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A data graphic is not only a static image, but it also tells a story about 
the data. It activates cognitive processes that are able to detect 
patterns and discover information not readily available with the raw 
data. This is particularly true for time series, spatial, and space-time 
datasets.

Focusing on the exploration of data with visual methods, Displaying 
Time Series, Spatial, and Space-Time Data with R presents 
methods and R code for producing high-quality graphics of time 
series, spatial, and space-time data. Practical examples using real-
world datasets help you understand how to apply the methods and 
code.

The book illustrates how to display a dataset starting with an easy and 
direct approach and progressively adding improvements that involve 
more complexity. Each of the book’s three parts is devoted to different 
types of data. In each part, the chapters are grouped according to 
the various visualization methods or data characteristics. 

Features
• Offers detailed information on producing high-quality graphics
• Uses real data from meteorological, climate, economic, 

social science, energy, engineering, environmental, and 
epidemiological research in many practical examples

• Shows how to improve graphics based on visualization theory
• Provides the graphics, data, and R code on the author’s 

website, enabling you to practice with the methods and modify 
the code to suit your own needs.
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Chapter 1

Introduction

1.1 What This Book Is About

A data graphic is not only a static image but also tells a story about the
data. It activates cognitive processes that are able to detect patterns and
discover information not readily available with the raw data. This is par-
ticularly true for time series, spatial, and space-time datasets.

There are several excellent books about data graphics and visual per-
ception theory, with guidelines and advice for displaying information,
including visual examples. Let’s mention The Elements of Graphical Data
(Cleveland 1994) and Visualizing Data (Cleveland 1993) by W. S. Cleveland,
Envisioning Information (Tufte 1990) and The Visual Display of Quantitative
Information (Tufte 2001) by E. Tufte, The Functional Art by A. Cairo (Cairo
2012), and Visual Thinking for Design by C. Ware (Ware 2008). Ordinarily,
they do not include the code or software tools to produce those graphics.

On the other hand, there is a collection of books that provides code
and detailed information about the graphical tools available with R. Com-
monly they do not use real data in the examples and do not provide advice
for improving graphics according to visualization theory. Three books are
the unquestioned representatives of this group: R Graphics by P. Murrell
(Murrell 2011), Lattice: Multivariate Data Visualization with R by D. Sarkar
(Sarkar 2008), and ggplot2: Elegant Graphics for Data Analysis by H. Wick-
ham (Wickham 2009).
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1 INTRODUCTION

This book proposes methods to display time series, spatial, and space-
time data using R, and aims to be a synthesis of both groups providing
code and detailed information to produce high-quality graphics with prac-
tical examples.

1.2 What You Will Not Find in This Book

• This is not a book to learn R.

Readers should have a fair knowledge of programming with R to
understand the book. In addition, previous experience with the zoo,
sp, raster, lattice, ggplot2, and grid packages is helpful.

If you need to improve your R skills, consider these information
sources:

– Introduction to R1

– Official manuals2

– Contributed documents3

– Mailing lists4

– R-bloggers5

– Books related to R6, and particularly Software for Data Analysis
by John M. Chambers (Chambers 2008).

• This book does not provide an exhaustive collection of visualiza-
tion methods.

Instead, it illustrates what I found to be the most useful and effec-
tive methods. Notwithstanding, each part includes a section titled
“Further Reading” with bibliographic proposals for additional in-
formation.

• This book does not include a complete review or discussion of R
packages.

1http://cran.r-project.org/doc/manuals/R-intro.html
2http://cran.r-project.org/manuals.html
3http://cran.r-project.org/other-docs.html
4http://www.r-project.org/mail.html
5http://www.r-bloggers.com
6http://www.r-project.org/doc/bib/R-books.html
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1.3 How to Read This Book

Their most useful functions, classes, and methods regarding data
and graphics are outlined in the introductory chapter of each part,
and conveniently illustrated with the help of examples. However,
if you need detailed information about a certain aspect of a pack-
age, you should read the correspondent package manual or vignette.
Moreover, if you want to know additional alternatives, you can navi-
gate through the CRAN Task Views about Time Series7, Spatial Data8,
Spatiotemporal Data9, and Graphics10.

• Finally, this book is not a handbook of data analysis, geostatistics,
point pattern analysis, or time series theory.

Instead, this book is focused on the exploration of data with visual
methods, so it may be framed in the Exploratory Data Analysis ap-
proach. Therefore, this book may be a useful complement for superb
bibliographic references where you will find plenty of information
about those subjects. For example, (Chatfield 2003), (Cressie and
Wikle 2011), (Slocum 2005) and (R. S. Bivand, E. J. Pebesma, and
Gomez-Rubio 2008).

1.3 How to Read This Book

This book is organized into three parts, each devoted to different types of
data. Each part comprises several chapters according to the various vi-
sualization methods or data characteristics. The chapters are structured as
independent units so readers can jump directly to a certain chapter accord-
ing to their needs. Of course, there are several dependencies and redun-
dancies between the sets of chapters that have been conveniently signaled
with cross-references.

The content of each chapter illustrates how to display a dataset starting
with an easy and direct approach. Often this first result is not entirely sat-
isfactory so additional improvements are progressively added. Each step
involves additional complexity which, in some cases, can be overwhelm-
ing during a first reading. Thus, some sections, marked with the sign b,
can be safely skipped for later reading.

Although I have done my best to help readers understand the methods
and code, you should not expect to understand it after one reading. The

7http://cran.r-project.org/web/views/TimeSeries.html
8http://cran.r-project.org/web/views/Spatial.html
9http://cran.r-project.org/web/views/SpatioTemporal.html

10http://cran.r-project.org/web/views/Graphics.html
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1 INTRODUCTION

key is practical experience, and the best way is to try out the code with the
provided data and modify it to suit your needs with your own data. There
is a website and a code repository to help you in this task.

1.3.1 Website and Code Repository

The book website with the main graphics of this book is located at

http://oscarperpinan.github.com/spacetime-vis/

The full code is freely available from the repository:

https://github.com/oscarperpinan/spacetime-vis

On the other hand, the datasets used in the examples are either avail-
able at the repository or can be freely obtained from other websites. It
must be underlined that the combination of code and data freely available
allows this book to be fully reproducible.

I have chosen the datasets according to two main criteria:

1. They are freely available without restrictions for public use.

2. They cover different scientific and professional fields (meteorology
and climate research, economy and social sciences, energy and engi-
neering, environmental research, epidemiology, etc.).

The repository and the website can be downloaded as compressed files11,
and if you use git, you can clone the repository with

git clone https://github.com/oscarperpinan/spacetime-vis.git

1.4 R Graphics

There are two distinct graphics systems built into R, referred to as tradi-
tional and grid graphics. Grid graphics are produced with the grid pack-
age (Murrell 2011), a flexible low-level graphics toolbox. Compared with
the traditional graphics model, it provides more flexibility to modify or

11Repository: https://github.com/oscarperpinan/spacetime-vis/archive/master.
zip, Website: https://github.com/oscarperpinan/spacetime-vis/archive/gh-pages.
zip
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1.4 R Graphics

add content to an existent graphical output, better support for combin-
ing different outputs easily, and more possibilities for interaction. All the
graphics in this book have been produced with the grid graphics model.

Other packages are constructed over it to provide high-level functions,
most notably the lattice and ggplot2 packages.

1.4.1 lattice

The lattice package (Sarkar 2008) is an independent implementation of
Trellis graphics, which were mostly influenced by The Elements of Graphing
Data (Cleveland 1994). Trellis graphics often consist of a rectangular array
of panels. The lattice package uses a formula interface to define the struc-
ture of the array of panels with the specification of the variables involved
in the plot. The result of a lattice high-level function is a trellis object.

For bivariate graphics, the formula is generally of the form y ~ x repre-
senting a single panel plot with y versus x. This formula can also involve
expressions. The main function for bivariate graphics is xyplot.

Optionally, the formula may be y ~ x | g1 * g2 and y is represented
against x conditional on the variables g1 and g2. Each unique combination
of the levels of these conditioning variables determines a subset of the
variables x and y. Each subset provides the data for a single panel in the
Trellis display, an array of panels laid out in columns, rows, and pages.

For example, in the following code, the variable wt of the dataset mt-
cars is represented against the mpg, with a panel for each level of the cat-
egorical variable am. The points are grouped by the values of the cyl vari-
able.

xyplot(wt ~ mpg | am, data = mtcars, groups = cyl)

For trivariate graphics, the formula is of the form z ~x *y, where z
is a numeric response, and x and y are numeric values evaluated on a
rectangular grid. Once again, the formula may include conditioning vari-
ables, for example z ~x *y | g1 *g2. The main function for these graphics
is levelplot.

The plotting of each panel is performed by the panel function, specified
in a high-level function call as the panel argument. Each high-level lat-
tice function has a default panel function, although the user can create
new Trellis displays with custom panel functions.

lattice is a member of the recommended packages list so it is com-
monly distributed with R itself. There are more than 250 packages de-
pending on it, and the most important packages for our purposes (zoo, sp,
and raster) define methods to display their classes using lattice.

5



1 INTRODUCTION

On the other hand, the latticeExtra package (Sarkar and Andrews
2012) provides additional flexibility for the somewhat rigid structure of the
Trellis framework implemented in lattice. This package complements
the lattice with the implementation of layers via the layer function, and
superposition of trellis objects and layers with the +.trellis function.
Using both packages, you can define a graphic with the formula interface
(under the lattice model) and overlay additional content as layers (fol-
lowing the ggplot2 model).

1.4.2 ggplot2

The ggplot2 package (Wickham 2009) is an implementation of the system
proposed in The Grammar of Graphics (Wilkinson 1999), a general scheme
for data visualization that breaks up graphs into semantic components
such as scales and layers. Under this framework, the definition of the
graphic with ggplot2 is done with a combination of several functions that
provides the components, instead of the formula interface of lattice.

With ggplot2, a graphic is composed of

• A dataset, data, and a set of mappings from variables to aesthetics,
aes.

• One or more layers, each composed of: a geometric object, geom_*,
to control the type of plot you create (points, lines, etc.); a statistical
transformation, stat_*; and a position adjustment (and optionally,
additional dataset and aesthetic mappings).

• A scale, scale_*, to control the mapping from data to aesthetic at-
tributes. Scales are common across layers to ensure a consistent map-
ping from data to aesthetics.

• A coordinate system, coords_*.

• Optionally, a faceting specification, facet_*, the equivalent of Trellis
graphics with panels.

The function ggplot is typically used to construct a plot incrementally,
using the + operator to add layers to the existing ggplot object. For in-
stance, the following code (equivalent to the previous lattice example)
uses mtcars as the dataset, and maps the mpg variable on the x-axis and
the wt variable on the y-axis. The geometric object is the point using the
cyl variable to control the color. Finally, the levels of the am variable define
the panels of the graphic.

6



1.5 Packages

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour=factor(cyl))) +
facet_grid(. ~ am)

This package is increasingly popular, with a list of more than ninety
packages depending on it. On the other hand, few packages provide
method definitions based on ggplot2 to display their classes. In our con-
text, only the zoo package defines the autoplot function based on it.

1.4.3 Comparison between lattice and ggplot2

Which package to choose is, for a wide range of datasets, a question of per-
sonal preferences. You may be interested in a comparison between them
published in a series of blog posts12. However, the major drawback of gg-
plot2 is its considerably slower speed when dealing with large datasets13,
so you should be cautious with large spatial and spatiotemporal data.

Consequently, most of the code in Part I contains alternatives defined
both with lattice and with ggplot2. However, because of the speed
problem and the absence of ggplot2 functions in the corresponding pack-
ages, only a minor fraction of the code in Parts II and III contains graphics
defined with ggplot2.

1.5 Packages

Throughout the book, several R packages are used. All of them are avail-
able from CRAN, and you must install them before using the code. Most of
them are loaded at the start of the code of each chapter, although some
of them are loaded later if they are used only inside optional sections
(marked with b). You should install the last version available at CRAN
to ensure correct functioning of the code.

Although the introductory chapter of each part includes a section with
an outline of the most relevant packages, some of them deserve to be high-
lighted here:

• zoo (Zeileis and Grothendieck 2005) provides infrastructure for time
series using arbitrary classes for the time stamps (Section 2.1.1).

12http://learnr.wordpress.com/2009/06/28/ggplot2-version-of-figures-in-lattice-
multivariate-data-visualization-with-r-part-1/

13Take a look at the time comparison published as the final result of the previous series of
blog posts, http://learnr.files.wordpress.com/2009/08/latbook.pdf
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1 INTRODUCTION

• sp (E. Pebesma 2012) provides a coherent set of classes and meth-
ods for the major spatial data types: points, lines, polygons, and
grids (Section 7.1.1). spacetime (E. Pebesma 2012) defines classes
and methods for spatiotemporal data, and methods for plotting data
as map sequences or multiple time series (Section 11.1.1).

• raster (R. J. Hijmans 2013) is a major extension of gridded spa-
tial data classes. It provides a unified access method to different
raster formats, permitting large objects to be analyzed with the def-
inition of basic and high-level processing functions (Sections 7.1.2
and 11.1.2). rasterVis (Oscar Perpiñán and R. Hijmans 2013) pro-
vides enhanced visualization of raster data with methods for spa-
tiotemporal rasters (Sections 7.1.3 and 11.1.3).

• gridSVG (Murrell and Potter 2013) converts any grid scene to an SVG
document. The grid.hyperlink function allows a hyperlink to be as-
sociated with any component of the scene, the grid.animate function
can be used to animate any component of a scene, and the grid.
garnish function can be used to add SVG attributes to the compo-
nents of a scene. By setting event handler attributes on a component,
plus possibly using the grid.script function to add JavaScript to the
scene, it is possible to make the component respond to user input
such as mouse clicks.

1.6 Software Used to Write This Book

This book has been written using different computers running Debian
GNU Linux and using several gems of open-source software:

• org-mode for authoring text and code (Schulte et al. 2012).

• R (R Development Core Team 2013) with Emacs Speaks Statistics
(Rossini et al. 2004).

• LATEX with AUCTEX to produce the final document.

• GNU Emacs as development environment.
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1.7 About the Author

1.7 About the Author

During the past 15 years, my main area of expertise has been photovoltaic
solar energy systems, with a special interest in solar radiation.

Initially I worked as an engineer for a private company and I was in-
volved in several commercial and research projects. The project teams
were partly integrated by people with low technical skills who relied on
the input from engineers to complete their work. I learned how a good
visualization output eased the communication process.

Now I work as a professor and researcher at the university. Data visu-
alization is one of the most important tools I have available. It helps me
embrace and share the steps, methods, and results of my research. With
students, it is an inestimable partner in helping them understand complex
concepts.

I have been using R to simulate the performance of photovoltaic en-
ergy systems and to analyze solar radiation data, both as time series and
spatial data. As a result, I have developed packages that include several
graphical methods to deal with multivariate time series (namely, solaR
(Oscar Perpiñán 2012)) and space-time data (rasterVis).

1.8 Acknowledgments

Writing a book is often described as a solitary activity. It is certainly diffi-
cult to write when you are with friends or spending time with your fam-
ily,... although with three little children at home I have learned to write
prose and code while my baby wants to learn typing and my daughters
need help to share a family of dinosaurs.

Seriously speaking, solitude is the best partner of a writer. But when I
am writing or coding I feel I am immersed in a huge collaborative network
of past and present contributors. Piotr Kropotkin described it with the
following words (Kropotkin 1906):

Thousands of writers, of poets, of scholars, have laboured to
increase knowledge, to dissipate error, and to create that at-
mosphere of scientific thought, without which the marvels of
our century could never have appeared. And these thousands
of philosophers, of poets, of scholars, of inventors, have them-
selves been supported by the labour of past centuries. They
have been upheld and nourished through life, both physically
and mentally, by legions of workers and craftsmen of all sorts.
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1 INTRODUCTION

And Lewis Mumford claimed (Mumford 1934):

Socialize Creation! What we need is the realization that the cre-
ative life, in all its manifestations, is necessarily a social prod-
uct.

I want to express my deepest gratitude and respect to all those women
and men who have contributed and contribute to strengthening the com-
munities of free software, open data, and open science. My special thanks
go to the people of the R community: users, members of the R Core Devel-
opment Team, and package developers.

With regard to this book in particular, I would like to thank John Kim-
mel for his constant support, guidance, and patience.

Last, and most importantly, thanks to Candela, Marina, and Javi, my
crazy little shorties, my permanent source of happiness, imagination, and
love. Thanks to María, mi amor, mi cómplice y todo.
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Time Series
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Chapter 2

Displaying Time Series:
Introduction

A time series is a sequence of observations registered at consecutive time
instants. When these time instants are evenly spaced, the distance between
them is called the sampling interval. The visualization of time series is in-
tended to reveal changes of one or more quantitative variables through
time, and to display the relationships between the variables and their evo-
lution through time.

The standard time series graph displays the time along the horizon-
tal axis. Several variants of this approach can be found in Chapter 3. On
the other hand, time can be conceived as a grouping or conditioning vari-
able (Chapter 4). This solution allows several variables to be displayed
together with a scatterplot, using different panels for subsets of the data
(time as a conditioning variable) or using different attributes for groups of
the data (time as a grouping variable). Moreover, time can be used as a
complementary variable that adds information to a graph where several
variables are confronted (Chapter 5).

These chapters provide a variety of examples to illustrate a set of useful
techniques. These examples make use of several datasets (available at the
book website) described in Chapter 6.
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2 DISPLAYING TIME SERIES: INTRODUCTION

2.1 Packages

The CRAN Tasks View “Time Series Analysis” 1 summarizes the packages
for reading, vizualizing, and analyzing time series. This section provides
a brief introduction to the zoo and xts packages. Most of the information
has been extracted from their vignettes, webpages, and help pages. You
should read them for detailed information.

Both packages extensively use the time classes defined in R. The in-
terested reader will find an overview of the different time classes in R in
(Ripley and Hornik 2001) and (Grothendieck and Petzoldt 2004).

2.1.1 zoo

The zoo package (Zeileis and Grothendieck 2005) provides an S3 class with
methods for indexed totally ordered observations. Its key design goals are
independence of a particular index class and consistency with base R and
the ts class for regular time series.

Objects of class zoo are created by the function zoo from a numeric vec-
tor, matrix, or a factor that is totally ordered by some index vector. This
index is usually a measure of time but every other numeric, character, or
even more abstract vector that provides a total ordering of the observa-
tions is also suitable. It must be noted that this package defines two new
index classes, yearmon and yearqtr, for representing monthly and quar-
terly data, respectively.

The package defines several methods associated with standard generic
functions such as print, summary, str, head, tail, and [ (subsetting). In
addition, standard mathematical operations can be performed with zoo
objects, although only for the intersection of the indexes of the objects.

On the other hand, the data stored in zoo objects can be extracted with
coredata, which drops the index information, and can be replaced by
coredata<-. The index can be extracted with index or time, and can be
modified by index<-. Finally, the window and window<- methods extract
or replace time windows of zoo objects.

Two zoo objects can be merged by common indexes with merge and
cbind. The merge method combines the columns of several objects along
the union or the intersection of the indexes. The rbind method combines
the indexes (rows) of the objects.

1http://CRAN.R-project.org/view=TimeSeries
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2.1 Packages

The aggregate method splits a zoo object into subsets along a coarser
index grid, computes a function (sum is the default) for each subset, and
returns the aggregated zoo object.

This package provides four methods for dealing with missing observa-
tions:

1. na.omit removes incomplete observations.

2. na.contiguous extracts the longest consecutive stretch of non-missing
values.

3. na.approx replaces missing values by linear interpolation.

4. na.locf replaces missing observations by the most recent non-NA
prior to it.

The package defines interfaces to read.table and write.table for
reading, read.zoo, and writing, write.zoo, zoo series from or to text files.
The read.zoo function expects either a text file or connection as input or a
data.frame. write.zoo first coerces its argument to a data.frame, adds a
column with the index, and then calls write.table.

2.1.2 xts

The xts package (Ryan and Ulrich 2013) extends the zoo class definition to
provide a general time-series object. The index of an xts object must be of
a time or date class: Date, POSIXct, chron, yearmon, yearqtr, or timeDate.
With this restriction, the subset operator [ is able to extract data using the
ISO:86012 time format notation CCYY-MM-DD HH:MM:SS. It is also possible
to extract a range of times with a from/to notation, where both from and
to are optional. If either side is missing, it is interpreted as a request to
retrieve data from the beginning, or through the end of the data object.

Furthermore, this package provides several time-based tools:

• endpoints identifies the endpoints with respect to time.

• to.period changes the periodicity to a coarser time index.

• The functions period.* and apply.* evaluate a function over a set of
non-overlapping time periods.

2http://en.wikipedia.org/wiki/ISO_8601

15



2 DISPLAYING TIME SERIES: INTRODUCTION

2.2 Further Reading

• (Wills 2011) provides a systematic analysis of the visualization of
time series, and a section of (Jeffrey Heer, Bostock, and Ogievetsky
2010) summarizes the main techniques to display time series.

• (Cleveland 1994) includes a section about time series visualization
with a detailed discussion of the banking to 45° technique and the
cut-and-stack method. (J. Heer and Agrawala 2006) propose the
multi-scale banking, a technique to identify trends at various fre-
quency scales.

• (Few 2008; J. Heer, Kong, and Agrawala 2009) explain in detail the
foundations of the horizon graph (Section 3).

• The small multiples concept (Sections 3.2 and 4.1) is illustrated in
(Tufte 2001; Tufte 1990).

• Stacked graphs are analyzed in (Byron and Wattenberg 2008), and
the ThemeRiver technique is explained in (Havre et al. 2002).

• (Cleveland 1994; Friendly and Denis 2005) study the scatterplot ma-
trices (Section 4.1), and (D. B. Carr et al. 1987) provide information
about hexagonal binning.

• (Harrower and Fabrikant 2008) discuss the use of animation for the
visualization of data. (Few 2007) exposes a software tool resembling
the Trendalyzer.

• The D3 gallery3 shows several great examples of time-series visual-
izations using the JavaScript library D3.js.

3https://github.com/mbostock/d3/wiki/Gallery
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Chapter 3

Time on the Horizontal Axis

The most frequent visualization method of a time series uses the horizon-
tal axis to depict the time index. This chapter illustrates several variants to
display multivariate time series: multiple time series with different scales,
variables with the same scale, and stacked graphs.

3.1 Time Graph of Different Meteorological Variables

There is a variety of scientific research interested in the relationship among
several meteorological variables. A suitable approach is to display the
time evolution of all of them using a panel for each of the variables. The
superposition of variables with different characteristics is not very useful
(unless their values were previously rescaled), so this option is postponed
for Section 3.2.

For this example we will use the 8 years of daily data from the SIAR
meteorological station located at Aranjuez (Madrid). This multivariate
time series can be displayed with the xyplot method of lattice for zoo
objects with a panel for each variable (Figure 3.1).

load(’data/aranjuez.RData’)
library(zoo)
## The layout argument arranges panels in rows
xyplot(aranjuez, layout=c(1, ncol(aranjuez)))
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3 TIME ON THE HORIZONTAL AXIS

FIGURE 3.1: Time plot of the collection of meteorological time series of the
Aranjuez station (lattice version).
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3.1 Time Graph of Different Meteorological Variables
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FIGURE 3.2: Time plot of the collection of meteorological time series of the
Aranjuez station (ggplot2 version).

The package ggplot2 provides the generic method autoplot to auto-
mate the display of certain classes with a simple command. The package
zoo provides an autoplot method for the zoo class with a result similar to
that obtained with xyplot (Figure 3.2).

autoplot(aranjuez) + facet_free()

3.1.1 bAnnotations to Enhance the Time Graph

These first attempts can be improved with a custom panel function that
generates the content of each panel using the information processed by
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3 TIME ON THE HORIZONTAL AXIS

xyplot, or overlaying additional layers with autoplot. One of the main
enhancements is to highlight certain time regions that fulfill certain condi-
tions. The package latticeExtra provides a nice solution for xyplot with
panel.xblocks. The result is displayed in Figure 3.3:

• The label of each time series is displayed with text inside each panel
instead of using the strips mechanism. The panel.text prints the
name of each variable with the aid of panel.number.

• The alternating of years is displayed with blocks of gray and white
color using the panel.xblocks function from latticeExtra. The
year is extracted (as character) from the time index of the zoo object
with format.POSIXlt.

• Those values below the mean of each variable are highlighted with
short red color blocks at the bottom of each panel, again with the
panel.xblocks function.

• The maxima and minima are highlighted with small blue triangles.

