi3
2.12838
2.13073

4.25
4.26
4.27
4.28
4.29

r8.0625
18.r476
r8.2329
18.3184
18.4()41

2.06r55
2.06398
2.06640
2.06882
2.O7123

6.5r920
6.5287
6.5U52
6.il2t7
6.il981

4.55
4.ffi
4.57
4.58
4.59

2.13307
2.r3il2
2.13776
2.I4m9
2.142,+:3

6.74537
6.75278
6.76018
6.76757
6.77495

4.00
4.01
4.02
4.(B
4,M
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TABLE A.IO.
Continued.

N tllZ VN \AON N 1iz VN VtoN

4.ffi
4.61
4.62
4.63
4,M

2r.l6m
2t.252r
2r.3444
2t.436.p
2L.52%

2.14476
2.t47W
2.14942
2.t5t74
2.15407

6.78233
6.78970
6.79706
6.80441
6.81r75

4.m
4.91
4.92
4.93
4.94

24.0100
%.108r
2,1.2W
2,t.s04g
24.4036

2/4.fr25
2!4.ffi16
2t4.7W
L4.W
2t.9ml

2.21359
2.21585
2.2r811
2.22036
2.22261

2.22486
2.227rr
2.22935
2.23159
2.23383

2.23ffi7
2.23830
2.24054
2.24277
2.244W

7.00000
7.ffi7r4
7.0t427
7.02140
7.02851

7.03562
7.M273
7.M982
7.0569r
7.ffi399

7.07107
7.07814
7.08520
7.@225
7.09930

4.65
4.ffi
4.67
4.68
4.69

21.622,5
21.7rffi
2r.8089
21.W2!4,

2r.9961

2.15639
2.15870
2.16102
2.rffi33
2.16564

6.81909
6.82M2
6.83374
6.84r05
6.84836

6.85565
6.ffi294
6.87023
6.877fi
6.8U77

4.95
4.96
4.97
4.98
4.99

4.70
4.71
4.72
4.73
4.74

4.75
4.76
4.77
4.78
4.79

4.80
4.81
4.82
4.83
4.U

22.Wffi
22.1841
22.27U
22.3729
22.4676

22.ffi?.s
22.6576
22.7529
22.UU
22.944r

23.(X00
23.136r
?3.?32A
23.3289
2l.42ffi

2.16795
2.17025
2.t72fi
2.174ffi
2.r7715

5.00
5.0r
5.02
5.03
5.04

25.fino
25.100r
25.20M
25.3m9
?5.4016

2.t7945
2.18174
2.18403
2.18632
2.18861

6.89202
6.89928
6.90652
6.91375
6.92098

5.05
5.06
5.07
5.08
5.09

?,5.502s
25.6036
25.7049
25.8064
25.908r

2.24722
2.24944
2.25167
2.25389
2.258t0

7.10634
7.r1337
7.12039
7.12741
7.r3U2

7.t4143
7.t4843
7.r5il2
7.t6240
7.16938

7.17635
7.1833r
7.LW27
7.19722
7.2Mr7

2.rm89
2.t9317
2.rs545
2.19773
2.2fin0

4.85
4.86
4.87
4.88
4.89

?3.52?5
23.6I96
?3.7165
2l.8144
23.9121

2.20227
2.204il
2.20ffir
2.2W07
2.2t133

5.15
5.16
5.r7
5.r8
5.19

6.92820
6.93il2
6.94:262
6.94982
6.9570r

6.9@1t9
6.97r37
6.97854
6.98570
6.99285

5.r0
5.ll
5.r2
5.13
5.14

26.0I00
26.ttzl
26.2t44
26.3169
26.4t%

26.5225
26.625,6
26.7289
26.8324
26.936r

2.25832
2.2ffi53
2.26274
2.2M95
2.267t6

2.26936
2.27t56
2.27376
2.27596
2.27816
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5.20
5.2r
5.22
5.23
5.24

TABLE A.IO.
Continued.

N pe VN VroN

27.W
27.t4ll
27.2/4:U
27.3529
27.4576

2.28035
2.282,il
2.2U73
2.2ffi92
2.28910

7.21u0
7.2r803
7.22/tt9$
7.23187
7.23878

5.50
5.5r
5.52
5.53
5.il

30.2500
30.3601
30.4704
30.5809
30.69r6

2.U52t
2.U7U
2.U947
2.35160
2.35372

7.41620
7.42294
7.42967
7.43610
7.443t2

5.?,5

5.26
5.27
5.28
5.29

27.ffi25
27.ffi76
27.7729
27.8784
27.9841

2.29129
2.29347
2.29fi5
2.297&3
2.3(nn

7.tuL:fig
7.25259
7.?594:8

7.2ffi36
7.27324

D.t5
5.56
5.57
5.58
5.59

30.8025
30.9136
31.0249
3r.13&1
31.248I

2.355U
2.35797
2.36008
2.36220
236432

7.M983
7.456il
7.4632/4,

7.46994
7.47ffi3

5.30
5.3r
5.32
5.33
5.U

5.35
5.36
D.J /
5.38
5.39

28.0900
28.1961
2.8.WA
28.4089
28.5156

28.629.5

28.7296
28.8369
28.9444
29.0521

2.30217
2.30434
2.30651
2.30868
2.31084

2.31301
2.3t5r7
2.31733
2.31948
2.32rM

7.28011
7.2ffi97
7.29383
7.3m68
7.30753

7.31437
7.32120
7.32803
7.33485
7.34lffi

7.W7
7.35527
7.36206
7.36885
7.37564

5.60
5.6r
5.62
5.63
5.M

5.65
5.66
5.67
5.68
5.69

31.3600
3r.4721
u.ru
31.6969
3r.8096

31.y225
32.0356
32.1489
32.2624
32.3761

2.3ffi!
2.3ffiil
2.37065
2.37276
2.37487

2.37697
2.37908
2.38118
238324
2.38537

7.4$3r
7.48999
7.49ffi7
7.50333
7.50990

7.51665
7.52330
7.52994
7.53658
7.il321

7.54983
7.5ru5
7.fi307
7.56968
7.57628

5.40
5.41
5.42
5.43
5.44

29.r6(n
29.zffir
29.3764
29.4849
29.5936

2.32379
2.32594
2.32809
2.330L4
2.33238

5.70
5.7r
5.72
5.73
5.74

32.4900
32.604r
32.7tU
32.8329
32.9476

2.38747
2.38956
2.39165
2.39374
2.39583

5.45
5.46
5.47
5.48
5.49

29.70?5
29.8r16
29.9209
30.03u
30.I4()f

2.3U52
2.33666
2.33880
2.U@4
2.UN7

7.3824r
7.389r8
7.39594
7.4U270
7.ffi45

5.75
5.76
J.t l
5.78
5.79

33.0625
33.L776
33.2929
33.4084
33.5%4r

2.39792
2.4fin0
2.4028
2.404t6
2.4062,4

7.58288
7.fi947
7.59605
7.tr263
7.ffi20
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TABLE A.IO.
Continued.

N 112 VN fiON- N I.P VN VION

5.80
5.8r
5.82
5.83
5.U

33.6400
33.756r
33.8714
33.9889
34.1056

2.40832
2.41039
2.412,1:7

2.414il
2. rffir

7.61577
7.6?2U
7.6289
7.6354l
7.64r99

6.10
6.Il
6.12
6.13
6.r4

37.zt00
37.332r
37.4544
37.5769
37.6p06

2.4ffi82
2.47L84
2.473ffi
2.47ffi
2.47790

7.8102.5

7.8r665
7.82N4
7.829|3
7.83582

7.U2r9
7.81857
7.85493
7.86130
7.ffilffi

5.85
5.86
5.87
5.88
5.89

u.22?5
34.3396
v.4
u.57M
u.wzl

2.41868
2.4074
2.4228r
2.42487
2.42ffi

7.64853
7.65506
7.66159
7.ffi12
7.67463

6.15
6.16
6.t7
6.r8
6.19

6.20
6.2t
6.22
6.23
62A

37.8225
37.9456
38.0689
38.1921
38.3r6r

2.47W2
2.48r93
2.48395
2.48596
2.48797

5.90
5.91
5.92
5.93
5.94

34.8100
u.9?3r
35.O4er
35.re19
35.2836

2.428W
2.€105
2.43311
2.4#16
2.4372r

7.68u5
7.ffi765
7.6p4L'
7.70065
7.70714

38.4400
38.5641
38.6884
38.8r29
38.9376

2.48998
2.49199
2.49i199
2.4W
2.49800

7.87401
7.88036
7.88670
7.89303
7.89937

7.90569
7.9],n2
7.91833
7.92/165
7.93095

7.93725
7.94355
7.WtgU
7.95613
7.X)2i4]

