
Programming Graphical
User Interfaces in R

P
rogram

m
ing G

raphical
U

ser Interfaces in R

Programming Graphical
User Interfaces in R

Michael F. Lawrence
John Verzani

Law
rence •

 Verzani

K12672

Programming Graphical User Interfaces in R introduces each of
the major R packages for GUI programming: RGtk2, qtbase, Tcl/
Tk, and gWidgets. With examples woven through the text as well
as stand-alone demonstrations of simple yet reasonably complete
applications, the book features topics especially relevant to
statisticians who aim to provide a practical interface to functionality
implemented in R. The book offers:

• A how-to guide for developing GUIs within R
• The fundamentals for users with limited knowledge of

programming within R and other languages
• GUI design for specific functions or as learning tools

The accompanying package, ProgGUIinR, includes the complete
code for all examples as well as functions for browsing the examples
from the respective chapters and is available through CRAN.
Accessible to seasoned, novice, and occasional R users, this book
shows that for many purposes, adding a graphical interface to one’s
work is not terribly sophisticated or time consuming.

Statistics The R Series

K12672_Cover_final.indd 1 5/2/12 11:16 AM

Programming Graphical
User Interfaces in R

K12672_FM.indd 1 4/26/12 12:50 PM

Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Institut für Statistik

Ludwig-Maximilians-Universität
München, Germany

Hadley Wickham
Department of Statistics

Rice University
Houston, Texas, USA

Aims and Scope

This book series reflects the recent rapid growth in the development and application of R, the
programming language and software environment for statistical computing and graphics. R is
now widely used in academic research, education, and industry. It is constantly growing, with
new versions of the core software released regularly and more than 2,600 packages available.
It is difficult for the documentation to keep pace with the expansion of the software, and this
vital book series provides a forum for the publication of books covering many aspects of the
development and application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology, genetics,

engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and mixed

modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and graphics.

The books will appeal to programmers and developers of R software, as well as applied
statisticians and data analysts in many fields. The books will feature detailed worked
examples and R code fully integrated into the text, ensuring their usefulness to researchers,
practitioners and students.

Published Titles

Customer and Business Analytics: Applied Data Mining for Business Decision
Making Using R, Daniel S. Putler and Robert E. Krider

Event History Analysis with R, Göran Broström

Programming Graphical User Interfaces with R, Michael F. Lawrence and John Verzani

R Graphics, Second Edition, Paul Murrell

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

Series Editors

K12672_FM.indd 2 4/26/12 12:50 PM

The R Series

Programming Graphical
User Interfaces in R

Michael F. Lawrence
John Verzani

K12672_FM.indd 3 4/26/12 12:50 PM

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Nokia, the Nokia logo, Qt, and the Qt logo are trademarks of Nokia Corporation and/or its subsidiaries in
Finland and other countries.

Linux is a ® trademark of Linus Torvalds in the United States, other countries or both.

Microsoft, Windows, XP, and the Windows logo are ® trademarks of Microsoft Corporation in the United
States, other countries, or both.

Mac, Mac OS, OS X, and Time Machine are trademarks of Apple Inc., registered in the U.S. and other
countries.

Java is a registered trademark of Oracle and/or its affiliates.

RStudio is a registered trademark of RStudio, Inc.

The TIBCO and Spotfire logos and Spotfire are trademarks or registered trademarks of TIBCO Software Inc.

SPSS is a registered trademarks of IBM.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120503

International Standard Book Number-13: 978-1-4398-5683-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xiii

1 The Fundamentals of Graphical User Interfaces 1
1.1 A simple GUI in R . 1
1.2 GUI design principles . 4
1.3 Controls . 8

Choice of control . 9
Presenting options . 9

Checkboxes . 9
Radio buttons . 10
Combo boxes . 10
List boxes . 11
Sliders and spin buttons 11

Initiating an action . 12
Buttons . 12
Icons . 12
Menu bars . 13
Toolbars . 13
Action objects . 14

Modal dialogs . 14
Message dialogs . 14
File choosers . 14

Displaying data . 15
Tabular display . 15
Tree widgets . 15

Displaying and editing text . 16
Single lines of text . 16
Text-editing boxes . 16

Guides and feedback . 16
Labels . 17
Status bars . 17

v

Contents

Tooltips . 18
Progress bars . 18

1.4 Containers . 18
Top-level windows . 19
Tabbed notebooks . 20
Frames . 20
Expanding boxes . 20
Paned boxes . 20

Layout algorithms . 21
Box layout . 21
Grid layout . 22

I The gWidgets Package 23

2 gWidgets: Overview 25
2.1 Constructors . 27
2.2 Methods . 29
2.3 Event handlers . 30
2.4 Dialogs . 32
2.5 Installation . 35

3 gWidgets: Container Widgets 37
3.1 Top-level windows . 39

A modal window . 41
3.2 Box containers . 42

The ggroup container . 42
The gframe and gexpandgroup containers 45

3.3 Grid layout: the glayout container 46
3.4 Paned containers: the gpanedgroup container 47
3.5 Tabbed notebooks: the gnotebook container 48

4 gWidgets: Control Widgets 51
4.1 Buttons . 51
4.2 Labels . 53

HTML text . 53
Status bars . 53
Icons and images . 54

4.3 Text-editing controls . 56
Single-line, editable text . 56
Multiline, editable text . 58

4.4 Selection controls . 61
Checkbox widget . 61
Radio buttons . 62

vi

Contents

A group of checkboxes . 63
A combo box . 64
A slider control . 67
A spin button control . 68
Selecting from the file system 68
Selecting a date . 68

4.5 Display of tabular data . 70
4.6 Display of hierarchical data . 83
4.7 Actions, menus, and toolbars 86

Toolbars . 87
Menu bars and pop-up menus 88

5 gWidgets: R-specific Widgets 91
5.1 A graphics device . 91
5.2 A data frame editor . 96
5.3 Workspace browser . 97
5.4 Help browser . 99
5.5 Command line widget . 100
5.6 Simplifying creation of dialogs 100

II The RGtk2 Package 101

6 RGtk2: Overview 103
6.1 Synopsis of the RGtk2R Package!RGtk2 API 104
6.2 Objects and classes . 104
6.3 Constructors . 105
6.4 Methods . 108
6.5 Properties . 109
6.6 Events and signals . 110
6.7 Enumerated types and flags . 112
6.8 The event loop . 113
6.9 Importing a GUI from Glade 114

7 RGtk2: Windows, Containers, and Dialogs 115
7.1 Top-level windows . 115
7.2 Layout containers . 117

Basics . 117
Widget size negotiation . 118
Box containers . 119
Alignment . 123

7.3 Dialogs . 124
Message dialogs . 124
Custom dialogs . 125

vii

Contents

File chooser . 126
Other choosers . 127
Print dialog . 127

7.4 Special-purpose containers . 128
Framed containers . 128
Expandable containers . 128
Notebooks . 128
Scrollable windows . 131
Divided containers . 132
Tabular layout . 133

8 RGtk2: Basic Components 137
8.1 Buttons . 137
8.2 Static text and images . 140

Labels . 140
Images . 142
Stock icons . 143

8.3 Input controls . 143
Text entry . 143
Check button . 145
Radio-button groups . 146
Combo boxes . 147
Sliders and spin buttons . 149

8.4 Progress reporting . 150
Progress bars . 150
Spinners . 151

8.5 Wizards . 151
8.6 Embedding R graphics . 156
8.7 Drag-and-drop . 162

Initiating a drag . 163
Handling drops . 164

9 RGtk2: Widgets Using Data Models 165
9.1 Displaying tabular data . 165

Loading a data frame . 165
Displaying data as a list or table 166
Accessing GtkTreeModel . 169
Selection . 171
Sorting . 172
Filtering . 173
Cell renderer details . 175

9.2 Displaying hierarchical data . 188
Loading hierarchical data . 188
Displaying data as a tree . 189

viii

Contents

9.3 Model-based combo boxes . 190
9.4 Text-entry widgets with completion 192
9.5 Sharing buffers between text entries 194
9.6 Text views . 194
9.7 Text buffers . 196

Iterators . 196
Marks . 198
Tags . 199
Selection and the clipboard . 200
Inserting nontext items . 200

10 RGtk2: Application Windows 205
10.1 Actions . 205
10.2 Menus . 207

Menu bars . 207
Pop-up menus . 209

10.3 Toolbars . 210
10.4 Status reporting . 213

Status bars . 213
Info bars . 214

10.5 Managing a complex user interface 215

11 Extending GObject Classes 221

III The qtbase Package 225

12 Qt: Overview 227
12.1 The Qt library . 227
12.2 An introductory example . 228
12.3 Classes and objects . 231
12.4 Methods and dispatch . 233
12.5 Properties . 234
12.6 Signals . 235
12.7 Enumerations and flags . 237
12.8 Extending Qt classes from R 237

Defining a class . 238
Defining methods . 238
Defining signals and slots . 239
Defining properties . 240

12.9 QWidget basics . 243
Fonts . 244
Styles . 245

12.10 Importing a GUI from QtDesigner 247

ix

Contents

13 Qt: Layout Managers and Containers 249
13.1 Layout basics . 251

Adding and manipulating child components 251
Size and space negotiation . 252

13.2 Box layouts . 254
13.3 Grid layouts . 255
13.4 Form layouts . 257
13.5 Frames . 258
13.6 Separators . 258
13.7 Notebooks . 258
13.8 Scroll areas . 261
13.9 Paned windows . 262

14 Qt: Widgets 263
14.1 Dialogs . 263

Message dialogs . 263
Input dialogs . 266
Button boxes . 267
Custom dialogs . 268
Wizards . 270
File- and directory-choosing dialogs 270
Other choosers . 272

14.2 Labels . 272
14.3 Buttons . 272

Icons and pixmaps . 273
14.4 Checkboxes . 274

Groups of checkboxes . 274
14.5 Radio groups . 276
14.6 Combo boxes . 277
14.7 Sliders and spin boxes . 279

Sliders . 279
Spin boxes . 280

14.8 Single-line text . 281
Completion . 282
Masks and validation . 282

14.9 QWebView widget . 286
14.10 Embedding R graphics . 288
14.11 Drag-and-drop . 288

Initiating a drag . 289
Handling a drop . 289

15 Qt: Widgets Using Data Models 293
15.1 Displaying tabular data . 293

Displaying an R data frame . 293

x

Contents

Memory management . 295
Formatting cells . 296
Column sizing . 296

15.2 Displaying lists . 298
15.3 Model-based combo boxes . 299
15.4 Accessing item models . 299
15.5 Item selection . 300

Accessing the selection . 301
Responding to selection changes 302
Assigning the selection . 302

15.6 Sorting and filtering . 303
15.7 Decorating items . 304
15.8 Displaying hierarchical data . 307
15.9 User editing of data models . 311
15.10 Drag-and-drop in item views 312
15.11 Widgets with internal models 318

Displaying short, simple lists 318
15.12 Implementing custom models 321
15.13 Implementing custom views . 325
15.14 Viewing and editing text documents 329

16 Qt: Application Windows 335
16.1 Actions . 336
16.2 Menu bars . 338
16.3 Context menus . 339
16.4 Toolbars . 340
16.5 Status bars . 341
16.6 Dockable widgets . 342

IV The tcltk Package 343

17 Tcl/Tk: Overview 345
17.1 A first example . 346
17.2 Interacting with Tcl . 347
17.3 Constructors . 350

The tkwidget function . 352
Geometry managers . 352
Tcl variables . 353
Commands . 354
Themes . 354
Window properties and state: tkwinfo 356
Colors and fonts . 357
Images . 359

xi

Contents

17.4 Events and callbacks . 360
The tag . 361
Events . 361
Callbacks . 363
Percent substitutions . 364

18 Tcl/Tk: Layout and Containers 369
18.1 Top-level windows . 369
18.2 Frames . 372

Label frames . 372
18.3 Geometry managers . 372

Pack . 373
Grid . 380

18.4 Other containers . 385
Paned windows . 385
Notebooks . 386

19 Tcl/Tk: Dialogs and Widgets 389
19.1 Dialogs . 389

Modal dialogs . 389
File and directory selection . 390
Choosing a color . 391

19.2 Selection widgets . 392
Check buttons . 392
Radio buttons . 394
Entry widgets . 395
Combo boxes . 400
Scale widgets . 402
Spin boxes . 404

20 Tcl/Tk: Text, Tree, and Canvas Widgets 409
20.1 Scroll bars . 409
20.2 Multiline text widgets . 410
20.3 Menus . 415
20.4 Treeview widget . 420

Rectangular data . 420
Editable tables of data . 436
Hierarchical data . 436

20.5 Canvas widget . 440

Concept index 447

Class and method index 449

xii

Preface

About this book

Two common types of user interfaces in statistical computing are the com-
mand line interface (CLI) and the graphical user interface (GUI). The usual
CLI consists of a textual console in which the user types a sequence of
commands at a prompt, and the output of the commands is printed to
the console as text. The R console is an example of a CLI. A GUI is the
primary means of interacting with desktop environments, such as Win-
dows and Mac OS X, and statistical software, such as JMP. GUIs are con-
tained within windows, and resources, such as documents, are represented
by graphical icons. User controls are packed into hierarchical drop-down
menus, buttons, sliders, etc. The user manipulates the windows, icons, and
menus with a pointer device, such as a mouse.

The R language, like its predecessor S, is designed for interactive use
through a command line interface (CLI), and the CLI remains the primary
interface to R. However, the graphical user interface (GUI) has emerged
as an effective alternative, depending on the specific task and the target
audience. With respect to GUIs, we see R users falling into three main target
audiences: those who are familiar with programming R, those who are still
learning how to program, and those who have no interest in programming.

On some platforms, such as Windows and Mac OS X, R has graphical
front-ends that provide a CLI through a text console control. Similar exam-
ples include the multi-platform RStudioTM IDE, the Java-based JGR, and
the RKWard GUI for the Linux KDE desktop. Although these interfaces are
GUIs, they are still very much in essence CLIs, in that the primary mode
of interacting with R is the same. Thus, these GUIs appeal mostly to those
who are comfortable with R programming.

A separate set of GUIs targets the second group of users, those learning
the R language. Since this group includes many students, these GUIs are
often designed to teach general statistical concepts in addition to R. A CLI
component is usually present in the interface, though it is deemphasized
by the surrounding GUI, which is analogous to a set of training wheels

xiii

Preface

on a bicycle. An example of such a GUI is R Commander, which provides
a menu- and dialog-driven interface for a wide range of R’s functionality
and plugin support to extend the functionality.

The third group of users, those who require R only for certain tasks
and do not wish to learn the language, are targeted by task-specific GUIs.
These interfaces do not usually contain a command line, as the limited
scope of the task does not require it. If a task-specific GUI fits a task
particularly well, it may even appeal to an experienced user. There are
many examples of task-specific GUIs in R. Many GUIs assist in exploratory
data analysis, including exploRase, limmaGUI, playwith, latticist, and
Rattle. Other GUIs are aimed at teaching statistics, e.g., teachingDemos
and mosaicManip. There are a few tools to automatically generate a GUI
that invokes a particular R function, such as the fgui package and the
guiDlgFunction function from the svDialogs package.

All of these examples are within the scope of this book. We set out to
show that, for many purposes, adding a graphical interface to one’s work
is not terribly sophisticated or time consuming. This book does not attempt
to cover the development of GUIs that require knowledge of another pro-
gramming language, although several such projects exist. One example is
programming a Java/Swing GUI through rJava, a native interface between
R and Java. It is also possible to extend the RKWard GUI using a mixture
of XML and Javascript, and the biocep GUI supports Java extensions. Our
focus is instead on programming GUIs with the R language.

The bulk of this text covers four different packages for writing GUIs
in R. The gWidgets package is covered first. This provides a common pro-
gramming interface over several R packages that implement low-level, na-
tive interfaces to GUI toolkits. The gWidgets interface is much simpler –
and less powerful – than the native toolkits, so it is useful for a program-
mer who does not wish to invest too much time into perfecting a GUI.
There are a few other packages that provide a high-level R interface to a
toolkit such as rpanel or svDialogs, but we focus on gWidgets, as it is
the most general.

The next three parts introduce the native interfaces upon which gWid-
gets is built. These offer fuller and more direct control of the under-
lying toolkit and thus are well suited to the development of GUIs that
require special features or performance characteristics. The first of these
is the RGtk2 package, which provides a link between R and the cross-
platform GTK+ library. GTK+ is mature, feature rich, and leveraged by
several widely used projects.

Another mature and feature-rich toolkit is Qt, an open-source C++ li-
brary from Nokia. The R package qtbase provides a native interface from
R to Qt. As Qt is implemented in C++, it is designed around the ability to
create classes that extend the Qt classes. qtbase supports this from within

xiv

Preface

R, although such object-oriented concepts may be unfamiliar to many R
users.

Finally, we discuss the tcltk package, which interfaces with the Tk
libraries. Although not as modern as GTK+ or Qt, these libraries come pre-
installed with the Windows binary, thus bypassing any installation issues
for the average end-user. The bindings to Tk were the first ones to appear
for R and most of the GUI projects above, notably Rcmdr, use this toolkit.

These four main parts are preceded by an introductory chapter on GUIs.
This text is written with the belief that much can be learned by study-

ing examples. There are examples woven through the primary text, as well
as stand-alone demonstrations of simple yet reasonably complete applica-
tions. The scope of this text is limited to features that are of most interest to
statisticians aiming to provide a practical interface to functionality imple-
mented in R. Thus, not every dusty corner of the toolkits will be covered.
For the tcltk, RGtk2, and qtbase packages, the underlying toolkits have
well documented APIs.

The package ProgGUIinR accompanies this text. It includes the complete
code for all the examples. In order to save space, some examples in the text
have code that is not shown. The package provides the functions browseg-
WidgetsFiles, browseRGtk2Files, browseQtFiles, and browseTclTkFiles
for browsing the examples from the respective chapters.

The authors would like to thank the following people for their helpful
comments made regarding draft versions of this book: Richie Cotton, Erich
Neuwirth, Jason Crowley, and Tengfei Yin.

xv

This page intentionally left blankThis page intentionally left blank

1

The Fundamentals of Graphical User Interfaces

1.1 A simple GUI in R

We begin with an example showing how we can use R’s standard graph-
ics device as a canvas for a “game” of tic-tac-toe against the computer
(Figure 1.1). Although this example has nothing to do with statistics, it
illustrates, in a familiar way, some of the issues involved in developing
GUIs in R.

Generally, GUIs provide the means for viewing and controlling some
underlying data structure. In this example, the data consists simply of
information holding the state of the game, defined here in a global variable
board.

board <- matrix (rep (0 , 9) , nrow=3)

A GUI contains one or more views, each of which displays the data
in a particular manner. In our case, the view is the game board that we
display through an R graphics device. The layout_board function creates
a canvas for this view:

layout_board <- function () {
plot . new ()
plot . window (xlim=c (1 , 4) , ylim=c (1 , 4))
abline (v = 2 : 3) ; abline (h= 2 : 3)
mtext ("Tic Tac Toe. Click a square:")

}

This example uses a single view; more complex GUIs will contain multiple
coordinated, interactive views. The layout of the GUI should help the user
navigate the interface and is an important factor in usability. In this case,
we benefit from the universal familiarity with the board game.

The user typically sends input to a GUI via a mouse or keyboard. The
underlying toolkit allows the programmer to assign functions to be called
when some specific event occurs, such as user interaction. Typically, the
toolkit signals that some action has occurred and then invokes callbacks or
event handlers that have been assigned by the programmer. Each toolkit

1

1. The Fundamentals of Graphical User Interfaces

Figure 1.1: Using a graphics device for a game of tic-tac-toe.

has a different implementation. For our game, we will use the locator
function built into the base R graphics system:

do_play <- function () {
iloc <- locator (n=1 , type="n")
click_handler (iloc)

}

The locator function responds to mouse clicks. We specify how many
mouse clicks to gather and the control of the program is suspended until the
user clicks the sufficient number of times (or somehow interrupts the loop).
A GUI that enters a mode in which the flow of a program is blocked and
waiting for user input is known as a modal GUI. This design is common for
simple dialogs that require immediate user attention, although in general
a GUI will listen asynchronously for user input.

In the above function do_play, click_handler is an event handler. Its
job is to process the output of the locator function, checking first to see
if the user terminated locator using the keyboard. If not, it proceeds to
draw the move and then, if necessary, the computer’s move. Afterwards,
play is repeated until there is a winner or a cat’s game.

click_handler <- function (iloc) {
if (is . null (iloc))

stop ("Game terminated early")
move <- floor (unlist (iloc))
draw_move (move , "x")
board [3 * (move [2]−1) + move [1]] <<- 1
if (!is_finished ())

do_computer_move ()
if (!is_finished ()) {

2

1.1. A simple GUI in R

do_play ()
}

}

The use of <<- in the handler illustrates a typical issue in GUI de-
sign in R. User input changes the state of the application through callback
functions. These callbacks need to modify variables in some shared scope,
which may be application-wide or specific to a component. The lexical
scoping rules of R, i.e., nesting of closures, has proven to be a useful strat-
egy for managing GUI state. In the above case, we simply modify the
global environment, which encloses click_handler. When this is inconve-
nient, direct manipulation of environment objects is sometimes a feasible
option. If the scale of the GUI demands more formal mechanisms, we
recommend the reference class framework from the methods package.

Validation of user input is an important task for a GUI. In the above
example, the click_handler function checks to see if the user terminated
the game early and issues a message.

At this point, we have a data model, a view of the model, and the
logic that connects the two, but we still need to implement some of the
functions to tie it together.

This next function draws either an “x” or an “o.” It does so using the
lines function. The z argument contains the coordinates of the square to
draw.

draw_move <- function (z , type="x") {
i <- max (1 , min (3 , z [1])) ; j <- max (1 , min (3 , z [2]))
if (type == "x") {

lines (i + c (. 1 , . 9) , j + c (. 1 , . 9))
lines (i + c (. 1 , . 9) , j + c (. 9 , . 1))

} else {
theta <- seq (0 , 2 *pi , length=100)
lines (i + 1/2 + . 4 *cos (theta) , j + 1/2 + . 4 *sin (theta))

}
}

We could use text to place a text “x” or “o,” but this may not scale
well if the GUI is resized. Most GUI layouts allow for dynamic resizing.
This is necessary to handle the variety of data a GUI will display. Even
the labels, which one generally considers static, will display different text
depending on the language (as long as translations are available).

This function is used to test whether a game is finished:

is_finished <- function () {
(any (abs (rowSums (board)) == 3) ||
any (abs (colSums (board)) == 3) ||
abs (sum (diag (board))) == 3 ||
abs (sum (diag (apply (board , 2 , rev)))) == 3)

3

1. The Fundamentals of Graphical User Interfaces

}

The matrix m allows us to check easily all the possible ways to get three
in a row.

This function picks a move for the computer:

do_computer_move <- function () {
new_move <- sample (which (board == 0) , 1) # random !
board [new_move] <<- −1
z <- c ((new_move−1) %% 3 , (new_move−1) %/% 3) + 1
draw_move (z , "o")

}

The move is converted into coordinates using %% to get the remainder
and %/% to get the quotient when dividing an integer by an integer. This
function just chooses at random from the leftover positions; we leave im-
plementing a better strategy for the interested reader.

Finally, we implement the main entry point for our GUI:

play_game <- function () {
board <<- matrix (rep (0 , 9) , nrow=3)
layout_board ()
do_play ()
mtext ("All done\n" , 1)

}

When the game is launched, we first lay out the board and then call
do_play. When do_play returns, a message is written on the screen.

This example adheres to the model-view-controller design pattern that
is implemented by virtually every complex GUI. We will encounter this
pattern throughout this book, although it is not always explicit.

For many GUIs there is a necessary trade-off between usability and
complexity. As with any software, there is always the temptation to add
features continually without regard for the long-term cost. In this case,
there are many obvious improvements: implementing a better artificial in-
telligence, drawing a line connecting three in a row when there is a win,
indicating who won, etc. Adding a feature increases the functionality, at
the cost of increased complexity and burden on the user.

1.2 GUI design principles

The most prevalent pattern of user interface design is denoted WIMP,
which stands for Window, Icon, Menu, and Pointer. The WIMP approach
was developed at Xerox PARC in the 1970’s and later popularized by the
Apple Macintosh in 1984. This is particularly evident in the separation
of the window from the menu bar on the Mac desktop. Other graphical
operating systems, such as Microsoft Windows, later adapted the WIMP

4

1.2. GUI design principles

paradigm, and libraries of reusable GUI components emerged to support
development of applications in such environments. Thus, GUI development
in R adheres to the WIMP approach.

The primary WIMP component from our perspective is the window. A
typical interface design consists of a top-level window referred to as the
document window that shows the current state of a “document,” whatever
that is taken to be. In R it could be a data frame, a command line, a
function editor, a graphic or an arbitrarily complex form containing an
assortment of such elements.

Abstractly, WIMP is a command language, in which the user executes
commands, often called actions, on a document by interacting with graph-
ical controls. Every control in a window belongs to some abstract menu.
Two common ways of organizing controls into menus are the menu bar
and toolbar.

The parameters of an action call, if any, are controlled in sub-windows.
These sub-windows are termed application windows by Apple[8], but we
prefer the term dialogs, or dialog boxes. These terms may also refer to smaller
sub-windows that are used for alerts or confirmation. The program often
needs to wait for user input before continuing with an action, in which
case the window is modal. We refer to these as modal dialog boxes.

Each window or dialog typically consists of numerous controls laid
out in some manner to facilitate the user interaction. Each window and
control is a type of widget, the basic element of a GUI. Every GUI is
constituted by its widgets. Not all widgets are directly visible by the user;
for example, many GUI frameworks employ invisible widgets to lay out
the other widgets in a window.

There is a wide variety of available widget types, and widgets may be
combined in an infinite number of ways. Thus, there are often numerous
means to achieve the same goals. For example, Figures 1.2 and 1.3 show
three dialogs, representing typical dialogs from the three main operating
systems, that perform the same task – collecting arguments from the user
to customize the printing of a document. Although all were designed to
do the same thing, there are many differences in implementation.

In some cases, typical usage suggests one control over another. The
choice of printer for each is specified through a combo box. However, for
other choices various widgets are employed. For example, the control to
indicate the number of copies for the Mac is a simple text-entry window,
whereas for the KDE and Windows dialog it is a spin button. The latter
provides a bit more functionality, for a bit more complexity. The KDE
and Mac dialogs have icons to represent actions compactly, whereas the
Windows example has none. The landscape icon for the Mac is very clear
and provides this feature without having to use a sub-dialog.

[8] Apple Inc. http://developer.apple.com/.

5

1. The Fundamentals of Graphical User Interfaces

Figure 1.2: Two print dialogs. One from Mac OS X 10.6 and one from
KDE 3.5.

6

1.2. GUI design principles

Figure 1.3: R’s print dialog under Windows XP using XP’s native dialog.

The way the interfaces are laid out also varies. All panels are read top
to bottom, although the Mac interface also has a very nice preview feature
on the left side. The KDE dialog uses frames to separate out the printer
arguments from the arguments that specify how the print job is to proceed.
The Mac uses a vertical arrangement to guide the user through this. For
the Mac, horizontal separators are used instead of frames to break up the
areas, although a frame is used towards the bottom. Apple uses a center
balance for its controls. Apple dialogs are not left justified as are the KDE
and Windows dialogs. Apple has strict user-interface guidelines and this
center balance is a design decision.

The layout also determines how many features and choices are visible
to the user at a given time. For example, the Mac GUI uses “disclosure
buttons” to allow access to printer properties and PDF settings, whereas
KDE uses a notebook container to show only a subset of the options at
once.

The Mac GUI provides a very nice preview of the current document
indicating to the user clearly what is to be printed and how many copies.
Adjusting GUIs to the possible state is an important user interface property.
GUI areas that are not currently sensitive to user input are grayed out.
For example, the “collate” feature of the GUI makes sense only when
multiple copies are selected, so the designers have it grayed out until then.
A common element of GUI design is to enable controls only when their
associated action is possible, given the state of the application.

7

1. The Fundamentals of Graphical User Interfaces

Table 1.1: Table of possible selection widgets by data type, size, and
selection mode (single or multiple).

Type of data Single Multiple

Boolean checkbox, toggle button -
Small list radio button group

combo box
list box

checkbox group
list box

Moderate list combo box
list box

list box

Large list list box, auto complete list box
Sequential slider

spin button
Tabular table table
Hierarchical tree tree

The Mac GUI puts the number of pages in focus, whereas Windows
places the printer in focus. Focus allows the user to interact with the
GUI without the mouse. Typically, the tab key is used to step through
the controls. GUIs often have shortcuts that allow power users to initiate
actions or shift the focus directly to a specific widget through the keyboard.
Most dialogs also have a default button, which will initiate the dialog action
when the return key is pressed. The KDE dialog, for example, indicates
that the “print” button is the default button through special shading.

Each dialog presents the user with a range of buttons to initiate or
cancel the printing. The Windows ones are set on the right and consist of
the standard “OK” and “Cancel” buttons. The Mac interface uses a spring
to push some buttons to the left and some to the right, to keep separate
their level of importance. The KDE buttons do so as well, although they
cannot be seen in the figure. The use of conventional icons on the buttons
also helps guide the user.

1.3 Controls

This section provides an overview of many common controls, i.e., widgets
that accept input, display data, or provide visual guides to help the user
navigate the interface. If the reader is already familiar with the conventional
types of widgets and how they are arranged on the screen, this section and
the next should be considered optional.

8

1.3. Controls

Choice of control

A GUI comprises one or more widgets. The appropriate choice depends on
a balance of considerations. For example, many widgets offer the user a se-
lection from one or more possible choices. An appropriate choice depends
on the type and size of the information being displayed, the constraints on
the user input, and the space available in the layout. As an example, Ta-
ble 1.3 suggests different types of widgets used for this purpose depending
on the type and size of data and the number of items to select.

Figure 1.4 shows several such controls in a single dialog. A checkbox
enables an intercept, a radio group selects either full factorial or a custom
model, a combo box selects the “sum of squares” type, and a list box
allows for multiple selection from the available variables in the data set.

For many R object types there are natural choices of widget. For ex-
ample, values from a sequence map naturally to a slider or spin button; a
data frame maps naturally to a table widget; or a list with similar struc-
ture can map naturally to a tree widget. However, certain R types have less
common metaphors. For instance, a formula object can be fairly complex.
Figure 1.4 shows an SPSS dialog for specifying terms in a model. R power
users may be much faster specifying the formula through a text entry box,
but beginning R users coming to grips with the command line and the
concept of a formula may benefit from the assistance of a well designed
GUI. One might desire an interface that balances the needs of both types
of user, or the SPSS interface may be appropriate. Knowing the potential
user base is important.

Presenting options

The widgets that receive user input need to translate that input into a
command that modifies the state of the application. Commands, like R
functions, often have parameters, or options. For many options, there is a
discrete set of possible choices, and the user needs to select one of them.
Examples include selecting a data frame from a list of data frames, selecting
a variable in a data frame, selecting certain cases in a data frame, selecting
a logical value for a function argument, selecting a numeric value for a
confidence level or selecting a string to specify an alternative hypothesis.
Clearly there can be no one-size-fits-all widget to handle the selection of a
value.

Checkboxes

A checkbox specifies a value for a logical (Boolean) option. Checkboxes have
labels to indicate which variable is being selected. Combining multiple
checkboxes into a group allows for the selection of one or more values at
a time.

9

1. The Fundamentals of Graphical User Interfaces

Figure 1.4: A dialog box from SPSS version 11 for specifying terms for a
linear model. The graphic shows a dialog that allows the user to specify
individual terms in the model using several types of widgets for selection
of values, such as a radio button group, a checkbox, combo boxes, and
list boxes.

Radio buttons

A radio button group selects exactly one value from a vector of possible val-
ues. The analogy dates back to old car radios where there were a handful
of buttons for selecting preset channels. When a new button was pushed
in, the previously pressed button popped out. Radio button groups are
useful, provided there are not too many values to choose from, as all the
values are shown. These values can be arranged in a row, a column or
both rows and columns to better fill the available space. Figure 1.5 uses
radio button groups for choosing the distribution, kernel and sample size
for the density plot.

Combo boxes

A combo box is similar to a radio button group, in that it is used to select
one value from several. However, a combo box displays only the value
currently selected, which reduces visual complexity and saves space, at the
cost of an extra click to show the choices. Toolkits often combine a combo
box with a text entry area for specifying an arbitrary value, possibly one
that is not represented in the set of choices. A combo box is generally
desirable over radio buttons when there are more than four or five choices.
However, the combo box also has its limits. For example, some web forms
require choosing a country from a list of hundreds. In such cases, features
such as incremental type-ahead search are useful.

10

1.3. Controls

Figure 1.5: Two applications of the tcltk package. The left graphic is
produced by chooseCRANmirror and uses a list box to allow selection
from a long list of possibilities. The right graphic is the tkdensity demo
from the tcltk package. It uses radio buttons and a slider to select the
parameter values for a density plot.

List boxes

A list box displays a list of possible choices in a column. While the ra-
dio button group and combo box select only a single value, a list box
supports multiple selection. Another difference is that the number of dis-
played choices depends dynamically on the available space. If a list box
contains too many items to display simultaneously, a scroll bar is typically
provided for adjusting the visible range. Unlike with the combo box, the
choices are immediately visible to the user. Figure 1.5 shows a list box
created by the R function chooseCRANmirror. There are too many mirrors
to fit on the screen, but a combo box would not take advantage of the
available space. The list box is a reasonable compromise.

Sliders and spin buttons

A slider is a widget that selects a value from a sequence of possible values,
typically through the manipulation of a knob that moves or “slides” along
a line that represents the range of possible values. Some toolkits generalize
beyond a numeric sequence. The slider is a good choice for offering the
user a selection of ordinal or numerical parameter values. For example,
the letters of the alphabet could be a sequence. The tkdensity demo of
the tcltk package (Figure 1.5) uses a slider to adjust the bandwidth of a
density estimate dynamically.

11

1. The Fundamentals of Graphical User Interfaces

A spin button plays a similar role to the slider, in that it selects a value
within a set of bounds. Typically, this widget is drawn with a text box
displaying the current value and two arrows to increment or decrement the
selection. Usually, the text box can be edited directly. A spin button has
the advantage of using less screen space, and directly entering a specific
value, if known, is easier than selecting it with a slider. One disadvantage
is that the position of the selected value within the range is not as obvious
as with the slider. As a compromise, combining a text box with a slider is
possible and often effective. A spin button is used in the KDE print dialog
of Figure 1.2 to adjust the number of copies.

Initiating an action

After the user has specified the parameters of an action, typically by inter-
acting with the selection widgets presented above, it comes time to execute
the action. Widgets that execute actions include the familiar buttons, which
are often organized into menu bars and toolbars.

Buttons

A button issues commands when invoked, usually via a mouse click. In
Figure 1.2, the “Properties” button, when clicked, opens a dialog for setting
printer properties. The button with the wizard icon also opens a dialog.
As buttons execute an action, they are often labeled with a verb.[8] In
Figure 1.4 we see how SPSS uses buttons in its dialogs: buttons which are
not valid in the current state are disabled; buttons which are designed to
open subsequent dialogs have trailing dots; and the standard actions of
resetting the data, canceling the dialog or requesting help are given their
own buttons on the right edge of the dialog box.

To speed the user through a dialog, a button may be singled out as the
default button, so its action will be called if the user presses the return key.
Actions may be given shortcut bindings, and their button proxies typically
reflect the proper key combination to invoke the action. The KDE print
dialog in Figure 1.2 has these bindings indicated via the underlined letter
on the button labels.

Icons

In the WIMP paradigm, an icon is a pictorial representation of a resource,
such as a document or program, or, more generally, a concept, such as a
type of file. An application GUI typically adopts the more general defini-
tion, in which an icon is used to complement or replace a text label on
a button or other control. A button represents an action, so an icon on a
button should visually depict an action.

12

1.3. Controls

Menu bars

Menus play a central role in the WIMP desktop. The menu bar contains
items for many of the actions supported by the application. By convention,
menu bars are associated with a top-level window. This is enforced by
some toolkits and operating systems but not all. In Mac OS X, the menu
bar appears on the top line of the display, but other platforms place the
menu bar at the top of the top-level window. In a statistics application, the
“document” may be the active data frame, a report, or a graphic.

The styles used for menu bars are fairly standardized, as this allows
new users to orient themselves quickly within a GUI. The visible menu
names are often in the order File, Edit, View, Tools, application-specific
menus, and finally a Help menu. Each visible menu item, when clicked,
opens a menu of possible actions. The text for these actions conventionally
uses a “...” to indicate that a subsequent dialog will open so that more
information can be gathered to complete the action. The text may also
indicate a keyboard accelerator, such as Find Next F3, indicating that both
“N” as a keyboard accelerator and F3 as a shortcut will initiate this same
action. (Shortcuts are not translated, but keyboard accelerators must be. As
such, they are less frequently used. In particular, keyboard accelerators are
not supported in Mac OS X menus.)

Not all actions will be applicable at any given time. It is recommended,
that rather than deleting these menu items, disable them (grayed out) in-
stead.

Menus may come to contain many items. To help the user navigate,
menu items are usually grouped with either horizontal separators or hier-
archical submenus.

The use of menus has evolved to allow the user to view and control
properties of the application state. There may be checkboxes drawn next
to the menu item or an icon indicating the current state.

Another use of menus is to bind contextual menus (pop-up menus) to
certain mouse clicks on GUI elements. Typically, a right mouse click will
pop up a menu that lists often-used commands that are appropriate for
that widget and the current state of the GUI. In Mac OS X one-button
users, these menus are bound to a control-click.

Toolbars

Toolbars are used to give immediate access to the frequently used actions
defined in the menu bar. Toolbars typically have icons representing the
action and perhaps accompanying text. They traditionally appear on the
top of a window, but sometimes are used along the edges.

13

1. The Fundamentals of Graphical User Interfaces

Action objects

When clicking on a button, the user expects some “action” to occur. For
example, a save dialog is summoned, or a page is printed. GUI toolkits
commonly represent such actions as formal, invisible objects that are prox-
ied by widgets, usually buttons, on the screen. Often, all of the primary
commands supported by an application have a corresponding action object,
and the buttons associated with those actions are organized into menu bars
and toolbars.

An action object is essentially a data model, with each proxy widget
acting as a view. Common components of an action include a textual label,
an icon, perhaps a shortcut, and a handler to call when the action is
selected.

Modal dialogs

A modal dialog box is a dialog box that keeps the focus until the user takes
an action to dismiss the box. It prompts a user for immediate input, such
as asking for confirmation when overwriting a file. Modal dialog boxes
can be disruptive to the flow of interaction, so they are used sparingly. As
the control flow is blocked until the window is dismissed, functions that
display modal dialogs can return a value when an event occurs, rather than
have a handler respond to asynchronous input. The file.choose function,
mentioned below, is a good example. When this function is called during
an interactive R session, the user is unable to interact with the command
line until a file has been specified or the dialog dismissed.

Message dialogs

A message dialog is a high-level dialog widget for communicating a message
to the user. By convention, there is a small rectangular box that appears
in the middle of the screen with an icon on the left and a message on the
right. At the bottom is a button, often labeled “Ok,” to dismiss the dialog.
Additional buttons/responses are possible. The confirmation dialog variant
would add a “Cancel” button, which would invalidate the proposed action.

File choosers

A file chooser allows for the selection of files and directories. They are
familiar to any user of a GUI. A typical R installation has the functions
file.choose and tkchooseDirectory (in the tcltk package) to select files
and directories.

Other common choosers are color choosers and font choosers.

14

1.3. Controls

Figure 1.6: This screen shot from Tibco’s Spotfire web player illustrates a
table widget (lower left) displaying the cases that are summarized in the
graphic. The right bar filters the cases in the table.

Displaying data

Table and tree widgets support the display and manipulation of tabular
and hierarchical data, respectively. More arbitrary data visualization, such
as statistical plots, can be drawn within a GUI window. All the toolkits we
discuss have some means to embed R’s graphics.

Tabular display

A table widget shows tabular data, such as a data frame, in which each
column has a specific data type and cell-rendering strategy. Table wid-
gets handle the display, sorting, and selection of records from a dataset.
Depending on the configuration of the widget, cells may be editable. Fig-
ure 1.6 shows a table widget in a Spotfire web player demonstration.

Tree widgets

So far, we have seen how list boxes display homogeneous vectors of data,
and how table widgets display tabular data, such as that in a data frame.
Other widgets support the display of more complex data structures. If the

15

1. The Fundamentals of Graphical User Interfaces

data has a hierarchical structure, then a tree widget may be appropriate
for its display. Examples of hierarchical data in R are directory structures,
the components of a list, or class hierarchies. The object browser in JGR
uses a tree widget to show the components of the objects in a user session
(Figure 1.7). The root node of the tree is the “data” folder, and each data
object in the global workspace is treated as an offspring of this root node.
For the data frame iraq, its variables are considered as offspring of the data
frame. In this case these variables have no further offspring, as indicated
by the “page” icon.

Displaying and editing text

The letter P in WIMP stands for “pointer,” so it is not surprising that WIMP
GUIs are designed around the pointing device. The keyboard is generally
relegated to a secondary role, in part because it is difficult to type and
move the mouse at the same time. For statistical GUIs, especially when
integrating with the command-line interface of R, the flexibility afforded by
arbitrary text entry is essential for any moderately complex GUI. Toolkits
generally provide separate widgets for text entry depending on whether
the editor supports a single line or multiple lines.

Single lines of text

A text-entry widget for editing a single line of text is found in the KDE
print dialog (Figure 1.2). It specifies the page range. Specifying a complex
page range, which might include gaps, would require a complex point-
and-click interface. In order to avoid complicating the GUI for a feature
that is rarely useful, a simple language has been developed for specifying
page ranges. There is overhead involved in the parsing and validation of
such a language, but it is still preferable to the alternative.

Text-editing boxes

Figure 1.8 shows three multiline text entries in an Rcmdr window. It pro-
vides an R console and status message area. The “Output Window” demon-
strates the utility of formatting attributes. In this case, attributes specify the
color of the commands, so that the input can be distinguished from the
output.

Guides and feedback

Some widgets display information but do not respond to user input. Their
main purpose is to guide the user through the GUI and to display feedback
and status messages. Communicating application status, such as during

16

1.3. Controls

Figure 1.7: The object browser in the JGR GUI uses a tree widget to
display the possibly hierarchical nature of R objects.

long-running calculations or when errors occur, is an often over-looked but
critically important feature of any effective GUI.

Labels

A label is a widget for placing text into a GUI that is typically not intended
for editing, or even for selecting with a mouse. The main role of a label is
to describe another component of the GUI. Most toolkits support rich text
in labels. Figure 1.8 shows labels marked in red and blue in tcltk.

Status bars

A statusbar displays general status messages, as well as feedback on actions
initiated by the user, such as progress or errors. Messages replace the
previous message and may disappear after a certain period of time. In the
traditional document-oriented GUI, statusbars are placed at the bottom.

Related to status bars are info bars or alert boxes, which allow a pro-
grammer to display a transient message dialog that emerges from either
the top or bottom of the application window. An example is the Firefox
dialog that asks whether Firefox should remember a password entered
on the previous page. It appears just below the toolbar and disappears
automatically as the user continues to browse.

17

1. The Fundamentals of Graphical User Interfaces

Figure 1.8: Screenshot showing the main Rcmdr (1.3-11) window
illustrating the use of multiline text-entry areas for a command area, an
output area, and a message area.

Tooltips

A tooltip is a small window that is displayed when a user hovers the
mouse over a tooltip-enabled widget. Tooltips are an embellishment for
providing extra information about a particular piece of content displayed
by a widget. A common use case is to guide new users of a GUI. Many
toolkits support the display of interactive hypertext in a tooltip, which
allows the user to request additional details.

Progress bars

A progress bar indicates progress on a particular task, which may or may
not be bounded. A bounded progress bar usually reports progress in terms
of percentage completed. Progress bars should be familiar, as they are
often displayed during software installation and while downloading a file.
For long-running statistical procedures they can give useful feedback that
something is happening.

1.4 Containers

The KDE print dialog of Figure 1.2 contains many of the widgets we
discussed in the previous section. Before we can create such a dialog, we

18

1.4. Containers

need to discuss the positioning of widgets on the screen. This process is
called widget layout.

A layout emerges from the organization of the widgets into a hierarchy,
in which a parent widget positions its children within its allocated space.
The top-level window is parentless and forms the root of the hierarchy. A
parent visually contains its children and thus is usually called a container.
This design is natural, because almost every GUI has a hierarchical layout.
It is easy to apply a different layout strategy to each region of a GUI, and
when a parent is added or removed from the GUI, so are its children.

It is sometimes tempting for novices to assign simply a fixed position
and dimensions for every widget in a GUI. However, such static layouts do
not scale well to changes in the state of the application or simply changes
in the window size dictated by the window manager. Thus, it is strongly
encouraged to delegate the responsibility of layout to a layout manager,
which dynamically calculates the layout as constraints change. Depending
on the toolkit, the layout manager might be the container itself, or it might
be a separate object to which the container delegates.

Regardless, the type of layout is generally orthogonal to the type of
container. For example, a container might draw a border around its chil-
dren, and this would be independent of how its children are laid out. The
rest of this section is divided into two parts: container widgets and layout
algorithms. We will continually refer back to the KDE print dialog example
as we proceed.

Top-level windows

The top-level window of a GUI is the root of the container hierarchy. All
other widgets are contained within it. The conventional main application
window will consist of a menubar, a toolbar and a status bar. The primary
content of the window is inserted between the toolbar and the status bar, in
an area known as the client area or content area. In the case of a dialog, the
content usually appears above a row of buttons, each of which represents
a possible response. The print dialog conforms to the dialog convention.
The print options fill the content area, and there is a row of buttons at the
bottom for issuing a response, such as “Print.”

A window is typically decorated with a title and buttons to iconify,
maximize, or close. In the case of the print dialog, the top-level window
is entitled “Print – KPDF.” Besides the text of the title, the decorations are
generally the domain of the window manager (often part of the operating
system). The application controls the contents of the window.

Once a window is shown, its dimensions are managed by the user,
through the window manager. Thus, the programmer must size the win-
dow before it becomes visible. This is often referred to as the “default”

19

1. The Fundamentals of Graphical User Interfaces

size of the window. Positioning of a top-level window is generally left to
the window manager.

The top-level window forwards window-manager events to the appli-
cation. For example, an application might listen to the window-close event
in order to prompt a user if there are any unsaved changes to a document.

Tabbed notebooks

A notebook widget depicts each child as if it were a page in a notebook.
A page is selected by clicking on a button that appears as a tab. Only a
single child is shown at a time. The tabbed notebook is a space-efficient,
categorizing container that is most appropriate when a user is interested
in only one page at a time. Modern web browsers take advantage of the
tabbed notebook to allow several web pages to be open at once within
the same window. In the KDE print dialog, detailed options are collapsed
into a notebook in order to save space and organize the many options into
simple categories: “Copies,” “Advanced Options,” and “Additional Tags.”

Frames

A frame is a simple container that draws a border, possibly with a label,
around its child. The purpose of a frame is to enhance comprehension
of a GUI by visually distinguishing one group of components from the
others. The displayed page of the notebook in Figure 1.2 contains two
frames, visually grouping widgets by their function: either Page Selection
or Output Settings.

Expanding boxes

An expanding container, or box, will show or hide its children according
to the state of a toggle button. By way of analogy, radio buttons are to
notebooks as check buttons are to expanding containers. An expanding box
allows the user to adapt a GUI to a particular use case or mode of opera-
tion. Often, an expanding box contains so-called “advanced” widgets that
are only occasionally useful and are of interest only to a small percentage
of the users. For example, the Options button in Figure 1.2 controls an
expanding box that contains the print options, which are usually best left
to their defaults.

Paned boxes

Usually, a layout manager allocates screen space to widgets, but some-
times the user needs to adapt the allocation. For example, the user may
wish to increase the size of an image to see the fine details. The paned
container supports this by juxtaposing panes, either vertically (stacked) or

20

1.4. Containers

horizontally. The area separating the panes, sometimes called a sash, can
be adjusted by the user with the mouse.

Layout algorithms

Box layout

The box layout is the most common type of layout algorithm for position-
ing child components. A box will pack its children either horizontally or
vertically.1 Usually, the widgets are packed from left to right, for horizontal
boxes, or from top to bottom, in the case of a vertical box. The upper-left
figure in Figure 1.9 illustrates these possibilities.

The box layout needs to allocate space to its children in both the ver-
tical and horizontal directions. The typical box layout algorithm begins by
satisfying the minimum size requirements of its children. The box may
need to request more space for itself in order to meet the requirements.

Once the minimum requirements are satisfied, it is conventional and
usually desirable for the widgets to fill the space in the direction orthogonal
to the packing. For example, widgets in a horizontal box will fill all of
their vertical space (the upper-right graphic in Figure 1.9 shows some fill
possibilities). When this is not desired, most box widgets support different
ways of vertically (or horizontally) aligning the widgets (the lower-left
graphic in Figure 1.9).

More complex logic is involved in the allocation of space in the direc-
tion of packing. Any available space after meeting minimum requirements
needs to be either allocated to the children or left empty. This depends
on whether any children are set to expand. The available space will be
distributed evenly to all expanding children. Each child may fill that space
or leave it empty. The non-expanding children are simply packed against
their side of the container. If there are no expanding children, the remain-
ing space is left empty in the middle (or end, if there are no widgets
packed against the other side). See the lower-right panel in Figure 1.9. One
could think of this space as being occupied by an invisible spring. Invisible
expanding widgets also act as springs.

The button box in the KDE print dialog shows five buttons as child
components. At first glance the sizing appears to show that each button is
drawn to show its label fully with some fixed space placed between the
buttons. If the dialog is expanded, it is seen that there is a spring between
the third and fourth buttons, so that the first three are aligned with the
left side of the window and the last two the right side.

1With exceptions: the pack command of tcltk can mix the two directions.

21

1. The Fundamentals of Graphical User Interfaces

Figure 1.9: Different possibilities for packing child components within a
box. The upper left shows horizontal and vertical layout. The upper right
shows some possible alignments or anchorings. The lower left shows that
a child could “expand” to fill the space either horizontally, vertically, or
both. The lower right shows both a fixed amount of space between the
children and an expanding spring between the child components.

Grid layout

The box layout algorithm typically aligns its children along a single di-
mension. The horizontal box, for example, aligns its children vertically.
Nevertheless, nesting permits the construction of complex layouts using
only simple boxes. It is sometimes desirable to align widgets in both di-
mensions, i.e., to lay them out on a grid. The most flexible grid layout
algorithms allow non-regular sizing of rows and columns, as well as the
ability for a widget to span multiple cells. Usually, a widget fills the cells
allocated to it, but if this is not possible, it may be anchored at a specific
point within its cell.

22

Part I

The gWidgets Package

23

This page intentionally left blankThis page intentionally left blank

2

gWidgets: Overview

The gWidgets package provides a convenient means to create rapidly small
to medium-size GUIs within R. The package provides an abstract interface
for the other graphical toolkits discussed in this text, allowing for similar
access to each. Unlike the underlying toolkits, gWidgets has relatively few
constructors and methods. Basically, the entire set is enumerated in Tables
2.2, 3.1, 3.2, and 4.1. This means gWidgets is relatively easy to learn, al-
lowing for rapid prototyping. (It also means that as projects progress, one
might need to move to a more powerful underlying toolkit.)

Typical uses of GUIs written in R involve teaching demos and, sharing
functionality with less technically proficient colleagues, etc. In many cases
the end user may have a different operating system or different set of
graphical libraries installed. The underlying toolkits supported by gWidgets
are all cross- platform, and gWidgets code is mostly-cross toolkit, although
differences do come up. (Compare, for example, the same code realized on
different operating systems and toolkits in Figure 2.1.) This means, there
is a good chance that code you write can be shared easily with someone
else.

The gWidgets package started as a port to RGtk2 of Simon Urbanek’s
iWidgets package which was written for Swing through rJava[12]. Along
the way, gWidgets was extended and abstracted to work with other GUI
toolkit backends available for R. A separate package provides the interface.
As of writing there are interfaces for RGtk2, qtbase, and tcltk. The gWid-
getsWWW2 package provides a similar interface for web programming, but
there are enough differences that we will not discuss it further.

We jump right in with an example and leave comments about installa-
tion to the end of the chapter. The following shows some sample gWidgets
commands that set up a basic interface allowing a user to search his or her

[12] Simon Urbanek. iWidgets - Basic GUI widgets for R. http://www.rforge.net/iWidgets/
index.html.

25

2. gWidgets: Overview

Figure 2.1: The gWidgets package works with different operating systems
and different GUI toolkits. This shows, the same code using the RGtk2,
tcltk, qtbase packages for a toolkit. Additionally, the gWidgetsWWW
package is used in the lower right figure.

hard drive for files matching a user-specified pattern.1 The first line loads
the package; the others will be described in the following.

require (gWidgets)
options (guiToolkit="RGtk2")
##
window <- gwindow ("File search" , visible=FALSE)
paned <- gpanedgroup (cont = window)
l a b e l and f i l e s e l e c t i o n w i d g e t
group <- ggroup (cont = paned , horizontal = FALSE)
glabel ("Search for (filename):" , cont=group , anchor=c (−1 ,0))
txt_pattern <- gedit ("" , initial . msg = "Possibly wildcards" ,

cont = group)
##
glabel ("Search in:" , cont = group , anchor = c (−1 ,0))
start_dir <- gfilebrowse (text = "Select a directory ..." ,

quote = FALSE ,

1Many thanks to Richie Cotton for suggesting this example and its follow-up in Exam-
ple 4.5.

26

2.1. Constructors

Figure 2.2: A simple GUI for search for files matching a pattern. This GUI
uses a paned group to separate the controls for searching from the results.

type = "selectdir" , cont = group)
A b u t t o n t o i n i t i a t e t h e s e a r c h
search_button <- gbutton ("Search" , cont = group)
addSpring (group)
Area f o r ou t pu t
frame <- gframe ("Output:" , cont = paned , horizontal = FALSE)
search_results <- gtext ("" , cont = frame , expand = TRUE)
size (search_results) <- c (3 5 0 , 200)
add i n t e r a c t i v i t y
addHandlerChanged (search_button , handler = function (h , . . .) {

pattern <- glob2rx (svalue (txt_pattern))
file_names <- dir (svalue (start_dir) , pattern ,

recursive = TRUE)
if (length (file_names))

svalue (search_results) <- file_names
else

galert ("No matching files found" , parent = window)
})
d i s p l a y GUI
visible (window) <- TRUE

This example shows several different widgets being used to construct
a GUI, as seen in Figure 2.2. For example, on the left is a text-entry
widget (gedit), a directory-browsing widget (gfilebrowse) and a button
(gbutton). On the right is a multiline text widget (gtext) in a framed
container (gframe).

2.1 Constructors

The widgets are all produced by calling the appropriate constructor. In the
gWidgets API most of these constructors have the following basic form:

27

2. gWidgets: Overview

gname (some_arguments , handler = NULL , action = NULL ,
container = NULL , . . . , toolkit = guiToolkit ())

where some_arguments varies depending on the object being made. We
discuss now the common arguments.

In the example above, we can see that the gwindow constructor, for a
top-level window, has two arguments passed in, an unnamed one for a
window title and a value for the visible property, whereas the gpaned-
group constructor takes all the default arguments except for the parent
container.

The handler and action arguments The handler and action arguments
are used to pass in event handlers. We discuss those in Section 2.3.

The container argument A top-level window does not have a parent
container, but the other GUI components do. In gWidgets, for the sake
of portability, the parent container is passed to the widget constructor
through the container argument, as it done in all the other constructors.
This argument name can always be abbreviated cont. The ... arguments
are used to pass layout information to the parent container. This nesting
defines the GUI layout, a topic taken up in Chapter 3.

The ... argument Not only is the ... mechanism used to pass in argu-
ments to the add method of the parent container, it may also used to pass
in additional values to the constructor in the toolkit package. Some tool-
kits allow additional functionality beyond that specified in the basic API.
Any documentation for these additional arguments appears in the toolkit
package.

The toolkit argument The toolkit argument is usually not specified. It
is there to allow the user to mix toolkits within the same R session, but in
practice this can cause problems due to competing event loops. The default
for the toolkit argument is to call guiToolkit. This function will check
whether a toolkit has been specified, or if only one is available. If neither
case is so, then a menu will be provided for the user to choose one. In our
example we have called

options (guiToolkit = "RGtk2")

to explicitly set the toolkit.

Side effects The constructors produce one of three general types of wid-
gets:

28

2.2. Methods

• Containers: such as the top-level window window, the paned group
paned, or the frame frame (Table 3.1)

• Components: such as the unnamed labels, the edit area txt_pattern,
or the button search_button (Tables 4.1 and 5.1)

• Dialogs: such as galert and gfilebrowse (Table 2.4)

2.2 Methods

In addition to creating a GUI object, most gWidgets constructors also return
a useful R object. This is an S4 object of a certain class, containing two
components: toolkit and widget. (Modal dialogs do not return an object,
as the dialog will be destroyed before the constructor returns. Instead, their
constructors return values reflecting the user response to the dialog.)

GUI objects have a state determined by one or more of their properties.
In gWidgets, many properties are set at the time of construction. However,
there are also several methods to adjust these properties for gWidgets
objects.2

Depending on the class of the object, the gWidgets package provides
methods for the familiar S3 generics [, [<-, dim, length, names, names<-,
dimnames, dimnames<- and update.

In our example, we see two cases of the use of generic methods defined
by gWidgets. The call

svalue (txt_pattern)

demonstrates the most used new generic svalue, that is used to get the
main property of the widget. For the object txt_pattern, the main property
is the text, for the button and label widgets this property is the label. The
svalue<- assignment method is used to set this property programatically.
We see the call

svalue (search_results) <- file_names

to update the text for the multi-line text widget search_results.
For the selection widgets (of which there are none in our example),

there is a natural mapping between vectors or data frames, and the data
to be selected. In this case, the user may want the value selected or the
index of the selected value. The index=TRUE argument of svalue may be
specified to refer to values by their index.

For these selection widgets the familiar [and [<- methods refer to the
underlying data to be selected from.

2 We are a bit imprecise about the term “method” here. The gWidgets methods call
further methods in the underlying toolkit interface, which we think of as a single method
call. The actual S4 object has a slot for the toolkit and the widget created by the toolkit
interface to dispatch on.

29

2. gWidgets: Overview

The call

visible (window) <- TRUE

sets the visibility property of the top-level window. In our example, the
gwindow constructor is passed visible=FALSE to suppress an initial draw-
ing, making this call to visible<- necessary to show the GUI. The visi-
ble<- generic has different interpretations for the various widgets.

Some other methods to adjust the widget’s underlying properties are
font<-, to adjust the font of an object; size and size<- to query and set
the size of a widget; and enabled<-, to adjust whether a widget is sensitive
to user input.

The underlying toolkit widget The gWidgets API provides just a handful
of generic functions for manipulating an object’s properties compared to
the number of methods typically provided by a GUI toolkit for a similar
object. Although this simplicity makes gWidgets easier to work with, one
may wish to access the underlying toolkit object to take advantage of a
richer API. In most cases, the getToolkitWidget will provide that object.
For convenience, the method $ is implemented to call a method on the un-
derlying toolkit widget, and the methods [[and [[<- are implemented to
inspect and set properties of the underlying widget. We will not illustrate
here though, as we try to stay toolkit-agnostic in our examples.

2.3 Event handlers

In our example, the search button is created with:

search_button <- gbutton ("Search" , cont = group)

However, without doing more work, this button will not initiate an action.
For that we need to add an event handler, or callback, to be called when
an event occurs. For our example, our event is a button click, and the
action we want consists of several steps: turning our pattern into a regular
expression, searching for the specified pattern; and presenting the results.
In our example, this is done through:

addHandlerChanged (search_button , handler = function (h , . . .) {
pattern <- glob2rx (svalue (txt_pattern))
file_names <- dir (svalue (start_dir) , pattern , recursive=TRUE)
if (length (file_names))

svalue (search_results) <- file_names
else

galert ("No matching files found" , parent = window)
})

Callbacks in gWidgets have a common signature (h,...). The first argu-
ment is a list with components obj, to pass in the receiver of the event

30

2.3. Event handlers

Table 2.1: Generic functions provided or used in the gWidgets API.

Method Description

svalue, svalue<- Get or set widget’s main property
size<- Set preferred size request of widget in pixels
show Show widget if not visible
dispose Destroy widget or its parent
enabled, enabled<- Adjust sensitivity to user input
visible, visible<- Show or hide object or part of object
focus<- Set focus to widget
insert Insert text into a multiline text widget
font<- Set a widget’s font
update Update widget value
isExtant Does R object refer to GUI object that still

exists

[, [<- Refers to values in data store
length length of data store
dim dim of data store
names names of data store
dimnames dimnames of data store

getToolkitWidget Return underlying toolkit widget for low-
level use

(the button in this case), and action to pass along any value specified by
the action argument.

For example, a typical idiom within a callback is

prop <- svalue (h$obj)

which assigns the object’s main property to prop. Some toolkits pass ad-
ditional arguments through the callback’s ... argument, so for portability
this part of the signature is not optional. For some handler calls, extra
information is passed along through the list h. For instance, in the drop
target callback the component h$dropdata holds the drag-and-drop value.

Although it generally is best to keep separate the construction of the
widgets and the definition of the handlers, it is possible to pass in a
handler for the main event through the constructor’s handler argument.
This argument, along with the action argument, will be passed to the
widget’s addHandlerChanged method.

The package provides a number of generic methods (Table 2.3) to add
callbacks for different events beyond addHandlerChanged, which is used to
assign a callback for the typical event for the widget, such as the clicking
of a button. We refer to these methods with “addHandlerXXX,” where the

31

2. gWidgets: Overview

XXX describes the event. These are useful when more than one event on
that widget is of interest. For example, for single-line text widgets, such
as txt_pattern in our example, the addHandlerChanged method sets a
callback to respond when the user finishes editing, whereas a handler set
by addHandlerKeystroke is called each time a key is pressed.

As an example of combining the handler and constructor, we could
have specified the search button through:

search_button <- gbutton ("Search" , cont = group ,
handler = function (h , . . .) {

pattern <- glob2rx (svalue (h$action$txt))
file_names <- dir (svalue (h$action$dir) ,

pattern , recursive = TRUE)
if (length (file_names))

svalue (h$action$results) <- file_names
else

galert ("No matching files found" , parent = w)
} ,
action = list (txt = txt_pattern , dir = start_dir ,

results = search_results)
)

By passing in the other widgets through the action argument, we can
avoid worrying about any potential issues with scope.

The addHandlerXXX methods return an ID. This ID can be used with
the method removeHandler to remove the callback, or with the methods
blockHandler and unblockHandler to block temporarily a handler from
being called.

If these few methods are insufficient and toolkit portability is not of
interest, then the addHandler generic can be used to specify a toolkit-
specific signal and a callback.

2.4 Dialogs

The gWidgets package provides a few constructors for quickly making
some basic dialogs for showing messages or gathering information. Mostly
these are modal dialogs that take control of the event loop, not allowing
any other part of the GUI to be active for interaction. As such, in gWid-
gets, constructors of modal dialogs do not return an object to manipulate
through its methods, but rather return the user response to the dialog. For
example, the gfile dialog, described later, is a modal dialog that pops up
a means to select a file returning the selected file path or NA. It is used
along the lines of:

if (!is . na (f <- gfile ())) source (f)

32

2.4. Dialogs

Table 2.2: Generic functions to add callbacks in gWidgets API.

Method Description

addHandlerChanged Primary handler call for when a widget’s
value is "changed." The interpretation of
"change" depends on the widget.

addHandlerClicked Set handler for when widget is clicked with
(left) mouse button. May return position of
click through components x and y of the h-
list.

addHandlerDoubleclick Set handler for when widget is double-
clicked.

addHandlerRightclick Set handler for when widget is right-clicked.
addHandlerKeystroke Set handler for when key is pressed. The key

component is set to this value, if possible.
addHandlerFocus Set handler for when widget gets focus.
addHandlerBlur Set handler for when widget loses focus.
addHandlerExpose Set handler for when widget is first drawn.
addHandlerUnrealize Set handler for when widget is undrawn on

screen.
addHandlerDestroy Set handler for when widget is destroyed.
addHandlerMouseMotion Set handler for when widget has mouse go

over it.
addDropSource Specify a widget as a drop source.
addDropMotion Set handler to be called when an item is

dragged over the widget.
addDropTarget Set handler to be called on a drop event.

Adds the component dropdata.
addHandler (Not cross-toolkit) Allows one to specify an

underlying signal from the graphical toolkit
and handler.

removeHandler Remove a handler from a widget.
blockHandler Temporarily block a handler from being

called.
unblockHandler Restore handler that has been blocked.
addHandlerIdle Call a handler during idle time.

addPopupmenu Bind pop-up menu to widget.
add3rdMousePopupmenu Bind popup menu to right mouse click.

33

2. gWidgets: Overview

Table 2.3: Table of constructors for basic dialogs in gWidgets.

Constructor Description

gmessage Dialog to show a message.
galert Unobtrusive (non-modal) dialog to show a message.
gconfirm Confirmation dialog.
ginput Dialog allowing user input.
gbasicdialog Flexible modal dialog.
gfile File and directory selection dialog.

In the example, we use two non-modal dialogs: gfilebrowse to select a
directory; and galert to display a transient message, if no files are found
through our search. Here, we describe the dialogs that can be used to
display a message or gather a simple amount of text. The gfile dialog is
described in Section 4.4, and gbasicdialog, which is implemented like a
container, is described in Section 3.1.

The information dialogs are simple one-liners. For example, this com-
mand will cause a confirmation dialog to pop up that allows the user to
select a value which will be returned as TRUE or FALSE:

gconfirm ("Yes or no? Click one.")

The information dialogs have arguments message for a message; title
for the window title; and icon to specify an icon, whose value is one of
"info," "warning," "error," or "question". Buttons will appear at the
bottom of the dialog and are determined by choice of the constructor. The
parent argument is used to position the dialog near the gWidgets instance
specified. Otherwise, placement will be controlled by the window manager.

The dialogs, except for galert, have the standard handler and action
arguments for calling a handler, but typically it is easier to use the return
value when programming.

A message dialog The simplest dialog is produced by gmessage, which
displays a message. The user has a cancel button to dismiss the dialog.

For example,

gmessage ("Message goes here" , title = "example dialog")

An alert dialog The galert dialog is similar to gmessage except it is
meant to be less obtrusive, so it is non-modal. It does not take the focus
and it vanishes after a time delay.

34

2.5. Installation

Figure 2.3: The construction of a button widget in gWidgets requires
several steps

A confirmation dialog The constructor gconfirm produces a dialog that
allows the user to confirm the message. This dialog returns TRUE or FALSE
depending on the user’s selection.

Here we use the question icon for a confirmation dialog.

ret <- gconfirm ("Really delete file?" , icon = "question")

An input dialog The ginput constructor produces a dialog that allows
the user to input a single line of text. If the user confirms the dialog, the
value of the string is returned. If the user cancels the dialog through the
button, a value of NA is returned.

This illustrates how to use the return value.

ret <- ginput ("Enter your name" , icon = "info")
if (!is . na (ret))

message ("Hello" , ret , "\n")

2.5 Installation

The gWidgets package interfaces with an underlying R package through
an intermediate package. Figure 2.3 shows the sequence of calls to pro-
duce a button. First the gWidgets package dispatches to a toolkit package
(gWidgetsRGtk2), which in turn calls functions in the underlying R package
(RGtk2) which in turn calls into the graphical toolkit to produce an object.
This is then packaged into an S4 object to manipulate.3

As such, to use gWidgets with the GTK+ toolkit one must have installed
the GTK libraries, the RGtk2 package, the gWidgetsRGtk2 package and the
gWidgets package.

The difficulty for the end user is the installation of the graphic toolkit,
as all other packages are installed through CRAN or are recommended

3The S4 object consists of a gWidgets object and a toolkit reference. The gWidgets package
simply provides generic functions that dispatch down to a toolkit counterpart using this
S4 object. The actual class structure, methods, and their inheritance are within the toolkit
package. (This allows one to follow the class structure of the underlying graphical library.)
As such, gWidgets simply provides an interface (in the sense of constructors and methods to
implement) for the toolkit packages to implement. Any discussion to classes, methods, and
inheritance for gWidgets here then is for simplicity of exposition.

35

2. gWidgets: Overview

Table 2.4: Installation notes for GUI toolkits.

Gtk+ Qt Tk

Windows Installed by RGtk2 Included with qtbase In binary install of R
Linux Standard Standard Standard
OS X Download binary .pkg Vendor supplied In binary install of R

packages with an R installation (tcltk). Table 2.4 roughly describes the in-
stallation process for different operating systems and toolkits. For Windows
users, some details are linked to in the R for Windows FAQ.

Not all features of the gWidgets API are implemented for a toolkit.
In particular, the easiest-to-install toolkit package (gWidgetstcltk) might
have the fewest features, as the Tk libraries themselves do not have as many
features. The help pages in the gWidgets package describe the API, with
the help pages in the toolkit packages indicating differences or omissions
from the API (e.g. ?gWidgetsRGtk2-package). For the most part, omissions
are gracefully handled by simply providing less functionality.

36

3

gWidgets: Container Widgets

After identifying the underlying data to manipulate and deciding how to
represent it, GUI construction involves three basic steps:

• creation and configuration of the main components,

• the layout of these components, and

• connecting the components through callbacks to make a GUI interac-
tive.

This chapter discusses the layout process within gWidgets. Layout in
gWidgets is done by placing child components within parent containers,
which in turn may be nested in other containers.1 In our file-search exam-
ple from the previous chapter, we nested a framed box container inside a
paned container inside a top- level window.

The gWidgets package provides just a few types of containers: top-
level windows (gwindow), box containers (ggroup, gframe, gexpandgroup), a
grid container (glayout), a paned container (gpanedgroup), and a notebook
container (gnotebook). Figure 3.1 shows most of these employed to produce
a GUI to select and then show the contents of a file.

In some toolkits, notably tcltk, the widget constructors require the
specification of a parent container for the widget. To accommodate that,
the gWidgets constructors – except for top-level windows and dialogs –
have the argument container to specify the immediate parent. Within the
constructor is the call add(container, child, ...), where the constructor
creates the child and ... values are passed from the constructor down to
the add method. That is, the widget construction and layout are coupled
together. Although this isn’t necessary when utilizing RGtk2 or qtbase
– and the two aspects can be separated – for the sake of cross-toolkit
portability we do not illustrate this style here.

1This is more like GTK+, and not Qt, where layout managers control where the compo-
nents are displayed.

37

3. gWidgets: Container Widgets

Figure 3.1: The example browser for gWidgets showing different layout
components. The lower image shows the containers used.

38

3.1. Top-level windows

3.1 Top-level windows

The gwindow constructor creates top-level windows. The main window
property is the title, which is typically displayed in the window’s title
bar. This can be set during construction via the title argument or ac-
cessed later through the object’s svalue<- method. A basic window then
is constructed as follows:

window <- gwindow ("Our title" , visible = TRUE)

We can use this as a parent container for a constructor. For example:

label <- glabel ("A child label" , container = window)

However, top-level windows allow only one child component. Typically,
this child is a container, such as a box container, allowing for multiple
children.

The optional visible argument, used above with its default value
TRUE2, controls whether the window is initially drawn. If it’s not drawn, the
visible<- method, taking a logical value, can be used to draw the window
later. Often it is good practice to suppress the initial drawing, especially
for displaying GUIs with several controls, as the incremental drawing of
subsequent child components can make the GUI seem sluggish. As well,
this allows the underlying toolkit to compute the necessary size before it
is displayed.3

For example, a typical usage follows this pattern:

window <- gwindow ("Title" , visible = FALSE)
p e r f o r m l a y o u t h e r e . . .
visible (window) <- TRUE

Size and placement In GUI programming, a window geometry is a spec-
ification of position and size, often abbreviated w× h + x + y. The width
and height can be specified at construction through the width and height
arguments. This initial size is the default size but may be adjusted later
through the size method or through the window manager.

The initial placement of a window “x + y” will be decided by the
window manager, unless the parent argument is specified. If this is done
with a vector of x and y pixel values, the upper-left corner will be placed at
this point. The parent argument can also be another gwindow instance. In
this case, the new window will be positioned over the specified window
and be transient for the window. That is, it will be disposed when the

2If the option gWidgets:gwindow-default-visible-is-false is non NULL, then the
default will be FALSE.

3For gWidgetstcltk, the update method will initiate this recomputation. This may be
necessary to get the window to size properly.

39

3. gWidgets: Container Widgets

parent window is. This is useful, say, when a main window opens a dialog
window to gather values.

For example this call makes a child window of window with a square
size of 200 pixels.

child_window <- gwindow ("A child window" , parent = window ,
width = 200 , height = 200)

Handlers Windows objects can be closed programmatically through their
dispose method. Windows may also be closed through the window man-
ager with the click of a close icon in the title bar. The default event is the
close event. For example, the following will pop up any error messages
through a call to galert until the window is closed:

old_options <- options (error = function () {
if (msg <- geterrmessage () != "")

galert (msg , parent = window)
invisible (msg)

})
#
window <- gwindow ("Popup errors" , visible = FALSE ,

handler = function (h , . . .) {
r e s t o r e o l d o p t i o n s when gui i s c l o s e d
options (old_options)

})

To illustrate, we add a button to initiate an error:

button <- gbutton ("Click for error" , cont = window ,
handler = function (h , . . .) {

stop ("This is an error")
})

Clicking the button will signal an error, and the error handler will display
an alert pop-up. (This last part fails under tcltk due to that package’s
handling of errors in callbacks.)

The handler argument is called just before the window is destroyed,
but one cannot prevent that from happening. The addHandlerUnrealize
method can be used to call a handler between the initial click of the close
icon and the subsequent destroy event of the window. This handler must
return a logical value: if TRUE the window will not be destroyed; if FALSE
the window will be. For example:

window <- gwindow ("Close through the window manager")
id <- addHandlerUnrealize (window , handler = function (h , . . .) {

!gconfirm ("Really close" , parent = h$obj)
})

40

3.1. Top-level windows

Table 3.1: Constructors for container objects.

Constructor Description

gwindow Creates a top-level window.
ggroup Creates a box-like container.
gframe Creates a box container with a text label.
gexpandgroup Creates a box container with a label and a

trigger to expand/collapse.
glayout Creates a grid container.
gpanedgroup Creates a container for two child widgets

with a handle to assign allocation of space.
gnotebook Creates a tabbed notebook container for

holding a collection of child widgets.

In most GUIs, the use of menu bars, toolbars, and status bars is often
reserved for the main window, while dialogs are not decorated so. In
gWidgets it is suggested, although not strictly enforced unless done so by
the underlying toolkit, that these be added only to a top-level window. We
discuss these widgets later in Section 4.7.

A modal window

The gbasicdialog constructor allows one to place an arbitrary widget
within a modal window. It also adds OK and Cancel buttons, unless the
argument do.buttons is specified as FALSE. The argument title is used
to specify the window title.

As with the gconfirm dialog, this widget returns TRUE or FALSE de-
pending on the user’s selection. To do something more complicated than
gconfirm, a handler can be specified at construction. This is called just
before the dialog is disposed.

This dialog is used in a slightly different manner, requiring the use of a
call to visible (not visible<-). There are three basic steps: an initial call
to gbasicdialog to return a container to be used as the parent container
for a child component, a construction of the dialog, then a call to the vis-
ible method on the dialog with set=TRUE specified. The dialog is closed
through clicking one of its buttons, through a window manager event, or
programmatically through its dispose method.

In Example 4.6 we define a GUI to assist with the task of collapsing
factor levels. This wrapper function is used:

collapseFactor <- function (fac , parent = NULL) {
out <- character ()
window <-

gbasicdialog ("Collapse factor levels" , parent = parent ,

41

3. gWidgets: Container Widgets

Table 3.2: Container methods.

Method Description

add Adds a child object to a parent container.
Called when a parent container is specified
to the container argument of the widget
constructor, in which case the ... arguments
are passed to this method.

delete Removes a child object from a parent con-
tainer.

dispose Destroys container and children.
enabled<- Sets sensitivity of child components.
visible<- Hides or shows child components.

handler = function (h , . . .) {
new_fac <- relevel_factor$get_value ()
out <<- factor (new_fac)

})
group <- ggroup (cont = window)
relevel_factor <- CollapseFactor$new (fac , cont = group)
visible (window , set = TRUE)
out

}

By wrapping the gbasicdialog call within a function closure, we can
return the factor, not just a logical, so the above can be used as

mtcars$am <- collapseFactor (mtcars$am)

3.2 Box containers

The container produced by gwindow is intended to contain just a single
child widget, not several. This section demonstrates variations on box con-
tainers that can be used to hold multiple child components. Through nest-
ing, fairly complicated layouts can be produced.

The ggroup container

The basic box container is produced by ggroup. Its main argument is hor-
izontal to specify whether the child widgets are packed in horizontally
from left to right (the default) or vertically from top to bottom.

For example, to pack a cancel and ok button into a box container we
might have:

window <- gwindow ("Some buttons" , visible = FALSE)

42

3.2. Box containers

group <- ggroup (horizontal = TRUE , cont = window)
cancel_button <- gbutton ("cancel" , cont = group)
ok_button <- gbutton ("ok" , cont = group)
visible (window) <- TRUE

The add method When packing in child widgets, the add method is used.
In our example above, this is called by the gbutton constructor when the
container argument is specified.4 Unlike with the underlying graphical
toolkits, there is no means to specify other styles of packing, such as from
the ends, or in the middle, by some index.

The add method for box containers has a few arguments to customize
where the child widgets are placed and how they respond when their
parent window is resized. These are passed through the ... argument of
the constructor. Figure 3.2 shows some difference in how these arguments
are implemented.5

expand The underlying layout algorithms have a means to allocate space
to child widgets when the parent container expands to provide more
space than requested by the children. Those widgets which have ex-
pand=TRUE specified should get the excess space shared among them.
(This isn’t the case in gWidgetsQt, where a fill value needs to be
specified as well.)

fill, anchor When a child widget is placed into its allocated space, the
space is generally large enough to accommodate the child. If there
is additional space, it can be desirable that the widget grow to fill
the available space. The fill argument, taking a value of x, y, or
both (also TRUE) indicates how the widget should fill any additional
allocation (only when expand=TRUE).6

If a widget does not expand or if it does but does not fill in both
directions, it can be anchored into its available space in more than
one position. The anchor argument can be specified to suggest where
to anchor the child. It takes a numeric vector representing Cartesian

4In this text, the add method is typically called from the constructor, but there are two
cases for which one calls it directly. The first is if one wishes to integrate a widget from the
underlying graphical toolkit into a gWidgets GUI. An example where the tkrplot package
is embedded in a GUI is given in Section 5.1. The second case is when a widget is removed
from a GUI through delete. In most cases it may be added back in with add.

5These arguments are not implemented consistently across toolkits, as the underlying
toolkit may prevent it. For example, for RGtk2 the child widgets always fill in the direction
opposite of how they are added (horizontal widgets always fill top to bottom), whereas tcltk
widgets will fill only if the expand argument is TRUE.

6For GTK+, filling always occurs orthogonally to the direction of packing. This is why
the top and bottom buttons (when expand=FALSE) in Figure 3.2 for gWidgetsRGtk2 stretch
across the container. To avoid this filling, pack the button in a horizontal ggroup container.

43

3. gWidgets: Container Widgets

Figure 3.2: The expand, fill, and anchor arguments are implemented
slightly differently in the different packages. (gWidgetsRGtk2 on left,
gWidgetstctlk in middle, and gWidgetsQt on right.). For GTK+, child
components packed in a box container always fill in the direction
opposite the packing, in this case the “x” direction. As such, the anchor
directive has no effect. For tcltk a widget fills only if expand=TRUE is
given. For gWidgetsQt expansion and fill are linked together.

coordinates (length two), with either value being -1, 0, or 1. For
example, a value of c(1,1) would specify the northwest corner.

Deleting components The delete method can be used to remove a child
component from a container. In some toolkits, this child may be added back
at a later time (with add), but this isn’t part of the API. In the case where
you wish to hide a child temporarily, its visible<- method can usually be
used, although some widgets give this method a different meaning.7

Spacing For spacing between the child components, the constructor’s ar-
gument spacing may be used to specify, in pixels, the amount of space be-
tween the child widgets. For ggroup instances, this can later be set through
the svalue method. The method addSpace can add a non-uniform amount
of space between two widgets packed next to each other, whereas the
method addSpring will place an invisible spring between two widgets,
forcing them apart. Both are useful for laying out buttons. We used a
spring before the “source” button for the GUI in Figure 3.1 to push it to
the right.

For example, we might modify our button layout example to include
a “help” button on the far left and the other buttons on the right with a
fixed amount of space between them as follows (Figure 3.3):

window <- gwindow ("Some buttons" , visible = FALSE)
group <- ggroup (horizontal = TRUE , spacing = 6 , cont = window)
help_button <- gbutton ("help" , cont = group)
addSpring (group)

7In gWidgetstcltk the use of visible<- to hide a component is not supported.

44

3.2. Box containers

Figure 3.3: Button layout for RGtk2 (top), tcltk (middle), and qtbase
(bottom). Although the same code is used for each, the different styling
yields varying sizes.

cancel_button <- gbutton ("cancel" , cont = group)
addSpace (group , 12) # 6 + 12 + 6 p i x e l s
ok_button <- gbutton ("ok" , cont = group)
visible (window) <- TRUE

Sizing The overall size of a ggroup container is typically determined by
the way in which it is added to its parent. However, a requested size can
be assigned through the size<- method.

For some toolkits the argument use.scrollwindow, when specified as
TRUE, will add scroll bars to the box container so that a fixed size can be
maintained. Setting a requested size in this case is a good idea. (Although
it is generally considered a poor idea to use scroll bars when there is a
chance the key controls for a dialog will be hidden, this can be useful for
displaying lists of data.)

The gframe and gexpandgroup containers

We discuss briefly two widgets that provide the same interface as ggroup.
Much of the previous discussion applies.

Framed containers are used to link the child elements visually using a
border and label. The gframe constructor produces them. In Figure 3.1 the
table to select the file is nested in a frame to give the user some indication
as to what to do.

For gframe the first argument, text, is used to specify the label. This
can later be adjusted through the names<- method. The argument pos can
be specified to adjust the label’s positioning, with 0 being the left and 1
the right.

45

3. gWidgets: Container Widgets

The basic framed container is used along these lines:

window <- gwindow ("gframe example")
frame <- gframe ("gWidgets Examples:" , cont = window)
files <- list . files (system . file ("Examples" ,"ch-gWidgets" ,

package = "ProgGUIinR"))
vars <- gtable (files , cont = frame , expand = TRUE)

Expandable containers are useful when their child items need not be
visible all the time. The typical design involves a trigger icon with an
accompanying label indicating to the user that a click can disclose or hide
some additional information.8 This class overrides the visible<- method
to initiate the hiding or showing of its child area, not the entire container.

In addition, a handler can be added that is called whenever the widget
toggles its state.

Here we show how one might leave optional the display of a statistical
summary of a model.:

res <- lm (mpg ~ wt , mtcars)
out <- capture . output (summary (res))
##
window <- gwindow ("gexpandgroup example" , visible = FALSE)
exp_group <- gexpandgroup ("Summary" , cont = window)
label <- glabel (out , cont = exp_group)
visible (exp_group) <- TRUE # d i s p l a y summary
visible (window) <- TRUE

Separators Although not a container, the gseparator widget can be used
to place a horizontal or vertical line (with the horizontal=FALSE argument)
in a layout to separate parts of the GUI.

3.3 Grid layout: the glayout container

The layout of dialogs and forms is usually seen with some form of align-
ment between the widgets. The glayout constructor provides a grid con-
tainer to do so, using matrix notation to specify location of the children.

To see its use, we can lay out a simple form for collecting information,
as follows:

window <- gwindow ("glayout example" , visible = FALSE)
lyt <- glayout (cont = window , spacing = 5)
right <- c (1 , 0) ; left <- c (−1 ,0)
lyt [1 , 1 , anchor = right] <- "name"
lyt [1 , 2 , anchor = left] <- gedit ("George Washington" ,

8How each toolkit resizes after a the child widget collapses varies, so using this container
can cause layout issues if cross-toolkit portability is an issue.

46

3.4. Paned containers: the gpanedgroup container

cont = lyt)
#
lyt [2 , 1 , anchor = right] <- "rank"
lyt [2 , 2 , anchor = left] <- gedit ("General" , cont = lyt)
#
lyt [3 , 1 , anchor = right] <- "serial number"
lyt [3 , 2 , anchor = left] <- gedit ("1" , cont = lyt)
visible (window) <- TRUE

When adding a child, in addition to being on the left-hand side of the
[<- call, the glayout container should be specified as the widget’s parent
container.9 For convenience, if the right-hand side is a string, a label will
be generated. To align a widget within a cell, the anchor argument of the
[<-glayout method is used. The example above illustrates how this can be
used to achieve a center balance.

The constructor has a few arguments to configure the appearance of
the container. The spacing between each cell may be specified through the
spacing argument; the default is 10 pixels. A value of 5 is used above
to tighten up the display. To impose a uniform cell size, the homogeneous
argument can be specified with a value of TRUE. The default is FALSE.

As seen, children may be added to the grid at a specific row and
column. To specify this, R’s matrix notation, [<-, is used with the indices
reflecting the placement by row and column. A child may span more than
one row or column. The corresponding index should be a contiguous vector
of indices indicating so.

The [method may be used to return the children. This method returns
a single item, a list of items, or a matrix of items. The main properties of
the widgets in the above example can be returned through:

sapply (lyt [, 2] , svalue)

[1] "George Washington" "General" "1"

3.4 Paned containers: the gpanedgroup container

The gpanedgroup constructor produces a container that has two children
separated by a visual gutter, which can be adjusted by the user with a
mouse to allocate the space between them. Figure 3.1 uses such a container
to separate the file selection controls from those for file display. For this
container, the children are aligned side by side (by default) or top to
bottom, if the horizontal argument is given as FALSE.

9This is necessary only for the toolkits where a container must be specified, where the
right-hand side is used to pass along the parent information and the left-hand side is used
for the layout.

47

3. gWidgets: Container Widgets

To add children, the container should be passed as the parent during
the construction of each of the two child widgets. These might be other
container constructors, which is the typical usage for more complicated
layouts.

The main property of this container is the sash position, a value in [0,1].
This may be configured programmatically through the svalue<- method. A
value from 0 to 1 specifies the proportion of space allocated to the leftmost
(topmost) child. This specification works only after the containing window
is drawn, as the percentage is based on the size of the window.

A simplified version of the layout code in Figure 3.1 would be

examples <- system . file ("Examples" , "ch-gWidgets" ,
package = "ProgGUIinR")

files <- list . files (examples)
#
window <- gwindow ("gpanedgroup example" , visible = FALSE)
paned <- gpanedgroup (cont = window)
tbl <- gtable (files , cont = paned) # l e f t s i d e
txt_widget <- gtext ("" , cont = paned , expand = TRUE) # r i g h t
visible (window) <- TRUE
svalue (paned) <- 0 . 3 3 # a f t e r drawing

3.5 Tabbed notebooks: the gnotebook container

The gnotebook constructor produces a tabbed notebook container. The GUI
in Figure 3.1 uses a notebook to hold different text widgets, one for each
file being displayed.

The constructor has a few arguments, not all supported by each toolkit.
The argument tab.pos is used to specify the location of the tabs by as-
signing a value of 1 through 4, with 1 being the bottom, 2 the left side, 3
the top, and 4 the right side, with the default being 3 (similar numbering
as used in par). The closebuttons argument takes a logical value indicat-
ing whether the tabs should have close buttons on them. In this case, the
argument dontCloseThese can be used to specify which tabs, by index,
should not be closable.

Methods Pages are added through the add method for the notebook con-
tainer. The extra label argument is used to specify the tab label. (As add
is called implicitly when a widget is constructed, this argument is usually
passed to the constructor.)

The svalue method returns the index of the currently raised tab,
whereas svalue<- can be used to switch the page to the specified tab.
The currently shown tab can be removed using the dispose method. To
remove a different tab, use this method in combination with svalue<-.

48

3.5. Tabbed notebooks: the gnotebook container

(When removing many tabs, you will want to start from the end, as oth-
erwise the tab positions change during removal.)

From some viewpoint, the notebook widget is viewed as a vector of
child widgets, named according to the tab labels. As such, the [method
returns the child components (by index), the names method refers to the
tab names, and the length method returns the number of pages held by
the notebook.

Example 3.1: Tabbed notebook example
In the GUI of Figure 3.1, a notebook is used to hold differing pages. The
following is the basic setup used:

window <- gwindow ("gnotebook example")
notebook <- gnotebook (cont = window)

New pages are added as follows:

add_a_page <- function (file_name) {
f <- system . file (file_name , package = "ProgGUIinR")
gtext (paste (readLines (f) , collapse="\n") ,

cont = notebook , label = file_name)
}
add_a_page ("DESCRIPTION")

For pages holding more than one widget, a container is used:

lyt <- glayout (cont = notebook , horizontal = FALSE ,
label = "Help")

lyt [1 , 1] <- gimage ("help" , dir = "stock" , cont = lyt)
lyt [1 , 2] <- glabel (paste ("To add a page:" ,

"Click on a file in the left pane, and its contents" ,
"are displayed in a notebook page." , sep = "\n") ,
cont = lyt)

To manipulate the displayed pages, say to set the page to the last one,
we have:

svalue (notebook) <- length (notebook)

To remove the current page:

dispose (notebook)

49

This page intentionally left blankThis page intentionally left blank

4

gWidgets: Control Widgets

This chapter discusses the basic GUI controls provided by gWidgets. We
defer discussion of the R-specific widgets to the next chapter.