Because the functions included in the panel function are executed con-
secutively, their order determines the superposition of graphical layers.

library(grid)
library(latticeExtra)

## Auxiliary function to extract the year value of a POSIXct time
## index
Year <- function(x)format(x, "%Y")

xyplot(aranjuez, layout=c(1, ncol(aranjuez)), strip=FALSE,
scales=list(y=list(cex=0.6, rot=0)),
panel=function(x, y, ...){
## Alternation of years
panel.xblocks(x, Year,

col = c("lightgray", "white"),
border = "darkgray")

## Values under the average highlighted with red regions
panel.xblocks(x, y<mean(y, na.rm=TRUE),

col = "indianred1",
height=unit(0.1, ’npc’))

## Time series

20



3.1 Time Graph of Different Meteorological Variables

panel.lines(x, y, col=’royalblue4’, lwd=0.5, ...)
## Label of each time series
panel.text(x[1], min(y, na.rm=TRUE),

names(aranjuez)[panel.number()],
cex=0.6, adj=c(0, 0), srt=90, ...)

## Triangles to point the maxima and minima
idxMax <- which.max(y)
panel.points(x[idxMax], y[idxMax],

col=’black’, fill=’lightblue’, pch=24)
idxMin <- which.min(y)
panel.points(x[idxMin], y[idxMin],

col=’black’, fill=’lightblue’, pch=25)
})

There is no equivalent panel.xblocks function that can be used with
ggplot2. Therefore, the ggplot2 version must explicitly compute the cor-
responding bands (years and regions below the average values):

• The first step in working with ggplot is to transform the zoo object
into a data.frame in long format. fortify returns a data.frame
with three columns: the time Index, a factor indicating the Series,
and the corresponding Value.

timeIdx <- index(aranjuez)

long <- fortify(aranjuez, melt=TRUE)

• The bands of values below the average can be easily extracted with
scale because these regions are negative when the data.frame is
centered.

## Values below mean are negative after being centered
scaled <- fortify(scale(aranjuez, scale=FALSE), melt=TRUE)
## The ’scaled’ column is the result of the centering.
## The new ’Value’ column store the original values.
scaled <- transform(scaled, scaled=Value, Value=long$Value)
underIdx <- which(scaled$scaled <= 0)
## ’under’ is the subset of values below the average
under <- scaled[underIdx,]

• The years bands are defined with the function endpoints from the
xts package:

21



3 TIME ON THE HORIZONTAL AXIS
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series of the Aranjuez station.
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3.1 Time Graph of Different Meteorological Variables

library(xts)
ep <- endpoints(timeIdx, on=’years’)
N <- length(ep[-1])
## ’tsp’ is start and ’tep’ is the end of each band
tep <- timeIdx[ep]
tsp <- timeIdx[ep[-(N+1)]+1]
## ’cols’ is a vector with the color of each band
cols <- rep_len(c(’gray’, ’white’), N)

• The minima and maxima points of each variable are extracted with
apply:

minIdx <- timeIdx[apply(aranjuez, 2, which.min)]
minVals <- apply(aranjuez, 2, min, na.rm=TRUE)
mins <- data.frame(Index=minIdx,

Value=minVals,
Series=names(aranjuez))

maxIdx <- timeIdx[apply(aranjuez, 2, which.max)]
maxVals <- apply(aranjuez, 2, max, na.rm=TRUE)
maxs <- data.frame(Index=maxIdx,

Value=maxVals,
Series=names(aranjuez))

• With ggplot we define the canvas, and the layers of information are
added successively:

ggplot(data=long, aes(Index, Value)) +
## Time series of each variable
geom_line(colour = "royalblue4", lwd = 0.5) +
## Year bands
annotate(geom=’rect’, ymin = -Inf, ymax = Inf,

xmin=tsp, xmax=tep,
fill = cols, alpha = 0.4) +

## Values below average
geom_rug(data=under,

sides=’b’, col=’indianred1’) +
## Minima
geom_point(data=mins, pch=25) +
## Maxima
geom_point(data=maxs, pch=24) +
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3 TIME ON THE HORIZONTAL AXIS

## Axis labels and theme definition
labs(x=’Time’, y=NULL) +
theme_bw() +
## Each series is displayed in a different panel with an
## independent y scale
facet_free()

Some messages from Figure 3.3:

• The radiation, temperature, and evotranspiration are quasi-periodic
and are almost synchronized between them. Their local maxima ap-
pear in the summer and the local minima in the winter. Obviously,
the summer values are higher than the average.

• The average humidity varies in oposition to the temperature and ra-
diation cycle, with local maxima located during winter.

• The average and maximum wind speed, and rainfall vary in a more
erratic way and do not show the evident periodic behavior of the
radiation and temperature.

• The rainfall is different from year to year. The remaining variables
do not show variations between years.

• The fluctuations of solar radiation are more apparent than the tem-
perature fluctuations. There is hardly any day with temperatures
below the average value during summer, while it is not difficult to
find days with radiation below the average during this season.

3.2 Time Series of Variables with the Same Scale

As an example of time series of variables with the same scale, we will use
measurements of solar radiation from different meteorological stations.

The first attempt to display this multivariate time series makes use of
the xyplot.zoo method. The objective of this graphic is to display the
behavior of the collection as a whole: the series are superposed in the same
panel (superpose=TRUE) without legend (auto.key=TRUE), using thin lines
and partial transparency1. Transparency softens overplotting problems
and reveals density clusters because regions with more overlapping lines
are darker. Figure 3.4 displays the variations around the time average
(avRad).

1A similar result can be obtained with autoplot using facets=NULL.
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3.2 Time Series of Variables with the Same Scale
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FIGURE 3.4: Time plot of the variations around time average of solar radi-
ation measurements from the meteorological stations of Navarra.

load(’data/navarra.RData’)

avRad <- zoo(rowMeans(navarra, na.rm=1), index(navarra))
pNavarra <- xyplot(navarra - avRad,

superpose=TRUE, auto.key=FALSE,
lwd=0.5, alpha=0.3, col=’midnightblue’)

pNavarra

This result can be improved with different methods: the cut-and-stack
method, the horizon graph with horizonplot, and dynamic labeling with
the gridSVG package.
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3 TIME ON THE HORIZONTAL AXIS

3.2.1 Aspect Ratio and Rate of Change

When a graphic is intended to inform about the rate of change, special at-
tention must be paid to the aspect ratio of the graph, defined as the ratio of
the height to the width of the graphical window. Cleveland analyzed the
importance of the aspect ratio for judging rate of change. He concluded
that we visually decode the information about the relative local rate of
change of one variable with another by comparing the orientations of the
local line segments that compose the polylines. The recommendation is to
choose the aspect ratio so that the absolute values of the orientations of the
segments are centered on 45° (banking to 45°).

The problem with banking to 45° is that the resulting aspect ratio is
frequently too small. A suitable solution to minimize wasted space is the
cut-and-stack method. The xyplot.ts method implement this solution
with the combination of the arguments aspect and cut. The version of
Figure 3.4 using banking to 45° and the cut-and-stack method is produced
with

xyplot(navarra - avRad,
aspect=’xy’, cut=list(n=3, overlap=0.1),
strip=FALSE,
superpose=TRUE, auto.key=FALSE,
lwd=0.5, alpha=0.3, col=’midnightblue’)

3.2.2 The Horizon Graph

The horizon graph is useful in examining how a large number of series
changes over time, and does so in a way that allows both comparisons
between the individual time series and and independent analysis of each
series. Moreover, extraordinary behaviors and predominant patterns are
easily distinguished (J. Heer, Kong, and Agrawala 2009; Few 2008).

This graph displays several stacked series collapsing the y-axis to free
vertical space:

• Positive and negative values share the same vertical space. Nega-
tive values are inverted and placed above the reference line. Sign is
encoded using different hues (positive values in blue and negative
values in red).

• Differences in magnitude are displayed as differences in color inten-
sity (darker colors for greater differences).
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3.2 Time Series of Variables with the Same Scale
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FIGURE 3.5: Cut-and-stack plot with banking to 45°.
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3 TIME ON THE HORIZONTAL AXIS

• The color bands share the same baseline and are superposed, with
darker bands in front of the ligther ones.

Because the panels share the same design structure, once this technique
is understood, it is easy to establish comparisons or spot extraordinary
events. This method is what Tufte described as small multiples (Tufte
1990).

Figure 3.6 displays the variations of solar radiation around the time
average with an horizon graph using a row for each time series.

library(latticeExtra)

horizonplot(navarra-avRad,
layout=c(1, ncol(navarra)),
origin=0, colorkey=TRUE)

Figure 3.6 allows several questions to be answered:

• Which stations consistently measure above and below the average?

• Which stations resemble more closely the average time series?

• Which stations show erratic and uniform behavior?

• In each of the stations, is there any day with extraordinary measure-
ments?

• Which part of the year is associated with more intense absolute fluc-
tuations across the set of stations?

3.2.3 Time Graph of the Differences between a Time Series and
a Reference

The horizon graph is also useful in revealing the differences between a
univariate time series and another reference. For example, we might be
interested in the departure of the observed temperature from the long-
term average, or in other words, the temperature change over time.

Let’s illustrate this approach with the time series of daily average tem-
peratures measured at the meteorological station of Aranjuez. The refer-
ence is the long-term daily average calculated with ave.

Ta <- aranjuez$TempAvg
timeIndex <- index(aranjuez)
longTa <- ave(Ta, format(timeIndex, ’%j’))
diffTa <- (Ta - longTa)
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FIGURE 3.7: Daily temperature time series, its long-term average and the
differences between them.

The temperature time series, the long-term average and the differences
between them can be displayed with the xyplotmethod, now using screens
to use a different panel for the differences time series (Figure 3.7)

xyplot(cbind(Ta, longTa, diffTa),
col=c(’darkgray’, ’red’, ’midnightblue’),
superpose=TRUE, auto.key=list(space=’right’),
screens=c(rep(’Average␣Temperature’, 2), ’Differences’))

The horizon graph is better suited for displaying the differences. The
next code again uses the cut-and-stack method (Figure 3.5) to distinguish
between years. Figure 3.8 shows that 2004 started clearly above the aver-
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FIGURE 3.8: Horizon graph displaying differences between a daily tem-
perature time series and its long-term average.

age while 2005 and 2009 did the contrary. Year 2007 was frequently below
the long-term average but 2011 was more similar to that reference.

years <- unique(format(timeIndex, ’%Y’))

horizonplot(diffTa, cut=list(n=8, overlap=0),
colorkey=TRUE, layout=c(1, 8),
scales=list(draw=FALSE, y=list(relation=’same’)),
origin=0, strip.left=FALSE) +

layer(grid.text(years[panel.number()], x = 0, y = 0.1,
gp=gpar(cex=0.8),
just = "left"))
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3 TIME ON THE HORIZONTAL AXIS

A different approach to display this information is to produce a level
plot displaying the time series using parts of its time index as independent
and conditioning variables2. The following code displays the differences
with the day of month on the horizontal axis and the year on the vertical
axis, with a different panel for each month number. Therefore, each cell of
Figure 3.9 corresponds to a certain day of the time series. If you compare
this figure with the horizon plot, you will find the same previous findings
but revealed now in more detail. On the other hand, while the horizon
plot of Figure 3.8 clearly displays the yearly evolution, the combination of
variables of the level plot focuses on the comparison between years in a
certain month.

year <- function(x)as.numeric(format(x, ’%Y’))
day <- function(x)as.numeric(format(x, ’%d’))
month <- function(x)as.numeric(format(x, ’%m’))

myTheme <- modifyList(custom.theme(region=brewer.pal(9, ’RdBu’)),
list(
strip.background=list(col=’gray’),
panel.background=list(col=’gray’)))

maxZ <- max(abs(diffTa))

levelplot(diffTa ~ day(timeIndex) * year(timeIndex) | factor(month(
timeIndex)),

at=pretty(c(-maxZ, maxZ), n=8),
colorkey=list(height=0.3),
layout=c(1, 12), strip=FALSE, strip.left=TRUE,
xlab=’Day’, ylab=’Month’,
par.settings=myTheme)

3.2.4 bInteraction with gridSVG

The gridSVG package provides functions to convert grid-based R graphics
to an SVG format. It provides several functions to add dynamic and inter-
active capabilities to R graphics. In this section we will use grid.script,
a function to add JavaScript code to a plot.

The first step is to specify which component of the scene will run the
JavaScript code. The grid.ls function returns a listing of the names of

2This approach was inspired by the strip function of the metvurst package (http:
//metvurst.blogspot.com.es/2012/11/plotting-large-amounts-of-atmospheric_4.
html).
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FIGURE 3.9: Level plot of differences between a daily temperature time
series and its long-term average.

grobs or viewports included in the graphic output: only the lines will be
connected with the JavaScript code.

library(gridSVG)
## grobs in the graphical output
pNavarra
grobs <- grid.ls(print=FALSE)
## only interested in some of them
nms <- grobs$name[grobs$type == "grobListing"]
idxNames <- grep(’lines’, nms)
IDs <- nms[idxNames]
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3 TIME ON THE HORIZONTAL AXIS

The second step is to modify each grob (graphical object) to add at-
tributes that specify when it will call JavaScript code. For each line identi-
fied with the elements of the IDs vector and associated to a meteorological
station, the navarra object is accessed to extract the annual mean value of
the daily radiation and the abbreviated name of the corresponding station
(info). The grid.garnish function adds attributes to the grob of each line
so that when the mouse moves over a grob, the line is highlighted and
colored in red (highlight). When the mouse hovers out of the grob, the
hide function sets back the default values of line width and transparency,
but uses the green color to denote that this line has been already visited.
In addition, because the browsers display the content of the title attribute
with a default tooltip, grid.garnish sets this attribute to info.

for (id in unique(IDs)){
## extract information from the data
## according to the ID value
i <- strsplit(id, ’\\.’)
i <- sapply(i, function(x)as.numeric(x[5]))
## Information to be attached to each line: annual mean of daily
## radiation and abbreviated name of the station
dat <- round(mean(navarra[,i], na.rm=TRUE), 2)
info <- paste(names(navarra)[i], paste(dat, collapse=’,’),

sep=’:␣’)
## attach SVG attributes
grid.garnish(id,

onmouseover="highlight(evt)",
onmouseout="hide(evt)",
title=info)

}

These JavaScript functions are included in a script file named high-
light.js (available at the website of the book). It can be added as an
additional object with grid.script.

grid.script(filename="highlight.js")

This script is easy to understand, even without previous JavaScript
knowledge:

highlight = function(evt){’,
evt.target.setAttribute(’opacity’, ’1’);
evt.target.setAttribute(’stroke’, ’red’);
evt.target.setAttribute(’stroke-width’, ’1’);

}
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hide = function(evt){
evt.target.setAttribute(’opacity’, ’0.3’);
evt.target.setAttribute(’stroke’, green’);
evt.target.setAttribute(’stroke-width’, ’0.3’);

}

Finally, gridToSVG exports the whole scene to SVG.

grid.export(’figs/navarraRadiation.svg’)

A snapshot of the result, as viewed in a browser with a line highlighted,
is shown in Figure 3.10. Open the SVG file with your browser, explore it
using the horizon graph (Figure 3.6) as a reference, and try to answer the
questions raised with that graphic.

3.3 Stacked Graphs

If the variables of a multivariate time series can be summed to produce
a meaningful global variable, they may be better displayed with stacked
graphs. For example, the information on unemployment in the United
States provides data of unemployed persons by industry and class of work-
ers, and can be summed to give a total unemployment time series.

load(’data/unemployUSA.RData’)

The time series of unemployment can be directly displayed with the
xyplot.zoo method (Figure 3.11).

xyplot(unemployUSA, superpose=TRUE, par.settings=custom.theme,
auto.key=list(space=’right’))

This graphical output is not very useful: the legend is confusing, with
too many items; the vertical scale is dominated by the largest series, with
several series buried in the lower part of the scale; the trend, variations
and structure of the total and individual contributions cannot be deduced
from this graph.

A suitable improvement is to display the multivariate time series as a
set of stacked colored polygons to follow the macro/micro principle pro-
posed by Tufte (Tufte 1990): Show a collection of individual time series
and also display their sum. A traditional stacked graph is easily obtained
with geom_area:
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3 TIME ON THE HORIZONTAL AXIS

FIGURE 3.10: Snapshot of an SVG graphic produced with gridSVG.

library(scales) ## scale_x_yearmon needs scales::pretty_breaks
autoplot(unemployUSA, facets=NULL, geom=’area’) +

geom_area(aes(fill=Series)) +
scale_x_yearmon()

Traditional stacked graphs have their bottom on the x-axis which makes
the overall height at each point easy to estimate. On the other hand, with
this layout, individual layers may be difficult to distinguish. The The-
meRiver (Havre et al. 2002) (also named streamgraph in (Byron and Wat-
tenberg 2008)) provides an innovative layout method in which layers are
symmetrical around the x-axis at their center. At a glance, the pattern of
the global sum and individual variables, their contribution to conform the
global sum, and the interrelation between variables can be perceived.

36



3.3 Stacked Graphs
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FIGURE 3.11: Time series of unemployment with xyplot using the default
panel function.
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FIGURE 3.12: Time series of unemployment with stacked areas using
geom_area.
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3.3 Stacked Graphs

I have defined a panel and prepanel functions3 to implement a The-
meRiver with xyplot. The result is displayed in Figure 3.13 with a vertical
line to indicate one of main milestones of the financial crisis, whose effect
on the overall unemployment results is clearly evident.
library(colorspace)
## We will use a qualitative palette from colorspace
nCols <- ncol(unemployUSA)
pal <- rainbow_hcl(nCols, c=70, l=75, start=30, end=300)
myTheme <- custom.theme(fill=pal, lwd=0.2)

sep2008 <- as.numeric(as.yearmon(’2008-09’))

xyplot(unemployUSA, superpose=TRUE, auto.key=FALSE,
panel=panel.flow, prepanel=prepanel.flow,
origin=’themeRiver’, scales=list(y=list(draw=FALSE)),
par.settings=myTheme) +

layer(panel.abline(v=sep2008, col=’gray’, lwd=0.7))

This figure can help answer several questions. For example:

• What is the industry or class of worker with the lowest/highest un-
employment figures during this time period?

• What is the industry or class of worker with the lowest/highest un-
employment increases due to the financial crisis?

• There are a number of local maxima and minima of the total un-
employment numbers. Are all the classes contributing to the maxi-
ma/minima? Do all the classes exhibit the same fluctuation behavior
as the global evolution?

More questions and answers can be found in the “Current Employment
Statistics” reports from the Bureau of Labor Statistics4.

3.3.1 bPanel and Prepanel Functions to Implement the
ThemeRiver with xyplot

The xyplot function displays information according to the class of its
first argument (methods) and to the panel function. We will use the xy-
plot.zoo method (equivalent to the xyplot.ts method) with a new cus-
tom panel function. This new panel function has four main arguments,

3The code of these panel and prepanel functions is explained in Section 3.3.1.
4The March 2012 highlights report is available at http://www.bls.gov/ces/

highlights032012.pdf.

39



3 TIME ON THE HORIZONTAL AXIS
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FIGURE 3.13: ThemeRiver of unemployment in the United States.

three of them calculated by xyplot (x, y and groups) and a new one, ori-
gin. Of course, it includes the ... argument to provide additional argu-
ments.

The first step is to create a data.frame with coordinates and with the
groups factor. The value and number of the levels will be used in the main
step of this panel function. With this data.frame we have to calculate the
y and x coordinates for each group to get a stacked set of polygons.

This data.frame is in the long format, with a row for each observa-
tion, and where the group column identifies the variable. Thus, it must be
transformed to the wide format, with a column for each variable. With the
unstack function, a new data.frame is produced whose columns are de-
fined according to the formula y ~ groups and with a row for each time
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3.3 Stacked Graphs

position. The stack of polygons is the result of the cumulative sum of each
row (apply(yWide, 1, cumsum)). The origin of this sum is defined with
the corresponding origin argument: with themeRiver, the polygons are
arranged in a symmetric way.

Each column of this matrix of cumulative sums defines the y coordinate
of each variable (where origin is now the first variable). The polygon of
each variable is between this curve (iCol+1) and the one of the previous
variable (iCol). In order to get a closed polygon, the coordinates of the
inferior limit are in reverse order. This new data.frame (Y) is in the wide
format, but xyplot requires the information in the long format: the y coor-
dinates of the polygons are extracted from the values column of the long
version of this data.frame.

The x coordinates are produced in an easier way. Again, unstack pro-
duces a data.frame with a column for each variable and a row for each
time position, but now, because the x coordinates are the same for the set
of polygons, the corresponding vector is constructed directly using a com-
bination of concatenation and repetition.

Finally, the groups vector is produced, repeating each element of the
columns of the original data.frame (dat$groups) twice to account for the
forward and reverse curves of the corresponding polygon.

The final step before displaying the polygons is to acquire the graphical
settings. The information retrieved with trellis.par.get is transferred
to the corresponding arguments of panel.polygon.

Everything is ready for constructing the polygons. With a for loop, the
coordinates of the corresponding group are extracted from the x and y vec-
tors, and a polygon is displayed with panel.polygon. The labels of each
polygon (the levels of the original groups variable, groupLevels) are
printed inside the polygon if there is enough room for the text (hChar>1)
or at the right if the polygon is too small, or if it is the first or last variable
of the set. Both the polygons and the labels share the same color (col[i]).

panel.flow <- function(x, y, groups, origin, ...){
dat <- data.frame(x=x, y=y, groups=groups)
nVars <- nlevels(groups)
groupLevels <- levels(groups)

## From long to wide
yWide <- unstack(dat, y~groups)
## Where are the maxima of each variable located? We will use
## them to position labels.
idxMaxes <- apply(yWide, 2, which.max)
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3 TIME ON THE HORIZONTAL AXIS

##Origin calculated following Havr.eHetzler.ea2002
if (origin==’themeRiver’) origin= -1/2*rowSums(yWide)
else origin=0
yWide <- cbind(origin=origin, yWide)
## Cumulative sums to define the polygon
yCumSum <- t(apply(yWide, 1, cumsum))
Y <- as.data.frame(sapply(seq_len(nVars),

function(iCol)c(yCumSum[,iCol+1],
rev(yCumSum[,iCol]))))

names(Y) <- levels(groups)
## Back to long format, since xyplot works that way
y <- stack(Y)$values

## Similar but easier for x
xWide <- unstack(dat, x~groups)
x <- rep(c(xWide[,1], rev(xWide[,1])), nVars)
## Groups repeated twice (upper and lower limits of the polygon)
groups <- rep(groups, each=2)

## Graphical parameters
superpose.polygon <- trellis.par.get("superpose.polygon")
col = superpose.polygon$col
border = superpose.polygon$border
lwd = superpose.polygon$lwd

## Draw polygons
for (i in seq_len(nVars)){
xi <- x[groups==groupLevels[i]]
yi <- y[groups==groupLevels[i]]
panel.polygon(xi, yi, border=border,

lwd=lwd, col=col[i])
}

## Print labels
for (i in seq_len(nVars)){
xi <- x[groups==groupLevels[i]]
yi <- y[groups==groupLevels[i]]
N <- length(xi)/2
## Height available for the label
h <- unit(yi[idxMaxes[i]], ’native’) -
unit(yi[idxMaxes[i] + 2*(N-idxMaxes[i]) +1], ’native’)

##...converted to "char" units
hChar <- convertHeight(h, ’char’, TRUE)
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3.3 Stacked Graphs

## If there is enough space and we are not at the first or
## last variable, then the label is printed inside the polygon.
if((hChar >= 1) && !(i %in% c(1, nVars))){
grid.text(groupLevels[i],

xi[idxMaxes[i]],
(yi[idxMaxes[i]] +
yi[idxMaxes[i] + 2*(N-idxMaxes[i]) +1])/2,
gp = gpar(col=’white’, alpha=0.7, cex=0.7),
default.units=’native’)

} else {
## Elsewhere, the label is printed outside

grid.text(groupLevels[i],
xi[N],
(yi[N] + yi[N+1])/2,
gp=gpar(col=col[i], cex=0.7),
just=’left’, default.units=’native’)

}
}

}

With this panel function, xyplot displays a set of stacked polygons
corresponding to the multivariate time series (Figure 3.14). However, the
graphical window is not large enough, and part of the polygons fall out of
it. Why?

xyplot(unemployUSA, superpose=TRUE, auto.key=FALSE,
panel=panel.flow, origin=’themeRiver’,
par.settings=myTheme, cex=0.4, offset=0,
scales=list(y=list(draw=FALSE)))

The problem is that lattice makes a preliminary estimate of the win-
dow size using a default prepanel function that is unaware of the internal
calculations of our new panel.flow function. The solution is to define a
new prepanel.flow function.

The input arguments and first lines are the same as in panel.flow. The
output is a list whose elements are the limits for each axis (xlim and ylim),
and the sequence of differences (dx and dy) that can be used for the aspect
and banking calculations.