5.95
5.96
5.97
5.98
5.99

35.4ry25
35.52r6
35.&109
35.7W
35.8801

2.43926
2.44tsl
2.4l3fi
2.M
2.U745

7.7L362
7.720t0
7.726fi
7.73N5
7.7395r

6.?.5

6.26
6.27
6.28
6.29

39.0625
39.1876
39.3129
39.4184
39.5641

2.5fim
2.502m
2.W
2.50599
2.WW

6.00
6.0r
6.O2

6.03
6.04

36.0000
36.120I
36.2,,!tM

36.3600
36.48r6

2A49419

2.45t53
2.45357
2.45ffi1
2.45764

7.74597
7.7524
7.7ffi7
7.76531
7.TIt74

6.30
6.31
6.32
6.33
6.34

39.69m
39.816r
39.944
40.0689
40.1956

2.50998
2.57197
2.51396
2.51595
2.5r7U,

6.05
6.06
6.07
6.08
6.09

36.6025
36.7236
36.8449
36.96&1
37.0881

2.45X)7
2.46t7t
2.46374
2.46577
2.46779

6.35
6.36
6.37
6.38
6.39

40.32?5
40.44%
40.5769
40.704l
40.8321

2.5t9B,2
2.52t90
2.52,389
2.5?,ffi7
2.52784

7.96869
7.974%
7.98123
7.%749
7.W375
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TABLE A.IO.
ConUnued.

N I\P VN VION N I.I'z VN V10N

6.40
6.41
6.42
6.43
6.44

40.9600
41.0881
4t.zt%
4t.3449
4t.47ffi

2.52982
2.53180
2.53377
2.53574
2.53772

8.00000
8.00625
8.01249
8.01873
8.@4196

6.70
6.7r
6.72
6.73
6.74

44.8900
45.UUt
45.rW
45.2y29
45.4276

2.W
2.59037
2.59230
2.594n
2.59615

8.18535
8.19146
8.19756
8.20366
8.20975

6.50
6.5r
6.52
6.53
6.il

6.55
6.56
6.57
6.58
6.59

6.45
6.46
6.47
6.48
6.49

41.w25
4r.7316
4r.8609
41.9004
42.1201

8.03ilg
8.0374r
8.04363
8.04984
8.05605

6.75
6.76
6.77
6.78
6.79

45.ffi25
45.6976
45.8329
45.9684
46.t04l

2.59808
2.60000
2.ffi192
2.60384
2.ffi576

8.21584
8.?2192
8.22800
8.23408

8.%015

42.zffi
42.3801
42.'r04
42.W
42.77t6

42.9025
4ii!.0336

{}.r&9
43.2W
43.4,,8r

2.il951
2.55147
2.5538
2.55539
2.55734

8.Mz%i
8.06846
8.07465
8.08084
8.08703

6.80
6.8r
6.82
6.83
6.U

6.85
6.86
6.87
6.88
6.89

8.?ffi
46.3761
46.5L24,

46.&189
6.7&ffi

46.g22,5

47.0596
47.1969
47.3W
47.472r

2.ffi7ffi
2.60960
2.6r151
2.6134I
2.6r$4

2.6t725
2.6r9r6
2.62107
2.622W
2.6248a

8.24t62L
8.25227
8.25833
8.26{}8
8.27M3

8.27U7
82f,2,5r
8.28855
8.2945ti
8.30060

2.55930
2.fit2,5
2.ffi320
2.56515
2.567t0

8.09321
8.09938
8.10555
8.rlr72
8.11788

6.60
6.61
6.62
6.63
6.U

{}.5600
4|.692r
43.8?A
43.9569
44.0896

2.56905
2.57Cfp
2.57294
2.57488
2.5768,2

8.t*!!M
8.r30r9
8.13634
8.ra$
8.14862

8.L5475
8.16088
8.16701
8.17313
8.t7924

6.90
6.9r
6.92
6.93
6.94

47.6100
47.74fr
47.W
48.02,+19

4ti.1636

2.62679
2.6286,9
2.63059
2.632,19

2.634!9

8.30662
8.31264
8.3r865
8.3%66
8.33067

6.65
6.66
6.67
6.68
6.69

4.222.5
4.35fi
4.48f,9
u.622,4,
u.7ffii

2.57876
2.58070
2.fi263
2.fi457
2.58650

6.95
6.96
6.97
6.98
6.99

48.3ff}5
8A116
48.5800
8.7204
48.8601

2.8ffi29
2.63818
2.&1008
2.64197
2.MW

8.33667
8.Uzffi
8.34865
8.&1164
8.36062
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TABI.E A.IO.
Continued.

N If VN VION N N2 VN ViON

7.m
7.01
7.trz

7.03
7.U

49.0000
49.1401
49.2W
49.420,0

49.5616

2.M575
2.U7U
2.64953
2.65t4r
2.65330

8.36660
8.37257
8.378t1
8.38451
8.39047

7.30
7.3r
7.32
7.33
7.U

53.2900
53.436r
53.fi2,4
53.7289
53.8756

2.70L85
2.70370
2.70555
2.70740
2.7wtu4,

8.54400
8.54985
8.55570
8.56154
8.56738

7.05
7.06
7.O7

7.08
7.09

4s.7025
49.8436
49.9849
fi.1264
50.2681

2.65518
2.65707
2.65895
2.66083
2.ffi27t

8.39&t3
8.40238
8.40833
8.4t47
8.42ff2t

7.35
7.36
7.37
7.38
7.39

il.0225
54.1696
54.3169
il.4tut
il.612r

2.7rr09
2.71293
2.71477
2.7tffiz
2.7t846

8.5732r
8.57904
8.58487
8.59068
8.5965I

8.60233
8.608r4
8.61394
8.61974
8.625il

7.10
7.u
7.r2
7.r3
7.t4

7.L5
7.L6
7.t7
7.18
7.r9

7.20
7.2r
7.22
7.23
7.24

50.4r00
50.5521
50.6914
50.8369
50.9796

2.Wfi
2.ffi
2.66833
2.67U21
2.67208

8.4%r5
8.41208
8.4380r
8.4(}93
8.44985

7.N
7.41
7.42
7.43
7.M

il.7ffi
54.9081
55.0564
55.2049
55.3536

2.72U29
2.722t3
2.72397
2.7?ffi
2.727U

5L.12,2,5

5L.26ffi
5r.4089
51.552,1

5r.6961

2.67395
2.6758,2
2.67769
2.67955
2.ffir4,

8.45577
8.46168
8.#759
8.473l9
8.47939

7.45
7.46
7.47
7.48
7.49

55.5025
55.65r6
55.8009
55.9504
56.r00r

2.729+:7

2.73r30
2.73313
2.7UXi
2.73679

8.63r34
8.63713
8.U292
8.64870
8.6zu.8

7.25
7.26
7.27
7.28
7.29

2.ffiafi
2.69444
2.696,29
2.69815
2.70000

8.51469
8.52056
8.52643
8.53229
8.538r5

7.55
7.ffi
7.57
7.58
7.59

57.m25
57.1536
57.W9
57.4W
57.608r

2.74773
2.74955
2,75136
2.753r8
2.75ffi

5r.8400
5r.984r
52.rz%
52.2729
52.4t76

2.68328
2.ffi5r4
2.68701
2.68887
2.ffi72

8.48528
8.49117
8.49706
8.50294
8.50882

7.50
7.5r
7.52
7.53
7.U

fi.zffi
56.4001
56.5504
56.7009
56.85r6

2.73861
2.740/4
2.7422t;
2.74/;08
2.7459t

8.66025
8.66603
8.67179
8.677fi
8.68332

8.68907
8.69483
8.700i57
8.70632
8.71206
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TABLE 4.10.
Continued.