4.1 Buttons

The button widget allows a user to initiate an action through clicking on
it. Buttons have labels, conventionally verbs, indicating action, and often
icons. The gbutton constructor has an argument text to specify the text.
For text that matches the stock icons of gWidgets (Section 4.2), an icon will
appear. (The ok button below, but not the parButton one.)

In common with the other controls, the argument handler is used to
specify a callback, and the action argument will be passed along to this
callback (unless it is a gaction object, whose case is described in Sec-
tion 4.7). The default handler is the click handler, which can be specified
at construction, or afterward through addHandlerClicked.

The following example shows how a button can be used to call a sub-
dialog to collect optional information. We imagine this as part of a dialog
to generate a plot.

window <- gwindow ("Make a plot")
group <- ggroup (horizontal = FALSE , cont = window)
glabel ("... Fill me in ..." , cont = group)
button_group <- ggroup (cont = group)
addSpring (button_group)
parButton <- gbutton ("par (mfrow) ..." , cont = button_group)

Our callback opens a subwindow to collect a few values for the mfrow
option.

addHandlerClicked (parButton , handler = function (h , . . .) {
child <- gwindow ("Set par values for mfrow" , parent = window)
lyt <- glayout (cont = child)
lyt [1 , 1 , align = c (−1 ,0)] <- "mfrow: c(nr,nc)"
lyt [2 , 1] <- (nr <- gedit (1 , cont = lyt))
lyt [2 , 2] <- (nc <- gedit (1 , cont = lyt))

51

4. gWidgets: Control Widgets

Table 4.1: Table of constructors for control widgets in gWidgets. Most, but
not all, are implemented for each toolkit.

Constructor Description

glabel A text label.
gbutton A button to initiate an action.
gcheckbox A checkbox.
gcheckboxgroup A group of checkboxes.
gradio A radio button group.
gcombobox A drop-down list of values, possibly editable.
gtable A table (vector or data frame) of values for selection.
gslider A slider to select from a sequence value.
gspinbutton A spinbutton to select from a sequence of values.
gedit Single line of editable text.
gtext Multiline text edit area.
ghtml Display text marked up with HTML.
gdf Data frame viewer and editor.
gtree A display for hierarchical data.
gimage A display for icons and images.
ggraphics A widget containing a graphics device.
gsvg A widget to display SVG files.
gfilebrowse A widget to select a file or directory.
gcalendar A widget to select a date.
gaction A reusable definition of an action.
gmenubar Add a menu bar to a top-level window.
gtoolbar Add a toolbar to a top-level window.
gstatusbar Add a status bar to a top-level window.
gtooltip Add a tooltip to a widget.
gseparator A widget to display a horizontal or vertical line.

lyt [3 , 2] <-
gbutton ("ok" , cont = lyt , handler =

function (h , . . .) {
x <- as . numeric (c (svalue (nr) , svalue (nc)))
par (mfrow = x)
dispose (child)

})
})

The button’s label is its main property and can be queried or set with
svalue or svalue<-. Most GUIs will make a button insensitive to user
input if the button’s action is not currently permissible. Toolkits draw such
buttons in a grayed-out state. As with other components, the enabled<-
method can set or disable whether a widget can accept input.

52

4.2. Labels

4.2 Labels

The glabel constructor produces a basic label widget. We’ve already seen
its use in a number of examples. The main property, the label’s text, is
specified through the text argument. This is a character vector of length 1
or is coerced into one by collapsing the vector with newlines. The svalue
method will return the label text as a single string, whereas the svalue<-
method is available to set the text programmatically. The font<- method
can also be used to set the text markup (Table 4.3).1

To make a form’s labels have some emphasis we could do:

window <- gwindow ("label example")
frame <- gframe ("Summary statistics:" , cont = window)
lyt <- glayout (cont = frame)
lyt [1 , 1] <- glabel ("xbar:" , cont = lyt)
lyt [1 , 2] <- gedit ("" , cont = lyt)
lyt [2 , 1] <- glabel ("s:" , cont = lyt)
lyt [2 , 2] <- gedit ("" , cont = lyt)
sapply (lyt [, 1] , function (i) {

font (i) <- c (weight = "bold" , color = "blue")
})

The widget constructor also has the argument editable, which, when
specified as TRUE, will add a handler to the event so that the text can be
edited when the label is clicked. Although this is popular in some familiar
interfaces, such as a spreadsheet tab, it has not proven to be intuitive to
most users, as labels are not generally expected to change.

HTML text

Not all toolkits have the native ability, but for those that do (Qt), the ghtml
constructor allows HTML-formatted text to be displayed, in a manner
similar to glabel. This widget is intended simply for displaying HTML-
formatted pages. There are no methods for handling the clicking of links,
etc.

Status bars

In gWidgets, status bars are simply labels placed at the bottom of a top-
level window to leave informative, but non-disruptive, messages for the
user. The gstatusbar constructor provides this widget. The container ar-
gument should be a top-level window instance. The only property is the

1For some of the underlying toolkits, setting the argument markup to TRUE allows a native
markup language to be used (GTK+ has PANGO, Qt has rich text).

53

4. gWidgets: Control Widgets

label’s text. This may be specified at construction with the argument text.
Subsequent changes are made through the svalue<- method.

Icons and images

The gWidgets package provides a few stock icons that can be added to
various GUI components. A list of the defined stock icons is returned by
the function getStockIcons. The names attribute defines the valid stock
icon names. It was mentioned that if a button’s label text matches a stock
icon name, that icon will appear adjacent to the label.

Other graphic files and the stock icons can be displayed by the gimage
widget.2 The file to display is specified through the filename argument of
the constructor. This value is combined with that of the dirname argument
to specify the file path. Stock icons are specified by using their name for
the filename argument and the character string "stock" for the dirname
argument.3

The svalue<- method is used to change the displayed file. In this case,
a full path name or the stock icon name, is specified.

The default handler is a button-click handler.

To illustrate, a simple means to embed a graph within a GUI is as
follows:

f <- tempfile ()
png (f) # not g W i d g e t s t c l t k !
hist (rnorm (1 0 0))
dev . off ()
#
window <- gwindow ("Example to show a graphic")
gimage (basename (f) , dirname (f) , cont = window)

More stock icon names may be added through the function addStock-
Icons. This function requires a vector of stock icon names and a vector of
corresponding file paths, and is illustrated through the following example.

Example 4.1: Adding and using stock icons
This example shows how to add to the available stock icons and use gimage
to display them. It creates a table (Figure 4.1) to select a color from, as an
alternative to a more complicated-color chooser dialog.4

We begin by defining 16 arbitrary colors.

2Not all file types can be displayed by each toolkit. In particular, gWidgetstcltk can
display only gif, ppm, and xbm files.

3For gWidgetsRGtk2, the size of a stock icon can be adjusted through the size argument,
with a value from "menu", "small_toolbar", "large_toolbar", "button", or "dialog".

4If gWidgetstcltk is used the image files would need to be converted to gif format, as
png format is not a natively supported image type.

54

4.2. Labels

Figure 4.1: A table of stock icons created on the fly.

some_colors <- c ("black" , "red" , "blue" , "brown" ,
"green" , "yellow" , "purple" ,
paste ("grey" , seq . int (1 0 , 9 0 , by=10) , sep = ""))

This is the function that is used to create an icon file. We use some
low-level grid functions to draw the image to a png file.

require (grid)
icon_dir <- tempdir () ; iconSize <- 1 6 ;
make_color_icon <- function (i) {

filename <- file . path (icon_dir ,
sprintf ("color-%s.png" , i))

png (file = filename , width = iconSize , height = iconSize)
grid . newpage ()
grid . draw (rectGrob (gp = gpar (fill = i)))
dev . off ()
return (filename)

}

To add the icons, we need to define the stock names and the file paths
for addStockIcons.

icons <- sapply (some_colors , make_color_icon)
icon_names <- sprintf ("color-%s" , some_colors)
addStockIcons (icon_names , icons)

We use a table layout to show the 16 colors. As an illustration of
assigning a handler for a click event, we assign one that returns the corre-
sponding stock icon name.

window <- gwindow ("Icon example" , visible=FALSE)
callback <- function (h , . . .) galert (h$action , parent = window)
lyt <- glayout (cont = window , spacing = 0)
for (i in 1 : 4) {

for (j in 1 : 4) {
ind <- (i − 1) * 4 + j

55

4. gWidgets: Control Widgets

lyt [i , j] <- gimage (icons [ind] , handler = callback ,
action = icon_names [ind] , cont = lyt)

}
}
visible (window) <- TRUE

SVG graphics Finally, we mention that the gsvg constructor is similar to
gimage, but allows us to display SVG files, as produced by the svg driver,
say. It currently is not available for gWidgetsRGtk2 and gWidgetstcltk.

4.3 Text-editing controls

The gWidgets package, following the underlying toolkits, has two main
widgets for editing text: gedit for a single line of editable text and gtext
for multiline, editable text. Each is simple to use but provides much less
flexibility than is possible with the toolkit widgets.

Single-line, editable text

The gedit constructor produces a widget to display a single line of editable
text. The main property is the text, which can be set initially through the
text argument. If not specified, and the argument initial.msg is, then
this initial message is shown until the widget receives the focus to guide
the user. If it is desirable to set the width of the widget, the width argu-
ment allows the specification in terms of number of characters allowed to
display without horizontal scrolling. The width of the widget may also be
specified in pixel size through the size<- method.

A simple usage might be:

window <- gwindow ("Simple gedit example" , visible = FALSE)
group <- ggroup (cont = window)
entry <- gedit ("" , initial . msg = "Enter your name..." ,

cont = group)
visible (window) <- TRUE

Methods The text is returned by the svalue method and may be set
through the svalue<- method. The svalue method will return a character
vector by default. However, it may be desirable to use this widget to
collect numeric values or perhaps some other type of variable. We could
write code to coerce the character to the desired type, but it is sometimes
convenient to have the return value be a certain non-character type. In this
case, the coerce.with argument can be used to specify a function of a
single argument to call before the value is returned by svalue.

56

4.3. Text-editing controls

The visible method is overridden to mask out the letters in the field,
not to hide the component. This allows us to use the widget to collect
passwords.

Auto completion The underlying toolkits offer some form of auto com-
pletion where the entered text is matched against a list of values. These val-
ues anticipate what a user wishes to type and a simple means to complete
an entry is offered. The [<- method allows these values to be specified
through a character vector, as in obj[] <- values.

For example, the following can be used to collect one of the fifty state
names in the United States:

window <- gwindow ("gedit example" , visible = FALSE)
group <- ggroup (cont = window)
glabel ("State name:" , cont = group)
entry <- gedit ("" , cont = group)
entry [] <- state . name
visible (window) <- TRUE

Handlers The default handler for the gedit widget is called when the
text area is activated by the return key being pressed. Use addHandlerBlur
to add a callback for the event of losing focus. The addHandlerKeystroke
method can assign a handler to be called when a key is released. For the
toolkits that support it, the specific key is given in the key component of
the list h (the first argument).5

Example 4.2: Validation
GUIs for R may differ a bit from many GUIs users typically interact with, as
R users expect to be able to use variables and expressions whereas typically
a GUI expects just characters or numbers. As such, it is helpful to indicate
to the user whether a value is a valid expression. This example shows
how to implement a validation framework on a single-line edit widget so
that the user has feedback when an expression will not evaluate properly.
When the value is invalid we set the text color to red.

window <- gwindow ("Validation example")
lyt <- glayout (cont = window)
lyt [1 , 1] <- "R expression:"
lyt [1 , 2] <- (entry <- gedit ("" , cont = lyt))

We use the evaluate package to see if the expression is valid.6

5There are differences in what keys are returned. Currently, only the letter keys are
consistently given. In particular, no modifier keys or other keys are returned.

6The basic way to evaluate an R expression given as a string is to use the combination
of eval and parse, as in eval(parse(text=string)). The resulting output can usually be

57

4. gWidgets: Control Widgets

require (evaluate)
isValid <- function (e) {

out <- try (evaluate : : : evaluate (e) , silent=TRUE)
! (inherits (out , "try-error") || is (out [[2]] , "error"))

}

We validate our expression when the user commits the change by press-
ing the return key while the widget has focus.

addHandlerChanged (entry , handler = function (h , . . .) {
cur_val <- svalue (entry)
if (isValid (cur_val)) {

font (entry) <- c (color = "black")
} else {

font (entry) <- c (color = "red")
}

})

Multiline, editable text

The gtext constructor produces a multiline text-editing widget with scroll
bars to accommodate large amounts of text. The text argument is for
specifying the initial text. The initial width and height can be set through
similarly named arguments. For widgets with scroll bars, specifying an
initial size is usually required, as there is otherwise no indication as to
how large the widget should be.

The svalue method retrieves the text stored in the buffer. If the argu-
ment drop=TRUE is specified, then only the currently selected text will be
returned. Text in multiple lines is returned as a single string with "\n"
separating the lines.

The contents of the text buffer can be replaced with the svalue<-
method. To clear the buffer, the dispose method may be used. The insert
method adds text to a buffer. The signature is insert(obj, text, where,
font.attr) where text is a character vector. New text is added to the end
of the buffer by default, but the where argument can specify "beginning"
or "at.cursor".

Fonts Fonts can be specified for the entire buffer or the selection using
the specifications in Table 4.3. To specify fonts for the entire buffer, use
the font.attr argument of the constructor. The font<- method serves the
same purpose, provided there is no selection when it is called. If there is a

captured with the capture.output function. However, there can be errors: parse errors or
otherwise. A few packages provide functions to assist with this task, notably the evaluate
function in the same-named evaluate package, and the parseText and captureAll functions
in the svMisc package. We illustrate both in this part of the text.

58

4.3. Text-editing controls

Table 4.2: Possible specifications for setting font properties. Font values of
an object are changed with named lists, as in
font(obj)<-list(weight="bold", size=12, color="red").

Attribute Possible value

weight light, normal, bold
style normal, oblique, italic
family normal, sans, serif, monospace
size a point size, such as 12
color a named color

Figure 4.2: Dumbing down R with gWidgets to make a calculator
interface.

selection, the font change will be applied only to the selection. Finally, the
font.attr argument for the insert method specifies the font attributes for
the inserted text.

As with gedit, the addHandlerKeystroke method sets a handler to be
called for each keystroke. This is the default handler.

Example 4.3: A calculator
This example shows how we might use the widgets just discussed to make
a GUI that resembles a calculator (Figure 4.2). Such a GUI may offer
familiarity to new R users, although certainly it is no replacement for a
command line.

The glayout container is used to arrange the widgets neatly. This ex-
ample illustrates how a child widget can span a block of multiple cells
by using the appropriate indexing. Furthermore, the spacing argument is

59

4. gWidgets: Control Widgets

used to tighten up the appearance. The example also illustrates a useful
strategy: storing the widgets using a list for subsequent manipulations.

The following sets up the layout of the display and buttons:

buttons <- rbind (c (7 : 9 , "(" , ")") ,
c (4 : 6 , "*" , "/") ,
c (1 : 3 , "+" , "-"))

#
window <- gwindow ("glayout for a calculator" , visible = FALSE)
group <- ggroup (cont = window , expand = TRUE , horiz = FALSE)
lyt <- glayout (cont = group , spacing = 2)
lyt [1 , 1 : 5 , anchor = c (−1 ,0)] <- # span 5 columns

(eqn_area <- gedit ("" , cont = lyt))
lyt [2 , 1 : 5 , anchor = c (1 , 0)] <-

(output_area <- glabel ("" , cont = lyt))
#
button_list <- list ()
for (i in 3 : 5) {

for (j in 1 : 5) {
val <- buttons [i−2, j]
lyt [i , j] <- (button_list [[val]] <- gbutton (val , cont=lyt))

}
}
lyt [6 , 2] <- (button_list [["0"]] <- gbutton ("0" , cont = lyt))
lyt [6 , 3] <- (button_list [["."]] <- gbutton ("." , cont = lyt))
lyt [6 , 4 : 5] <- (eq_button <- gbutton (" = " , cont = lyt))
#
visible (window) <- TRUE

This code defines the handler for each button except the equals button
and then assigns the handler to each button. This is done efficiently, using
the generic addHandlerChanged. The handler simply pastes the text for
each button into the equation area.

add_button <- function (h , . . .) {
cur_expr <- svalue (eqn_area)
new_char <- svalue (h$obj) # t h e but ton ’ s v a l u e
svalue (eqn_area) <- paste (cur_expr , new_char , sep = "")
svalue (output_area) <- "" # c l e a r l a b e l

}
sapply (button_list , addHandlerChanged , handler = add_button)

When the equals sign is clicked, the expression is evaluated, and, if
there are no errors, the output is displayed in the label.

require (evaluate)
addHandlerClicked (eq_button , handler = function (h , . . .) {

curExpr <- svalue (eqn_area)
out <- try (evaluate : : : evaluate (curExpr) , silent = TRUE)

60

4.4. Selection controls

if (inherits (out , "try-error")) {
galert ("Parse error" , parent = eq_button)

} else if (is (out [[2]] , "error")) {
msg <- sprintf ("Error: %s" , out [[2]] $message)
galert (msg , parent = eq_button)

} else {
svalue (output_area) <- out [[2]]
svalue (eqn_area) <- "" # r e s t a r t

}
})

4.4 Selection controls

A common task for a GUI control is to select a value or values from a set
of numbers or a table of numbers. Figure 4.3 shows a simple GUI for the
EBImage package allowing a user to adjust a few of the image properties
using various selection widgets. Although it is unlikely we would use R for
such a task, as opposed to Gimp, say, we use this example, as the mapping
between controls and actions should be familiar.

In gWidgets the abstract view for selection widgets is that the user is
choosing from a set of items stored as a vector (or data frame). The familiar
R methods are used to manipulate this underlying data store. The controls
in gWidgets that display such data have the methods [, [<-, length, dim,
names, and names<-, as appropriate. The svalue method then refers to the
user-selected value. This selection may be a value or an index, and the
svalue method has the argument index to specify which.

This section discusses several such selection controls, which serve a
similar purpose but make different use of screen space.

Checkbox widget

The simplest selection control is the checkbox widget that allows the user
to set a state as TRUE or FALSE. The constructor has an argument text to
set a label and checked to indicate whether the widget should initially be
checked. The default is TRUE (there is no third, uncommitted state as is
possible with some toolkits). By default the label will be drawn aside a
box that the user can check. If the argument use.togglebutton is TRUE, a
toggle button – which appears depressed when TRUE – is used instead.

In Figure 4.3, a toggle button is used for “Thresh” and could be con-
structed as

window <- gwindow ("Checkbox example with toggle button")
check_box <- gcheckbox ("Thresh" , checked = TRUE ,

use . togglebutton = TRUE , cont = window)

61

4. gWidgets: Control Widgets

Figure 4.3: A simple GUI for the EBImage package illustrating many
selection widgets.

The svalue method returns a logical indicating whether the widget is
in the checked state. Use svalue<- to set the state. The label’s value is
returned by the [method, and can be adjusted through [<-. (We take the
abstract view that the user is selecting, or not, from the length-1 vector, so
[is used to set the data to select from.)

The default handler would be when the state toggles. If it is desired
that the handler be called only in the TRUE state, say, we need to check
within the handler for this. For example:

window <- gwindow ("checkbox example")
check_button <- gcheckbox ("label" , cont = window ,

handler = function (h , . . .) {
if (svalue (h$obj)) # i t i s c h e c k e d

print ("define handler here")
})

Radio buttons

A radio-button group allows the user to choose one of a few items. A radio-
button group object is returned by gradio. The items to choose from are
specified as a vector of values to the items argument (two or more). These
items may be displayed horizontally or vertically (the default) as specified
by the horizontal argument, which expects a logical. The selected argu-

62

4.4. Selection controls

ment specifies the initially selected item, by index, with a default of the
first.

In Figure 4.3 a radio button is used for ColorMode and could be con-
structed as

window <- gwindow ("Radio button example")
radio_button <- gradio (c ("Color" , "Grayscale") , selected = 2 ,

horizontal = FALSE , cont = window)

The currently selected item is returned by svalue as the label text or
by the index if the argument index is TRUE. The item may be set with the
svalue<- method. Again, the item may be specified by the label or by an
index, the latter when the argument index=TRUE is specified.

The data store is the set of labels and may be respecified with the [<-
method.

The handler, if given to the constructor or set with addHandlerChanged,
is called on a toggle event.

A group of checkboxes

A group of checkboxes is produced by the gcheckboxgroup constructor.
This convenience widget is similar to a radio group, except that it allows
the selection of none, one, or more than one of a set of items. The items
argument is used to specify the values. The state of whether an item is
selected can be set with a logical vector of the same size as the number
of items to the checked argument; recycling is used. The item layout can
be controlled by the horizontal argument. The default is a vertical layout
(horizontal=FALSE).

For some toolkits, the argument specification use.table=TRUE will ren-
der the widget in a table with checkboxes to select from. This allows much
larger sets of items to be used comfortably, as there is a scroll bar pro-
vided. (This offers a similar functionality to using the gtable widget with
multiple selection.)

In Figure 4.3 a group of check boxes is used to allow the user to flip
or flop the image. It could be created with

window <- gwindow ("Checkbox group example")
check_box_group <-

gcheckboxgroup (c ("Flip" ,"Flop") , horizontal = FALSE ,
checked = c (FALSE , TRUE) , cont = window)

The current selection is retrieved as a character vector through the
svalue method. The index=TRUE argument instructs svalue to return the
selected indices instead. These are 0-length if no selection is made. As a
checkbox group is like both a checkbox and a radio button group, we can
set the selected values three different ways. As with a checkbox, the se-
lected values can be set by specifying a logical vector through the svalue<-

63

4. gWidgets: Control Widgets

method. As with radio-button groups, the selected values can also be set
with a character vector indicating which labels should be selected, or if
index=TRUE is given, using a numeric index vector.

That is, each of these has the same effect:

svalue (check_box_group) <- c ("Flop")
svalue (check_box_group) <- c (FALSE , TRUE)
svalue (check_box_group , index = TRUE) <- 2

The labels are returned through the [method and, if the underlying
toolkit allows it, set through the [<- method. As with gradio, the length
method returns the number of items.

A combo box

Combo boxes are constructed by gcombobox.7 As with the other selection
widgets, the choices are specified to the argument items. However, this
may be a vector of values or a data frame in which the first column defines
the choices. For toolkits that support icons in the combo box widget, if the
data is specified as a data frame, the second column may be used signify
a stock icon to decorate the selection, and, by design (but implemented
only for gWidgetsQt), a third column specifies a tooltip to appear when
the mouse hovers over a possible selection.

The combo box in Figure 4.3 could be coded with:

window <- gwindow ("gcombobox example")
combo_box <- gcombobox (c ("None" ,"Low" ,"High") , cont = window)

This example shows how to create a combo box to select from the
available stock icons. For toolkits that support icons in a combo box, the
icons appear next to the label.

nms <- getStockIcons () # gWidgets i c o n s
DF <- data . frame (names = names (nms) , icons = names (nms) ,

stringsAsFactors = FALSE)
window <- gwindow ("Combo box with icons example")
combo_box <- gcombobox (DF , cont = window)

The argument editable accepts a logical value indicating whether the
users can supply their own values by typing into a text-entry area. The
default is FALSE. When editing is possible, the constructor, like gedit, also
supports the coerce.with argument.

7Some make a distinction between drop-down lists and combo boxes, the latter allowing
editing. We don’t here, although we note that the constructor gdroplist is an alias for
gcombobox.

64

4.4. Selection controls

Figure 4.4: GUI used to collect arguments for a call to mean.default.

Methods The currently selected value is returned through the svalue
method. If index is TRUE, the index of the selected item is given, if possible.
The value can be set by its value through the svalue<- method, or by index
if index is TRUE. The [method returns the items of the data store, and [<-
is used to assign new values to the data store. The value may be a vector,
or a data frame if an icon or tooltip is being assigned. The length method
returns the number of possible selections.

The default handler is called when the state of the widget is changed.
This is also aliased to addHandlerClicked. When editable is TRUE, then
the addHandlerKeystroke method sets a handler to respond to keystroke
events.

Example 4.4: Updating combo boxes
A common feature in many GUIs is to have one combo box update another
once a selection is made. The following example employs this design to
create a simple GUI for collecting the arguments for computing the mean
of a numeric variable (Figure 4.4).

We make use of the functions from the ProgGUIinR package in the
following commands to return character vectors of data frame names and
numeric variables.

avail_DFs <- function () {
c ("" , ".GlobalEnv" , ProgGUIinR : : : avail_dfs (. GlobalEnv))

}

get_numeric <- function (where) {
val <- get (where , envir = . GlobalEnv)
ProgGUIinR : : : find_vars (val , is . numeric)

}

Our layout uses nested groups and a glayout container.

window <- gwindow ("Find the mean" , visible = FALSE)

65

4. gWidgets: Control Widgets

group <- ggroup (cont = window , horizontal = FALSE)
group1 <- ggroup (cont = group)
glabel ("Select data frame:" , cont = group1)
df_combo_box <- gcombobox (avail_DFs () , cont = group1)
##
frame <- gframe ("Arguments:" , cont = group , horizontal=FALSE)
enabled (frame) <- FALSE
lyt <- glayout (cont = frame , expand = TRUE)
widget_list <- list ()
##
lyt [1 , 1] <- "x"
lyt [1 , 2] <- (widget_list$x <- gcombobox (" " ,

cont = lyt))
##
lyt [2 , 1] <- "trim"
lyt [2 , 2] <-

(widget_list$trim <- gslider (from = 0 , to = 0 . 5 , by = 0 . 0 1 ,
cont = lyt))

##
lyt [3 , 1] <- "na.rm"
lyt [3 , 2] <-

(widget_list$na . rm <- gcheckbox ("" , checked = TRUE ,
cont = lyt))

group2 <- ggroup (cont = group)
compute_button <- gbutton ("compute" , cont = group2)

We stored the primary widgets in a list with names matching the argu-
ments to our function, mean.default. As well, the initial argument to the
x combo box pads out the width under some toolkits.

Here is how we update the x combo box when the combo box for data-
frame selection is changed. If there is a value, we enable our widgets and
then populate the secondary combo box with the names of the numeric
variables.

addHandlerChanged (df_combo_box , handler = function (h , . . .) {
val <- svalue (h$obj)
enabled (frame) <- val !=""
enabled (compute_button) <- val != ""
if (val != "")

widget_list$x [] <- get_numeric (val)
svalue (widget_list$x , index = TRUE) <- 0

})

As we stored the widgets in an appropriately named list, we can conve-
niently use do.call (below) to write the callback for the compute_button
button in just a few lines. The only trick is to replace the variable name
with its actual value.

addHandlerChanged (compute_button , handler = function (h , . . .) {

66

4.4. Selection controls

out <- lapply (widget_list , svalue)
out$x <- get (out$x , get (svalue (df_combo_box) ,

envir = . GlobalEnv))
print (do . call (mean . default , out))

})

A slider control

The gslider constructor creates a scale widget that allows the user to select
a value from the specified sequence. The basic arguments mirror that of
the seq function in R: from, to, and by. However, if from is a vector, then it
is assumed it presents an ordered sequence of values from which to select.
In addition to the arguments to specify the sequence, the argument value
is used to set the initial value of the widget, and horizontal controls how
the slider is drawn, TRUE for horizontal, FALSE for vertical.

In Figure 4.3, a slider is used to update the brightness. The call is
similar to:

window <- gwindow ("Slider example")
brightness <- gslider (from = −1, to = 1 , by = . 0 5 , value = 0 ,

handler = function (h , . . .) {
cat ("Update picture with brightness" , svalue (h$obj) , "\n")

} , cont = window)

The svalue method returns the currently chosen value. The [<- method
can be used to update the sequence of values from which to choose.

In Figure 4.3, the gWidgetsRGtk2 package is used. That toolkit shows a
tooltip with the current value; for other toolkits the slider implementation
does not show the value. We can add a label to show this (or combine the
slider with a spin button). Adding a label follows this pattern:

window <- gwindow ("Add a label to the slider" , visible=FALSE)
group <- ggroup (cont = window , expand = TRUE)
slider <- gslider (from = 0 , to = 100 , by = 1 , cont = group ,

expand = TRUE)
label <- glabel (sprintf ("%3d" , svalue (slider)) , cont = group)
font (label) <- c (family = "monospace")
addHandlerChanged (slider , function (h , . . .) {

svalue (h$action) <- sprintf ("%3d" , svalue (h$obj))
} , action = label)

visible (window) <- TRUE

(Using sprintf and monospace ensures the label takes a fixed amount of
space.)

67

4. gWidgets: Control Widgets

A spin button control

The spin button control constructed by gspinbutton is similar to gslider
when used with numeric data but presents the user a more precise way to
select the value. The from, to, and by arguments must be specified. The
argument digits specifies the number of digits displayed.

In Figure 4.3 a spin button is used to adjust the contrast, which expects
a numeric value. The following will reproduce it:

window <- gwindow ("Spin button example")
spin_button <- gspinbutton (from = 0 , to = 10 , by = . 0 5 ,

value = 1 , cont = window)

Selecting from the file system

The gfile dialog allows us to select a file or directory from the file system.
This is a modal dialog, which returns the name of the selected file or
directory. The gfilebrowse constructor creates a widget with a button that
initiates this selection.

The “Open” button in Figure 4.3 is bound to this action:

f <- gfile ("Open an image file" ,
type="open" ,
filter=list ("Image file" = list (

patterns = c ("*.gif" , "*.jpg" , "*.png")
) ,

"All files" = list (patterns = c ("*"))
))

if (!is . na (f))
readImage (f) ## . . .

The selection type is specified by the type argument with values of open
to select an existing file, save to select a file to write to, and selectdir
to select a directory. The filter argument is toolkit dependent. For RGtk2,
the filter argument used above will filter the possible selections. The
dialog returns the path of the file, or NA if the dialog was canceled.

Although working with the return value is easy enough, if desired, we
can specify a handler to the constructor to call on the file or directory
name. The component file of the first argument to the handler contains
the file name.

Selecting a date

The gcalendar constructor returns a widget for selecting a date. If there
is a native widget in the underlying toolkit, this will be a text area with
a button to open a date-selection widget. Otherwise it is just a text-entry

68

4.4. Selection controls

Figure 4.5: File-search dialog showing advanced search features.

widget. The argument text argument specifies the initial text. The format
of the date is specified by the format argument.

The methods for the widget inherit from gedit. In particular, the svalue
method returns the text in the text box as a character vector formatted by
the value specified by the format argument. To return a value of a different
class, pass a function, such as as.Date, to the coerce.with argument.

Example 4.5: Selecting from a file system
We return to the file-selection GUI used as an example in Chapter 2. Our
goal here is to add more features to support advanced searching. Imagine
we have a function file_search, which in addition to arguments for a
pattern and directory, has arguments modified to pass a date string; size
to pass a descriptive small, medium or large; and an argument visible to
indicate whether all files (including dot files) should be looked at.

We want to update our GUI to collect values for these. Since these are
advanced options, we want the user to have access only on request. We
use gexpandgroup to provide this. Here we define the additional code for
the layout:

adv_search <- gexpandgroup ("Advanced search:" ,
cont = nested_group)

visible (adv_search) <- FALSE
lyt <- glayout (cont = adv_search)
lyt [1 , 1] <- "Recursive"
lyt [1 , 2] <- (adv_rec <-

gcheckbox ("search directories" , checked = TRUE , cont=lyt))
lyt [2 , 1] <- "Size"
lyt [2 , 2] <- (adv_size <-

gcombobox (c ("" , "small" , "medium" , "large") , cont = lyt))
lyt [3 , 1] <- "All files"
lyt [3 , 2] <- (adv_visible <-

gradio (c (TRUE , FALSE) , horizontal = TRUE , cont = lyt))

69

4. gWidgets: Control Widgets

lyt [4 , 1] <- "Last modified"
lyt [4 , 2] <- (adv_modified <-

gcalendar ("" , format = "%Y-%m-%d" , cont = lyt))

As can be seen (Figure 4.5), we use a grid layout and a mix of the controls
offered by gWidgets.

We modify our button handler so that it uses these values, if specified.

addHandlerChanged (search_btn , handler=function (h , . . .) {
pattern <- glob2rx (svalue (txt_pattern))
start_at <- svalue (start_dir)
modified <- NULL
size <- NULL

from advanced
subfolders <- svalue (adv_rec)
visible <- svalue (adv_visible)
if ((tmp <- svalue (adv_size)) != "") size <- tmp
if (!is . na (tmp <- svalue (adv_modified))) modified <- tmp

f u n c t i o n c a l l
file_names <- file_search (pattern , start_at , subfolders ,

modified = modified ,
size = size , visible = visible)

dispose (search_results) # c l e a r
if (length (file_names))

svalue (search_results) <- file_names
else

galert ("No matching files found" , parent = window)
})

4.5 Display of tabular data

The gtable constructor8 produces a widget that displays data in a tabular
form from which the user can select one (or more) rows. The performance
under gWidgetsRGtk2 and gWidgetsQt is much faster and able to handle
larger data stores than under gWidgetstcltk, as there is no enhanced data
frame model in Tcl/Tk. At a minimum, all perform well on moderate-sized
data sets (ten or so columns and fewer than 500 rows).9

8The gtable widget shows clearly the tradeoffs between using gWidgets and a native
toolkit under R. As will be seen in later chapters, setting up a table to display a data frame
using the toolkit packages directly can involve a fair amount of coding as compared to gtable,
which makes it very easy. However, gWidgets provides far less functionality. For example,
there is no means to adjust the formatting of the displayed text, or to embed other widgets,
such as check boxes, into the tabular display.

9For gWidgetsRGtk2, the gdfedit widget can show very large tables taking advantage of
the underlying RGtk2Extras package.

70

4.5. Display of tabular data

The data is specified through the items argument. This value may be
a data frame, matrix, or vector. Vectors and matrices are coerced to data
frames, with stringsAsFactors=FALSE. The data is presented in a tabular
form, with column headers derived from the names attribute of the data
frame (but no row names). The items argument can be a 0-row data frame,
but the column classes must match the eventual data to be used.

To illustrate, a widget to select from the available data frames in the
global environment can be generated with:

window <- gwindow ("gtable example")
DFs <- gtable (ProgGUIinR : : : avail_dfs () , cont = window)

Often the table widget is added to a box container with the argument
expand=TRUE. Otherwise, the size of the widget should be specified through
size<-. This size can be a list with components width and height (pixel
widths). As well, the component columnWidths can be used to specify the
column widths. (Otherwise a heuristic is employed.)

Icons The icon.FUN argument can be used to place a stock icon in a left-
most column. This argument takes a function of a single argument – the
data frame being shown – and should return a character vector of stock
icon names, one for each row.

Selection Users can select by case (row) – not by observation (column)
– from this widget. The actual value returned by a selection is controlled
by the constructor’s argument chosencol, which specifies which column’s
value will be returned for the given index, as the user can specify only the
row. The multiple argument can be specified to allow the user to select
more than one row.

Methods The svalue method will return the currently selected value. If
the argument index is specified as TRUE, then the selected row index (or
indices) will be returned. These refer to the data store, not the visible data,
when filtering is being used (below). The argument drop specifies whether
just the chosen column’s value is returned (the default) or, if specified as
FALSE, the entire row is.

The underlying data store is referenced by the [method. (That is
matrix-like access is supported, but not list-like.) Indices can be used to
access a slice. Values can be set using the [<- method, but be warned
that this method is not as flexible as assigning to a data frame. The un-
derlying toolkits may not like to change the type of data displayed in a
column or reduce the number of columns displayed, so when updating
a column do not assume some underlying coercion, as can happen with
R’s data frames. (This is why the initial items, even if specified through

71

4. gWidgets: Control Widgets

a 0-row data frame, need to be of the correct class.) To replace the data
store, the [<- can be used, as with obj[] <- new_data_frame. The methods
names and names<- refer to the column headers, and dim and length the
underlying dimensions of the data store.

To update the list of data frames in our DFs widget, we can define a
function such as the following:

updateDfs <- function () {
DFs [] <- ProgGUIinR : : : avail_dfs ()

}

Handlers Selection is done through a single click. The addHandlerClick
method can be used to assign a handler to a change of selection event.
The default handler, addHandlerDoubleclick, will assign a handler for
a double-click event. Also of interest are the addHandlerRightclick
and add3rdMousePopupMenu methods for assigning handlers to right-click
events.

To add a handler to the data-frame selection widget above, we could
have:

addHandlerDoubleclick (DFs , handler = function (h , . . .) {
val <- svalue (h$obj)
print (summary (get (val , envir = . GlobalEnv))) # some a c t i o n

})

Example 4.6: Collapsing factors
A somewhat tedious task in R is the recoding or collapsing of factor levels.
This example provides a GUI to facilitate this. In Section 3.1 we provided
a function to wrap this GUI within a modal dialog.

We will use a reference class, as it allows us to couple the main method
and the widgets without worrying about scoping issues. For formatting
purposes, we define the methods individually, then piece them together.

Our initialization call simply stores the values and then passes on the
call to make the GUI.

initialize <- function (fac , cont = gwindow ()) {
old <<- as . character (fac)
make_gui (cont)
callSuper ()

}

This make_gui function does the hard work. (Figure 4.6 shows a screen-
shot.) We have just two widgets, placed in a paned group. The one on the
left is a table that displays two columns: the old values and the collapsed
or recoded values. The widget on the right is a combo box for entering a

72

4.5. Display of tabular data

Figure 4.6: A GUI to facilitate the recoding or collapsing of a factor’s
levels. For this, we select the desired levels to rename or collapse, then
enter a new label on the right. Activating the combo box will update the
"new" column on the left.

new factor level or selecting an existing level. The handler on the combo
box updates the second column of the table to reflect the new values. We
block any handler calls to avoid a loop when we set the index back to 0.

make_gui <- function (cont) {
group <- gpanedgroup (cont = cont)
levs <- sort (unique (as . character (old)))
DF <- data . frame (original = levs ,

new = levs , stringsAsFactors = FALSE)
#
widget <<- tbl <- gtable (DF , cont = group , multiple = TRUE)
size (tbl) <- c (3 0 0 , 200)
#
nested_group <- ggroup (cont = group , horizontal = FALSE)
instructions <- gettext ("Select levels, then\

enter a new combined level
by typing or selecting a level and then enter")

#
glabel (instructions , cont = nested_group)
combo_box <- gcombobox (levs , selected = 0 , editable = TRUE ,

cont = nested_group)
enabled (combo_box) <- FALSE
#
addHandlerClicked (widget , function (h , . . .) {

ind <- svalue (widget , index = TRUE)
enabled (combo_box) <- (length (ind) > 0)

})
##
addHandlerChanged (combo_box , handler = function (h , . . .) {

ind <- svalue (tbl , index = TRUE)

73

4. gWidgets: Control Widgets

if (length (ind) == 0)
return ()

#
tbl [ind , 2] <- svalue (combo_box)
svalue (tbl , index = TRUE) <- 0
blockHandler (combo_box)
combo_box [] <- sort (unique (tbl [, 2]))
svalue (combo_box , index = TRUE) <- 0
unblockHandler (combo_box)

})
}

This method returns the newly recoded factor. The tediousness of the
task is in the specification of the new levels, not necessarily this part.

get_value <- function () {
"Return factor with new levels"
old_levels <- widget [, 1]
new_levels <- widget [, 2]
new <- old
for (i in seq_along (old_levels)) # one p a s s

new [new == old_levels [i]] <- new_levels [i]
factor (new)

}

Finally, we stitch the above together into a reference class:

CollapseFactor <- setRefClass ("CollapseFactor" ,
fields = list (
old = "ANY" ,
widget = "ANY"
) ,

methods = list (
initialize = initialize ,
make_gui = make_gui ,
get_value = get_value

))

Filtering The arguments filter.column and filter.FUN allow us to
specify whether the user can filter, or limit, the display of the values in
the data store. The simplest case is if a column number is specified to
the filter.column argument. In this case a combo box is added to the
widget with values taken from the unique values in the specified column.
Changing the value of the combo box restricts the display of the data to
just those rows in which the value in the filter column matches the combo
box value. More advanced filtering can be specified using the filter.FUN
argument. If this is a function, then it takes arguments (data_frame, fil-
ter.by) where the data frame is the data, and the filter.by value is the

74

4.5. Display of tabular data

Figure 4.7: Example of using a filter to narrow the display of tabular data.

state of a combo box whose values are specified through the argument
filter.labels. This function should return a logical vector with length
matching the number of rows in the data frame. Only rows corresponding
to TRUE values will be displayed.

If filter.FUN is the character string “manual” then the visible<-
method can be used to control the filtering, again by specifying a logi-
cal vector of the proper length. See Example 4.8 for an application.

Example 4.7: Simple filtering
We use the Cars93 data set from the MASS package to show how to set up
a display of the data that provides simple filtering based on the type of
car, whose value is stored in column 3.

require (MASS)
window <- gwindow ("gtable example")
tbl <- gtable (Cars93 , chosencol = 1 , filter . column = 3 ,

cont = window)

Adding a handler for the double-click event is illustrated below. This
handler prints both the manufacturer and the model of the currently se-
lected row when called.

addHandlerChanged (tbl , handler = function (h , . . .) {
val <- svalue (h$obj , drop = FALSE)
cat (sprintf ("You selected the %s %s" , val [, 1] , val [, 2]))

})

Example 4.8: More complex filtering
Even with moderate-sized data sets, the number of rows can be quite large,
in which case it is inconvenient to use a table for selection unless some
means of searching or filtering the data is used. This example displays
the many possible CRAN packages to show how a gedit instance can be

75

4. gWidgets: Control Widgets

used as a search box to filter the display of data (Figure 4.7). The addHan-
dlerKeystroke method is used, so that the search results are updated as
the user types.

The available.packages function returns a data frame of all available
packages. If a CRAN site is not set, the user will be queried to set one.

avail_pkgs <- available . packages () # p i c k a cran s i t e

This basic GUI is barebones: for example, we skip adding text labels to
guide the user.

window <- gwindow ("test of filter")
group <- ggroup (cont = window , horizontal = FALSE)
entry <- gedit ("" , cont = group)
tbl <- gtable (avail_pkgs , cont = group , filter . FUN = "manual" ,

expand = TRUE)

The filter.FUN value of "manual" allows us to filter by specifying a logical
vector.

Different search criteria may be desired, so it makes sense to separate
this code from the GUI code using a function. The one below uses grep to
match, so that regular expressions can be used. Another reasonable choice
would be to use the first letter of the package. (That filtering could also
be specified easily through the filter.FUN argument.)

our_match <- function (cur_val , vals) {
grepl (cur_val , vals)

}

Finally, the addHandlerKeystroke method calls its handler every time
a key is released while the focus is in the edit widget. In this case, the
handler finds the matching indices using the our_match function, converts
these into logical format, and then updates the display using the visible<-
method for gtable.

id <- addHandlerKeystroke (entry , handler = function (h , . . .) {
vals <- tbl [, 1 , drop = TRUE]
cur_val <- svalue (h$obj)
visible (tbl) <- our_match (cur_val , vals)

})

Example 4.9: Using the “observer pattern” to write a workspace view
This example takes the long way to make a workspace browser. (The short
way is to use gvarbrowser.) The goal is to produce a GUI that will allow
the user to view the objects in their current workspace. We would like this
view to be dynamic – when the workspace changes we would like the
view to update. Furthermore, we may want to have different views, such
as one for functions and one for data sets. These should all be coordinated.

76

4.5. Display of tabular data

Figure 4.8: A notebook showing various views of the objects in the global
workspace. The example uses the Observer pattern to keep the views
synchronized.

This pattern in which a central, dynamic source of data is to used
and shared amongst many different pieces of a GUI, is a common one.
To address the complexity that arises as the components of a GUI get
more intertwined, standard design patterns have been employed. For this
task, the observer pattern is often used. This pattern is defined in Head First
Design Patterns[7] to describe a one-to-many relationship among a set of
objects where when the state of one object changes, all of its dependents
are notified.

Figure 4.9 shows a class diagram of the two different types of objects
involved:

Observables The objects which notify observers when a change is made.
The basic methods are to add and remove an observer; and to notify
all observers when a change is made. In our example, we will create a
workspace model that will notify the various observers (views) when
R’s global workspace has changes.

Observers The objects that listen for changes to the observable object. Ob-
servers are registered with the observable and are notified of changes
by a call to the observer’s update method. In our example, the dif-
ferent views of the workspace are observers.

The package objectSignals provides a comprehensive implementation
of this pattern. Based on that, the objectProperties package implements
properties: fields with enhanced functionality, including observability. These

[7] Eric T. Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head First Design
Patterns. O’Reilly Media, Inc., October 25, 2004.

77

4. gWidgets: Control Widgets

Figure 4.9: Observable and observer classes and their basic methods. An
observable object may have many observers, which are notified through
their update method when a change is made.

are similar to the properties that we will see later in the GTK+ and Qt li-
braries. We use the properties function to create an “observable” property
and connect, from objectSignals, to add an observer. When the property
is changed, any observers are notified.

The data in our workspace model keeps track of the objects in the
workspace by name and records a digest of each variable. The digest al-
lows us to see whether objects have been updated, not just renamed. As
notifying views can be potentially expensive, we will notify only on a
change.

library (objectProperties)
require (digest)
WSModel <- setRefClass ("WSModel" ,

fields = c (
properties (list (ws_objects = "character")) ,
ws_objects_digests = "character"
))

For the task at hand, we do not really have a set method. Rather, we
define a refresh method to synchronize the workspace with our model ob-
ject. When the property ws_objects is set, the objectProperties and ob-
jectSignals packages takes care of notifying any registered observers. This
model needs to track changes in the underlying workspace. This can be
done calling the refresh method at periodic intervals, through a taskCall-
back, or by user request. In the definitions below, we call a helper function
to list the objects in the global environment and produce a digest of each.

WSModel$methods (
. get_objects_digests = function () {

"Helper function to return list with names, digests"
items <- ls (envir = . GlobalEnv)
objects <- mget (items , . GlobalEnv)
trim <- !sapply (objects , is , class2 = "refClass")
list (items [trim] ,

sapply (objects [trim] , digest))
} ,

78

4.5. Display of tabular data

initialize = function () {
objs <- . get_objects_digests () # c a l l h e l p e r
initFields (ws_objects = objs [[1]] ,

ws_objects_digests = objs [[2]])
callSuper ()

} ,
refresh = function () {

objs <- . get_objects_digests ()
cur_objects <- objs [[1]]
cur_digests <- objs [[2]]
c h a n g e s ?
if (length (cur_digests) != ws_objects_digests ||

length (ws_objects_digests) == 0 ||
any (cur_digests != ws_objects_digests)) {

ws_objects <<- cur_objects # s i g n a l
ws_objects_digests <<- cur_digests

} })

To simplify the work for our views, our model provides a get method that
filters its return value to specified classes. This class is specified with a
character string and may include a not operator.

WSModel$methods (
get = function (klass) {

"klass a string, such as ’numeric’ or ’!function’"
if (missing (klass) || length (klass) == 0)

return (ws_objects)
i f we have k l a s s , more work
ind <- sapply (mget (ws_objects , . GlobalEnv) ,

function (x) {
any (sapply (klass , function (j) {

if (grepl ("^!" , j))
!is (x , substr (j , 2 , nchar (j)))

else
is (x , j)

}))
})

##
if (length (ind))

ws_objects [ind]
else

character (0)
})

Finally, our model defines a convenience method to add an observer
using the naming convention of objectProperties.

WSModel$methods (
add_observer = function (FUN , . . .) {

79

4. gWidgets: Control Widgets

. self$ws_objectsChanged$connect (FUN , . . .)
})

To use this model, we create a base view class, adding a new method
to set the model. A view has at least two methods, an update method to
refresh the view and one to set the model, so that it can play the part of
an observer.

WSView <- setRefClass ("WSView" ,
methods = list (

update = function (model) {
"Subclass this"

} ,
set_model = function (model) {

FUN <- function () . self$update (model)
model$add_observer (FUN)

}
))

The following WidgetView class uses the template method pattern, leav-
ing subclasses to construct the widgets through the call to initialize.

WidgetView <-
setRefClass ("WidgetView" ,

contains = "WSView" ,
fields = list (

klass = "character" , # which c l a s s e s t o show
widget = "ANY"
) ,

methods = list (
initialize = function (parent , model ,

klass=character (0) , . . .) {
if (!missing (model)) set_model (model)
if (!missing (parent)) init_widget (parent , . . .)
initFields (klass=klass)
update (model)
callSuper ()

} ,
init_widget = function (parent , . . .) {

"Initialize widget"
}))

We write a WidgetView subclass to view the workspace objects using a
gtable widget:

TableView <-
setRefClass ("TableView" ,

contains = "WidgetView" ,
methods = list (

init_widget = function (parent , . . .) {

80

4.5. Display of tabular data

widget <<- gtable (makeDataFrame (character (0)) ,
cont = parent , . . .)

} ,
update = function (model , . . .) {

widget [] <<- makeDataFrame (model$get (klass))
}))

This subclass of the widget view class shows the values in the
workspace using a table widget. The makeDataFrame function generates
the details. We now turn to the task of defining that function.

To generate data on each object, we define some S3 classes. These are
more convenient than reference classes for this task. First, we want a nice
description of the size of the object:

size_of <- function (x , . . .) UseMethod ("size_of")
size_of . default <- function (x , . . .) "NA"
size_of . character <- size_of . numeric <-

function (x , . . .) sprintf ("%s elements" , length (x))
size_of . matrix <- function (x , . . .)

sprintf ("%s x %s" , nrow (x) , ncol (x))

Now, we desire a short description of the type of object we have:

short_description <- function (x , . . .)
UseMethod ("short_description")

short_description . default <- function (x , . . .) "R object"
short_description . numeric <- function (x , . . .) "Numeric vector"
short_description . integer <- function (x , . . .) "Integer"

The following function produces a data frame summarizing the objects
passed in by name to x. It is a bit awkward, as the data comes row by row,
not column by column, and we want to have a default when x is empty.

makeDataFrame <- function (x , envir = . GlobalEnv) {
DF <- data . frame (variable = character (0) ,

size = character (0) ,
description = character (0) ,
class = character (0) ,
stringsAsFactors = FALSE)

if (length (x)) {
l <- mget (x , envir)
short_class <- function (x) class (x) [1]
DF <- data . frame (variable = x ,

size = sapply (l , size_of) ,
description=sapply (l , short_description) ,
class = sapply (l , short_class) ,
stringsAsFactors = FALSE)

}
DF

}

81

4. gWidgets: Control Widgets

To illustrate the flexibility of this framework, we also define a subclass of
WidgetView to show just the data frames in a combo box. Selecting a data
frame is a common task in R GUIs, and this keeps the possible selections
synchronized with the workspace.

DfView <-
setRefClass ("DfView" ,

contains = "WidgetView" ,
methods = list (

initFields = function (. . .) klass <<- "data.frame" ,
init_widget = function (parent , . . .) {

DF <- data . frame ("Data frames" = character (0) ,
stringsAsFactors = FALSE)

widget <<- gcombobox (DF , cont = parent , . . .)
} ,
update = function (model , . . .) {

widget [] <<- model$get (klass)
}
))

We can put these pieces together to make a simple GUI:

window <- gwindow ()
notebook <- gnotebook (cont = window)
##
model <- WSModel$new ()
b a s i c view o f c e r t a i n c l a s s e s
view <- TableView$new (parent = notebook , model = model ,

label = "data" ,
klass=c ("factor" ,"numeric" , "character" ,

"data.frame" , "matrix" , "list"))
view o f non f u n c t i o n s
view1 <- TableView$new (parent = notebook , model = model ,

label = "not a function" ,
klass = "!function"
)

view o f a l l
view2 <- TableView$new (parent = notebook , model = model ,

label = "all")
a b i t c o n t r i v e d her e , but u s e f u l e l s e w h e r e
view3 <- DfView$new (parent = notebook , model = model ,

label = "data frames")
#
model$refresh ()
svalue (notebook) <- 1

82

4.6. Display of hierarchical data

4.6 Display of hierarchical data

The gtree constructor can be used to display hierarchical structures, such
as a file system or the components of a list. To use gtree we describe the
tree to be shown dynamically through a function that computes the child
components in terms of the path of the parent node. Although a bit more
complex, this approach allows trees with many ancestors to be shown,
without needing to compute the entire tree at the time of construction.

The offspring argument is assigned a function of two arguments, the
path of a particular node and the arbitrary object passed through the
optional offspring.data argument. This function should return a data
frame with each row referring to an offspring for the node and whose first
column is a key that identifies each of the offspring.

To indicate whether a node has offspring, a function can be passed
through the hasOffspring argument. This function takes the data frame
returned by the offspring function and should return a logical vector with
each value indicating which rows have offspring. If it is more convenient to
compute this within the offspring function, then when hasOffspring is
left unspecified and the second column returned by offspring is a logical
vector, that column will be used.

As an illustration, this function produces an offspring function to ex-
plore the hierarchical structure of a list. The list is passed in through the
offspring.data argument of the constructor.

offspring <- function (path = character (0) , lst , . . .) {
if (length (path))

obj <- lst [[path]]
else

obj <- lst
#
f <- function (i) is . recursive (i) && !is . null (names (i))
data . frame (comps = names (obj) ,

hasOffspring = sapply (obj , f) ,
stringsAsFactors = FALSE)

}

The above offspring function will produce a tree with only one column,
as the data frame has just the comps column specifying values. By adding
columns to the data frame above, say a column to record the class of the
variable, more information can easily be presented.

To see the above used, we define a list to explore.

lst <- list (a = "1" , b = list (a = "2" , b = "3" ,
c = list (a = "4")))

window <- gwindow ("Tree test")
tree <- gtree (offspring , offspring . data = lst , cont = window)

83

4. gWidgets: Control Widgets

A single click is used to select a row. Multiple selections are possible if
the multiple argument is given a TRUE value.

For some toolkits the icon.FUN argument can be used to specify a
stock icon to be displayed next to the first column. This function, like
hasOffspring, has as an argument the data frame returned by offspring
and should return a character vector with each entry indicating which
stock icon is to be shown.

For some toolkits, the column type must be determined prior to ren-
dering (just as is needed for gtable). By default, a call to offspring with
argument c() indicating the root node is made. The returned data frame
is used to determine the column types. If that is not correct, the argu-
ment col.types can be used. It should be a data frame with column types
matching those returned by offspring.

Methods The svalue method returns the currently selected key or node
label. There is no assignment method. The [method returns the path for
the currently selected node. This is what is passed to the offspring func-
tion. The update method updates the displayed tree by reconsidering the
children of the root node. The method addHandlerDoubleclick specifies a
function to call on a double-click event.

Example 4.10: Using gtree to explore a recursive partition
The party package implements a recursive partitioning algorithm for tree-
based regression and classification models. The package provides an ex-
cellent plot method for the object, but in this example we demonstrate
how the gtree widget can be used to display the hierarchical nature of
the fitted object. As working directly with the return object is not for the
faint of heart, such a GUI can be useful.

First, we fit a model from an example that appears in the package’s
vignette.

require (party)
data ("GlaucomaM" , package = "ipred") # l o a d d a t a
gt <- ctree (Class ~ . , data = GlaucomaM) # f i t model

The party object tracks the hierarchical nature through its nodes. This
object has a complex structure using lists to store data about the nodes.
Next, we define an offspring function that:

• tracks the node by number, as is done in the party object,

• records whether a node has offspring through the terminal compo-
nent (bypassing the hasOffspring function), and

• computes a condition on the variable that creates the node.

84

4.6. Display of hierarchical data

Figure 4.10: GUI to explore return value of a model fit by the party
package.

For this example, the trees are all binary trees with 0 or 2 offspring, so
this data frame has only 0 or 2 rows.

offspring <- function (key , offspring . data) {
if (missing (key) || length (key) == 0) # which p a r t y node ?

node <- 1
else

node <- as . numeric (key [length (key)]) # key i s a v e c t o r

if (nodes (gt , node) [[1]] $terminal) # r e t u r n i f t e r m i n a l
return (data . frame (node = node , hasOffspring = FALSE ,

description = "terminal" ,
stringsAsFactors = FALSE))

DF <- data . frame (node = integer (2) , hasOffspring=logical (2) ,
description = character (2) ,
stringsAsFactors = FALSE)

p a r t y i n t e r n a l s
children <- c ("left" ,"right")
ineq <- c (" <= " ," > ")
varName <- nodes (gt , node) [[1]] $psplit$variableName
splitPoint <- nodes (gt , node) [[1]] $psplit$splitpoint

for (i in 1 : 2) {
DF [i , 1] <- nodes (gt , node) [[1]] [[children [i]]] [[1]]
DF [i , 2] <- !nodes (gt , DF [i , 1]) [[1]] $terminal
DF [i , 3] <- paste (varName , splitPoint , sep = ineq [i])

}
DF # r e t u r n s a d a t a f rame

}

We make a simple GUI to show the widget (Figure 4.10).

85

4. gWidgets: Control Widgets

window <- gwindow ("Example of gtree")
group <- ggroup (cont = window , horizontal = FALSE)
label <- glabel ("Click on the tree to investigate the
partition" , cont = group)

tree <- gtree (offspring , cont = group , expand = TRUE)

A single click is used to expand the tree. Here we create a binding to
a double-click event to create a basic graphic. The party vignette shows
how to make more complicated – and meaningful – graphics for this model
fit.

addHandlerDoubleclick (tree , handler = function (h , . . .) {
node <- as . numeric (svalue (h$obj))
if (nodes (gt , node) [[1]] $terminal) { # i f t e r m i n a l p l o t

weights <- as . logical (nodes (gt , node) [[1]] $weights)
plot (response (gt) [weights ,])

} })

4.7 Actions, menus, and toolbars

Actions are non-graphical objects representing an application command
that is executable through one or more widgets. Actions in gWidgets
are created through the gaction constructor. The arguments are label,
tooltip, icon, key.accel,10 parent, and the standard handler and ac-
tion.

The label appears as the text on a button, a menu item, or a toolbar
button, whereas the icon will decorate the same, if possible. For some
toolkits, the tooltip pops up when the mouse hovers. The parent argument
is used to specify a widget whose top-level container will process the
shortcut.

Methods The main methods for actions are svalue<- to set the label text
and enabled<- to adjust whether the widget is sensitive to user input. All
proxies of the action are set through one call. There is no method to invoke
the action.

Buttons An action can be assigned to a button by setting it as the action
argument of the gbutton constructor, in which case all other arguments
for the constructor are ignored.

window <- gwindow ("gaction example")
action <- gaction ("click me" , tooltip = "Click for a message" ,

icon = "ok" ,
handler = function (h , . . .) {

10The key accelerator implementation varies depending on the underlying toolkit.

86

4.7. Actions, menus, and toolbars

print ("Hello")
} ,
parent = window)

button <- gbutton (action = action , cont = window)
. . t o change
enabled (action) <- FALSE # can ’ t c l i c k now

Action handlers do not have the sender object (button, above) passed back
to them.

Toolbars

Toolbars and menu bars are implemented in gWidgets using gaction items.
Both are specified using a named list of action components.

For a toolbar, this list has a simple structure. Each named component
describes either a toolbar item or a separator, where the toolbar items
are specified by gaction instances and separators by gseparator instances
with no container specified.

For example, first we define some actions:

stub <- function (h , . . .) gmessage ("called handler" ,
parent = window)

action_list = list (
new = gaction (label = "new" , icon = "new" ,

handler = stub , parent = window) ,
open = gaction (label = "open" , icon = "open" ,

handler = stub , parent = window) ,
save = gaction (label = "save" , icon = "save" ,

handler = stub , parent = window) ,
save . as = gaction (label = "save as..." , icon = "save as..." ,

handler = stub , parent = window) ,
quit = gaction (label = "quit" , icon = "quit" ,

handler = function (. . .) dispose (window) , parent = window) ,
cut = gaction (label = "cut" , icon = "cut" ,

handler = stub , parent = window)
)

Then a toolbar list might look like this:

window <- gwindow ("gtoolbar example")
tool_bar_list<- c (action_list [c ("new" ,"save")] ,

sep = gseparator () ,
action_list ["quit"])

tool_bar <- gtoolbar (tool_bar_list , cont = window)
gtext ("Lorem ipsum ..." , cont = window)

The gtoolbar constructor takes the list as its first argument. As toolbars
belong to the window, the corresponding gWidgets objects use a gwindow
object as the parent container. (Some of the toolkits relax this to allow

87

4. gWidgets: Control Widgets

other containers.) The argument style can be "both", "icons", "text", or
"both-horiz", to specify how the toolbar is rendered.

Menu bars and pop-up menus

Menu bars and pop-up menus are specified similarly as toolbars with
menu items being defined through gaction instances and visual separators
through gseparator instances. Menus differ from toolbars, as submenus
require a nested structure. This is specified using a nested list as the
component to describe the submenu. The lists all have named components.
In this case, the corresponding name labels the submenu item. For menu
bars, it is typical that all the top-level components be lists, but for pop-up
menus, this wouldn’t necessarily be the case.

An example of such a list might be:

menu_bar_list <- list (file = list (
new = action_list$new ,
open = action_list$open ,
save = action_list$save ,
"save as..." = action_list$save . as ,
sep = gseparator () ,
quit = action_list$quit
) ,

edit = list (
cut = action_list$cut
)

)

Figure 4.11 shows this simple GUI using gWidgetsRGtk2. Under Mac
OS X, with a native toolkit, menu bars may be drawn along the top of the
screen, as is the custom of that OS.

Menu bar and toolbar Methods The main method for toolbar and
menu bar instances is the svalue method, which will return the list. The
svalue<- method can be used to redefine the menu bar or toolbar. Use the
add method to append to an existing menu bar or toolbar, again using a
list to specify the new items.

Here we show how to disable groups of actions. Suppose we want to
disable the saving and cut actions if there are no characters in the text
buffer. We could use this handler:

no_changes <- c ("save" ,"save.as" ,"cut")
keyhandler <- function (. . .) {

for (i in no_changes)
enabled (action_list [[i]]) <-

(nchar (svalue (txt_widget)) > 0)
}

88

4.7. Actions, menus, and toolbars

Figure 4.11: Menu bar and toolbar decorating a basic text editing widget.
The “Save” icon is disabled, as there is no text typed in the buffer.

addHandlerKeystroke (txt_widget , handler = keyhandler)
keyhandler ()

Pop-up menus Pop-up menus can be created for right-click events
through the add3rdMousePopupmenu constructor (or control-button-1 for
Mac OS X). This constructor has arguments obj to specify a widget, like a
button, to initiate the pop-up, menulist to specify the menu, and optionally
an action argument.

Example 4.11: Pop-up menus
This example shows how to add a simple pop-up menu to a button.

window <- gwindow ("Popup example")
button <- gbutton ("click me or right click me" , cont = window ,

handler = function (h , . . .) {
cat ("You clicked me\n")

})
f <- function (h , . . .) cat ("you right clicked on" , h$action)
menu_bar_list <-

list (one = gaction ("one" , action = "one" , handler = f) ,
two = gaction ("two" , action = "two" , handler = f)
)

add3rdMousePopupmenu (button , menu_bar_list)

89

This page intentionally left blankThis page intentionally left blank

5

gWidgets: R-specific Widgets

The gWidgets package provides some R specific widgets for producing
GUIs. Table 5.1 lists them.

5.1 A graphics device

Some toolkits support an embeddable graphics device (gWidgetsRGtk2
through cairoDevice, gWidgetsQt through qtutils). In this case, the
ggraphics constructor produces a widget that can be added to a container.
The arguments width, height, dpi, and ps are similar to other graphics
devices.

When working with multiple devices, it becomes necessary to switch
between devices. A mouse click in a ggraphics instance will make that
device the current one. Otherwise, the visible<- method can be used
to set the object as the current device. The ggraphicsnotebook creates a
notebook that allows the user to easily navigate multiple graphics devices.

The default handler for the widget is set by addHandlerClicked. The
coordinates of the mouse click, in user coordinates, are passed to the han-
dler in the components x and y. As well, the method addHandlerChanged

Table 5.1: Table of constructors for R-specific widgets in gWidgets

Constructor Description

ggraphics Embeddable graphics device
ggraphicsnotebook Notebook for multiple devices
gdf Data frame editor
gdfnotebook Notebook for multiple gdf instances
gvarbrowser GUI for browsing variables in the workspace
gcommandline Command line widget
gformlayout Creates a GUI from a list specifying layout
ggenericwidget Creates a GUI for a function based on its formal

arguments or a defining list

91

5. gWidgets: R-specific Widgets

is used to assign a handler to call when a region is selected by dragging
the mouse. The components x and y describe the rectangle that was traced
out, again in user coordinates.

This shows how the two can be used:

library (gWidgets) ; options (guiToolkit = "RGtk2")
window <- gwindow ("ggraphics example" , visible = FALSE)
plot_device <- ggraphics (cont = window)
x <- mtcars$wt ; y <- mtcars$mpg
#
addHandlerClicked (plot_device , handler = function (h , . . .) {

cat (sprintf ("You clicked %.2f x %.2f\n" , hx , hy))
})
addHandlerChanged (plot_device , handler = function (h , . . .) {

rx <- h$x ; ry <- h$y
if (diff (rx) > diff (range (x)) /100 &&

diff (ry) > diff (range (y)) / 100) {
ind <- rx [1] <= x & x <= rx [2] & ry [1] <=y & y <= ry [2]
if (any (ind))

print (cbind (x = x [ind] , y = y [ind]))
}

})
visible (window) <- TRUE
#
plot (x , y)

The underlying toolkits may pass in more information about the event,
such as whether a modifier key was being pressed, but this isn’t toolkit
independent.

Using tkrplot The tkrplot provides a means to embed graphics in Tk
GUIs, but is not a graphics device. As such, there is no ggraphics im-
plementation in gWidgetstcltk. You can embed tkrplot though. The fol-
lowing is a simple modification of the example from the help page for
tkrplot:

options (guiToolkit = "tcltk") ; require (tkrplot)
window <- gwindow ("How to embed tkrplot" , visible = FALSE)
group <- ggroup (cont = window , horizontal = FALSE)
bb <- 1
img <- tkrplot (getToolkitWidget (group) ,

fun = function () plot (1 : 2 0 , (1 : 2 0) ^ bb))
add (group , img)
f <- function (. . .) {

b <- svalue (slider)
print (b)
if (b != bb) {

92

5.1. A graphics device

Figure 5.1: A GUI to filter a data frame and display an accompanying
graphic.

bb <<- b
tkrreplot (img)

}
}
slider <- gslider (from = 0 . 0 5 , to = 2 , by = 0 . 0 5 , cont = group ,

handler = f , expand = TRUE)
visible (window) <- TRUE

Example 5.1: A GUI for filtering and visualizing a data set
A common GUI application for data analysis consists of means to visualize,
query, aggregate and filter a data set. This example shows how one can
create such a GUI using gWidgets featuring an embedded graphics device.
In addition a visual display of the filtered data, and a means to filter,
or narrow, the data that is under consideration, is presented (Figure 5.1).
Although, our example is not too feature rich, it illustrates a framework
that can easily be extended.

This example is centered around filtering a data set; we choose a con-
venient one:

data ("Cars93" , package = "MASS")

93

5. gWidgets: R-specific Widgets

We use a notebook to hold two tabs, one to give information and one
for the main GUI. This basic design comes from the spotfire demos at
tibco.com.

window <- gwindow ("Spotfire example" , visible = FALSE)
notebook <- gnotebook (cont = window)

We use a simple label for information, although a more detailed de-
scription would be warranted in an actual application.

descr <- glabel (gettext ("A basic GUI to explore a data set") ,
cont = notebook , label = gettext ("About"))

Now we specify the layout for the second tab. This is a nested layout
made up of three box containers. The first, group, uses a horizontal layout
in which we pack in box containers that will use a vertical layout.

group <- ggroup (cont = notebook , label = gettext ("Explore..."))
left_group <- ggroup (cont = group , horizontal = FALSE)
right_group <- ggroup (cont = group , horizontal = FALSE)

The left side will contain an embedded graphic device and a view of
the filtered data. The ggraphics widget provides the graphic device.

ggraphics (cont = left_group)

Our tabular view of the data is provided by the gtable widget, which
facilitates the display of a data frame. The last two arguments allow for
multiple selection (for marking points on the graphic) and for filtering
through the visible<- method. In addition to the table, we add a label to
display the number of cases being shown. This label is packed into a box
container, and forced to the right side through the addSpring method of
the box container.

tbl <- gtable (Cars93 , cont = left_group , multiple = TRUE ,
filter . FUN = "manual")

size (tbl) <- c (5 0 0 , 200) # s e t s i z e
label_group <- ggroup (cont = left_group)
addSpring (label_group)
no_cases <- glabel ("" , cont = label_group)

The right panel is used to provide the user a means to filter the display.
We place the widgets used to do this within a frame to guide the user.

filter_frame <- gframe (gettext ("Filter by:") ,
cont = right_group , expand = TRUE)

The controls are laid out in a grid. We have two here to filter by: type and
the number of cylinders.

lyt <- glayout (cont = filter_frame)
widget_list <- list () # s t o r e w i d g e t s

94

5.1. A graphics device

lyt [1 , 1] <- "Type:"
lyt [1 , 2] <- (widget_list$Type <-

gcombobox (c ("" , levels (Cars93$Type)) ,
cont = lyt))

lyt [2 , 1] <- "Cylinders:"
lyt [2 , 2] <- (widget_list$Cylinders <-

gcombobox (c ("" , levels (Cars93$Cyl)) , cont = lyt))

Of course, we could use many more criteria to filter by. The above filters
are naturally represented by a combo box. However, one could have used
many different styles, depending on the type of data. For instance, one
could employ a checkbox to filter through Boolean data, a checkbox group
to allow multiple selection, a slider to pick out numeric data, or a text
box to specify filtering by a string. The type of data dictates this. In this
example it isn’t needed, but since the layout is done, we might have code
to initialize the controls in the filter. Adding such a call makes it easy to
save the state of the GUI.

We now move on to the task of making the three main components –
the display, the table and the filters – interact with each other. We keep
this example simple, but note that if we were to extend the example we
would likely write using the observer pattern introduced in Example 4.9
as that makes it easy to decouple the components of an interface. As it
is, we define function calls to a) update the data frame when the filters
change and b) update the graphic.

For the first, we need to compute a logical variable indicating which
rows are to be displayed. Within the definition of the following function,
we use the global variables widget_list, tbl and no_cases.

update_data_frame <- function (. . .) {
vals <- lapply (widget_list , svalue)
vals <- vals [vals != ""]
out <- sapply (names (vals) , function (i) {

Cars93 [[i]] == vals [[i]]
})
ind <- apply (out , 1 , function (x) Reduce ("&&" , x))
u pd a t e t a b l e
visible (tbl) <- ind
u pd a t e l a b e l
nsprintf <- function (n , msg1 , msg2 , . . .)

ngettext (n , sprintf (msg1 , n) , sprintf (msg2 , n) , . . .)
svalue (no_cases) <- nsprintf (sum (ind) , "%s case" , "%s cases")

}

This next function is used to update the graphic. A real application
would provide a more compelling plot.

update_graphic <- function (. . .) {
ind <- visible (tbl)

95

5. gWidgets: R-specific Widgets

if (any (ind))
plot (MPG . city ~ Weight , data = Cars93 [ind ,])

else
plot . new ()

}

We now add a handler to be called whenever one of our combo boxes
is changed. This handler simply calls both our update functions.

callback <- function (h , . . .) {
update_data_frame ()
update_graphic ()

}
sapply (widget_list , addHandlerChanged , handler = callback)

For the data display, we wish to allow the user to view individual cases
by clicking on a row of the table. The following will do so.

addHandlerClicked (tbl , handler = function (h , . . .) {
update_graphic ()
ind <- svalue (h$obj , index = TRUE)
points (MPG . city ~ Weight , cex = 2 , col = "red" , pch = 16 ,

data = Cars93 [ind ,])
})

We could also use the addHandlerChanged method to add a handler to call
when the user drags out a region in the graphics device, but leave this for
the interested reader.

Finally, we draw the GUI with an initial graphic:

visible (window) <- TRUE
update_graphic ()

5.2 A data frame editor

The gdf constructor returns a widget for editing data frames. The intent is
for each toolkit to produce a widget at least as powerful as the data.entry
function. The implementations differ between toolkits, with some offering
much more. We describe what is in common below.1

The constructor has its main argument items to specify the data frame
to edit. A basic usage might be:

1 For gWidgetstcltk, there is no native widget for editing tabular data, so the tktable
add-on widget is used (tktable.sourceforge.net). A warning will be issued if this is not
installed. Again, as with gtable, the widget under gWidgetstcltk is slower, but can load a
moderately sized data frame in a reasonable time.

For gWidgetsRGtk2 there is also the gdfedit widget which can handle very large data
sets and has many improved usability features. The gWidgets function merely wraps the
gtkDfEdit function from RGtk2Extras. This function is not exported by gWidgets, so the
toolkit package must be loaded before use.

96

5.3. Workspace browser

window <- gwindow ("gdf example")
DF <- gdf (mtcars , cont = window)
. . . make some e d i t s . . .
new_data_frame <- DF [,] # s t o r e c h a n g e s

Some toolkits render columns differently for different data types, and
some toolkits use character values for all the data, so values must be
coerced back when transferring to R values. As such, column types are
important. Even if one is starting with a 0-row data frame, the columns
types should be defined as desired. Also, factors and character types may
be treated differently, although they may render in a similar manner.

Methods The svalue method will return the selected values or selected
indices if index=TRUE is given. The svalue<- method is used to specify the
selection by index. This is a vector or row indices, or for some toolkits a
list with components rows and columns indicating the selection to mark.
The [and [<- methods can be used to extract and set values from the
data frame by index. As with gtable, these are not as flexible as for a
data frame. In particular, it may not be possible to change the type of a
column, or add new rows or columns through these methods. Using no
indices, as in the above example with df[,], will return the current data
frame. The current data frame can be completely replaced when no indices
are specified in the replacement call.

There are also several methods defined that follow those of a data
frame: dimnames, dimnames<-, names, names<-, and length.

The following methods can be used to assign handlers: addHan-
dlerChanged (cell changed), addHandlerClicked, addHandlerDoubleclick.
Some toolkits also have addHandlerColumnClicked, addHandlerColumnDou-
bleclick, and addHandlerColumnRightclick implemented.

The gdfnotebook constructor produces a notebook that can hold several
data frames to edit at once.

5.3 Workspace browser

A workspace browser is constructed by gvarbrowser, providing a means
to browse and select the objects in the current global environment. This
workspace browser uses a tree widget to display the items and their named
components.

The svalue method returns the name of the currently selected value
using the $-notation to refer to child elements. One can call svalue on this
string to get the corresponding R object.

The default handler object calls do.call on the object for the function
specified by name through the action argument. (The default is to print

97

5. gWidgets: R-specific Widgets

a summary of the object.) This handler is called on a double click. A single
click is used for selection. One can pass in other handler functions if
desired.

The update method will update the list of items being displayed. This
can be time consuming. Some heuristics are employed to do this automat-
ically, if the size of the workspace is modest enough. Otherwise it can be
done programmatically.

Example 5.2: Using drag-and-drop with gWidgets
We use the drag-and-drop features to create a means to plot variables
from the workspace browser. Our basic layout is fairly simple. We place
the workspace browser on the left, and on the right have a graphic device
and few labels to act as drop targets.

window <- gwindow ("Drag-and-drop example")
group <- ggroup (cont = window)
workspace_browser <- gvarbrowser (cont = group)
nested_group <- ggroup (horizontal = FALSE , cont = group ,

expand = TRUE)
ggraphics (cont = nested_group)
xlabel <- glabel ("" , cont = nested_group)
ylabel <- glabel ("" , cont = nested_group)
clear <- gbutton ("clear" , cont = nested_group)

We create a function to initialize the interface.

init_txt <- "<Drop %s variable here>"
initUI <- function (. . .) {

svalue (xlabel) <- sprintf (init_txt , "x")
svalue (ylabel) <- sprintf (init_txt , "y")
enabled (ylabel) <- FALSE

}
initUI () # i n i t i a l c a l l

Separating this out allows us to link it to the clear button.

addHandlerClicked (clear , handler = initUI)

Next, we write a function to update the user interface. As we didn’t
abstract out the data from the GUI, we need to figure out which state the
GUI is currently in by consulting the text in each label.

updateUI <- function (. . .) {
if (grepl (svalue (xlabel) , sprintf (init_txt , "x"))) {

none s e t
enabled (ylabel) <- FALSE

} else if (grepl (svalue (ylabel) , sprintf (init_txt , "y"))) {
x , not y
enabled (ylabel) <- TRUE
x <- eval (parse (text = svalue (xlabel)) , envir=. GlobalEnv)

98

5.4. Help browser

plot (x , xlab = svalue (xlabel))
} else {

enabled (ylabel) <- TRUE
x <- eval (parse (text = svalue (xlabel)) , envir=. GlobalEnv)
y <- eval (parse (text = svalue (ylabel)) , envir=. GlobalEnv)
plot (x , y , xlab = svalue (xlabel) , ylab = svalue (ylabel))

}
}

Now we add our drag-and-drop information. Drag-and-drop support
in gWidgets is implemented through three methods: one to set a widget
as a drag source (addDropSource), one to set a widget as a drop target
(addDropTarget), and one to call a handler when a drop event passes over
a widget (addDropMotion).

The addDropSource method needs a widget and a handler to call when
a drag-and-drop event is initiated. This handler should return the value
that will be passed to the drop target. The default value is that returned
by calling svalue on the object. In this example we don’t need to set this,
as gvarbrowser already calls this with a drop data being the variable name
using the dollar sign notation for child components.

The addDropTarget method is used to allow a widget to receive a
dropped value and to specify a handler to call when a value is dropped.
The dropdata component of the first argument of the callback, h, holds the
drop data. In our example below we use this to update the receiver object,
either the x or y label.

dropHandler <- function (h , . . .) {
svalue (h$obj) <- h$dropdata
updateUI ()

}
addDropTarget (xlabel , handler = dropHandler)
addDropTarget (ylabel , handler = dropHandler)

The addDropMotion registers a handler for when a drag event passes
over a widget. We don’t need this for our GUI.

5.4 Help browser

The ghelp constructor produces a widget for showing help pages using
a notebook container. Although R now has excellent ways to dynamically
view help pages through a web browser (in particular the helpr package
and the standard built-in help page server) this widget provides a light-
weight alternative that can be embedded in a GUI.

To add a help page, the add method is used, where the value argument
describes the desired page. This can be a character string containing the

99

5. gWidgets: R-specific Widgets

topic, a character string of the form package:::topic to specify the pack-
age, or a list with named components package and topic. The dispose
method of notebooks can be used to remove the current tab.

The ghelpbrowser constructor produces a stand-alone GUI for display-
ing help pages, running examples from the help pages or opening vignettes
provided by the package. This GUI provides its own top-level window and
does not return a value for which methods are defined.

5.5 Command line widget

A simple command line widget is created by the gcommandline constructor.
This is not meant as a replacement for any of R’s command lines, but
is provided for light-weight usage. A text box allows users to enter R
commands. The programmer may issue commands to be evaluated and
displayed through the svalue<- method. The value assigned is a character
string holding the commands. If there is a names attribute, the results will
be assigned to a variable in the global workspace with that name. The
svalue and [methods return the command history.

5.6 Simplifying creation of dialogs

The gWidgets package has two means to simplify the creation of GUIs.2

The gformlayout constructor takes a list defining a layout and produces
a GUI, the ggenericwidget constructor can take a function name and
produce a GUI based on the formal arguments of the function. This too
uses a list, which can be modified by the user before the GUI is constructed.
We leave the details to their manual pages.

2The traitr package provides another, but is not discussed here. There are similar facil-
ities in RGtk2Extras for RGtk2 and the fgui package can do such a thing for tcltk.

100

Part II

The RGtk2 Package

101

This page intentionally left blankThis page intentionally left blank

6

RGtk2: Overview

As the name implies, the RGtk2 package is an interface, or binding, be-
tween R and GTK+, a mature, cross-platform GUI toolkit. The letters GTK
stand for the GIMP ToolKit, with the word GIMP recording the origin
of the library as part of the GNU Image Manipulation Program. GTK+
provides the same widgets on every platform, though it can be cus-
tomized to emulate platform-specific look and feel. The library is writ-
ten in C, which facilitates access from languages like R that are also im-
plemented in C. GTK+ is licensed under the Lesser GNU Public License
(LGPL), while RGtk2 is under the GNU Public License (GPL). The pack-
age is available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=RGtk2.

The name RGtk2 also implies that there exists a package named RGtk,
which is indeed the case. The original RGtk is bound to the previous gen-
eration of GTK+, version 1.2. RGtk2 is based on GTK+ 2.0, the current
generation. This book covers RGtk2 specifically, although many of the fun-
damental features of RGtk2 are inherited from RGtk.

RGtk2 provides virtually all of the functionality in GTK+ to the R pro-
grammer. In addition, RGtk2 interfaces with several other libraries in the
GTK+ stack: Pango for font rendering; Cairo for vector graphics; Gdk-
Pixbuf for image manipulation; GIO for synchronous and asynchronous
input/output for files and network resources; ATK for accessible interfaces;
and GDK, an abstraction over the native windowing system, supporting
either X11 or Windows. These libraries are multi-platform and extensive,
and have been used for many major projects, such as the Linux versions
of Firefox and Open Office.

The API of each of these libraries is mapped to R in a way that is con-
sistent with R conventions and familiar to the R user. Much of the RGtk2
API consists of autogenerated R functions that call into one of the underly-
ing libraries. For example, the R function gtkContainerAdd eventually calls
the C function gtk_container_add. The naming convention is that the C
name has its underscores removed and each following letter capitalized
(camelCase style).

103

6. RGtk2: Overview

The full API for GTK+ is quite large, and complete documentation of it
is beyond our scope. However, the GTK+ documentation is algorithmically
converted into the R help format during the generation of RGtk2. This
allows the programmer to refer to the appropriate documentation within an
R session, without having to consult a web page, such as http://library.
gnome.org/devel/gtk/stable/, which lists the C API of the stable version
of GTK+.

In this chapter, we give an overview of how RGtk2 maps the GTK+
API, including its classes, constructors, methods, properties, signals, and
enumerations, to an R-level API that is relatively familiar to, and convenient
for, an R user.

6.1 Synopsis of the RGtk2 API

Constructing a GUI with RGtk2 generally proceeds by constructing a wid-
get and then configuring it by calling methods and setting properties.
Handlers are connected to signals, and the widget is combined with other
widgets to form the GUI. For example:

button <- gtkButton ("Click Me")
button [’image’] <- gtkImage (stock = "gtk-apply" ,

size = "button")
gSignalConnect (button , "clicked" , function (button) {

message ("Hello World!")
})
##
window <- gtkWindow (show = FALSE)
window$add (button)
window$showAll ()

Once one understands the syntax and themes of the above example, it is
only a matter of reading through the proceeding chapters and the docu-
mentation to discover all of the widgets and their features. The rest of this
chapter will explain these basic components of the API.

6.2 Objects and classes

In any toolkit, all widget types have functionality in common. For example,
they are all drawn on the screen in a consistent style. They can be hidden
and shown again. To formalize this relationship and to simplify implemen-
tation by sharing code between widgets, GTK+, like many other toolkits,
defines an inheritance hierarchy for its widget types. In the parlance of
object-oriented programming, each type is represented by a class.

For specifying the hierarchy, GTK+ relies on GObject, a C library that
implements a class-based, single-inheritance, object-oriented system. A GOb-

104

6.3. Constructors

ject class encapsulates behaviors that all instances of the class share. Every
class has at most one parent through which it inherits the behaviors of its
ancestors. A subclass can override some specific inherited behaviors. The
interface defined by a class consists of constructors, methods, properties,
and signals.

The type system supports reflection, so we can, for example, obtain a
list of the ancestors for a given class:

gTypeGetAncestors ("GtkWidget")

[1] "GtkWidget" "GtkObject"
[3] "GInitiallyUnowned" "GObject"

For those familiar with object-oriented programming in R, the returned
character vector could be interpreted as if it were a class attribute on an
S3 object.

Single inheritance can be restrictive when a class performs multiple
roles in a program. To circumvent this, GTK+ adopts the popular concept
of the interface, which is essentially a contract that specifies which methods,
properties and signals a class must implement. As with languages like
Java and C#, a class can implement multiple interfaces, and an interface
can be composed of other interfaces. An interface allows the programmer
to treat all instances of implementing classes in a similar way. However,
unlike class inheritance, the implementation of the methods, properties,
and signals is not shared. For example, we list the interfaces implemented
by GtkWidget:

gTypeGetInterfaces ("GtkWidget")

[1] "AtkImplementorIface" "GtkBuildable"

We explain the constructors, methods, properties, and signals of classes
and interfaces in the following sections and demonstrate them in the con-
struction of a simple “Hello World” GUI, shown in Figure 6.1. A more
detailed and technical explanation of GObject is available in Chapter 11.

6.3 Constructors

The next few sections will contribute to a unifying example that displays a
button in a window. When clicked, the button will print a message to the
R console. The first step in our example is to create a top-level window
to contain our GUI. Creating an instance of a GTK widget requires calling
a single R function, known as a constructor. Following R conventions, the
constructor for a class has the same name as the class, except the first
character is lowercase. The following statement constructs an instance of
the GtkWindow class:

105

6. RGtk2: Overview

Figure 6.1: “Hello World” in GTK+. A window containing a single button
displaying a label with the text “Hello World.”

window <- gtkWindow ("toplevel" , show = FALSE)

The first argument to the constructor for GtkWindow instructs the win-
dow manager to treat the window as top-level. The show argument is the
last argument for every widget constructor. It indicates whether the widget
should be made visible immediately after construction. The default value
of show is TRUE. In this case we want to defer showing the window until
after we finish constructing our simple GUI.

At the GTK+ level, a class usually has multiple constructors, each im-
plemented as a separate C function. In RGtk2, the names of these functions
all end with New. The “meta” constructor gtkWindow, called above, automat-
ically delegates to one of the low-level constructors, based on the provided
arguments. We prefer these shorter, more flexible constructors, such as
gtkWindow or gtkButton, but note their documentation is provided by the
R package author and is in addition to the formal API. These constructors
can take many arguments, and only some subsets of the arguments may
be specified at once. For example, this call

gtkImage (stock = "gtk-apply" , size = "button")

uses only two arguments, stock and size, which must always be specified
together. The entire signature is more complex:

args (gtkImage)

function (size , mask = NULL , pixmap = NULL , image = NULL ,
filename , pixbuf = NULL , stock.id , icon.set , animation ,
icon , show = TRUE)

106

6.3. Constructors

A GTK+ object created by the R user has an R-level object as its proxy.
Thus, window is a reference to a GtkWindow instance. A reference object
will not be copied before modification. This is different from the behavior
of most R objects. For example, calling abs on a numeric vector does not
change the value assigned to the original symbol:

a <- −1
abs (a)

[1] 1

a

[1] -1

Setting the text label on our button, however, will change the original
value:

gtkButtonSetLabel (button , "New text")
gtkButtonGetLabel (button)

[1] "New text"

If this widget were displayed on the screen, the label would also be up-
dated.

The class hierarchy of an object is represented by the class attribute.
We interpret the attribute according to S3 conventions, so that the class
names are in order from most to least derived:

class (window)

[1] "GtkWindow" "GtkBin" "GtkContainer"
[4] "GtkWidget" "GtkObject" "GInitiallyUnowned"
[7] "GObject" "RGtkObject"

We find that the GtkWindow class inherits methods, properties, and sig-
nals from the GtkBin, GtkContainer, GtkWidget, GtkObject, GInitial-
lyUnowned, and GObject classes. Every type of GTK+ widget inherits from
the base GtkWidget class, which implements the general characteristics
shared by all widget classes, e.g., properties storing the location and back-
ground color, and methods for hiding, showing, and painting the widget.
We can also query window for the interfaces it implements:

interface (window)

[1] "AtkImplementorIface" "GtkBuildable"

When the underlying GTK+ object is destroyed, i.e., deleted from mem-
ory, the class of the proxy object is set to <invalid>, indicating that it can
no longer be manipulated.

107

6. RGtk2: Overview

6.4 Methods

The next steps in our example are to create a “Hello World” button and to
place the button in the window that we have already created. This relies
on an understanding of how one programmatically manipulates widgets
by invoking methods. In RGtk2, a method represents a type of message
that is passed to a widget. Methods are implemented as functions that
take an instance of their class as the first argument and instruct the widget
to perform some behavior, according to any additional parameters.

Although class information is stored in the style of S3, RGtk2 intro-
duces its own mechanism for method dispatch.1 The call obj$method(...)
resolves to a function call f(obj,...). The function is found by looking for
any function that matches the pattern classNameMethodName, the concate-
nation of one of the names from class(obj) or interface(obj) with the
method name. The search begins with the interfaces and proceeds through
each character vector in order.

For instance, if win is a gtkWindow instance, then to resolve the call
win$add(widget) RGtk2 considers gtkBuildableAdd, atkImplementorI-
faceAdd, gtkWindowAdd, gtkBinAdd, and finally finds gtkContainerAdd,
which is called as gtkContainerAdd(win, widget). The $ method for RGtk2
objects does the work.

We take advantage of this convenience when we add the “Hello World”
button to our window and set its size:

button <- gtkButton ("Hello World")
window$add (button)
window$setDefaultSize (2 0 0 , 200)

The above code calls the gtkContainerAdd and gtkWindowSetDefaultSize
functions with less typing and fewer demands on the memory of the user.

Understanding this mechanism allows us to add to the RGtk2 API. For
instance, we can add to the button API with:

gtkButtonSayHello <- function (obj , target)
obj$setLabel (paste ("Hello" , target))

button$sayHello ("World")
button$getLabel ()

[1] "Hello World"

Some common methods are inherited by all widgets, as they are de-
fined in the base GtkWidget class. These include: show to specify that the
widget should be drawn; hide to hide the widget until specified; destroy
to destroy a widget and clear up any references to it; getParent to find

1RGtk2 uses R’s standard dollar-sign notation (also used with reference classes) for class-
based method dispatch.

108

6.5. Properties

the parent container of the widget; modifyBg to modify the background
color of a widget; and modifyFg to modify the foreground color.