The limits of the x-axis are defined with the range of the time index,
while the limits of the y-axis are calculated with the minimum of the first
column of yCumSum (the origin line) and with the maximum of its last col-
umn (the upper line of the cumulative sum).
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FIGURE 3.14: First attempt of ThemeRiver.

prepanel.flow <- function(x, y, groups, origin,...){
dat <- data.frame(x=x, y=y, groups=groups)
nVars <- nlevels(groups)
groupLevels <- levels(groups)
yWide <- unstack(dat, y~groups)
if (origin==’themeRiver’) origin= -1/2*rowSums(yWide)
else origin=0
yWide <- cbind(origin=origin, yWide)
yCumSum <- t(apply(yWide, 1, cumsum))

list(xlim=range(x),
ylim=c(min(yCumSum[,1]), max(yCumSum[,nVars+1])),
dx=diff(x),
dy=diff(c(yCumSum[,-1])))

}
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Chapter 4

Time as a Conditioning or
Grouping Variable

In Section 3.1 we learned to display the time evolution of multiple time
series with different scales. But, what if instead of displaying the time
evolution we want to confront the variables between them? Section 4.1
proposes the scatterplot matrix solution with time as a grouping variable.
Section 4.2 uses an enhanced scatterplot with time as a conditioning vari-
able. Section 4.1.1 includes a digression about the hexagonal binning for
large datasets.

4.1 Scatterplot Matrix: Time as a Grouping Variable

The scatterplot matrices are based on the technique of small multiples
(Tufte 1990): small, thumbnail-sized representations of multiple images
displayed all at once, which allows the reader to immediately, and in par-
allel, compare the inter-frame differences. A scatterplot matrix is a display
of all pairwise bivariate scatterplots arranged in a p × p matrix for p vari-
ables. Each subplot shows the relation between the pair of variables at the
intersection of the row and column indicated by the variable names in the
diagonal panels (Friendly and Denis 2005).
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4 TIME AS A CONDITIONING OR GROUPING VARIABLE

This graphical tool is implemented in the splom function1. The follow-
ing code displays the relation between the set of meteorological variables
using a sequential palette from the ColorBrewer catalog (RbBu, with black
added to complete a twelve-color palette) to encode the month. The order
of colors of this palette is chosen in order to display summer months with
intense colors and to distinguish between the first and second half of the
year with red and blue, respectively (Figure 4.1).

load(’data/aranjuez.RData’)

## Red-Blue palette with black added (12 colors)
colors <- c(brewer.pal(n=11, ’RdBu’), ’#000000’)
## Rearrange according to months (darkest for summer)
colors <- colors[c(6:1, 12:7)]

splom(~as.data.frame(aranjuez),
groups=format(index(aranjuez), ’%m’),

auto.key=list(space=’right’,
title=’Month’, cex.title=1),

pscale=0, varname.cex=0.7, xlab=’’,
par.settings=custom.theme(symbol=colors,

pch=19), cex=0.3, alpha=0.1)

Let’s explore Figure 4.1. For example,

• The highest values of ambient temperature (average, maximum, and
mimimun), solar radiation, and evotranspiration can be found dur-
ing the summer.

• These variables are almost linearly related. The relation between ra-
diation and temperature is different during both halves of the year
(red and blue regions can be easily distinguished).

• The humidity reaches its highest values during winter without ap-
preciable differences between the first and second half of the year.
The temperature and humidity may be related with an exponential
function.

A bit of interactivity can be added to this plot with the identification
of some points. This task is easy with panel.link.splom. The points are
selected via mouse clicks (and highlighted in green). Clicks other than left-
clicks terminate the procedure. The output of this function is the index of
chosen points.

1ggplot2 users may wish to explore the ggpairs function from the GGally package.
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4.1 Scatterplot Matrix: Time as a Grouping Variable

FIGURE 4.1: Scatter plot matrix of the collection of meteorological time
series of the Aranjuez station.

trellis.focus(’panel’, 1, 1)
idx <- panel.link.splom(pch=13, cex=0.6, col=’green’)
aranjuez[idx,]

4.1.1 Hexagonal Binning

For large datasets, the display of a large number of points in a scatter-
plot produces hidden point density, long computation times, and slow
displays. These problems can be circumvented with the estimation and
representation of points densities. A common encoding uses gray scales,
pseudo colors or partial transparency. An improved scheme encodes den-
sity as the size of hexagon symbols inscribed within hexagonal binning
regions (D. B. Carr et al. 1987).
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The hexbin package (D. Carr, Lewin-Koh, and Maechler 2013) includes
several functions for hexagonal binning. The panel.hexbinplot is a good
substitute for the default panel function. In addition, our first attempt
with splom can be improved with several modifications (Figure 4.2):

• The scale’s ticks and labels are suppressed with pscale=0.

• The panels of the lower part of the matrix (lower.panel) will include
a locally weighted scatterplot smoothing (loess) with panel.loess.

• The diagonal panels (diag.panel) will display the kernel density es-
timate of each variable. The density function computes this esti-
mate. The result is adjusted to the panel limits (calculated with cur-
rent.panel.limits). The kernel density is plotted with panel.lines
and the diag.panel.splom function completes the content of each
diagonal panel.

• The point density is encoded with the palette BTC (ligther colors for
high density values and darker colors for almost empty regions, with
a gradient of blue hues for intermediate values).

library(hexbin)

splom(~as.data.frame(aranjuez),
panel=panel.hexbinplot, xlab=’’,
colramp=BTC,
diag.panel = function(x, ...){
yrng <- current.panel.limits()$ylim
d <- density(x, na.rm=TRUE)
d$y <- with(d, yrng[1] + 0.95 * diff(yrng) * y / max(y))
panel.lines(d)
diag.panel.splom(x, ...)

},
lower.panel = function(x, y, ...){
panel.hexbinplot(x, y, ...)
panel.loess(x, y, ..., col = ’red’)

},
pscale=0, varname.cex=0.7
)

A drawback of the matrix of scatterplots with hexagonal binning is
that each panel is drawn independently, so it is impossible to compute a
common color key for all of them. In other words, two cells with exactly
the same color in different panels encode different point densities.
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4.1 Scatterplot Matrix: Time as a Grouping Variable

FIGURE 4.2: Scatterplot matrix of the collection of meteorological time se-
ries of the Aranjuez station using hexagonal binning.
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It is possible to display a reduced set of variables against another one
and generate a common color key using the hexbinplot function. First,
the dataset must be reshaped from the wide format (one colum for each
variable) to the long format (only one column for the values with one row
for each observation).

The reshape function needs several arguments to perform the conver-
sion. The most important is the data.frame to be transformed. Then there
are the names of variables to be mapped to a single variable in the long
dataset (the three ambient temperatures). The name of this variable can be
set with v.names. Finally, timevar is the name of the column in long for-
mat that differentiates multiple observations from the same variable. The
values of this column are defined with the times argument.

aranjuezDF <- data.frame(aranjuez,
month=format(index(aranjuez), ’%m’))

aranjuezRshp <- reshape(aranjuezDF, direction=’long’,
varying=list(names(aranjuez)[1:3]),
v.names=’Temperature’,
times=names(aranjuez)[1:3],
timevar=’Statistic’)

head(aranjuezRshp)

The hexbinplot displays this dataset with a different panel for each
type of temperature (average, maximum, and minimum) but with a com-
mon color key encoding the point density (Figure 4.3). Now, two cells with
the same color in different panels encode the same value.

hexbinplot(Radiation~Temperature|Statistic, data=aranjuezRshp,
layout=c(1, 3), colramp=BTC) +

layer(panel.loess(..., col = ’red’))

The ggplot2 version uses stat_binhex.

ggplot(data=aranjuezRshp, aes(Temperature, Radiation)) +
stat_binhex(ncol=1) +
stat_smooth(se=FALSE, method=’loess’, col=’red’) +
facet_wrap(~Statistic, ncol=1) +
theme_bw()

4.2 Scatterplot with Time as a Conditioning Variable

After discussing the hexagonal binning, let’s recover the time variable.
Figure 4.1 uses colors to encode months. Instead, we will now display
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4.2 Scatterplot with Time as a Conditioning Variable

FIGURE 4.3: Scatterplot with hexagonal binning of temperature versus so-
lar radiation using data of the Aranjuez station (lattice version).
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separate scatterplots with a panel for each month. In addition, the statistic
type (average, maximum, minimum) is included as an additional condi-
tioning variable.

This matrix of panels can be displayed with ggplot using facet_grid.
The code of Figure 4.4 uses partial transparency to cope with overplot-
ting, small horizontal and vertical segments (geom_rug) to display points
density on both variables, and a smooth line in each panel.

ggplot(data=aranjuezRshp, aes(Radiation, Temperature)) +
facet_grid(Statistic ~ month) +
geom_point(col=’skyblue4’, pch=19, cex=0.5, alpha=0.3) +
geom_rug() +
stat_smooth(se=FALSE, method=’loess’, col=’indianred1’, lwd=1.2)

+
theme_bw()

The version with lattice needs the useOuterStrips function from
the latticeExtra package, which prints the names of the conditioning
variables on the top and left outer margins (Figure 4.5).

useOuterStrips(xyplot(Temperature ~ Radiation | month * Statistic,
data=aranjuezRshp,
between=list(x=0),
col=’skyblue4’, pch=19,
cex=0.5, alpha=0.3)) +

layer({
panel.rug(..., col.line=’indianred1’, end=0.05, alpha=0.6)
panel.loess(..., col=’indianred1’, lwd=1.5, alpha=1)

})

These figures show the typical seasonal behavior of solar radiation and
ambient temperature. Additionally, it displays in more detail the same re-
lations between radiation and temperature already discussed with Figure
4.3.
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4.2 Scatterplot with Time as a Conditioning Variable

FIGURE 4.4: Scatterplot of temperature versus solar radiation for each
month using data of the Aranjuez station (ggplot2 version).
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FIGURE 4.5: Scatterplot of temperature versus solar radiation for each
month using data of the Aranjuez station (lattice version).
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Chapter 5

Time as a Complementary
Variable

Gapminder1 is an independent foundation based in Stockholm, Sweden.
Its mission is “to debunk devastating myths about the world by offering
free access to a fact-based world view.” They provide free online tools,
data, and videos “to better understand the changing world.” The initial
development of Gapminder was the Trendalyzer software, used by Hans
Rosling in several sequences of his documentary “The Joy of Stats.”

The information visualization technique used by Trendalyzer is an in-
teractive bubble chart. By default it shows five variables: two numeric
variables on the vertical and horizontal axes, bubble size and color, and a
time variable that may be manipulated with a slider. The software uses
brushing and linking techniques for displaying the numeric value of a
highlighted country.

This software was acquired by Google® in 2007, and is now available
as a Motion Chart gadget and as the Public Data Explorer.

In this chapter, time will be used as a complementary variable which
adds information to a graph where several variables are confronted. We
will illustrate this approach with the evolution of the relationship between
Gross National Income (GNI) and carbon dioxide (CO2) emissions for a set

1http://www.gapminder.org/
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of countries extracted from the database of the World Bank Open Data. We
will try several solutions to display the relationship between CO2 emis-
sions and GNI over the years using time as a complementary variable.
The final method will produce an animated plot resembling the Trenda-
lyzer solution.

5.1 Polylines

The first solution is a Motion Chart the googleVis package (Gesmann and
Castillo 2011), an interface between R and the Google Visualisation API.
With its gvisMotionChart function it is easy to produce a Motion Chart
that can be displayed using a browser with Flash enabled (Figure 5.1).

load(’data/CO2.RData’)

library(googleVis)
pgvis <- gvisMotionChart(CO2data, idvar=’Country.Name’, timevar=’

Year’)

Although the gvisMotionChart is quite easy to use, the global appear-
ance and behavior are completely determined by Google API2. Moreover,
you should carefully read their Terms of Use before using it for public dis-
tribution.

Our next attempt is to display the entire data in a panel with a scatter-
plot using country names as the grouping factor. Points of each country
are connected with polylines to reveal the time evolution (Figure 5.2).

## lattice version
xyplot(GNI.capita ~ CO2.capita, data=CO2data,

xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)",
ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)",
groups=Country.Name, type=’b’)

## ggplot2 version
ggplot(data=CO2data, aes(x=CO2.capita, y=GNI.capita,

color=Country.Name)) +
xlab("Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)") +
ylab("GNI␣per␣capita,␣PPP␣(current␣international␣$)") +
geom_point() + geom_path() + theme_bw()

Three improvements can be added to this graphical result:

2You should read the Google API Terms of Service before using googleVis: https://
developers.google.com/terms/.
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5.2 Choosing Colors

FIGURE 5.1: Snapshot of a Motion Chart produced with googleVis.

1. Define a better palette to enhance visual discrimination between coun-
tries.

2. Display time information with labels to show year values.

3. Label each polyline with the country name instead of a legend.

5.2 Choosing Colors

The Country.Name categorical variable will be encoded with a qualitative
palette, namely the first five colors of Set1 palette3 from the RColorBrewer

3http://colorbrewer2.org/
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FIGURE 5.2: GNI per capita versus CO2 emissions per capita (lattice
version).
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5.2 Choosing Colors

package (Neuwirth 2011). Because there are more countries than colors,
we have to repeat some colors to complete the number of levels of the
variable Country.Name. The result is a palette with non-unique colors,
and thus some countries will share the same color. This is not a problem
because the curves will be labeled, and countries with the same color will
be displayed at enough distance.

library(RColorBrewer)

nCountries <- nlevels(CO2data$Country.Name)
pal <- brewer.pal(n=5, ’Set1’)
pal <- rep(pal, length = nCountries)

Adjacent colors of this palette are chosen to be easily distinguishable.
Therefore, the connection between colors and countries must be in such a
way that nearby lines are encoded with adjacent colors of the palette.

A simple approach is to calculate the annual average of the variable to
be represented along the x-axis (CO2.capita), and extract colors from the
palette according to the order of this value.

## Rank of average values of CO2 per capita
CO2mean <- aggregate(CO2.capita ~ Country.Name, data=CO2data, FUN=

mean)
palOrdered <- pal[rank(CO2mean$CO2.capita)]

A more sophisticated solution is to use the ordered results of a hierar-
chical clustering of the time evolution of the CO2 per capita values (Figure
5.3). The data is extracted from the original CO2 data.frame.

CO2capita <- CO2data[, c(’Country.Name’, ’Year’, ’CO2.capita’)]
CO2capita <- reshape(CO2capita, idvar=’Country.Name’, timevar=’Year’

, direction=’wide’)
hCO2 <- hclust(dist(CO2capita[, -1]))

oldpar <- par(mar=c(0, 2, 0, 0) + .1)
plot(hCO2, labels=CO2capita$Country.Name,

xlab=’’, ylab=’’, sub=’’, main=’’)
par(oldpar)

The colors of the palette are assigned to each country with match, which
returns a vector of the positions of the matches of the country names in
alphabetical order in the country names ordered according to the hierar-
chical clustering.

idx <- match(levels(CO2data$Country.Name),
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5 TIME AS A COMPLEMENTARY VARIABLE
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FIGURE 5.3: Hierarchical clustering of the time evolution of CO2 per capita
values.

CO2capita$Country.Name[hCO2$order])
palOrdered <- pal[idx]

It must be highlighted that this palette links colors with the levels of Coun-
try.Name (country names in alphabetical order), which is exactly what the
groups argument provides. The following code produces a curve for each
country using different colors to distinguish them.

## simpleTheme encapsulates the palette in a new theme for xyplot
myTheme <- simpleTheme(pch=19, cex=0.6, col=palOrdered)

pCO2.capita <- xyplot(GNI.capita ~ CO2.capita,
xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣

capita)",
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5.3 Labels to Show Time Information

ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)
",

groups=Country.Name, data=CO2data,
par.settings=myTheme,
type=’b’)

gCO2.capita <- ggplot(data=CO2data, aes(x=CO2.capita, y=GNI.capita,
color=Country.Name)) +

geom_point() + geom_path() +
scale_color_manual(values=palOrdered, guide=FALSE) +
xlab(’CO2␣emissions␣(metric␣tons␣per␣capita)’) +
ylab(’GNI␣per␣capita,␣PPP␣(current␣international␣$)’) +
theme_bw()

5.3 Labels to Show Time Information

This result can be improved with labels displaying the years to show the
time evolution. A panel function with panel.text to print the year labels
and panel.superpose to display the lines for each group is a solution. In
the panel function, subscripts is a vector with the integer indices repre-
senting the rows of the data.frame to be displayed in the panel.

xyplot(GNI.capita ~ CO2.capita,
xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)",
ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)",
groups=Country.Name, data=CO2data,
par.settings=myTheme,
type=’b’,
panel=function(x, y, ..., subscripts, groups){
panel.text(x, y, ...,

labels=CO2data$Year[subscripts],
pos=2, cex=0.5, col=’gray’)

panel.superpose(x, y, subscripts, groups,...)
}
)

The same result with a clearer code is obtained with the combination
of +.trellis, glayer_ and panel.text. Using glayer_ instead of glayer,
we ensure that the labels are printed below the lines.

pCO2.capita <- pCO2.capita +
glayer_(panel.text(..., labels=CO2data$Year[subscripts],

pos=2, cex=0.5, col=’gray’))
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5 TIME AS A COMPLEMENTARY VARIABLE

gCO2.capita <- gCO2.capita + geom_text(aes(label=Year),
colour=’gray’,
size=2.5,
hjust=0, vjust=0)

5.4 Country Names: Positioning Labels

The common solution to link each curve with the group value is to add a
legend. However, a legend can be confusing with too many items. In addi-
tion, the reader must carry out a complex task: Choose the line, memorize
its color, search for it in the legend, and read the country name.

A better approach is to label each line using nearby text with the same
color encoding. A suitable method is to place the labels close to the end of
each line (Figure 5.4). Labels are placed with the panel.pointLabel func-
tion from the maptools package. This function use optimization routines
to find locations without overlaps.

library(maptools)
## group.value provides the country name; group.number is the
## index of each country to choose the color from the palette.
pCO2.capita +

glayer(panel.pointLabel(mean(x), mean(y),
labels= group.value,
col=palOrdered[group.number],
cex=.8,
fontface=2, fontfamily=’Palatino’))

However, this solution does not solve the overlapping between labels
and lines. The package directlabels (Hocking 2013) includes a wide
repertory of positioning methods to cope with this problem. The main
function, direct.label, is able to determine a suitable method for each
plot, although the user can choose a different method from the collection
or even define a custom method. For the pCO2.capita object, I have ob-
tained the best results with extreme.grid (Figure 5.5).

library(directlabels)
direct.label(pCO2.capita, method=’extreme.grid’)

direct.label(gCO2.capita, method=’extreme.grid’)
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5.4 Country Names: Positioning Labels
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FIGURE 5.4: CO2 emissions versus GNI per capita. Labels are placed with
panel.pointLabel.
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FIGURE 5.5: CO2 emissions versus GNI per capita. Labels are placed with
the extreme.grid method of the directlabels package.
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5.5 A Panel for Each Year

5.5 A Panel for Each Year

Time can be used as a conditioning variable (as shown in previous sec-
tions) to display subsets of the data in different panels. Figure 5.6 is pro-
duced with the same code as in Figure 5.2, now including |factor(Year)
in the lattice version and facet_wrap(~ Year) in the ggplot2 version.

xyplot(GNI.capita ~ CO2.capita | factor(Year), data=CO2data,
xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)",
ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)",
groups=Country.Name, type=’b’,
auto.key=list(space=’right’))

ggplot(data=CO2data, aes(x=CO2.capita, y=GNI.capita, colour=Country.
Name)) +

facet_wrap(~ Year) + geom_point(pch=19) +
xlab(’CO2␣emissions␣(metric␣tons␣per␣capita)’) +
ylab(’GNI␣per␣capita,␣PPP␣(current␣international␣$)’) +
theme_bw()

Because the grouping variable, Country.Name, has many levels, the
legend is not very useful. Once again, point labeling is recommended (Fig-
ure 5.7).

xyplot(GNI.capita ~ CO2.capita | factor(Year), data=CO2data,
xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)",
ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)",
groups=Country.Name, type=’b’,
par.settings=myTheme) +

glayer(panel.pointLabel(x, y, labels=group.value,
col=palOrdered[group.number], cex=0.7))

5.5.1 bUsing Variable Size to Encode an Additional Variable

Instead of using simple points, we can display circles of different radius
to encode a new variable. This new variable is CO2.PPP, the ratio of CO2
emissions to the Gross Domestic Product with purchasing power parity
(PPP) estimations.

To use this numeric variable as an additional grouping factor, its range
must be divided into different classes. The typical solution is to use cut
to coerce the numeric variable into a factor whose levels correspond to
uniform intervals, which could be unrelated to the data distribution. The
classInt package (R. Bivand 2013) provides several methods to partition
data into classes based on natural groups in the data distribution.
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FIGURE 5.6: CO2 emissions versus GNI per capita with a panel for each
year.
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FIGURE 5.7: CO2 emissions versus GNI per capita with a panel for each
year.
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library(classInt)
z <- CO2data$CO2.PPP
intervals <- classIntervals(z, n=4, style=’fisher’)

Although the functions of this package are mainly intended to create
color palettes for maps, the results can also be associated to point sizes.
cex.key defines the sequence of sizes (to be displayed in the legend) asso-
ciated with each CO2.PPP using the findCols function.

nInt <- length(intervals$brks) - 1
cex.key <- seq(0.5, 1.8, length=nInt)

idx <- findCols(intervals)
CO2data$cexPoints <- cex.key[idx]

The graphic will display information on two variables (GNI.capita
and CO2.capita in the vertical and horizontal axes, respectively) with a
conditioning variable (Year) and two grouping variables (Country.Name,
and CO2.PPP through cexPoints) (Figure 5.8).

ggplot(data=CO2data, aes(x=CO2.capita, y=GNI.capita, colour=Country.
Name)) +

facet_wrap(~ Year) + geom_point(aes(size=cexPoints), pch=19) +
xlab(’Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)’) +
ylab(’GNI␣per␣capita,␣PPP␣(current␣international␣$)’) +
theme_bw()

The auto.key mechanism of the lattice version is not able to cope
with two grouping variables. Therefore, the legend, whose main compo-
nens are the labels (intervals) and the point sizes (cex.key), should be
defined manually (Figure 5.9).

op <- options(digits=2)
tab <- print(intervals)
options(op)

key <- list(space=’right’,
title=expression(CO[2]/GNI.PPP),
cex.title=1,
## Labels of the key are the intervals strings
text=list(labels=names(tab), cex=0.85),
## Points sizes are defined with cex.key
points=list(col=’black’, pch=19,
cex=cex.key, alpha=0.7))
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5 TIME AS A COMPLEMENTARY VARIABLE

FIGURE 5.9: CO2 emissions versus GNI per capita for different intervals
of the ratio of CO2 emissions to the GDP PPP estimations.

xyplot(GNI.capita ~ CO2.capita|factor(Year), data=CO2data,
xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)",
ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)",
groups=Country.Name, key=key, alpha=0.7,
col=palOrdered, cex=CO2data$cexPoints) +

glayer(panel.pointLabel(x, y, labels=group.value,
col=palOrdered[group.number], cex=0.7))
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5.6 bTraveling Bubbles

5.6 bTraveling Bubbles

The final solution to display this multivariate time series is with animation
via the function grid.animate of the gridSVG package. We will mimic the
Trendalyzer/Motion Chart solution, using traveling bubbles of different
colors and with radius proportional to CO2.PPP.

The first step is to draw the initial state of the bubbles. Their colors
are again defined by the palOrdered palette, although the adjustcolor
function is used for a ligther fill color. Because there will not be a legend,
there is no need to define class intervals, and thus the radius is directly
proportional to the value of CO2data$CO2.PPP.

library(gridSVG)

xyplot(GNI.capita ~ CO2.capita, data=CO2data,
xlab="Carbon␣dioxide␣emissions␣(metric␣tons␣per␣capita)",
ylab="GNI␣per␣capita,␣PPP␣(current␣international␣$)",
subset=Year==2000, groups=Country.Name,
## The limits of the graphic are defined
## with the entire dataset
xlim=extendrange(CO2data$CO2.capita),
ylim=extendrange(CO2data$GNI.capita),
panel=function(x, y, ..., subscripts, groups) {
color <- palOrdered[groups[subscripts]]
radius <- CO2data$CO2.PPP[subscripts]
## Size of labels
cex <- 1.1*sqrt(radius)
## Bubbles
grid.circle(x, y, default.units="native",

r=radius*unit(.25, "inch"),
name=trellis.grobname("points", type="panel"),
gp=gpar(col=color,
## Fill color ligther than border
fill=adjustcolor(color, alpha=.5),
lwd=2))

## Country labels
grid.text(label=groups[subscripts],

x=unit(x, ’native’),
## Labels above each bubble
y=unit(y, ’native’) + 1.5 * radius *unit(.25, ’inch’)

,
name=trellis.grobname(’labels’, type=’panel’),
gp=gpar(col=color, cex=cex))

})
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From this initial state, grid.animate creates a collection of animated
graphical objects with the result of animUnit. This function produces a set
of values that will be interpreted by grid.animate as intermediate states
of a feature of the graphical object. Thus, the bubbles will travel across
the values defined by x_points and y_points, while their labels will use
x_points and x_labels.

The use of rep=TRUE ensures that the animation will be repeated indef-
initely.