7.ffi
7.6r
7.82
7.63
7.U

N N2 VN VION N I.I'? VN Vi-oN

7.65
7.ffi
7.67
7.68
7.69

*.5295
58.6756
58.8289
58.9824
59.1361

2.76ffi
2.76767
2.76p/.8
2.77r94
2.773M

8.74643
8.752t4
8.75785
8.76356
8.76926

8.2A25
63.3616
63.5209
63.6804
63.8401

2.8t957
2.82135
2.82312
2.82fi9
2.82ffi

8.91628
8.92r88
8.92749
8.93308
8.93868

57.1ffi
57.9121
58.0644
58.2169
58.36p6

2.7ffir
2.7ffi2
2.76I)43
2.76225
2.7W

8.71780
8.72353
8.72926
8.73499
8.7Q7r

7.90
7.9r
7.92
7.93
7.94

7.95
7.96
7.97
7.98
7.W

62.4Im
62.5681
tr2.7264
62.8849
63.0436

2.81069
2.8t2,{:7
2.8t425
2.81603
2.81780

8.88819
8.89382
8.89944
8.90m5
8.91067

7.70
7.71
7.72
7.73
7.74

59.2900
59.rur
59.5984
59.75m
59.9076

2.7748,9
2.nffi
2.778l9
2.7Wm
2.792,@

8.77496
8.78066
8.78635
8.79?.M
8.79773

8.m
8.01
8.02
8.03
8.(X

64.0000
64.1601
M3ru
64.4t109

64.6416

2.82U3
2.$0r9
2.83r96
2.83373
2.83tr9

8.W27
8.%986
8.95545
8.96103
8.96660

7.75
7.76
t.t I
7.78
7.79

60.0625
ffi.2L76
60.3729
ffi.5284
60.6841

2.78388
2.78568
2.78747
2.78y27
2.79r06

8.8m4r
8.80900
8.81476
8.82043
8.826r0

8.05
8.06
8.07
8.08
8.09

64.802,t1

64.9636
65.1?tl!9

85.2,W
85/481

2.8s725
2.83901
2.8/077
2.U253
2.8/129

8.97218
8.9m5
8.S332
8.98888
8.99444

7.80
7.8r
7.82
7.83
7.U

7.85
7.86
7.87
7.88
7.89

60.8400
60.9061
6t.t5r4
6r.3089
61.4656

2.7s285
2.79,1!M

2.79643
2.7982L
2.80000

8.83176
8.83742
8.8€08
8.84873
8.&ta8

8.10
8.il
8.12
8.13
8.14

65.6r00
65.nzt
65.9344
66.0969
66.2596

2.Uffi
2.U78L
2.8lgfi
2.85132
2.85307

9.00000
9.00555
9.0lll0
9.0r665
9.02219

6L.6225
6r.7796
6r.$69
62.W
62.?521

2.80r79
2.80357
2.80535
2.80713
2.80891

8.86002
8.86566
8.87130
8.87694
8.88257

8.15
8.16
8.r7
8.r8
8.19

ffi.4n5
66.5856
66.7489
ffi.9ttu4,
67.0761

2.85/8,2
2.8ffi57
2.85832
2.W7
2.86r82

9.U2774
9.03327
9.0388r
9.44434
9.04986

327 Apperd.ir, Tablcs



TABLE A.IO.
Continued.

N NI, VN VION N NP VN V1ON

8.20
8.21
8.22
8.23
8.2/L

67,N
67.M\
67.W
67.7329
67.8976

2.86356
2.86531
2.86705
2.86880
2.870Er

9.05539
9.06001
9.W2
9.07193
9.0774l

8.50
8.5r
8.52
8.53
8.54

72.zffi
72.4%)l
72.5W
72.7ffi
72.9316

2stil&
2.91719
2.91890
2.92062
2.92?.33

9.21954
922497
9.23038
9.23580
9.2A,t21

8.2.5

8.26
8.27
8.28
8.29

68.0625
B.W6
68.3929
68.5584
ffi.724L

2.872?,8

2.87ffz
2.87576
2.877fi
2.8792t1

9.08295
9.08845
9.09395
9.09945
9.10494

8.55
8.56
8.57
8.58
8.59

73.LO25
73.27y3
73.4449
73.6164
73.7881

2.9?&
2.9?.575
2.92746
2.929r6
2.93087

92Affi2
9.25203
9.25743
9.26283
9.26823

8.30
8.31
8.32
8.33
8.U

68.8900
69.056r
ffi.2224,
6p.3889
69.5556

2.88097
2.88'27r
2.98444
2.886r7
2.8879r

9.11M3
9.il592
9.12140
9.12688
9.13236

8.60
8.61
8.62
8.63
8.&1

73.9600
74.1321
74.M
74.47ffi
74.64W)

2.93258
2.93428
2.93598
2.93769
2.93939

9.27ffi2
9.2790r
9.2W
9.28978
9.29516

8.35
8.36
8.37
8.38
8.39

8.40
8.4r
8.A
8.43
8.M

@.72.?5
69.8896
70.0569
70.?.?a
70.3921

28f,964
2.89137
2.893r0
2.89482
2.89655

9.13783
9.14330
9.14877
9.rtu23
9.15969

8.65
8.66
8.67
8.68
8.69

74.82?5
74.9956
75.1689
75.U21
75.5161

2.94r00
2.94279
2.94449
2.%6r8
2.94:78

9.300t1
9.30591
9.31r28
9.3r665
9.32202

70.5600
70.7281
70.8964
7r.0649
71.?336

2.89828
2.90000
2.9p172
2.9m45
2.m5r7

9.16515
9.1706I
9.17606
9.18I50
9.18695

8.70
8.7r
8.72
8.73
8.74

75.6900
75.8&r1
76.0384
76.2129
76.3a76

2.%958
2.95t27
2.952%
2.gilffi
2.95635

9.32738
9.33274
9.33809
9.34345
9.34880

8.45
8.46
8.47
8.48
8.49

7LQ?s
7r.5716
7t.740,g
71.9104
72.0801

2.m689
2.90861

2.91033
2.91204
2.91376

9.19239
9.19783
9.20326
9.20869
9.214t2

8.75
8.76
8.77
8.78
8.79

76.ffi25
76.7376
76.9129
77.W
77.264r

2.95804
2.95973
2.X)rA
2.963I1
2.9U79

9.3ilt4
9.35949
9.3et83
9.37017
9.37550
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TABLE A.IO.
Continued.

8.80
8.81
8.82
8.83
8.84

77.m
77.8t61
77.792,1

77.9689
78.r4ffi

N r.l' VN VmN

2.gffi
2.96816
2.96985
2.97153
2.97321

9.38083
9.386r6
9.39I49
9.39681
9.&213

9.r0
9.n
L12
9.13
9.14

82.8rm
82.9921
83.r7M
83.3569
83.5396

3.01662
3.0r828
3.01993
3.02159
3.423,2/4

9.53939
9.54463
f.il987
9.55510
9.56033

8.85
8.86
8.87
8.88
8.89

78.32?.5

78.4906
78.6769
78.8il4
79.82r

2,974f,9
2.97658
2.978?.5

2.97993
2.98r6r

9.4074l
9.4t276
9.41807
9.42338
9.4286fi

9.15
9.16
9.17
9.r8
9.19

83.7225
83.9056
84.0889
u.272,4
M;,.4fiL

3.02190
3.02655
3.02820
3.02985
3.03150

9.56556
9.57079
9.57601
9.58r23
9.58el5

8.90
8.9r
8.92
8.93
8.94

8.95
8.96
8.97
8.98
8.99

9.00
9.01
9.02
9.03
9.04

9.05
9.06
9.07
9.08
9.09

79.2100
79.388r
79.W
79.7449
79.9236

2.98329
2.98496
2.98664
2.9883r
2.98998

9.43398
9.43928
9.444
9.41987
9.45516

9.48044
9.46573
9.47r0r
9.47829
9.48156

9.20
9.2r
9.22
9.23
9.2,4

9.25
9.26
9.27
9.28
9.29

84.6400
U.82/1l
85.m84
85.1929
85.3776

85.5625
85.7476
85.9329
86.r184
86.3041

3.03315
3.03480
3.03&15
3.03809
3.03974

9.59r66
9.59687
9.60208
9.60729
9.6r249

80.1025
80.28r6
80.4609
80.6404
80.8201

2.99166
2.99333
2.99500
2.99666
2.99833

3.04r38
3.(X302
3.M467
3.(X631
3.(X795

8r.0000
8r.r80r
8r.3604
8r.5409
8r.72t6

3.Ofim
3.00r67
3.00333
3.msm
3.00666

9.4ti683
9.492r0
9.49737
9.50263
9.50789

9.30
9.31
9.32
9.33
9.34

9.35
9.36
9.37
9.38
9.39

86.4900
86.6761
86.8624,

87.0489
87.?3fi

3.(X959
3.05123
3.05287
3.05450
3.05614

9.6{}65
9.64883
9.65401
9.659r9
9.6&137

9.66954
9.67471
9.67988
9.68504
9.69020

8r.9025
82.0836
82.2619
82.MU
82.628t

3.00832
3.00998
3.01164
3.01330
3.01496

9.51315
9.5r840
9.52365
9.52890
9.53415

87.A25
87.6096
87.7969
87.W
8.r72r

3.05778
3.05941
3.06r05
3.06268
3.06431
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TABIJ A.IO.
Continued.