6.5 Properties

The GTK+ API uses properties to store public object state. Properties are
similar to R attributes and even more so to S4 slots. They are inherited,
typed, self-describing, and encapsulated, so that an object can intercept ac-
cess to the underlying data, if any (some properties may be fully dynamic).
A list of the properties and their definitions belonging to an object is re-
turned by its getPropInfo method. Calling names on the object returns the
property names. Auto-completion of property names is gained as a side
effect. For the button just defined, we can see the first eight properties
listed with:

head (names (button) , n = 8) # or b$ g e t P r o p I n f o ()

[1] "use -action -appearance" "related -action"
[3] "user -data" "name"
[5] "parent" "width -request"
[7] "height -request" "visible"

Some commonly used properties are: parent, to store the parent widget
(if any); user-data, which allows us to store arbitrary data with the widget;
and sensitive, to control whether a widget can receive user events.

There are a few different ways to access these properties. The methods
get or set may be used to either get or set properties of a widget, respec-
tively. The set function treats the argument names as the property names,
and setting multiple properties at once is supported. Here we add an icon
to the top-left corner of our window and set the title:

image <- gdkPixbuf (filename = imagefile ("rgtk-logo.gif"))
window$set (icon = image [[1]] , title = "Hello World 1.0")

Additionally, most user-accessible properties have specific get and set
methods defined for them. For example, to set the title of the window,
we could have used the setTitle method and verified the change with
getTitle.

window$setTitle ("Hello World 1.0")
window$getTitle ()

[1] "Hello World 1.0"

The [and [<- methods RGtk2 provides the convenient and familiar [
and [<- methods to get and access an object’s properties. In our example,
we might check the window to ensure that it is not yet visible with:

109

6. RGtk2: Overview

window ["visible"]

[1] FALSE

Finally, we can make our window visible by setting the “visible” property,
although calling gtkWidgetShow is more conventional:

window ["visible"] <- TRUE
window$show () # same e f f e c t

For ease of referencing the appropriate help pages, we tend to use the
full method name in the examples, although at times the move R-like vector
notation will be used for commonly accessed properties.

6.6 Events and signals

In RGtk2, a user action, such as a mouse click, key press, or drag-and-drop
motion triggers the widget to emit a corresponding signal. A GUI can be
made interactive by specifying a callback function to be invoked upon the
emission of a particular signal.

The signals provided by a class or interface are returned by the function
gTypeGetSignals. For example

names (gTypeGetSignals ("GtkButton"))

[1] "pressed" "released" "clicked" "enter" "leave"
[6] "activate"

shows the “clicked” signal in addition to others. Note that this lists only
the signals provided directly by the GtkButton. To list all inherited signals,
we need to loop over the hierarchy, but it is not common to do this in
practice, as the documentation includes information on the signals.

The gSignalConnect function adds a callback to a widget’s signal. Its
signature is

args (gSignalConnect)

function (obj , signal , f, data = NULL , after = FALSE ,
user.data.first = FALSE)

The basic usage is to call gSignalConnect to connect a callback function
f to the signal named signal belonging to the object obj. The function
returns an identifier for managing the connection. This is not usually nec-
essary to store, but uses will be discussed later.

We demonstrate gSignalConnect by adding a callback to our “Hello
World” example, so that “Hello World” is printed to the console when the
button is clicked:

gSignalConnect (button , "clicked" ,
function (button) message ("Hello World!"))

110

6.6. Events and signals

We now review the remaining arguments. The data argument allows
arbitrary data to be passed to the callback. The user.data.first argument
specifies whether the data argument should be the first argument to the
callback or (the default) the last. The after argument is a logical value
indicating whether the callback should be called after the default handler
(see ?gSignalConnect).

The signature for the callback varies for each signal. Unless
user.data.first is TRUE, the first argument is the widget. Other argu-
ments are possible depending on the signal type. For window events, the
second argument is a GdkEvent type, which can carry with it extra infor-
mation about the event that occurred. The GTK+ API lists the signature of
each signal.

It is important to note that the widget, and possibly other arguments,
are references, so their manipulation has side effects outside of the callback.
This is obviously a critical feature, but it is one that may be surprising to
the R user.

window <- gtkWindow () ; window [’title’] <- "test signals"
x <- 1 ;
button <- gtkButton ("click me") ; window$add (button)
gSignalConnect (button , signal = "clicked" ,

f = function (button) {
button$setData ("x" , 2)
x <- 2
return (TRUE)

})

Then after clicking, we would have

cat (x , button$getData ("x") , "\n") # 1 and 2

1 2

Callbacks for signals emitted by window-manager events are expected
to return a logical value. Failure to do so can cause errors to be raised. A
return value of TRUE indicates that no further callbacks should be called,
whereas FALSE indicates that the next callback should be called. In other
words, the return value indicates whether the handler has consumed the
event. In the following example, only the first two callbacks are executed
when the user clicks the button:

button <- gtkButton ("click")
window <- gtkWindow ()
window$add (button)
gSignalConnect (button , "button-press-event" ,

function (button , event , data) {
message ("hi") ; return (FALSE)

})

111

6. RGtk2: Overview

gSignalConnect (button , "button-press-event" ,
function (button , event , data) {

message ("and") ; return (TRUE)
})

gSignalConnect (button , "button-press-event" ,
function (button , event , data) {

message ("bye") ; return (TRUE)
})

Multiple callbacks can be assigned to each signal. They will be pro-
cessed in the order they were bound to the signal. The gSignalConnect
function returns an ID that can be used to disconnect a handler, if de-
sired, using gSignalHandlerDisconnect. To block a handler temporarily,
call gSignalHandlerBlock and then gSignalHandlerUnblock to unblock.
The help page for gSignalConnect gives the details.

6.7 Enumerated types and flags

At the beginning of our example, we constructed the window thusly:

window <- gtkWindow ("toplevel" , show = FALSE)

The first parameter indicates the window type. The set of possible window
types is specified by what in C is known as an enumeration. A value from
an enumeration can be thought of as a length-one factor in R. The possi-
ble values defined by the enumeration are analogous to the factor levels.
Since enumerations are foreign to R, RGtk2 accepts string representations
of enumeration values, such as "toplevel".

For every GTK+ enumeration, RGtk2 provides an R vector that maps
the nicknames to the underlying numeric values. In the above case, the
vector is named GtkWindowType.

GtkWindowType

An enumeration with values:
toplevel popup

0 1

The names of the vector indicate the allowed nickname for each value
of the enumeration. It is rarely necessary to use the enumeration vectors
explicitly; specifying the nickname will work in most cases, including all
method invocations, and is preferable as it is easier for human readers to
comprehend.

Flags are an extension of enumerations, where the value of each mem-
ber is a unique power of two, so that the values can be combined unam-
biguously. An example of a flag enumeration is GtkWidgetFlags.

GtkWidgetFlags

112

6.8. The event loop

A flag enumeration with values:
toplevel no -window realized

16 32 64
mapped visible sensitive

128 256 512
parent -sensitive can -focus has -focus

1024 2048 4096
can -default has -default has -grab

8192 16384 32768
rc -style composite -child no -reparent

16384 131072 262144
app -paintable receives -default double -buffered

524288 1048576 2097152
no -show -all

4194304

GtkWidgetFlags represents the possible flags that can be set on a widget.
We can retrieve the flags currently set on our window:

window$flags ()

GtkWidgetFlags: toplevel , realized , mapped , visible ,
sensitive , parent -sensitive , double -buffered

Flag values can be combined using |, the bitwise OR. The & function, the
bitwise AND, allows us to check whether a value belongs to a combination.
For example, we could check whether our window is top-level:

(window$flags () & GtkWidgetFlags ["toplevel"]) > 0

[1] TRUE

6.8 The event loop

RGtk2 integrates the GTK+ and R event loops by treating the R loop as
the master and iterating the GTK+ event loop whenever R is idle. During
a long calculation, the GUI can seem unresponsive. To avoid this, the
following construct should be inserted into the long-running algorithm in
order to ensure that GTK+ events are periodically processed:

while (gtkEventsPending ())
gtkMainIteration ()

This is often useful, for example, to update a progress bar.
If we run an RGtk2 script non-interactively, such as by assigning an icon

to launch a GUI under Windows, R will exit after the script is finished, and
the GUI will disappear just after it appears. To work around this, call the
function gtkMain to run the main loop until the function gtkMainQuit is

113

6. RGtk2: Overview

called. Since there is no interactive session, gtkMainQuit should be called
through some event handler.

6.9 Importing a GUI from Glade

This book focuses almost entirely on the direct programmatic construction
of GUIs. Some developers prefer visually constructing a GUI by pointing,
clicking and dragging in another GUI, which one might call a GUI builder,
a type of RAD (Rapid Application Development) tool. Glade is the primary
GUI builder for GTK+ and exports an interface as XML that is loadable
by GtkBuilder. It is freely available for all major platforms from http:
//glade.gnome.org/. Documentation is also at that location.

We will assume that the reader has saved an interface as a GtkBuilder
XML file named buildable.xml and is ready to load it with RGtk2:

builder <- gtkBuilder ()
builder$addFromFile ("buildable.xml")

$retval
[1] 1

$error
NULL

The getObject extracts a widget by its ID, which is specified by the user
through Glade. It normally suffices to load the top-level widget, named
dialog1 in this example, and show it:

dialog1 <- builder$getObject ("dialog1")
dialog1$showAll ()

In order to add behaviors to the GUI, we need to register R functions
as signal handlers. In Glade, the user should specify the name of an R
function as a handler for some signal. RGtk2 extends GtkBuilder to look up
the functions and connect them to the appropriate signals. Let us assume
that the user has named the ok_button_clicked function as the handler
for the clicked signal on a GtkButton. The connectSignals method will
establish that connection and any others in the interface:

ok_button_clicked <- function (button , userData) {
message ("hello world")

}
builder$connectSignals ()

The GUI should now be ready for use.

114

7

RGtk2: Windows, Containers, and Dialogs

This chapter covers top-level windows, dialogs, and the container objects
provided by GTK+.

7.1 Top-level windows

As we saw in our “Hello World” example, top-level windows are con-
structed by the gtkWindow constructor. This function has the argument
type to specify the type of window to create. The default is a top-level
window, which we will always use, as the alternative is for pop-ups, which
are meant for internal use, e.g., for implementing menus. The second argu-
ment is show, which by default is TRUE, indicating that the window should
be shown. If set to FALSE, the window, like other widgets, can later be
shown by calling its show method. The showAll method will also show
any child components. These can be reversed with hide and hideAll.

As with all objects, windows have several properties. The window title
is stored in the title property. As usual, this property can be accessed
via the “get” and “set” methods getTitle and setTitle, or using the [
function. To illustrate, the following sets up a new window with a title.

window <- gtkWindow (show=FALSE) # use d e f a u l t t y p e
window$setTitle ("Window title") # s e t window t i t l e
window [’title’] # or use g e t T i t l e

[1] "Window title"

window$setDefaultSize (2 5 0 , 3 0 0) # 250 wide , 300 h igh
window$show () # show window

Window size The initial size of the window can be set with the set-
DefaultSize method, as shown above, which takes a width and height
argument specified in pixels. This specification allows the window to be re-
sized but must be made before the window is drawn, as the window then
falls under control of the window manager. The setSizeRequest method

115

7. RGtk2: Windows, Containers, and Dialogs

will request a minimum size, which the window manager will usually
honor, as long as a maximum bound is not violated. To fix the size of a
window, the resizable property can be set to FALSE.

Adding a child component to a window A window is a container. Gtk-
Window inherits from GtkBin, which derives from GtkContainer and allows
only a single child. As before, this child is added through the add method.
We illustrate the basics by adding a simple label to a window.

window <- gtkWindow (show = FALSE)
window$setTitle ("Hello World")
label <- gtkLabel ("Hello World")
window$add (label)

To display multiple widgets in a window, we simply need to add a non-
GtkBin container as the child widget. We will discuss additional container
types in Section 7.2.

Destroying windows A window is normally closed by the window man-
ager. Most often, this occurs in response to the user clicking on a close
button in a title bar. When this happens, the window manager requests
that the window be deleted, and the delete-event signal is emitted. As
with any window manager event, the default handler is overridden if a
callback connected to delete-event returns TRUE. This can be useful for
confirming the intention of the user before closing the window. For exam-
ple:

gSignalConnect (window , "delete-event" , function (event , . . .) {
dialog <- gtkMessageDialog (parent = window , flags = 0 ,

type = "question" ,
buttons = "yes-no" ,
"Are you sure you want to quit?")

out <- dialog$run () ; dialog$destroy ()
out != GtkResponseType ["yes"]

})

(We describe the use of message dialogs in Section 7.3.) The contract of
deletion is that the window should no longer be visible on the screen. It is
not necessary for the actual window object to be removed from memory,
although this is the default behavior. Calling the hideOnDelete method
configures the window to hide but not destroy itself.

It is also possible to close a window programmatically by calling its
destroy method:

window$destroy ()

116

7.2. Layout containers

Transient windows New windows may be stand-alone top-level windows
or may be associated with some other window. For example, a dialog is
usually associated with the primary document window. The setTransient-
For method specifies the window with which a transient (dialog) window
is associated. This hints to the window manager that the transient window
should be kept on top of its parent. The position relative to the parent
window can be specified with setPostion, which takes a value from the
GtkWindowPosition enumeration. Optionally, a dialog can be set to be de-
stroyed with its parent. For example:

c r e a t e a window and a d i a l o g window
window <- gtkWindow (show = FALSE)
window$setTitle ("Top level window")
##
dialog <- gtkWindow (show = FALSE)
dialog$setTitle ("dialog window")
dialog$setTransientFor (window)
dialog$setPosition ("center-on-parent")
dialog$setDestroyWithParent (TRUE)
window$show ()
dialog$show ()

The above code produces a non-modal dialog window from scratch. Due to
its transient nature, it can hide parts of the top-level window, but, unlike
a modal dialog, it does not prevent that window from receiving events.
GTK+ provides a number of convenient high-level dialogs, discussed in
Section 7.3, that support modal operation.

7.2 Layout containers

Once a top-level window is constructed, it remains to fill the window with
the controls that will constitute our GUI. As these controls are graphi-
cal, they must occupy a specific region on the screen. The region could
be specified as a fixed rectangle. However, as a user interface, a GUI is
dynamic and interactive. The size constraints of widgets will change, and
the window will be resized. The programmer can ill afford to manage a
dynamic layout explicitly. Thus, GTK+ implements automatic layout in the
form of container widgets.

Basics

In GTK+, the widget hierarchy is built when children are added to a parent
container. In this example, a window is made the parent of a label:

window <- gtkWindow (show=FALSE)
window$setTitle ("Hello World")

117

7. RGtk2: Windows, Containers, and Dialogs

label <- gtkLabel ("Hello World")
window$add (label)

The method getChildren will return the children of a container as a
list. Since in this case the list will be at most length one, the getChild
method may be more convenient, as it directly returns the only child, if
any. For instance, to retrieve the label text we could do:

window$getChild () [’label’]

[1] "Hello World"

The [[method accesses the child widgets by number, as a convenient
wrapper around the getChildren method:

window [[1]] [’label’]

[1] "Hello World"

Conversely, the getParent method for GTK+ widgets will return the parent
container of a widget.

Every container supports removing a child with the remove method.
The child can later be re-added. For instance

window$remove (label)
window$add (label)

To remove a widget from the screen but not its container, use the hide
method on the widget. The reparent method is a convenience for moving
a widget between containers that ensures the child is not garbage collected
during the transition.1

Widget size negotiation

We have already seen perhaps the simplest automatic layout container,
GtkBin, which fills all of its space with its child. Despite the apparent sim-
plicity, there is a considerable amount of logic for calculating the size of the
widget on the screen. The child will first inform the parent of its desired
natural size. For example, a label might ask for the dimensions necessary
to display all of its text. The container then decides whether to allocate the
requested size or to allocate more or less than the requested amount. The
child then consumes the allocated space. Consider the previous example
of adding a label to a window:

window <- gtkWindow ()
window$setTitle ("Hello World")
label <- gtkLabel ("Hello World")
window$add (label)

1An object becomes available for garbage collection when it has no references to it, which
can happen if it is removed from the parent container.

118

7.2. Layout containers

The window is shown before the label is added, and the default size is
likely much larger than the space the label needs to display “Hello World”.
However, as the window size is now controlled by the window manager,
GtkWindow will not adjust its size. Thus, the label is allocated more space
than it requires.

label$getAllocation () $allocation

x y width height
0 0 200 200

If, however, we avoid showing the window until the label is added, the
window will size itself so that the label has its natural size:

window <- gtkWindow (show = FALSE)
window$setTitle ("Hello World")
label <- gtkLabel ("Hello World")
window$add (label)
window$show ()
label$getAllocation () $allocation

x y width height
0 0 83 18

One might notice that it is not possible to decrease the size of the window
further. This is due to GtkLabel asserting a minimum size request that is
sufficient to display its text. The setSizeRequest sets a user-level minimum
size request for any widget. It is obvious from the method name, however,
that this is still strictly a request. It may not be satisfied, for example, if
the maximum window size constraint of the window manager is violated.
More importantly, setting a minimum size request is generally discouraged,
as it decreases the flexibility of the layout.

Any nontrivial GUI will require a window containing multiple widgets.
Let us consider the case where the child of the window is itself a container,
with multiple children. Essentially the same negotiation process occurs
between the container and its children (the grandchildren of the window).
The container calculates its size request based on the requests of its children
and communicates it to the window. The size allocated to the container is
then distributed to the children according to its layout algorithm. This
process is the same for every level in the container hierarchy.

Box containers

The most commonly used multi-child container in GTK+ is the box (im-
plemented in class GtkBox), which packs its children as if they were in a
box. Instances of GtkBox are constructed by gtkHBox and gtkVBox. These
produce horizontal or vertical boxes, respectively. Each child widget is allo-
cated a cell in the box. The cells are arranged in a single column (GtkVBox)

119

7. RGtk2: Windows, Containers, and Dialogs

or row (GtkHBox). This one-dimensional stacking is usually all that a lay-
out requires. The child widgets can be containers themselves, allowing for
very flexible layouts. For special cases where some widgets need to span
multiple rows or columns and align themselves in both dimensions, GTK+
provides the GtkTable class, which is discussed later. Many of the princi-
ples we discuss in this section also apply to GtkTable.

Here we will explain and demonstrate the use of GtkHBox, the general
horizontal box layout container. GtkVBox can be used exactly the same way;
only the direction of stacking is different. Figure 7.1 illustrates a sampling
of the possible layouts that are possible with a GtkHBox.

The code for some of these layouts is presented here. We begin by
creating a GtkHBox widget. We pass TRUE for the first parameter, homoge-
neous. This means that the horizontal allocation of the box will be evenly
distributed between the children. The second parameter directs the box to
leave five pixels of space between children. The following code constructs
the GtkHBox:

box <- gtkHBox (TRUE , 5)

The equal distribution of available space is strictly enforced; the minimum
size requirement of a homogeneous box is set such that the box always
satisfies this assertion, as well as the minimum size requirements of its
children.

The packStart and packEnd methods pack a widget into a box against
the left and right side (top and bottom for a GtkVBox), respectively. For
this explanation, we restrict ourselves to packStart, since packEnd works
the same except for the direction. Below, we pack two buttons, button_a
and button_b against the left side:

button_a <- gtkButton ("Button A")
button_b <- gtkButton ("Button B")
box$packStart (button_a , fill = FALSE)
box$packStart (button_b , fill = FALSE)

First, button_a is packed against the left side of the box, and then we pack
button_b against the right side of button_a. This results in the first row in
Figure 7.1. The space distribution is homogeneous, but making the space
available to a child does not mean that the child will fill it. That depends
on the natural size of the child, as well as the value of the fill parameter
passed to packStart. In this case, fill is FALSE, so the extra space is not
filled and the widget is aligned in the center of its space. When a widget
is packed with the fill parameter set to TRUE, the widget is resized to
consume the available space. This results in rows 2 and 3 in Figure 7.1.

In many cases, it is desirable to give children unequal amounts of
available space, as in rows 4–9 in Figure 7.1. To create a heterogeneously
spaced GtkHBox, we pass FALSE as the first argument to the constructor, as
in the following code:

120

7.2. Layout containers

Figure 7.1: A screenshot demonstrating the effect of packing two buttons
into GtkHBox instances using the packStart method with different
combinations of the expand and fill settings. The effect of the
homogeneous spacing setting on the GtkHBox is also shown.

121

7. RGtk2: Windows, Containers, and Dialogs

Figure 7.2: Examples of packing widgets into a box container. The top row
shows no padding, whereas the second and third illustrate the difference
between padding (an amount around each child) and spacing (an amount
between the children). The last two rows show the effect of fill when
expand=TRUE. This illustration follows one in the original GTK+ tutorial.

box <- gtkHBox (FALSE , 5)

A heterogeneous layout is freed of the restriction that all widgets must
be given the same amount of available space; it needs only to ensure
that each child has enough space to meet its minimum size requirement.
After satisfying this constraint, a box is often left with extra space. The
programmer may control the distribution of this extra space through the
expand parameter to packStart. When a widget is packed with expand
set to TRUE, we will call the widget an expanding widget. All expanding
widgets in a box are given an equal portion of the entirety of the extra
space. If no widgets in a box are expanding, as in row 5 of Figure 7.1, the
extra space is left undistributed.

It is common to mix expanding and non-expanding widgets in the
same box. An example is given below, where button_a is expanding, while
button_b is not:

box$packStart (button_a , expand = TRUE , fill = FALSE)
box$packStart (button_b , expand = FALSE , fill = FALSE)

The result is shown in row 6 of Figure 7.1. The figure contains several
other permutations of the homogeneous, expand, and fill settings.

Padding There are several ways to add space around widgets in a box
container. The spacing argument for the constructors specifies the amount
of space between the cells, in pixels. This defaults to zero. The pack meth-
ods have a padding argument, also defaulting to zero, for specifying the
padding in pixels on either side of the child. It is important to note the
difference: spacing is between children and the same for every boundary,

122

7.2. Layout containers

while the padding is specific to a particular child and occurs on either
side, even on the ends. The spacing between widgets is the sum of the
spacing value and the two padding values when the children are added.
Example 8.3 provides an example and Figure 7.2 an illustration.

Positioning The reorderChild method reorders the child widgets. The
new position of the child is specified using 0-based indexing. This code
will move the third child of hbox to the second position:

b3 <- hbox [[3]]
hbox$reorderChild (b3 , 2 − 1) # s e c o n d i s 2 − 1

Alignment

We began this section with a simple example of a window containing a
label:

window <- gtkWindow () ; window$setTitle ("Hello World")
label <- gtkLabel ("Hello World")
window$add (label)

The window allocates all of its space to the label, despite the actual text
consuming a much smaller region. The size of the text is fixed, according
to the font size, so it could not be expanded. Thus, the label decided
to center the text within itself (and so the window). A similar problem
is faced by widgets displaying images. The image cannot be expanded
without distortion. Widgets that display objects of fixed size inherit from
GtkMisc, which provides methods and properties for tweaking how the
object is aligned within the space of the widget. For example, the xalign
and yalign properties specify how the text is aligned in our label and
take values between 0 and 1, with 0 being left and top. Their defaults are
0.5, for centered alignment. We modify them below to make our label left
justified:

label ["xalign"] <- 0

Unlike a block of text or an image, a widget usually does not have a fixed
size. However, the user may wish to tweak how a widget fills the space
allocated by its container. GTK+ provides the GtkAlignment container for
this purpose. For example, rather than adjust the justification of the label
text, we could have instructed the layout not to expand but to position
itself against the left side of the window:

window <- gtkWindow () ; window$setTitle ("Hello World")
alignment <- gtkAlignment ()
alignment$set (xalign = 0 , yalign = 0 . 5 , xscale = 0 , yscale=1)
window$add (alignment)

123

7. RGtk2: Windows, Containers, and Dialogs

label <- gtkLabel ("Hello World")
alignment$add (label)

7.3 Dialogs

GTK+ provides a number of convenient dialogs for the most common use
cases, as well as a general infrastructure for constructing custom dialogs.
A dialog is a window that generally consists of an icon, a content area,
and an action area containing a row of buttons representing the possible
user responses. Typically, a dialog belongs to a main application window
and might be modal, in which case input is blocked to other parts of the
GUI. GtkDialog represents a generic dialog and serves as the base class
for all special-purpose dialogs in GTK+.

Message dialogs

Communicating textual messages to the user is perhaps the most common
application of a dialog. GTK+ provides the gtkMessageDialog convenience
wrapper for GtkDialog for creating a message dialog showing a primary
and secondary message. We construct one presently:

window <- gtkWindow () ; window [’title’] <- "Parent window"
#
dialog <- gtkMessageDialog (parent=window ,

flags="destroy-with-parent" ,
type="question" ,
buttons="ok" ,
"My message")

dialog [’secondary -text’] <- "A secondary message"

The flags argument allows us to specify a combination of values from
GtkDialogFlags. These include destroy-with-parent and modal. Here, the
dialog will be destroyed upon destruction of the parent window. The type
argument specifies the message type, using one of the four values from
GtkMessageType, which determines the icon that is placed adjacent to the
message text. The buttons argument indicates the set of response buttons
with a value from GtkButtonsType. The remaining arguments are pasted
together into the primary message. The dialog has a secondary-text prop-
erty that can be set to give a secondary message.

Dialogs are optionally modal. Below, we enable modality by calling the
run method, which will additionally block the R session:

response <- dialog$run ()
if (response == GtkResponseType ["cancel"] ||

response == GtkResponseType ["close"] ||
response == GtkResponseType ["delete-event"]) {

124

7.3. Dialogs

Figure 7.3: Using gtkDialog to create a custom dialog, in this case one
showing a label and entry widget.

p a s s
} else if (response == GtkResponseType ["ok"]) {

message ("Ok")
}
dialog$destroy ()

The return value can then be inspected for the action, such as which
button was pressed. GtkMessageDialog will return response codes from the
GtkResponseType enumeration. We will see an example of asynchronous
response handling in the next section.

Custom dialogs

The gtkDialog constructor returns a generic dialog object which can be
customized, in terms of its content and response buttons. Usually, a Gtk-
Dialog is constructed with gtkDialogNewWithButtons, as a dialog almost
always contains a set of response buttons, such as Ok, Yes, No and Cancel.
In this example, we will create a simple dialog showing a label and text
entry:

dialog <- gtkDialogNewWithButtons (title = "Enter a value" ,
parent = NULL , flags = 0 ,
"gtk-ok" , GtkResponseType ["ok"] ,
"gtk-cancel" , GtkResponseType ["cancel"] ,
show = FALSE)

Buttons are added with a label and a response ID, and their order is taken
from their order in the call. There is no automatic ordering based on an
operating system’s conventions. When the button label matches a stock ID,
the icon and text are taken from the stock definition. We used standard
responses from GtkResponseType, although in general the codes are simply
integer values; interpretation is up to the programmer.

The dialog has a content area; an instance of GtkVBox. To complete our
dialog, we place a labeled text entry into the content area:

hbox <- gtkHBox ()
hbox [’spacing’] <- 10

125

7. RGtk2: Windows, Containers, and Dialogs

#
hbox$packStart (gtkLabel ("Enter a value:"))
entry <- gtkEntry ()
hbox$packStart (entry)
#
vbox <- dialog$getContentArea ()
vbox$packStart (hbox)

The content is placed above the button box, with a separator between them.
In the message dialog example, we called the run method to make the

dialog modal. To make a non-modal dialog, do not call run but connect to
the response signal of the modal dialog. The response code of the clicked
button is passed to the callback:

gSignalConnect (dialog , "response" ,
f=function (dialog , response , user . data) {

if (response == GtkResponseType ["ok"])
print (entry$getText ()) # R e p l a c e t h i s

dialog$Destroy ()
})

dialog$showAll ()
dialog$setModal (TRUE)

File chooser

A common task in a GUI is the selection of files and directories, for exam-
ple to load or save a document. GtkFileChooser is an interface shared by
widgets that choose files. GTK+ provides three such widgets. The first is
GtkFileChooserWidget, which can be placed anywhere in a GUI. The other
two are based on the first. GtkFileChooserDialog embeds the chooser
widget in a modal dialog, while GtkFileChooserButton is a button that
displays a file path and launches the dialog when clicked.

Example 7.1: An open-file dialog
Here, we demonstrate most commonly used of the three file-choosing dia-
log. An open file dialog can be created with:

dialog <- gtkFileChooserDialog (title = "Open a file" ,
parent = NULL , action = "open" ,
"gtk-ok" , GtkResponseType ["ok"] ,
"gtk-cancel" , GtkResponseType ["cancel"] ,
show = FALSE)

The dialog constructor allows us to specify a title, a parent, and an ac-
tion,: either open, save, select-folder, or create-folder. In addition, the
dialog buttons must be specified, as with the last example, using gtkDi-
alogNewWithButtons.

We connect to the response signal

126

7.3. Dialogs

gSignalConnect (dialog , "response" ,
f = function (dialog , response , data) {

if (response == GtkResponseType ["ok"]) {
filename <- dialog$getFilename ()
print (filename)

}
dialog$destroy ()

})

The file selected is returned by getFilename. If multiple selection is en-
abled (via the select-multiple property) we should call the plural get-
Filenames.

For the open dialog, we may wish to specify one or more filters that
narrow the available files for selection:

fileFilter <- gtkFileFilter ()
fileFilter$setName ("R files")
fileFilter$addPattern ("*.R")
fileFilter$addPattern ("*.Rdata")
dialog$addFilter (fileFilter)

The gtkFileFilter function constructs a filter, which is given a name and
a set of file-name patterns, before being added to the file chooser. Filtering
by MIME type is also supported.

The save file dialog would be similar. The initial file name could be
specified with setFilename, or folder with setFolder. The do-overwrite-
confirmation property controls whether the user is prompted when at-
tempting to overwrite an existing file.

Other features not discussed here include embedding of preview and
other custom widgets, and specifying shortcut folders.

Other choosers

There are several other types of dialogs for making common types of selec-
tions. These include GtkCalendar for picking dates, GtkColorSelection-
Dialog for choosing colors, and GtkFontSelectionDialog for fonts. These
are very high-level dialogs that are trivial to construct and manipulate, at
a cost of flexibility.

Print dialog

Rendering documents for printing is outside our scope; however, we will
mention that GtkPrintOperation can launch the native, platform-specific
print dialog for customizing a printing operation. See Example 8.11 for an
example of printing R graphics using cairoDevice.

127

7. RGtk2: Windows, Containers, and Dialogs

7.4 Special-purpose containers

In Section 7.2, we presented GtkBox and GtkAlignment, the two most useful
layout containers in GTK+. This section introduces some other important
containers. These include the merely decorative GtkFrame; the interactive
GtkExpander, GtkPaned, and GtkNotebook; and the grid-style layout con-
tainer GtkTable. All of these widgets are derived from GtkContainer, and
so share many methods.

Framed containers

The gtkFrame function constructs a container that draws a decorative, la-
beled frame around its single child:

frame <- gtkFrame ("Options")
vbox <- gtkVBox ()
vbox$packStart (gtkCheckButton ("Option 1") , FALSE)
vbox$packStart (gtkCheckButton ("Option 2") , FALSE)
frame$add (vbox)

A frame is useful for visually segregating a set of conceptually related
widgets from the rest of the GUI. The type of decorative shadow is stored
in the shadow-type property. The setLabelAlign aligns the label relative
to the frame. This is to the left, by default.

Expandable containers

The GtkExpander widget provides a button that hides and shows a single
child upon demand. This is often an effective mechanism for managing
screen space. Expandable containers are constructed by gtkExpander:

expander <- gtkExpander ("Advanced")
expander$add (frame)

Use gtkExpanderNewWithMnemonic if a mnemonic is desired. The expanded
property, which can be accessed with getExpanded and setExpanded, repre-
sents the visible state of the widget. When the expanded property changes,
the activate signal is emitted.

Notebooks

The gtkNotebook constructor creates a notebook container, a widget that
displays an array of buttons resembling notebook tabs. Each tab corre-
sponds to a widget, and when a tab is selected, its widget is made visible,
while the others are hidden. If GtkExpander is like a check button, Gt-
kNotebook is like a radio-button group.

We create a notebook and add some pages:

128

7.4. Special-purpose containers

notebook <- gtkNotebook ()
notebook$appendPage (gtkLabel ("Page 1") , gtkLabel ("Tab 1"))

[1] 0

notebook$appendPage (gtkLabel ("Page 2") , gtkLabel ("Tab 2"))

[1] 1

A page specification consists of a widget for the page and a widget for
the tab. Any type of widget is accepted, although a label is typically used
for the tab. This flexibility allows for more complicated tabs, such as a box
container with a label and a close icon.

The tabs can be positioned on any of the four sides of the notebook;
this depends on the tab-pos property, with a value from GtkPositionType:
"left", "right", "top", or "bottom". By default, the tabs are on top. We
move the current ones to the bottom:

notebook [’tab-pos’] <- "bottom"

Methods and properties that affect pages expect the page index, instead
of the page widget. To map from the child widget to the page number,
use the method pageNum. The page property holds the zero-based index of
the active tab. We make the second tab active:

notebook [’page’] <- 1
notebook [’page’]

[1] 1

To move sequentially through the pages, call the methods nextPage
and prevPage. The signal switch-page is emitted when the current page
changes.

Pages can be reordered using the reorderChild, although it is usually
desirable to allow the user to reorder pages. The setTabReorderable en-
ables drag and drop reordering for a specific tab. It is also possible for the
user to drag and drop pages between notebooks, as long as they belong to
the same group, which depends on the group-id property. Pages can be
deleted using the method removePage.

Managing many pages By default, a notebook will request enough space
to display all of its tabs. If there are many tabs, space may be wasted. Gt-
kNotebook solves this with the scrolling idiom. If the property scrollable
is set to TRUE, arrows will be added to allow the user to scroll through
the tabs. In this case, the tabs may become difficult to navigate. Setting the
enable-popup property to TRUE enables a right-click pop-up menu listing
all of the tabs for direct navigation.

129

7. RGtk2: Windows, Containers, and Dialogs

Figure 7.4: Simple illustration of customized tab in a notebook. These
include close buttons.

Example 7.2: Adding a page with a close button
A familiar element of notebooks in many web browsers is a tab close
button. The following defines a new method insertPageWithCloseButton
that will use the themeable stock close icon. The callback passes both the
notebook and the page through the data argument, so that the proper
page can be deleted.

gtkNotebookInsertPageWithCloseButton <-
function (object , child , label . text="" , position=−1) {

icon <- gtkImage (pixbuf =
object$renderIcon ("gtk-close" , "button" , size = "menu"))

closeButton <- gtkButton ()
closeButton$setImage (icon)
closeButton$setRelief ("none")
##
label <- gtkHBox ()
label$packStart (gtkLabel (label . text))
label$packEnd (closeButton)
##
gSignalConnect (closeButton , "clicked" , function (button) {

index <- object$pageNum (child)
object$removePage (index)

})
object$insertPage (child , label , position)

}

Here is a simple demonstration of its usage:

window <- gtkWindow ()
notebook <- gtkNotebook () ; window$add (notebook)
notebook$insertPageWithCloseButton (gtkButton ("hello") ,

label . text = "page 1")
notebook$insertPageWithCloseButton (gtkButton ("world") ,

label . text = "page 2")

130

7.4. Special-purpose containers

Scrollable windows

The GtkExpander and GtkNotebook widgets support efficient use of screen
real estate. However, when a widget is always too large to fit in a GUI,
partial display is necessary. A GtkScrolledWindow supports this by provid-
ing scroll bars for the user to adjust the visible region of a single child. The
range, step, and position of GtkScrollbar are controlled by an instance of
GtkAdjustment, just as with the slider and spin button. Scrolled windows
are most often used with potentially large widgets like table views and
when displaying images and graphics.

Our example will embed an R-graphics device in a scrolled window
and allow the user to zoom in and out and pull on the scroll bars to
pan the view. First, we create an R-graphics device using the cairoDevice
package

library (cairoDevice)
device <- gtkDrawingArea ()
device$setSizeRequest (6 0 0 , 400)
asCairoDevice (device)

and then embed it within a scrolled window:

scrolled <- gtkScrolledWindow ()
scrolled$addWithViewport (device)

The widget in a scrolled window must know how to display only a
part of itself, i.e., it must be scrollable. Some widgets, including GtkTree-
View and GtkTextView, have native scrolling support. Other widgets, like
our GtkDrawingArea, must be embedded within the proxy GtkViewport.
The GtkScrolledWindow convenience method addWithViewport allows the
programmer to skip the GtkViewport step.

Next, we define a function for scaling the plot:

zoomPlot <- function (x = 2 . 0) {
allocation <- device$getAllocation () $allocation
device$setSizeRequest (allocation$width * x ,

allocation$height * x)
updateAdjustment <- function (adjustment) {

adjustment$setValue (x * adjustment$getValue () +
(x − 1) * adjustment$getPageSize () / 2)

}
updateAdjustment (scrolled$getHadjustment ())
updateAdjustment (scrolled$getVadjustment ())

}

The function gets the current size allocation from the device, scales it by x,
and requests the new size. It then scrolls the window to preserve the center
point. The state of each scroll bar is represented by a GtkAdjustment. We
update the value of the horizontal and vertical adjustments to scroll the

131

7. RGtk2: Windows, Containers, and Dialogs

window. The value of an adjustment corresponds to the left/top position
of the window, so we adjust by half the page size after scaling the value.

We had key-press events, so that pressing + zooms in and pressing -
zooms out:

gSignalConnect (scrolled , "key-press-event" ,
function (scrolled , event) {

key <- event [["keyval"]]
if (key == GDK_plus)

zoomPlot (2 . 0)
else if (key == GDK_minus)

zoomPlot (0 . 5)
TRUE

})

Despite its name, the scrolled window is not a top-level window. Thus,
it needs to be added to a top-level window:

win <- gtkWindow (show = FALSE)
win$add (scrolled)
win$showAll ()

Finally, a basic scatterplot is displayed in the viewer:

plot (mpg ~ hp , data = mtcars)

The properties hscrollbar-policy and vscrollbar-policy determine
when the scroll bars are drawn. By default, they are always drawn. The
"automatic" value from the GtkPolicyType enumeration draws the scroll
bars only if needed, i.e, if the child widget requests more space than can
be allocated. The setPolicy method allows both to be set at once.

Divided containers

The gtkHPaned and gtkVPaned constructors create containers that hold two
child widgets, arranged horizontally or vertically and separated by a di-
vider displaying a handle allowing the user to adjust the allocation of
space between the child components. We will demonstrate only the hori-
zontal pane GtkHPaned here, without loss of generality.

First, we construct an instance of GtkHPaned:

paned <- gtkHPaned ()

The two children can be added two different ways. The simplest ap-
proach calls add1 and add2 for adding the first and second child, respec-
tively.

paned$add1 (gtkLabel ("Left (1)"))
paned$add2 (gtkLabel ("Right (2)"))

132

7.4. Special-purpose containers

Figure 7.5: A basic dialog using a gtkTable container for layout.

This configures the container such that both children are allowed to shrink
and only the second widget can expand. Such a configuration is appropri-
ate for a GUI with main widget and a side pane to the left. More flexibility
is afforded by the methods pack1 and pack2, which have arguments for
specifying whether the child should expand ("resize") and/or "shrink".
Here we add the children such that both can expand and shrink:

paned$pack1 (gtkLabel ("Left (1)") , resize = TRUE , shrink=TRUE)
paned$pack2 (gtkLabel ("Right (2)") , resize = TRUE , shrink=TRUE)

After children are added, they can be retrieved from the container through
the getChild1 and getChild2 methods.

The screen position of the handle can be set with the setPosition
method. The properties min-position and max-position are useful for
converting a percentage into a screen position. The move-handle signal is
emitted when the handle position is changed.

Tabular layout

GtkTable is a container for laying out objects in a tabular (or grid) format.
It is not meant for displaying tabular data. The container divides its space
into cells of a grid, and a child widget may occupy one or more cells. The
allocation of space within a row or column follows logic similar to that of
box layouts. The most common use case of a GtkTable is a form layout,
which we will demonstrate in our example.

Example 7.3: Dialog layout
This example shows how to lay out a form in a dialog with some attention
paid to how the widgets are aligned and how they respond to resizing of
the window.

Our form layout will require three rows and two columns:

133

7. RGtk2: Windows, Containers, and Dialogs

table <- gtkTable (rows = 3 , columns = 2 , homogeneous = FALSE)

By default, the cells are allowed to have different sizes. This may be over-
ridden by passing "homogeneous = TRUE" to the constructor, which forces
all cells to have the same size.

We construct the widgets that will be placed in the form:

size_label <- gtkLabel ("Sample size:")
size_combo <- gtkComboBoxNewText ()
sapply (c (5 , 10 , 15 , 3 0) , size_combo$appendText)
##
diag_label <- gtkLabel ("Diagnostic:")
diag_radio <- gtkVBox ()
radiogp <- list ()
radiogp$t <- gtkRadioButton (label = "t-statistic")
radiogp$mean <- gtkRadioButton (radiogp , label = "mean")
radiogp$median <- gtkRadioButton (radiogp , label = "median")
sapply (radiogp , diag_radio$packStart)
##
submit_vbox <- gtkVBox ()
submit_vbox$packEnd (gtkButton ("Run simulation") , expand=FALSE)

We align the labels to the right, up against their corresponding entry
widgets, which are left-aligned:

size_label [’xalign’] <- 1
diag_label [’xalign’] <- 1 ; diag_label [’yalign’] <- 0
diag_align <- gtkAlignment (xalign = 0)
diag_align$add (diag_radio)

The labels are aligned through the GtkMisc functionality inherited by
GtkLabel. The GtkVBox with the radio buttons does not support this, so
we have embedded it within a GtkAlignment instance. We have aligned
the diagnostic label to the top of its cell; otherwise, it would have been
centered vertically. The radio buttons are left-aligned, up against the label
(cf. Figure 7.5).

Child widgets are added to a GtkTable instance through its at-
tach method. The child can span more than one cell. The arguments
left.attach and right.attach specify the horizontal bounds of the child
in terms of its left column and right column, respectively. Analogously,
top.attach and bottom.attach define the vertical bounds. By default, the
widgets will expand into and fill the available space, much as if expand
and fill were passed as TRUE to packStart (see Section 7.2). There is
no padding between children by default. Both the resizing behavior and
padding can be overridden by specifying additional arguments to attach.

The following attaches the combo box, radio buttons, and their labels
to the table:

134

7.4. Special-purpose containers

table$attach (size_label , left . attach = 0 , 1 , top . attach = 0 , 1 ,
xoptions = c ("expand" , "fill") , yoptions = "")

table$attach (size_combo , left . attach = 1 , 2 , top . attach = 0 , 1 ,
xoptions = "fill" , yoptions = "")

##
table$attach (diag_label , left . attach = 0 , 1 , top . attach = 1 , 2 ,

xoptions = c ("expand" , "fill") ,
yoptions = c ("expand" , "fill"))

##
table$attach (diag_align , left . attach = 1 , 2 , top . attach = 1 , 2 ,

xoptions = c ("expand" , "fill") , yoptions = "")
##
table$attach (submit_vbox , left . attach = 1 , 2 , top . attach = 2 , 3 ,

xoptions = "" , yoptions = c ("expand" , "fill"))

The labels are allowed to expand and fill in the x direction, because
correct alignment, to the right, requires them to have the same size. The
combo box is instructed to fill its space, as it would otherwise be undesir-
ably small, due to its short menu items.

We can add spacing to the right of cells in a particular row or column.
Here we add five pixels of space to the right of the label column:

table$setColSpacing (0 , 5)

We complete the example by placing the table into a window:

window <- gtkWindow (show=FALSE)
window [’border-width’] <- 14
window$setTitle ("GtkTable Example")
window$add (table)

135

This page intentionally left blankThis page intentionally left blank

8

RGtk2: Basic Components

In this chapter we cover many of the basic controls of GTK+.

8.1 Buttons

The button is the very essence of a GUI. It communicates its purpose to
the user and executes a command in response to a simple click or key
press. In GTK+, a basic button is usually constructed using gtkButton, as
the following example demonstrates.

Example 8.1: Button constructors

window <- gtkWindow (show = FALSE)
window$setTitle ("Various buttons")
window$setDefaultSize (4 0 0 , 25)
hbox <- gtkHBox (homogeneous = FALSE , spacing = 5)
window$add (hbox)
button <- gtkButtonNew ()
button$setLabel ("long way")
hbox$packStart (button)
hbox$packStart (gtkButton (label = "label only"))
hbox$packStart (gtkButton (stock . id = "gtk-ok"))
hbox$packStart (gtkButtonNewWithMnemonic ("_Mnemonic"))
window$show ()

Figure 8.1: Various buttons.

137

8. RGtk2: Basic Components

A GtkButton is simply a clickable region on the screen that is rendered
as a button. GtkButton is a subclass of GtkBin, so it will accept any widget
as an indicator of its purpose. By far the most common button decoration
is a label. The first argument of gtkButton, label, accepts the text for an
automatically created GtkLabel. We have seen this usage in our “Hello
World” example and others.

Passing the stock.id argument to gtkButton will use decorations as-
sociated with a so-called stock identifier (see Section 8.2). For example,
“gtk-ok” would produce a button with a theme-dependent image (such as
a check mark) and the “Ok” label, with the appropriate mnemonic (see
below) and language translation. The available stock identifiers are listed
by gtkStockListIds.

The gtkButtonNewWithMnemonic constructor creates a button with a
mnemonic. A mnemonic is a key press that will activate the button and is
indicated by prefixing the character with an underscore. In our example,
we pass the string “_Mnemonic”, so pressing Alt-M will effectively press
the button.

Signals The clicked signal is emitted when the button is clicked with
the mouse, when the associated mnemonic is pressed, or when the button
has focus and the enter key is pressed. A callback can listen for this event
to perform a command when the button is clicked.

Example 8.2: Callback example for gtkButton

window <- gtkWindow () ; button <- gtkButton ("click me") ;
window$add (button)
gSignalConnect (button , "button-press-event" , # j u s t mouse

f = function (widget , event , data) {
print (event$getButton ()) # which b u t t o n
return (FALSE) # p r o p a g a t e

})
gSignalConnect (button , "clicked" , # k e y b o a r d t o o

f = function (widget , . . .) {
print ("clicked")

})

As buttons are intended to call an action immediately after being
clicked, it is advisable to make them insensitive to user input when the
action is not possible. For example, we set our button to be insensitive
through:

button$setSensitive (FALSE)

Windows often have a default action. For example, if a window con-
tains a form, the default action submits the form. If a button executes the

138

8.1. Buttons

Figure 8.2: Example using stock buttons with extra spacing added
between the delete and cancel buttons.

default action for the window, the button can be set so that it is activated
when the user presses enter while the parent window has the focus. To
implement this, the property can-default must be TRUE and the widget
method grabDefault must be called. (This is not specific to buttons, but
any widget that can be activatable.) The GtkDialog widget and its deriva-
tives facilitate the use of buttons in this manner (see Section 7.3).

If the action that a button initiates is to be represented elsewhere in the
GUI, say a menu bar, then a GtkAction object may be appropriate. Action
objects are covered in Section 10.5.

Example 8.3: Spacing between buttons
This example shows how to pack buttons into a box so that the spacing
between the similar buttons is twelve pixels, while potentially dangerous
buttons are separated from the rest by twenty-four pixels, as per the Apple
human interface guidelines.

GTK+ provides the widget GtkHButtonBox for organizing buttons in
a manner consistent across an application. However, the default layout
modes would not yield the desired spacing. As such, we will illustrate
how to customize the spacing. We assume that our parent container, hbox,
is a horizontal box container.

We include standard buttons, so we use the stock names and icons.

ok <- gtkButton (stock . id="gtk-ok")
cancel <- gtkButton (stock . id="gtk-cancel")
delete <- gtkButton (stock . id="gtk-delete")

We specify the padding as we pack the widgets into the box, from right
to left, with packEnd:

hbox$packEnd (ok , padding = 0)
hbox$packEnd (cancel , padding = 12)
hbox$packEnd (delete , padding = 12)
hbox$packEnd (gtkLabel ("") , expand = TRUE , fill = TRUE)
##
ok$grabFocus ()

The padding occurs to the left and right of the child. The ok button is given
no padding. The cancel button is packed with twelve pixels of spacing,
which separates it from the ok button. Recognizing the delete button as
potentially irreversible, we add twelve pixels of separation between it and
the cancel button, for a total of twenty-four pixels. The blank label pushes

139

8. RGtk2: Basic Components

Figure 8.3: Various formatting for a label: wrapping, alignment,
“ellipsizing,” and Pango markup.

the buttons against the right side of the box. In the last line, we instruct
the ok button to grab focus, so that it becomes the default button:.

8.2 Static text and images

Labels

The primary purpose of a label is to communicate the role of another
widget, as we showed for the button. Labels are created by the gtkLabel
constructor, which takes the label text as its first argument. This text can
be set with either setLabel or setText and retrieved with either getLabel
or getText. The difference between the two is that the former respects
formatting marks.

Example 8.4: Label formatting
As most text in a GTK+ GUI is ultimately displayed by GtkLabel, there are
many formatting options available. This example demonstrates a sample of
these (Figure 8.3).

string <- "the quick brown fox jumped over the lazy dog"
wrap by s e t t i n g number o f c h a r a c t e r s
basicLabel <- gtkLabel (string)
basicLabel$setLineWrap (TRUE)
basicLabel$setWidthChars (3 5) # no . c h a r a c t e r s
S e t e l l i p s i s t o s h o r t e n l on g t e x t
ellipsized <- gtkLabel (string)
ellipsized$setEllipsize ("middle")
Right j u s t i f y t e x t l i n e s

140

8.2. Static text and images

use x a l i g n p r o p e r t y f o r a l i g n i n g e n t i r e b l o c k
rightJustified <- gtkLabel ("right justify")
rightJustified$setJustify ("right")
rightJustified [’xalign’] <- 1
PANGO markup
pangoLabel <- gtkLabel ()
tmpl <- "%s"
pangoLabel$setMarkup (sprintf (tmpl , string))
#
sapply (list (basicLabel , ellipsized , rightJustified , pangoLabel) ,

vbox$packStart , expand = TRUE , fill = TRUE)
window$showAll ()

Many of the text formatting options are demonstrated in Example 8.4.
Line wrapping is enabled with setLineWrap. Labels also support explicit
line breaks, specified with “\n.” The setWidthChars method is a conve-
nience for instructing the label to request enough space to show a specified
number of characters in a line. When space is at a premium, long labels
can be ellipsized, i.e., have some of their text replaced with an ellipsis, “...”.
By default, this is turned off; to enable, call setEllipsize. The property
justify, with values taken from GtkJustification, controls the alignment
of multiple lines within a label. To align the entire block of text within the
space allocated to the label, modify the xalign property, as described in
Section 7.2.

Pango markup GTK+ allows markup of text elements using the Pango
text attribute markup language, an XML-based format that resembles basic
HTML. The method setMarkup accepts text in the format. Text is marked
using tags to indicate the style. Some convenient tags are for bold, <i>
for italics, for underline, and <tt> for monospace text. Hyperlinks
are possible with <a>, as of version 2.18, and similar logic to browseURL is
implemented for launching a web browser. Connect to the activate_link
signal to override it. More complicated markup involves the tag
markup, such as some text. As with HTML,
the text may need to be escaped first so that designated entities replace
reserved characters.

Although mostly meant for static text display, GtkLabel has some inter-
active features. If the selectable property is set to TRUE, the text can be se-
lected and copied into the clipboard. Labels can hold mnemonics for other
widgets; this is useful for navigating forms. The mnemonic is specified at
construction time with gtkLabelNewWithMnemonic. The setMnemonicWidget
method identifies the widget to which the mnemonic refers.

For efficiency reasons GtkLabel does not receive any input events. It
lacks an underlying GdkWindow, meaning that there are no window-system
resources allocated for receiving the events. Thus, to make a label inter-

141

8. RGtk2: Basic Components

active, we must first embed it within a GtkEventBox, which provides the
GdkWindow.

Images

It is often said that a picture can be worth a thousand words. Applying this
to a GUI, good images can be worth thousands of screen pixels, as they
can compactly represent ideas and actions. GtkImage is the widget that
displays images. The constructor gtkImage creates images from various
in-memory image representations, files, and other sources. Images can be
loaded after construction, as well. For example, the setFromFile method
loads an image from a file.

Example 8.5: Using a pixmap to present graphs
This example shows how to use a GtkImage object to embed a graphic
within RGtk2, using the cairoDevice package. The basic idea is to draw
onto an off-screen pixmap using cairoDevice and then to construct a
GtkImage from the pixmap.

We begin by creating a window of a certain size.

window <- gtkWindow (show = FALSE)
window$setTitle ("Graphic window")
window$setSizeRequest (4 0 0 , 400)
hbox <- gtkHBox () ; window$add (hbox)
window$showAll ()

The size of the image is taken as the size allocated to the box hbox. This
allows the window to be resized prior to drawing the graphic. Unlike an
interactive device, after drawing, this graphic does not resize itself when
the window resizes.

theSize <- hbox$getAllocation () $allocation
width <- theSize$width ; height <- theSize$height

We create a GdkPixmap of the correct dimensions and initialize an R
graphics device that targets the pixmap. A simple histogram is then plotted
using base R graphics.

require (cairoDevice)
pixmap <- gdkPixmap (drawable = NULL ,

width = width , height = height , depth=24)
asCairoDevice (pixmap)
hist (rnorm (1 0 0))

The final step is to create the GtkImage widget to display the pixmap:

image <- gtkImage (pixmap = pixmap)
hbox$packStart (image , expand = TRUE , fill = TRUE)

142

8.3. Input controls

The image widget, like the label widget, does not have a parent Gd-
kWindow, which means it does not receive window events. As with the label
widget, the image widget can be placed inside a GtkEventBox container if
we wish to connect to such events.

Stock icons

In GTK+, standard icons, like the one on the “OK” button, can be cus-
tomized by themes. This is implemented by a database that maps a stock
identifier to an icon image. The stock identifier corresponds to a com-
monly performed type of action, such as the “OK” response or the “Save”
operation. There is no hard-coded set of stock identifiers, however GTK+
provides a default set for the most common operations. These identifiers
are all prefixed with “gtk-”. Users may register new types of stock icons.

As mentioned previously, the full list of stock icons is returned, as a
list, by gtkStockListIds. The first three are:

head (unlist (gtkStockListIds ()) , n=3)

[1] "gtk -zoom -out" "gtk -zoom -in" "gtk -zoom -fit"

The use of stock identifiers over specific images is encouraged, as it
allows an application to be customized through themes. The gtkButton
and gtkImage constructors accept a stock identifier passed as stock.id
argument, and the icons in toolbars and menus are most conveniently
specified by a stock identifier.

8.3 Input controls

Text entry

The widgets explained thus far are largely static, i.e., it is not possible to
edit a label or image. GTK+ has two different widgets for editing text. One
is optimized for multiline text documents, the other for single-line entry.
We will discuss complex multiline text editing in Section 9.6. For entering
a single line of text, the GtkEntry widget is appropriate:

entry <- gtkEntry ()

The text property stores the text. This can be set with the method
setText and retrieved with getText. When the user has committed an
entry, e.g., by pressing the enter key, the activate signal is emitted. Here
we connect to this signal to obtain the entered text upon activation:

gSignalConnect (entry , "activate" , function () {
message ("Text entered: " , entry$getText ())

})

143

8. RGtk2: Basic Components

Figure 8.4: Illustration of adding an icon to a GtkEntry instance to
indicate whether the text entered is valid.

Sometimes the length of the text needs to be constrained to some num-
ber of characters. The max argument to gtkEntry specifies this, but that
usage is deprecated, in favor of the setMaxLength method.

The GtkEditable interface Editing text programmatically relies on the
GtkEditable interface, which GtkEntry implements. The method insert-
Text inserts text before a position specified by a 0-based index. The return
value is a list with the component position indicating the position after
the new text. The deleteText method deletes text between two positions.

The GtkEditable interface supports three signals: changed when text is
changed, delete-text for delete events, and insert-text for insert events.
It is possible to prevent the insertion or deletion of text by connecting to
the corresponding signal and stopping the signal propagation with gSig-
nalStopEmission.

Advanced GtkEntry features GtkEntry has a number of features beyond
basic text entry, including: completion, buffer sharing, icons, and progress
reporting. We discuss completion in Section 9.4 and shared buffers in Sec-
tion 9.5. The progress reporting API, introduced with version 2.16, is vir-
tually identical to that of GtkProgressBar, introduced in Section 8.4. We
treat icons here. This feature has been present since version 2.16.

We can set an icon on an entry from a GdkPixbuf, stock ID, icon
name, or GIcon (Figure 8.4). Two icons are possible, one at the beginning
(primary) and one at the end (secondary). A common use would be to
place a search icon in an entry widget, were it used for searching. In our
example below, an entry might listen to its input and update its icon to
indicate whether the entered text is valid (in this case, consisting only of
letters):

validatedEntry <- gtkEntry ()
gSignalConnect (validatedEntry , "changed" , function (entry) {

text <- entry$getText ()
if (nzchar (gsub ("[a-zA-Z]" , "" , text))) {

entry$setIconFromStock ("primary" , "gtk-no")
entry$setIconTooltipText ("primary" ,

144

8.3. Input controls

"Only letters are allowed")
} else {

entry$setIconFromStock ("primary" , "gtk-yes")
entry$setIconTooltipText ("primary" , NULL)

}
})
validatedEntry$setIconFromStock ("primary" , "gtk-yes")

We add a tooltip on the error icon to indicate the nature of the problem
to the user. Icons can also be made clickable and used as a source for
drag-and-drop operations.

Check button

Very often, the action performed by a button simply changes the value of
a state variable in the application. GTK+ defines several types of buttons
that explicitly manage and display one aspect of the application state. The
simplest type of state variable is binary (Boolean) and is usually proxied
by a GtkCheckButton.

A GtkCheckButton is constructed by gtkCheckButton:

checkButton <- gtkCheckButton ("Option")

The state of the binary variable is represented by the active property. We
check our button:

checkButton [’active’]

[1] FALSE

checkButton [’active’] <- TRUE

When the state is changed the toggle signal is emitted. The callback
should check the active property to determine if the button has been
enabled or disabled:

gSignalConnect (checkButton , "toggled" , function (button) {
state <- ifelse (button$active , "active" ,"inactive")
message ("Button is " , state)

})

An alternative to GtkCheckButton is the lesser used GtkToggleButton,
which is actually the parent class of GtkCheckButton. A toggle button is
drawn as an ordinary button. It is drawn as depressed while the state
variable is TRUE, instead of relying on a checkbox to communicate the
binary value.

145

8. RGtk2: Basic Components

Radio-button groups

GTK+ provides two widgets for discrete, state variables that accept more
than two possible values: combo boxes, discussed in the next section,
and radio buttons. The gtkRadioButton constructor creates an instance
of GtkRadioButton, an extension of GtkCheckButton. Each radio button
belongs to a group, and only one button in a group may be active at once.

Example 8.6: Basic radio-button usage
When we construct a radio button, we need to add it to a group. There
is no explicit group object; rather, the buttons are chained together as a
linked list. By default, a newly constructed button is added to its own
group. If the group list is passed to the constructor, the newly created
button is added to the group:

labels <- c ("two.sided" , "less" , "greater")
radiogp <- list () # l i s t f o r group
radiogp [[labels [1]]] <- gtkRadioButton (label=labels [1])
for (label in labels [−1])

radiogp [[label]] <- gtkRadioButton (radiogp , label=label)

As a convenience, there are constructor functions ending with FromWidget
that determine the group from a radio button belonging to the group. As
we will see in our second example, this allows for a more natural sapply
idiom that avoids the need to allocate a list and populate it in a for loop.

We add each button to a vertical box:

window <- gtkWindow () ; window$setTitle ("Radio group example")
vbox <- gtkVBox (FALSE , 5) ; window$add (vbox)
sapply (radiogp , gtkBoxPackStart , object = vbox)

We can set and query which button is active:

vbox [[3]] $setActive (TRUE)
sapply (radiogp , ‘ [‘ , "active")

two.sided less greater
FALSE FALSE TRUE

The toggle signal is emitted when a button is toggled. We need to
connect a handler to each button:

sapply (radiogp , gSignalConnect , "toggled" , # c o n n e c t e a c h
f = function (button , data) {

if (button [’active’]) # s e t b e f o r e c a l l b a c k
message ("clicked" , button$getLabel () , "\n")

})

146

8.3. Input controls

Example 8.7: Radio group via a FromWidget constructor
In this example, we illustrate using the gtkRadioButtonNewWithLabel-
FromWidget function to add new buttons to the group:

radiogp <- gtkRadioButton (label=labels [1])
btns <- sapply (labels [−1] , gtkRadioButtonNewWithLabelFromWidget ,

group = radiogp)
window <- gtkWindow ()
window [’title’] <- "Radio group example"
vbox <- gtkVBox () ; window$add (vbox)
sapply (rev (radiogp$getGroup ()) , gtkBoxPackStart , object = vbox)

The getGroup method returns a list containing the radio buttons in the
same group. However, it is in the reverse order of construction (newest
first). This results from an internal optimization that prepends, rather than
appends, the buttons to a linked list. Thus, we need to call rev to reverse
the list before packing the widgets into the box.

Combo boxes

The combo box is a more space-efficient alternative to a radio button group
and is better suited when there are a large number of options. A basic, text-
only GtkComboBox is constructed by gtkComboBoxNewText. In Section 9.3 we
will discuss combo boxes that are based on an external data model.

We can construct and populate a simple combo box with:

combo <- gtkComboBoxNewText ()
sapply (c ("two.sided" , "less" , "greater") , combo$appendText)

The index of the currently active item is stored in the active property.
The index, as usual, is 0-based, and a value of −1 indicates that no value
is selected (the default):

combo [’active’]

[1] -1

The getActiveText method retrieves the text shown by the basic combo
box.

When the active index changes, the changed signal is emitted. The
handler then needs to retrieve the active index:

gSignalConnect (combo , "changed" ,
f = function (button , . . .) {

if (button$getActive () < 0)
message ("No value selected")

else
message ("Value is" , button$getActiveText ())

})

147

8. RGtk2: Basic Components

Although combo boxes are much more space efficient than radio but-
tons, it can still be difficult to use a combo box when there are a large
number of items. Placing the items in columns lessens this. The setWrap-
Width method specifies the preferred number of columns for displaying
the items.

Example 8.8: Using one combo box to populate another
The goal of this example is to populate a combo box of variables whenever
a data frame is selected in another. We use two convenience functions from
the ProgGUIinR package to find the possible data frames, and for a data
frame to find its variables.

We create the two combo boxes and the enclosing window:

window <- gtkWindow (show = FALSE)
window$setTitle ("gtkComboBox example")
df_combo <- gtkComboBoxNewText ()
var_combo <- gtkComboBoxNewText ()

Our layout uses boxes. To add a twist, we will hide our variable combo
box until after a data frame has been initially selected.

vbox <- gtkVBox () ; window$add (vbox)
#
vbox1 <- gtkHBox () ; vbox$packStart (vbox1)
vbox1$packStart (gtkLabel ("Data frames:"))
vbox1$packStart (df_combo)
#
vbox2 <- gtkHBox () ; vbox$packStart (vbox2)
vbox2$packStart (gtkLabel ("Variable:"))
vbox2$packStart (var_combo)
vbox2$hide ()

Finally, we configure the combo boxes. When a data frame is selected,
we first clear out the variable combo box and then populate it:

sapply (avail_dfs () , df_combo$appendText)
df_combo$setActive (−1)
#
gSignalConnect (df_combo , "changed" , function (df_combo , . . .) {

var_combo$getModel () $clear ()
sapply (find_vars (df_combo$getActiveText ()) ,

var_combo$appendText)
vbox2$show ()

})

An extension of GtkComboBox, GtkComboBoxEntry, replaces the main
button with a text entry. This supports the entry of arbitrary values, in
addition to those present in the menu.

148

8.3. Input controls

Sliders and spin buttons

The slider widget and spin-button widget allow selection from a regularly
spaced, semi-continuous list of values. Both have their possible values for
selection determined by an instance of GtkAdjustment, which is used to
represent ranges that have an upper and lower bound with step and page
increments. This adjustment may be specified to the constructor or, more
frequently, will be created by the widget after an appropriate specification
of the range.

Sliders Sliders are implemented by GtkScale with constructors gtkHScale
and gtkVScale, the difference being the orientation.

These constructors have arguments min, max, and step to specify the
range, if an adjustment is not specified.

The value property stores the currently selected value. When this is
changed, the value-changed signal is emitted.

A few properties define the appearance of the slider widget. The dig-
its property controls the number of digits after the decimal point. The
property draw-value toggles the drawing of the selected value near the
slider. Finally, value-pos specifies where this value will be drawn using
values from GtkPositionType. The default is top.

In Example 8.12 we show how a slider can be used to update a graphic.

Spin buttons The spin-button widget is very similar to the slider widget,
conceptually and in terms of the GTK+ API. Spin buttons are constructed
with gtkSpinButton. As with sliders, this constructor requires specifying
adjustment values, either as a GtkAdjustment or through the min, max, and
step arguments. The argument digits is used to configure how many dig-
its are displayed, and climb.rate can adjust how fast the display changes
when the button is held depressed.

As with GtkScale, the value property holds the state and the value-
changed signal is emitted when this changes.

A spin button has a few additional features. The property snap-to-
ticks can be set to TRUE to force the new value to belong to the sequence of
values in the adjustment. The wrap property indicates whether the sequence
will “wrap” around at the bounds.

Example 8.9: A range widget
This example shows how to make a range widget that combines both
the slider and spin button to choose a single number (Figure 8.5). Such
a widget is useful, as the slider is better at large changes and the spin
button better at finer changes. In GTK+ we use the same GtkAdjustment
model, so changes to one widget propagate without effort to the other.

149

8. RGtk2: Basic Components

Figure 8.5: A range widget with coordinated slider and spin box sharing
the same GtkAdjustment instance.

We name our scale parameters according to the corresponding argu-
ments to the seq function:

from <- 0 ; to <- 1 0 0 ; by <- 1

The slider is drawn without a value, as the value is already displayed
by the spin button. The call to gtkHScale implicitly creates an adjustment
for the slider. The spin button is then created with the same adjustment.

slider <- gtkHScale (min = from , max = to , step = by)
slider [’draw-value’] <- FALSE
adjustment <- slider$getAdjustment ()
spinbutton <- gtkSpinButton (adjustment = adjustment)

Our layout places the two widgets in a horizontal box container with
the slider, but not the spin button, set to expand into the available space.

hbox <- gtkHBox ()
hbox$packStart (slider , expand=TRUE , fill = TRUE , padding = 5)
hbox$packStart (spinbutton , expand = FALSE , padding = 5)

8.4 Progress reporting

Progress bars

It is common to use a progress bar to indicate the progress of a long-
running computation. This is implemented by GtkProgressBar. A text label
describes the current operation, and the progress bar communicates the
fraction completed:

window <- gtkWindow () ; window$setTitle ("Progress bar example")
progress_bar <- gtkProgressBar ()
window$add (progress_bar)
#
progress_bar$setText ("Please be patient...")
for (i in 1 : 1 0 0) {

progress_bar$setFraction (i/ 100)
Sys . sleep (0 . 0 5) ## r e p l a c e wi th a s t e p in t h e p r o c e s s

}
progress_bar$setText ("All done.")

150

8.5. Wizards

We can indicate indefinite activity by periodically pulsing the bar:

progress_bar$pulse ()

Spinners

Related to a progress bar is the GtkSpinner widget, which is a graphical
heartbeat to assure the user that the application is still alive during long-
running operations. Spinners are commonly found in web browsers. The
basic usage is straightforward:

spinner <- gtkSpinner ()
spinner$start ()
spinner$stop ()

8.5 Wizards

The GtkAssistant class provides a wizard widget for GTK+. The simplest
setup is that one adds pages to the assistant object that are navigated in a
linear manner. In our example, we override this.

Wizard pages have a certain type, which must be declared. These are
enumerated in GtkAssistantPageType and set by setPageType. The last
page must be of type "confirm", "summary", or "progress". Each wizard
page has a content area and buttons. As well, each page in the assistant
object has an optional side image, header image, and/or page title that
can be customized. The buttons allow the user to navigate through the
wizard. The content area of a wizard page is simply an instance of class
GtkWidget (e.g., some container) and is added to the assistant through
the appendPage, insertPage, or prependPage methods. Pages are referred
to by the GtkWidget object or by their page index, 0-based. The forward
button on a page must be made sensitive by calling setPageComplete with
the widget and logical value.

Signals The cancel button emits a cancel signal that can be connected
to for destroying the wizard widget. The apply signal is emitted on a page
change. The prepare signal is emitted just before a page is made visible,
which is needed to create the dynamically generated pages in our example.

Example 8.10: An install.packages wizard
This example wraps the install.packages function into a wizard with
different pages for the (optional) selection of a CRAN mirror, the selection
of the package to install, the configuration options provided, and feedback.
In general, wizards are quite common for software installation.

First, we define our assistant and connect to its cancel signal:

151

8. RGtk2: Basic Components

Figure 8.6: An installation wizard programmed using GtkAssistant. This
is page four, which allows options for a call to install.packages to be
configured.

assistant <- gtkAssistant (show=FALSE)
assistant$setSizeRequest (5 0 0 , 500)
gSignalConnect (assistant , "cancel" ,

function (assistant) assistant$destroy ())

Our pages will be computed dynamically. Here we populate the pages
using box containers and specify their respective types:

pages <- lapply (1 : 5 , gtkVBox , spacing=5 , homogeneous = FALSE)
page_types <- c ("intro" , rep ("confirm" , 3) , "summary")
sapply (pages , gtkAssistantAppendPage , object = assistant)
sapply (pages , gtkAssistantSetPageType , object = assistant ,

type=page_types)

We customize each page with a side logo.

image <- gdkPixbuf (filename = imagefile ("rgtk-logo.gif")) [[1]]
sapply (pages , gtkAssistantSetPageSideImage , object=assistant ,

pixbuf = image)

When a page is about to be called, the prepare signal is emitted. In our
handler, we check and see if it has any children. If not, we call a function
to create the page lazily. These functions are stored in a list, so that we
can refer to them by index.

152

8.5. Wizards

populate_page <- list ()
gSignalConnect (assistant , "prepare" ,

function (assistant , page , data) {
page_no <- which (sapply (pages , identical , page))
if (!length (page$getChildren ()))

populate_page [[page_no]] ()
})

Although we do not show how to create the CRAN selection page (cf.
Example 9.5 for a similar construction), we call setForwardPageFunc to set
a function that will skip this page if it is not needed, i.e., if the mirror
has already been selected. The callback simply returns an integer with the
next page number based on the previous one.

assistant$setForwardPageFunc (function (page_index , data) {
if (page_index == 0 && have_CRAN ())

2L
else

as . integer (page_index + 1)
} , data=NULL)

We have a few script globals that allow us to pass data between pages:

CRAN_package <- NA
install_options <- list () # type , d e p e n d e n c i e s , l i b

We now show how some of the pages are populated. The initial screen
is simply a label with a welcome message.

populate_page [[1]] <- function () {
assistant$setPageTitle (pages [[1]] , "Install a CRAN package")
pages [[1]] $packStart (label <- gtkLabel ())
pages [[1]] $packStart (gtkLabel () , expand=TRUE) # a s p r i n g

label$setMarkup (paste (
"Install a CRAN package" ,
"This wizard will help install a package from" ,
"CRAN. If you have not already specified a" ,
"CRAN repository , you will be prompted to do so." ,
sep="\n"))

assistant$setPageComplete (pages [[1]] , TRUE)
}

We skip showing the pages to select a CRAN site and a package,
as they are based on the forthcoming GtkTreeView class. On the fourth
page (cf. Figure 8.6 for a realization) is a summary of the package taken
from CRAN and a chance for the user to configure a few options for the
install.packages function.

populate_page [[4]] <- function () {

153

8. RGtk2: Basic Components

assistant$setPageTitle (pages [[4]] , "Install a CRAN package")
##
get_desc <- function (pkgname) {

o <- "http://cran.r-project.org/web/packages/%s/%s"
x <- readLines (sprintf (o , pkgname , "DESCRIPTION"))
f <- tempfile () ; cat (paste (x , collapse="\n") , file=f)
read . dcf (f)

}
desc <- get_desc (CRAN_package)
#
label <- gtkLabel ()
label$setLineWrap (TRUE)
label$setWidthChars (4 0)
label$setMarkup (paste (

sprintf ("Install package: %s" , desc [1 , ’Package’]) ,
"\n" ,
sprintf ("%s" , gsub ("\\n" , " " , desc [1 , ’Description’])) ,
sep="\n"))

pages [[4]] $packStart (label)
##
table <- gtkTable ()
pages [[4]] $packStart (table , expand=FALSE)
pages [[4]] $packStart (gtkLabel () , expand=TRUE)

##
combo <- gtkComboBoxNewText ()
pkg_types <- c ("source" , "mac.binary" , "mac.binary.leopard" ,

"win.binary" , "win64.binary")
sapply (pkg_types , combo$appendText)
combo$setActive (which (getOption ("pkgType") == pkg_types)−1)
gSignalConnect (combo , "changed" , function (combo , . . .) {

cur <- 1L + combo$getActive ()
install_options [[’type’]] <<- pkg_types [cur]

})
table$attachDefaults (gtkLabel ("Package type:") , 0 , 1 , 0 , 1)
table$attachDefaults (combo , 1 , 2 , 0 , 1)

##
checkButton <- gtkCheckButton ()
checkButton$setActive (TRUE)
gSignalConnect (checkButton , "toggled" , function (ck_btn) {

install_options$dependencies <<- ck_btn$getActive ()
})
table$attachDefaults (gtkLabel ("Install dependencies") ,

0 , 1 , 1 , 2)
table$attachDefaults (checkButton , 1 , 2 , 1 , 2)

154

8.5. Wizards

##
file_chooser <- gtkFileChooserButton ("Select directory..." ,

"select-folder")
file_chooser$setFilename (. libPaths () [1])
gSignalConnect (file_chooser , "selection -changed" ,

function (file_chooser) {
dir <- file_chooser$getFilename ()
install_options [[’lib’]] <<- dir

})
table$attachDefaults (gtkLabel ("Where") , 0 , 1 , 2 , 3)
table$attachDefaults (file_chooser , 1 , 2 , 2 , 3)
a l i g n l a b e l s t o r i g h t and s e t s p a c i n g
sapply (table$getChildren () , function (child) {

widget <- child$getWidget ()
if (is (widget , "GtkLabel")) widget [’xalign’] <- 1

})
table$setColSpacing (0L , 5L)
##
assistant$setPageComplete (pages [[4]] , TRUE)

}

Our last page, where the selected package is installed, would natu-
rally be of type progress, but there is no means to interrupt the flow of
install.packages to update the page. A better application would need
to reimplement the install.packages functionality. Instead we just set a
message once the package install attempt is finished.

populate_page [[5]] <- function () {
assistant$setPageTitle (pages [[5]] , "Done")
install_options$pkgs <- CRAN_package
out <- try (do . call ("install.packages" , install_options) ,

silent=TRUE)

label <- gtkLabel () ; pages [[5]] $packStart (label)
if (!inherits (out , "try-error")) {

label$setMarkup (sprintf ("Package %s was installed." ,
CRAN_package))

} else {
label$setMarkup (paste (sprintf ("Package %s, failed install" ,

CRAN_package) ,
paste (out , collapse="\n") ,
sep="\n"))

}

assistant$setPageComplete (pages [[5]] , FALSE)
}

155

8. RGtk2: Basic Components

To conclude, we populate the first page and call the assistant’s show
method:

populate_page [[1]] ()
assistant$show ()

8.6 Embedding R graphics

The package cairoDevice is an R graphics device based on the Cairo
graphics library. It supports alpha-blending and antialiasing and re-
ports user events through the getGraphicsEvent function. RGtk2 and
cairoDevice are integrated through the asCairoDevice function. If a Gtk-
DrawingArea, GdkDrawable, Cairo context, or GtkPrintContext is passed
to asCairoDevice, an R graphics device will be initialized that targets its
drawing to the object. For simply displaying graphics in a GUI, the Gtk-
DrawingArea is the best choice.

This is the simplest usage:

library (cairoDevice)
device <- gtkDrawingArea ()
asCairoDevice (device)
##
window <- gtkWindow (show=FALSE)
window$add (device)
window$showAll ()
plot (mpg ~ hp , data = mtcars)

In the above, we create the GtkDrawingArea, coerce it to a Cairo-based
graphics device, and then place it in a window. Example 7.4 goes further
by embedding the drawing area into a scrolled window to support zooming
and panning.

For more complex use cases, such as compositing a layer above or
below the R graphic, one should pass an off-screen GdkDrawable, like a
GdkPixmap, or a Cairo context. The off-screen drawing could then be com-
posited with other images when displayed. Example 8.5 generates an icon
by pointing the device to a pixmap. Finally, passing a GtkPrintContext
to asCairoDevice allows printing R graphics through the GTK+ printing
dialogs.

Example 8.11: Printing R graphics
This example will show how to use the printing support in GTK+ for
printing an R plot.

A print operation is encapsulated by GtkPrintOperation:

print_op <- gtkPrintOperation ()

156

8.6. Embedding R graphics

A print operation may perform several different actions: print directly,
print through a dialog, show a print preview and export to a file. Before
performing any such action, we need to implement the rendering of our
document into printed form. This is accomplished by connecting to the
draw-page signal. The handler is passed a GtkPrintContext, which con-
tains the target Cairo context. In general, one would call Cairo functions to
render the document, which is beyond our scope. In this case, though, we
can pass the context directly to cairoDevice for rendering the R plot:

gSignalConnect (print_op , "draw-page" ,
function (print_op , context , page_nr) {

asCairoDevice (context)
plot (mpg ~ wt , data = mtcars)

})

The final step is to run the operation to perform one of the available
actions. In this example, we launch a print dialog:

print_op$run (action = "print-dialog" , parent = NULL)

When the user confirms the dialog, the draw-page handler is invoked, and
the rendered page is sent to the printer.

Example 8.12: The manipulate package in RGtk2
RStudioTM is an excellent IDE for R that provides a similar interface
whether run on any of its supported operating systems or through a web
browser. Accompanying the IDE is an R package manipulate that provides
a convenient means to create simple graphical interfaces for plotting. As
RStudio leverages web technologies to render its widgets and there is no
public interface, the package is not available for non-RStudio users. Too
bad. This example shows how we can use RGtk2 to provide a similar in-
terface. In the example, we borrow liberally from the manipulate code,
which is released under an AGPL license. Although we don’t show the
entire code here, the ProgGUIinR package contains it all.

The manipulate package uses environments to store state etc. Here we
use reference classes, as they allow for a more structured programming
interface.

A typical use of manipulate (Figure 8.7) is along the lines of the fol-
lowing example from the manipulate help pages:

manipulate (## e x p r e s s i o n
plot (cars , xlim = c (x . min , x . max) , type = type ,

axes = axes , ann = label) ,
c o n t r o l s
x . min = slider (0 , 1 5) ,
x . max = slider (1 5 , 30 , initial = 2 5) ,
type = picker ("p" , "l" , "b" , "c" , "o" , "h" , "s") ,
axes = checkbox (TRUE , label = "Draw Axes") ,

157

8. RGtk2: Basic Components

Figure 8.7: An implementation of RStudio’sTM manipulate package in
RGtk2.

label = checkbox (FALSE , label = "Draw Labels")
)

The first argument is an expression, possibly containing parameters, that
produces a plot. The other arguments create widgets that control the pa-
rameter values in the plotting expression. There are three basic controls: a
slider, a picker (combo box), and a checkbox. The constructors have a terse
but simple set of arguments. A main task ahead will be mapping these
controls to one of GTK+’s widgets.

For now, we begin by defining our Manipulate class to have two prop-
erties: one to hold the expression and the other to hold a list of controls.

Manipulate <- setRefClass ("Manipulate" ,
fields=list (

. code="ANY" ,

. controls="list"
))

When one of the controls is changed, the entire plot will be redrawn.
The following handler will be assigned to each control. Note that each
control is expected to provide its own get_value method.

Manipulate$methods (
get_values = function () {

sapply (. controls ,
function (control) control$get_value () ,
simplify=FALSE) # r e t u r n a l i s t

158

8.6. Embedding R graphics

} ,
change_handler = function (. . .) {

"Evaluate code with current values"
values <- get_values ()
result <- withVisible (eval (. code , envir=values))
if (result$visible) {

eval (print (result$value))
}

})

The execute method is called after initialization to set up the GUI. We
use a GtkHPaned instance to allow the user to adjust the space between the
graphic device and the controls frame. Each control is expected to provide
a make_gui method.

Manipulate$methods (
execute=function () {

"Make the GUI"
window <- gtkWindow (show=FALSE)
window$setTitle ("ManipulateR")
S e t up g r a p h i c d e v i c e
hpaned <- gtkHPaned ()
window$add (hpaned)
device <- gtkDrawingArea ()
device$setSizeRequest (4 8 0 , 480)
asCairoDevice (device)
hpaned$add (device)
C o n t r o l s f rame
frame <- gtkFrame ("Controls")
control_table <- gtkTableNew ()
control_table$setHomogeneous (FALSE)
control_table [’column-spacing’] <- 10
i n s e r t h o r i z o n t a l s t r u t
control_table$attach (strut <- gtkHBox () , 1 , 2 , 0 , 1 ,

xoptions="" , yoptions="shrink")
strut$setSizeRequest (7 5 , −1)
frame$add (control_table)
hpaned$add (frame)
add e a c h c o n t r o l
sapply (. controls , function (control) {

control$make_gui (cont=control_table ,
handler=. self$change_handler)

})
window$show ()
change_handler () # i n i t i a l

})

159

8. RGtk2: Basic Components

The control_table is used hold the respective controls. We added a
strut to request a minimum width for the second column, as otherwise the
slider controls can render too narrowly.

The initialize method calls a function provided by the manipulate pack-
age to pick the controls out of the ... argument. The validate_controls
method is not shown but simply borrows code from the package to do
some error checking, ensuring the controls are defined properly.

Manipulate$methods (
initialize = function (code , . . .) {

controls <- resolveVariableArguments (list (. . .))
initFields (. code = code ,

. controls = controls)
validate_controls ()
callSuper ()

})

We now provide a constructor allowing access to our class.

manipulate <- function (‘ _expr ‘ , . . .) {
manip <- Manipulate$new (substitute (‘ _expr ‘) , . . .)
manip$execute ()

}

There are three main controls, but perhaps more could be added. We
give ourselves the flexibility to expand by creating a base class for a control
that can be subclassed. We define the class below. The properties are l, to
store a list of arguments (a legacy of the original code); widget, to store
the widget; label, to hold the label for the control; and initial.

ManipulateControls <- setRefClass ("ManipulateControls" ,
fields=list (

l="list" ,
widget = "ANY" ,
label="ANY" ,
initial="ANY"
))

The main interface for a control requires three methods: vali-
date_inputs (to ensure the control is defined properly, the previously
noted get_value, and make_gui (defined separately).

ManipulateControls$methods (
validate_inputs = function (. . .) {

"Validate input code"
} ,
get_value = function (. . .) {

"Get value of widget"
})

160

8.6. Embedding R graphics

The make_gui method has two tasks: to define the widget instance and
to add the widget to the GUI. This is done in the base class. The label and
widget are added as a row to a GtkTable instance.

ManipulateControls$methods (make_gui = function (cont) {
"Create widget, then add to table"
c o n t a GtkTab l e i n s t a n c e
nrows <- cont [’n-rows’]
label_widget <- gtkLabel (label)
label_widget [’xalign’] <- 1
cont$attach (label_widget , 0 , 1 , nrows , nrows + 1 ,

xoptions = "shrink" , yoptions="shrink"
)

cont$attach (widget , 1 , 2 , nrows , nrows + 1 ,
xoptions = c ("expand" , "fill") ,
yoptions = "")

})

The slider constructor just creates an instance of a soon-to-be-defined
subclass of the ManipulateControls class. The arguments follow RStudio’s.

slider <- function (min , max , initial = min , label=NULL ,
step = −1, ticks = TRUE) {

Slider$new (min , max , initial = initial , label = label ,
step = step , ticks = ticks)

}

The Slider class has no new properties:

Slider <- setRefClass ("Slider" ,
contains = "ManipulateControls")

The initialize method simply creates a list and sets some properties.
This follows the setup of the original package.

Slider$methods (
initialize = function (min , max , initial = min ,

label = NULL , step = −1, ticks = TRUE , . . .) {
validate_inputs (min , max , initial , step , ticks)
c r e a t e s l i d e r and r e t u r n i t
slider <- list (type = 0 ,

min = min ,
max = max ,
step = step ,
ticks = ticks)

initFields (l = slider , label = label ,
initial = initial)

callSuper ()
})

161

8. RGtk2: Basic Components

Our make_gui method basically defines the widget, turning the argu-
ments of the constructor into those for the GTK+ widget. It then calls the
same method from the superclass to lay out the widget. Here we define
a slider and initialize it using the values in the list, l. The handler is the
change handler passed in from a Manipulate instance.

Slider$methods (
make_gui = function (cont , handler , . . .) {

widget <<- gtkHScale (min = l$min , max = l$max ,
step = l$step)

widget$setValue (initial)
gSignalConnect (widget , "value-changed" , handler)
callSuper (cont)

} ,
get_value = function () {

as . numeric (widget$getValue ())
})

The picker and checkbox functions (and their classes) are similarly
defined. For example, for the Checkbox class, the three main methods are
given by:

Checkbox$methods (
initialize = function (initial=FALSE , label= NULL) {

validate_inputs (initial , label)
checkbox <- list (type = 2)
initFields (l = checkbox , label = label ,

initial = initial)
callSuper ()

} ,
make_gui = function (cont , handler , . . .) {

widget <<- gtkCheckButton () # no l a b e l
widget$setActive (initial)
gSignalConnect (widget , "toggled" , handler)
callSuper (cont)

} ,
get_value = function () widget [’active’]
)

We don’t provide a label to the check button, as one is provided in the
table.

8.7 Drag-and-drop

A drag-and-drop operation is the movement of data from a source widget
to a target widget. In GTK+ the source widget serializes the selected item
as MIME data, and the destination interprets that data to perform some
operation, often creating an item of its own. Our task is to configure the

162

8.7. Drag-and-drop

source and destination widgets, so that they listen for the appropriate
events and understand each other. As a trivial example, we allow the user
to drag the text from one button to another.

Initiating a drag

When a drag-and-drop is initiated, different types of data may be trans-
ferred. We need to define a target type for each type of data, as a GtkTar-
getEntry structure:

TARGET . TYPE . TEXT <- 80 # our enumera t i on
TARGET . TYPE . PIXMAP <- 81
widgetTargetTypes <-

list (text = gtkTargetEntry ("text/plain" , 0 ,
TARGET . TYPE . TEXT) ,

pixmap = gtkTargetEntry ("image/x-pixmap" , 0 ,
TARGET . TYPE . PIXMAP))

The first component of GtkTargetEntry is the name, which is often a
MIME type. The flags come next, which are usually left at 0, and finally
we specify an arbitrary identifier for the target. We will use only the "text"
target in this example.

We construct a button and call gtkDragSourceSet to instruct it to act
as a drag source:

window <- gtkWindow () ; window [’title’] <- "Drag Source"
drag_source_widget <- gtkButton ("Text to drag")
window$add (drag_source_widget)
gtkDragSourceSet (drag_source_widget ,

start . button . mask=c ("button1-mask" , "button3-mask") ,
targets=widgetTargetTypes [["text"]] ,
actions="copy")

The start.button.mask, with values from GdkModifierType, indicates the
modifier buttons that need to be pressed to initiate the drag. The allowed
target is "text" in this case. The actions argument lists the supported
actions, such as copy or move, from the GdkDragAction enumeration.

When a drag is initiated, we will receive the drag-data-get signal,
which needs to place some data into the passed GtkSelectionData object:

gSignalConnect (drag_source_widget , "drag-data-get" ,
function (widget , context , sel , tType , eTime) {

sel$setText (widget$getLabel ())
})

If we had allowed the move action, we would also need to connect to
drag-data-delete, in order to delete the data that was moved away.

163

8. RGtk2: Basic Components

Handling drops

In a separate window from the drag source button, we construct another
button and call gtkDragDestSet to mark it as a drag target:

window <- gtkWindow () ; window [’title’] <- "Drop Target"
drop_target_widget <- gtkButton ("Drop here")
window$add (drop_target_widget)
gtkDragDestSet (drop_target_widget ,

flags="all" ,
targets=widgetTargetTypes [["text"]] ,
actions="copy")

The signature is similar to that of gtkDragSourceSet, except for the flags
argument, which indicates which operations, of the set motion, highlight,
and drop, GTK+ will handle with reasonable default behavior. Specifying
all is the most convenient course, in which case we need only to imple-
ment the extraction of the data from the GtkSelectionData object. For a
drop to occur, there must be a non-empty intersection between the targets
passed to gtkDragSourceSet and those passed to gtkDragDestSet.

When data is dropped, the destination widget emits the drag-data-
received signal. The handler is responsible for extracting the dragged
data from selection and performing some operation with it. In this case,
we set the text on the button:

gSignalConnect (drop_target_widget , "drag-data-received" ,
function (widget , context , x , y , sel , tType , eTime) {

dropdata <- sel$getText ()
widget$setLabel (rawToChar (dropdata))

})

The context argument is a GdkDragContext, containing information about
the drag event. The x and y arguments are integer valued and represent the
position in the widget where the drop occurred. The text data is returned
by getText as a raw vector, so it is converted with rawToChar.

164

9

RGtk2: Widgets Using Data Models

Many widgets in GTK+ use the model-view-controller (MVC) paradigm.
For most, like the button widget, the MVC pattern is implicit; however,
widgets that primarily display data explicitly incorporate the MVC pattern
into their design. The data model is factored out as a separate object, while
the widget plays the role of the view and controller. The MVC approach
adds a layer of complexity but facilitates the display of the dynamic data
in multiple, coordinated views.