## Duration in seconds of the animation
duration <- 20

nCountries <- nlevels(CO2data$Country.Name)
years <- unique(CO2data$Year)
nYears <- length(years)

## Intermediate positions of the bubbles
x_points <- animUnit(unit(CO2data$CO2.capita, ’native’),

id=rep(seq_len(nCountries), each=nYears))
y_points <- animUnit(unit(CO2data$GNI.capita, ’native’),

id=rep(seq_len(nCountries), each=nYears))
## Intermediate positions of the labels
y_labels <- animUnit(unit(CO2data$GNI.capita, ’native’) +

1.5 * CO2data$CO2.PPP * unit(.25, ’inch’),
id=rep(seq_len(nCountries), each=nYears))

## Intermediate sizes of the bubbles
size <- animUnit(CO2data$CO2.PPP * unit(.25, ’inch’),

id=rep(seq_len(nCountries), each=nYears))

grid.animate(trellis.grobname("points", type="panel", row=1, col=1),
duration=duration,
x=x_points,
y=y_points,
r=size,
rep=TRUE)

grid.animate(trellis.grobname("labels", type="panel", row=1, col=1),
duration=duration,
x=x_points,
y=y_labels,
rep=TRUE)
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A bit of interactivity can be added with the grid.hyperlink function.
For example, the following code adds the corresponding Wikipedia link
to a mouse click on each bubble.

countries <- unique(CO2data$Country.Name)
URL <- paste(’http://en.wikipedia.org/wiki/’, countries, sep=’’)
grid.hyperlink(trellis.grobname(’points’, type=’panel’, row=1, col

=1),
URL, group=FALSE)

Finally, the time information: The year is printed in the lower right
corner, using the visibility attribute of an animated textGrob object to
show and hide the values.

visibility <- matrix("hidden", nrow=nYears, ncol=nYears)
diag(visibility) <- "visible"
yearText <- animateGrob(garnishGrob(textGrob(years, .9, .15,

name="year",
gp=gpar(cex=2, col="grey")),

visibility="hidden"),
duration=20,
visibility=visibility,
rep=TRUE)

grid.draw(yearText)

The SVG file produced with grid.export is available at the website of
the book (Figure 5.10). Because this animation does not trace the paths,
Figure 5.5 provides this information as a static complement.

grid.export("figs/bubbles.svg")

Now, sit down in your favorite easy chair and watch the magistral
video “200 Countries, 200 Years, 4 Minutes"4. After that, you are ready
to open the SVG file of traveling bubbles: It is easier, a short time period
with less than twenty countries.

4http://www.gapminder.org/videos/200-years-that-changed-the-world-bbc/
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FIGURE 5.10: Animated bubbles produced with gridSVG.

74



Chapter 6

About the Data

6.1 SIAR

The Agroclimatic Information System for Irrigation (SIAR) (MARM 2011)
is a free-download database operating since 1999, covering the majority of
the irrigated area of Spain. This network belongs to the Ministry of Agri-
culture, Food and Environment of Spain, as a tool to predict and study
meteorological variables for agriculture. SIAR is composed of twelve re-
gional centers and a national center, aiming to centralize and depurate
measurements from the stations of the network. Figure 6.1 displays the
stations over an altitude map. Some stations from the complete network
have been omitted, due to difficulties accessing their coordinates or to in-
complete or spurious data series1.

6.1.1 Daily Data of Different Meteorological Variables

As an example of multiple time series with different scales, we will use 8
years (from January 2004 to December 2011) of daily data corresponding
to several meteorological variables measured at the SIAR station located
at Aranjuez (Madrid, Spain) available on the SIAR webpage2. The aran-
juez.gz file, available in the data folder of the book repository, contains

1The name and location data of these stations are available at the GitHub repository of
the paper (Antonanzas-Torres, Cañizares, and O. Perpiñán 2013).

2http://eportal.magrama.gob.es/websiar
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FIGURE 6.1: Meteorological stations of the SIAR network. The color key
indicates the altitude (meters).

this information with several meteorological variables: average, maximum,
and minimum ambient temperature; average and maximum humidity; av-
erage and maximum wind speed; rainfall; solar radiation on the horizontal
plane; and evotranspiration.

The read.zoo from the zoo package accepts this string and downloads
the data to construct a zoo object. Several arguments are passed directly to
read.table (header, skip, etc.) and are detailed conveniently on the help
page of this function. The index.column is the number of the column with
the time index, and format defines the date format of this index.

library(zoo)

aranjuez <- read.zoo("data/aranjuez.gz",
index.column = 3, format = "%d/%m/%Y",
fileEncoding = ’UTF-16LE’,
header = TRUE, fill = TRUE,
sep = ’;’, dec = ",", as.is = TRUE)

aranjuez <- aranjuez[, -c(1:4)]
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names(aranjuez) <- c(’TempAvg’, ’TempMax’, ’TempMin’,
’HumidAvg’, ’HumidMax’,
’WindAvg’, ’WindMax’,
’Radiation’, ’Rain’, ’ET’)

summary(aranjuez)

From the summary it is clear that parts of these time series include
erroneous outliers that can be safely removed:

aranjuezClean <- within(as.data.frame(aranjuez),{
TempMin[TempMin>40] <- NA
HumidMax[HumidMax>100] <- NA
WindAvg[WindAvg>10] <- NA
WindMax[WindMax>10] <- NA

})

aranjuez <- zoo(aranjuezClean, index(aranjuez))

6.1.2 Solar Radiation Measurements from Different Locations

As an example of multiple time series with the same scale, we will use
data of daily solar radiation measurements from different locations.

Daily solar radiation incident on the horizontal plane is registered by
meterological stations and estimated from satellite images. This meteoro-
logical variable is important for a wide variety of scientific disciplines and
engineering applications. Its variations and trends, dependent on the loca-
tion (mainly latitude, and also longitude and altitude) and on time (day of
the year), have been analyzed and modeled in a huge collection of papers
and reports. In this section we will focus our attention on the time evo-
lution of the solar radiation. The spatial distribution and the spatio-time
behavior will be the subject of later sections.

The stations of the SIAR network include first-class pyranometers ac-
cording to the World Meteorological Organization (WMO), whose abso-
lute accuracy is within ±5% and is typically lower than ±3%. Solar irradi-
ance is recorded every 15 minutes and then collated through a datalogger
within the station to generate the daily irradiation, which is later sent to
the regional and national centers.

The file navarra.RData contains daily solar radiation data of 2011 from
the meteorological stations of Navarra, Spain. The names of the dataset are
the abbreviations of each station name.
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6.2 Unemployment in the United States

As an example of time series that can be displayed both in individual and
in aggregate, we will use the unemployment data in the United States.
The information on unemployed persons by industry and class of worker
is available in Table A-14 published by the Bureau of Labor Statistics3.

The dataset arranges the information with a row for each category
(Series.ID) and a column for each monthly value. In addition, there
are columns with the annual summaries (annualCols). We rearrange this
data.frame, dropping the Series.ID and the annual columns, and trans-
pose the data.

unemployUSA <- read.csv(’data/unemployUSA.csv’)
nms <- unemployUSA$Series.ID
##columns of annual summaries
annualCols <- 14 + 13*(0:12)
## Transpose. Remove annual summaries
unemployUSA <- as.data.frame(t(unemployUSA[,-c(1, annualCols)]))
## First 7 characters can be suppressed
names(unemployUSA) <- substring(nms, 7)
head(unemployUSA)

With the transpose, the column names of the original data set are now
the row names of the data.frame. The as.yearmon function of the zoo
package converts the character vector of names into a yearmon vector, a
class for representing monthly data. With Sys.setlocale("LC_TIME",
’C’) we ensure that month abbreviations (%b) are correctly interpreted in
a non-English locale. This vector is the time index of a new zoo object.

library(zoo)

Sys.setlocale("LC_TIME", ’C’)
idx <- as.yearmon(row.names(unemployUSA), format=’%b.%Y’)
unemployUSA <- zoo(unemployUSA, idx)

Finally, those rows with NA values are removed.

isNA <- apply(is.na(unemployUSA), 1, any)
unemployUSA <- unemployUSA[!isNA,]

3http://www.bls.gov/webapps/legacy/cpsatab14.htm
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6.3 Gross National Income and CO2 Emissions

The catalog data of the World Bank Open Data initiative includes a the
World Development Indicators (WDI)4. Among them we will analyze the
evolution of the relationship between Gross National Income (GNI) and
CO2 emissions for a set of countries. The package WDI is able to search and
download these data series.

library(WDI)

CO2data <- WDI(indicator=c(’EN.ATM.CO2E.PC’, ’EN.ATM.CO2E.PP.GD’,
’NY.GNP.MKTP.PP.CD’, ’NY.GNP.PCAP.PP.CD’),

start=2000, end=2011,
country=c(’BR’, ’CN’, ’DE’, ’ES’,

’FI’, ’FR’, ’GR’, ’IN’, ’NO’, ’US’))

names(CO2data) <- c(’iso2c’, ’Country.Name’, ’Year’,
’CO2.capita’, ’CO2.PPP’,
’GNI.PPP’, ’GNI.capita’)

Only two minor modifications are needed: Remove the missing values
and convert the Country.Name column into a factor. This first modifica-
tion will save problems when displaying the time series, and the factor
conversion will be useful for grouping.

isNA <- apply(is.na(CO2data), 1, any)
CO2data <- CO2data[!isNA, ]

CO2data$Country.Name <- factor(CO2data$Country.Name)

4http://databank.worldbank.org/Data/Views/VariableSelection/
SelectVariables.aspx
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Spatial Data
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Chapter 7

Displaying Spatial Data:
Introduction

Spatial data (also known as geospatial data) are directly or indirectly ref-
erenced to a location on the surface of the Earth. Their spatial reference is
composed of coordinate values and a system of reference for these coordi-
nates. Spatial data are often accessed, manipulated, or analyzed through
Geographic Information Systems (GIS).

Real objects represented by GIS data can be divided into two abstrac-
tions: discrete objects (e.g., a road or a river) represented with vector data
(points, lines, and polygons), and continuous fields (such as elevation or
solar radiation) represented with raster data. The sp package is the pre-
ferred option to use vector data in R, and the raster package is the choice
for raster data1.

This part exposes several examples where vector and raster data are
displayed to show geographic location of features and physical landscape
features of a place (reference and physical maps, Chapter 9) or a specific
variable in the context of a geographic reference (thematic maps, Chapter
8). These examples make use of several datasets (available at the book
website) described in Chapter 10.

1Although sp and raster are the most important packages, there are an increasing num-
ber of packages designed to work with spatial data. They are summarized in the correspond-
ing CRAN Task View. Read Section 7.2 for details.
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7.1 Packages

The CRAN Tasks View “Analysis of Spatial Data”2 summarizes the pack-
ages for reading, vizualizing, and analyzing spatial data. This section
provides a brief introduction to sp, raster, rasterVis, maptools, rgdal,
gstat, and maps. Most of the information has been extracted from their
vignettes, webpages, and help pages. You should read them for detailed
information.

7.1.1 sp

The sp package (E. J. Pebesma and R. S. Bivand 2005) provides classes and
methods for dealing with spatial data in R. The spatial data classes imple-
mented are points (SpatialPoints), grids (SpatialPixels and Spatial-
Grid), lines (Line, Lines and SpatialLines), rings, and polygons (Polygon,
Polygons, and SpatialPolygons), each of them without data or with data
(for example, SpatialPointsDataFrame or SpatialLinesDataFrame).

Selecting, retrieving, or replacing certain attributes in spatial objects
with data is done using standard methods:

• [ selects rows (items) and columns in the data.frame.

• [[ selects a column from the data.frame

• [[<- assigns or replaces values to a column in the data.frame.

A number of spatial methods are available for the classes in sp:

• coordinates(object) <- value sets spatial coordinates to create
spatial data. It promotes a data.frame into a SpatialPointsData-
Frame. value may be specified by a formula, a character vector, or a
numeric matrix or data.frame with the actual coordinates.

• coordinates(object, ...) returns a matrix with the spatial coor-
dinates. If used with SpatialPolygons it returns a matrix with the
centroids of the polygons.

• bbox returns a matrix with the coordinates bounding box.

• proj4string(object) and proj4string(object) <- value retrieve
or set projection attributes on spatial classes.

2http://CRAN.R-project.org/view=Spatial
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• spTransform transforms from one coordinate reference system (geo-
graphic projection) to another (requires package rgdal).

• spplot plots attributes combined with spatial data: Points, lines,
grids, polygons.

7.1.2 raster

The raster package (R. J. Hijmans 2013) has functions for creating, read-
ing, manipulating, and writing raster data. The package provides general
raster data manipulation functions. The package also implements raster
algebra and most functions for raster data manipulation that are common
in Geographic Information Systems (GIS).

The raster package can work with raster datasets stored on disk if they
are too large to be loaded into memory. The package can work with large
files because the objects it creates from these files only contain information
about the structure of the data, such as the number of rows and columns,
the spatial extent, and the filename, but it does not attempt to read all the
cell values in memory. In computations with these objects, the data are
processed in chunks.

The package defines a number of S4 classes. RasterLayer, Raster-
Brick, and RasterStack are the most important:

• A RasterLayer object represents single-layer (variable) raster data.
It can be created with the function raster. This function is able to
create a RasterLayer from another object, including another Raster*
object, or from a SpatialPixels* and SpatialGrid* object, or even
a matrix. In addition, it can create a RasterLayer reading data from
a file. The raster package can use raster files in several formats,
some of them via the rgdal package. Supported formats for reading
include GeoTIFF, ESRI, ENVI, and ERDAS.

• RasterBrick and RasterStack are classes for multilayer data. A
RasterStack is a list of RasterLayer objects with the same spatial
extent and resolution. It can be formed with a collection of files in
different locations or even mixed with RasterLayer objects that only
exist in memory. A RasterBrick is truly a multilayered object, and
processing it can be more efficient than processing a RasterStack
representing the same data.
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The raster package defines a number of methods for raster algebra
with Raster* objects: arithmetic operators, logical operators, and func-
tions such as abs, round, ceiling, floor, trunc, sqrt, log, log10, exp,
cos, sin, max, min, range, prod, sum, any, and all. In these functions,
Raster* objects can be mixed with numbers.

There are several functions to modify the content or the spatial extent
of Raster* objects, or to combine Raster* objects:

• The crop function takes a geographic subset of a larger Raster* ob-
ject. trim crops a RasterLayer by removing the outer rows and
columns that only contain NA values. extend adds new rows and/or
columns with NA values.

• The merge function merges two or more Raster* objects into a single
new object.

• projectRaster transforms values of a Raster* object to a new object
with a different coordinate reference system.

• With overlay, multiple Raster* objects can be combined (for exam-
ple, multiply them).

• mask removes all values from one layer that are NA in another layer,
and cover combines two layers by taking the values of the first layer
except where these are NA.

• calc computes a function for a Raster* object. With RasterLayer
objects, another RasterLayer is returned. With multilayer objects
the result depends on the function: With a summary function (sum,
max, etc.), calc returns a RasterLayer object, and a RasterBrick ob-
ject otherwise.

• stackApply computes summary layers for subsets of a RasterStack
or RasterBrick.

• cut and reclassify replace ranges of values with single values.

• zonal computes zonal statistics, that is, summarizes a Raster* ob-
ject using zones (areas with the same integer number) defined by
another RasterLayer.
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7.1.3 rasterVis

The rasterVis package (Oscar Perpiñán and R. Hijmans 2013) comple-
ments the raster package, providing a set of methods for enhanced vi-
sualization and interaction. This package defines visualization methods
(levelplot) for quantitative data and categorical data, both for univariate
and multivariate rasters.

It also includes several methods in the frame of the Exploratory Data
Analysis approach: scatterplots with xyplot, histograms and density plots
with histogram and densityplot, violin and boxplots with bwplot, and a
matrix of scatterplots with splom.

On the other hand, this package is able to display vector fields using
arrows, vectorplot, or with streamlines (Wegenkittl and Gröller 1997),
streamplot. In this last method, for each point, droplet, of a jittered regu-
lar grid, a short streamline portion, streamlet, is calculated by integrating
the underlying vector field at that point. The main color of each stream-
let indicates local vector magnitude (slope). Streamlets are composed of
points whose sizes, positions, and color degradation encode the local vec-
tor direction (aspect).

7.1.4 maptools

The maptools package (R. Bivand and Lewin-Koh 2013) provides a set of
tools for manipulating and reading geographic data, in particular ESRI
(Environmental Systems Research Institute) shapefiles. The package also
provides interface wrappers for exchanging spatial objects with packages
such as PBSmapping, spatstat, maps, RArcInfo, Stata tmap, WinBUGS,
Mondrian, and others. The main functions in the context of this book are

• readShapePoints reads data from a points shapefile into a Spatial-
PointsDataFrame object.

• writePointsShape writes data from a SpatialPointsDataFrame ob-
ject to a shapefile.

• readShapeLines reads data from a line shapefile into a Spatial-
LinesDataFrame object.

• writeLinesShape writes data from a SpatialLinesDataFrame object
to a shapefile.

• readShapePoly reads data from a polygon shapefile into a Spatial-
PolygonsDataFrame object.
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• writePolyShape writes data from a SpatialPolygonsDataFrame ob-
ject to a shapefile.

• map2SpatialPolygons and map2SpatialLines may be used to con-
vert map objects returned by the map function in the maps package to
the classes defined in the sp package.

• spCbind provides cbind-like methods for Spatial*DataFrame and
data.frame objects.

The topology operations on geometries performed by this package (for
example, unionSpatialPolygons ) use the package rgeos, an interface to
the Geometry Engine Open Source (GEOS)3.

7.1.5 rgdal

The rgdal package (R. Bivand, Keitt, and Rowlingson 2013) provides bind-
ings to the Geospatial Data Abstraction Library (GDAL)4. With readOGR
and readGDAL, both GDAL raster and OGR vector map data can be im-
ported into R, and GDAL raster data and OGR vector data can be exported
with writeGDAL and writeOGR.

In addition, this package provides access to projection and transfor-
mation operations from the PROJ.4 library5. This package implements
several spTransform methods providing transformation between datums
and conversion between projections using PROJ.4 projection arguments.

7.1.6 gstat

The gstat package (E. J. Pebesma 2004) provides functions for geostatisti-
cal modeling, prediction, and simulation, including variogram modeling
and simple, ordinary, universal, and external drift kriging.

Most of the functionality of this package is beyond the scope of this
book. However, some functions must be mentioned:

• variogram calculates the sample variogram from data, or for the
residuals if a linear model is given. vgm generates a variogram and
fit.variogram fit ranges and/or sills from a variogram model to a
sample variogram.

3http://trac.osgeo.org/geos/
4http://www.gdal.org/
5https://trac.osgeo.org/proj/
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• krige is the function for simple, ordinary or universal kriging. gstat
is the function for univariate or multivariate geostatistical predic-
tion.

7.1.7 maps

The maps (Becker, Wilks, Brownrigg, and Minka 2013), mapdata (Becker,
Wilks, and Brownrigg 2013), and mapproj (McIlroy et al. 2013) packages
are useful to draw or create geographical maps. mapdata contains higher
resolution databases, and mapproj converts latitude/longitude coordinates
into projected coordinates.

7.2 Further Reading

• (Slocum 2005) and (Dent, Torguson, and Hodler 2008) are compre-
hensive books on thematic cartography and geovisualization. They
include chapters devoted to data classification, scales, map projec-
tions, color theory, typography, and proportional symbol, choropleth,
dasymetric, isarithmic, and multivariate mapping. Several resources
are available at their accompanying websites6.

• (R. S. Bivand, E. J. Pebesma, and Gomez-Rubio 2008) is the essential
reference to work with spatial data in R. R. Bivand and E. Pebesma
are the authors of the fundamental sp package, and they are the au-
thors or maintainers of several important packages such as gstat,
for geostatistical modeling, prediction, and simulation, rgdal, rgeos
and maptools. Chapter 3 is devoted to the visualization of spatial
data. Code, figures, and data of the book are available at the accom-
panying website7.

• (Hengl 2009) is an open-access book with seven spatial data analysis
exercises. The author is the creator and maintainer of the Spatial-
Analyst webpage8.

• The CRAN Tasks View “Analysis of Spatial Data”9 summarizes the
packages for reading, vizualizing, and analyzing spatial data. The

6http://www.pearsonhighered.com/slocum3e/ and http://highered.mcgraw-hill.
com/sites/0072943823/

7http://www.asdar-book.org/
8http://spatial-analyst.net
9http://CRAN.R-project.org/view=Spatial
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packages in development published at R-Forge are listed in the “Spa-
tial Data & Statistics” topic view10. The R-SIG-Geo mailing list11 is a
powerful resource for obtaining help.

• The “Spatial Analysis”12 and “Kartograph”13 webpages publish a
variety of beautiful visualization examples.

10http://r-forge.r-project.org/softwaremap/trove_list.php?form_cat=353
11https://stat.ethz.ch/mailman/listinfo/R-SIG-Geo/
12http://spatialanalysis.co.uk/map-gallery/
13http://kartograph.org/
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Chapter 8

Thematic Maps

A thematic map focuses on a specific theme or variable, commonly using
geographic data such as coastlines, boundaries, and places as points of ref-
erence for the variable being mapped. These maps provide specific infor-
mation about particular locations or areas (proportional symbol mapping
and choropleth maps) and information about spatial patterns (isarithmic
and raster maps). The following sections illustrate the R code you need
to produce these maps, with a final section devoted to the visualization of
vector fields.

8.1 Proportional Symbol Mapping

8.1.1 Introduction

The proportional symbol technique uses symbols of different sizes to rep-
resent data associated with areas or point locations, with circles being the
most frequently used geometric symbol. The data and the size of sym-
bols can be related through different types of scaling: mathematical scal-
ing sizes areas of point symbols in direct proportion to the data; perceptual
scaling corrects the mathematical scaling to account for visual understima-
tion of larger symbols; and range grading, where data are grouped, and
each class is represented with a single symbol size.

In this chapter we display data from a grid of sensors belonging to the
Integrated Air Quality system of the Madrid City Council (Section 10.1)
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with circles as the proportional symbol, and range grading as the scaling
method. The objective when using range grading is to discriminate be-
tween classes instead of estimating an exact value from a perceived sym-
bol size. However, because human perception of symbol size is limited,
it is always recommended to add a second perception channel to improve
the discrimination task. Colors from a sequential palette will complement
symbol size to encode the groups.

8.1.2 Proportional Symbol with spplot

The NO2sp SpatialPointsDataFrame can be easily displayed with the sp-
plot method provided by the sp package, based on xyplot from the lat-
tice package. Both color and size can be combined in a unique graphical
output because spplot accepts both of them (Figure 8.1). I define a sequen-
tial palette whose colors denote the value of the variable (green for lower
values of the contaminant, brown for intermediate values, and black for
highest values).

library(sp)

load(’data/NO2sp.RData’)

airPal <- colorRampPalette(c(’springgreen1’, ’sienna3’, ’gray5’))(5)

spplot(NO2sp["mean"], col.regions=airPal, cex=sqrt(1:5),
edge.col=’black’, scales=list(draw=TRUE),
key.space=’right’)

The ggplot2 version of this code needs to transform the Spatial-
PointsDataFrame to a conventional data.frame (which will contain two
columns with latitude and longitude values).

NO2df <- data.frame(NO2sp)
NO2df$Mean <- cut(NO2sp$mean, 5)

ggplot(data=NO2df, aes(long, lat, size=Mean, fill=Mean)) +
geom_point(pch=21, col=’black’) + theme_bw() +
scale_fill_manual(values=airPal)

8.1.3 Optimal Classification and Sizes to Improve
Discrimination

Two main improvements can be added to Figure 8.1:
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FIGURE 8.1: Annual average of NO2 measurements in Madrid. Values
are shown with different symbol sizes and colors for each class with the
spplot function.

• Define classes dependent on the data structure (instead of the uni-
form distribution assumed with cut). A suitable approach is the
classInterval function of the classInt package, which implements
the Fisher-Jenks optimal classification algorithm.

library(classInt)
## The number of classes is chosen between the Sturges and the
## Scott rules.
nClasses <- 5
intervals <- classIntervals(NO2sp$mean, n=nClasses, style=’fisher’)
## Number of classes is not always the same as the proposed number
nClasses <- length(intervals$brks) - 1
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FIGURE 8.2: Symbol sizes proposed by Borden Dent.

op <- options(digits=4)
tab <- print(intervals)
options(op)

• Encode each group with a symbol size (circle area) such that visual
discrimination among classes is enhanced. The next code uses the
set of radii proposed in (Dent, Torguson, and Hodler 2008) (Figure
8.2). This set of circle sizes is derived from studies by Meihoefer
(Meihoefer 1969). He derived a set of ten circle sizes that were easily
and consistently discriminated by his subjects. The alternative pro-
posed by Dent et al. improves the discrimination between some of
the circles.

## Complete Dent set of circle radii (mm)
dent <- c(0.64, 1.14, 1.65, 2.79, 4.32, 6.22, 9.65, 12.95, 15.11)
## Subset for our dataset
dentAQ <- dent[seq_len(nClasses)]
## Link Size and Class: findCols returns the class number of each
## point; cex is the vector of sizes for each data point
idx <- findCols(intervals)
cexNO2 <- dentAQ[idx]

These two enhancements are included in Figure 8.3, which displays the
categorical variable classNO2 (instead of mean) whose levels are the inter-
vals previously computed with classIntervals. In addition, this figure
includes an improved legend.