N M VN ViON N N, VN VION

9.45
9.46
9.47
9.48
9.49

89.3025
89.4916
89.6809
89.8704
90.060r

3.07409
3.07571
3.07734
3.07896
3.08058

9.72111
9.72625
9.73I39
9.73653
9.74tffi

9.75
9.76
9.77
9.78
9.79

9.40
9.41
9.42
9.4i!
9.4

88.3600
88.548r
88.7364
88.9249
89.r136

3.06594
3.06757
3.06920
3.07083
3.07246

9.69536
9.70052
9.70ffi7
9.71082
9.7t597

9.70
9.7r
s.72
9.73
9.74

%.0900
94.2811
94.478l
94.6729
94.8676

3.r1448
3.11609
3.11769
3.u929
3.12090

3.r225{t
3.I2410
3.12.570
3.12730
3.12890

3.13847
3.14006
3.14166
3.r$25
3.14484

3.14643
3.14802
3.14960
3.15119
3.15278

3.15436
3.15595
J.ID /}J
3.159il
3.16070

9.84886
9.85393
9.8590r
9.8&108
9.86914

9.87421
9.87927
9.8&133
9.88939
9.89444

9.89949
9.m4il
9.90959
9.914&t
9.91968

9.92/4172

9.92975
9.93479
9.93982
9.94485

9.94987
9.95490
9.95992
9.96494
9.96995

9.97497
9.97998
9.98499
9.98999
9.99500

9.50
9.51
9.52
9.53
f.il

9.55
9.56
9.57
9.58
9.59

9.60
9.61
9.62
9.63
9.&{

90.2500
m.4401
m.6304
m.8209
9r.0I16

3.08221
3.08383
3.08il5
3.08707
3.08869

9.74679
9.75r92
9.75705
9.762t7
9.76729

9.80
9.8I
9.82
9.83
9.84

96.(Xm
96.86r
96.4324
96.6289
96.8256

9r.202.5
9r.3936
91.5849
9r.77M
9r.968r

3.09031
3.09192
3.093t1
3.095r6
3.Cpf77

9.7724L
9.77753
9.782M
9.78775
9.79285

9.85
9.86
9.87
9.88
9.89

97.02?,5

97.2t96
97.4r69
97.6L44
97.8121

98.0r00
98.2081
98.40&r
98.6049
98.8036

92.1600
92.352t
92.5444
92.7369
92.9296

3.09839
3.10000
3.r016r
3.10322
3.10483

9.79796
9.80306
9.80816
9.8r326
9.81835

9.90
9.91
9.92
9.93
9.94

9.65
9.66
9.67
9.68
9.69

93.12?,5

93.3156
93.5089
93.702A
93.8961

3.roeu
3.10805
3.10966
3.11I27
3.11288

9.82U4
9.82853
9.83362
9.83870
9.84378

9.95
9.96
9.97
9.98
9.99

99.0025
99.2016
99.4009
99.m04
99.8m1
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95.0625
95.2576
95.4529
95.MU
95.8441

3.13050
3.13209
3.13369
3.13528
3.13688



TABLE A.II.
Coefficients, divisors, and K values for fitting up to quartic curves to equally
spaced data, and partitioning the sum of squares.

n:
C1

3
C2

4
C1 C2 CA

D

cr%qc1
6

cl c2 ca C4

It
o-2
ll

Divisors
26

t/3
r/2

Kr
Yt,
K3

&
Ks
K"
K7
IG

r/2

-3 I
-l -lI -13t

-I
3

-3
I

m4 20
s/16
r/n

4r/2q
r/16
r/48

2
I
0
I
2

2
I
2
I
2

-l
2
0

-2
I

I
-4

6

-4
I

t0 t4 l0 70
L/7

L/r0
17/ffi
r/14
r/12
r/%

3ll168
3/3s

-bD
-3 -l
-t -4l-4
3 -l
DD

-D
7
4

-4
-l

5

I
-3

2
2

-3
I

70u 180 28
s/e6
L/7o

w/$n
r/2%
r/864
r/1ffi

s5/zffi
27/zffi
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TABLE A.II.
Continued.

n:l
C1 C2 Ca C4

8
C3C1 C2 C4

I
CaC1 % C4

-3
-2
-l

0
I
2
3

5
0

-3
-4
-3

0
l)

-l
I
I
0

-l
-l

I

3
-l

I
6
I

-a
3

Divisors
28 u 6 r54

r/2t
r/%
7 /36
L/u
r/36

r/2u
67 /rW

3/77

Kr
K2

K3

K4
K5

&
K7

Ks

-7
-b
-3
-l

I
3
5
I

I -ll5
37
53
5-3
3-7
t-5
ll

7

-13
-3I
I

-3
-13

7

168 168 2U 616
r/32
r/68

37/31f8
L/672

r/3168
r/r68e6

uel5e136
s/srz

-4
-3
-2
-l

0
I
2
3
4

al
I

-8
-t7-n
-t7
-8

7
2u

-t4
I

l3
I
0

-9
-13
-,
14

990

t4
-21
-ll

9
l8
I

-u
-21

14

60 2772 20(]/2

5/6e3
1.60

5e/5W
r/su

1/1r88
L/3432

\5/24ry24
e/r00r
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TABLE A.II.
Continued.

n: 10
C3C1 C2 C4

11

C1 % C3 C4

-9
-l

-5
-3
-l

I
3
D

7
9

6
2

-1
-3
-4
-4
-3
-1

2
6

-42
t4
.t)
31
t2

-12
-31
-35
-14

42

8580

I8
-?2
-17

3
I8
l8
3

-17
-22

18

Divisors
330 132 28ffi

r/32
l/330

293/20599/J-
r/tofi

t/4tl84
t/r0p8,24,
4r/il912

e/Lz80

KI
K2

K3
K4
Ks
x;
K?

K8

-D
-4
-3
-2
-l

0
1

2
3
4
D

l5
6

-l
-6
-9

-10
-9
-6
-1

6
r5

858

-30
6

22
23
L4
0

-t4
-23
-22
-6
30

6
-6
-6
-l

4
6
4

-1
-6
-6

6

u0 42W
5/4n
L/rro

8e/%7Q
r/858

L/5148
r/3432

%/3/.32
3/143

zffi
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TABLE A.II.
Continued.

n: t2
C3C1 C2 C4

13

c1 c2 C3 C4

-ll
-9
-l
_D

-3
-t

I
3
D

I

I
1l

.a)
25
I

-t7_oo

-35
-35
-29
-t7

I
25
Dt)

-33
3

2t
?5
19
7

-l
-19
-25
-2t
-3
33

5f!$

33

-27
-33
-13

t2
w3
wl
t2

-13
-33
-27

33

Divisors
572 t?,012 8008

r/336
r/s72

8s/61776
r/16016
t/6L776

r/43s2X)
419/r5375W

27/7168

Kl
K2

K3
K{
rq
&
K7

Ks

-6
_D

-4
-3
-2
-l

0
I
2
3
4
5
6

92 -llll 0
28

-58
-10 7
-r3 4

-t4 0
-13 -4
-r0 -7
-5 -82-6
ll 0
nll

99

-66
-96
-il

ll
a
u
u
ll

-il
-96
-66

99

182 2m2 572 68068
r/r43
L/182

%/3432
r/2w2
t/3432

r/r16688
rs/6ns2

3/243r
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TABLE A.II.
Continued.