9.1 Displaying tabular data

Widgets that display lists, tables, and trees are all based on the same
basic data model, GtkTreeModel. Although its name suggests a hierarchical
structure, GtkTreeModel is also tabular. We first describe the display of an
R data frame in a list or table view. The display of hierarchical data, as well
as further details of the GtkTreeModel framework, are treated subsequently.

Loading a data frame

As an interface, GtkTreeModel can be implemented in any number of ways.
GTK+ provides simple in-memory implementations for hierarchical and
nonhierarchical data. R uses data frames to hold tabular data, where each
column is of a certain class, and each row is related to some observational
unit. This fits the structure of GtkTreeModel when there is no hierarchy. The
RGtkDataFrame class implements GtkTreeModel on top of an R data frame.
Compared to the model implementations built into GTK+, RGtkDataFrame
affords the R programmer the benefits of improved speed, convenience and
familiarity.

For nonhierarchical data, this is usually the model of choice, so we
discuss it first. Populating an RGtkDataFrame is far faster than for a GTK+
model, because data is retrieved from the data frame on demand. There
is no need to copy the data row by row into a separate data structure.
Such an approach would be especially slow if implemented as a loop in

165

9. RGtk2: Widgets Using Data Models

R.1 The constructor rGtkDataFrame takes a data frame as an argument. The
column classes are important, so even if this data frame is empty, the user
should specify the desired column classes upon construction.

An object of class RGtkDataFrame supports the familiar S3 methods [,
[<-, dim, and as.data.frame. The [<- method does not have quite the
same functionality as it does for a data frame. Columns cannot be removed
by assigning values to NULL, and column types should not be changed.
These limitations are inherent in the design of GTK+: columns cannot be
removed from GtkTreeModel, and views expect the data type to remain
the same.

Example 9.1: Defining and manipulating an RGtkDataFrame
The basic data frame methods are similar.

data (Cars93 , package="MASS") # mix o f c l a s s e s
model <- rGtkDataFrame (Cars93)
model [1 , 4] <- 12
model [1 , 4] # g e t v a l u e

[1] 12

As with a data frame, assignment to a factor must be from one of the
possible levels.

The data frame combination functions rbind and cbind are unsup-
ported, as they would create a new data model, rather than modify the
model in place. Thus, we should add rows with appendRows and add
columns with appendColumns (or sub-assignment, [<-).

The setFrame method replaces the underlying data frame.

model$setFrame (Cars93 [1 : 5 , 1 : 5])

Replacing the data frame is the only way to remove rows, as this is
not possible with the conventional data frame sub-assignment interface.
Removing columns or changing their types remains impossible. The new
data frame cannot contain more columns and rows than the current one.
If the new data frame has more rows or columns, then the appropriate
append method should be used first.

Displaying data as a list or table

GtkTreeView is the primary view of GtkTreeModel. It serves as the list,
table, and tree widget in GTK+. A treeview is essentially a container of
columns, where every column has the same number of rows. If the view
has a single column, it is essentially a list. If there are multiple columns,

1As is proved with tcltk, where this is needed.

166

9.1. Displaying tabular data

it is a table. If the rows are nested, it is a tree table, where every node has
values on the same columns.

A treeview is constructed by gtkTreeView:

view <- gtkTreeView (model)

Usually, as in the above, the model is passed to the constructor. Otherwise,
the model may be accessed with setModel and getModel.

A newly created treeview displays zero columns, regardless of the num-
ber of columns in the model. Each column, an instance of GtkTreeViewCol-
umn, must be constructed, inserted into the view, and instructed to render
content based on one or more columns in the data model:

column <- gtkTreeViewColumn ()
column$setTitle ("Manufacturer")
cell_renderer <- gtkCellRendererText ()
column$packStart (cell_renderer)
column$addAttribute (cell_renderer , "text" , 0)
view$insertColumn (column , 0)

A column with the title “Manufacturer” is inserted at the first position
(0-based). For displaying a simple data frame, we need only to render text.
Each row in a column consists of one or more cells, managed in a layout.
The number of cells and how each cell is rendered is uniform down a
column. As an implementation of GtkCellLayout, GtkTreeViewColumn del-
egates the responsibility of rendering to one or more GtkCellRenderer ob-
jects. The cell renderers are packed into the column, which behaves much
like a box container. Rendering of text cells is the role of the GtkCell-
RendererText class. There are several properties that control how the text
is rendered. An attribute links a model column to a renderer property. The
most important property is text, the text itself. In the example, we bind
the text property to the first (0-indexed) column in the model.

GtkTreeView provides the insertColumnWithAttributes convenience
method to perform all of these steps with a single call. We invoke it to
add a second column in our view:

view$insertColumnWithAttributes (position = −1,
title = "Model" ,
cell = gtkCellRendererText () ,
text = 2 − 1) # s e c o n d column

The −1 passed as the first argument indicates that the column should
be appended. Next, we specify the column title, a cell renderer, and an
attribute that links the text renderer property to the second column in the
model. In general, any number of attributes may be defined after the third
argument. We will use the above idiom in all of the following examples,
as it is much more concise than performing each step separately.

167

9. RGtk2: Widgets Using Data Models

Figure 9.1: A GtkTreeView instance shown with a scrolled window.

Displaying the entire Cars93 data frame is not much different. Here,
we reconstruct the view, inserting a view column for every column in the
data frame, i.e., the model.

view <- gtkTreeView (model)
mapply (view$insertColumnWithAttributes ,

position = −1,
title = colnames (model) ,
cell = list (gtkCellRendererText ()) ,
text = seq_len (ncol (model)) − 1
)

Figure 9.1 shows the view within a scrollable window:

window <- gtkWindow ()
window$setTitle ("Tabular view of data frame")
scrolled_window <- gtkScrolledWindow ()
window$add (scrolled_window)
scrolled_window$add (view)

Manipulating view columns The GtkTreeView widget is essentially a col-
lection of columns. Columns are added to the treeview with the methods
insertColumn or, as shown above, insertColumnWithAttributes. A col-
umn can be moved with the moveColumnAfter method, and removed with
the removeColumn method. The getColumns method returns a list contain-
ing all of the treeview columns.

There are several properties for controlling the behavior and dimensions
of a GtkTreeViewColumn instance. The property "resizable" determines
whether the user can resize a column by dragging with the mouse. The size
properties "width", "min-width", and "fixed-width" control the size. The
visibility of the column can be adjusted through the setVisible method.

Additional features Treeviews have several special features, including
sorting, incremental search, and drag-and-drop reordering. Sorting is dis-
cussed in Section 9.1. To turn on searching, enable-search should be TRUE

168

9.1. Displaying tabular data

(the default) and the search-column property should be set to the col-
umn to be searched. The treeview will pop up a search box when the
user types control-f. To designate an arbitrary text entry widget as the
search box, call setSearchEntry. The entry can be placed anywhere in the
GUI. Columns are always reorderable by drag and drop. Reordering rows
through drag-and-drop is enabled by the reorderable property.

Aesthetic properties GtkTreeView is capable of rendering some visual
guides. The rules-hint, if TRUE, will instruct the theme to draw rows in
alternating colors. To show grid lines, set enable-grid-lines to TRUE.

Accessing GtkTreeModel

Although RGtkDataFrame provides a familiar interface for manipulating the
data in a GtkTreeModel, it is often necessary to interact directly with the
GTK+ API, such as when using another type of data model or interpreting
user selections. There are two primary ways to index into the rows of a
tree model: paths and iterators.

To index directly into an arbitrary row, a GtkTreePath is appropriate.
For a table, a tree path is essentially the row number, 0-based; for a tree
it is a sequence of integers referring to the offspring index at each level.
The sequence of integers can be expressed as either a numeric vector or a
string, using gtkTreePathNewFromIndices or gtkTreePathNewFromString,
respectively. For a flat table model, there is only one integer in the se-
quence:

second_row <- gtkTreePathNewFromIndices (1)

Referring to a row in a hierarchy is slightly more complex:

abc_path <- gtkTreePathNewFromIndices (c (0 , 2 , 1))
abc_path <- gtkTreePathNewFromString ("0:2:1")

In the above, both paths refer to the second child of the third child of the
first top-level node. To recover the integer or string representation of the
path, use getIndices or toString, respectively.

Iterators The second means of row indexing is through an iterator, Gtk-
TreeIter, which is better suited for traversing a model. An iterator is a
programming object used to traverse through some data, such as a text
buffer or table of values. Iterators are typically transient, in the sense that
they are invalidated when their source is modified. An iterator is often
updated by reference, behavior that is atypical in R programming.

While a tree path is an intuitive, transparent row index, an iterator is an
opaque index that is efficiently incremented. It is probably most common

169

9. RGtk2: Widgets Using Data Models

for a model to be accessed in an iterative manner, so all of the data-
accessor methods for GtkTreeModel expect GtkTreeIter, not GtkTreePath.
The GTK+ designers imagined that the typical user would obtain an iter-
ator for the first row and visit each row in sequence:

iter <- model$getIterFirst ()
manufacturer <- character ()
while (iter$retval) {

manufacturer <- c (manufacturer , model$get (iter$iter , 0) [[1]])
iter$retval <- model$iterNext (iter$iter)

}

In the above, we recover the manufacturer column from the Cars93
data frame. Whenever a GtkTreeIter is returned by a GtkTreeModel, the
return value in R is a list of two components: retval, a logical indicating
whether the iterator is valid, and iter, the pointer to the underlying C
data structure. The call to get also returns a list, with an element for each
column index passed as an argument. The method iterNext updates the
passed iterator in place, i.e., by reference, to point to the next row. Thus,
no new iterator is returned. This is unfamiliar behavior in R. Instead, the
method returns a logical value indicating whether the iterator is still valid,
i.e., FALSE is returned if no next row exists.

It is clear that the above usage is designed for languages like C, where
multiple return values are conveniently passed by reference parameters.
This iterator design also prevents the use of the apply functions (R’s iter-
ators), which are generally preferred over the while loop for reasons of
performance and clarity. An improvement would be to obtain the number
of children, generate the sequence of row indices, and access the row for
each index:

nrows <- model$iterNChildren (NULL)
manufacturer <- sapply (seq (nrows) − 1L , function (i) {

iter <- model$iterNthChild (NULL , i)
model$get (iter$iter , 0) [[1]]

})

Here we use NULL to refer to the virtual root node that sits above the
rows in our table. Unfortunately, this usage too is neither intuitive nor fast,
so the benefits of RGtkDataFrame should be obvious.

Converting between paths and iterators We can convert between paths
and iterators. The method getIter on GtkTreeModel returns an iterator for
a path. A shortcut from the string representation of the path to an iterator
is getIterFromString. The path pointed to by an iterator is returned by
getPath.

One final point: GtkTreeIter is created and managed by the model,
while GtkTreePath is model independent. It is not possible to use iterators

170

9.1. Displaying tabular data

across models or even across modifications to a model. After a model
changes, an iterator is invalid. A tree path may still point to a valid row,
though it will not in general be the same row from before the change. To
refer to the same row across tree-model changes, GtkTreeRowReference is
used.

Selection

There are multiple modes of user interaction with a treeview: if the cells
are not editable, then selection is the primary mode. A single click selects
the value, and a double click is often used to initiate an action. If the cells
are editable, then a double click or a click on an already selected row will
initiate editing of the content. Editing of cell values is a complex topic and
is handled by derivatives of GtkCellRenderer, see Section 9.1. Here, we
limit our discussion to selection of rows.

GTK+ provides the class GtkTreeSelection to manage row selection.
Every treeview has a single instance of GtkTreeSelection, returned by the
getSelection method.

The usage of the selection object depends on the selection mode, i.e.,
whether multiple rows may be selected. The mode is configured with the
setMode method, with values from GtkSelectionModel, including "mult-
iple" for allowing more than one row to be selected and "single" for
limiting selections to a single row, or none. For example, we create a view
and limit it to single selection:

model <- rGtkDataFrame (mtcars)
view <- gtkTreeView (model)
selection <- view$getSelection ()
selection$setMode ("single")

When only a single selection is possible, the method getSelected re-
turns the selected row as a list, with components retval to indicate success,
model pointing to the tree model, and iter representing an iterator to the
selected row in the model. If our treeview is shown and a selection made,
this code will return the value in the first column:

selected <- selection$getSelected ()
with (selected , model$getValue (iter , 0) $value)

[1] 21.4

When multiple selection is permitted, then the method getSelected-
Rows returns a list with the model and retval, a list of tree paths.

To respond to a selection, connect to the changed signal on GtkTree-
Selection. Upon a selection, this handler will print the selected values in
the first column:

171

9. RGtk2: Widgets Using Data Models

gSignalConnect (selection , "changed" , function (selection) {
selected_rows <- selection$getSelectedRows ()
if (length (selected_rows$retval)) {

rows <- sapply (selected_rows$retval ,
gtkTreePathGetIndices) + 1L

selected_rows$model [rows , 1]
}

})

When a row is not editable, then the double-click event or a keyboard
command triggers the row-activated signal for the treeview. The callback
has arguments tree.view pointing to the widget that emits the signal, path
storing a tree path of the selected row, and column containing the treeview
column. The column number is not returned. If that is of interest, it can
be passed in via the user data argument or matched against the children
of the treeview through a command like

sapply (view$getColumns () , function (i) i == column)

Sorting

A common GUI feature is sorting a table widget by column. By conven-
tion, the user clicks on the column header to toggle sorting. GtkTreeView
supports this interaction, although the actual sorting occurs in the model.
Any model that implements the GtkTreeSortable interface supports sort-
ing. RGtkDataFrame falls into this category. When GtkTreeView is directly
attached to a sortable model, it is necessary only to inform each view col-
umn of the model column to use for sorting when the header is clicked:

column <- view$getColumn (0)
column$setSortColumnId (0)

In the above, clicking on the header of the first view column will sort
by the first model column. Behind the scenes, GtkTreeViewColumn will set
its sort column as the sort column on the model, i.e.:

model$setSortColumnId (0 , "ascending")

Some models, however, such as the GtkTreeModelFilter introduced in
the next section, do not implement GtkTreeSortable. Also, sorting a model
permanently changes the order of its rows, which may be undesirable in
some cases. The solution is to proxy the original model with a sortable
model. The proxy obtains all of its data from the original model and
reorders the rows according to the order of the sort column. GTK+ provides
GtkTreeModelSort for this:

model <- rGtkDataFrame (Cars93)
sorted_model <- gtkTreeModelSortNewWithModel (model)

172

9.1. Displaying tabular data

Figure 9.2: When a sortable model is passed to the treeview, we can click
on the column headers to sort the data. The "Type" column has a custom
sort function applied.

view <- gtkTreeView (sorted_model)
mapply (view$insertColumnWithAttributes ,

position = −1,
title = colnames (model) ,
cell = list (gtkCellRendererText ()) ,
text = seq_len (ncol (model)) − 1)

sapply (seq_len (ncol (model)) , function (i)
view$getColumn (i − 1) $setSortColumnId (i − 1))

When the user sorts the table, the underlying store will not be modified.
The default sorting function can be changed by calling the method

setSortFunc on a sortable model. The following function shows how a
special sort for the Type variable can be implemented (Figure 9.2).

f <- function (model , iter1 , iter2 , user . data) {
types <- c ("Compact" , "Small" , "Sporty" , "Midsize" ,

"Large" , "Van")
column <- user . data
val1 <- model$getValue (iter1 , column) $value
val2 <- model$getValue (iter2 , column) $value
as . integer (match (val1 , types) − match (val2 , types))

}
sorted_model$setSortFunc (sort . column . id = 3 − 1 , sort . func=f ,

user . data = 3 − 1)

Filtering

The previous section introduced the concept of a proxy model in Gtk-
TreeModelSort. Another common application of proxying is filtering. For
filtering via a proxy model, GTK+ provides the GtkTreeModelFilter class.
The basic idea is that an extra column in the base model stores logical val-
ues to indicate whether a row should be visible. The index of that column

173

9. RGtk2: Widgets Using Data Models

Figure 9.3: Example of a data model filtered by values typed into a
text-entry widget.

is passed to the filter model, which provides only those rows where the
filter column is TRUE.

This is the basic usage:

DF <- Cars93
model <- rGtkDataFrame (cbind (DF , . vis=rep (TRUE , nrow (DF))))
filtered_model <- model$filter ()
filtered_model$setVisibleColumn (length (DF)) # 0−b a s e d
view <- gtkTreeView (filtered_model)
Adjus t f i l t e r
model [, ".vis"] <- DF$MPG . highway >= 30

The constructor of the filter model is gtkTreeModelFilter, which, some-
what coincidentally, also works as a method on the base model, i.e.,
model$filter(). To retrieve the original model from the filter, call its get-
Model method. The method setVisibleColumn specifies which column in
the model holds the logical values. To customize filtering, we can register
a function with setVisibleFunc. The callback, given a row pointer, should
return TRUE if the row passes the filter (see Example 9.4). A filter model can
be treated as any other tree model, including attachment to a GtkTreeView.

Example 9.2: Using filtering
This example shows how to use GtkTreeModelFilter to filter rows accord-
ing to whether they match a value entered into a text entry box. The end
result is similar to an entry widget with completion.

First, we create a data frame. The visible column will be added to the
rGtkDataFrame instance to adjust the visible rows.

DF <- data . frame (state . name)
DF$visible <- rep (TRUE , nrow (DF))

174

9.1. Displaying tabular data

model <- rGtkDataFrame (DF)

The filtered model needs to have the column specified that contains the
logical values; in this example, it is the last column.

filtered_model <- model$filter ()
filtered_model$setVisibleColumn (ncol (DF) − 1) # o f f s e t
view <- gtkTreeView (filtered_model)

Next, we create a basic view of a single column:

view$insertColumnWithAttributes (0 , "Col" ,
gtkCellRendererText () , text = 0)

An entry widget will be used to control the filtering. In the callback,
we adjust the visible column of the rGtkDataFrame instance to reflect the
rows to be shown. When val is an empty string, the result of grepl is
TRUE, so all rows will be shown.

entry <- gtkEntry ()
gSignalConnect (entry , "changed" , function (entry , user . data) {

pattern <- entry$getText ()
DF <- user . data$getModel ()
values <- DF [, "state.name"]
DF [, "visible"] <- grepl (pattern , values)

} , data=filtered_model)

Figure 9.3 shows the two widgets placed within a simple GUI.

Cell renderer details

The values in a tree model are rendered in a rectangular cell by the deriva-
tives of GtkCellRenderer. Cell renderers are interactive, in that they also
manage editing and activation of cells.

A cell renderer is independent of any data model. Its rendering role
is limited to drawing into a specified rectangular region according to its
current property values. An object that implements the GtkCellLayout
interface, like GtkTreeViewColumn and GtkComboBox (see Section 9.3), asso-
ciates a set of attributes with a cell renderer. An attribute is a link between
an aesthetic property of a cell renderer and a column in the data model.
When the GtkCellLayout object needs to render a particular cell, it config-
ures the properties of the renderer with the values from the current model
row, according to the attributes. Thus, the mapping from data to visual-
ization depends on the class of the renderer instance, its explicit property
settings, and the attributes associated with the renderer in the cell layout.

For example, to render text, a GtkCellRendererText is appropriate. The
text property is usually linked via an attribute to a text column in the
model, as the text would vary from row to row. However, the background

175

9. RGtk2: Widgets Using Data Models

color (the cell-background property) might be common to all rows in the
column and thus is set explicitly, without use of an attribute:

cell_renderer <- gtkCellRendererText ()
cell_renderer [’cell-background’] <- "gray"

The base class GtkCellRenderer defines a number of properties that are
common to all rendering tasks. The xalign and yalign properties specify
the alignment, i.e., how to position the rendered region when it does not
fill the entire cell. The cell-background property indicates the color for
the entire cell background.

The rest of this section describes each type of cell renderer, as well as
some advanced features.

Text cell renderers GtkCellRendererText displays text and numeric val-
ues. Numeric values in the model are shown as strings. The most important
property is text, the actual text that is displayed. Other properties control
the display of the text, such as the font family and size, the foreground
and background colors, and whether to ellipsize or wrap the text if there
is not enough space for display. For example, we display right-aligned text
in a Helvetica font:

cell_renderer <- gtkCellRendererText ()
cell_renderer [’xalign’] <- 1 # d e f a u l t 0 . 5 = c e n t e r e d
cell_renderer [’family’] <- "Helvetica"

When an attribute links the text property to a numeric column in the
model, the property system automatically converts the number to its string
representation. This occurs according to the same logic that R follows to
print numeric values, so options like scipen and digits are considered.
See the “Overriding attribute mappings” paragraph below for further cus-
tomization.

Editable cells When the editable property of a text cell (or activatable
property of a toggle cell) is set to TRUE, then the cell contents can be
changed. This allows the user to make changes to the underlying model
through the GUI. Although the view automatically reflects changes made
to the model, the reverse is not true. A callback must be assigned to the
editable (toggled) signal for the cell renderer to implement the change.
The callback for the "edited" signal has arguments renderer, path for
the path of the selected row (as a string), and new.text containing the
value of the edited text as a string. These arguments do not include the
treeview object nor the column index, so these should be provided by
some other means, e.g., from the enclosing environment of the handler.
For example, here is how we can update an RGtkDataFrame model from
within the callback:

176

9.1. Displaying tabular data

Figure 9.4: A treeview used to gather arguments for a call to title.

cell_renderer [’editable’] <- TRUE
gSignalConnect (cell_renderer , "edited" ,

f=function (cell_renderer , path , newtext , user . data) {
i <- as . numeric (path) + 1
j <- user . data$column
model <- user . data$model
model [i , j] <- newtext

} , data=list (model=store , column = 1))

Before using editable cells to create a data frame editor, we should see if
the editor provided by the gtkDfEdit in the RGtk2Extras package satisfies
the requirements.

Users may expect that once a cell is edited, the next cell is then set
up to be edited. In order to do this, we must advance the cursor and
activate editing of the next cell. For GtkTreeView, this is implemented by
the setCursor method.

Example 9.3: Using a table to gather arguments
This example shows one way to gather arguments or options using an
editable cell in a table, rather than a separate text-entry widget. Tables can
provide compact entry areas in a familiar interface.

For this example we collect values for arguments to the title function.
We first create a data frame with the argument name and default value,
along with some additional values:

opts <- c ("main" , "sub" , "xlab" , "ylab" , "line" , "outer")
DF <- data . frame (option = opts ,

value = c ("" , "" , "" , "" , "0" , "FALSE") ,
class = c (rep ("character" , 4) , "integer" , "logical") ,
edit_color = rep ("gray95" , 6) ,

177

9. RGtk2: Widgets Using Data Models

dirty = rep (FALSE , 6) ,
stringsAsFactors = FALSE)

Unfortunately, we need to coerce the default values to character, in
order to store them in a single column. We preserve the class in the class
column, for coercion later. The edit_color and dirty columns are related
to editing and explained later.

Now we create our model and configure the first column:

model <- rGtkDataFrame (DF)
view <- gtkTreeView (model)
##
cell_renderer <- gtkCellRendererText ()
cell_renderer [’background’] <- ’gray80’
view$insertColumnWithAttributes (position = −1,

title = "Option" ,
cell = cell_renderer ,
text = 1 − 1)

The first column has a special background color, specified below, which
indicates that the cells are not editable. The second column is editable and
has a background color that is state dependent and indicates whether a
cell has been edited (The xlab column in Figure 9.4):

cell_renderer <- gtkCellRendererText ()
cell_renderer [’editable’] <- TRUE
view$insertColumnWithAttributes (position = −1,

title = "Value" ,
cell = cell_renderer ,
text = 2 − 1 ,
background = 4 − 1
)

To attach the view to the model, we connect the cell renderer to the
edited signal. Here we use the class value to format the text and then
set the background color and dirty flag of the entry. The latter allows us
to easily find the values which were edited.

gSignalConnect (cell_renderer , "edited" ,
function (cell_renderer , path , new . text , user . data) {

model <- user . data$model
i <- as . numeric (path) + 1 ; j <- user . data$column
val <- as (new . text , model [i , ’class’])
model [i , j] <- as (val , "character")
model [i , ’dirty’] <- TRUE # mark d i r t y
model [i , ’edit_color’] <- ’gray70’ # change c o l o r

} , data=list (model=model , column = 2))

A simple window displays our GUI.

178

9.1. Displaying tabular data

window <- gtkWindow (show=FALSE)
window [’title’] <- "Option editor"
window$setSizeRequest (3 0 0 , 5 0 0)
scrolled_window <- gtkScrolledWindow ()
window$add (scrolled_window)
scrolled_window$add (view)
window$show ()

Implementing this dialog into a GUI requires writing a function to map
the model values into the appropriate call to the title function. The dirty
flag makes this easy, but this is a task we do not pursue here. Instead we
add a bit of extra detail by providing a tooltip.

Tooltips For this example, our function has built-in documentation. Be-
low, we use an internal function from the helpr package2 to extract the
description for each of the arguments. We leave this in a list, descs, for
later lookup.

require (helpr , quietly=TRUE)
package <- "graphics" ; topic <- "title"
rd <- helpr : : : parse_help (helpr : : : pkg_topic (package , topic) ,

package = package)
descs <- rd$params$args
names (descs) <- sapply (descs , function (i) i$param)

For many widgets, adding a tooltip is as easy as calling setTooltip-
Text. However, it is more complicated in a treeview, as each cell should
get a different tip. To add tooltips to the treeview we first indicate that we
want tooltips, then connect to the query-tooltip signal:

view ["has-tooltip"] <- TRUE
gSignalConnect (view , "query-tooltip" ,

function (view , x , y , key_mode , tooltip , user . data) {
out <- view$getTooltipContext (x , y , key_mode)
if (out$retval) {

model <- view$getModel ()
i <- as . numeric (out$path$toString ()) + 1
val <- model [i , "option"]
txt <- descs [[val]] $desc
txt <- gsub ("code>" ,"b>" , txt) # no c o d e in Pango
tooltip$setMarkup (txt)

}
out$retval

})

2It is important to note that we are calling internal routines of a package still under
active development, which in turn relies on volatile features of R. In general, such practice
can lead to maintenance headaches. The purpose of this example is only to provide a natural
demonstration of tooltips on a treeview.

179

9. RGtk2: Widgets Using Data Models

Within this callback we check to see if we have the appropriate context
(we are in a row), then, if so, use the path to find the description to set in
the tooltip. The descriptions use HTML for markup, but the tooltip uses
only Pango. As the code tag is not PANGO, we change to a bold tag using
gsub.

Combo and spin cell renderers GtkCellRendererCombo and GtkCell-
RendererSpin allow editing a text cell with a combo box or spin but-
ton, respectively. Populating the combo-box menu requires specifying two
properties: model and text-column. The menu items are retrieved from the
GtkTreeModel given by model at the column index given by text-column.
If has-entry is TRUE, a combo box entry is displayed.

cell_renderer <- gtkCellRendererCombo ()
model <- rGtkDataFrame (state . name)
cell_renderer [’model’] <- model
cell_renderer [’text-column’] <- 0
cell_renderer [’editable’] <- TRUE # n eede d

The spin button editor is configured by setting a GtkAdjustment on the
adjustment property.

The changed signal is emitted when an items is selected in the combo
box. The spin cell renderer inherits the edited signal from GtkCell-
RendererText.

Pixbuf cell renderers To display an image in a cell, GtkCellRenderer-
Pixbuf is appropriate. The image is specified through one of these proper-
ties: stock-id, a stock identifier; icon-name, the name of a themed icon; or
pixbuf, an actual GdkPixbuf object, holding an image in memory. Using
a list, we can store a GdkPixbuf in a data.frame, and thus an RGtk-
DataFrame. This is demonstrated in the next example.

Example 9.4: A variable selection widget
This example shows how to create a GUI for selecting variables from a
data frame. The GUI is based on two lists. The left one indicates the
variables that can be selected, and the right shows the variables that have
been selected. An icon, indicating the variable type, is placed next to the
variable name (Figure 9.5). A similar mechanism is part of the SPSS model
specification GUI of Figure 1.4. For illustration purposes we use the Cars93
data set.

DF <- get (data (Cars93 , package="MASS"))

First, we render an icon for each variable. The make_icon function from
the ProgGUIinR package creates an icon as a grid object, which we render
with cairoDevice:

180

9.1. Displaying tabular data

Figure 9.5: Illustration of an interface to select one or more variables. An
icon is used in the table view to indicate the variable type.

make_icon_pixmap <- function (x , . . .) {
require (grid) ; require (cairoDevice)
pixmap <- gdkPixmap (drawable = NULL , width = 16 , height=16 ,

depth = 24)
asCairoDevice (pixmap)
grid . newpage ()
grid . draw (make_icon (x))
dev . off ()
gdkPixbufGetFromDrawable (NULL , pixmap , NULL , 0 ,0 ,0 ,0 ,−1 ,−1)

}

The two list views are based on the same underlying data model, which
contains three columns: the variable name, the icon, and whether the vari-
able has been selected. We construct the corresponding data frame and
wrap it in a RGtkDataFrame instance:

model_df <- data . frame (Variables = I (sort (names (DF))) ,
icon = I (sapply (DF , make_icon_pixmap)) ,
selected = rep (FALSE , ncol (DF)))

model <- rGtkDataFrame (model_df)

The first view shows only unselected variables, while the other is lim-
ited to selected variables. Thus, each view will be based on a different
filter:

selected_filter <- model$filter ()
selected_filter$setVisibleColumn (2)
unselected_filter <- model$filter ()
unselected_filter$setVisibleFunc (function (model , iter) {

!model$get (iter , 2) [[1]]
})

181

9. RGtk2: Widgets Using Data Models

The selected filter is relatively easy to define, using selected as the vis-
ible column. For the unselected filter, we need to define a custom visible
function that inverts the selected column.

Next, we create a view for each filter:

views <- list ()
views$unselected_view <- gtkTreeView (unselected_filter)
views$selected_view <- gtkTreeView (selected_filter)
##
sapply (views , function (view) {

selection <- view$getSelection ()
selection$setMode (’multiple’)

})

Each cell needs to display both an icon and a label. This is achieved by
packing two cell renderers into the column:

make_view_column <- function () {
column <- gtkTreeViewColumn ()
column$setTitle ("Variable")
column$packStart (cell_renderer <- gtkCellRendererPixbuf ())
column$addAttribute (cell_renderer , "pixbuf" , 1L)
column$packStart (cell_renderer <- gtkCellRendererText ())
column$addAttribute (cell_renderer , "text" , 0L)
column

}
sapply (views , function (view)

view$insertColumn (make_view_column () , 0))

For later use we extend the API for a treeview – one method to find
the selected indices (1-based) and one to indicate if there is a selection:

add t o t h e g tkTreeView API f o r c o n v e n i e n c e
gtkTreeViewSelectedIndices <- function (object) {

model <- object$getModel () # F i l t e r e d !
paths <- object$getSelection () $getSelectedRows () $retval
path_strings <- sapply (paths , function (i) {

model$convertPathToChildPath (i) $toString ()
})
if (length (path_strings) == 0)

integer (0)
else

as . numeric (path_strings) + 1 # 1−b a s e d
}
d o e s o b j e c t have s e l e c t i o n ?
gtkTreeViewHasSelection <-

function (obj) length (obj$selectedIndices ()) > 0

182

9.1. Displaying tabular data

Now we create the buttons and connect to the clicked signal. The
handler moves the selected values to the other list by toggling the selected
variable:

buttons <- list ()
buttons$unselect_button <- gtkButton ("<")
buttons$select_button <- gtkButton (">")
toggleSelectionOnClick <- function (button , view) {

gSignalConnect (button , "clicked" , function (button) {
message ("clicked")
ind <- view$selectedIndices ()
model [ind , "selected"] <- !model [ind , "selected"]

})
}
sapply (1 : 2 , function (i) toggleSelectionOnClick (buttons [[i]] ,

views [[3−i]]))

We want our buttons to be sensitive only if there is a possible move.
This is determined by the presence of a selection:

sapply (buttons , gtkWidgetSetSensitive , FALSE)
trackSelection <- function (button , view) {

gSignalConnect (view$getSelection () , "changed" ,
function (x) button [’sensitive’] <- view$hasSelection ())

}
sapply (1 : 2 , function (i) trackSelection (buttons [[i]] ,

views [[3−i]]))

We now lay out our GUI using a horizontal box, into which we pack the
views and a box holding the selection buttons. The views will be scrollable,
so are placed in scrolled windows:

window <- gtkWindow (show=FALSE)
window$setTitle ("Select variables example")
window$setDefaultSize (6 0 0 , 400)
hbox <- gtkHBox ()
window$add (hbox)
s c r o l l w i n d o w s
scrolls <- list ()
scrolls$unselected_scroll <- gtkScrolledWindow ()
scrolls$selected_scroll <- gtkScrolledWindow ()
mapply (gtkContainerAdd , object = scrolls , widget = views)
mapply (gtkScrolledWindowSetPolicy , scrolls ,

"automatic" , "automatic")
b u t t o n s
button_box <- gtkVBox ()
centered_box <- gtkVBox ()
button_box$packStart (centered_box , expand=TRUE , fill = FALSE)
centered_box$setSpacing (1 2)

183

9. RGtk2: Widgets Using Data Models

sapply (buttons , centered_box$packStart , expand = FALSE)
##
hbox$packStart (scrolls$unselected_scroll , expand = TRUE)
hbox$packStart (button_box , expand = FALSE)
hbox$packStart (scrolls$selected_scroll , expand = TRUE)

Finally, we show the top-level window:

window$show ()

Toggle cell renderers Binary data can be represented by a toggle. The
gtkCellRendererToggle will create a check box in the cell that will appear
checked if the active property is TRUE. If an attribute is defined for the
property, then changes in the model will be reflected in the view. More
work is required to modify the model in response to user interaction with
the view. The activatable attribute for the cell must be TRUE in order
for it to receive user input. The programmer then needs to connect to the
toggled to update the model in response to changes in the active state.

cell_renderer <- gtkCellRendererToggle ()
cell_renderer [’activatable’] <- TRUE # c e l l can be a c t i v a t e d
cell_renderer [’active’] <- TRUE
gSignalConnect (cell_renderer , "toggled" , function (w , path) {

model$active [as . numeric (path) + 1] <- w [’active’]
})

To render the toggle as a radio button instead of a checkbox, set the
radio property to TRUE. Again, the programmer is responsible for imple-
menting the radio-button logic via the toggled signal.

Example 9.5: Displaying a checkbox column in a treeview
This example demonstrates the construction of a GUI for selecting one
or more rows from a data frame. We will display a list of the installed
packages that can be upgraded from CRAN, although this code is trivially
generalized to any list of choices. The user selects a row by clicking on a
checkbox produced by a toggle-cell renderer.

To get the installed packages that can be upgraded, we use some of the
functions provided by the utils package.

old_packages <-
old . packages () [, c ("Package" , "Installed" , "ReposVer")]

DF <- as . data . frame (old_packages)

This function will be called on the selected rows. Here, we simply call
install.packages to update the selected packages.

doUpdate <- function (old_packages)
install . packages (old_packages$Package)

184

9.1. Displaying tabular data

Figure 9.6: A GUI to select packages using checkboxes rendered with a
GtkCellRenererToggle instance.

To display the data frame, we first append a column to the data frame
to store the selection information and then create a corresponding RGtk-
DataFrame.

model <- rGtkDataFrame (cbind (DF , . toggle=rep (FALSE , nrow (DF))))

Our treeview shows each text column using a simple text-cell renderer,
except for the first column that contains the checkboxes for selection.

view <- gtkTreeView ()
cell_renderer <- gtkCellRendererToggle () # add t o g g l e
view$insertColumnWithAttributes (0 , "" , cell_renderer ,

active = ncol (DF))
cell_renderer [’activatable’] <- TRUE
gSignalConnect (cell_renderer , "toggled" ,

function (cell_renderer , path , user . data) {
view <- user . data
row <- as . numeric (path) + 1
model <- view$getModel ()
n <- dim (model) [2]
model [row , n] <- !model [row , n]

} , data=view)

The text columns are added in one go:

mapply (view$insertColumnWithAttributes , −1, colnames (DF) ,
list (gtkCellRendererText ()) , text = seq_along (DF) −1L)

Finally, we connect the store to the model.

view$setModel (model)

185

9. RGtk2: Widgets Using Data Models

To allow the user to initiate the action, we create a button and assign
a callback. We pass in the view, rather than the model, in case the model
would be recreated by the doUpdate call. In a real application, once a
package is upgraded it would be removed from the display.

button <- gtkButton ("Update packages")
gSignalConnect (button , "clicked" , function (button , data) {

view <- data
model <- view$getModel ()
old_packages <-

model [model [, ncol (model)] , −ncol (model) , drop = FALSE]
doUpdate (old_packages)

} , data=view)

Our basic GUI places the view into a box container that also holds the
button to initiate the action.

window <- gtkWindow (show = FALSE)
window$setTitle ("Installed packages that need upgrading")
window$setSizeRequest (3 0 0 , 300)
vbox <- gtkVBox () ; window$add (vbox)
scrolled_window <- gtkScrolledWindow ()
vbox$packStart (scrolled_window , expand = TRUE , fill = TRUE)
scrolled_window$add (view)
scrolled_window$setPolicy ("automatic" , "automatic")
vbox$packStart (button , expand = FALSE)
window$show ()

Progress cell renderers To communicate progress within a cell visually,
both progress bars and spinner animations are supported. These modes cor-
respond to GtkCellRendererProgress and GtkCellRendererSpinner, re-
spectively.

In the case of GtkCellRendererProgress, its value property takes a
value between 0 and 100 indicating the amount finished, with a default
value of 0. Values out of this range will be signaled by an error message.
For example,

cell_renderer <- gtkCellRendererProgress ()
cell_renderer ["value"] <- 50

For indicating progress in the absence of a definite end point, Gtk-
CellRendererSpinner is more appropriate. The spinner is displayed when
the active property is TRUE. Increment the pulse property to drive the
animation.

Overriding attribute mappings The default behavior for mapping model
values to a renderer property is simple: values are extracted from the

186

9.1. Displaying tabular data

model and passed directly to the cell renderer property. If the data types
are different, such as a numeric value for a string property, the value is
converted using low-level routines defined by the property system. It is
sometimes desirable to override this mapping with more complex logic.

For example, conversion of numbers to strings is a nontrivial task.
Although the logic in the R print system often performs acceptably, there
is certainly room for customization. One example is aligning floating point
numbers by fixing the number of decimal places. This could be done in
the model (e.g., using sprintf to format and coerce to character data).
Alternatively, we could preserve the integrity of the data and perform the
conversion during rendering. This requires intercepting the model value
before it is passed to the cell renderer.

In the specific case of GtkTreeView, it is possible to specify a callback
that overrides this step. The callback, of type GtkTreeCellDataFunc, is
passed arguments for the treeview column, the cell renderer, the model,
an iterator pointing to the row in the model, and, optionally, an argument
for user data. The function is tasked with setting the appropriate attributes
of the cell renderer. For example, this callback would format floating point
numbers:

func <- function (column , cell_renderer , model , iter , data) {
val <- model$getValue (iter , 0) $value
f_val <- sprintf ("%.3f" , val)
cell_renderer [’text’] <- f_val
cell_renderer [’xalign’] <- 1

}

The function then needs to be registered with a GtkTreeViewColumn
that is rendering a numeric column from the model:

view <- gtkTreeView (rGtkDataFrame (data . frame (rnorm (1 0 0))))
cell_renderer <- gtkCellRendererText ()
view$insertColumnWithAttributes (0 , "numbers" , cell_renderer ,

text = 0)
column <- view$getColumn (0)
column$setCellDataFunc (cell_renderer , func)

The last line is the key: calling setCellDataFunc registers our custom-
formatting function with the view column.

One drawback of the use of such functions is that R code is executed ev-
ery time a cell is rendered. If performance matters, consider pre-converting
the data in the model or tweaking the options in R for printing real num-
bers, namely scipen and digits.

For customizing rendering further, and in the general case beyond Gtk-
TreeView, we could implement a new type of GtkCellRenderer. See Chap-
ter 11 for more details on extending GTK+ classes.

187

9. RGtk2: Widgets Using Data Models

9.2 Displaying hierarchical data

Although the RGtkDataFrame model is a convenient implementation of Gtk-
TreeModel, it has its limitations. Primary among them is its lack of support
for hierarchical data. GTK+ implements GtkTreeModel with GtkListStore
and GtkTreeStore, which respectively store nonhierarchical and hierarchi-
cal tabular data. GtkListStore is a flat table, while GtkTreeStore organizes
the table into a hierarchy. Here, we discuss GtkTreeStore.

Loading hierarchical data

A tree store is constructed using gtkTreeStore. The column types are
specified through a character vector at the time of construction. The speci-
fication uses “GTypes” such as gchararray for character data, gboolean for
logical data, gint for integer data, gdouble for numeric data, and GObject
for GTK+ objects, such as pixbufs.

Example 9.6: Defining a tree
Below, we create a tree based on the Cars93 data set, where the car models
(Model) are organized by manufacturer (Manufacturer), i.e., each model
row is the child of its manufacturer row:

model <- gtkTreeStore ("gchararray")
by (Cars93 , Cars93$Manufacturer , function (DF) {

parent_iter <- model$append ()
model$setValue (parent_iter$iter , column = 0 , value =

DF$Manufacturer [1])
sapply (DF$Model , function (car_model) {

child_iter <- model$append (parent = parent_iter$iter)
if (is . null (child_iter$retval))

model$setValue (child_iter$iter , column = 0 ,
value = car_model)

})
})

To retrieve a value from the tree store using its path we have:

iter <- model$getIterFromString ("0:0")
model$getValue (iter$iter , column = 0) $value

[1] "Integra"

As shown in the above example, populating a tree store relies on two
functions: append, for appending rows, and setValue, for setting row val-
ues. The iterator to the parent row is passed to append. A parent of NULL,
the default, indicates that the row should be at the top level. It would also
be possible to insert rows using insert, insertBefore, or insertAfter.

188

9.2. Displaying hierarchical data

The setValue method expects the row iterator and a 0-based column in-
dex. An entire row can be assigned through the set method. The method
uses positional arguments to specify the column and the value, in alter-
nating fashion. The column index appears as an even argument (say 2k)
and the corresponding value in the odd argument (say 2k + 1). Values are
returned by the getValue method, in a list with component value storing
the value.

Traversing a tree store is most easily achieved through the use of Gtk-
TreeIter, introduced previously in the context of flat tables. Here we
perform a depth-first traversal of our Cars93 model to obtain the model
values:

iter <- model$getIterFirst ()
values <- NULL
while (iter$retval) {

child_iter <- model$iterChildren (iter$iter)
while (child_iter$retval) {

values <- c (values , model$get (child_iter$iter , 0) [[1]])
child_iter$retval <- model$iterNext (child_iter$iter)

}
iter$retval <- model$iterNext (iter$iter)

}

The hierarchical structure introduces the method iterChildren for obtain-
ing an iterator to the first child of a row. As with other methods returning
iterators, the return value is a list, with the retval component indicating
the validity of the iterator, stored in the iter component. The method
iterParent performs the reverse, iterating from child to parent.

Row manipulations Rows within a store can be rearranged using several
methods. Call the swap method to swap rows referenced by their iterators.
The methods moveAfter and moveBefore move one row after or before
another, respectively. The reorder method totally reorders the rows under
a specified parent given a vector of row indices, like that returned by
order. Once added, rows can be removed using the remove method. To
remove every row, call the clear method.

Displaying data as a tree

Once a hierarchical data set has been loaded into a GtkTreeModel imple-
mentation like GtkTreeStore, it can be passed to a GtkTreeView widget
for display as a tree. Indeed, this is the same widget that displayed our
flat data frame in the previous section. As before, GtkTreeView displays
the GtkTreeModel as a table; however, it now adds controls for expanding
and collapsing nodes where rows are nested.

189

9. RGtk2: Widgets Using Data Models

The user can click to expand or collapse a part of the tree. These ac-
tions trigger the emission of the signals row-expanded and row-collapsed,
respectively.

Example 9.7: A simple tree display
Here, we demonstrate the application of GtkTreeView to the display of
hierarchical data. We will use the model constructed in Example 9.6 from
the Cars93 dataset. In that example we defined a simple tree store from a
data frame, with a level for manufacturer and make for different cars. We
refer to that model by tstore below.

Creating a basic view is similar to that for rectangular data already
presented:

view <- gtkTreeView ()
view$insertColumnWithAttributes (0 , "Make" ,

gtkCellRendererText () , text = 0)

[1] 1

view$setModel (model)

To demonstrate that GtkTreeView supports both hierarchical and flat
tabular models, we will create an analogous RGtkDataFrame and set it on
the view:

model <- rGtkDataFrame (Cars93 [, "Model" , drop=FALSE])
view$setModel (model)

9.3 Model-based combo boxes

Basic combo-box usage was discussed in Section 8.3; here we discuss the
more flexible and complex approach of using an explicit data model for
storing the menu items. The item data is tabular, although it is limited to
a single column. Thus, GtkTreeModel is again the appropriate model, and
RGtkDataFrame is usually the implementation of choice.

To construct a GtkComboBox based on a user-created model, we should
pass the model to the constructor gtkComboBox. This model can be changed
or set through the setModel method and is returned by getModel. Like
GtkTreeViewColumn, GtkComboBox implements the GtkCellLayout interface
and thus delegates the rendering of model values to GtkCellRenderer
instances that are packed into the combo box.

The getActiveIter returns a list containing the iterator pointing to
the currently selected row in the model. If no row has been selected,
the retval component of the list is FALSE. The setActiveIter sets the
currently selected item by iterator. As discussed previously, the getActive
and setActive methods behave analogously with 0-based indices.

190

9.3. Model-based combo boxes

Example 9.8: A combo box with memory
This example uses an editable combo box as an simple interface to the
R help system. Along the way, we record the number of times the user
searches for a page.

Our model for the combo box will be an RGtkDataFrame instance with
three columns: a function name, a string describing the number of visits,
and an integer to record the number of visits.

model <- rGtkDataFrame (data . frame (filename = character (0) ,
visits = character (0) ,
nvisits = integer (0) ,
stringsAsFactors = FALSE))

As introduced in the previous chapter, the GtkComboBoxEntry widget
extends GtkComboBox to provide an entry widget for the user to enter
arbitrary values. To construct a combo box entry on top of a tree model,
we should pass the model, as well as the column index that holds the
textual item labels, to the gtkComboBoxEntry constructor. It is not necessary
to create a cell renderer for displaying the text, as the entry depends on
having text labels and thus enforces their display. It is still possible, of
course, to add cell renderers for other model columns. We create the combo
box with this model using the first column for the text:

combo_box <- gtkComboBoxEntryNewWithModel (model ,
text . column = 0)

It is not currently possible to put tooltip information on the drop-down
elements of a combo box, as was done with a treeview. Instead, we borrow
from popular web browser interfaces and add textual information about
the number of visits to the drop-down menu. This requires us to pack
in a new cell renderer to accompany the original label provided by the
gtkComboBoxEntry widget:

cell_renderer <- gtkCellRendererText ()
combo_box$packStart (cell_renderer)
combo_box$addAttribute (cell_renderer , "text" , 1)
cell_renderer [’foreground’] <- "gray50"
cell_renderer [’ellipsize’] <- "end"
cell_renderer [’style’] <- "italic"
cell_renderer [’alignment’] <- "right"

This helper function will be called each time a help page is requested.
It first updates the visit information, selects the text for easier editing the
next time around, then calls help.

callHelpFunction <- function (combo_box , value) {
model <- combo_box$getModel ()
ind <- match (value , model [, 1 , drop=TRUE])
nvisits <- model [ind , "nvisits"] <- model [ind , "nvisits"]+1

191

9. RGtk2: Widgets Using Data Models

model [ind , "visits"] <-
sprintf (ngettext (nvisits , "%s visit" ,"%s visits") , nvisits)

s e l e c t f o r e a s i e r e d i t i n g
combo_box$getChild () $selectRegion (start = 0 , end = −1)
help (value)

}
gSignalConnect (combo_box , "changed" ,

f = function (combo_box , . . .) {
if (combo_box$getActive () >= 0) {

value <- combo_box$getActiveText ()
callHelpFunction (combo_box , value)

}
})

When the user enters a new value in the entry, we need to check
whether we have previously accessed the item. If not, we add the value to
our model.

gSignalConnect (combo_box$getChild () , "activate" ,
f = function (combo_box , entry , . . .) {

value <- entry$getText ()
if (!any (value == combo_box$getModel () [, 1])) {

model <- combo_box$getModel ()
tmp <- data . frame (filename = value , visits = "" ,

nvisits = 0 ,
stringsAsFactors = FALSE)

model$appendRows (tmp)
}
callHelpFunction (combo_box , value)

} , data = combo_box , user . data . first = TRUE)

We place this in a minimal GUI with a label:

window <- gtkWindow (show = FALSE)
window [’border-width’] <- 15
hbox <- gtkHBox () ; window$add (hbox)
hbox$packStart (gtkLabel ("Help on:"))
hbox$packStart (combo_box , expand = TRUE , fill = TRUE)
#
window$show ()

An alternative approach would be to use the completion support of
GtkEntry, presented next, but we leave that as an exercise to the reader.

9.4 Text-entry widgets with completion

Often, the number of possible choices is too large to list in a combo box.
One example is a web-based search engine: the possible search terms,

192

9.4. Text-entry widgets with completion

while known and finite in number, are too numerous to list. The auto-
completing text entry has emerged as an alternative to a combo box and
might be described as a sort of dynamic combo-box entry widget. When a
user enters a string, partial matches to the string are displayed in a menu
that drops down from the entry.

The GtkEntryCompletion object implements text completion in GTK+.
An instance is constructed with gtkEntryCompletion. The underlying
database is a GtkTreeModel, like RGtkDataFrame, set via the setModel
method. To connect a GtkEntryCompletion to an actual GtkEntry widget,
call the setCompletion method on GtkEntry. The text-column property
specifies the column containing the completion candidates.

There are several properties that can be adjusted to tailor the completion
feature; we mention some of them. Setting the property inline-selection
to TRUE will place the top completion suggestion to the entry inline as
the completions are scrolled through; inline-completion will automati-
cally add the common prefix to the entry widget; popup-single-match
is a logical indicating whether a pop up is displayed on a single match;
minimum-key-length takes an integer specifying the number of characters
needed in the entry before completion is checked (the default is 1).

By default, the rows in the data model that match the current value of
the entry widget in a case insensitive manner are displayed. This match-
ing function can be overridden by setting a new R function through the
setMatchFunc method. The signature of this function is the completion ob-
ject, the string from the entry widget (lowercase), an iterator pointing to
a row in the model, and, optionally user data that is passed through the
func.data argument of the setMatchFunc method. This callback should
return TRUE or FALSE depending on whether that row should be displayed
in the set of completions.

Example 9.9: Text entry with completion
This example illustrates the steps to add completion to a text entry.

We create an entry with a completion database:

entry <- gtkEntry () ; completion <- gtkEntryCompletion ()
entry$setCompletion (completion)

We will use an RGtkDataFrame instance for our completion model, tak-
ing a convenient list of names for our example. We set the model and text
column index on the completion object and then set some properties to
customize how the completion is handled:

model <- rGtkDataFrame (state . name)
completion$setModel (model)
completion$setTextColumn (0)
completion [’inline-completion’] <- TRUE
completion [’popup-single-match’] <- FALSE

193

9. RGtk2: Widgets Using Data Models

We wish for the text search to match against any part of a string, not
only the beginning, so we define our own match function:

matchAnywhere <- function (completion , key , iter , user . data) {
model <- completion$getModel ()
row_value <- model$getValue (iter , 0) $value
key <- completion$getEntry () $getText () # c a s e s e n s i t i v i t y
grepl (key , row_value)

}
completion$setMatchFunc (matchAnywhere)

We get the string from the entry widget, not the passed value, as the
latter has been standardized to lowercase.

9.5 Sharing buffers between text entries

As of GTK+ version 2.18, multiple instances of GtkEntry can synchronize
their text through a shared buffer. Each entry obtains its text from the same
underlying model, a GtkEntryBuffer. Here, we construct two entries, with
a shared buffer:

buffer <- gtkEntryBuffer ()
entry1 <- gtkEntry (buffer = buffer)
entry2 <- gtkEntry (buffer = buffer)
entry1$setText ("echo")
entry2$getText ()

[1] "echo"

The change of text in "entry1" has been reflected in "entry2".

9.6 Text views

Multiline text areas are displayed through GtkTextView instances. These
provide a view of an accompanying GtkTextBuffer, which is the model
that stores the text and other objects to be rendered. The view is responsible
for the display of the text in the buffer and has methods for adjusting
tabs, margins, indenting, etc. The text buffer stores the actual text, and its
methods are for adding and manipulating the text.

A text view is created with gtkTextView. The underlying text buffer can
be passed to the constructor. Otherwise, a buffer is automatically created.
This buffer is returned by the method getBuffer and can be set with the
setBuffer method. Text views provide native scrolling support and thus
are easily added to a scrolled window (Section 7.4).

Example 9.10: Basic gtkTextView usage
The steps to construct a text view consist of:

194

9.6. Text views

view <- gtkTextView ()
scrolled_window <- gtkScrolledWindow ()
scrolled_window$add (view)
scrolled_window$setPolicy ("automatic" , "automatic")
##
window <- gtkWindow ()
window [’border-width’] <- 15
window$add (scrolled_window)

To set all the text in the buffer requires accessing the underlying buffer:

buffer <- view$getBuffer ()
buffer$setText ("Lorem ipsum dolor sit amet ...")

Manipulating the text requires an understanding of how positions are
referred to within the buffer (iterators or marks). As an indicator, to get
the contents of the buffer can be done as follows:

start <- buffer$getStartIter () $iter
end <- buffer$getEndIter () $iter
buffer$getText (start , end)

[1] "Lorem ipsum dolor sit amet ..."

Adding text Text can be added programmatically through various meth-
ods of the text buffer. The most basic setText, which simply replaces the
current text, is shown in the example above. The method insertAtCursor
will add the text to the buffer at the current position of the cursor. Other
means are described in the following sections.

Properties By default, the text in a view is editable. This can be disabled
through the editable property. Typically, we then set the cursor-visible
property to "FALSE" so that the cursor is hidden:

view [’editable’] <- FALSE
view [’cursor-visible’] <- FALSE

Formatting The text view supports several general formatting options.
Automatic line wrapping is enabled through setWrapMode, which takes a
value from GtkWrapMode: one of "none", "char", "word", and "word_char".
The justification for the entire buffer is controlled by the justification
property, which takes a GtkJustification value from "left", "right",
"center", and "fill". The global value may be overridden for parts of
the text buffer through the use of text tags (see Section 9.7). The left and
right margins are adjusted through the left-margin and right-margin
properties.

195

9. RGtk2: Widgets Using Data Models

Fonts The size and font can be set globally for a text view using the
modifyFont method. To set the font for specific regions, use text tags (see
Section 9.7). The font is specified as a Pango font description, which may be
generated from a string through pangoFontDescriptionFromString. These
strings may contain up to three parts: the first is a comma-separated list
of font families, the second a white-space separated list of style options,
and the third a size in points or pixels if the unit “px” is included. A
typical value might look like "serif, monospace bold italic condensed
16". The various style options are enumerated in PangoStyle, PangoVari-
ant, PangoWeight, PangoStretch, and PangoGravity. The help page for
PangoFontDescription contains more information.

9.7 Text buffers

Text buffer properties include text for the stored text and has-selection
to indicate whether text is currently selected in a view. The buffer also
tracks whether it has been modified. This information is available through
the buffer getModified method, which returns TRUE if the buffer has
changed. To clear this state, such as when a buffer has been saved to
disk, we can pass FALSE to setModified.

In order to do more with a text buffer, such as retrieve a selection, or
modify text attributes, we need to become familiar with the two mecha-
nisms for referencing text in a buffer: iterators and marks. A text iterator
is an opaque, transient pointer to a region of text, whereas a text mark
specifies a location that remains valid across buffer modifications.

Iterators

In GTK+ a text iterator is the primary means of specifying a position in a
buffer. As mentioned in Section 9.1, iterators are typically transient, in the
sense that they are invalidated or updated by reference when their source
is modified.

Several methods of the text buffer return iterators marking positions
in the buffer. Iterators are returned as lists with two components: iter,
which represents the actual C iterator object, and retval, a logical value
indicating whether the iterator is valid. The beginning and end of the
buffer are returned by the methods getStartIter and getEndIter. Both
of these iterators are returned together in a list by the method getBounds.
For example:

bounds <- buffer$getBounds ()
bounds

$retval
NULL

196

9.7. Text buffers

$start
<pointer: 0x116458ec0 >
attr(," interfaces ")
character (0)
attr(,"class")
[1] "GtkTextIter" "GBoxed" "RGtkObject"

$end
<pointer: 0x116458ce0 >
attr(," interfaces ")
character (0)
attr(,"class")
[1] "GtkTextIter" "GBoxed" "RGtkObject"

The current selection is returned by the method getSelectionBounds, as a
list of the same structure. If there is no selection, then retval=FALSE.

We can also obtain an iterator for a specific position in a document.
The method getIterAtLine will return an iterator pointing to the start
of the line, which is specified by a 0-based line number. The method
getIterAtLineOffset has an additional argument to specify the offset for
a given line. An offset counts the number of individual characters and
keeps track of the fact that the text encoding, UTF-8, may use more than
one byte per character. For example, we might request the seventh character
of the first line:

iter <- buffer$getIterAtLineOffset (0 , 6)
iter$iter$getChar () # unicode , not t e x t

[1] 105

In addition to the text buffer, a text view also has the method getIterAt-
Location to return the iterator indicating the between-word space in the
buffer closest to the point specified in x-y coordinates.

Once we obtain an iterator, we typically enter a loop that performs
some operation on the text at the iterator position and updates the iterator
with each iteration. This requires retrieving the text to which an iterator
refers. The character at the iterator position is returned by getChar. We
obtain the first character in the buffer:

bounds$start$getChar () # u n i c o d e

[1] 76

To obtain the text between two text iterators, call the getText method on
the left iterator, passing the right iterator as an argument:

bounds$start$getText (bounds$end)

197

9. RGtk2: Widgets Using Data Models

[1] "Lorem ipsum dolor sit amet ..."

The insert method will insert text at a specified iterator:

buffer$insert (bounds$start , "prefix")

The delete method will delete the text between two iterators. An im-
portant observation is that we always pass the actual iterator, i.e., the iter
component of the list, to the above methods. Passing the original list would
not work.

Next, we introduce the methods for updating an iterator. We can
move an iterator forward or backward, stopping at a certain type of
landmark. Supported landmarks include characters (forwardChar, for-
wardChars, backwardChar, and backwordChars), words (forwardWordEnd
and backwardWordStart), and sentences (backwardSentenceStart and for-
wardSentenceEnd). There are also various methods, such as insideWord, for
determining the textual context of the iterator. Example 9.11 shows how
some of the above are used, in particular how these methods update the
iterator rather than return a new one.

Example 9.11: Finding the word that is clicked by the user
This example shows how we can find the iterator corresponding to a
mouse click. In the callback we obtain the X and Y coordinates of the
mouse-button-press event, find the corresponding iterator, and retrieve the
surrounding word:

gSignalConnect (view , "button-press-event" ,
f=function (view , event , . . .) {

start <- view$getIterAtLocation (event$getX () ,
event$getY ()) $iter

end <- start$copy ()
start$backwardWordStart ()
end$forwardWordEnd ()
val <- start$getText (end)
print (val)
return (FALSE) # c a l l n ex t h a n d l e r

})

Marks

A text mark tracks a position in the document that is relative to other text
and is preserved across buffer modifications. We can think of a mark as
an invisible object stuck between two characters. An example is the text
cursor, the position of which is represented by a mark.

Marks are identified by name. We retrieve the mark for the cursor,
which is called "insert":

198

9.7. Text buffers

insert <- buffer$getMark ("insert")

To access the text at a mark, we need the corresponding iterator:

insert_iter <- buffer$getIterAtMark (insert) $iter
bounds$start$getText (insert_iter)

[1] "Lorem ipsum dolor sit amet ..."

Marks have a gravity of "left" or "right", with "right" being the
default. If text is inserted at a mark with right gravity, then the mark is
moved to the end of the insertion. A mark with left gravity would not be
moved. This is intuitive if we relate it to the behavior of the text cursor,
which has right gravity. For obvious reasons, the cursor always advances
as the user inserts text by typing. We demonstrate this programmatically:

insert_iter$getOffset ()

[1] 36

buffer$insert (insert_iter , "at insertion point")
buffer$getIterAtMark (insert) $iter$getOffset ()

[1] 54

A custom mark is created with its name, gravity, and position. We
create one for the start of the document:

mark <- buffer$createMark (mark . name = "start" ,
where = buffer$getStartIter () $iter ,
left . gravity = TRUE)

If we set left.gravity to "TRUE", the iterator will not move when text
is inserted.

Tags

Tags are annotations placed on specific regions of a text buffer. To create
a tag, we call the createTag method, which takes an argument for each
attribute to apply to the text. Here, we create three tags: one for bold text,
one for italicized text, and one for large text:

tag_bold <- buffer$createTag (tag . name="bold" ,
weight=PangoWeight ["bold"])

tag_emph <- buffer$createTag (tag . name="emph" ,
style=PangoStyle ["italic"])

tag_large <- buffer$createTag (tag . name="large" ,
font="Serif normal 18")

Next, we associate the tags with one or more regions of text:

199

9. RGtk2: Widgets Using Data Models

iter <- buffer$getBounds ()
buffer$applyTag (tag_bold , iter$start , iter$end) # i t e r s upd a t e
buffer$applyTagByName ("emph" , iter$start , iter$end)

Selection and the clipboard

The selection is defined by the text buffer as the region between the "in-
sert" and "selection_bound" marks. While we could move the marks
around directly, calling selectRange is more efficient and convenient. Here,
we select the first word:

start_iter <- buffer$getStartIter () $iter
end_iter <- start_iter$copy () ; end_iter$forwardWordEnd ()
buffer$selectRange (start_iter , end_iter)

GtkTextBuffer provides some convenience methods for interaction with
the clipboard: copyCliboard, cutClipboard, and pasteClipboard. To use
these, we first need a clipboard object:

clipboard <- gtkClipboardGet ()

We can then, for example, copy the selected text (the first word) and paste
it at the end:

buffer$copyClipboard (clipboard)
buffer$pasteClipboard (clipboard ,

override . location = buffer$getEndIter () $iter ,
default . editable = TRUE)

The default.editable argument indicates that the pasted text should
be editable. If we had passed NULL to the override.location argument,
the insertion would have occurred at the cursor.

Inserting nontext items

If desired, we can insert images and/or widgets into a text buffer. The
method insertPixbuf will insert a GdkPixbuf object. The buffer will count
the image as a character, although getText will obviously not return the
image.

Arbitrary child widgets, like buttons, can also be inserted. First, we
must create an anchor in the text buffer with createChildAnchor:

anchor <- buffer$createChildAnchor (buffer$getEndIter () $iter)

To add the widget, we call the textview method addChildAtAnchor:

button <- gtkButton ("click me")
view$addChildAtAnchor (button , anchor)

200

9.7. Text buffers

Figure 9.7: A basic R terminal implemented using a gtkTextView widget.

Example 9.12: A simple command-line interface
This example shows how to create a simple command-line interface with
the textview widget (Figure 9.7). While few statistical applications will
include a command-line widget, the example is familiar and shows several
different, but useful, aspects of the widget.

We begin by defining our textview widget and retrieving its buffer.
Then we specify a fixed-width font for the buffer:

view <- gtkTextView ()
buffer <- view$getBuffer ()
font <- pangoFontDescriptionFromString ("Monospace")
view$modifyFont (font) # w i d g e t wide

We will use a few formatting tags, defined next. We do not need the tag
objects as variables in the workspace, as we refer to them later by name.

buffer$createTag (tag . name = "cmdInput")
buffer$createTag (tag . name = "cmdOutput" ,

weight = PangoWeight ["bold"])
buffer$createTag (tag . name = "cmdError" ,

weight = PangoStyle ["italic"] , foreground = "red")
buffer$createTag (tag . name = "uneditable" , editable = FALSE)

We define a mark to indicate the beginning of a newly entered com-
mand; and another mark tracks the end of the buffer:

start_cmd <- buffer$createMark ("start_cmd" ,
buffer$getStartIter () $iter ,
left . gravity = TRUE)

bufferEnd <- buffer$createMark ("bufferEnd" ,
buffer$getEndIter () $iter)

There are two types of prompts needed: one for entering a new com-
mand and one for a continuation. This function adds either, depending on
its argument:

201

9. RGtk2: Widgets Using Data Models

add_prompt <- function (obj , prompt = c ("prompt" , "continue") ,
set_mark = TRUE)

{
prompt <- match . arg (prompt)
prompt <- getOption (prompt)

end_iter <- obj$getEndIter ()
obj$insert (end_iter$iter , prompt)
if (set_mark)

obj$moveMarkByName ("start_cmd" , end_iter$iter)
obj$applyTagByName ("uneditable" , obj$getStartIter () $iter ,

end_iter$iter)
}
add_prompt (buffer) ## p l a c e an i n i t i a l prompt

This helper method writes the output of a command to the text buffer:

add_ouput <- function (obj , output , tag_name = "cmdOutput") {
end_iter <- obj$getEndIter ()
if (length (output) > 0)

sapply (output , function (i) {
obj$insertWithTagsByName (end_iter$iter , i , tag_name)
obj$insert (end_iter$iter , "\n" , len=−1)

})
}

We did not arrange to truncate large outputs, but that would be a
nice addition. By passing in the tag name, we can specify whether this is
normal output or an error message.

This next function uses the start_cmd mark and the end of the buffer
to extract the current command. The "regex" is used to parse multiline
commands.

find_cmd <- function (obj) {
end_iter <- obj$getEndIter ()
start_iter <- obj$getIterAtMark (start_cmd)
cmd <- obj$getText (start_iter$iter , end_iter$iter , TRUE)
regex <- paste ("\n[" , getOption ("continue") , "] " , sep = "")
cmd <- unlist (strsplit (cmd , regex))
cmd

}

The following function takes the current command and evaluates it
using the evaluate package. It uses a hack (involving grepl) to distinguish
between an incomplete command and a true syntax error.

require (evaluate)
eval_cmd <- function (view , cmd) {

buffer <- view$getBuffer ()
out <- try (evaluate : : : evaluate (cmd , . GlobalEnv) ,

202

9.7. Text buffers

silent = TRUE)

if (inherits (out , "try-error")) {
p a r s e e r r o r
add_ouput (buffer , out , "cmdError")

} else if (inherits (out [[2]] , "error")) {
if (grepl ("end" , out [[2]])) { # a hack h e r e

add_prompt (buffer , "continue" , set_mark = FALSE)
return ()

} else {
add_ouput (buffer , out [[2]] $message , "cmdError")

}
} else {

add_ouput (buffer , out [[2]] , "cmdOutput")
}
add_prompt (buffer , "prompt" , set_mark = TRUE)

}

We arrange that the eval_cmd command is called when the return key
is pressed next. Other key bindings might also be of interest, such as one
for tab completion.

gSignalConnect (view , "key-release-event" ,
f=function (view , event) {

buffer <- view$getBuffer ()
keyval <- event$getKeyval ()
if (keyval == GDK_Return) {

cmd <- find_cmd (buffer)
if (length (cmd) && nchar (cmd) > 0)

eval_cmd (view , cmd)
}

})

Finally, we connect moveViewport to the changed signal of the text
buffer, so that the view always scrolls to the bottom when the contents of
the buffer are modified:

scroll_viewport <- function (view , . . .) {
view$scrollToMark (bufferEnd , within . margin = 0)
return (FALSE)

}
gSignalConnect (buffer , "changed" , scroll_viewport , data=view ,

after = TRUE , user . data . first = TRUE)

203

This page intentionally left blankThis page intentionally left blank

10

RGtk2: Application Windows

In the traditional WIMP-style GUI, the user executes commands by select-
ing items from a menu. In GUI terminology, such a command is known as
an action. A GUI may provide more than one control for executing a partic-
ular action. Menu bars and toolbars are the two most common widgets for
organizing application-wide actions. An application also needs to report its
status in an unobtrusive way. Thus, a typical application window contains,
from top to bottom, a menu bar, a toolbar, a large application-specific re-
gion, and a status bar. In this chapter, we will introduce actions, menus,
toolbars and status bars and conclude by explaining the mechanisms in
GTK+ for conveniently defining and managing actions and associated wid-
gets in a large application.

10.1 Actions

GTK+ represents actions with the GtkAction class. A GtkAction can be
proxied by widgets like buttons in a GtkMenuBar or GtkToolbar. The
gtkAction function is the constructor:

action <- gtkAction (name = "ok" , label = "_Ok" ,
tooltip = "An OK button" , stock . id = "gtk-ok")

The constructor takes arguments name (to refer programmatically to the
action), label (the displayed text), tooltip, and stock.id (identifying a
stock icon). The command associated with an action is implemented by a
callback connected to the activate signal:

gSignalConnect (action , "activate" ,
f = function (action , data) {

print (action$getName ())
})

An action plays the role of a data model describing a command, while
widgets that implement the GtkActivatable interface are the views and

205

10. RGtk2: Application Windows

Figure 10.1: An application window mock-up showing a menu bar,
toolbar, and info bar.

controllers. All buttons, menu items, and tool items implement GtkActi-
vatable and thus may serve as action proxies. Actions are connected to
widgets through the method setRelatedAction:

button <- gtkButton ()
button$setRelatedAction (action)

Certain aspects of a proxy widget are coordinated through the action.
These include sensitivity and visibility, corresponding to the sensitive
and visible properties. By default, aesthetic properties such as the label
and stock-id are also inherited.

Often, the commands in an application have a natural grouping. It can
be convenient to coordinate the sensitivity and visibility of entire groups
of actions. GtkActionGroup represents a group of actions. By convention,
keyboard accelerators are organized by group, and the accelerator for an
action is usually specified upon insertion:

group <- gtkActionGroup ()
group$addActionWithAccel (action , "<control>O")

In addition to the properties already introduced, an action may have a
shorter label for display in a toolbar (short_label), and hints for when to
display its label (is_important) and image (always_show_image).

There is a special type of action that has a toggled state: GtkToggle-
Action. The active property represents the toggle. A further extension
is GtkRadioAction, where the toggled state is shared across a list of ra-
dio actions, via the group property. Proxy widgets represent toggle and
radio actions with controls resembling checkboxes and radio buttons, re-
spectively. Here, we create a toggle action for full-screen mode:

full_screen_act <-

206

10.2. Menus

gtkToggleAction ("fullscreen" , "Full screen" ,
"Toggle full screen" ,
stock . id = "gtk-fullscreen")

gSignalConnect (full_screen_act , "toggled" , function (action) {
if (full_screen_action [’active’])

window$fullscreen ()
else

window$unfullscreen ()
})

We connect to the toggled signal to respond to a change in the action
state.

10.2 Menus

A menu is a compact, hierarchically organized collection of buttons, each of
which may proxy an action. Menus listing window-level actions are usually
contained within a menu bar at the top of the window or screen. Menus
with options specific to a particular GUI element may “pop up” when
the user interacts with the element, such as by clicking the right mouse
button. Menu bars and pop-up menus can be constructed by appending
each menu item and submenu separately, as illustrated below. For menus
with more than a few items, we recommend the strategies described in
Section 10.5.

Menu bars

We will first demonstrate the menu bar, leaving the pop-up menu for later.
Figure 10.1 shows a realization. The first step is to construct the menu bar
itself:

menubar <- gtkMenuBar ()

A menu bar is a special type of container called a menu shell. An
instance of GtkMenuShell contains one or more menu items. GtkMenuItem
is an implementation of GtkActivatable, so each menu item may proxy
an action. Usually, a menu bar consists of multiple instances of the other
type of menu shell: the menu, GtkMenu. Here, we create a menu object for
our “File” menu:

file_menu <- gtkMenu ()

As a menu is not itself a menu item, we first must embed the menu into
a menu item, which is labeled with the menu title:

file_item <- gtkMenuItemNewWithMnemonic (label = "_File")
file_item$setSubmenu (file_menu)

207

10. RGtk2: Application Windows

The underscore in the label indicates the key associated with the mnemonic
for use when navigating the menu with a keyboard. Finally, we append
the item containing the file menu to the menu bar:

menubar$append (file_item)

In addition to append, it is also possible to prepend and insert menu
items into a menu shell. As with any container, we can remove a child
menu item, although the convention is to desensitize an item, through the
sensitive property, when it is not currently relevant.

Next, we populate our file menu with menu items that perform some
command. For example, we may desire an open item:

open_item <- gtkMenuItemNewWithMnemonic ("_Open")

This item does not have an associated GtkAction, so we need to imple-
ment its activate signal directly:

gSignalConnect (open_item , "activate" , function (item) {
file . show (file . choose ())

})

The item is now ready to be added to the file menu:

file_menu$append (open_item)

It is recommended, however, that we create menu items that proxy an
action. This will facilitate, for example, adding an equivalent toolbar item
later. We demonstrate with a “Save” action:

save_action <-
gtkAction ("save" , "Save" , "Save object" , "gtk-save")

Then the appropriate menu item is generated from the action and added
to the file menu:

save_item <- save_action$createMenuItem ()
file_menu$append (save_item)

A simple way to organize menu items, besides grouping into menus,
is to insert separators between logical groups of items. Here, we insert a
separator item, rendered as a line, to group the open and save commands
apart from the rest of the menu:

file_menu$append (gtkSeparatorMenuItem ())

Toggle menu items, i.e., a label next to a checkbox, are also supported.
A toggle action will create one implicitly:

auto_save_action <- gtkToggleAction ("autosave" , "Autosave" ,
"Enable autosave")

auto_save_item <- auto_save_action$createMenuItem ()
file_menu$append (auto_save_item)

208

10.2. Menus

Finally, we add our menu bar to the top of a window:

main_mindow <- gtkWindow ()
vbox <- gtkVBox ()
main_mindow$add (vbox)
vbox$packStart (menubar , FALSE , FALSE)

Pop-up menus

Example 10.1: Pop-up menus
To illustrate pop-up menus, we construct one and display it in response to
a mouse click. We start with a gtkMenu instance, to which we add some
items:

popup <- gtkMenu () # t o p l e v e l
popup$append (gtkMenuItem ("cut"))
popup$append (gtkMenuItem ("copy"))
popup$append (gtkSeparatorMenuItem ())
popup$append (gtkMenuItem ("paste"))

Let us assume that we have a button that will pop up a menu when
clicked with the third (right) mouse button:

button <- gtkButton ("Click me with right mouse button")
window <- gtkWindow () ; window$setTitle ("Popup menu example")
window$add (button)

This menu will be shown by calling gtkMenuPopup in response to the
button-press-event signal on the button:

gSignalConnect (button , "button-press-event" ,
f = function (button , event , menu) {

if (event$getButton () == 3 ||
(event$getButton () == 1 && # a mac
event$getState () == GdkModifierType [’control-mask’]))

gtkMenuPopup (menu ,
button = event$getButton () ,
activate . time = event$getTime ())

return (FALSE)
} , data = popup)

The gtkMenuPopup function is called with the menu, some optional argu-
ments for placement, and some values describing the event: the mouse
button and time. The event values can be retrieved from the second argu-
ment of the callback (a GdkEvent).

The above will pop up a menu, but until we bind a callback to the
activate signal on each item, nothing will happen when a menu item is
selected. Below we supply a stub for sake of illustration:

209

10. RGtk2: Application Windows

sapply (popup$getChildren () , function (child) {
if (!inherits (child , "GtkSeparatorMenuItem")) # s k i p t h e s e

gSignalConnect (child , "activate" ,
f = function (child , data) message ("replace me"))

})

We iterate over the children, avoiding the separator.

10.3 Toolbars

Toolbars are like menu bars in that they are containers for activatable items,
but toolbars are not hierarchical. Also, their items are usually visible for
the lifetime of the application, not upon user interaction. Thus, toolbars
are not appropriate for storing a large number of items, only those that
are activated most often.

We begin by constructing an instance of GtkToolbar:

toolbar <- gtkToolbar ()

In analogous fashion to the menu bar, toolbars are containers for tool
items. Technically, an instance of GtkToolItem could contain any type of
widget, yet toolbars typically represent actions with buttons. The GtkTool-
Button widget implements this common case. Here, we create a tool button
for opening a file:

open_button <- gtkToolButton (stock . id = "gtk-open")

Tool buttons have a number of properties, including label and several
for icons. Above, we specify a stock identifier, for which there is a prede-
fined translated label and theme-specific icon. As with any other container,
the button can be added to the toolbar with the add method:

toolbar$add (open_button)

This appends the open button to the end of the toolbar. To insert into
a specific position, we would call the insert method.

Usually, any application with a toolbar also has a menu bar, in which
case many actions are shared between the two containers. Thus, it is of-
ten beneficial to construct a tool button directly from its corresponding
action:

save_button <- save_action$createToolItem ()
toolbar$add (save_button)

A tool button is created from the saveAction object of the previous section.
Like menus, related buttons may be grouped using separators:

toolbar$add (gtkSeparatorToolItem ())

Any toggle action will create a toggle tool button as its proxy:

210

10.3. Toolbars

full_screen_button <- full_screen_act$createToolItem ()
toolbar$add (full_screen_button)

A GtkToggleToolButton embeds a GtkToggleButton, which is de-
pressed whenever its active property is TRUE.

As mentioned above, toolbars, unlike menus, are usually visible for the
duration of the application. This is desirable, as the actions in a toolbar
are among those most commonly performed. However, care must be taken
to conserve screen space. The toolbar style controls whether the tool items
display their icons, their text, or both. The possible settings are in the
GtkToolbarStyle enumeration. The default value is specified by the global
GTK+ style (theme). Here, we override the default to display only images:

toolbar$setStyle ("icon")

For canonical actions like open and save, icons are usually sufficient.
Some actions, however, may require textual explanation. The is-important
property on the action will request display of the label in a particular tool
item, in addition to the icon:

full_screen_act ["is-important"] <- TRUE

Normally, tool items are tightly packed against the left side of the
toolbar. Sometimes, a more complex layout is desired. For example, we
may wish to place a help item against the right side. We can achieve this
with an invisible item that expands against its siblings:

expander <- gtkSeparatorToolItem ()
expander ["draw"] <- FALSE
toolbar$add (expander)
toolbar$childSet (expander , expand = TRUE)

The dummy item is a separator with its draw property set to FALSE and
its expand child property set to TRUE. Now we can add the help item:

help_action <- gtkAction ("help" ,"Help" ,"Get help" ,"gtk-help")
toolbar$add (help_action$createToolItem ())

It is now our responsibility to place the toolbar at the top of the win-
dow, under the menu created in the previous section:

vbox$packStart (toolbar , FALSE , FALSE)

Example 10.2: Color-menu tool button
Space in a toolbar is limited, and sometimes there are several actions that
differ only by a single parameter. A good example is the color tool button
found in many word processors. Including a button for every color in the
palette would consume an excessive amount of space. A common idiom is
to embed a drop-down menu next to the button, much like a combo box,
for specifying the color, or, in general, any discrete parameter.

211

10. RGtk2: Application Windows

We demonstrate how one might construct a color-selecting tool button.
Our menu will list the colors in the R palette. The associated button is
a GtkColorButton. When the user clicks on the button, a more complex
color selection dialog will appear, allowing total customization.

gdk_color <- gdkColorParse (palette () [1]) $color
color_button <- gtkColorButton (gdk_color)

The gtkColorButton constructor requires the initial color to be specified
as a GdkColor, which we parse from the R color name.

The next step is to build the menu. Each menu item will display a
20x20 rectangle, filled with the color, next to the color name:

colorMenuItem <- function (color) {
drawing_area <- gtkDrawingArea ()
drawing_area$setSizeRequest (2 0 , 20)
drawing_area$modifyBg ("normal" , color)
image_item <- gtkImageMenuItem (color)
image_item$setImage (drawing_area)
image_item

}
color_items <- sapply (palette () , colorMenuItem)
color_menu <- gtkMenu ()
for (item in color_items)

color_menu$append (item)

An important realization is that the image in a GtkImageMenuItem may
be any widget that presumably draws an icon; it need not be an actual
GtkImage. In this case, we use a drawing area with its background set
to the color. When an item is selected, its color will be set on the color
button:

colorMenuItemActivated <- function (item) {
color <- gdkColorParse (item$getLabel ()) $color
color_button$setColor (color)

}
sapply (color_items , gSignalConnect , "activate" ,

colorMenuItemActivated)

Finally, we place the color button and menu together in the menu tool
button:

menu_button <- gtkMenuToolButton (color_button , "Color")
menu_button$setMenu (color_menu)
toolbar$add (menu_button)

Some applications may offer a large number of actions, where there is
no clear subset of actions that are more commonly performed than the

212

10.4. Status reporting

rest. It would be impractical to place a tool item for each action in a static
toolbar. GTK+ provides a tool palette widget, which leaves the configuration
of a multi-row toolbar to the user, as one solution. The tool items are or-
ganized into collapsible groups, and the grouping is customizable through
drag-and-drop.

GtkToolPalette is a container of GtkToolItemGroup widgets, each of
which is a container of tool items and implements GtkToolShell, like
GtkToolbar. We begin our brief example by creating two groups of tool
items:

file_group <- gtkToolItemGroup ("File")
file_group$add (gtkToolButton (stock . id = "gtk-open"))
file_group$add (save_action$createToolItem ())
help_group <- gtkToolItemGroup ("Help")
help_group$add (help_action$createToolItem ())

The groups are then added to an instance of GtkToolPalette:

palette <- gtkToolPalette ()
palette$add (file_group)
palette$add (help_group)

Finally, we can programmatically collapse a group:

help_group$setCollapsed (TRUE)

10.4 Status reporting

Status bars

In GTK+, a status bar is constructed through the gtkStatusbar function.
Status bars must be placed at the bottom of top-level windows. A status
bar keeps various stacks of messages for display. Stacks and messages
are associated with a context ID, which represents a message source. It
is required to register each context ID against a string description. The
visibility depends on the ordering of the global stack, while the context ID
allows the status bar to maintain a separate message stack for each part of
an application, without worry of interference between components.

To display a message, we push it onto the top of the global stack,
as well as a context stack, through the push method, which expects an
integer value for context.id and a message. To pop a message from a
context stack, pass the context ID to the pop method. If the message was
on top of the global stack, the next message down becomes visible.

Below, we create a status bar, register a context for I/O-related mes-
sages, display the message, and then pop it to restore the original state:

statusbar <- gtkStatusbar ()

213

10. RGtk2: Application Windows

io_id <- statusbar$getContextId ("I/O")
statusbar$push (io_id , "Incomplete final line")
. . .
statusbar$pop (io_id)

Info bars

An info bar is similar in purpose to a message dialog, but it is intended
to be less obtrusive. Typically, an info bar raises from the bottom of the
window, displaying a message, possibly with response buttons. It then
fades away after a number of seconds. The focus is not affected, nor is the
user interrupted. GTK+ provides the GtkInfoBar class for this purpose.
The use is similar to a dialog: we place widgets into a content area and
listen to the response signal.

We create our info bar:

info_bar <- gtkInfoBar (show=FALSE)
info_bar$setNoShowAll (TRUE)

We call setNoShowAll to prevent the widget from being shown when
showAll is called on the parent. Normally, an info bar is not shown until
it has a message.

We will emit a warning message by adding a simple label with the text
and specifying the message type as warning, from GtkMessageType:

label <- gtkLabel ("Warning, Warning")
info_bar$setMessageType ("warning")
info_bar$getContentArea () $add (label)

A button to allow the user to hide the bar can be added as follows:

info_bar$addButton (button . text = "gtk-ok" ,
response . id = GtkResponseType [’ok’])

This is similar to the dialog API: the appearance of the “Ok” button is
defined by the stock ID gtk-ok, and the response ID will be passed to the
response signal when the button is clicked. Our handler simply closes the
bar:

gSignalConnect (info_bar , "response" ,
function (info_bar , resp . id) info_bar$hide ())

Finally, we add the info bar to our main window and show it:

vbox$packStart (info_bar , expand = FALSE)
info_bar$show ()

214

10.5. Managing a complex user interface

10.5 Managing a complex user interface

Complex applications implement a large number of actions and operate
in a number of different modes. Within a given mode, only a subset of
actions are applicable. For example, a word processor may have an editing
mode and a print preview mode. GTK+ provides a user interface manager,
GtkUIManager, to manage the layout of the toolbars and menu bars across
multiple user-interface modes. We illustrate through an example.

The steps required to use GTK+’s UI manager are:

1. construct the UI manager,

2. specify in XML the layout of the menu bars and toolbars,

3. define the actions in groups,

4. connect the action group to the UI manager,

5. set up an accelerator group for keyboard shortcuts, and finally

6. display the widgets.

Example 10.3: UI manager example
In this example, we show how to use a UI manager to create the menu and
toolbars for a data-frame editor, similar to, but with enhanced functionality,
as produced on some platforms by the data.entry function.

Our menu bar and toolbar layout is expressed in XML according to a
schema specified by the UI manager framework. The XML can be stored
in a file or an R character vector. The structure of the file can be grasped
quickly from this example:

ui . xml <- readLines (out <- textConnection (’
<ui>

<menubar name="menubar">
<menu name="FileMenu" action="File">

<menuitem action="Save"/>
<menuitem action="SaveAs" />
<menu name="Export" action="Export">

<menuitem action="ExportToCSV" />
<menuitem action="ExportToSaveFile" />

</menu>
<separator />
<menuitem name="FileQuit" action="CloseWindow" />

</menu>
<menu action="Edit">

<menuitem name="EditUndo" action="Undo" />
<menuitem name="EditRedo" action="Redo" />

215

10. RGtk2: Application Windows

Figure 10.2: An instance of an editable data frame with menu and tool
bars specified using an instance of GtkUIManager. This example,
implements the command pattern to provide simple undo and redo
functionality.

<menuitem action="ChangeColumnName" />
</menu>
<menu action="Tools">

<menuitem action="Filter" />
<menuitem action="Sort" />

</menu>
</menubar>
<toolbar name="toolbar">

<toolitem action="Save"/>
<toolitem action="SaveAs"/>
<separator />
<toolitem action="CloseWindow"/>

</toolbar>
</ui>’) , warn=FALSE)
close (out)

We used indenting to show the nesting of the menus. For menus we see
the use of menu bars, menus and menu items. The menu and menu items
have a corresponding action associated with them, which can provide a
callback.

If uimanager is our GtkUIManager instance, then we can add this
through the command:

id <- uimanager$addUiFromString (ui . xml)

216

10.5. Managing a complex user interface

Alternately, we could load the code from a file. The return value is an ID
that can be used to unmerge this part of the UI. The ability to merge and
unmerge parts of the UI is one main attraction for using this framework,
although we do not illustrate that here.

To define the actions, we can use lists. Each item contains six pieces of
information: a name (which we use in fun to call the appropriate method),
a stock-id, a label, a keyboard accelerator, a tooltip, and finally a callback
for when the action is invoked. This list defines the file menu:

file_list <-
list (## name , ID , l a b e l , a c c e l e r a t o r , t o o l t i p , c a l l b a c k

list ("File" , NULL , "_File" , NULL , NULL , NULL) ,
list ("Save" , "gtk-save" , "Save" , "<ctrl>S" ,

"Save data to variable" , fun) ,
list ("SaveAs" , "gtk-save" , "Save as..." , NULL ,

"Save data to variable" , fun) ,
list ("Export" , NULL , "Export" , NULL , NULL , NULL) ,
list ("ExportToCSV" , "gtk-export" , "Export to CSV" ,

NULL , "Save data to CSV file" , fun) ,
list ("ExportToSaveFile" , "gtk-export" ,

"Export to save file" , NULL ,
"Save data to save() file" , fun) ,

list ("CloseWindow" , "gtk-close" , "Close window" ,
"<ctrl>W" , "Close current window" , fun)

)

We can add these items to an action group, along the lines of

action_group <- gtkActionGroup ("FileGroup")
action_group$addActions (file_list)

We can then insert the action group into the UI manager:

uimanager$insertActionGroup (action_group , 0)

The position (0) is used to determine which action will be called, when
there is more than one with the same name.

We now place the UI manager controls into the GUI. The uimanager in-
stance creates widgets that can be retrieved through its getWidget method.
The following code uses this to sketch out the layout of the GUI:

window <- gtkWindow (show = FALSE)
##
vbox <- gtkVBox ()
window$add (vbox)
##
menubar <- uimanager$getWidget ("/menubar")
vbox$packStart (menubar , FALSE)
toolbar <- uimanager$getWidget ("/toolbar")
vbox$packStart (toolbar , FALSE)

217

10. RGtk2: Application Windows

. . .

The menubar and toolbar widgets are referred to by their path, which
comes from the names specified in the XML description separated by "/".
So, in the definition above, the following lines define the path "/menubar",
where <ui> is always the root element, and may be omitted from the path:

<ui>
<menubar name="menubar">

...

Finally, to connect the UI manager to the window, we add the keyboard
accelerator group:

window$addAccelGroup (uimanager$getAccelGroup ())

Figure 10.2 shows an illustration of the finished application. The full
details are found in the code in our accompanying package ProgGUIinR.

Command pattern Now, we discuss how the command pattern is imple-
mented to provide a simple undo and redo feature to our editing. Ac-
cording to Head First Design Patterns[7], the command pattern is used to
encapsulate a request (method call) as an object. A basic command object
has just one method, execute. Any needed parameters are stored in the
object as properties. The command pattern has GUI-related applications be-
yond the undo and redo stack, including the action objects (i.e., instances
of GtkAction) that are managed by GtkUIManager.

For our implementation of the undo/redo stack, we use a reference
class with fields:

Command <- setRefClass ("Command" ,
fields = list (

receiver="ANY" ,
meth="character" ,
params="list" ,
old_params="list"
))

The receiver property stores the object referred to in the method call.
For a simple function call, this could be the environment enclosing the
function. The meth property is the name of the method, and params is a
list of parameters. With these we define the main methods:

Command$methods (
initialize = function (receiver , meth , . . .) {

[7] Eric T. Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head First Design
Patterns. O’Reilly Media, Inc., October 25, 2004.