NO2sp$classNO2 <- factor(names(tab)[idx])

## ggplot2 version
NO2df <- data.frame(NO2sp)

ggplot(data=NO2df, aes(long, lat, size=classNO2, fill=classNO2)) +
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geom_point(pch=21, col=’black’) + theme_bw() +
scale_fill_manual(values=airPal) +
scale_size_manual(values=dentAQ*2)

## spplot version

## Definition of an improved key with title and background
NO2key <- list(x=0.98, y=0.02, corner=c(1, 0),

title=expression(NO[2]~~(paste(mu, plain(g))/m^3)),
cex.title=.75, cex=0.7,
background=’gray92’)

pNO2 <- spplot(NO2sp["classNO2"],
col.regions=airPal, cex=dentAQ,
edge.col=’black’,
scales=list(draw=TRUE),
key.space=NO2key)

pNO2

8.1.4 Spatial Context with Underlying Layers and Labels

The spatial distribution of the stations is better understood if we add un-
derlying layers with information about the spatial context.

8.1.4.1 Static Image

A suitable method is to download data from a provider such as Google
Maps™ or OpenStreetMap and transform it adequately. There are several
packages that provide an interface to query several map servers. On one
hand, RGoogleMaps, OpenStreetMaps, and ggmap provide raster images
from static maps obtained from Google Maps, Stamen, OpenStreetMap,
etc.; on the other hand, osmar is able to access OpenStreetMap data and
convert it into classes provided by existing R packages (mainly sp and
igraph0 objects).

Among these options, I have chosen the Stamen watercolor maps avail-
able through the ggmap (Kahle and Wickham 2013) and OpenStreetMaps
packages (Fellows and Stotz 2013). It is worth noting that these map
tiles are published by Stamen Design under a Creative Commons licence
CC BY-3.0 (Attribution). They produce these maps with data by Open-
StreetMap also published under a Creative Commons licence BY-SA (At-
tribution - ShareAlike).
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FIGURE 8.3: Annual average of NO2 measurements in Madrid.
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madridBox <- bbox(NO2sp)

## ggmap solution
library(ggmap)
madridGG <- get_map(c(madridBox), maptype=’watercolor’, source=’

stamen’)

## OpenStreetMap solution
library(OpenStreetMap)
ul <- madridBox[c(4, 1)]
lr <- madridBox[c(2, 3)]
madridOM <- openmap(ul, lr, type=’stamen-watercolor’)
madridOM <- openproj(madridOM)

NO2df <- data.frame(NO2sp)

## ggmap
ggmap(madridGG) +

geom_point(data=NO2df,
aes(long, lat, size=classNO2, fill=classNO2),
pch=21, col=’black’) +

scale_fill_manual(values=airPal) +
scale_size_manual(values=dentAQ*2)

##OpenStreetMap
autoplot(madridOM) +

geom_point(data=NO2df,
aes(long, lat, size=classNO2, fill=classNO2),
pch=21, col=’black’) +

scale_fill_manual(values=airPal) +
scale_size_manual(values=dentAQ*2)

Although ggmap is designed to work with the ggplot2 package, the re-
sult of get_map is only a raster object with attributes. Therefore, it can be
easily displayed with grid.raster as an underlying layer of the previous
spplot result (Figure 8.4).

## the ’bb’ attribute stores the bounding box of the get_map result
bbMap <- attr(madridGG, ’bb’)
## This information is needed to resize the image with grid.raster
height <- with(bbMap, ur.lat - ll.lat)
width <- with(bbMap, ur.lon - ll.lon)

pNO2 + layer(grid.raster(madridGG,
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FIGURE 8.4: Annual average of NO2 measurements in Madrid.

width=width, height=height,
default.units=’native’),

under=TRUE)

The result of openmap is more sophisticated but can also be converted
and displayed with grid.raster.

tile <- madridOM$tile[[1]]

98



8.1 Proportional Symbol Mapping

height <- with(tile$bbox, p1[2] - p2[2])
width <- with(tile$bbox, p2[1] - p1[1])

colors <- as.raster(matrix(tile$colorData,
ncol=tile$yres,
nrow=tile$xres,
byrow=TRUE))

pNO2 + layer(grid.raster(colors,
width=width,
height=height,
default.units=’native’),

under=TRUE)

8.1.4.2 Vector Data

A major problem with the previous solution is that the user can neither
modify the image nor use its content to produce additional information.
A different approach is to use digital vector data (points, lines, and poly-
gons). A popular format for vectorial data is the shapefile, commonly
used by public and private providers to distribute information. A shape-
file can be read with readShapePoly and readShapeLines from the rgdal
package. These functions produce a SpatialPolygonsDataFrame and a
SpatialLinesDataFrame objects, respectively. These objects can be dis-
played with the sp.polygons and sp.lines functions provided by the sp
package.

For our example, the Madrid district and streets are available as shape-
files from the nomecalles web service1.

library(maptools)
library(rgdal)

## nomecalles http://www.madrid.org/nomecalles/Callejero_madrid.icm
## Form at http://www.madrid.org/nomecalles/DescargaBDTCorte.icm

## Madrid districts
unzip(’Distritos␣de␣Madrid.zip’)
distritosMadrid <- readShapePoly(’Distritos␣de␣Madrid/200001331’)
proj4string(distritosMadrid) <- CRS("+proj=utm␣+zone=30")

1http://www.madrid.org/nomecalles/
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distritosMadrid <- spTransform(distritosMadrid, CRS=CRS("+proj=
longlat␣+ellps=WGS84"))

## Madrid streets
unzip(’Callejero_␣Ejes␣de␣viales.zip’)
streets <- readShapeLines(’Callejero_␣Ejes␣de␣viales/call2011.shp’)
streetsMadrid <- streets[streets$CMUN==’079’,]
proj4string(streetsMadrid) <- CRS("+proj=utm␣+zone=30")
streetsMadrid <- spTransform(streetsMadrid, CRS=CRS("+proj=longlat␣+

ellps=WGS84"))

These shapefiles can be included in the plot with the sp.layout mecha-
nism accepted by spplot or with the layer and +.trellis functions from
the latticeExtra package. The station codes are placed with this same
procedure using the sp.pointLabel function from the maptools package.
Figure 8.5 displays the final result.

spDistricts <- list(’sp.polygons’, distritosMadrid, fill=’gray97’,
lwd=0.3)

spStreets <- list(’sp.lines’, streetsMadrid, lwd=0.05)
spNames <- list(sp.pointLabel, NO2sp,

labels=substring(NO2sp$codEst, 7),
cex=0.6, fontfamily=’Palatino’)

spplot(NO2sp["classNO2"], col.regions=airPal, cex=dentAQ,
edge.col=’black’, alpha=0.8,
sp.layout=list(spDistricts, spStreets, spNames),
scales=list(draw=TRUE),
key.space=NO2key)

pNO2 +
layer(sp.pointLabel(NO2sp,

labels=substring(NO2sp$codEst, 7),
cex=0.8, fontfamily=’Palatino’)

) +
layer_({

sp.polygons(distritosMadrid, fill=’gray97’, lwd=0.3)
sp.lines(streetsMadrid, lwd=0.05)

})

The ggplot2 package is not able to work directly with SpatialLines*
or SpatialPolygon* objects. Instead, it includes several fortify meth-
ods to convert objects from these classes into a conventional data.frame.
You should beware that the fortify process for large objects (such as the
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FIGURE 8.5: Annual average of NO2 measurements in Madrid using
shapefiles (lines and polygons) and text as geographical context.
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SpatialLinesDataFrame in our example) requires too much time to be
completed.

8.1.5 Spatial Interpolation

The measurements at discrete points give limited information about the
underlying process. It is quite common to approximate the spatial distri-
bution of the measured variable with the interpolation between measure-
ment locations. Selection of the optimal interpolation method is outside
the scope of this book. The following code illustrates an easy solution us-
ing inverse distance weighted (IDW) interpolation with the gstat package
(E. J. Pebesma 2004) only for illustration purposes.

library(gstat)

airGrid <- spsample(NO2sp, type=’regular’, n=1e5)
gridded(airGrid) <- TRUE
airKrige <- krige(mean ~ 1, NO2sp, airGrid)

The result is a SpatialPixelsDataFrame that can be displayed with
spplot and combined with the previous layers and the measurement sta-
tion points (Figure 8.6).

spplot(airKrige["var1.pred"],
col.regions=colorRampPalette(airPal)) +

layer({
sp.polygons(distritosMadrid, fill=’transparent’, lwd=0.3)
sp.lines(streetsMadrid, lwd=0.07)
sp.points(NO2sp, pch=21, alpha=0.8, fill=’gray50’, col=’black’)
})

8.1.6 Export to Other Formats

A different approach is to use an external data viewer, due to its features
or its large community of users. Two tools deserve to be mentioned: Geo-
JSON rendered within GitHub repositories, and KML files imported in
Google Earth™.

8.1.6.1 GeoJSON and OpenStreetMap

GeoJSON is an open computer file format for encoding collections of sim-
ple geographical features along with their nonspatial attributes using Java-
Script Object Notation (JSON). These files can be easily rendered within
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FIGURE 8.6: Kriging annual average of NO2 measurements in Madrid.
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FIGURE 8.7: NO2 data in a GeoJSON file rendered within the GitHub
repository.

GitHub repositories. GitHub uses Leaflet.js2 to represent the data and
MapBox3 with OpenStreetMap4 for the underlying map data.

Our SpatialPointsDataFrame can be converted to a GeoJSON file with
writeOGR from the rgdal package.

library(rgdal)
writeOGR(NO2sp, ’data/NO2.geojson’, ’NO2sp’, driver=’GeoJSON’)

Figure 8.7 shows a snapshot of the rendering of this GeoJSON file,
available from the GitHub repository. There you can zoom on the map
and click on the stations to display the data.

8.1.6.2 Keyhole Markup Language

Keyhole Markup Language (KML) is a file format to display geographic
data within Internet-based, two-dimensional maps and three-dimensional
Earth browsers. KML uses a tag-based structure with nested elements
and attributes, and is based on the XML standard. KML became an in-
ternational standard of the Open Geospatial Consortium in 2008. Google

2http://leafletjs.com/
3http://www.mapbox.com/
4http://www.openstreetmap.org/
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Earth was the first program able to view and graphically edit KML files,
although Marble, an open-source project, also offers KML support.

There are several packages able to generate KML files. For example,
the writeOGR function from the rgdal package can also write KML files:

library(rgdal)
writeOGR(NO2sp, dsn=’NO2_mean.kml’, layer=’mean’, driver=’KML’)

However, the plotKML package provides a simpler interface and in-
cludes a wide set of options:

library(plotKML)
plotKML(NO2sp["mean"], points_names=NO2sp$codEst)

Both functions produce a file that can be directly opened with Google
Earth or Marble.

8.1.7 bAdditional Information with Tooltips and Hyperlinks

Now, let’s suppose you need to know the median and standard devia-
tion of the time series of a certain station. Moreover, you would like to
watch the photography of that station; or even better, you wish to visit
its webpage for additional information. A frequent solution is to produce
interactive graphics with tooltips and hyperlinks.

The gridSVG package is able to create an SVG graphic, where each com-
ponent owns a title attribute; the content of this attribute is commonly
displayed as a tooltip when the mouse hovers over the element. The con-
tent of this attribute can be modified thanks to the grid.garnish function.
Moreover, the grid.hyperlink function can add hyperlinks to the corre-
spondent graphical element.

The tooltips will display the photography of the station, the name of
the station, and the statistics previously calculated with aggregate in the
first step of this chapter. The station images are downloaded from the Mu-
nimadrid webpage. The htmlParse function from the XML package parses
each station page, and the station photograph is extracted with getNode-
Set and xmlAttrs.

library(XML)

old <- setwd(’images’)
for (i in 1:nrow(NO2df)){
codEst <- NO2df[i, "codEst"]
## Webpage of each station
codURL <- as.numeric(substr(codEst, 7, 8))
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rootURL <- ’http://www.mambiente.munimadrid.es’
stationURL <- paste(rootURL,

’/opencms/opencms/calaire/contenidos/estaciones/
estacion’,

codURL, ’.html’, sep=’’)
content <- htmlParse(stationURL, encoding=’utf8’)
## Extracted with http://www.selectorgadget.com/
xPath <- ’//*[contains(concat(␣"␣",␣@class,␣"␣"␣),␣concat(␣"␣",␣"

imagen_1",␣"␣"␣))]’
imageStation <- getNodeSet(content, xPath)[[1]]
imageURL <- xmlAttrs(imageStation)[1]
imageURL <- paste(rootURL, imageURL, sep=’’)
download.file(imageURL, destfile=paste(codEst, ’.jpg’, sep=’’))

}
setwd(old)

Next, we attach the hyperlink and the SVG information to each circle.

print(pNO2 + layer_(sp.polygons(distritosMadrid, fill=’gray97’, lwd
=0.3)))

library(gridSVG)

NO2df <- as.data.frame(NO2sp)

tooltips <- sapply(seq_len(nrow(NO2df)), function(i){
codEst <- NO2df[i, "codEst"]
## Information to be attached to each line
stats <- paste(c(’Mean’, ’Median’, ’SD’),

signif(NO2df[i, c(’mean’, ’median’, ’sd’)], 4),
sep=’␣=␣’, collapse=’<br␣/>’)

## Station photograph
imageURL <- paste(’images/’, codEst, ’.jpg’, sep=’’)
imageInfo <- paste("<img␣src=", imageURL,

"␣width=’100’␣height=’100’␣/>", sep=’’)
## Text to be included in the tooltip
nameStation <- paste(’<b>’,

as.character(NO2df[i, "Nombre"]),
’</b>’, sep=’’)

info <- paste(nameStation, stats, sep=’<br␣/>’)
## Tooltip includes the image and the text
paste(imageInfo, info, sep=’<br␣/>’)

})
grid.garnish(’points.panel’, title=tooltips, grep=TRUE, group=FALSE)
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## Webpage of each station
rootURL <- ’http://www.mambiente.munimadrid.es’
urlList <- sapply(seq_len(nrow(NO2df)), function(i){
codEst <- NO2df[i, "codEst"]
codURL <- as.numeric(substr(codEst, 7, 8))
stationURL <- paste(rootURL,

’/opencms/opencms/calaire/contenidos/estaciones/
estacion’,

codURL, ’.html’, sep=’’)
})

grid.hyperlink(’points.panel’, urlList, grep=TRUE, group=FALSE)

The title attribute can be accessed with the JavaScript plug-ins jQuery5

and jQuery UI6 to display tooltips when the mouse hovers over each sta-
tion. The grid.script function creates objects containing links to these
plug-ins. And grid.export uses these objects to produce an SVG docu-
ment with script elements.

## Add jQuery and jQuery UI scripts
grid.script(file=’http://code.jquery.com/jquery-1.8.3.js’)
grid.script(file=’http://code.jquery.com/ui/1.9.2/jquery-ui.js’)
## Simple JavaScript code to initialize the tooltip
grid.script(file=’js/myTooltip.js’)
## Produce the SVG graphic: the results of grid.garnish,
## grid.hyperlink and grid.script are converted to SVG code
grid.export(’figs/airMadrid.svg’)

These plug-ins will work only after the file airMadrid.svg created by
grid.export is inserted in a HTML file with standard headers. Figure 8.8
shows a capture of the result.

htmlBegin <- ’<!DOCTYPE␣html>
<html>
<head>
<title>Tooltips␣with␣jQuery␣and␣gridSVG</title>
<link␣rel="stylesheet"␣type="text/css"␣href="http://code.jquery.com/

ui/1.9.2/themes/smoothness/jquery-ui.css"␣/>
<meta␣charset="utf-8">
</head>
<body>’

5http://jquery.com/
6http://jqueryui.com/
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FIGURE 8.8: Tooltips generated with gridSVG using jQuery and jQuery UI.

htmlEnd <- ’</body>␣</html>’

svgText <- paste(readLines(’figs/airMadrid.svg’), collapse=’\n’)

writeLines(paste(htmlBegin, svgText, htmlEnd, sep=’\n’),
’airMadrid.html’)
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8.2 Choropleth Maps

A choropleth map shades regions according to the measurement of a vari-
able displayed on the map. The choropleth map is an appropiate tool to
visualize a variable uniformly distributed within each region, changing
only at the region boundaries. This method performs correctly with ho-
mogeneous regions, both in size and shape.

This section details how to create a multivariate choropleth map to
show the results of the 2011 Spanish general elections. It is inspired by
the infographic from the New York Times7, a multivariate choropleth map
of the inmigration behavior in the United States.

votes2011 <- read.csv(’data/votes2011.csv’,
colClasses=c(’factor’, ’factor’, ’numeric’, ’

numeric’))

The next section describes how to define a SpatialPolygonsDataFrame
with the data from this data.frame and the spatial information of the ad-
ministrative boundaries from a shapefile. You can skip it for later reading
if you are not interested in this procedure and jump to the section 8.2.2
where the maps are produced.

8.2.1 bAdministrative Boundaries

The Spanish administrative boundaries are available as shapefiles at the
INE (Instituto Nacional de Estadística) webpage8. Both the municipali-
ties, espMap, and province boundaries, provinces, are read as Spatial-
PolygonsDataFrame with readShapePoly.

library(sp)
library(maptools)

old <- setwd(tempdir())
download.file(’http://goo.gl/TIvr4’, ’mapas_completo_municipal.rar’)
system2(’unrar’, c(’e’, ’mapas_completo_municipal.rar’))
espMap <- readShapePoly(fn="esp_muni_0109")
Encoding(levels(espMap$NOMBRE)) <- "latin1"

provinces <- readShapePoly(fn="spain_provinces_ag_2")
setwd(old)

7http://www.nytimes.com/interactive/2009/03/10/us/
20090310-immigration-explorer.html

8http://www.ine.es/ > Products and services > Publications > Download the PC-Axis
program > Municipal maps
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Some of the polygons are repeated and can be dissolved with union-
SpatialPolygons (the rgeos package must be installed).

## dissolve repeated polygons
espPols <- unionSpatialPolygons(espMap, espMap$PROVMUN)

Spanish maps are commonly displayed with the Canarian islands next
to the peninsula. First we have to extract the polygons of the islands and
the polygons of the peninsula, and then shift the coordinates of the islands
with elide. Finally, a new SpatialPolygons object binds the shifted is-
lands with the peninsula.

## Extract Canarias islands from the SpatialPolygons object
canarias <- sapply(espPols@polygons, function(x)substr(x@ID, 1, 2) %

in% c("35", "38"))
peninsulaPols <- espPols[!canarias]
islandPols <- espPols[canarias]

## Shift the island extent box to position them at the bottom right
corner

dy <- bbox(peninsulaPols)[2,1] - bbox(islandPols)[2,1]
dx <- bbox(peninsulaPols)[1,2] - bbox(islandPols)[1,2]
islandPols2 <- elide(islandPols, shift=c(dx, dy))
bbIslands <- bbox(islandPols2)

## Bind Peninsula (without islands) with shifted islands
espPols <- rbind(peninsulaPols, islandPols2)

The final step is to link the data with the polygons. The ID slot of each
polygon is the key to find the correspondent registry in the votes2011
dataset.

## Match polygons and data using ID slot and PROVMUN column
IDs <- sapply(espPols@polygons, function(x)x@ID)
idx <- match(IDs, votes2011$PROVMUN)

##Places without information
idxNA <- which(is.na(idx))

##Information to be added to the SpatialPolygons object
dat2add <- votes2011[idx, ]

## SpatialPolygonsDataFrame uses row names to match polygons with
data

row.names(dat2add) <- IDs
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espMapVotes <- SpatialPolygonsDataFrame(espPols, dat2add)

## Drop those places without information
espMapVotes <- espMapVotes[-idxNA, ]

8.2.2 Map

The SpatialPolygonsDataFrame constructed in the previous section con-
tains two main variables: whichMax, the name of the predominant polit-
ical option, and pcMax, the percentage of votes obtained by this political
option.

whichMax is a categorical value with four levels: the two main parties
(PP and PSOE), the abstention results (ABS), and the rest of the parties (OTH).
Figure 8.9 encodes these levels with a qualitative palette with constant
hues and varying chroma and luminance for each class using the pack-
age colorspace (Zeileis, Hornik, and Murrell 2009). In order to improve
the color discrimination, hues are equally spaced along the HCL (Hue,
Chroma, Luminance) based color wheel.

library(colorspace)

classes <- levels(factor(espMapVotes$whichMax))
nClasses <- length(classes)

qualPal <- rainbow_hcl(nClasses, start=30, end=300)

For the definition of a combined palette in the next section, it is interest-
ing to note that the colors provided by rainbow_hcl can be obtained with
the following code where the distances between hues and their values are
computed explicitly.

## distance between hues
step <- 360/nClasses
## hues equally spaced
hue = (30 + step*(seq_len(nClasses)-1))%%360
qualPal <- hcl(hue, c=50, l=70)

spplot(espMapVotes["whichMax"], col=’transparent’, col.regions=
qualPal)

On the other hand, pcMax is a quantitative variable that can be ade-
quately displayed with a sequential palette (Figure 8.10).
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FIGURE 8.9: Categorical choropleth map displaying the name of the pre-
dominant political option in each municipality in the 2011 Spanish general
elections.

quantPal <- rev(heat_hcl(16))
spplot(espMapVotes["pcMax"], col=’transparent’, col.regions=quantPal

)

8.2.3 bCategorical and Quantitative Variables Combined in a
Multivariate Choropleth Map

Following the inspiring example of the infographic from the New York
Times, we will combine both choropleth maps to produce a multivariate
map: the hue of each polygon will be determined by the name of the pre-
dominant option (whichMax) but the chroma and luminance will vary ac-
cording to the percentage of votes (pcMax). Hues are computed with the
same method as in Figure 8.9, while the corresponding values of chroma
and luminance are calculated with the sequential_hcl function.

classes <- levels(factor(espMapVotes$whichMax))

112



8.2 Choropleth Maps

0

20

40

60

80

100

FIGURE 8.10: Quantitative choropleth map displaying the percentage of
votes obtained by the predominant political option in each municipality
in the 2011 Spanish general elections.

nClasses <- length(classes)
step <- 360/nClasses
multiPal <- lapply(1:nClasses, function(i){

rev(sequential_hcl(16, h = (30 + step*(i-1))%%360))
})

With this multivariate palette we can produce a list of maps extract-
ing the polygons according to each class and filling with the appropiate
color from this palette. The resulting list of trellis objects can be com-
bined with Reduce and the +.trellis function of the latticeExtra and
produce a trellis object.

It is important to note that, to ensure the legend’s homogeneity, the
breakpoints defined by the at argument are the same for all the individual
maps.

pList <- lapply(1:nClasses, function(i){
## Only those polygons corresponding to a level are selected
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mapClass <- espMapVotes[espMapVotes$whichMax==classes[i],]
pClass <- spplot(mapClass[’pcMax’], col.regions=multiPal[[i]],

col=’transparent’,
## labels only needed in the last legend
colorkey=(if (i==nClasses) TRUE else list(labels=rep

(’’, 6))),
at = seq(0, 100, by=20))

})

p <- Reduce(’+’, pList)

The legend of this trellis object must be defined manually. The main
operation is to merge the legends from the components of the list of maps
to obtain a bivariate legend.

The first step is to add a title to each individual legend. This is a little
complex because levelplot (the engine under the spplot method) does
not include a title in its color key. The solution is to define a function to
add the title and include it as an argument to the legend component of
each trellis object. The print.trellis method will process this func-
tion when displaying the trellis object. The frameGrob and packGrob of
the grid package will do the main work inside this function.

## Function to add a title to a legend
addTitle <- function(legend, title){
titleGrob <- textGrob(title, gp=gpar(fontsize=8), hjust=1, vjust=1)
## retrieve the legend from the trellis object
legendGrob <- eval(as.call(c(as.symbol(legend$fun), legend$args)))
## Layout of the legend WITH the title
ly <- grid.layout(ncol=1, nrow=2,

widths=unit(0.9, ’grobwidth’, data=legendGrob))
## Create a frame to host the original legend and the title
fg <- frameGrob(ly, name=paste(’legendTitle’, title, sep=’_’))
## Add the grobs to the frame
pg <- packGrob(fg, titleGrob, row=2)
pg <- packGrob(pg, legendGrob, row=1)
}

## Access each trellis object from pList...
for (i in seq_along(classes)){
## extract the legend (automatically created by spplot)...
lg <- pList[[i]]$legend$right
## ... and add the addTitle function to the legend component of

each trellis object
pList[[i]]$legend$right <- list(fun=’addTitle’,
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args=list(legend=lg, title=classes[i]))
}

Now that every component of pList includes a legend with a title, the
legend of the p trellis object can be modified to store the merged legends
from the set of components of pList.