n: t4
cact C2 C4

I5
%cl % C4

-r3 13

-11 7

-92
-7 -2
-D -b
-3 -7
-1 -8r -83-7
5-5
7-2
92u7
13 13

9r0 7%l

-Itli}
-ll

66
98
95
63
24

_?A

-67
-95
-98
-66ll
}$

9724iJ

llB
- tl

- r32

-v2
-13

63
108
r08
63

-13
-v2

- 132

-n
-l.E

Divisors
136136
5/448
t/et0

58r/23337ffi
t/#2,t

Kr
K2
K3
K4

Ks
IQ
K7

K8

L/4ffi752
r/373/0t6

575l13069056
3/3584

-7
-6
-b
-4
-3
-2
-l

0
I
2
3
4
D

6
7

91

52
t9
-8

-29
-4
-53
-56
-53
-4
-29
-8
l9
52
9I

-91
-13

rml
-4,9
-869
-7M
-2q!9

25r
621
7fi
62r
25r

-2At9
-7U
-869
-4m
lml

35
58
6l
49
27
0

-Lt
-49
-61
-58_JD

l3
9l

2n 37128 39780 6466460
r/08
r/2n

ttrt/238f[,.I_
r/12376
r/4nfi

r/nfi072
frlr/15519504

27/23rJ€45
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TABLE A.II.
Continued.

n: 16
cl C2 ca eq

17
cl C2 ca c4

-r5
-13
-lt
-9
-7
-D
-3
-l

I
3
5
7
I
u
t3
r5

35
2L
I

-t
-9

-15
-19
-21
-21
-19
-15
-9
-lI
2l
35

-455
-91

r11i}

%J7
301
265
r79
63

-63
- r79
-265
-301
-%J7
- l4{}

9l
455

273

-9I
-22r
-201
- r01

23
129
189
189
129
23

- l0l
-znl
-?2L
-91
273

Divisors
1360 57t2 1m7760 47A288

5/rw
r/Lw

761/rz0,€tslzi)
r/nu8

l/241ffi2/l
1/12899328

755/45t47W
3/7tffi

Kr
K2

K3

K4

K5

&
K7

Ks

-8
-7
-6
-D
-4
-3
-2
-l

0
I
2
3
4
b
6
7
8

I
25
12
I

-8
-15
-zfi
-23
-24
-23
-zo
-15
-8

I
L2
25
fi

-%l
-l

7
t5
18
t7
l3
7
0

-t
-13
-17
-18
-15
-7

7
28

52

-13
-39
-39
-2,1.
-3
t7
31
36
3l
t7
-3

-24
-39
-39
-13

52

408 TI52 3876 16796
r/e3
r/4u

43/232fi
r/T152

r/%?,ffi
r/?nr552

6r/%1552
e/4tv,g_
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TABI..E A.TT
Continued.

n: l8
CaC1 C2 C4

19

Ct C2 % C4

-17
-15
-13
-11
-9
-7
-b
-3
-t

I
3
D

7
9
ll
l3
l5
t7

68
4
23

D

-10
-22
-3r
-37
-40
-40
-Jl
-31
-22
-10

D

23
u
68

-68
-20

l3
33
42
42
35
23
8

68

-t2

-8
-23
-.rD
-42
-42
-33
-13

20
68

-47
-5r
-36
-t2

l3
33
4
4
tr)
l3

-t2
-36
-51
-47
-12

68

Divisors
1938
Kl
K,
Ks
K4

G
IQ
K7

K8

?3?,ffi 232fi 2U2t
r/s76

r/1938
res/S#ru

r/62Ot6
r/558L4

r/il57N
r37/27287U

e/#32

-9
-8
-7
-6_D

-4
-3
-2
-l

0
I
2
3
4
5
6
7
8
I

5lv
t9
6

-5
-14
-21
-2It
-w
-30-n
-%)
-21
-14_D

6
l9
u
5l

_?M
-68

zfl
89

tm
L%J

ll2
83
M
0

-4
-&!
-rtz
-t2l)
- 120

-89
-?a

68
2U

6t2
-68

-388
-453
-3t1
- 168

42
227
352
396
352
227
a

- 168

-3il
-453
-388
-68
6t2

570 13466 213180 ?.28L32
5/2%r
r/57o

?,ffi/1279080
1/tsffi

r/2s5f[6
r/3sn5v

535/274s758l
e/s?ffi
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TABIJ A.II.
Continued.

n: 20
C3C1 C2 c4

2T

C1 C2 C3 C4

-19
-17
-15
-13-u
-9
-t
-c
-3
-t

I
3
D

7
I
ll
l3
l5
t7
l9

57
39
23
I

-3
-13
-21
-27
-31
-33
-33
-31
-27
-2t
-13
-3I
23
39
D/

-968
-357

85
sTt
539
591
553
445
2U
99

-99
-287
-445
-553
-59r
-539
-3n
-85
357
969

1938

- 1CI2

-1t22
-t40/2
- 1187

-687
- ll
503
{x8

u88
u88
%8
503

- ll

-687
- ll87
-t4tr}
-rt?2
-ru2
1938

Divisors
zffi
Kl
Yrz

K3

&
K5

&
K7
rq

17556 4908r!10 22f8L32.O
r/5213

L/zffi
11e3/58837680

L/7U2%
r/rt7675ffi

r/25r0/p.768
Lr87 /87ru2ffi

3/fis20

-10
-9
-8
-t
-6
-D
-4
-3
-2
-l

0
I
2
3
4
D

6
7
8
I

10

190
lI}
82
37

-2
-35
-82
-83
-98

- 107

- ll0
- r07

-98
-83
-62
-35
-2
37
82

133
190

-285
-u4

t2
98

r49
170
166
L42
103
il
0

-il
-lm
-142
- 166

- 170

- 149

-98
-L2
I14
285

969
0

-5r0
-680
-615
-ffi
- 130

r50
385w
591
54t)
385
r50

- 130

-406
-615
-680
-510

0
969

770 201894 $2630 5720830
5/gLTI
L/770

329/25%7U
t/6729t3

r/519156
r/e8o6280

r3r/1372879
27/zffirs

Appendix, Tabbs 3il8



TABLE A.II.
Continued.

n: 22
cr e2 C3 C4

2.3

C1 % % C4

-21
-19
-t7
-r5
-13
-ll
-9
-l
_D

-3
-l

I
3
5
7
I

I1
I3
t5
t7
l9
2L

35
25
16
8
1

-5
-10
-t4
-17
-19
-20
-20
-19
-17
-14
-10_D

I
8

l6
25
35

- 133

-D/
0

fi
65
n
78
70

-il)
._t)

t2
-t2
-.fi,
-il)
-70
-78
- ll

-65
-40

0
57

133

1197
D/

-570
-810
-tlD
-563
-afi

70
365
585
7U2
7U2
585
365

70

-zfi
-563
-ttc
-810
-570

D/
1197

Divisors
3il2
Kr
K2
K3

K4

K5

&
K7
KE

7W 961.t0 87487Q
L/3s2

L/3512
28s/23073ffi

r/ffi72
t/%o73fxJ.*

r/2s9€65//0
Llilg/839879040

3/36608

-lt
-10
-9
-8
-l
-6
-5
-4
_,J

-2
-1

0
I
.)

3
4
5
6
7
8
I

l0
ll

TI
56
37
20

b

-8
-19
-%)
-35_N
-ra_M
-1(}
-40
-35
-2fl
-19
-8

5
?,o

37
56
77

- tt
-,.,i)

-3
20
.,D
l(}
45
42
35
25
l3
0

-13
-2,5
-35-a
-45
-r$
-35
-20

3
35
TI

1463
133

-627
-9m
-955
-747
-4r7-a

315
605
793
858
793
605
315

-42
-417
-747
-955
-950
-627

133
1463

1012 3il20 32890 13r81rm
r/w

r/t0L2
7e/ts73//d.

tfts12r]
L/te73/0

r/n4$7il
787/t574n3n

t/t52e5
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TABLE A.1I.
Continued.