218

10.5. Managing a complex user interface

. params <- list (. . .)
initFields (receiver = receiver , meth = meth ,

params = . params , old_params = . params)
callSuper ()

} ,
execute = function (params) {

do . call (call_meth (meth , receiver) , params)
})

Notice we pass in the arguments to our execute method, rather than
use those in the property params. This allows us to implement the do and
undo methods in a similar manner:

Command$methods (
do = function () {

out <- execute (params)
old_params$value <<- out

} ,
undo = function () execute (old_params)
)

This assumes the method executed can return a value that can be used to
reverse the call. If a method call is not so straightforward to reverse, we
need only subclass the Command call and provide a new undo method.

A simple illustration might be:

x <- 1
set_x <- function (value) {

old <- x
x <<- value
old

}
cmd <- Command$new (. GlobalEnv , "set_x" , value = 2)
cmd$do () ; x

[1] 2

cmd$undo () ;

x

[1] 1

In our example, we create a stack of commands to keep track of what
was done. This stack has methods add, undo, and redo, each calling the do
or undo method of the appropriate command in the stack.

The first command we add to the stack is the setting of a column name
on a data frame:

219

10. RGtk2: Application Windows

cmd <- Command$new (df_model , "set_col_name" , j=j , value=value)
command_stack$add (cmd)

To explain, df_model is an instance of a yet-to-be-defined reference class
defining a data model for the data frame being edited, and j and value are
determined by a dialog called before the command is created. The point
is, the method call for the df_model object is encapsulated along with the
needed parameters (a column number and new name) and then added to
the command stack. The add method calls the do method of the command
to invoke the changing of the name.

The data frame model (defined in our reference class DfModel) is a
wrapper around an RGtkDataFrame object that holds the data. The method
call above is implemented by:

DfModel$methods (
get_col_name = function (j) varnames [j , 1] ,
get_col_names = function () varnames [, 1] ,
set_col_name = function (j , value) {

"Set name, return old"
old_col_name <- get_col_name (j)
varnames [j , 1] <<- value
old_col_name

})

We return the old value, as that is required by the implementation of
the do method for the commands. An instance of RGtkDataFrame stores the
variable (column) names, hence the double index. This allows us to listen
for changes through the row-changed signal on the model. The details, and
more, are in the accompanying package.

220

11

Extending GObject Classes

GTK+, as well as several of its dependencies, with the notable exception of
Cairo, is based on the GObject library for object-oriented programming in
C. GObject forms the basis of many other open-source projects, including
the GNOME and XFCE desktops and the GStreamer multimedia framework.

Given the broad use of signals in the GTK+ API, it is very rarely nec-
essary to extend a widget class when developing a typical GUI. However,
it is generally good practice to encapsulate the behavior of a widget in a
formal class. Although there are several such formalisms in R, RGtk2 pro-
vides one that is congruent with the rest of GTK+. It interfaces with parts
of GObject and permits the R programmer to create new GObject classes
in R. A subclass can override certain methods inherited from its parent
and define new methods, properties, and signals. If a method is declared
by a C class, it can be overridden only if it is a so-called virtual method,
and there is no documentation as to which methods are virtual. There is a
loose convention that every signal has a corresponding virtual method. The
ultimate resource is the C header files. A bug in a method override could
very easily crash R, so use of this feature takes some commitment from
the programmer. Any method declared by an R class may be overridden
by an R subclass.

Our example will be a GUI that displays a scatterplot along with a
slider for adjusting the alpha level of the points (Figure 11.1). Usually,
a slider operates in linear fashion. When there are a large number of
points, on the order of tens of thousands or more, changing the alpha
level does not have a strong visual effect until it approaches its lower limit.
We desire greater control in the lower part of the alpha scale, without
limiting the range of the slider. To achieve this, we need to perform a
nonlinear transformation from the slider value to the alpha of the plot and
reflect that transformation in the label on the slider. One solution is to
connect to the format-value signal to override the text in the label. We
present an alternative that involves extending GtkHScale and overriding its
format_value virtual method.

221

11. Extending GObject Classes

Figure 11.1: An interface using a custom slider to adjust alpha levels in a
nonlinear manner.

A class is defined by calling gClass, to which is passed the class name,
the name of the parent class and a number of list arguments that define
the properties, signals and methods of the class. For the sake of cleanliness,
everything is defined as part of the gClass call:

tform_scale_type <-
gClass ("RTransformedHScale" , "GtkHScale" ,

. props = list (
gParamSpec (type = "R" , name = "expr" , nick = "e" ,

blurb = "Transformation of scale value" ,
default . value = expression (x))

) ,
GtkScale = list (

format_value = function (self , x)
as . character (self$transformValue (x))

) ,
. public = list (

getExpr = function (self) self ["expr"] ,
getTransformedValue = function (self)

self$transformValue (self$value)
) ,

. private = list (
transformValue = function (self , x)

eval (self$expr , list (x = x))

222

11. Extending GObject Classes

)
)

The class definition for RTransformedHScale starts with a property for
the R expression that transforms the value from the slider to the alpha
level. A property is defined by a GParamSpec structure that specifies a
name, nickname, descriptive blurb, value type, and other options. There
are subclasses of GParamSpec for particular types that permit specification
of further constraints. For example, GParamSpecInt is specific to integers
and can be configured to restrict its valid range of integer values between a
minimum and maximum. Many GParamSpec subclasses also permit default
values. The type argument may refer to any C type by name. The names of
R types, like “integer” and “character”, are mapped to the corresponding
scalar C type, if available. An “R” property, like our expression, stores any
native R value. The actual R type, as returned by typeof, may be specified
as the s.type argument; otherwise, it is taken from the default value.

We turn our attention to the methods in the class definition. The class
overrides the format_value virtual from GtkScale and defines two public
methods, getExpr and getTransformedValue, for retrieving the transfor-
mation expression and the transformed value, respectively. There is one
private method, transformValue, that is a utility for evaluating the expres-
sion on the current value.

Methods are implemented with R functions that are grouped into lists.
The names of the list identify the methods. An override is placed into the
list corresponding to the class in which the original method is declared.
For new methods, the division is by the access level: public, protected,
or private. Public members can be accessed by any code, while protected
members are restricted to methods belonging to the same class or a sub-
class. Access to private members is the most restricted, as they are available
only to methods in the same class.

A function implementing a virtual method may delegate to the method
that it overrides. This is achieved by calling the parentHandler function
and passing it the name of the method and the arguments to forward to
the method. This is similar to the super function in qtbase. For example,
in the override of format_value in the RGtkTransformedHScale class, we
could call parentHandler("format_value", self, x) to delegate to the
implementation of format_value in GtkScale.

If a non-function, like a vector, is placed in the .public, .protected, or
.private list, it represents a field, which is initialized to the given value.

Two elements of the class definition that are not in the example above
are the list of signal definitions and the initialization function. The signal
definition list is passed as a parameter named .signals and contains a list
for each signal. Each list includes the name, return type, and parameter
types of the signal. The types can be specified in the same format as

223

11. Extending GObject Classes

used for property definitions. The initialization function, passed as the
.initialize parameter, is invoked whenever an instance of the class is
created, before any properties are set. It takes the newly created instance
of the class as its only parameter.

The next step in our example is to create an instance of RGtkTrans-
formedHScale and to register a handler on the value-changed signal that
will draw the plot using the transformed value as the alpha setting:

adj <- gtkAdjustment (0 . 5 , 0 . 1 5 , 1 . 0 0 , 0 . 0 5 , 0 . 5 , 0)
s <- gObject (tform_scale_type , adjustment = adj ,

expr = expression (x^ 3))
gSignalConnect (s , "value_changed" , function (scale) {

plot (ma_data , col = rgb (0 , 0 , 0 , scale$getTransformedValue ()) ,
xlab = "Replicate 1" , ylab = "Replicate 2" ,
main = "Expression levels of WT at time 0" , pch = 19)

})

Instances of any GObject class can be created using the gObject func-
tion. The value of the expr property is set to the R expression x3 when the
object is created. The signal handler now calls the new getTransformed-
Value method, instead of getValue as in the original version. The ma_data
object is a matrix of points that is meant to resemble expression values
from two replicates of a microarray experiment.

We complete the example by placing the slider and a graphics device
in a window:

win <- gtkWindow (show = FALSE)
da <- gtkDrawingArea ()
vbox <- gtkVBox ()
vbox$packStart (da)
vbox$packStart (s , FALSE)
win$add (vbox)
win$setDefaultSize (4 0 0 , 400)
#
require (cairoDevice)
asCairoDevice (da)
#
win$showAll ()
par (pty = "s")
s$setValue (0 . 7)

224

Part III

The qtbase Package

225

This page intentionally left blankThis page intentionally left blank

12

Qt: Overview

12.1 The Qt library

Qt is an open-source, cross-platform application framework that is perhaps
best known for its widget toolkit. The features of Qt are divided into about
a dozen modules. We highlight some of the more important and interesting
ones:

Core Basic utilities, collections, threads, I/O, ...

Gui Widgets, models, etc., for graphical user interfaces

OpenGL Convenience layer (e.g., 2-D drawing API) over OpenGL

Webkit Embeddable HTML renderer (shared with Safari, Chrome)

Other modules include functionality for networking, XML, SQL
databases, SVG, and multimedia. However, R packages already provide
many of those features.

The history of Qt begins with Haavard Nord and Eirik Chambe-Eng in
1991 and follows with the Trolltech company until 2008. It is now owned by
Nokia, a major cell-phone manufacturer. While it was originally unavailable
as open source on every platform, version 4 was released universally under
the GPL. With the release of Qt 4.5, Nokia additionally placed Qt under
the LGPL, so it is available for use in proprietary software as well. Popular
software developed with Qt includes the communication application Skype
and the KDE desktop for Linux. The desktop version of RStudio uses
the QWebView widget to present a cross-platform web application on the
desktop. This book assumes version Qt 4.7.3 and should remain compatible
for the remainder of the 4.x series.

Qt is developed in C++ with extensions that require a special prepro-
cessor called the Meta Object Compiler (MOC). The MOC allows for convenient
syntax in the definition of signals, slots (signal handlers), and properties,
which behave very similarly to those of GTK+.

227

12. Qt: Overview

There are many languages with bindings to Qt, and R is one such lan-
guage. The qtbase package interfaces with every module of the library. As
its name suggests, qtbase forms the base for a number of R packages that
provide high-level special-purpose interfaces to Qt. The qtpaint package
extends the QGraphicsView canvas to better support interactive statistical
graphics. Features include: a layered buffering strategy, efficient spatial
queries for mapping user actions to the data, and an OpenGL renderer
optimized for statistical plots. An interface resembling that of the lattice
package is provided for qtpaint by the mosaiq package. The cranvas
package builds on qtpaint to provide a collection of high-level interactive
plots in the conceptual vein of GGobi. A number of general utilities are
implemented by qtutils, including an object browser widget, an R console
widget, and a conventional R graphics device based on QGraphicsView.

While qtbase is not yet as mature as tcltk and RGtk2, we include it
in this book, as Qt compares favorably to GTK+ in terms of GUI features
and excels in several other areas, including its fast graphics canvas and
integration of the WebKit web browser.1 In addition, Qt, as a commercially
supported package, has thorough documentation of its API[2], including
many C++ examples. However, the complexity of C++ and Qt may present
some challenges to the R user. In particular, the developer should have a
strong grounding in object-oriented programming and have a basic under-
standing of memory management.

The qtbase package is available from CRAN. The package depends on
the Qt framework, available as a binary install from http://qt.nokia.
com/. Before qtbase is loaded, an automated attempt to install the frame-
work is made, if it is not already present.

12.2 An introductory example

As a synopsis for how to program a GUI using qtbase, we present a
simple dialog that allows the user to input a date. A detailed introduction
to these concepts will follow this example.

The package may be loaded like any other R package:

library (qtbase)

Constructors As with all other toolkits, Qt widgets are objects, and the
objects are created with constructors. For our GUI we have four basic
widgets: a widget used as a container to hold the others, a label, a single-
line edit area, and a button.

1There is a GTK+ WebKit port, but it is not included with GTK+ itself.

[2] Nokia Corporation. http://http://doc.qt.nokia.com/.

228

12.2. An introductory example

Figure 12.1: Screenshot of our sample GUI to collect a date from the user.

window <- Qt$QWidget ()
label <- Qt$QLabel ("Date:")
edit <- Qt$QLineEdit ()
button <- Qt$QPushButton ("Ok")

The constructors are found not in the global environment, but rather
in the Qt environment, an object exported from the qtbase namespace. As
such, the $ lookup operator is used.

Widgets in Qt have various properties that specify the state of the
object. For example, the windowTitle property controls the title of a top-
level widget:

window$windowTitle <- "An example"

Qt objects are represented as extended R environments, and every prop-
erty is a member of the environment. The $ function called above is simply
that for environments.

Method calls tell an object to perform some behavior. Like properties,
methods are accessible from the instance environment. For example, the
QLineEdit widget supports an input mask that constrains user input to a
particular syntax. For a date, we may want the value to be in the form
“year-month-date.” This would be specified with "0000-00-00", as seen by
consulting the help page for QLineEdit. To set an input mask we have:

edit$setInputMask ("0000-00-00")

Layout managers Qt uses separate layout manager objects to organize
widgets. This is similar to Java/Swing and tcltk, but not RGtk2. Layout
managers will be discussed more thoroughly in Chapter 13, but in this
example we will use a grid layout to organize our widgets. The placement
of child widgets into the grid is done through the addWidget method
and requires a specification, by index and span, of the cells the child will
occupy:

layout <- Qt$QGridLayout ()

229

12. Qt: Overview

layout$addWidget (label , row = 0 , column = 0 ,
rowSpan = 1 , columnSpan = 1)

layout$addWidget (edit , 0 , 1 , 1 , 1)
layout$addWidget (button , 1 , 1 , 1 , 1)

We need to attach our layout to the widget window:

window$setLayout (layout)

Finally, to view our GUI (Figure 12.1), we must call its show method.

window$show ()

Callbacks As with other GUI toolkits, interactivity is implemented by
callbacks connected to particular signals. To react to the clicking of the
button, the programmer attaches a handler to the clicked signal using the
qconnect function. The function requires the object, the signal name, and
the handler. Here, we print the value stored in the “Date” field.

handler <- function () print (edit$text)
qconnect (button , "clicked" , handler)

We will discuss callbacks more completely in Section 12.6.

Object-oriented support QLineEdit can validate text input, and we would
like to validate the entered date. There are a few built-in validators. For
this purpose the regular expression validator could be used, but it would
be difficult to write a sufficiently robust expression. Instead we attempt to
coerce the string value to a date via R’s as.Date function with a format of
"%Y-%m-%d". In GTK+, validation would be implemented by a signal han-
dler or other callback. However, as C++ is object-oriented, Qt expects the
programmer to derive a new class from QValidator and pass an instance
to the setValidator method on QLineEdit.

It is possible to define R subclasses of C++ classes with qtbase. More
details on working with classes and methods are provided in Section 12.8.
For this task, we need to extend QValidator and override its validate
virtual method. The qsetClass function defines a new class:

qsetClass ("DateValidator" , Qt$QValidator ,
function (parent = NULL) {

super (parent)
})

To override validate, we call qsetMethod:

qsetMethod ("validate" , DateValidator , function (input , pos) {
if (!grepl ("^[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}$" , input))

return (Qt$QValidator$Intermediate)
else if (is . na (as . Date (input , format="%Y-%m-%d")))

230

12.3. Classes and objects

return (Qt$QValidator$Invalid)
else

return (Qt$QValidator$Acceptable)
})

The signature of the validate method is a string containing the input
and an index indicating where the cursor is in the text box. The return
value indicates a state of “Acceptable,” “Invalid,” or, if neither can be
determined, “Intermediate.” These values are listed in an enumeration in
the Qt$QValidator class (cf. Section 12.7 for more on enumerations).

The class object, which doubles as the constructor, is defined in the
current top-level environment as a side effect of qsetMethod. We call it to
construct an instance, which is passed to the edit widget:

validator <- DateValidator ()
edit$setValidator (validator)

12.3 Classes and objects

The qtbase package exports very few objects. The central one is an envi-
ronment, Qt, that represents the Qt library in R.2 The components of this
environment are RQtClass objects that represent an actual C++ class or
namespace. For example, the QWidget class is represented by Qt$QWidget:

Qt$QWidget

Class ’QWidget ’ with 315 public methods

An RQtClass object contains methods in the class scope (static methods
in C++), enumerations defined by the class, and additional RQtClass ob-
jects representing nested classes or namespaces. Here we list some of the
components of QWidget:

head (names (Qt$QWidget) , n = 3)

[1] "connect" "DrawChildren" "DrawWindowBackground"

then access one of the enumeration values:

Qt$QWidget$DrawChildren

Enum value: DrawChildren (2)

Most importantly, however, an instance of RQtClass is in fact an R function
object, and serves as the constructor of instances of the class. For example,
we could construct an instance of QWidget with:

2 The Qt object is an instance of RQtLibrary. The qtbase package provides infrastructure
for binding any conventional C++ library, even those independent of Qt. Third-party packages
can define their own RQtLibrary object for some other library.

231

12. Qt: Overview

widget <- Qt$QWidget ()

The widget object has a class structure that reflects the class inheritance
structure of Qt:

class (widget)

[1] "QWidget" "QObject" "QPaintDevice"
[4] "UserDefinedDatabase" "environment" "RQtObject"

The base class, RQtObject, is an environment containing the properties and
methods of the instance. For widget, we list the first few using ls:

head (ls (widget) , n=3)

[1] "mapFromParent" "setContextMenuPolicy" "showMinimized"

Properties and methods are accessed from the environment in the usual
manner. The most convenient extractor is the $ operator, but [[and get
will also work. (With the $ operator R’s completion mechanism works
(?rcompgen).) For example, a QWidget has a windowTitle property which
is used when the widget draws itself with a window:

widget$windowTitle # i n i t i a l l y NULL

NULL

widget$windowTitle <- "a new title" # s e t p r o p e r t y
widget$windowTitle

[1] "a new title"

Although Qt defines methods for accessing properties, the R user will
normally invoke methods that perform some action. For example, we could
show our widget:

widget$show ()

The environment structure of the object masks the fact that the prop-
erties and methods can be defined in a parent class of the object. For
example, a button widget is provided by the QPushButton constructor, as
in

button <- Qt$QPushButton ()

QPushButton extends QWidget and thus inherits the properties like visi-
ble:

is (button , "QWidget")

[1] TRUE

232

12.4. Methods and dispatch

button$visible

[1] FALSE

It is important to realize this distinction when referencing the documen-
tation. As with GTK+, the methods are documented with the class that
declares the method.

12.4 Methods and dispatch

In C++, it is possible to have multiple methods and constructors with the
same name, but different signatures. This is called overloading. An over-
loaded method is roughly similar to an S4 generic, save the obvious differ-
ence that an S4 generic does not belong to any class. The selected overload
is that with the signature that best matches the types of the arguments.
The exact rules of overload resolution are beyond our scope.

It is particularly common to overload constructors. For example, a sim-
ple push button can be constructed in several different ways. Here again
is the invocation of the QPushButton constructor with no arguments:

button <- Qt$QPushButton ()

By convention, all classes derived from QObject, including QWidget,
provide a constructor that accepts a parent QObject. This has important
consequences that are discussed later. We demonstrate this for QPushBut-
ton:

widget <- Qt$QWidget ()
button <- Qt$QPushButton (widget)

An alternative constructor for QPushButton accepts the text for the label
on the button:

button <- Qt$QPushButton ("Button text")

Buttons can also have icons. for example,

style <- Qt$QApplication$style ()
icon <- style$standardIcon (Qt$QStyle$SP_DialogOkButton)
button <- Qt$QPushButton (icon , "Ok")

We have passed three types of objects as the first argument to
Qt$QPushButton: a QWidget, a string, and finally a QIcon. The dispatch
depends only on the type of argument, unlike the constructors in RGtk2,
which dispatches based on which arguments are specified. (In particular,
dispatch in Qt is based on position of argument, but not on names given
to arguments. We use names only for clarity in our examples.)

The function qmethods will show the methods defined for a class. It
returns a data frame with variables indicating the name, return value,

233

12. Qt: Overview

signature, and whether the method is protected and static. For example, to
learn the methods for a simple button, we would call:

method_info <- qmethods (Qt$QPushButton)
dim (method_info)

[1] 431 6

head (method_info [, 1 : 3] , n = 3)

name return signature
1 QPushButton QPushButton* QPushButton ()
2 QPushButton QPushButton* QPushButton(QWidget *)
3 QPushButton QPushButton* QPushButton(QIcon , QString)

12.5 Properties

Every QObject, which includes every widget, may declare a set of prop-
erties that represents its state. We list some of the available properties for
our button:

head (qproperties (button))

type readable writable
objectName QString TRUE TRUE
modal bool TRUE FALSE
windowModality Qt:: WindowModality TRUE TRUE
enabled bool TRUE TRUE
geometry QRect TRUE TRUE
frameGeometry QRect TRUE FALSE

As shown in the table, every property has a type and logical settings for
whether the property is readable and/or writable. Virtually every property
value can be read, and it is common for properties to be read-only. For
example, we can fully manipulate the objectName property, but our attempt
to modify the modal property fails:

button$objectName <- "My button"
button$objectName

[1] "My button"

button$modal

[1] FALSE

cat (try (button$modal <- TRUE))

234

12.6. Signals

Error in button$modal <- TRUE : Property ’modal ’ is read -only

Qt provides accessor methods for getting and setting properties. The
getter methods have the same name as the property, so they are masked
at the R level. Setter methods are available and are typically named with
the word "set" followed by the property name:

button$setObjectName ("My button")

However, it is recommended to use the replacement syntax shown in the
previous example, for the sake of symmetry.

12.6 Signals

Qt uses an architecture of signals and slots to have components commu-
nicate with each other. A component emits a signal when some event
happens, such as a user clicking on a button. Qt allows us to define a spe-
cial type of method known as a slot in another component (or the same)
that can be connected to the signal as the handler. The two components are
decoupled, as the emitter does not need to know about the receiver except
through the signal connection. In R, any function can be treated as a slot
and connected as a signal handler. This is similar to the signal handling in
RGtk2. The function qconnect establishes the connection of an R function
to a signal. For example:

button <- Qt$QPushButton ("click me")
qconnect (button , "clicked" , function () message ("ouch"))
button$show ()

Signals are defined by a class and are inherited by subclasses. Here, we
list some of the available signals for the QPushButton class:

tail (qsignals (Qt$QPushButton) , n = 5)

name signature
4 pressed pressed ()
5 released released ()
6 clicked clicked(bool)
7 clicked clicked ()
8 toggled toggled(bool)

The signal definition specifies the callback signature, given in the signa-
ture column. Like other methods, signals can be overloaded so that there
are multiple signatures for a given signal name. Signals can also have de-
fault arguments, and arguments with a default value are optional in the
signal handler. We see this for the clicked signal, where the bool (logical)
argument, indicating whether the button is checked, has a default value
of FALSE. The clicked signal is automatically overloaded with a signature
without any arguments.

235

12. Qt: Overview

The qconnect function attempts to pick the correct signature by con-
sidering the number of formal arguments in the callback. Rarely, two sig-
natures will have the same number of arguments, in which case one will
be chosen arbitrarily. To connect to a specific signature, the full signa-
ture, rather than only the name, should be passed to qconnect. For ex-
ample, there are two signatures for the clicked signal: clicked() and
clicked(bool). Even if we specify only clicked as the signal name, the
clicked(bool) signature is chosen, since our handler has a single argu-
ment. Thus, these two calls are equivalent:

qconnect (button , "clicked" , function (checked) print (checked))
qconnect (button , "clicked(bool)" ,

function (checked) print (checked))

Any object passed to the optional argument user.data is passed as the
last argument to the signal handler. The user data serves to parameterize
the callback. In particular, it can be used to pass in a reference to the
sender object itself, although we encourage the use of closures for this
purpose.

Disconnecting or blocking signals The qconnect function returns a
dummy QObject instance that provides the slot that wraps the R func-
tion. This dummy object can be used with the disconnect method on the
sender to break the signal connection:

proxy <- qconnect (button , "clicked" ,
function () message ("ouch"))

button$disconnect (proxy)

[1] TRUE

The above will permanently disconnect the signal handler. To block all of
the signals emitted by a particular QObject temporarily, call the blockSig-
nals method. The method takes a logical value indicating whether the
signals should be blocked.

Hardware events Unlike GTK+, Qt widgets generally do not emit hard-
ware events, such as a mouse-press event, via signals. Instead, a method in
the widget is invoked upon receipt of an event. The developer is expected
to extend the widget’s class and override the method to catch the event.
The apparent philosophy of Qt is that hardware events are low level and
thus should be handled by the widget, not some other instance. We will
discuss extending classes in Section 12.8.

236

12.7. Enumerations and flags

12.7 Enumerations and flags

Often, it is useful to have discrete variables with more than two states, in
which case a logical value is no longer sufficient. For example, the label
widget has a property for how its text is aligned. It supports the alignment
styles left, right, center, top, bottom, etc. These styles are enumerated by
integer values and Qt defines these by name within the relevant class or,
for global enumerations, in the Qt namespace. Here are examples of both:

QtQtAlignRight

Enum value: AlignRight (2)

Qt$QSizePolicy$Expanding

Enum value: Expanding (7)

The first is the value for right alignment from the Alignment enumeration
in the Qt namespace, while the second is from the Policy enumeration in
the QSizePolicy class.

Although these enumerations can be specified directly as integers, they
are given the class QtEnum and have the overloaded operators | and &
to combine values bitwise. This makes the most sense when the values
correspond to bit flags, as is the case for the alignment style. For example,
aligning the text in a label in the upper right can be done through:

label <- Qt$QLabel ("Our text")
label$alignment <- Qt$Qt$AlignRight | Qt$Qt$AlignTop

To check if the alignment is to the right, we could query by:

as . logical (label$alignment & Qt$Qt$AlignRight)

[1] TRUE

12.8 Extending Qt classes from R

As Qt is implemented in an object-oriented language, C++, the designers
of the API expect the developer to extend Qt classes, like QWidget, dur-
ing the normal course of GUI development. This is a significant difference
from GTK+, where it is necessary to extend classes only when we need
to alter the behavior of a widget fundamentally (cf. Chapter 11). The qt-
base package allows the R user to extend C++ classes in order to enhance
the features of Qt. The qtbase package includes functions qsetClass and
qsetMethod to create subclasses and their methods. Methods may override
virtual methods in an ancestor C++ class, and C++ code will invoke the
R implementation when calling the overridden virtual. A property may be

237

12. Qt: Overview

defined with a getter and setter function. If a type is specified, and the
class derives from QObject, the property will be exposed by Qt. It is also
possible to store arbitrary objects in an instance of an R class; we will refer
to these as dynamic fields. They are private to the class but are otherwise
similar to attributes on any R object. Their type is not checked, and they
are useful as storage mechanisms for implementing properties.

Defining a class

Here, we show a generic example and follow with a specific one.

qsetClass ("SubClass" , Qt$QWidget)

This creates a variable named SubClass in the workspace:

SubClass

Class ’R::. GlobalEnv ::SubClass ’ with 315 public methods

Its value is an RQtClass object that behaves like the RQtClass for the
built-in classes, such as Qt$QWidget. There are no static methods or enu-
merations in an R class, so the class object is essentially the constructor:

instance <- SubClass ()

By default, the constructor delegates directly to the constructor in the
parent class. A custom constructor is often useful, for example, to initial-
ize fields or to make a compound widget. The function implementing the
constructor should be passed as the constructor argument. By conven-
tion, QObject subclasses should provide a parent constructor argument
for specifying the parent object. A typical usage would be:

qsetClass ("SubClass2" , Qt$QWidget ,
function (property , parent = NULL) {

super (parent)
this$property <- property

})

Within the body of a constructor, the super variable refers to the con-
structor of the parent class, often called the “super” class. In the above,
we call super to delegate the registration of the parent to the QWidget
constructor. Another special symbol in the body of a constructor is this,
which refers to the instance being constructed. We can set and implicitly
create fields in the instance by using the same syntax as setting properties.

Defining methods

We can define new methods, or override methods from a base class,
through the qsetMethod function. For example, accessors for a field can
be defined with:

238

12.8. Extending Qt classes from R

qsetMethod ("field" , SubClass , function () field)
qsetMethod ("setField" , SubClass , function (value) {

this$field <- value
})

For an override of an existing method to be visible from C++, the
method must be declared virtual in C++. The access argument specifies
the scope of the method: "public" (default), "protected", or "private".
These have the same meaning as in C++.

As with a constructor, the symbol this in a method definition refers
to the instance. There is also a super function that behaves similarly to
the super found in a constructor: it searches for an inherited method of a
given name and invokes it with the passed arguments:

qsetMethod ("setVisible" , SubClass , function (value) {
message ("Visible: " , value)
super ("setVisible" , value)

})

In the above, we intercept the setting of the visibility of our widget. If
we hide or show the widget, we will receive a notification to the console:

instance$show ()

This is somewhat similar to the behavior of callNextMethod, except super
is not restricted to calling the same method.

Defining signals and slots

Two special types of methods are slots and signals, introduced earlier in the
chapter. These exist only for QObject derivatives. Most useful are signals.
Here we define a signal:

qsetSignal ("somethingHappened" , SubClass)

If the signal takes an argument, we need to indicate that in the signa-
ture:

qsetSignal ("somethingHappenedAtIndex(int)" , SubClass)

Writing a signature requires some familiarity with C/C++ types and
syntax, but this is concise and consistent with how Qt describes its meth-
ods. Although almost always public, it is possible to make a signal pro-
tected or private, via the access argument.

Defining a slot is very similar to defining a signal, except a method
implementation must be provided as an R function:

qsetSlot ("doSomethingToIndex(int)" , SubClass , function (index) {
. . . .

})

239

12. Qt: Overview

The advantage of a slot compared to a method is that a slot is exposed
to the Qt metaobject system. This means that a slot could be called from
another dynamic environment, like from Javascript running in the QScript
module or via the D-Bus through the QDBus module. It is also necessary
to use slots as signal handlers for a GUI built with QtDesigner, if we are
using the automated connection feature (see Section 12.10).

Defining properties

A property, introduced earlier, is a self-describing field that is encapsulated
by a getter and a setter. We can define a property on any class using the
qsetProperty function. Here is the simplest usage:

qsetProperty ("property" , SubClass)

[1] "property"

We can now access property like any other property; for example:

instance <- SubClass ()
instance$property # i n i t i a l l y NULL

NULL

instance$property <- "value"
instance$property

[1] "value"

However, the property is not actually exposed by Qt to dynamic sys-
tems, like the QtScript Javascript engine, which would understand only
Qt types. To export a property, we must provide the type argument, which
is covered later.

By default, the property value is actually stored as a (private) field in
the object, named by the format ".property". We can override the default
behavior by passing a getter and/or setter function to the read and/or
write arguments, respectively. For example:

qsetProperty ("checkedProperty" , SubClass , write=function (x) {
if (!is (x , "character"))

stop ("’checkedProperty ’ must be a character vector")
this$. checkedProperty <- x

})

We have taken advantage of the setter override to check the validity of
the incoming value. If NULL is passed as the write argument, the property
is read-only. We might also want to override the read function, for cases
where a property depends only on other properties or on some external
resource.

240

12.8. Extending Qt classes from R

To emit a signal automatically whenever a property is set, we can pass
the name of the signal to the notify argument of qsetProperty:

qsetSignal ("propertyChanged" , SubClass)
qsetProperty ("property" , SubClass , notify = "propertyChanged")

If a class derives from QObject, as does any widget, we can specify the
C++ type of the property to expose it to the Qt meta object system:

qsetProperty ("typedProperty" , SubClass , type = "QString")

tail (qproperties (SubClass ()) , 1)

type readable writable
typedProperty QString \\\x84\x9c \020 TRUE TRUE

The type is now exposed via the general qproperties function. Specifying
the type enables all of the features of a Qt property.

Example 12.1: A watcher for workspace objects
Qt provides the QFileSystemWatcher class for monitoring changes to the
underlying file system. Here, we create an analogous component that mon-
itors changes to the global workspace. With gWidgets (cf. Example 4.9), we
implemented the observer pattern to notify listeners for changes to the
workspace. With Qt, we can leverage the existing signal framework. This
example demonstrates only the watcher; implementing a view is left to
Example 15.1.

Our basic model subclasses QObject, not QWidget, as it has no graphical
representation – a job left for its views:

qsetClass ("WSWatcher" , Qt$QObject , function (parent = NULL) {
super (parent)
updateVariables ()

})

We have two main properties: a list of workspace objects and a di-
gest hash for each, which we use for comparison purposes. The digest is
generated by the digest package, which we load:

library (digest)

We store the digests in a property:

qsetProperty ("digests" , WSWatcher)

When a new object is added, an object is deleted, or an object is
changed, we wish to signal that occurrence to any views of the model.
For that purpose, we define a new signal below:

qsetSignal ("objectsChanged" , WSWatcher)

241

12. Qt: Overview

We then pass this signal name to the notify argument when defining
the objects property, so that assignment will emit the signal:

qsetProperty ("objects" , WSWatcher , notify = "objectsChanged")

To monitor changes, we keep track of the digest values and names of
the old objects:

qsetProperty ("old_digests" , WSWatcher)
qsetProperty ("old_objects" , WSWatcher)

Our class has a few methods defined for it. We need one to update
the variable list. This implementation simply compares the digest of the
current workspace objects with a cached list. If there are differences, we
update the objects, which will in turn signal a change.

qsetMethod ("updateVariables" , WSWatcher , function () {
x <- sort (ls (envir = . GlobalEnv))
objs <- sapply (mget (x , . GlobalEnv) , digest)

if ((length (objs) != length (digests)) ||
length (digests) == 0 ||
any (objs != digests)) {

this$old_digests <- digests # o l d
this$old_objects <- objects
this$digests <- objs # u pd a t e c a c h e
this$objects <- x # e m i t s s i g n a l

}
invisible ()

})

For convenience to any user of this class, we define two more methods:
one to indicate which objects were changed and one to indicate which
objects were added:

qsetMethod ("changedVariables" , WSWatcher , function () {
changed <- setdiff (old_digests , digests)
old_objects [old_digests %in% changed]

})
##
qsetMethod ("addedVariables" , WSWatcher , function () {

added <- setdiff (digests , old_digests)
objects [digests %in% added]

})

Finally, we arrange to call our update function as needed. If the
workspace size is modest, using a task callback is a reasonable strategy:

watcher <- WSWatcher () # an i n s t a n c e
addTaskCallback (function (expr , value , ok , visible) {

watcher$updateVariables ()

242

12.9. QWidget basics

TRUE
})

Another alternative would be to use a timer to call the updateVariables
method periodically:

timer <- Qt$QTimer ()
timer$setSingleShot (FALSE) # or TRUE f o r run once
qconnect (timer , "timeout" , function () watcher$updateVariables ())
timer$start (as . integer (3 * 1 0 0 0)) # 3 s e c o n d s

To illustrate, we connect a handler to the objectsChanged signal and
expect the handler to be invoked when we create a new_object in the
workspace:

qconnect (watcher , "objectsChanged" , function ()
message ("workspace objects were updated"))

new_object <- "The change should be announced"

workspace objects were updated

12.9 QWidget basics

The widgets we discuss in the next section inherit many properties and
methods from the base QObject and QWidget classes. The QObject class is
the base class and forms the basis for the object hierarchy. It implements
the event processing and property systems. The QWidget class is the base
class for all widgets and implements their shared functionality.

Upon construction, widgets are invisible, so that they may be configured
behind the scenes. The visible property controls whether a widget is
visible.

widget <- Qt$QWidget ()
widget$visible

[1] FALSE

The show and hide methods are the corresponding convenience func-
tions for making a widget visible and invisible, respectively.

widget$show ()

widget$visible

[1] TRUE

widget$hide ()

widget$visible

243

12. Qt: Overview

[1] FALSE

There is an S3 method for print on QWidget that invokes show. When-
ever a widget is shown, all of its children are also made visible. The
method raise will raise the window to the top of the stack of windows.

Similarly, the property enabled controls whether a widget is sensitive
to user input, including mouse events.

button <- Qt$QPushButton ("button")
button$enabled <- FALSE

Only one widget can have the keyboard focus at once. The user shifts
the focus by tab-key navigation or mouse clicks (although this behavior
can be customized, cf. focusPolicy). When a widget has the focus, its
focus property is TRUE. The property is read-only; the focus is shifted
programmatically to a widget by calling its setFocus method.

Qt has a number of mechanisms for the user to query a widget for
some description of its purpose and usage. Tooltips, stored as a string
in the toolTip property, may be shown when the mouse hovers over the
widget. Similarly, the statusTip property holds a string to be shown in the
status bar instead of in a pop-up window. Finally, Qt provides a “What’s
This?” tool that will show the text in the whatsThis property in response
to a query, such as pressing SHIFT+F1 when the widget has focus.

Except for top-level windows, the position and size of a widget are
determined automatically by a layout algorithm; see Chapter 13. To specify
the size of a top-level window, manipulate the size property, which holds
a QSize object:

widget$size <- qsize (4 0 0 , 400)
or
widget$resize (4 0 0 , 400)
widget$show ()

We create the QSize object with the qsize convenience function imple-
mented by the qtbase package. The resize method is another convenient
shortcut. We should generally configure the size of a window before show-
ing it, as this helps the window manager place the window optimally.

Fonts

Fonts in Qt are represented by the QFont class. The qtbase package defines
a convenience constructor for QFont called qfont. The constructor accepts a
family, such as helvetica; pointsize, an integer; weight, an enumerated
value such as Qt$QFont$Light (or Normal, DemiBold, Bold, or Black); and
whether the font should be italicized, as a logical. Defaults are obtained
from the application font, returned by Qt$QApplication$font().

For example, we could create a 12-point, bold, italicized font from the
Helvetica family with:

244

12.9. QWidget basics

font <- qfont (family = "helvetica" , pointsize = 12 ,
weight = Qt$QFont$Bold , italic = TRUE)

The font for a widget is stored in the font property. For example, we
change the font for a label:

label <- Qt$QLabel ("Text for the label")
label$font <- font

The QFont class has several methods to query the font and to adjust
properties. For example, there are the methods setFamily, setUnderline,
setStrikeout, and setBold among others.

To discover which fonts are available from the windowing system, con-
struct a QFontDatabase and call its methods, like families, pointSizes,
styles, etc.

Styles

Palette Every platform has its own distinct look and feel, and an applica-
tion should generally conform to platform conventions. Qt hides these de-
tails from the application. Every widget has a palette, stored in its palette
property and represented by a QPalette object. A QPalette maps the
state of a widget to a group of colors that is used for painting the wid-
get. The possible states are active, inactive, and disabled. Each color
within a group has a specific role, as enumerated in QPalette::ColorRole.
Examples include the color for the background (Window), the foreground
(WindowText), and the selected state (Highlight). Qt chooses the correct
default palette depending on the platform and the type of widget. We can
change the colors used in rendering a widget by manipulating the palette.

Style sheets Cascading style sheets (CSS) are used by web designers to
decouple the layout and look and feel of a web page from the content of
the page. In Qt it is also possible to customize the rendering of a widget
using CSS syntax. The supported syntax is described in the overview on
style sheets provided with Qt documentation and is not summarized here,
as it is quite readable.

The style sheet for a widget is stored in its styleSheet property, as a
string. For example, for a button, we could set the background to white
and the foreground to red (see Figure 12.2):

button <- Qt$QPushButton ("Style sheet example")
button$show ()
button$styleSheet <-

"QPushButton {color: red; background: white}"

The CSS syntax may be unfamiliar to R programmers, so the qtbase
package provides an alternative interface that is reminiscent of the par
function. We specify the above style sheet in this syntax:

245

12. Qt: Overview

Figure 12.2: Styling a widget with a style sheet can dramatically alter its
appearance.

qsetStyleSheet (color = "red" , background = "white" ,
what = "QPushButton" , widget = button)

The widget argument defaults to NULL, which applies the style sheet
to every widget matching what in the application. The default for what is
"*", meaning that the style sheet applies to any widget class. The following
would cause all widgets in the application to have the same colors as the
button:

qsetStyleSheet (color = "red" , background = "white")

Example 12.2: An ’error label’
This example extends the line-edit widget to display an error state via an
icon embedded within the entry box. Such a widget might prove useful
when we are validating entered values. Our implementation uses a style
sheet to place the icon in the background and to prevent the text from
overlapping the icon.

To indicate an error, we will add an icon and set the tooltip to display
an informative message (Figure 12.3). The constructor will be the default,
so our class is defined with:

qsetClass ("LineEditWithError" , Qt$QLineEdit)

The main method sets the error state. We use style sheets to place an
image to the left of the entry message and set the tooltip.

qsetMethod ("setError" , LineEditWithError , function (msg) {
file <- system . file ("images/cancel.gif" , package="gWidgets")
qsetStyleSheet ("background -image" = sprintf ("url(%s)" , file) ,

"background -repeat" = "no-repeat" ,
"background -position" = "left top" ,
"padding-left" = "20px" ,
widget = this)

setToolTip (msg)
})

We can clear the error by resetting the properties to NULL.

246

12.10. Importing a GUI from QtDesigner

Figure 12.3: Using a style sheet to customize the line-edit class to show
an error indicator.

qsetMethod ("clearError" , LineEditWithError , function () {
setStyleSheet (NULL)
setToolTip (NULL)

})

edit <- LineEditWithError ()
edit$text <- "The quick brown fox..."
edit$setError ("Replace with better boilerplate text")
edit$clearError ()

12.10 Importing a GUI from QtDesigner

QtDesigner is a tool for graphical, drag-and-drop design of GUI forms.
Although this book focuses on constructing a GUI by programming in
R, we recognize that a graphical approach may be preferable in some
circumstances. QtDesigner outputs a GUI definition as an XML file in the
"UI" format. The QUiLoader class loads a "UI" definition3 through its load
method:

loader <- Qt$QUiLoader ()
widget <- loader$load (Qt$QFile ("textfinder.ui"))

The widget object could be shown directly; however, we first need to
implement the behavior of the GUI by connecting to signals. Through the
QtDesigner GUI, the user can connect signals to slots on built-in widgets.
This works for some trivial cases, but in general we need to handle signals
with R code. There are two ways to accomplish this: manual and automatic.

To connect an R handler to a signal manually, we first need to obtain
the widget with the signal. Every widget in a UI file is named, so we can

3The textfinder.ui file was taken from the Qt Text Finder example at http://doc.qt.
nokia.com/4.7-snapshot/uitools-textfinder.html.

247

12. Qt: Overview

call the qfindChild utility function to find a specific widget. Assume we
have a button named “findButton” and corresponding text entry “lineEdit”
in our UI file, then we retrieve them with:

find_button <- qfindChild (widget , "findButton") # by name
line_edit <- qfindChild (widget , "lineEdit")

Then we connect to the clicked signal:

qconnect (find_button , "clicked" , function () {
findText (line_edit$text)

})

Alternatively, we could establish the signal connections automatically.
This requires defining each signal handler to be a slot in the parent object,
which will need to be of a custom class:

qsetClass ("MyMainWindow" , Qt$QWidget , function () {
loader <- Qt$QUiLoader ()
widget <- loader$load (Qt$QFile ("textfinder.ui") , this)
Qt$QMetaObject$connectSlotsByName (this)

})

The constructor first loads the UI definition, with the main window
as the parent for the loaded interface. It then calls connectSlotsByName
to establish the connections automatically. This descends the widget hi-
erarchy, attempting to match signals in the descendants to slots in the
top-level widget. For a slot to be connected to the correct signal, it must
be named according to the convention "on_[objectName]_[signalName]".
For example,

qsetSlot ("on_findButton_clicked" , MyMainWindow , function () {
findText (line_edit$text)

})

defines a handler for the clicked signal on findButton. Finally, the signal
handler connection is established upon construction of the main window:

MyMainWindow ()

In the case of a large, complex GUI, this automatic approach is probably
more convenient than manually establishing the connections.

248

13

Qt: Layout Managers and Containers

Qt provides a set of classes to facilitate the layout of child widgets of a
component. These layout managers, derived from the QLayout class, are
tasked with determining the geometry of child widgets, according to a
specific layout algorithm. Layout managers will generally update the layout
whenever a parameter is modified, a child widget is added or removed,
or the size of the parent changes. Unlike GTK+, where this management
is tied to a container object, Qt decouples the layout from the widget.

This chapter will introduce the available layout managers, of which
there are three types: box (QBoxLayout), grid (QGridLayout), and form
(QFormLayout). Widgets that function primarily as containers, such as the
frame and notebook, are also described here.

Example 13.1: Synopsis of layouts in Qt
This example uses a combination of different layout managers to organize a
reasonably complex GUI. It serves as a synopsis of the layout functionality
in Qt. A more gradual and detailed introduction will follow this example.
Figure 13.1 shows a screenshot of the finished layout.

First, we need a widget as the top-level container. We assign a grid
layout to the window for arranging the main components of the applica-
tion:

window <- Qt$QWidget ()
window$setWindowTitle ("Layout example")
grid_layout <- Qt$QGridLayout ()
window$setLayout (grid_layout)

There are three objects managed by the grid layout: a table (we use a
label as a placeholder), a notebook, and a horizontal box layout for some
buttons. We construct them with:

fake_table <- Qt$QLabel ("Table widget")
notebook <- Qt$QTabWidget ()
button_layout <- Qt$QHBoxLayout ()

Then add them to the grid layout:

249

13. Qt: Layout Managers and Containers

Figure 13.1: A mock GUI illustrating various layout managers provided
by Qt.

grid_layout$addWidget (fake_table , row=0 , column=0 ,
rowspan=1 , colspan=1)

grid_layout$addWidget (notebook , 0 , 1)
grid_layout$addLayout (button_layout , 1 , 1)

Next, we construct our buttons and add them to the box putting 12
pixels of space between the last two.

b <- sapply (c ("OK" , "Cancel" , "Help") ,
function (i) Qt$QPushButton (i))

button_layout$setDirection (Qt$QBoxLayout$RightToLeft)
button_layout$addStretch (1 L) # s t r e t c h
button_layout$addWidget (b$OK)
button_layout$addWidget (b$Cancel)
button_layout$addSpacing (12L) # s p a c i n g
button_layout$addWidget (b$Help)

We added a stretch, which acts much like a spring, to pack our buttons
against the right side of the box. A fixed space of 12 pixels is inserted
between the “Cancel” and ”Help” buttons.

The notebook widget is constructed next, with a single page:

notebook_page <- Qt$QWidget ()
notebook$addTab (notebook_page , "Tab label")
notebook$setTabToolTip (0 , "A notebook page with a form")

250

13.1. Layout basics

The form layout allows us to create standardized forms where each row
contains a label and a widget. Although this could be done with a grid
layout, using the form layout is more convenient and allows Qt to style
the page as appropriate for the underlying operating system. We place a
form layout in the notebook page and populate it:

form_layout <- Qt$QFormLayout ()
notebook_page$setLayout (form_layout)
l <- sapply (c ("name" , "rank" , "snumber") , Qt$QLineEdit)
form_layout$addRow ("Name" , l$name)
form_layout$addRow ("Rank" , l$rank)
form_layout$addRow ("Serial number" , l$snumber)

Each addRow call adds a label and an adjacent input widget, in this case a
text entry.

This concludes our cursory demonstration of layout in Qt. We have
constructed a mock-up of a typical application layout using the box, grid,
and form layout managers.

13.1 Layout basics

Adding and manipulating child components

We will demonstrate the basics of layout in Qt with a horizontal box layout,
QHBoxLayout:

layout <- Qt$QHBoxLayout ()

QHBoxLayout, like all other layouts, is derived from the QLayout base
class. Details specific to box layouts are presented in Section 13.2.

A layout is not a widget. Instead, a layout is set on a widget, and the
widget delegates the layout of its children to the layout object:

widget <- Qt$QWidget ()
widget$setLayout (layout)

Child widgets are added to a container through the addWidget method:

layout$addWidget (Qt$QPushButton ("Push Me"))

In addition to adding child widgets, we can nest child layouts by calling
addLayout.

Internally, layouts store child components as items of class QLayoutItem.
The item at a given index (0-based) is returned by the itemAt method. We
get the first item in our layout:

item <- layout$itemAt (0)

The actual child widget is retrieved by calling the widget method on the
item:

251

13. Qt: Layout Managers and Containers

button <- item$widget ()

Qt provides the methods removeItem and removeWidget to remove an
item or widget from a layout:

layout$removeWidget (button)

Although the widget is no longer managed by a layout, its parent widget
is unchanged. The widget will not be destroyed (removed from memory)
as long as it has a parent. Thus, to destroy a widget, we should set the
parent of the widget NULL using setParent:

button$setParent (NULL)

Size and space negotiation

The allocation of space to child widgets depends on several factors. The
Qt documentation for layouts spells out the steps well:1

1. All the widgets will initially be allocated an amount of space in
accordance with their sizePolicy and sizeHint.

2. If any of the widgets have stretch factors set, with a value greater
than zero, then they are allocated space in proportion to their stretch
factor.

3. If any of the widgets have stretch factors set to zero they will get
more space only if no other widgets want the space. Of these, space
is allocated to widgets with an expanding size policy first.

4. Any widgets that are allocated less space than their minimum size (or
minimum size hint if no minimum size is specified) are allocated this
minimum size they require. (Widgets don’t have to have a minimum
size or minimum size hint, in which case the stretch factor is their
determining factor.)

5. Any widgets that are allocated more space than their maximum size
are allocated the maximum size space they require. (Widgets do not
have to have a maximum size, in which case the stretch factor is their
determining factor.)

Every widget returns a size hint to the layout from the sizeHint
method/property. The interpretation of the size hint depends on the
sizePolicy property. The size policy is an object of class QSizePolicy.

1http://doc.qt.nokia.com/4.7/layout.html

252

13.1. Layout basics

Table 13.1: Possible size policies from QSizePolicy

Policy Meaning

Fixed Require the size hint exactly
Minimum Treat the size hint as the minimum, allowing expan-

sion
Maximum Treat the size hint as the maximum, allowing shrink-

age
Preferred Request the size hint, but allow for either expansion

or shrinkage
Expanding Treat like Preferred, except the widget desires as

much space as possible
MinimumExpanding Treat like Minimum, except the widget desires as

much space as possible
Ignored Ignore the size hint and request as much space as

possible

It contains a separate policy value, taken from the QSizePolicy enumera-
tion, for the vertical and horizontal directions. If a layout is set on a widget,
then the widget inherits its size policy from the layout. The possible size
policies are listed in Table 13.1.

As an example, consider QPushButton. It is the convention that a button
will allow horizontal, but not vertical, expansion. It also requires enough
space to display its entire label. Thus a QPushButton instance returns a
size hint depending on the label dimensions and has the policies Fixed
and Minimum as its vertical and horizontal policies respectively. We could
prevent a button from expanding at all:

button <- Qt$QPushButton ("No expansion")
button$setSizePolicy (vertical = Qt$QSizePolicy$Fixed ,

horizontal = Qt$QSizePolicy$Fixed)

Thus, the sizing behavior is largely inherent to the widget or its layout,
if any, rather than any parent layout parameters. This is a major difference
from GTK+, where a widget can request only a minimum size, and all else
depends on the parent container widget. The Qt approach seems better at
encouraging consistency in the layout behavior of widgets of a particular
type.

Most widgets attempt to fill the allocated space; however, this is not
always appropriate, as in the case of labels. In such cases, the widget
will not expand and needs to be aligned within its space. By default,
the widget is centered. We can control the alignment of a widget via the
setAlignment method. For example, we align the label to the left side of
the layout through:

253

13. Qt: Layout Managers and Containers

label <- Qt$QLabel ("Label")
layout$addWidget (label)
layout$setAlignment (label , QtQtAlignLeft)

Alignment is also possible to the top, bottom, and right. The alignment
values are flags and may be combined with | to specify both vertical and
horizontal alignment.

The spacing between every cell of the layout is in the spacing property.
The following requests five pixels of space:

layout$spacing <- 5L

13.2 Box layouts

Box layouts arrange child widgets as if they were packed into a box in
either the horizontal or vertical orientation. The QHBoxLayout class imple-
ments a horizontal layout, whereas QVBoxLayout provides a vertical one.
Both of these classes extend the QBoxLayout class, where most of the func-
tionality is documented. We create a horizontal layout and place it in a
window:

hbox <- Qt$QHBoxLayout ()
widget <- Qt$QWidget ()
w$setLayout (hbox)

Child widgets are added to a box container through the addWidget
method:

buttons <- sapply (letters [1 : 3] , Qt$QPushButton)
sapply (buttons , hbox$addWidget)

The direction property specifies the direction in which the widgets
are added to the layout. By default, this is left to right (top to bottom for
a vertical box).

The addWidget method for a box layout takes two optional parameters:
the stretch factor and the alignment. Stretch factors proportionally allocate
space to widgets when they expand.2 However, recall that the widget size
policy and hint can alter the effect of a stretch factor. After the child has
been added, the stretch factor can be modified with setStretchFactor:

hbox$setStretchFactor (buttons [[1]] , 2 . 0)

If the layout later grows horizontally, the first button will grow (stretch) at
twice the rate of the other buttons.

2For those familiar with GTK+, the difference between a stretch factor of 0 and 1 is
roughly equivalent to the difference between "FALSE" and "TRUE" for the value of the expand
parameter to gtkBoxPackStart.

254

13.3. Grid layouts

Spacing There are two types of spacing between two children: fixed and
expanding. Fixed spacing between any two children was already described.
To add a fixed amount of space between two specific children, call the
addSpacing method while populating the container. The following line is
from Example 13.1:

hbox$addSpacing (12L)
hbox$addWidget (Qt$QPushButton ("d"))

We have placed a gap of twelve pixels between button "c" and the new
button "d".

An expanding, spring-like spacer between two widgets is known as a
stretch. We add a stretch with a factor of 2.0 and subsequently add a child
button that will be pressed against the right side of the box as the layout
grows horizontally:

hbox$addStretch (2)
hbox$addWidget (Qt$QPushButton ("Help..."))

This is just a convenience for adding an invisible widget with some stretch
factor.

Struts It is sometimes desirable to restrict the minimum size of a layout
in the perpendicular direction. For a horizontal box, this is the height. The
box layout provides the strut for this purpose:

hbox$addStrut (1 0) # a t l e a s t 10 p i x e l s h ig h

13.3 Grid layouts

The QGridLayout class provides a grid layout for aligning its child widgets
into rows and columns. To illustrate grid layouts we mock up a GUI
centered around a text area widget (Figure 13.2). To begin, we create the
window with the grid layout:

window <- Qt$QWidget ()
window$setWindowTitle ("Layout example")
layout <- Qt$QGridLayout ()
window$setLayout (layout)

When we add a child to the grid layout, we need to specify the zero-
based row and column indices:

layout$addWidget (Qt$QLabel ("Entry:") , 0 , 0)
layout$addWidget (Qt$QLineEdit () , 0 , 1 , rowspan = 1 , colspan=2)

In the second call to addWidget, we pass values to the optional arguments
for the row and column span. These are the numbers of rows and columns,
respectively, that are spanned by the child. For our second row, we add a
labeled combo box:

255

13. Qt: Layout Managers and Containers

Figure 13.2: A mocked up layout using the QGridLayout class. There are
three columns and four non-homogeneous rows; in addition, several child
components span more than one cell.

layout$addWidget (Qt$QLabel ("Choice:") , 1 , 0)
layout$addWidget (Qt$QComboBox () , 1 , 1)

The bottom three cells in the third column are managed by a sub-layout,
in this case a vertical box layout. We use a label as a stub and set a frame
style to have it stand out:

layout$addLayout (sub_layout <- Qt$QVBoxLayout () ,
1 , 2 , rowspan=3 , 1)

sub_layout$addWidget (label <- Qt$QLabel ("Category\nSelector"))
label$setFrameStyle (Qt$QFrame$Box)

The text-edit widget is added to the third row, second column:

layout$addWidget (Qt$QLabel ("Text:") , 2 , 0 , QtQtAlignTop)
layout$addWidget (edit <- Qt$QTextEdit () , 2 , 1)

Since this widget will expand, we align the label to the top of its cell.
Otherwise, it will be centered in the vertical direction.

Finally we add a space for information on the fourth row:

layout$addWidget (label <- Qt$QLabel ("More info:") , 3 , 0 ,
rowspan = 1 , colspan = 2)

label$setSizePolicy (Qt$QSizePolicy$Fixed ,
Qt$QSizePolicy$Preferred)

label$setFrameStyle (Qt$QFrame$Box)

Again we draw a frame around the label. By default the box would expand
to fill the space of the two columns, but we prevent this through a "Fixed"
size policy.

256

13.4. Form layouts

There are a number of parameters controlling the sizing and spacing
of the rows and columns. The concepts apply equivalently to both rows
and columns, so we will limit our discussion to columns, without loss
of generality. A minimum width is set through setColumnMinimumWidth.
The actual minimum width will be increased, if necessary, to satisfy the
minimal width requirements of the widgets in the column. If more space
is available to a column than requested, the extra space is apportioned
according to the stretch factors. A column stretch factor is set by calling
the setColumnStretch method.

Since there are no stretch factors set in our example, the space allocated
to each row and column would be identical when resized. To allocate extra
space to the text area, we set a positive stretch factor for the third row and
second column:

layout$setRowStretch (2 , 1) # t h i r d row
layout$setColumnStretch (1 , 1) # s e c o n d column

As it is the only item with a positive stretch factor, it will be the only
widget to expand when the parent widget is resized.

The spacing between widgets can be set in both directions via the spac-
ing property, or set for a particular direction with setHorizontalSpacing
or setVerticalSpacing. The default values are derived from the style.

The method itemAtPosition returns the QLayoutItem instance corre-
sponding to the specified row and column:

edit <- layout$itemAtPosition (0 , 1) $widget ()

The item method widget returns the corresponding widget. Removing a
widget is similar to a box layout, using removeItem, or removeWidget. The
methods rowCount and columnCount return the dimensions of the grid.

13.4 Form layouts

Forms can easily be arranged with the grid layout, but Qt provides a
convenient high-level form layout (QFormLayout) that conforms to platform-
specific conventions. A form consists of a number of rows, where each row
has a label and an input widget. We create a form and add some rows for
gathering parameters to the dnorm function:

window <- Qt$QWidget ()
window$setWindowTitle ("Wrapper for ’dnorm’ function")
window$setLayout (layout <- Qt$QFormLayout ())
sapply (c ("quantile" , "mean" , "sd") , function (statistic) {

layout$addRow (statistic , Qt$QLineEdit ())
})
layout$addRow (Qt$QCheckBox ("log"))

257

13. Qt: Layout Managers and Containers

The first three calls to addRow take a string for the label and a text
entry for entering a numeric value. Any widget could serve as the label. A
field may be any widget or layout. The final call to addRow places only a
single widget in the row. As with other layouts, we could call setSpacing
to adjust the spacing between rows.

To retrieve a widget from the layout, call the itemAt method, passing
the 0-based row index and the role of the desired widget. Here, we obtain
the edit box for the quantile parameter:

item <- layout$itemAt (0 , Qt$QFormLayout$FieldRole)
quantile_edit <- item$widget ()

13.5 Frames

The frame widget, QGroupBox, groups conceptually related widgets by
drawing a border around them and displaying a title. QGroupBox is of-
ten used to group radio buttons (see Section 14.5 for an example). The
title, stored in the title property, may be aligned to left, right or center,
depending on the alignment property. If the checkable property is TRUE,
the contents can have their sensitivity to events toggled by clicking an
accompanying check button.

13.6 Separators

Like frames, a horizontal or vertical line is also useful for visually separat-
ing widgets into conceptual groups. There is no explicit line or separator
widget in Qt. Rather, we configure the more general widget QFrame, which
draws a frame around its children. Somewhat against intuition, a frame
can take the shape of a line:

separator <- Qt$QFrame ()
separator$frameShape <- Qt$QFrame$HLine

This yields a horizontal separator. A frame shape of Qt$QFrame$VLine
would produce a vertical separator.

13.7 Notebooks

A notebook container is provided by the class QTabWidget:

notebook <- Qt$QTabWidget ()

To create a page, we need to specify the label for the tab and the widget
to display when the page is active:

258

13.7. Notebooks

notebook$addTab (Qt$QPushButton ("page 1") , "page 1")
icon <- Qt$QIcon ("small-R-logo.jpg")
notebook$addTab (Qt$QPushButton ("page 2") , icon , "page 2")

As shown in the second call to addTab, we can provide an icon to
display next to the tab label. We can also add a tooltip for a specific tab,
using 0-based indexing:

notebook$setTabToolTip (0 , "This is the first page")

The currentIndex property holds the 0-based index of the active tab.
We make the second tab active:

notebook$currentIndex <- 1

The tabs can be positioned on any of the four sides of the notebook;
this depends on the tabPosition property. By default, the tabs are on top,
or "North". We move them to the bottom:

notebook$tabPosition <- Qt$QTabWidget$South

Other features include close buttons, movable pages by drag-and-drop,
and scroll buttons for when the number of tabs exceeds the available space.
We enable all of these:

notebook$tabsClosable <- TRUE
qconnect (notebook , "tabCloseRequested" , function (index) {

notebook$removeTab (index)
})
notebook$movable <- TRUE
notebook$usesScrollButtons <- TRUE

We would need to connect to the tabCloseRequested signal to actually
close the tab when the close button is clicked.

Example 13.2: A help-page browser
This example shows how to create a help browser using the QWebView class
to show web pages. The only method from this class we use is setUrl. The
key to this is informing browseURL to open web pages using an R function,
as opposed to the default system browser.

qsetClass ("HelpBrowser" , Qt$QTabWidget , function (parent=NULL) {
super (parent)
#
this$tabsClosable <- TRUE
qconnect (this , "tabCloseRequested" , function (index) {

this$removeTab (index)
})
this$movable <- TRUE ; this$usesScrollButtons <- TRUE
#
this$browser <- getOption ("browser")

259

13. Qt: Layout Managers and Containers

Figure 13.3: An example in which a notebook is used to display various
help pages shown in a QWebView instance.

options ("browser" = function (url) openPage (url))
})

The lone new method for this class is one called to open a page. The
url value is generated by R’s help system.

qsetMethod ("openPage" , HelpBrowser , function (url) {
tokens <- strsplit (url , "/") [[1]]
tab_title <- sprintf ("%s: %s" , tokens [length (tokens)−2] ,

tokens [length (tokens)])
webview <- Qt$QWebView ()
webview$setUrl (Qt$QUrl (url))
this$currentIndex <- addTab (webview , tab_title)

})

Figure 13.3 was created through this invocation:

help_browser <- HelpBrowser ()
help_browser$windowTitle <- "Help Browser example"
help_browser$show ()
help_browser$raise ()
##
options ("help_type"="html")
help ("mean")
help ("boxplot")

General widget stacking It is sometimes useful to have a widget that
shows only one of its widgets at once, like a QTabWidget, except without

260

13.8. Scroll areas

the tabs. There is no way to hide the tabs of QTabWidget. Instead, we
should use QStackedWidget, which stacks its children so that only the
widget on top of the stack is visible. There is no way for the user to
switch between children; it must be done programmatically. The actual
layout is managed by QStackedLayout, which should be used directly if
only a layout is needed, e.g., as a sub-layout.

13.8 Scroll areas

Sometimes a widget is too large to fit in a layout and thus must be dis-
played partially. Scroll bars then allow the user to adjust the visible portion
of the widget. Widgets that often become too large include tables, lists,
and text-edit panes. These inherit from QAbstractScrolledArea and thus
natively provide scroll bars without any special attention from the user.
Occasionally, we are dealing with a widget that lacks such support and
thus need to explicitly embed the widget in a QScrollArea. This often
arises when displaying graphics and images. To demonstrate, we will cre-
ate a simple zoomable image viewer. The user can zoom in and out and
use the scroll bars to pan around the image. First, we place an image in a
label and add it to a scroll area:

image <- Qt$QLabel ()
image$pixmap <- Qt$QPixmap ("someimage.png")
scroll_area <- Qt$QScrollArea ()
scroll_area$setWidget (image)

Next, we define a function for zooming in on the image:

zoomImage <- function (x = 2 . 0) {
image$resize (x * image$pixmap$size ())
updateScrollBar <- function (sb) {

sb$value <- x * sb$value + (x − 1) * sb$pageStep / 2
}
updateScrollBar (scroll_area$horizontalScrollBar ())
updateScrollBar (scroll_area$verticalScrollBar ())

}

Of note here is that we are scaling the size of the pixmap using the
* function, which qtbase is forwarding to the corresponding method on
the QSize object. Updating the scroll bars is also somewhat tricky, since
their value corresponds to the top left, while we want to preserve the
center point. We leave the interface for calling the zoomImage function as
an exercise for the interested reader.

The geometry of a scroll area is such that there is an empty space in
the corner between the ends of the scroll bars. To place a widget in the
corner, pass it to the setCornerWidget method.

261

13. Qt: Layout Managers and Containers

13.9 Paned windows

QSplitter is a split-pane widget, a container that splits its space between
its children, with draggable separators that adjust the balance of the space
allocation.

Unlike GtkPaned in GTK+, there is no limit on the number of child
panes. We add three with addWidget:

splitter <- Qt$QSplitter ()
splitter$addWidget (Qt$QLabel ("One"))
splitter$addWidget (Qt$QLabel ("Two"))
splitter$addWidget (Qt$QLabel ("Three"))

The orientation can be adjusted dynamically through setOrientation.

splitter$setOrientation (Qt$Qt$Vertical)

In addition to adjusting the space allocation with a mouse, we can
adjust the sizes programmatically through the setSizes method:

splitter$setSizes (c (100L , 200L , 300L))

If needed, we can connect to the splitterMoved signal. The callback
receives the position of the moved handle and its index.

262

14

Qt: Widgets

This chapter covers some of the basic dialogs and widgets provided by Qt.
Together with layouts, these form the basis for most user interfaces. The
next chapter will introduce the more complex widgets that typically act as
views for separate data models.

14.1 Dialogs

Qt implements the conventional high-level dialogs, including those for
printing, selecting files, selecting colors, and, most usefully, sending simple
messages and input requests to the user. We first introduce message and
input dialogs. This is followed by a discussion of the infrastructure in Qt
for implementing custom dialogs and wizards. Finally, we briefly introduce
some of the remaining high-level dialogs, such as the file selector.

Message dialogs

All dialogs in Qt are derived from QDialog. The message dialog, QMes-
sageBox, communicates a textual message to the user. At the bottom of
the dialog are a set of buttons, each representing a possible response. Nor-
mally, the type of message is indicated by an icon. If extra details are
available, the dialog provides the option for the user to view them.

Qt provides two ways to create a message box (Figure 14.1). The sim-
plest approach is to call a static convenience method for issuing common
types of messages, including warnings and simple questions. The alter-
native, described later, involves several steps and offers more control at a
cost of convenience. Here we take the simple path for presenting a warning
dialog:

response <- Qt$QMessageBox$warning (parent = NULL ,
title = "Warning!" , text = "Warning message...")

This call will block the flow of the program until the user responds and
returns the standard identifier for the button that was clicked. Each type

263

14. Qt: Widgets

Figure 14.1: Message dialog boxes. The left one was made with the
convenient static method, the right – with more detail – using
QMessageBox methods.

of button corresponds to a fixed type of response. The standard button/re-
sponse codes are listed in the QMessageBox::StandardButton enumeration.
In this case, there is only a single button, "QMessageBox$Ok". The dialog
is modal, meaning that the user cannot interact with the "parent" window
until he or she responds. If the parent is NULL, as in this case, input to
all windows is blocked. Specifying the parent will automatically position
the dialog near its parent, and if the parent is destroyed, the dialog is
destroyed, as well. Additional arguments specify the available buttons/re-
sponses and the default response. We have relied on the default values for
these.

For more control over the appearance and behavior of the dialog, we
may take a more gradual path. Here, we construct an instance of QMes-
sageBox. It is possible to specify several properties at construction. The
following is how we might construct a warning dialog:

dialog <- Qt$QMessageBox (icon = Qt$QMessageBox$Warning ,
title = "Warning!" ,
text = "Warning text..." ,
buttons = Qt$QMessageBox$Ok ,
parent = NULL)

This call introduces the icon property, which is a code from the QMessage-
Box::Icon enumeration and identifies a standard, themeable icon. The icon
also implies the message type, just as a button implies a response type. We
also need to specify the possible responses with the "buttons" argument.

Our dialog is already sufficiently complete to be displayed. However,
we have the opportunity to specify further properties. Two of the most
useful are informativeText and detailedText:

dialog$informativeText <- "Less important warning information"

264

14.1. Dialogs

dialog$detailedText <- "Extra details most do not care to see"

Both provide additional textual information at an increasing level of detail.
The informativeText will be rendered as secondary to the actual message
text. To display the detailedText, the user will need to interact with a
control in the dialog. An example is a stack trace for the warning.

After we specify the desired properties, the dialog is shown. The ap-
proach to showing the dialog depends on whether the dialog should be
modal. A modal dialog is displayed with the exec method.

dialog$exec () # r e t u r n s r e s p o n s e c o d e

[1] 1024

As its name implies, exec executes a loop that will block until the
user responds. As with the static convenience methods, the return value
indicates the button/response.

To present a non-modal dialog, we first need to register a response
listener, as the response will arrive asynchronously:

qconnect (dialog , "finished" , function (response) {
dialog$close ()

})

There are several signals that indicate user response, including "fin-
ished", "accepted", and "rejected". The most general is "finished",
which passes the button/response code as its only argument.

Finally, we show, raise, and activate the dialog with:

dialog$show ()
dialog$raise ()
dialog$activateWindow ()

Modal dialogs may be window modal (QtQtWindowModal), where the
dialog blocks all access to its ancestor windows, or application modal
(QtQtApplicationModal),the default, where all windows are blocked. To
specify the type of modality, call setWindowModality.

To summarize, we present a general message box supporting multiple
responses:

dialog <- Qt$QMessageBox ()
dialog$windowTitle <- "[This space for rent]"
dialog$text <- "This is the main text"
dialog$informativeText <- "This should give extra info"
dialog$detailedText <- "And this provides\neven more detail"
dialog$icon <- Qt$QMessageBox$Critical
dialog$standardButtons <-

Qt$QMessageBox$Cancel | Qt$QMessageBox$Ok
’ Cance l ’ i n s t e a d o f ’Ok ’ i s t h e d e f a u l t

265

14. Qt: Widgets

Figure 14.2: Qt provides three static constructors for input dialogs, making
it straightforward to collect integers, selections, or text from a user.

dialog$setDefaultButton (Qt$QMessageBox$Cancel)
##
if (dialog$exec () == Qt$QMessageBox$Ok)

print ("A Ok")

Input dialogs

The QInputDialog class provides a convenient means to gather information
from the user and is in a sense the inverse of QMessageBox. Possible input
modes include selecting a value from a list or entering text or numbers. By
default, input dialogs consist of an input control, an icon, and two buttons:
“Ok” and “Cancel” (Figure 14.2).

Like with QMessageBox, we can display a QInputDialog either by calling
a static convenience method or by constructing an instance and configuring
it before showing it. We demonstrate the former approach for a dialog that
requests textual input:

text <- Qt$QInputDialog$getText (parent = NULL ,
title = "Gather text" ,
label = "Enter some text")

The return value is the entered string, or NULL if the user cancelled the
dialog. Additional parameters allow us to specify the initial text and to
override the input mode, e.g., for password-style input.

We can also display a dialog for integer input. Here, we ask the user
for an even integer between 1 and 10:

even_integer <- Qt$QInputDialog$getInt (parent = NULL ,
title="Gather integer" ,
label="Enter an integer from 1 to 10" ,
value=0 , min = 2 , max = 10 , step = 2)

The number is chosen using a bounded spin box. To request a real value,
call Qt$QInputDialog$getDouble instead.

The final type of input is selecting an option from a list of choices:

266

14.1. Dialogs

Figure 14.3: Dialog button boxes and their implementation under Mac OS
X and Linux.

item <- Qt$QInputDialog$getItem (parent = NULL ,
title = "Select item" ,
label = "Select a letter" ,
items = LETTERS , current = 17)

The dialog contains a combo box filled with the capital letters. The initial
choice is 0-based index 17, or the letter “R.” The chosen string is returned.

QInputDialog has a number of options that cannot be specified by
one of the static convenience methods. These option flags are listed in
the QInputDialog$InputDialogOption enumeration and include hiding the
“Ok” and “Cancel” buttons and selecting an item with a list widget instead
of a combo box. If such control is necessary, we must explicitly construct
a dialog instance, configure it, execute it, and retrieve the selected item.

dialog <- Qt$QInputDialog ()
dialog$setWindowTitle ("Select item")
dialog$setLabelText ("Select a letter")
dialog$setComboBoxItems (LETTERS)
dialog$setTextValue (LETTERS [1 8])
dialog$setOptions (Qt$QInputDialog$UseListViewForComboBoxItems)

if (dialog$exec ())
print (dialog$textValue ())

[1] "O"

Button boxes

Before discussing custom dialogs, we first introduce the QDialogButton-
Box utility for arranging dialog buttons in a consistent and cross-platform
manner. Dialogs often have a standard button placement that varies among
desktop environments. QDialogButtonBox is a container of buttons that ar-
ranges its children according to the convention of the platform. We place
some standard buttons into a button box:

267

14. Qt: Widgets

btn_box <- Qt$QDialogButtonBox (Qt$QDialogButtonBox$Ok |
Qt$QDialogButtonBox$Cancel |
Qt$QDialogButtonBox$Help)

Figure 14.3 shows how the buttons are displayed on two different op-
erating systems. To indicate the desired buttons, we pass a combination
of flags from the QDialogButtonBox$StandardButton enumeration. Each
standard button code implies a default label and role, taken from the QDi-
alogButtonBox$ButtonRole enumeration. In the above example, we added
a standard Ok button, with the label “Ok” (depending on the language) and
the role AcceptRole. The Cancel button has the appropriate label and Can-
celRole as its role. Icons are also displayed, depending on the platform
and theme. The benefits of using standard buttons include convenience,
standardization, platform consistency, and automatic translation of labels.

To respond to user input, we can connect directly to the clicked sig-
nal on a given button. It is often more convenient, however, to connect to
one of the high-level button-box signals, which include: accepted, which
is emitted when a button with the AcceptRole or YesRole is clicked; re-
jected, which is emitted when a button with the RejectRole or NoRole
is clicked; helpRequested; or clicked when any button is clicked. For this
last signal, the callback is passed the button object.

qconnect (btn_box , "accepted" , function () message ("accepted"))
qconnect (btn_box , "rejected" , function () message ("rejected"))
qconnect (btn_box , "helpRequested" , function () message ("help"))
qconnect (btn_box , "clicked" ,

function (button) message (button$text))

The first button added with the AcceptRole role is made the default.
Overriding this requires adding the default button with addButton and
setting the default property on the returned button object.

Custom dialogs

Every dialog in Qt inherits from QDialog, which we can leverage for our
own custom dialogs. One approach is to construct an instance of QDialog
and add arbitrary widgets to its layout. However, we suggest an alternative
approach: extend QDialog or one of its derivates and implement the custom
functionality in a subclass. This more formally encapsulates the state and
behavior of the custom dialog. We demonstrate the subclass approach by
constructing a dialog that requests a date from the user.

We begin by defining our class and its constructor:

qsetClass ("DateDialog" , Qt$QDialog ,
function (parent = NULL) {

super (parent=parent)
setWindowTitle ("Choose a date")

268

14.1. Dialogs

Figure 14.4: A custom dialog, embedding a date-selection widget with a
QDialog instance.

this$calendar <- Qt$QCalendarWidget ()
#
btn_box <-

Qt$QDialogButtonBox (Qt$QMessageBox$Cancel |
Qt$QMessageBox$Ok)

qconnect (btn_box , "accepted" , function () {
this$close ()
this$setResult (Qt$QMessageBox$Ok)

})
qconnect (btn_box , "rejected" ,

function () this$close ())
#
layout <- Qt$QVBoxLayout ()
sapply (list (calendar , btn_box) , layout$addWidget)
setLayout (layout)

})

Our dialog consists of a calendar, implemented by the QCalendarWidget,
and a set of response buttons, organized by a QDialogButtonBox. The
calendar is stored as a field on the instance, so that we can retrieve the
selected date upon request.

We define a method that gets the currently selected date:

qsetMethod ("selectedDate" , DateDialog ,
function (x) calendar$selectedDate$toString ())

DateDialog can be executed like any other QDialog:

date_dialog <- DateDialog ()
if (date_dialog$exec ())

message (date_dialog$selectedDate ())

269

14. Qt: Widgets

Wizards

QWizard implements a wizard – a multipage dialog that guides the user
through a sequential, possibly branching process. Wizards are composed of
pages, and each page has a consistent interface, usually including buttons
for moving backward and forward through the pages. The look and feel
of a QWizard is consistent with platform conventions.

We create a wizard object and set its title:

wizard <- Qt$QWizard ()
wizard$setWindowTitle ("A wizard")

Each page is represented by a QWizardPage. We create one for request-
ing the age of the user and add the page to the wizard:

get_age_page <- Qt$QWizardPage (wizard)
get_age_page$setTitle ("What is your age?")
layout <- Qt$QFormLayout ()
get_age_page$setLayout (layout)
layout$addRow ("Age" , (age <- Qt$QLineEdit ()))
wizard$addPage (get_age_page)

Two more pages are added:

get_toys_page <- Qt$QWizardPage (wizard)
get_toys_page$setTitle ("What toys do you like?")
layout <- Qt$QFormLayout ()
get_toys_page$setLayout (layout)
layout$addRow ("Toys" , (toys <- Qt$QLineEdit ()))
wizard$addPage (get_toys_page)
##
get_games_page <- Qt$QWizardPage (wizard)
get_games_page$setTitle ("What games do you like?")
layout <- Qt$QFormLayout ()
get_games_page$setLayout (layout)
layout$addRow ("Games" , (games <- Qt$QLineEdit ()))
wizard$addPage (get_games_page)

Finally, we run the wizard by calling its exec method:

response <- wizard$exec ()
if (response)

message (toys$text)

File- and directory-choosing dialogs

QFileDialog allows the user to select files and directories by default using
the platform native file dialog. As with other dialogs, there are static meth-
ods to create dialogs with standard options. These are "getOpenFileName",

270

14.1. Dialogs

"getOpenFileNames", "getExistingDirectory", and "getSaveFileName".
To select a file name to open we would have:

filename <- Qt$QFileDialog$getOpenFileName (NULL ,
"Open a file..." , getwd ())

All take as initial arguments a parent, a caption and a directory. Other
arguments allow us to set a filter, say. For basic use, these are nearly as
easy to use as R’s file.choose function. If a file is selected, filename will
contain the full path to the file; otherwise it will be NULL.

To allow multiple selection, call the plural form of the method:

filenames <- Qt$QFileDialog$getOpenFileNames (NULL ,
"Open file(s)..." , getwd ())

To select a file name for saving, we have:

filename <- Qt$QFileDialog$getSaveFileName (NULL ,
"Save as..." , getwd ())

And to choose a directory,

dirname <- Qt$QFileDialog$getExistingDirectory (NULL ,
"Select directory" , getwd ())

To specify a filter by file extension, we use a “name filter.” A name filter
is of the form Description (*.ext *.ext2), no comma, where this would
match files with extensions ext or ext2. Multiple filters can be used by
separating them with two semicolons. For example, this would be a natural
filter for R users:

name_filter <- paste ("R files (*.R .RData)" ,
"Sweave files (*.Rnw)" ,
"All files (*.*)" ,
sep=";;")

##
filenames <- Qt$QFileDialog$getOpenFileNames (NULL ,

"Open file(s)..." , getwd () , name_filter)

Although the static functions provide most of the functionality, to
fully configure a dialog, it may be necessary to construct and manipu-
late a dialog instance explicitly. Examples of options not available from the
static methods are history (previously selected file names), sidebar shortcut
URLs, and filters based on low-level file attributes such as permissions.

Example 14.1: File dialogs
We construct a dialog for opening an R-related file, using the directory
name selected above as the history:

dialog <- Qt$QFileDialog (NULL , "Choose an R file" , getwd () ,
name_filter)

271

14. Qt: Widgets

dialog$fileMode <- Qt$QFileDialog$ExistingFiles
dialog$setHistory (dirname)

The dialog is executed like any other. To get the specified files, call
selectedFiles:

if (dialog$exec ())
print (dialog$selectedFiles ())

Other choosers

Qt provides several additional dialog types for choosing a particular type
of item. These include QColorDialog for picking a color and QFontDialog
for selecting a font. These special-case dialogs will not be discussed further
here.

14.2 Labels

As demonstrated in many of the preceding examples, basic labels in Qt
are instances of the QLabel class. Labels in Qt are the primary means for
displaying static text and images. Textual labels are the most common, and
the constructor accepts a string for the text, which can be plain text or, for
rich text, HTML. Here we use HTML to display red text:

label <- Qt$QLabel ("Red")

By default, QLabel guesses whether the string is rich or plain text. In the
above, the rich-text format is identified from the markup. The textFormat
property can override this.

The label text is stored in the text property. Properties relevant to text
layout include alignment, indent (in pixels), margin, and wordWrap.

14.3 Buttons

As we have seen, the ordinary button in Qt is created by QPushButton,
which inherits most of its functionality from QAbstractButton, the com-
mon base class for buttons. We create a simple “Ok” button:

button <- Qt$QPushButton ("Ok")

Like any other widget, a button can be disabled, so that the user cannot
press it:

button$enabled <- FALSE

This is useful for preventing the user from attempting to execute com-
mands that do not apply to the current state of the application. Qt changes
the rendering widget, including that of the icon, to indicate the disabled
state.

272

14.3. Buttons

Signals A push button usually executes some command when clicked
or otherwise invoked. The QAbstractButton class provides the signals
clicked, for when the button is activated, and pressed and released
to track button clicks and releases. For example, to respond with a simple
message, we could have:

qconnect (button , "clicked" , function () message ("Ok clicked"))

Icons and pixmaps

A button is often decorated with an icon, which serves as a visual indicator
of the purpose of the button. The QIcon class represents an icon. Icons can
be defined for different sizes and display modes (normal, disabled, active,
selected); however, this is often not necessary, as Qt will adapt an icon as
necessary. As we have seen, Qt automatically adds the appropriate icon to
a standard button in a dialog. When using QPushButton directly, there are
no such conveniences. For our “Ok” button, we could add an icon from a
file:

icon_file <- system . file ("images/ok.gif" , package="gWidgets")
button$icon <- Qt$QIcon (icon_file)

However, in general, this will not be consistent with the current style.
Instead, we need to get the icon from the QStyle:

style <- Qt$QApplication$style ()
button$icon <- style$standardIcon (Qt$QStyle$SP_DialogOkButton)

The QStyle::StandardPixmap enumeration lists all of the possible icons
that a style should provide. In the above, we passed the key for an “Ok”
button in a dialog.

We can also create a QIcon from image data in a QPixmap object.
QPixmap stores an image in a manner that is efficient for display on the
screen.1 We can load a pixmap from a file or create a blank image and draw
on it using the Qt painting API (not discussed in this book). Also, using
the qtutils package, we can draw a pixmap using the R graphics engine.
For example, the following uses ggplot2 to generate an icon representing
a histogram. First, we create the Qt graphics device (cf. Section 14.10) and
plot the icon with grid:

require (qtutils)
device <- QT ()
grid : : : grid . newpage ()
grid : : : grid . draw (ggplot2 : : : GeomHistogram$icon ())

1QPixmap is not to be confused with QImage, which is optimized for image manipulation,
or the vector-based QPicture.

273

14. Qt: Widgets

Next, we create the blank pixmap and render the device to a paint
context attached to the pixmap:

pixmap <- Qt$QPixmap (device$size$toSize ())
pixmap$fill ()
painter <- Qt$QPainter ()
painter$begin (pixmap)
device$render (painter)
painter$end ()

Finally, we use the icon in a button:

button <- Qt$QPushButton ("Histogram")
button$setIcon (Qt$QIcon (pixmap))

14.4 Checkboxes

The QCheckBox class implements a checkbox. Like the QPushButton class,
QCheckBox extends QAbstractButton. Thus, QCheckBox inherits the signals
clicked, pressed, and released and the signal stateChanged is added.

We create a checkbox for demonstration with:

checkbox <- Qt$QCheckBox ("Option")

The checked property indicates whether the button is checked:

checkbox$checked

[1] FALSE

Sometimes, it is useful for a checkbox to have an indeterminate state
that is neither checked nor unchecked. To enable this, set the tristate
property to TRUE. In that case, we need to call the checkState method to
determine the state, as it is no longer Boolean but from the Qt::CheckState
enumeration.

The stateChanged signal is emitted whenever the checked state of the
button changes:

qconnect (checkbox , "stateChanged" , function (state) {
if (state == QtQtChecked)

message ("checked")
})

The argument is from the Qt::CheckState enumeration; it is not a logical
vector.

Groups of checkboxes

Checkboxes and other types of buttons are often naturally grouped into
logical units. The frame widget, QGroupBox, is appropriate for visually

274

14.4. Checkboxes

Figure 14.5: Screenshot of checkboxes and radio buttons, grouped using a
QGroupBox instance.

representing this grouping. However, QGroupBox holds any type of widget,
so it has no high-level notion of a group of buttons. The QButtonGroup
object, which is not a widget, fills this gap by formalizing the grouping of
buttons behind the scenes.

To demonstrate (Figure 14.5), we will construct an interface for filtering
a data set by the levels of a factor. A common design is to have each factor
level correspond to a check button in a group. For our example, we take
the cylinders variable from the Cars93 data set of the MASS package. First,
we create our QGroupBox as the container for our buttons:

window <- Qt$QWidget ()
group_box <- Qt$QGroupBox ("Cylinders:")
layout <- Qt$QVBoxLayout ()
window$setLayout (layout)

Next, we create the button group:

btn_group <- Qt$QButtonGroup ()
btn_group$exclusive <- FALSE

By default, the buttons are exclusive, as in a radio button group. We disable
that above by setting the exclusive property to "FALSE".

We add a button for each level of the "Cylinders" variable to both the
button group and the layout of the group box widget:

data (Cars93 , package="MASS")
cylinders <- levels (Cars93$Cylinders)
sapply (seq_along (cylinders) , function (i) {

button <- Qt$QCheckBox (sprintf ("%s Cylinders" , cylinders [i]))
layout$addWidget (button)
btn_group$addButton (button , i)

})

275

14. Qt: Widgets

sapply (btn_group$buttons () ,
function (button) button$checked <- TRUE)

Every button is initially checked. (The buttons method returns a list of the
managed buttons.)

Buttons can be removed through removeButton, where the button object
(not its index) is specified for removal.

Here, we retrieve the buttons in the group and query their checked
state:

checked <- sapply (btn_group$buttons () , function (i) i$checked)
if (any (checked)) {

checked_cyls <- Cars93$Cylinders %in% cylinders [checked]
message (sprintf ("You’ve selected %d cases" ,

sum (checked_cyls)))
}

Button groups emit signals paralleling the QAbstractButton class (in
particular the buttonClicked signal, but also buttonPressed and button-
Released). By attaching a callback to the buttonClicked signal,2 we will
be informed when any of the buttons in the group are clicked:

qconnect (btn_group , "buttonClicked(QAbstractButton*)" ,
function (button) {

msg <- sprintf ("Level ’%s’: %s" ,
button$text , button$checked)

message (msg)
})

14.5 Radio groups

Another type of checkable button is the radio button, QRadioButton. Radio
buttons always belong to a group, and only one radio button in a group
may be checked at once (they are exclusive). Continuing our filtering ex-
ample (Figure 14.5), we create several radio buttons for choosing a range
for the "Weight" variable in the "Cars93" data set:

window <- Qt$QGroupBox ("Weight:")
radio_buttons <-

list (Qt$QRadioButton ("Weight < 3000" , w) ,
Qt$QRadioButton ("3000 <= Weight < 4000" , w) ,
Qt$QRadioButton ("4000 <= Weight" , w))

In the above we specified the parent to the constructor to group the objects.
The simplest way to arrange the radio boxes is to place them into the

same layout:

2See Section 12.6 for why we need the (QAbstractButton*).

276

14.6. Combo boxes

layout <- Qt$QVBoxLayout ()
window$setLayout (layout)
sapply (radio_buttons , layout$addWidget)
radio_buttons [[1]] $setChecked (TRUE)

As with any other derivative of QAbstractButton, the checked state is
stored in the checked property:

radio_buttons [[1]] $checked

[1] TRUE

The button’s toggled signal is emitted when a button is checked or
unchecked:

sapply (radio_buttons , function (button) {
qconnect (button , "toggled" , function (checked) {

if (checked) {
message (sprintf ("You checked %s." , button$text))

}
})

})

Managing the radio buttons in a list, as above, is often inconvenient
and difficult to maintain. Instead, we can have a QButtonGroup instance
manage the radio buttons:

btn_group <- Qt$QButtonGroup ()
lapply (radio_buttons , btn_group$addButton)

Since our button group is exclusive, we can query for the currently checked
button through the checkedButton method:

btn_group$checkedButton () $text

[1] "Weight < 3000"

As well, we can listen for events on the button group, rather than
listen on each radio button, as was done above. This strategy makes it
much easier to add (or remove) items, although we do need to add to (or
remove from) both the layout and the button group.

14.6 Combo boxes

A combo box allows a single selection from a drop-down list of options.
In this section, we describe the basic usage of QComboBox. This includes
populating the menu with a list of strings and optionally allowing arbitrary
input through an associated text entry. For the more complex approach of
deriving the menu from a separate data model, see Section 15.3.

277

14. Qt: Widgets

Figure 14.6: Two combo boxes in a form layout.