## List of legends
legendList <- lapply(pList, function(x){
lg <- x$legend$right
clKey <- eval(as.call(c(as.symbol(lg$fun), lg$args)))
clKey

})

## Function to pack the list of legends in a unique legend
## Adapted from latticeExtra::: mergedTrellisLegendGrob
packLegend <- function(legendList){
N <- length(legendList)
ly <- grid.layout(nrow = 1, ncol = N)
g <- frameGrob(layout = ly, name = "mergedLegend")
for (i in 1:N) g <- packGrob(g, legendList[[i]], col = i)
g

}

## The legend of p will include all the legends
p$legend$right <- list(fun = ’packLegend’, args = list(legendList =

legendList))

Figure 8.11 displays the result with the province boundaries super-
posed (only for the peninsula due to a problem with the definition of
boundaries the Canarian islands in the file) and a rectangle to separate
the Canarian islands from the remainder of the map.

canarias <- provinces$PROV %in% c(35, 38)
peninsulaLines <- provinces[!canarias,]

p +
layer(sp.polygons(peninsulaLines, lwd = 0.1)) +
layer(grid.rect(x=bbIslands[1,1], y=bbIslands[2,1],

width=diff(bbIslands[1,]),
height=diff(bbIslands[2,]),
default.units=’native’, just=c(’left’, ’bottom’),
gp=gpar(lwd=0.5, fill=’transparent’)))
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FIGURE 8.11: Spanish general elections results. The map shows the result
of the most voted option in each municipality.

8.3 Raster Maps

A raster data structure is a matrix of cells organized into rows and columns
where each cell contains a value representing information, such as tem-
perature, altitude, population density, land use, etc. This section describes
how to display a raster with two different examples: CM-SAF solar irradi-
ation rasters will illustrate the use of quantitative data, and land cover and
population data from the NEO-NASA project will exemplify the display
of categorical data and multivariate rasters. Read Chapter 10 for details
about these datasets.

8.3.1 Quantitative Data

As an example of quantitative data, this section displays the distribution
of annual solar irradiation over the Iberian peninsula using the estimates
from CM SAF. The RasterLayer object of annual averages of solar irradi-
ation estimated by CM SAF can be easily displayed with the levelplot
method of the rasterVis package. Figure 8.12 illustrates this raster with
marginal graphics to show the column (longitude) and row (latitude) sum-
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FIGURE 8.12: Annual average of solar radiation displayed with a sequen-
tial palette.

maries of the RasterLayer object. The summary is computed with the
function defined by FUN.margin (which uses mean as the default value).

library(raster)
library(rasterVis)
SISav <- raster(’data/SISav’)
levelplot(SISav)

Although the solar irradiation distribution reveals the physical struc-
ture of the region, it is recommended to add the geographic context with
a layer of administrative boundaries (Figure 8.13).

library(maps)
library(mapdata)
library(maptools)
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FIGURE 8.13: Annual average of solar radiation with administrative
boundaries.

ext <- as.vector(extent(SISav))
boundaries <- map(’worldHires’,

xlim=ext[1:2], ylim=ext[3:4],
plot=FALSE)

boundaries <- map2SpatialLines(boundaries,
proj4string=CRS(projection(SISav)))

levelplot(SISav) + layer(sp.lines(boundaries, lwd=0.5))

8.3.1.1 Hill Shading

A frequent method to improve the display of meteorological rasters is the
hill shading or shaded relief technique, a method of representing relief on
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a map by depicting the shadows that would be cast by high ground if light
comes from a certain sun position (Figure 8.14).

The procedure is as follows:

• Download a Digital Elevation Model (DEM) from the DIVA-GIS ser-
vice.

old <- setwd(tempdir())
download.file(’http://www.diva-gis.org/data/msk_alt/ESP_msk_alt.zip’

, ’ESP_msk_alt.zip’)
unzip(’ESP_msk_alt.zip’, exdir=’.’)

DEM <- raster(’ESP_msk_alt’)

• Compute the hill shade raster with terrain and hillShade from
raster.

slope <- terrain(DEM, ’slope’)
aspect <- terrain(DEM, ’aspect’)
hs <- hillShade(slope=slope, aspect=aspect,

angle=20, direction=30)

setwd(old)

• Combine the result with the previous map using semitransparency.

## hillShade theme: gray colors and semitransparency
hsTheme <- modifyList(GrTheme(), list(regions=list(alpha=0.6)))

levelplot(SISav, panel=panel.levelplot.raster,
margin=FALSE, colorkey=FALSE) +

levelplot(hs, par.settings=hsTheme, maxpixels=1e6) +
layer(sp.lines(boundaries, lwd=0.5))

119



8 THEMATIC MAPS

FIGURE 8.14: Hill shading of annual average of solar radiation.

8.3.1.2 Excursus: 3D Visualization

An alternative method for a DEM is 3D visualization where the user can
rotate or zoom the figure. This solution is available thanks to the rgl pack-
age, which provides functions for 3D interactive graphics. The plot3D
function in the rasterVis package is a wrapper to this package for Raster-
Layer objects.
plot3D(DEM, maxpixels=5e4)

The output scene can be exported to several formats such as WebGL
with writeWebGL to be rendered in a browser, or STL with writeSTL, a
format commonly used in 3D printing. Files using this format are viewed
easily on GitHub (Figure 8.15)
writeSTL(’figs/DEM.stl’)

8.3.1.3 Diverging Palettes

Next, instead of displaying the absolute values of each cell, we will ana-
lyze the differences between each cell and the global average value. This
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FIGURE 8.15: 3D visualization of a Digital Elevation Model using the STL
format in a GitHub repository.

average is computed with the cellStats function and substracted from
the original RasterLayer. Figure 8.16 displays the relation between these
scaled values and latitude (y), with five different groups defined by the
longitude (cut(x, 5)). It is evident that larger irradiation values are as-
sociated with lower latitudes. However, there is no such clear relation
between irradiation and longitude.

meanRad <- cellStats(SISav, ’mean’)
SISav <- SISav - meanRad

xyplot(layer ~ y, data = SISav,
groups=cut(x, 5),
par.settings=rasterTheme(symbol=plinrain(n=5, end=200)),
xlab = ’Latitude’, ylab = ’Solar␣radiation␣(scaled)’,
auto.key=list(space=’right’, title=’Longitude’, cex.title=1.3))

Numerical information ranging in an interval including a neutral value
is commonly displayed with diverging palettes. These palettes represent
neutral classes with light colors, while low and high extremes of the data
range are highlighted using dark colors with contrasting hues. I use the
Purple-Orange palette from ColorBrewer with purple for positive values
and orange for negative values. In order to underline the position of the
interval containing zero, the center color of this palette is substituted with
pure white. The resulting palette is displayed in Figure 8.17 with the cus-
tom showPal function. The corresponding correspondent raster map pro-
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FIGURE 8.16: Relation between scaled annual average radiation and lati-
tude for several longitude groups.
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#B35806 #E08214 #FDB863 #FEE0B6 #FFFFFF #D8DAEB #B2ABD2 #8073AC #542788

FIGURE 8.17: Purple-Orange diverging palette using white as middle
color.

duced with this palette is displayed in Figure 8.18. Although extreme pos-
itive and negative values can be easily discriminated, the zero value is not
associated with white because the data range is not symmetrical around
zero.

divPal <- brewer.pal(n=9, ’PuOr’)
divPal[5] <- "#FFFFFF"

showPal <- function(pal, labs=pal, cex=0.6, ...){
barplot(rep(1, length(pal)), col=pal,

names.arg=labs, cex.names=cex,
axes=FALSE, ...)

}

showPal(divPal)

divTheme <- rasterTheme(region=divPal)

levelplot(SISav, contour=TRUE, par.settings=divTheme)

The solution is to connect the symmetrical color palette with the asym-
metrical data range. The first step is to create a set of breaks such that the
zero value is the center of one of the intervals.

rng <- range(SISav[])
## Number of desired intervals
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FIGURE 8.18: Asymmetric raster data (scaled annual average irradiation)
displayed with a symmetric diverging palette.

nInt <- 15
## Increment corresponding to the range and nInt
inc0 <- diff(rng)/nInt
## Number of intervals from the negative extreme to zero
n0 <- floor(abs(rng[1])/inc0)
## Update the increment adding 1/2 to position zero in the center of

an interval
inc <- abs(rng[1])/(n0 + 1/2)
## Number of intervals from zero to the positive extreme
n1 <- ceiling((rng[2]/inc - 1/2) + 1)
## Collection of breaks
breaks <- seq(rng[1], by=inc, length= n0 + 1 + n1)
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The next step is to compute the midpoints of each interval. These
points represent the data belonging to each interval, and their value will
be connected with a color of the palette.

## Midpoints computed with the median of each interval
idx <- findInterval(SISav[], breaks, rightmost.closed=TRUE)
mids <- tapply(SISav[], idx, median)
## Maximum of the absolute value both limits
mx <- max(abs(breaks))
mids

A simple method to relate the palette and the intervals is with a straight
line such that a point is defined by the absolute maximum value, ((mx,
1)), and another point by zero, ((0, 0.5)). Why are we using the interval
[0, 1] as the y-coordinate of this line, and why is 0.5 the result of zero? The
reason is that the input of the break2pal function will be the result of col-
orRamp, a function that creates another interpolating function which maps
colors with values between 0 and 1. Therefore, a new palette is created, ex-
tracting colors from the original palette, such that the central color (white)
is associated with the interval containing zero. This palette is displayed in
Figure 8.19.

The raster map produced with this new palette is displayed in Figure
8.20. Now zero is clearly associated with the white color.

break2pal <- function(x, mx, pal){
## x = mx gives y = 1
## x = 0 gives y = 0.5
y <- 1/2*(x/mx + 1)
rgb(pal(y), maxColorValue=255)

}

## Interpolating function that maps colors with [0, 1]
## rgb(divRamp(0.5), maxColorValue=255) gives "#FFFFFF" (white)
divRamp <- colorRamp(divPal)
## Diverging palette where white is associated with the interval
## containing the zero
pal <- break2pal(mids, mx, divRamp)
showPal(pal, round(mids, 1))

levelplot(SISav, par.settings=rasterTheme(region=pal),
at=breaks, contour=TRUE)

It is interesting to note two operations carried out internally by the
lattice package. First, the custom.theme function (used by rasterTheme)
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−1.3 −1.2 −1 −0.9 −0.8 −0.6 −0.4 −0.3 −0.1 0 0.2 0.3 0.4 0.6 0.8 0.8

FIGURE 8.19: Modified diverging palette related with the asymmetrical
raster data.

creates a new palette with 100 colors using colorRampPalette to interpo-
late the palette passed as an argument. Second, the level.colors func-
tion makes the arrangement between intervals and colors. If this function
receives more colors than intervals, it chooses a subset of the palette disre-
garding some of the intermediate colors. Therefore, because this function
will receive 100 colors from par.settings, it is difficult to control exactly
which colors of our original palette will be represented.

An alternative way for finer control is to fill the regions$col compo-
nent of the theme with our palette after it has been created (Figure 8.21).

divTheme <- rasterTheme()

divTheme$regions$col <- pal
levelplot(SISav, par.settings=divTheme, at=breaks, contour=TRUE)

A final improvement to this map is to compute the intervals using a
classification algorithm with the classInt package. With this approach
it is likely that zero will not be perfectly centered in its corresponding in-
terval. The remaining code is exactly the same as above, replacing the
breaks vector with the result of the classIntervals function. Figure 8.22
displays the result.

library(classInt)

cl <- classIntervals(SISav[],
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FIGURE 8.20: Asymmetric raster data (scaled annual average irradiation)
displayed with a modified diverging palette.

## n=15, style=’equal’)
## style=’hclust’)
## style=’sd’)
style=’kmeans’)
## style=’quantile’)

cl
breaks <- cl$brks

idx <- findInterval(SISav[], breaks, rightmost.closed=TRUE)
mids <- tapply(SISav[], idx, median)
mids
mx <- max(abs(breaks))
pal <- break2pal(mids, mx, divRamp)
divTheme$regions$col <- pal
levelplot(SISav, par.settings=divTheme, at=breaks, contour=TRUE)
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FIGURE 8.21: Same as Figure 8.20 but colors are assigned directly to the
regions$col component of the theme.

8.3.2 Categorical Data

Land cover is the observed physical cover on the Earth’s surface. A set of
seventeen different categories is commonly used. Using satellite observa-
tions, it is possible to map where on Earth each of these seventeen land
surface categories can be found and how these land covers change over
time.

This section illustrates how to read and display rasters with categor-
ical information using information from the NEO-NASA project. After
the land cover and population density files have been downloaded, two
RasterLayers can be created with the raster package. Both files are
read, their geographical extent reduced to the area of India and China,
and cleaned (99999 cells are replaced with NA).

library(raster)
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FIGURE 8.22: Same as Figure 8.21 but defining intervals with the optimal
classification method.

## China and India
ext <- extent(65, 135, 5, 55)

pop <- raster(’875430rgb-167772161.0.FLOAT.TIFF’)
pop <- crop(pop, ext)
pop[pop==99999] <- NA

landClass <- raster(’241243rgb-167772161.0.TIFF’)
landClass <- crop(landClass, ext)

Each land cover type is designated with a different key: the sea is la-
beled with 0; forests with 1 to 5; shrublands, grasslands, and wetlands
with 6 to 11; agriculture and urban lands with 12 to 14; and snow and bar-
ren with 15 and 16. These four groups (sea is replaced by NA) will be the
levels of the categorical raster. The raster package includes the ratify
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method to define a layer as categorical data, filling it with integer values
associated to a Raster Attribute Table (RAT).

landClass[landClass %in% c(0, 254)] <- NA
## Only four groups are needed:
## Forests: 1:5
## Shrublands, etc: 6:11
## Agricultural/Urban: 12:14
## Snow: 15:16
landClass <- cut(landClass, c(0, 5, 11, 14, 16))
## Add a Raster Attribute Table and define the raster as categorical

data
landClass <- ratify(landClass)
## Configure the RAT: first create a RAT data.frame using the
## levels method; second, set the values for each class (to be
## used by levelplot); third, assign this RAT to the raster
## using again levels
rat <- levels(landClass)[[1]]
rat$classes <- c(’Forest’, ’Land’, ’Urban’, ’Snow’)
levels(landClass) <- rat

This categorical raster can be displayed with the levelplot method
of the rasterVis package. Previously, a theme is defined with the back-
ground color set to lightskyblue1 to display the sea areas (filled with
NA values), and the region palette is defined with adequate colors (Figure
8.23).

library(rasterVis)

pal <- c(’palegreen4’, # Forest
’lightgoldenrod’, # Land
’indianred4’, # Urban
’snow3’) # Snow

catTheme <- modifyList(rasterTheme(),
list(panel.background = list(col=’lightskyblue1’),

regions = list(col= pal)))

levelplot(landClass, maxpixels=3.5e5, par.settings=catTheme,
panel=panel.levelplot.raster)

Let’s explore the relation between the land cover and population den-
sity rasters. Figure 8.24 displays this latter raster using a logarithmic scale.

pPop <- levelplot(pop, zscaleLog=10, par.settings=BTCTheme,
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FIGURE 8.23: Land cover raster (categorical data).

maxpixels=3.5e5, panel=panel.levelplot.raster)
pPop

Both rasters can be joined together with the stack method to create
a new RasterStack object. Figure 8.25 displays the distribution of the
logarithm of the population density associated to each land class.

s <- stack(pop, landClass)
names(s) <- c(’pop’, ’landClass’)
histogram(~log10(pop)|landClass, data=s,

scales=list(relation=’free’))

8.3.3 bMultivariate Legend

We can reproduce the code used to create the multivariate choropleth (Sec-
tion 8.2) using the levelplot function from the rasterVis package. Again,
the result is a list of trellis objects. Each of these objects is the represen-
tation of the population density in a particular land class. The +.trellis
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FIGURE 8.24: Population density raster.

function of the latticeExtra package with Reduce superposes the ele-
ments of this list and produces a trellis object. Figure 8.26 displays the
result.

library(colorspace)
## at for each sub-levelplot is obtained from the global levelplot
at <- pPop$legend$bottom$args$key$at
classes <- rat$classes
nClasses <- length(classes)

pList <- lapply(1:nClasses, function(i){
landSub <- landClass
## Those cells from a different land class are set to NA...
landSub[!(landClass==i)] <- NA
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FIGURE 8.25: Distribution of the logarithm of the population density as-
sociated to each land class.

## ... and the resulting raster masks the population raster
popSub <- mask(pop, landSub)
## The HCL color wheel is divided in nClasses
step <- 360/nClasses
## and a sequential palette is constructed with a hue from one of
## the color wheel parts
cols <- rev(sequential_hcl(16, h = (30 + step*(i-1))%%360))

pClass <- levelplot(popSub, zscaleLog=10, at=at,
maxpixels=3.5e5,
## labels only needed in the last legend
colorkey=(if (i==nClasses) TRUE else list(labels=

list(labels=rep(’’, 17)))),
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FIGURE 8.26: Population density for each land class (multivariate raster).

col.regions=cols, margin=FALSE)
})

8.4 Vector Fields

Many objects in our natural environment exhibit directional features that
are naturally represented by vector data. Vector fields, commonly found in
science and engineering, describe the spatial distribution of a vector vari-
able such as fluid flow or electromagnetic forces. A suitable visualization
method has to display both the magnitude and the direction of the vectors
at any point.

This section illustrates two visualization techniques, arrow plots and
stream lines, with the help of the wind direction and speed forecast pub-
lished by MeteoGalicia (see Section 12.5 for details).

library(raster)
library(rasterVis)

wDir <- raster(’data/wDir’)/180*pi
wSpeed <- raster(’data/wSpeed’)
windField <- stack(wSpeed, wDir)
names(windField) <- c(’magnitude’, ’direction’)
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FIGURE 8.27: Arrow plot of the wind vector field.

8.4.1 Arrow Plot

A frequent vector visualization technique is the arrow plot, which draws
a small arrow at discrete points within the vector field (Figure 8.27). This
approach is best suited for small datasets. If the grid of discrete points gets
too dense or if the variations in magnitude are too big, the images tend to
be visually confusing.

vectorplot(windField, isField=TRUE, par.settings=BTCTheme(),
colorkey=FALSE, scales=list(draw=FALSE))
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8.4.2 Streamlines

Another solution is to depict the directional structure of the vector field
by its integral curves, also denoted as flow lines or streamlines. There are
a variety of algorithms to produce such visualization. The streamplot
function of rasterVis displays streamlines with a procedure inspired by
the FROLIC algorithm: For each point, droplet, of a jittered regular grid, a
short streamline portion, streamlet, is calculated by integrating the under-
lying vector field at that point. The main color of each streamlet indicates
local vector magnitude. Streamlets are composed of points whose sizes,
positions, and color degradation encode the local vector direction (Figure
8.28).

myTheme <- streamTheme(region=rev(brewer.pal(n=4, name=’Greys’)),
symbol=BTC(n=9, beg=20))

streamplot(windField, isField=TRUE,
par.settings=myTheme,
droplet=list(pc=12),
streamlet=list(L=5, h=5),
scales=list(draw=FALSE),
panel=panel.levelplot.raster)

The magic of Figure 8.28 is that it is able to show the underlying phys-
ical structure of the spatial region only displaying wind speed and direc-
tion. It is easy to recognize the Iberian Peninsula surrounded by strong
winds along the eastern and northern coasts. Another feature easily dis-
tinguishable is the Strait of Gibraltar, a channel that connects the Atlantic
Ocean to the Mediterranean Sea between the south of Spain and the north
of Morocco. Also apparent are the Pyrenees mountains and some of the
river valleys.
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FIGURE 8.28: Streamlines of the wind vector field.
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Chapter 9

Reference and Physical Maps

A reference map focuses on the geographic location of features. In these
maps, cities are named and major transport routes are identified. In addi-
tion, natural features such as rivers and mountains are named, and eleva-
tion is shown using a simple color shading.

A physical map shows the physical landscape features of a place. Moun-
tains and elevation changes are usually shown with different colors and
shades to show relief, using green to show lower elevations and browns
for high elevations.

This chapter details how to create a reference map of a northern region
of Spain using data from OpenStreetMap and a physical map of Brazil
with data from different sources.

9.1 Physical Maps

Brazil1, the world’s fifth largest country, is one of the seventeen megadi-
verse countries2, home to diverse wildlife, natural environments, and ex-
tensive natural resources in a variety of protected habitats. Throughout
this section we will create a physical map of this exceptional country us-
ing data from several data services.

1http://en.wikipedia.org/wiki/Brazil
2http://en.wikipedia.org/wiki/Megadiverse_countries
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9 REFERENCE AND PHYSICAL MAPS

library(raster)
library(rasterVis)
library(maptools)
library(rgeos)
library(latticeExtra)
library(colorspace)

## Longitude-Latitude projection
proj <- CRS(’␣+proj=longlat␣+ellps=WGS84’)

9.1.1 Retrieving Data

Four types of information are needed: administrative boundaries, terrain
elevation, rivers and lakes, and sea depth.

1. The administrative boundaries are available from GADM3. The read-
ShapePoly function reads data from the downloaded shapefile and
creates a SpatialPolygonsDataFrame object.

old <- setwd(tempdir())

download.file(’http://www.gadm.org/data/shp/BRA_adm.zip’,
’BRA_adm.zip’)

unzip(’BRA_adm.zip’)
brazilAdm <- readShapePoly(’BRA_adm1.shp’, proj4string=proj)
Encoding(levels(brazilAdm$NAME_1)) <- ’latin1’

2. The terrain elevation or digital elevation model (DEM) is available
from DIVA-GIS4. The raster function reads the file and creates a
RasterLayer object.

download.file(’http://www.diva-gis.org/data/alt/BRA_alt.zip’,
’BRA_alt.zip’)

unzip(’BRA_alt.zip’)
brazilDEM <- raster(’BRA_alt’)

3. The water lines (rivers and lakes) are available from Natural Earth
Data5. The readShapeLines function reads data from the down-
loaded shapefile and creates a SpatialLinesDataFrame object.

3http://gadm.org/
4http://www.diva-gis.org/Data
5http://www.naturalearthdata.com/
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9.1 Physical Maps

## World Water lines (Natural Earth)
download.file(’http://www.naturalearthdata.com/http//www.

naturalearthdata.com/download/10m/physical/ne_10m_rivers_lake_
centerlines.zip’,

’neRivers.zip’)
unzip(’neRivers.zip’)
worldlRiv <- readShapeLines(’ne_10m_rivers_lake_centerlines’,

proj4string = proj)

4. Finally, the sea depth is also available from Natural Earth Data5. The
raster covers the whole world so it must be cropped by the extent of
the DEM raster.

download.file(’http://www.naturalearthdata.com/http//www.
naturalearthdata.com/download/10m/raster/OB_LR.zip’,

’neSea.zip’)
unzip(’neSea.zip’)
worldSea <- raster(’OB_LR.tif’)
brazilSea <- crop(worldSea, brazilDEM)
setwd(old)

9.1.2 Intersection of Shapefiles and Elevation Model

The rivers and lakes database from Natural Earth Data comprises all the
world extent, but we only need the rivers of Brazil. The function gInter-
section of the package rgeos determines the intersection between two
geometries. Because these geometries must be defined with classes of the
sp package, the extent of brazilDEM must be first converted to Spatial-
Polygons. The intersection is a new SpatialLines object, brazilRiv.

## only those features labeled as "River" are needed
worlRiv<- worlRiv[worlRiv$featurecla==’River’,]

## Define the extent of Brazil as a SpatialPolygons
extBrazil <- as(extent(brazilDEM), ’SpatialPolygons’)
proj4string(extBrazil) <- proj

## and intersect it with worldRiv to extract brazilian rivers
## from the world database
brazilRiv <- gIntersection(worldRiv, extBrazil, byid=TRUE)
## and especially the famous Amazonas River
amazonas <- worldRiv[worldRiv$name==’Amazonas’,]
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9 REFERENCE AND PHYSICAL MAPS

9.1.3 Labels

Each region of Brazil will be labeled with the name of its corresponding
polygon. The locations of the labels are defined by the centroid of each
polygon, easily computed with the coordinates method. In addition, a
larger label with the name of the country will be placed in the average
centroid.