n: 24
C3C1 C2 C4

25
cl % ca C4

-23
-21
-19
-t7
-15
-13
-11
-9
-l

-b
-3
-l

I
3
5
I

I
ll
13
15
t7
l9
2l
23

25,2
r87
t27
73
25

-L7
-53
-83

- r07
-r25
- r37
- 14il

-l€
- r37
-l?5
- r07

-83
-53
-t7

25
73

t27
r87
253

- t77l
-u7
- 133

391
745
949

rm3
987
861
665
419
143

- 14iI

-419
-665
-861
-987

- 1023

-949
-745
- 391

r33
u7tnl

2,53
33

-97
-r57
- 165

- 137

-87o4
-al

33
85

r23
1,(t
143
123
85
33
o1

-al
-87

-t37
- 165

-r57
-97

3ii!
253

Divisors
4600
Kl
K,
K3

K4

K5

&
K7

K8

394680 1760600 394680
5/r37%J
L/m

r72r/2r3r27?m
r/526240

r/4262il40
r/75778ffi
4e/75778ffi

27 /73216

-t2
-1I
-10
-9
-8
-l

-6_D

-4
_J

-2
-l

0
I
2
3
4
l)
6
I

8
I

t0
11

L2

92
6p
48
m
L2

-3
-16
-27
-36
-43
-48
-5r
-52
-51
-4ti
-.l3
-36
-27
-16
-3
L2
m
.a
69
92

-506
-253
-55

93
196
259
at1
285
?.fi
ztl
149
tt
0

- tl
- 149

-ztl
-zfi
-285
-21t7
-?59
- 196

-93
5)

253
506

1518
253

-517
-897
-982
-857
-597
-267

78
393
643
803
858
803
64iI
393

78

-267
-597
-857
-982
-897
-5r7

25s
1518

1300 53820 14t10050 1ta07150
r/rms
r/1300

467l888m00
r/53f,2fi

t/rnffi
r/34337rffi

r$/3{}i}7r60
t/1ffi75
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TABLE A.IIA.
Coefficients and divisors for some selected sets of unequally spaced treatments

cl

C2

x
I
D

l0

x
2

5
t0

5

-9
4

5
_E

3

%

,$
t7
49
23

ca %

tw
_D

2N
rB

x
0
I
5

r0

x

-r3
-l
14

%

2$

C2

clx

x

%

L?2366

3

-4
I

2

-3
I

%
I

-l
-l

I

3

-1
-D

3

4

c1%

176
76

252
l8l
N

%

30
1t
t9
47
?5

cl

%J

2t
1l
I

49

%

x
I
2
4
8

l6

c1

2l
a
56
t4
I

c2

x

_D

-2
I

I
2
5

I
2
4

x
I
2
4
5

I
2
5
8

-ll
-2
l3

cl

-lt
-l

I
t7

C1

ct

t4

ct

-4
-l

5

78

cl

C1

-2
-l

I
2

w 98 42 14

x
I
2
1
E

o
I
2

5

x

-2
-l

o
3

-6
15

-10
I

-3
-2

I
4

C.a

-1
2

-2
I

330

310460 r42B

5068

c2

n
-1

- 
(x!

13

%
-8
tl
-7

I

%

w,

104r0
xcrq%

-9
t4
-7

2

30

-4
-3

I
6

-18
2,5

-9
2

-&)7
752
916

- 1016
185

cl %

62 64103 1034

31
2

-19
-37

23

0
I
2
4

I

-3
-2
-l

I
5

-3r.l'l
63213

-37ff|
$il
r0tr

& 322A 3171610 4Ilito

cl

372n A16 133858 642888&n

ca

%xcl
0
2
t

-l

-l
8

3

-5
2

114 38

C2xcl
0
I
5

-2
-t

3

4

-D
I

42l4

x
0
I
2
4

ct

-t
-3

I
I

c2

7

-4
-6

5

q
-3

8

-6
I

l40 lil lr0
xcl crq
0
I
3
6

-5
-3

I
I

I
-3

-13
t

-5
I

_D

I
84 3ffi 132

xcl c2 ca

I
2
5

r0

-l
-5

I
ll

63

-4
_LUT

4{t

-10
15

-6
I

196 rT738 362

0
I
2
1
8

l6

-31
-2!3
-19

-l

t7
65

-35(B
4fln

28078
35289

-39829
7W

gl
&
-6
-n

-r35
85
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TABLE A.I2.
Coefficients for fitting periodic curyes and partitioning sums of squares for data
taken at equal time intervals throughout a complete cycle.

X values for n"
4 6 812 2,L

000 0 r.000 .m0
.966 .259
.866 .500
.707 .707
.@ .866
.259 .966
.m0 1.000

-.259 .966

-.500 .866

-.707 .707

-.866 .500

-.966 .259

- 1.000 .0m
-.966 -.259
-.866 -.500
-.7W -.707
-.500 -.866
-.259 - .966

.000 -1.(m

.259 -.966

.500 -.866

.707 -.707

.866 -.500

.966 -.259

.000

.782

.975

.4U
-.4U
-.975
-.782

ur vr u2 v2 u3 v3 u. v4

I
I

t2

t23

24
3

b

234 6

7

b
48

369

ll

0
I
2

3
4
D

6

8
I

10

1l
t2
l3
t4
r5
16

L7

18

t9
2fr
2L
22
23

1.000
.623

-.223
-.901
-.90r
-.22-3

.623

l.(m
.866
.5m
.000

-.500
-.866

-1.(m
-.866
-.500

.m0

.500

.866
1.000
.866
.500
.000

-.500
-.866

- 1.000

-.d66
-.500
..(m
.500
.866

.(m

.500

.866
r.000
.866
.500
.000

-.500
-.866

-1.m0
-.866
-.500

.(m

.500

.866
1.000
.866
.500
.(m

-.5m
-.866

-1.(m
-.866
-.500

1.000
.7W
.000

-.707
- 1.000

-.707
.0m
.7U

l.m0
.707
.0m

-.707
-1.(m
-.707

.m0

.707
r.000
.7M
.000

-.707
- 1.000

-.707
.000
.707

.m0

.707
1.m0
.707
.000

-.707
- r.000

-.707
.000
,7M

l.fin
.7tr7

.m0

-.707
-l.un
-.707

.000

.707
1.m0
.707
.m0

-.707
-1.m0
-.7W

1.(m
.500

-.500
- 1.000

-5m
.5m

r.m0
.500

-.500
- l.mo
-.500

.500
r.000
.500

-.500
-1.m)
-.500

.500
1.000
.500

-.500
- 1.000

-.5m
.500

.(m

.866

.866

.000

-.866
-.866

.0m

.866

.866

.m0

-.866
-.866

.000

.866

.866

.000

-.866
-.866

.000

.866

.866

.000

-.866
-.866

5 10

7

"For a given value of n, use only the lines of the table for which X values are given. When
n:4, use only columns to U2. When n:6, use only columns to U3. When n:8, use only
columns to Un.

X values for n:7
ur vr u2 Y2 v3u3

0
I
2
3
4
5
6

l.0m
-.223
-.901

.6?,3

.623

-.901
-.D3

.000

.975
-.4U
-.782

.782

.4U
-.975

l.(m
-.901

.623

-.D3
-.223

.623

-.901

.000

.4U
-.782

.975

-.975
.782

-.4y
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TABLE A.I2.
Continued.

X values for n:52
ur vt u2 v2 u3 v3 u. v{

0
I
2
3
4
5
6
7
8
I

t0
1l
t2
t3
t4
t5
16

t7
r8
19

20
2t
22
?3
?A

25
26
27
28
29
30
3l
32
33
u
35
36
37

1.000
.993
.971
.935
.885
.823
.749
.663
.568
.465
.335
.239
.tzt
.m0

-.Izt
-.239
-.355
-.65
-.568
-.663
-.749
-.823
-.885
-.935
-.97r
-.993

- r.000

-.993
-.97r
-.935
-.885
-.823
-.749
-.663
-.568
-.465
-.355
-.239

.000

.l2l

.239

.JDi,

.465

.568

.663

.749

.823

.885

.935

.971

.993
1.000

.993

.971

.935

.885

.823

.749

.663

.568

.465

.355

.239

.t2l

.000

-.tzr
-.239
-.355
-.465
-.568
-.663
-.749
-.823
-.885
-.935
-.97r

.000

.239

.4.65

.663

.823

.935

.993

.993

.935

.823

.885

.485

.239

.000

-.239
-.465
-.663
-.823
-.935
-.993
-.993
-.935
-.823
-.663
-.465
-.239

.000

.239

.465

.663

.823

.935

.993

.993

.935

.823

.663

.465

1.000
.935
.749
.465
.tzl

-.239
-.598
-.823
-.971
-.993
-.885
-.663
-.355

.000

.355

.663

.885

.993

.971

.823

.568

.239

-.tzl
-.465
-.749
-.935

- 1.000

-.935
-.749
-.485
-.121

.239

.568

.823

.971

.993

.885

.663

.000

.355

.663

.885

.993

.971

.823

.568

.239

-.121
-.#5
-.749
-.935

- 1.000

-.935
-.749
-.465
-.121

.239

.568

.823

.971

.993

.885

.663

.355

.000

-.355
-.663
-.885
-.121
-.971
-.823
-.568
-.239

.tzl

.465

.749

r.000
.885
.568
.121

-.355
-.749
-.97r
-.971
-.749
-.355

.121

.568

.885
r.000

.885

.568

.l2l
-.355
-.749
-.971
-.97r
-.749
-.355

.121

.568

.885
r.000

.885

.568

.121

-.355
-.749
-.97r
-.971
-.749
-.s55

.tzl

.568

.000

.465

.823

.903

.935

.663

.?39

-.239
-.663
-.935
-.993
-.823
-.485

.000

.465

.823

.903

.935

.663

.239

-.239
-.663
-.935
-.903
-.823
-.465

.000

.465

.823

.993

.935

.663

.239

-.239
-.663
-.935
-.993
-.823
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l.0m
.97r
.885
.749
.568
.355
.tzl

-.121
-.355
-.568
-.749
-.885
-.97r

- 1.000

-.971
-.885
-.749
-.568
-.355
-.12L

.121

.355

.568

.749

.885

.97r
1.000

.971

.885

.749

.568

.&55

.tzt
-.121
-.355
-.568
-.749
-.885



TABLE A.I2.
Continued.