This example shows how one combo box, listing regions in the United
States, updates another, which lists states in that region (Figure 14.6). First,
we prepare a data.frame with the name, region, and population of each
state and split that data.frame by the regions:

df <- data . frame (name=state . name , region=state . region ,
population=state . x77 [, ’Population’] ,
stringsAsFactors=FALSE)

states_by_region <- split (df , df$region)

We create our combo boxes, loading the region combo box with the
regions:

state_combo <- Qt$QComboBox ()
region_combo <- Qt$QComboBox ()
region_combo$addItems (names (states_by_region))

The addItems method accepts a character vector of options and is the most
convenient way to populate a combo box with a simple list of strings.

To retrieve the value, the currentText property holds the current text,
whereas the currentIndex property indicates the index of the currently
selected item:

region_combo$currentText

[1] "Northeast"

region_combo$currentIndex # 0−b a s e d

[1] 0

By setting it to −1, we clear the selection.

region_combo$currentIndex <- −1

278

14.7. Sliders and spin boxes

To respond to a change in the current index, we connect to the acti-
vated signal:

qconnect (region_combo , "activated(int)" , function (index) {
state_combo$clear ()
state_combo$addItems (states_by_region [[index + 1]] $name)

})

Our handler resets the state combo box to correspond to the selected re-
gion, indicated by "index", which is 0-based.

Finally, we place the widgets in a form layout:

window <- Qt$QGroupBox ("Two combo boxes")
layout <- Qt$QFormLayout ()
window$setLayout (layout)
layout$addRow ("Region:" , region_combo)
layout$addRow ("State:" , state_combo)
layout$fieldGrowthPolicy <- # grow combo b o x e s

Qt$QFormLayout$AllNonFixedFieldsGrow

To allow a user to enter a value not in the menu, the property editable
can be set to TRUE. This would not be sensible for our example.

14.7 Sliders and spin boxes

Sliders and spin boxes are similar widgets used for selecting from a range
of values. Sliders give the illusion of selecting from a continuum, whereas
spin boxes offer a discrete choice. However, underlying each is an arith-
metic sequence. Our example will include both widgets and synchronize
them for specifying a single range. The slider allows for quick movement
across the range, while the spin box is best suited for fine adjustments.

Sliders

Sliders are implemented by QSlider, a subclass of QAbstractSlider. The
class allows selection only from integer values. We create an instance and
specify the bounds of the range:

slider <- Qt$QSlider ()
slider$minimum <- 0
slider$maximum <- 100

We can also customize the step size:

slider$singleStep <- 1
slider$pageStep <- 5

Single step refers to the effect of pressing one of the arrow keys, while
pressing "Page Up/Down" adjusts the slider by pageStep.

279

14. Qt: Widgets

The current cursor position is given by the property value; we set it to
the middle of the range:

slider$value

[1] 0

slider$value <- 50

A slider has several aesthetic properties. We set our slider to be oriented
horizontally (vertical is the default) and place the tick marks below the
slider, with a mark every ten values:

slider$orientation <- Qt$Qt$Horizontal
slider$tickPosition <- Qt$QSlider$TicksBelow
slider$tickInterval <- 10

The valueChanged signal is emitted whenever the value property is
modified. An example is given below, after the introduction of the spin
box.

Spin boxes

There are several spin-box classes: QSpinBox (for integers), QDoubleSpinBox
and QDateTimeEdit. All of these derive from a common base, QAbstract-
SpinBox. As our slider is integer-valued, we will introduce QSpinBox here.
Configuring a QSpinBox proceeds much as it does for QSlider:

spinbox <- Qt$QSpinBox ()
spinbox$minimum <- slider$minimum
spinbox$maximum <- slider$maximum
spinbox$singleStep <- slider$singleStep

There is no "pageStep" for a spin box. Since we are communicating a
percentage, we specify "%" as the suffix for the text of the spin box:

spinbox$suffix <- "%"

It is also possible to set a prefix.
Both QSlider and QSpinBox emit the valueChanged signal whenever

the value changes. We connect to the signal on both widgets to keep them
synchronized:

f <- function (value , obj) obj$value <- value
qconnect (spinbox , "valueChanged" , f , user . data = slider)
qconnect (slider , "valueChanged" , f , user . data = spinbox)

We pass the other widget as the user data, so that state changes in one
are forwarded to the other. A race condition is avoided, as valueChanged
is emitted only when the value actually changes.

280

14.8. Single-line text

14.8 Single-line text

As seen in previous examples, a widget for entering or displaying a single
line of text is provided by the QLineEdit class:

edit <- Qt$QLineEdit ("Initial contents")

The text property holds the current value:

edit$text

[1] "Initial contents"

Here we select the text, so that the initial contents are overwritten when
the user begins typing:

edit$setSelection (start = 0 , length = nchar (edit$text))

edit$selectedText

[1] "Initial contents"

If dragEnabled is TRUE, the selected text can be dragged and dropped
on the appropriate targets.

By default, the line edit displays the typed characters. Other echo modes
are available, as specified by the echoMode property. For example, the
Qt$QLineEdit$Password mode will behave as a password entry, echoing
only asterisks.

In Qt versions 4.7 and above, we can specify place-holder text that fills
the entry if it is empty and unfocused. Typically, this text indicates to the
user the expected contents of the entry:

edit$text <- ""
edit$setPlaceholderText ("Enter some text here")

The editingFinished signal is emitted when the user has committed
the edit, typically by pressing the return key, and the input has been
validated:

qconnect (edit , "editingFinished" , function () {
message ("Entered text: ’" , edit$text , "’")

})

To respond to any editing, without waiting for it to be committed, requires
connecting to the textEdited signal. The newly entered text is passed to
the callback.

The selectionChanged signal reports selection changes.

281

14. Qt: Widgets

Completion

Using the QCompleter framework, a list of possible words can be presented
for completion when text is entered into a QLineEdit.

Example 14.2: Implementing completion of Qt classes and methods

This example shows how completion can assist in exploring the classes
and namespaces of the Qt library. A form layout arranges two line edit
widgets – one to gather a class name and one for method and property
names. See Figure 14.8 to see this widget example embedded into a web
page.

class_browser <- Qt$QWidget ()
layout <- Qt$QFormLayout ()
class_browser$setLayout (layout)
layout$addRow ("Class name" , class_edit <- Qt$QLineEdit ())
layout$addRow ("Method name" , method_edit <- Qt$QLineEdit ())

Next, we construct the completer for the class entry, listing the compo-
nents of the "Qt" environment with ls:

class_completer <- Qt$QCompleter (ls (Qt))
class_edit$setCompleter (class_completer)

The completion for the methods depends on the class. As such, we
update the completion when editing is finished for the class name:

qconnect (class_edit , "editingFinished" , function () {
class_name <- class_edit$text
if (class_name == "") return ()
class_object <- get (class_name , envir = Qt)
if (!is . null (class_object)) {

method_completer <- Qt$QCompleter (ls (class_object ()))
method_edit$setCompleter (method_completer)

}
})

Masks and validation

QLineEdit has various means to restrict and validate user input. The
maxLength property restricts the number of allowed characters. Beyond
that, there are two mechanisms for validating input: masks and QValida-
tor. An input mask is convenient for restricting input to a simple pattern.
We could, for example, force the input to conform to the pattern of a
United States Social Security number:

edit$inputMask <- "999-99-9999"

282

14.8. Single-line text

Figure 14.7: A dialog to collect argument for a call to read.csv.

Please see the API documentation of QLineEdit for a full description of
the format of an input mask.

As illustrated in Example 12.2, QValidator is a much more general
validation mechanism, where the value in the widget is checked by the
validator before being committed.

Example 14.3: A dialog for calling read.csv
We illustrate some of the widgets and dialogs discussed in this chapter in
the following example, which gathers arguments needed to import a file
into R through read.csv. Figure 14.7 shows the finished GUI. We use a
form layout to organize our controls, but first we need to define them.

We use a named list below to store our controls:

controls <- list ()
controls$file <- Qt$QPushButton ("click to select...")
##
controls$header <- Qt$QCheckBox () # no name
controls$header$setChecked (TRUE)
##
controls$sep <- Qt$QComboBox ()
controlssepaddItems (sprintf (’%s’ , c ("," , ";" ,"" ,"\t")))

283

14. Qt: Widgets

controlssepsetEditable (TRUE)
##
controls$quote <- Qt$QLineEdit ("\"’")
##
controls$fill <- Qt$QCheckBox()
controls$fill$setChecked(TRUE)

The names of the list will become the label associated with the corre-
sponding control. A button is chosen for the file, which we will later use
to open a file selection dialog. Otherwise, the controls have a fairly obvious
mapping to the arguments of read.csv.

To illustrate radio buttons, we use a set of them to select the comment
character argument. Here we store the container in the list and create a
separate (global) variable to hold the radio-button widgets themselves.

controls$comment . char <- Qt$QGroupBox () # c o n t a i n e r
comment . char <- lapply (sprintf ("%s" , c ("" ,"#" ,"%")) ,

Qt$QRadioButton , controls$comment . char)
comment . char [[1]] $setChecked (TRUE)
manage
comment . char . bg <- Qt$QButtonGroup ()
sapply (comment . char , comment . char . bg$addButton)
l a y o u t
layout <- Qt$QVBoxLayout ()
controls$comment . char$setLayout (layout)
sapply (comment . char , layout$addWidget)

The variable name uses a simple line-edit widget to which we add an
instructional placeholder. We also populate its auto-completion database
with the current global workspace variable names.

controls$name <- Qt$QLineEdit ("")
controls$name$setPlaceholderText ("Variable name to store data")
completer <- Qt$QCompleter (ls (. GlobalEnv))
controls$name$setCompleter (completer)

The form layout goes quickly, as we can iterate over the list compo-
nents:

form_layout <- Qt$QFormLayout ()
mapply (form_layout$addRow , names (controls) , controls)

A dialog button box ensures consistency with the operating -system
conventions.

button_box <-
Qt$QDialogButtonBox (Qt$QMessageBox$Cancel |

Qt$QMessageBox$Ok)

We use a simple widget to lay out the form and the buttons.

284

14.8. Single-line text

window <- Qt$QWidget ()
window$windowTitle <- "Read csv file"
window$setLayout (window_layout <- Qt$QVBoxLayout ())
window_layout$addLayout (form_layout)
window_layout$addWidget (button_box)

At this point, the widgets are set up and laid out. We turn to the task
of adding interactivity. First, the file button, when clicked, should open
a file-selection dialog. If a file load is successful, we change the label on
the button to indicate the selection, using the global filename to store the
value.

filename <- NULL
qconnect (controls$file , "clicked" , function () {

name_filter <- "CSV file (*.csv);; All files (*.*)"
filename <<- Qt$QFileDialog$getOpenFileName (window ,

"Select a CSV file..." , getwd () , name_filter)
if (!is . null (filename))

controls$file$setText (basename (filename))
})

We connect to the signals on the dialog button box. The rejected
callback simply hides the dialog. The accepted callback is more complex.
After checking that a file and variable name have been selected, we gather
the values from the dialog through various means. These are stored in the
list args below. Finally, once the arguments are collected, we execute the
call to read.csv.

qconnect (button_box , "rejected" , function () window$hide ())
##
qconnect (button_box , "accepted" , function () {

if (!is . null (filename) && nchar (controls$name$text) > 0) {
args <- list (file=filename ,

header=controls$header$checked ,
sep=controlssepcurrentText ,
quote=controls$quote$text ,
fill=controls$fill$checked
)

args$comment . char <- comment . char . bg$checkedButton () $text
##
val <- do . call ("read.csv" , args)
assign (controls$name$text , val , . GlobalEnv)
window$hide ()

} else {
Qt$QMessageBox$warning (parent = window ,

title = "Warning!" ,
text = "You need to select a file and variable name")

}
})

285

14. Qt: Widgets

Figure 14.8: An example of QWebView holding an embedded widget
within a web page.

14.9 QWebView widget

The QtWebKit module provides a Qt-based implementation of the cross-
platform WebKit API. The standards support is comparable to that of other
WebKit implementations like Safari and Chrome. This includes HTML ver-
sion 5, Javascript and SVG. The Javascript engine, provided by the QtScript
module, allows bridging Javascript and R, which will not be discussed. The
widget QWebView uses QtWebKit to render web pages in a GUI.

This is the basic usage:

webview <- Qt$QWebView ()
webview$load (Qt$QUrl ("http://www.r-project.org"))

A web browser typically provides feedback on the URL loading process.
The signals loadStarted, loadProgress, and loadFinished are provided
for this purpose. History information is stored in a QWebHistory object,
retrieved by calling history on the web view. This could be used for
implementing a “Back” button.

Embedding Qt widgets A unique feature of QtWebKit is the ability to
embed Qt widgets into a web page (Figure 14.8). This is one mechanism
for constructing hybrid web/desktop applications. Widget embedding is
implemented through the standard HTML "object" tag. We can register
a plug-in, manifested as a QWidget, for a particular MIME type, specified
through the "type" attribute of the "object" element.

For example, we might have the following simple HTML:

html <- readLines (out <- textConnection ("
<html xmlns=’http://www.w3.org/1999/xhtml’>

<body>
<h1>Qt class browser embedded into a QWebView </h1>
Search for a class:

286

14.9. QWebView widget

<object type=’application/x-qt-class-browser’ width=’500’
height=’100’/>

</body>
</html>
")) ; close (out)
html <- paste (html , collapse = "\n")

For our plug-in, we use the class browser widget, constructed in Ex-
ample 14.2. To provide the plug-in, we need to implement a custom QWeb-
PluginFactory:

qsetClass ("RPluginFactory" , Qt$QWebPluginFactory)

The factory has two duties: describing its available plug-ins and creating
a plug-in, in the form of a QWidget, for a given MIME type. The plugins
method returns a list of plug-in descriptions:

qsetMethod ("plugins" , RPluginFactory , function () {
plugin <- Qt$QWebPluginFactory$Plugin ()
plugin$setName ("Class Browser")
mimeType <- Qt$QWebPluginFactory$MimeType ()
mimeType$setName ("application/x-qt-class-browser")
plugin$setMimeTypes (list (mimeType))
list (plugin)

})

Our factory provides a single plug-in, with a single MIME type that
matches the type of the "object" element in the HTML. The create
method constructs the actual QWidget corresponding to the plug-in:

qsetMethod ("create" , RPluginFactory ,
function (mime_type , url , arg_names , arg_vals) {

if (mime_type== "application/x-qt-class-browser")
class_browser

else Qt$QWidget ()
})

If the MIME type does not match our plug-in, we simply return an empty
widget.

Finally, we need to enable plug-ins, register our factory, and load the
HTML:

globalSettings <- Qt$QWebSettings$globalSettings ()
globalSettings$setAttribute (Qt$QWebSettings$PluginsEnabled ,

TRUE)
webview$page () $setPluginFactory (RPluginFactory ())
webview$setHtml (html)

287

14. Qt: Widgets

14.10 Embedding R graphics

The qtutils package includes a Qt-based graphics device, written by Deep-
ayan Sarkar. We make a simple scatterplot:

library (qtutils)
qt_device <- QT ()
plot (mpg ~ hp , data = mtcars)

The "qtDevice" object may be shown directly or embedded within a GUI.
For example, we might place it in a notebook of multiple plots:

notebook <- Qt$QTabWidget ()
notebook$addTab (qt_device , "Plot 1")
print (notebook)

The device provides a context menu with actions for zooming, export-
ing and printing the plot. We can execute an action programmatically by
extracting the action from "qtDevice" and activating it.

To increase performance at a slight cost of quality, we could direct the
device to leverage hardware acceleration through OpenGL. This requires
passing "opengl = TRUE" to the QT constructor:

qt_opengl_device <- QT (opengl = TRUE)

Even without the help of OpenGL, the device is faster than most other
graphics devices, in particular cairoDevice, due to the general efficiency
of Qt graphics.

Internally, the device renders to a QGraphicsScene. Every primitive
drawn by R becomes an object in the scene. Nothing is rasterized to pixels
until the scene is displayed on the screen. This presents the interesting
possibility of programmatically manipulating the graphical primitives after
they have been plotted; however, this is beyond our scope. See Exam-
ple 14.3 for a way to render the scene to an off-screen QPixmap for use as
an icon.

14.11 Drag-and-drop

Some Qt widgets, such as those for editing text, natively support basic
drag-and-drop activities. For other situations, it is necessary to program
against the low-level drag-and-drop API, presented here. A drag-and-drop
event consists of several stages: the user selects the object that initiates
the drag event, drags the object to a target, and finally drops the object
on the target. For our example, we will enable the dragging of text from
one label to another, following the Qt tutorial. Example 15.2 has a more
realistic example.

288

14.11. Drag-and-drop

Initiating a drag

We begin by setting up a label to be a drag target:

qsetClass ("DragLabel" , Qt$QLabel ,
function (text = "" , parent = NULL) {

super (parent)
setText (text)
##
setAlignment (QtQtAlignCenter)
setMinimumSize (2 0 0 , 200)

})

When a drag-and-drop sequence is initiated, the source, i.e., the widget
receiving the mouse press event, needs to encode a chosen graphical object
as MIME data. This might be as an image, text, or other data type. This
occurs in the mouseEventHandler of the source:

qsetMethod ("mousePressEvent" , DragLabel , function (event) {
mime_data <- Qt$QMimeData ()
mime_data$setText (text)

drag <- Qt$QDrag (this)
drag$setMimeData (mime_data)

drag$exec ()
})

We store the text in a QMimeData and pass it to the QDrag object, which
represents the drag operation. The drag object is given this as its parent,
so that drag is not garbage collected when the handler returns. Finally,
calling the exec method is necessary to initiate the drag. It is also possible
to call setPixmap to set a pixmap to represent the object as it is being
dragged to its target.

Handling a drop

Implementing a label as a drop target is a bit more work, as we customize
its appearance. Our basic constructor follows:

qsetClass ("DropLabel" , Qt$QLabel ,
function (text="" , parent=NULL) {

super (parent)

setText (text)
this$acceptDrops <- TRUE

this$bgrole <- backgroundRole ()
this$alignment <- Qt$Qt$AlignCenter

289

14. Qt: Widgets

setMinimumSize (2 0 0 , 200)
this$autoFillBackground <- TRUE
clear ()

})

The important step is to allow the widget to receive drops by setting
acceptDrops to TRUE. The other settings ensure that the label fills a min-
imal amount of space and draws its background. The background role is
preserved so that we can restore it later, after applying highlighting.

First, we define a couple of utility methods:

qsetMethod ("clear" , DropLabel , function () {
setText (this$orig_text)
setBackgroundRole (this$bgrole)

})
qsetMethod ("setText" , DropLabel , function (text) {

this$orig_text <- text
super ("setText" , text) # nex t method

})

The clear method is used to restore the label to an initial state. The back-
ground role is remembered in the constructor, and the setText override
saves the original text.

When the user drags an object over our target, we need to verify that the
data is of an acceptable type. This is implemented by the dragEnterEvent
handler:

qsetMethod ("dragEnterEvent" , DropLabel , function (event) {
mime_data <- event$mimeData ()
if (mime_data$hasImage () || mime_data$hasHtml () |

mime_data$hasText ())
{

super ("setText" , "<Drop Text Here>")
setBackgroundRole (Qt$QPalette$Highlight)
event$acceptProposedAction ()

}
})

If the data type is acceptable, we accept the event. This changes the mouse
cursor, indicating that a drop is possible. A secondary role of this han-
dler is to indicate that the target is receptive to drops; we highlight the
background of the label and change the text. To undo the highlighting, we
override the dragLeaveEvent method:

qsetMethod ("dragLeaveEvent" , DropLabel , function (event) {
clear ()

})

290

14.11. Drag-and-drop

Finally, we have the important drop-event handler. The following code
implements this more generally than is needed for this example, as we
have only text in our MIME data:

qsetMethod ("dropEvent" , DropLabel , function (event) {
mime_data <- event$mimeData ()

if (mime_data$hasImage ()) {
setPixmap (mime_data$imageData ())

} else if (mime_data$hasHtml ()) {
setText (mime_data$html)
setTextFormat (QtQtRichText)

} else if (mime_data$hasText ()) {
setText (mime_data$text ())
setTextFormat (QtQtPlainText)

} else {
setText ("No match") # r e p l a c e . . .

}

setBackgroundRole (this$bgrole)
event$acceptProposedAction ()

})

We are passed a QDropEvent object, which contains the QMimeData set
on the QDrag by the source. The data is extracted and translated to one or
more properties of the target. The final step is to accept the drop event, so
that the drag-and-drop operation is completed.

291

This page intentionally left blankThis page intentionally left blank

15

Qt: Widgets Using Data Models

The model, view, controller (MVC) pattern is fundamental to the design
of widgets that display and manipulate data. Keeping the model separate
from the view allows multiple views for the same data. Generally, the
model is an abstract interface. Thus, the same view and controller compo-
nents are able to operate on any data source (e.g., a database) for which a
model implementation exists.

Qt provides QAbstractItemModel as the base for all of its data models.
Like GtkTreeModel, QAbstractItemModel represents tables, optionally with
a hierarchy. The precise implementation depends on the subclass. Widgets
that view item models extend QAbstractItemView and include tables, lists,
trees, and combo boxes. This section will outline the available model and
view implementations in Qt and qtbase.

15.1 Displaying tabular data

Displaying an R data frame

As mentioned, Qt expects data to be stored in a QAbstractItemModel in-
stance. In R, the canonical structure for tabular data is data.frame. The
DataFrameModel class bridges these structures by wrapping data.frame
in an implementation of QAbstractItemModel. This essentially allows a
data.frame object to be passed to any part of Qt that expects tabular data.
It also offers significant performance benefits: there is no need to copy the
data frame into a C++ data structure, which would be especially slow if
the looping occurred in R.

Displaying a simple table of data with DataFrameModel is much easier
than with GTK+ and RGtkDataFrame. Here, we construct a widget to show
a data.frame in a table view:

model <- qdataFrameModel (mtcars)
view <- Qt$QTableView ()
view$setModel (model)

293

15. Qt: Widgets Using Data Models

Figure 15.1: Basic display of a data frame using just three commands.

Figure 15.1 shows the resulting widget. We could also pass our model
to any other view expecting a QAbstractItemModel. For example, the first
column could be displayed in a list or combo box.

The R data frame of a DataFrameModel can be accessed using
qdataFrame:

DF <- qdataFrame (model)
DF [1 : 3 , 1 : 1 0]

mpg cyl disp hp drat wt qsec vs am gear
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4

Assignment is possible, too:

qdataFrame (model) $hpToMpg <- with (qdataFrame (model) , hp / mpg)

Our table view now contains a new column, holding the horsepower to
miles-per-gallon ratio. The DataFrameModel object is a reference, so mod-
ifications occur in place, rather than being incorporated in a newly con-
structed object. One consequence is that changes made within a function
body may propagate beyond the local environment. It is important to no-
tice that any view of the model will reflect changes to the underlying
model without any explicit updating.

Headers A table view has horizontal and vertical headers. The horizontal
header displays the column names, while the vertical header displays the
row names, if any. QHeaderView is the class responsible for displaying
headers. It has a number of parameters, such as whether the column can
be moved (setMovable) and the defaultAlignment of the labels, which,

294

15.1. Displaying tabular data

as we will see later, can be overridden by the model for specific columns.
By default, the labels are centered. Here, we specify left alignment for the
column labels:

header <- view$horizontalHeader ()
header$defaultAlignment <- Qt$Qt$AlignLeft

Aesthetic properties QTableView provides a number of aesthetic features.
By default, a grid is drawn that delineates the cells. We can set showGrid
to "FALSE" to disable this. If a table has more than a few columns, it may
be a good idea to fill the row backgrounds with alternating colors:

view$alternatingRowColors <- TRUE

Memory management

A view keeps a reference to its model, and the model method returns the
model object. However, we offer a word of caution: since multiple views
can refer to a single model, a view does not own its model. This means
that if a model becomes inaccessible to R, i.e., if it goes out of scope, the
model will be garbage collected, due to lack of an owner. For example,
this does not work:

broken_view <- Qt$QTableView ()
broken_view$setModel (qdataFrameModel (mtcars))
gc ()

broken_view$model () # NULL, g a r b a g e c o l l e c t e d

NULL

To prevent this, we should either (1) maintain a reference to the model
in R, which we typically do in this text, or (2) explicitly give the view
ownership of the model by setting the view as the parent of the model,
like this:

parental_view <- Qt$QTableView ()
broken_view$setModel (qdataFrameModel (mtcars ,

parent = parental_view))
gc ()

broken_view$model () # not g a r b a g e c o l l e c t e d

DataFrameModel instance

295

15. Qt: Widgets Using Data Models

Formatting cells

Let us now assume that a missing value (NA) has been introduced into our
data set:

qdataFrame (model) $mpg [1] <- NA

The table view will display this as "nan" or "inf", which is inconsistent
with the notation of R. The conversion of the numeric data to text is car-
ried out by an item delegate. Similar to a GTK+ cell renderer (Section 9.1),
an item delegate is responsible for the rendering and editing of items
(cells) in a view. Every type of item delegate is derived from the QAb-
stractItemDelegate class. By default, views in Qt will use an instance
of QStyledItemDelegate, which renders items according to the current
style. As Qt is unaware of the notion and encoding of missing values in
R, we need to give Qt extra guidance. The qtbase package provides the
RTextFormattingDelegate class for this purpose. To use it, we create an
instance and set it as the item delegate for the view:

delegate <- qrTextFormattingDelegate ()
view$setItemDelegate (delegate)

Delegates can also be assigned on a per-column or per-row basis.
RTextFormattingDelegate will handle missing values in numeric vectors,
as well as adhere to the numeric formatting settings in options(), namely
"digits" and "scipen".

Column sizing

Managing the column widths of a table view is a challenge. This section
will describe some of the strategies and suggest some best practices. The
appropriate strategy depends, in part, on whether the table is expanding
in its container.

When the table view is expanding, it will not necessarily fill its available
space. To demonstrate,

model <- qdataFrameModel (mtcars [, 1 : 5])
view <- Qt$QTableView ()
view$setModel (model)
window <- Qt$QWidget ()
window$resize (1 0 0 0 , 500)
vbox <- Qt$QVBoxLayout ()
vbox$addWidget (view)
window$setLayout (vbox)

There is a gap between the last column and the right side of the win-
dow. It is difficult to appropriately size the columns of an expanding table.
The simplest solution is to expand the last column:

296

15.1. Displaying tabular data

header <- view$horizontalHeader ()
header$stretchLastSection <- TRUE

To avoid the last column being too large, we can set pixel widths on
the other columns. The simplest approach is to set the defaultSectionSize
property, which gives all of the columns (except for the last) the same initial
size:

header$defaultSectionSize <- 150
header$stretchLastSection <- TRUE

This usually yields an appropriate initial sizing. To resize specific
columns, we could call resizeSection. Although specifying exact pixel
sizes is inherently inflexible, the user is still free to adjust the column
widths.

If, instead, we wish to pack a table so that it is not expanding, it may
be desirable to initialize the column widths so that the columns optimally
fit their contents:

view$resizeColumnsToContents ()

This will need to be called each time the contents change.
By default, the size is always under control of the user (and the pro-

grammer), although this depends on the resize mode. The resizeMode
property represents the default resize mode for all columns, and it defaults
to "Interactive". The other modes are "Fixed", "Stretch" (expanding),
and "ResizeToContents" (constrained to width needed to fit contents).
The setResizeMode method changes the resize mode of a specific column.
Below, we make all of our columns expand:

header$resizeMode (Qt$QHeaderView$Stretch)

The drawback to any of these modes is that the resizing is no longer
interactive: the user cannot tweak the column widths.

When the size of a column is reduced such that it can no longer natu-
rally display its contents, special logic is necessary. By default, QTableView
will wrap text at word boundaries. This is controlled by the wordWrap
property. When a single word is too long, the text will be ellipsized, i.e.,
truncated and appended with “...”. This can be disabled with

view$textElideMode <- Qt$Qt$ElideNone

When the user attempts to reduce the size of a column to the point where
ellipisizing would be necessary, it may be preferable to reduce instead the
widths of the other columns. This mode is enabled with

header$cascadingSectionResizes <- TRUE

297

15. Qt: Widgets Using Data Models

15.2 Displaying lists

It is often desirable to display a list of items, usually as text. A single
column QTableView approximates this but also includes row and column
headers, by default. Also, the two-dimensional API of QTableView is more
complicated than needed for a one-dimensional list. For these and other
reasons, Qt provides QListView for displaying a single column from a
QAbstractItemModel as a list. We can use DataFrameModel to display the
first column from a data frame (or anything coercible into a data frame)
quickly:

model <- qdataFrameModel (rownames (mtcars))
view <- Qt$QListView ()
view$setModel (model)

By default, QListView displays the first column from the model, although
the column index can be customized.

Using a data model allows us to share data between multiple views.
For example, we could view a data frame as a table using a QTableView
and also display the row identifiers in a separate list:

mtcars_id <- cbind (makeAndModel = rownames (mtcars) , mtcars)
model <- qdataFrameModel (mtcars_id)
table_view <- Qt$QTableView ()
table_view$setModel (model)
##
list_view <- Qt$QListView ()
list_view$setModel (model)

Now, when we resort the model, both views will be updated:

DF <- qdataFrame (model)
qdataFrame (model) <- DF [order (DF$mpg) ,]

The QStringListModel class When the list items are not associated with
a data frame, they may be conveniently represented as a character vector. In
this case, DataFrameModel is not very appropriate, as the character vector
will be coerced to a data frame. Instead, consider QStringListModel from
Qt. In qtbase, QStringList refers to a character vector. We demonstrate the
use of QStringListModel to populate a list view from a character vector:

model <- Qt$QStringListModel (rownames (mtcars))
list_view <- Qt$QListView ()
list_view$setModel (model)

Now we can retrieve the values as a character vector with the
stringList method, rather than as a data frame:

head (model$stringList ())

298

15.3. Model-based combo boxes

[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"

QListView supports features beyond those of a simple list, including
features often found in file browsers and desktops. For example, the items
can be wrapped into additional columns or displayed in an icon mode.
The widget also supports unrestricted layout and drag-and-drop.

15.3 Model-based combo boxes

Combo boxes were previously introduced as containers of string items
and accompanying icons. The high-level API is sufficient for most uses;
however, it is beneficial to understand that a combo box displays its pop-
up menu with a QListView, which is based on a QStandardItemModel by
default. It is possible to provide a custom data model for the list view.
Explicitly leveraging the MVC pattern with a combo box affords greater
aesthetic control and facilitates synchronizing the items with other views.

For example, we can create a combo box that lists the same cars that
are present in our table and list views:

combo_box <- Qt$QComboBox ()
combo_box$setModel (model)

By default, the first column from the model is displayed; this is controlled
by the modelColumn property.

15.4 Accessing item models

We have shown how DataFrameModel and QStringListModel allow the
storage and retrieval of data in familiar data structures. However, this is
not true of all data models, including most of those in Qt. Alternative
models are required, for example, in the case of hierarchical data. In such
cases, or when interpreting user input, such as selection, it is necessary to
interact with the low-level, generic API of the item/view framework.

An item model refers to its rows, columns, and cells with QModelIndex
objects, which are created by the model:

index <- model$index (0 , 0)
c (row = index$row () , column = index$column ())

row column
0 0

Our "index" refers to the first row of the QStringListModel, using 0-based
indices. The index points to a cell in the model, and we can retrieve the
data in the cell using only the index:

299

15. Qt: Widgets Using Data Models

(first_car <- index$data ())

[1] "Mazda RX4"

We vectorize the above to retrieve all of the items in the list:

items <- sapply (seq (model$rowCount ()) , function (i) {
model$index (i − 1 , 0) $data ()

})
head (items , n=6)

[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"

Setting the data is also possible, yet it requires calling setData on the
model, not the index:

model$setData (index , toupper (first_car))

[1] TRUE

We will leave the population of a model with the low-level API as an
exercise for the reader. Recall that DataFrameModel and QStringListModel
provide an interface that is much faster and more convenient. When using
such models, it is usually necessary to directly manipulate a QModelIndex
only when handling user input, as we describe in the next section.

15.5 Item selection

Selection is likely the most common type of user interaction with lists and
tables. There are five selection modes for item views; they are defined by
the QAbstractItemView::SelectionMode enumeration and include:

• "SingleSelection" mode: allows only a single item to be selected at
once.

• "ExtendedSelection" mode: the default; supports canonical multiple
selection, where a range of items is selected by clicking the end points
while holding the Shift key; clicking with the Ctrl key pressed adds
arbitrary items to the selection.

• "ContiguousSelection" mode: disallows the Ctrl key behavior.

• "MultiSelection" mode: allows selection on mouse-over, with range
selection by clicking and dragging.

We configure our list view for single selection with:

300

15.5. Item selection

list_view$selectionMode <- Qt$QAbstractItemView$SingleSelection

For our tabular view, selection may be row-wise, column-wise, or item-
wise (GTK+, by comparison, supports only row-wise selection). By default,
selection is by item. While this is common in spreadsheets, we usually
desire row-wise selection in a table, so we will override the default:

table_view$selectionBehavior <- Qt$QAbstractItemView$SelectRows

Accessing the selection

The selection state is stored in its own data model, QItemSelectionModel:

selection_model <- list_view$selectionModel ()

This design allows views to synchronize selection. It also supports views
on the selection state, such as a label indicating how many items are
selected, independent of the particular type of item view.

We can query the selection model for the selected items in our list. Let
us assume that we have selected the third row. We retrieve the data (label)
in that row:

indices <- selection_model$selectedIndexes ()
indices [[1]] $data ()

[1] "Datsun 710"

When multiple selection is allowed, we must take care to interpret the
selection efficiently, especially if a table has many rows. In the above, we
obtained the selected indices. A selection is more formally represented by
a QItemSelection object, which is a list of QItemSelectionRange objects.
Under the assumption that the user has selected three separate ranges
of items from the list view, we retrieve that selection from the selection
model:

selection <- selection_model$selection ()

Next, we coerce the QItemSelection to an explicit list of QItem-
SelectionRange objects and generate a vector of the selected indices:

indicesForSelection <- function (selection) {
selection_ranges <- as . list (selection)
unlist (lapply (selection_ranges , function (range) {

seq (range$top () , range$bottom ())
}))

}
indicesForSelection (selection)

[1] 3 4 5 10 11 12 13 14 15 16 20 21 22 23 24

301

15. Qt: Widgets Using Data Models

Coercion with as.list is possible for any class extending QList; QItem-
Selection is the only such class the reader is likely to encounter. Usually,
the user selects a relatively small number of ranges, although the ranges
can be wide. Looping over the ranges, but not the individual indices, will
be significantly more efficient for large selections.

Responding to selection changes

To respond to a change in selection, connect to the selectionChanged
signal on the selection model:

selected_indices <- rep (FALSE , nrow (mtcars))
selectionChangedHandler <- function (selected , deselected) {

selected_indices [indicesForSelection (selected)] <<- TRUE
selected_indices [indicesForSelection (deselected)] <<- FALSE

}
qconnect (selection_model , "selectionChanged" ,

selectionChangedHandler)

The change in selection is communicated as two QItemSelection ob-
jects: one for the selected items, the other for the deselected items. We
update a vector of the selected indices according to the change.

Assigning the selection

It is also possible to change the selection programmatically. For example,
we may wish to select the first list item:

list_view$setCurrentIndex (model$index (0 , 0))

This approach is simple but only supports selecting a single item. The
selection is most generally modified by calling the select method on the
selection model:

selection_model$select (model$index (0 , 0) ,
Qt$QItemSelectionModel$Select)

The second argument describes how the selection is to be changed with
regard to the index. It is a flag value and thus can specify several options
at once, all listed in QItemSelectionModel::SelectionFlags. In the above,
we issued the "Select" command. Other commands include "Deselect"
and "Toggle". Thus, we could deselect the item in similar fashion:

selection_model$select (model$index (0 , 0) ,
Qt$QItemSelectionModel$Deselect)

To select a range of items, efficiently we construct a QItemSelection object
and set it on the model:

302

15.6. Sorting and filtering

selection <- Qt$QItemSelection (model$index (3 , 0) ,
model$index (1 0 , 0))

selection_model$select (selection ,
Qt$QItemSelectionModel$Select)

We have selected items 4 to 11. Multiple ranges can be added to the
QItemSelection object by repeatedly calling its select method.

Querying a selection in a table view is essentially the same as for the list
view, except we can request indices representing entire rows or columns. In
this example, we are interested in the rows, where the user has selected:

selection_model <- table_view$selectionModel ()
sapply (selection_model$selectedRows () , qinvoke , "row")

list()

We invoke the row method on each returned QModelIndex object to get
the row indices.

When we are setting the selection, there are conveniences for selecting
an entire row or column. We select the first row of the table:

table_view$selectRow (0)

Selecting a range of rows is very similar to selecting a range of list
items, except we need to add the "Rows" selection flag:

selection_model$select (selection ,
Qt$QItemSelectionModel$Select | Qt$QItemSelectionModel$Rows)

15.6 Sorting and filtering

One of the benefits of the MVC design is that models can serve as proxies
for other models. Two common applications of proxy models are sorting
and filtering. Decoupling the sorting and filtering from the source model
avoids modifying the original data. The filtering and sorting is dynamic, in
the sense that no data is actually stored in the proxy. The proxy delegates to
the child model, while mapping indices between the filtered and unfiltered
(or sorted and unsorted) coordinate space. Thus, there is little cost in
memory.

Qt implements both sorting and filtering in a single class: QSortFilter-
ProxyModel.1 After constructing an instance and specifying the child model,
the proxy model can be handed to a view like any other model:

proxy_model <- Qt$QSortFilterProxyModel ()
proxy_model$setSourceModel (model)
table_view$setModel (proxy_model)
list_view$setModel (proxy_model)

1In RGtk2 there are separate proxy models for sorting and filtering, cf. Section 9.1.

303

15. Qt: Widgets Using Data Models

Our views will now draw data through the proxy, rather than from the
original model.

Both table views and treeviews provide interfaces for the user to sort
the underlying model. The user clicks on a column header to sort by the
corresponding column. Clicking multiple times toggles the sort order. This
behavior is enabled by setting the sortingEnabled property:

table_view$sortingEnabled <- TRUE

Since the sort occurs in the model, both the table view and list view
display the sorted data. The sort has been applied to both the table and
list view. It is also possible to sort programmatically by calling the sort
method, passing the index of the sort column. We sort our data by the
"mpg" variable:

proxy_model$sort (1) # mpg in column 2 o f model

The built-in sorting logic understands basic data types such as strings and
numbers. Customizing the sorting requires overriding the lessThan virtual
method in a new class.

QSortFilterProxyModel supports filtering by row. The column indi-
cated by the filterKeyColumn property is matched against a string pat-
tern. Only rows with a matching value in the key column are allowed past
the filter. The pattern is a QRegExp, which supports several different syntax
forms, including: fixed strings, wild cards (globs), and regular expressions.
For example, we can filter for cars made by Mercedes:

proxy_model$filterKeyColumn <- 0
proxy_model$filterRegExp <- Qt$QRegExp ("^Merc")

This approach should satisfy the majority of use cases. To achieve more
complex filtering, including filtering of columns, subclassing is necessary.

It is also possible to hide rows and columns at the view by calling set-
ColumnHidden or setRowHidden. For example, we hide the "Price" column
(column 5):

table_view$setColumnHidden (5 − 1L , TRUE)

It is common for different views to display different types of information,
which translates to different sets of columns. For row filtering, the proxy
model approach is usually preferable to hiding view rows, as the filtering
will apply to all views of the data.

15.7 Decorating items

Thus far, we have considered only the display of plain text in item views.
To move beyond this, the model needs to communicate extra rendering
information to the view. With GTK+, this information is stored in extra

304

15.7. Decorating items

columns, which are mapped to visual properties. Unlike GTK+, however,
Qt does not require every cell in a column to have the same rendering strat-
egy or even the same type of data. Thus, Qt stores rendering information at
the item level. An item is actually a collection of data elements, each with
a unique role identifier. The mapping of roles to visual properties depends
on the QItemDelegate associated with the item. The default item delegate,
QStyledItemDelegate, understands most of the standard roles listed in the
Qt::ItemDataRole enumeration, selectively listed in Table 15.7.

For example, when we create a DataFrameModel, the default be-
havior is to associate the data-frame values with the Qt$DisplayRole.
QStyledItemDelegate (and its extension RTextFormattingDelegate) con-
vert the value to a string for display. Other roles control aspects like the
background and foreground colors, the font, and the decorative icon, if
any.

DataFrameModel roles DataFrameModel instances support role-specific val-
ues for each item, provided "useRoles = TRUE" is passed to the construc-
tor. It is then up to the programmer to indicate the mapping from a
data-frame column to a column and role in the model. The mapping is
encoded in the column names. Each column name should have the syn-
tax "[.NAME][.ROLE]", where "NAME" indicates the column name in the
model2 and "ROLE" refers to a value in Qt::ItemDataRole, without the
"Role" suffix. If the column name does not contain a period (i.e., there is
no "ROLE"), the display role is assumed.

For example, to customize the row names, we could shade the back-
ground of the first column, the makes and models, in gray:

mtcars_id <- cbind (makeAndModel=rownames (mtcars) , mtcars)
model <- qdataFrameModel (mtcars_id , useRoles = TRUE)
qdataFrame (model) $. makeAndModel . background <-

list (qcolor ("gray"))

In the above, we store a list of QColor instances in our data frame.3

The set of supported data types for each role depends on the delegate.
For delegates derived from QStyledItemDelegate, see the documentation
for that class. Due to implicit conversion in the internals of Qt, the number
of possible inputs is much greater than those explicitly documented. For
example, the "background" role demonstrated above formally accepts a
QBrush object, while implicit conversion allows types such as QColor and
QGradient.

2"NAME" can refer to multiple columns, if separated by periods, or all columns if omitted.
3Storing objects other than atomic vectors in a data frame requires some care, which we

avoid here. If we had added that column in a call to "data.frame" or cbind, it would have
been necessary to wrap the list with I() in order to prevent coercion of the list to a data
frame.

305

15. Qt: Widgets Using Data Models

Figure 15.2: Example decorating cell items using role specification of
DataFrameModel.

It is possible for a single data frame column to specify the values for a
particular role across multiple model columns. This is useful, for example,
when modifying the font uniformly across several columns of interest.
Here, we bold the "mpg" and "hp" columns:

qdataFrame (model) $. mpg . hp . font <-
list (qfont (weight = Qt$QFont$Bold))

After these modifications, the model can be passed to a view, as in
Figure 15.2.

view <- Qt$QTableView ()
view$setModel (model)
view$verticalHeader () $hide () # h i d e d e f a u l t row names

If the "NAME" component is omitted, the role will apply to all columns
for which a role of the same type has not already been specified. Here, we
change the foreground color for all cells:

qdataFrame (model) $. foreground <- list (qcolor ("darkgray"))

Roles in other models For models other than DataFrameModel, we set
data for a specific role by passing the optional role argument to the
model’s setData method. The value of role defaults to "EditRole", mean-
ing that the data is in an editable form, i.e., it is treated as input from the
user.

Here, we show how to create a list view and set the background of the
first item to yellow:

list_model <- Qt$QStringListModel (rownames (mtcars))
list_model$setData (list_model$index (0 , 0) , "yellow" ,

QtQtBackgroundRole)
list_view <- Qt$QListView ()
list_view$setModel (list_model)

306

15.8. Displaying hierarchical data

Table 15.1: Partial list of roles that an item can hold data for and the class
of the data.

Constant Description

DisplayRole How data is displayed (QString)
EditRole Data for editing (QString)
ToolTipRole Displayed in tooltip (QString)
StatusTipRole Displayed in status bar (QString)
SizeHintRole Size hint for views (QSize)
DecorationRole (QColor, QIcon, QPixmap)
FontRole Font for default delegate (QFont)
TextAlignmentRole Alignment for default delegate (Qt::AlignmentFlag)
BackgroundRole Background for default delegate (QBrush)
ForegroundRole Foreground for default delegate (QBrush)
CheckStateRole Indicates checked state of item (Qt::CheckState)

15.8 Displaying hierarchical data

Hierarchical data is generally stored in QStandardItemModel, the primary
implementation of QAbstractItemModel built into Qt. Hierarchical data
in R often arises when splitting a tabular data set by some combination
of factors. For our demonstration, we will display in a tree the result
of splitting the Cars93 data set by manufacturer. The first step of our
demonstration is to create the model, with a single column:

tree_model <- Qt$QStandardItemModel (rows = 0 , columns = 1)

We need to create an item for each manufacturer and store the corre-
sponding records as its children:

by (Cars93 , Cars93$Manufacturer , function (DF) {
tree_model$insertRow (tree_model$rowCount ())
manufacturer <- tree_model$index (tree_model$rowCount ()−1L , 0)
tree_model$setData (manufacturer , DF$Manufacturer [1])
tree_model$insertRows (0 , nrow (DF) , manufacturer)
tree_model$insertColumn (0 , manufacturer)
for (i in seq_along (DF$Model)) {

record <- tree_model$index (i−1L , 0 , manufacturer)
tree_model$setData (record , DF$Model [i])

}
})

As before, we create a QModelIndex object for accessing each cell of the
model (in line 3). We need to add rows and columns to each manufac-
turer node before creating its children (lines 5 and 6). This nested loop
approach to populating a model is much less efficient than converting a

307

15. Qt: Widgets Using Data Models

Figure 15.3: The tree_model instance viewed in a treeview, a table view
and a list view.

data.frame to a DataFrameModel, but here it is necessary to communicate
the hierarchical information.

The QStandardItem class In addition to implementing the QAbstract-
ItemModel interface, QStandardItemModel also represents an item as a QS-
tandardItem object. Many operations, including inserting, removing, and
manipulating children, can be performed on a QStandardItem, instead of
directly on the model. This may be convenient in some circumstances. For
example, the code listed above for populating the model simplifies to:

by (Cars93 , Cars93$Manufacturer , function (DF) {
manufacturer <- as . character (DF$Manufacturer [1])
manufacturer_item <- Qt$QStandardItem (manufacturer)
tree_model$appendRow (manufacturer_item)
children <- lapply (as . character (DF$Model) , Qt$QStandardItem)
lapply (children , manufacturer_item$appendRow)

})

The QTreeView widget displays the data in a table, with the conven-
tional buttons on the left for expanding and collapsing nodes. We create
an instance and set the model:

tree_view <- Qt$QTreeView ()
tree_view$setModel (tree_model)

Columns in a QStandardItemModel can be named by calling set-
HorizontalHeaderNames, as shown in the workspace browser example, be-
low. Often, as in our case, a treeview has only a single column. It may be
desirable to hide that column header with

tree_view$headerHidden <- TRUE

Figure 15.3 shows the tree_model in the three separate types of views
we’ve discussed, the leftmost being with a QTreeView instance, as just
illustrated.

308

15.8. Displaying hierarchical data

Figure 15.4: The completed workspace browser showing a hierarchical
view of the objects in the global environment.

Example 15.1: A workspace browser
This example shows how to use the tree-widget item to display a snapshot
of the current workspace. Figure 15.4 shows an illustration. Each object
in the workspace maps to an item, where recursive objects with names
will have their components represented in a hierarchical manner. In Ex-
ample 12.1 we created a class WSWatcher to monitor the workspace for
changes. Now we build on that example.

The following addItem function creates an item from a named compo-
nent of a parent object and adds the new item under the given parent
index:

addItem <- function (varname , parent_object , parent_item) {

obj <- parent_object [[varname]]
main i n t e r a c t i o n with t r e e model
item <- Qt$QStandardItem (varname)
class_item <- Qt$QStandardItem (paste (class (obj) ,

collapse = ", "))
parent_item$appendRow (list (item , class_item))

R e c u r s i v e l y c r e a t e a n c e s t o r i t ems , i f n e e d e d
nms <- NULL
if (is . recursive (obj)) {

if (is . environment (obj))
nms <- ls (obj)

else if (!is . null (names (obj)))
nms <- names (obj)

}

309

15. Qt: Widgets Using Data Models

sapply (nms , addItem , parent_item = item ,
parent_object = obj)

}

Our main function is one called when changes are made to the
workspace. There are two cases: when we need to remove expired items
and when we need to add new ones.

updateTopLevelItems <- function (ws_watcher , view ,
env = . GlobalEnv) {

remove t h e s e (by i n d e x)
remove <- ws_watcher$changedVariables ()
cur_shown <- sapply (seq (model$rowCount ()) ,

function (i) model$index (i − 1 , 0) $data ())
indices_to_remove <- which (cur_shown == remove)
indices_to_remove <- sort (inds_to_remove , decreasing=TRUE)
add t h e s e (by v a r i a b l e name)
new_names <- ws_watcher$addedVariables ()

r e p l a c e /add t h e s e
model <- view$model ()
view$updatesEnabled <- FALSE
if (length (indices_to_remove))

sapply (indices_to_remove −1L , model$removeRow)
add
sapply (new_names , addItem , parent_object = env ,

parent_item = model$invisibleRootItem ())
model$sort (0 , Qt$Qt$AscendingOrder)
view$updatesEnabled <- TRUE

}

We remove objects corresponding to expired digests by their index. We
need to sort the indices in decreasing order so as not to invalidate any
indices along the way. Then we add in new or changed variable names.
Finally, the model is sorted. We set the updatesEnabled property to freeze
the view while the model is updated to make a smoother transition.

This function is used to initialize the view:

initializeTopLevelItems <- function (ws_watcher , view ,
env = . GlobalEnv)

{
current_names <- ws_watcher$objects
model <- view$model ()
view$updatesEnabled <- FALSE
sapply (current_names , addItem , parent_object = env , # add

parent_item = model$invisibleRootItem ())
model$sort (0 , Qt$Qt$AscendingOrder)
view$updatesEnabled <- TRUE

}

310

15.9. User editing of data models

Finally, we construct the model and view:

model <- Qt$QStandardItemModel (rows = 0 , columns = 2)
model$setHorizontalHeaderLabels (c ("Name" , "Class"))
view <- Qt$QTreeView ()
view$windowTitle <- "Workspace Browser"
view$headerHidden <- FALSE
view$setModel (model)

This last call initializes the workspace model and display:

ws_watcher <- WSWatcher ()
ws_watcher$updateVariables ()
initializeTopLevelItems (ws_watcher , view)

Assuming we are updating the workspace model by some means,
all that remains is calling the function to update the top-level items as
needed:

qconnect (ws_watcher , "objectsChanged" , function ()
updateTopLevelItems (ws_watcher , view))

15.9 User editing of data models

Some data models, including DataFrameModel, QStringListModel, and
QStandardItemModel, support modification of their data. To determine
whether an item may be edited, call the flags method on the model,
passing the index of the item, and check for the ItemIsEditable flag:

(tree_model$index (0 , 0) $flags () & Qt$Qt$ItemIsEditable) > 0

[1] TRUE

To enable editing on a column in a DataFrameModel, it is necessary to
specify the edit role for the column. For example, we might add a logical
column named Analyze to the mtcars data frame for indicating whether a
record should be included in an analysis. In the view, the user will be able
to use a combo box to choose between TRUE and FALSE. We could display
an editable Analyze column by adding a column named .Analyze.edit,
but instead we take advantage of a convenience of DataFrameModel. We
simply add the Analyze column and pass its name as the editable argu-
ment to qdataFrameModel:

DF <- mtcars
DF$Analyze <- TRUE
model <- qdataFrameModel (DF , editable = "Analyze")

If a view is assigned an editable model, it will enter its editing mode
upon a certain trigger. By default, derivatives of QAbstractItemView will

311

15. Qt: Widgets Using Data Models

initiate editing of an editable column upon double mouse-button click or a
key press. This is controlled by the editTriggers property, which accepts
a combination of QAbstractItemView::EditTrigger flags. For example, we
could disable editing through a view:

view$editTriggers <- Qt$QAbstractItemView$NoEditTriggers

When editing is requested, the view will pass the request to the dele-
gate for the item. The standard item delegate, QStyledItemDelegate, will
present an editing widget created by its instance of QItemEditorFactory.
The default item editor factory will create a combo box for logical data,
a spin box for numeric data, and a text-edit box for character data. Other
types of data, like times and dates, are also supported. To specify a custom
editor widget for some data type, it is necessary to subclass QItemEditor-
CreatorBase and register an instance with the item editor factory.

15.10 Drag-and-drop in item views

The item views have native support for drag-and-drop. All of the built-
in models, as well as DataFrameModel, communicate data in a common
format so that drag-and-drop works automatically between views. Data-
FrameModel also provides its data in the R serialization format, correspond-
ing to the "application/x-rlang-transport" MIME type. This facilitates
implementing custom drop targets for items in R.

Dragging is enabled by setting the dragEnabled property to "TRUE":

view$dragEnabled <- TRUE

Enabling drops is the same as for any other widget, with one addition:

view$acceptDrops <- TRUE
view$showDropIndicator <- TRUE

The second line tells the view to indicate visually where the item will be
dropped.

The following enables moving items within a view, i.e., reordering:

view$dragDropMode <- Qt$QAbstractItemView$InternalMove

However, that will prevent receiving drops from other views, and dragging
to other views will always be a move, not a copy.

Although we have enabled drag-and-drop on the view, the level of
support actually depends on the model. The supported actions can be
queried with supportedDragActions and supportedDropActions. The item
flags determine whether an individual item can be dragged or dropped
upon. Most of the built-in models will support both copy and move actions,
when dragging or dropping. DataFrameModel supports only copy actions
when dragging; dropping is not supported.

312

15.10. Drag-and-drop in item views

Figure 15.5: A table widget to display contingency tables and a means to
specify the variables through drag and drop.

Example 15.2: A drag-and-drop interface to xtabs
This example uses a table view to display the output from xtabs. To
specify the variables, the user drags variable names from a list to one of
two labels, representing terms in the formula.

A VariableSelector class First, we define the VariableSelector widget,
which contains a combo box for choosing a data frame and a list view for
the variable names. When a data frame is chosen in the combo box, its
variables are shown in the list:

qsetClass ("VariableSelector" , Qt$QWidget ,
function (parent = NULL) {

super (parent)
w i d g e t s
this$df_combo_box <- Qt$QComboBox ()
this$variable_list <- Qt$QListView ()
this$variable_list$setModel (

qdataFrameModel (data . frame () , this ,
useRoles = TRUE))

this$variable_list$dragEnabled <- TRUE

l a y o u t
layout <- Qt$QVBoxLayout ()
layout$addWidget (df_combo_box)
layout$addWidget (variable_list)
variable_list$setSizePolicy (Qt$QSizePolicy$Expanding ,

Qt$QSizePolicy$Expanding)
setLayout (layout)

updateDataSets ()

313

15. Qt: Widgets Using Data Models

qconnect (df_combo_box , "activated(int)" , function (ind) {
this$dataFrame <- df_combo_box$currentText

})
})

This utility populates the combo box with a list of data frames, keeping
the selected data frame if still valid.

qsetMethod ("updateDataSets" , VariableSelector , function () {
current_text <- df_combo_box$currentText
df_combo_box$clear ()
DFs <- ProgGUIinR : : : avail_dfs (. GlobalEnv)
if (length (DFs)) {

thisdf_combo_boxaddItems (DFs)
if (is . null (current_text) || !current_text %in% DFs) {

thisdf_combo_boxcurrentIndex <- −1
this$dataFrame <- NULL

} else {
thisdf_combo_boxcurrentIndex <-

which (current_text == DFs)
this$dataFrame <- current_text

}
}

})

The data frame is stored in the following call to qsetProperty. We
overwrite the underlying write method to also update our model for the
variable list, as well.

qsetProperty ("dataFrame" , VariableSelector ,
write = function (DF) {

if (is . null (DF))
DF <- data . frame ()

else if (is . character (DF))
DF <- get (DF , . GlobalEnv)

##
model <- variable_list$model ()
icons <- lapply (DF , getIcon)
qdataFrame (model) <-

data . frame (variable=names (DF) ,
variable . decoration=I (icons))

this$. dataFrame <- DF
dataFrameChanged ()

})

When the property is written, the variable selector will emit this sig-
nal:

qsetSignal ("dataFrameChanged" , VariableSelector)

314

15.10. Drag-and-drop in item views

A QLabel subclass Next, a derivative of QLabel is defined that accepts
drops from the variable list and is capable of rotating text for displaying
the y-label component:

qsetClass ("VariableLabel" , Qt$QLabel , function (parent=NULL) {
super (parent)
this$rotation <- 0L
setAcceptDrops (TRUE)
setAlignment (QtQtAlignHCenter | QtQtAlignVCenter)

})

We define two properties, one for the rotation and the other for the
variable name, which is not always the same as the label text:

qsetProperty ("rotation" , VariableLabel)
qsetProperty ("variable_name" , VariableLabel)

To enable client code to respond to a drop, we define a signal:

qsetSignal ("variableNameDropped" , VariableLabel)

This utility tries to extract a variable name from the MIME data, which
DataFrameModel should have serialized appropriately:

variableNameFromMimeData <- function (mime_data) {
name <- NULL
RDA_MIME_TYPE <- "application/x-rlang-transport"
if (mime_data$hasFormat (RDA_MIME_TYPE)) {

name_list <- unserialize (mime_data$data (RDA_MIME_TYPE))
if (length (name_list) && is . character (name_list [[1]]))

name <- name_list [[1]]
}
name

}

To handle the drag events, we override the methods dragEnterEvent,
dragLeaveEvent, and dropEvent. The first two simply change the back-
ground of the label to indicate a valid drop:

qsetMethod ("dragEnterEvent" , VariableLabel , function (event) {
mime_data <- event$mimeData ()
if (!is . null (variableNameFromMimeData (mime_data))) {

setForegroundRole (Qt$QPalette$Dark)
event$acceptProposedAction ()

}
})
qsetMethod ("dragLeaveEvent" , VariableLabel , function (event) {

setForegroundRole (Qt$QPalette$WindowText)
event$accept ()

})

315

15. Qt: Widgets Using Data Models

To respond to a drop event, we get the variable name, set the text of
the label, and emit the variableNameDroppedVariableLabel signal:

qsetMethod ("dropEvent" , VariableLabel , function (event) {
setForegroundRole (Qt$QPalette$WindowText)
mime_data <- event$mimeData ()
this$variable_name <- variableNameFromMimeData (mime_data)
if (!is . null (variable_name)) {

this$text <- variable_name
variableNameDropped ()
setBackgroundRole (Qt$QPalette$Window)
event$acceptProposedAction ()

}
})

To complete the VariableLabel class, we override the paintEvent event
to respect the rotation property. Drawing low-level graphics is beyond our
scope. In short, we translate the origin to the center of the label rectangle,
rotate the coordinate system by the angle, then draw the text:

qsetMethod ("paintEvent" , VariableLabel , function (event) {
painter <- Qt$QPainter ()
painter$begin (this)

painter$save ()
painter$translate (width / 2 , height / 2)
painter$rotate (−(rotation))
rect <- painter$boundingRect (0 , 0 , 0 , 0 ,

QtQtAlignCenter , text)
painter$drawText (rect , Qt$Qt$AlignCenter , text)
painter$restore ()
painter$end ()

})

An XTabsWidget class Our main widget consists of three child widgets:
two drop labels for the formula and a table widget to show the output.
This could be extended to include a third variable for three-way tables,
but we leave that exercise for the interested reader. The constructor simply
calls two methods:

qsetClass ("XtabsWidget" , Qt$QWidget , function (parent = NULL) {
super (parent)
initWidgets ()
initLayout ()

})

We do not list the initLayout method, as it simply adds the widgets
to a grid layout. The initWidgets method initializes three widgets:

316

15.10. Drag-and-drop in item views

qsetMethod ("initWidgets" , XtabsWidget , function () {
this$xlabel <- VariableLabel ()
qconnect (xlabel , "variableNameDropped" , invokeXtabs)

this$ylabel <- VariableLabel ()
pt <- ylabel$font$pointSize ()
ylabel$minimumWidth <- 2*pt ; ylabel$maximumWidth <- 2*pt
ylabel$rotation <- 90L
qconnect (ylabel , "variableNameDropped" , invokeXtabs)

this$table_view <- Qt$QTableView ()
table_view$setModel (qdataFrameModel (data . frame () , this))
clearLabels ()

})

The xlabel is straightforward: we construct it, then connect to the drop
signal. For the ylabel we also adjust the rotation and constrain the width
based on the font size (otherwise the label width reflects the length of the
dropped text). The clearLabels method (not shown) just initializes the
labels.

This function builds the formula, invokes xtabs, and updates the table
view; we hide the conditional call to xtabs.

qsetMethod ("invokeXtabs" , XtabsWidget , function () {
if (is . null (dataFrame))

return ()

x <- xlabel$variable_name
y <- ylabel$variable_name

if (!is . null (table <- call_xtabs (dataFrame , x , y)))
updateTableView (table)

})

We define a method to update the table view:

qsetMethod ("updateTableView" , XtabsWidget , function (table) {
model <- table_view$model ()
if (length (dim (table)) == 1)

qdataFrame (model) <- data . frame (count = unclass (table))
else qdataFrame (model) <- data . frame (unclass (table))

})

Finally, we define a property for the data frame held in the XtabsWidget
class:

qsetProperty ("dataFrame" , XtabsWidget ,
write = function (dataFrame) {

clearLabels ()
this$. dataFrame <- dataFrame

317

15. Qt: Widgets Using Data Models

})

All that remains is to place the VariableSelector and XtabsWidget
together in a split pane and then connect a handler that keeps the data
sets synchronized:

w <- Qt$QSplitter ()
w$setWindowTitle ("GUI for xtabs()")
w$addWidget (vs <- VariableSelector ())
w$addWidget (tw <- XtabsWidget ())
w$setStretchFactor (1 , 1)
qconnect (vs , "dataFrameChanged" , function () {

tw$dataFrame <- vs$dataFrame
})
w$show () ; w$raise ()

Figure 15.5 shows the result after the user has dragged two variables
onto the labels.

15.11 Widgets with internal models

While separating the model from the view provides substantial flexibility,
in practice it is often sufficient and slightly more convenient to manipulate
a view with a built-in data model. Qt provides a set of view widgets with
internal models:

QListWidget for simple lists of items,

QTableWidget for a flat table, and

QTreeWidget for a tree table.

In our experience, the convenience of these classes is not worth the
loss in flexibility and other advantages of the model/view design pat-
tern. QTableWidget, in particular, precludes the use of DataFrameModel, so
QTableWidget is usually not nearly as convenient or performant as the
model-based QTableView. Thus, we are inclined to omit a detailed descrip-
tion of these widgets. However, we will describe QListWidget, out of an
acknowledgement that displaying a short, simple list of items is a common
task in a GUI.

Displaying short, simple lists

QListWidget is an easy-to-use widget for displaying a set of items for
selection (Figure 15.6). As with combo boxes, we can populate the items
directly from a character vector through the addItems method:

318

15.11. Widgets with internal models

list_widget <- Qt$QListWidget ()
list_widget$addItems (state . name)

This saves one line of code compared to populating a QListView via
a QStringListModel. To clear a list of its items, call the clear method.
Passing an item to takeItem will remove that specific item from the widget.

The items in a QListWidget instance are of the QListWidgetItem class.
New items can be constructed directly through the constructor:

item <- Qt$QListWidgetItem ("Puerto Rico" , list_widget)

The first argument is the text and the optional second argument a parent
QListWidget. If no parent is specified, the item may be added through
the method addItem or the method insertItem, for inserting to a specific
instance.

To retrieve an item given its index, we call the item method:

first <- list_widget$item (0)
first$text ()

[1] "Alabama"

Many aspects of an item can be manipulated. These roughly correspond
to the built-in roles of items in QAbstractItemModel. We can specify the
text, font, icon, status and tooltips, as well as foreground and background
colors.

By default, QListWidget allows only a single item to be selected si-
multaneously. As with other QAbstractItemView derivatives, this may be
adjusted to allow multiple selection through the selectionMode property:

list_widget$selectionMode <- Qt$QListWidget$ExtendedSelection

We can programmatically select the states that begin with "A":

sapply (grep ("^A" , state . name) ,
function (i) list_widget$item (i − 1) $setSelected (TRUE))

The method selectedItems will return the selected items in a list:

selected_items <- list_widget$selectedItems ()
sapply (selected_items , qinvoke , "text")

[1] "Alabama" "Alaska" "Arizona" "Arkansas"

To handle changes in the selection, connect to itemSelectionChanged:

qconnect (list_widget , "itemSelectionChanged" , function () {
selected <- list_widget$selectedItems ()
selected_text <- sapply (selected , qinvoke , "text")
message ("Selected: " , paste (selected_text , collapse = ", "))

})

319

15. Qt: Widgets Using Data Models

Figure 15.6: Two easily implemented styles for selecting items from a
QListWidget instance: the traditional selection and using check buttons.

Using check buttons for selection It is often easier for the user to select
multiple items by clicking check buttons next to the desired items. The
right figure in Figure 15.6 shows an example. The check box is shown
only if we explicitly set the check state of item. The possible values are
"Checked", "Unchecked", and "PartiallyChecked". Here, we set all of the
items to unchecked to show the check buttons, check the selected items,
then turn off selection.

items <- sapply (seq (list_widget$count) − 1L , list_widget$item)
sapply (items , qinvoke , "setCheckState" , QtQtUnchecked)
c h e c k s e l e c t e d
selected <- list_widget$selectedItems ()
sapply (selected , function (x) x$setCheckState (Qt$Qt$Checked))
c l e a r s e l e c t i o n now
list_widget$selectionModel () $clear ()
list_widget$selectionMode <- Qt$QListWidget$NoSelection

To get the selected items, we can iterate over the items, as above, and
invoke the checkedState method:

state <- sapply (items , "qinvoke" , "checkState")
head (state , n = 8) # 2 i s c h e c k e d , 0 not

[1] 2 2 2 2 0 0 0 0

For long lists, this looping will be time consuming. In such cases, it
is likely preferable to use QListView, DataFrameModel, and the "Checked-
StateRole".

320

15.12. Implementing custom models

15.12 Implementing custom models

Normally, the DataFrameModel and the models in Qt are sufficient. We can
imagine other cases, however. For example, we might need to view an
instance of a formal reference class that conforms to a tabular or hierarchi-
cal structure. In such case, it may be appropriate to implement a custom
model in R. We warn the reader that this is a significant undertaking, and,
unfortunately, custom models do not scale well, due to frequent callbacks
into R.

Required methods The basic interface of a model requires that at a min-
imum the methods rowCount, columnCount, and data be provided. The
first two describe the size of the table for any views. We have already
demonstrated the use of the data method in the previous sections. It pro-
vides data to the view for a particular cell and role. For example, if we
are displaying numeric data, the DisplayRole might format the numeric
values (showing a fixed number of digits, say), yet the EditRole role might
display all the digits so accuracy is not lost. If a role is not implemented, a
value of NULL should be returned. We can also implement the headerData
method to populate the view headers.

Editable models For editable models, we must also implement the flags
method to return a flag containing ItemIsEditable and the setData
method. When a value is updated, we should call the dataChanged method
to notify the views that a portion of the model is changed. This method
takes two indices, which together specify a rectangle in the table.

To provide for resizable tables, Qt requires us to notify the views about
dimension changes. For example, an implemented insertColumns should
call beginInsertColumns before adding the column to the model and then
endInsertColumns just after.

Example 15.3: Using a custom model to edit a data frame
This example shows how to create a custom model to edit a data frame.
Given that DataFrameModel supports editing, there is actually no reason to
use this model. The purpose is to illustrate the steps in model implemen-
tation. The performance is poor compared to that of DataFrameModel, as
the bulk of the operations are done at the R level. We speed things up a
bit by placing column headers into the first row of the table, instead of
overriding the headerData method, which the Qt views call far too often.

Our basic constructor simply assigns to a dataframe property the data
frame passed to it.

qsetClass ("DfModel" , Qt$QAbstractTableModel ,
function (DF = data . frame (V1 = character (0)) ,

321

15. Qt: Widgets Using Data Models

Figure 15.7: A view providing a means to edit a data frame’s contents.
The underlying model subclasses QAbstractTableModel, trading of the
ability to customize for a lack of responsiveness.

parent = NULL)
{

super (parent)
this$DF <- DF

})

Here, we configure the dataframe property, implementing a write
method so that assigning to this property will call the dataChanged method
to notify any views of a change:

qsetProperty ("DF" , DfModel , write = function (DF) {
this$. DF <- DF
dataChanged (index (0 , 0) , index (nrow (DF) , ncol (DF)))

})

As mentioned, there are three virtual methods required by the interface:
rowCount, columnCount, and data. The first two delegate down to nrow and
ncol:

qsetMethod ("rowCount" , DfModel ,
function (index) nrow (this$DF) + 1)

qsetMethod ("columnCount" , DfModel ,
function (index) ncol (this$DF))

The data method is then the main method to implement. Here, we wish
to customize the data display based on the class of the variable represented
in a column, a natural use of S3 methods, which dispatch on exactly that.
Here is a method for defining the display role:

display_role <- function (x , row , . . .) UseMethod ("display_role")
display_role . default <- function (x , row)

sprintf ("%s" , x [row])

322

15.12. Implementing custom models

display_role . numeric <- function (x , row)
sprintf ("%.2f" , x [row])

display_role . integer <- function (x , row)
sprintf ("%d" , x [row])

We see that numeric values are formatted to have decimal points. The
data is still stored in its native form; a string is returned only for display.
An alternative approach would be to provide the raw data and rely on
RTextFormattingDelegate to display the numeric values according to the
current R configuration. However, the above approach generalizes basic
numeric formatting.

Our data method has this basic structure (we avoid showing the cases
for all the different roles):

qsetMethod ("data" , DfModel , function (index , role) {
row <- index$row ()
col <- index$column () + 1

if (role == QtQtDisplayRole) {
if (row > 0)

display_role (DF [, col] , row)
else

names (DF) [col]
} else if (role == QtQtEditRole) {

if (row > 0)
as . character (DF [row , col])

else
names (DF) [col]

} else {
NULL

}
})

To allow the user to edit the values we need to override the flags
method to return ItemIsEditable in the flag, so that any views are aware
of this ability:

qsetMethod ("flags" , DfModel , function (index) {
if (!index$isValid ()) {

return (QtQtItemIsEnabled)
} else {

current_flags <- super ("flags" , index)
return (current_flags | QtQtItemIsEditable)

}
})

To edit cells we also need to implement a method to set the data once
edited. Since the data method provides a string for the edit role, setData

323

15. Qt: Widgets Using Data Models

will be passed one, as well. We define some methods on the S3 generic
fit_in, which will coerce the string to the original type. For example:

fit_in <- function (x , value) UseMethod ("fit_in")
fit_in . default <- function (x , value) value
fit_in . numeric <- function (x , value) as . numeric (value)

The setData method is responsible for taking the value from the dele-
gate and assigning it into the model:

qsetMethod ("setData" , DfModel , function (index , value , role) {
if (index$isValid () && role == QtQtEditRole) {

DF <- this$DF
row <- index$row ()
col <- index$column () + 1

if (row > 0) {
x <- DF [, col]
DF [row , col] <- fit_in (x , value)

} else {
names (DF) [col] <- value

}
this$DF <- DF
dataChanged (index , index)

return (TRUE)
} else {

super ("setData" , index , value , role)
}

})

For a data frame editor, we may wish to extend the API for our table
of items to be R specific. For example, this method allows us to replace a
column of values:

qsetMethod ("setColumn" , DfModel , function (col , value) {
pad with NA i f n e e d e d
n <- nrow (this$DF)
if (length (value) < n)

value <- c (value , rep (NA , n − length (value)))
value <- value [1 : n]
DF <- this$DF
DF [, col] <- value
this$DF <- DF # o n l y n o t i f y a b o u t t h i s column
dataChanged (index (0 , col − 1) ,

index (rowCount () − 1 , col − 1))
return (TRUE)

})

324

15.13. Implementing custom views

We implement a method similar to the insertColumn method but spe-
cific to our task. Since we may add a new column, we call the "begin" and
"end" methods to notify any views.

qsetMethod ("addColumn" , DfModel , function (name , value) {
DF <- this$DF
if (name %in% names (DF)) {

return (setColumn (min (which (name == names (DF))) , value))
}
beginInsertColumns (Qt$QModelIndex () ,

columnCount () , columnCount ())
DF [[name]] <- value
this$DF <- DF
endInsertColumns ()
return (TRUE)

})

To demonstrate our model, we construct an instance and set it on a
view:

model <- DfModel (mtcars)
view <- Qt$QTableView ()
view$setModel (model)

Finally, we customize the view by defining the edit triggers and hiding
the row and column headers:

trigger_flag <- Qt$QAbstractItemView$DoubleClicked |
Qt$QAbstractItemView$SelectedClicked |
Qt$QAbstractItemView$EditKeyPressed

view$setEditTriggers (trigger_flag)
view$verticalHeader () $setHidden (TRUE)
view$horizontalHeader () $setHidden (TRUE)

15.13 Implementing custom views

Thus far, we have discussed the application of QAbstractItemView for
viewing items in a QAbstractItemModel. This is the canonical model/view
approach in Qt. The role of a QAbstractItemView is to display each item
in a model, more or less simultaneously. Sometimes it is useful to view
an individual item from a model in a simple widget like a label or even
an editing widget, such as a line edit or spin box. For example, a GUI
for entering records into a database might want to associate each of its
widgets with a column in the model, one row at a time.

The QDataWidgetMapper class facilitates this by associating a column
(or row) in a model with a property on a widget. By default, the user

325

15. Qt: Widgets Using Data Models

Figure 15.8: The QDataWidgetMapper maps the cell value in a column to a
property of one or more widgets. Here the line-edit widget is
synchronized with the Model of the selected row.

property is selected. The user property is marked as the primary user-
facing property of a widget; there is only one per class. An example is the
text property on a QLineEdit.

Example 15.4: Mapping selected model items to a text entry
We will demonstrate QDataWidgetMapper by displaying a table view of the
Cars93 data set, along with a label. When a row is selected, the Model
name of the record will be displayed in the label. First, we establish the
mapping:

data (Cars93 , package="MASS")
model <- qdataFrameModel (Cars93 , editable=names (Cars93))
mapper <- Qt$QDataWidgetMapper ()
mapper$setModel (model)
##
label <- Qt$QLineEdit ()
mapper$addMapping (label , 1)

The addMapping establishes a mapping between the view widget and the
0-based column index in the model. The method prefix is add rather than
set, as more than one mapping is possible.

Next, we construct a table view and establish a handler that changes
the current row of the data mapper upon selection:

326

15.13. Implementing custom views

Figure 15.9: Using a label as a custom view. In this case, when the editing
is committed, the label is updated to reflect the new mean.

table_view <- Qt$QTableView ()
table_view$setModel (model)
qconnect (table_view$selectionModel () , "currentRowChanged" ,

function (cur , prev) mapper$setCurrentIndex (cur$row ()))

Finally, we lay out our GUI (Figure 15.8):

window <- Qt$QWidget ()
layout <- Qt$QVBoxLayout ()
window$setLayout (layout)
layout$addWidget (table_view)
layout$addWidget (label)

Now, let us consider a different problem: summarizing or aggregating
multiple model items, such as an entire column, and displaying the result
in a widget. For example, a label might show the mean of a column, and
the label would be updated as the model changed. The QDataWidgetMapper
is not appropriate for this class, as it is limited to a one-to-one mapping
between a model item and a widget at any given time. The next example
proposes an ad hoc solution to this.

Example 15.5: A label that updates as a model is updated
This example shows how to create an aggregating view for a table model.
We will subclass QLabel to create a widget (Figure 15.9) that is synchro-
nized to display the mean value of a given column.

327

15. Qt: Widgets Using Data Models

In the constructor we define a label property and call our setModel
method:

qsetClass ("MeanLabel" , Qt$QLabel ,
function (model , column = 0 , parent = NULL)
{

super (parent)
this$model <- model
this$column <- column
updateMean () # i n i t i a l i z e t e x t
qconnect (model , "dataChanged" ,

function (top_left , bottom_right) {
if (top_left$column () <= column &&

bottom_right$column () >= column)
updateMean ()

})
})

Whenever the data in the model changes, we want to update the display
of the mean value. In the above we call this private method to perform the
update:

qsetMethod ("updateMean" , MeanLabel , function () {
if (is . null (model)) {

text <- "No model"
} else {

DF <- qdataFrame (model)
colname <- colnames (DF) [column + 1L]
text <- sprintf ("Mean for ’%s’: %s" , colname ,

mean (DF [, colname]))
}
this$text <- text

} , access="private")

To demonstrate the use of our custom view, we put it in a simple GUI
along with an editable data-frame view. When we edit the data, the text
in our label is updated accordingly.

model <- qdataFrameModel (mtcars , editable = colnames (mtcars))
table_view <- Qt$QTableView ()
table_view$setModel (model)
table_view$setEditTriggers (Qt$QAbstractItemView$DoubleClicked)
##
mean_label <- MeanLabel (model)
##
window <- Qt$QWidget ()
layout <- Qt$QVBoxLayout ()
window$setLayout (layout)
layout$addWidget (table_view)
layout$addWidget (mean_label)

328

15.14. Viewing and editing text documents

15.14 Viewing and editing text documents

Multiline text is displayed and edited by the QTextEdit widget, which is
the view and controller for a QTextDocument model. The model may be
shared among many different views, allowing for synchronized buffers.

QTextEdit supports both plain and rich text in HTML format, including
images, lists and tables. Applications that display only plain text may be
better served by QPlainTextEdit, which is faster due to a simpler layout
algorithm. QPlainTextEdit is otherwise equivalent to QTextEdit in terms
of API and functionality, so we will focus our discussion on QTextEdit,
with little loss of generality.

Constructor Here, we create a QTextEdit instance and populate it with
some text. Although the text is actually stored in a QTextDocument instance,
it is usually sufficient for us to interact with the QTextEdit directly:

text_edit <- Qt$QTextEdit ()

The underlying QTextDocument instance can be set by the setDocument
method but need not be, as one is created on construction.

Adding text to the document can be done easily through the slot set-
PlainText, which replaces the existing text; or the slot append, which
appends the text as a new paragraph to the end of the buffer.

text_edit$setPlainText ("The quick brown fox")
text_edit$append ("jumped over the lazy dog")

As described in its manual page, the widget works on paragraphs and
characters, a paragraph being a formatted string, word-wrapped to fit into
the width of the widget. For plain text, new lines signify paragraphs.

To return the contents of the model as text, the toPlainText method is
available:

text_edit$toPlainText ()

[1] "The quick brown fox\njumped over the lazy dog"

The hard line break \n is present, as append created a new paragraph.
When text is added to a buffer, it can be undone through the undo

slot. There are also redo to reverse the decision and undoAvailable and
redoAvailable to check for the possibility of each action.

HTML support Instead of plain text, we can also add and insert HTML
formatted text for display. The slots setHTML and append can be used.
The toPlainText method will return the text with markup stripped off,
whereas toHtml will return the source HTML of the page.

329

15. Qt: Widgets Using Data Models

The text cursor To manage selections, insert special objects like tables
and images, or apply the full range of formatting options, it is necessary
to interact with a text cursor object, of class QTextCursor. Here, we obtain
the user-visible cursor and move it to the end of the document:

n <- nchar (text_edit$toPlainText ())
cursor <- text_edit$textCursor ()
cursor$setPosition (n)
text_edit$setTextCursor (cursor)

Manipulating the cursor object does not actually modify the location
and parameters of the cursor on the screen. We need to set the modi-
fied cursor object on the QTextEdit explicitly through its setTextCursor
method. This behavior is often convenient, because it allows us to mod-
ify arbitrary parts of the document, without affecting the user cursor. For
example, we could insert a 32- x -32-pixel image at the beginning:

cursor$setPosition (0) # move t o b e g i n n i n g
style <- Qt$QApplication$style ()
icon <- style$standardIcon (Qt$QStyle$SP_DialogOkButton)
sz <- qsize (32L , 3 2 L)
anImage <- icon$pixmap (icon$actualSize (sz)) $toImage ()
cursor$insertImage (anImage)

In the above, we moved the cursor through its setPosition method.
If the document is viewed as a single string of characters, the position i
would refer to the space between the ith and i + 1st character, 0 being the
initial point in the document.

The motion of the cursor is described by the enumeration QTextCur-
sor$MoveOperation, with several values such as "Start", "End",
"StartOfLine", "EndOfLine", "StartOfWord", "EndOfWord" etc.

For example, to move the cursor to the start of the second line, we
could do:

cursor <- text_edit$textCursor ()
cursor$movePosition (Qt$QTextCursor$Start) # MoveAnchor d e f a u l t
cursor$movePosition (Qt$QTextCursor$Down) # down one l i n e
text_edit$setTextCursor (cursor)

Selection Selection is a component of the QTextCursor state. For plain
text, the selected text is returned by the selectedText method:

text_edit$textCursor () $selectedText () # no c u r r e n t s e l e c t i o n

NULL

The NULL value indicates that the user has not selected any text.
A text cursor has an anchor position in addition to its position. The

selection is the text between the two. When moving the cursor through

330

15.14. Viewing and editing text documents

its movePosition method, we can choose to move or keep the anchor in
place. Normally, the anchor and cursor are at the same position. To make a
selection programatically, we move the cursor independently of its anchor.
The QTextCursor$MoveMode enumeration with values "MoveAnchor" and
"KeepAnchor" can be specified to movePostion to control this. Here we set
the selection to include the first three words of the text in the second line.
We have:

cursor <- Qt$QTextCursor (text_edit$document ())
cursor$movePosition (Qt$QTextCursor$Start) # as b e f o r e
cursor$movePosition (Qt$QTextCursor$Down) # moves anchor
cursor$movePosition (Qt$QTextCursor$WordRight , # anchor f i x e d

Qt$QTextCursor$KeepAnchor , 3)
text_edit$setTextCursor (cursor)

The 3 specified to movePostion calls the action three times.
Now our selection yields:

cursor$selectedText ()

[1] "jumped over the "

Signals There are several different signals emitted by QTextEdit in-
stances: textChanged, when the text changes; cursorPositionChanged,
when the cursor position changes; and selectionChanged, when the se-
lection changes (according to the user-visible cursor). For the latter, the
copyAvailable signal is largely equivalent, except it passes a Boolean ar-
gument indicating whether the selection is non-empty.

qconnect (text_edit , "textChanged" , function () {
message ("Text has changed to" , text_edit$toPlainText ())

})
##
qconnect (text_edit , "cursorPositionChanged" , function () {

message ("Cursor has changed. It is now in position" ,
text_edit$textCursor () $position ())

})
##
qconnect (text_edit , "selectionChanged" , function () {

message ("text: " , text_edit$textCursor () $selectedText ())
})

Formatting properties By default, the widget will wrap text as entered.
For use as a code editor, this is not desirable. The lineWrapMode property
takes values from the enumeration QTextEdit::LineWrapMode to control
this:

331

15. Qt: Widgets Using Data Models

Figure 15.10: Context menu showing completion candidates for the token
"mean" taken from the current selection.

text_edit$lineWrapMode <- Qt$QTextEdit$NoWrap

We can fix the wrapping at a certain number of characters by using a wrap
mode of FixedColumnWidth and setting the count through lineWrapColum-
nOrWidth.

The setAlignment method aligns the current paragraph (the one with
the cursor) with values from Qt::Alignment.

Character attributes The widget keeps track of a current set of format-
ting options in an object of class QTextCharFormat. The text-edit methods
setCurrentFont, setFontFamily, and setFontWeight, among others, mod-
ify the current settings. If called when there is a selection, the change will
be applied to the selection in addition to any new text.

Syntax highlighting The text-edit widget supports syntax highlighting
through the QSyntaxHighlighter class. To implement a specific highlight-
ing rule, we must subclass QSyntaxHighlighter and override the high-
lightBlock method to apply highlighting. This is of somewhat special
interest, so we will not give an example. For a syntax-highlighting R-code
viewer and editor, see qeditor in the qtutils package.

Searching The find method will search for a given string and adjust the
cursor to select the match. For example, we can search through a standard
typesetting string starting at the cursor point for the common word “qui”
as follows:

text_edit <- Qt$QTextEdit (LoremIpsum) # some t e x t
text_edit$find ("qui" , Qt$QTextDocument$FindWholeWords)

332

15.14. Viewing and editing text documents

[1] TRUE

text_edit$textCursor () $selection () $toPlainText ()

[1] "qui"

The second parameter to find takes a combination of flags from
QTextDocument::FindFlag, with values "FindBackward", "FindCaseSensi-
tively", and "FindWholeWords".

Context menus As we introduce in Section 16.3 of Chapter 16, we can
enable a dynamic context menu on a widget by overriding the con-
textMenuEvent virtual. For our demonstration, we aim to list candidate
completions based on the currently selected text:

qsetClass ("QTextEditWithCompletions" , Qt$QTextEdit)
##
qsetMethod ("contextMenuEvent" , QTextEditWithCompletions ,

function (event)
{

menu <- this$createStandardContextMenu ()
if (this$textCursor () $hasSelection ()) {

selection <- this$textCursor () $selectedText ()
completions <- utils : : : matchAvailableTopics (selection)
completions <- setdiff (completions , selection)
if (length (completions) > 0 && length (completions) < 25) {

menu$addSeparator () # add a c t i o n s
sapply (completions , function (completion) {

action <- Qt$QAction (completion , this)
qconnect (action , "triggered" , function (checked) {

insertPlainText (completion)
})
menu$addAction (action)

})
}

}
menu$exec (event$globalPos ())

})
text_edit <- QTextEditWithCompletions ()

The createStandardContextMenu method returns the base context
menu, including functions like copy and paste. We add an action for every
possible completion (Figure 15.10). Triggering an action will paste the com-
pletion into the document replacing the current selection with the chosen
completion candidate.

333

This page intentionally left blankThis page intentionally left blank

16

Qt: Application Windows

Many applications have a central window that typically contains a menu
bar, toolbar, an application-specific area, and a status bar at the bottom.
This is known as an application window and is implemented by the QMain-
Window widget. Although any widget in Qt might serve as a top-level win-
dow, QMainWindow has explicit support for a menu bar, toolbar and status
bar, and also provides a framework for dockable windows.

To demonstrate the QMainWindow framework, we will create a simple
spreadsheet application (Figure 16.1). First, we construct a QMainWindow
object:

main_window <- Qt$QMainWindow ()

The region between the toolbar and status bar, known as the central
widget, is completely defined by the application. We wish to display a
spreadsheet, i.e., an editable table:

data (mtcars)
model <- qdataFrameModel (mtcars , editable = TRUE)
table_view <- Qt$QTableView ()

Figure 16.1: An example of a GUI with menu, tool, and status bars, along
with dockable windows, constructed using a QMainWindow instance.

335

16. Qt: Application Windows

table_view$setModel (model)
main_window$setCentralWidget (table_view)

We will continue by adding a menu bar and toolbar to our window. This
depends on an understanding of how Qt represents actions.

16.1 Actions

The buttons in the menu bar and toolbar, as well as other widgets in
the GUI, might share the same action. Thus, it is sensible to separate the
definition of an action from any individual control. An action is defined
by the QAction class. As with other toolkits, an action encapsulates a
command that may be shared among parts of a GUI, in this case menu
bars, toolbars, and keyboard shortcuts. The properties of a QAction include
the label text, icon, toolTip, statusTip, keyboard shortcut, and whether
the action is enabled.

We construct an action for opening a file:

open_action <- Qt$QAction ("Open" , main_window)

The label text is passed to the constructor along with the parent window.
We can specify additional properties, such as the text to display in the
status bar when the user moves the mouse over a widget proxying the
action:

open_action$statusTip <- "Load a spreadsheet from a CSV file"

We could also set an icon:

style <- Qt$QApplication$style ()
open_action$icon <-

style$standardIcon (Qt$QStyle$SP_DialogOpenButton)

Actions emit a triggered signal when activated. The application should
connect to this signal to implement the command behind the action:

qconnect (open_action , "triggered" , function () {
filename <- Qt$QFileDialog$getOpenFileName ()
table_view$model <-

qdataFrameModel (read . csv (filename) , editable = TRUE)
})

Toggle and radio actions An action may have a Boolean state, i.e., it
may be checkable. This is controlled by the checkable property. When a
checkable action is triggered, its state is toggled and the current state is
passed to the trigger handler. For example, we could have an action to
toggle whether the spreadsheet will be saved on exit:

336

16.1. Actions

save_on_exit_action <- Qt$QAction ("Save on exit" , main_window)
save_on_exit_action$checkable <- TRUE

The checked property reports whether the action has been checked or
not. For this type of action, we would query this on exit. For other im-
plementations, where the action should be enacted immediately, we would
connect to the changed signal.

A checkable action in isolation behaves much like a check button. If
checkable actions are placed together into a QActionGroup, the default
behavior is such that only one is checked at once, analogous to a set of
radio buttons. We could have an action for controlling the justification
mode for the text entry:

just_group <- Qt$QActionGroup (main_window)
just_action <- list ()
just_action$left <- Qt$QAction ("Left Align" , just_group)
just_action$right <- Qt$QAction ("Right Align" , just_group)
just_action$center <- Qt$QAction ("Center" , just_group)
sapply (just_action , function (action) action$checkable <- TRUE)

Here, we connect to each action’s changed signal to broadcast which button
was pressed.

sapply (just_action , function (action)
qconnect (action , "changed" , function () {

button_number <-
which (sapply (just_action , ‘ [[‘ , "checked"))

message ("Button " , button_number , " was depressed")
})
)

We could also connect to the triggered signal of the action group. The
callback is passed the action object.

qconnect (just_group , "triggered" , function (action) {
message (action$text)

})

Keyboard shortcuts Every platform has a particular convention for map-
ping key presses to typical actions. Qt abstracts some common commands
via the QKeySequence::StandardKey enumeration, a member of which may
refer to multiple key combinations, depending on the command and the
platform. We assign the appropriate shortcuts for our “Open” action:

open_action$setShortcut (Qt$QKeySequence (Qt$QKeySequence$Open))

Whenever the window has focus and the user presses the conventional key
sequence, such as Ctrl-O on Windows, our action will be triggered. It is
important not to confuse this shortcut mechanism with mnemonics, which

337

16. Qt: Application Windows

are often indicated by underlining a letter in the label text of a menu item.
A mnemonic is active only when the parent menu is active. Mnemonics
are disabled by default on Windows and Mac installations of Qt and thus
are not covered here.