## Locations of labels of each polygon
centroids <- coordinates(brazilAdm)
## Location of the "Brazil" label (average of the set of polygons

centroids)
xyBrazil <- apply(centroids, 2, mean)

Some region names are too long to be displayed in one line. Thus, a
previous step is to split the string if it comprises more than two words.

admNames <- strsplit(as.character(brazilAdm$NAME_1), ’␣’)

admNames <- sapply(admNames,
FUN=function(s){
sep=if (length(s)>2) ’\n’ else ’␣’
paste(s, collapse=sep)
})

9.1.4 Overlaying Layers of Information

Therefore, the physical map (Figure 9.2) is composed of four layers:

1. The sea depth raster displayed with the levelplot method of the
rasterVis package. The palette is defined with brewer.pal (Figure
9.1).

blueTheme <- rasterTheme(region=brewer.pal(n=9, ’Blues’))

seaPlot <- levelplot(brazilSea, par.settings=blueTheme,
maxpixels=1e6, panel=panel.levelplot.raster,
margin=FALSE, colorkey=FALSE)

2. The altitude raster layer uses a terrain colors palette, as the one pro-
duced by the terrain_hcl function from the colorspace package
(Ihaka et al. 2011) (Figure 9.1).
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9.2 bOpenStreetMap with Hill Shade Layers

terrainTheme <- rasterTheme(region=terrain_hcl(15))

altPlot <- levelplot(brazilDEM, par.settings=terrainTheme,
maxpixels=1e6, panel=panel.levelplot.raster,
margin=FALSE, colorkey=FALSE)

3. The rivers represented by the SpatialLinesDataFrame object. The
Amazonas River is labeled with sp.lineLabel and printed with a
thicker line. The label is created with the label method, a wrapper
function to extract the ID slots from the SpatialLines and create a
suitable character object with the correct names values.

amazonasLab <- label(amazonas, ’Amazonas’)

4. The administrative boundaries represented by the SpatialPolygons-
DataFrame object with their labels printed with the panel.pointLabel
function. This function uses optimization routines to find good loca-
tions for point labels without overlaps.

seaPlot + altPlot + layer({
## Rivers
sp.lines(brazilRiv, col=’darkblue’, lwd=0.2)
## Amazonas
sp.lineLabel(amazonas, amazonasLab,

lwd=1, col=’darkblue’, col.line=’darkblue’,
cex=0.5, fontfamily=’Palatino’)

## Administrative boundaries
sp.polygons(brazilAdm, col=’black’, lwd=0.2)
## Centroids of administrative boundaries ...
panel.points(centroids, col=’black’)
## ... with their labels
panel.pointLabel(centroids, labels=admNames,

cex=0.7, fontfamily=’Palatino’, lineheight=.8)
## Country name
panel.text(xyBrazil[1], xyBrazil[2], labels=’B␣R␣A␣Z␣I␣L’,

cex=1.5, fontfamily = ’Palatino’, fontface=2)
})

9.2 bOpenStreetMap with Hill Shade Layers

Although I was born in Madrid, Galicia (north of Spain) is a very special
region for me. More precisely, the Cedeira and Valdoviño regions offer a
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9 REFERENCE AND PHYSICAL MAPS

FIGURE 9.1: Sea depth and altitude rasters of Brazil.

wonderful combination of wild sea, secluded beaches, and forests. I will
show you a map of these marvelous places.

9.2.1 Retrieving Data from OpenStreetMap

The first step is to acquire information from the OpenStreetMap project.
There are several packages to extract data from this service but, while most
of them only provide already rendered raster images, the osmar package6

(Eugster and Schlesinger 2010) enables the use of the raw data with classes
from the packages sp and igraph.

The get_osm function retrieves a region defined by corner_bbox using
the OSM API.

library(’osmar’)

api <- osmsource_api()
ymax <- 43.7031
ymin <- 43.6181
xmax <- -8.0224
xmin <- -8.0808
box <- corner_bbox(xmin, ymin, xmax, ymax)
cedeira <- get_osm(box, source=api, full=TRUE)

6Its webpage http://osmar.r-forge.r-project.org/ proposes two interesting de-
mos.
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9.2 bOpenStreetMap with Hill Shade Layers

FIGURE 9.2: Physical map of Brazil. Main administrative regions and the
Amazonas River are labeled.

The cedeira object includes three main components: nodes, ways and
relations. These components can be accessed with the functions find, sub-
set, way, node, relation, and tags. Thus, the different kinds of roads can
be obtained using way and tags with the appropiate tag.

summary(cedeira$nodes)

idxHighways <- find(cedeira, way(tags(k==’highway’)))
highways <- subset(cedeira, way_ids=idxHighways)
idxStreets <- find(highways, way(tags(v==’residential’)))
idxPrimary <- find(highways, way(tags(v==’primary’)))
idxSecondary <- find(highways, way(tags(v==’secondary’)))
idxTertiary <- find(highways, way(tags(v==’tertiary’)))
idxOther <- find(highways,

way(tags(v==’unclassified’ |
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9 REFERENCE AND PHYSICAL MAPS

v==’footway’ |
v==’steps’)))

The result of find is the index of each element. The correspondent spa-
tial object is extracted with find_down and subset, and can be converted
to a class defined by the sp package with as_sp. The following spFromOSM
function encodes the procedure, and extracts the SpatialLines object that
represent each type of road.

spFromOSM <- function(source, index, type=’lines’){
idx <- find_down(source, index)
obj <- subset(source, ids=idx)
objSP <- as_sp(obj, type)
}

streets <- spFromOSM(cedeira, way(idxStreets))
primary <- spFromOSM(cedeira, way(idxPrimary))
secondary <- spFromOSM(cedeira, way(idxSecondary))
tertiary <- spFromOSM(cedeira, way(idxTertiary))
other <- spFromOSM(cedeira, way(idxOther))

A similar procedure can be applied to construct a SpatialPoints ob-
ject with the collection of places with name:

idxPlaces <- find(cedeira, node(tags(k==’name’)))
places <- spFromOSM(cedeira, node(idxPlaces), ’points’)

nms <- subset(cedeira$nodes$tags, subset=(k==’name’), select=c(’id’,
’v’))

ord <- match(idxPlaces, nms$id)
nms <- nms[ord,]
places$name <- nms$v[ord]

## Cedeira town will be printed differently
idxCedeira <- which(nms$v==’Cedeira’) ##Main town
cedeiraCoords <- coordinates(places[idxCedeira,])
places <- places[-idxCedeira,]

9.2.2 Hill Shading

The second step is to produce layers to display the topography. A suitable
method is shaded relief or hill shading. This technique simulates the cast
shadow thrown from a light source upon a raised relief map. The hill
shade layer can be computed from the slope and aspect layers derived
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9.2 bOpenStreetMap with Hill Shade Layers

from a Digital Elevation Model (DEM). This layer will underlay the DEM
raster, which will be printed using semitransparency.

The DEM for this region is available at the Geonetwork-SECAD service
from the Universidad de Extremadura and can be read with raster:
library(raster)
## Galicia DEM
## http://ide.unex.es/geonetwork/srv/es/main.search?any=MDE_Galicia
## http://ide.unex.es:8180/geonetwork/srv/es/resources.get?id=21&

fname=dem_gal.7z&access=private

old <- tempdir()
download.file(’http://ide.unex.es:8180/geonetwork/srv/es/resources.

get?id=21&fname=dem_gal.7z&access=private’, ’dem_gal.7z’)
unzip(’dem_gal.7z’)
demGalicia <- raster(’dem_gal.asc’)
setwd(old)

The slope and aspect layers are computed with the terrain function,
and the hill shade layer is derived with these layers for a fixed sun posi-
tion. Previously, the useful region of the DEM raster was extracted with
the crop function:
cedeiraSP <- as_sp(cedeira, ’points’)
projCedeira <- projection(cedeiraSP)
##extCedeira <- bbox(cedeiraSP)
## or summary(cedeira$nodes)$bbox
extCedeira <- extent(-8.15, -7.95, 43.6, 43.75)
demCedeira <- crop(demGalicia, extCedeira)
projection(demCedeira) <- projCedeira
demCedeira[demCedeira <= 0] <- NA

slope <- terrain(demCedeira, ’slope’)
aspect <- terrain(demCedeira, ’aspect’)
hsCedeira <- hillShade(slope=slope, aspect=aspect,

angle=20, direction=30)

9.2.3 Overlaying Layers of Information

And finally, the third step is to display the different layers of information
in correct order (Figure 9.3):

• The hill shade layer is created with the levelplotmethod for Raster
objects defined in the rasterVis package. The GrTheme is modified
to display the sea region with blue color.
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9 REFERENCE AND PHYSICAL MAPS

• The DEM raster is printed with terrain colors and semitransparency
over the hill shade layer.

• The roads are displayed with an auxiliary function (sp.road) that
produces a colored line over a thicker black line.

• The places are represented with sp.points and labeled with the
sp.pointLabel method, a modification of the pointLabel function
for base graphics, both defined in the maptools package. These
functions use optimization routines to find good locations for point
labels without overlaps.

library(maptools)
library(latticeExtra)
library(colorspace)
library(rasterVis)

##Auxiliary function to display the roads. A thicker black line in
##the background and a thinner one with an appropiate color.
sp.road <- function(line, lwd=5, blwd=7,

col=’indianred1’, bcol=’black’){
sp.lines(line, lwd=blwd, col=bcol)
sp.lines(line, lwd=lwd, col=col)

}

## The background color of the panel is set to blue to represent the
sea

hsTheme <- modifyList(GrTheme(), list(panel.background=list(col=’
skyblue3’)))

## DEM with terrain colors and semitransparency
terrainTheme <- modifyList(rasterTheme(region=terrain_hcl(n=15)),

list(regions=list(alpha=0.6)))
## Hill shade and DEM overlaid
levelplot(hsCedeira, maxpixels=ncell(hsCedeira),

par.settings=hsTheme, margin=FALSE, colorkey=FALSE) +
levelplot(demCedeira, maxpixels=ncell(demCedeira),

par.settings=terrainTheme) +
## Roads and places
layer({
## Street and roads
sp.road(streets, lwd=1, blwd=2, col=’white’)
sp.road(other, lwd=2, blwd=3, col=’white’)
sp.road(tertiary, lwd=3, blwd=4, col=’palegreen’)
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9.2 bOpenStreetMap with Hill Shade Layers

FIGURE 9.3: Main roads near Cedeira, Galicia. Local topography is dis-
played with the hill shading technique. Some places are highlighted.

sp.road(secondary, lwd=4, blwd=6, col=’midnightblue’)
sp.road(primary, col=’indianred1’)
## Places except Cedeira town
sp.points(places, pch=19, col=’black’, cex=0.4, alpha=0.8)
sp.pointLabel(places, labels=places$name,

fontfamily = ’Palatino’,
cex=0.6, col=’black’)

## Cedeira town
panel.points(cedeiraCoords, pch=18, col=’black’, cex=1)
panel.text(cedeiraCoords, labels=’Cedeira’, pos=2, offset=1)
})
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Chapter 10

About the Data

10.1 Air Quality in Madrid

Air pollution is harmful to health and contributes to respiratory and car-
diac diseases, and has a negative impact on natural ecosystems, agricul-
ture, and the built environment. In Spain, the principal pollutants are par-
ticulate matter (PM), tropospheric ozone, nitrogen dioxide, and environ-
mental noise1.

The surveillance system of the Integrated Air Quality system of the
Madrid City Council consists of twenty-four remote stations, equipped
with analyzers for gases (NO_{X}, CO, ozone, BT_{X}, HCs, SO_{2}) and
particles (PM10, PM2.5), which measure pollution in different areas of the
urban environment. In addition, many of the stations also include sensors
to provide meteorological data.

The detailed information of each measuring station can be retrieved
from its own webpage defined by its station code.

## codeStations.csv is extracted from the document
## http://www.mambiente.munimadrid.es/opencms/export/sites/default/

calaire/Anexos/INTPHORA-DIA.pdf,
## table of page 3.

1http://www.eea.europa.eu/soer/countries/es/
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codEstaciones <- read.csv2(’data/codeStations.csv’)
codURL <- as.numeric(substr(codEstaciones$Codigo, 7, 8))

## The information of each measuring station is available at its own
webpage, defined by codURL

URLs <- paste(’http://www.mambiente.munimadrid.es/opencms/opencms/
calaire/contenidos/estaciones/estacion’, codURL, ’.html’, sep=’’
)

10.1.1 bData Arrangement

The station webpage includes several tables that can be extracted with the
readHTMLTable function of the XML package. The longitude and latitude
are included in the second table. The ub2dms function cleans this table and
converts the strings to the DMS class defined by the sp package to represent
degrees, minutes, and decimal seconds.

library(XML)
library(sp)

## Access each webpage, retrieve tables and extract long/lat data
coords <- lapply(URLs, function(est){
tables <- readHTMLTable(est)
location <- tables[[2]]
## Clean the table content and convert to dms format
ub2dms <- function(x){
ch <- as.character(x)
ch <- sub(’,’, ’.’, ch)
ch <- sub(’O’, ’W’, ch) ## Some stations use "O" instead of "W"
as.numeric(char2dms(ch, "º", "’", "’’␣"))

}
long <- ub2dms(location[2,1])
lat <- ub2dms(location[2,2])
alt <- as.numeric(sub(’␣m.’, ’’, location[2, 3]))

coords <- data.frame(long=long, lat=lat, alt=alt)

coords
})

airStations <- cbind(codEstaciones, do.call(rbind, coords))
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## The longitude of "El Pardo" station is wrong (positive instead of
negative)

airStations$long[22] <- -airStations$long[22]

write.csv2(airStations, file=’data/airStations.csv’)

The 2011 air pollution data are available upon request from the Madrid
City Council webpage2 and at the data folder of the book repository. The
structure of the file is documented in the INTPHORA-DIA document3.
The readLines function reads the file and a lapply loop processes each
line. The result is stored in the file airQuality.csv

## Fill in the form at
## http://www.mambiente.munimadrid.es/opencms/opencms/calaire/

consulta/descarga.html
## to receive the Diarios11.zip file.
unzip(’data/Diarios11.zip’)
rawData <- readLines(’data/Datos11.txt’)
## This loop reads each line and extracts fields as defined by the
## INTPHORA file:
## http://www.mambiente.munimadrid.es/opencms/export/sites/default/

calaire/Anexos/INTPHORA-DIA.pdf
datos11 <- lapply(rawData, function(x){
codEst <- substr(x, 1, 8)
codParam <- substr(x, 9, 10)
codTec <- substr(x, 11, 12)
codPeriod <- substr(x, 13, 14)
month <- substr(x, 17, 18)
dat <- substr(x, 19, nchar(x))
## "N" used for impossible days (31st April)
idxN <- gregexpr(’N’, dat)[[1]]
if (idxN==-1) idxN <- numeric(0)
nZeroDays <- length(idxN)
day <- seq(1, 31-nZeroDays)
## Substitute V and N with ";" to split data from different days
dat <- gsub(’[VN]+’, ’;’, dat)
dat <- as.numeric(strsplit(dat, ’;’)[[1]])
## Only data from valid days
dat <- dat[day]

2http://www.mambiente.munimadrid.es/opencms/opencms/calaire/consulta/
descarga.html

3http://www.mambiente.munimadrid.es/opencms/export/sites/default/calaire/
Anexos/INTPHORA-DIA.pdf
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res <- data.frame(codEst, codParam, ##codTec, codPeriod,
month, day, year=2011,
dat)

})
datos11 <- do.call(rbind, datos11)
write.csv2(datos11, ’data/airQuality.csv’)

10.1.2 Combine Data and Spatial Locations

Our next step is to combine the data and spatial information. The loca-
tions are contained in airStations, a data.frame that is converted to an
SpatialPointsDataFrame object with the coordinates method.

library(sp)

## Spatial location of stations
airStations <- read.csv2(’data/airStations.csv’)
coordinates(airStations) <- ~ long + lat
## Geographical projection
proj4string(airStations) <- CRS("+proj=longlat␣+ellps=WGS84␣+datum=

WGS84")

On the other hand, the airQuality data.frame comprises the air qual-
ity daily measurements. We will retain only the NO2 time series.

## Measurements data
airQuality <- read.csv2(’data/airQuality.csv’)
## Only interested in NO2
NO2 <- airQuality[airQuality$codParam==8, ]

We will represent each station using aggregated values (mean, median,
and standard deviation) computed with aggregate:

NO2agg <- aggregate(dat ~ codEst, data=NO2,
FUN = function(x) {

c(mean=signif(mean(x), 3),
median=median(x),
sd=signif(sd(x), 3))

})
NO2agg <- do.call(cbind, NO2agg)
NO2agg <- as.data.frame(NO2agg)

The aggregated values (a data.frame) and the spatial information (a
SpatialPointsDataFrame) are combined with the spCbind method from
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the maptools package to create a new SpatialPointsDataFrame. Previ-
ously, the data.frame is reordered by matching against the shared key
column (airStations$Codigo and NO2agg$codEst):

library(maptools)
## Link aggregated data with stations to obtain a

SpatialPointsDataFrame.
## Codigo and codEst are the stations codes
idxNO2 <- match(airStations$Codigo, NO2agg$codEst)
NO2sp <- spCbind(airStations[, c(’Nombre’, ’alt’)], NO2agg[idxNO2,

])
save(NO2sp, file=’data/NO2sp.RData’)

10.2 Spanish General Elections

The results from the 2011 Spanish general elections4 are available from the
Ministry webpage5 and at the data folder of the book repository. Each
region of the map will represent the percentage of votes (pcMax) obtained
by the predominant political option (whichMax) at the corresponding mu-
nicipality. Only four groups are considered: the two main parties (PP and
PSOE), the abstention results (ABS), and the remaining parties (OTH). Each
region will be identified by the PROVMUN code.

dat2011 <- read.csv(’data/GeneralSpanishElections2011.gz’)

census <- dat2011$Total.censo.electoral
validVotes <- dat2011$Votos.válidos
## Election results per political party and municipality
votesData <- dat2011[, 12:1023]
## Abstention as an additional party
votesData$ABS <- census - validVotes
## Winner party at each municipality
whichMax <- apply(votesData, 1, function(x)names(votesData)[which.

max(x)])
## Results of the winner party at each municipality
Max <- apply(votesData, 1, max)
## OTH for everything but PP, PSOE and ABS
whichMax[!(whichMax %in% c(’PP’, ’PSOE’, ’ABS’))] <- ’OTH’
## Percentage of votes with the electoral census
pcMax <- Max/census * 100

4http://en.wikipedia.org/wiki/Spanish_general_election_2011
5http://www.infoelectoral.mir.es/docxl/04_201105_1.zip
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## Province-Municipality code. sprintf formats a number with leading
zeros.

PROVMUN <- with(dat2011, paste(sprintf(’%02d’, Código.de.Provincia),
sprintf(’%03d’, Código.de.Municipio),
sep=""))

votes2011 <- data.frame(PROVMUN, whichMax, Max, pcMax)
write.csv(votes2011, ’data/votes2011.csv’, row.names=FALSE)

10.3 CM SAF

The Satellite Application Facility on Climate Monitoring (CM SAF) is a
joint venture of the Royal Netherlands Meteorological Institute, the Swedish
Meteorological and Hydrological Institute, the Royal Meteorological Insti-
tute of Belgium, the Finnish Meteorological Institute, the Deutscher Wet-
terdienst, Meteoswiss, and the UK MetOffice, along with collaboration of
the European Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT) (CM SAF 2013). The CM-SAF was funded in 1992 to
generate and store monthly and daily averages of meteorological data
measured in a continuous way with a spatial resolution of 0.03° (15 kilo-
meters). The CM SAF provides two categories of data: operational prod-
ucts and climate data. The operational products are built on data that are
validated with on-ground stations and then is provided in near-real-time
to develop variability studies in diurnal and seasonal time scales. How-
ever, climate data are long-term data series to assess inter-annual variabil-
ity (Posselt, Mueller, et al. 2012).

In this chapter we will display the annual average of the shortwave
incoming solar radiation product (SIS) incident over Spain during 2008,
computed from the monthly means of this variable. SIS collates shortwave
radiation (0.2 to 4µm wavelength range) reaching a horizontal unit Earth
surface obtained by processing information from geostationary satellites
(METEOSAT) and also from polar satellites (MetOp and NOAA) (Schulz
et al. 2009) and then validated with high-quality on-ground measurements
from the Baseline Surface Radiation Network (BSRN)6.

The monthly means of SIS are available upon request from the CM SAF
webpage (Posselt, Müller, et al. 2011) and at the data folder of the book
repository. Data from CM-SAF is published as raster files. The raster

6http://www.bsrn.awi.de/en/home/
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package provides the stack function to read a set of files and create a
RasterStack object, where each layer stores the content of a file. There-
fore, the twelve raster files of monthly averages produce a RasterStack
with twelve layers.

library(raster)

tmp <- tempdir()
unzip(’data/SISmm2008_CMSAF.zip’, exdir=tmp)
filesCMSAF <- dir(tmp, pattern=’SISmm’)
SISmm <- stack(paste(tmp, filesCMSAF, sep=’/’))
## CM-SAF data is average daily irradiance (W/m2). Multiply by 24
## hours to obtain daily irradiation (Wh/m2)
SISmm <- SISmm * 24

The RasterLayer object with annual averages is computed from the
monthly means and stored using the native format of the raster package.

## Monthly irradiation: each month by the corresponding number of
days

daysMonth <- c(31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
SISm <- SISmm * daysMonth / 1000 ## kWh/m2
## Annual average
SISav <- sum(SISm)/sum(daysMonth)
writeRaster(SISav, file=’SISav’)

10.4 Land Cover and Population Rasters

The NASA’s Earth Observing System (EOS)7 is a coordinated series of
polar-orbiting and low-inclination satellites for long-term global observa-
tions of the land surface, biosphere, solid Earth, atmosphere, and oceans.
NEO-NASA8, one of projects included in EOS, provides a repository of
global data imagery. We use the population density and land cover clas-
sification rasters. Both rasters must be downloaded from their respective
webpages as Geo-TIFF files.

library(raster)
## http://neo.sci.gsfc.nasa.gov/Search.html?group=64
pop <- raster(’875430rgb-167772161.0.FLOAT.TIFF’)
## http://neo.sci.gsfc.nasa.gov/Search.html?group=20
landClass <- raster(’241243rgb-167772161.0.TIFF’)

7http://eospso.gsfc.nasa.gov/
8http://neo.sci.gsfc.nasa.gov

157





Part III

Space-Time Data
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Chapter 11

Displaying Spatiotemporal Data:
Introduction

Space-time datasets are indexed both in space and in time. The data may
consist of a spatial vector object (for example, points or polygons) or raster
data at different times. The first case is representative of data from fixed
sensors providing measurements abundant in time but sparse in space.
The second case is the typical format of satellite imagery, which produces
high spatial resolution data sparse in time (E. Pebesma 2012).

There are several visualization approaches of space-time data trying to
cope with the four dimensions of the data (Cressie and Wikle 2011).

On the one hand, the data can be conceived as a collection of snap-
shots at different times. These snapshots can be displayed as a sequence
of frames to produce an animation, or can be printed on one page with
different panels for each snapshot using the small-multiple technique de-
scribed repeatedly in previous chapters.

On the other hand, one of the two spatial dimensions can be collapsed
through an appropriate statistic (for example, mean or standard deviation)
to produce a space-time plot (also known as a Hovmöller diagram). The
axes of this graphic are typically longitude or latitude as the x-axis, and
time as the y-axis, with the value of the spatial-averaged value of the raster
data represented with color.
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11 DISPLAYING SPATIOTEMPORAL DATA: INTRODUCTION

Finally, the space-time object can be reduced to a multivariate time se-
ries (where each location is a variable or column of the time series) and
displayed with the time series visualization techniques described in the
Part I. This approach is directly applicable to space-time data sparse in
space (for example, point measurements at different times). However, it
is mandatory to use aggregation in the case of raster data. In this case,
the multivariate time series is composed of the evolution of the raster data
averaged along a certain direction.

The next chapters, focused on raster space-time data (Chapter 12) and
point space-time data (Chapter 13), illustrate with examples how to pro-
duce animations, multipanel graphics, hovmöller diagrams, and time-series
with R.

11.1 Packages

The CRAN Tasks View “Handling and Analyzing Spatiotemporal Data”1

summarizes the packages for reading, vizualizing, and analyzing space-
time data. This section provides a brief introduction to the spacetime,
raster, and rasterVis packages. Most of the information has been ex-
tracted from their vignettes, webpages, and help pages. You should read
them for detailed information.

11.1.1 spacetime

The spacetime package (E. Pebesma 2012) is built upon the classes and
methods for spatial data from the sp package , and for time series data
from the xts package. It defines classes to represent four space-time lay-
outs:

1. STF, STFDF: full space-time grid of observations for spatial features
and observation time, with all space-time combinations.

2. STS, STSDF: sparse grid layout, stores only the non-missing space-
time combinations on a lattice

3. STI, STIDF: irregular layout, time and space points of measured val-
ues have no apparent organisation.

4. STT, STTDF: simple trajectories.

1http://cran.r-project.org/web/views/SpatioTemporal.html
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Moreover, spacetime provides several methods for the following classes:

• stConstruct, STFDF, and STIDF create objects from single or multi-
ple tables.

• as coerces to other spatiotemporal objects, xts, Spatial, matrix, or
data.frame.

• [[ selects or replaces data values.

• [ selects spatial or temporal subsets, and data variables.

• over retrieves index or data values of one object at the locations and
times of another.

• aggregate aggregates data values over particular spatial, temporal,
or spatiotemporal domains.

• stplot creates spatiotemporal plots. It is able to produce multi-
panel plots, space-time plots, animations, and time series plots.

11.1.2 raster

The raster package (R. J. Hijmans 2013) is able to add time information
associated with layers of a RasterStack or RasterBrick object with the
setZ function. This information can be extracted with getZ.