X values for n:52
ur vr uz v2 u3 v3 u4 v4

38
39
40
4l
42
4i!
4
45
46
47
48
49
50
5r

-.I21
.000
.r2I
.239
.355
.485
.568
.663
.749
.823
.885
.935
.97I
.993

-.993
- I.000

-.993
-.97I
-.935'
-.885
-.823
-.749
-.663
-.568
-.fiS
-.355
-.239
_.L27

-.971
- r.000

-.97r
-.885
-.749
-.568
-.355
-.t21

.t2l

.355

.568

.749

.885

.971

.239

.m0
-.239,
-.4.65
-.663
-.823
-.935
-.993
-.993
-.935
-.823
-.663
-.465
-.239

.355

.000

-.355
-.663
-.885
-.903
-.971
-.823
-.568
-.239

.L?T

.65

.749

.935

.985
1.000

.935

.749

.465

.tzl
-.239
-.568
-.823
-.971
-.903
-.8&5
-.663
-.355

.885
1.000

.885

.568

.121

-.355
-.749
-.97r
-.971
-.749
-.355

.tzl

.568

.885

-.465
.m0
.485
.823
.993
.935
.663
.239

-.239
-.663
-.935
-.993
-.E23
-.M5
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INDEX

Abscissa, 168

Accuracy and precision, 41
Addidvity, 143, 148-149, 153-1il,

r58
Adjusted treatment means, 290
Amplitude,220
Analysis of Covariance, see Covari-

ance analysis
Analysis of variance, I8, 3l-45

assumptions, I39
basic principles, 31-33
completely randomized design,

48-52
cnrvilinear regression, 2L2, 215, 2'18

and experimental designs, 44
latin squares, 80-85
Iinear regression, 181-187
multiple regession, Zil, ?ffi
periodic regression, 223
randomized complete blocks, il-N
rgpeated observations, 128-130,

133-135
qplit-blocks, 118-121
split-plots, 90-{X
split-split. plots, l0l-ll0
transformed data, I51, 156, 160

ANOVA, 18,22
Arithmetic mean, 15

Asyrnptote, 206
Asymptotic cunr'e, 2ffi-207

Bartlett's test for homogeneity of vari-
ance, 146-147, 152-153, 157,
l5g, 160

Binomial distribution, 159, 268
Bliss, C. 1.,2A
Block, 53-54, 87-89, 115
Block effects, 58-60, 148, 287-288

Calculating machines, 18, 36, 81, 93,
to7

Cause and effect, 176, 188

u5

Chance, 3
Chi-square, 146, 267, zffi

adjusted, 147
definition, 268
degrees of freedom, 2ffi,275
geneUc ratios, 269-273, 275-277
heterogeneity, 27 I -28I
independence,2T4-278
table ol 309
unadjusted, 146

Class comparisons, 68-70
Coded values of X, 230-231, 233
Coding, 146,23;0,2.59
Coefficient, of alienation, 182

of correlation, 169
of determination, 170
of multiple correlation, 2A8,2,57
of multiple determination, 212, ?A8,

257
of partial correlation, 2A:8,2,57

of partial regession, 249
regression, 169, 178, lW-182,2119
of variaUon, 18

Coefficients, high order partial, 257
orthogonal, 65-76, 83, 94, 109,

t2t-t22,2.36,235
periodic, 9,%, U%-W
polynomial, l2l, 229-237, 331-341

Combining cunre types, 2I8
Combining data for two or more

years, 132-137
Computers, electronic, 215, 925., 226,

zfi
Confidence belts, 183-184
Confidence limits, of estimated Y, 183

'for mean, 
^,23-?14for mean tlifference, 39-40

of regession coefficiertt, 183

Contingency table, 27 4, 27 6-Zn
collapsing, 278

Continuity, correction for, 27O



Cook book procedure, 33
Correction term, 17, 35, 49, 56
Correlation, 167-2ffi

definition, 168
direct, 167
inverse, 167
Iinear, 167-194
between means and variances, 157
more tlran three variables,?.fi-ZM
rnultiple, 2,17-2ffi
negative, 167
partial,2AT
part-whole, 189-190
pitfalls, 187-192
positive, 167
product-moment metlod, 17 +176
rank difference method, I73
versus regession, 170-171
scatter diagrams, l7l-L72
shortcut method, L73-174
simple, 247
spurious, 190, 255-256
standard method, 174-176
total,2417

Correlation coefficient, 169
cdculation, l7L-176
range and interpretation, L74
Spearman's, 173
test of significance, 176

Counts, analysis ot, 267-?.82
transformations, 154-159

Covariance analysis, 285-293
adjusted treatrnent sum of {luares,

289,2W

"di*ti"g 
more than one source of

variation, 2W-292
adjustment of treatment means, 290
application to reduction of error,

285
approximate metho4 292
calculation of zums of cross-prod-

ucts, 286-287
example,286
interpretation, 293
partitioning treatrnent effects, 290
standard errors for

adjusted means, 292
zum of squares of adjusted treat-

ment means, 292
tests of significance, 292

Cubic responw,214-216
Curves, 195

asymptotic, 206--207
combination,2LS-219
cubic, 207
decay, ?.02

exponential, 2ff2-2ffi
Fourier, 220
growth, 202
normal frequency, 13

periodic, 220-2,9,5, 238-ZtL3
polynomial, 2O7 -218, 229 -?.fi
power, l9$-W2
qnadratic, ?,O7 -Z08, 2ll-213

Cnrvilinear relations, L95.-227

Degrees of freedom, 17,176,28
in chi-square analpis, 2ffi,275
for coefficient of correlation,

176-t77
partitioning of, 65
single, 70, 73, 83

Desrgr, completely randomized,
47-.52

latin square, 77-85
randomized complete bloch 53-60
split-block, ll5-l2A
qplit-plot, 87-100
split-split plot, 101-113
zubplots as repeated observations,

L25-L37
Deviation mean square,182, ?ffi-?37
Difference, higlrly significant, 24

significant, 24
standard error of, 37

Distribution, binomid, 159, 268
bivariate normal, 168, 170
continuous,268
discrete, 268
F, ?,5

normal, 13,268
Poisson, 154

lnda 346



of sample means, 21
t,22-23
z, ?3

Doolitde method, 215
Duncan's multiple range test, 63-65,

157, 160

Enumeration d^t^, 267 -282
Equally spaced treatments, 229-245
Equation, cubic, 207

linear, 169, 178-179, 186, 191,207
logarithmic, 196-207
normal, 207, 22L, 249, 2,59

simultaneous, 234
periodic, 220-225, 238-%13
polynomial, 207 -218, 229 -237
quadratic, 207

Error, experimental, 5, 31
Error terms, 59, 288

distribution of, 145, 152
Exact probability, 269
Experiment, 2,3, LL

characteristics of, 6-7
steps, 7

Experimental designs, 8, 44,293
Experimental error, 5, 31
Experimental material, selection of, 7,