16.2 Menu bars

Applications often support too many actions to display them all at once.
The typical solution is to group the actions into a hierarchical system
of menus. The menu bar is the top-level entry point to the hierarchy.
The placement of the menu bar depends on the platform. On Mac OS
X, applications share a menu bar area at the top of the screen. On other
platforms, the menu bar is typically found at the top of the main window
for the application.

We create an instance of QMenuBar and set it for the main window:

menubar <- Qt$QMenuBar ()
main_window$setMenuBar (menubar)

A QMenuBar instance is a container for QMenu objects, which represent
the submenus. We create a QMenu for the “File” and “Edit” menus and add
them to the menu bar:

file_menu <- Qt$QMenu ("File")
menubar$addMenu (file_menu)
edit_menu <- Qt$QMenu ("Edit")
menubar$addMenu (edit_menu)

To each QMenu we may add:

1. an action through the addAction method,

2. a separator through addSeparator, or

3. nested submenus through the addMenu method.

We demonstrate each of these operations by populating the “File” and
“Edit” menus:

file_menu$addAction (open_action)
file_menu$addSeparator ()
file_menu$addAction (save_on_exit_action)
file_menu$addSeparator ()
quit_action <- file_menu$addAction ("Quit")
just_menu <- edit_menu$addMenu ("Justification")
sapply (just_action , just_menu$addAction)

338

16.3. Context menus

In the above, we take advantage of the convenient overloads of addAction
and addMenu that accept a string title and return a new QAction or QMenu,
respectively.

16.3 Context menus

Sometimes, an action pertains to a single widget or portion of a widget,
instead of the entire application. In such cases, the menu bar is an inappro-
priate container. An alternative is to place the actions in a menu specific
to their context. This is known as a context menu. The precise user action
that displays a context menu depends on the platform. It commonly suf-
fices to click the right mouse button while the pointer is over the widget.
The simplest approach to providing a context menu involves two steps.
First, add the desired actions to the widget:

sort_menu <- Qt$QMenu ("Sort by")
sapply (colnames (qdataFrame (model)) , sort_menu$addAction)
table_view$addAction (sort_menu$menuAction ())

Second, we configure the widget to display a menu of the actions when
a context menu is requested:

table_view$contextMenuPolicy <- Qt$Qt$ActionsContextMenu

The simple approach is appropriate in most cases. One limitation, how-
ever, is that the actions need to be defined prior to the context menu
request. For example, if we allowed adding and removing columns in
the spreadsheet, we would need to adjust the actions in the sort context
menu. Another example is a code-entry widget, where a pop-up window
could list possible code completions. In Section 15.14, we implement a
text-completion pop-up in an override of the contextMenuEvent virtual
method.

If subclassing is undesirable, we could change the context menu pol-
icy to CustomContextMenu and connect to the signal customContextMenu-
Requested:

showCompletionPopup <- function (event , edit) {
popup <- Qt$QMenu ()
completions <- utils : : : matchAvailableTopics (ed$text)
completions <- head (completions , 10) # t r im i f l a r g e
sapply (completions , function (completion) {

action <- popup$addAction (completion)
qconnect (action , "triggered" ,

function (. . .) edit$setText (completion))
})
popup$popup (edit$mapToGlobal (qpoint (0L , 0 L)))

}

339

16. Qt: Application Windows

##
edit <- Qt$QLineEdit ()
edit$contextMenuPolicy <- Qt$Qt$CustomContextMenu
qconnect (edit , "customContextMenuRequested" ,

showCompletionPopup , user . data = edit)

16.4 Toolbars

The toolbar manages a compact layout of frequently executed actions, so
that the actions are readily available to the user without consuming an
excessive amount of screen space. We create a QToolBar and add it to our
main window:

toolbar <- Qt$QToolBar ()
main_window$addToolBar (toolbar)

The main window places the toolbar into a toolbar area, which might
contain multiple toolbars. It is possible, by default, for the user to rearrange
the toolbars by clicking and dragging with the mouse. If the toolbar is
pulled out of the toolbar area, it will become an independent window.

To add items to a toolbar we might call

• addAction to add an action,

• addWidget to embed an arbitrary widget, or

• addSeparator to place a separator between items.

We create each action, set its icon (the getIcon function is not shown),
and store it in a list for ease of manipulation at a later time in the pro-
gram:

file_actions <- list ()
file_actions$open <- Qt$QAction ("Open" , main_window)
file_actions$open$setIcon (getIcon ("open"))
file_actions$save <- Qt$QAction ("Save" , main_window)
file_actions$save$setIcon (getIcon ("save"))
plot_actions <- list ()
plot_actions$barplot <- Qt$QAction ("Barplot" , main_window)
plot_actions$barplot$setIcon (getIcon ("barplot"))
plot_actions$boxplot <- Qt$QAction ("Boxplot" , main_window)
plot_actions$boxplot$setIcon (getIcon ("boxplot"))

Finally, we add the actions to the toolbar, with a separator between the
file actions and plot actions:

340

16.5. Status bars

sapply (file_actions , toolbar$addAction)
toolbar$addSeparator ()
sapply (plot_actions , toolbar$addAction)

QToolBar will display actions as buttons, and the precise configuration
of the buttons depends on the toolbar style. For example, the buttons might
display only text, only icons, or both. By default, only icons are shown.
We instruct our toolbar to display an icon, with the label underneath:

toolbar$setToolButtonStyle (Qt$Qt$ToolButtonTextUnderIcon)

By default, toolbars pack their items horizontally. Vertical packing is
also possible; see the orientation property.

16.5 Status bars

Main windows reserve an area for a status bar at the bottom of the window.
The status bar is used to display messages about the current state of the
program, as well as any status tips assigned to actions.

A status bar is an instance of the QStatusBar class. We create one and
add it to our window:

statusbar <- Qt$QStatusBar ()
main_window$setStatusBar (statusbar)

There are three types of messages in a status bar:

• Temporary, where the message stays briefly, such as for status tips;

• Normal, where the message stays but may be hidden by temporary
messages; and

• Permanent, where the message is never hidden and appears at the
far right.

In addition to messages, we can embed widgets into the status bar.

For example, we could communicate a temporary message when a data
set is loaded:

statusbar$showMessage ("Load complete" , 1000)

The second argument above is optional and indicates the duration of the
message in milliseconds. If not specified, the message must be explicitly
cleared with clearMessage.

Normal and permanent messages must be placed into a QLabel, which
is then added to the status bar like any other widget:

statusbar$addWidget (Qt$QLabel ("Ready"))
statusbar$addPermanentWidget (Qt$QLabel ("Version 1.0"))

341

16. Qt: Application Windows

16.6 Dockable widgets

QMainWindow supports window docking. There is a dock area for each of
the four sides of the window (top, bottom, left, and right). If a widget
is assigned to a dock area, the user may, by default, drag the widget
between the docking areas. If multiple widgets are placed into the same
area, they are grouped into a tabbed notebook. Dragging a docked widget
to a location outside of a dock area will convert the widget into a top-level
window.

For example, we could add an R-graphics device as a dockable widget.
The first step is to wrap the widget in a QDockWidget:

library (qtutils)
device <- QT ()
dock <- Qt$QDockWidget ("Device 1")
dock$setWidget (device)

The string passed to the QDockWidget constructor is an optional label/title
for the docked window.

By default, the dock widget is closable, movable and floatable. This is
adjustable through the features property. For example, we could disable
closing of the graphics device:

dock$features <- Qt$QDockWidget$DockWidgetMovable |
Qt$QDockWidget$DockWidgetFloatable

The allowedAreas property specifies the valid docking areas for a dock
widget. By default, all are allowed.

After configuring the dock widget, we add it to the main window, in
the left docking area:

main_window$addDockWidget (Qt$Qt$LeftDockWidgetArea , dock)

A second graphics device could be added with the first, on a separate
page of a tabbed notebook:

device2 <- QT ()
dock2 <- Qt$QDockWidget ("Device 2" , device2)
main_window$tabifyDockWidget (dock , dock2)

To make dock2 a top-level window instead, we could set the floating
property to "TRUE":

dock2$floating <- TRUE

342

Part IV

The tcltk Package

343

This page intentionally left blankThis page intentionally left blank

17

Tcl/Tk: Overview

“Tool Command Language” (Tcl) is a scripting language and interpreter of
that language. Originally developed in the late 1980s by John Ousterhout
as a “glue” to combine two or more complicated applications, it evolved
over time to find use not just as middleware, but also as a stand-alone
development tool.

Tk is an extension of Tcl that provides GUI components through Tcl.
Tk was first developed in 1990, again by John Ousterhout. It quickly found
widespread usage, as at the time it made programming GUIs for X11
easier and faster. Over the years, other graphical toolkits have evolved and
surpassed this one, but Tk still has many users.

There are a large number of language bindings available for Tk, in-
cluding Perl, Python, Ruby, and, through the tcltk package, R. The tcltk
package was developed by Peter Dalgaard and has been included with
base R since version 1.1.0. Since then, the package has been used in a
number of GUI projects for R, most notably the Rcmdr GUI. The tcltk2
package provides additional bindings and bundles in some useful external
TCL code. Our focus here is limited to the base tcltk package.

Tk had a major change between versions 8.4 and 8.5, with the latter
introducing themed widgets. Many widgets were rewritten and their API
dramatically simplified. In tcltk there can be two different functions to
construct a similar widget. For example, tklabel or ttklabel. The latter,
with the ttk prefix, corresponds to the newer themed variant of the wid-
get. We assume the Tk version is 8.5 or higher, as this was a major step
forward.1

Despite Tk’s limitations as a graphical toolkit as compared to GTK+
or Qt, the Tk libraries are widely used for R GUIs. R for Windows has
been bundled with the necessary Tk version for years, so there are no
installation issues for that platform. For Linux users, it is typically trivial
to install the newer libraries, and for Mac OS X users, the provided binary
installations include the newer Tk libraries.

1In fact, we assume version 8.5.8, which was the release accompanying R for Windows
version 2.13.1.

345

17. Tcl/Tk: Overview

Figure 17.1: A simple dialog to collect a name for later use illustrates
three basic widgets: a label, entry widget, and button.

Tk has a well-documented API[10] (www.tcl.tk/man/tcl8.5). There are
also several books to supplement. We consulted the one by Welch, Jones
and Hobbs[1] often in the development of this material. The online sample
chapter on geometry management of Walsh[13] was perused, as it pro-
vides a thorough discussion of that topic. In addition, the Tk Tutorial
of Mark Roseman[9] (www.tkdocs.com/tutorial) provides much detail. R-
specific documentation includes two excellent R News articles and a pro-
ceedings paper[3][5][4] by Peter Dalgaard, the package author. A set of ex-
amples by James Wettenhall[14] are also quite instructive. A main use of
tcltk is within the Rcmdr framework. Writing extensions for that is well
documented in an R News article[6] by John Fox, the package author.

17.1 A first example

In this chapter we give an overview of Tk and R’s interface to it through
the tcltk package using the following small example of a dialog to collect
a name and echo back a message (Figure 17.1). In subsequent chapters we
give more detail on the various widgets provided by Tk.

library (tcltk)
##

[10] Tcl Core Team. http://www.tcl.tk/man/tcl8.5/.
[1] Jeffrey Hobbs Brent B. Welch, Ken Jones. Practical Programming in Tcl and Tk. Prentice

Hall, Upper Saddle River, NJ, fourth edition, 2003.
[13] Nancy Walsh. Learning Perl/Tk: Graphical User Interfaces with Perl. O’Reilly, first edition,

January 1999. http://oreilly.com/catalog/9781565923140.
[9] Mark Roseman. http://www.tkdocs.com/tutorial/.
[3] Peter Dalgaard. A primer on the R-Tcl/Tk package. R News, 1(3):27–31, September 2001.
[5] Peter Dalgaard. Changes to the R-Tcl/Tk package. R News, 2(3):25–27, December 2002.
[4] Peter Dalgaard. The R-Tcl/Tk interface. In Kurt Hornik and Friedrich Leisch, editors,

Proceedings of the 2nd International Workshop on Distributed Statistical Computing, 2001. ISSN
1609-395X.

[14] James Wettenhall. http://bioinf.wehi.edu.au/~wettenhall/RTclTkExamples/.
[6] John Fox. Extending the R Commander by “plug-in” Packages. R News, 7(3):46–52,

December 2007.

346

17.2. Interacting with Tcl

window <- tktoplevel ()
tkwm . title (window , "Simple dialog")
##
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")
##
nested_frame <- ttkframe (frame) ; tkpack (nested_frame)
##
label <- ttklabel (nested_frame , text = "Enter your name:")
tkpack (label , side = "left")
##
text_var <- tclVar ("")
entry <- ttkentry (nested_frame , textvariable = text_var)
tkpack (entry)
##
button_frame <- ttkframe (frame)
tkpack (button_frame , anchor = "ne")
button <- ttkbutton (button_frame , text = "Click")
tkpack (button , side = "right")
##
handler <- function () {

msg <- sprintf ("Hello %s" , tclvalue (text_var))
print (msg)

}
tkconfigure (button , command = handler)

In the above, the first block defines a top-level window and the second an
underlying frame container. We then define and place three widgets – a
label, entry widget, and button – into a frame. Finally, we add a callback
to respond when the button is clicked.

17.2 Interacting with Tcl

As the example above makes clear, using tcltk does not necessarily require
knowing anything about the underlying Tk or Tcl workings, though it can
be useful to have a rough sense of these technologies and how tcltk
interfaces with them. As such, we give a quick overview.

Although both are scripting languages, the basic syntax of Tcl is unlike
that of R. For example a simple string assignment would be made at tclsh,
the Tcl shell with (using % as a prompt):

% set x {hello world}
hello world

Unlike R, in which braces are used to form blocks, this example shows how
Tcl uses braces instead of quotes to group the words as a single string. The

347

17. Tcl/Tk: Overview

use of braces instead of quotes in this example is optional, but in general
it isn’t, as expressions within braces are not evaluated.

The example above assigns to the variable x the value of hello world.
Once assignment has been made, we can call commands on the value
stored in x using the $ prefix:

% puts $x
hello world

The puts command in this usage simply writes back its argument to the
terminal. Had we used braces, the argument would not have been substi-
tuted:

% puts {$x}
$x

More typical within the tcltk package is the idea of a subcommand.
For example, the string command provides the subcommand length to
return the number of characters in the string.

% string length $x
11

The tcltk package provides the low-level function .Tcl for direct access
to the Tcl interpreter:

library (tcltk)
. Tcl ("set x {some text}") # a s s i g n m e n t

<Tcl > some text

. Tcl ("puts $x") # p r i n t s t o s t d o u t

some text

. Tcl ("string length $x") # c a l l a command

<Tcl > 9

The .Tcl function simply sends a command as a text string to the Tcl
interpreter and returns the result as an object of class tclObj (cf. ?.Tcl).
The .Tcl function can be used to read in Tcl scripts as with .Tcl("source
filename"). This allows arbitrary Tcl scripts to run within an R session.
Tcl packages can be read in with tclRequire.2

2The add-on package tcltk2 uses both techniques to enhance the base tcltk package
with some open-source Tk extensions.

348

17.2. Interacting with Tcl

The tclObj class The tcltk package creates objects with a few different
classes, tclObj being the primary one (tclVar and tkwin are two other
important ones). The tclObj objects print with the leading <Tcl>. The
string representation of objects of class tclObj is returned by tclvalue or
by coercion through the as.character function. These two differ in how
they treat spaces and new lines. Conversion to vectors of mode charac-
ter, double, integer, and logical is possible, though, in general, direct
conversion of complicated Tcl expressions is not supported. We can create
objects of this class through as.tclObj.

Convenience functions The Tk extensions to Tcl have a complicated com-
mand structure, and, thankfully, tcltk provides some more conveniently
named functions. To illustrate, the Tcl command to configure the text prop-
erty for a label object (.label) would look like

% .label configure -text "new text"

The tcltk package provides a corresponding function tkconfigure. The
above would be done in an R-like way as (assuming label is a label object):

tkconfigure (label , text = "new text")

The Tk API for ttklabel’s configure subcommand is

pathName configure ?option? ?value option value ...?

The pathName is the ID of the label widget. This can be found from
the object label above, in label$ID, or in some cases is a return value of
some other command call. In the Tk documentation, paired question marks
indicate optional values. In this case, we can specify nothing, returning a
list of all options; just an option, to query the configured value; the option
with a value, to modify the option; or possibly more than one at at time.
For commands such as configure, there will usually correspond a function
in R of the same name with a tk prefix, as in the case tkconfigure.

To make consulting the Tk manual pages easier in the text we would
describe the configure subcommand as ttklabel configure [options]. (The R
manual pages simply redirect the reader to the original Tk documentation;
understanding this is important for reading the API.) However, if such a
function shortcut is present, we will typically use the shortcut when we
illustrate code.

Some subcommands have further subcommands. An example is with
setting the selection. In the R function, the second command is appended
with a dot, as in tkselection.set. (There are a few necessary exceptions
to this.)

349

17. Tcl/Tk: Overview

The tcl function Within tcltk, the tkconfigure function is defined by

function (widget , . . .) tcl (widget , "configure" , . . .)

The tcl function is the workhorse used to piece together Tcl commands,
call the interpreter, and then return an object of class tclObj. Behind the
scenes it

• turns an R object, widget, into the pathName above (using its ID
component)

• passes along strings as subcommands (configure)

• converts R key=value pairs into -key value options for Tcl; named
arguments are for only the -key value expansion, we follow the Tcl
language and call the arguments “options” in the following

• adjusts any callback functions allowing, R functions and expressions
to be called

The tcl function uses position to create its command. The order of the
subcommands needs to match that of the Tk API, so although it is true
that often the R object is first, this is not always the case.

17.3 Constructors

In this chapter, we will stick to a few basic widgets – labels, entry widgets,
and buttons – to illustrate the usage of tcltk, leaving for later more detail
on containers and widgets.

Unlike GTK+, say, the construction of widgets in tcltk is linked to
the widget hierarchy. Tk widgets are constructed as children of a parent
object, with the parent specified to the constructor. When the Tk shell, wish,
is used or the Tk package is loaded through the Tcl command package
require Tk, a top-level window named “.” is created. (This is .TkRoot in
R.) In the variable name .label, from above, the dot refers to the top-level
window. In tcltk, a top-level window is created separately through the
tktoplevel constructor, as was done in the example with:

window <- tktoplevel ()

Top-level windows will be explained in more detail in Chapter 18.
Other widget constructors require that a parent widget be specified as

the first argument of the constructor. A typical invocation was given in the
example.

label <- ttklabel (nested_frame , text = "Enter your name:")

350

17.3. Constructors

Options The first argument of a widget constructor is the parent con-
tainer; subsequent arguments, given as key=value pairs, are used to spec-
ify the options for the constructor. The Tk API lists these options along
with their descriptions.

For a simple label, the following options are possible: anchor,
background, font, foreground, justify, padding, relief, text, and
wraplength. This is in addition to the standard options class, compound,
cursor, image, state, style, takefocus, text, textvariable, underline,
and width. (Although clearly lengthy, this list is significantly reduced from
the options for tklabel, where options for the many style properties are
also included.)

Many of the options meanings are clear from their name. The main
option, text, takes a character string. The label will be multiline if it con-
tains new line characters. The padding argument allows the specification
of space in pixels between the text of the label and the widget bound-
ary. This may be set as four values (left, top, right, bottom), or fewer,
with bottom defaulting to top, right to left, and top to left. The relief
argument specifies how a 3-D effect around the label should look, if spec-
ified. Possible values are "flat", "groove", "raised", "ridge", "solid",
and "sunken".

The functions tkconfigure, tkcget Option values can be set through the
constructor or adjusted afterwards by tkconfigure. A listing (in Tcl code)
of possible options that can be adjusted can be seen by calling tkconfigure
with just the widget as an argument.

head (as . character (tkconfigure (label))) # f i r s t 6 on ly

[1] "-background frameColor FrameColor {} {}"
[2] "-foreground textColor TextColor {} {}"
[3] "-font font Font {} {}"
[4] "-borderwidth borderWidth BorderWidth {} {}"
[5] "-relief relief Relief {} {}"
[6] "-anchor anchor Anchor {} {}"

The tkcget function returns the value of an option (again as a tclObj
object). The option can be specified two ways: using the Tk style of a
leading dash or using the R convention that NULL values mean to return
the value and not set it.

tkcget (label , "-text") # r e t r i e v e t e x t p r o p e r t y

<Tcl > Enter your name:

tkcget (label , text = NULL) # a l t e r n a t e s yn t a x

<Tcl > Enter your name:

351

17. Tcl/Tk: Overview

Coercion to character As mentioned, the tclObj objects can be coerced
to characters in two ways. The conversion through as.character breaks
the return value along white space:

as . character (tkcget (label , text = NULL))

[1] "Enter" "your" "name:"

whereas conversion by the tclvalue function does not:

tclvalue (tkcget (label , text = NULL))

[1] "Enter your name:"

The tkwidget function

Constructors call the tkwidget function, which returns an object of class
tkwin. (In Tk, the term “window” is used to refer to the drawn widget
and not just a top-level window). For example,

str (button)

List of 2
$ ID : chr ".1.1.2.1"
$ env:<environment: 0x1032edd40 >
- attr(*, "class ")= chr "tkwin"

The returned widget objects are lists with two components: an ID and
an environment. The ID component keeps a unique ID of the constructed
widget. This is a character string, such as ".1.2.1", coming from the
widget hierarchy of the object. This value is generated behind the scenes
by the tcltk package using numeric values to keep track of the hierarchy.
The env component contains an environment that keeps a count of the
subwindows, the parent window, and any callback functions. This helps
ensure that any copies of the widget refer to the same object.[4] As the
construction of a new widget requires the ID and environment of its parent,
the first argument to tkwidget (and hence any constructor), parent, must
be a tkwin object, not simply its character ID, as is possible for the tcl
function.

Geometry managers

In the example we saw several calls to tkpack. For example,

tkpack (frame , expand = TRUE , fill = "both")
tkpack (label , side = "left")
tkpack (entry)
tkpack (button_frame , anchor = "ne")

352

17.3. Constructors

As with Qt, when a new widget is constructed it is not automatically
mapped. Tk uses geometry managers to specify how the widget will be
drawn within the parent container. We will discuss two such geometry
managers, tkpack and tkgrid, in Chapter 18.

The tkpack command packs the widgets into the parent container in
a boxlike manner. The example shows various arguments that adjust the
position of the child component and how space is to be allocated when an
excess of space is present.

Tcl variables

For the button and label widgets in our example, their text property
is configured through calls to their constructors. Many widgets allow an
alternative way to specify one or two important properties using an inde-
pendent Tcl variable.

In the call to ttkentry in the example we had:

text_var <- tclVar ("")
entry <- ttkentry (g , textvariable = text_var)

The first line defines a new object of class tclVar which is used for the
textvariable option when defining the entry widget. This variable is dy-
namically bound to the widget, so that changes to the variable are prop-
agated to the GUI. (The Tcl variable is a model and the widget a view
of the model.) The Tcl variable can be used with more than one widget,
allowing a simple form of synchronization.

The basic functions involved are tclVar to create a Tcl variable,
tclvalue to get the assigned value, and tclvalue<- to modify the value.

tclvalue (text_var) <- "Somebody ’s name"
tclvalue (text_var)

[1] "Somebody ’s name"

Tcl variables have a unique identifier, returned by as.character:

as . character (text_var)

[1] ":: RTcl1"

The advantages of Tcl variables are like those of the MVC paradigm –
a single data source can have its changes propagated to several widgets
automatically. If the same text is to appear in different places, the usage of
Tcl variables is recommended. One disadvantage is that in a callback, the
variable is not passed to the callback and can’t be recovered from the object
itself. Hence, it must be found through R’s scoping rules. (In Section 19.2
we show a work-around.)

353

17. Tcl/Tk: Overview

The package also provides the function tclArray to store an array of Tcl
variables. The usual list methods, [[and $, and their forms for assignment
are available for arrays, but values are referred to only by name, not index:

x <- tclArray () # no i n i t
x$one <- 1 ; x [[2]] <- 2 # $<- and [[<-
x [[1]] # no match by i n d e x

NULL

names (x) # t h e s t o r e d names

[1] "2" "one"

x [[’2’]] # match by name , not i n d e x

<Tcl > 2

Commands

In the definition of the button we saw:

button <- ttkbutton (button_frame , text = "Click")
#
handler <- function () {

msg <- sprintf ("Hello %s" , tclvalue (text_var))
print (msg)

}
tkconfigure (button , command = handler)

Button widgets are used to initiate some action or command, and the
command option is used to specify this. This may be given as a function or
expression, though we illustrate only the former. The command is invoked
by clicking and releasing the mouse on the button, by pressing the space
bar when the button has the focus, or by calling the widget’s ttkbutton
invoke subcommand.

The command option is available for many widgets, but it is not the only
means to invoke a function call, as Tk also allows us to bind to various
types of events (e.g., button clicks). More on callbacks in tcltk will be
explained in Section 17.4.

Themes

As mentioned, the newer themed widgets have a style that determines
how they are drawn based on the state of the widget. The separation of
style properties from the widget, as opposed to having these set for each
construction of a widget, makes it much easier to change the look of a GUI

354

17.3. Constructors

Figure 17.2: Comparison of themed versus non-themed dialogs. The
non-themed one (right) one does not use an inner ttkframe, and in
addition to not having padding, has mismatched colors.

and easier to maintain the code. A collection of styles makes up a theme.
The available themes depend on the system. The default theme allows the
GUI to have the native look and feel of the operating system. (This was
definitely not the case for the older Tk widgets.)

In our example, the top-level window has a frame immediately packed
inside of it through the commands:

window <- tktoplevel ()
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")

The arguments to tkpack are given so that the frame, frame, will ex-
pand and fill all the space allocated by the top-level window. As the top-
level window is not a themed widget, not doing this can leave odd-looking
effects, see Figure 17.2.

There is no built-in command to return the theme, so we use .Tcl to
call the appropriate names subcommand:

. Tcl ("ttk::style theme names")

<Tcl > clam alt default classic

The use sub command is used to set the theme:

. Tcl ("ttk::style theme use clam")

State of themed widgets The themed widgets (those with a ttk construc-
tor) have a state to determine which style is to be applied when painting
the widget. These states can be adjusted through the state command and
queried with the instate command. For example, to see if button widget
b has the focus, we have:

as . logical (tcl (button , "instate" , "focus"))

[1] FALSE

To set a widget to not be sensitive to user input we have:

tcl (button , "state" , "disabled") # not s e n s i t i v e

355

17. Tcl/Tk: Overview

<Tcl > !disabled

The states are bits and can be negated by prefacing the value with !:

tcl (button , "state" , "!disabled") # s e n s i t i v e a g a i n

<Tcl > disabled

The full list of states is in the manual page for ttk::widget.
The writing of themes will not be covered, but in Example 18.5 we

show how to create a new style for a button. This topic is covered in some
detail in the Tk tutorial by Roseman.

Window properties and state: tkwinfo

For a widget, the function tkcget is used to get the values of its options.
If it is a themed widget, the instate command returns its state values.

To query the values of the containing window of the widget the tk-
winfo function is used. When widgets are mapped, the “window” they are
rendered to has properties, such as class or size. There are a few subcom-
mands provided by tcltk, but by no means is this exclusive. Rather, one
can pass in the subcommand as an argument to tkwinfo. If the subcom-
mand’s API is of the form

winfo subcommand_name window

the specification to tkwinfo is in the same order (the widget is not the
first argument). For instance, the class3 of a label is returned by the class
subcommand:

tkwinfo ("class" , label)

<Tcl > TLabel

The window, in this example label, can be specified as an R object, or
by its character ID. This is useful, as the return value of some functions
is the ID. For instance, the children subcommand returns IDs. Below the
as.character function will coerce these into a vector of IDs.

(children <- tkwinfo ("children" , window))

<Tcl > .4.1 .4.2

sapply (as . character (children) , function (i) tkwinfo ("class" ,i))

3The class of a widget is more like an attribute and should not be confused with class in
the object-oriented sense. The class is used internally for bindings and styles.

356

17.3. Constructors

$‘.4.1 ‘
<Tcl > TButton

$‘.4.2 ‘
<Tcl > TButton

There are several possible subcommands. Here we list a few. The tk-
winfo geometry sub command returns the location and size of the widget’s
window in the form width x height + x + y; the subcommands tkwinfo
height, tkwinfo width, tkwinfo x, or tkwinfo y can be used to return just
those parts. The tkwinfo exists command returns 1 (TRUE) if the window
exists and 0 otherwise; the tkwinfo ismapped sub command returns 1 or
0 if the window is currently mapped (drawn); the tkwinfo viewable sub-
command is similar, except that it checks that all parent windows are also
mapped.

For traversing the widget hierarchy, we have available the tkwinfo par-
ent subcommand which returns the immediate parent of the component,
tkwinfo toplevel which returns the ID of the top-level window; and tkwinfo
children, which returns the IDs of all the immediate child components, if
the object is a container, such as a top-level window.

Colors and fonts

Colors and fonts are typically specified through a theme, but at times it is
desirable to customize them.

The label color can be set through its foreground property. Colors can
be specified by name – for common colors – or by hex RGB values which
are common in web programming.

tkconfigure (label , foreground = "red")
tkconfigure (label , foreground = "#00aa00")

To find the hex RGB value, we can use the rgb function to create RGB
values from intensities in [0,1]. The R function col2rgb can translate a
named color into RGB values. The as.hexmode function will display an
integer in hexadecimal notation.

In Example 19.2 we show how to modify a style, as opposed to the
foreground option, to change the text color in an entry widget.

Fonts Fonts are a bit more involved than colors. Tk version 8.5 made it
more difficult to change font properties of individual widgets, by following
the practice of centralizing style options for consistency, ease of maintaining
code, and ease of theming. To set a font for a label, rather than specifying
the font properties, we configure the font options using a predefined font
name, such as

tkconfigure (label , font = "TkFixedFont")

357

17. Tcl/Tk: Overview

Table 17.1: Standard font names defined by a theme.

Standard font name Description

TkDefaultFont Default font for all GUI items not otherwise specified
TkTextFont Font for text widgets
TkFixedFont Fixed-width font
TkMenuFont Menu bar fonts
TkHeadingFont Font for column headings
TkCaptionFont Caption font (dialogs)
TkSmallCaptionFont Smaller caption font
TkIconFont Icon and text font

The "TkFixedFont" value is one of the standard font names, in this
case to use a fixed-width font. A complete list of the standard names is
provided in Table 17.3. Each theme sets these defaults accordingly.

Using tkfont.create The tkfont.create function can be used to create
a new font, as with the following commands:

tkfont . create ("our_font" , family = "Helvetica" , size = 12 ,
weight = "bold")

<Tcl > our_font

tkconfigure (label , font = "our_font")

As font families are system dependent, only "Courier", "Times" and
"Helvetica" are guaranteed to be there. A list of an installation’s available
font families is returned by the function tkfont.families. Figure 17.3
shows a display of some available font families on a Mac OS X machine.
See Example 20.7 for details.

The arguments for tkfont.create are optional. The size argument
specifies the pixel size. The weight argument can be used to specify "bold"
or "normal". Additionally, a slant argument can be used to specify either
"roman" (normal) or "italic". Finally, underline and overstrike can be
set with a TRUE or FALSE value.

Font metrics The average character size is important in setting the width
and height of some components. (For example, the text widget specifies
its height in lines, not pixels.) These sizes can be found using the tk-
font.measure and tkfont.metrics. Although the average text size varies
for proportional fonts, the size of the M character is often used.

font_measure <- tcl ("font" , "measure" , "TkTextFont" , "M")
font_width <- as . integer (tclvalue (font_measure))

358

17.3. Constructors

Figure 17.3: A scrollable frame widget (cf. Example 20.7) showing the
available fonts on a system.

tmp <- tkfont . metrics ("TkTextFont" , "linespace" = NULL)
font_height <- as . numeric (tclvalue (tmp))
#
c (width = font_width , height = font_height)

width height
10 14

Images

Many tcltk widgets, including both labels and buttons, can show images
(in these cases, either with or without an accompanying text label). Con-
structing images to display is similar to constructing new fonts, in that a
new image object is created and can be reused by various widgets. This
shared use of resources reduces memory consumption and is an example
of the flyweight design pattern.

Images are created by the tkimage.create function. The following com-
mand shows how an image object can be made from the file tclp.gif in
the current directory:

tkimage . create ("photo" , "::img::tclLogo" , file = "tclp.gif")

359

17. Tcl/Tk: Overview

<Tcl > ::img:: tclLogo

The first argument, "photo" specifies that a full-color image is being
used (this option could also be "bitmap" but that is more a legacy op-
tion).4 The second argument specifies the name of the object. We follow
the advice of the Tk manual and preface the name with ::img:: so that we
don’t inadvertently overwrite any existing Tcl commands. (The command
tcl("image", "names") will return all defined image names.) The third
argument file specifies the graphic file. The basic Tk image command can
only show GIF and PPM/PNM images. Unfortunately, not many R devices
output in these formats. (The GDD device driver can.) We may need system
utilities to convert to the allowable formats or install add-on Tcl packages
that can display other formats.

To use the image, one specifies the image name to the image option:

label <- ttklabel (window , image = "::img::tclLogo" ,
text = "logo text" , compound = "top")

By default the text will not show. The compound argument takes a value
of either "text", "image" (default), "center", "top", "left", "bottom", or
"right" specifying where the label is in relation to the text.

Image manipulation Once an image is created, there are several options
to manipulate the image. These are found in the Tk manual page for photo,
not image. For instance, to change the palette so that instead of fullcolor
only sixteen shades of gray are used to display the icon, We can issue the
command

tkconfigure ("::img::tclLogo" , palette = 16)

Other commands allow us to scale an image (copy zoom and copy subsam-
ple).

17.4 Events and callbacks

The button widget has the command option for assigning a callback, which is
invoked when the user clicks the mouse on the button (among other ways).
In addition to such commands, we can use tkbind to invoke callbacks in
response to many other events that the user may initiate. The basic call is
tkbind(tag, event, script).

4The tkrplot package allows a third option, Rplot. This package has the high-level
command tkrplot, but the low-level use of a) calling .my.tkdev(hscale = 1,vscale = 1),
b) creating a graphic, and c) creating an image object through tkimage.create("Rplot",
img_name) will produce a new image object we can use.

360

17.4. Events and callbacks

The tag

The tag object is more general than just a widget (or its id). It can be:

the name of a widget, in which case the command will be bound to that
widget;

a top-level window, in which case the command will be be bound to the
event for the window and all its internal widgets;

a class of widget, such as "TButton", in which case all such widgets will
get the binding; or

the value "all", in which case all widgets in the application will get the
binding.

This flexibility makes it easy to create keyboard accelerators. For ex-
ample, the following mimics the Linux shortcut Control-q to close a win-
dow.

window <- tktoplevel ()
button <- ttkbutton (window , text = "Some widget with focus")
tkpack (button)
tkbind (window , "<Control-q>" , function () tkdestroy (window))

By binding to the top-level window, we ensure that no matter which widget
has the focus the command will be invoked by the keyboard shortcut.

Events

Of course, the possible events (or sequences of events) vary from widget
to widget. In addition, these events can be specified in a few ways.

The example below uses two types of events. A single key press event,
such as “C” or “O,” can invoke a command and is specified by just its
character, whereas the event of pressing the return key is specified using
Return. In the following, we bind the key presses to the top-level window
and the return event to any button with the default class TButton.

window <- tktoplevel ()
label <- ttklabel (window , text = "Click Ok for a message")
button1 <- ttkbutton (window , text = "Cancel" ,

command = function () tkdestroy (window))
button2 <- ttkbutton (window , text = "Ok" , command=function () {

print ("initiate an action")
})
sapply (list (label , button1 , button2) , tkpack)
##
tkbind (window , "C" , function () tcl (button1 , "invoke"))
tkconfigure (button1 , underline = 0)

361

17. Tcl/Tk: Overview

Figure 17.4: Simple GUI showing buttons with underline property. The
underlined letters match bindings to the top-level window to invoke the
button.

##
tkbind (window , "O" , function () tcl (button1 , "invoke"))
tkconfigure (button2 , underline = 0)
tkfocus (button2)
##
tkbind ("TButton" , "<Return>" , function (W) {

tcl (W , "invoke")
})

We modified our buttons using the underline option to give the user an
indication that the “C” and “O” keys will initiate some action (Figure 17.4).
Our callbacks simply cause the appropriate button to invoke their com-
mand. The latter one uses a percent substitution (below), which is how Tk
passes along information about the event to the callback.

Events with modifiers More complicated events can be described with
the pattern

<modifier-modifier-type-detail>.

Examples of a “type” are <KeyPress> or <ButtonPress>. The event
<Control-q>, used above, has the type q and modifier Control, whereas
<Double-Button-1> uses the detail 1 to indicate which mouse button. The
full list of modifiers and types is described in the manual page for bind.
Some familiar modifiers are Control, Alt, Double, and Triple. The event
types are the standard X event types, along with some abbreviations. These
are also listed in the bind manual page. Some commonly used ones are
Return (as above), ButtonPress, ButtonRelease, KeyPress, KeyRelease,
FocusIn, and FocusOut.

362

17.4. Events and callbacks

Window-manager events Some events are based on window-manager
events. The <Configure> event happens when a component is resized.
The <Map> and <Unmap> events happen when a component is drawn or
undrawn.

Virtual events Finally, the event may be a “virtual event.” These are rep-
resented as <<EventName>>. There are predefined virtual events listed
in the event man page. These include <<MenuSelect>> when working
with menus, <<Modified>> for text widgets, <<Selection>> for text
widgets, and <<Cut>>, <<Copy>>, and <<Paste>> for working with
the clipboard. New virtual events can be produced with the tkevent.add
function. This function takes at least two arguments, an event name and
a sequence which will initiate that event. The event man page has these
examples coming from the Emacs world:

tkevent . add ("<<Paste>>" , "<Control-y>")
tkevent . add ("<<Save>>" , "<Control-x><Control-s>")

In addition to virtual events occurring when the sequence is performed,
the tkevent.generate can be used to force an event for a widget. This
function requires a widget (or its ID) and the event name. Other options
can be used to specify substitution values, described below. To illustrate,
this command will generate the <<Save>> event for the button button:

tkevent . generate (button , "<<Save>>")

Example 17.1 uses virtual events to implement drag and drop features.

Callbacks

The tcltk package implements callbacks in a manner different from Tk,
as the callback functions are R functions, not Tk procedures. This is much
more convenient but introduces some slight differences. In tcltk these
callbacks can be expressions (unevaluated calls) or functions. We use only
the latter. The basic callback function need not have any arguments and
those that do have only percent substitutions passed in.

The callback’s return value is generally not important, although we shall
see that within the validation framework of entry widgets (Section 19.2) it
can matter.5

In tcltk only one callback can be associated with a widget and event
through the call tkbind(widget,event,callback). (Although callbacks for
the widget associated with classes or top-level windows can differ.) Calling

5The difference in processing of return values can make porting some Tk code to tcltk
difficult. For example, the break command to stop a chain of callbacks does not work.

363

17. Tcl/Tk: Overview

tkbind another time will replace the callback. To remove a callback, simply
assign a new callback that does nothing.6

Percent substitutions

We cannot pass arbitrary user data to a callback; rather, such values must
be found through R’s usual scoping rules. However, Tk provides a mech-
anism called percent substitution to pass information about the event to
callbacks bound to the event. The basic idea is that in the Tcl callback,
expressions of the type %X, for different characters X, will be replaced by
values coming from the event. In tcltk, if the callback function has an
argument X, then that variable will correspond to the value specified by
%X. The complete list of substitutions is in the bind manual page. Some
useful ones are x and X to specify the relative or absolute x-postion of a
mouse click (the difference can be found through the rootx property of a
widget), y and Y for the y-position, k and K for the keycode (ASCII) and
key symbol of a <KeyPress> event, and W to refer to the ID of the widget
that signaled the event the callback is bound to.

The following trivial example illustrates the steps, whereas Example 17.1
will put these to use.

window <- tktoplevel ()
button <-

ttkbutton (window , text = "Click me for the x,y position")
tkpack (button)
tkbind (button , "<ButtonPress -1>" , function (W , x , y , X , Y) {

print (W) # an ID
print (c (x , X)) # c h a r a c t e r c l a s s
print (c (y , Y))
})

The after command The Tcl command after will execute a command
after a certain delay (specified in milliseconds as an integer) while not
interrupting the control flow while it waits for its delay. The function is
called in a manner like this:

ID <- tcl ("after" , 1000 , function () print ("1 second passed"))

The ID returned by after may be used to cancel the command before it
executes. To execute a command repeatedly can be done along the lines
of:

after_ID <- ""
some_flag <- TRUE

6This event handling can prevent us from being able to port some Tk code into tcltk.
In those cases, we can consider sourcing in Tcl code directly.

364

17.4. Events and callbacks

repeat_call <- function (ms = 100 , f) {
after_ID <<- tcl ("after" , ms , function () {

if (someFlag) {
f ()
after_ID <<- repeat_call (ms , f)

} else {
tcl ("after" , "cancel" , after_ID)

}
})

}
repeat_call (2 0 0 0 , function () {

print ("Running. Set someFlag <- FALSE to stop.")
})

Example 17.1: Drag-and-drop
This relatively involved example7 shows several different uses of the event
framework to implement drag and drop behavior between two widgets. It
certainly can be skipped on first reading.

In tcltk much more work is involved with drag and drop, than with
RGtk2 and qtbase, as there is no provided framework.

Here we go through the steps needed to make one widget a drop source
and the other a drop target. The basic idea is that when a value is being
dragged, virtual events are generated for the widget the cursor is over. If
that widget has callbacks listening to these events, then the drag and drop
can be processed.

To begin, we create a simple GUI to hold three widgets. We use buttons
for drag and drop, but only for convenience. Other widgets would be used
in a real application.

window <- tktoplevel ()
b_drag <- ttkbutton (window , text = "Drag me")
b_drop <- ttkbutton (window , text = "Drop here")
tkpack (b_drag)
tkpack (ttklabel (window , text = "Drag over me"))
tkpack (b_drop)

Before beginning, we define three global variables that can be shared
among drop sources to keep track of the drag and drop state.

. dragging <- FALSE # c u r r e n t l y d r a g g i n g ?

. drag_value <- "" # v a l u e t o t r a n s f e r

. last_widget_id <- "" # l a s t w id ge t dragged o v e r

To set up a drag source, we bind to three events: a mouse-button press,
mouse motion, and a button release. For the button press, we set the values
of the three global variables.

7The idea for the example code originated with http://wiki.tcl.tk/416

365

17. Tcl/Tk: Overview

tkbind (b_drag , "<ButtonPress -1>" , function (W) {
. dragging <<- TRUE
. drag_value <<- as . character (tkcget (W , text = NULL))
. last_widget_id <<- as . character (W)

})

This initiates the dragging immediately. A more common strategy is to
record the position of the mouse click and then initiate the dragging after
a certain minimal movement is detected.

For mouse motion, we do several things. First we set the cursor to indi-
cate a drag operation. The choice of cursor is a bit outdated. The comment
refers to a web page showing how we can put in a custom cursor from
an xbm file, but this doesn’t work for all platforms (e.g., OS X and Aqua).
After setting the cursor, we find the ID of the widget the cursor is hovering
over. We use tkwinfo to find the widget containing the x and y-coordinates
of the cursor position. We then generate the <<DragOver>> virtual event
for this widget, and if this widget is different from the previous “last
widget,” we generate the <<DragLeave>> virtual event.

tkbind (window , "<B1-Motion>" , function (W , X , Y) {
if (! . dragging) return ()
s e e c u r s o r h e l p page in API f o r more o p t i o n s
For custom c u r s o r s c f . h t t p : //w i k i . t c l . t k / 8674 .
tkconfigure (W , cursor = "coffee_mug") # s e t c u r s o r

win <- tkwinfo ("containing" , X , Y) # w id ge t mouse i s o v e r
if (as . logical (tkwinfo ("exists" , win))) # d o e s wid ge t e x i s t ?

tkevent . generate (win , "<<DragOver >>")

g e n e r a t e drag l e a v e i f we l e f t l a s t w i dge t
if (as . logical (tkwinfo ("exists" , win)) &&

nchar (as . character (win)) > 0 &&
length (. last_widget_id) > 0) { # i f not c h a r a c t e r (0)

if (as . character (win) != . last_widget_id)
tkevent . generate (. last_widget_id , "<<DragLeave >>")

}
. last_widget_id <<- as . character (win)

})

Finally, if the button is released, we generate the <<DragLeave>>
and, most importantly, <<DragDrop>> virtual events for the widget we
are over.

tkbind (b_drag , "<ButtonRelease -1>" , function (W , X , Y) {
if (! . dragging) return ()
w <- tkwinfo ("containing" , X , Y)

if (as . logical (tkwinfo ("exists" , w))) {

366

17.4. Events and callbacks

tkevent . generate (w , "<<DragLeave >>")
tkevent . generate (w , "<<DragDrop >>")
tkconfigure (w , cursor = "")

}
. dragging <<- FALSE
. last_widget_id <<- ""
tkconfigure (W , cursor = "")

})

To set up a drop target, we bind callbacks for the virtual events generated
above to the widget. For the <<DragOver>> event we make the widget
active, so that it appears ready to receive a drag value.

tkbind (b_drop , "<<DragOver >>" , function (W) {
if (. dragging)

tcl (W , "state" , "active")
})

If the drag event leaves the widget without dropping, we change the state
back to not active.

tkbind (b_drop , "<<DragLeave >>" , function (W) {
if (. dragging) {

tkconfigure (W , cursor = "")
tcl (W , "state" , "!active")

}
})

Finally, if the <<DragDrop>> virtual event occurs, we set the widget value
to that stored in the global variable .drag_value.

tkbind (b_drop , "<<DragDrop >>" , function (W) {
tkconfigure (W , text = . drag_value)
. drag_value <- ""

})

367

This page intentionally left blankThis page intentionally left blank

18

Tcl/Tk: Layout and Containers

18.1 Top-level windows

Top-level windows are created through the tktoplevel constructor. Basic
options include the ability to specify the preferred width and height and
to specify a menu bar through the menu argument. (Menus will be covered
in Section 20.3.)

Other properties can be queried and set through the Tk command wm.
This command has several subcommands, leading to tcltk functions with
names such as tkwm.title, the function used to set the window title. For
all such functions, either the top-level window object, or its ID must be
the first argument. In this case, the new title is the second.

Suppressing the initial drawing When a top-level window is constructed
there is no option for it not to be shown. However, we can use the tclSer-
viceMode function to suspend/resume drawing of any widget through Tk.
This function takes a logical value indicating that the updating of widgets
should be suspended. We can set the value to FALSE, initiate the widgets,
then set to TRUE to display the widgets. To iconify an already drawn win-
dow can be done through the tkwm.withdraw function and reversed with
the tkwm.deiconify function. Either of these can be useful in the construc-
tion of complicated GUIs, as the drawing of the widgets can seem slow.
(The same can be done through the tkwm.state function with an option
of "withdraw" or "normal".)

Window sizing The preferred size of a top-level window can be config-
ured through the width and height arguments of the constructor. Nega-
tive values mean the window will not request any size. The absolute size
and position of a top-level window in pixels can be queried or specified
through the tkwm.geometry function. The geometry is specified as a string,
as was described for tkwinfo in Section 17.3. If this string is empty, then
the window will resize to accommodate its child components.

369

18. Tcl/Tk: Layout and Containers

The tkwm.resizable function can be used to prohibit the resizing of
a top-level window. The syntax allows either the width or height to be
constrained. The following command would prevent resizing of both the
width and height of the top-level window window.

tkwm . resizable (w , FALSE , FALSE) # width f i r s t

When a window is resized, we can constrain the minimum and max-
imum sizes with tkwm.minsize and tkwm.maxsize. The aspect ratio
(width/height) can be set through tkwm.aspect.

For resizable windows, the ttksizegrip widget can be used to add a
visual area (usually the lower-right corner) for the user to grab on to with
a mouse for resizing the window. On some operating systems (e.g., Mac
OS X) these are added automatically by the window manager.

Dialog windows For dialogs, a top-level window can be related to a
different top-level window. The function tkwm.transient allows one to
specify the master window as its second argument (cf. Example 18.1). The
new window will mirror the state of the master window, including the
case when the master is withdrawn.

For some dialogs it may be desirable not to have the window manager
decorate the window with a title bar, etc. The command tktoplevel wm over-
rideredirect logical takes a logical value indicating whether the window
should be decorated. Not all window managers respect this.

Bindings Bindings for top-level windows are propagated down to all of
their child widgets. If a common binding is desired for all the children,
then it need be specified only once for the top-level window (cf. Sec-
tion 17.4 where keyboard shortcuts are defined this way).

The tkwm.protocol function (not tkbind) is used to assign commands
to window-manager events, most commonly the delete event when the user
clicks the close button on the window decorations. A top-level window can
be removed through the tkdestroy function or through the user clicking on
the correct window decorations. When the window decoration is clicked,
the window manager issues a "WM_DELETE_WINDOW" event. To bind to this,
a command of this form tkwm.protocol(win, "WM_DELETE_WINDOW", call-
back) is used.

To illustrate, if window is a top-level window, and entry a text entry
widget (cf. tktext in Section 20.2), then the following snippet of code
would check to see whether the text widget has been modified before clos-
ing the window. This uses a modal message box described in Section 19.1.

tkwm . protocol (window , "WM_DELETE_WINDOW" , function () {
modified <- tcl (entry , "edit" , "modified")
if (as . logical (modified)) {

370

18.1. Top-level windows

response <-
tkmessageBox (icon = "question" ,

message = "Really close?" ,
detail = "Changes need to be saved" ,
type = "yesno" ,
parent = window)

if (as . character (response) == "no")
return ()

}
tkdestroy (window) # o t h e r w i s e c l o s e

})

Example 18.1: A window constructor
This example shows a possible constructor for top-level windows allow-
ing some useful options to be passed in. We use the upcoming ttkframe
constructor and tkpack command.

newWindow <- function (title , command , parent ,
width , height) {

window <- tktoplevel ()

if (!missing (title)) tkwm . title (window , title)

if (!missing (command))
tkwm . protocol (window , "WM_DELETE_WINDOW" , function () {

if (command ()) # command r e t u r n s l o g i c a l
tkdestroy (window)

})

if (!missing (parent)) {
parent_window <- tkwinfo ("top-level" , parent)
if (as . logical (tkwinfo ("viewable" , parent_window))) {

tkwm . transient (window , parent)
}

}

if (!missing (width)) tkconfigure (window , width = width)
if (!missing (height)) tkconfigure (window , height = height)

window_system <- tclvalue (tcl ("tk" , "windowingsystem"))
if (window_system == "aqua") {

frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
} else {

int_frame <- ttkframe (window , padding = 0)
tkpack (int_frame , expand = TRUE , fill = "both")
frame <- ttkframe (int_frame , padding = c (3 , 3 , 1 2 , 0))
sizegrip <- ttksizegrip (int_frame)

371

18. Tcl/Tk: Layout and Containers

tkpack (sizegrip , side = "bottom" , anchor = "se")
}
tkpack (frame , expand = TRUE , fill = "both" , side = "top")

return (frame)
}

18.2 Frames

The ttkframe constructor produces a themeable container that can be used
to organize visible components within a GUI. As mentioned, for theme
reasons, It is often the first thing packed within a top-level window.

The options include width and height to set the requested size. The
padding option can be used to to put space between the border and sub-
sequent children. Frames can be decorated. Use the option borderwidth
to specify a border around the frame of a given width, and relief to set
the border style. The value of relief is chosen from (the default) "flat",
"groove", "raised", "ridge", "solid", and "sunken".

Label frames

The ttklabelframe constructor produces a frame with an optional label
that can be used to set off and organize components of a GUI. The label
is set through the option text. Its position is determined by the option
labelanchor taking values labeled by compass headings (combinations of
n, e, w, and s. The default is theme dependent, although typically "nw"
(upper left).

Separators As an alternative to a border, the ttkseparator widget can
be used to place a single line to separate areas in a GUI. The lone widget-
specific option is orient, which takes values of "horizontal" (the default)
or "vertical". This widget must be told to stretch when added to a
container, as described in the next section.

18.3 Geometry managers

Tcl uses geometry managers to place child components within their parent
windows. There are three such managers, but we describe only two, leav-
ing the lower-level place command for the official documentation. The use
of geometry managers allows Tk to reallocate space to a GUI’s components
quickly when a window is resized. The tkpack function will place children
into their parent in a boxlike manner. We have seen several examples in the
text that use nested boxes to construct quite flexible layouts. Example 18.4

372

18.3. Geometry managers

will illustrate that once again. When simultaneous horizontal and vertical
alignment of child components is desired, the tkgrid function can be used
to manage the components.1

A GUI may use a mix of pack and grid to manage the child compo-
nents, but all immediate siblings in the widget hierarchy must be managed
the same way. Mixing the two will typically result in a lockup of the R
session.

Pack

We have illustrated how tkpack can be used to manage how child compo-
nents are viewed within their parent. The basic usage tkpack(child) will
pack in the child components from top to bottom. There are many options
to adjust this default behavior.

The side option can take a value of "left", "right", "top" (default),
or "bottom" to adjust where the children are placed. Unlike GTK+ or Qt,
where boxes are packed in just one direction, these can be mixed and
matched, but sticking to just one direction is typical, with nested frames
to give additional flexibility.

before, after The before and after options can be used to place the child
before or after another component. These are used as with tkpack(child1,
after = child2). The object child2 can be an R object or its ID.

forget Child components can be forgotten by the window manager, un-
mapping them but not destroying them, with the tkpack forget subcom-
mand, or the convenience function tkpack.forget. Example 20.5 shows a
usage. After a child component is removed this way, it can be replaced in
the GUI using a geometry manager.

Introspection The subcommand tkpack slaves will return a list of the
child components packed into a frame. Coercing these return values to
character via as.character will produce the IDs of the child components.
The subcommand tkpack info will provide the packing info for a child.

These commands are illustrated below, where we show how we might
implement a ticker tape effect, where words scroll to the left.

window <- tktoplevel ()
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))

1An excellent online reference, albeit for Perl/Tk, is Learning Perl/Tk: Graphical User
Interfaces with Perl, by Nancy Walsh. See http://www.rigacci.org/docs/biblio/online/
lperltk/ch02.html for information about this topic.

373

18. Tcl/Tk: Layout and Containers

Figure 18.1: Various ways to put padding between widgets using tkpack.
The padding option for the box container puts padding around the cavity
for all the widgets. The pady option for tkpack puts padding around the
top and bottom on the border of each widget. The ipady option for
tkpack puts padding within the top and bottom of the border for each
child (breaking the theme under Mac OS X).

tkpack (frame , expand = TRUE , fill = "both")
#
x <- strsplit ("Lorem ipsum dolor sit amet ..." , "\\s") [[1]]
labels <- lapply (x , function (i) ttklabel (frame , text = i))
sapply (labels , function (i) tkpack (i , side = "left"))
#
rotateLabel <- function () {

children <- as . character (tkpack ("slaves" , frame))
tkpack . forget (children [1])
tkpack (children [1] , after = children [length (children)] ,

side = "left")
}

We could use the after command to do this in the background, but
here we just rotate the values in a blocking loop:

for (i in 1 : 2 0) { rotateLabel () ; Sys . sleep (1) }

Specifying space around the children In addition to the padding option
for a frame container, the ipadx, ipady, padx, and pady options can be used
to add space around the child components. Figure 18.1 has an example.
In the above options, the x and y indicate left-right space and top-bottom
space. The i stands for internal padding that is left on the sides or top
and bottom of the child within the border, padx is for the external padding
added around the border of the child component. The value can be a single
number or pair of numbers for asymmetric padding.

This sample code shows how we can easily add padding around all the
children of the frame frame using the tkpack "configure" subcommand.

all_children <- as . character (tkwinfo ("children" , frame))

374

18.3. Geometry managers

Figure 18.2: The anchor argument is specified through compass directions.

sapply (all_children , tkpack . configure , padx = 10 , pady = 5)

Cavity model The packing algorithm, as described in the Tk documen-
tation, is based on arranging where to place a slave into the rectangular
unallocated space called a “cavity.” We use the nicer terms “child compo-
nent” and “box” to describe this. When a child is placed inside the box, say
on the top, the space allocated to the child is the rectangular space with
width given by the width of the box and height the sum of the requested
height of the child plus twice the ipady amount (or the sum, if specified
with two numbers). The packer then chooses the dimension of the child
component, again from the requested size plus the ipad values for x and
y. These two spaces may, of course, have different dimensions.

By default, the child will be placed centered along the edge of the box
within the allocated space with blank space, if any, on both sides.

The anchor, expand, fill arguments When there is more space in the box
than requested by the child component, there are other options. The anchor
option can be used to anchor the child to a place in the box by specifying
one of the valid compass points (e.g. "n" or "se"), leaving blank space
around the child (Figure 18.2).

An alternative is to have one or more of the widgets expand to fill
the available space. Each child packed in with the option expand set to
TRUE will have the extra space allocated to it in an even manner. The fill
option is used to base the size of the child on the available cavity in the
box – not on the requested size of the child. The fill option can be "x",
"y", or "both". The first two expand the child’s size in just one direction,
the latter in both.

Example 18.2: Expand/fill options for tkpack
Figure 18.3 shows examples of different values for "fill" when ex-

375

18. Tcl/Tk: Layout and Containers

Figure 18.3: Similar layout with expand=TRUE but different values of fill.
The space allocated to the top and bottom buttons through expansion fills
the vertical area, as these were added with side set to "top" and
"bottom", respectively, whereas the left and right buttons expand in the
horizontal direction, as they were added with sides "left" and "right".
The different fill values direct the buttons to take up this allocated
space in different manners.

pand=TRUE is specified. Following an example of Walsh[13] we used the
following code to create the images:

window <- tktoplevel ()
tkwm . title (window , "Expand/Fill arguments")
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")
##
pack_btn <- function (txt , . . .)

tkpack (button <- ttkbutton (frame , text = txt) , . . .)
##
pack_btn ("Top" , side="top" , expand=TRUE , fill="both")
pack_btn ("Bottom" , side="bottom" , expand=TRUE , fill="both")
pack_btn ("Left" , side="left" , expand=TRUE , fill="both")
pack_btn ("Right" , side="right" , expand=TRUE , fill="both")

Modifying the fill styles was easy. For example,

children <- as . character (tkwinfo ("children" , frame))
sapply (children , tkpack . configure , fill = "none")

376

18.3. Geometry managers

Figure 18.4: Demonstration of using tkpack options showing effects of
using the side and padx options to create dialog buttons.

Not enough space When the top-level window does not have sufficient
space to satisfy the combined size requests of its child components, either
some widgets will be covered or we can resize the top-level window. When
components are covered, the ones that are packed in first are given highest
priority in the size request.

To force a recomputation of the size of the top-level window, we can
call the wm geometry subcommand with an empty string:

tkwm . geometry (window , "")

The top-level window, window above, can be recovered from a child com-
ponent, say button, through:

tkwinfo ("top-level" , button)

propagate In Example 20.3 we define a convenience function for creating
a table widget. There we have a call to the subcommand pack propagate.
This prevents the querying of the child widgets to compute the size request.
In the example, this is useful, as the scroll bars used should depend on
the size requested by the parent and not the underlying table widget.

Example 18.3: Packing dialog buttons
This example shows how one can pack in action buttons, such as when a
dialog is created.

The first example just uses tkpack without any arguments except the
side to indicate that the buttons are packed in left to right, not top to
bottom.

frame_1 <- ttklabelframe (frame , text="plain vanilla")
tkpack (frame_1 , expand = TRUE , fill = "x")
l <- function (f)

list (ttkbutton (f , text="cancel") , ttkbutton (f , text="ok"))
sapply (l (frame_ 1) , tkpack , side = "left")

377

18. Tcl/Tk: Layout and Containers

Figure 18.5: Example of a simple dialog.

Typically the buttons are right-justified. One way to do this is to pack
in using side with a value of "right". This shows how to use a blank
expanding label to take up the space on the left.

frame_2 <- ttklabelframe (frame , text = "push to right")
tkpack (frame_2 , expand = TRUE , fill = "x")
tkpack (ttklabel (frame_2 , text = " ") ,

expand = TRUE , fill = "x" , side = "left")
sapply (l (frame_ 2) , tkpack , side = "left")

Finally, we add some padding to conform to Apple’s design specifica-
tion that such buttons should have a 12-pixel separation.

frame_3 <- ttklabelframe (frame , text="push right with space")
tkpack (frame_3 , expand = TRUE , fill = "x")
tkpack (ttklabel (frame_3 , text = " ") , expand=TRUE , fill="x" ,

side = "left")
sapply (l (frame_ 3) , tkpack , side = "left" , padx = 6)

Example 18.4: A non-modal dialog
This example shows how to use a window, frames, labels, buttons, icons,
packing, and bindings to create a non-modal dialog.

Although it’s not written as a function, we set aside the values that
would be passed in if it were.

title <- "message dialog"
message <- "Do you like tcltk so far?"
parent <- NULL
tkimage . create ("photo" , "::img::tclLogo" ,

file = system . file ("images" ,"tclp.gif" ,
package = "ProgGUIinR"))

The main top-level window is given a title then withdrawn while the
GUI is created.

window <- tktoplevel ()
tkwm . title (window , title)
tkwm . state (window , "withdrawn")
frame <- ttkframe (window , padding = c (3 , 3 , 12 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")

378

18.3. Geometry managers

As usual, we added a frame so that any themes are respected.
If the parent is non-null and viewable, then the dialog is made transient

to a parent. The parent need not be a top-level window, so tkwinfo is used
to find the parent’s top-level window. For Mac OS X, we use the notify
attribute to bounce the dock icon until the mouse enters the window area.

if (!is . null (parent)) {
parent_window <- tkwinfo ("toplevel" , parent)
if (as . logical (tkwinfo ("viewable" , parent_window))) {

tkwm . transient (window , parent)
have fun with OS X
if (as . character (tcl ("tk" , "windowingsystem")) == "aqua") {

tcl ("wm" ,"attributes" , parent_window , notify = TRUE)
tkbind (parent_window , "<Enter>" , function ()

tcl ("wm" ,"attributes" , parent_window ,
notify = FALSE)) # s t o p bounce

}
}

}

We will use a standard layout for our dialog, with an icon on the left,
a message, and buttons on the right. We pack the icon into the left side of
the frame,

label <- ttklabel (frame , image = "::img::tclLogo" , padding=5)
tkpack (label , side = "left")

A nested frame will be used to lay out the message area and but-
ton area. Since the tkpack default is to pack in top to bottom, no side
specification is made.

frame_1 <- ttkframe (frame)
tkpack (frame_1 , expand = TRUE , fill = "both")
#
m <- ttklabel (frame_1 , text = message)
tkpack (m , expand = TRUE , fill = "both")

The buttons have their own frame, as they are laid out horizontally.

frame_2 <- ttkframe (frame_ 1)
tkpack (frame_ 2)

The callback function for the “OK” button prints a message then destroys
the window.

ok_callback <- function () {
print ("That’s great")
tkdestroy (window)

}
ok_button <- ttkbutton (frame_2 , text = "OK" ,

command = ok_callback)

379

18. Tcl/Tk: Layout and Containers

cancel_button <- ttkbutton (frame_ 2 , text = "Cancel" ,
command = function () tkdestroy (window))

#
tkpack (ok_button , side = "left" , padx = 12) # g i v e some s p a c e
tkpack (cancel_button)

As our interactive behavior is consistent for both buttons, we make a
binding to the TButton class, not to each button individually. The first will
invoke the button command when the return key is pressed; the latter two
will highlight a button when the focus is on it.

tkbind ("TButton" , "<Return>" , function (W) tcl (W , "invoke"))
tkbind ("TButton" , "<FocusIn>" , function (W)

tcl (W , "state" , "active"))
tkbind ("TButton" , "<FocusOut >" , function (W)

tcl (W , "state" , "!active"))

Now we bring the dialog back from its withdrawn state, fix the size, and
set the initial focus on the “OK” button.

tkwm . state (window , "normal")
tkwm . resizable (window , FALSE , FALSE)
tkfocus (ok_button)

Grid

The tkgrid geometry manager is used to align child widgets in rows and
columns. In its simplest usage, a command like

tkgrid (child1 , child2 , . . . , childn)

will place the n children in a new row, in columns 1 through n. If desired,
the specific row and column can be specified through the row and column
options. Counting of rows and columns starts with 0. Spanning of mult-
iple rows and columns can be specified with integers 2 or greater by the
rowspan and colspan options. These options, and others, can be adjusted
through the tkgrid.configure function.

The tkgrid.rowconfigure and tkgrid.columnconfigure commands
When the managed container is resized, the grid manager consults
weights that are assigned to each row and column to see how to al-
locate the extra space. Allocation is based on proportions, not specified
sizes. The weights are configured with the tkgrid.rowconfigure and tk-
grid.columnconfigure functions through the option weight. The weight
is a value between 0 and 1. If there are just two rows, and the first row
has weight 1/2 and the second weight 1, then twice as much extra space
is allocated for the second row. The specific row or column must also be
specified. Again. rows and columns are referenced starting with 0, not the

380

18.3. Geometry managers

Figure 18.6: Illustration of using tkpack and tkgrid to make a toolbar.

usual R-like 1. To specify a weight of 1 to the first row would be done
with a command like:

tkgrid . rowconfigure (parent , 0 , weight = 1)

The sticky option The tkpack command had options anchor, expand and
fill to control what happens when more space is available than requested
by a child component. The sticky option for tkgrid combines these. The
value is a combination of the compass points "n","e","w", and "s". A
specification "ns" will make the child component “stick” to the top and
bottom of the cavity that is provided, similar to the fill="y" option for
tkpack. A value of "news" will make the child component expand in all
directions, like expand=TRUE, fill="both".

Padding As with tkpack, tkgrid has options ipadx, ipady, padx, and
padx to give internal and external space around a child.

Size The function tkgrid.size will return the number of columns and
rows of the specified parent container that is managed by a grid. This can
be useful when trying to position child components through the options
row and column.

Forget To remove a child from the parent, the tkgrid.forget function
can be used with the child object as its argument.

Example 18.5: Using tkgrid to create a toolbar
Tk does not have a toolbar widget. Here we use tkgrid to show how we
can add one to a top-level window in a manner that is not affected by
resizing. We begin by packing a frame into a top-level window.

381

18. Tcl/Tk: Layout and Containers

window <- tktoplevel () ; tkwm . title (window , "Toolbar example")
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")

Our example has two main containers: one to hold the toolbar buttons
and one to hold the main content.

tool_bar_frame <- ttkframe (frame , padding = 0)
content_frame <- ttkframe (frame , padding = 4)

The tkgrid geometry manager is used to place the toolbar at the top
and the content frame below. The choice of sticky and the weights ensure
that the toolbar does not resize vertically if the window does.

tkgrid (tool_bar_frame , row = 0 , column = 0 , sticky = "we")
tkgrid (content_frame , row = 1 , column = 0 , sticky = "news")
tkgrid . rowconfigure (frame , 0 , weight = 0)
tkgrid . rowconfigure (frame , 1 , weight = 1)
tkgrid . columnconfigure (frame , 0 , weight = 1)
#
txt <- "Lorem ipsum dolor sit amet..." # sample t e x t
tkpack (ttklabel (content_frame , text = txt))

Now to add some buttons to the toolbar. We first show how to cre-
ate a new style for a button (Toolbar.TButton), slightly modifying the
themed button to set the font and padding, and eliminate the border if the
operating system allows.

tcl ("ttk::style" , "configure" , "Toolbar.TButton" ,
font = "helvetica 12" , padding = 0 , borderwidth = 0)

This make_icon function finds stock icons from the gWidgets package
and adds them to a button.

make_icon <- function (parent , stock_name , command = NULL) {
icon_file <- system . file ("images" ,

paste (stock_name , "gif" , sep = ".") ,
package = "gWidgets")

if (nchar (icon_file) == 0) {
b <- ttkbutton (parent , text = stock_name , width = 6)

} else {
icon_name <- paste ("::img::" , stock_name , sep = "")
tkimage . create ("photo" , icon_name , file = icon_file)
b <- ttkbutton (parent , image = icon_name ,

style = "Toolbar.TButton" , text=stock_name ,
compound = "top" , width = 6)

if (!is . null (command))
tkconfigure (b , command = command)

}
return (b)

}

382

18.3. Geometry managers

Figure 18.7: A monthly calendar illustrating various layouts.

To illustrate, we pack in some icons. Here we use tkpack. We do not use
tkpack and tkgrid to manage children of the same parent, but these are
children of tool_bar_frame, not frame.

sapply (c ("ok" , "quit" , "cancel") , function (i)
tkpack (make_icon (tool_bar_frame , i) , side = "left"))

These two bindings change the state of the buttons when the mouse
hovers over one of them:

setState <- function (W , state) tcl (W , "state" , state)
tkbind ("TButton" ,"<Enter>" , function (W) setState (W , "active"))
tkbind ("TButton" ,"<Leave>" , function (W) setState (W , "!active"))

If one wished to restrict the above to just the toolbar buttons, one could
check for the style of the button, as with:

function (W) {
if (as . character (tkcget (W , "-style")) == "Toolbar.TButton")

cat ("... do something for toolbar buttons ...")
}

Example 18.6: Using tkgrid to lay out a calendar
This example shows how to create a simple calendar using a grid layout.
(No such widget is standard with tcltk.) We use some data functions for
the ProgGUIinR package. The actual use of tkgrid is straightforward once
the approporiate row and column are figured out.

make_month <- function (parent , year , month) {
add h e a d e r s
days <- c ("S" ,"M" ,"T" ,"W" ,"Th" ,"F" ,"S")
sapply (1 : 7 , function (i) {

383

18. Tcl/Tk: Layout and Containers

label <- ttklabel (parent , text = days [i])
tkgrid (label , row = 0 , column = i−1, sticky = "")

})
add days
sapply (seq_len (ProgGUIinR : : : days . in . month (year , month)) ,

function (day) {
label <- ttklabel (parent , text = day)
row <- ProgGUIinR : : : week . of . month (year , month , day)
col <- ProgGUIinR : : : day . of . week (year , month , day)
tkgrid (label , row = 1 + row , column = col ,

sticky = "e")
})

}

Next, we would like to incorporate the calendar widget into an interface
that allows the user to scroll through month-by-month beginning with:

year <- 2000 ; month <- 1

Our basic layout will use a box layout with a nested layout for the
step-through controls and another holding the calendar widget.

window <- tktoplevel ()
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both" , side = "top")
c_frame <- ttkframe (frame)
cal_frame <- ttkframe (frame)
tkpack (c_frame , fill = "x" , side = "top")
tkpack (cal_frame , expand = TRUE , anchor = "n")

Our step-through controls are packed in through a horizontal layout.
We use anchoring and expand=TRUE to keep the arrows on the edge and the
label with the current month centered, should the container be resized.

previous_button <- ttklabel (c_frame , text = "<")
next_button <- ttklabel (c_frame , text = ">")
current_month <- ttklabel (c_frame)
#
tkpack (previous_button , side = "left" , anchor = "w")
tkpack (current_month , side = "left" , anchor = "center" ,

expand = TRUE)
tkpack (next_button , side = "left" , anchor = "e")

The set_month function first removes the previous calendar container
and then redefines one to hold the monthly calendar. Then it adds in a new
monthly calendar to match the year and month. The call to make_month
creates the calendar. Packing in the frame after adding its child components
makes the GUI seem much more responsive.

set_month <- function () {

384

18.4. Other containers

tkpack ("forget" , cal_frame)
cal_frame <<- ttkframe (frame)
make_month (cal_frame , year , month)
tkconfigure (current_month , # month l a b e l

text = sprintf ("%s %s" , month . abb [month] , year))
tkpack (cal_frame)

}
set_month () # i n i t i a l c a l e n d a r

The arrow labels are used to scroll, so we connect to the Button-1
event the corresponding commands. This shows the binding to decrement
the month and year using the global variables month and year.

tkbind (previous_button , "<Button-1>" , function () {
if (month > 1) {

month <<- month − 1
} else {

month <<- 1 2 ; year <<- year − 1
}
set_month ()

})

Our calendar is static, but if we wanted to add interactivity to a mouse
click, we could make a binding as follows:

tkbind ("TLabel" , "<Button-1>" , function (W) {
day <- as . numeric (tkcget (W , "-text"))
if (!is . na (day))

print (sprintf ("You selected: %s/%s/%s" , month , day , year))
})

18.4 Other containers

Tk provides just a few other basic containers. Here we describe paned
windows and notebooks.

Paned windows

A paned window, with sashes to control the individual pane sizes, is
constructed by the function ttkpanedwindow. The primary option, outside
of setting the requested width or height with width and height, is orient,
which takes a value of "vertical" (the default) or "horizontal". This
specifies how the children are stacked, and is opposite of how the sash is
drawn.

The returned object can be used as a parent container, although we do
not use the geometry managers to manage these objects. Instead, the add
command is used to add a child component. For example:

385

18. Tcl/Tk: Layout and Containers

Figure 18.8: A basic notebook under Mac OS X.

window <- tktoplevel ()
tkwm . title (window , "Paned window example")
paned <- ttkpanedwindow (window , orient = "horizontal")
tkpack (paned , expand = TRUE , fill = "both")
left <- ttklabel (paned , text = "left")
right <- ttklabel (paned , text = "right")
#
tkadd (paned , left , weight = 1)
tkadd (paned , right , weight = 2)

When resizing, the allocation of space among the children is determined
by their associated weight, specified as an integer. The default uses even
weights. Unlike with GTK+ more than two children are allowed.

Forget The subcommand ttkpanedwindow forget can be used to unman-
age a child component. For the paned window, we have no convenience
function, so we call as follows:

tcl (paned , "forget" , right)
tkadd (paned , right , weight = 2) ## how t o add b a c k

Sash position The sash between two children can be adjusted through
the subcommand ttkpanedwindow sashpos. The index of the sash needs to
be specified, as there can be more than one. Counting starts at 0. The value
for sashpos is in terms of pixel width (or height) of the paned window.
The width can be returned and used as follows:

width <- as . integer (tkwinfo ("width" , paned)) # or " h e i g h t "
tcl (paned , "sashpos" , 0 , floor (0 . 7 5 *width))

<Tcl > 54

Notebooks

Tabbed notebook containers are produced by the ttknotebook constructor.
Notebook pages can be added through the ttknotebook add subcommand

386

18.4. Other containers

or inserted after a page through the ttknotebook insert subcommand. The
latter requires a tab ID to be specified, as described below. Typically, the
child components would be containers to hold more complicated layouts.
The tab label is configured similarly to ttklabel through the options text
and (the optional) image, which, if given, has its placement determined
by compound. The placement of the child component within the notebook
page is manipulated similarly as tkgrid through the sticky option, with
values specified through compass points. Extra padding around the child
can be added with the padding option.

Tab identifiers Many of the commands for a notebook require a specifi-
cation of a desired tab. This can be given by index, starting at 0; by the
values "current" or "end"; by the child object added to the tab, as either
an R object or an ID; or in terms of x-y coordinates in the form "@x,y"
(likely found through a binding).

To illustrate, if notebook is a ttknotebook object, then these commands
would add pages (cf. Figure 18.8):

icon_file <- system . file ("images" , paste ("help" ,"gif" , sep=".") ,
package = "gWidgets")

icon_name <- "::tcl::helpIcon"
tkimage . create ("photo" , icon_name , file = icon_file)
#
page2_label <- ttklabel (notebook , text = "Page 2")
tkadd (notebook , page2_label , sticky = "nswe" , text="label 2" ,

image = icon_name , compound = "right")
put page 1 l a b e l f i r s t (a tabID o f 0) ; use t k i n s e r t
page1_label <- ttklabel (notebook , text = "Page 1")
tkinsert (notebook , 0 , page1_label , sticky = "nswe" ,

text = "label 1")

There are several useful subcommands for extracting information from
the notebook object. For instance, index to return the page index (0-based),
tabs to return the page IDs, select to select the displayed page, and
forget to remove a page from the notebook. (There is no means to place
close icons on the tabs.) Except for tabs, these require a specification of a
tab ID.

tcl (notebook , "index" , "current") # c u r r e n t page f o r tabID

<Tcl > 1

length (as . character (tcl (notebook , "tabs"))) # number o f p a g e s

[1] 2

387

18. Tcl/Tk: Layout and Containers

tcl (notebook , "select" , 0) # s e l e c t by i n d e x
tcl (notebook , "forget" , page1_label) # " f o r g e t " removes a page
tcl (notebook , "add" , page1_label) # can be managed a g a i n .

The notebook state can be manipulated through the keyboard, provided
traversal is enabled. This can be done through

tcl ("ttk::notebook::enableTraversal" , notebook)

If enabled, the shortcuts such as control-tab to move to the next tab are
implemented. If new pages are added or inserted with the option under-
line, which takes an integer value (0-based) specifying which character in
the label is underlined, then a keyboard accelerator is added for that letter.

Bindings Beyond the usual events, the notebook widget also generates a
<<NotebookTabChanged>> virtual event after a new tab is selected.

The notebook container in Tk has a few limitations. For instance, there
is no graceful management of too many tabs, as there is with GTK+; as
well there is no easy way to implement close icons, as in Qt.

388

19

Tcl/Tk: Dialogs and Widgets

This chapter covers both the standard dialogs provided by Tk and the
various controls used to create custom dialogs. We begin with a discussion
of the standard dialogs, then cover the basic controls in this chapter, leaving
the next chapter for the more involved tktext, ttktreeview, and tkcanvas
widgets.

19.1 Dialogs

Modal dialogs

The tkmessageBox constructor can be used to create simple modal dialogs,
allowing a user to confirm an action. These use the native toolkit if pos-
sible. This constructor replaces the older tkdialog dialogs. The arguments
title, message, and detail are used to set the text for the dialog. The
title may not appear for all operating systems. A message dialog has
an icon argument. The default icon is "info" but could also be "error",
"question", or "warning". The buttons used are specified through the
type argument; with values of "ok", "okcancel", "retrycancel", "yesno",
or "yesnocancel". When a button is clicked, the dialog is destroyed and
the button label returned as a value. The argument parent can be given to
specify which window the dialog belongs to. Depending on the operating
system, this may be used when drawing the dialog.

A sample usage is:

Figure 19.1: A basic modal dialog constructed by tkmessageBox.

389

19. Tcl/Tk: Dialogs and Widgets

tkmessageBox (title = "Confirm" , message = "Really exit?" ,
detail = "Changes need saving." ,
icon = "question" , type = "okcancel")

The tkwait function If the default modal dialog is not enough – for
instance there is no means to gather user input – then a top-level window
can be made modal. The tkwait function will cause a top-level window to
be modal, and tkgrab.release will return the interactivity for the window.
We illustrate a simple use by example, beginning by adding a label to a
window:

msg <- "We care ..."
dialog <- tktoplevel () ; tkwm . withdraw (dialog)
tkwm . overrideredirect (dialog , TRUE) # no d e c o r a t i o n
frame <- ttkframe (dialog , padding = 5)
tkpack (frame , expand = TRUE , fill = "both")
tkpack (ttklabel (frame , text = msg) , pady = 5)

There are different ways to use tkwait. The function tkwait.window
will make a top-level window modal, waiting until it is destroyed. In
the following we will use tkwait.variable. This will keep the window
modal until a change to a specified variable, in this case flag. In the
button’s command we release the window then change this value, ending
the wait.

flag <- tclVar ("")
tkpack (ttkbutton (frame , text="dismiss" , command=function () {

tkgrab . release (dialog)
tclvalue (flag) <- "Destroy"

}))

Now we show the window and wait for the flag variable to change.

tkwm . deiconify (dialog)
tkwait . variable (flag)

When the value of flag is changed in the callback the flow returns to
the program.

File and directory selection

Tk provides constructors for selecting a file, selecting a directory or speci-
fying a filename when saving. These are implemented by tkgetOpenFile,
tkchooseDirectory, and tkgetSaveFile, respectively. Each of these can be
called with no argument, and each returns a tclObj object. The value is
empty when there is no selection made.

The dialog will appear in a relationship with a top-level window if
the argument parent is specified. The initialdir and initialfile can

390

19.1. Dialogs

be used to specify the initial values in the dialog. The defaultextension
argument can be used to specify a default extension for the file.

It can be convenient to filter the available file types that can be selected,
when browsing for files. The filetypes argument is used for this task.
However, the file types are specified using Tcl brace-notation, not R code.
For example, to filter out various image types, we could use:

tkgetOpenFile (filetypes = paste (
"{{jpeg files} {.jpg .jpeg} }" ,
"{{png files} {.png}}" ,
"{{All files} {*}}" , sep = " ")) # n e e d s s p a c e

Extending this pattern is hopefully clear from above.

Example 19.1: A ’File’ menu
To illustrate, a simple example for a file menu (Section 20.3) could in-
clude:

window <- tktoplevel ()
tkwm . title (window , "File menu example")
menu_bar <- tkmenu (window)
tkconfigure (window , menu = menu_bar)
file_menu <- tkmenu (menu_bar)
tkadd (menu_bar , "cascade" , label="File" , menu = file_menu)
tkadd (file_menu , "command" , label = "Source file..." ,

command = function () {
file_name <- tkgetOpenFile (filetypes=

"{{R files} {.R}} {{All files} *}")
if (file . exists (file_name <- as . character (file_name)))

source (tclvalue (file_name))
})

tkadd (file_menu , "command" , label = "Save workspace as..." ,
command = function () {

file_name <- tkgetSaveFile (defaultextension = "Rsave")
if (nchar (fname <- as . character (file_name)))

save . image (file = file_name)
})

tkadd (file_menu , "command" , label="Set working directory..." ,
command = function () {

dir_name <- tkchooseDirectory ()
if (nchar (dir_name <- as . character (dir_name)))

setwd (dir_name)
})

Choosing a color

Tk provides the command tk_chooseColor to construct a dialog for selec-
tion of a color by RGB value. There are three optional arguments: initial-

391

19. Tcl/Tk: Dialogs and Widgets

color to specify an initial color such as "#efefef", parent to make the
dialog a child of a specified window, and title to specify a title for the
dialog. The return value is in hex-coded RGB quantities. There is no con-
structor in tcltk, but we can use the dialog as follows:

window <- tktoplevel ()
tkwm . title (window , "Select a color")
frame <- ttkframe (window , padding = c (3 , 3 , 3 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")
color_well <- tkcanvas (frame , width = 40 , height = 16 ,

background = "#ee11aa" ,
highlightbackground = "#ababab")

tkpack (color_well)
tkpack (ttklabel (frame , text = "Click color to change"))
#
tkbind (color_well , "<Button-1>" , function (W) {

color <- tcl ("tk_chooseColor" , parent = W ,
title = "Set box color")

color <- tclvalue (color)
print (color)
if (nchar (color))

tkconfigure (W , background = color)
})

19.2 Selection widgets

This section covers the many ways to present data for the user to select
a value. The widgets can use Tcl variables to refer to the value that is
displayed or that the user selects. Recall, these were constructed through
tclVar and manipulated through tclvalue. For example, a logical value
can be stored as:

value <- tclVar (TRUE)
tclvalue (value) <- FALSE
tclvalue (value)

[1] "0"

As tclvalue coerces the logical into the character string "0" or "1", some
coercion may be desired.

Check buttons

The ttkcheckbutton constructor returns a checkbutton object. The check
button’s value (TRUE or FALSE) is linked to a Tcl variable which can be
specified using a logical value. The check button label can also be speci-
fied through a Tcl variable using the textvariable option. Alternately, as

392

19.2. Selection widgets

Figure 19.2: A dialog to collect values for a t-test (cf. Example 19.4)
showing several of the selection widgets discussed in the section: a check
button, radio button, combo boxes, a scale widget, and a spin box.

with the ttklabel constructor, the label can be specified through the text
option. As well, we can specify an image and arrange its display – as is
done with ttklabel – using the compound option.

The command argument is used at construction time to specify a callback
when the button is clicked. The callback is called when the state toggles,
so often a callback considers the state of the widget before proceeding. To
add a callback with tkbind use <ButtonRelease-1>, as the callback for
the event <Button-1> is called before the variable is updated.

For example, if frame is a frame, we can create a new check button
with the following:

value_var <- tclVar (TRUE)
callback <- function () print (tclvalue (value_var)) # u s e s g l o b a l
label_var <- tclVar ("check button label")
check_button <-

ttkcheckbutton (frame , variable = value_var ,
textvariable = label_var , command = callback)

tkpack (check_button)

A toggle button By default the widget draws with a checkbox. Optionally,
the widget can be drawn as a button, which indicates a TRUE state by
appearing depressed. This is done by using the style Toolbutton, as in:

tkconfigure (check_button , style = "Toolbutton")

In general, the “Toolbutton” style is for placing widgets into toolbars.

Avoiding global variables To avoid using a global variable here is not
trivial. There is no easy way to pass user data through to the callback, and
there is no easy way to get the R object from the values passed through the

393

19. Tcl/Tk: Dialogs and Widgets

percent substitution values. The variable holding the value can be found
through:

tkcget (check_button , "variable" = NULL)

<Tcl > ::RTcl5

But then, we need a means to look up the variable from this id. Here
is a wrapper for the tclVar function and a look up function that use an
environment created by the tcltk package in place of a global variable.

our_tcl_var <- function (. . .) {
var <- tclVar (. . .)
. TkRoot$env [[as . character (var)]] <- var
var

}
l o o k u p f u n c t i o n
get_tcl_var_by_id <- function (id) {

. TkRoot$env [[as . character (id)]]
}

Assuming we used our_tcl_var above, then the callback could be de-
fined to avoid a (new) global variable by:

callback <- function (W) {
id <- tkcget (W , "variable" = NULL)
print (get_tcl_var_by_id (id))

}

In Section 19.2 we demonstrate a better way – encapsulating the widget
and its variable in a reference class so that we need not worry about
scoping rules to reference the variable.

Radio buttons

Radio buttons are basically differently styled check buttons linked through
a shared Tcl variable. Each radio button is constructed through the ttk-
radiobutton constructor. Each button has both a value and a text label,
which need not be the same. The variable option refers to the value. As
with the ttklabel widget, the radio button labels can be specified through
a text variable or the text option, in which case, as with a ttklabel, an
image may also be incorporated through the image and compound options.
In Tk, the placement of the buttons is managed by the programmer.

This small example shows how radio buttons can be used for selection
of an alternative hypothesis, assuming frame is a parent container.

values <- c ("less" , "greater" , "two.sided")
var <- tclVar (values [3]) # i n i t i a l v a l u e
callback <- function () print (tclvalue (var))

394

19.2. Selection widgets

sapply (values , function (i) {
radio_button <- ttkradiobutton (frame , variable = var ,

text = i , value = i ,
command = callback)

tkpack (radio_button , side = "top" , anchor = "w")
})

Entry widgets

The ttkentry constructor provides a single-line text-entry widget. The wid-
get can be associated with a Tcl variable at construction to facilitate getting
and setting the displayed values through its argument textvariable. The
width of the widget can be adjusted at construction time through the width
argument. This takes a value for the number of characters to be displayed,
assuming average-width characters. The text alignment can be set through
the justify argument taking values of "left" (the default), "right", and
"center". For gathering passwords, the argument show can be used, such
as with show="*", to show asterisks in place of all the characters.

The following constructs a basic example.

txt_var <- tclVar ("initial value")
entry <- ttkentry (window , textvariable = txt_var)
tkpack (entry)

We can get and set values using the Tcl variable.

tclvalue (txt_var)

[1] "initial value"

tclvalue (txt_var) <- "set value"

The get command can also be used.

tkget (entry)

<Tcl > set value

Indices The entry widget uses an index to record the different positions
within the entry box. This index can be a number (0-based), an x-coordinate
of the value (@x), or one of the values "end" or "insert" to refer to the
end of the current text and the insert point as set through the keyboard or
mouse. The mouse can also be used to make a selection. In this case, the
indices "sel.first" and "sel.last" describe the selection.

With indices, we can insert text with the ttkentry insert command.

tkinsert (entry , "end" , "new text")

395

19. Tcl/Tk: Dialogs and Widgets

Or, we can delete a range of text, in this case the first four characters,
using ttkentry delete:

tkdelete (entry , 0 , 4)

The first value is the left-most index to delete (0-based), the second value
the index to the right of the last value deleted.

The ttkentry icursor command can be used to set the cursor position
to the specified index.

tkicursor (entry , 0) # move t o b e g i n n i n g

Finally, we note that the selection can be adjusted using the ttkentry
selection range subcommand. This takes two indices. Like delete, the
first index specifies the first character of the selection, and the second
indicates the character to the right of the selection boundary. The following
example would select all the text.

tkselection . range (entry , 0 , "end")

The ttkentry selection clear subcommand clears the selection and ttkentry
selection present signals if a selection is currently made.

Events Several useful events include <KeyPress> and <KeyRelease> for
key presses and <FocusIn> and <FocusOut> for focus events.

Example 19.2: Putting in an initial message
In this example, we show how to augment the ttkentry widget to allow
the inclusion of an initial message to direct the user. As soon as the user
focuses the entry area, say by clicking the mouse on it, the initial message
clears and the user can type in a value.

We use an R reference class for our programming, as it allows us to
encapsulate the entry widget, its Tcl variable and the initial message. The
main properties we have are defined via

setOldClass (c ("tkwin" , "tclVar"))
TtkEntry <- setRefClass ("TtkEntry" ,

fields = list (
entry = "tkwin" , # e n t r y
tcl_var = "tclVar" , # t e x t v a r i a b l e
init_msg = "character"
))

We need to indicate to the user that the initial message is not the
current text. We do so with a style that simply sets the foreground (text)
color to gray:

. Tcl ("ttk::style configure Gray.TEntry -foreground gray")

396

19.2. Selection widgets

Now we create methods to accommodate the initial message. We have
methods is_init_msg, to compare the current text with the initial message,
and show_init_msg and hide_init_msg to toggle the messages. The only
novelty is using the style option for a themeable widget.