If a Raster* object includes this information, the zApply function can
be used to apply a function over a time series of layers of the object.

11.1.3 rasterVis

rasterVis (Oscar Perpiñán and R. Hijmans 2013) provides three methods
to display spatiotemporal rasters:

1. hovmoller produces Hovmöller diagrams (Hovmöller 1949). The
axes of this kind of diagram are typically longitude or latitude (x-
axis) and time (ordinate or y-axis) with the value of some aggregated
field represented through color. However, the user can define the di-
rection with dirXY and the summary function with FUN.

2. horizonplot creates horizon graphs (Few 2008), with many time se-
ries displayed in parallel by cutting the vertical range into segments
and overplotting them with color representing the magnitude and
direction of deviation. Each time series corresponds to a geographi-
cal zone defined with dirXY and averaged with zonal.
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3. xyplot displays conventional time series plots. Each time series cor-
responds to a geographical zone defined with dirXY and aggregated
with zonal.

On the other hand, the histogram, densityplot, and bwplot methods
accept a FUN argument to be applied to the z slot of Raster* object (defined
by setZ). The result of this function is used as the grouping variable of the
plot to create different panels.

11.2 Further Reading

• (Cressie and Wikle 2011) is a systematic approach to key quantitative
techniques on statistics for spatiotemporal data. The book begins
with separate treatments of temporal data and spatial data, and later
combines these concepts to discuss spatiotemporal statistical meth-
ods. There is a chapter devoted to exploratory methods, including
visualization techniques.

• (E. Pebesma 2012) presents the spacetime package, which imple-
ments a set of classes for spatiotemporal data. This paper includes
examples that illustrate how to import, subset, coerce, and export
spatiotemporal data, proposes several visualization methods, and
discusses spatiotemporal geostatistical interpolation.

• (Slocum 2005) (previously cited in Chapter 7.2) includes a chapter
about map animation, discussing several approaches for displaying
spatiotemporal data.

• (Hengl 2009) (previously cited in Chapter 7.2) includes a working ex-
ample with spatiotemporal data to illustrate space-time variograms
and interpolation.

• (Harrower and Fabrikant 2008) explore the role of animation in ge-
ographic visualization and outline the challenges, both conceptual
and technical, involved in the creation and use of animated maps.

• The CRAN Tasks View “Handling and Analyzing Spatiotemporal
Data” 2 summarizes the packages for reading, vizualizing, and an-
alyzing space-time data. The R-SIG-Geo mailing list3 is a powerful
resource for obtaining help.

2http://cran.r-project.org/web/views/SpatioTemporal.html
3https://stat.ethz.ch/mailman/listinfo/R-SIG-Geo/
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Chapter 12

Spatiotemporal Raster Data

12.1 Introduction

A space-time raster dataset is a collection of raster layers indexed by time,
or in other words, a time series of raster maps. The raster package de-
fines the classes RasterStack and RasterBrick to build multilayer rasters.
The index of the collection can be set with the function setZ (which is not
restricted to time indexes). The rasterVis packages provide several meth-
ods to display space-time rasters.

12.1.1 Data

Throughout this chapter we will work with a multilayer raster of daily so-
lar radiation estimates from CM SAF (section 10.3) falling in the region of
Galicia (north of Spain) during 2011. These data are arranged in a Raster-
Brick with 365 layers using brick and time indexed with setZ.

library(raster)
library(zoo)
library(rasterVis)

SISdm <- brick(’data/SISgal’)

timeIndex <- seq(as.Date(’2011-01-01’), by=’day’, length=365)
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FIGURE 12.1: Level plot of daily averages of solar radiation.

SISdm <- setZ(SISdm, timeIndex)
names(SISdm) <- format(timeIndex, ’%a_%Y%m%d’)

12.2 Level Plots

This multilayer raster can be displayed with each snapshot in a panel us-
ing the small-multiple technique. The problem with this approach is that
only a limited number of panels can be correctly displayed on one page.
In this example, we print the first 12 days of the sequence (Figure 12.1).

levelplot(SISdm, layers=1:12, panel=panel.levelplot.raster)

When the number of layers is very high, a partial solution is to ag-
gregate the data, grouping the layers according to a time condition. For
example, we can build a new space-time raster with the monthly averages
using zApply and as.yearmon. This raster can be completely displayed
on one page (Figure 12.2), although part of the information of the original
data is lost in the aggregation procedure.
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FIGURE 12.2: Level plot of monthly averages of solar radiation.

SISmm <- zApply(SISdm, by=as.yearmon, fun=’mean’)

levelplot(SISmm, panel=panel.levelplot.raster)

12.3 Graphical Exploratory Data Analysis

There are other graphical tools that complement the previous maps. The
scatterplot and the matrix of scatterplots, the histogram and kernel density
plot, and the boxplot are among the most important tools in the frame of
the Exploratory Data Analysis approach. Some of them were previously
used with a spatial raster (Chapter 8.3). In this section we will use the
histogram (Figure 12.3), the violin plot (a combination of a boxplot and a
kernel density plot) (Figure 12.4), and the matrix of scatterplots (section
4.1, Figure 12.5).

histogram(SISdm, FUN=as.yearmon)

bwplot(SISdm, FUN=as.yearmon)
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FIGURE 12.3: Histogram of monthly distribution of solar radiation.

splom(SISmm, xlab=’’, plot.loess=TRUE)

Both the histogram and the violin plot show that daily solar irradiation
is bimodal almost every month. This is related to the predominance of
clear sky and overcast days, with several partly cloudy days between these
modes. This geographical region receives higher irradiation levels from
June to September, and both the levels and the shape of the probability
distribution contrast sharply with the winter.

The matrix of scatterplots displays a quasilinear relationship between
the central months due to the predominance of clear sky conditions. How-
ever, the relationships involving winter months become strongly nonlin-
ear due to the presence of clouds.
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FIGURE 12.4: Violin plot of monthly distribution of solar radiation.

12.4 Space-Time and Time Series Plots

The level plots of Figures 12.1 and 12.2 display the full 3D space-time with
a grid of panels where each layer is printed. In other words, the raster
is sliced, and the collection of pieces is shown in a table. In the section
12.5, this collection of layers will be displayed sequentially like frames of
a movie to build an animation. In this section, the 3D raster is reduced
to a 2D matrix with spatial aggregation following a certain direction. For
example, Figure 12.6 displays with colors the averaged value of the raster
for each latitude zone (using the default value of the argument dirXY) with
time on the vertical axis.

hovmoller(SISdm, par.settings=BTCTheme())
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FIGURE 12.5: Scatterplot matrix of monthly averages together with their
kernel density estimations in the diagonal frames.
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FIGURE 12.6: Hovmöller graphic displaying the time evolution of the av-
erage solar radiation for each latitude zone.

On the other hand, this 2D matrix can be conceived as a multivariate
time series with each aggregated zone conforming to a different variable
of the time series. This approach is followed by the xyplot (Figure 12.7)
and horizonplot (Figure 12.8) methods, which reproduce the procedures
described in Chapter 3 to display multivariate time series.

xyplot(SISdm, digits=1, col=’black’, lwd=0.2, alpha=0.6)

horizonplot(SISdm, digits=1,
col.regions=rev(brewer.pal(n=6, ’PuOr’)),
xlab=’’, ylab=’Latitude’)
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FIGURE 12.7: Time graph of the average solar radiation for each latitude
zone. Each line represents a latitude band.
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12.5 Animation
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FIGURE 12.8: Horizon graph of the average solar radiation for each lati-
tude zone.

These three figures highlight the stational behavior of the solar radia-
tion, with higher values during the central months. It is interesting to note
that (Figure 12.8) the radiation values around the equinoxes fluctuate near
the yearly average value of each latitude region.

12.5 Animation

A different approach is to plot the individual layers of the space-time
raster sequentially as movie frames to produce an animation. The pro-
cedure is quite simple:

• Plot each layer of the raster to produce a collection of graphic files.
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• Join these files as a sequence of frames with a suitable tool (for ex-
ample, ffmpeg) to create a movie file1, 2.

The effectiveness of this visualization procedure is partly related to the
similitude between consecutive frames. If the frames of the sequence di-
verge excessively from one to another, the user will experience difficulties
to perceive any relationship between them. On the other hand, if the tran-
sitions between layers are smooth enough, the frames will be perceived as
conforming to a whole story; and, moreover, the user will be able to spot
both the stable patterns and the important variations.

12.5.1 Data

The daily solar radiation CM-SAF data do not meet the condition of a
smooth transition between layers. The changes between the consecutive
snapshots of daily radiation are too abrupt to be glued one after another.
We will work with a different dataset in this section.

The THREDSS server3 of Meteogalicia4 provides access through differ-
ent protocols to the output of a Weather Research and Forecasting (WRF)
model, a mesoscale numerical weather prediction system. Among the set
of available variables we will use the forecast of hourly cloud cover at low
and mid levels. This space-time raster has a time horizon of 96 hours and
a spatial resolution of 12 kilometers.

cft <- brick(’data/cft_20130417_0000.nc’)
## use memory instead of file
cft[] <- getValues(cft)
## set projection
projLCC2d <- "+proj=lcc␣+lon_0=-14.1␣+lat_0=34.823␣+lat_1=43␣+lat_

2=43␣+x_0=536402.3␣+y_0=-18558.61␣+units=km␣+ellps=WGS84"
projection(cft) <- projLCC2d
#set time index
timeIndex <- seq(as.POSIXct(’2013-04-17␣01:00:00’, tz=’UTC’), length

=96, by=’hour’)
cft <- setZ(cft, timeIndex)
names(cft) <- format(timeIndex, ’D%d_H%H’)

1The animation package (Xie 2013) defines several functions to wrap ffmpeg and
convert from ImageMagick.

2An alternative method is the LATEX animate package, which provides an interface to
create portable JavaScript-driven PDF animations from rasterized image files.

3http://mandeo.meteogalicia.es/thredds/catalogos/WRF_2D/catalog.html
4http://www.meteogalicia.es
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12.5.2 Spatial Context: Administrative Boundaries

Let’s provide the spatial context with the countries boundaries, extracted
from the worldHires database of the maps and mapdata packages.

library(maptools)
library(rgdal)
library(maps)
library(mapdata)

projLL <- CRS(’+proj=longlat␣+datum=WGS84␣+ellps=WGS84␣+towgs84
=0,0,0’)

cftLL <- projectExtent(cft, projLL)
cftExt <- as.vector(bbox(cftLL))
boundaries <- map(’worldHires’,

xlim=cftExt[c(1,3)], ylim=cftExt[c(2,4)],
plot=FALSE)

boundaries <- map2SpatialLines(boundaries, proj4string=projLL)
boundaries <- spTransform(boundaries, CRS(projLCC2d))

12.5.3 Producing the Frames and the Movie

The next step is to produce the collection of frames. We will create a file
with each layer of the RasterBrick using the levelplot function. This
function provides the argument layout to control the arrangement of a
multipanel display. If it is set to c(1,1), a different page is created for
each layer.

cloudTheme <- rasterTheme(region=brewer.pal(n=9, ’Blues’))

tmp <- tempdir()
trellis.device(png, file=paste0(tmp, ’/Rplot%02d.png’),

res=300, width=1500, height=1500)
levelplot(cft, layout=c(1, 1), par.settings=cloudTheme) +

layer(sp.lines(boundaries, lwd=0.6))
dev.off()

A suitable tool to concatenate these frames and create the movie is ffm-
peg, a free cross-platform software to record, convert, and stream audio
and video5. The resulting movie is available from the book website.

5http://www.ffmpeg.org/
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old <- setwd(tmp)
## Create a movie with ffmpeg using 6 frames per second a bitrate of

300kbs
movieCMD <- ’ffmpeg␣-r␣6␣-b␣300k␣-i␣Rplot%02d.png␣output.mp4’
system(movieCMD)
file.remove(dir(pattern=’Rplot’))
file.copy(’output.mp4’, paste0(old, ’/figs/cft.mp4’), overwrite=TRUE

)
setwd(old)

12.5.4 Static Image

Figure 12.9 shows a sequence of twenty-four snapshots (second day of the
forecast series) of the movie. This graphic is also created with levelplot
but now using the argument layers to choose a subset of the layers, and
with a different value for layout to display a matrix of twenty-four pan-
els.

levelplot(cft, layers=25:48, layout=c(6, 4),
par.settings=cloudTheme,
names.attr=paste0(sprintf(’%02d’, 1:24), ’h’),
panel=panel.levelplot.raster) +

layer(sp.lines(boundaries, lwd=0.6))

The movie and the static image are complementary tools and should
be used together. Watching the movie you will perceive the cloud transit
from Galicia to the Pyrenees gradually dissolving over the Cantabrian re-
gion. On the other hand, with Figure 12.9 you can locate the position of a
group of clouds in a certain hour and simultaneously observe the relation-
ship of that position with the evolution during that period. With the movie
you will concentrate your attention on the movement. With small multi-
ple pictures, your focus will be on positions and relations. You should use
both graphical tools to grasp the entire 3D dataset.
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FIGURE 12.9: Forecast of hourly cloud cover at low and mid levels.
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Chapter 13

Spatiotemporal Point
Observations

13.1 Introduction

Throughout this chapter we will revisit the data from the Integrated Air
Quality system of the Madrid City Council (section 10.1) to illustrate vi-
sualization methods applicable for point space-time data. This dataset
comprises the time series of measurements acquired at each station of
the network during 2011. In the section 8.1 the data were converted from
spatiotemporal data to spatial data, where the time information was sup-
pressed to display only the yearly average values. In this chapter we will
work with the whole space-time dataset using the tools provided by the
spacetime package (E. Pebesma 2012).

13.2 Data and Spatial Information

The starting point is to retrieve the data and combine it with the spa-
tial and temporal information. The data are contained in the airQual-
ity data.frame, and the locations are in airStations, a data.frame that
is converted to a SpatialPointsDataFrame object with the coordinates
method.
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library(sp)

## Spatial location of stations
airStations <- read.csv2(’data/airStations.csv’)
## rownames are used as the ID of the Spatial object
rownames(airStations) <- substring(airStations$Codigo, 7)
coordinates(airStations) <- ~ long + lat
proj4string(airStations) <- CRS("+proj=longlat␣+ellps=WGS84")
## Measurements data
airQuality <- read.csv2(’data/airQuality.csv’)
## Only interested in NO2
NO2 <- airQuality[airQuality$codParam==8, ]

Each row of this data.frame corresponds to a measurement at one of
the stations during a day of the year (long format, following the schema
proposed in (E. Pebesma 2012)).

The spacetime package defines several classes for spatiotemporal data
inheriting the classes defined by the sp and xts packages. In particular,
the STFDF, a class for spatiotemporal data with full space-time grids with
n spatial locations and m times, requires a data.frame with n·m rows, (spa-
tial index moving fastest). Thus, we need to transform this structure to
build a multivariate time series where each station is a different variable
(space-wide under the schema of (E. Pebesma 2012)). The procedure is

• Add a column with the POSIXct time index.

• Reshape the data.frame from long to wide format with reshape.

• Define a multivariate time series with zoo (Figure 13.3).

• Coerce this time series to a vector with n·m rows.

library(zoo)
library(spacetime)

NO2$time <- with(NO2, ISOdate(year, month, day))
NO2wide <- reshape(NO2[,c(’codEst’, ’dat’, ’time’)],

idvar=’time’, timevar=’codEst’,
direction=’wide’)

NO2zoo <- zoo(NO2wide[,-1], NO2wide$time)

dats <- data.frame(vals=as.vector(t(NO2zoo)))
NO2st <- STFDF(airStations, index(NO2zoo), dats)
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FIGURE 13.1: Scatterplots of the NO2 values (2011) with a panel for each
day of the time series. Each circle represents a different station.

13.3 Graphics with spacetime

The stplot function of the spacetime package supplies the main visual-
ization methods for spatiotemporal data. When the mode xy is chosen (de-
fault) it is mainly a wrapper around spplot and displays a panel with the
spatial data for each element of the time index (Figure 13.1). The problem
with this approach is that only a limited number of panels can be correctly
displayed on one page. In this example, we print the first 12 days of the
sequence.

airPal <- colorRampPalette(c(’springgreen1’, ’sienna3’, ’gray5’))(5)

stplot(NO2st[, 1:12], cuts=5, col.regions=airPal, edge.col=’black’)

With the mode xt, a space-time plot with space on the x-axis and time
on the y-axis is plotted (Figure 13.2).
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FIGURE 13.2: Space-time graphic of the NO_2 time series. Each column
represents a different station (denoted with the last two digits of the code).

stplot(NO2st, mode=’xt’, col.regions=colorRampPalette(airPal)(15),
scales=list(x=list(rot=45)), ylab=’’, xlab=’’)

Finally, with the mode ts, data are coerced to a multivariate time series
that is displayed in a single plot (Figure 13.3).

stplot(NO2st, mode=’ts’, xlab=’’,
lwd=0.1, col=’black’, alpha=0.6,
auto.key=FALSE)

These three graphics complement each other and together provide a
more complete view of the behavior of the data. For example in Figure
13.1, we can find stations whose levels remain almost constant throughout
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FIGURE 13.3: Time graph of the NO2 time series (2011). Each line repre-
sents a different station.

the 12-day period (namely, El Pardo-280790581, the station at the top-left
corner that is far from the city center), while others fluctuate notably dur-
ing this same period (for example, Barajas-28079027 and Urb. Embajada-
28079055, the two nearby stations at the right). On the other hand, Figure
13.2 loses the spatial information but gives a more comprehensive view
of the evolution of the network. The station El Pardo-28079058 is signifi-
cantly below the rest of the stations during the whole year, with the station
Pza. Fdez Ladreda-28079056 being the opposite. In between, the stations
could be divided into two or three groups according to their levels. Re-
gardless, the group of stations reaches maximum values during the first

1Use Figure 8.5 as reference of the positions and codes of the stations.
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days of autumn and at the end of winter. These maxima are clearly dis-
played in Figure 13.3.

13.4 bAnimation

Another approach for displaying this spatiotemporal data is using ani-
mation. Once again, we will take advantage of the functionalities of the
gridSVG package.

13.4.1 Initial Snapshot

The first step is to define the initial parameters of the animation: starting
values and duration.

library(gridSVG)
## Initial parameters
start <- NO2st[,1]
## values will be encoded as size of circles,
## so we need to scale them
startVals <- start$vals/5000

nStations <- nrow(airStations)
days <- index(NO2zoo)
nDays <- length(days)
## Duration in seconds of the animation
duration <- nDays*.3

The first snapshot of the data is produced with spplot. We define an
auxiliary function, panel.circlesplot, to display the data encoding val-
ues with circles of variable size and color. This function uses grid.circle
from the grid package.

The subsequent frames of the animation will modify the colors and
sizes of the circles according to the NO2st object.

library(grid)

## Auxiliary panel function to display circles
panel.circlesplot <- function(x, y, cex, col=’gray’,

name=’stationsCircles’, ...){
grid.circle(x, y, r=cex,

gp=gpar(fill=col, alpha=0.5),
default.units=’native’, name=name)

}
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pStart <- spplot(start, panel=panel.circlesplot,
cex=startVals,
scales=list(draw=TRUE), auto.key=FALSE)

pStart

13.4.2 Intermediate States to Create the Animation

From this initial state, grid.animate creates a collection of animated graph-
ical objects with the intermediate states defined by animUnit and anim-
Value. As previously stated, the NO2 values will be encoded with the
radius of each circle, and the color of the circles will distinguish between
weekdays and weekend. The use of rep=TRUE ensures that the animation
will be repeated indefinitely.

## Color to distinguish between weekdays (’green’)
## and weekend (’blue’)
isWeekend <- function(x) {format(x, ’%w’) %in% c(0, 6)}
color <- ifelse(isWeekend(days), ’blue’, ’green’)
colorAnim <- animValue(rep(color, each=nStations),

id=rep(seq_len(nStations), nDays))

## Intermediate sizes of the circles
vals <- NO2st$vals/5000
vals[is.na(vals)] <- 0
radius <- animUnit(unit(vals, ’native’),

id=rep(seq_len(nStations), nDays))

## Animation of circles including sizes and colors
grid.animate(’stationsCircles’,

duration=duration,
r=radius,
fill=colorAnim,
rep=TRUE)

13.4.3 Time Reference: Progress Bar

Information from an animation is better understood if a time reference
is included, for example with a progress bar. The following code builds
a progress bar with ticks at the first day of each month, and with color
changing from gray (background) to blue as the time advances. On the
other hand, it is convenient to provide a method so the user can stop and
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restart the animation sequence if desired. This functionality is added with
the definition of two events, onmouseover and onmouseout, included with
the grid.garnish function.

## Progress bar
prettyDays <- pretty(days, 12)
## Width of the progress bar
pbWidth <- .95
## Background
grid.rect(.5, 0.01, width=pbWidth, height=.01,

just=c(’center’, ’bottom’),
name=’bgbar’, gp=gpar(fill=’gray’))

## Width of the progress bar for each day
dayWidth <- pbWidth/nDays
ticks <- c(0, cumsum(as.numeric(diff(prettyDays)))*dayWidth) + .025
grid.segments(ticks, .01, ticks, .02)
grid.text(format(prettyDays, ’%d-%b’),

ticks, .03, gp=gpar(cex=.5))
## Initial display of the progress bar
grid.rect(.025, .01, width=0,

height=.01, just=c(’left’, ’bottom’),
name=’pbar’, gp=gpar(fill=’blue’, alpha=’.3’))

## ...and its animation
grid.animate(’pbar’, duration=duration,

width=seq(0, pbWidth, length=duration),
rep=TRUE)

## Pause animations when mouse is over the progress bar
grid.garnish(’bgbar’,

onmouseover=’document.rootElement.pauseAnimations()’,
onmouseout=’document.rootElement.unpauseAnimations()’)

The SVG file is finally produced with gridToSVG (Figure 13.4)

grid.export(’figs/NO2pb.svg’)

13.4.4 Time Reference: A Time Series Plot

A different and more informative solution is to add a time series plot in-
stead of a progress bar. This time series plot displays the average value
of the set of stations, with a point and a vertical line to highlight the time
position as the animation advances (Figure 13.5).

## Time series with average value of the set of stations
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13.4 bAnimation

FIGURE 13.4: Animated circles of the NO2 space-time data with a progress
bar.
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NO2mean <- zoo(rowMeans(NO2zoo, na.rm=TRUE), index(NO2zoo))
## Time series plot with position highlighted
pTimeSeries <- xyplot(NO2mean, xlab=’’, identifier=’timePlot’) +

layer({
grid.points(0, .5, size=unit(.5, ’char’),

default.units=’npc’,
gp=gpar(fill=’gray’),
name=’locator’)

grid.segments(0, 0, 0, 1, name=’vLine’)
})

print(pStart, position=c(0, .2, 1, 1), more=TRUE)
print(pTimeSeries, position=c(.1, 0, .9, .25))

Once again, grid.animate creates a sequence of intermediate states
for each object of the graphical scenes: The signaling point and vertical
line follow the time evolution, while the sizes and colors of each station
circle change as in the previous approach. Moreover, the onmouseover and
onmouseout events are defined with grid.garnish so the user can pause
and restart the animation by hovering the mouse over the time series plot.

grid.animate(’locator’,
x=unit(as.numeric(index(NO2zoo)), ’native’),
y=unit(as.numeric(NO2mean), ’native’),
duration=duration, rep=TRUE)

xLine <- unit(index(NO2zoo), ’native’)

grid.animate(’vLine’,
x0=xLine, x1=xLine,
duration=duration, rep=TRUE)

grid.animate(’stationsCircles’,
duration=duration,
r=radius,
fill=colorAnim,
rep=TRUE)

## Pause animations when mouse is over the time series plot
grid.garnish(’timePlot’, grep=TRUE,

onmouseover=’document.rootElement.pauseAnimations()’,
onmouseout=’document.rootElement.unpauseAnimations()’)

grid.export(’figs/vLine.svg’)
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FIGURE 13.5: Animated circles of the NO2 space-time data with a a time
series as reference.
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A data graphic is not only a static image, but it also tells a story about 
the data. It activates cognitive processes that are able to detect 
patterns and discover information not readily available with the raw 
data. This is particularly true for time series, spatial, and space-time 
datasets.

Focusing on the exploration of data with visual methods, Displaying 
Time Series, Spatial, and Space-Time Data with R presents 
methods and R code for producing high-quality graphics of time 
series, spatial, and space-time data. Practical examples using real-
world datasets help you understand how to apply the methods and 
code.

The book illustrates how to display a dataset starting with an easy and 
direct approach and progressively adding improvements that involve 
more complexity. Each of the book’s three parts is devoted to different 
types of data. In each part, the chapters are grouped according to 
the various visualization methods or data characteristics. 

Features
• Offers detailed information on producing high-quality graphics
• Uses real data from meteorological, climate, economic, 

social science, energy, engineering, environmental, and 
epidemiological research in many practical examples

• Shows how to improve graphics based on visualization theory
• Provides the graphics, data, and R code on the author’s 

website, enabling you to practice with the methods and modify 
the code to suit your own needs.
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