285
Experimental unit, 8, ll
Extrapoladon, 190-192

F, ratio, 25, 36,50, 60, 82
table, 299-306
test,5O, 60, 6l

planned, 61, 65-76
Factorial, 258,269
Factorial experiments, 42
Fisher, R. A.,25
Frequency, histogram, 12

polygon, 12

table, 12

GeneUc ratios, 269-273, 27*2Tl
table of, 273

Graph, 168, 171, 196
Graph paper, l"g, 196

semilog,2(}2

U7 lnda

Harmonics,240
Heterogeneity, test for, 279-281
Homogeneity of variance, l4O-L42

Bartlett's test for, 146-147,
152-153, 160

Hypothesis testing 6, 267

Improving precision, 283-294
Independence, chi-square tests,

274-278
of means and variances, lA-143

Individual degrees of freedom, 70,
73,83,272

Interaction, A,72
partitioning of , 7?,-7 4, 95, 108-l I0

Intercept, 169, 178

K values for fitting polynomials,
229-2,3t,331-340

Latin square designs, 77-85, ll7
analysis, 80-85
example, 79
randomization, 78-79

kast significant difference, 40,
61-63, 98-100, 110*113,
12,3-l?4, t4l

Irast squares method, L78,2W-207
Line, best fitti.rg L77 -178, 180-181
Linear regression, analysis, f67-1%

coefficient, 169, 178, 180, l8l, 182,
2,+lg

gaphs, Lffi,l7l-172
interpretation, 176, 179, 188-189
tests for deviation from, 187

Linear res1rcnse, 72
I-ocal control, 6

Main plots, 87, 102, ll5
Mean, arithmetic, 15

detransformed, 156
weighted, 156-157, 162, n0,22,1

of differences, 37
geometric, 170
population, 13, 15

sample, 15
weighted, 16c2, ?20, 22,1



Mean deviation, 18
Mean separation, 61-76, 82-85;

94-100, 107-u0, L2t-t23
Median, 16
Mode, 16

Model, randomized complete block,
58

regression, 170
Multiple correlation, 2,4:7 -zffi

calculation, 248,2.57
intelpretation,2#-?ffi

Multiple range tests, 63
Multiple regression, 247-2ffi

equation, 2t19,2.fi
more than tlree variables, ?.56-2M
response surfaces, 258-ZM
visualization, 2,57-2

Non-additivity, 149, 154, I58
Non-linear response, 72
Normal distribution, 13

frequency curve, 13

Normal equations, multiple correla-
Uon,249

pericrdic ctrwe fitting 22L,2,ff
polynomial curve fitting 207
response surface, 259

Normality, 139, 140, Iil
NulI hypothesis, 2t4, 176

Objectives of experiment 7
Ordinate, 168

Original values, 233, 261-262
Orthogonal coefficients, 65-76, 83,

94, 109, r21, 122, 136, 229, 2&5,

25s

P, values, 2,N,2,35
Paired values, t test, 40
Parabola, 207
Parameters, 12, 15

ParUal crir:elation, fo{17

Partial regression coefficient, 249
Partitioning of sums of squares,

235-?,37,2,11-2,1:2
Periodic cuwe fitting, 220-?:25,

zfi-243

Phase angle, 22fr , 22A,, 2A-243
Piffalls, 187
Planned F tests, 65
Plot, definition, 11

Poisson distribution, 154
Polynomial, cuwe fitting, 2;W-ZI9,

229-235
equations, 207
in replicated experiments, 216-218

Population, concept of, lI
of individuals, 21
of mean differences, 37-38
of means, 21

Precision, 6, 4L, 283-2gl
Problem definition, 7
PU and PV, values in periodic regres-

sion,Z,40-full

Quadratic equation, 207

Quadratic response, 212;, 218

Randomization, 5,9,47
in completely randomized design,

47-48
in lafin square, 78-79
in randomized complete blocls,

il
in qplit-blocks, 115
in qplit-plots,90
in split-qplit plots, 101

Randomized complete block desigrr,
53-60

analysis, il-ffi
arrangement of blocks, 53--il
example,54
randomization, 54

Random numbers, table, 296
Range, 18

Reasoning, deductive and inductive, I
Recording dat4 4I
References, selected, 294
Refinement of technique, 2&5

Regression, 169

coefficient, 169, 178, 249
variance of, 182

curvilinear, 188, 216-218
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equations, l@
linear, 167-194
model I, 170
model II, I7O
more t}an tluee variables, 256
multiple, 2,{:7-2ffi
partial,2lT
in replicated experiments, l&5,

2L6-2L8
Relation between r and F tests, 182
Replication, 5, 9, ll

required muRber, 283-284
Research, 2, 6
Response mrfaces, 258
Rounding and reporting numbers, 41
Rule of stugr$,22,O, ?.2l4

Sample, 11

random, 11

size,272-273
Scales, pretramformed, 162-164
Scatter diagams, 17 l-172
Scieraific metlod, 6
Selected references, 294
Selection of, experimental material, 7,

285
experimental unig 285
treatrnents, 284

Semiamplitu de, Zfr , 224, 2A2

Shortcut methods, 173, ?29-?As
Significance, statistical, 2A, M, 17,6

Significant digits, 4l
Simultaneous equations, 234
Single degrees of freedom, 70, 73, 83,

272
Slope, 169
Snedecor, G. W., 25,207
Split-block design, ll1-l?tL

analysis, lI8-124,
example, f16-1f7
randomization, ll5
standard errors, 123
sums of squares, 119-120

Split-plot design, 87-100, 115, lt6
analysis, 90-94
example, 89

349 lnder

randomization, 90
sta[dard errors,98
sums of squares, 92-93

Split-qplit plot design, analysis,

1.01-113
example, 1(B
randomization, 101

standard errors, 110-111
sums of squares, 106

Standard deviation, 16
population, 13, 16

sample, 16

Standard error, of difference, 37
of estimate, Lil,2il
of mean, 2l
of mean differences, 37
for repeated observations, 130-132,

137
for qplit-blocks, 123
for split-plots, 98
for split-split plots, Il0-113

Statistic, definition, 12, 15

Statistical evaluation, 5
Statistics, basic concepts, 1l-29
Subplots,87, 10I

as repeated observations, L2,5-L37
standard errors, 130-132, 137

Subscript notation, 18-19
Sub-subplots, 101

Summation notation, 15, 20
Sum of products, in covariance analy-

sis, 286-287
of orthogonal coefficients, 66, 83
in regession analysis, 175

Sum of squares, 17

Sum of squares and mean squares, in
completely randomized experi-
rnents, 49-50

of in&vidual degrees of freedom,
70, 73, Siil

in latin squares, 80-81
in randomized complete blocks,

56-59
in qplit-blocks, 119-120
in qplit-plots, 92-93
in qplit-qplit plots, 106-107



t distributior\ ?.2.-23
table of, 297-29{3
test, 31-45, 38-39

comparison with F test, 39, 96
for paired plots, 40
variances differen! 39

Table, angular (arcsine) trandorma-
tions, 31I

chi-square, 3(X)

coefficients, for equally qpaced
treatments, 331-340
for fitting periodic curves,
uz-w
for unequally qpaced treatrnents,
341

contingency, 27 4, 27 6-2n
F,299-306
genetic ratios, 273
logarithms, 3f2-315
pretrandormed scales, lffI
random numbers, 296
squares and square roots, 316-330
studentized factors, 307-308
t,297-N8
two way, 18-19
values, of coefficient of correlation,

310
Tests, of independence, 274-278

of comparisons, 66
d"gro of freedom,275

of significance, analysis of covari-
arrcr-,292
correlation coefficient 176, L82
distribution of t, 38
F ratio, 36
mean difference,38-39
in regression, 176, I82, 187

Transfonnations, 139-165
angular or arcsine, f58-I62
log, 150-154, 196
square root, 154-158

Treatrnent ll
effects,5, 148, 2Il7-28
equally qpaced, 229, 2,8
means, adjustd Z$O-ZY2
selection of,7,?&
unequally qpaced 238

Trend comparisons, 7O-:l 4, Lzl, 229
Tukey's test for additivity, 148-149,

153-154, 158

Variable, 11

continuous, ll
dependent, 167
discrete, ll
ftxed 170
independent, 167
random, 170

Variane, analysis of, L8. ke also
Analysis of variance

definition, 16
of estimated Y, 183
of mean difference, 37
of means, 21
of regession coefficient, 182

Variate, definiUono 11

Variation, assignable causes, 3, 44
coefficient of, 18
unassignable causes, 3,5, U

Weig[rted means, 156-157, 16<2, ?,2;O,

224

Yates correction for continuity, 270

Z values, 23
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