TtkEntry$methods (
is_init_msg = function () {

"Is the init text showing?"
as . character (tclvalue (tcl_var)) == init_msg

} ,
hide_init_msg = function () {

"Hide the initial text"
if (is_init_msg ()) {

tkconfigure (entry , style = "TEntry")
set_text ("" , hide = FALSE)

}
} ,
show_init_msg = function () {

"Show the initial text"
tkconfigure (entry , style = "Gray.TEntry")
set_text (init_msg , hide = FALSE)

})

Our accessor methods, set_text and get_text, must work around a
possible initial message.

TtkEntry$methods (
set_text = function (text , hide = TRUE) {

"Set text into widget"
if (hide) hide_init_msg ()
tcl_var_local <- tcl_var # a v o i d warning
tclvalue (tcl_var_local) <- text

} ,
get_text = function () {

"Get the text value"
if (!is_init_msg ())

as . character (tclvalue (tcl_var))
else

""
})

In the initialize method, we will add bindings to switch between the
initial message and the entry area. We use the focus in and out events to
initiate this.

TtkEntry$methods (
add_bindings = function () {

"Add focus bindings to make this work"
tkbind (entry , "<FocusIn>" , hide_init_msg)

397

19. Tcl/Tk: Dialogs and Widgets

tkbind (entry , "<FocusOut >" , function () {
if (nchar (get_text ()) == 0)

show_init_msg ()
})

})

Our initialization method follows.

TtkEntry$methods (
initialize = function (parent , text , init_msg = "" , . . .) {

tcl_var <<- tclVar ()
entry <<- ttkentry (parent , textvariable = tcl_var)
init_msg <<- init_msg
##
if (missing (text))

show_init_msg ()
else

set_text (text)
add_bindings ()
callSuper (. . .)

})

Finally, to use this widget, we call its new method to create an in-
stance. The actual entry widget is kept in the e field, so we pack in
widget$entry.

window <- tktoplevel ()
widget <- TtkEntry$new (parent = window ,

init_msg = "type value here")
tkpack (widget$entry)
#
button <- ttkbutton (window , text = "focus out onto this" ,

command = function () {
print (widget$get_text ())

})
tkpack (button)

Example 19.3: Using validation for dates
As previously mentioned, there is no native calendar widget in tcltk.
This example shows how we can use the validation framework for entry
widgets to check that user-entered dates conform to an expected format.

Validation happens in a few steps. A validation command is assigned
to some event. This call can come in two forms. Prevalidation is when a
change is validated prior to being committed – for example, when each
key is pressed. Revalidation is when the value is checked after it is sent to
be committed, say, when the entry widget loses focus or the enter key is
pressed.

398

19.2. Selection widgets

When a validation command is called it should check whether the
current state of the entry widget is valid or not. If valid, it returns a value
of TRUE; FALSE otherwise. These need to be Tcl Boolean values, so in the
following, the command tcl("eval","TRUE") (or tcl("eval", "FALSE"))
is used. If the validation command returns FALSE, then a subsequent call
to the specified invalidation command is made.

For each callback, a number of substitution values are possible, in ad-
dition to the standard ones, such as W to refer to the widget. These are:
d for the type of validation being done: 1 for insert prevalidation, 0 for
delete prevalidation, or -1 for revalidation; i for the index of the string to
be inserted or deleted or -1; P for the new value if the edit is accepted (in
prevalidation) or the current value in revalidation; s for the value prior to
editing; S for the string being inserted or deleted, v for the current value
of validate, and V for the condition that triggered the callback.

In the following callback definition we use W so that we can change the
entry text color to black and format the data in a standard manner and P
to get the entry widget’s value just prior to validation.

To begin, we define some patterns for acceptable date formats.

date_patterns <- c ()
for (i in list (c ("%m" ,"%d" ,"%Y") , # U. S . s t y l e

c ("%m" ,"%d" ,"%y"))) {
for (j in c ("/" ,"-" ," "))

date_patterns [length (date_patterns) + 1] <-
paste (i , sep = "" , collapse = j)

}

Our callbacks set the color to black or red, depending on whether we
have a valid date. First, our validation command.

is_valid_date <- function (W , P) { # P i s t h e c u r r e n t v a l u e
for (i in date_patterns) {

date <- try (as . Date (P , format = i) , silent = TRUE)
if (!inherits (date , "try-error") && !is . na (date)) {

tkconfigure (W , foreground = "black") # or use s t y l e
tkdelete (W , 0 ,"end")
tkinsert (W , 0 , format (date , format = "%m/%d/%y"))
return (tcl ("expr" ,"TRUE"))

}
}
return (tcl ("expr" ,"FALSE"))

}

This is our invalid command.

indicate_invalid_date <- function (W) {
tkconfigure (W , foreground = "red")
tcl ("expr" , "TRUE")

}

399

19. Tcl/Tk: Dialogs and Widgets

The validate argument is used to specify when the validation com-
mand should be called. This can be a value of "none" for validation when
called through the validation command; "key" for each key press; "fo-
cusin" for when the widget receives the focus; "focusout" for when it
loses focus; "focus" for both of the previous; and "all" for any of the
previous. We use "focusout" below, so also give a button widget so that
the focus can be set elsewhere.

entry <- ttkentry (frame , validate = "focusout" ,
validatecommand = is_valid_date ,
invalidcommand = indicate_invalid_date)

button <- ttkbutton (frame , text = "click") # f o c u s t a r g e t
sapply (list (entry , button) , tkpack , side = "left" , padx = 2)

Combo boxes

The ttkcombobox constructor returns a combo box object allowing for se-
lection from a list of values, or, with the appropriate option, allowing the
user to specify a value using an entry widget. The value of the combo box
can be specified using a Tcl variable to the option textvariable, making
the getting and setting of the displayed value straightforward. The possible
values to select from are specified as a character vector through the values
option. (This may require us to coerce the results to the desired class.)

Unlike with GTK+ and Qt there is no option to include images in the
displayed text. We can adjust the alignment through the justify options.
By default, a user can add in additional values through the entry-widget
part of the combo box. The state option controls this, with the default
"normal" and the value "readonly" as an alternative. For editable combo
boxes, the widget also supports some of the ttkentry commands just
discussed.

To illustrate, again suppose frame is a parent container. Then we begin
by defining some values to choose from and a Tcl variable.

values <- state . name
var <- tclVar (values [1]) # i n i t i a l v a l u e

The constructor call is as follows:

combo_box <- ttkcombobox (frame ,
values = values ,
textvariable = var ,
state = "normal" , # or " r e a d o n l y "
justify = "left")

tkpack (combo_box)

The possible values the user can select from can be configured after
construction through the values option:

400

19.2. Selection widgets

tkconfigure (combo_box , values = tolower (values))

There is one case where the above won’t work: when there is a single
value and this value contains spaces. In this case, we can coerce the value
to be of class tclObj:

tkconfigure (combo_box , values = as . tclObj ("New York"))

Setting the value Setting values can be done through the Tcl variable. As
well, the value can be set by a matching value using the ttkcombobox set
subcommand through tkset or by index (0-based) using the ttkcombobox
current sub command.

tclvalue (var) <- values [2] # us ing t c l v a r i a b l e
tkset (combo_box , values [4]) # by v a l u e
tcl (combo_box , "current" , 4) # by i n d e x

Getting the value We can retrieve the selected object in various ways:
from the Tcl variable, or the ttkcombobox get subcommand can be used
through tkget.

tclvalue (var) # TCL v a r i a b l e

[1] "california"

tkget (combo_box) # g e t subcommand

<Tcl > california

tcl (combo_box , "current") # 0−b a s e d i n d e x

<Tcl > 4

Events The virtual event <<ComboboxSelected>> occurs with selection.
When the combo box can be edited, a user may expect some action when
the return key is pressed. This triggers a <Return> event. To bind to this
event, we can do something like the following:

tkbind (combo_box , "<Return>" , function (W) {
val <- tkget (W)
cat (as . character (val) , "\n")

})

401

19. Tcl/Tk: Dialogs and Widgets

Figure 19.3: The ttk::scale widget with labels added.

Scale widgets

The ttkscale constructor to produce a themeable scale (slider) control is
missing.1 We can define our own simply enough:

ttkscale <- function (parent , . . .)
tkwidget (parent , "ttk::scale" , . . .)

The orientation is set through the option orient, taking values of "hor-
izontal" (the default) or "vertical". For sizing the slider, the length
option is available.

To set the range, the basic options are from and to. There is no by
option as of Tk 8.5. The constructor tkscale (non-themed), has the option
resolution to specify such a step amount. Also, the themeable slider does
not have any label or tooltip indicating its current value.

As a work-around, we show how to display a vector of values by sliding
through the indices and place labels at the ends of the slider to indicate
the range (Figure 19.3). We write this using an R reference class.

Slider <-
setRefClass ("TtkSlider" ,

fields = c ("frame" , "widget" , "var" , "x" , "FUN") ,
methods = list (

initialize = function (parent , x , . . .) {
initFields (x = x , var = tclVar (1) ,

FUN = NULL , frame = ttkframe (parent))
widget <<- ttkscale (frame , from = 1 , to = length (x) ,

variable = var , orient = "horizontal")
For t h i s widget , t h e c a l l b a c k i s p a s s e d a v a l u e
which we i g n o r e h e r e
tkconfigure (widget , command = function (. . .) {

if (is . function (FUN)) FUN (. self)
})
layout_gui ()
callSuper (. . .)

} ,

1As of the version of tcltk accompanying R 2.13.1.

402

19.2. Selection widgets

layout_gui = function () {
tkgrid (widget , row = 0 , column = 0 , columnspan = 3 ,

sticky = "we")
tkgrid (ttklabel (frame , text = x [1]) ,

row = 1 , column = 0)
tkgrid (ttklabel (frame , text = x [length (x)]) ,

row = 1 , column = 2)
tkgrid . columnconfigure (frame , 1 , weight = 1)

} ,
add_callback = function (FUN) FUN <<- FUN ,
get_value = function () x [as . numeric (tclvalue (var))] ,
set_value = function (value) {

"Set value. Value must be in x"
ind <- match (value , x)
if (!is . na (ind)) {

var_local <- var
tclvalue (var_local) <- ind

}
}
))

To use this, we have:

window <- tktoplevel ()
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")
x <- seq (0 , 1 , by = 0 . 0 5)
##
slider <- Slider$new (parent = window , x = x)
tkpack (slider$frame , expand = TRUE , fill = "x" , anchor = "n")
##
slider$set_value (0 . 5)
print (slider$get_value ())

[1] 0.5

As seen in the initialize and get_value methods, the variable op-
tion can be used for specifying a Tcl variable to record the value of the
slider. This is convenient when the variable and widget are encapsulated
into a class, as above. Otherwise, the value option is available. The tkget
and tkset functions (using the ttkscale get and ttkscale set subcommands)
can be used to get and set the value shown. They are used in the same
manner as the same-named subcommands for a combo box.

The add_callback method can be used to add a callback function when
the slider changes value.

slider$add_callback (function (obj) print (obj$get_value ()))

We pass back in a reference to the object when we call this function, so
there is no issue with finding the Tcl variable to get the value.

403

19. Tcl/Tk: Dialogs and Widgets

Spin boxes

A themeable spin box is introduced in Tk version 8.5.9. However, as of
this writing, the libraries accompanying R for Windows are 8.5.8, so we
will assume there is no themeable spin box widget. In Tk the spinbox
command produces a non-themeable spin box. Again, there is no direct
tkspinbox constructor, but one can be defined with:2

tkspinbox <- function (parent , . . .)
tkwidget (parent , "tk::spinbox" , . . .)

The non-themeable widgets have many more options than the theme-
able ones, as style properties can be set on a per-widget basis. We won’t
discuss those here. The spin box can be used to select from a sequence of
numeric values or a vector of character values.

For example, the following allows a user to scroll in either direction
through the fifty states of the U.S.

window <- tktoplevel ()
spin_box <- tkspinbox (window , values = state . name , wrap=TRUE)

Whereas, this invocation will allow scrolling through a numeric se-
quence:

spin_box1 <- tkspinbox (window , from=1 , to = 10 , increment = 1)

The basic options to set the range for a numeric spin box are from, to,
and increment. The textvariable option can be used to link the spin box
to a Tcl variable. As usual, this allows the user to get and set the value
displayed easily. Otherwise, the tkget and tkset functions can be used for
these tasks.

As seen, in Tk spin boxes can also be used to select from a list of text
values. These are specified through the values option. In the state.name
example above, we set the wrap option to TRUE, so that the values wrap
around when the end is reached.

The option state can be used to specify whether the user can enter
values, the default of "normal"; not edit the value but simply select one
of the given values ("readonly"), or not select a value ("disabled"). As
with a combo box, when the Tk spin box displays character data and is in
the "normal" state, the widget can be controlled like the entry widget of
Section 19.2.

Example 19.4: A GUI for t.test
This example illustrates how the basic widgets can be combined to make
a dialog for gathering information to run a t-test. A realization is shown
in Figure 19.2.

2We augment this to compare the result of tcl("info", "patchlevel") to 8.5.9 and use
"ttk::spinbox" when the underlying libraries support it.

404

19.2. Selection widgets

We will use a data store to hold the values to be passed to t.test. For
the data store, we use an environment to hold Tcl variables.

e <- new . env ()
e$x <- tclVar ("") ; e$f <- tclVar ("") ; e$data <- tclVar ("")
e$mu <- tclVar (0) ; e$alternative <- tclVar ("two.sided")
e$conf . level <- tclVar (9 5) ; e$var . equal <- tclVar (FALSE)

This allows us to write a function to evaluate a t-test easily enough,
although we don’t illustrate that.

Our layout is basic. Here we pack a label frame into the window to
give the dialog a nicer look. We will use the tkgrid geometry manager
below.

label_frame <- ttklabelframe (frame , text = "t.test()" ,
padding = 10)

tkpack (label_frame , expand = TRUE , fill = "both" ,
padx = 5 , pady = 5)

The grid will have four columns, with columns 0 and 2 being for labels.
We don’t want the labels to expand the same way we want the widget
columns to, so we assign different weights:

tkgrid . columnconfigure (label_frame , 0 , weight = 1)
tkgrid . columnconfigure (label_frame , 1 , weight = 10)
tkgrid . columnconfigure (label_frame , 2 , weight = 1)
tkgrid . columnconfigure (label_frame , 1 , weight = 10)

This helper function simplifies the task of adding a label.

put_label <- function (parent , text , row , column) {
label <- ttklabel (parent , text = text)
tkgrid (label , row = row , column = column , sticky = "e")

}

Our first widget will be one to select a data frame. For this, a combo
box is used, although if a large number of data frames is a possibility, a
different widget may be better suited. Also not shown are two similar calls
to create combo boxes, x_combo and factor_combo, which allow the user
to specify parts of a formula.

put_label (label_frame , "data:" , 0 , 0)
data_combo <- ttkcombobox (label_frame , state = "readonly" ,

values = ProgGUIinR : : : avail_dfs () ,
textvariable = e$data)

tkgrid (data_combo , row = 0 , column = 1 , sticky="ew" , padx = 2)
tkfocus (data_combo) # g i v e f o c u s

We use a ttkentry widget for the user to specify a mean. For this
purpose, the use is straightforward.

405

19. Tcl/Tk: Dialogs and Widgets

put_label (label_frame , "mu:" , 2 , 0)
mu_combo <- ttkentry (label_frame , textvariable = e$mu)
tkgrid (mu_combo , row = 2 , column = 1 , sticky = "ew" , padx = 2)

The selection of an alternative hypothesis is a natural choice for a combo
box or a radio-button group; we use the latter.

put_label (label_frame , "alternative:" , 3 , 0)
rb_frame <- ttkframe (label_frame)
sapply (c ("two.sided" ,"less" ,"greater") , function (i) {

radio_button <-
ttkradiobutton (rb_frame , variable = e$alternative ,

text = i , value = i)
tkpack (radio_button , side = "left")

})
tkgrid (rb_frame , row = 3 , column = 1 , sticky = "ew" , padx = 2)

Here we use a range widget to specify the confidence level. The slider
is quicker to use but less precise than the spin box. By sharing a text
variable, the widgets are automatically synchronized.

put_label (label_frame , "conf.level:" , 3 , 2)
conf_level_frame <- ttkframe (label_frame)
tkgrid (conf_level_frame , row = 3 , column = 3 , columnspan = 2 ,

sticky = "ew" , padx = 2)
##
conf_level_scale <- ttkscale (conf_level_frame ,

from = 75 , to = 100 ,
variable = e$conf . level)

conf_level_spin <- tkspinbox (conf_level_frame ,
from = 75 , to = 100 , increment = 1 ,
textvariable = e$conf . level , width = 5)

##
tkpack (conf_level_scale , expand = TRUE , fill = "y" ,

side = "left")
tkpack (conf_level_spin , side = "left")

A checkbox is used to collect the logical value for var.equal:

put_label (label_frame , "var.equal:" , 4 , 0)
var_equal_check <-

ttkcheckbutton (label_frame , variable = e$var . equal)
tkgrid (var_equal_check , row = 4 , column = 1 , stick = "w" ,

padx = 2)

The dialog has standard "cancel" and "ok" buttons.

button_frame <- ttkframe (frame)
cancel_button <- ttkbutton (button_frame , text = "cancel")
ok_button <- ttkbutton (button_frame , text = "ok")
#

406

19.2. Selection widgets

tkpack (button_frame , fill = "x" , padx = 5 , pady = 5)
tkpack (ttklabel (button_frame , text = " ") , expand = TRUE ,

fill = "y" , side = "left") # add a s p r i n g
sapply (list (cancel_button , ok_button) , tkpack ,

side = "left" , padx = 6)

For the ok_button button we want to gather the values and run the
function. The runTTest function does this. We configure both buttons, then
add to the default button bindings to invoke either of the buttons’ com-
mands when they have the focus and return is pressed.

tkconfigure (ok_button , command = runTTest)
tkconfigure (cancel_button ,

command = function () tkdestroy (window))
tkbind ("TButton" , "<Return>" , function (W) tcl (W , "invoke"))

At this point our GUI is complete, but we would like to have it reflect
any changes to the underlying R environment that affect its display. As
such, we define a function, update_ui, which does two basic things: it
searches for new data frames and it adjusts the controls depending on
the current state. The work is cumbersome, as three different means are
needed to disable the widgets.

update_ui <- function () {
dfName <- tclvalue (e$data)
curDfs <- ProgGUIinR : : : avail_dfs ()
tkconfigure (data_combo , values = curDfs)
if (!dfName %in% curDfs) {

dfName <- ""
tclvalue (e$data) <- ""

}

if (dfName == "") {
3 ways t o d i s a b l e n e e d e d !!
x <- list (x_combo , factor_combo , mu_combo ,

conf_level_scale , var_equal_check , ok_button)
sapply (x , function (W) tcl (W , "state" , "disabled"))
sapply (as . character (tkwinfo ("children" , rb_frame)) ,

function (W) tcl (W , "state" , "disabled"))
tkconfigure (conf_level_spin , state = "disabled")

} else {
e n a b l e u n i v a r i a t e , ok
sapply (list (x_combo , mu_combo , conf_level_scale , ok_button) ,

function (W) tcl (W , "state" , "!disabled"))
sapply (as . character (tkwinfo ("children" , rb_frame)) ,

function (W) tcl (W , "state" , "!disabled"))
tkconfigure (conf_level_spin , state = "normal")

DF <- get (dfName , envir = . GlobalEnv)

407

19. Tcl/Tk: Dialogs and Widgets

numVars <- get_numeric_vars (DF)
tkconfigure (x_combo , values = numVars)
if (! tclvalue (e$x) %in% numVars)

tclvalue (e$x) <- ""

b i v a r i a t e
avail_factors <- get_two_level_factor (DF)
sapply (list (factor_combo , var_equal_check) ,

function (W) {
val <- if (length (avail_factors)) "!" else ""
tcl (W , "state" , sprintf ("%sdisabled" , val))

})
tkconfigure (factor_combo , values = avail_factors)
if (!tclvalue (e$f) %in% avail_factors)

tclvalue (e$f) <- ""

}
}
update_ui ()
tkbind (data_combo , "<<ComboboxSelected >>" , update_ui)

This function could be bound to a “refresh” button, or we could arrange
to have it called in the background. Using the after command we could
periodically check for new data frames, using a task callback. We can call
this every time a new command is issued. As the call could potentially be
costly, we call only if the available data frames have been changed. Here
is one way to arrange that:

require (digest)
create_function <- function () {

. DFs <- digest (ProgGUIinR : : : avail_dfs ())
f <- function (. . .) {

if ((val <- digest (ProgGUIinR : : : avail_dfs ())) != . DFs) {
. DFs <<- val
update_ui ()

}
return (TRUE)

}
}

Then to create a task callback we have:

id <- addTaskCallback (create_function ())

408

20

Tcl/Tk: Text, Tree, and Canvas Widgets

This chapter focuses on a few of the more complex widgets of Tk, primarily
the text widget, the treeview widget, and the canvas widget.

20.1 Scroll bars

Tk has several scrollable widgets – those that use scroll bars. Widgets
that accept a scroll bar (without too many extra steps) have the options
xscrollcommand and yscrollcommand. For these, to use scroll bars in tcltk
requires two steps: the scroll bars must be constructed and bound to some
widget, and that widget must be told it has a scroll bar. This way changes
to the widget can update the scroll bar and vice versa. Suppose parent is
a container and widget has these options, then the following will set up
both horizontal and vertical scroll bars.

xscr <- ttkscrollbar (parent , orient = "horizontal" ,
command = function (. . .) tkxview (widget , . . .))

yscr <- ttkscrollbar (parent , orient = "vertical" ,
command = function (. . .) tkyview (widget , . . .))

The tkxview and tkyview functions set the part of the widget being shown.
To link the widget back to the scroll bar, the set command is used

in a callback to the scroll command. For this example we configure the
options after the widget is constructed, but this can be done at the time of
construction as well. Again, the command takes a standard form:

tkconfigure (widget ,
xscrollcommand = function (. . .) tkset (xscr , . . .) ,
yscrollcommand = function (. . .) tkset (yscr , . . .))

Although scroll bars can appear anywhere, the conventional place is on
the right and lower side of the parent. The following adds scroll bars using
the grid manager. The combination of weights and stickiness below will
cause the scroll bars to expand as expected if the window is resized.

tkgrid (widget , row = 0 , column = 0 , sticky = "news")

409

20. Tcl/Tk: Text, Tree, and Canvas Widgets

tkgrid (yscr , row = 0 , column = 1 , sticky = "ns")
tkgrid (xscr , row = 1 , column = 0 , sticky = "ew")
tkgrid . columnconfigure (parent , 0 , weight = 1)
tkgrid . rowconfigure (parent , 0 , weight = 1)

This is a bit tedious, but it does give the programmer some flexibility
in arranging scroll bars. For subsequent usage, we turn the above into
the function addScrollbars (not shown). In base Tk, there are no simple
means to hide scroll bars when they are not needed, although the tcltk2
package has some code that may be employed for that.

20.2 Multiline text widgets

The tktext widget creates a multiline text-editing widget. If constructed
with no options but a parent container, the widget can have text entered
into it by the user:

window <- tktoplevel ()
tkwm . title (window , "Simple tktext example")
txt_widget <- tktext (window)
addScrollbars (window , txt_widget)

The text widget is not a themed widget; hence it has numerous argu-
ments to adjust its appearance. We mention a few here and leave the rest to
be discovered in the manual page (along with much else). The arguments
width and height are there to set the initial size, with values specifying
number of characters and number of lines (not pixels; to convert see Sec-
tion 17.3). The actual size is font dependent, with the default for 80 by
24 characters. The wrap argument, with a value from "none", "char", or
"word", indicates whether wrapping is to occur, and, if so, does it happen
at any character or only a word boundary. The argument undo takes a
logical value indicating whether the undo mechanism should be used. If
so, the control-z keyboard shortcut or the subcommand tktext edit can be
used to undo a change

Inserting text Inserting text can be done through the ttktext insert sub-
command. This shows how we can use \n to add new lines:

tkinsert (txt_widget ,
"1.0" ,
paste ("Lorem ipsum dolor" ,

"sit amet," , sep = "\n"))

Images and other windows can be added to a text buffer, but we do not
discuss that here. The value "1.0" is an index (described below) marking
the beginning of the buffer.

410

20.2. Multiline text widgets

Getting text The tktext get subcommand is used to retrieve the text in the
buffer. We specify what part of the text buffer should be returned using
indices. The following shows how to retrieve the entire contents of the
buffer:

value <- tkget (txt_widget , "1.0" , "end")
as . character (value) # wrong way

[1] "Lorem" "ipsum" "dolor" "sit" "amet ,"

tclvalue (value)

[1] "Lorem ipsum dolor\nsit amet ,\n"

The return value is of class tclObj. The above example shows that
coercion to character should be done with tclvalue and not as.character
to preserve the distinction between spaces and line breaks.

Indices As with the entry widget, several commands take indices to spec-
ify position within the text buffer. Only, for the multiline widget are both
a line and character needed in some instances. These indices can be speci-
fied in many ways. We can use row and character numbers separated by a
period in the pattern line.char. The line is 1-based; the column 0-based
(e.g., 1.0 says start on the first row and first character). In general, we can
specify any line number and character on that line, with the keyword end
used to refer to the last character on the line.

Text buffers may carry transient marks. Predefined marks include end,
to specify the end of the buffer, insert, to track the insertion point in the
text buffer were the user to begin typing, and current, which follows the
character closest to the mouse position.

The specification

value <- tkget (txt_widget , "1.0" , "end")

uses the index 1.0 to refer to the beginning of the buffer and the mark
"end" to refer to the character after the end.

As well, pieces of text may be tagged. The format tag.first and
tag.last index the range of the tag tag. Marks and tags are described
further below. If the x-y postion of the spot is known (through percent
substitutions, say) the index can be specified by postion, as x,y.

Indices can also be adjusted relative to the above specifications. This
adjustment can be by a number of characters (chars), index positions
(indices), or lines. For example, insert + 1 lines refers to one line
under the point. The values linestart, lineend, wordstart, and wordend
are also available. So, insert linestart refers the beginning of the line
from the insert point, end -1 wordstart refers to the beginning of the last

411

20. Tcl/Tk: Text, Tree, and Canvas Widgets

word in the buffer and end - 1 chars wordend refers to the ending of the
last word in the buffer. (The end index refers to the character just after the
new line, so we go back two steps.)

Deleting text The text between two indices can be deleted using
tkdelete, as with tkdelete(txt_widget, "1.0", "end"), which would
clear the entire buffer’s contents.

Panning the buffer: tksee After text is inserted, the visible part of the
buffer may not be what is desired. The ttktext see subcommand is used to
position the buffer on the specified index, its lone argument.

Tags Tags are a means to assign a name to characters within the text
buffer. Tags can be used to adjust the foreground, background, and font
properties of the tagged characters from those specified globally at the
time of construction of the widget, or configured thereafter. Tags can be
set when the text is inserted by appending to the argument list, as with:

tkinsert (txt_widget , "end" , "last words" , "lastWords")

Tags can be set after the text is added through the tktext tag add
subcommand, using indices to specify location. The following marks the
first word with the first_word tag:

tktag . add (txt_widget , "first_word" ,
"1.0 wordstart" , "1.0 wordend")

The tktext tag configure can be used to configure properties of the tagged
characters. For example:

tktag . configure (txt_widget , "first_word" , foreground = "red" ,
font = "helvetica 12 bold")

There are several other configuration options for a tag. From within an
R session, a cryptic list can be produced by calling the subcommand tktext
tag configure without a value for configuration.

Selection The current selection, if any, is indicated by the sel tag, with
sel.first and sel.last providing indices to refer to the selection (as-
suming the option exportSelection was not modified). These tags can be
used with tkget to retrieve the currently selected text. An error will be
thrown if there is no current selection. To check whether there is a current
selection, the following can be used:

has_selection <- function (W) {
ranges <- tclvalue (tcl (W , "tag" , "ranges" , "sel"))
length (ranges) > 1 || ranges != ""

}

412

20.2. Multiline text widgets

Cut, copy, and paste The cut, copy, and paste commands are implemented
through the Tk functions tk_textCut, tk_textCopy and tk_textPaste.
Their lone argument is the text widget. These work with the current selec-
tion and insert point. For example, to cut the current selection, we have:

tcl ("tk_textCut" , txt_widget)

Marks Tags mark characters within a buffer; marks denote positions
within a buffer that can be modified. For example, the marks insert and
current refer to the position of the cursor and the current position of the
mouse. Such information can be used to provide context-sensitive pop-up
menus, as in this code example:

popup_context <- function (W , x , y) {
or use s p r i n t f ("@%s ,% s " , x , y) f o r " c u r r e n t "
cur <- tkget (W , "current wordstart" , "current wordend")
cur <- tclvalue (cur)
popup_context_menu_for (cur , x , y) # some f u n c t i o n

}

To assign a new mark, we use the tktext mark set subcommand spec-
ifying a name and a position through an index. Marks refer to spaces
between characters. The gravity of the mark can be left or right. When
it is right (the default), new text inserted is to the left of the mark. For
instance, to keep track of an initial insert point and the current one, the
initial point (marked leftlimit below) can be marked with:

tkmark . set (txt_widget , "leftlimit" , "insert")
tkmark . gravity (txt_widget , "leftlimit" , "left") # k e e p on l e f t
tkinsert (txt_widget , "insert" , "new text")
tkget (txt_widget , "leftlimit" , "insert")

<Tcl > new text

The use of the subcommand tktext mark gravity is done so that the mark
attaches to the left-most character at the insert point. The right-most one
changes as more text is inserted, so it would be a poor choice here.

The edit command The subcommand tktext edit can be used to undo
text. As well, it can be used to test whether the buffer has been modified,
as follows:

tcl (txt_widget , "edit" , "undo") # no o ut pu t
tcl (txt_widget , "edit" , "modified") # 1 = TRUE

<Tcl > 1

413

20. Tcl/Tk: Text, Tree, and Canvas Widgets

Figure 20.1: A text widget used to show formatted R commands and their
output.

Events The text widget has a few important events. The widget defines
virtual events <<Modified>> and <<Selection>> indicating when the
buffer is modified or the selection is changed. Like the single-line text
widget, the events <KeyPress> and <KeyRelease> indicate key activity.
The percent substitution k gives the keycode and K the key symbol as a
string (N is the decimal number).

Example 20.1: Displaying commands in a text buffer
This example shows how a text buffer can be used to display the output of
R commands, using an approach modified from Sweave. We envision this
as a piece of a larger GUI which generates the commands to evaluate. For
this example though, we make a simple GUI (Figure 20.1).

w <- tktoplevel () ; tkwm . title (w , "Text buffer example")
f <- ttkframe (w , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (f , expand = TRUE , fill = "both")
txt <- tktext (f , width = 80 , height = 24) # d e f a u l t s i z e
addScrollbars (f , txt)

To distinguish between commands and their output we define the fol-
lowing tags:

tktag . configure (txt , "commandTag" , foreground = "blue" ,
font = "courier 12 italic")

tktag . configure (txt , "outputTag" , font = "courier 12")
tktag . configure (txt , "errorTag" , foreground = "red" ,

font = "courier 12 bold")

The following function does the work of evaluating a command chunk
then inserting the values into the text buffer, using the different markup
tags specified above to indicate commands from output.

eval_cmd_chunk <- function (txt , cmds) {

414

20.3. Menus

cmd_chunks <- try (parse (text = cmds) , silent = TRUE)
if (inherits (cmd_chunks , "try-error")) {

tkinsert (t , "end" , "Error" , "errorTag") # add markup t a g
}

for (cmd in cmd_chunks) {
cutoff <- 0 . 7 5 * getOption ("width")
dcmd <- deparse (cmd , width . cutoff = cutoff)
command <-

paste (getOption ("prompt") ,
paste (dcmd , collapse = paste ("\n" ,

getOption ("continue") , sep = "")) ,
sep = "" , collapse = "")

tkinsert (txt , "end" , command , "commandTag")
tkinsert (txt , "end" ,"\n")
output , s h o u l d c h e c k f o r e r r o r s in e v a l !
output <- capture . output (eval (cmd , envir = . GlobalEnv))
output <- paste (output , collapse = "\n")
tkinsert (txt , "end" , output , "outputTag")
tkinsert (txt , "end" ,"\n")

}
}

This is how it can be used.

eval_cmd_chunk (txt , "2 + 2; lm(mpg ~ wt, data = mtcars)")

20.3 Menus

Menu bars and pop-up menus in Tk are constructed with tkmenu. The
parent argument depends on what the menu is to do. A top-level menu
bar, such as appears at the top of a window has a top-level window as
its parent; a submenu of a menu bar uses the parent menu; and a pop-up
menu uses a widget.

The menu widget in Tk has an option to be “torn off.” This feature
was at one time common in GUIs but now is rarely seen, so it is recom-
mended that this option be disabled. The tearoff option can be used at
construction time to override the default behavior. Otherwise, the following
command will do so globally:

tcl ("option" ,"add" ,"*tearOff" , 0) # d i s a b l e t e a r o f f menus

A top-level menu bar is attached to a top-level window using tkcon-
figure to set the menu option of the window. For the aqua Tk libraries for
Mac OS X, this menu will appear on the top menu bar when the window
has the focus. For other operating systems, it appears at the top of the

415

20. Tcl/Tk: Text, Tree, and Canvas Widgets

window. For Mac OS X, a default menu bar with no relationship to your
application will be shown if a menu is not provided for a top-level window.
Testing for native Mac OS X may be done via the following function:

using_Mac <- function ()
as . character (tcl ("tk" , "windowingsystem")) == "aqua"

The tkpopup function facilitates the creation of a pop-up menu. This
function has arguments for the menu bar, and for the postion where the
menu should be popped up. For example, the following code will bind a
pop-up menu, pmb (yet to be defined), to the right-click event for a button
b. As Mac OS X may not have a third mouse button, and when it does
it refers to it differently, the callback is bound conditionally to different
events.

doPopup <- function (X , Y) tkpopup (pmb , X , Y) # d e f i n e c a l l b a c k
if (using_Mac ()) {

tkbind (button , "<Button-2>" , doPopup) # r i g h t c l i c k
tkbind (button , "<Control -1>" , doPopup) # C o n t r o l + c l i c k

} else {
tkbind (button , "<Button-3>" , doPopup)

}

Adding submenus and action items Menus show a hierarchical view of
action items. Items are added to a menu through the tkmenu add subcom-
mand. The nested structure of menus is achieved by specifying a tkmenu
object as an item, using the tkmenu add cascade subcommand. The op-
tion label is used to label the menu and the menu option to specify the
submenu.

Grouping of similar items can be done through nesting, or, on occasion,
through visual separation. The latter is implemented with the tkmenu add
separator subcommand.

There are a few different types of action items that can be added:

Commands An action item is one associated with a command. The sim-
plest proxy is a button in the menu that activates a command when
selected with the mouse. The tkmenu add command allows us to specify
a label, a command and optionally an image with a value for com-
pound to adjust its layout. Action commands can possibly be called
for different widgets, so the use of percent substitution is problematic.
We can also specify that a keyboard shortcut be displayed through
the option accelerator, but a separate callback must listen for this
combination.

Checkboxes Action items may also be proxied by checkboxes. To create
one, the subcommand tkmenu add checkbutton is used. The available

416

20.3. Menus

arguments include label to specify the text, variable to specify a
Tcl variable to store the state, onvalue and offvalue to specify the
state to the tcl variable, and command to specify a callback when the
checked state is toggled. The initial state is set by the value in the
Tcl variable.

Radio buttons Additionally, action items may be presented through ra-
diobutton groups. These are specified with the subcommand tkmenu
add radiobutton. The label option is used to identify the entry,
variable to set a text variable and to group the buttons that are
added, and command to specify a command when that entry is se-
lected.

Action items can also be placed after an item, rather than at the end,
using the tkmenu insert command index subcommand. The index may
be specified numerically, with 0 being the first item for a menu. More
conveniently, the index can be determined by specifying a pattern to match
against the menu’s current labels.

Set state The state option is used to retrieve and set the current state of a
menu item. This value is typically normal or disabled, the latter to indicate
that the item is not available. The state can be set when the item is added
or configured after the fact, through the tkmenu entryconfigure command.
This function needs the menu bar specified and the item specified as an
index or pattern to match the labels.

Example 20.2: Simple menu example
This example shows how we might make a very simple code editor using
a text-entry widget. We use the svMisc package, as it defines a few GUI
helpers that we use.

library (svMisc) # f o r some h e l p e r s
showCmd <- function (cmd) {

writeLines (captureAll (parseText (cmd)))
}

We begin with a simple GUI comprised of a top-level window contain-
ing the text-entry widget.

window <- tktoplevel ()
tkwm . title (window , "Simple code editor")
frame <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (frame , expand = TRUE , fill = "both")
text_buffer <- tktext (frame , undo = TRUE)
addScrollbars (frame , text_buffer)

417

20. Tcl/Tk: Text, Tree, and Canvas Widgets

Using tkmenu, we create a top-level menu bar, menu_bar, and attach
it to our top-level window. Following that, we make “file” and “edit”
submenus.

menu_bar <- tkmenu (window)
tkconfigure (window , menu = menu_bar)
#
file_menu <- tkmenu (menu_bar)
tkadd (menu_bar , "cascade" , label = "File" , menu = file_menu)
#
edit_menu <- tkmenu (menu_bar)
tkadd (menu_bar , "cascade" , label = "Edit" , menu = edit_menu)

To these sub-menu bars, we add action items. First we create a com-
mand to evaluate the contents of the buffer:

tkadd (file_menu , "command" , label = "Evaluate buffer" ,
command = function () {

cur_val <- tclvalue (tkget (text_buffer , "1.0" , "end"))
showCmd (cur_val)

})

then a command to evaluate just the current selection:

tkadd (file_menu , "command" , label = "Evaluate selection" ,
state = "disabled" ,
command = function () {

cur_sel <- tclvalue (tkget (text_buffer ,
"sel.first" , "sel.last"))

showCmd (cur_sel)
})

and finally, we end the file menu with a separator and quit action:

tkadd (file_menu , "separator")
tkadd (file_menu , "command" , label = "Quit" ,

command = function () tkdestroy (window))

The edit menu has an undo and redo item. For illustration purposes,
we add an icon to the undo item.

img <- system . file ("images" ,"up.gif" , package = "gWidgets")
tkimage . create ("photo" , "::img::undo" , file = img)
tkadd (edit_menu , "command" , label = "Undo" ,

image = "::img::undo" , compound = "left" ,
state = "disabled" ,
command = function () tcl (text_buffer , "edit" , "undo"))

tkadd (edit_menu , "command" , label="Redo" , state = "disabled" ,
command = function () tcl (text_buffer , "edit" , "redo"))

For updating the GUI, we want to configure the menu items to reflect
whether the current buffer has a selection or can undo or redo. To check
the selection we have:

418

20.3. Menus

tkbind (text_buffer , "<<Selection >>" , function (W) {
hasSelection <- function (W) {

ranges <- tclvalue (tcl (W , "tag" , "ranges" , "sel"))
length (ranges) > 1 || ranges != ""

}
c o n f i g u r e us ing an i n d e x
sel_state <- ifelse (hasSelection (W) , "normal" , "disabled")
tkentryconfigure (file_menu , 2 , state = sel_state)

})

To check for do and undo, we bind to the Modified virtual event.

tkbind (text_buffer , "<<Modified >>" , function (W) {
not r e a l l y can_undo/ can_ r e d o but n o t h i n g s u i t a b l e
can_undo <- as . logical (tcl (W , "edit" , "modified"))
undo_state <- ifelse (can_undo , "normal" , "disabled")
sapply (c ("Undo" , "Redo") , function (i) # match p a t t e r n

tkentryconfigure (edit_menu , i , state = undo_state))
})

We add a shortcut entry to the menu bar and a binding to the top-level
window for the keyboard shortcut for “undo.”

if (using_Mac ()) {
tkentryconfigure (edit_menu , "Undo" , accelerator="Cmd-z")
tkbind (window , "<Option-z>" , function () {

tcl (text_buffer , "edit" , "undo")
})

} else {
tkentryconfigure (edit_menu , "Undo" , accelerator="Control-u")
tkbind (window , "<Control-u>" , function () {

tcl (text_buffer , "edit" , "undo")
})

}

To illustrate pop-up menus, we define one within our text widget that
will grab all functions that complete the current word, using the comple-
tion function from the svMisc package to provide the completions. The
use of current wordstart and current wordend, below, to find the word
at the insertion point isn’t quite right for R, as it stops at periods, but we
don’t pursue fixing this.

do_popup <- function (W , X , Y) {
cur <- tclvalue (tkget (W , "current wordstart" ,

"current wordend"))
tcl (W , "tag" , "add" , "popup" , "current wordstart" ,

"current wordend")
possible_vals <- head (completion (cur) [, 1 , drop=TRUE] , n=20)
if (length (possible_vals) > 1) {

popup <- tkmenu (text_buffer) # c r e a t e menu f o r popup

419

20. Tcl/Tk: Text, Tree, and Canvas Widgets

sapply (possible_vals , function (i) {
tkadd (popup , "command" , label=i , command = function () {

tcl (W , "replace" , "popup.first" , "popup.last" , i)
})

})
tkpopup (popup , X , Y)

} }

For a pop-up, we set the appropriate binding for the underlying win-
dowing system. For the second mouse button binding in OS X, we clear
the clipboard. Otherwise the text will be pasted in, as this mouse action
already has a default binding for the text widget.

if (!using_Mac ()) {
tkbind (text_buffer , "<Button-3>" , do_popup)

} else {
tkbind (text_buffer , "<Button-2>" , function (W , X , Y) {

UNIX l e g a c y r e mouse−2 c l i c k f o r s e l e c t i o n copy
tcl ("clipboard" ,"clear" , displayof = W)
do_popup (W , X , Y)
}) # r i g h t c l i c k

tkbind (text_buffer , "<Control -1>" , do_popup) # C t r l + c l i c k
}

20.4 Treeview widget

The themed treeview widget can be used to display rectangular data, like
a data frame, or hierarchical data, like a list. The usage is similar, but for
a minor change to indicate the hierarchical structure.

Rectangular data

The ttktreeview constructor creates the tree widget. There is no separate
model for this widget, as there is in GTK+ or Qt, but there is a means to
adjust what is displayed. The argument columns is used to specify internal
names for the columns and indicate the number of columns. A value of 1:n
will work here unless explicit names are desired. The argument display-
columns is used to control which of the columns are actually displayed.
The default is "all", but a vector of indices or names can be given.

The size of the widget is specified two ways. The height argument is
used to adjust the number of visible rows. The requested width of the
widget is determined by the combined widths of each column, whose
adjustments are mentioned later.

If frame is a frame, then the following call will create a treeview widget
with just one column showing 25 rows at a time, like the older, non-
themed, list-box widget of Tk.

420

20.4. Treeview widget

treeview <-
ttktreeview (frame ,

columns = 1 , # column i d e n t i f i e r i s "1"
show = "headings" , # not "#0"
height = 25)

addScrollbars (frame , treeview) # our s c r o l l b a r f u n c t i o n

The treeview widget has an initial column for showing the tree-like
aspect with the data. This column is referenced by #0. The show argument
controls whether this column is shown. A value of "tree" leaves just this
column shown; "headings" will show the other columns, but not the first;
and the combined value of "tree headings" will display both (the default).
Additionally, the treeview is a scrollable widget, so it has the arguments
xscrollcommand and yscrollcommand for specifying scroll bars.

Adding values Rectangular data has a row and column structure. In R,
data frames are stored internally by column vectors, so each column may
have its own type. The treeview widget is different: it stores all data as
character data and we interact with the data row by row.

Values can be added to the widget through the ttktreeview insert parent
item [text] [values] subcommand. This requires the specification of a parent
(always the root "" for rectangular data) and an index for specifying the
location of the new child among the previous children. The special value
"end" indicates placement after all other children, as would a number
larger than the number of children. A value of 0 or a negative value
would put it at the beginning.

In the example, this is how we can add a list of possible CRAN mirrors
to the treeview display.

x <- getCRANmirrors ()
Host <- x$Host
shade <- c ("none" , "gray") # t a g names
for (i in seq_along (Host))

ID <- tkinsert (treeview , "" , "end" ,
values = as . tclObj (Host [i]) ,
tag = shade [i %% 2]) # none or gray

tktag . configure (treeview , "gray" , background = "gray95")

For filling in each row’s content the values option is used. If there is
a single column, like the current example, care needs to be taken when
adding a value. The call to as.tclObj prevents the widget from dropping
values after the first space.1 Otherwise, we can pass a character vector of
the proper length.

There are a number of other options for each row. If column #0 is
present, the text option is used to specify the text for the tree row, and

1As does wrapping the values within braces.

421

20. Tcl/Tk: Text, Tree, and Canvas Widgets

the option image can be given to specify an image to place to the left of
the text value. Finally, we mention the tag option for insert that can be
used to specify a tag for the inserted row. This allowed the use of the
subcommand ttktreeview tag configure to configure the background color.
In addition, we can adjust foreground color, font, or image for an item.

Column properties The columns can be configured on a per-column ba-
sis. Columns can be referred to by the name specified through the columns
argument or by number starting at 1 with "#0" referring to the tree column.
The column headings can be set through the ttktreeview heading subcom-
mand. The heading, similar to the button widget, can be text, an image,
or both. The text placement of the heading may be positioned through the
anchor option. For example, this command will center the text heading of
the first column:

tcl (treeview , "heading" , 1 , text = "Host" , anchor = "center")

The ttktreeview column subcommand can be used to adjust a column’s
properties, including the size of the column. The option width is used to
specify the pixel width of the column (the default is large); as the widget
may be resized, we can specify the minimum column width through the
option minwidth. When more space is allocated to the tree widget than
is requested by the columns, columns with a TRUE value specified to the
option stretch are resized to fill the available space. Within each column,
the placement of each entry within a cell is controlled by the anchor option,
using the compass points.

For example, this command will adjust properties of the lone column
of treeview:

tcl (treeview , "column" , 1 , width = 400 ,
stretch = TRUE , anchor = "w")

Example 20.3: A convenience function for populating a table
We put the above commands together into a convenience function for
subsequent use. The following assumes m is a character matrix. It returns
a list containing the enclosing frame and the treeview object.

populate_rectangular_treeview <- function (parent , m) {
enc_frame <- ttkframe (parent)
frame <- ttkframe (enc_frame)
tkpack (frame , expand = TRUE , fill = "both")
treeview <- ttktreeview (frame ,

columns = seq_len (ncol (m)) ,
show = "headings")

addScrollbars (frame , treeview)
tkpack . propagate (enc_frame , FALSE) # s i z e from frame

422

20.4. Treeview widget

head ings , w id th s
font_measure <- tcl ("font" ,"measure" ,"TkTextFont" ,"0")
charWidth <- as . integer (tclvalue (font_measure))
sapply (seq_len (ncol (m)) , function (i) {

tcl (treeview , "heading" , i , text = colnames (m) [i])
tcl (treeview , "column" , i ,

width = 10 + charWidth*max (apply (m , 2 , nchar)))
})
tcl (treeview , "column" , ncol (m) , stretch = TRUE)
v a l u e s
if (ncol (m) == 1) m <- as . matrix (paste ("{" , m , "}" , sep=""))
apply (m , 1 , function (vals)

tcl (treeview , "insert" , "" , "end" , values = vals))
##
return (list (treeview = treeview , frame = enc_frame))

}

The use of tkpack.propagate allows us to control the size of the enclosing
component by configuring the size of the enclosing frame. Otherwise, in
the computation for requested size, the treeview widget will respond with
a width computed by its column widths. However, we use a horizontal
scroll bar to avoid this.

To use this we need to configure the size of the scrollable frame widget.
For example:

window <- tktoplevel ()
m <- sapply (mtcars , as . character)
a <- populate_rectangular_treeview (window , m)
tkconfigure (a$treeview , selectmode = "extended") # m u l t i p l e
tkconfigure (a$frame , width = 300 , height = 200) # f rame s i z e
tkpack (a$frame , expand = TRUE , fill = "both")

Item IDs Each row has a unique item ID generated by the widget when
a row is added. The base ID is "" (why this was previously specified for
the value of parent for rectangular data). For rectangular displays, the list
of all IDs can be found through the ttktreeview children subcommand,
which we will describe in the next section. Here we see it used to find the
children of the root. As well, we show how the ttktreeview index command
returns the row index.

children <- tcl (treeview , "children" , "")
(children <- head (as . character (children))) # as . c h a r a c t e r

[1] "I001" "I002" "I003" "I004" "I005" "I006"

sapply (children , function (i) tclvalue (tkindex (treeview , i)))

423

20. Tcl/Tk: Text, Tree, and Canvas Widgets

I001 I002 I003 I004 I005 I006
"0" "1" "2" "3" "4" "5"

Retrieving values The ttktreeview item subcommand can be used to get
the values and other properties stored for each row. We specify the item
and the corresponding option:

x <- tcl (treeview , "item" , children [1] , "-values") # no t k i t e m
as . character (x)

[1] "Universidad Nacional de La Plata"

The value returned from the item command can be difficult to parse, as
Tcl places braces around values with blank spaces. The coercion through
as.character works much better at extracting the individual columns. A
possible alternative to using the item command, is to keep the original
data frame and use the index of the item to extract the value from the
original.

Moving and deleting items The ttktreeview move subcommand can be
used to replace a child. As with the insert command, a parent and an
index for where the new child is to go among the existing children is
needed. The item to be moved is referred to by its ID. The ttktreeview
delete and ttktreeview detach can be used to remove an item from the
display, as specified by its ID. The latter command allows for the item to
be reinserted at a later time.

Selection The user may select one or more rows with the mouse, as
controlled by the option selectmode. Multiple rows may be selected with
the default value of "extended", a restriction to a single row is specified
with "browse", and no selection is possible if this is given as none.

The ttktreeview select command will return the current selection. The
current selection marks zero, one or more than one items if "extended"
is given for the selectmode argument. If converted to a string using
as.character this will be a character vector of the selected item IDs.
Further subcommands set, add, remove, and toggle can be used to adjust
the selection programatically.

For example, to select the first six children, we have:

tkselect (treeview , "set" , children)

To toggle the selection, we have:

tkselect (treeview , "toggle" , tcl (treeview , "children" , ""))

Finally, the selected IDs are returned with:

IDs <- as . character (tkselect (treeview))

424

20.4. Treeview widget

Figure 20.2: Using ttktreeview to show various CRAN sites. This
illustration adds a search-like box to filter what repositories are displayed
for selection.

Events and callbacks In addition to the keyboard events <KeyPress>
and <KeyRelease>, and the mouse events <ButtonPress>, <ButtonRelease>
and <Motion>, the virtual event <<TreeviewSelect>> is generated
when the selection changes.

Within a key or mouse event callback, the clicked-on column and row
can be identified by position, as illustrated in this example callback.

callback_example <- function (W , x , y) {
col <- as . character (tkidentify (W , "column" , x , y))
row <- as . character (tkidentify (W , "row" , x , y))
now do someth ing . . .

}

Example 20.4: Filtering a table
We illustrate the above with a slightly improved GUI for selecting a CRAN
mirror. This adds in a text box to filter the possibly large display of items
to avoid scrolling through a long list.

DF <- getCRANmirrors () [, c (1 , 2 , 5 , 4)]

We use a text entry widget to allow the user to filter the values in the
display as the user types.

frame_0 <- ttkframe (frame) ; tkpack (frame_ 0 , fill = "x")
label <- ttklabel (frame_ 0 , text = "filter:")
tkpack (label , side = "left")
filter_var <- tclVar ("")
filter_entry <- ttkentry (frame_ 0 , textvariable = filter_var)
tkpack (filter_entry , side = "left")

The treeview will only show the first three columns of the data frame,
although we store the fourth which contains the URL.

425

20. Tcl/Tk: Text, Tree, and Canvas Widgets

frame_1 <- ttkframe (frame)
tkpack (frame_1 , expand = TRUE , fill = "both")
treeview <- ttktreeview (frame_1 , columns = 1 : ncol (DF) ,

displaycolumns = 1 : (ncol (DF) − 1) ,
show = "headings" , # not " t r e e "
selectmode = "browse") # s i n g l e s e l e c t i o n

addScrollbars (frame_ 1 , treeview)

We configure the column widths and titles as follows:

widths <- c (1 0 0 , 75 , 400) # hard c o d e d
nms <- names (DF)
for (i in 1 : 3) {

tcl (treeview , "heading" , i , text = nms [i])
tcl (treeview , "column" , i , width = widths [i] ,

stretch = TRUE , anchor = "w")
}

The treeview widget does not do filtering internally.2 As such we will
replace all the values when filtering. This following helper function is used
to fill in the widget with values from a data frame.

fillTable <- function (treeview , DF) {
children <- as . character (tcl (treeview , "children" , ""))
for (i in children)

tcl (treeview , "delete" , i) # out with o l d
shade <- c ("none" , "gray")
for (i in seq_len (nrow (DF)))

tcl (treeview , "insert" , "" , "end" , tag = shade [i %% 2] ,
text = "" ,
values = unlist (DF [i ,])) # in with new

tktag . configure (treeview , "gray" , background = "gray95")
}

The initial call populates the table from the entire data frame.

fillTable (treeview , DF)

The filter works by grepping the user input against the host value.
We bind to <KeyRelease> (and not <KeyPress>) so we capture the last
keystroke.

cur_ind <- 1 : nrow (DF)
tkbind (filter_entry , "<KeyRelease >" , function (W , K) {

val <- tclvalue (tkget (W))
poss_vals <- apply (DF , 1 , function (. . .)

paste (. . . , collapse = " "))
ind<- grep (val , poss_vals)

2The model-view-controller architecture of GTK+ and Qt, makes this task much easier, as
it allows for an intermediate proxy model.

426

20.4. Treeview widget

Figure 20.3: A dialog for subsetting a data frame. The example introduces
a reference class to contain an unknown number of items, all of which
are instances of an item class.

if (length (ind) == 0) ind <- 1 : nrow (DF)
fillTable (treeview , DF [ind ,])

})

This binding is for capturing a user’s selection through a double-click
event. In the callback, we set the CRAN option then withdraw the win-
dow.

tkbind (treeview , "<Double-Button -1>" , function (W , x , y) {
sel <- as . character (tcl (W , "identify" , "row" , x , y))
vals <- tcl (W , "item" , sel , "-values")
URL <- as . character (vals) [4] # not t c l v a l u e
repos <- getOption ("repos")
repos ["CRAN"] <- gsub ("/$" , "" , URL [1 L])
options (repos = repos)
tkwm . withdraw (tkwinfo ("toplevel" , W))

})

Example 20.5: A dialog for subsetting a data frame
This longish example creates a framework for showing a list of similar
items whose length is uncertain. There are several uses of such a frame-
work. For example, a GUI for formulas might have items given by terms
between + values, or a GUI for ggplot2 might have items that represent
individual layers of a plot. Here we use the framework to create a dialog
for the subset argument of the subset function.3 That argument combines
an arbitrary number of statements that produce logical values to produce a
logical index for a data frame. For our framework, each item will produce
one of these logical statements, and our list will hold the items.

To implement this, we first create a FilterList class. Our class has a
few properties: DF to hold the data frame; l to hold the list items; id to

3The authors’ would like to thank Liviu Andronic for ideas related to this example.

427

20. Tcl/Tk: Text, Tree, and Canvas Widgets

hold an internal counter to reference the list items by; and frame to hold
a ttkframe instance, the parent container for each item.

setOldClass ("tkwin")
setOldClass ("tclVar")
FilterList <- setRefClass ("FilterList" ,

fields = list (
DF = "data.frame" ,
l = "list" ,
id = "ANY" ,
frame = "tkwin"
))

The main interface for a filter list is limited. For management, we define
a method to add a list item and one to remove a list item. We also need a
method (get_value) for analyzing the items and producing a logical vector
with which to subset the data frame. Beyond that we have methods to set
up the GUI, a preview method to see the current subsetting, and a method
to select a variable from the data frame.

First, we define a method to set up our GUI. Here, into a parent con-
tainer that is passed in, we pack in a frame (enc_frame) to hold the pieces
of our GUI.4 These consist of a frame to hold the items and a frame to
hold the buttons. We use the tkgrid layout manager, which allows us to
grow the top frame as needed, yet have the buttons receive the additional
expanding space.

FilterList$methods (
setup_gui = function (parent) {

enc_frame <- ttkframe (parent , padding = 5)
tkpack (enc_frame , expand = TRUE , fill = "both")
frame <<- ttkframe (enc_frame)
button_frame <- ttkframe (enc_frame)
use g r i d t o manage t h e s e
tkgrid (frame , sticky = "news")
tkgrid (button_frame , sticky = "new")
tkgrid . rowconfigure (enc_frame , 1 , weight = 1)
tkgrid . columnconfigure (enc_frame , 0 , weight = 1)
##
add_button <-

ttkbutton (button_frame , text = "Add" ,
command = function () . self$add ())

preview_button <-
ttkbutton (button_frame , text = "Preview" ,

command = function () . self$preview ())

4This means that tkpack needs to be used to manage any other children of this parent.
An alternative would be to pass back the enclosing frame object so that it can be managed
as the user desires.

428

20.4. Treeview widget

##
sapply (list (add_button , preview_button) , tkpack ,

side = "left" , padx = 5)
})

The initialize method simply initializes our fields and then sets up
the GUI. As the point of this is to filter a data frame, the DF argument has
no default value and must be specified.

FilterList$methods (
initialize = function (DF , parent , . . .) {
initFields (DF = DF , l = list () , id = 0L)
setup_gui (parent)
callSuper (. . .)

})

Before showing a filter, we force the user to select a variable by which
to filter. This selection involves choosing one from possibly many. A table
is an excellent choice for this, as it gracefully handles many values. This
convenience method provides a table selection widget in a modal dialog
window. Selection happens when a user selects one of the rows of the
table.

FilterList$methods (
select_variable = function () {

"Return a variable name from the data frame"
x <- sapply (DF , function (i) class (i) [1])
m <- cbind (Variables = names (x) , Type = x)
window <- tktoplevel ()
fr <- ttkframe (window , padding = c (3 , 3 , 3 , 1 2))
tkpack (fr , expand = TRUE , fill = "both")
##
a <- populate_rectangular_treeview (fr , m)
tkconfigure (a$frame , width = 300 , height = 200)
tkpack (a$frame , expand = TRUE , fill = "both")
s e l e c t a va lue , s t o r e in out
out <- NA
tkbind (a$tr , "<<TreeviewSelect >>" , function (W) {

sel <- tcl (W , "selection")
val <- tcl (W , "item" , sel , "-values")
assign ("out" , as . character (val) [1] ,

inherits = TRUE)
tkdestroy (window)

})
tkwait . window (window)
return (out)

})

Our main add method has a few tasks: to select a variable, to create a
new filter item, to create a container, to do the internal bookkeeping, and

429

20. Tcl/Tk: Text, Tree, and Canvas Widgets

finally to call the items make_gui method. The newFilterItem call is an S3
generic used as a factory method to find the correct filter item reference
class to produce an appropriate filter for the variable.

FilterList$methods (
add = function (variable_name , . . .) {

if (missing (variable_name))
variable_name <- select_variable ()

x <- get (variable_name , DF)
new i t e m
id <<- id + 1
item <- newFilterItem (x , variable_name , id , . self)
make f rame
enc_frame <- ttkframe (frame)
tkpack (enc_frame ,

expand = TRUE , fill = "both" , pady = 2)
l [[as . character (id)]] <<- list (frame = enc_frame ,

item = item)
item$make_gui (enc_frame)

})

To remove an object requires us to remove it from our internal list and
from the GUI. We use tkpack to manage the items, so tkpack.forget is
used to remove the item. In the add method we store the enclosing frame
to make this task easy.

FilterList$methods (
remove=function (id_obj , . . .) {

"Remove. id is character or item object"
if (!is . character (id_obj))

id_obj <- id_obj$id
tkpack . forget (l [[id_obj]] $frame)
l [[id_obj]] <<- NULL

})

Here we query all the items and combine them to create a logical index
vector. The item interface described below will provide its own get_value
method, so this task is a matter of combining the results of each of those
calls. We use all here, but if we wanted to extend this GUI, one area
would be to allow the user to specify “and” or “or” between each item.

FilterList$methods (
get_value = function () {

"Return logical value for all filter items"
if (length (l) == 0)

return (rep (TRUE , length=nrow (DF)))
##
out <- sapply (l , function (i) i$item$get_value ())
out [is . na (out)] <- FALSE ## c o e r c e NA t o FALSE

430

20.4. Treeview widget

apply (out , 1 , all)
})

The get_value method makes it easy to provide a preview method to
show the current state of the subsetting. Basically, we just need to create
a character matrix that we want to display and then use our previously
defined populate_rectangular_treeview function.

FilterList$methods (
preview = function () {

"Preview data frame"
ind <- get_value ()
if (!any (ind)) {

message ("No matches")
return ()

}
c o e r c e t o c h a r a c t e r
m <- DF [ind ,]
for (i in seq_along (m))

m [, i] <- as . character (m [, i])
##
window <- tktoplevel ()
fr <- ttkframe (window , padding = c (3 , 3 , 3 , 1 2))
tkpack (fr , expand = TRUE , fill = "both")
a <- populate_rectangular_treeview (fr , m)
tkconfigure (a$frame , width = 400 , height = 300)
tkpack (a$frame , expand = TRUE , fill = "both")
##
button <- ttkbutton (fr , text = "dismiss" ,

command=function () tkdestroy (window))
tkpack (button , anchor = "sw")
tkwait . window (window)

})

To use this new class, we would integrate it into a dialog. The basic
call needed would be something along the lines of the following:

window <- tktoplevel ()
require (MASS)
filter_list <- FilterList$new (DF = Cars93 , parent = window)

But before that will work, we need to define the filter item classes.

Filter items As mentioned, we use an S3 generic to select the reference
class to provide the appropriate filter item. These are still to be defined,
but we show the default choice.

newFilterItem <- function (x , nm = deparse (substitute (x)) , id ,
list_ref) UseMethod ("newFilterItem")

431

20. Tcl/Tk: Text, Tree, and Canvas Widgets

newFilterItem . default <- function (x , nm=deparse (substitute (x)) ,
id , list_ref) {

FilterItemNumeric$new (x = x , nm = nm , id = id ,
list_ref = list_ref)

}

A filter item needs to produce a logical vector used for indexing. At a
minimum, we require a few properties: x to store the variable’s data that
we are considering; nm to store the name of this variable; id to store the
id of where this item is stored in the filter list; and list_ref to store a
reference to the filter list.

FilterItem <- setRefClass ("FilterItem" ,
fields = list (

x = "ANY" ,
nm = "character" ,
id = "character" ,
list_ref = "ANY"
))

The filter item interface is not complicated. The most important method
is get_value to return a logical variable. This was called by the filter list’s
similarly named get_value method. As well, we call the item’s make_gui
method in the filter list. The last method is simply a remove method that
calls back up into the remove method of the item’s parent filter list.

FilterItem$methods (
initialize = function (. . .) {

initFields (. . .)
. self

} ,
get_value = function () {

"Return logical value of length x"
stop ("Must be subclassed")

} ,
remove = function () list_ref$remove (. self) ,
make_gui = function (parent , . . .) {

"Set up GUI, including defining widgets"
remove_button <- ttkbutton (parent , text="remove" ,

command = function () {
. self$remove ()

})
tkpack (remove_button , side = "right")

})

The interesting things happen in the subclasses. For numeric values we
add two new properties to help with our get_value method: one to store
an inequality operator and one to store an expression the user can enter.

FilterItemNumeric <- setRefClass ("FilterItemNumeric" ,

432

20.4. Treeview widget

contains = "FilterItem" ,
fields = list (

ineq_variable = "tclVar" ,
value_variable = "tclVar"
))

With these two properties, our get_value method becomes a matter of
pasting together an expression then evaluating it. We evaluate this within
the data frame so that value_variable could use variable names from the
data framed.

FilterItemNumeric$methods (
get_value = function () {

xpr <- paste (nm , tclvalue (ineq_variable) ,
tclvalue (value_variable))

eval (parse (text = xpr) ,
envir = list_ref$DF , parent . frame ())

})

Our GUI has three widgets: a label, a combo box for the inequality, and
an entry widget to put in values. We could simplify this, say with a slider
to slide through the possible values, but using an entry widget gives more
flexibility in the specification. We see that we simply pack these widgets
into the parent that is passed in to the method call.

FilterItemNumeric$methods (
make_gui = function (parent) {

s t a n d a r d width f o r l a b e l
label_width <- max (sapply (names (list_ref$DF) , nchar))
label <- ttklabel (parent , text=nm , width=label_width)
i n e q combo
vals <- c (">=" , ">" , "==" , "!=" , "<" , "<=")
ineq_variable <<- tclVar ("<=")
ineq <- ttkcombobox (parent , values = vals ,

textvariable = ineq_variable , width = 4)
e n t r y
value_variable <<- tclVar (max (x , na . rm = TRUE))
val <- ttkentry (parent , textvariable = value_variable)
##
sapply (list (label , ineq , val) , tkpack , side = "left" ,

padx = 5)
callSuper (parent)

})

The character selection class, also used with factors, is more involved.
Our get_value method is basically x %in% cur_vals, where cur_vals is
a selection from all possible values. We might want to use a group of
checkboxes here, but that can get unwieldy when there are more than a

433

20. Tcl/Tk: Text, Tree, and Canvas Widgets

handful of choices.5 We opt instead for a table-selection widget. That can
take up vertical screen space. To avoid this we use a button that shows
the currently selected values, and that can be clicked to open a dialog to
adjust these values. To keep a consistent horizontal size to these buttons
we “ellipsize” the button’s text in the ellipsize method. Some graphical
toolkits, but not Tk, have built-in “ellipsize” methods that prove useful
when controlling space allocations when translations are involved, as these
can vary widely in the number of characters needed to display.

For our new subclass, we have four additional properties, the tree view
for selection, the button, and vectors to store the possible values and the
currently selected values.

FilterItemCharacter <-
setRefClass ("FilterItemCharacter" ,

contains = "FilterItem" ,
fields = list (

tr = "tkwin" ,
button = "tkwin" ,
poss_vals = "character" ,
cur_vals = "character"
))

As mentioned, our get_value method is easy to define:

FilterItemCharacter$methods (
get_value = function () {

x %in% cur_vals
})

The main work is in our select_values_dialog, defined below. We
use the following helper function to preselect the currently selected values
when the dialog is opened.

sel_by_name <- function (tr , nms) {
all_ind <- as . character (tcl (tr , "children" , ""))
vals <- sapply (all_ind , function (i) {

as . character (tcl (tr , "item" , i , "-values"))
})
ind <- names (vals [vals %in% nms])
sapply (ind , function (i) tcl (tr , "selection" , "add" , i))
sapply (setdiff (all_ind , ind) ,

function (i) tcl (tr , "selection" , "remove" , i))
}

Here is our previously mentioned convenience method to make the
button size uniform by “ellipsizing” the button’s label.

5A table of checkboxes might also be used, but this isn’t directly supported by the
treeview widget of tcltk. The intrepid could set the image attribute for each row to show a
check or non-check depending on the state.

434

20.4. Treeview widget

FilterItemCharacter$methods (ellipsize = function () {
tmp <- paste (cur_vals , collapse = ", ")
if ((N <- nchar (tmp)) > 50)

tmp <- sprintf ("%s...%s" , substr (tmp , 0 , 1 5) ,
substr (tmp , N−12, N))

sprintf ("%50s" , tmp)
})

This is the main dialog for selecting values. Here multiple selection is
achieved by extending the selection through holding the shift and control
keys while clicking on items.

FilterItemCharacter$methods (
select_values_dialog = function () {

window <- tktoplevel ()
fr <- ttkframe (window , padding = c (3 , 3 , 1 2 , 1 2))
tkpack (fr , expand = TRUE , fill = "both")
tkpack (ttklabel (fr ,

text = "Select values by extending selection"))
s e l e c t i o n
m <- matrix (poss_vals)
colnames (m) <- "Values"
a <- populate_rectangular_treeview (fr , m)
tkconfigure (a$tr , selectmode = "extended")
tkconfigure (a$frame , width = 200 , height = 300)
tkpack (a$frame , expand = TRUE , fill = "both")

sel_by_name (a$tr , cur_vals) # s e e a b o v e

tkbind (a$tr , "<<TreeviewSelect >>" , function () {
ind <- as . character (tcl (a$tr , "selection"))
cur <- sapply (ind , function (i) {

as . character (tcl (a$tr , "item" , i , "-values"))
})
if (length (cur) == 0)

cur <- character (0)
cur_vals <<- cur

})
b u t t o n s
frame_1 <- ttkframe (fr)
tkpack (frame_ 1)
toggle_button <- ttkbutton (frame_1 , text="toggle" ,

command=function () toggle_sel (a$tr))
set_button <- ttkbutton (frame_ 1 , text = "set" ,

command=function () tkdestroy (window))
sapply (list (toggle_button , set_button) , tkpack ,

side = "left" , padx = 5)
make modal

435

20. Tcl/Tk: Text, Tree, and Canvas Widgets

tkwait . window (window)
tkconfigure (button , text = ellipsize ())

})

Our main GUI for a character or factor item then has three widgets:
labels for the name and %in% operator and a button.

FilterItemCharacter$methods (make_gui = function (parent) {
poss_vals <<- sort (unique (as . character (x)))
cur_vals <<- poss_vals
l a b e l , ineq , v a l
l_width <- max (sapply (names (list_ref$DF) , nchar))
label <- ttklabel (parent , text = nm ,

width = l_width)
##
in_label <- ttklabel (parent , text = "%in%")
##
button <<- ttkbutton (parent , text = ellipsize () ,

command = . self$select_values_dialog)
##
sapply (list (label , in_label) , tkpack ,

side = "left" , padx = 5)
tkpack (button ,

expand = TRUE , fill = "x" , side = "left")
callSuper (parent)

})

We leave it as an exercise for the reader to add a subclass for logical
variables or date variables.

Editable tables of data

There is no native widget for editing the cells of tabular data, as is
provided by the edit method for data frames. The tktable widget
(http://tktable.sourceforge.net/) provides such an add-on to the base
Tk. We don’t illustrate its usage here, as we keep to the core set of func-
tions provided by Tk. An interface for this Tcl package is provided in the
tcltk2 package (tk2edit). The gdf function of gWidgetstcltk is based on
this.

Hierarchical data

Specifying tree-like or hierarchical data is nearly identical to specifying
rectangular data for the ttktreeview widget. The widget provides column
#0 to display this extra structure. If an item, except the root, has children,
a trigger icon to expand the tree is shown. This is in addition to any text
and/or an icon that is specified. Children are displayed in an indented

436

20.4. Treeview widget

Figure 20.4: Illustration of using ttktreeview widget to show hierarchical
data returned from parsing an HTML document with the XML package.

manner to indicate the level of ancestry they have relative to the root.
To insert hierarchical data into the widget the same ttktreeview insert
subcommand is used, except that instead of using the root item "" as the
parent item, we use the item ID corresponding to the desired parent. If
the option open=TRUE is specified to the insert subcommand, the children
of the item will appear,; if FALSE, the user can click the trigger icon to
see the children. The programmer can use the ttktreeview item to configure
this state. When the parent item is opened or closed, the virtual events
<<TreeviewOpen>> and <<TreeviewClose>> will be signaled.

Traversal Once a tree is constructed, the programmer can traverse through
the items using the subcommands ttktreeview parent item to get the ID
for the parent of the item; ttktreeview prev item and ttktreeview next item
to get the immediate siblings of the item; and ttktreeview children item
to return the children of the item. Again, the latter one will produce a
character vector of IDs for the children when coerced to character with
as.character.

Example 20.6: Using the treeview widget to show an XML file
This example shows how to display the hierarchical structure of an XML
document using the tree widget.

We use the XML library to parse a document from the internet. This
example uses just a few functions from this library: The (htmlTreeParse)
(similar to xmlInternalTreeParse) to parse the file, xmlRoot to find the
base node, xmlName to get the name of a node, xmlValue to get an associ-
ated value, and xmlChildren to return any child nodes of a node.

library (XML)

437

20. Tcl/Tk: Text, Tree, and Canvas Widgets

file_name <- "http://www.omegahat.org/RSXML/shortIntro.html"
doc <- htmlTreeParse (file_name , useInternalNodes = TRUE ,

error = function (. . .) { })
root <- xmlRoot (doc)

Our GUI is primitive, with just a treeview instance added.

treeview <- ttktreeview (frame , displaycolumns = "#all" ,
columns = 1)

addScrollbars (frame , treeview)

We configure our column headers and set a minimum width below.
Recall that the tree column is designated "#0".

tcl (treeview , "heading" , "#0" , text = "Name")
tcl (treeview , "column" , "#0" , minwidth = 20)
tcl (treeview , "heading" , 1 , text = "value")
tcl (treeview , "column" , 1 , minwidth = 20)

To map the tree-like structure of the XML document into the widget, we
define the following function to add to the treeview instance recursively.
We add to the value column (through the values option) only when the
node does not have children. We use do.call, as a convenience, to avoid
constructing two different calls to the insert subcommand.

insertChild <- function (treeview , node , parent = "") {
l <- list (treeview , "insert" , parent , "end" ,

text = xmlName (node))
children <- xmlChildren (node)
if (length (children) == 0) { # add in v a l u e s

values <- paste (xmlValue (node) , sep = " " , collapse = " ")
l$values <- as . tclObj (values) # a v o i d s p l i t on s p a c e s

}
tree_path <- do . call ("tcl" , l)

if (length (children)) # r e c u r s e
for (i in children) insertChild (treeview , i , tree_path)

}
insertChild (treeview , root)

At this point, the GUI will allow us to explore the markup structure of the
XML file. We continue this example to show two things of general interest,
but that are really artificial for this example.

Drag and drop First, we show how we might introduce drag and drop
to rearrange the rows. We begin by defining two global variables that store
the row that is being dragged and a flag to indicate whether a drag event
is ongoing.

. selected_id <- "" # g l o b a l s

. dragging <- FALSE

438

20.4. Treeview widget

We provide callbacks for three events: a mouse click, mouse motion, and
mouse release. This first callback sets the selected row on a mouse click.

tkbind (treeview , "<Button-1>" , function (W , x , y) {
. selected_id <<- as . character (tcl (W , "identify" ,"row" , x , y))

})

The motion callback configures the cursor to indicate a drag event and
sets the dragging flag. We might also put in code to highlight any drop
areas.

tkbind (treeview , "<B1-Motion>" , function (W , x , y , X , Y) {
tkconfigure (W , cursor = "diamond_cross")
. dragging <<-TRUE

})

When the mouse button is released we check that the widget we are
over is indeed the tree widget. If so, we then move the rows. We can’t
move a parent to be a child of its own children, so we wrap the ttktreeview
move subcommand within try. The move command places the new value
as the first child of the item it is being dropped on. If a different action is
desired, the "0" below would need to be modified.

tkbind (treeview , "<ButtonRelease -1>" , function (W , x , y , X , Y) {
if (. dragging && . selected_id != "") {

w <- tkwinfo ("containing" , X , Y)
if (as . character (w) == as . character (W)) {

dropID <- as . character (tcl (W , "identify" ,"row" , x , y))
try (tkmove (W , . selected_id , dropID , "0") , silent = TRUE)

}
}
. dragging <<- FALSE ; . selected_id <<- "" # r e s e t

})

Walking the tree Our last item of general interest is a function that shows
one way to walk the structure of the treeview widget to generate a list
representing the structure of the data. A potential use of this might be
to allow a user to rearrange an XML document through drag and drop.
The subcommand ttktreeview children proves useful here, as it is used to
identify the hierarchical structure. When there are children a recursive call
is made.

tree_to_list <- function (treeview) {
l <- list ()
walk_tree <- function (child , l) {

l$name <- tclvalue (tcl (treeview , "item" , child , "-text"))
l$value <- as . character (tcl (treeview , "item" , child ,

"-values"))

439

20. Tcl/Tk: Text, Tree, and Canvas Widgets

children <- as . character (tcl (treeview , "children" , child))
if (length (children)) {

l$children <- list ()
for (i in children)

l$children [[i]] <- walk_tree (i , list ()) # r e c u r s e
}
return (l)

}
walk_tree ("" , l)

}

20.5 Canvas widget

The canvas widget provides an area to display lines, shapes, images, and
widgets. The canvas widget is quite complicated, and we content ourselves
to describing a subset of its possibilities. For an excellent example of how
it can be used to provide a useful GUI for R see the RnavGraph package
by Waddell and Oldford.

As described on its manual page, the canvas widget implements struc-
tured graphics, displaying any number of items or objects of various types.
Methods exist to create, move, and delete these objects, allowing the canvas
widget to be the basis for creating interactive GUIs. The constructor tkcan-
vas for the widget, being a non-themeable widget, has many arguments,
including these standard ones: width, height, background, xscrollcom-
mand, and yscrollcommand.

The create command The subcommand tkcanvas create type [options] is
used to add new items to the canvas. The options vary with the type of
item. The basic shape types that we can add are "line", "arc", "polygon",
"rectangle", and "oval". Their options specify the size using x and y
coordinates. Other options allow us to specify colors, etc. The complete list
is covered in the canvas manual page, which we refer the reader to, as the
description is lengthy. In the examples, we show how to use the "line"
type to display a graph and how to use the "oval" type to add a point to
a canvas. Additionally, we can add text items through the "text" type. The
first options are the x and y coordinates, and the text option specifies the
text. Other standard text options are possible (e.g., font, justify, anchor).

The type can also be an image object or a widget (a window ob-
ject). Images are added by specifying an x and y position, possibly an
anchor position, a value for the "image" option, and, optionally, for state-
dependent display, specifying "activeimage" and "disabledimage" values.
The "state" option is used to specify the current state. Window objects
are added similarly in terms of their positioning, along with options for

440

20.5. Canvas widget

"width" and "height". The window itself is added through the "window"
option. An example shows how to add a frame widget.

Items and tags The tkcanvas.create function returns an item ID. This
can be used to refer to the item at a later stage. Optionally, tags can be used
to group items into common groups. The "tags" option can be used with
tkcreate when the item is created, or the tkcanvas addtag subcommand can
be used. The call tkaddtag(canvas, tagName, "withtag", item) would
add the tag “tagName”to the item returned by tkcreate. (The "withtag"
is one of several search specifications.) As well, if we are adding a tag
through a mouse click, the call tkaddtag(W, tagName, "closest", x, y)
could be used with W, x and y coming from percent substitutions. Tags can
be deleted through the tkcanvas dtag tag subcommand.

There are several subcommands that can be called on items as speci-
fied by a tag or item ID. For example, the tkcanvas itemcget and tkcanvas
itemconfigure subcommands allow us to get and set options for a given
item. The tkcanvas delete tag_or_ID subcommand can be used to delete an
item. Items can be moved and scaled but not rotated. The tkcanvas move
tag_or_ID x y subcommand implements incremental moves (where x and y
specify the horizontal and vertical shift in pixels). The subcommand tkcan-
vas coords tag_or_ID [coordinates] allows us to respecify the coordinates for
the item. The tkcanvas scale command is used to rescale items. Except for
window objects, an item can be raised to be on top of the others through
the tkcanvas raise item_or_ID subcommand.

Bindings As usual, bindings can be specified overall for the canvas
through tkbind. However, bindings can also be set on specific items
through the subcommand tkcanvas bind tag_or_ID event function (or with
tkitembind). This allows bindings to be placed on items sharing a tag
name, without having the binding on all items. Only mouse, keyboard, or
virtual events can have such bindings.

Example 20.7: Using a canvas to make a scrollable frame
This example6 shows how to use a canvas widget to create a box container
that scrolls when more items are added than will fit in the display area.
The basic idea is that a frame is added to the canvas equipped with scroll
bars using the tkcanvas create window subcommand.

There are two bindings to the <Configure> event. The first updates
the scroll region of the canvas widget to include the entire canvas, which
grows as items are added to the frame. The second binding ensures the

6This example is modified from an example found at http://mail.python.org/
pipermail/python-list/1999-June/005180.html

441

20. Tcl/Tk: Text, Tree, and Canvas Widgets

child window is the appropriate width when the canvas widget resizes.
The height is not adjusted, as this is controlled by the scrolling.

scrollable_frame <- function (parent , width=300 , height=300) {
canvas_widget <-

tkcanvas (parent ,
borderwidth = 0 , highlightthickness = 0 ,
width = width , height = height)

addScrollbars (parent , canvas_widget)
#
frame <- ttkframe (canvas_widget , padding = c (0 , 0 , 0 , 0))
frame_id <- tkcreate (canvas_widget , "window" , 0 , 0 ,

anchor = "nw" , window = frame)
tkitemconfigure (canvas_widget , frame_id , width = width)
u pd a t e s c r o l l r e g i o n
tkbind (frame , "<Configure >" , function () {

bbox <- tcl (canvas_widget , "bbox" , "all")
tcl (canvas_widget , "config" , scrollregion = bbox)

})
a d j u s t "window" width when canvas i s r e s i z e d .
tkbind (canvas_widget , "<Configure >" , function (W) {

width <- as . numeric (tkwinfo ("width" , W))
frame_width <- as . numeric (tkwinfo ("width" , frame))
if (frame_width < width)

tkitemconfigure (canvas_widget , frame_id , width = width)
})
return (frame)

}

To use this, we create a simple GUI as follows:

window <- tktoplevel ()
tkwm . title (window , "Scrollable frame example")
frame <- ttkframe (window)
tkpack (frame , expand = TRUE , fill = "both")
scroll_frame <- scrollable_frame (frame , 300 , 300)

To display a collection of available fonts requires a widget or container
that could possibly show hundreds of similar values. The scrollable frame
serves this purpose well (cf. Figure 17.3). The following shows how a label
can be added to the frame whose font is the same as the label text. The
available fonts are returned by tkfont.families.

font_families <- as . character (tkfont . families ())
s k i p odd named one s
font_families <- font_families [grepl ("^[[:alpha:]]" ,

font_families)]
for (i in seq_along (font_families)) {

font_name <- sprintf ("::font::-%s" , i)

442

20.5. Canvas widget

Figure 20.5: Example of embedding sparklines in a display organized
using tkgrid. A tkcanvas widget is used to display the graph.

try (tkfont . create (font_name , family = font_families [i] ,
size = 1 4) ,

silent = TRUE)
l <- ttklabel (scroll_frame , text = font_families [i] ,

font = font_name)
tkpack (l , side = "top" , anchor = "w")

}

Example 20.8: Using canvas objects to show sparklines
Edward Tufte, in his book Beautiful Evidence[11], advocates for the use of
sparklines – small, intense, simple datawords – to show substantial amounts
of data in a limited visual space. This example shows how to use a tkcan-
vas object to display a sparkline graph using a line object. 7 The example
also uses tkgrid to lay out the information in a table. We could have spent
more time on the formatting of the numeric values and factoring out the
data download but leave such improvements as an exercise.

This function simply shortens our call to ttklabel. We use the global
frame (a ttkframe) as the parent.

mL <- function (label) { # s a v e some t y p i n g
if (is . numeric (label))

label <- sprintf ("%.2f" , label)
ttklabel (frame , text = label , justify = "right")

}

We begin by making the table header along with a top rule.

tkgrid (mL ("") , mL ("2000-01-01") , mL ("-- until --") ,
mL ("today") , mL ("low") , mL ("high"))

tkgrid (ttkseparator (frame) , row=1 , column = 1 , columnspan = 5 ,
sticky = "we")

This function adds a sparkline to the table. A sparkline here is just a
line item, but there is some work to do, in order to scale the values

7The sparkTable package creates sparklines for documents and web pages.

[11] Edward R. Tufte. Beautiful Evidence. Graphics Press, 2006.

443

20. Tcl/Tk: Text, Tree, and Canvas Widgets

to fit the allocated space. This example uses stock market values, as we
can conveniently employ the get.hist.quote function from the tseries
package to get interesting data.

add_sparkline <- function (label , symbol = "MSFT") {
width <- 1 0 0 ; height = 15 # f i x width , h e i g h t
y <- get . hist . quote (instrument=symbol , start = "2000-01-01" ,

quote = "C" , provider = "yahoo" ,
retclass = "zoo") $Close

min <- min (y) ; max <- max (y)
##
start <- y [1] ; end <- tail (y , n = 1)
rng <- range (y)
##
spark_line_canvas <- tkcanvas (frame ,

width=width , height = height)
x <- 0 : (length (y)−1) * width/length (y)
if (diff (rng) != 0) {

y1 <- (y − rng [1]) /diff (rng) * height
y1 <- height − y1 # a d j u s t t o canvas c o o r d i n a t e s

} else {
y1 <- height/2 + 0 * y

}
make l i n e with : pathName c r e a t e l i n e x1 y1 . . . xn yn
l <- list (spark_line_canvas , "create" ,"line")
sapply (seq_along (x) , function (i) {

l [[2 *i + 2]] <<- x [i]
l [[2 *i + 3]] <<- y1 [i]

})
do . call ("tcl" , l)

tkgrid (mL (label) , mL (start) , spark_line_canvas ,
mL (end) , mL (min) , mL (max) , pady = 2 , sticky = "e")

}

We can then add some rows to the table as follows:

add_sparkline ("Microsoft" , "MSFT")
add_sparkline ("General Electric" , "GE")
add_sparkline ("Starbucks" , "SBUX")

Example 20.9: Capturing mouse movements
This example is a stripped-down version of the tkcanvas.R demo that
accompanies the tcltk package. That example shows a scatterplot with
regression line. The user can move the points around and see the effect
this has on the scatterplot. Here we focus on the moving of an object on a
canvas widget. We assume we have such a widget in the variable canvas.

444

20.5. Canvas widget

This following adds a single point to the canvas using an oval object.
We add the "point" tag to this item, for later use. Clearly, this code could
be modified to add more points.

x <- 2 0 0 ; y <- 1 5 0 ; r <- 6
item <- tkcreate (canvas , "oval" , x − r , y − r , x + r , y + r ,

width = 1 , outline = "black" ,
fill = "blue")

tkaddtag (canvas , "point" , "withtag" , item)

In order to indicate to the user that a point is active, in some sense, the
following changes the fill color of the point when the mouse hovers over.
We add this binding using tkitembind so that is will apply to all point
items and only the point items.

tkitembind (canvas , "point" , "<Any-Enter>" , function ()
tkitemconfigure (canvas , "current" , fill = "red"))

tkitembind (canvas , "point" , "<Any-Leave>" , function ()
tkitemconfigure (canvas , "current" , fill = "blue"))

There are two key bindings needed for movement of an object. First,
we tag the point item that gets selected when a mouse clicks on a point
and update the last position of the currently selected point.

last_pos <- numeric (2) # g l o b a l t o t r a c k p o s i t i o n
tag_selected <- function (W , x , y) {

tkaddtag (W , "selected" , "withtag" , "current")
tkitemraise (W , "current")
last_pos <<- as . numeric (c (x , y))

}
tkitembind (canvas , "point" , "<Button-1>" , tag_selected)

When the mouse moves, we use tkmove to have the currently selected
point move too. As tkmove is parameterized by differences, we track the
differences between the last position recorded and the current position.

move_selected <- function (W , x , y) {
pos <- as . numeric (c (x , y))
tkmove (W , "selected" , pos [1] − last_pos [1] ,

pos [2] − last_pos [2])
last_pos <<- pos

}
tkbind (canvas , "<B1-Motion>" , move_selected)

A further binding, for the <ButtonRelease-1> event, would be added to
do something after the point is released. In the original example, the old
regression line is deleted, and a new one drawn. Here we simply delete
the "selected" tag.

tkbind (canvas , "<ButtonRelease -1>" ,
function (W) tkdtag (W , "selected"))

445

This page intentionally left blankThis page intentionally left blank

Programming Graphical
User Interfaces in R

P
rogram

m
ing G

raphical
U

ser Interfaces in R

Programming Graphical
User Interfaces in R

Michael F. Lawrence
John Verzani

Law
rence •

 Verzani

K12672

Programming Graphical User Interfaces in R introduces each of
the major R packages for GUI programming: RGtk2, qtbase, Tcl/
Tk, and gWidgets. With examples woven through the text as well
as stand-alone demonstrations of simple yet reasonably complete
applications, the book features topics especially relevant to
statisticians who aim to provide a practical interface to functionality
implemented in R. The book offers:

• A how-to guide for developing GUIs within R
• The fundamentals for users with limited knowledge of

programming within R and other languages
• GUI design for specific functions or as learning tools

The accompanying package, ProgGUIinR, includes the complete
code for all examples as well as functions for browsing the examples
from the respective chapters and is available through CRAN.
Accessible to seasoned, novice, and occasional R users, this book
shows that for many purposes, adding a graphical interface to one’s
work is not terribly sophisticated or time consuming.

Statistics The R Series

K12672_Cover_final.indd 1 5/2/12 11:16 AM

	Front Cover
	Contents
	Preface
	1. The Fundamentals of Graphical User Interfaces
	I The gWidgets Package
	2. gWidgets: Overview
	3. gWidgets: Container Widgets
	4. gWidgets: Control Widgets
	5. gWidgets: R-specific Widgets

	II The RGtk2 Package
	6. RGtk2: Overview
	7. RGtk2: Windows, Containers, and Dialogs
	8. RGtk2: Basic Components
	9. RGtk2: Widgets Using Data Models
	10. RGtk2: Application Windows
	11. Extending GObject Classes

	III The qtbase Package
	12. Qt: Overview
	13. Qt: Layout Managers and Containers
	14. Qt: Widgets
	15. Qt: Widgets Using Data Models
	16. Qt: Application Windows

	IV The tcltk Package
	17. Tcl/Tk: Overview
	18. Tcl/Tk: Layout and Containers
	19. Tcl/Tk: Dialogs and Widgets
	20. Tcl/Tk: Text, Tree, and Canvas Widgets

